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in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Supervisors:

Dr. Christos Verikoukis2, Dr. John Vardakas3 and Dr. Luis Alonso Zárate1
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Abstract

Energy and transportation sectors are going through major changes as a result of technological

advances, depletion of fossil fuels and climate change. With regard to the energy sector,

the future smart grid is expected to be an interconnected network of small-scale and self-

contained microgrids, in addition to a large-scale electric power backbone. By utilizing

microsources, such as renewable energy sources, energy storage systems and vehicle-to-

grid systems, microgrids target to satisfy the customers’ energy demands in a safe, reliable,

economic and environmentally friendly way. With regard to the changes in the transportation

sector, internal combustion engine vehicles are expected to be gradually replaced by electric

vehicles, which are considered to be a promising solution for mitigating the impact of

transportation sector on the environment. The presented thesis deals with two main topics;

the first one refers to the optimal sizing and operation planning of microgrids comprising

various urban building types, while the second one is related to the operation of fast charging

stations for electric vehicles that are located in densely populated areas.

The first objective of the thesis is to examine the effect of energy exchanges among

interconnected buildings with diverse load profiles on the sizes of power equipment to be

installed at the buildings. To this end, a mixed integer linear programming optimization

framework is presented that determines the optimal capacities of photovoltaic panels, energy

storage systems, and inverters, as well as the optimum management of the generated power.

As a first step, the benefits of cooperation among buildings that are already interconnected

through an existing point of common coupling is examined. The cooperation benefits are

derived by comparing the buildings’ costs when they participate in the microgrid with their

costs when they operate as separate entities. As a second step, a different microgrid topology

is proposed where energy exchanges take place through a common DC bus. In this way,

neighboring buildings that are not already physically connected can be members of the same

microgrid. Moreover, the optimization results for the new topology are obtained by using the

Nash bargaining method, through which the benefits of cooperation are equally distributed

among the participating members. Finally, the possible integration of new buildings in the

existing microgrid at a later time point is also examined.

The second objective of the thesis is to provide an accurate operation analysis of fast

charging stations for electric vehicles. To this end, a novel queuing theory-based model is

presented that classifies the various electric vehicles by their battery size. As a first step, it

is analyzed a charging station that contains DC outlets, and the electric vehicles recharge

their batteries up to the maximum possible level. The proposed model takes into account

the arrival rates and state of charge of the electric vehicles’ batteries when arriving at the

station, in order to compute the maximum number of customers that can be served, subject

to an upper bound for the waiting time in the queue. In addition, a charging strategy is

proposed, which allows the charging station to serve more customers without any increase in
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the queue waiting time. As a second step, it is considered that the charging station can serve

both DC and AC electric vehicle classes, while a more flexible way is adopted for denoting

the customers’ recharging patterns. Based on these additional novelties, the overall profit

margin of the charging station operator, and the queue waiting times of the DC and AC

classes are calculated under two different pricing policies.
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RMG,sell(t) price of selling power to the MG at time interval t (e/kWh)

repj number of replacements of technology j
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SoEESS(b, t) state of energy of building’s b ESS at time interval t (kWh)

SoEESS,max maximum state of energy of the ESS (kWh)

SoEESS,min minimum state of energy of the ESS (kWh)

SoEa(v) arrival state of energy of EV v (kWh)

SoEd(v) departure state of energy of EV v (kWh)

SoEEV (v, t) state of energy of EV v at time interval t (kWh)

SoEESS,max maximum state of energy of the EV (kWh)

SoEESS,min minimum state of energy of the EV (kWh)

SV (b) savings of building b (e)

T optimization horizon

Ta(v) arrival time of EV v

Td(v) departure time of EV v

U Time point that the additional buildings join the MG

uESS(b, t) binary variable used for the definition of the ESS operation

uEV (b, t) binary variable used for the definition of the EV operation

uex(b, t) binary variable used for the definition of the power exchanges in the MG

uunitESS(b, t) binary parameter, which is equal to 1 only for t= t0

uunitEV (v, t) binary parameter, which is equal to 1 only for t=Ta(v)

Vb number of EVs in building b

w Sum of the annualized costs of the buildings (e)

w′ sum of the buildings’ annualized costs when they are separately optimized (e)

wnt sum of the annualized costs of the buildings in the new MG topology (e)

X duration of participation of the additional buildings in the project (yr)

Y lifetime of the project (yr)

Y repj year of 1st replacement of technology j (yr)

z objective value

ZESS ESS’s charging rate

ZEV (v) EV’s charging rate

Greek symbols

∆t duration of time slot t (hour)

λPV capacity of PV panels that can be installed per available surface (kW/m2)

λq(b) special ordered variables (only two adjacent λq(b) can be non-zero)

Ξ a very large number

Φ(b) revenue for building b (e)

µbus per unit maintenance cost of the DC bus (e/m)

µj per unit maintenance cost of technology j (e/kW or kWh)

Subscripts

b building index

j technology index

t time interval index

v EV index

y year index
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Nomenclature for chapter 5

a total load of the system

ac load of c-class EVs

ac1 load of subclass c1 EVs

ac2 load of subclass c2 EVs

amax maximum load

Bc battery capacity of c-class EVs (kWh)

C number of EV classes

cv coefficient of variation of the superposed charging time distribution

d discount offered to subclass c1 EVs

EEV s mean energy supplied to the EVs (kWh)

Fc arrival SoC CDF of c-class EVs

fc arrival SoC PDF of c-class EVs

G CDF of the superposed charging time

g PDF of the superposed charging time

Gc CDF of c-class EVs charging time

gc PDF of c-class EVs charging time

hc market shares of EV classes

kc probability that a c-class EV enters a CS

kc1 probability that a subclass c1 EV enters a CS

kc2 probability that a subclass c2 EV enters a CS

LM/D/s mean number of customers waiting in the queue in an M/D/s system

LM/G/s mean number of customers waiting in the queue in an M/G/s system

LM/M/s mean number of customers waiting in the queue in an M/M/s system

m mean superposed charging time (h)

mc mean charging time of c-class EVs (h)

mc1 mean charging time of subclass c1 EVs (h)

mc2 mean charging time of subclass c2 EVs (h)

PEVs mean power drawn by the EVs (kW)

PDC power rate of the CSs (kW)

R operator’s revenue (e)

R
′

operator’s revenue when the charging strategy is activated (e)

r energy price (e/kWh)

r
′

energy price for subclass c1 EVs (e/kWh)
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s number of CSs

SoCAc arrival SoC of c-class EVs

SoCDc departure SoC of c-class EVs

SoCDthr departure SoC threshold when the charging strategy is activated

T superposed charging time (h)

t time (h)

Tc charging time of c-class EVs (h)

v variance of the superposed charging time distribution

W mean queue waiting of the EVs (h)

Wq QoS criterion for the queue waiting time (h)

xc residual SoC increase of c-class EVs

xc1 residual SoC increase of subclass c1 EVs

Greek symbols

γ increase in the arrival rate capacity when the charging strategy is activated

λ superposed arrival rate (EVs/h)

λc arrival rate of c-class EVs (EVs/h)

λc1 arrival rate of subclass c1 EVs (EVs/h)

λc2 arrival rate of subclass c2 EVs (EVs/h)

λc,max maximum arrival rate of c-class EVs (EVs/h)

λmax maximum arrival rate capacity (EVs/h)

λ
′
c,max maximum arrival rate of c-class EVs (EVs/h) (the charging strategy is activated)

λ
′
max maximum arrival rate capacity (EVs/h) (the charging strategy is activated)

ρ utilization rate of the system

σc percentage of c-class EVs that accept the operator’s offer

τ time interval where the arrival rates are equal to their maximum values (h)

ψ correction function used for the calculation of the queue waiting time

Subscripts

c c-class EVs

c1 subclass c1 EVs

c2 subclass c2 EVs
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Nomenclature for chapter 6

ac,δ load of c-class EVs during the interval Iδ

ac1,ω,j load of subclass c1 EVs during Iω

ac2,ω,j load of subclass c2 EVs during Iω

ac3,ω,j load of subclass c3 EVs during Iω

aδ total load of the system during Iδ

Bc battery capacity of c-class EVs (kWh)

C number of EV classes

dh duration of interval Zh (h)

Ec amount of energy obtained by c-class EVs (kWh)

Ethr,j energy threshold (kWh)

EV,δ mean energy provided to the EVs during the interval Iδ (kWh)

EV,ω,j,Rj the amount of energy provided to the EVs at price Rj during the interval Iω (kWh)

E
V,ω,j,R

′
j

the amount of energy provided to the EVs at price R
′
j during the interval Iω (kWh)

EXPAC operator’s daily expenses for the AC system when the FPP is activated during the

whole day (e)

EXP
′
AC operator’s daily expenses for the AC system when the FPP and the SPP are

activated during different parts of the day (e)

EXPδ operator’s expenses during Iδ (e)

EXPDC operator’s daily expenses for the DC system when the FPP is activated during the

whole day (e)

EXP
′
DC operator’s daily expenses for the DC system when the FPP and the SPP are

activated during different parts of the day (e)

EXPω,j operator’s expenses during Iω (e)

Fc CDF of c-class EVs’ recharging pattern

fc PDF of c-class EVs’ recharging pattern

fc1,j PDF of subclass c1 EVs’ recharging pattern

Fc2,j CDF of subclass c2 EVs’ recharging pattern

fc3,j PDF of subclass c3 EVs’ recharging pattern

Gc(t) CDF of c-class EVs’ charging time

gc(t) PDF of c-class EVs’ charging time

gc1,j(t) PDF of subclass c1 EVs’ charging time

Gc2,j(t) CDF of subclass c2 EVs’ charging time

gc3,j(t) PDF of subclass c3 EVs’ charging time

Gδ(t) CDF of the superposed charging time during Iδ

gδ(t) PDF of the superposed charging time during Iδ

Hδ(t) number of time slots of interval Iδ characterized by constant energy price Rh
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Iδ time interval during which the FPP is activated

Iω time interval during which the SPP is activated

Lδ,M/G/s mean number of customers waiting in the queue in an M/G/s system during Iδ

Lδ,M/M/s mean number of customers waiting in the queue in an M/M/s system during Iδ

mc mean charging time of c-class EVs (h)

mc1,j mean charging time of subclass c1 EVs when Ethr,j is activated (h)

mc2,j mean charging time of subclass c2 EVs when Ethr,j is activated (h)

mc3,j mean charging time of subclass c3 EVs when Ethr,j is activated (h)

mδ mean superposed charging time during Iδ (h)

Nc1,j percentage of c-class EVs belonging to subclass c1 when Ethr,j is activated

Nc2,j percentage of c-class EVs belonging to subclass c2 when Ethr,j is activated

Nc3,j percentage of c-class EVs belonging to subclass c3 when Ethr,j is activated

PAC power rate of the AC outlet (kW)

PDC power rate of the DC outlets (kW)

Pv,δ power transferred to the EVs under FPP (kW)

Pv,ω,j power transferred to the EVs under SPP when Ethr,j is activated (kW)

R price that the operator sells energy when the FPP is activated (e)

Rh price that the operator buys energy during time slot Zh (e)

R
′
j price that the operator sells energy under SPP when Ethr,j is activated (e)

RVNAC operator’s daily revenue from the AC system when the FPP is activated during the

whole day (e)

RVN
′
AC operator’s daily revenue from the AC system when the FPP and the SPP are activated

during different parts of the day (e)

RVNδ operator’s revenue during Iδ (e)

RVNDC operator’s daily revenue from the DC system when the FPP is activated during the

whole day (e)

RVN
′
DC operator’s daily revenue from the DC system when the FPP and the SPP are

activated during different parts of the day (e)

RVNω,j operator’s revenue during Iω (e)

s number of CSs

Tc charging time of c-class EVs (h)

Tc,max maximum value of Tc (h)

Tc,min minimum value of Tc (h)

Tδ superposed charging time of the system during Iδ (h)

TL specified time period for the definition of the tail of the queue waiting time (h)

TQ,δ customers’ waiting time in the queue during Iδ (h)

vδ variation of the superposed charging time distribution

WAC,δ EVs’ mean waiting time in the AC queue during Iδ (h)
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WDC,δ EVs’ mean waiting time in the DC queue during Iδ (h)

Wl,j mean queue waiting time values that define the activation of different Ethr,j when

the SPP is applied (h)

WQ QoS criterion for the mean waiting time in the queue (h)

Wω EVs’ mean waiting time in the queue during Iω (h)

Zh time slot belonging in the interval Iδ

Greek symbols

Γ operator’s daily profit margin when the FPP is activated during the whole day

Γ
′

operator’s daily profit margin when the FPP and the SPP are activated during

different parts of the day

∆ number of time intervals that a day consist of

∆SoCc increase in the SoC of c-class EVs’ batteries during fast charging

∆SoCc,thr,j threshold in the change of SoC of c-class EVs’ batteries when Ethr,j is activated

∆SoCc,max maximum increase in the SoC of c-class EVs’ batteries during fast charging

∆SoCc,min minimum increase in the SoC of c-class EVs’ batteries during fast charging

λc,δ mean arrival rate of c-class EVs during Iδ (EVs/h)

λc1,ω,j mean arrival rate of subclass c1 EVs when Ethr,j is activated (EVs/h)

λc2,ω,j mean arrival rate of subclass c2 EVs when Ethr,j is activated (EVs/h)

λc3,ω,j mean arrival rate of subclass c3 EVs when Ethr,j is activated (EVs/h)

λδ aggregated mean arrival rate of EVs during Iδ (h)

Ξc,j percentage of c-class EVs that quit the FCS without recharging when Ethr,j is

activated

ρδ utilization rate of the system during Iδ

Σc,j percentage of c-class EVs that obtain as much energy as the operator’s energy

threshold Ethr,j

τδ duration of Iδ (h)

τω duration of Iω (h)

Subscripts

AC AC system

c c-class EVs

c1 subclass c1 EVs

c2 subclass c2 EVs

c3 subclass c3 EVs

DC DC system

h time slot index

j defines the activated energy threshold

δ time interval index

ω time interval index
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1 Introduction

The global energy consumption may increase more than 50% by 2030, if the current

consumption pattern is maintained. Industry, transportation and buildings are the main

energy consumers, while fossil fuels in the form of coal, oil and natural gas are the primary

sources of energy nowadays [1]. Relying on fossil fuels for meeting the energy demands has

two main disadvantages; firstly, they are finite and may be depleted, and secondly, they are

one of the main contributors of greenhouse gas emissions, which accelerate climate change

and global warming. Therefore, one of the main challenges of the 21st century is to limit the

reliance of society on fossil fuels, as well as their impact on the environment. The necessity

for reducing pollution, meeting the increased energy demands and improving peoples’ quality

of life are the driving forces behind the advent of smart cities. In brief, smart cities aim

to deal with the problems generated by rapid urbanization and population growth, such

as energy supply, waste management, and mobility by improving the present systems and

implementing efficient and resource optimization solutions [2].

