UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

Parallel architectures and runtime
systems co-design for task-based
programming models

Emilio Castillo Villar

ADVERTIMENT La consulta d’'aquesta tesi queda condicionada a I'acceptacié de les seglients
condicions d'Us: La difusi6 d’aquesta tesi per mitja del repositori institucional
UPCommons (http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX
(http://www.tdx.cat/) ha estat autoritzada pels titulars dels drets de propietat intel-lectual
unicament per a usos privats emmarcats en activitats d’investigacié i docéncia. No s’autoritza
la seva reproduccié amb finalitats de lucre ni la seva difusié i posada a disposicié des d’'un lloc
alié al servei UPCommons o TDX. No s’autoritza la presentacié del seu contingut en una finestra
o marc alie a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentacié
de la tesi com als seus continguts. En la utilitzacio o cita de parts de la tesi és obligat indicar el nom
de la personaautora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptacion de las siguientes
condiciones de uso: La difusion de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
unicamente para usos privados enmarcados en actividades de investigacion y docencia. No
se autoriza su reproduccién con finalidades de lucro ni su difusién y puesta a disposicién desde
un sitio ajeno al servicio UPCommons No se autoriza la presentacion de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentacion de la tesis como a sus contenidos. En la utilizacién o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the institutionalrepository UPCommons
(http://upcommons.upc.edu/tesis) and the cooperative repository TDX (http://www.tdx.cat/?locale-
attribute=en) has been authorized by the titular of the intellectual property rights only for private
uses placed in investigation and teaching activities. Reproduction with lucrative aims is not
authorized neither its spreading nor availability from a site foreign to the UPCommons service.
Introducing its content in a window or frame foreign to the UPCommons service is not authorized
(framing). These rights affect to the presentation summary of the thesis as well as to its contents.
In the using or citation of parts of the thesis it's obliged to indicate the name of the author.

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://upcommons.upc.edu/tesis)
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

PARALLEL ARCHITECTURES AND RUNTIME
SYSTEMS CO-DESIGN FOR TASK-BASED
PROGRAMMING MODELS

Emilio Castillo Villar

Barcelona, 2018

A thesis submitted in fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY / DOCTOR PER LA UPC

Department of Computer Architecture

Technical University of Catalonia

PARALLEL ARCHITECTURES AND RUNTIME
SYSTEMS CO-DESIGN FOR TASK-BASED
PROGRAMMING MODELS

Emilio Castillo Villar

Barcelona, 2018

ADVISORS: Miquel Moreté Planas
Universitat Politecnica de Catalunya

Barcelona Supercomputing Center

Julio Ramoén Beivide Palacio

Universidad de Cantabria

COLLABORATORS: Marc Casas Guix
Barcelona Supercomputing Center

Lluc Alvarez Marti

Barcelona Supercomputing Center

Abhinav Bhatele

Lawrence Livermore National Laboratory

Nikhil Jain

Lawrence Livermore National Laboratory

A thesis submitted in fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY / DOCTOR PER LA UPC

Departament d’ Arquitectura de Computadors

Universitat Politecnica de Catalunya

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH

Escola de Doctorat

. ., . Curso académico:
Acta de calificacion de tesis doctoral

Nombre y apellidos

Programa de doctorado

Unidad estructural responsable del programa

Resolucion del Tribunal

Reunido el Tribunal designado a tal efecto, el doctorando / la doctoranda expone el tema de su tesis doctoral
titulada

Acabada la lectura y después de dar respuesta a las cuestiones formuladas por los miembros titulares del
tribunal, éste otorga la calificacion:

[] NoAPTO []APROBADO [] NOTABLE [] SOBRESALIENTE
(Nombre, apellidos y firma) (Nombre, apellidos y firma)
Presidente/a Secretario/a
(Nombre, apellidos y firma) (Nombre, apellidos y firma) (Nombre, apellidos y firma)
Vocal Vocal Vocal
, de de

El resultado del escrutinio de los votos emitidos por los miembros titulares del tribunal, efectuado por la Comisién
Permanente de la Escuela de Doctorado, otorga la MENCIO CUM LAUDE:

[] si [1no

(Nombre, apellidos y firma) (Nombre, apellidos y firma)

Presidente/a de la Comisién Permanente de la Escuela de Secretario/a de la Comisién Permanente de la Escuela de
Doctorado Doctorado

Barcelona, de de

Mencion Internacional en el titulo de doctor o doctora

e Como secretario/a del tribunal hago constar que parte de la tesis doctoral, como minimo el resumen y las
conclusiones, se ha redactado y presentado en una de las lenguas habituales para la comunicacion cientifica
en su campo de conocimiento y diferente de las que son oficiales en Espafia. Esta norma no se aplica si la

estancia, los informes y los expertos provienen de un pais de habla hispana.

(Nombre, apellidos y firma)

Secretario/a del Tribunal

To my family

Abstract

The increasing parallelism levels in modern computing systems has extolled the need for a
holistic vision when designing multiprocessor architectures taking in account the needs of
the programming models and applications. Nowadays, system design consists of several
layers on top of each other from the architecture up to the application software. Although
this design allows to do a separation of concerns where it is possible to independently
change layers due to a well-known interface between them, it is hampering future sys-
tems design as the Law of Moore reaches to an end. Current performance improvements
on computer architecture are driven by the shrinkage of the transistor channel width, al-
lowing faster and more power efficient chips to be made. However, technology is reaching
physical limitations where the transistor size will not be able to be reduced furthermore
and requires a change of paradigm in systems design.

This thesis proposes to break this layered design, and advocates for a system where the
architecture and the programming model runtime system are able to exchange informa-
tion towards a common goal, improve performance and reduce power consumption. By
making the architecture aware of runtime information such as a Task Dependence Graph
(TDG) in the case of Asynchronous Task-based Programming (ATaP) models, it is possi-
ble to improve power consumption by exploiting the critical path of the graph. Moreover,
the architecture can provide hardware support to create such a graph in order to reduce the
runtime overheads and making possible the execution of fine-grained tasks to increase the
available parallelism. Finally, the current status of inter-node communication primitives
can be exposed to the runtime system in order to perform a more efficient communication
scheduling, and also creates new opportunities of computation and communication over-
lap that were not possible before. An evaluation of the proposals introduced in this thesis
is provided and a methodology to simulate and characterize the application behavior is

also presented.

Abstract

ii

Abstract

El aumento del paralelismo proporcionado por los sistemas de cémputo modernos ha
provocado la necesidad de una visién holistica en el disefio de arquitecturas multiproce-
sador que tome en cuenta las necesidades de los modelos de programacion y las aplica-
ciones. Hoy en dia el disefio de los computadores consiste en diferentes capas de abstrac-
cién con una interfaz bien definida entre ellas. Las limitaciones de esta aproximacion
junto con el fin de la ley de Moore limitan el potencial de los futuros computadores.
La mayoria de mejoras actuales en el disefio de los computadores provienen fundamen-
talmente de la reduccién del tamafio del canal del transistor, lo cual permite chips mas
rdpidos y con un consumo eficiente sin apenas cambios fundamentales en el disefio de
la arquitectura. Sin embargo, la tecnologia actual esta alcanzando limitaciones fisicas
donde no sera posible reducir el tamafio de los transistores motivando asi un cambio de
paradigma en la construccion de los computadores.

Esta tesis propone romper este disefio en capas y abogar por un sistema donde la ar-
quitectura y el sistema de tiempo de ejecucion del modelo de programacion sean capaces
de intercambiar informacion para alcanzar una meta comutn: La mejora del rendimiento
y la reduccion del consumo energético. Haciendo que la arquitectura sea consciente de
la informacién disponible en el modelo de programacion, como puede ser el grafo de
dependencias entre tareas en los modelos de programacién dataflow, es posible reducir
el consumo energético explotando el camino critico del grafo. Ademads la arquitectura
puede proveer de soporte hardware para crear este grafo con el objetivo de reducir el
overhead de construir este grado cuando la granularidad de las tareas es demasiado fina.
Finalmente, el estado de las comunicaciones entre nodos puede ser expuesto al sistema de
tiempo de ejecuciOn para realizar una mejor planificaciéon de las comunicaciones y cre-
ando nuevas oportunidades de solapamiento entre computo y comunicacion que no eran
posibles anteriormente. Esta tesis aporta una evaluacion de todas estas propuestas asi

como una metodologia para simular y caracterizar el comportamiento de las aplicaciones.

il

Abstract

iv

Acknowledgments

Those who know me know as well the last couple years had been a long and hard path
towards this goal. I had the support of many people whom I like to briefly thank in the
following lines:

The list of people who have made this possible in one way or another is extremely big,
their friendship and unconditional support under all the circumstances that have arose in
the past years is something that I will never be grateful enough.

My brother Javier Castillo, thank you for showing me research and always keep me in
the right path.

My Ph.D advisor and co-advisors, Miquel Moretd, Ramén Beivide and Marc Casas,
thank you for your understanding and support in difficult situations that went against your
interests.

Mateo Valero, thank you for your friendship, thank you for making all of this possible.

Cristobal Camarero, most of what I know and I am able to do is thanks to you.

Kotaro Nakayama and Yutaka Matsuo from the University of Tokyo. Your under-
standing, support and concern has been always beyond words.

José Luis Bosque, thanks for helping me both professionally and personally all these
years.

All the RoMoL team, especially Lluc Alvarez, César Allande and Adrian Barredo.

Martin Schulz from the Technical University of Munich, Abhinav Bhatele and Nikhil
Jain from the Lawrence Livermore National Laboratory. Thank you for hosting me last
year and work hard side-by-side to make this thesis come to a successful end.

Satoshi Matsuoka from Tokyo Tech. Thank you always for your kindness and advice.

My parents supported me throughout all these years and their efforts guaranteed me
an education and a future.

Old colleagues at the University of Cantabria, Pablo Fuentes, Ivan Pérez, Fernando

Vallejo, Enrique Vallejo, Carmen Martinez, Rafael Menéndez and Esteban Stafford.

Acknowledgments

All my friends in Spain, USA, and Japan. Too many to list all of them here but I will

always feel grateful to all of you.

Financial Support

This work has been supported by the Spanish Government (Severo Ochoa grants SEV2015-
0493, SEV-2011-00067), by the Spanish Ministry of Science and Innovation (contracts
TIN2015-65316-P, TIN2012-34557, TIN2013-46957-C2-2-P, TIN2016-76635-C2-2-R and
TIN2016-81840-REDT), by Spanish Ministry of 41 Education, Culture and Sports un-
der grant FPU2012/2254, by Generalitat de Catalunya (contracts 2014-SGR-1051 and
2014-SGR-1272), by the RoMoL ERC Advanced Grant (GA 321253) and the European
HiPEAC Network of Excellence. The Mont-Blanc project receives funding from the EU’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 610402 and
from the EU’s H2020 Framework Programme (H2020/2014-2020) under grant agreement
No. 671697 and No. 671610. This work was partially performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.

vi

Contents

Abstract i
Acknowledgments v
Index Xi
1 Introduction 1
1.1 Thesis Objectives and Contributions 3
1.1.1 Efficient Power Management based on Task Criticality 4

1.1.2 Flexible Hardware Support for Task Dependence Management . . 4

1.1.3 Towards a Seamless ATaP-MPI Interoperability 5

1.2 Thesis Structure 6

2 Background and Related Work 9
2.1 Parallel Multiprocessor Systems 9
2.1.1 Shared Memory Multiprocessor Systems 10

2.1.2 Distributed Multiprocessor Systems 10

2.1.3 Asymmetric Multiprocessor Systems 12

2.2 Parallel Programming Models 13
2.2.1 Threading and Fork-Join Programming Models 13

2.2.2 Asynchronous Task-based Programming Models 15

2.2.3 Programming Models for Distributed Environments 17

2.2.4 Communication in Hybrid MPI+ATaP Models 18

2.3 The OmpSs Programming Model 20
2.3.1 Task Dependence Graph 21

2.3.2 TaskScheduling 23

233 TaskLifeCycle 24

vil

CONTENTS

viii

2.4 Architecture and ATaP Runtime Co-Design
2.4.1 Runtime System Hardware Support

2.4.2 Exploiting Runtime System Information In the Architecture

Experimental Framework and Toolset
3.1 Simulation Infrastructure
32 HPCCluster
3.2.1 Workload Management
33 SoftareStack Lo
3.3.1 Operating System and Build Toolchain
3.3.2 ATaP Model Runtime System
333 MPI&PSM2
3.4 Performance Analysis Tools
35 Benchmarks Lo
3.5.1 Shared Memory Workloads
3.5.2 Distributed workloads
3.5.2.1 Point-to-point Benchmarks

3.5.2.2 Benchmarks with Collective Communications

Improving Power Consumption Through Task Criticality
4.1 Limitations of scheduling algorithms
4.2 Criticality-Aware Task Acceleration
Using DVFS Reconfigurations
4.2.1 Criticality-Aware Runtime-Driven DVFS Reconfiguration
4.2.2 Architectural Support for DVFS Reconfiguration
4.22.1 RSUManagement
4222 RSUOperation
4.2.2.3 RSU Virtualization
4.2.2.4 Areaand Power Overhead
4.2.2.5 Integration of RSU and TurboMode
43 Evaluation L L
4.3.1 Criticality-Aware Task Scheduling
4.3.2 Criticality-Aware Task Acceleration
4.3.3 Architecturally Supported CATA
4.3.4 Comparison with Other Proposals

31
31
32
34
34
34
35
35
36
38
38
40
40
42

45
46

CONTENTS

44 Remarks

5 Improving Performance Through Fine-Grained Tasking

6

5.1 Characterizing Runtime System Activity
52 TDMDesign

5.2.1
522

523

5.2.4

Runtime System - Architecture Interface

DMU Hardware Design . . .

5.2.2.1 Task and Dependence Identifier Renaming
5.2.2.2 Task and Dependence Tracking

Operational Model
5.2.3.1 Task Creation . . .
5.2.3.2 Task Finalization . .

5.2.3.3 Implementing Task Schedulers in Software

Additional Considerations . .

5.3 Design Space Exploration.

5.3.1
532
5.3.3
5.3.4
535
5.3.6

Benchmarks and Task Granularity

TAT, DAT and List Arrays . .
DMU Access Latency

DMU Area and Power Overhead

Runtime Overhead Reduction
Index Bit Selection for DAT .

5.4 Flexible Scheduling with TDM

54.1

Performance Evaluation . . .

55 Remarks

Easing Communication Bottlenecks Through The Runtime System

6.1 Bottlenecks on taskified communication

6.2 Exposing MPI Activity to ATaP Runtimes

6.2.1
6.2.2

6.2.3

Extending MPI to Support Event Handling

Mechanisms for Event Delivery

6.2.2.1 Polling-based Notification
6.2.2.2 Callback-based Notification

Changes to the OmpSs runtime

83
84
86
87
88
88
89
90

ix

CONTENTS

6.2.4 Overlapping Computation with Collectives 92
6.3 Performance Evaluation. 93
6.3.1 Results for Point-to-point Benchmarks 94
6.3.2 Results for Collective Benchmarks 96
6.3.2.1 Fast Fourier Transform 96
6.3.2.2 MapReduce, 98
6.3.3 Scalability of the collectives benchmarks 99
6.3.4 Comparison with Task-Aware MPI Library 99
6.4 Remarks 101
7 The Complete Runtime-Aware Architecture 103
7.1 Introduction 103
7.2 The Runtime-Aware Architecture Hardware Extensions 104
7.2.1 Interface and Integration with the Runtime System 104
7.2.2 RSU Hardware Design 105
7.2.2.1 Task Criticality Identification 106
7.2.2.2 Communication Dependences 107
7.2.3 Operational Model 107
7.2.3.1 Task Creation, Dependence Analysis, and Task Ceriti-
cality Detection 107
7.2.3.2 Ready Task Retrieval and Scheduling 109
7.2.3.3 TaskExecution 109
7.2.3.4 Task Finalization. 109
7.2.3.5 Task Unlocking on MPI Message Arrival 109
7.3 Remarks 111
8 Conclusions 113
8.1 Goals, Contributions and Main Conclusions 113
82 Future Work 115
83 Publications L 116
Bibliography 119
List of Figures 133
List of Tables 137

CONTENTS

Glossary 139

xi

CONTENTS

xii

Chapter 1

Introduction

Current trends in computer architecture research are being heavily driven by the end of
Moore’s Law, which predicted that the number of transistors in integrated circuits doubles
every two years. For decades the increasingly available transistors were used to improve
the Instructions per Cycle (IPC) in-order processors could execute by adding pipelines,
branch-predictors and cache memories that greatly increased the instruction throughput of
single-core processors. As the transistor count kept rising in a silicon die, computer archi-
tects were able to improve the Instruction Level Parallelism (ILP) of sequencial programs
by using superscalar and Out-Of-Order execution creating opportunities to hide latency
of long memory accesses.

Furthermore, Dennard’s scaling stated that the power density of MOSFET transistors
stays constant as their size decreases allowing to increase the frequency while the power
remains constant. However, Dennar scaling broke down around 2005 and 2007 and the
stagnation of CPU clock frequencies due to the impossibility of dissipating the generated
power density led to the rise of multi-core systems thanks to the increasingly available
transistors in the silicon die. This made Task Level Parallelism (TLP) possible and al-
lowed real parallelism in single-chip systems.

The high levels of concurrency offered by multi-core systems are hard to exploit
through programming models based on thread primitives. Thus, new programming mod-
els have emerged to deal with such architectures and the Programmability Wall. Asyn-
chronous Task-based Programming (ATaP) models and runtimes such as OpenMP 4.0 [92],
Charm++ [2], HPX [66], OmpSs [38], and Legion [1 1] implement a dataflow execution
model where the programmer splits the code in sequential pieces of work, called rasks,
and specifies the data and control dependences between them creating a Task Dependence
Graph (TDG). With this information, the runtime system manages the parallel execution,

scheduling tasks to cores and taking care of synchronization among them. These models

1

not only improve programmability, but also can increase performance by avoiding global
synchronization points, enabling the user to focus on programming aspects related to their
problem domain without worrying about cross-platform performance issues. Under the
hood, the runtime systems are designed to automatically optimize for different application

scenarios and system specifications.

The algorithmic information that the runtime system holds on ATaP models offers sev-
eral opportunities to tackle the most common issues that computer architects face today;
The Power Wall, where processor clock stagnated due to the impossibility of effectively
dissipating the power density once that frequency reaches a certain threshold, and the
Memory Wall where the main memory latency does not decrease fast enough to keep up
with the processor timing requirements. This PhD thesis envisions a Runtime-Aware Ar-
chitecture (RAA) in which the software runtime system and the hardware are co-designed
so that the hardware layer can provide support for expensive task management operations
and some decisions at the architectural level such as power management, or inter-node

communication are driven by the information obtained at the runtime system layer.

The Power wall originated due the impossibility of keep increasing the frequency of
processors due to the power and thermal dissipation constrains that the CMOS technol-
ogy imposes. Modern computer systems implement different hardware mechanisms that
allow reconfiguring the computational capability of the system, aiming to maximize per-
formance under affordable power budgets. For example, per-core power gating and Dy-
namic Voltage and Frequency Scaling (DVFES) are common reconfiguration techniques
available on commodity hardware [36, 68]. However, the problem of optimally using
these reconfiguration mechanisms remains open. The information in the TDG can be
exploited to open new power savings opportunities and performance gains taking into ac-
count its critical path. Tasks outside of the critical path in the TDG can be executed in
simpler processing elements or at lower clock frequencies using reconfiguration mecha-
nisms such as DVFS. Asymmetric chip multiprocessor systems present a power-efficient
alternative to classical symmetric chip multiprocessor systems by combining high perfor-
mance out-of-order cores with more power efficient but slower in-order cores. Tasks can
be scheduled to the cores by looking at their criticality in the TDG [32] or the speedup
they could obtain from running in the big cores [63]. In a RAA, the architecture can pro-
vide the metrics the runtime system needs to efficiently map tasks to processing elements

and offer mechanisms to perform transparent migration of such tasks when needed.

The increasing number of cores per processor forces developers to decrease the gran-

CHAPTER 1. INTRODUCTION

ularity of the tasks to prevent starvation and expose large degrees of concurrency to the
hardware, which favors load balancing and provides more flexibility to exploit construc-
tive interference on shared resources. However, it can also bring large software overheads
due to the runtime system activity, which involves creating the tasks, tracking the depen-
dences between them, and scheduling them to cores. All these actions require synchro-
nizing threads to perform complex operations on internal data structures of the runtime
system. Different solutions have been proposed to support fine-grained parallelism on
multi-cores [39, 59, 60, 71, 116]. These approaches manage fine-grained tasks completely
in hardware, relying on specific execution models to scale to large core counts. How-
ever, pure hardware solutions suffer from limited adaptability to changes in the software
layers. Task support in shared memory programming models is continuously evolving,
incorporating new features such as dependence domains or task nesting that are not easy
to support at the architecture level. Moreover, implementing a fixed scheduling policy in
hardware reduces the adaptability to different application and system characteristics.
Finally, one of the main attractions of ATaP models and runtimes is their potential to
automatically expose and exploit the overlap of computation with communication. This
refers to the benefit that comes from having multiple tasks on a physical core or pro-
cess so that when one task is waiting for messages to arrive, another task can use the
idle core for useful computation. When ATaP applications are executed on distributed
memory systems, inter-node communication is typically handled by calls to a messaging
library (in most cases, the Message Passing Interface or MPI). Some ATaP models allow
explicit calls to MPI whereas in other models, communication primitives are translated
to MPI calls by the runtime [38, 113]. The interoperability of the messaging library and
the ATaP model has been subject of extensive research, from the programmer explicitly
calling communication primitives [82] to the runtime system abstracting the message ex-
changing [2, 11]. All these works treat the communication layer as a black-box entity
and there is a clash on the design philosophies between both, the ATaP and the commu-
nication model, preventing to achieve better performance unless the MPI runtime and the

ATaP runtime system collaborate together as proposed in this work.

1.1 Thesis Objectives and Contributions

The main goal of this thesis is to study scenarios where the software/hardware co-design

of a multi-core architecture and the programming model runtime system can be beneficial

3

1.1. THESIS OBJECTIVES AND CONTRIBUTIONS

and use the underlying resources in an efficient and transparent way to the programmer.
The contributions of this dissertation explore several critical scenarios for parallel
architectures: power management, parallel workloads performance and load balancing,
And inter-process communication in distributed memory systems. This thesis advocates
for an integrated proposal to benefit from the information that lives in the intersection
of the runtime system and the architecture, enabling the latter to exploit runtime level
information or propose mechanisms to ease bottlenecks at the runtime system layer by

exploiting lower layers internal state information.

1.1.1 Efficient Power Management based on Task Criticality

The TDG offers a rich degree of information that can be exploited by ATaP runtime sys-
tems opening a wide range of performance and power optimization opportunities.

Based on the observation that task criticality information can be exploited to drive
hardware reconfigurations, we propose a Criticality Aware Task Acceleration (CATA)
mechanism that dynamically adapts the computational power of a task depending on its
criticality. As a result, CATA achieves significant improvements over a baseline static
scheduler, reaching average improvements up to 18.4% in execution time and 30.1% in
Energy-Delay Product (EDP) on a simulated 32-core system.

The cost of reconfiguring hardware by means of a software-only solution rises with the
number of cores due to lock contention and reconfiguration overhead. Therefore, novel
architectural support is proposed to eliminate these overheads on future manycore sys-
tems. This architectural support minimally extends hardware structures already present
in current processors, which allows further improvements in performance with negligible
overhead. As a consequence, average improvements of up to 20.4% in execution time
and 34.0% in EDP are obtained, outperforming state-of-the-art acceleration proposals not
aware of task criticality.

The following sections describe the mechanism and its operational model as well as
the integration with the runtime system and a complete evaluation of performance and

energy savings of the proposal.

1.1.2 Flexible Hardware Support for Task Dependence Management

The growing complexity of multi-core architectures has motivated a wide range of soft-

ware mechanisms to improve the orchestration of parallel executions. Task parallelism

4

CHAPTER 1. INTRODUCTION

has become a very attractive approach thanks to its programmability, portability and po-
tential for optimizations. However, with the expected increase in core counts, fine-grained
tasking is required to exploit the available parallelism, which increases the overheads in-
troduced by the runtime system.

This work presents Task Dependence Manager (TDM), a hardware/software co-de-
signed mechanism to mitigate runtime system overheads. TDM introduces a hardware
unit, denoted Dependence Management Unit (DMU), and minimal ISA extensions that al-
low the runtime system to offload costly dependence tracking operations to the DMU and
to still perform task scheduling in software. With lower hardware cost, TDM outperforms
hardware-based solutions and enhances the flexibility, adaptability and composability of
the system. Results show that TDM improves performance by 12.3% and reduces EDP
by 20.4% on average with respect to a software runtime system. Compared to a runtime
system fully implemented in hardware, TDM achieves an average speedup of 4.2% with
7.3% less area requirements and significant EDP reductions. In addition, five different
software schedulers are evaluated with TDM, illustrating the flexibility and performance

gains of our approach.

1.1.3 Towards a Seamless ATaP-MPI Interoperability

Communication in hybrid parallel and distributed applications is usually handled by
the MPI Library. In such applications, computation and communication phases are well-
defined and isolated from each other limiting the potential computation-communication
overlap.

ATaP models are gaining popularity to address the programmability and performance
challenges in high performance computing. One of the main attractions of these models
and runtimes is their potential to automatically expose and exploit overlap of computation
with communication.

ATaP models can deal with communication by either allowing the programmer to
place explicit MPI calls in the tasks code, or the runtime system can be communica-
tion aware and schedule data transferences when appropiated. Although this exposes a
transparent and natural computation-communication overlap, there are still some ineffi-
ciencies due to the lack of information sharing between the ATaP and the communication
layer runtime systems.

This chapter explore how information about MPI internals can be exposed and used

5

1.2. THESIS STRUCTURE

in a task-based runtime system to make better scheduling and task-creation decisions. In
particular, we present two mechanisms for exchanging information between MPI and a
task-based runtime, and analyze their trade-offs. Further, we present a detailed evaluation
of the proposed mechanisms implemented in MPI and a task-based runtime. We show
improvements of up to 16.3% and 34.5% for proxy applications with point-to-point and

collective communication, respectively.

1.2 Thesis Structure

The document contents are organized as follows:

e Chapter 2 reviews parallel architectures and programming models and provides the

necessary information to understand the rest of the chapters.

e Chapter 3 describes all the tools and benchmarks used for the evaluation of the

presented proposals.

e Chapter 4 presents Criticality-Aware Task Acceleration (CATA) a mechanism to
drive the power management of a multi-core chip multiprocessor. The chapter ex-
plains the problems that previous alternatives faced and later describes the proposed

solutions and their evaluation.

e Chapter 5 introduces Task Dependence Manager (TDM) a flexible solution propos-
ing hardware support to accelerate the Task Dependence Graph construction while
keeping the task scheduler in software. First the motivation behind the proposal
is explained by analyzing the bottlenecks of a runtime system, then the architec-
ture of TDM is detailed and a complete design space exploration and evaluation are

provided.

e Chapter 6 explores how the blocking time of worker threads can be reduced when
using MPI taskified calls by exposing MPI and network interface related events
to the ATaP model runtime system. Two alternatives events delivery mechanisms
are described and evaluated, as well as a new proposal for performing computa-

tion/communication overlap when using collectives.

e Chapter 7 details how all these proposals interact together, lays the theoretical foun-
dations of a Runtime Aware Architecture, and explains the operational model and

integration of all the components with their interface.

CHAPTER 1. INTRODUCTION

e Finally, Chapter 8 concludes the dissertation by remarking the main contributions

and providing an insight of future work.

1.2. THESIS STRUCTURE

Chapter 2

Background and Related Work

This Chapter introduces the background context and does an analysis of the state-of-
the-art for all the concepts laid out in this thesis. Section 2.1 describes multiprocessors
systems focusing on their memory models, shared memory and distributed memory mul-
tiprocessor systems, the concept of asymmetric multiprocessor systems is also detailed.
Section 2.2 explains parallel programming models, starting from the omniscient thread-
ing programming model and OpenMP basic parallel constructs to the more complex ATaP
models that can be used in both shared and distributed memory systems. Section 2.3 in-
troduces OmpSs, the programming model used in this thesis and explains its most relevant
characteristics. Next we detail hardware support for task-based programming models pro-
posals present in the literature. Finally, we focus on distributed environments and explain
the classical MPI programming model and how ATaP models interact with the communi-

cation library.

2.1 Parallel Multiprocessor Systems

Multiprocessor systems date from the era of the large mainframes in the 1960s [47].
However, it was not until the 1980s that these systems became common in computing
infrastructures. The first systems consisted of bus-based multiprocessors with snooping
caches [43] that were primitive implementations of the coherence protocols present on
current multiprocessors. Many advances were done in those years, laying the foundations

for both shared and distributed memory systems.

9

2.1. PARALLEL MULTIPROCESSOR SYSTEMS

2.1.1 Shared Memory Multiprocessor Systems

Most common shared memory systems provide a hierarchical shared memory address
space to a series of processors managed through a memory coherence protocol imple-
mented in hardware. The coherence protocol has the responsibility of making one pro-
cessor changes to the private levels in the memory hierarchy visible to other processors in
the system and coordinate the access to the shared memory locations to provide support
for atomic operations used to implement inter-processor synchronization primitives.

Usually these systems include multiple full-fledged physical processors holding di-
rectories of memory locations that they can access either locally or by requesting them
through the interconnection network. We refer to such schema as distributed shared mem-
ory processors or Non-Uniform Memory Access (NUMA) since physically separated mem-
ories can be accessed as a logically unified and shared space.

While original shared memory systems consisted of physically independent proces-
sors, the increasing number of transistors in a silicon die [85], the ILP limitations and the
stagnation of processor frequencies motivated a shift into the design of processors. Rather
than devote more transistors to exploit ILP, hardware support for TLP was devised bring-
ing in Simultaneous Multi-Threading (SMT) in which a subset of the processor struc-
tures holding the architectural status are replicated [123]. Eventually the increasingly
available transistor count per silicon die allowed to integrate several processor into a sin-
gle die, resulting in the Chip MultiProcessors (CMP), a trend that started with the IBM
POWERA4 [119], the world’s first dual core processor. Figure 2.1 shows a CMP with four
cores and two levels of cache. Each core has a private instruction and data L1 cache, and a
shared distributed L2 cache that is accessed through the interconnection network. Nowa-
days, multiprocessor systems range from 4-8 cores for mobiles and desktop computers

and up to 72 cores as in the Intel Xeon Phi or the AMD Threadripper.

2.1.2 Distributed Multiprocessor Systems

While shared memory systems offer the programmer a logical unified shared memory
address space between all the processing elements in the system, distributed memory
systems have multiple address spaces where data is shared through a message passing
protocol using the interconnection network. In this thesis we focus on distributed mem-
ory multiprocessor High Performance Computing (HPC) systems, which, are composed

of several independent nodes connected together using a low-latency high-bandwidth in-

10

CHAPTER 2. BACKGROUND AND RELATED WORK

L2 Bank L2 Bank

MAIN MEMORY

J9gjjonuo) Alowsy

Figure 2.1: Example of a chip multiprocessor system.

terconnection network. Typically, each node houses one, two or four CMPs in a NUMA
shared memory fashion and is connected to other nodes using a low latency high band-
width network protocol such as Infiniband or Myrinet. In several machines, accelerators
such as GPUs or FPGAs can be present in a subset or all the nodes providing heteroge-

neous computing capabilities.

The core count in the world fastest supercomputers has dramatically increased in the
recent years. According to the Top500 list [1] which is published twice every year, in
1998 the #1 Supercomputer, ASCI RED had 9,152 cores. Ten years later, in 2008, Road-
runner was made of 122,400 cores, and in 2018, Summit consists of 2,282,544 cores. The
growing number of cores in CMPs make possible this continuous increase while keeping
energy and cooling costs in a reasonable budget. However, it is complicated for pro-
grammers to take advantage of such large-scale system as message sending and reception
are left to the application programmer or programming model designers. Heterogeneity
is also present in the Top500 systems and is becoming increasingly important in order
to achieve Exascale; 27.4% of the systems in the Top500 list of November 2018 uses
some kind of accelerator. Summit hosts 27,648 Nvidia Volta GV100 GPU accelerators
connected directly to the POWER9 CPUs with the NVLink interconnection.

11

2.1. PARALLEL MULTIPROCESSOR SYSTEMS

2.1.3 Asymmetric Multiprocessor Systems

While shared memory multiprocessor systems are usually conceived as symmetric sys-
tems where all the processing elements in the system share the same characteristics, the
heterogeneity of workloads and current power constraints in embedded and large scale
systems design has motivated the design of asymmetric systems, in which the process-
ing elements can exhibit different performance ratios. However, it is worth mentioning
that current homogeneous systems can exhibit from negligible to moderate asymmetry
in performance due to variability in the manufacturing process, or not proper cooling as

demonstrated in [81, 106].