It is predicted that over 70% of the global population will be living in metropolitan

areas by 2050. This continuous urbanization trend together with the globalized economy

have initiated significant challenges for cities and restated their role as key national or

even international economic engines. In this new environment, cities struggle to remain

competitive in order to attract investments, increase their tourist appeal and provide better

services to their habitants [3]. A variety of smart technologies and solutions have been

proposed or even become available over the last years with the target to provide improved

service delivery and reduced environmental impact to the citizens. Examples include mobility

management and control [4], provision of health-care services [5], waste management [6], as

well as green growth initiatives in the energy sector where the integration of intermittent

renewable sources and the necessity for energy-efficient transportation systems, among other

things, represent important challenges that are better addressed in a coordinated way [7].

Buildings account for the biggest proportion of global energy needs. For example, in

European Union countries, energy consumption in buildings represents about 40% of the total

energy consumption [8]. Therefore, predominantly strategic for the successful implementation

of the vision of smart cities is the energy management sector. Urban communities are well-

placed to identify local energy needs, take proper initiatives and bring people together

in order to achieve common targets such as the reduction of energy supplying costs and

CO2 emissions, as well as the decrease of the energy dependence on the national grid. The

traditional power grid can be transformed to a smart grid by incorporating the advantages

of the information and communication technologies. This evolution, together with the

significant reduction of the cost of renewable energy sources (RES) and energy storage

systems (ESS) has stimulated the development of environment-friendly and cost-efficient

solutions for small-scale power networks (microgrids) that interconnect urban buildings and
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target to increase their self-sufficiency and sustainability. Microgrids (MGs) can be key

components of the future smart cities that will facilitate the transition to a low-carbon

energy system, contribute to the adoption of more rational energy consumption habits by

consumers, as well as provide valuable flexibility in the energy market [6].

Electric vehicles (EVs) will be another key component of the future smart cities. The

transportation sector accounts for about a quarter of the global energy-related greenhouse

gas emissions being one of the main air polluters within cities and creating important health

costs [7]. Due to the necessity of mitigating the impact of conventional vehicles on the

environment, the penetration of EVs in the market is largely promoted. In 2015, the global

stock exceeded one million EVs, while the target for 2020 has been set to 20 million EVs

[9]. Growing EV market shares are expected to progressively reduce technology costs in

the forthcoming years, thereby making EVs an increasingly attractive option. A review of

national targets forecasts an annual production of over 100 million EVs by 2050 [10]. In a

context of growing urbanization, EVs provide multiple advantages; they can contribute to the

reduction of high noise levels in densely populated areas. They can support the integration

of RES in the local MGs that will be developed in smart cities, and thus contribute to a

more sustainable power generation mix [11]. Moreover, due to their high energy efficiency

and zero tailpipe emissions, EVs represent a promising pathway to reduce air pollution,

especially when they are coupled with a low-carbon power generation mix [12].

1.1 Main features of microgrids

The European Technology Platform of Smart Grids defines the smart grid as an electricity

network that can intelligently integrate the actions of all users connected to it, i.e. producers,

consumers and prosumers (participants that both produce and consume energy) in order

to efficiently deliver sustainable, economic and secure electricity supplies [13]. MGs are

considered as the building blocks of the future smart grids. They are small-scale energy

networks, which include fixed and controllable loads, distributed energy resources (DER),

energy storage systems, as well as energy management and control systems. MGs may

appear in various sizes, such as a single building, a university or a military campus, an urban

neighborhood or a rural village [14].

Figure 1.1 illustrates a MG example of an urban community. It consists of a group of

buildings, which are equipped with their own energy resources. The local DERs involve

conventional diesel generators, combined heat and power (CHP) units, which can satisfy

both the electrical and thermal needs of the buildings, ESSs for storing the excess energy, as

well as RES, such as PV systems and wind turbines. Power conversion equipment is also

used as an interface between the DERs and the buildings’ loads. For example, the PVs and

the ESSs produce DC power, which is converted to AC power by using a DC/AC inverter.

Micro-source controllers (MCs) are also necessary for controlling the output of the DERs
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by regulating their frequency and voltage, while load controllers (LCs) are responsible for

the regulation of controllable loads [15]. An EV is a typical controllable load, since it can

be either curtailed or deferred. Moreover, by using the vehicle-to-grid (V2G) technology,

EVs can provide power back to the MG, and thus operating as a storage system [16]. The

local power network is also equipped with a microgrid central controller (MGCC), which

is responsible for the co-ordination of the local micro-source and load controllers. The

information exchange among the local controllers and the central one is achieved through a

local area communication network (LAN) [17]. The MG is also connected with the main

distribution grid in order to import electricity when the energy produced by the local DERs

is not enough, while electricity is exported to the main grid when there is excess of energy.

Figure 1.1: Typical architecture of an urban community microgrid.

MGs are promoted as the building blocks of the future smart grid for a number of reasons:

They satisfy the energy demands of the consumers in a more reliable way. For example, in

case of an emergency, such as a failure in the main grid, the MG can operate in an islanded

mode (disconnected from the main grid). They also provide better power quality, since

they are not affected by the voltage dips that may take place along the distribution lines

[18]. Furthermore, MGs provide economic benefits because the consumers produce part

of their needs at significantly lower costs. Due to the localized energy generation, power

transmission costs are reduced, while the storage systems can contribute to the avoidance of

peak power costs. Moreover, consumers may have additional revenues by selling their excess
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power to the main grid, as well as by supplying auxiliary services to the main grid, such as

voltage support. In addition, a great amount of the consumers’ demands is satisfied by RES.

The utilization of renewables provides environmental and economic benefits by reducing the

carbon footprint of the consumers and costs associated with carbon emissions [15].

1.2 Main features of electric vehicles and charging infrastruc-

ture

The target of gradually replacing conventional vehicles with EVs, as well as achieving wide

penetration rates of EVs in the automotive market is correlated with the availability of

charging infrastructure. All EVs have an on-board charger, through which they can charge

from a typical AC outlet. Depending on the provided power level, EV charging is classified

into three categories. Level 1 refers to standard single-phase outlets that provide power rates

up to 1.9 kW and it is appropriate for charging at workplaces or for night-time charging

at home, since it is the slowest charging method; the charging duration may last up to

11 hours. Level 2 uses either home outlets or dedicated electric vehicle supply equipment

(EVSE) and provides power rates up to 19.2 kW. Level 2 charging infrastructure can be

used for charging at home or workplaces, while it is also appropriate for charging at public

parking lots, shopping malls, cinemas etc., since the charging duration ranges between 1-6

hours. Level 3 is the fastest charging option. It uses specialized charging spots (CSs) that

provide power rates up to 100 kW, while the duration of charging is less than 30 minutes.

Level 3 charging infrastructure is usually installed in highway rest areas, as well as in city

refueling points (gasoline and oil stations) [19].

The main concern over the EV technology is the confrontation of drivers’ range anxiety,

which refers to EVs’ short driving ranges and long charging durations [28]. A selection of

popular EV models and their basic characteristics, such as the the battery size, the energy

consumption, the driving range, and the fast charging option they contain are summarized in

Table 1.1. Fast charging stations (FCSs) are considered as an effective solution for mitigating

range anxiety and strengthening the public acceptance of EVs [29]. For this reason, the

vast majority of EV models contain inlets that are compatible with off-board fast charging

equipment. Currently, the Japanese standard CHArge de MOve (CHAdeMO) is the most

popular fast charging option and it is adopted by many EV manufacturers, such as Nissan

Mitsubishi and Kia[30]. Another technology that is projected to gradually increase its

market share is the combined coupler standard (CCS), which is promoted in Europe and

North America. CCS has been adopted by manufacturers such as BMW and Volkswagen

[31]. The operation of both the CHAdeMO and CCS standards is based on the utilization

of DC power. On the other hand, Renault promotes AC as a fast charging option [32]. The

adoption of three different fast charging standards has led manufacturers to design charging

spots that include all of these options in a single cabinet, as illustrated in Figure 1.2 [33].
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Table 1.1: Technical characteristics of popular EV models [20]-[27]

EV model Battery
(kWh)

Consumption
(kWh/km)

Range
(km)

Fast charging option

Nissan Leaf 24 0.186 135 CHAdeMO

Mitsubishi i-MiEV 16 0.186 100 CHAdeMO

Kia Soul 27 0.199 150 CHAdeMO

BMW i3 18.8 0.168 130 CCS

Volkswagen E-Golf 36 0.174 201 CCS

Renault Zoe 22 0.146 210 AC

Figure 1.2: Multi-standard charging spot.
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1.3 Motivation and scope

Several factors, including climate change, economic restructuring, and urban population

growth have generated interest in smart cities, which are expected to lead to economic

development, improve sustainability, and enhance citizens’ quality of life. Smart technologies

and programs have been already implemented in various metropolitan areas around the

world, such as in Southampton [34], Amsterdam [35] and Stockholm [36], while it is estimated

that the global market for smart urban services will be 400$ billion per annum by 2020

[37]. The concept of smart cities is also highly promoted in Barcelona, Spain [38], where

Superblocks are expected to be the basic cells for the organization of infrastructures and

facilities, such as charging stations for EVs and small-scale power networks. The Superblock

model goes beyond the traditional geographic and demographic principles for urban planning.

As Figure 1.3 illustrates, it consists of nine city blocks where the inner part is mainly used

by pedestrians and cyclists, while the typical urban traffic uses only the exterior roads.

Figure 1.3: Superblock model

The Superblock, as an innovative smart-community model solution and an integrated

ecosystem vision has set ambitious targets regarding the reduction of public and private

buildings’ dependence on the national grid (by 40 percent), as well as the reduction of

electricity supplying costs (by 35 percent) [39]. A Superblock has the optimal dimensions

to test innovative smart MG solutions and represents a good opportunity to apply ideas

and projects that can be later applied in the entire city. This potential is also amplified

by the fact that the Superblock model promotes the installation of renewable systems on
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public buildings, while residential and commercial buildings’ owners are encouraged to shift

from fossil fuel based energy resources to green and sustainable solutions. Furthermore, the

presence of different types of buildings in a relatively small coverage area together with

a communication network may lead to a more efficient utilization of the installed energy

resources. For example, consumers with high energy demands during the daytime (PV

production hours), such as educational and office buildings, can be supplied with energy

by neighboring residential buildings with energy surplus. On the other hand, the evening

peak demand of residential buildings can be satisfied by discharging their owned storage

systems or/and by discharging the storage systems installed in other buildings with low

energy demands during the evening hours.

Motivated by the advantages provided by the Superblocks’ structure and the ambitious

energy dependence and cost reduction targets, in this thesis we propose an optimization

model for determining the power equipment sizing of a MG containing cooperative buildings,

located within the same Superblock. The proposed model obtains the optimum capacities

of solar panels, storage systems and power inverters to be installed at the buildings by

considering their acquisition, maintenance and replacement costs. The sizing process is

correlated with the MG’s operation plan over a yearly optimization horizon, which refers

to the allocation of the generated PV power, the charge and discharge scheduling of the

storage systems, as well as the energy exchanges taking place among the buildings. The

operation plan is determined by taking into account the buildings’ load profiles, the electricity

prices and the carbon-related taxes. The proposed scheme targets to increase the buildings’

self-sufficiency, through an effective energy exchange procedure, where the excess energy of

buildings with energy surplus is locally consumed by buildings with energy deficit, instead

of being sold back to the main grid. In addition, one of the main objectives of the proposed

cooperative model is to investigate the effect of energy sharing on the equipment sizing.

Fast charging stations will also be an important component of smart cities, given the

projected wide penetration of EVs in the automotive market. For EVs, the role of fast

charging stations is similar to that of gasoline and oil stations for conventional vehicles.

Although fast charging facilities provide high power levels, the duration (0.2-1 hour) of

recharging an EV is considered to be long compared to the duration of refilling a conventional

vehicle, which normally lasts for 1-3 minutes. This may result in the formation of queues

and long waiting times. The problem may be more intense at stations located at densely

populated areas where the number of customers’ visits is expected to be high, especially

during peak-traffic hours. In turn, long queue waiting times may cause EV drivers’ discomfort

and dissatisfaction.

It is therefore essential for charging station operators to develop realistic and accurate

models in order to estimate the expected charging demand at fast charging stations and

the quality of service (QoS) provided by their facilities. Equally important for the charging

station operators, is the development of charging control strategies in order to deal with
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problematic situations where long queues are built up. To this end, in this thesis, we develop

a mathematical framework based on queuing theory, aiming to evaluate the performance

of a fast charging station in terms of customers’ waiting time in the queue, and operators’

profits. The aforementioned performance evaluation metrics are calculated by taking into

account the stochastic arrival and recharging patterns of the EVs, which are classified based

on their battery size. Charging control strategies are also proposed, targeting to reduce the

customers’ waiting time in the queue, and hence improving the quality of service provided

by the fast charging facilities.

1.4 Structure of the dissertation and main contributions

The remainder of the thesis consists of six chapters, the contents and the contributions of

which are described in detail as follows:

Chapter 2. This chapter is divided into two main parts. The first part presents studies

that deal with the optimal operation planning and sizing of MGs, as well as the main

features of mixed integer linear optimization (MILP) technique, which is the basic tool for

the formulation of both problems. The second part presents studies that deal with the

mathematical analysis of charging stations’ operation based on queuing theory models.

Chapter 3. This chapter presents a cooperative scheme for the optimum selection of power

equipment components to be installed at MGs, as well as for the optimum management of

the energy generated, stored and consumed. A MG topology is considered where buildings

with diverse load profiles, equipped with PV systems and storage devises, are connected

to the low voltage of the same distribution transformer. Through this point of common

coupling the buildings are able to exchange energy so that an optimal utilization of the

renewable energy sources and storage systems installed at the buildings is achieved. A

MILP optimization model is developed that determines the optimal energy exchanges taking

place, the optimal charge and discharge scheduling of the storage systems, as well as the

amount of energy each building imports/exports from/to the main grid. Moreover, the

proposed optimization model determines the optimal capacities of PV systems, energy

storage devises and power inverters to be installed at each building. The impact of energy

sharing on the equipment sizing, and hence on the implementation cost of the project,

is demonstrated by comparing the proposed cooperative scheme with a non-cooperation

scenario. The difference in the implementation costs of the two scenarios indicates the finan-

cial gains of the buildings’ coalition. The contributions of this chapter have been published in:

I. Zenginis, J. S. Vardakas, P. V. Mekikis, and C. Verikoukis, “Cooperative Energy

Management in Microgrids,”Transportation and Power Grid in Smart Cities: Communication

Networks and Services, John Wiley, UK, 2017.
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Chapter 4. This chapter extends the work of the previous one in four ways. The first

enhancement refers to the MG topology, since it is considered that the various buildings

are interconnected through a DC bus. This new architecture enables buildings that are fed

by different distribution transformers to participate in the MG increasing the cooperation

opportunities and benefits. Furthermore, in this chapter the buildings are equipped with

vehicle-to-building (V2B) systems, which can operate as storage systems providing additional

flexibility in the MG’s energy management. Another major advantage of the optimization

model presented in this chapter is the utilization of the Nash bargaining method for obtaining

the optimal equipment sizes and power allocation in the system. This method guarantees

that the coalition profits are equally distributed among the participants. Finally, the possible

integration of new players, years after the initial establishment of the buildings’ coalition is

investigated. The contributions of this chapter have been published in part in 3 journals

and 2 international conferences:

I. Zenginis, J. S. Vardakas, C. Echave, M. Morató, J. Abadal, and C. Verikoukis, “Coopera-

tion in microgrids through power exchange: An optimal sizing and operation approach,”Appl.

Energy, vol. 203, pp. 972-981, Oct. 2017.

J. S. Vardakas, I. Zenginis, N. Zorba, C. Echave, M. Morató, and C. V. Verikoukis, “Elec-

tricity savings through efficient cooperation of urban buildings: the smart community case

of Superblocks in Barcelona,”to appear in IEEE Com. Mag, 2018.

I. Zenginis, J. S. Vardakas, C. Echave, M. Morató, J. Abadal, and C. Verikoukis, “Optimal

power equipment sizing and management for cooperative buildings in microgrids,”to appear

in IEEE Trans. Ind. Informat, 2018

J. S. Vardakas, and I. Zenginis, “A Survey on Short-Term Electricity Price Prediction

Models for Smart Grid Applications,”in Proc. WICON 2014, Lisbon, Portugal, 12-14 Nov.

2014.

J. S. Vardakas, I. Zenginis, and M. Oikonomakou, “Peak Demand Reduction Through

Demand Control: A Mathematical Analysis,” in Proc. ICTF 2016, 6-8 July, Patras, Greece.

Chapter 5. In this chapter, the operation of a FCS for EVs is analyzed by employing a

novel multi-class M/G/s queuing model. The proposed analysis considers that the various

EV models are classified by their battery size, and computes the customers’ mean waiting

time in the queue by taking into account the available charging spots, as well as the stochastic

arrival process and the stochastic recharging needs of the various EV classes. The users’

waiting time in the queue is the QoS criterion for the performance evaluation of the FCS. To
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this end, the maximum number of served customers is determined, subject to a maximum

queue waiting time value. The amount of efficiently served EVs is initially computed by

assuming that their batteries are charged up to the maximum allowable state of charge

(80% in fast charging). Furthermore, a charging strategy is proposed according to which the

drivers are motivated to limit their energy demands. The implementation of the proposed

strategy allows the charging station to serve more customers without any increase in the

queue waiting time. The contributions of this chapter have been published in the following

journal:

I. Zenginis, J. S. Vardakas, N. Zorba and C. Verikoukis, “Analysis and quality of service

evaluation of a fast charging station for electric vehicles,” Energy, vol. 112, pp. 669-678,

Oct. 2016.

Chapter 6. This chapter extends the work of the previous one in three ways. First of all,

EV classes that utilize AC fast charging resources are taken into account in the mathematical

analysis. Therefore, the EVs are classified not only by their battery size, but also by their

fast charging option (AC or DC). Moreover, the EVs’ recharging patterns are denoted by

the increase of their batteries’ state-of-charge. This is a more realistic approach compared to

the assumption of the previous chapter where the EVs recharge up to the maximum possible

level. It also allows for the utilization of real-case statistical data regarding the amount of

energy obtained during a fast charging session. Furthermore, it enables the formulation of

a pricing policy, which targets to mitigate the long queue built-ups during peak demand

periods. According to this policy, fixed energy thresholds are set by the FCS operator, and

the customers that request to obtain more energy than the arranged thresholds are asked to

pay higher rates. The implementation of the proposed policy alleviates the pressure on the

FCS because the customers either adjust their demands or search for satisfying their initial

requirements to nearby stations. The contributions of this chapter have been published in

the following journal:

I. Zenginis, J. S. Vardakas, N. Zorba and C. Verikoukis, “Performance Evaluation of a

Multi-standard Fast Charging Station for Electric Vehicles,” IEEE Trans. Smart Grid, 2017.

Chapter 7. This chapter concludes the dissertation by providing a summary of our major

contributions, together with some potential lines for future investigation.
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2 Literature overview on microgrids’ optimization

and electric vehicles’ charging stations’ opera-

tion analysis

This chapter is organized as follows. In section 2.1, the concept of MGs’ optimal operational

planning is introduced, while works that consider different MG topologies and components

are discussed. In addition, the problem of optimal MG sizing is defined and some of the most

important works in the literature are discussed. Section 2.2 contains the state-of-the-art on

the analysis of charging stations’ operation. Several queuing theory models are presented

that have been used for the estimation of charging stations’ load and profits, as well as

for the derivation of QoS metrics, such as the customers’ waiting time in charging stations’

queues, and the probability of customers’ blocking due to lack of waiting space or/and

available energy resources.

2.1 State-of-the-art on optimization of microgrids

Studies on MGs are generally classified into two groups; those dealing with the problem of

optimal operation planning and those dealing with the optimal sizing and design of MGs.

Both problems are commonly formulated as a MILP one. MILP is the optimization problem

of minimizing an objective function that consists of a linear combination of integral and

continuous decision variables, subject to a set of linear equality and inequality constraints.

A typical MILP problem is formulated as follows:

minimize cTx,

subject to Ax ≤ b
Aeqx = beq

where x is the n-dimensional vector of the decision variables to be calculated and c is the

n-dimensional vector of coefficients. Furthermore, A and Aeq are the coefficients’ matrices for

the p linear inequality and the q linear equality constraints, respectively, while b and beq are

the right-hand side vectors for the p linear inequality and the q linear equality constraints,

respectively.

The MILP optimization technique is appropriate for modeling MGs, since continuous

and discrete-valued dynamics interact in a such systems. For example, physical quantities,

such as the amount of imported/exported energy can be represented by continuous variables,

while the discrete features of MGs’ components, such as the charging/discharging state of

the storage systems can be modeled by using binary decision variables.
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2.1.1 Optimal operation planning of microgrids

The operation plan refers to the short term (a day or a week) management of the system’s

load and generated power with the objective to satisfy the energy demand of the MG in

the most economic and/or environment friendly way. More precisely, the optimal operation

planning consists in taking decisions over an optimization horizon that is divided into

several time slots. At every time slot the MGCC determines: 1) The amount of energy that

should be imported or exported to the main grid. 2) The amount of energy that should be

transferred to the storage systems or discharged from the storage systems. 3) The amount of

energy that should be generated by each of the dispatch-able distributed generators. 4) The

optimal scheduling of controllable loads over the optimization horizon. All these decisions

are taken by considering the MG topology, the capacity of conventional or/and RES, the

capacity of energy storage systems, the local energy demand, as well as the energy prices.

Kriett et al. [40], present a MILP model for determining the optimal operation plan of a

single, grid-connected residential building, which is equipped with PVs, thermal solar panels,

CHP units, boilers, as well as electrical and thermal energy storage units. The residential

building also contains controllable loads, such as dishwashers, washing machines and EVs and

non-controllable loads, such as lighting and entertainment machines. Given the electricity

and natural gas prices, the technical specifications of the considered technologies and the

building’s energy demands (electrical and thermal), the proposed optimization scheme

determines the generators’ optimal production levels, the optimal charge and discharge

scheduling of the storage systems, the time scheduling of the controllable loads, as well

as the optimal energy exchanges between the building and the main grid. The objective

function minimized in order to obtain the aforementioned decisions consists of the daily

operating costs of the residential building (i.e. electricity and natural gas supplying costs).

The optimal operation plan in [40] is obtained based on day ahead predictions for the

RES production, the building’s energy demands and the energy prices. On the other hand,

authors in [41] and [42] integrate the MILP problem formulation into an model predictive

control (MPC) framework, which makes the system more robust against the prediction

errors. This is achieved through the utilization of a feedback mechanism, which provides

updated information for the the RES’ output, the time-varying load and the time-varying

energy prices. Authors in [42] conclude that the utilization of the MPC framework reduces

the building’s daily operational cost by 60% compared to the traditional day-ahead method.

The works in [40]-[42] deal with the optimization of a single residential building. On

the other hand, Paterakis et al. [43] obtain the optimal operation plan of a neighborhood

consisting of multiple smart homes. The dwellings are interconnected at the low voltage

part of a distribution transformer, while they are also equipped with vehicle-to-home (V2H)

systems, controllable appliances, energy storage systems and PVs, as depicted in Figure 2.1.

Furthermore, it is considered that they can exchange energy with each other through their

point of common coupling (PCC), while they also sell energy back to the main grid. The
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Figure 2.1: Smart homes connected at the low voltage of a distribution transformer

operation plan of the considered MG is obtained by using the MILP technique with the

objective to minimize the daily electricity supplying cost. Moreover, a demand response

strategy is proposed, which targets to fairly allocate the energy delivered by the main grid

by mitigating the homes’ competitive behavior when the price of the supplied energy is low.

A cooperative network of large residential MGs is presented in [44] where a MPC-MILP

optimization scheme is applied for the determination of the energy exchanges taking place

among the various sites. The MGs are equipped with RES, such as wind turbines and PVs,

as well as with storage systems, while they are assumed to be interconnected through a

PCC. The optimal energy exchanges among the MGs, and the optimal charge and discharge

scheduling of the MGs’ storage systems are obtained by maximizing the total profit of the

network. More precisely, the objective function to be maximized consists of the sum of each

MG’s profit, which is expressed as the difference between the income due to power exports (to

the main grid and to the other MGs in the network) minus the expenses due to power imports

(from the main grid and from the other MGs in the network). Furthermore, the authors

highlight the benefits of cooperation among multiple MGs compared to the non-cooperation

case. As Figure 2.2 illustrates, the amounts of energy that the considered MGs purchase by

the main grid under the cooperation scenario are smaller than the corresponding amounts

under the non-cooperation scenario.
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Figure 2.2: Energy purchased from the main grid under single and cooperative MGs.

2.1.2 Optimal sizing and design of microgrids

System design is a long-term planning activity, which involves the determination of the

optimal capacities of power technologies to be installed in the MG. The MILP optimization

technique is extensively used for the formulation of this type of problems. For the optimal

equipment sizing, the specific characteristics of the candidate technologies to be installed

are taken into account, such as the acquisition cost, the lifetime, as well as the maintenance

and operating costs. The energy tariffs and the energy demands of the MG participants are

also considered, while yearly load profiles are commonly used as input parameters because

the loads’ seasonal variability affects the optimal solution in this type of problems.