Heterogeneous systems are asymmetric by nature as their elements do not provide
the same capabilities. Such systems are usually targeted to certain problem cases such
as accelerators for graphics, cryptography, vector operations and communications among
others. Another factor that guides the asymmetric system design is power efficiency.
In-order cores offer a trade-off in power/performance when compared to power hungry
out-of-order architectures. The ARM big.LITTLE processor is an Asymmetric Multi-core
(AMC) architecture that combines both classes of cores on two core clusters of 4 cores
each; a high-performance cluster based in the Cortex A-57 architecture, and a low-power
consumption cluster with Cortex A-53 cores. In this system, high-preforming cores can
run critical tasks while the smaller cores are targeted to non-critical low-resources de-
manding processes guided by the OS scheduler. However, in multi-threaded workloads,
is the programmer responsibility to map each thread to a core taking in account the dif-

ferences in performance.

In general, asymmetric systems have serious drawbacks in terms of flexibility as dif-
ferent phases of an application might be optimally executed in different computation units.
Consequently, the overhead of moving tasks and their associated data to different com-
putation units can neglect the expected energy improvements. An alternative is to have a
highly reconfigurable hardware that adapts to the actual requirements of the running ap-
plication. Reconfiguring the underlying hardware eliminates the data movement burden,
but adds new issues as the reconfigurations must be coordinated to avoid an explosion in

terms of power consumption.

Current systems offer many different hardware mechanisms that allow reconfiguring
the computation power of the system. For example, in SMT processors, the number of

SMT threads per core or the decode priority can be adjusted [18, 125], while in multi-

12

CHAPTER 2. BACKGROUND AND RELATED WORK

cores, the prefetcher aggressiveness, the memory controller or the last-level cache space
assigned to an application can be changed [33, 62, 102]. More recently, reconfigurable
systems that support core fusion or that behave like traditional high performance out-
of-order cores, but can be transformed to a highly-threaded in-order SMT core when
required, have been shown to achieve significant reductions in terms of energy consump-
tion [56, 70]. Also, per-core power gating and DVFES are common reconfiguration tech-
niques available on commodity hardware [36, 68]. However, the problem of optimally
reconfiguring the hardware is not solved in general as all the above mentioned solutions
rely on effective but ad-hoc mechanisms that are applicable to a reduced set of recon-
figuration problems, they are difficult to combine [125], and they introduce a significant
burden on the programmer.

Multiple techniques to exploit heterogeneous architectures and reconfiguration capa-
bilities have been proposed, such as migrating critical sections to fast cores [117], fusing
cores together when high performance is required for single-threaded code [56], recon-
figuring the computational power of the cores [70], folding cores or switching them off
using power gating [125], or using application heartbeats to assign cores and adapt the
properties of the caches and the TLBs according to the specified real-time performance

constraints [52].

2.2 Parallel Programming Models

2.2.1 Threading and Fork-Join Programming Models

One of the most common parallel programming models in production-grade software
nowadays is the explicit use of light-weight processes named threads. A thread is a analo-
gous to a forked process which shares the application text, data and heap segments with its
parent process. A thread also retains its own architectural context such as the CPU regis-
ters including the instruction pointer, and the memory stack. Most common operating sys-
tems provide facilities to create and manage threads through the use of the POSIX Threads
(pthreads) programming interface [86]. Pthreads or System-Level Threads (SLTs) can be
created by a single POSIX API call, and they are scheduled as independent processes that
can run in any core of the system, the pthread interface also provides means to synchro-
nize threads when accessing to shared memory regions through the use of semaphores.

An alternative to SLTs are User Level Threads (ULTs) [83]. ULT libraries allocate a

13

2.2. PARALLEL PROGRAMMING MODELS

set of resources (processors and memory) and manage thread creation and scheduling in
user-level space through a runtime system. ULTs are usually mapped to a pool of existing
SLTs but providing extended capabilities such as more complex and safer synchronization
mechanisms and faster thread creation and context switching or custom scheduling to

better exploit locality.

The complexity of programming using threads has driven the creation of mechanisms
to ease the programmability of parallel systems. OpenMP is a set of compiler directives
for C, C++ and FORTRAN based on pragma annotations. The programmer adds the
#pragma omp parallel directive preceding the blocks of code that will run in parallel.
OpenMP offers a #pragma omp parallel for directive for parallelizing for loops without
inter-iteration dependences. Loop iterations scheduling across threads can be configured
by the schedule directive. Alternatively, work can be distributed among threads by using
the parallel section annotation and the following block of code will be scheduled for
execution in any free thread if no affinity restrictions are placed. In OpenMP, access to
the data can be controlled by declaring data as shared or private in the omp directives;
first private 1s a special case used to make a local copy of a shared variable before the
execution of the forked code. In addition, thread synchronization and access to shared data
can be protected with the use of critical, atomic or barrier annotations. Figure 2.2 shows
an example of how several threads execute parallel for loop iterations using a dynamic

scheduler which maps iteration ranges to any available free thread.

In OpenMP source codes, the compiler detects the parallel blocks and abstracts them
into functions that are passed as arguments to the OpenMP runtime system API. More-
over, the compiler also inserts the relevant API calls for synchronization in shared data
management. The OpenMP runtime system consists of a pool of worker threads and a
scheduler with work-queues to execute the parallel functions once they are created. This

runtime system is also in charge of coordinating access to the shared data.

OpenMP sets the basis of modern parallel programming models where the cooperation
between the compiler and a runtime systems allows programmers to express parallelism
in easier and platform-agnostic environments closer to the algorithmic concepts rather
than complex operating system level libraries and architectural concepts. Furthermore,
this synergy allows to find hidden parallelism thanks to the analysis of the original source
code and even increase performance by providing means to exploit data locality that pro-

grammers would not be aware of.

14

CHAPTER 2. BACKGROUND AND RELATED WORK

Thread Pool
IntN = 4; OMP_NUM_THREADS=4

int a[N]; PR S
#pragma omp parallel for \\ 7 Y
first_private(i) shared(a) \\ I —— — — :
schedule(dynamic,1) P | TO T T2 T3 |
for(int i=0:i<N;i++){ R N =0 I I B I B =t
!._.__._4;._4_._4_._._._:_;_.\A N 1 vl vl vl I
. ali] = do_stuff(i); : eHEEEERENERHE
) Lo o o il
For Toop iterations are isolated and e - -8' S . S - !
executed in parallel by a pool of : wo e 0 n o
threads : = E E § :
1| < < <! <i| |
| v v v vl
‘ . J . J . J . J '

\ /

Moo a’,

Figure 2.2: OpenMP parallel for implementation

2.2.2 Asynchronous Task-based Programming Models

Programming current large scale parallel systems has motivated a resurgence of ATaP
models over explicit threading and fork-join approaches due to the programmability-
performance trade-off they offer. This section aims to provide an insight on the most

relevant ATaP models.

Task constructs are subroutines that can be executed asynchronously and in parallel
in different threads. Tasks have synchronizing dependences among them to structure the
control flow of the application. OpenMP 3.0 [91] introduced basic task constructs in the
programming model that OpenMP 4.0[92] extended with data dependences annotations
in order to create a dataflow ATaP programming model. The OpenMP 4.0 runtime system
analyzes this annotations and creates the TDG as will be detailed in section 2.3. Program-

ming models such as OmpSs [38] or StarPU [7] follow this schema.

Habanero [113] proposes a set of extensions to the C and Java languages to create
asynchronous tasks with dataflow capabilities using futures, a language construction that
allows tasks to synchronize and exchange data. Habanero also proposes phasers [112] for
control synchronization. Codelets [128] are collections of instructions that are executed
atomically and created a Codelet Graph (CDG) through the use of data and control de-
pendences. Codelets rely on a hierarchical and heterogeneous abstract machine model to
schedule and execute the work units. Intel Thread Building Blocks (TBB) [103] is a C++

template library with multiple constructions for parallel operations such as parallel_for,

15

2.2. PARALLEL PROGRAMMING MODELS

parallel_scan or parallel containers among many others. TBB allows the use of tasks that
are created in a recursive manner with control dependences to synchronize them through-
out the hierarchy. Furthermore, Intel TBB 4.0 introduces flow graph annotations, which
allow to specify a dataflow graph between different tasks. Cilk [17] includes a set of C
and C++ extensions that allows to spawn and sync tasks. However, dataflow annotations

have been added outside of the standard language by Vandierendonck et al. [124].

Charm++ [2] decomposes work in units called chares. Chares are C++ objects that
offer a series of entry points that other chares can directly invoke. The runtime system
then sends the appropriate messages to synchronize and exchange data between chares
in a transparent way to the programmer. Charm++ offers mechanisms to easily map
chares to tensor-like data structures, distribute them, and overdecompose data volumes
in more chares than processing elements. Moreover, as chares entry method invocation
is non-blocking, Charm++ allows programmers to specify control dependences to ensure

structured flow control between chares.

Legion [1 1] creates abstractions for both computation and data. Computation is writ-
ten as tasks with data partitions as their inputs and output. The Legion runtime system
then builds a TDG using the inputs and outputs information in a dataflow manner. Par-
titions are logical abstractions of data expressed as array-of-structures or structures-of-
arrays. The Legion programming model allows multiple versions of the data to be alive
at a given moment and the runtime system is responsible for moving the data across the

system to the node where the task requiring that specific version will be executed.

The use of ATaP models provides a hardware abstraction that allows programmers to
efficiently write portable code without caring about low-level details while increasing the
programmability of parallel systems. Moreover, these programming models can increase
the performance of applications through the use of generic optimizations at the runtime
system level such as data locality aware scheduling in NUMA systems, or tasks sched-
ulers that favors load balancing. In addition, some of this programming models, such
as Charm++ or Legion, allow applications to run in distributed computing environments
with virtually no changes to the application code, effectively hiding the complexity of
distributed programming to the application developers. To conclude, the benefits of ATaP
models, portability, programmability and performance are key in modern computing in-

frastructures and noteworthy to remark.

16

CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.3 Programming Models for Distributed Environments

Early distributed systems programming relies on the explicit use of the communication
hardware to send messages across the network interconnecting all the nodes composing
the computer. This approach, while providing great levels of performance hindered appli-
cation portability and programmability as most of the interconnection technologies and
interface code are system-specific. As a result, an effort has been made to provide a layer
of abstraction on top of the communication one to ease programmability and portability
efforts. As a consequence, the current de-facto standard for distributed memory com-
munication is the Message Passing Interface (MPI) [114], an easy-to-use, portable, high-
performing abstraction on top of most low-level communication technologies present in

distributed memory clusters.

MPI provides an interface to send data by calling point-to-point or collective send
and receive operations. Point-to-point primitives involve communication within a pair
of nodes, while collective operations involve a group of nodes. Collective operations
are highly tuned to the underlying communication technology and they execute different
algorithms for a single collective operation based on the network topology and the size of

the messages [120].

MPI offers two communication models; blocking and non-blocking communication.
In the blocking model, whenever a blocking call is invoked the execution cannot progress
until the message has been copied to a safe location. In the alternative non-blocking
communication, the call returns immediately, but it is the programmer’s responsibility
to poll the status of the pending messages to ensure the progress and completion of the
communication. Although, using non-blocking calls allows overlapping communication
and computation, the MPI layer does not make any progress until MPI_Test or Wait calls
on specific requests are invoked, resulting in no effective overlap at all unless explicit
mechanisms are used as demonstrated in [50]. Figure 2.4 shows how the actual message is
not send until a specific wait is invoked on the MPI request, thus overlap is not guaranteed

unless is driven through specific threads.

In order to overcome this limitation, Hoefler and Lumsdaine [50] study the implica-
tions of using a dedicated thread to constantly advance the progress engine. They compare
this approach to manual and hardware interrupts-driven progression by using the Infini-
band RDMA engine. In addition, Buettner et al. [22] propose to taskify communication

and offload the MPI_Test call required to move the progress engine to the OpenMP run-

17

2.2. PARALLEL PROGRAMMING MODELS

MPI_lIsend(req) MPI_Wait(req)

Time

NET CPU

Figure 2.3: Non-blocking communication does not guarantee overlapping

time.

This progress engine limitations arise from MPI design being heavily influenced by
Bulk-Synchronous programming models, resulting in limited interoperability with paral-
lel shared-memory programming models. Although the standard [42] and MPI vendors
thrive to enhance this interoperability, some of the MPI characteristics require changes to
the standard or restrict some capabilities such as wildcards in order to efficiently paral-
lelize the MPI message matching engine.

MPI alternatives such as the Adaptive Message Passing Interface (AMPI) [57], ap-
peared to enhance the multi-threading support of MPI. AMPI implements MPI ranks as
user migratable lightweight threads instead of full-fledged OS processes. AMPI is written
in top of Charm++ and takes advantage of the dynamic load-balancing and scheduling al-
gorithms it offers, allowing regular MPI applications to benefit from these characteristics

without the need of being rewritten.

2.2.4 Communication in Hybrid MPI+ATaP Models

MPI is employed inside ATaP programming models using two different approaches. The
explicit communication model requires the programmer to insert the relevant MPI calls in
the application code and do a manual orchestration of all the MPI ranks as illustrated in
figure 2.4 left hand side. OpenMP 4.0 [92], OmpSs [38], Codelets [128], Habanero [113]
or StarPU [7] are ATaP models used for shared memory systems that require explicit
communication in order to take advantage of distributed systems.

Alternatively, other programming models hide communication from the programmer
by letting the runtime detect accesses to remote data and perform the required transfer-
ences. This approach is called implicit communication or Runtime managed as shown in
figure 2.4 right hand side. Some examples of this model follows. Charm++ employs a
communication interface that relies on active messages built on top of MPI. Legion [11]

detects accesses to partitions of data in remote nodes and internally schedules data trans-

18

CHAPTER 2. BACKGROUND AND RELATED WORK

(mmm————— Merinorx
Task { 1 vt
I MPI_Sendrecv() | Lo Data
I ; A
| S— —_ = - - A ETEELEF CERTEEE
// \\\ _;____;_______I_I_ ?
cooboor
¥ ! A
[Runtime]——é—-»[Runtime]
Node 1 Node 2 Node 1 ! Node 2
Explicit Communication Managed Communication

Figure 2.4: Different communication mechanisms for ATaP models

ferences by means of communication threads and active messages. HPX [66] offers a
PGAS model in which tasks can directly address memory in any node with the runtime

system taking care of data movement.

Improving the MPI and programming model interoperability has been am extensive
subject of research, Marjanovic et al. [82] present one of the first works focused on the
interoperability of a task-based asynchronous programming models, such as OmpSs,
with MPI. Instead of doing synchronized phases of communication and computation,
as in the Bulk Synchronous Programming Model, MPI calls are placed inside of asyn-
chronous tasks scheduled by the runtime system effectively opening new opportunities
for communication and computation overlap. Chatterjee et al. [29] goes one step further
and integrates MPI within Habanero providing wrapped MPI calls that the runtime ex-
ecutes asynchronously in dedicated communication threads. Labarta et al. [73] present
the Task-Aware MPI library (TAMPI), a similar approach to improve the interoperability
between MPI and OmpSs. TAMPI intercepts blocking calls to MPI and converts them
into their non-blocking counterpart. The resulting MPI calls are managed by the TAMPI
library, which periodically polls for the completion of the MPI calls and ensures correct-
ness. However, TAMPI is limited to point-to-point communications and requires polling
to query for completion of specific calls. Kamal et al. [67] make use of ULTs in the
MPICH 2 [45] to build an MPI-aware scheduler for coroutines that are swapped in and
out for execution depending on the status of the MPI runtime. Lu et al. [77] follow a
similar approach by doing the context switch of ULT's inside the MPI to avoid the expen-
sive MPI locking operations. Stark et al. [115] integrate MPI with Qthreads and convert

19

2.3. THE OMPSS PROGRAMMING MODEL

1. Tasks are specified

using annotations and a
TDG is created by the task-
based runtime system

-

O Completed task

@ Ready task >
O Pending task

-

#pragma omp task\\
depend (inout:A[N])
{

}

/
/
/
1
1

/]
/I Task specificcode Ill Ready queue
I

2. Tasks are sentto a ready queue 3. Workers poll tasks
once their predecessors complete from the ready queue

Figure 2.5: Execution flow in an asynchronous task-based programming model that uses
a TDG.

blocking MPI calls to non-blocking calls, using their status to drive the scheduler in a

similar way to TAMPL.

2.3 The OmpSs Programming Model

ATaP models such as OpenMP 4.0 [92] and OmpSs [38], conceive the execution of a
parallel program as a set of tasks that may depend upon each other. Typically, the pro-
grammer defines code blocks (functions and/or classes) and adds annotations to declare
1) what constitutes a task, 2) what data is used by each task, called input dependences
or input, and 3) what data is produced by each task, called output dependences or out-
put. Based on this information, the runtime system manages the parallel execution using
a TDG, a directed acyclic graph where the nodes are tasks and the edges are the depen-
dences between these tasks.

Figure 2.5 shows a simple example of a TDG. A task is marked as ready only when all
its predecessors have completed their execution, otherwise it is considered a pending task.
Ready tasks are added to a ready queue (or another appropriate data structure depending
on the scheduling algorithm). When idle, worker threads interact with the scheduler and
retrieve tasks for execution. When a task completes, it is marked as such in the TDG
and its successors are unlocked. Examples of such a programming model are tasks in
OmpSs [38] and OpenMP 4.0 [92] with dependence clause extensions and Legion [1 1],
in which dependences between tasks are expressed using regions.

This thesis uses the task constructions in OmpSs [38], which have been adopted as the

task extensions for OpenMP 4.0. The programmer creates tasks using pragma annotations

20

CHAPTER 2. BACKGROUND AND RELATED WORK

Algorithm 1: Algorithm for TDG creation.
Data: task object
Data: task memory locations list

for location in locations do

if lastWriter of location != NULL then
| lastWriter.successors.add(task) task.predecessors++;

end

if location.dir == IN then
| location.readers.add(task);

end
if location.dir == OUT then

for reader in location.readers do
| reader.successors.add(task); task.predecessors++;

end

location.readers.flush(); location.lastWriter = task;
end

end

with the input and output dependences specified as shown in Figure 2.5. The compiler
replaces these annotations with calls to the runtime system, and the tasks are dynamically
created and destroyed during the application execution. In this work, we employ Nanos++
0.10a [38], the runtime of OmpSs, which uses pthreads bound to specific cores as worker

threads.

2.3.1 Task Dependence Graph

In ATaP programming models such as OpenMP4 and OmpSs, tasks are declared in the
code by the use of pragma annotations #pragma omp depend(in : (..), out:
(..), inout: (..)).These pragma annotations precede the code blocks that are ex-
ecuted asynchronously and specify the list of memory locations that the tasks read in,
write out or read and write 1nout. The runtime system takes this information and uses
it to construct the TDG as detailed in Algorithm 1, The runtime system holds several data
structures such as a list of reader tasks and the last writer task for every memory location
expressed as dependences. In addition, tasks hold a list with their successors in the TDG
and the count of their predecessors.

Task dependence analysis can be extended to track memory regions when accessing
data with multiple dimensionality. In this case, the locations object tracks the dimensions
accessed and the TDG creation algorithm uses this information to find the access overlaps

within tasks [21].

21

2.3. THE OMPSS PROGRAMMING MODEL

s N)
A o
O

=N

HPRQ LPRQ

D
On task submission

2 Work Stealing

A
- RUNTIME
0 ./I'ask Dependence I I I |

- Graph /' _/ [coreo||core1|{core2]||core3
#pragma omp task criticality(1) Fast Fast Slow | [Slow
(critical)
<> #pragma omp task criticality(0)
(non-critical)

Figure 2.6: Criticality assignment with bottom-level and static policies, and Criticality-
Aware Task Scheduling.

Once the TDG is constructed, the runtime system employs it to keep track of the
execution. Furthermore, this TDG holds important information such as task criticality

that can help runtime decissions like task scheduling.

Criticality represents the extent to which a particular task is in the critical path of a
parallel application. In general, criticality is difficult to estimate as the execution flow of
an application is dynamic and input-dependent. Two approaches can be used to estimate

the criticality of a task.

One approach is to dynamically determine the criticality of the tasks during the exe-
cution of the application, exploring the TDG of tasks waiting for execution and assigning
higher criticality to those tasks that belong to the longest dependence path [32]. Figure 2.6
shows a synthetic example of this method. In the TDG on the left, each node represents a
task, each edge of the graph represents a dependence between two tasks, and the shape of
the node represents its task type. The number inside each node is the bottom-level (BL) of
the task, which is the length of the longest path in the dependence chains from this node
to a leaf node. The criticality of a task is derived from its BL, where tasks with the highest

BL and their descendants in the longest path are considered critical. Consequently, the

22

CHAPTER 2. BACKGROUND AND RELATED WORK

square nodes in Figure 2.6 are considered critical.

The bottom-level approach does not require any input from the programmer and it
can dynamically adapt to different phases of the application. However, this method has
some limitations. First, exploring the TDG every time a task is created can become costly,
specially in dense TDGs with short tasks. Second, the task execution time is not taken
into account as only the length of the path to the leaf node is considered. Third, only
a sub-graph of the TDG is considered to estimate criticality and some tasks marked as
critical in such partial TDG may not be critical in the complete TDG.

Another approach is to statically assign criticality to the tasks, either using compiler
analysis or allowing the programmer to annotate them. For this purpose, the task di-
rective in OpenMP 4.0 can be extended to specify criticality, #pragma omp task
criticality (c). The parameter c represents the criticality level assigned to the given
task type. Critical tasks have higher values of ¢, while non-critical tasks have a value of
¢ = 0. The bottom left part of Figure 2.6 shows how this directive is used to assign the
criticality of the three different task types in the example, where square nodes are con-
sidered critical, while triangular and circular nodes are estimated as non-critical. In this
example and for the sake of simplicity, tasks are assigned to the same criticality level with
both approaches (static annotations and bottom-level), but this does not happen in general.

The main problem of static annotations is that estimating the criticality of a task can
be complex and input dependent. However, by analyzing the execution of the application
it is feasible to identify tasks that block the execution of other tasks, or tasks with long
execution times that could benefit from running in fast processing elements.

The task criticality information obtained with any of these approaches can be ex-
ploited by the runtime system in multiple ways, specially in the context of asymmetric or

heterogeneous systems.

2.3.2 Task Scheduling

The task scheduler is a fundamental part of ATaP runtime systems. Its goal is to assign
tasks to cores, maximizing the utilization of the available computational resources and
ensuring load balance. The typical scheduler of ATaP runtime systems assigns tasks to
available cores in a first in, first out (FIFO) manner without considering the criticality
of the tasks. In this approach, tasks that become ready for execution are kept in a ready
queue until there is an available core. There are several scheduling policies that can be

applied in ATaP models, some of them FIFO variants such as last in, first out (LIFO)

23

2.3. THE OMPSS PROGRAMMING MODEL

scheduler which allows to do an in-depth TDG traversal. Priority-based schedulers are
other alternatives in which tasks are sorted in a ready queue according to their priority
which can be based on aging or explicitly defined by the programmer.

However, since the TDG offers a rich degree of information, it is possible to deploy
new scheduling mechanisms that exploit this knowledge in order to increase the system
efficiency. The scheduler can apply graph partitioning techniques to the TDG to reduce
expensive data transferences in NUMA systems by executing tasks reusing data in the
same NUMA socket [109]. Criticality can also be used to guide scheduling decissions as
in the Criticality-Aware Task Scheduler [32] (CATS), mainly focused on heterogeneous
architectures, ensuring that critical tasks are executed on fast cores and assigning non-
critical tasks to slow cores. As shown in Figure 2.6, CATS splits the ready queue in
two: a high priority ready queue (HPRQ), and a low priority ready queue (LPRQ). Tasks
identified as critical are queued in the HPRQ and non-critical ones in the LPRQ. When a
fast core is available it requests a task to the HPRQ, and the first ready task is scheduled
on the core. If the HPRQ is empty, a task from the LPRQ can be scheduled on a fast core.
If no tasks are ready, the core remains idle until some ready task is available. Similarly,
slow cores look for tasks in the LPRQ. Task stealing from the HPRQ is accepted only
if no fast cores are idling. Figure 2.6 illustrates the runtime system extensions and the

scheduling decisions for the synthetic TDG on the left.

2.3.3 Task Life Cycle

ATaP programming models use a decoupled execution model where tasks are created
in program order and are executed asynchronously following the synchronization rules
defined by the dependences. All threads may execute runtime system activity as well as
tasks defined in the application source code. Figure 2.7 shows the execution timeline of
the Cholesky benchmark on an 8-core system. In this experiment, core 1 performs most
of the runtime system activities while the other cores mainly execute tasks.

The master thread executes the program sequentially and, when it encounters a task
creation statement, it enters the task creation phase. The new task is assigned a unique
task descriptor that stores all the relevant information of the task such as its dependences,
its number of successors and a pointer to the function to be executed. The address of this
task descriptor is used to identify the task. To detect dependences with older tasks, the
inputs and outputs of the new and older task are compared. The new task is marked as a

successor of older tasks if a RAW, WAR or WAW dependence is found, and is inserted in

24

CHAPTER 2. BACKGROUND AND RELATED WORK

float A[N]J[N][M][M] // NxN blocked matrix with
Il MxM blocks
for(int j = 0; j<N; j++){
for (int k = 0; k<j; k++)
for(inti = j+1; i<N;i++)
O #pragma omp task depend(in:A[i][k],A[j1k])

depend(inout:A[i][j]);
sgemm_t(A[[K], A[]TKLAL);

for(inti = j+1; i<N;i++)
. #pragma omp task depend(in:A[j][i]) de pend(inout:A[j][i1);
ssyrk_t(A[IIIL AL

#pragma omp task depend(inout:A[j][i])
spotrf_t(A[j][]);

for (int i= j+1; i<N; i++)

O #pragma omp task depend(in:A[j][j]) depend(inout:A[i][j1)
strsm_t(A[j]1[j], A[i][]);

HEl Runtime System I Task Execution [Idle
T T T T
Core 1 0000000000000 0000 000 00000 0 0000000 0 000 00 A 0 \IIH\HHIM
Core2jmm B B EEN EEEE DNED EEEE BE B EE EEEE

Core 3H mm muimm B W BN BN DNE N BN BN BN BN BEEN BNEN BN BN BN BN BN B N5 EH
Core{mEE EEIN I =B EE EEN HE NN N NN
Core 5[~ o o DN BN BN BNEEN BN BNEE DN N BN BN BN OB N
Core 6H Il m m N EEEEE EEEDEN EEEIEEEE =
ool B T T T R R I R T R BRI T T Il il mlil NI B
Core 8

» time

Figure 2.7: Cholesky task-based annotated code (right), TDG (left), and execution time-
line (bottom).

the TDG accordingly as described by Algorithm 1.
The remaining worker threads iterate on the two main phases of the task-based dataflow
execution model. The master thread also adopts this behavior when it reaches a global

synchronization point.

e In the task scheduling phase the thread selects a task to be executed. The runtime
system keeps a pool of ready tasks and selects one of them based on a scheduling
algorithm. Different scheduling policies may adapt better to the characteristics of

an application, and can provide significant benefits in certain contexts [31, 122].

e In the task execution phase the thread executes the code of the task that has been
just scheduled. After the task is executed, the thread notifies the runtime system that
the task has finished. The outputs of this task become available and its successor

tasks may become ready if all its dependences are satisfied. In such case, it is added

25

2.4. ARCHITECTURE AND ATAP RUNTIME CO-DESIGN

to the pool of ready tasks and will be selected for execution in future scheduling

phases.

Apart from these phases, threads can experience idle time. In parallel regions idle
time occurs when a thread enters the task scheduling phase and the pool of ready tasks
is empty. This happens if the pace at which tasks are created is lower than the pace at
which tasks are executed, or when threads reach a barrier. In addition, idle time happens
in sequential parts of the program, where only one thread executes the sequential code

and the other threads are waiting.

2.4 Architecture and ATaP Runtime Co-Design

2.4.1 Runtime System Hardware Support

Reducing the bottlenecks of ATaP runtime systems has been an extensive topic of research
in the literature. Early works propose dataflow architectures like Monsoon [96], *T [89],
or EARTH [53] including hardware support for dependence management and communi-
cation between instructions or threads. These architectures are programmed with specific-
purpose programming models where the compiler statically generates the TDG and es-
tablishes the dependences between producers and consumers [0, 88]. Scheduling is either
done statically at compile time using graph partitioning techniques or dynamically in
hardware using a fixed FIFO queue.

There are recent contributions following the trend of architectures that provide hard-
ware support for the complete task life-cycle. Task Superscalar [39] offloads all the run-
time system activities to the architecture, including task dependence management and task
scheduling with a fixed FIFO policy. Its hardware support consists of a gateway, a ready
queue, and distributed tables to track tasks and dependences. Picos [1 18] is an actual im-
plementation of Task Superscalar using FPGA devices. Swarm [60] relies on speculative
task execution and conflict detection to preserve dependences. Swarm requires hardware
support for speculation instead of for dependence management and uses either a priority-
based scheduler using timestamps fixed in the architecture [59]. Espresso [61] is based
on Swarm and allows to run speculative and non-speculative tasks concurrently ordered
through timestamps.

Another trend is to provide hardware support for specific parts of the runtime system

that can become a bottleneck. Carbon [71] implements the task scheduler at the hard-

26

CHAPTER 2. BACKGROUND AND RELATED WORK

ware level and task dependence management is done in software by the runtime system.
Carbon provides ISA instructions that allow threads to add and request ready tasks, and
the hardware support consists of a set of distributed hardware queues to keep ready tasks
and a fixed FIFO scheduling policy with work stealing. Similar to Carbon and Task Su-
perscalar, other architectures use hardware task schedulers. These approaches rely on
programmers or programming model semantics to establish dependences between tasks,
so they do not offer hardware support for dependence management in ATaP programming
models. GPUs use hardware schedulers for the kernels that can be synchronized with
CUDA streams [90] or with queues and barrier packets in HSA [105]. In Pangaea [127],

the CPU schedules tasks on the GPU, and both communicate via user-level interrupts.

Similarly to ADM [107], some works propose to add architectural support for thread
synchronization primitives, reducing the overheads caused by concurrency. CAF [126]
provides hardware support to optimize core-to-core queue-based communications, adding
a specialized accelerator that supports various queue management functionalities. An im-
plementation for lock primitives based on distributed queues is proposed in QOLB [65]
where the waiting cores spin locally, preventing unnecessary network traffic. Active
Memory Operations [41] extend the memory controllers of distributed shared-memory
systems so that synchronization and heavy write sharing operations can be executed in
the node where the data resides. These solutions allow implementing different scheduling
policies in software with reduced hardware complexity, but they do not accelerate all the
operations of the dependence management and task scheduling phases, so they are less

effective in mitigating runtime system overheads.

Another way to mitigate the task creation bottleneck is parallelizing it with nested
parallelism. Although most parallel programming models support nesting, the practical
usage of this paradigm requires a hierarchical decomposition of the algorithm and limits
the visibility of dependences across different nesting levels. Perez et al. [98] tackle this is-
sue by adding specific notations to expose dependences across different levels and allows
the runtime system to uncover hidden parallelism. Fractal [116] extends Swarm to allow
nested parallelism by means of task domains, which can be ordered or unordered to avoid
over-serialization. Due to the difficulty of expressing nested parallelism, it is much more
appropriate to alleviate the task creation bottleneck via hardware support as this thesis

proposes instead of transferring this responsibility to the software stack.

27

2.4. ARCHITECTURE AND ATAP RUNTIME CO-DESIGN

2.4.2 Exploiting Runtime System Information In the Architecture

Exploiting the algorithmic information available in the runtime system to drive low-level
architectural decisions has been another prolific research topic. Some of the most relevant
works target how to improve the memory hierarchy performance or resilience through the
knowledge available at the runtime system. The input and output information allows
the runtime system to transparently manage systems with multiple address spaces, such
as GPUs [7, 99], multi-node clusters [21], heterogeneous memory systems [3, 75], and
scratchpad memories [4, 12]. RADAR [79] uses the memory addresses of task depen-
dences to predict dead blocks in the last-level cache and evict them, while Pan et al. [95]
uses similar information to guide the partitioning of last-level cache. Caheny etal. [23, 25]
aim to reduce coherence traffic movement in NUMA systems by combining NUMA aware
scheduling and data allocation. The same authors also propose to deactivate coherence
for non-shared data as specified by the runtime system [24]. Sanchez et al. [109] apply
graph partitioning techniques to the TDG in order to reduce data transferences in NUMA
systems. Dimic et al. [35] reduce the miss ratio of the last level cache with a runtime
aware replacement policy. Similarly, Papaefstathiou et al. [97] propose a prefetcher and
a replacement policy guided by the task lifetime that is able to distinguish between data
from different tasks. Manivannan et al. [78, 80] study the NoC utilization of dataflow
programming models and how optimizations to producer-consumer communication pat-
terns can be applied. Finally, Jaulmes et al. [58] use the implicit redundancy in iterative
solvers to asynchronously release tasks in ATaP models to recover partially corrupted data

on memory failures.