Erdinc et al. [45], deal with selecting the optimal PV and energy storage system sizes for

a smart home, which is also equipped with a V2H system. The whole problem is formulated

as a MILP optimization one. The objective function to be minimized contains terms that

are related to the equipment sizes, such as the equipment acquisition cost, as well as the net

present values (NPVs) of the equipment maintenance and replacement costs. In addition,

the objective function contains terms that are related to the operation plan of the smart

home, such as the NPV of the cost of importing electricity from the main grid and the NPV

of the profit of exporting electricity to the main grid. The optimal equipment sizing of a

large residential MG is also the topic in [46], where the objective function is formulated

in the same way as in [45]. Besides the PV and energy storage sizes, the optimal capacity

of wind turbines and AC/DC inverters are also determined in [46]. A MILP model is also

proposed by Mehleri et al. [47] for the optimal capacity sizing of PVs, CHP units and boilers
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that satisfy the electrical and heating demand of multiple neighboring residential buildings.

An additional objective of the proposed model in [47] is the designing of a heating pipeline

network that allows heat exchanges among the various buildings.

Optimization models other than MILP have also been used in the literature for the

optimal sizing problem. Authors in [48] determine the capacities of PVs, storage systems

and inverters, as well as the sizes of wind and biomass turbines for an isolated MG, which is

located in a village. The optimization problem is solved by using an artificial bee colony

algorithm, while an operational strategy is also proposed for determining the MG’s operation

plan. Authors in [49] obtain the equipment sizing of a community consisting of a set of

residential apartments. The problem is formulated based on a multi-objective function, where

both the total cost of the system and the energy availability are taken into account, while a

set of optimal solutions is obtained by using a multi-objective genetic algorithm. Di Silvestre

et al. [50] apply a multi-objective glow-worm swarm optimization algorithm for optimizing

a MG located in the low voltage of a distribution transformer. The optimal capacities of

PVs, ESSs and micro-turbines are obtained by minimizing the objective function, which

contains the system’s yearly power losses, power production cost and CO2 emissions.

In the aforementioned studies, either a single residential building or a set of residential

buildings are taken into account. On the other hand, authors in [51] demonstrate the benefits

of cooperation among different building types. A MG topology is considered where electricity

can be transferred among a residential building, an office building, a school, a hotel and a

restaurant. The buildings are equipped with boilers and thermal storage systems, which

satisfy their thermal demands, as well as with CHP units, which satisfy both the electrical

and thermal demands. The problem of selecting the optimal CHP units’, boilers’ and thermal

storage systems’ sizes, as well as of determining the price levels of energy transactions among

the participants and the MG’s operation plan is formulated as a MILP one. The operation

plan in this case refers to the amounts of electrical and thermal power generated by the

CHP units, the amount of thermal power generated by the boilers, the charge/discharge

scheduling of the thermal storage units, as well as the amount of energy exchanges among

the buildings. However, the presence of RES and electrical storage systems is neglected.
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2.2 State-of-the-art on charging stations’ mathematical mod-

eling and analysis

EVs and public charging facilities will be key components towards a more sustainable and

energy efficient transportation sector. Therefore, the operation of charging stations, the

estimation of their load, the QoS providing to their customers, as well as their economic

feasibility are topics that has drawn the attention of the research community. For the

stochastic modeling of the EVs’ arrival and charging process at public facilities, various

probabilistic models have been proposed based on queuing theory.

M/M/s is the most commonly used queuing model. As Figure 2.3 illustrates the first

M denotes that the EVs arrive at a charging station by following a Poisson process, while

the second M denotes that the EVs’ charging duration follows an exponential distribution

function. The M/M/s model also assumes that the charging station contains s identical

charging spots that can simultaneously serve equal number of EVs, as well as infinite waiting

space where the not served EVs are queued. On the contrary, another commonly used model

(M/M/s/c) assumes that the maximum number of EVs that can be present in the charging

station is c (where s EVs are being charged, and c−s EVs are waiting in the queue). Finally,

the M/M/s/s queuing model considers that there is no available waiting space.

Li et al. [62] determine the overall charging demand of EVs at a FCS that consists of

AC outlets. Based on the derived charging demand, authors then examine the impact of

uncontrolled EV charging on the distribution network by performing probabilistic power

flow calculations. The FCS is modelled as an M/M/s queue where the probability pn that n

EVs are present at the charging station is given by the following relation:

pn=


(∑s−1

i=0
(sρ)i

i! + (sρ)s

s!
1

1−ρ

)−1
, n = 0

(sρ)n

n! p0, n = 1, 2, ..., s
(2.1)

where ρ is the utilization rate of the queuing system, and it is calculated as follows, given

the EVs’ mean arrival rate λ and mean charging rate µ:

ρ =
λ

sµ
(2.2)

The M/M/s queue is also applied in [63] for estimating the charging demand of a FCS

located on a highway, as well as in [64] for calculating the charging load of a network of

FCSs.

The aforementioned studies ([62]-[64]) aim at investigating the impact of EVs’ load on

the grid, which is a crucial issue for distribution system operators. The M/M/s queuing

model is also applied for the calculation of QoS metrics, such as the EVs’ queue waiting

time in a parking lot consisting of level 2 outlets [65], or in a network of FCSs [66]. More
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Figure 2.3: Charging station modeled as an M/M/s queuing system.

specifically, the mean waiting time of customers in the queue of the charging station is given

by the following relation:

WM/M/s =
ρ(λµ)s

s!λ(1− ρ)2

(
s−1∑
i=0

(sρ)i

i!
+

(sρ)s

s!

1

1− ρ

)−1

(2.3)

Furthermore, the M/M/s/c queue is used for modeling a parking lot with finite waiting space

in [67]. In this case, the QoS metrics under evaluation are both the queue waiting time and

the blocking probability, which denotes the percentage of EVs that arrive at the charging

station requesting to be served, but they are not allowed to enter because all charging spots

are occupied and there is no available waiting space.

Queuing models are useful tools not only for describing the operation of charging stations

and evaluating QoS metrics, but also for formulating charging control strategies to improve

the operability of charging stations. Gong et al. [65] propose a charging control strategy

aiming at minimizing the loss of life of the distribution transformer that supplies a parking

lot. The customers’ queue waiting time is also taken into account in order to evaluate the

effectiveness of the proposed strategy in terms of customers’ QoS. Gusrialdi et al. [68] propose

a higher level distributed scheduling algorithm together with a lower level cooperative control

policy for individual EVs in order to optimize the operation of a network of FCSs on a

highway. The proposed methodology aims at adjusting the percentage of the EVs to be

charged at individual FCSs so that all the FCSs are uniformly utilized and the total waiting

time is minimized. This is achieved by optimally routing the drivers within the network.

Customer routing is also employed in [69] in order to reduce the number of blocked EVs

among a network of FCSs.

The works in [70]-[72] consider the operation of networks of FCSs where each station

draws a certain amount of power form the distribution grid. This configuration assures the

reliable operation of the grid, however when the EVs’ charging demands are higher than
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the available power, an amount of customers is blocked. In order to mitigate this problem,

authors in [70] introduce a decentralized control mechanism where the network operator

offers price incentives, so that customers accept being routed to stations less busy than others.

In this way more customers are served with the same amount of grid resources and the

revenue of the operator is maximized. A pricing based control mechanism is also proposed in

[71] aiming at ensuring that only a small percentage of EVs is blocked. This is achieved by

incentivizing EV drivers to shift their charging requests from peak to less congested periods.

The charging management scheme proposed in [72] targets the reduction of customers’

blocking probability by motivating EV drivers who are blocked by their preferred station to

visit a nearby station which provides lower power levels.

A key assumption in all aforementioned queuing models is that the EVs’ charging times

are exponentially distributed random variables. In real life though, charging times do not

seem to follow any specific probability distribution, since they are mainly influenced by the

EVs’ battery capacities and the batteries’ state of charge (SoC) when the EVs arrive at the

charging station [73]. Therefore, the assumption of exponentially distributed charging times

may not describe the charging behavior effectively.

A more sophisticated queuing model is employed in [74], where the charging times are

generally distributed random variables (M/G/∞). This model is useful for distribution

system planners who need to estimate the EVs’ charging demands, however it is not

appropriate for evaluating QoS metrics since the number of CSs is assumed to be infinite,

and therefore the EVs are neither queued nor blocked. Generally distributed charging times

are also considered in [75] where the EVs’ charging time depends on the power level provided

by the charging spots and on the arrival SoC of the EVs’ batteries, which is considered to

be a generally distributed random variable. Specifically, authors in [75] model a FCS as an

M/G/s/c queue and derive the operator’s profits, as well as the customers’ mean waiting

time in the queue and the blocking probability. Nevertheless, the aforementioned analysis

considers that only one EV class is served by the FCS (all EVs have the same battery size).

The concept of classifying the EVs by their different battery sizes is only considered in

[62], where despite this realistic approach, the EVs’ charging load is calculated by applying

the M/M/s queue, and hence the EVs’ charging time is assumed to be an exponentially

distributed random variable.
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3 Cooperation among buildings with diverse load

profiles in microgrids

The benefits of cooperation among different types of buildings are examined in this chapter

in terms of power equipment sizing and operation planning. The idea of forming MGs

that consist of neighboring buildings with diverse load profiles stems from Barcelona’s

superblocks where schools, residential and office buildings, etc coexist in a relatively small

coverage area. To this end, a MILP model is presented for determining the optimal sizes

of PVs, ESSs and DC/AC inverters to be installed in each building. The sizing process is

correlated with the MG’s operation plan over a yearly optimization horizon, which refers to

the optimal allocation of the produced PV power, the ESSs’ charge and discharge scheduling,

the energy exchanges taking place among the buildings, as well as the amount of energy each

building buys or/and sells to the main grid. The benefits of forming buildings’ coalitions are

demonstrated by comparing the proposed cooperation scenario with the baseline scenario

and the non-cooperation scenario. The baseline scenario refers to the case where all buildings

are supplied with energy by the main grid only, while the non-cooperation scenario considers

that the buildings are equipped with PVs, ESSs and inverters, but they do not exchange

energy with each other.

This chapter is organized as follows. Section 3.1 presents the MG’s architecture and

the formulation of the optimal sizing and operation planning problem. Section 3.2 presents

the economic analysis and the objective function that is used for deriving the optimization

results. The equations that describe the MG’s operation are formulated in section 3.3, while

section 3.4 contains the examined case study and the corresponding results.

3.1 Microgrid architecture and problem formulation

The cooperative scheme is applied to a MG topology consisting of neighboring buildings that

are connected to the main distribution grid through a common distribution transformer, as

depicted in Figure 3.1. The various buildings will be equipped with PV panels, ESSs and

DC/AC inverters, which are used for the connections of the PVs and the ESSs with the

buildings’ loads, and the main distribution grid. In addition, it is assumed that the MG

contains a MGCC, local controllers and a LAN that can provide an optimal power operation

plan.

The proposed MILP optimization model is formulated as follows: Given 1) a yearly

optimization horizon y, divided into t = (1, ..., T ) time intervals of equal duration ∆t, 2)

the load of the buildings and the normalized PV production for each time interval, 3) the

buildings’ available surface for installing PVs, 4) the open market electricity tariffs, 5) the

energy buying and selling prices from and to the other MG users, respectively, 6) the energy

selling price to the main grid, 7) the carbon intensity and the carbon taxes at the MG’s
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location, and 8) the acquisition and maintenance costs, as well as the lifetimes and the

efficiency factors of the PVs, ESSs and inverters, determine the 1) optimal PVs’, ESSs’ and

inverters’ sizes to be installed at each building, and 2) the optimal power operation plan in

the MG, in order to satisfy the buildings’ energy demands at minimum cost.

Figure 3.1: Microgrid architecture.

3.2 Economic analysis

The optimal power equipment sizing and operation planning of the considered MG are

determined by minimizing the total cost w of all buildings b ∈ {1, ..., B} participating in the

coalition:

w =
∑
b

C(b) (3.1)

where C(b) denotes the overall annualized cost of each building, which involves the equipment

acquisition cost CA(b), the NPVs of the equipment maintenance and replacement costs,

CM (b) and CR(b), respectively, the NPVs of the electricity supplying and carbon emissions-

related costs, CE(b) and CC(b), respectively, as well as the NPV of each building’s revenue

RE(b) due to electricity exports to the other buildings and the main grid. The overall

annualized cost C(b) is obtained by multiplying the sum of the aforementioned costs with
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the capital recovery factor CRF (d, Y ):

C(b)= CRF (d, Y )[CA(b)+CM (b)+CR(b)+CE(b)+CC(b)−RE(b)] (3.2)

CRF (d, Y ) =
d(1 + d)Y

(1 + d)Y − 1
(3.3)

where d the discount rate and Y the lifetime of the project. The equipment acquisition

cost is derived by multiplying the size Nj by the per unit cost cj of each technology

j = (PV,ESS, INV ):

CA(b)=
∑
j

Nj(b)cj . (3.4)

Likewise, the maintenance cost is obtained by multiplying the equipment sizes by the annual

per unit maintenance cost µj of each technology. Given the discount rate d and the lifetime

of the project Y, the NPV of the maintenance cost is derived by the following relation:

CM (b) =
Y∑
y=1

∑
j Nj(b)µj

(1 + d)y
(3.5)

while, the NPV of the equipment replacement cost is obtained by:

CR(b) =

repj∑
i=1

∑
j Nj(b)cj

(1 + d)iY repj
(3.6)

where Y repj indicates the year of first replacement of technology j, and repj = int[Y/lifej ]

denotes the number of replacements required for each technology, which is obtained by the

integer part of the division between the project lifetime and the lifetime of each technology

lifej .

On the one hand, the acquisition, maintenance and replacement costs depend are

correlated with the aspect of the optimization problem that refers to equipment sizing. On

the other hand, the electricity supplying and carbon emissions-related costs, as well as the

revenue derived due to electricity exports depend on the power operation plan of the MG.

Specifically, the NPV of the electricity supplying cost is determined by:

CE(b) =
Y∑
y=1

∑T
t=1[PG,buy(b, t)RG,buy(t) + PMG,buy(b, t)RMG,buy(t)]∆t

(1 + d)y
(3.7)

where PG,buy(b, t) and PMG,buy(b, t) denote the amounts of power imported by the main grid

and the MG at each time interval t, respectively, while RG,buy(t) and RMG,buy(t) denote the

corresponding electricity prices. Furthermore, the NPV of the carbon emissions-related cost

depends on the power imported by the main grid, the carbon intensity Carbint of the area
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where the MG is located, and the carbon taxes Carbtax:

Cc(b) =

Y∑
y=1

∑T
t=1 PG,buy(b, t)CarbintCarbtax∆t

(1 + d)y
(3.8)

Finally, the NPV of each building’s revenue RE(b) due to the electricity exports to the MG

(PMG,sell(b, t)) and to the main grid (PG,sell(b, t)) is calculated as follows, where RG,sell(t)

and RMG,sell(t) are the prices of selling power to the main grid and to the other MG users,

respectively:

RE(b) =

Y∑
y=1

∑T
t=1[PG,sell(b, t)RG,sell(t) + PMG,sell(b, t)RMG,sell(t)]∆t

(1 + d)y
(3.9)

Regarding the prices of energy transactions among the MG users and the price of selling

energy to the main grid, the following relations hold:

RMG,buy(t) = RMG,sell(t) = r1RG,buy(t) (3.10)

RG,sell(t) = r2RG,buy(t) (3.11)

where r1 > r2. The proposed pricing scheme promotes the cooperation among the MG

participants for two reasons. The first one is that for buildings with power deficit is cheaper

to import electricity from other participants than from the main grid. The second reason is

that for buildings with power excess is more profitable to export to other MG users than to

the main grid.

3.3 Operation plan of the MG

The objective function of the considered optimization problem, which is described by equation

(3.1), is minimized subject to the following set of relations and constraints that describe the

operation of the MG at each time interval of the optimization horizon.

3.3.1 Power balance

The power demand PL(b, t) of each building at any time interval is satisfied by importing

power from the main grid PGL (b, t), by the power PPVL (b, t) produced by the PVs, by the

power PESSL (b, t) discharged from the ESS, as well as by the power PMG
L (b, t) imported from

neighboring buildings with power excess:

PL(b, t)=PGL (b, t)+PPVL (b, t)+PESSL (b, t)+PMG
L (b, t) (3.12)
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3.3.2 PV operation

The produced PV powerPPV,pro(b, t) is given by:

PPV,pro(b, t) = NPV (b)PPV,unit(t) (3.13)

where NPV (b) is the installed capacity of the PV array and PPV,unit(t) is the normalized

PV production, which is obtained by considering the optimal PV panels’ tilt angle and

orientation for the MG’s geographical location. The size of the PV array is bounded by

the building’s available surface APV (b) and the amount of PV capacity λPV that can be

installed per available surface:

NPV (b) ≤ APV (b)λPV (3.14)

Part of the power at the output of the PV array (i.e. the produced power multiplied by the

overall efficiency nPV of the PV system) is transferred though the inverter to the AC side

for covering the building’s load PPVL (b, t), and for being sold to other MG participants and

to the main grid (PPVMG(b, t) and PPVG (b, t), respectively). In addition, part of the produced

power is used for charging the ESS (PPVESS(b, t)):

PPV,pro(b, t)nPV=
PPVL (b, t)+PPVMG(b, t)+PPVG (b, t)

nINV
+PPVESS(b, t). (3.15)

It should be noted that the power conversion losses at the inverter are denoted by dividing

power transferred from the DC to the AC side (PPVL (b, t), PPVMG(b, t) and PPVG (b, t)) by the

inverter’s efficiency nINV .

3.3.3 ESS operation

The state of energy of each building’s ESS at any time interval SoEESS(b, t) depends on

the state of energy of the previous time interval, and the charging power Pc,ESS(b, t), if the

ESS is being charged, or the discharging power Pd,ESS(b, t), if the ESS is being discharged,

during the current time interval:

SoEESS(b, t)=SoEESS(b, t−1)+Pc,ESS(b, t)∆t−Pd,ESS(b, t)∆t+uinitESS(b, t)SoEESS(b, t0)

(3.16)

where, SoEESS(b, t0) denotes the state of energy of the ESS at the beginning of the opti-

mization horizon, and uinitESS(b, t) is a binary parameter, which is equal to 1 only for the

first time interval and equal to 0 for any other interval. In order to ensure that the final

solution of the optimization problem is not conditioned by the initial storage level, the state

of energy SoEESS(b, T ) at the end of the optimization horizon should be higher than or
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equal to state of energy at the beginning of the optimization horizon:

SoEESS(b, T ) ≥ SoEESS(b, t0). (3.17)

Moreover, as constrain (3.18) denotes, the ESS’s state of energy at any time interval ranges

between a minimum and a maximum value (SoEESS,min and SoEESS,max, respectively):

SoEESS,min ≤ SoEESS(b, t) ≤ SoEESS,max (3.18)

The ESS’s charging power Pc,ESS(b, t) consists of the power PPVESS(b, t) provided by the

PVs and by the power PMG
ESS(b, t) that is imported by the neighboring buildings, while the

ESS’s discharging power Pd,ESS(b, t) is used for satisfying the local load PESSL (b, t), as well

as for being sold to other MG buildings (PESSMG (b, t)):

Pc,ESS(b, t) = [PPVESS(b, t) + PMG
ESS(b, t)]nc,ESS (3.19)

Pd,ESS(b, t) nd,ESS nINV=PESSL (b, t)+PESSMG (b, t) (3.20)

The parameters nc,ESS and nd,ESS define the ESS’s charging and discharging efficiency,

respectively, while equations (3.21) and (3.22) define the upper limit of the ESS’s charging

and discharging power, which depends on the charging rate ZESS and the capacity NESS .

The ESS cannot be charged and discharged simultaneously. This is ensured by constraints

(3.23) and (3.24) where uESS(b, t) is a binary variable and Ξ is a very large number:

Pc,ESS(b, t) ≤ ZESSNESS(b) (3.21)

Pd,ESS(b, t) ≤ ZESSNESS(b) (3.22)

Pc,ESS(b, t) ≤ ΞuESS(b, t) (3.23)

Pd,ESS(b, t) ≤ Ξ[1− uESS(b, t)] (3.24)

3.3.4 Power exchanges

At any time interval there may be users that buy power from other MG participants or/and

from the main grid. As described by relation (3.25), the power bought from the MG is used

for satisfying the load or/and for charging the ESS, while as described by relation (3.26),
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the power bought from the main grid is used only for satisfying the load:

PMG,buy(b, t) = PMG
L (b, t) +

PMG
ESS(b, t)

nINV
(3.25)

PG,buy(b, t) = PGL (b, t) (3.26)

Furthermore, at any time interval there may be users that sell power to other MG participants

or/and to the main grid. As described by relation (3.27) the power sold to the MG is provided

by the PVs and the ESS, while as described by relation (3.28) the power sold to the main

grid is provided only by the PVs:

PMG,sell(b, t) = PPVMG(b, t) + PESSMG (b, t) (3.27)

PG,sell(b, t) = PPVG (b, t) (3.28)

The following constraints ensure that the buildings cannot sell and buy power at the same

time:

PMG,buy(b, t) + PG,buy(b, t) ≤ Ξuex(b, t) (3.29)

PMG,sell(b, t) + PG,sell(b, t) ≤ Ξ[1− uex(b, t)] (3.30)

where uex(b, t) is a binary variable. In addition, the total amount of power bought from the

MG by the buildings belonging to the subset B
′ ⊆ B (left side of (3.31)) equals the total

amount of power sold to the MG by the buildings belonging to the subsetB
′′ ⊆ B(right side

of (3.31)): ∑
b∈B′

PMG,buy(b, t) =
∑
b∈B′′

PMG,sell(b, t) (3.31)

3.3.5 Inverter operation

The following constraints denote that the power transferred from the DC to the AC side

through each building’s inverter, as well as the power that follows the opposite direction are

bounded by the inverter’s nominal capacity NINV (b):

PPVL (b, t) + PESSL (b, t) + PMG,sell(b, t) + PG,sell(b, t)

nINV
≤NINV (b) (3.32)

PMG
ESS(b, t)

nINV
≤NINV (b) (3.33)
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Table 3.1: Specifications of power equipment [48], [77]

Parameter Value

ESS charging efficiency coefficient (nc,ESS) 0.95

ESS discharging efficiency coefficient (nd,ESS) 0.95

Power rate of the ESS (ZESS) 0.5

ESS minimum value of the SoE (SoEESS,min) 0.2

ESS maximum value of the SoE (SoEESS,max) 1

PV efficiency coefficient (nPV ) 0.95

Inverter efficiency coefficient (nINV ) 0.9

3.4 Numerical results

The proposed optimization model is evaluated by considering a MG located in Barcelona,

Spain, which comprises of a multi-apartment residential building, a school and a municipality

administrative building. The buildings’ hourly power consumptions for one year are provided

by the municipality of Barcelona, while the available surfaces for installing PV panels are: i)

for the residential building 750 m2, ii) for the school 900 m2, and, iii) for the administrative

building 1000 m2. By assuming that 1 kW is installed for every 7 m2 of available surface,

the maximum PV capacity that can be installed at the residential building, the school and

the administrative building are 107 kW, 128.6 kW and 143 kW, respectively. In addition,

the normalized hourly PV production profile for one year is obtained by considering the

optimal PV panels’ tilt angle and orientation for the area of Barcelona (31o, south) in the

PVWatt calculator [60].

The input parameters regarding the technical specifications of the power equipment,

such as the PVs’ and inverters’ efficiency, the ESSs’ charge and discharge efficiency and

power rate, as well as the ESSs’ minimum and maximum state of energy are summarized

in Table 3.1. Furthermore, Table 3.2 contains the input parameters that are taken into

account for the buildings’ cost calculations, such as the acquisition and maintenance costs of

the PVs, the ESSs and the inverters, the ESS’s replacement year, the project lifetime, the

discount rate, the carbon intensity and the carbon tax. In addition, Table 3.3 reports the

applied time-of-use electricity rates of a Spanish retailer [61], which differ between winter

and summer months. In both cases, the lower rate is from 00:00-08:00, while during the

winter months, the higher rate is between 18:00 and 22:00, and the peak price period for

the summer months is between 11:00 and 15:00. For the remaining hours the medium rate

is activated. Finally, as Table 3.4 reports, the rates of energy transactions among the MG

users is considered to be 40 percent lower than the corresponding rates provided by the

energy retailer, while the price of selling energy back to the main grid is 90 percent lower

than the corresponding buying prices.
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Table 3.2: Economic data [48], [76], [77]

Parameter Value

Project Lifetime (Y ) 20 (yr)

Discount rate (d) 3%

Carbon Intensity (Carbint) 0.455 (kg/kW)

Carbon Tax (Carbtax) 0.03 (e/kg)

ESS acquisition cost (cESS) 208 (e/kWh)

ESS annual maintenance cost (µESS) (2.1 e/kWh/yr)

ESS replacement year 15

PV acquisition cost (cPV ) 1000 (e/kW)

PV annual maintenance cost (µPV ) 3.3 (e/kWh/yr)

Inverter acquisition cost (cINV ) 106 (e/kW)

Inverter annual maintenance cost (µINV ) (0.8 e/kWh/yr)

Table 3.3: Open market energy tariffs RG,buy(t).

November - March April - October

00:00-08:00 0.079 e/kWh 0.079 (e/kWh)

00:80-11:00 0.109 e/kWh 0.109 (e/kWh)

11:00-15:00 0.109 e/kWh 0.135 (e/kWh)

15:00-18:00 0.109 e/kWh 0.109 (e/kWh)

18:00-22:00 0.135 e/kWh 0.109 (e/kWh)

22:00-00:00 0.109 e/kWh 0.109 (e/kWh)

Table 3.4: Energy prices for the transactions among the MG users and the main grid.

Parameter Value

Price of buying energy by other MG users RMG,buy(t) = 0.6RG,buy(t) (e/kWh)

Price of selling energy to other MG users RMG,sell(t) = 0.6RG,buy(t) (e/kWh)

Price of selling energy to the main grid RG,sell(t) = 0.1RG,buy(t)(e/kWh)
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Table 3.5: Results for the three evaluation scenarios.

Residential School Public Building Total

Main Grid Scenario

Annualized Cost (e) 26,690 39,245 42,641 108,576

No Energy Exchange Scenario

Annualized Cost (e) 21,831 26,905 28,023 76,759

NPV (b) (kW) 71.6 128.6 143 343.2

NESS(b) (kWh) 28.3 0 67 95.3

NINV (b) (kW) 38.5 72.5 79 190

Energy Exchange Scenario

Annualized Cost (e) 18,108 22,775 24,729 65,612

NPV (b)(kW) 107 128.6 143 378.6

NESS(b)(kWh) 98 120 77.5 295.5

NINV (b)(kW) 50 65 73 188

In order to highlight the advantages of the proposed cooperative scheme, we present cost

results for three different scenarios: the main grid scenario assumes that all buildings obtain

the required energy exclusively from the main distribution network; therefore, no PVs, ESSs

and inverters are installed. The no energy exchange scenario assumes that all buildings are

equipped with PVs, ESSs and inverters, but, they are not able to exchange energy with

each other. Finally, the energy exchange scenario applies the cooperative model. As Table

3.5 reveals, the application of the proposed cooperative scheme results in a significant cost

reduction compared to the other two scenarios. Precisely, the application of the cooperative

scheme results in 39.5% total cost savings compared to the main grid scenario and 14.5%

compared to the no energy exchange scenario. This is achieved despite the fact that the

sizes of the PVs, inverters and ESSs are higher under the cooperative scheme.