Other relevant contributions have explicitly targeted how to improve performance and
power consumption. Brumar et al. [20] use the dependences information to trigger value
prediction and automatic memoization for OmpSs applications. Chasapis et al. [27] ex-
plore how the manufacturing variability and power-constraints lead to heterogeneous per-
formance that can be controlled by the runtime system scheduling policies in order to
minimize the performance degradation. Chronaki et al. [31] study how to efficiently as-
sign task to cores in asymmetric multiprocessor systems by exploiting the critical path
of the TDG. Moreover, the same authors target the bottleneck of task creation and de-
pendence analysis by offloading the TDG construction to an already existing specialized
hardware and studying how the runtime controls this hardware [30]. LibPRISM [93] is
used to autotune the prefetcher policy and SMT levels in OpenMP parallel applications

28

CHAPTER 2. BACKGROUND AND RELATED WORK

by profiling online the parallel regions or task characteristics..

Finally, the unique characteristics of the ATaP models such as the presence of a TDG
defining the execution, or the explicit annotations of the memory regions that each task
access to have motivated the development of profiling and simulation tools to provide
insight of the behavior of ATaP models in large-scale systems. The TDG can be used as
the input for complex multicore system simulators such as TaskSim [104], which is able to
scale the execution to thousands of simulated cores. In addition to TaskSim, MUSA [44]
is a multiscale simulator for distributed systems using execution-driven simulators for
the shared memory parts of the workload and trace-driven simulation for the distributed

nodes.

29

2.4. ARCHITECTURE AND ATAP RUNTIME CO-DESIGN

30

Chapter 3

Experimental Framework and Toolset

3.1 Simulation Infrastructure

The hardware extensions proposed in this thesis have been modelled by using the gem5
simulator [16]. GemS is a execution-driven multi-core full system simulator that can do
a cycle accurate execution of a complete operating system. GemS5 supports various ISAs
with different CPU and memory models ranging from pure functional ones to highly

detailed and cycle accurate.

GemS5 adds support for checkpointing and KVM Emulation [110] to accelerate system
and benchmark initialization using less detailed CPU and memory models. In this thesis
we employ the checkpointing capabilities so that simulations start right at the parallel

sections of the benchmarks.

The experiments in this thesis have been done using two different configurations as
listed in Table 3.1. Chapter 4 uses the x86-64 configuration, while Chapter 5 relies on
the ARMv8 experimental setting. The ARM architecture lacked of support for running
more than 8 CPU cores in the early versions of the simulator employed in the thesis. In
2016, ARM made an effort to improve their support to the simulator and this motivated the
architecture switch as the x86-64 ISA lacks from any official support. All the experiments
are run with the most detailed configurations available for each architecture trying to
resemble a real system. The gem5 simulator has been extended with a module called the
Runtime Support Unit (RSU) that will be detailed in Chapters 4 and 5. A cpufreq driver
to manage the gem5 DVES controller as in real system was developed and added to the
x86-64 kernel. This driver allows to change frecuency of a given core from userspace and

enables the experiments of Chapter 4.

During the development of this thesis, several corrections were made to the simulator

31

3.2. HPC CLUSTER

in order to be able to carry out the experiments:

e Several errors in the MESI coherence protocol when using the x86 locked read
modify write operations. Eviction of locked lines, and incorrect protocol transient

states were the major issues.
e Interrupt clobbering in the out-of-order pipeline.

e Corrections to the memory consistency model where remote invalidations where
not propagated to the CPU Load Store Queue (LSQ).

e Vectorial registers were not saved in context switches due to a missing interruption
triggered by the APIC.

e Clock-sources not correctly attached to the L1-cache, greatly increasing access

time.

e Clock-sources not correctly synchronized between cores.

Many of these issues have been corrected or reported in the recent gem5 code. Power
and area estimations for the multi-core and added hardware structures are evaluated us-
ing McPAT 1.3 [74], a power and area modelling tool built on top of CACTI 6.0 [87].
MCcPAT offers models that range from low-power configurations using in-order cores and
low voltage designs, to high performance processors based on aggressive out-of-order
configurations. McPAT also models the cache and interconnection network power con-
sumption. For this thesis, the 22nm technology node with the default clock-gating schema

is employed.

3.2 HPC Cluster

We use the Marenostrum 4 supercomputer at the Barcelona Supercomputing Center for
running our experiments on real machines. Marenostrum consists of 3,456 compute
nodes; every node has two Intel Xeon Platinum 8160 processors each with 24 cores and
96 GB of DDR4-2667 main memory. The interconnection network is a 100 Gb Intel
OmniPath full bisection fat-tree. The software stack comprises SUSE Linux Enterprise
Server 12 SP2 with kernel version 4.4.120-92.70 and includes MVAPICH 2.2 running on
top of Intel PSM2 with our modifications.

32

CHAPTER 3. EXPERIMENTAL FRAMEWORK AND TOOLSET

Table 3.1: Processor Configuration.

] Chip Details

Core count 32

Core type Out-of-order single threaded
ISA x86-64 ARMv8
] Core Details

DVFS Fast cores: 2 GHz, 1.0V |2GHz
configurations Slow cores: 1 GHz, 0.8 V
255 reconfiguration lat.
Fetch, issue, 4 instr/cycle

commit bandwidth

Branch predictor

4K selector, 4K G-share
4K bimodal

4-way BTB 4K entries
RAS 32 entries

Tournament 2K local pred.
8K global and choice pred.
4-way BTB 4k entries
RAS 16 entries

Issue queue Unified 64 entries
Reorder buffer 128 entries
Register file 256 INT, 256 FP

Functional units

4 INT ALU (1 cyc), 2 mult (3 cyc), 2 div (20 cyc)
2 FP ALU (2 cyc), 2 mult (4 cyc), 2 div (12 cyc)
2 Ld/St unit (1 cyc)

Instruction L1

32KB, 2-way, 64

B/line (2 cycles hit)

Data L1

64KB, 2-way
64B/line (2 cycles hit)

32KB, 2 way
64B/line (2 cycles hit)

Instruction TLB

256 entries fully-associative (1 cycle hit)

Data TLB 256 entries fully-associative (1 cycle hit)
NoC and shared components

L2 Unified shared NUCA Shared L2 cache
banked 2MB/core, 8-way | 4MB 16-way
64B/line 64B/line
15/300 cycles hit/miss

Coherence protocol MESI MOESI
4-way cache directory Fast Atomic Snooping
64K entries

NoC 4 x 8 Mesh, link 1 cycle |gem5 VExpress

Software Stack
Operating System Gentoo Ubuntu 14.04
Kernel 2.6.28-4 4.3

ATaP model runtime system

Nanos++ v.07a

Nanos++ v0.10a

33

3.3. SOFTARE STACK

We use 16, 32, 64 and 128 nodes of the cluster. For all benchmarks, 4 MPI processes

are spawned per node, each of which creates 8 worker threads.

3.2.1 Workload Management

The evaluation experiments carried out during this thesis required thousands of executions
of individual experiments in a iterative process of continuous feedback. All these execu-
tions are based on combinations of different parameters feed to an executable by either
configuration files or command line. The combinatorial explosion resulting from these
configurations requires the use of tools for managing all the input parameters and results.
While common shell scripts are used, the need of creating or adapting scripts when using
different environments or programs is still present.

For this thesis, we abstract the characteristics of such workloads and create a software
called Tizona [26]. Tizona relies on platform independent JSON configuration files that
are able to launch all the individual executions of an experiment. The file specifies the
possible values for the parameters and the software creates all the independent executions
to cover the paramete search space. Once experiments are done, results can be retrieved
in CSV files that can be filtered by specifying parameter or execution produced values.
Tizona has support for GridEngine and SLURM workload managers and is able to run
experiments completely out of the box in several supercomputers. Moreover, Tizona is

opensource and available at github [26].

3.3 Softare Stack

3.3.1 Operating System and Build Toolchain

All the simulations are performed under a realistic software environment. A complete
Linux kernel is used for both the x86-64 kernel and ARMv8 configurations with versions
2.6.28-4 and 4.3 respectively. The x86 kernel has been modified to support synchronized
clock sources between cores operating at different frequencies in order to avoid desyn-
chronizations when processes are migrated from one core to another. Moreover, we have
developed a cpufreq framework [94] driver to interface with the gem5 DVFS controller
and integrated it into the x86-64 kernel to do all the experiments of Chapter 4. The ARM
kernel has been compiled with the gem5 support extensions activated. Otherwise it is not

possible to run simulations with more than 8 cores. The Operating System is a complete

34

CHAPTER 3. EXPERIMENTAL FRAMEWORK AND TOOLSET

Gentoo Linux built from scratch using a Stage-2 tarball for the x86-64 architecture, and
Ubuntu 14.04 for ARM. We employ the default set of system libraries and the compiler
used to compile the ATaP runtime system and the environment is gcc 4.6.4 and Mercurium
1.99 [8] with gcc as the backend for the benchmarks.

The Chapter 6 executions are done in a real environment using the software stack

described in Section 3.2

3.3.2 ATaP Model Runtime System

Nanos++ is selected as the task-based runtime system for Chapters 4, 5 and 6. Nanos++
is a runtime system compatible with the OpenMP 4.0 task semantics and the additional
OmpSs constructs. Nanos++ supports different architectures such as SMPs, hybrid GPU
systems or Cell Synergistic Processing Units (SPEs) through a plugin based interface.
The runtime system consits of a core in which abstract worker elements ask for tasks to be
executed by executing a worker idle loop which invokes the scheduler plugin. The worker
specific implementations are defined in the architecture plugins and Nanos++ offers a
plugin system as well to support different scheduling algorithms. Moreover, different
dependence analysis algoritms such as plain dependences, or regions are abstracted as
plugins. This thesis provides plugins to implement the scheduling strategies defined in
Chapters 4 and 5. A dependence analysis plugin to control the hardware dependence
module described in Chapter 5 is also developed so the runtime core functionality remains
unchanged.

We developed a stripped version of the Nanos++ runtime for Chapter 6 that allows the
programmer to explicitly define the TDG and uses lock-free structures for task manage-
ment structures. This runtime implementation is devised to seamlessly integrate with the

MPI runtime in order to implement and evaluate all the mechanisms proposed.

3.3.3 MPI & PSM2

The selected base MPI implementation is MVAPICH 2.2 [121]. MVAPICH is an open-
source implementation of MPI that delivers the best peformance for systems using the
Infiniband interconnection technology as the one used in this thesis. MVAPICH offers
complete support of the MPI 3.0 standard and adds multiple additional extensions target-
ted to PGAS, GPU and Intel MIC interoperability. Finally, MVAPICH is well integrated
with Intel PSM2 library.

35

3.4. PERFORMANCE ANALYSIS TOOLS

This thesis relies on the PSM2-CH3 interface that provides support for the Intel Om-
niPath interconnection technology. PSM2 [55] offers a matched queue point-to-point
message passing library built directly on top of the OmniPath NIC driver. PSM?2 is highly
optimized for both inter-node and intra-node communication patterns offering different
optimized algorithms based on the size of the messages. MVAPICH directly relies on
PSM2 for tag-matching and point-to-point message sending and delivery, providing just
a layer of the MPI capabilities such as communicators, datatypes or collective communi-

cations.

3.4 Performance Analysis Tools

Debugging parallel workloads running on a full system simulator is an added difficulty
to the development process. Simulators usually do not provide any feedback on the par-
allel execution of an application, and the typical lenght of simulations (up to one week)
makes interactive debugging not feasible. Moreover, errors in the simulator such as an
incorrect coherence protocol can leave the running application in a frozen state without
any clue of when the error happened. The only solution is to add print statements to de-
termine a timestamp of the error and then obtain traces with the architectural state from
the simulator.

In this thesis, we propose a new approach to debug the architectural status of the
simulator and the application by using Paraver traces [10]. We have created an interface
to produce traces where the simulator can directly output architectural status such as ROB
occupancy, coherence invalidations, NoC packet latency, among many other statistics.
The application can use this interface through an ISA extension that outputs an event and
a value. In this fashion, Paraver traces are enrichened and allow the architectural designer
to inspect reorder-buffer occupancy per task type, the number of branch misspredictions
per task, ACPI power status through time, or any other combination of architectural and
application state considered relevant for profiling or debugging. With our infrastructure,
we can report hundreds of microarchitectural events.

Another advantage of this approach is that the use of a simulator allows to produce
traces without altering the simulated application timing. Real hardware executions need
to use tools such as Extrae [9], which end up altering the application execution time
and polluting cache state. In a simulated system, the application only needs to execute

a special instruction that emits the traceable event, and is in the simulator layer where

36

CHAPTER 3. EXPERIMENTAL FRAMEWORK AND TOOLSET

all the heavy operations (such as memory traversal and output flushing) happen, almost

eliminating the overhead of the tracing process.

SIMULATION

APPLICATION

1. M5_paraver(startTask, taskld)

4

3. Tracer.trace(dvfs, freq) Paraver 5. Task execution time line
CPU CPU

2GHZ 1GHZ

2. Tracer.trace(startTask, taskld) 1GHZ

TRACING MODULE p—
4. Outputs .prv 1 GHzZ 2GHZ

SIMULATOR

6. Core DVFStime line

Figure 3.1: Paraver tracing facilities in the gem5 simulator.

Figure 3.1 shows the architecture of the approach, the application executes the instruc-
tion to emit an event. Then, the CPU object in the simulator translates that instruction into
a call to the simulator tracer module. Later, the simulator detects an architectural change
(DVES) and reports it to the tracer. The resultant trace contains the task execution time
line and the core DVFS status and allows to gather statistics on the number of accelerated

tasks, etc.

Figure 3.2 shows the execution of Ferret from the PARSECSs suite on an asymmetric
multi-core architecture with 4 out-of-order cores and 4 in-order cores. The task execution
time line and the associated IPC per tasks can be seen in the upper and lower part of the
figure. The upper part of the figure shows the task execution timeline. Each task shows
a different color depending on their task type, and idle time is represented in a light blue
color. The lower part is the IPC for the associated core during exeuction. The higher
the IPC the darker the color becomes, being brilliant green a low IPC less than 0.5 and
dark blue an IPC greater than 1. This visualization allowed us to debug some errors in
the memory model that were lowering the IPC of certain tasks in the out-of-order cores
while the final IPC reported by the simulator was high due to the idle loop of the runtime

system.

37

3.5. BENCHMARKS

4 big
cores

4 little
cores

Figure 3.2: Paraver trace of an asymmetric multicore with 4 big and 4 little cores running
Ferret. Upper part shows the task execution timeline and Lower part shows the IPC of
each core for that task.

3.5 Benchmarks

3.5.1 Shared Memory Workloads

The following benchmarks are used to evaluate performance in the shared memory pro-
posals of this thesis. Seven benchmarks of the PARSEC [13] suite are used in the evalua-
tion. These benchmarks are representative state-of-the-art parallel algorithms from differ-
ent areas of computing that use two well-known parallelization approaches. We use the
task-based parallel implementations proposed by Chasapis et al. [28]

We evaluate up to four benchmarks using fork-join parallelism: Blackscholes solves
the Black-scholes Partial Differential Equation to calculate the prices for a portfolio of
European options. The work is divided in blocks with the blocksize being a parameter
and each task is assigned a block, this favours load balancing as the number of tasks can
be greater than the number of threads. In this benchmark, dependences are only between
timesteps: tasks depend on a task doing the previous timestep of the block and there are

no dependences within tasks of different blocks, making this benchmark embarrasingly

38

CHAPTER 3. EXPERIMENTAL FRAMEWORK AND TOOLSET

parallel.

Fluidanimate simulates the incompressible fluid interactive animation using the Smoo-
thed Particle Hydrodynamics method. Fluidanimate operates on a 3D volume partitioned
along the X and Z axis with an undefined number of particles per block. Five special
kernels are taskified and executed on every block to rebuild the spatial index, compute
the fluid densities and forces, handle collisions with the scene geometry and update the
particle locations. Tasks depend on the tasks previously executed on the same block and
its neighbors, making it a 9-point stencil.

Swaptions uses the Heath-Jarrow-Morton (HIM) method for pricing derivatives with
Montecarlo simulations. Data is stored in arrays that are partitioned with a single task
doing the calculations on portions of the array. There are no data dependences between
the tasks.

We use thre benchmarks using pipeline parallelism: Streamcluster is a kernel to solve
the online clustering problem that groups a stream of points in a predefined number of
clusters or partitions. The task based implementation keeps the number of tasks indepen-
dent of the number of partitions, with them processing chunks of the input stream. In such
schema, barriers are needed to synchronize the updates of partitions.

Bodytrack is a computer vision application to track the human body without markers.
Several cameras are used through an image sequence and an annealed particle filter is
used with the edges and foreground silhouette as the main features. All the frames are
analyzed in parallel by using coarse-grain tasks that spawn nested tasks to do the particle
filter updates. Once that calculation for a frame finishes, the output writing is also taskified
in order to exploit computation and I/O overlap.

Dedup relies on the deduplication method [101] to compress a data stream using local
and global compression. Dedup parallelization is a pipeline of tasks with 4 tasks doing
computation (Fragment, Refine, Deduplication, Compress) and a task that reorders the
fragments and writes them to a file. Data is divided in chunks and computation tasks can
run in parallel for different chunks. The reorder and output writing tasks impose an order
that serializes execution ensuring that chunk N-/ will be written before chunk N.

Ferret is a content similarity search application that focuses on images. The paral-
lelization is similar to Dedup as for every image a pipeline of 5 tasks performing computa-
tion is spawned with a final task to output the results. The last task imposes a serialization

and reorder of the output writing in the same fashion as Dedup.

In addition to the PARSECSs benchmark suite, some popular and extensively used

39

3.5. BENCHMARKS

linear algebra kernels are also employed due to their relevance in HPC and their extensive
use of dependences. The task-based implementation of these algorithms applies tiling so
that tasks process 2D blocks of the matrices. The Cholesky factorization decomposes a
hermitian definite positive matrix A in the product of two matrices L - L* where L is a
lower triangular matrix and L* its the L conjugate transpose. Tasks are in charge of execut-
ing LAPACK routines on different tiles of the matrix. Histogram computes a cumulative
histogram for all pixels of an image using a cross-weave scan [100]. Multiple calcula-
tion tasks acting on individual blocks for different images are overlapped, and reduction
task are executed later based on vertical and horizontal halos obtained by the computation
tasks. The QR factorization of a matrix is a product A = QR with () orthogonal and R
upper triangular. The multiple tasks implementation relies on LAPACK as cholesky. LU
does a A = L - U decomposition of a matrix with L being a lower diagonal matrix and
U being upper diagonal. As cholesky and QR tasks executes BLAS/LAPACK routines
operating on different tiles.

The input sets for the benchmarks are described in table 3.2

3.5.2 Distributed workloads

3.5.2.1 Point-to-point Benchmarks

We have implemented two stencil-based benchmarks using task semantics. The first
benchmark is based on HPCG [37], a multi-grid Conjugate Gradient solver with a Gauss-
Seidel preconditioner. HPCG uses a 27-point stencil where every block performs a to-
tal of 11 halo-exchanges with its neighbors in each iteration due to the preconditioning
step. In addition, an MPI_Allreduce collective operation is performed at the end of
each iteration. The resulting communication pattern of HPCG is shown in Figure 3.3a,
where darker colors display a larger communications volume between two processes. The
MPI_Allreduce pattern is represented by a light background color as it just involves
communication of a scalar value among all the nodes. In our experiments, we apply
weak scaling and solve global problem sizes of 1024 x 512 x 512, 1024 x 1024 x 512,
1024 x 1024 x 1024 and 2048 x 1024 x 1024 on 64, 128, 256, 512 MPI processes respec-
tively.

The second benchmark is based on MiniFE, a finite element solver using a non-
preconditioned Conjugate Gradient. In contrast to HPCG, MiniFE only performs a single

halo exchange per iteration and has a more irregular communication pattern between pro-

40

CHAPTER 3. EXPERIMENTAL FRAMEWORK AND TOOLSET

Table 3.2: Input Sets for Shared Memory Benchmarks

Benchmark H Input Size ‘
Shared Memory Benchmarks
Blackscholes Simlarge
Cholesky 2048x2048 dense matrix
Dedup Simlarge
Ferret Simlarge
Fluidanimate Simlarge
Histogram 4096x4096 image
LU 2048x2048 sparse matrix
QR 1024x1024 dense matrix
Streamcluster Simlarge
Distributed Memory Benchmarks

HPCG 1024 x 512 x 512 volume
1024 x 1024 x 512 volume
1024 x 1024 x 1024 volume
2048 x 1024 x 1024 volume
MiniFE 1024 x 512 x 512 volume
1024 x 1024 x 512 volume
1024 x 1024 x 1024 volume
2048 x 1024 x 1024 volume
FFT-2D 163842, 327682, 655362, 1310722, and 2621442 elements
FFT-3D 1024°, 20483, and 4096° elements

Map-Reduce WordCount

262 x 10°, 524 * 10°, and 1048 * 10° words

Map-Reduce Matrix Vector

10242, 20482, and 40962 matrix

41

3.5. BENCHMARKS

20 A

40 1

60

80 A

100 1

120 A

(a) HPCG (b) MiniFE

Figure 3.3: Communication patterns of HPCG and MiniFE. Dark colors indicate volume
of communication between MPI processes, while white indicates absence of communica-
tion.

cesses, as shown in Figure 3.3b. The lack of a preconditioner step in every iteration
reduces the granularity of the computation tasks, thus providing insights on how the pro-
posed mechanisms behave in fine-grain task environments. Similar to HPCG, each itera-
tion of MiniFE also ends withan MPT_Allreduce. Asinput, we use 1024 x 512 x 512,
1024 x 1024 x 512, 1024 x 1024 x 1024 and 2048 x 1024 x 1024 unstructured implicit
finite volumes.

In both benchmarks, each processor is assigned a sub-block of the initial 3D domain.
Each sub-block maps to a set of rows in the sparse matrix to be solved by the conju-
gate gradient step. In order to effectively overlap communication and computation in an
execution driven by our stripped version of the Nanos++ runtime system, the sub-block
assigned to a processor is further overdecomposed into smaller sub-blocks. We consider
decomposition factors between 1x (one sub-block per core) and 16x (16 sub-blocks per

core), and report runtime for the best performing decomposition for every configuration.

3.5.2.2 Benchmarks with Collective Communications

To evaluate performance with collective communications, we have implemented several
benchmarks. The first benchmark is a two-dimensional (2D) FFT using a parallel zero-
copy algorithm [49]. In 2D FFT, we initially divide the matrix among MPI processes

using row-wise 1D block partitioning. This enables creation of tasks for executing 1D

42

CHAPTER 3. EXPERIMENTAL FRAMEWORK AND TOOLSET

FFTs for each row in parallel. Next, we perform an MPI_Alltoall to transpose the
matrix. Finally, 1D FFTs are calculated again for each row of the transposed matrix. The
matrix is transposed during communication by using MPI derived datatypes, as described
by Hoefler et al. [49]. In order to avoid multiple copies of data, the strides and MPI
extent within rows are specified in two derived datatypes, one for sending and another for

receiving, so the MPI implementation is able to transpose the matrix on-the-fly.

When transposing the matrix using the MPI_Al1toall collective with derived datatypes,
each process receives partial row data from every other process. Typically, it is not pos-
sible to overlap the collective with the computation tasks because tasks computing the
1D FFT require the entire matrix row. However, it is possible to further divide the 1D
FFT into smaller tasks that process data blocks as soon as they are received. The block
size is set to be the size of a row divided by the number of MPI processes, allowing the
execution of partial 1D FFT tasks as the MPT_Alltoall progresses. We evaluate the
performance of 2D FFT for square matrices with 163842, 327682, 655362, 1310722, and
2621442 elements.

The second benchmark is a three-dimensional (3D) FFT. Initially, the 3D volume
is divided into subsets created by 2D decomposition in Y and Z dimensions. 1D FFT
computations are performed along the x-axis, and are followed by MPT_Alltoall calls
within subcommunicators defined along the y-axis. This transposes the volume such that
the subsets are now decomposed in the X and Z dimensions, and 1D FFTs along the y-axis
are performed. Next, MPT_Alltoall calls within the subcommunicators defined along
the z-axis transposes the grid to create the final set of subdomains in which 1D FFT can be
performed along the Z dimension. Thus, while 2D FFT requires one MPI_Alltoall,
the 3D version needs two MPI_Alltoall calls in order to rotate the volume. We have
chosen a 2D decomposition over a 1D decomposition because of its better scalability in
terms of memory and communication [111]. For 3D FFT, we test cubic volumes with
10243, 20483, and 4096 elements.

We also evaluate performance for two MapReduce [34] applications — a simple word-
count algorithm, which counts the occurrence of each word in a text, and a dense matrix
vector product. In MapReduce, the input data is split into independent chunks processed
by the map tasks in parallel. Each map task produces a series of tuples in the form (Key,
Value) (K, V). The values V; n_1 associated to the same K; are coalesced in a list and
each process sends its (K, V. ny_1) tuples to another process determined by a function

of the key Node;y = hash(K;) in the shuffling stage. Shuffling is done by using the

43

3.5. BENCHMARKS

MPI_Alltoallv collective as a process may have different number of keys that map
to other processes. Finally, every process applies the reduction operation to the list of
values (V. ny_1) associated with each key; the reductions for different keys can be done
in parallel.

We have implemented a baseline MapReduce framework thatusesMPI_Alltoallv
for data shuffling in OmpSs and MPI. In the baseline MapReduce implementation, the
reduction of a single key list of values is a serial operation, while reduction for different
keys can be performed in parallel. However, using our scheme, the reduction tasks can
start to execute as soon as the MPT_Alltoallv receives data from any single rank. This
leads to the creation of several parallel reduction tasks for the same key as multiple list of

values for a single key might be received from different processes.

44

Chapter 4
Improving Power Consumption
Through Task Criticality

This work advocates an integrated system in which the task-based runtime system controls
hardware reconfiguration according to the criticality of the different tasks in execution. As
such, the runtime can either schedule the most critical tasks to the fastest hardware com-
ponents or reconfigure those elements where the highly-critical tasks run. In this way,
the programmer only has to provide simple and intuitive annotations and does not need
to explicitly control the way the load is balanced, how the hardware is reconfigured, or
whether a particular power budget is met. Such responsibilities are mainly left to the run-
time system, which decouples the software and hardware layers and drives the design of
specific hardware components to support such functions when required. To reconfigure
the computation power of the system, we consider DVFS, as it is a common reconfigu-
ration capability on commodity hardware. However, our criticality aware approach can
target reconfigurations of any hardware component, as no DVFES specific assumptions are
made.

The most relevant contributions of this Chapter are:

e We compare two mechanisms for estimating task criticality with user-defined static
annotations and with a dynamic solution operating at execution time. Both ap-
proaches are effective, but the simpler implementation of the user-defined static

annotations provides slightly better performance and EDP results.

e We introduce Criticality Aware Task Acceleration (CATA), a runtime system level
technique that reconfigures the frequency of the cores while keeping the whole

processor under a certain power budget. Average improvements reach 18.4% and

45

4.1. LIMITATIONS OF SCHEDULING ALGORITHMS

30.1% in execution time and EDP respectively, over a baseline scheduler on a sim-

ulated 32-core system.

e For some applications, the DVFS reconfiguration penalties caused by inherent seri-
alization issues can become a performance bottleneck. To overcome this problem,
we introduce a hardware component denoted Runtime Support Unit (RSU), which
relieves the runtime system of carrying out frequency reconfigurations and can be
easily incorporated on top of existing solutions [5, 54, 76]. For sensitive appli-
cations, up to an additional 8.5% improvement in performance is obtained over
CATA.

4.1 Limitations of scheduling algorithms

Task scheduling is a critical phase in the runtime system of ATaP programming mod-
els since the scheduling algorithm is in charge of mapping the actual tasks to the pro-
cessing elements. In asymmetric systems where processing elements exhibit different
performance rations, a bad decission at schedule time in such systems known as blind
assignment can decrease performance as shown in [32].

CATS or Criticality-Aware Task Scheduler solves the blind assignment problem of
FIFO schedulers by employing the task criticality on scheduling decissions mapping the
most critical tasks to the processing elements with the highest performance ratio when
possible. However, even if it considers the criticality of the tasks, it may present the
following misbehaviors in the scheduling decisions that lead to load imbalance in hetero-

geneous architectures:

e Priority inversion: when a critical task has to be scheduled and all the fast cores are

in use by non-critical tasks, it is scheduled to a slow core.

e Static binding for the task duration: when a task finishes executing on a fast core,

this core can be left idle even if other critical tasks are running on slow cores.

These problems happen because the computational capabilities of the cores are static
and, once a task is scheduled to a core, it is not possible to re-distribute resources if the
original circumstances change. In order to overcome these limitations, this thesis pro-
poses a runtime-driven criticality-aware task acceleration scheme, resulting in a respon-

sive system that executes critical tasks on fast cores and re-distributes the computational

46

CHAPTER 4. IMPROVING POWER CONSUMPTION THROUGH TASK
CRITICALITY

capabilities of the architecture to overcome the priority inversion and static binding prob-
lems.

To reconfigure the computation power of the system, we consider DVFS, as it is a
common reconfiguration capability on commodity hardware. However, our criticality
aware approach can target reconfiguration of any hardware component, as no DVFES spe-

cific assumptions are made.

4.2 Criticality-Aware Task Acceleration

Using DVFS Reconfigurations

This section proposes to exploit reconfiguration opportunities that task criticality infor-
mation can provide to the runtime system to perform Criticality-Aware Task Acceleration
(CATA) in ATaP models. First, a pure software approach where the runtime system drives
the reconfigurations according to the criticality of the running tasks is introduced. Then,
hardware extensions required to support fast reconfigurations from the runtime system are
described in detail.

DVES is selected as a proof-of-concept for the reconfiguration mechanism, as it allows
to accelerate different cores and it is already present in the majority of current architec-
tures. Nevertheless, the proposed ideas and the runtime system extensions are generic
enough to be applied or easily adapted to other reconfiguration techniques. We further
assume that two frequency levels are allowed in the system, which can be efficiently im-
plemented with dual-rail V; circuitry [84]. Extending the proposed ideas to more levels
of acceleration is left as future work. In addition, the background Chapter 2 discusses
other reconfiguration approaches that could benefit from the ideas proposed in this chap-

ter.

4.2.1 Criticality-Aware Runtime-Driven DVFS Reconfiguration

The runtime system is extended with several structures to manage hardware reconfigura-
tion according to the criticality of the tasks. Figure 4.1 shows these extensions. Similar
to the CATS scheduler, the runtime system splits the ready queue in a HPRQ for the
critical tasks and a LPRQ for the non-critical tasks. To manage the reconfigurations,
the Reconfiguration Support Module (RSM) tracks the state of each core (Accelerated or

Non-Accelerated), the criticality of the task that is being executed on each core (Critical,

47

4.2. CRITICALITY-AWARE TASK ACCELERATION
USING DVFS RECONFIGURATIONS

Kernel User

Space Space RUNTIME

HPRQ LPRQ

Cpufreq ReM

Driver 'Df Power budget: e
State: Task request
Criticality: and execution

A

SOFTWARE A
HARDWARE
DVFS Core O Core 1l Core 2 Core 3
Cntrl fast fast slow slow

Figure 4.1: Runtime system support for CATA using DVFS reconfigurations. The runtime
maintains status (Accelerated, Not Accelerated) and criticality (Critical, Non-Critical, No
Task) information for each core in the RSM.

Non-Critical, or No Task), and the power budget. The power budget is represented as the
maximum amount of cores that can simultaneously run at the fastest frequency, and is
provided to the runtime system as a parameter.

When a core requests a new task to the scheduler it first tries to assign critical tasks
from the HPRQ and, if no critical tasks are ready, a non-critical task from the LPRQ is
selected. If there is enough power budget the core is set to the fastest power state, even for
non-critical tasks. If there is no available power budget and the task is critical, the runtime
system looks for an accelerated core executing a non-critical task, decreases its frequency,
and accelerates the core of the new task. In the case that all fast cores are running critical
tasks, the incoming task cannot be accelerated, so it is tagged as non-accelerated. Every
time an accelerated task finishes, the runtime system decelerates the core and, if there is
any non-accelerated critical task, one of them is accelerated.