We also present the results of the case study regarding the optimal operation plan of

the three considered buildings. Figure 3.2 illustrates the hourly power allocation during

a Sunday in February, while Figure 3.3 shows the corresponding results for the case of a

Monday in the same month. In addition, Figure 3.4 and Figure 3.5 present the corresponding

results for a Sunday and a Monday in July, respectively. The comparison of these figures

reveals that the energy exchange procedure is highly affected by the type of the day and the

season. The residential building mainly buys energy on Sundays, while it provides its excess

energy on Mondays when its demands are low and the PV production high. Furthermore, in

both months the residential building uses the energy generated by its PV panels during the

light-day hours, while during the high energy consumption evening hours, the building uses

the energy stored in its ESS, as well as the energy bought from the other two buildings. On

the other hand, the school buys energy on Mondays during their peak load, while it sells

energy in any other case during low-load periods. Finally, the administrative building sells

energy to the MG during the winter months, while on the contrast, buys great amounts of

energy during its peak load, which takes place on weekday evenings of summer months.
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Figure 3.2: Operation plan of the three buildings during a weekend day in February
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Figure 3.3: Operation plan of the three buildings during a week day in February
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Figure 3.4: Operation plan of the three buildings during a weekend day in July

31



Figure 3.5: Operation plan of the three buildings during a week day in July
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4 Buildings’ cooperation in microgrids: an opti-

mal equipment sizing and operation planning ap-

proach based on the Nash bargaining method

The benefits of cooperation among neighboring buildings with diverse load profiles are

highlighted in the previous chapter in terms of power equipment sizing and operation

planning. The system architecture presented in chapter 3 refers to a MG topology where the

various buildings are fed by a common distribution transformer and the energy exchanges

among the participants take place through a PCC, which is the low voltage side of the

distribution transformer. However, there may be neighboring buildings that are willing to

participate in the coalition, but they are fed by different distribution transformers. In that

case, the only way for the buildings to exchange energy is through the medium voltage

distribution line, which means that the decisions for the optimal power flows are taken by

the distribution system operator, and not by the MG operator. The power losses taking

place both at the seller’s and buyer’s distribution transformer is another disadvantage of

exchanging energy through the medium voltage lines.

A MG topology that removes the aforementioned disadvantages is proposed in this

chapter. Specifically, it is considered that the various buildings are connected to a common

DC bus through which the energy exchanges take place. Moreover, this chapter considers

that V2B systems are installed in the buildings. The smart charge and discharge scheduling

of the EVs, which is not taken into account in the previous chapter’s model, provides

additional power scheduling flexibility. Another advantage of the present analysis is that the

MG’s optimal sizing and operation planning are determined by applying the Nash bargaining

method. The superiority of this method compared to the traditional one (minimization of the

aggregated cost of all participants as in equation 3.1) is that the savings achieved due to the

buildings’ cooperation are equally distributed among the MG’s users. On the contrary, with

the traditional method, some participants may achieve higher savings than others. Finally,

in all works of the state-of-the-art dealing with the MGs’ optimal sizing and operation

planning problem, it is considered that the system’s topology is the same for the whole

lifetime of the project (it consists of the same set of buildings from the beginning till the

end of the project). A significant contribution of the present analysis is that investigates the

possible integration of additional buildings, years after the initial coalition’s establishment.

This chapter is organized as follows. Section 4.1 presents the MG’s architecture and the

equations that describe its operation. Section 4.2 presents the economic analysis and the

formulation of the objective function based on the Nash bargaining method. The integration

of additional buildings in the initial coalition is described in section 4.3, while the considered

case study is presented in section 4.4.
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Figure 4.1: Microgrid architecture.

4.1 MG architecture and modeling

The proposed MG architecture is presented in Figure 4.1. The buildings’ PVs and ESSs are

installed on a DC bus, which interconnects the whole set of participating members. The V2B

systems are installed at the AC side of the buildings, while the inverters are the interfaces

between the DC and the AC side. Furthermore, a LAN interconnects the buildings’ local

controllers with the MGCC.

4.1.1 Power balance

At any time interval, the power balance at each building is described by equation (4.1):

PL(b, t)=PGL (b, t)+PPVL (b, t)+PESSL (b, t)+PMG
L (b, t)+PEVL (b, t) (4.1)

As in the corresponding power balance relation of chapter 3,PGL (b, t)denotes the power

imported from the main grid, PPVL (b, t) the PV power that is used for self-consumption,

PESSL (b, t) the power discharged from the ESS, and PMG
L (b, t) the power imported from the

other MG users. It should also be noted that in the present analysis part of the load is

satisfied by the EVs’ discharging power, which is denoted as PEVL (b,t).
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4.1.2 PV operation

As in chapter 3, the produced PV powerPPV,pro(b, t) is determined based on the size NPV (b)

of the PV array and the normalized PV production PPV,unit(t) at the MG’s location:

PPV,pro(b, t) = NPV (b)PPV,unit(t) (4.2)

while the size of the PV array is bounded by each building’s available surface APV (b) and

the amount λPV of PV capacity that can be installed per available surface:

NPV (b) ≤ APV (b)λPV (4.3)

The following relation describes the way the produced PV power is utilized:

PPV,pro(b, t)nPV=
PPVL (b, t)+PPVEV (b, t)+PPVG (b, t)

nINV
+PPVESS(b, t) +PPVMG(b, t). (4.4)

There are two main differences between (4.4) and the corresponding r (3.15) of chapter 3.

The first difference is that part of the produced PV power is transferred through the inverter

to the EVs (PPVEV (b, t)). The power PPVL (b, t) that is used for the local load, as well as the

power PPVG (b, t) that is sold to the main grid are also transferred from the DC to the AC

side. The power converion losses are denoted by dividing the aforementioned terms by the

efficiency of the inverter nINV . On the other hand, the power PPVESS(b, t) that is used for

charging the ESS, and the power PPVMG(b, t) that is sold to the other MG users are injected to

the common DC bus. The fact that PPVMG(b, t) is transferred to the other buildings through

the DC bus is the second difference between the present approach and that of chapter 3.

4.1.3 ESS operation

The ESS operation is described by the same relations as in chapter 3. The only difference is

noticed in the equation that refers to the ESS’ discharging power (4.9):

SoEESS(b, t)=SoEESS(b, t−1)+Pc,ESS(b, t)∆t−Pd,ESS(b, t)∆t+uinitESS(b, t)SoEESS(b, t0)

(4.5)

SoEESS(b, T ) ≥ SoEESS(b, t0). (4.6)

SoEESS,min ≤ SoEESS(b, y, t) ≤ SoEESS,max (4.7)

Pc,ESS(b, t) = [PPVESS(b, t) + PMG
ESS(b, t)]nc,ESS (4.8)
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Pd,ESS(b, t)nd,ESS=
PESSL (b, t)+PESSEV (b, t)

nINV
+PESSMG (b, t) (4.9)

Pc,ESS(b, t) ≤ ZESSNESS(b) (4.10)

Pd,ESS(b, t) ≤ ZESSNESS(b) (4.11)

Pc,ESS(b, t) ≤ ΞuESS(b, t) (4.12)

Pd,ESS(b, t) ≤ Ξ[1− uESS(b, t)] (4.13)

According to equation (4.5), the state of energy SoEESS(b, t) at the current time interval

is determined by the state of energy of the previous interval SoEESS(b, t−1) plus the energy

that is transferred to the ESS (if it is being charged during the current time interval), or

minus the discharged energy (if it is being discharged during the current time interval). ∆t

is the duration of the optimization intervals, SoEESS(b, t0) denotes the state of energy at

the beginning of the optimization horizon, while the binary parameter uinitESS is equal to 1 for

the first time interval and equal to 0 for any other time interval. Constraint (4.6) ensures

that the state of energy at the beginning of the optimization horizon is higher than or equal

to the state of energy at the end of the optimization horizon, while constraint (4.7) sets the

minimum and the maximum state of energy of the ESS. According to equation (4.8), the

charging power Pc,ESS(b, t) is provided by the PVs (PPVESS(b, t)) and by imports from other

MG users through the DC bus (PMG
ESS(b, t)). According to (4.9), part of the ESS’s discharging

power Pd,ESS(b, t) is transferred to the AC side through the inverter for covering part of

the building’s load (PESSL (b, t)), as well as part of the building’s EVs needs (PESSEV (b, t)).

Furthermore, part of the ESS’s discharging power is transferred to other MG users through

the DC bus (PESSMG (b, t)). The parameters nc,ESS and nd,ESS define the ESS’s charging and

discharging efficiency, respectively. Furthermore, constraints (4.10) and (4.11) define the

upper limit of the ESS’s charging/discharging power, which is a function of the charging

rate ZESS and the capacity NESS . Finally, constraints (4.12) and (4.13) ensure that the

ESS is not charged and discharged at the same time. This is mathematically modeled by

using the parameter Ξ, which is a very large number, and the binary variable uESS(b, t).

4.1.4 EVs’ operation

One of the main differences between the MG topology of chapter 3 and the present one

is the assumption that the buildings are equipped with the V2B technology. Specifically,

it is considered that each building b, (b= 1, ..., B) comprises a set of Vb EVs. Relations
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(4.14)-(4.20) describe the operation of each single EV, while relations (4.21)-(4.26) describe

the way the charging and discharging procedures of the whole set of EVs are scheduled.

As equation (4.14) denotes, the EVs’ charging power Hc,EV (v, t), where (v=(1,. . . , Vb)),

is provided by the PVs, the ESS, as well as by the imports from the MG and the main

grid (HPV
EV (v, t), HESS

EV (v, t), HMG
EV (v, t) and HG

EV (v, t), respectively). According to equation

(4.15), the EVs’ discharging power Hd,EV (b, t) is only used for satisfying part of the local

load PEVL (b, t). In (4.14) and (4.15), the parameters nc,EV and nd,EV define the charging

and discharging efficiency of the EVs. Constraints (4.16) and (4.17) ensure that the EVs are

not charged and discharged at the same time, while they also define the upper limit of the

charging and discharging power. Additionally, in the aforementioned relations, ZEV denotes

the EVs’ charging and discharging rate, while uEV (v, t) is a binary variable. The EVs’ state

of energy SoEEV (v, t) at any time interval t is described by equation (4.18). Similar to

the ESSs’ case, SoEEV (v, t) is equal to the state of energy of the previous time interval

SoEEV (v, t − 1) plus the energy that is transferred to the EV, or minus the discharged

energy. Constraint (4.19) defines the EVs’ minimum and the maximum state of energy,

while (4.20) defines the EVs’ arrival and departure state of energy.

Hc,EV (v, t)=[HPV
EV (v, t)+HESS

EV (v, t)+HMG
EV (v, t)+HG

EV (v, t)]nc,EV (4.14)

Hd,EV (v, t)nd,EV = HEV
L (v, t) (4.15)

Hc,EV (v, t) ≤ ZEV (v)uEV (v, t) (4.16)

Hd,EV (v, t) ≤ ZEV (v)[1− uEV (v, t)] (4.17)

SoEEV (v, t)=SoEEV (v, t− 1)+Hc,EV (v, t)∆t−Hd,EV (v, t)∆t+uinitEV (v, t)SoEa(v, Ta(v))

(4.18)

SoEEV,min ≤ SoEEV (v, t) ≤ SoEEV,max (4.19)

SoEEV (v, Ta(v))=SoEa(v), SoEEV (v, Td(v))=SoEd(v) (4.20)

The aforementioned relations ((4.14) - (4.20)) hold for Ta(v) ≤ t ≤ Td(v), where Ta(v)

and Td(v) define the EVs’ arrival and departure times, respectively. Also, the parameter

uinitEV (v, t) equals 1 for t=Ta(v) and 0 in any other case. The charging power for the whole
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set of the EVs is provided by the PVs, the ESS, the MG and the main grid:

Pc,EV (b, t)=PPVEV (b, t)+PESSEV (b, t)+PMG
EV (b, t)+PGEV (b, t) (4.21)

where

PPVEV (b, t) =
∑
v∈Vb

HPV
EV (v, t) (4.22)

PESSEV (b, t) =
∑
v∈Vb

HESS
EV (v, t) (4.23)

PMG
EV (b, t) =

∑
v∈Vb

HMG
EV (v, t) (4.24)

PGEV (b, t) =
∑
v∈Vb

HG
EV (v, t) (4.25)

In addition, as equation (4.26) denotes, the total amount of the EVs’ discharging power is

used for satisfying the local load only.