To drive CPU frequency and voltage changes, the runtime system uses the standard
interface provided by the cpufreqg daemon of the Linux kernel. The cpufreqg daemon
governor is set to accept changes from user space. Figure 4.1 shows how the runtime
system communicates with the cpufreqg framework. Frequency and voltage changes
are performed by writing the new power state in a configuration file mapped in the file
system, having one file per core. The cpufreq daemon triggers an interrupt when it
detects a write to one of these files, and the kernel executes the cpufreq driver. The
driver writes the new power state in the DVES controller, establishing the new voltage

and frequency values for the core, and then the architecture starts the DVFS transition.

48

CHAPTER 4. IMPROVING POWER CONSUMPTION THROUGH TASK
CRITICALITY

Finally, the kernel updates all its internal data structures related to the clock frequency
and returns the control to the runtime system.

Although this approach is able to solve the priority inversion and static binding is-
sues by reconfiguring the computational capabilities assigned to the tasks, it raises a new
issue for performance: reconfiguration serialization. Some steps of the software-driven
reconfiguration operations inherently need to execute sequentially, since concurrent up-
dates could transiently set the system in an illegal state that exceeds the power budget.
Furthermore, invoking an interrupt and running the corresponding cpufreq driver in
the kernel space can become a performance bottleneck. As a result, all the steps required
to reconfigure the core frequency can last from tens of microseconds to over a millisecond

in our experiments, becoming a potential point of contention for large core counts.

4.2.2 Architectural Support for DVFS Reconfiguration

With the trend towards highly parallel multicores the frequency of reconfigurations will
significantly increase. This will be exacerbated by the increasing trend towards fine-
grain task programming models with specific hardware support for task creation, data-
dependences detection and scheduling [40, 72, 108]. Consequently, software-driven re-
configuration operations will be inefficient in future multicores. In such systems, hard-
ware support for runtime-driven reconfigurations arises as a suitable solution to reduce
contention in the reconfiguration process.

We propose a new hardware unit, the Runtime Support Unit (RSU), which imple-
ments the reconfiguration algorithm explained in the previous section. The RSU avoids
continuous switches from user to kernel space, reducing the latency in reconfigurations
and removing contention due to reconfiguration serialization. As illustrated in Figure 4.2,
the RSU tracks the state of each core and the criticality of the running tasks to decide

hardware reconfigurations and notify per-core frequency changes to the DVFS controller.

4.2.2.1 RSU Management

The RSU stores the criticality of the task running on each core (Critical, Non-Critical, or
No Task), the status of each core (Accelerated or Non-Accelerated) and the correspond-
ing Accelerated and Non-Accelerated Power Levels to configure the DVES controller,
together with the overall power budget for the system.

To manage the RSU, the ISA is augmented with initialization, reset and disabling

49

4.2. CRITICALITY-AWARE TASK ACCELERATION
USING DVFS RECONFIGURATIONS

HARDWARE SOFTWARE
HPRQ LPRQ
RSU- RUNTIME
Power budget: 2
State: [A A [NANA

A

Criticality:

e et
) and execution
A
| " R R R R R R R R N R B R NI E R B
\ 4
DVFS Core O Corel Core 2 Core 3
Cntrl fast fast slow slow

Figure 4.2: Architectural and runtime system support for CATA using DVFES reconfig-
urations. The RSU module implements the hardware reconfiguration functionality, and
stores the same information as the RSM, plus the DVES levels to use with Accelerated
and Not Accelerated tasks.

instructions (rsu_init, rsu_reset, and rsu_disable, respectively), and control
instructions (rsu_start_task (cpu, critic)) to notify the beginning of the exe-
cution of tasks and the completion of tasks (rsu_end_task (cpu)). Finally, another
instruction is added to read the criticality of a task running in the RSU to deal with process
virtualization (rsu_read_critic (cpu)).

An alternative implementation could manage the RSU through a memory mapped
schema. We have selected the ISA extension approach due to its simple implementation.
As the RSU is only accessed twice per executed task, both solutions are expected to

behave similarly.

4.2.2.2 RSU Operation

The RSU reconfigures the frequency and the voltage of each core upon two different
events: task execution start and end. Whenever one of these two events occurs, the RSU
inspects its current state to determine which cores have to be accelerated and which ones
decelerated. This decision is taken with the same algorithm presented in Section 4.2.1.
When a task starts and there is available power budget the core is accelerated. If the task
is critical and there is no power budget available but a non-critical task is accelerated, the
core of the non-critical task is decelerated and then the core of the new task is accelerated.

If all the other tasks are critical the new task is executed at low frequency. When a task

50

CHAPTER 4. IMPROVING POWER CONSUMPTION THROUGH TASK
CRITICALITY

finishes, the RSU decelerates its core and, if there is a critical task running on a non-

accelerated core, it is accelerated.

4.2.2.3 RSU Virtualization

The OS saves and restores the task criticality information at context switches. When
a thread is preempted, the OS reads the criticality value from the RSU and stores it in
the associated kernel thread_struct data structure. The OS then sets a No Task
value in the RSU to re-schedule the remaining tasks. When a thread is restored its task
criticality value is written to the RSU. This design allows several concurrent independent

applications to share the RSU.

4.2.2.4 Area and Power Overhead

The RSU requires a storage of 3 bits per core for the criticality and status fields, and
log, num_cores bits for the power budget. In addition, two registers are required to
configure the critical and non-critical power states of the DVES controller. These reg-
isters require log, num_power_states bits and are set to the appropriate values at OS
boot time. This results in a total storage cost of 3 X num_cores + log, num_cores +
2 x log, num_power_states bits. The overhead of the RSU has been evaluated using
CACTI [87]. Results show that the RSU adds negligible overheads in area (less than
0.0001% in a 32-core processor) and in power (less than 50 W).

4.2.2.5 Integration of RSU and TurboMode

The RSU can be seen as an extension to TurboMode implementations such as Intel’s
Turbo Boost [54], AMD Turbo Core [5], or dynamic TurboMode [76]. TurboMode al-
lows active cores to run faster by using the power cap of the sleeping cores. A core is
considered active as long as it is in the Cjy or C'; ACPI power states: C, means that the
core is actively executing instructions, while C'; means that it has been briefly paused by
executing the halt instruction in the OS scheduler. If a core remains in a C; state for a
long period, the OS suggests to move the core to C5 or a deeper power state, considering
it inactive. Transitions between different power states are decided in a hardware micro-
controller integrated in the processor die. Whenever a core is set to C'5 or deeper power
state, some of the active cores in the C state can increase their frequency as long as it

does not exceed the overall power budget. Thus, the RSU registers could be added to

51

4.3. EVALUATION

B ||:| FIFO [CATS+BL [CATS+SA CATA|’

8 16 24 8 16 24 8 16 24 8 16 24 8 16 24 8 16 24 8 16 24

Blackscholes Swaptions Fluidanimate Bodytrack Dedup Ferret Average

T T T T T T T T T
3 CATS+BL B CATS+SA R CATA|‘

8 16 24 8 16 24 8 16 24 8 16 24 8 16 24 8 16 24 8 16 24

Blackscholes Swaptions Fluidanimate Bodytrack Dedup Ferret Average

Figure 4.3: Speedup and EDP results with an increasing number of fast cores (8, 16,
24) on a 32-core processor. CATS+BL makes use of bottom-level and CATS+SA of
static annotations methods to estimate task criticality. Results are normalized to the FIFO
scheduler.

the TurboMode microcontroller to accelerate parallel applications according to the task

criticality with minimal hardware overhead.

4.3 Evaluation

This section shows a detailed evaluation of the proposals presented above using the gem5
Simulator with the x86-64 architecture and McPat 1.3 configured as shown in Chapter 3
Section 3.1. Full system simulation is employed and a DVFES driver for the OS Kernel
CPUFreq framework has been developed as detailed in Section 3.3.1 in order to ensure a
realistic environment. The softwre stack comprises the Nanos++ runtime and six of the

PARSECSs benchmarks described in Sections 3.3.2 and 3.5.1 respectively.

4.3.1 Ciriticality-Aware Task Scheduling

Figure 4.3 shows the execution time speedup and the normalized EDP of the four dif-
ferent software-only implementations of the system: FIFO, two variants of CATS which
employ bottom-level (CATS+BL) and static annotations (CATS+SA) as criticality estima-
tion methods, and CATA, which is analyzed in the next section. All results are normalized
to the FIFO scheduler.

Results show that CATS solves the blind assignment problem of FIFO, providing
average speedups of up to 5.6% for CATS+BL and up to 7.2% for CATS+SA with 8 fast

cores. Static annotations perform better in these applications than bottom-level, which

52

CHAPTER 4. IMPROVING POWER CONSUMPTION THROUGH TASK
CRITICALITY

was originally designed and evaluated for HPC applications [32]. This happens because
the static annotations approach does not suffer the overhead of exploring the TDG of the
application, in contrast to bottom-level.

However, not all benchmarks benefit from exploiting task criticality in CATS. Fork-
join or stencil applications (Blackscholes, Swaptions and Fluidanimate) present tasks with
very similar criticality levels. As a result, scheduling critical tasks to fast cores does not
significantly impact performance. In fact, the overheads of the bottom-level approach can
degrade performance, reaching up to a 9.8% slowdown in Fluidanimate, where each task
can have up to nine parent tasks.

Applications with complex TDGs based on pipelines (Bodytrack, Dedup and Ferret)
benefit more from CATS. These applications contain tasks with significantly different crit-
icality levels. For example, in the case of Dedup and Ferret there are compute-intensive
tasks followed by I/O-intensive tasks to write results that are in the critical path of the
application. In these cases, a proper identification and scheduling of critical tasks yields
important performance improvements, reaching up to 20,2% in Dedup. In the case of
Bodytrack, task duration can change up to an order of magnitude among task types. Since
CATS+BL identifies critical tasks based only on the length of the critical path in the
TDG, it obtains smaller performance improvements than CATS+SA. In the case of Dedup
and Ferret, both schedulers perform similarly, although the lower overhead of CATS+SA
slightly favors performance in some cases.

Figure 4.3 also shows the normalized EDP of all the mechanisms. We observe that
the improvements in execution time translate into energy savings. CATS+SA obtains av-
erage EDP reductions between 8.2% and 11.4%, while CATS+BL EDP reductions ranges
between 3.7% and 8.2%. Fork-join or stencil applications do not obtain significant EDP
reduction. It is noticeable the effect of CATS+BL overhead in the case of Fluidanimate
with 8 fast cores, as EDP increases by 22.1% over the baseline. In contrast, significant
EDP improvements occur in the benchmarks with complex TDGs, achieving EDP reduc-

tions up to 31.4% in Dedup with 16 fast cores.

4.3.2 Criticality-Aware Task Acceleration

CATA can dynamically reconfigure the DVFS settings of the cores based on the criticality
of the tasks they execute, avoiding the static binding and priority inversion issues of
CATS, as discussed in Section 4.1. Figure 4.3 also shows the performance and EDP

improvements that CATA achieves over FIFO. Based on the results in Section 4.3.1, we

53

4.3. EVALUATION

evaluate CATA using static annotations for criticality estimation.

Results show that CATA achieves average speedups of 15.9% to 18.4% over FIFO,
and from 8.2% to 12.7% better than CATS+SA. The main improvements of CATA are
obtained in fork-join or stencil applications, in particular Swaptions and Fluidanimate. In
these applications, when tasks finish their execution before a synchronization point, CATA
reassigns the available power budget to the remaining executing tasks, reducing the load
imbalance. In contrast, in Blackscholes the number of tasks is very large and the load
imbalance is low. This causes CATA to provide minimal performance benefits and even
to present slight slowdowns with 24 fast cores. The slowdown is due to the overhead of
frequency reconfigurations. In the applications with pipeline parallelism the performance
improvement over CATS is lower, but still CATA obtains noticeable speedups of up to
28% in Bodytrack with 8 fast cores. CATA average improvements in EDP are significant,
ranging from 25.4% to 30.1%. These gains are larger than the improvements in execu-
tion time as CATA reduces the power consumption of idle cores while it avoids priority
inversion and static binding problems. Benchmarks with a large amount of load imbal-
ance such as Swaptions and Fluidanimate dramatically reduce EDP, halving the baseline
with 24 fast cores. When a task finishes and there are no other tasks ready to execute,
CATA decelerates the core reducing the average number of fast cores decreasing power

consumption.

4.3.3 Architecturally Supported CATA

Despite the significant performance and power benefits, CATA can be further improved
by reducing the overhead of reconfiguring the computational power of the cores. As
described in Section 4.2.2, frequency reconfigurations have to be serialized to avoid po-
tentially harmful power states. In CATA this is done using locks and, as a result, it suffers
from reconfiguration serialization overheads as the number of cores increases. This is-
sue can become a bottleneck when one of the two following conditions holds: 1) the
amount of time spent performing reconfigurations is significant, or ii) the distribution of
reconfigurations over time has a bursty behavior, which is the case in applications with
synchronization barriers.

An analysis of the execution of the applications shows that the average reconfiguration
latency of CATA ranges from 11 us to 65 us. However, maximum lock acquisition times
in Blackscholes, Fluidanimate and Bodytrack reach several milliseconds (from 4.8 ms to

15 ms) due to lock contention. Additionally, although the average overhead of the recon-

54

CHAPTER 4. IMPROVING POWER CONSUMPTION THROUGH TASK
CRITICALITY

figuration time of the six applications ranges acceptable values of 0.03% to 3.49%, this
overhead can be in the critical path and introduce load imbalance, increasing execution
time significantly more than this average percentage as a result.

The RSU hardware component introduced in Section 4.2.2 speeds up reconfigurations
and avoids taking locks as it centralizes all the reconfiguration operations. Figure 4.4
shows performance and EDP results using CATA, CATA+RSU and also TurboMode,
which is discussed in the next section. Results are normalized to the FIFO scheduler
to ease the comparison with Figure 4.3. On average, CATA+RSU further improves the
performance of CATA, reaching an average 20.4% improvement over FIFO on a 32-core
processor with 16 fast cores (it is 3.9% faster than CATA). Performance improvements
are most noticeable in applications that suffer lock contention (Blackscholes, Fluidani-
mate and Bodytrack), reaching an average speedup over CATA of 4.4% on the analyzed
applications, significantly reducing the performance degradation shown by Blackscholes
with 24 fast cores, and achieving 8.5% speedup over CATA in Bodytrack with 24 fast
cores. CATA+RSU reaches a maximum speedup over FIFO of 40.2% in Fluidanimate
with 24 fast cores. Regarding the other applications (Swaptions, Dedup and Ferret), the
additional improvements are on average small as lock contention is very low. Observed
performance differences are mainly caused by changes in scheduling decisions induced
by reconfigurations.

In EDP the average improvements range from 29.7% to 34.0% over FIFO and from
5.6% to 7.4% over CATA. The main reasons behind EDP reduction are the performance
improvements and faster reconfigurations. Furthermore, in applications with a high lock
contention the EDP reductions against CATA range from 4.0% to 9.4%. This proves the
effectiveness of the proposed CATA+RSU and justifies the usefulness of such architec-
tural support.

4.3.4 Comparison with Other Proposals

Finally, we compare CATA and CATA+RSU with an implementation of TurboMode [76].
For a fair comparison, our implementation of TurboMode considers the same two fre-
quencies as in the previous experiments, with an overall power budget assigned in terms
of maximum number of fast cores. TurboMode is not aware of task criticality, so the base
FIFO scheduler is employed and all active cores (in state Cy) are assumed to be running
critical tasks. Whenever an accelerated core executes the halt instruction triggered by

the OS to transition from C to (] state, the core notifies the TurboMode controller. The

55

4.3. EVALUATION

8 16 24 8 16 24 16 24 24 8 16 24 8 16 24
Blackscholes Swaptions Fluldanlmate Bodytrack Dedup Ferret Average

@ CATA+RSU @B TurboMode

[y] SRR

rmalized E

=) B

8 16 24 8 16 24 8 16 24 8 16 24 8 16 24 8 16 24 8 16 24
Blackscholes Swaptions Fluidanimate Bodytrack Dedup Ferret Average

Figure 4.4: Speedup and EDP results with an increasing number of fast cores (8, 16, 24)
on a 32-core processor. Results are normalized to the FIFO scheduler.

TurboMode controller lowers the frequency of the core, selects a random active core, and
accelerates it. When the OS awakes a sleeping core, it notifies the TurboMode controller,
and the core is accelerated only if there is enough power budget. Being able to quickly
accelerate or decelerate at the ('} state benefits applications with barriers or short idle
loops, which do not need to wait for deeper sleeping states to yield their power budget to

other cores.

Figure 4.4 shows the performance and EDP results of TurboMode. On average, Turbo-
Mode obtains slightly worse results than CATA, reaching between 14.4% and 15.7% per-
formance improvements over FIFO. CATA+RSU outperforms TurboMode, with speedups
between 4.0% and 5.3% and equivalent hardware cost. TurboMode presents competitive
performance with CATA+RSU in fork-join and stencil applications (Blackscholes, Swap-
tions and Fluidanimate), but at the cost of higher energy consumption. This happens
because CATA+RSU reconfigures the frequencies right at the moment that a task finishes
its execution, while with TurboMode the reconfiguration must wait until the thread goes
to sleep and triggers the halt instruction in the OS scheduler. In pipeline applications
that overlap different types of tasks (Bodytrack, Dedup and Ferret), TurboMode performs
worse than CATA+RSU with performance degradations up to 18.7% in Bodytrack with
24 fast cores. In the case of EDP results, pipeline applications obtain moderate improve-

ments, with average results close to the ones obtained with CATS+SA.

TurboMode significantly improves performance over FIFO as it can solve the static
binding issue. Since TurboMode is not aware of what is being executed in each core and
its corresponding criticality, it may accelerate a non-critical task or runtime idle-loops.

In contrast, CATA and CATA+RSU always know what to accelerate, effectively obtain-

56

CHAPTER 4. IMPROVING POWER CONSUMPTION THROUGH TASK
CRITICALITY

ing performance improvements. However, we have observed that TurboMode exhibits
some characteristics that our proposals could benefit from. A thread executing a task
can suddenly issue a halt instruction if the task requires any kernel service that sus-
pends the core for a while; I/O operations, contention on locks that protects the page-fault
and memory allocation routines are some examples that we have measured in Swaptions,
Dedup and Ferret applications. CATA approaches are not aware of this situation causing
the halted core to retain its accelerated state. On the contrary, TurboMode can drive that

computing power to any other core that is doing useful work.

4.4 Remarks

Hardware mechanisms that allow reconfiguring the computational capabilities of the sys-
tem are a common feature in current processors, as they are an effective way to maximize
performance under the desired power budget. However, optimally deciding how to recon-
figure the hardware is a challenging problem, because it highly depends on the behavior of
the workloads and the parallelization strategy used in multi-threaded programs. In ATaP
models, where a runtime system controls the execution of parallel tasks, the criticality
of the tasks can be exploited to drive hardware reconfiguration decisions in the runtime
system.

This chapter presents an integrated solution in which the runtime system of ATaP
models performs Criticality Aware Task Acceleration. In this approach the runtime sys-
tem schedules tasks to cores and controls their DVFES settings, accelerating the cores
that execute critical tasks and setting the cores that execute non-critical tasks to low-
frequency power-efficient states. Since performing DVFS reconfigurations in software
can cause performance overheads due to serialization issues, this chapter also proposes
a hardware component, the RSU, that relieves the runtime system of carrying out DVFS
reconfigurations and can be seen as a minimal extension to existing TurboMode imple-
mentations [5, 54, 76]. With this hardware support, the runtime system informs the RSU
of the criticality of the tasks when they are scheduled for execution on a core, and the
RSU reconfigures the voltage and the frequency of the cores according to the criticality
of the running tasks.

Results show that CATA outperforms existing scheduling approaches for heteroge-
neous architectures. CATA solves the blind assignment issue of FIFO schedulers that

do not exploit task criticality, achieving improvements of up to 18.4% in execution time

57

4.4. REMARKS

and 30.1% in EDP. CATA also solves the static binding and priority inversion problems
of CATS, which results in speedups of up to 12.7% and improvements of up to 25% in
EDP over CATS. When adding architectural support to reduce reconfiguration overhead,
CATA+RSU obtains an additional improvement over CATA of 3.9% in execution time
and 7.4% in EDP, while it outperforms state-of-the-art TurboMode as it does not take into

account task criticality when deciding DVFS reconfigurations.

58

Chapter 5
Improving Performance Through

Fine-Grained Tasking

Using different scheduling policies is key to maximize the efficiency of applications and
systems [107]. Considering task criticality [31, 122] or data locality [59] provides sig-
nificant benefits in certain contexts. Moreover, the adaptability granted by software task
schedulers is essential in modern high-performance computing systems with off-chip ac-
celerators and multi-socket configurations can further improve performance and energy
efficiency, but require software intervention for task scheduling and data motion.

We present Task Dependence Manager (TDM), a hardware/software co-designed mech-
anism that accelerates the most time consuming activities of the runtime system with
specialized hardware while allowing flexible task scheduling policies in software. TDM
minimally extends the ISA to allow the runtime system to communicate task creation, task
dependences and task finalization, and to request ready tasks. At the architecture level,
TDM introduces a Dependence Management Unit (DMU) that maintains the information
of the in-flight tasks and the dependences between them by means of a set of tables and
lists. Tasks ready for execution are exposed to the runtime system, which has the freedom
for deploying any software scheduling policy. The main contributions of this proposal

are:

e A novel hardware/software co-designed mechanism to accelerate task creation and
dependence tracking while supporting flexible software schedulers. The hardware
design includes novel architectural techniques to minimize conflicts in associative

structures and to reduce the hardware cost with respect to previous proposals.

e A detailed evaluation of TDM on a full-system simulator that includes application,

runtime system, operating system and architecture layers. On a 32-core processor,

59

5.1. CHARACTERIZING RUNTIME SYSTEM ACTIVITY

120
BB DEPS [N SCHED B EXEC [IDLE

(o0}
o

Rel. time (%)
N D O
© 9 O

0_ [| — — |:| ——
bla |[cho|ded| fer | flu | hist| LU | QR | str |AVG

Figure 5.1: Execution time breakdown of the master and worker threads during the paral-
lel execution. Different states represent dependence management operations during task
creation and task finalization (DEPS), scheduling (SCHED), task execution (EXEC), and
idle time (IDLE).

TDM achieves a 12.3% average speedup and a 20.4% reduction in EDP with respect

to a baseline implemented in software.

e A proof of the potential of TDM when combined with five software schedulers
that exploit the characteristics of different applications. Thanks to this flexibility,
TDM outperforms a runtime fully implemented in hardware by an average 4.2%,

improves EDP by an average 6.2%, and reduces the area overhead by 7.3x.

5.1 Characterizing Runtime System Activity

Performance and scalability of parallel programs is fundamentally limited by the over-
heads introduced in the form of idle time and runtime system phases to manage tasks and
dependences [48]. These two sources of overheads are tightly related to the granularity
of the tasks. On the one hand, coarse-grained tasking reduces the overheads of task cre-
ation and dependence management, but compromises load balancing and scalability on
large-scale multi-cores. On the other hand, fine-grained tasking favors load balancing,
but increases the overheads of the runtime system in dependence management and task
scheduling phases. In addition, many operations in the runtime system phases need to
be serialized to avoid race conditions, potentially becoming a bottleneck as concurrency
increases with higher core counts.

We characterize the cost of the runtime system phases in 9 representative task-based

60

CHAPTER 5. IMPROVING PERFORMANCE THROUGH FINE-GRAINED
TASKING

parallel benchmarks running on a simulated 32-core processor. The optimal task granular-
ity in each experiment has been carefully selected to minimize execution time'. Figure 5.1
shows a complete break-down of the time spent in the main program phases for the master
(left bars) and the worker threads (right bars): task creation and dependence management
(DEPS), scheduling (SCHED), task execution (EXEC), and idle time (IDLE).

The master thread spends a significant portion of the time in DEPS for Cholesky, QR
and streamcluster (84%, 92% and 40%, respectively). In these cases, illustrated in the
timeline of Figure 2.7 for Cholesky, the bottleneck of the execution is the pace at which
tasks are created by the master thread, that limits the amount of available tasks for the
worker threads and causes idle time. DEPS has a lower impact in the rest of benchmarks,
below 25.8%, but idle time is still relevant in the worker threads due to load imbalance.
Most of the time spent in DEPS is devoted to identify the dependences of a task when it
is created, which requires comparing the inputs and outputs of the new task against the
ones of the older tasks. Thread synchronization overheads are negligible, as they only
represent 0.9% of the DEPS time and 2.2% of the SCHED time. Overall, worker threads
spend most of the time executing tasks (65% of the time on average) or idle (32% of
the time), and the master thread spends a significant amount of time running tasks in the

majority of benchmarks, while scheduling time is much less significant.

Adding architectural support for the runtime system can mitigate the overheads of
fine-grained tasking. Approaches such as Carbon [71] move the task scheduler to the
hardware level, while Task Superscalar [39] offloads all the runtime system activities to
the architecture, including dependence management and task scheduling. The main draw-
back of these schemes is that the task scheduler is fixed in the architecture, which compro-
mises the flexibility of the system. The system flexibility provided by software runtime
systems is of paramount importance in modern systems with multiple sockets and off-
chip accelerators, since the task scheduler needs to off-load tasks to external components
that are only visible to the software and often require software-initiated actions such as
data movement between address spaces. To maintain these advantages, approaches such
as ADM [107] add architectural support for asynchronous exchanges of short messages
between cores that can be used to implement low-overhead thread synchronization prim-
itives.

All these solutions drastically reduce runtime system overheads, even in scenarios

!Chapter 3 describes in detail the experimental setup, and Figure 5.5 explores the optimal task granular-
ity of each benchmark.

61

5.2. TDM DESIGN

with extremely fine-grained tasks running on hundreds of cores. However, in scenar-
ios with mid-grained or less extreme fine-grained tasks?, the cost of task scheduling is
relatively low, less than 11% in all benchmarks in Figure 5.1, so the benefits of flexi-
ble software scheduling can be achieved with minimal performance impact. In contrast,
the cost of dependence management operations during task creation is crucial for perfor-
mance because it determines the idle time in the whole execution, so adding hardware

support to perform this operation can effectively reduce the runtime system overheads.

5.2 TDM Design

TDM is a hardware/software co-designed mechanism to support the runtime system.
TDM addresses the performance bottlenecks of pure software dataflow runtime systems
by proposing a hardware/software co-designed mechanism that performs dependence
management operations efficiently in hardware and allows the usage of different task
scheduling policies in the runtime system. Thanks to this separation of concerns, TDM
is able to mitigate the performance overheads introduced in runtime system phases while
providing flexibility to the software layers, so the resulting system is more adaptable,
composable, and is able to capitalize on the benefits of different scheduling policies for
different applications.

TDM balances the higher cost and performance of implementing mechanisms in hard-
ware, with the higher flexibility and adaptability of implementing policies in software. At
the architecture level TDM introduces a DMU that keeps a representation of the TDG
and allows the runtime system to offload costly dependence tracking operations, while
leaving scheduling decisions to the runtime system. As a result, TDM avoids the over-
heads of software runtime systems and maintains the flexibility of supporting software
schedulers.

The runtime system interacts with the DMU to communicate task creation, the data
dependences of the tasks, and task finalization. With this information, the DMU generates
the TDG, tracks dependences between tasks, identifies tasks ready for execution, and
exposes them to the runtime system. The runtime system can request ready tasks to the
DMU, organize them in software data structures, and schedule them to the cores according

to any scheduling policy.

’In this paper we use task granularities up to 3 orders of magnitude bigger than other works of the
literature.

62

CHAPTER 5. IMPROVING PERFORMANCE THROUGH FINE-GRAINED
TASKING

£ANoC
4 V —)

RQ
N Dep. Task ~SA
DMU Table Table L LA

- =/

Figure 5.2: DMU architectural support overview.

5.2.1 Runtime System - Architecture Interface

TDM offers an interface to the runtime system so that it can cooperate with the DMU
in the management of tasks. The interface between the DMU and the runtime system
consists of four new ISA instructions. These instructions are issued by the runtime system

in the task creation and task finalization phases to exchange information with the DMU.

e create_task(task_desc): In the task creation phase, the runtime system uses this
instruction to inform the DMU that a new task is being created. The DMU receives

the task descriptor address of the new task.

e add_dependence(task_desc, dep_addr, size, direction): After creating a task, the
runtime system traverses its list of dependences and uses this instruction to inform
the DMU of the dependences of the task, sending the task descriptor address, the
address of the dependence, the size, and the direction (input or output). With this
information the DMU tracks tasks and dependences and builds the TDG to ensure

dependences between tasks are fulfilled.

o finish_task(task_desc): When a task finishes its execution, the runtime system uses
this instruction to notify it to the architecture. The DMU wakes up the successors
of the task and cleans up the information of the task and its dependences from its

internal structures.

e get_ready_task() — task_desc, #succ: Just after notifying a task has finished, the
runtime system uses this instruction to request to the DMU the successors of the fin-
ished tasks that have just become ready. This instruction returns the task descriptor

address and its number of successors.

63

5.2. TDM DESIGN

TAT Task Table
Task descriptor | Task Task descriptor |Predec.| Successor | Dep.
Address ID Address count |count|list ptr.|list ptr.
0
0x8ABO...5240 2 2 0x8ABO0...5240 2 1 8 0
DAT Dependence Table
Dependence | Dep. Last writer | Reader
Address ID task ID | List ptr.
OxOBCE...0860 2
| o09es.4628 | 1 |- 2 | e |
2 0 2

Figure 5.3: Overview of TAT, DAT, Task and Dependence Table. Two active elements are
presented in each table.

5.2.2 DMU Hardware Design

The DMU is a centralized module connected to the network-on-chip whose main goal is
to keep all the relevant information of the in-flight tasks, track the dependences between
them, and expose ready tasks to the runtime system. Figure 5.2 presents its different
components. Each task or dependence is internally identified by an ID, which maps to
its location in the corresponding table. Tables and list arrays employ SRAM memories,
addressed by the task or dependence IDs. Two set-associative structures, TAT and DAT,
are used to map task descriptor and dependence addresses to internal DMU IDs. The

general behavior of each module follows:

e The Task and Dependence Alias Tables (TAT and DAT) keep a translation of task

descriptor addresses or dependence addresses to internal task or dependence IDs.

e The Task Table and the Dependence Table track all the information of the in-flight

tasks and dependences.

e The List Arrays (Successor, Dependence and Reader) contain lists of elements as-
sociated to in-flight tasks or dependences. The successor and reader lists store task

IDs, while the dependence list stores dependence IDs.

64

CHAPTER 5. IMPROVING PERFORMANCE THROUGH FINE-GRAINED
TASKING

e The Ready Queue (RQ) is a FIFO queue that contains task IDs ready to be executed.

5.2.2.1 Task and Dependence Identifier Renaming

The alias tables are depicted in Figure 5.3. Both TAT and DAT modules consist of a
directory that maps task descriptor and dependence addresses to task and dependence
IDs, respectively, and an additional queue of free IDs. Both modules are implemented
using set-associative memories.

Selecting the correct bits to index the DAT is crucial to avoid conflicts. It is common
that different tasks access different blocks of the same data structure, so the lower bits of
the addresses of different dependences share the same values. For example, if tasks access
different 4KB blocks of a vector, the lower 12 bits of all the dependences are equal. If
these bits are used to index the DAT, only one set is used and many conflicts happen. To
avoid conflicts, the size of the dependence is used to select the address bits employed as
index, which start at the [ogysize lower bit.

The alias tables allow the rest of DMU modules to work with internal IDs, which
offers two important advantages. First, the Task and Dependence Tables employ RAM
memories, indexed with the internal task and dependence IDs, avoiding costly associative
lookups of 64-bit task descriptor and dependence addresses keys. Therefore, using TAT
and DAT a single lookup is required per DMU instruction, followed by many subsequent
direct accesses to the Task and Dependence Tables, as explained in Section 5.2.3. Second,
the storage requirements of the list arrays can be reduced significantly, as the size of the
internal IDs is much smaller than the 64-bit identifiers used in the runtime system. Our
experiments in Section 5.3.2 show that DAT and TAT with 2048 entries suffice for any
application, so 11-bit IDs can be used and the size of the list arrays is reduced by a factor
of 5.8x.

5.2.2.2 Task and Dependence Tracking

The Task and Dependence Tables are used to keep the information of the tasks and the
dependences. The Task Table is an SRAM indexed by the Task ID. Figure 5.3 shows
each entry of the Task Table containing the relevant information of a task: its descriptor
address, the number of successors and predecessors, and pointers to the lists of successors
and dependences. The Dependence Table follows the same scheme to track dependences,
storing the task ID of the last task that writes the dependence and a pointer to the list of

readers.

65

5.2. TDM DESIGN

ID1 ID2 ID3 ID4 | Next

List 1 ptr. 0
(9 elems.) 1 4 16 2 1]
) 23 10 11 8
List 2 ptr.

(7 elems.)

I OIN|PH

Figure 5.4: Overview of a generic list array.

The lists of successors, dependences and readers are implemented in three list array
structures. As shown in Figure 5.4, each list array is an SRAM that can store multiple
lists. To accommodate a variable number of elements in each list we use a storage layout
inspired by UNIX filesystem inodes. The maximum number of elements in each entry is
fixed by design (4 in the example), but the list can continue in another entry. The Next
control field of every entry points to the entry in the list array where the list continues.
The Next field is set to the current entry number if the list finishes in this entry. Invalid
elements are set to all ones.

The Successor List Array uses this organization to store the lists of successors of
each in-flight task, identified by their task IDs. Task IDs are also stored in the lists of
the Readers List Array, which track the reader tasks of all the in-flight dependences. The
Dependence List Array keeps the lists of dependences of the in-flight tasks, so dependence
IDs are stored in the lists. Note that OpenMP 4.0 uses the input/output dependences
provided by the programmer to build the TDG when tasks are created in program order.
The DMU preserves this model by decoupling the dependences, that are tracked in the
dependence and readers lists, from the edges of the TDG, that are tracked in the successors

lists.

5.2.3 Operational Model

The runtime system triggers DMU operations using the ISA instructions in the task cre-

ation and finalization phases.

5.2.3.1 Task Creation

The runtime system uses the create_task instruction to send the task descriptor address to

the DMU. Then, for every dependence of the task, it uses the add_dependence instruction

66

CHAPTER 5. IMPROVING PERFORMANCE THROUGH FINE-GRAINED
TASKING

Algorithm 2: Algorithm for add_dependence instruction.
Data: taskID, depID, dir
Insert depID in dependence list of taskID;
if lastWriterID of deplD is valid then
Insert taskID in successor list of lastWriterID;
Increment #succ of lastWriterID;
Increment #pred of taskID;
end
if dir is In then
Insert taskID in reader list of deplD;
end
if dir is Out then
for readerID in reader list of depID do
Insert taskID in successor list of readerID;
Increment #succ of readerID;
Increment #pred of taskID;
end
Flush reader list of deplD;
Set lastWriterID of deplD to taskID and mark valid;

end

to inform the DMU.

When the create_task instruction is executed, the DMU uses the TAT to generate
a task ID. The Task Table is indexed with the task ID and the entry is initialized by
setting the task descriptor address, setting to 0 the number of successors and predecessors,
and reserving a new list of successors and a new list of dependences in the Successor
and Dependence List Arrays. If some structure of the DMU has no entries available the

instruction blocks until an entry is freed.

After the task is created, for every add_dependence instruction an entry is allocated
in DAT and Dependence Table. The DMU uses TAT to obtain the task ID and DAT to
obtain the dependence ID. Then, the DMU behaves as described in Algorithm 2. First the
dependence is inserted in the list of dependences of the task and the task ID is inserted in
the successor list of the last writer of the dependence. Then, if the dependence is an input,
the task ID is inserted in the readers list of the dependence. Otherwise, if the dependence
is an output, all the readers of the dependence insert the task in their successor lists, the

reader list is flushed, and the task becomes the last writer of the dependence.

67

5.2. TDM DESIGN

Algorithm 3: Algorithm implemented by DMU for the finish_task instruction.
Data: taskID
for succlID in successor list of taskID do
Decrement #pred of succlD;
if #pred of succID = 0 then
‘ Insert succID in the Ready Queue;
end
end
for deplID in dependence list of taskID do
Remove taskID from reader list of depID;

if lastWriterID of depID = taskID then
| Mark lastWriterID of depID as invalid;

end
if lastWriterID of deplD is invalid &&
reader list of deplD is empty then

Free reader list of deplD;

Free deplD entry in DepTable and DAT,;
end

end

Free successor list of taskID;

Free dependence list of taskID;

Free taskID entry in TaskTable and TAT;

5.2.3.2 Task Finalization

When a task finishes, the runtime system uses the finish_task instruction to communi-
cate the task descriptor address to the DMU, and this carries out the steps described in
Algorithm 3. In the first loop the DMU wakes up the successor tasks by traversing the
successor list of the task and decrementing the number of predecessors of each successor.
If the number of predecessors becomes zero, the successor task is moved to the Ready
Queue. In the second loop the task is removed from the reader list and the last writer field
of each of its dependences. Finally the DMU frees the entries allocated for the task in the
Task Table, the TAT, and the Successor and Dependence List Arrays.

5.2.3.3 Implementing Task Schedulers in Software

After the finalization of a task the runtime system requests ready tasks to the DMU by
issuing get_ready_task instructions in a loop. For every get_ready_task instruction the
DMU consults the Ready Queue. If it is empty, a null pointer is returned. Otherwise,
the task ID at the head of the queue is retrieved and used to index the Task Table to get

68

CHAPTER 5. IMPROVING PERFORMANCE THROUGH FINE-GRAINED
TASKING

the task descriptor address and the number of successors that are returned to the runtime
system. Then the runtime system adds the returned task descriptor address to a pool of
ready tasks and stores the number of successors in the task descriptor.

The pool of ready tasks can be used by the runtime system to implement any schedul-
ing policy. The scheduling algorithms can traverse the pool of ready tasks in any order,
move ready tasks to different data structures, or perform any action required by each par-
ticular implementation. By allowing the usage of different task schedulers, TDM provides

flexibility, adaptability and composability to the system.

5.2.4 Additional Considerations

The size of the hardware structures of the DMU limit the number of in-flight tasks and
dependences. To preserve correctness, the TDM ISA instructions have barrier semantics,
so they cannot be re-ordered in the CPUs and younger instructions cannot be executed
before the TDM instructions commit. The DMU processes the instructions sequentially
and, if there is no room available in some structure, the instruction is blocked until some
in-flight task finishes.

TDM manages tasks and dependences inside parallel regions and relies on the runtime
system to handle barriers and other global synchronization points. To do so, the master
thread executes the code sequentially and creates the tasks while the worker threads re-
quest tasks and execute them. The runtime system tracks how many tasks have been
created by the master thread and how many have been executed. When the master thread
reaches the barrier it adopts the behavior of a worker thread, and when all the tasks have
been executed it resumes the sequential execution of the program.

The proposed design of TDM can be easily extended to support context switches and
multiprogrammed workloads. A simple and effective solution is to tag TAT and DAT with
the operating system process ID, so different processes can use TDM concurrently and the
structures of the DMU do not need to be saved and restored at context switch.

The centralized design of the DMU is not a limiting factor for scalability. The DMU
executes several instructions per task that, all together, take tens to hundreds nanoseconds,
while the average task duration in our experiments is 4771 microseconds, as shown in
Section 5.3.1. Given that the task duration is 5 orders of magnitude larger than the latency
of the DMU instructions per task, the DMU is able to scale up to thousands of concurrent

tasks before becoming a bottleneck.

69

5.3. DESIGN SPACE EXPLORATION

g
= 2
[\/
U
o 1A
X
uJ T | L | L L L T 17T | L L L L L | L LI | L
© © © ©
QP22 28RS NECLEII222822 238V S I N
~N OV % O © % OV~ v O T OS5 O TN ©% © ~N 0N iNn O
~ © un ~ © un ~ © ~ © un ~
(aV] (aV] (aV]
bla cho flu hist LU QR str

Figure 5.5: Execution time for different task granularities. The X axis shows the size of
the blocks processed by each task in Blackscholes, Cholesky, Histogram, LU, and QR;
the number of partitions of the 3D volume in Fluidanimate; and the number of points
processed by each task in Streamcluster.

5.3 Design Space Exploration

5.3.1 Benchmarks and Task Granularity

To test TDM we use five benchmarks from PARSECSs [28], a task-based OpenMP 4.0
implementation of the PARSEC [14], together with four benchmarks from the high per-
formance computing domain: Cholesky, Histogram, LU and QR. These benchmarks are
representative algorithms and use different parallelization strategies: Blackscholes and
Streamcluster use fork-join parallelism, Fluidanimate is a 3D stencil, and Dedup and Fer-
ret use pipeline parallelism. Regarding the other four benchmarks, Cholesky performs a
Cholesky decomposition of a matrix, Histogram computes a cumulative histogram for all
pixels of an image, LU does a LU decomposition of a matrix, and QR calculates a QR
factorization of a matrix. Tiling is applied in these algorithms so that tasks process 2D
blocks of the matrices.

The benchmarks are compiled with Mercurium 1.99 source-to-source compiler [8]
with gcc 4.6.4 as backend compiler. Simlarge input sets are used for the PARSEC bench-
marks, Cholesky decomposes a dense 2048 x 2048 matrix, histogram processes a 4096 x
4096 image and generates a histogram with 10 bins, LU decomposes a sparse 2048 x 2048
matrix, and QR a dense 1024 x 1024 matrix.

In all benchmarks we ensure that parallel regions scale well to 32 cores using perfor-
mance analysis tools to visualize the parallel executions. The optimal task granularity is
carefully selected to minimize load imbalance and execution time in the baseline software

approach. Figure 5.5 shows the execution time with different task granularities growing

70

CHAPTER 5. IMPROVING PERFORMANCE THROUGH FINE-GRAINED
TASKING

Table 5.1: Benchmark characteristics. Number of tasks and average task duration with
the optimal task granularity for the software runtime system and for TDM.

Software TDM

tasks | Duration (us) || # tasks | Duration (us)
Blackscholes 3,300 1,770 6,500 823
Cholesky 5,984 183 5,984 183
Dedup 244 27,748 244 27,748
Ferret 1,536 7,667 1,536 7,667
Fluidanimate 2,560 1,804 2,560 1,804
Histogram 512 3,824 512 3,824
LU 1,512 424 1,512 424
QR 1,496 997 || 11,440 96
Streamcluster || 42,115 376 || 42,115 376
Average 6,584 4,976 8,056 4,771

along the X axis (i.e., smaller to bigger from left to right). Execution time is normalized to
the optimal task granularity. In Dedup and Ferret the task granularity cannot be changed
without modifying the application, as each task processes a pipeline stage. In general,
shorter task duration increases parallelism, but leads to higher runtime system overheads.

Table 5.1 summarizes the number of tasks and their average duration for each bench-
mark. The number of tasks ranges from 244 (Dedup) to 42,115 (Streamcluster), and the
average duration between 96us (QR) and 27ms (Dedup). The optimal task granularity
is used for the corresponding approach (software or TDM) in all the experiments of the

evaluation.

5.3.2 TAT, DAT and List Arrays

We perform a design space exploration to determine the optimal size of the DMU hard-
ware structures. All the experiments are performed in the gemS5 simulator using an ARM
platform consisting of 32 cores and full system simulation as detailed in Section 3.1. We
first study the sizing of TAT and DAT, considering a DMU implementation with N TAT
entries, M DAT entries, and unlimited entries in the list arrays. The size of the TAT and
the DAT determine the size of the Task and Dependence Table, respectively. Figure 5.6
shows the performance obtained when N and M vary between 512 and 4096. Perfor-

71

5.3. DESIGN SPACE EXPLORATION

-9 1 O ;,,‘-—"-gu—_"‘ n,, 'C[_._v_.__v NN)';;_uv {‘/,U’_’:\.‘f-_k.) o ——8
I ; o-0o--0--0 / d P == =8
3 fo-o—s :
! 7
© ; s
o [
Q) O 5 ‘:II Cryy s rr
Q ; *-9--0-9
. / 0]
- [°]
9 -e- 512 TAT --¥v- 1024 TAT —= 2048 TAT 4096 TAT
(’)\"l« '\,Q’Lb"bgb‘% D‘Qo’b (’)\"1« '\'Q,th,&b‘% »90’6 (’)\,’L '\'Q’Lb"&b‘% VQO)Q) (’)\,’L \9,1’&,19&% VQO’Q) (’)\,’1« \9,1’&’1'&‘% b‘gogo (0\,’1« \9’1?‘,19&% b(go)b
DAT DAT DAT DAT DAT DAT
cholesky| ferret hist LU QR AVG

Figure 5.6: Average performance with different sizes of the TAT and DAT. Results are
normalized to an ideal DMU with unlimited entries and equal latency.

mance is normalized to an ideal design with an infinite number of entries in all DMU
structures and same latency.

Figure 5.6 shows results for 5 benchmarks. The rest of benchmarks already achieve
maximum performance with 512 entries in DAT and TAT. The geometric mean considers
all the benchmarks. The figure shows LU and QR are sensitive to the DAT size, achieving
maximum performance with 2048 entries. The other three benchmarks are sensitive to the
TAT size. The most demanding benchmark is Histogram, as its tasks have a significant
amount of dependences between them and the distance between independent tasks is high.
Thus, it requires at least 2048 TAT entries to achieve maximum performance. On average,
with 2048 entries in both DAT and TAT, the DMU only suffers a 0.91% performance
degradation with respect to the ideal case with infinite entries and same latency. We
also explore the associativities of TAT and DAT, results showing that 8-way associative
structures minimize conflicts and offer the best performance.

Next we explore the size of the successor, dependence and reader list arrays. Fig-
ure 5.7 shows the average performance when these structures vary from 128 to 2048
entries, normalized to an ideal design with an infinite number of entries in all DMU struc-
tures and same latency.

These results clearly show that a design with 128 entries in any of the list arrays
leads to suboptimal performance. In contrast, with 1024 entries in all the list arrays,
performance already saturates. On average, with 1024 entries in all list arrays, the DMU
only suffers a 1.1% performance degradation with respect to the ideal case with an infinite

number of entries and same latency. Doubling the size of all list arrays leads to an average

72

CHAPTER 5. IMPROVING PERFORMANCE THROUGH FINE-GRAINED
TASKING

c 1.00 T

.8 —— 2048 Readers LA

g 0.95 1 —a— 1024 Readers LA

G --¥-- 512 Readers LA

L — —

5 0.901 ®- 128 Readers LA

A

o~ 0.85] /-/‘—‘

O

o080+H——"7—"+-———

128 512 1024 2048| 128 512 1024 2048| 128 512 1024 2048| 128 512 1024 2048

Successor LA Successor LA Successor LA Successor LA
128 Deps LA 512 Deps LA 1024 Deps LA 2048 Deps LA

Figure 5.7: Average performance with different sizes of the list array (LA) structures.
Results are normalized to an ideal DMU with unlimited entries and equal latency.

[1cycle [4 cycles I 16 cycles
1.0 pm T T T T T

Figure 5.8: Performance degradation when varying the access time of all DMU structures
from 1 to 16 cycles. Results are normalized to DMU structures with zero latency.

Speedup

1.0% performance degradation, but requires a significant increase in area. For this reason,

we size all list arrays in the DMU with 1024 entries.

5.3.3 DMU Access Latency

As explained in Section 5.2, the algorithms that implement TDM instructions require ac-
cessing different hardware structures. Also, the lists stored in the list arrays may spread
over multiple entries, which requires multiple accesses to traverse the complete lists. Con-
sequently, DMU operations require multiple cycles to finalize. Next, we evaluate the per-
formance of the DMU when varying the latencies of its hardware structures. In these
experiments we use the sizes of the DMU structures determined in the previous section.
Figure 5.8 shows the performance degradation when increasing the access time of all
DMU structures from 1 to 16 cycles. Most benchmarks do not suffer any performance

degradation due to higher latencies, as with the optimal task granularity DMU operations

73

5.3. DESIGN SPACE EXPLORATION

Table 5.2: DMU storage (KB) and area (mm?) requirements.

] \ Storage \ Area H \ Storage \ Area ‘
Task Table 23.00 | 0.026 || SLA 12.25 | 0.019
Dep Table 5.25 | 0.013 || DLA 12.25 | 0.019
TAT 18.75 | 0.031 || RLA 12.25 | 0.019
DAT 18.75 | 0.031 || ReadyQ 2.75 | 0.012

y Total 10525KB 0.17 mm’ \

happen infrequently. Only LU and QR are slightly affected by this parameter. On average,
performance degrades only 0.2% with a 1-cycle access time and 0.9% with a 16-cycle

access time.

5.3.4 DMU Area and Power Overhead

Table 5.2 shows the storage and area requirements of the DMU for the sizes selected in
Section 5.3.2. Storage values consider the number of bits of the task and dependence IDs,
which depend on the size of the tables they point to. The structures are modeled in CACTI
6.0 [87] to obtain the area values with a process technology of 22 nm.

The components of the DMU have a negligible effect on the power consumption, less
than 0.01% of the total power. The low power requirements of the DMU combined with
the small sizes of the hardware structures allow to design the DMU with a 1-cycle access
time to each data structure.

As a conclusion of this design space exploration, we select a design with a DAT and
TAT of 2048 entries and all the list arrays of 1024 entries. The storage and area require-
ments for this configuration, 105.25KB and 0.17mm?, are very affordable with current
design technology. The rest of this chapter makes use of this configuration in all the

experiments.

5.3.5 Runtime Overhead Reduction

Next, we measure the impact of TDM in the task creation time. Figure 5.9 shows the
average time spent by the master creating tasks and managing their dependences, which
corresponds to the DEPS category in Figure 5.1. Task creation time is not completely
eliminated with TDM because of the latency of the DMU structures and because some
operations are still performed in the runtime system, such as creating task descriptors, is-
suing TDM instructions, etc. All benchmarks benefit from the hardware support provided

by the DMU, achieving up to a 5.2x reduction in task creation time in Blackscholes.

74

CHAPTER 5. IMPROVING PERFORMANCE THROUGH FINE-GRAINED
TASKING

100
I SW 1 TDM
8 75] B
o | |
E 50
o
N - LA
bla | cho|ded]| fer | flu |hist| LU | QR | str |AVG

Figure 5.9: Percentage of time spent in task creation with a pure software approach (SW)
and with TDM.

On average, task creation is reduced from from 31.0% to 14.5% of the total CPU time,
proving the effectiveness of TDM. This reduction of task creation time has a big impact
on the idle time, that is reduced from 32% to 22% on average, and translates into overall

application speedups as will be shown in Section 5.4.

5.3.6 Index Bit Selection for DAT

We show the importance of selecting the appropriate bits of the dependence addresses to
index the DAT. As described in Section 5.2.2.1, when different blocks of the same data
structure are specified as dependences, many dependence addresses have the same values
in the lower bits, causing conflicts if these bits are selected to index the DAT. To avoid this
problem, the DMU uses the size of the dependence to select the bits of the dependence
addresses to index the DAT.

Figure 5.10 shows the average number of occupied sets in the DAT for the six bench-
marks that are sensitive to this issue. The X axis shows 5 numerical values that corre-
spond to different options to statically select the index bits (e.g., 4 means the index bits
start at the 4th lower bit of the dependence address), and the proposed dynamic mech-
anism (DYN) that uses the size of the dependence. Results show that each fixed value
drastically changes the occupancy of the DAT, from 1% to 88%. More importantly, every
benchmark requires selecting different index bits. This happens because the benchmarks
use different block sizes, so the number of lower bits that are equal in the dependence
addresses changes in every benchmark. By using the size of the dependences provided by
the runtime system to dynamically select the index bits, the DMU avoids conflicts in the

DAT and maximizes its occupancy in all benchmarks.

75

5.4. FLEXIBLE SCHEDULING WITH TDM
--¥-- Static --4¢-- Dynamic
256
9 . !
© 192] ‘ ‘,'\\‘
% ¢ i |
] Y- Y
G 128 X X ¢ N y
O ',” \\‘ :" A S '3 ‘r' ’,',
g 64 1 . v M ¢ /
0 ey v — \V--'--' S A U . S
O % ,\/’L ,\/ _ke Q V ‘b ,\/’1, \, _ké O % \, _@ O % ,\/’1, \"'o _ké O % \"1, ,\/b o_ké
blackschol&s cholesky fImdammate histogram QR

Figure 5.10: Occupancy of sets in DAT with static index bit selection and with dynamic

B Succ+TDM I Age+TDM B OptTDM

[OptSW @@ FIFO+TDM [@W LIFO+TDM @B Local+TDM

index bit selection.

14 — FIFO
S1.2
g i | W
drotrpll A
& oo 111 mull | [TORNNN || (OS] il | [|IF-|II || |1 ||| |
0.8
blackscholes! cholesky dedup ferret fluidanimate ! histogram QR streamcluster AVG
51.2 [FIFO [OptSW [FIFO+TDM [EE LIFO+TDM [EE Local+TDM [Succ+TDM [N Age+TDM [N OptTDM
k]
s10
©
£0.8
S
Zo05
ferret T fluidanimate | hlstogram streamcluster VG

> Thlackscholes T cholesky
Figure 5.11: Speedup (top) and EDP reduction (bottom) with FIFO, LIFO, Locality-
aware and Criticality-aware schedulers using software runtime system and TDM. Results

are normalized to the software runtime system with a FIFO scheduler.

5.4 Flexible Scheduling with TDM

This section illustrates the synergy of TDM with different software schedulers that exploit
the characteristics of the applications to improve performance and power consumption.
Five schedulers are used in the experiments: First-In First-Out (FIFO) schedules tasks
in the same order as they become ready. Last-In First-Out (LIFO) schedules first the last
task that has become ready. Locality scheduler exploits data locality and assigns tasks to
cores aiming to minimize data movements. When a task finishes executing on a core and
some of its successor tasks is ready, a successor is executed on the core. If no successors
are ready the first task in the ready queue is scheduled. Successor scheduler counts the
number of successors of a task. If this number is above a threshold it is placed in a high

priority ready queue, otherwise it is placed in a low priority ready queue. Threads first

check the high priority ready queue and, if it is empty, they look for tasks in the low

76

CHAPTER 5. IMPROVING PERFORMANCE THROUGH FINE-GRAINED
TASKING

priority ready queue. Age scheduler sorts tasks in the ready queue by their creation time,
so older tasks have higher priority than younger ones.

These schedulers can be used with TDM without any modification. The runtime sys-
tem communicates with the DMU at task creation and finalization phases, and requests all
the tasks that have become ready after a task finishes. The schedulers organize the ready
tasks in software data structures and ready queues that implement the different policies.
TDM reduces task creation overheads and, consequently, all schedulers benefit from this

architectural support.

5.4.1 Performance Evaluation

We evaluate the performance of the different software schedulers when they are de-
ployed by an entirely software-based runtime system and when they are combined with
TDM. For each application we select the best scheduler with and without TDM, de-
noted OptTDM and OptSW, respectively. Figure 5.11 shows the speedups of OptSW,
FIFO+TDM, LIFO+TDM, Locality+TDM, Successor+TDM, Age+TDM and OptTDM
policies over a FIFO scheduler without hardware support. The geometric mean of the
speedups is also reported (AVG).

In general, FIFO and LIFO schedulers show similar performance except for Blacksc-
holes, which is parallelized with 64 independent chains of dependent tasks. With FIFO,
all independent chains progress at the same pace, while with LIFO, 32 chains (one per
core) progress much faster than the others, leading to a significant load imbalance and
29.3% performance degradation. A similar situation happens with Locality+TDM and
Successor+TDM, although performance only degrades 7.8% and 9.2%, respectively.

TDM significantly reduces the task dependence management overheads in Cholesky,
as reported in Figure 5.9. The locality scheduler further improves performance, as this is
a memory intensive application that reads blocks of a dense matrix from memory. Thus,
Cholesky is sensitive to data locality, and Local+TDM outperforms FIFO+TDM by 4.2%.

Priority schedulers (Successor and Age) achieve important improvements in bench-
marks with a clear critical path in the TDG. Dedup has many compute-intensive tasks and
each one of them is followed by a long I/O-intensive task. I/O tasks cannot be executed
in parallel, which is enforced by means of control dependences between them, so over-
lapping I/O with compute tasks maximizes parallelism. Successor+TDM achieves this
overlap, as I/0 and compute tasks have the same priority (all tasks have 1 successor), and

yields a 23.2% performance improvement. FIFO prioritizes compute tasks because they

77

5.4. FLEXIBLE SCHEDULING WITH TDM

become ready before their I/O counterparts, so it fails in overlapping I/O and computa-
tion. However, the successor scheduler harms performance in Cholesky, as it delays the

execution of tasks that process the borders of the matrix, limiting the available parallelism.

Overall, OptSW performs worse than TDM with any scheduler, while the best sched-
uler (Age+TDM) achieves an average 9.1% speedup. More importantly, the best perfor-
mance is achieved with FIFO+TDM, LIFO+TDM, Locality+TDM, Successor+TDM, and
Age+TDM for 2, 2, 2, 2, and 1 different benchmarks, respectively.

When the best scheduler per application is used, average 4.5% and 12.2% performance
improvements are obtained with OptSW and Opt+TDM, respectively. The benefits of
TDM are demonstrated by two facts: first, TDM provides enhanced results for all the
schedulers and, second, TDM exposes the scheduler policy to the software, which yields

large performance benefits due to the flexibility it provides.

5.4.2 Energy Efficiency

This section evaluates the energy efficiency of TDM combined with different schedulers.
The bottom chart of Figure 5.11 shows the EDP of FIFO, LIFO, Locality, Successor and
Age schedulers when combined with TDM. This figure considers the power introduced by
the DMU hardware structures. Results are normalized to a pure software runtime system

with a FIFO scheduler, and a geometric mean (AVG) of the results is shown.

Figure 5.11 shows that TDM provides significant EDP reductions in seven bench-
marks, and minimal reductions are obtained in Ferret and Histogram. On average, EDP
is reduced up to 8.9% with the best software solution (OptSW), while EDP is reduced
between 3.1% and 15.4% when combining different schedulers with TDM. Combining
TDM with the best scheduler per application (OptTDM) yields the best results, achieving
average reductions in EDP of 20.3%.

In terms of power consumption, the DMU consumes a negligible fraction of the total
power, less than 0.01%. All benchmarks consume very similar power with the considered
schedulers on a software runtime system and when they combine the schedulers with
TDM (less than 1.0% difference). In addition, average power results show less than 1.0%
variation between different schedulers. Since the average power consumption does not
significantly change, the improvements in total energy to solution follow the same trends

as Figure 5.11.

78

CHAPTER 5. IMPROVING PERFORMANCE THROUGH FINE-GRAINED
TASKING

1 FIFO 3 Carbon I Task Superscalar [OptTDM

=
N

1 FIFO @3 Carbon Il Task Superscalar [OptTDM

Normalized EDP
o =
(00] o
—
?
:

o
o

Figure 5.12: Speedup (top) and EDP reduction (bottom) of Carbon, Task Superscalar and
TDM over a software runtime system with FIFO scheduler.

5.4.3 Comparison with Other Proposals

This section compares TDM with two alternative hardware support proposals for the run-
time system. Carbon [71] implements the task scheduler at the hardware level and task
dependence management is done in software by the runtime system so, conceptually, it
is the opposite to TDM. Carbon provides ISA instructions that allow threads to add and
request ready tasks, and the hardware support consists of a set of distributed hardware
queues to keep ready tasks and a fixed FIFO scheduling policy with work stealing. Task
Superscalar [39] offloads all the runtime system activities to the architecture, including
task dependence management and task scheduling with a fixed FIFO policy. It uses an
interface similar to Carbon, and its hardware support consists of a gateway, a ready queue,
and distributed tables to track tasks and dependences. As explained in Section 5.1, thread
synchronizations overheads are negligible in our experiments, so proposals that accelerate
thread synchronization such as ADM [107] are not included in the study.

The top chart of Figure 5.12 presents the speedup of Carbon, Task Superscalar and
TDM over a software runtime system with a FIFO scheduler. TDM makes use of the best
scheduling policy per benchmark found in the previous section, and the geometric mean

of the results is also presented.

79

5.4. FLEXIBLE SCHEDULING WITH TDM

Carbon improves performance in Blackscholes, Dedup and Streamcluster, reaching
speedups of up to 7.3%. In the rest of benchmarks its impact is negligible because, as
shown in Figure 5.1, the time spent in scheduling phases is very low, while tracking task
dependences is much more costly. As a result, Carbon obtains a modest average speedup
of 1.9%.

Task Superscalar performs both task scheduling and dependence management in hard-
ware. This approach provides significant speedups in several benchmarks, reaching an
average 8.1% speedup. TDM achieves similar reductions in runtime system overheads
and further improves performance by allowing flexible software schedulers, achieving an
average speedup of 12.3% and clearly qualifying as the best option. The advantage of
TDM is particularly significant in cases where using the appropriate scheduling policy is
fundamental to increase the parallelism, as in Dedup, where TDM improves performance

by 23.1% while Carbon and Task Superscalar just reach 5.9% and 7.2%, respectively.
The bottom chart of Figure 5.12 shows the EDP of Carbon, Task Superscalar and TDM

normalized to the baseline software solution with a FIFO scheduler. Results consider the
extra power consumption added by the hardware structures of TDM, Carbon and Task
Superscalar. Important EDP reductions are obtained in seven of the benchmarks, while
more modest EDP reductions are obtained in the remaining two benchmarks. On average,
TDM reduces EDP by 20.4% while Carbon and Task Superscalar only achieve reductions
of 5.1% and 14.1%, respectively.

Regarding hardware complexity, TDM lays between Carbon (simple hardware queues)
and Task Superscalar. Table 5.2 shows that the DMU requires 105.25KB for the se-
lected configuration. For the same configuration in terms of number of in-flight tasks and
dependences, Task Superscalar requires 769KB: a 1KB Gateway, a 256KB TRS (2048
entries x 128B), a 256KB ORT (2048 entries x 128B), and a 256KB Ready Queue (2048
entries X 128B). The cost of the OVT is not taken into account, as the DMU does not per-
form dependence renaming. In addition, Task Superscalar requires more power-hungry
CAM look-ups than the DMU. Alltogether, the DMU requires 7.3 x lower hardware com-
plexity than Task Superscalar.

Finally, another solution is to add an extra core devoted to the runtime system. We
observe that the performance of a 33-core system with a pure software runtime system
improves marginally, 0.8% on average. In the 32-core baseline task creation is already
executed by one thread running on a core, so the extra core just adds one more worker

thread and has no impact on dependence tracking overheads.

80

CHAPTER 5. IMPROVING PERFORMANCE THROUGH FINE-GRAINED
TASKING

5.5 Remarks

ATaP models are very appealing for large-scale multi-cores. A key aspect of task-parallel
programs is the task granularity, which determines the potential to exploit the available
parallelism and to ensure load balancing, but also dictates the runtime system overheads.

This thesis proposes TDM, a hardware/software co-designed mechanism to acceler-
ate task dependence management operations while allowing flexible task scheduling in
software. Unlike previous works with schedulers fixed in the architecture, the separation
of concerns in TDM provides high degrees of flexibility, adaptability and composability,
which are key in modern computing infrastructures with multiple sockets and off-chip ac-
celerators, and also allows to capitalize on the benefits that different scheduling policies
provide for certain applications and environments. In addition, the architectural support
of TDM includes novel techniques that maximize efficiency, such as renaming IDs to re-
duce the storage requirements or leveraging the size of the dependences to avoid conflicts
in the hardware structures when the lower bits of the dependence addresses are equal.

As a result, TDM outperforms software runtime systems by an average 12.3% while
reducing EDP by 20.4%. Compared to pure hardware solutions, TDM achieves an average

speedup of 4.2% with 7.3 x lower hardware complexity.

81

5.5. REMARKS

82

Chapter 6
Easing Communication Bottlenecks

Through The Runtime System

We have observed that inefficient interactions between ATaP models and MPI limit the
achievable computation-communication overlap and negatively impact the performance
of large parallel programs.

To address these issues, we present two mechanisms, similar to the MPI tools interface
(MPIL_T) [46], for exchanging information between MPI and an ATaP runtime system and
analyze their trade-offs: 1) A fast mechanism to poll events when idle using a lock-free
queue, and 2) a delivery solution based on callbacks that can benefit from a hardware
implementation, shown in the bottom row of Figure 6.1. These mechanisms allow ATaP
runtimes to seamlessly interoperate with MPI by reducing or completely eliminating the
need to rely on explicit polling or waiting on specific requests, and instead deliberately

invoking the progress engine only when needed, driven by runtime events.

e We present a novel approach to optimize interactions between an ATaP runtime

system and MPI by exploiting knowledge of MPI internal events.

e We expose new opportunities to overlap MPI collectives with tasks that depend on

partially received collective data.

e We present a detailed evaluation of the proposed ideas using MPI and OmpSs [38],
an ATaP model that follows the semantics of OpenMP 4.0 tasks. When compared
to state-of-the-art solutions with task-based communications and dedicated com-
munication threads, we show improvements of up to 16.3% and 34.5% for proxy

applications with point-to-point and collective communication, respectively.