Pd,EV (b, t) = PEVL (b, t) =
∑
v∈Vb

HEV
L (v, t) (4.26)

4.1.5 Power exchanges

At any time interval there may be users that buy power from other MG participants or/and

from the main grid. As described by relation (4.27), the power bought from the MG is used

for satisfying the load, part of the EVs’ needs and for charging the ESS. Note that the power

bought from the MG for the load and the EVs is transfered from the common DC bus to the

AC side of the buildings through the inverter. The power losses at the inverter are denoted

by dividing the terms PMG
L (b, t) and PMG

EV (b, t) by the inverter’s efficiency. On the other

hand, the power bought from the MG for charging the ESS is directly transferred to the

ESS without any power conversion losses. Furthermore, as described by relation (4.28), the

power bought from the main grid is used for satisfying the load and the EVs’ needs:

PMG,buy(b, t) =
PMG
L (b, t) + PMG

EV (b, t)

nINV
+ PMG

ESS(b, t) (4.27)

PG,buy(b, t) = PGL (b, t) + PGEV (b, t). (4.28)

Moreover, at any time interval there may be users that sell power to other MG participants

or/and to the main grid. As described by relation (4.29) the power sold to the MG is provided

by the PVs and the ESS, while according to (4.30) the power sold to the main grid is provided
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by the PVs only:

PMG,sell(b, t) = PPVMG(b, t) + PESSMG (b, t) (4.29)

PG,sell(b, t) = PPVG (b, t) (4.30)

The following constraints describe the fact that the buildings cannot sell and buy power at

the same time:

PMG,buy(b, t) + PG,buy(b, t) ≤ Ξuex(b, t) (4.31)

PMG,sell(b, t) + PG,sell(b, t) ≤ Ξ[1− uex(b, t)] (4.32)

where uex(b, t) is a binary variable. In addition, at any time interval, the total amount of

power bought from the MG by the buildings belonging to the subset B
′ ⊆ B (left side of

(4.33)) is equal to the total amount of power sold to the MG by the buildings belonging to

the subset B
′′ ⊆ B (right side of (4.33)):∑

b∈B′

PMG,buy(b, t) =
∑
b∈B′′

PMG,sell(b, t) (4.33)

4.1.6 Inverter operation

Finally, constraint (4.34) ensures that the power transferred from the DC bus to the AC

side of each building is bounded by the inverter’s nominal capacity NINV (b). It should also

be noted that in contrast with the analysis of the corresponding section 3.3.5 of the previous

chapter 3, in the present case no power is transferred from the AC side to the DC side of

the buildings.

PPVL (b, t)+PPVEV (b, t)+PESSL (b, t)+PESSEV (b, t)+PMG
L (b, t)+PMG

EV (b, t)+PG,sell(b, t)

nINV
≤NINV (b)

(4.34)

4.2 Economic analysis and Nash bargaining method

As in section 3.2, the overall annualized cost of each building is defined by:

C(b)= CRF (d, Y )[CA(b)+CM (b)+CR(b)+CE(b)+CC(b)−RE(b)] (4.35)

while the NPVs of the equipment acquisition, maintenance and replacement costs, the

NPVs of the electricity supplying and carbon-emissions related costs, as well as the NPV

of each building’s revenue from electricity exports are obtained by the following equations,

respectively:

CA(b)=
∑
j

Nj(b)cj + Lbus(b)cbus. (4.36)
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CM (b) =

Y∑
y=1

∑
j Nj(b)µj + Lbus(b)µbus

(1 + d)y
(4.37)

CR(b) =

repj∑
i=1

∑
j Nj(b)cj

(1 + d)iY repj
(4.38)

CE(b) =
Y∑
y=1

∑T
t=1[PG,buy(b, t)RG,buy(t) + PMG,buy(b, t)RMG,buy(t)]∆t

(1 + d)y
(4.39)

Cc(b) =

Y∑
y=1

∑T
t=1 PG,buy(b, t)CarbintCarbtax∆t

(1 + d)y
(4.40)

RE(b) =
Y∑
y=1

∑T
t=1[PG,sell(b, t)RG,sell(t) + PMG,sell(b, t)RMG,sell(t)]∆t

(1 + d)y
(4.41)

where Lbus is the length of the DC bus required for the interconnection of each building

to the MG, and cbus and µbus are the per unit acquisition cost and maintenance costs,

respectively of the DC bus. The considered pricing scheme is the same as in the previous

chapter’s analysis:

RMG,buy(t) = RMG,sell(t) = r1RG,buy(t) (4.42)

RG,sell(t) = r2RG,buy(t) (4.43)

where r1 > r2.

A common approach that is used for optimizing a MG consisting of multiple members is

the minimization of the aggregated annualized costs of the participants, as in the previous

chapter:

w =
∑
b

C(b) (4.44)

The MG’s equipment sizing and operation planning are obtained by minimizing (4.44)

subject to (4.1) -(4.34). This method indicates the coalition savings compared to the case

where each building is separately optimized. The coalition savings are defined as:

CSV = w′ − w (4.45)

where w
′

is the sum of the costs of each building when the buildings are separately optimized:

w
′

=
∑
b

C
′
(b) (4.46)

The cost C
′
(b) of each building’s separate optimization is obtained by minimizing (4.44)
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subject to (4.1) -(4.34). It should be noted that the terms in (4.1) -(4.34) that refer to the

existence of the MG (terms that contain either a ’MG’ subscript or a ’MG’ superscript) are

equal to zero when this problem is solved.

The motivation for buildings to participate in a coalition is to share part of the savings

CSV in order to achieve lower costs compared to the separate optimization case (C(b)≤
C

′
(b)). However, this is not guaranteed by implementing the traditional approach of

minimizing the objective function in (4.44). For example, the optimal solution obtained

through the traditional method may propose that the cost of some buildings is reduced

(C(b)=C
′
(b)−Ψ1(b),Ψ1(b) > 0), whereas the cost of other buildings is increased (C(b)=

C
′
(b) + Ψ2(b),Ψ2(b) > 0), so that CSV=|

∑
b Ψ1(b)−

∑
b Ψ2(b)|. The amount of coalition

savings is derived to be the same when the Nash bargaining method is used. Moreover, the

Nash bargaining method not only guarantees that the participants’ costs will be lower than

C
′
(b), but also that they attain the same amount of savings SV (b) = C

′
(b)−C(b)=CSV/B.

This is achieved by maximizing the following objective function that consists of the product

of buildings’ savings:

f =

B∏
b=1

SV (b) =

B∏
b=1

[C
′
(b)− C(b)] (4.47)

The objective function in (4.47) is non-linear, and therefore, it is linearized via logarithmic

differentiation as z=lnf=
∑B

b=1 ln[C
′
(b)− C(b)], which is a sum of strictly concave functions

M(C(b)) = ln[C
′
(b) − C(b)] involving only one variable. When such a function is to

be maximized, it can be approximated over an interval as a piecewise linear function

Mq(Cq(b)) = ln[C
′
(b)− Cq(b)]) using m grid points [51]. The approximation is described by

the following relations:

M(C(b)) ≈
m∑
q=1

Mq(Cq(b))λq (4.48)

m∑
q=1

λq = 1 (4.49)

λq ≥ 0. (4.50)

λq are special ordered variables, and only two adjacent λq can be non-zero. Constraints (4.49)

and (4.50) and the concavity requirement guarantee that two adjacent nodes out of the total

m take non-zero values. Based on the logarithmic differentiation and the aforementioned

approximation, the problem of maximizing (4.47) can be written as:

max z ≈
B∑
b=1

m∑
q=1

Mq(Cq(b))λq(b) (4.51)

41



m∑
q=1

λq(b) = 1 (4.52)

λq(b) ≥ 0 (4.53)

where
m∑
q=1

Cq(b)λq(b) = C(b) (4.54)

Cmin(b) ≤ C(b) ≤ Cmax(b). (4.55)

The maximum cost Cmax(b) is set to be equal to the annualized cost C
′
(b) of each building

when it is separately optimized, while the minimum cost Cmin(b) is obtained by considering

that each building reaps the whole amount of the coalition savings: Cmin(b)=C
′
(b)−CSV.

The interval [Cmax(b), Cmin(b)] is divided into m equal intervals where the value of interval

q is assigned to the parameter Cq(b). Based on (4.54), when the problem is solved, C(b) is

determined by the two adjacent intervals that have non-zero λq(b) i.e. C(b)=Cq(b)λq(b)+

Cq+1(b)λq+1(b). Recall that the total annualized cost C(b) is given by (4.35) where the costs

referring to the sizing aspect of the problem (acquisition, maintenance, replacement) are

obtained by (4.36)-(4.38), respectively, and the costs referring to the operational planning

aspect (electricity supplying, carbon emissions, electricity exports) are obtained by (4.39)-

(4.41), respectively. The optimal MG sizing and operation planning are determined by

maximizing (4.51) subject to (4.1)-(4.34) and (4.52)-(4.55).

4.3 Integration of additional buildings

The aforementioned economic analysis refers to the case where there is a set of B buildings

that participate in the MG from the beginning of its establishment till the end of the project

lifetime Y . In this section, we describe the concept of optimizing the MG when additional

buildings join the coalition U years after the initial establishment. The equipment sizes

for the initial set of building have already been determined, and hence, in this case the

optimization process refers to the equipment sizes of the new buildings, as well as the

operation plan of the new MG topology.

The NPVs of the equipment maintenance and replacement costs for the additional

buildings are obtained by (4.37)-(4.38), respectively, by replacing Y with X=Y −U . This

is due to the fact that the additional buildings will participate in the coalition for the

remaining X years. For the same reason, the NPVs of the electricity supplying cost,

the carbon emissions-related cost, and the buildings’ revenue from electricity exports, are

obtained by (4.39)-(4.41), respectively, by replacing Y with X. Under the new MG topology,

the NPVs of the electricity supplying cost, the carbon emissions-related cost, and the revenue
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of each building belonging to the initial set are given by relations (4.39)-(4.41), respectively

by setting y = U instead of y = 1. This is due to the fact that those costs depend on

the operation plan, which in turn depends on the current MG topology. Based on the

aforementioned analysis, the overall annualized cost of each building belonging to the initial

set is:

Cin(b)= crf(d, Y )[CA(b)+CM (b)+CR(b)] + crf(d,X)[CE(b)+Cc(b)−RE(b)] (4.56)

while the overall annualized cost of each of the additional buildings is:

Cad(b)= crf(d,X)[CA(b)+CM (b)+CR(b)+CE(b)+Cc(b)−RE(b)] (4.57)

Therefore, the total annualized cost of the system is:

wnt =
∑
b∈B

Cin(b) +
∑
b∈BU

Cad(b) (4.58)

The chart of Figure 4.2 summarizes the process of selecting the optimal equipment

sizes for the additional buildings, as well as of obtaining the optimal operation plan of

the new MG topology. The process consists of four steps. The first step refers to the

optimization of the initial MG topology, which determines the equipment sizes and the total

annualized cost of the initial set of buildings B. The obtained equipment sizes are used

as input parameters in the fourth step, while the obtained annualized cost is used as the

maximum cost Cin,max of the initial set of buildings B when the Nash bargaining method

is implemented in the fourth step. The second step refers to the separate optimization

of the additional buildings. This step is necessary for obtaining the maximum annualized

cost Cad,max of the additional buildings, which is also used in the fourth step. Note that

the problem of optimizing the additional buildings separately is the same as the separate

optimization of the initial buildings. The third step optimizes the new MG topology through

the traditional method (minimization of the aggregated annualized costs of the participants).

This step is necessary for obtaining the savings CSVnt of the new MG topology, which are

derived by the summation of the total cost of the initial coalition with the costs of the

additional buildings’ separate optimization, minus the total cost of the new MG topology.

CSVnt is then used in the fourth step for obtaining the minimum annualized costs of the

initial and additional buildings (Cin,min and Cad,min, respectively). At this point it should

be noted that the profitability of the new coalition depends on how many years after the

establishment of the initial coalition the additional members join. If the savings calculated

in the third step are negative, the integration of new participants should be avoided. Finally,

the fourth step refers to implementation of the Nash bargaining method for obtaining the

equipment sizes for the additional buildings, as well as the operation plan of the new MG

topology.
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Start

Optimize the initial MG configuration by maximiz-
ing (4.51) subject to (4.1)-(4.34) and (4.52)-(4.55)

Determine NPV (b), NESS(b), NINV (b) and C(b), ∀ b∈B
Set C(b)=Cin,max(b)

Optimize each of the additional buildings separately by minimizing
4.35 subject to (4.1)-(4.34). In (4.1)-(4.34) the variables that
have either a ”MG” superscript or subscript are equal to 0

Determine the annualized cost C
′
(b), ∀ b∈BU

Set C
′
(b)=Cad,max(b)

Optimize the new MG topology through the tradi-
tional method by minimizing 4.58 subject to (4.1)-(4.34)

Obtain the total annualized cost wnt of the new
MG topology and determine the savings as follows:
CSVnt =

∑
b∈B Cin,max(b) +

∑
b∈BU Cad,max(b) − wnt

Optimize the new MG configuration
by using the Nash bargaining method:

maximize 4.59

znt =
∑

b∈B
∑m

q=1Min,q(Cin(b))λq(b) +
∑

b∈BU
∑m

q=1Mad,q(Cad(b))λq(b)

(4.59)
subject to (4.1)-(4.34), 4.52 -4.53, and the following constraints:∑m

q=1Cq(b)λq(b) = Cin(b) ∀ b ∈ B (4.60)

∑m
q=1Cq(b)λq(b) = Cad(b) ∀ b ∈ BU (4.61)

where:

Min,q(b) = ln[Cin,max(b)− Cq(b)] ∀ b ∈ B (4.62)

Cin,min(b) = Cin,max(b)− CSVnt ∀ b ∈ B (4.63)

Cmin(b) ≤ Cin(b) ≤ Cmax(b) (4.64)

Mad,q(b) = ln[Cad,max(b)− Cq(b)] ∀ b ∈ BU (4.65)

Cad,min(b) = Cad,max(b)− CSVnt ∀ b ∈ BU (4.66)

Cmin(b) ≤ Cad(b) ≤ Cmax(b). (4.67)

Step 1

Step 2

Stage 3

Stage 4

Figure 4.2: Process for the optimization of the additional buildings.
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4.4 Numerical results

4.4.1 Input data

The proposed model is evaluated by considering the hourly load profile for one year of two

residential buildings, two schools, a civic center and an office building, which are located in

the Poblenou superblock, Barcelona, Spain. The one-year duration load profiles are composed

of different daily profiles depending on the month and the day type (weekday-weekend).