83

6.1. BOTTLENECKS ON TASKIFIED COMMUNICATION

Message for
Task 2 arrives

Blocking
MPI_Recv

\
e)) [s
\

ol [Task || [] |} [Task3] [} (74 J [mask s !;1- [mPrrecy
l Poll
Callback Task | D Task 3 - Task 5 - D Callback

Figure 6.1: Early invocation of a blocking MP I_Recv by one task can prevent other tasks
from making progress (top row). The remaining three rows represent alternatives. In each
case, the red arrow marks the arrival of an MPI message in time for a specific task (Task
2).

6.1 Bottlenecks on taskified communication

Let us consider several common mechanisms used in different ATaP models for making
MPI calls from within tasks. A first mechanism is for tasks to make a blocking MPI call,
such as MPI_Recv. This prevents other tasks from using the idle core while the task in
question is blocked waiting for messages and is clearly inefficient as shown in the top row
of Figure 6.1. The second mechanism, as a potential solution to the above problem, is
to use a non-blocking MPTI_Trecv and MPI_Wait. However, this still has the problem
of being blocked at the MPTI_Wait if it is called too early. A third mechanism is to
periodically poll for message arrivals; this avoids blocking but can require multiple trials.
Thus, none of these mechanisms is perfect and they all waste valuable CPU resources.
Despite these issues, the use of MPI as the underlying communication mechanism for
ATaP models is attractive, since it represents a convenient portability layer that is available

on virtually every high performance computing platform.

If the runtime system of an ATaP model is aware of the progress or state of communi-
cation in MPI, it can make better scheduling and task-creation decisions, and efficiently
overlap computation and communication. Our approach tracks certain events in the MPI

layer and exposes them to the ATaP runtime system in order to efficiently schedule block-

84

CHAPTER 6. EASING COMMUNICATION BOTTLENECKS THROUGH THE
RUNTIME SYSTEM

Worker 0 Task 0 Task 3 Task 4

Worker | | Task | ey F
Pie " 7
4 4 4
Pad / e
Commlllllll- l-
Thread MPI_Recv 0 MPI_Recv 3

Task 4 Task 4 Task 2
message message message l Probe D Idle
arrives arrives arrives

Figure 6.2: Communication thread can become a serial bottleneck if one thread is respon-
sible for many workers.

ing MPI primitives or initiate a specific request to poll. Further, using our approach,
the runtime system can execute tasks that utilize partially received data of an on-going
MPI collective operation, thus providing opportunities for computation-communication
overlap that were not exposed previously.

In both explicit and implicit styles of communication, some inefficiencies prevent the
interaction between MPI and ATaP models from reaching its full potential. ATaP models
seek to exploit asynchrony and to overlap communication with computation across tasks
to improve performance. In contrast, several MPI features have traditionally been influ-
enced by a bulk synchronous programming model, in which communication and compu-
tation occur in phases. This results in performance inefficiencies such as those shown in
the top two rows of Figure 6.1 — resources can remain idle if blocking calls are made early
before the messages have arrived.

ATaP models typically deploy communication threads to improve computation-com-
munication overlap. A dedicated thread is made responsible for data transfers in order
to avoid blocking the worker threads. However, communication threads do not execute
computation tasks, which results in resource under-utilization if the thread is assigned a
dedicated core. If communication threads are not assigned dedicated cores, they can per-
form poorly. They can also become a serial bottleneck, as shown in Figure 6.2, in which
the communication thread is responsible for sending, probing, and receiving messages for
all workers. In this example, worker 1 is idle for a long time because the communication
thread is busy processing messages for task 4 of worker 0.

Another potential source of inefficiency is the implicit global synchronization that
MPI collectives impose. While it is possible to overlap computation and collective com-

munication to a certain extent by using non-blocking collectives [51] as standardized with

85

6.2. EXPOSING MPI ACTIVITY TO ATAP RUNTIMES

Worker 0 -
Worker | Compute
Worker 2 Compute
Thread MPI_Alltoall
PO Pl P2 P3 P4 P5 D Idl
data data data data data data €

Figure 6.3: Tasks that can begin computation with partial data (PO, P1 -> worker 0; P2,
P3 -> worker 1; P4, P5 -> worker 2) need to wait for the collective to complete.

MPI 3.0, it is currently not possible to use partially received data while the collective is
in progress. For example, in the MPT_Alltoall operation, although data from some
tasks/processes is received earlier than others, execution of tasks that only need that partial
data cannot begin until the collective completes as shown in Figure 6.3. In this example,
although each worker depends only on data from two processes (PO, P1 -> worker 0; P2,
P3 -> worker 1; P4, P5 -> worker 2), all workers have to wait until data from all processes
is received and the MPT_Alltoall call completes.

The proposals described in this chapter aim at removing the inefficiencies that under-
mine the cooperation between ATaP runtime systems and distributed memory messaging
libraries such as MPI. By exposing information about events happening at the communi-
cation layer (e.g., incoming messages, data transfer completions or collective operations
progress) to an ATaP runtime, we believe the runtime system can schedule tasks more
efficiently and reduce idle time, maximizing computation-communication overlap as a

result. Section 6.2 describes the interface we propose to achieve these goals.

6.2 Exposing MPI Activity to ATaP Runtimes

We propose to make ATaP runtime systems aware of MPI activity to overcome the per-
formance issues highlighted in Section 6.1. Further, we propose to drive this informa-
tion exchange by triggering callbacks in hardware or via lower-level system software.
This section describes the proposed interactions between MPI and ATaP runtimes, and a

mechanism to enable computation-communication overlap in the case of collective com-

86

CHAPTER 6. EASING COMMUNICATION BOTTLENECKS THROUGH THE
RUNTIME SYSTEM

munications.

6.2.1 Extending MPI to Support Event Handling

Our approach exposes a set of events that can be triggered by a MPI implementation to
ATaP runtime systems. In order to stay consistent with the MPI standard, and to enable
future possible standardization efforts, we build on existing concepts, in particular MPI_T,
the MPI Tool Information interface introduced in MPI 3.0 [42], as well as the currently
proposed MPI_T_Events extensions [460]. The latter provides the necessary infrastructure
for callbacks in MPI, intended for the support of tracing tools, but does not define any
concrete events, matching the philosophy of MPI_T. In particular, we propose adding the
following events to MPI:

e MPI_TINCOMING_PTP signals the arrival of a point-to-point message. It saves the
tag and source of the message, and the associated MPI_Request handle, if any.
For a message expected to use the rendezvous protocol, this event may indicate the

arrival of the control message.

e MPI_OUTGOING_PTP signals the completion of a non-blocking point-to-point

send operation. It saves the MPI_Request handle.

e MPI_COLLECTIVE_PARTIAL_INCOMING signals the arrival of some data in
the context of a collective communication. It saves the MPI source rank relative to

the communicator being used.

e MPI_COLLECTIVE_PARTIAL_OUTGOING signals the sending of some data in
the context of a collective communication. It saves the MPI rank of the receiver.
When this event is triggered, it is safe to overwrite the corresponding portion of the

outgoing buffer.

We implement these events in the context of MVAPICH 2.2 [121] implementation
on Intel platforms, where PSM2 [55] is primarily responsible for conducting point-to-
point communication. Thus, in our implementation, events such as the detection of an
incoming point-to-point message originate at the PSM2 layer, which in turn notifies MPI
of the associated point-to-point event. PSM2 uses lightweight helper threads to handle
communication, which efficiently share resources with other threads in the system. Event

notification to MPI is triggered by these helper threads. On the other hand, the creation

87

6.2. EXPOSING MPI ACTIVITY TO ATAP RUNTIMES

of events associated with the progress of collective communication is still handled by
MPI. In both cases, MPI is responsible for the delivery of the events to the ATaP runtime

system.

6.2.2 Mechanisms for Event Delivery

We consider two mechanisms to deliver the events described in Section 6.2.1 to the ATaP

runtime: a polling-based mechanism and a callback-based approach.

6.2.2.1 Polling-based Notification

Our first approach is to add a polling interface to MPI, or more specifically to the MPI_T
Events proposal, which an ATaP thread can use to query events at its convenience. When
invoked, the polling call checks if an event has occurred and, if so, returns the data asso-
ciated with the event. This is significantly different from the polling capabilities currently
available in MPI through the set of MPI_ Test calls. These only return the state of a spe-
cific request, which is inefficient as it requires users to individually poll on all outstanding
requests until one of them is in a desired state. In contrast, our approach only returns
completed events across all event sources, and therefore prevents unnecessary queries.
Conceptually, our polling interface can be viewed as an extension of MPI_Probe: in
addition to information about the incoming message that MPI_Probe returns, our ex-
tension can also return information regarding events related to non-blocking send/receive
requests and collectives.

We propose one additional function that implements the actual polling:
MPI_T_Event_poll (MPI_T_eventx event). This functionindicates on return
whether one of our defined events has occurred since its last invocation and, if yes, returns
an opaque event object containing information regarding the event. The type of this object
is identical to the event object type used in the MPI_T_Events proposal, and hence can
be decoded with a matching call to MPI_T_Event_read. In our implementation, a
lock-free event queue, from the C++ Boost library [19], is used to store the events until
they are consumed by the ATaP runtime system. We also modify the specific runtime used
in this chapter, Nanos++, to use its worker threads to invoke the polling interface. These
invocations are done either between consecutive task executions or when worker threads
are idle. Figure 6.4 summarizes the polling-based delivery mechanism described in this

section.

88

CHAPTER 6. EASING COMMUNICATION BOTTLENECKS THROUGH THE
RUNTIME SYSTEM

Task-based Runtime System

Idle worker thread 2. Polls queue for

] next event
[MPI_T_Event_poll())

MPI_INCOMING_PTP

1. Incoming message
generates event

MPI 1

Figure 6.4: MPI_T event creation, addition to the event queue, and consumption by a
worker thread in polling mode.

Event queue

6.2.2.2 Callback-based Notification

Callback-based notification works by associating handler functions with specific events
in a way that the corresponding handler function is invoked to perform some action once
the event occurs. In particular, by having the events described in Section 6.2.1 han-
dled by callbacks, we release the ATaP runtime system from the need for polling the
event queue. For this functionality, we directly rely on the MPI_T_Events proposal [46],
which provides generic callbacks mainly intended to implement tracing tools. For our
purpose, we use it to support the events described above and offer them to the user, in
our case the ATaP runtime, which can then associate a handler function by invoking the
MPI_T_Event_handle_alloc call, as described by Hermanns et al. [46]. Once invoked, the

runtime receives an MPI events object, which can be decoded with MPI_T _Event_read.

The primary concern with the use of callbacks is the impossibility of knowing be-
forehand when an event will occur, which makes it impossible to know which thread will
handle the event and execute the callback. Thus, to ensure correctness, the implementa-

tion of any callback handler must respect some restrictions:

89

6.2. EXPOSING MPI ACTIVITY TO ATAP RUNTIMES

e Callbacks should not take any locks that may already be taken by the thread exe-
cuting the callback.

e (allbacks have restricted MPI capabilities as described in [46].
e Callbacks should not be nested.

These restrictions are not a problem in our context. The primary purpose of event
notification is to satisfy an event dependence for a task in the system and, once all depen-
dences for the task are met, push it to the scheduler. These actions just require locks that
maintain the state of runtime system metadata as well as locks that control the interaction
with the scheduler queue. Neither of these locks can be taken by a worker thread if it
executes the callback while invoking MPI inside a task. Similarly, a worker thread does
not hold any lock if it executes the callback while invoking MPI when idle to progress
communication. If callbacks are invoked by MPI helper threads, no runtime system locks
will be taken by them. These actions also do not require any calls to MPI and thus can-
not invoke other callbacks. Thus, inside the ATaP runtime, we use callbacks to identify,

unlock and push ready tasks to the scheduler.

Hardware-induced callbacks: Callbacks can also be triggered as user-level interrupts by
the Network Interface Card (NIC) when it detects associated MPI events. Having the NIC
detecting events and triggering callbacks can improve both flexibility and performance by
providing a more accurate and early notification of an incoming message, message deliv-
ery completion, and RDMA operations. For reference, Keppitiyagama et al. [69] showed
that Myrinet NIC hardware, which included a programmable network processor, could
drive the MPI progress engine, and networks like SCI (The Scalable Coherent Interface)
included remote doorbell capabilities. In addition, some of the current Intel Xeon pro-
cessors already integrate the OmniPath NIC in the processor package. We hope that this
work will lead to the addition of such capabilities in hardware. In this chapter, we emulate

this capability by using a hidden thread running on a dedicated core to monitor MPI state.

6.2.3 Changes to the OmpSs runtime

Typical implementations of ATaP models such as OmpSs may indicate to the underly-
ing runtime that a task performs/depends on communication, but do not require exposing
more details. For the ATaP runtime system to match tasks with notifications, more in-

formation is required. To this end, we extend our ATaP model, OmpSs, to notify its

90

CHAPTER 6. EASING COMMUNICATION BOTTLENECKS THROUGH THE

RUNTIME SYSTEM

Message
Arrival

req7 Task12

(0]
=}
req7 Task12 =» req10 Task20 %
req10 | Task20 'é‘
/ / i Task 20:
[Task 20: : [Task 20-] f | MPI_Wait(req10) |
MPI_Wait(req10)) MPI_Wait(req10)

(a) Task will not be ready untii (b) The runtime processes the MPI (c) The worker retrieves the
the message arrives. * eventand the task is sent to the task from the queue and
The runtime tracks the request ready queue executes it

Figure 6.5: The runtime creates dependences between tasks and corresponding MPI_T
events and the notification of an MPI_T event unlocks a task waiting for it.

underlying runtime, Nanos++, of messages being sent or received, as well as of MPI re-
quests that are accessed in a task. This information is used to create a task dependence on
the corresponding event. In our implementation, MPI calls inside tasks are identified by
the OmpSs compiler, which introduces code to inform Nanos++ of the MPI call and its

arguments such as source/destination rank and MPI_Request object.

Enabled by this communication-related information, the Nanos++ runtime system cre-
ates dependences between tasks and their corresponding MPI_T events. This implies, for
example, that a task performing a blocking MPI call is not allowed to run until the corre-
sponding MPI_T event, MPT__INCO- MING_PTP, related to the task has taken place and
received by Nanos++. Similarly, a task invoking a blocking MPI_Wait is not allowed
to execute until the completion event associated with the incoming or outgoing message
request takes place (Figure 6.5 (a)).

When an event is delivered to Nanos++, either via polling or execution of a callback,
it is used to unlock the associated task for execution as depicted in Figure 6.5 (b). For
every task with an event dependence, Nanos++ contains an entry in a reverse look-up table
based on the identifiers (message tag, source, or the MPI_Request object). This table
is used to identify the task, which is then scheduled for execution if all its dependences
are met. In this way, by waiting for communication events to occur before the tasks are

scheduled, we are able to avoid unnecessary blocking of worker threads.

Even under this scheme, the use of blocking MPI calls for sending or receiving can
still block threads unnecessarily when a rendezvous protocol is deployed in MPI. For ex-

ample, a receiving task is unlocked upon the arrival of the control message of the sender-

91

6.2. EXPOSING MPI ACTIVITY TO ATAP RUNTIMES

initiated rendezvous message. Following this, the task will be active and the thread will be
blocked for the time the message data is transferred over the network from the source. We
recommend that, in such situations, non-blocking send/receive should be used in the task,
and another task with an associated MPI_Wait should be marked for execution when the

actual data arrives.

6.2.4 Overlapping Computation with Collectives

So far, we have discussed exposing point-to-point communication related MPI events to
an ATaP runtime system to potentially increase its responsiveness and reduce the time for
which threads remain blocked. We now switch our attention to exploiting computation-
communication overlap for MPI collectives. MPI 3.0 introduced non-blocking collectives,
akin to non-blocking point-to-point operations, to allow programmers to perform compu-
tation while the collective progresses in the background. However, like point-to-point
operations, this can be restrictive due to the need for a wait or frequent test calls.

Traditionally, an MPI collective call is viewed as a monolithic operation whose inter-
mediate progress is not exposed to the programmer. We propose to notify ATaP runtime
systems of partially received data so that they can trigger dependent computations as
early as possible and thus maximize computation-communication overlap. In particular,
we focus on many-to-one or many-to-many style collectives such as MPT_Alltoall,
MPI_Gather,and MPI_Allgather, in which tasks can be unlocked even when par-
tial data has been received.

Figure 6.6 shows an example in which an all-to-all operation is used to share data
among tasks on different nodes. Tasks are created in this example such that some tasks
need only part of the data received during the collective to start execution. For example,
the left task depends only on data received from the MPI process 0, while the right task
depends on data from MPI process 1. With the existing MPI semantics, all these tasks
will be unlocked and ready for execution when the entire collective completes and data
from all processes is received. However, as several collectives in MPI are typically imple-
mented using point-to-point communication, it is likely that data required to unlock one
of these tasks is received earlier than the remaining data. Thus it is potentially possible to
start the execution of one task earlier, as shown in the figure.

In order to enable computation overlap with collectives, we add two events:

e MPT COLLECTIVE_PARTIAL_INCOMING

92

CHAPTER 6. EASING COMMUNICATION BOTTLENECKS THROUGH THE
RUNTIME SYSTEM

#pragma omp task depend (in:A[0:N]) depend(out:B[0:N])
{

MPI_Alitoall(A,n,MPI_DOUBLE,B,n,MPI_DOUBLE,comm)
}

1. Alltoall receives data from process 1.
Recv Buffer B

Data from process 1

0 n
MPI_COLLECTIVE_PARTIAL_INCOMING
(pending)

1 2. Partial collective event is delivered

MPI_COLLECTIVE_PARTIAL_INCOMING

#pragma omp task depend (in:B[0:n]) #pragma omp task depend (in:B[n:N])

/ICompute here /ICompute here

} }

3. Task is sent to the ready queue

Figure 6.6: Unlocking of the right task when partial data from process 1 is received
leading to a collective callback.

e MPT COLLECTIVE_PARTIAIL_OUTGOING.

MPI can use these events to notify the runtime when part of the data expected in the
collective has arrived or has been sent, respectively.

The runtime system is already aware of the memory locations that a task reads or
writes, as they are specified in the task creation pragma (see examples in Section 2.3.1
and Figure 6.6). With our extensions of Section 6.2.3, the runtime system also knows the
send/receive locations and the volume of the data sent/received in the collectives. Hence,
when the MPT_COLLECTIVE_PARTIAL_* event arrives, the runtime system matches
the partial data received with the task that depends on it, and if all its dependences are
satisfied, executes it without waiting for the collective to finish. Non-blocking collectives
can also benefit from this approach, since even for them, there is no existing mechanism

to signal when it is safe to use partial data.

6.3 Performance Evaluation

This section evaluates the performance impact of using our proposed MPI events to drive

the task execution in the OmpSs programming model, as described above.

93

6.3. PERFORMANCE EVALUATION

6.3.1 Results for Point-to-point Benchmarks

We compare the performance of baseline task-based executions of HPCG and MiniFE
with executions in five other resource-equivalent scenarios. These executions are per-
formed on 16, 32, 64 and 128 nodes; every node contains four MPI processes, each of
which can use 8 cores which is the configuration that minimizes the execution time for
the baseline implementation. In the baseline scenario, eight worker threads per MPI pro-
cess are responsible for executing the computation as well as the communication tasks and
for invoking the MPI progress engine. It is worth mentioning that this is the only available
OmpSs+MPI or OpenMP 4.0+MPI out-of-the-box configuration with task-based commu-
nication. We present two scenarios with communication threads: one in which we add
a communication thread shares hardware with worker threads on available cores, i.e.,
8 worker threads and 1 communication thread share 8 cores (CT-SH), and the other in
which a dedicated core is assigned to the communication thread and the computation
tasks are executed on the remaining 7 cores by 7 worker threads per MPI process (CT-
DE). Such solutions represent the state-of-the-art communication model of most common
ATaP models. However, as it was mentioned before, OmpSs and OpenMP does not inte-
grate a communication thread in their available releases so we hope this work can motivate

the default inclusion of such configuration for hybrid applications.

We then compare three scenarios covering variants of our proposals against these base-
lines: 1) polling-based notification (EV-PO), where worker threads poll for MPI_T events
when idle (Section 6.2.2.1); ii) callback-based event delivery in software (CB-SW); and
1i1) a hardware-induced callback-based event delivery (Section 6.2.2.2). The hardware
support is emulated by using an additional hidden core that monitors the internal status of

MPI and PSM2 to trigger the callbacks; this core never executes a task.

Figure 6.7 (a) presents the speedups obtained with the scenarios described above nor-
malized to the baseline for HPCG. Use of a dedicated core for the communication thread
(CT-DE) provides a speedup ranging from 12.7% to 25.7% with respect to the baseline
approach for the 16 to 128 node configurations respectively. This improvements are due
to the early execution of communication tasks enabled by CT-DE as well as due to the
avoidance of blocking in worker threads. On the other hand, when the communication

thread is not assigned a dedicated core (CT-SH), performance degrades by 26.5%.

The polling-based event notification (EV-PO) mechanism yields slightly lower per-
formance improvements than CT-DE (9.25%, 13.5%, 10.5% and 19.7%). This is caused

94

CHAPTER 6. EASING COMMUNICATION BOTTLENECKS THROUGH THE
RUNTIME SYSTEM

1.5

CT-DE = CT-SH s EV-PO Il CB-SW Bl CB-HW

CT-DE == CT-SH s EV-PO mEm CB-SW mE CB-HW

Speedup

© v D N
~) © N

Figure 6.7: Speedup for (a) HPCG and (b) MiniFE over a baseline task-based implemen-
tation on 16, 32, 64 and 128 nodes with 64, 128, 256 and 512 MPI processes, each with 8
threads (cores).

by computation tasks in HPCG delaying the polling for MPI events, and thus delaying
communication. Hence, benefits of event notifications are sometimes neutralized by the
lack of progress. With software callbacks we are able to unlock the tasks as soon as the
events arrive and performance improvements rise to 17.4%, 21.7%, 19.0% and 27.4%
respectively. In addition, hardware-based support for event detection and triggering of
callbacks (CB-HW) is able to overcome the delays due to long running computation tasks
and improves performance by 23.5% 27.6%, 24.3% and 35.2% (up to 9.5% over CT-DE).
In CB-HW, as soon as an MPI_T event occurs, the associated task becomes ready for ex-
ecution. Finally, the small granularity of the tasks doing the pre-conditioning steps of the
matrix require communication to be done as early as possible, improving the performance
over the baseline of the proposed solutions as the node count increases. The time spent in
communication for HPCG is approximately a 10.7% of the total execution time executing
MPI calls without event notification. This time is reduced to a 3.6% when using callbacks

as the delivery mechanism leading. This is due to MPI calls being only invoked when the

95

6.3. PERFORMANCE EVALUATION

associated event has arrived, and effectively minimizing waiting time. Moreover, as only
ready MPI calls are only executed, the time that was spend on checking the status of the
MPI requests is now devoted to computation leading to the aforementioned speedups.

Figure 6.7 (b) shows that we observe similar trends for MiniFE as for HPCG. The
key difference is that due to the smaller granularity of computation tasks in MiniFE, the
polling-based event notification (EV-PO) is able to outperform the scenario with a dedi-
cated communication thread (CT-DE). Aided by the relatively shorter delays for polling,
the improvements for EV-PO are 22.5%, 18.6%, 17.5% and 19.2% in comparison to
12.2%, 9.5%, 10.3% and 13.0%. As was the case for HPCG, the presence of hard-
ware support for callbacks further improves the performance and achieves speedups of
28.4%, 24.6%, 22.8% and 25.2% over the baseline and up to 16.3% over CT-DE. The
lack of a pre-conditioner in MiniFE yields a lower communication frequency than HPCG
which does up to 11 neighbor communications per iteration while MiniFE only does one.
This lower communication/computation ratio translates into a constant scalability over
the baseline for all the node counts in contrast to HPCG where the baseline performance
degrades as the communication needs increase with the node counts. Finally, similarly
to HPCG the time spent in communication is a 11.8% of the total execution time with a
reduction up to a 3.3%.

Regarding the overheads of the polling and the callbacks based approaches, the aver-
age time spent polling for events is 9x and 15x that of callback for MiniFE and HPCG

respectively, with polling happening 100x more times than callbacks in both benchmarks.

6.3.2 Results for Collective Benchmarks

This section evaluates the performance impact of the mechanism described in Section 6.2.4

for exposing the potential overlap of computation tasks with MPI collectives.

6.3.2.1 Fast Fourier Transform

Similar to the point-to-point benchmarks, we compare the performance of 2D FFT and
3D FFT benchmarks for executions in the same five resource-equivalent scenarios and
present speedup against the baseline execution on 128 nodes. For 2D FFT, we use square
matrices of input sizes ranging from 16384 x 16384 to 262144 x 262144, and cubic
volumes of sizes 10243, 20483, and 4096% for 3D FFT. Since our experimental results

did not show significant performance differences between the three event-based scenarios

96

CHAPTER 6. EASING COMMUNICATION BOTTLENECKS THROUGH THE
RUNTIME SYSTEM

1.4 CT-DE B CB-SW

Figure 6.8: Speedup for 2D FFT and 3D FFT over a baseline implementation on 128
nodes.

(EV-PO, CB-SW and CB-HW), we only present representative results for CB-SW. These
equivalent performance results, as we will show in this section, are caused by the fact
that collective calls only block a single worker thread per process. Hence, other worker
threads are readily available for either polling MPI for events or executing callbacks in
software. Thus, all event-based scenarios are able to promptly handle events and therefore
provide equivalent performance. Further, since the performance for the scenario in which
the communication thread shares cores with worker threads (CT-SH) never outperforms
the scenario in which the communication thread is assigned a dedicated core (CT-DE),
we do not show results for CT-SH.

Figure 6.8 (a) shows that CT-DE consistently performs slightly worse (~4.0%) than
the baseline approach. This is because, with CT-DE, the communication thread does not
execute computation tasks once the collective communication finishes, and thus nega-
tively impacts performance. In contrast, CB-SW consistently outperforms the baseline,
and provides a maximum 26.8% performance gain for the matrix size 65536 x 65536.
On an average, CB-SW results in 21.9% performance improvements.

To better understand the reason for the significant performance improvement due to
CB-SW, Figure 6.9 presents the execution traces of 2D FFT for the baseline and event-
based executions. Figure 6.9 (a) shows that all computation tasks need to wait for the
MPI_Alltoall to finish before they can be executed. In contrast, Figure 6.9 (b) shows
that event-based notification results in some computation tasks executing as soon as the
necessary input data is received for them. As a result, we are able to overlap computation

tasks which can be executed with the MPT_Alltoall thatis in progress.

97

6.3. PERFORMANCE EVALUATION

[AlltoAll Task
I Compute Task

(a) Baseline with no communication-
computation overlap.

LU IR TR R TIE T T LT TR
(LR LR TR Rt LT TR
| NIIRRTE T - I NN -
T R - (W RN
RN (LR LLLRLTL T T}
[0L TTTVEAR Y I TR R QYT
T 000D amm S ymnEmne -

(b) Event-based communication-computation
overlap.

Figure 6.9: Parallel execution traces showing the effect of collective-computation over-
lapping 2D FFT. Same time range is shown for both figures. A single MPI process and its
threads are shown for the sake of clarity.

Results for 3D FFT are displayed in Figure 6.8 (b). Since the 3D FFT benchmark
invokes two MPI_Alltoall operations instead of one in 2D FFT, it exposes more op-
portunities for overlapping computation with the collective calls. Therefor the CB-SW
approach achieves higher performance enhancements for 3D FFT. Overall, CB-SW pro-
vides 21.2% average improvement, with maximum improvement of 34.5% for the 4096>
sized volume. In contrast, dedicating a core for the communication thread (CT-DE) de-
grades performance by 9.8% on average in comparison to the baseline approach.

In summary, the event-based exposure of collectives’ progress effectively enables an
overlap between computation and collective operations in both 2D FFT and 3D FFT.

Consequently, we achieve substantial performance gains for both benchmarks.

6.3.2.2 MapReduce

Next, we evaluate the effect of overlapping computation with MPI collectives for the
MapReduce framework. We experiments with two applications: Word Count (WC) and
a dense Matrix Vector product (MV). Figure 6.10 shows the speedup results for both
applications over a baseline implementation.

For the WC application, CB-SW provides 7.2% improvement on an average, and a
maximum gain of 10.7% for a dataset consisting of 262 million words. In this application,
reduce operations are extremely small as they only increase the counter associated with
the key. Consequently, as the size of the dataset grows, the map tasks consume a higher

proportion of the runtime. As a result, the impact of computation-communication overlap

98

CHAPTER 6. EASING COMMUNICATION BOTTLENECKS THROUGH THE
RUNTIME SYSTEM

1.4/ CT-DE B CB-SW
o
§ 1 2 . l -
(O]
o
2 B mm B I I I
0.8 D N N O N N- N <
N PO R R ™ N

Figure 6.10: Speedup for the MapReduce-based WordCount (WC) and dense Matrix Vec-
tor product (MV) benchmarks with different problem sizes.

decreases, and the performance gains reduce to 4.9% for a dataset of 1048 million words.

Unlike the WC application, in the MV application, a similar amount of time is spent
in the map and the reduce tasks. This translates to higher impact due to dedicating a
thread to communication as well as enabling computation-communication overlap for
the reduce tasks. For CT-DE, the inability to use the communication thread to execute
tasks degrades performance up to 10.7%. In contrast, performance improvements, ranging
from 17.4% to 31.4% are obtained as CB-SW enables overlap of reduce tasks with the

MPI_Alltoallv collective executed for aggregating keys across processes.

6.3.3 Scalability of the collectives benchmarks

The results presented in this section are obtained using 128 nodes. We have performed
weak-scaling experiments on 16, 32, and 64 nodes and have verified that the speedup
trends among the different input-sets correlate in all scenarios with performance differ-
ences of at most 4.0% in the case of the FFT 3D application. This allows us to conclude

that the collective overlapping benefits hold regardless the node count.

6.3.4 Comparison with Task-Aware MPI Library

The Task Aware MPI library (TAMPI) [73] provides MPI with a new level of threading
support MPI_TASK_MULTIPLE. TAMPI works by intercepting blocking calls to MPI

inside tasks and converting them to the non-blocking versions. The task execution is

99

6.3. PERFORMANCE EVALUATION

MPLT mmm TAMPI
1.4 =

o

51.2-

(O]

(O]

o

wn
N I I
0.8 13 < . « & At

¢ R & » >
X & S & &
O« "
& & &

Figure 6.11: Performance comparison of our best performing proposal with TAMPI for
every benchmark using 128 nodes

suspended and the MPI_Request object is added to a waiting list. This list is iterated
by the workers in between task executions polling every request with the MPI_Test
call and tasks whose requests have completed are rescheduled to keep executing. The
key difference is that TAMPI polls every active request while our proposal only reacts to

requests where the MPI layer notifies progression.

Figure 6.11 shows a performance comparison of the proposed approach with TAMPIL.
For point-to-point benchmarks with a high communication/computation ratio such as
HPCQG, the worker threads iterate the list of requests several times delaying the execution
of useful computation by polling the status of requests with no changes. This effect can be
seen on the HPCG benchmark where TAMPI behaves 1.5% below the baseline. However,
for benchmarks with a lower communication/computation ratio such as MiniFE, TAMPI
is able to perform in the same range of the MPI_T events based alternatives yielding a
speedup of 18.7% compared to the 25.2% obtained by using MPI_T events. The rela-
tively high computation time compared to communication allows a better overlap of the

request polling with the computation task execution.

In the collective benchmarks, TAMPI performs exactly as the baseline as shown in
Figure 6.11. TAMPI uses MPI calls to test for requests completion but it has no means of
accessing internal information such as the partial completion of collectives. This makes

TAMPI unable to do the collective overlapping proposed in this work.

100

CHAPTER 6. EASING COMMUNICATION BOTTLENECKS THROUGH THE
RUNTIME SYSTEM

6.4 Remarks

In this chapter, we explored mechanisms to optimize overlap between computation and
communication in asynchronous task-based programs executing on distributed memory
systems. By exposing information about MPI communication events through the MPI_T
events interface to a task-based runtime, we significantly reduce idle time caused by wait-
ing on specific MPI requests for point-to-point operations. We also proposed a novel
scheme to overlap communication with computation on partially received data from col-
lective operations. Our detailed evaluation on a production system provided performance
improvements of up to 16.3% in benchmarks with point-to-point communication pat-
terns, and of up to 34.5% in benchmarks with collective communication. Overall, our
approach provides a transparent solution that requires no changes to the source code of an
application programmed in OmpSs and MPI, yet improves its performance by better ex-
ploiting the overlap of computation and communication in such asynchronous task-based

programming models.

101

6.4. REMARKS

102

Chapter 7

The Complete Runtime-Aware

Architecture

7.1 Introduction

The previous three chapters of this thesis focus on three independent aspects: energy-
efficiency, performance and communication, which are key in modern computing sys-
tems. Although they are self-contained proposals, it is possible to combine them in order
to achieve a Runtime Aware Architecture where these schemes can interact together so

that the three main goals are achievable simultaneously.

This chapter aims to describe how a Runtime Support Unit integrating CATA, TDM,
and MPI T events should be designed and how it should interact with the runtime system
of an ATaP model. Instead of a bulk design with three components separated, it is possible
to combine all of them in order to reuse information and optimize silicon area. TDM
provides a TDG representation where the dependences induced by MPI_T events can be
also integrated. Moreover, the TDG in TDM can provide the task criticality information
needed to drive CATA.

The following sections describe the Runtime Support Unit design, the interface with
the runtime system, the required hardware structure models, as well as the operational
model. Finally, the conclusions on why such a design could be useful are provided. Un-
fortunately, the complexity of all the integrated components makes unfeasible the simu-
lation of such system. Full system simulators such as gem5 do not support the Infiniband
or the Intel OmniPath architecture required for modelling modern HPC systems. As a
consequence, this chapter provides the theoretical foundation for future work to be per-

formed.

103

7.2. THE RUNTIME-AWARE ARCHITECTURE HARDWARE EXTENSIONS

7.2 The Runtime-Aware Architecture Hardware Exten-

sions

This section introduces the complete Runtime Support Unit (RSU) and gives a glimpse
of how all the three previous proposals interact together at the hardware level. The core
of the RSU are the structures proposed in Chapter 5. The main responsibility of the RSU
is to build the TDG created during the application execution by matching the task input
and output dependence addresses. The TDG representation in hardware can then be used
by other mechanisms to implement the CATA functionality by augmenting the TDG data
structures to hold the task criticality. It is also possible to devise a hardware module
that iterates through the graph to calculate the Bottom-Level (BL) of each task when no
criticality annotations are provided.

Moreover, when creating tasks performing communication, the MPI_T events that act
as dependences can be tracked as well by the RSU using the same hardware structures.
In such scenario, a NIC capable of doing hardware tag-matching is augmented to deliver
MPI_T events directly to the RSU through the Network-on-Chip. Thus the depending
tasks can be unlocked automatically without the need of the ATaP model runtime system

to explicitly track these events.

7.2.1 Interface and Integration with the Runtime System

The ATaP model runtime system relies on the RSU to deal with all the stages of the task-
life cycle. The interface between both elements is done through ISA extensions. The ATaP
model runtime system executes these instructions in different phases of the execution as
explained in Chapters 4 and 5. For the sake of simplicity only the major changes to the

instruction behavior are listed:

e rsu_add_dependence(task_desc, dep_addr, size, direction, tag, src):. After creating
a task, the runtime system traverses its list of dependences and uses this instruction
to inform the RSU of the dependences of the task. When dealing with communi-
cation dependences, direction is set to a value COMM_REQ to explicitly notify the
RSU this is a communication dependence. The dep_addr is a Communication Re-
quest object generated by the runtime. In the case of communication dependences,
the tag and the source that allows to identify MPI messages are added as well to

match them with the incoming network interface request.

104

CHAPTER 7. THE COMPLETE RUNTIME-AWARE ARCHITECTURE

Network-On-Chip
/RSU| DAT I{}I TAT] —= \ Ll

Mem
Controller

RQ memory
% RLA [« — SLA

Network Dep. Task

Interface Table Table — DLA

MPI Tag w

.) Com.

Matching S
% Dep. Adjacency
g

Intranode : Table Matrix | L1)
Comm Multiplication Adj.
Internode DVFS Matrix
\\Controller /

Figure 7.1: The complete RSU

o rsu_get_ready_task() — task_desc, #criticality: Just after notifying a task has fin-
ished, the runtime system uses this instruction to request the successors of the fin-
ished tasks and their criticality to the RSU. Then, the runtime system runs the ap-
propiate scheduling algorithm with the retrieved tasks and their criticality. When
dealing with communication dependences tasks can be unlocked at any other mo-
ment than task finalization. In order to retrieve the unlocked tasks and continue
the application execution, the NIC can as well deliver the proposed MPI events to
the CPU which will execute the rsu_get_ready_task() upon the event reception. An
alternative and less complex approach is to poll the RSU executing this instruction

during the worker threads idle time.

7.2.2 RSU Hardware Design

The RSU is a centralized hardware module connected to the NoC and accessed through a

functional unit in the CPU pipeline issuing messages through a dedicated virtual channel.

105

7.2. THE RUNTIME-AWARE ARCHITECTURE HARDWARE EXTENSIONS

The RSU is used to deal with the TDG, task criticality identification, and communication

tasks unlocking through messages delivered from the NIC.

The core of the RSU are the DMU structures described in Chapter 5 and an overview
can be seen in Figure 7.1. Tasks and dependences are identified through internal IDs that
directly index the task and dependence SRAM tables and list arrays. The 64-bit pointers
used in the runtime system are translated to the internal IDs by using two set-associative
structures, the TAT and the DAT as described in Section 5.2.2.1. Task criticality estima-
tion is done by using a hardware module to iterate the TDG. The BL algorithm obtains
the criticality of a task through the exponentiation of the TDG adjacency matrix stored
in main memory and accessed by sending requests to the memory controller through the
NoC. A small L1 cache is added to speedup the adjacency matrix accesses. Finally, hard-
ware to track which task is executed in each core is also added to identify the cores that

should be accelerated using DVFS reconfigurations.

7.2.2.1 Task Criticality Identification

Dynamic task criticality identification is an expensive software operation [31]. It can be
performed in hardware to reduce its overhead. To do this a hardware module to iterate
the TDG needs to be added to the RSU. There are several alternatives for estimating the
criticality of a task and in this section we explore how to provide efficient support for
estimating the BL approach described in Chapter 2. The BL can be computed when a
task is created using the adjacency matrix of the TDG. The adjacency matrix of a graph
is described as a matrix whose elements are of the form a; ; : @ € {0, 1} with ¢, j being
two vertices of the graph. If an edge exists between vertices v; and v;, then a; ; = 1. The
exponentiation of the adjacency matrix A" results in a matrix where an entry a, ; is set to
1 if a path with length n exists from the vertex ¢ to the vertex j or O otherwise [15]. The
adjacency matrix elements are binary values and the matrix can be stored as a bitmap to
save space, in main memory with a small L1 cache in the RSU to access it. The RSU also
needs a matrix multiplication unit and temporary registers to save the matrix products.
Since elements are binary, the multiplication can be implemented with simple logic gates.
As an example, the TPU [64] provides a power efficient systolic-array implementation of
a matrix multiplication unit for 8 bit units that can be significantly simplified to be used

in the RSU as matrices areonly of 1 bit.

106

CHAPTER 7. THE COMPLETE RUNTIME-AWARE ARCHITECTURE

7.2.2.2 Communication Dependences

Tasks depending on an incoming message to be executed are associated to an event that is
triggered by the NIC interface once the corresponding message reaches the node. When
tasks performing MPI calls are created, the runtime system also creates and assigns an
object representing the request with either the MPI tag and source of the message or
the MPI_Request object depending on the arguments of the actual MPI call. Calls used
to test or complete non-blocking operations rely on the MPI_Request object to identify
the actual status inside the MPI runtime. The address of this created object is stored in
the RSU dependence table as the task dependence. The dependence table needs to be
extended with three 64-bit fields for the message tag, the source and a message timestamp
to ensure matching messages preserving the order constraints imposed by MPI. A flag
indicating the arrival of a message is also added if the dependence entry is pre-allocated
before the task actually writes it.

To avoid iterating the whole dependence table to find incoming messages and save
the space related to tag and source fields when not needed, communication dependences
can be saved in a separated table. Messages can be matched by iterating the table and
looking for the matching entries with the minimum timestamp. However in the case of
large tables, this process can be optimized by using a a Bloom filter to prevent complete

table walks when a message dependence is not present.

7.2.3 Operational Model

The previous sections give an overview of the design of the RSU and the hardware parts
involved in its design. This section aims to describe the algorithms that provide the pro-
posed functionalities. For the sake of simplicity, extended descriptions of the mechanisms

presented in Chapters 4 and 5 are omitted.

7.2.3.1 Task Creation, Dependence Analysis, and Task Criticality Detection

The runtime system invokes the rsu_create_task instruction to send the task descriptor ad-
dress to the RSU. Then for every dependence, it uses the rsu_add_dependence instruction
to inform the RSU.

Dependences on regular memory addresses follow the functional model described in
Section 5.2.3.1. However, for dependences on MPI messages the compiler and runtime

create an object to encapsulate either the expected tag and source, or the MPI_Request

107

7.2. THE RUNTIME-AWARE ARCHITECTURE HARDWARE EXTENSIONS

Algorithm 4: Algorithm for bottom level using the adjacency matrix.
Data: Adjacency Matrix A
n=2
while not is_zero(A) do
A=AxA
for each task i in the graph do
for each leaf-task j in the graph do
if Ai,j then
| bl; = max(bl;,n)
end
end

end
n=n+1

end

object depending on the MPI call. This object is added as a regular dependence calling
rsu_add_dependence with the request object as the dependence address and direction set
to COMM_REQ. The dependence table holds a flag indicating if the message has already
arrived and if it is set, the execution can proceed. Then, the task is not associated to that

dependence and the dependence entry table is freed as the message already arrived.

Once a task is created, the criticality is estimated by using the BL algorithm. In
order to avoid walking the complete TDG every single time a task is added to the graph,
a rough estimation of the BL based on the parent BL can be added at first T'askg;, =

max (0, Parentpr, — 1), and then refined by executing the BL algorithm at fixed intervals.

Instead of recursively walking through the TDG as in the original algorithm, an ef-
ficient way to find the maximum distance of any task to a leaf-task as described is to
use the adjacency matrix exponentiation. The adjacency matrix successive exponents are
calculated until the result has the complete rows set to zero. The hardware required is
extremely small as only 1-bit fused multiply add operations are required and it can be
implemented with simple AND and OR gates with the matrix stored in bitmaps. The
RSU retrieves the matrix from an area in main memory by issuing coalesced reads to a
memory controller through the NoC or using a cache memory, and exponentiates it using
the proposed hardware unit. The temporal A™ exponents can be saved in the associated
L1 cache or spilled to memory if the matrix size grows too large. This memory table con-
taining the adjacency matrix is completely managed by the RSU and updated everytime
a task gets its successors updated. Since the matrix is stored as a bitmap in memory the

amount of space it requires for representing large TDGs is greatly reduced. A TDG with

108

CHAPTER 7. THE COMPLETE RUNTIME-AWARE ARCHITECTURE

512 nodes requires 32KB of memory storage, fitting in a 64KB L1-cache when storing

the A" temporal exponents.

7.2.3.2 Ready Task Retrieval and Scheduling

The runtime system accesses to the tasks ready to be scheduled as detailed in Section 5.2.3.3
using the rsu_get_ready_task instruction. The runtime system obtains the tasks ready to
be scheduled and their criticality once a task completes. For tasks depending on MPI
events, the NIC also needs to deliver the events to the runtime system to retrieve the tasks

without the need for polling.

7.2.3.3 Task Execution

The rsu_start_task(task_desc) is used to notify the start of a task execution to the RSU.
The task retrieves the criticality level from the task table and reconfigures the DVFS
module accordingly. As the BL recomputes criticality only on fixed intervals of time,
the DVFS module can be reconfigured with an outdated criticality estimation. However,
this situation can be reverted later as a more accurate value is estimated and additional
reconfigurations can be triggered when the criticality calculation is over. Thus, we believe

this would have a limited effect on performance and DVFS reconfigurations.

7.2.3.4 Task Finalization

To notify task completion to the RSU, the rsu_finish_task instruction is used and all the
completing task successors are released as described in Section 5.2.3.2. The tasks are
stored in the Ready Queue and then consumed by the runtime system that executes the
associated scheduling algorithm. This instruction also triggers the DVFES reconfiguration

that happens when a task completes as seen in Section 4.2.2.2

7.2.3.5 Task Unlocking on MPI Message Arrival

Upon a message arrival or sending completion, the network interface sends the source and
tag arguments of the message, or the associated MPI_Request object if the tag matching
engine successfully identified the message. The RSU then matches the tag and source
against a Bloom filter to check whether there is a dependence waiting for that message

or the message has arrived before the associated receiving task is created. If the message

109

7.2. THE RUNTIME-AWARE ARCHITECTURE HARDWARE EXTENSIONS

is being expected, the tasks associated to the dependence are retrieved from the depen-
dence readers list and we use the same algorithms described in Chapter 5 to release them.
Figure 7.2 shows how the dependence table is extended to hold the expected MPI mes-
sage tag, source, and the timestamp when the dependence is created in order to preserve
MPI ordering semantics. The received tag and source are successfully checked against a
Bloom filter and then the complete table is iterated until it finds the minimum matching
timestamp request with the same source and tag values. The resulting task is then used to

address the task table and unlock its successors.

Communication Dependence Table

task ID Src Tag | Timestamp | Received
15 24 OxABCD 12602
Tabl 23 OxBBB 22229
able
Iterator ” 0 24 | OXABCD 12202
Positive
Bloom Filter
[,] . Raaed Min Matching
Src: 24 Time Stamp
Tag: OXABCD 12202
(Src, Tag)

Figure 7.2: Tag and source matching from an incoming message

On the other hand, if an unexpected message arrives and the receiving task has not
been created in this node yet, a new dependence entry is allocated on the table and a flag
to notify that the message arrived is set. This flag is used on task creation to let the RSU
know that it does not need to add the message as a dependence anymore, because it is
ready to be received.

In the case of the tag-matching engine providing back an MPI_Request object instead
of a source and tag pair, the MPI_Request object address was set as the actual dependence,
so it only accesses the DAT to get the internal address and release the associated task.

One limitation of this approach is that only inter-node messages are detected. In

order to also support intra-node MPI communications, this must be done through the

110

CHAPTER 7. THE COMPLETE RUNTIME-AWARE ARCHITECTURE

network interface or the low level communication layer that needs to trigger the RSU
event delivery. Otherwise if two processes are running on the same node, a task doing
an MPI_Recv on a message sent by the other process in the same node will never be

unlocked as the message is passed through shared memory and never reaches the NIC.

7.3 Remarks

This chapter describes a theoretical Runtime Aware Architecture based on the three pre-
vious proposals of this thesis. The conjunction of the three techniques allows designing
a Runtime Support Unit that is able to deal with energy, performance and ease some of
the communication layer bottlenecks. Furthermore, this RSU provides a seamless inter-
operability of the ATaP model runtime system and the communication layer.

Current simulation infrastructures prevent us from evaluating the three proposals to-
gether as there is no execution driven simulators with adequate support for high perfor-
mance interconnection networks and the development of such a tool is out of the scope of
this dissertation. Instead, this chapter introduces a novel way to perform task criticality
estimation using hardware and describes a complete interface for the software runtime

system and the RSU.

111

7.3. REMARKS

112

Chapter 8

Conclusions

This chapter summarizes the main conclusions and contributions of this thesis and presents
the future research lines opened by this work. Then it shows the list of publications pro-

duced during the realization of this thesis and acknowledges the financial support.

8.1 Goals, Contributions and Main Conclusions

The increasing complexity of multi-core processors has motivated the research on new
programming models to efficiently manage the extensive degree of parallelism that these
systems offer. Among these programming models, ATaP solutions such as OmpSs, Le-
gion, OpenMP 4.0, Charm++, Habanero or HPX are gaining traction among the research
community and started to drive architectural decissions for future Exascale and beyond
systems.

This thesis delves into the hardware-software interface to efficiently support ATaP
models and lies the foundation for a real runtime-aware architecture while previous pro-
posals just present complete hardware runtime system implementations [39, 116, 118]
or provide support for extremely specific bottlenecks of the system [71]. The proposals
in this thesis exploit both directions in the architecture-runtime system communication
so that the architecture can exploit algorithmic-level information to reconfigure itself, it
can provide hardware support to accelerate runtime specific operations, and the runtime
system can get access to non-trivial hardware status to do a better scheduling of tasks
performing inter-node communication.

The first contribution of this thesis focuses on efficiently driving power management
operations of a multi-core system exploiting the information hidden in the Task Depen-
dence Graph (TDG) of an application. Given the criticality of a task, defined as the task

being in the critical path of the TDG or not, the runtime system is able to change the

113

8.1. GOALS, CONTRIBUTIONS AND MAIN CONCLUSIONS

frequency of individual cores to either accelerate critical tasks, or decelerate non-critical
ones to exploit the slack and manage power more efficiently. This contribution studies a
software only approach and points out its limitations as the core count in the chip scales.
The main proposal here is to overcome this limitations by using the Runtime Support
Unit (RSU), a hardware module that holds the most relevant information for the runtime

system and can drive the DVFS reconfigurations accordingly.

The second contribution targets fine-grain tasks and their effects on software-only
runtime systems. Fine-grain tasks are necessary to do an efficient load-balancing between
all the cores in the chip. As the core count greatly increases each generation, it is nec-
essary to reduce the size of independent work pieces in order to keep all the processing
elements busy when applying weak scaling. We provide an analysis of all the runtime
system execution phases and detect that the bottlenecks are in the task creation and com-
pletion operations. We propose Task Dependence Manager (TDM) as a hardware targeted
to accelerate dependence management operations that allows keeping non-bottleneck op-
erations such as the scheduler in software to retain flexibility. TDM holds a complete
representation of the Task Graph in hardware and can reduce task creation time up to 5.2x

in the measured benchmarks.

The third contribution switches to distributed memory systems and analyzes how the
information present in the communication layer can be exploited by the runtime system to
prevent unnecessary blocking of threads waiting for messages yet to arrive. Mechanisms
based in exposing the MPI runtime system activities or the NIC status to the ATaP model
runtime system are proposed and evaluated. Moreover, this proposal allows performing
previously unfeasible computation/communication overlap in collective operations using
partially received data. This approach requires no changes to the code of an application
written in OmpSs and MPI and greatly improves its performance by doing a more efficient

computation/communication overlap.

These three contributions can be combined together in a complete Runtime System
Unit that keeps track of the TDG accelerating task creation, analyzing it to find task-
criticality to drive DVFS reconfigurations, and receiving events from the network inter-
face to unlock tasks depending on communication events when necessary. This complete
RSU provides support for both shared and distributed memory computing and aids the
runtime system with non-mutable operations while keeping flexibility to rely on software

approaches when needed.

Besides from the major contributions described above, this thesis has produced sev-

114

CHAPTER 8. CONCLUSIONS

eral tools and methodologies used by other researchers at the Barcelona Supercomputing
Center and the University of Cantabria.

This thesis builds a simulation infrastructure based on gemS with support for OmpSs
workloads that exposes relevant runtime system events to the simulator layer. Significant
simulator bugs and issues were fixed in order to provide a stable tool for other researchers.

Based on the simulator-runtime system interface developed in gem5, a module for
producing paraver traces with micro-architectural and algorithmic states was developed.
As the tracing happens only on the simulator layer, the application timing is virtually non
affected and there is no memory pollution due to the tracing tools.

The large design space exploration for all the experiments on this thesis, consist-
ing of thousands of combinations motivated the creation of a tool to manage workloads.
Tizona [26], an HPC worload manager, which has been released as open source and al-
lows to specify a parameter space to create multiple experiments at once in a single file.
Moreover, the same file describes how statistics can be obtained and is able to summarize
the results avoiding the need of creating specific scripts for this task. Tizona is also able to
abstract the underlying machine queue system, so that no specific SLURM or GridEngine
scripts are used to run workloads and the same file can be used across different systems

with minimal or no changes.

8.2 Future Work

The proposals presented in this thesis open the door to new research topics that could be

explored in the future. Among others, three main research lines can be of great interest.

e Hardware mechanisms for task criticality detection and execution time estimation.
In this thesis we rely on static annotations by the programmer or the Bottom-Level
(BL) analysis of the TDG done in the software layer. However, in certain scenar-
ios it is not possible to obtain these annotations, or the small granularity of tasks
prevents applying BL due to its expensive cost. Mechanisms to iterate the TDG or
estimate task criticality using approximations of the execution time of a task should
be developed to allow fast and on-the-fly criticality estimations. Furthermore, being
able to estimate execution time at different clock speeds could open opportunities
for more advanced scheduling mechanisms trying to equalize the execution time of
different TDG branches.

115

8.3. PUBLICATIONS

e Region-based and non-contiguous memory dependences analysis hardware sup-
port. TDM focuses on a plain dependence analysis model where only the base
pointer of the dependences is compared. Minimal extensions can be considered
to track regions of contiguous memory as only the length of a dependence is only
needed. However in the case of multi-dimensional slices of data structures where
the memory is not contiguous, new mechanisms are needed in order to perform
the dependence analysis as the algorithms complexity in this scenario is greatly

increased.

e Network interface hardware events delivery mechanisms. The last contribution of
this thesis proposes to deliver events directly from the NIC to the ATaP model run-
time system. This scenario makes possible to simplify several aspects of the inter-
operability between the ATaP model and MPI. Although doorbell capabilities and
network processors were part of commercial interconnection technologies, state-
of-the-art ones such as OmniPath do not offer those options. Research on NIC-
processor integration is needed to develop efficient hardware based event delivery

systems.

8.3 Publications

The list of publications derived from this thesis is presented.

e E. Castillo, N. Jain, M. Casas, M. Moretd, M. Schulz, R. Beivide, M. Valero, A.
Bhatele
Optimizing Computation-Communication Overlap in Asynchronous Task-Based
Programs.
Accepted as poster at ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2018, 2019, Washington D.C., USA. 2019.

e E. Castillo, L1. Alvarez, M. Moretd, M. Casas, E. Vallejo, J. L. Bosque, R. Beivide,
and M. Valero.
Architectural support for task dependence management with flexible software schedul-
ing.
IEEE International Symposium on High Performance Computer Architecture, HPCA
2018, Vienna, Austria, February 24-28, 2018, pp. 283-295, 2018.

116

CHAPTER 8. CONCLUSIONS

E. Castillo, M. Moret6, M. Casas, L1. Alvarez, E. Vallejo, K. Chronaki, R. M.
Badia, J. L. Bosque,R. Beivide, E. Ayguadé, J. Labarta, and M. Valero.

CATA: criticality aware task acceleration for multicore processors.

2016 IEEE International Parallel and Distributed Processing Symposium, IPDPS
2016, Chicago, IL, USA, May 23-27, 2016, pp. 413-422, 2016.

LL. Alvarez, M. Moret6, M. Casas, E. Castillo, X. Martorell, J. Labarta, E. Ayguadé,
and M. Valero.
Runtime-guided management of scratchpad memories in multicore architectures.

2015 International Conference on Parallel Architecture and Compilation, PACT
2015, San Francisco, CA, USA,October 18-21, 2015, pp. 379-391, 2015.

M. Casas, M. Moret6, L1. Alvarez, E. Castillo, D. Chasapis, T. Hayes, L. Jaulmes,
O. Palomar,O. S. Unsal, A. Cristal, E. Ayguadé, J. Labarta, and M. Valero.
Runtime-aware architectures.

Euro-Par 2015: Parallel Processing - 21st International Conference on Parallel and
Distributed Computing, Vienna, Austria, August 24-28, 2015, Proceedings, pp. 16-
27, 2015.

Other relevant publications not directly related to the PhD include:

E. Stafford, J. L. Bosque, C. Martinez, F. Vallejo, R. Beivide, C. Camarero, and
E. Castillo.

Assessing the suitability of king topologies for interconnection networks.

IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 3, pp. 682-694,
2016.

E. Castillo, C. Camarero, A. Borrego, and J. L. Bosque.
Financial applications on multi-CPU and multi-GPU architectures.

The Journal of Supercomputing, vol. 71, no. 2, pp. 729-739, 2015.

E. Castillo, C. Camarero, E. Stafford, F. Vallejo, J. L. Bosque, and R. Beivide.
Advanced switching mechanisms for forthcoming on-chip networks.

2013 Euromicro Conference on Digital System Design, DSD 2013, Los Alamitos,
CA, USA, September 4-6, 2013, pp. 598-605, 2013.

E. Stafford, E. Castillo, F. Vallejo, J. L. Bosque, C. Martinez, C. Camarero, and R.

Beivide.

117

8.3. PUBLICATIONS

118

King topologies for fault tolerance.

14th IEEE International Conference on High Performance Computing and Commu-
nication & 9th IEEE International Conference on Embedded Software and Systems,
HPCC-ICESS 2012, Liverpool, United Kingdom, June 25-27, pp. 608-616.

E. Castillo, J. Castillo, J. Cano, P. Huerta, and J. I. Martinez.

A key size configurable high speed RSA coprocessor.

IEEE 19th Annual International Symposium on Field-Programmable Custom Com-
puting Machines, FCCM 2011, Salt Lake City, Utah, USA, 1-3 May 2011, p. 250,
2011.

C. Pedraza, E. Castillo, J. Castillo, J. L. Bosque, J. I. Martinez, O. D. Robles, J.
Cano, and P. Huerta.

Content-based image retrieval algorithm acceleration in a low-cost reconfigurable
FPGA cluster.

Journal of Systems Architecture - Embedded Systems Design, vol. 56, no. 11, pp.
633-640, 2010.

J. Castillo, J. L. Bosque, E. Castillo, P. Huerta, and J. I. Martinez.

Hardware accelerated montecarlofinancial simulation over low cost FPGA cluster.
23rd IEEE International Symposium on Parallel and Distributed Processing, IPDPS
2009, Rome, Italy, May 23-29, 2009, pp. 1-8, 2009.

E. Castillo, C. Pedraza, J. Castillo, C. Camarero, J. L. Bosque, R. M. de Llano, and
J. I. Martinez.

SMILE: scientific parallel multiprocessing based on low-cost reconfigurable hard-
ware.

16th IEEE International Symposium on Field-Programmable Custom Computing
Machines, FCCM 2008, 14-15April 2008, Stanford, Palo Alto, California, USA,
pp. 277-278, 2008.

C. Pedraza, E. Castillo, J. Castillo, C. Camarero, J. L. Bosque, J. I. Martinez, and
R. M. de Llano.

Cluster architecture based on low cost reconfigurable hardware.

FPL 2008, International Conference on Field Programmable Logic and Applica-
tions, Heidelberg, Germany, 8-10 September2008, pp. 595-598, 2008.

Bibliography

[1] (2018). TOP500 Supercomputer Site. http://www.top500.0rq.

[2] Acun, B., Gupta, A., Jain, N., Langer, A., Menon, H., Mikida, E., Ni, X., Robson,
M., Sun, Y., Totoni, E., Wesolowski, L., and Kale, L. (2014). Parallel Programming
with Migratable Objects: Charm++ in Practice. SC.

[3] Alvarez, L., Casas, M., Labarta, J., Ayguade, E., Valero, M., and Moreto, M. (2018).
Runtime-guided management of stacked dram memories in task parallel programs. In

International Conference on Supercomputing, (ICS), pages 379-391.

[4] Alvarez, L., Moretd, M., Casas, M., Castillo, E., Martorell, X., Labarta, J., Ayguadé,
E., and Valero, M. (2015). Runtime-guided management of scratchpad memories in
multicore architectures. In 2015 International Conference on Parallel Architecture
and Compilation, PACT 2015, San Francisco, CA, USA, October 18-21, 2015, pages
379-391.

[5] AMD (2011). The new AMD Opteron processor core technology. Technical report.

[6] Arvind, K. and Nikhil, R. S. (1990). Executing a program on the mit tagged-token
dataflow architecture. IEEE Transactions on Computers, 39(3):300-318.

[7] Augonnet, C., Thibault, S., Namyst, R., and Wacrenier, P.-A. (2009). StarPU: A
unified platform for task scheduling on heterogeneous multicore architectures. In In-

ternational Conference on Parallel Processing (Euro-Par), pages 863—-874.

[8] Balart, J., Duran, A., Gonzalez, M., Martorell, X., Ayguadé, E., and Labarta, J.
(2004). Nanos mercurium: a research compiler for OpenMP. In European Workshop
on OpenMP (EWOMP), pages 103—-1009.

[9] Barcelona Supercomputing Center. Extrae. https://tools.bsc.es/
paraver. Online; accessed 2018-09-27.

119

http://www.top500.org
https://tools.bsc.es/paraver
https://tools.bsc.es/paraver

BIBLIOGRAPHY

[10] Barcelona Supercomputing Center. Paraver. https://tools.bsc.es/

paraver. Online; accessed 2018-09-27.

[11] Bauer, M., Treichler, S., Slaughter, E., and Aiken, A. (2012). Legion: Expressing
locality and independence with logical regions. In Proceedings of the 2012 ACM/IEEE

International Conference on High Performance Computing, Networking, Storage and
Analysis, SC ’12, pages 66:1-66:11, Los Alamitos, CA, USA. IEEE Computer Society.

[12] Bellens, P., Perez, J. M., Badia, R. M., and Labarta, J. (2006). CellSs: A program-
ming model for the Cell BE architecture. In Proceedings of the 2006 ACM/IEEE Con-
ference on Supercomputing, SC ’06, pages 86:1-86:11, New York, NY, USA. ACM.

[13] Bienia, C., Kumar, S., Singh, J. P., and Li, K. (2008a). The PARSEC benchmark

suite: Characterization and architectural implications. In PACT, pages 72-81.

[14] Bienia, C., Kumar, S., Singh, J. P, and Li, K. (2008b). The PARSEC benchmark
suite: Characterization and architectural implications. In International Conference on

Parallel Architectures and Compilation Techniques (PACT), pages 72-81.

[15] Biggs, N., Biggs, N., and Norman, B. (1993). Algebraic Graph Theory. Cambridge
Mathematical Library. Cambridge University Press.

[16] Binkert, N., Beckmann, B., Black, G., Reinhardt, S., Saidi, A., Basu, A., Hestness,
J., Hower, D., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N.,
Hill, M., and Wood, D. (2011). The gemS5 simulator. Computer Architecture News,
39(2):1-7.

[17] Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E., Randall, K. H., and
Zhou, Y. (1995). Cilk: An efficient multithreaded runtime system. In International

Symposium on Principles and Practice of Parallel Programming (PPoPP), pages 207—
216.

[18] Boneti, C., Cazorla, F. J., Gioiosa, R., Buyuktosunoglu, A., Cher, C.-Y., and Valero,
M. (2008). Software-controlled priority characterization of POWERS processor. In
ISCA, pages 415-426.

[19] Boost (2018). Boost C++ Libraries.

120

https://tools.bsc.es/paraver
https://tools.bsc.es/paraver

BIBLIOGRAPHY

[20] Brumar, 1., Casas, M., Moretd, M., Valero, M., and Sohi, G. S. (2017). ATM:
approximate task memoization in the runtime system. In 2017 IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2017, Orlando, FL, USA, May
29 - June 2, 2017, pages 1140-1150.

[21] Bueno, J., Martorell, X., Badia, R. M., Ayguadé, E., and Labarta, J. (2013). Im-
plementing OmpSs support for regions of data in architectures with multiple address

spaces. In Proceedings of the 27th International Conference on Supercomputing (ICS),
pages 359-368.

[22] Biittner, D., Acquaviva, J., and Weidendorfer, J. (2013). Real asynchronous mpi
communication in hybrid codes through openmp communication tasks. In Interna-

tional Conference on Parallel and Distributed Systems, pages 208-215.

[23] Caheny, P., Alvarez, L., Derradji, S., Valero, M., Moretd, M., and Casas, M. (2018a).
Reducing cache coherence traffic with a numa-aware runtime approach. IEEE Trans-
actions on Parallel and Distributed Systems, 29(5):1174-1187.

[24] Caheny, P., Alvarez, L., Valero, M., Moretd, M., and Casas, M. (2018b). Runtime-
assisted cache coherence deactivation in task parallel programs. In Proceedings of the

International Conference for High Performance Computing, Networking, Storage, and
Analysis, SC 2018, Dallas, TX, USA, November 11-16, 2018, pages 35:1-35:12.

[25] Caheny, P., Casas, M., Moret6, M., Gloaguen, H., Saintes, M., Ayguadé, E., Labarta,
J., and Valero, M. (2016). Reducing cache coherence traffic with hierarchical direc-
tory cache and numa-aware runtime scheduling. In Proceedings of the 2016 Inter-
national Conference on Parallel Architectures and Compilation, PACT 2016, Haifa,
Israel, September 11-15, 2016, pages 275-286.

[26] Castillo, E. (2017). Tizona: Hpc workloads management tool.

[27] Chasapis, D., Casas, M., Moret6, M., Schulz, M., Ayguadé, E., Labarta, J., and
Valero, M. (2016). Runtime-guided mitigation of manufacturing variability in power-
constrained multi-socket NUMA nodes. In Proceedings of the 2016 International
Conference on Supercomputing, ICS 2016, Istanbul, Turkey, June 1-3, 2016, pages
5:1-5:12.

121

BIBLIOGRAPHY

[28] Chasapis, D., Casas, M., Moretd, M., Vidal, R., Ayguadé, E., Labarta, J., and Valero,
M. (2015). PARSECSs: Evaluating the impact of task parallelism in the parsec bench-

mark suite. ACM Transactions on Architecture and Code Optimization, 12(4):41:1—
41:22.

[29] Chatterjee, S., Tasirlar, S., Budimlic, Z., Cavé, V., Chabbi, M., Grossman, M.,
Sarkar, V., and Yan, Y. (2013). Integrating asynchronous task parallelism with mpi.
In 27th IEEE International Symposium on Parallel and Distributed Processing, pages
712-725.

[30] Chronaki, K., Casas, M., Moret6, M., Bosch, J., and Badia, R. M. (2018). Taskgenx:
A hardware-software proposal for accelerating task parallelism. In High Performance
Computing - 33rd International Conference, ISC High Performance 2018, Frankfurt,
Germany, June 24-28, 2018, Proceedings, pages 389-409.

[31] Chronaki, K., Rico, A., Badia, R. M., Ayguadé, E., Labarta, J., and Valero, M.
(2015a). Criticality-aware dynamic task scheduling for heterogeneous architectures.

In International Conference on Supercomputing (ICS), pages 329-338.

[32] Chronaki, K., Rico, A., Badia, R. M., Ayguade, E., Labarta, J., and Valero, M.
(2015b). Criticality-aware dynamic task scheduling on heterogeneous architectures.
In ICS.

[33] Cook, H., Moreto, M., Bird, S., Dao, K., Patterson, D. A., and Asanovic, K.
(2013). A hardware evaluation of cache partitioning to improve utilization and energy-

efficiency while preserving responsiveness. In ISCA, pages 308-319.

[34] Dean, J. and Ghemawat, S. (2004). Mapreduce: Simplified data processing on large
clusters. In Proceedings of the 6th Conference on Symposium on Opearting Systems

Design & Implementation - Volume 6, pages 10-10.

[35] Dimic, V., Moretd, M., Casas, M., and Valero, M. (2017). Runtime-assisted shared
cache insertion policies based on re-reference intervals. In Euro-Par 2017: Parallel
Processing - 23rd International Conference on Parallel and Distributed Computing,
Santiago de Compostela, Spain, August 28 - September 1, 2017, Proceedings, pages
247-259.

[36] Donald, J. and Martonosi, M. (2006). Techniques for multicore thermal manage-

ment: Classification and new exploration. In ISCA, pages 78-88.

122

BIBLIOGRAPHY

[37] Dongarra, J. J., Heroux, M. A., and Luszczek, P. (2015). Hpcg benchmark: a new

metric for ranking high performance computing systems.

[38] Duran, A., Ayguadé, E., Badia, R. M., Labarta, J., Martinell, L., Martorell, X., and
Planas, J. (2011). OmpSs: A proposal for programming heterogeneous multi-core
architectures. Parallel Processing Letters, 21(2):173-193.

[39] Etsion, Y., Cabarcas, F., Rico, A., Ramirez, A., Badia, R. M., Ayguade, E., Labarta,
J., and Valero, M. (2010a). Task superscalar: An out-of-order task pipeline. In Inter-
national Symposium on Microarchitecture (MICRO), pages 89—100.

[40] Etsion, Y., Cabarcas, F., Rico, A., Ramirez, A., Badia, R. M., Ayguadé, E., Labarta,
J., and Valero, M. (2010b). Task superscalar: An out-of-order task pipeline. In MICRO,
pages 89-100.

[41] Fang, Z., Zhang, L., Carter, J. B., Ibrahim, A., and Parker, M. A. (2007). Active
memory operations. In International Conference on Supercomputing (ICS), pages 232—
241.

[42] Forum, M. P. 1. (2012). MPI: A Message-Passing Interface Standard Version 3.0.

[43] Frank, S. (1987). Tightly coupled multiprocessor systems speed memory access

time. Electronics, 57(1).

[44] Grass, T., Allande, C., Armejach, A., Rico, A., Ayguadé, E., Labarta, J., Valero,
M., Casas, M., and Moret6, M. (2016). MUSA: a multi-level simulation approach for
next-generation HPC machines. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC 2016, Salt Lake
City, UT, USA, November 13-18, 2016, pages 526-537.

[45] Gropp, W. (2002). Mpich2: A new start for mpi implementations. In Proceedings
of the 9th European PVM/MPI Users’ Group Meeting on Recent Advances in Parallel
Virtual Machine and Message Passing Interface, pages 7—, London, UK, UK. Springer-
Verlag.

[46] Hemanns, M. A., Hjlem, N. T., Knobloch, M., Mohror, K., and Schulz, M. (2018).
Enabling callback-driven runtime introspection via mpi_t. In Proceedings of the 25th
European MPI Users’ Group Meeting (EuroMPI).

123

BIBLIOGRAPHY

[47] Hennessy, J. L. and Patterson, D. A. (2011). Computer Architecture, Fifth Edition: A
Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
5th edition.

[48] Hill, M. D. and Marty, M. R. (2008). Amdahl’s law in the multicore era. IEEE
Computer, 41(7):33-38.

[49] Hoefler, T. and Gottlieb, S. (2010). Parallel Zero-Copy Algorithms for Fast Fourier
Transform and Conjugate Gradient using MPI Datatypes. In Recent Advances in
the Message Passing Interface (EuroMPI’10), volume LNCS 6305, pages 132-141.
Springer.

[50] Hoefler, T. and Lumsdaine, A. (2008). Message progression in parallel computing -
to thread or not to thread? In International Conference on Cluster Computing, pages
213-222.

[51] Hoefler, T., Lumsdaine, A., and Rehm, W. (2007). Implementation and Performance
Analysis of Non-Blocking Collective Operations for MPI. In International Conference
on High Performance Computing, Networking, Storage and Analysis (SC). IEEE Com-
puter Society/ACM.

[52] Hoffmann, H., Eastep, J., Santambrogio, M. D., Miller, J. E., and Agarwal, A.
(2010). Application heartbeats: A generic interface for specifying program perfor-

mance and goals in autonomous computing environments. In /CAC, pages 79-88.

[53] Hum, H. H. J., Maquelin, O., Theobald, K. B., Tian, X., Tang, X., Gao, G. R.,
Cupryk, P., Elmasri, N., Hendren, L. J., Jimenez, A., Krishnan, S., Marquez, A., Mer-
ali, S., Nemawarkar, S. S., Panangaden, P., Xue, X., and Zhu, Y. (1995). A design study
of the EARTH multiprocessor. In International Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 59-68.

[54] Intel Corporation (2008). Intel Turbo Boost Technology in Intel Core Microarchi-

tecture (Nehalem) Based Processors.

[55] Intel Corporation (2015). Intel performance scaled messaging 2 (psm2) program-

mers guide.

[56] Ipek, E., Kirman, M., Kirman, N., and Martinez, J. F. (2007). Core fusion: Accom-
modating software diversity in chip multiprocessors. In ISCA, pages 186—-197.

124

BIBLIOGRAPHY

[57] Jain, N., Bhatele, A., Yeom, J.-S., Adams, M. F., Miniati, F., Mei, C., and Kale, L. V.
(2015). Charm++ & MPI: Combining the best of both worlds. In Proceedings of the
IEEE International Parallel & Distributed Processing Symposium, IPDPS *15. IEEE
Computer Society. LLNL-CONF-663041.

[58] Jaulmes, L., Casas, M., Moretd, M., Ayguadé, E., Labarta, J., and Valero, M. (2015).
Exploiting asynchrony from exact forward recovery for DUE in iterative solvers. In
Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC 2015, Austin, TX, USA, November 15-20, 2015,
pages 53:1-53:12.

[59] Jeffrey, M., Subramanian, S., Abeydeera, M., Emer, J., and Sanchez, D. (2016).
Data-centric execution of speculative parallel programs. In International Symposium
on Microarchitecture (MICRO), pages 1-13.

[60] Jeffrey, M. C., Subramanian, S., Yan, C., Emer, J. S., and Sanchez, D. (2015). A
scalable architecture for ordered parallelism. In International Symposium on Microar-
chitecture (MICRO), pages 228-241.

[61] Jeffrey, M. C., Ying, V. A., Subramanian, S., Lee, H. R., Emer, J., and Sanchez,
D. (2018). Harmonizing Speculative and Non-Speculative Execution in Architectures
for Ordered Parallelism. In Proceedings of the 51st annual IEEE/ACM international
symposium on Microarchitecture (MICRO-51).

[62] Jiménez, V., Gioiosa, R., Cazorla, F. J., Buyuktosunoglu, A., Bose, P., and
O’Connell, F. P. (2012). Making data prefetch smarter: Adaptive prefetching on
POWER?. In PACT, pages 137-146.

[63] Joao, J. A., Suleman, M. A., Mutlu, O., and Patt, Y. N. (2013). Utility-based accel-
eration of multithreaded applications on asymmetric CMPs. In ISCA, pages 154—165.

[64] Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates,
S., Bhatia, S., Boden, N., Borchers, A., Boyle, R., Cantin, P-l., Chao, C., Clark, C.,,
Coriell, J., Daley, M., Dau, M., Dean, J., Gelb, B., Ghaemmaghami, T. V., Gottipati, R.,
Gulland, W., Hagmann, R., Ho, C. R., Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz,
J., Jaffey, A., Jaworski, A., Kaplan, A., Khaitan, H., Killebrew, D., Koch, A., Kumar,
N., Lacy, S., Laudon, J., Law, J., Le, D., Leary, C., Liu, Z., Lucke, K., Lundin, A.,
MacKean, G., Maggiore, A., Mahony, M., Miller, K., Nagarajan, R., Narayanaswami,

125

BIBLIOGRAPHY

R., Ni, R., Nix, K., Norrie, T., Omernick, M., Penukonda, N., Phelps, A., Ross, J.,
Ross, M., Salek, A., Samadiani, E., Severn, C., Sizikov, G., Snelham, M., Souter,
J., Steinberg, D., Swing, A., Tan, M., Thorson, G., Tian, B., Toma, H., Tuttle, E.,
Vasudevan, V., Walter, R., Wang, W., Wilcox, E., and Yoon, D. H. (2017). In-datacenter
performance analysis of a tensor processing unit. In Proceedings of the 44th Annual

International Symposium on Computer Architecture, ISCA *17, pages 1-12, New York,
NY, USA. ACM.

[65] Kigi, A., Burger, D., and Goodman, J. R. (1997). Efficient synchronization: Let
them eat QOLB. In International Symposium on Computer Architecture (ISCA), pages
170-180.

[66] Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., and Fey, D. (2014). Hpx: A
task based programming model in a global address space. In Proceedings of the 8th

International Conference on Partitioned Global Address Space Programming Models,
PGAS ’14, pages 6:1-6:11, New York, NY, USA. ACM.

[67] Kamal, H. and Wagner, A. (2014). An integrated fine-grain runtime system for mpi.
Computing, 96(4):293-309.

[68] Kaxiras, S. and Martonosi, M. (2008). Computer architecture techniques for power-

efficiency. Synthesis Lectures on Computer Architecture, 3(1):1-207.

[69] Keppitiyagama, C. and Wagner, A. S. (2001). Asynchronous mpi messaging on
myrinet. In Proceedings 15th International Parallel and Distributed Processing Sym-
posium (IPDPS), pages 50:1-50:8.

[70] Khubaib, Suleman, M. A., Hashemi, M., Wilkerson, C., and Patt, Y. N. (2012).
Morphcore: An energy-efficient microarchitecture for high performance ILP and high
throughput TLP. In MICRO, pages 305-316.

[71] Kumar, S., Hughes, C. J., and Nguyen, A. (2007a). Carbon: Architectural support
for fine-grained parallelism on chip multiprocessors. In International Symposium on
Computer Architecture (ISCA), pages 162—173.

[72] Kumar, S., Hughes, C.J., and Nguyen, A. D. (2007b). Carbon: architectural support
for fine-grained parallelism on chip multiprocessors. In ISCA, pages 162—-173.

126

BIBLIOGRAPHY

[73] Labarta, J., Beltran, V., PeAsa, A. J., Perez, J. M., Teruel, X., Bellon, J., Holmes,
D., Farre, P., and Sala, K. (2018). Improving the interoperability between mpi and
task-based programming models. In Proceedings of the 25th European MPI Users’
Group Meeting (EuroMPI).

[74] Li, S., Ahn, J. H., Strong, R. D., Brockman, J. B., Tullsen, D. M., and Jouppi,
N. P. (2009). McPAT: an integrated power, area, and timing modeling framework for
multicore and manycore architectures. In MICRO, pages 469—480.

[75] Liu, H., Chen, Y., Liao, X., Jin, H., He, B., Zheng, L., and Guo, R. (2017). Hard-
ware/software cooperative caching for hybrid dram/nvm memory architectures. In

Proceedings of the International Conference on Supercomputing, ICS 17, pages 26:1—
26:10.

[76] Lo, D. and Kozyrakis, C. (2014). Dynamic management of TurboMode in modern
multi-core chips. In HPCA, pages 603-613.

[77] Lu, H., Seo, S., and Balaji, P. (2015). Mpi+ult: Overlapping communication and
computation with user-level threads. 2015 IEEE 17th International Conference on
High Performance Computing and Communications, 2015 IEEE 7th International
Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International
Conference on Embedded Software and Systems, pages 444—454.

[78] Manivannan, M., Negi, A., and Stenstrom, P. (2013). Efficient forwarding of
producer-consumer data in task-based programs. In Proceedings of the 2013 42nd
International Conference on Parallel Processing, ICPP *13, pages 517-522, Washing-
ton, DC, USA. IEEE Computer Society.

[79] Manivannan, M., Papaefstathiou, V., Pericas, M., and Stenstrom, P. (2016). Radar:
Runtime-assisted dead region management for last-level caches. In International Sym-

posium on High Performance Computer Architecture (HPCA), pages 644—656.

[80] Manivannan, M. and Stenstrom, P. (2014). Runtime-guided cache coherence opti-
mizations in multi-core architectures. In Proceedings of the 2014 IEEE 28th Interna-
tional Parallel and Distributed Processing Symposium, International Parallel and Dis-
tributed Processing Symposium, pages 625-636, Washington, DC, USA. IEEE Com-

puter Society.

127

BIBLIOGRAPHY

[81] Marathe, A., Zhang, Y., Blanks, G., Kumbhare, N., Abdulla, G., and Rountree,
B. (2017). An empirical survey of performance and energy efficiency variation on
intel processors. In Proceedings of the 5th International Workshop on Energy Efficient
Supercomputing, E2SC’ 17, pages 9:1-9:8, New York, NY, USA. ACM.

[82] Marjanovié, V., Labarta, J., Ayguadé, E., and Valero, M. (2010). Overlapping com-
munication and computation by using a hybrid mpi/smpss approach. In Proceedings
of the 24th ACM International Conference on Supercomputing, ICS 10, pages 5-16,
New York, NY, USA. ACM.

[83] Marsh, B. D., Scott, M. L., LeBlanc, T. J., and Markatos, E. P. (1991). First-class
user-level threads. SIGOPS Oper. Syst. Rev., 25(5):110-121.

[84] Miller, T., Thomas, R., and Teodorescu, R. (2012). Mitigating the effects of process
variation in ultra-low voltage chip multiprocessors using dual supply voltages and half-

speed units. Computer Architecture Letters, 11(2):45-48.

[85] Moore, G. E. (1965). Cramming more components onto integrated circuits. Elec-
tronics, 38(8).

[86] Mueller, F. (1993). A library implementation of posix threads under unix. In In
Proceedings of the USENIX Conference, pages 29—41.

[87] Muralimanohar, N., Balasubramonian, R., and Jouppi, N. P. (2009). Cacti 6.0: A

tool to model large caches. HP Laboratories.

[88] Nikhil, R. S. (1993). The programming language id and its compilation for parallel
machines. International Journal of High Speed Computing, (2):171-223.

[89] Nikhil, R. S., Papadopoulos, G. M., and Arvind (1992). *T: A Multithreaded Mas-
sively Parallel Architecture. In International Symposium on Computer Architecture
(ISCA), pages 156-167.

[90] Nvidia Corporation (2017). CUDA C Programming Guide. Version 10.0. October
2018. https://docs.nvidia.com/pdf/CUDA_C_Programming Guide.
pdf. Online; accessed 2018-12-05.

[91] OpenMP3 (2018). OpenMP Application Program Interface. Version 3.0. May 2018.
[92] OpenMP4 (2013). OpenMP Application Program Interface. Version 4.0. July 2013.

128

https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf

BIBLIOGRAPHY

[93] Ortega, C., Moreto, M., Casas, M., Bertran, R., Buyuktosunoglu, A., Eichenberger,
A. E., and Bose, P. (2017). libprism: an intelligent adaptation of prefetch and SMT
levels. In Proceedings of the International Conference on Supercomputing, ICS 2017,
Chicago, IL, USA, June 14-16, 2017, pages 28:1-28:10.

[94] Pallipadi, V. and Starikovskiy, A. (2006). The ondemand governor: past, present
and future. In Proceedings of Linux Symposium, vol. 2, pp. 223-238.

[95] Pan, A. and Pai, V. S. (2015). Runtime-driven shared last-level cache management
for task-parallel programs. In International Conference for High Performance Com-

puting, Networking, Storage and Analysis (SC), pages 11:1-11:12.

[96] Papadopoulos, G. M. and Culler, D. E. (1990). Monsoon: An explicit token-store
architecture. In International Symposium on Computer Architecture (ISCA), pages 82—
91.

[97] Papaefstathiou, V., Katevenis, M. G., Nikolopoulos, D. S., and Pnevmatikatos, D.
(2013). Prefetching and cache management using task lifetimes. In Proceedings of the

27th International Conference on Supercomputing (ICS), pages 325-334.

[98] Pérez,J. M., Beltran, V., Labarta, J., and Ayguadé, E. (2017). Improving the integra-
tion of task nesting and dependencies in openmp. In 2017 IEEE International Parallel
and Distributed Processing Symposium, IPDPS 2017, Orlando, FL, USA, May 29 -
June 2, 2017, pages 809-818.

[99] Planas, J., Badia, R. M., Ayguade, E., and Labarta, J. (2013). Self-adaptive OmpSs
tasks in heterogeneous environments. In Proceedings of the IEEE 27th International
Farallel and Distributed Processing Symposium (IPDPS), pages 138—149.

[100] Porikli, F. (2005). Integral histogram: A fast way to extract histograms in Carte-
sian spaces. In Conference on Computer Vision and Pattern Recognition Workshops
(CVPR), pages 829-836.

[101] Quinlan, S. and Dorward, S. (2002). Venti: A new approach to archival storage. In
Proceedings of the FAST ’02 Conference on File and Storage Technologies, January
28-30, 2002, Monterey, California, USA, pages 89—101.

129

BIBLIOGRAPHY

[102] Qureshi, M. K. and Patt, Y. N. (2006). Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared caches. In MI-
CRO, pages 423-432.

[103] Reinders, J. (2007). Intel threading building blocks - outfitting C++ for multi-core

processor parallelism. O’Reilly Media.

[104] Rico, A., Duran, A., Cabarcas, F., Etsion, Y., Ramirez, A., and Valero, M. (2011).
Trace-driven simulation of multithreaded applications. In (IEEE ISPASS) IEEE Inter-

national Symposium on Performance Analysis of Systems and Software, pages 87-96.

[105] Rogers, P. (2013). Heterogeneous system architecture overview. In 2013 IEEE Hot
Chips 25 Symposium (HCS), pages 1-41.

[106] Rountree, B., Ahn, D., de Supinski, B., Lowenthal, D., and Schulz, M. (2012).
Beyond DVEFS: A first look at performance under a hardware-enforced power bound.
pages 947-953.

[107] Sanchez, D., Yoo, R. M., and Kozyrakis, C. (2010a). Flexible architectural support
for fine-grain scheduling. In International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), pages 311-322.

[108] Sanchez, D., Yoo, R. M., and Kozyrakis, C. (2010b). Flexible Architectural Sup-
port for Fine-Grain Scheduling. In ASPLOS, pages 311-322.

[109] Sanchez Barrera, 1., Moretd, M., Ayguadé, E., Labarta, J., Valero, M., and Casas,
M. (2018). Reducing data movement on large shared memory systems by exploiting

computation dependencies. In Proceedings of the 32nd International Conference on
Supercomputing, ICS 2018, Beijing, China, June 12-15, 2018, pages 207-217.

[110] Sandberg, A., Nikoleris, N., Carlson, T. E., Hagersten, E., Kaxiras, S., and Black-
Schaffer, D. (2015). Full speed ahead: Detailed architectural simulation at near-native

speed. In 2015 IEEE International Symposium on Workload Characterization, pages
183-192.

[111] Schulz, R. (2008). 3d fft with 2d decomposition. http://cmb.ornl.gov/
members/z8g/csproject—report.pdf. Online; accessed 2018-09-27.

130

http://cmb.ornl.gov/members/z8g/csproject-report.pdf
http://cmb.ornl.gov/members/z8g/csproject-report.pdf

BIBLIOGRAPHY

[112] Shirako, J., Peixotto, D. M., Sarkar, V., and Scherer, W. N. (2008). Phasers: A
unified deadlock-free construct for collective and point-to-point synchronization. In

Proceedings of the 22Nd Annual International Conference on Supercomputing, ICS
"08, pages 277-288, New York, NY, USA. ACM.

[113] Shirako, J., Zhao, J. M., Nandivada, V. K., and Sarkar, V. N. (2009). Chunking
parallel loops in the presence of synchronization. In International Conference on Su-

percomputing (ICS), pages 181-192.

[114] Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J. (1998). MPI-
The Complete Reference, Volume 1: The MPI Core. MIT Press, Cambridge, MA, USA,

2nd. (revised) edition.

[115] Stark, D. T., Barrett, R. F.,, Grant, R. E., Olivier, S. L., Pedretti, K. T., and Vaughan,
C. T. (2014). Early experiences co-scheduling work and communication tasks for hy-
brid mpi+x applications. In Workshop on Exascale MPI at Supercomputing Confer-
ence, pages 9-19.

[116] Subramanian, S., Jeffrey, M. C., Abeydeera, M., Lee, H. R., Ying, V. A., Emer, J.,
and Sanchez, D. (2017). Fractal: An execution model for fine-grain nested speculative

parallelism. In International Symposium on Computer Architecture (ISCA), pages 587—
599.

[117] Suleman, M. A., Mutlu, O., Qureshi, M. K., and Patt, Y. N. (2009). Accelerating
critical section execution with asymmetric multi-core architectures. In ASPLOS, pages
253-264.

[118] Tan, X., Bosch, J., Vidal, M., Alvarez, C., Jiménez-Gonzilez, D., Ayguadé, E.,
and Valero, M. (2017). General purpose task-dependence management hardware for
task-based dataflow programming models. In 2017 IEEE International Parallel and
Distributed Processing Symposium, IPDPS 2017, Orlando, FL, USA, May 29 - June 2,
2017, pages 244-253.

[119] Tendler, J. M., Dodson, J. S., Jr.,J. S. F,, Le, H. Q., and Sinharoy, B. (2002). Power4
system microarchitecture. IBM Journal of Research and Development, 46(1):5-26.

[120] Thakur, R., Rabenseifner, R., and Gropp, W. (2005). Optimization of collective
communication operations in mpich. Int. J. High Perform. Comput. Appl., 19(1):49—
66.

131

BIBLIOGRAPHY

[121] The Ohio State University (2018). Mvapich2: Mpi over infiniband, 10gige/iwarp

and roce.

[122] Topcuouglu, H., Hariri, S., and Wu, M.-y. (2002). Performance-effective and low-
complexity task scheduling for heterogeneous computing. /[EEE Transactions on Par-
allel and Distributed Systems, 13(3):260-274.

[123] Tullsen, D. M., Eggers, S. J., and Levy, H. M. (1998). Simultaneous multithread-
ing: Maximizing on-chip parallelism. In 25 Years of the International Symposia on
Computer Architecture (Selected Papers), ISCA °98, pages 533-544, New York, NY,
USA. ACM.

[124] Vandierendonck, H., Pratikakis, P., and Nikolopoulos, D. S. (2011). Parallel pro-
gramming of general-purpose programs using task-based programming models. In

HotPar, pages 13—13.

[125] Vega, A., Buyuktosunoglu, A., Hanson, H., Bose, P., and Ramani, S. (2013). Crank
it up or dial it down: coordinated multiprocessor frequency and folding control. In
MICRO, pages 210-221.

[126] Wang, Y., Wang, R., Herdrich, A., Tsai, J., and Solihin, Y. (2016). CAF: Core to
core communication acceleration framework. In International Conference on Parallel

Architectures and Compilation Techniques (PACT), pages 351-362.

[127] Wong, H., Bracy, A., Schuchman, E., Aamodt, T. M., Collins, J. D., Wang, P. H.,
Chinya, G., Groen, A. K., Jiang, H., and Wang, H. (2008). Pangaea: A tightly-coupled
1a32 heterogeneous chip multiprocessor. In International Conference on Parallel Ar-

chitectures and Compilation Techniques (PACT), pages 52—61.

[128] Zuckerman, S., Suetterlein, J., Knauerhase, R., and Gao, G. R. (2011). Using a
"Codelet" program execution model for exascale machines. In International Workshop

on Adaptive Self-Tuning Computing Systems for the Exaflop Era, pages 64—69.

132

List of Figures

2.1
22
2.3
24
2.5

2.6

2.7

3.1
32

33

4.1

4.2

Example of a chip multiprocessor system.
OpenMP parallel for implementation
Non-blocking communication does not guarantee overlapping
Different communication mechanisms for ATaP models
Execution flow in an asynchronous task-based programming model that

usesa TDG.
Criticality assignment with bottom-level and static policies, and Criticality-
Aware Task Scheduling. oo
Cholesky task-based annotated code (right), TDG (left), and execution

timeline (bottom).

Paraver tracing facilities in the gem5 simulator.
Paraver trace of an asymmetric multicore with 4 big and 4 little cores
running Ferret. Upper part shows the task execution timeline and Lower
part shows the IPC of each core for that task.
Communication patterns of HPCG and MiniFE. Dark colors indicate vol-
ume of communication between MPI processes, while white indicates ab-

sence of communication. e e

Runtime system support for CATA using DVFS reconfigurations. The
runtime maintains status (Accelerated, Not Accelerated) and criticality
(Critical, Non-Critical, No Task) information for each core in the RSM.

Architectural and runtime system support for CATA using DVFS recon-
figurations. The RSU module implements the hardware reconfiguration
functionality, and stores the same information as the RSM, plus the DVFS

levels to use with Accelerated and Not Accelerated tasks.

133

22

25

37

38

42

48

50

LIST OF FIGURES

134

4.3

4.4

5.1

52
5.3

54
5.5

5.6

5.7

5.8

59

5.10

Speedup and EDP results with an increasing number of fast cores (8, 16,
24) on a 32-core processor. CATS+BL makes use of bottom-level and
CATS+SA of static annotations methods to estimate task criticality. Re-

sults are normalized to the FIFO scheduler. 52

Speedup and EDP results with an increasing number of fast cores (8, 16,

24) on a 32-core processor. Results are normalized to the FIFO scheduler. 56

Execution time breakdown of the master and worker threads during the
parallel execution. Different states represent dependence management
operations during task creation and task finalization (DEPS), scheduling
(SCHED), task execution (EXEC), and idle time (IDLE). 60

DMU architectural support overview. 63

Overview of TAT, DAT, Task and Dependence Table. Two active elements

are presented ineachtable., 64
Overview of a generic listarray. 66

Execution time for different task granularities. The X axis shows the
size of the blocks processed by each task in Blackscholes, Cholesky, His-
togram, LU, and QR; the number of partitions of the 3D volume in Flu-
idanimate; and the number of points processed by each task in Stream-

cluster. 70

Average performance with different sizes of the TAT and DAT. Results

are normalized to an ideal DMU with unlimited entries and equal latency. 72

Average performance with different sizes of the list array (LA) structures.
Results are normalized to an ideal DMU with unlimited entries and equal

latency. 73

Performance degradation when varying the access time of all DMU struc-
tures from 1 to 16 cycles. Results are normalized to DMU structures with

zerolatency. L 73

Percentage of time spent in task creation with a pure software approach
(SW)andwith TDM. 75

Occupancy of sets in DAT with static index bit selection and with dynamic

index bit selection. 76

LIST OF FIGURES

5.11 Speedup (top) and EDP reduction (bottom) with FIFO, LIFO, Locality-
aware and Criticality-aware schedulers using software runtime system
and TDM. Results are normalized to the software runtime system with
aFIFOscheduler.

5.12 Speedup (top) and EDP reduction (bottom) of Carbon, Task Superscalar

and TDM over a software runtime system with FIFO scheduler.

6.1 Early invocation of a blocking MPI_Recv by one task can prevent other
tasks from making progress (top row). The remaining three rows repre-
sent alternatives. In each case, the red arrow marks the arrival of an MPI
message in time for a specific task (Task 2).

6.2 Communication thread can become a serial bottleneck if one thread is
responsible for many workers. oL oL

6.3 Tasks that can begin computation with partial data (PO, P1 -> worker 0;
P2, P3 -> worker 1; P4, P5 -> worker 2) need to wait for the collective to
complete. e e e e

6.4 MPI_T event creation, addition to the event queue, and consumption by a
worker thread in pollingmode.

6.5 The runtime creates dependences between tasks and corresponding MPI_T
events and the notification of an MPI_T event unlocks a task waiting for it.

6.6 Unlocking of the right task when partial data from process 1 is received
leading to a collective callback.

6.7 Speedup for (a) HPCG and (b) MiniFE over a baseline task-based imple-
mentation on 16, 32, 64 and 128 nodes with 64, 128, 256 and 512 MPI
processes, each with 8 threads (cores).

6.8 Speedup for 2D FFT and 3D FFT over a baseline implementation on 128
nodes.

6.9 Parallel execution traces showing the effect of collective-computation over-
lapping 2D FFT. Same time range is shown for both figures. A single MPI
process and its threads are shown for the sake of clarity.

6.10 Speedup for the MapReduce-based WordCount (WC) and dense Matrix
Vector product (MV) benchmarks with different problem sizes.

6.11 Performance comparison of our best performing proposal with TAMPI

for every benchmark using 128 nodes

76

84

91

95

LIST OF FIGURES

7.1 Thecomplete RSU 105

7.2 Tag and source matching from an incoming message 110

136

List of Tables

3.1
3.2

5.1

5.2

Processor Configuration. 33

Input Sets for Shared Memory Benchmarks 41

Benchmark characteristics. Number of tasks and average task duration
with the optimal task granularity for the software runtime system and for
TDM. . . e 71

137

LIST OF TABLES

138

Glossary

AMC Asymmetric multi-core.

AMPI Adaptive message passing interface.

ATaP Asynchronous task-based program-
ming.

AVG Average (geometric mean).
BL Bottom-level.

CATA Ciriticality aware task acceleration.
CATS Criticality-aware task scheduling.
CDG Codelete graph.

CMP Chip multiprocessor.

DAT Dependence alias table.
DMU Dependence management unit.
DVFS Dynamic voltage and frequency

scaling.
EDP Energy-delay product.

FFT Fast Fourier transform.
FIFO First in, first out.

HJM Heath Jarrow Morton.
HPC High performance computing.
HPRQ High-priority ready queue.

ILP Instruction-level parallelism.

IPC Instructions per cycle.

LA List array.

LIFO Last in, first out.

LPRQ Low-priority ready queue.
LSQ Load-store queue.

MPI Message passing interface.

NIC Network interface card.

NUMA Non-uniform memory access.

RAA Runtime-aware architecture.

RQ Ready queue.

RSM Reconfiguration support module.
RSU Runtime support unit.

SLTs System-level threads.
SMT Simultaneous multithreading.

SPEs Cell synergistic processing units.

TAMPI Task-aware message passing inter-
face.

TAT Task alias table.

TBB Thread building blocks.

TDG Task dependence graph.

TDM Task dependence manager.

TLP Thread-level parallelism.

ULTSs User-level trheads.

139