For example, Figure 4.3 illustrates the load profiles of the civic center and the office, as

well as the load profile of one residential building and one school for a weekday in June,

while Figure 4.4 shows the load profiles for a weekend day in January. In the first case

(Figure 4.3), the school mainly consumes energy during the day time and the office during

the working hours; the residential building has one peak early in the morning and another

peak in the evening, while the civic center has larger energy needs than the other buildings,

especially over the period 13:00-23:00. In the second case (Figure 4.4), the load of the civic

center is significantly lower in the winter during the weekends, where the peak in the energy

consumption is from 10:00 to 18:00. The peak load of the residential buildings is also lower

in the weekend, taking place during 10:00-17:00 and 20:00-22:00. Finally, the loads of the

school and the office are quite low and flat over the weekend.

The normalized hourly PV production profile for one year is obtained by considering

the optimal PV panels’ tilt angle and orientation for the area of Barcelona (31o, south ) in

the PVWatt calculator [60]. Furthermore, each building’s available surface for installing

PVs is given in Table 4.1, while it is also considered that 1kW can be installed for every 7

m2 of available surface. Table 4.1 also reports the length of the DC bus required for the

interconnection of the buildings, while Table 4.2 contains the input data regarding the PVs,

the inverters [48] and the ESSs [77]. It is also considered that the residential building I

contains 18 EVs, and the residential building II contains 12 EVs. Nissan Leaf is the most

popular EV model in Spain ([78]), and hence the specifications ([20]) of this model are taken

into account as input parameters for the whole set of EVs (Table 4.3). SoEa(v) is calculated

to be 15 kWh. The SoEa(v) value is derived by taking into account the Leaf’s consumption

([79]), the average covered distance between two consecutive charging events and by assuming

that the EVs fully recharge their batteries before departing from the residential buildings.

Finally, the arrival and departure times are reported in Table 4.4, and they are assumed to

be the same for all EVs.

The electricity rates RG,buy(t) for winter and summer months are reported in Table

4.5 ([61]). In winter months, the highest rate is activated between 18:00-22:00, whereas in

summer months between 11:00-15:00. The lowest rate is activated between 00:00-08:00 in

both cases, while for the remaining hours the medium rate is activated. Regarding the prices

of intra MG energy transactions, it is assumed that RMG,buy(t) and RMG,sell(t) are 40%

lower than RG,buy(t), while the price RG,sell(t) of selling energy back to the grid is 90% lower
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Figure 4.3: Buildings’ load profiles for a June weekday

Figure 4.4: Buildings’ load profiles for a January weekend day

than RG,buy(t) (Table 4.6). The input data for the equipment acquisition and maintenance

costs, the ESSs’ year of first replacement, as well as the project lifetime and the considered

discount rate are presented in Table 4.7. The value of carbon intensity Carbint in Spain ([80])

is also reported in Table 4.7, while for the carbon taxes, it is considered that Carbtax=0.03

e/Kg ([81]).

4.4.2 Results for the initial set of buildings

The sizing results and the annualized costs for the six buildings are reported in Table 4.8 for

two cases. In the first case, the buildings are separately optimized, while in the second case

their cooperative operation is optimized based on the proposed Nash bargaining method.

Table 4.8 also compares the annual savings and the reduction in CO2 emissions of the two

optimization scenarios compared to the baseline case where the buildings are supplied with
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Table 4.1: Buildings’ surfaces and DC bus lengths

Building School1 School2 Public Office Residential1 Residential2

Tot. surf. (m2) 4,374 3,300 5,254 1,350 5,670 3,570

APV (m2) 1,458 1,100 1,751 450 945 595

LBUS(b) (m) 85 45 170 30 100 75

Table 4.2: Specifications of power equipment [48], [77]

Parameter Value

ESS charging efficiency coefficient (nc,ESS) 0.95

ESS discharging efficiency coefficient (nd,ESS) 0.95

Power rate of the ESS (ZESS) 0.5

ESS minimum value of the SoE (SoEESS,min) 0.2

ESS maximum value of the SoE (SoEESS,max) 1

PV efficiency coefficient (nPV ) 0.95

Inverter efficiency coefficient (nINV ) 0.9

Table 4.3: Specifications of the EVs [20] [79]

EV charging efficiency coefficient nEV,c 0.95

EV discharging efficiency coefficient nEV,d 0.95

EV battery capacity NEV 24 (kWh)

EV power rate ZEV 6 (kW)

EV minimum value of the SoE SoEEV,min 7.2 (kWh)

EV maximum value of the SoE SoEEV,max 24 (kWh)

EV arrival SoE SoEa(v) 15 (kWh)

Table 4.4: EVs’ arrival and departure times

Departure time: Td Arrival time: Ta
Weekday 08:00 18:00

Saturday 20:00 00:00

Sunday 11:00 18:00
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Table 4.5: Open market electricity tariffs RG,buy(t).

November - March April - October

00:00-08:00 0.079 e/kWh 0.079 (e/kWh)

00:80-11:00 0.109 e/kWh 0.109 (e/kWh)

11:00-15:00 0.109 e/kWh 0.135 (e/kWh)

15:00-18:00 0.109 e/kWh 0.109 (e/kWh)

18:00-22:00 0.135 e/kWh 0.109 (e/kWh)

22:00-00:00 0.109 e/kWh 0.109 (e/kWh)

Table 4.6: Energy prices for the transactions among the MG users and the main grid.

Parameter Value

Price of buying energy by other MG users RMG,buy(t) = 0.6RG,buy(t) (e/kWh)

Price of selling energy to other MG users RMG,sell(t) = 0.6RG,buy(t) (e/kWh)

Price of selling energy to the main grid RG,sell(t) = 0.1RG,buy(t)(e/kWh)

Table 4.7: Economic data [48], [76], [77]

Parameter Value

Project Lifetime (Y ) 20 (yr)

Discount rate (d) 3%

Carbon Intensity (Carbint) 0.455 (kg/kWh)

Carbon Tax (Carbtax) 0.03 (e/kg)

ESS acquisition cost (cESS) 208 (e/kWh)

ESS annual maintenance cost (µESS) (2.1 e/kWh/yr)

ESS replacement year 15

PV acquisition cost (cPV ) 1000 (e/kW)

PV annual maintenance cost (µPV ) 3.3 (e/kWh/yr)

Inverter acquisition cost (cINV ) 106 (e/kW)

Inverter annual maintenance cost (µINV ) (0.8 e/kWh/yr)

DC Bus acquisition cost (cBUS) 30 (e/km)

DC Bus maintenance cost (µBUS) 0.3 (e/km/yr)
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Table 4.8: Sizing results

Separate Building Optimization

An. Base
Cost (e)

NPV

(kW)
NESS

(kWh)
NINV

(kW)
An. Cost

(e)
An.

Savings
(e)

Payback
(yr)

CO2 red.
(%)

Res1 38,110 97.2 51 52.4 32,336 5,775 6.6 31.5

Res2 24,161 60.2 27.8 32.9 20,532 3,629 6.6 30.5

Sch1 47,694 208.3 30 130.4 29,992 17,701 2.7 66.6

Sch2 35,983 157.1 22.6 98.4 22,628 13,355 2.7 66.6

Civic 75,755 248.4 141.6 151.8 49,622 26,133 2.9 61.6

Office 28,223 64.3 0 40.2 21,650 6,572 4.3 38.8

Cooperative Optimization

Res1 38,110 133.6 151.2 96.8 30,322 7,788 4.9 44.4

Res2 24,161 85 145.7 62.9 18,566 5,595 4.3 51.5

Sch1 47,694 208.3 52 130.4 27,979 19,715 2.4 70.7

Sch2 35,983 149.4 32.4 93.6 20,614 15,368 2.3 71

Civic 75,755 250.1 255.6 189 47,659 28,097 2.7 70

Office 28,223 64.3 101.5 87.3 19,674 8,548 3.3 73.6

electricity only by the main grid. The annual savings are obtained as the difference between

the annualized cost of the baseline case (second column of Table 4.8) and the annualized

costs of the two optimization approaches. Furthermore, the payback period for each building

is obtained by dividing the annualized cost of the baseline case with the buildings’ annual

savings under the two optimization scenarios. The results of Table 4.8 indicate the benefits

of energy exchanges on the PV, ESS and inverter sizing, as well as on the cost reduction;

despite the fact that the equipment sizes are derived to be larger in the cooperation case,

the buildings achieve higher savings and lower payback periods compared to the separate

optimization case. The CO2 emissions are calculated by multiplying the buildings’ electricity

imports from the main grid with the carbon intensity in Spain. Hence, the reduction of CO2

emissions indicates the reduction of the buldings’ dependence on the main grid under the two

optimization scenarios compared to the baseline case. Moreover, due to the higher equipment

sizes and the energy exchange process, the buildings import lower amounts of energy from

the main grid under the cooperation scenario compared to the separate optimization case;

this in turn results in lower CO2 emissions.

Table 4.9 highlights the superiority of the Nash bargaining method over the traditional

method for optimizing the MG. The annual savings are obtained by the difference between

the annualized cost of the separate optimization case and the annualized costs of the two

cooperative optimization approaches. Both methods achieve the same amount of total

savings for the MG coalition (11,946 e/yr). However, when the traditional method is

applied, the savings are not fairly distributed among the buildings; for example, the first

residential buildings achieves almost three times higher savings than the two schools. By
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Table 4.9: Traditional Optimization vs Nash Bargaining Method

Res1 Res2 Sch1 Sch2 Civic Office Total

Separate Building Optimization

Annualized Cost (e) 32,336 20,532 29,992 22,628 49,622 21,650 176,760

Cooperative Optimization (Traditional Method)

Annualized Cost (e) 28,579 18,246 28,821 21,516 47,587 20,065 164,814

Annual Savings (e) 3,912 2,286 1,171 1,112 2,035 1,585 11,946

Cooperative Optimization (Nash bargaining method)

Annualized Cost (e) 30,322 18,566 27,979 20,614 47,659 19,674 164,814

Annual Savings (e) 2,014 1,966 2,013 2,014 1,963 1,976 11,946

solving the optimization problem with the Nash bargaining method, the coalition savings

are almost equally shared (about 2,000 e/yr for each building).

The power operation plans of one of the residential buildings, of the civic center, as well

as of one of the schools and the office building are shown in Figures 4.5-4.8, respectively.

The charts refer to a summer weekday and indicate the high energy exchange potential

due to the variability of the buildings’ load profiles and PVs’ capacity. The school and the

residential building have energy surplus over the period 10:00-17:00, and the civic center

during 09:00-12:00. A portion of the excess energy is exported to the common DC bus,

while another portion is used for charging the ESSs. The energy stored to the ESSs is later

used for covering part of the buildings’ evening demands. It should also be noted that the

residential building and the school export to the DC bus a great amount of the energy stored

to their ESSs over the periods 18:00-19:00 and 20:00, respectively. The aforementioned

amount is imported by the office and the civic center in order to satisfy part of their evening

peak demands, while the peak demand of the residential building is mainly satisfied by the

EVs’ discharging (21:00). It is also observed that the office covers a significant amount of its

energy demands over the period 09:00-17:00 by importing energy from the DC bus, while at

the same time using the power produced by its own PVs for charging the local ESS. The

same process is followed by the civic center in the period 14:00-16:00. The stored energy is

later used to cover part of the evening demands of the two buildings (at 18:00 and 21:00

for the office, at 20:00 and 23:00 for the civic center). Finally, over the night hours, when

the electricity tariffs are low, the buildings’ energy demands are mainly covered by imports

from the main grid.

Figures 4.9-4.12 present the power operation plans of the four buildings during a Sunday

in January. As in the previous case (summer weekday), over the night (01:00-08:00), the

electricity prices are low, while all buildings have low energy demands, which are satisfied

by imports from the main grid. During the PV production hours (09:00-18:00) the civic

center, the school and the office have great amounts of excess energy because the demand

is low compared to the produced PV power. Part of the excess energy is sold to the main

grid and to the residential buildings for charging their EVs (09:00-11:00), while a significant
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Figure 4.5: Power operation plan of residential building I (June, weekday)

Figure 4.6: Power operation plan of the civic center (June, weekday)
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Figure 4.7: Power operation plan of school I (June, weekday)

Figure 4.8: Power operation plan of the office building (June, weekday)
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Figure 4.9: Power operation plan of residential building I (January, weekend)

Figure 4.10: Power operation plan of the civic center (January, weekend)
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Figure 4.11: Power operation plan of school I (January, weekend)

Figure 4.12: Power operation plan of the office building (January, weekend)
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amount is also used for charging the ESSs. The stored energy is later used for covering the

demand during the evening, which coincides with the peak price period of winter months

(18:00 - 22:00). The residential building charges the EVs during the night low-price period

by importing energy from the main grid, as well as before the EVs’ departure (11:00) by

importing energy from the other buildings. In turn, the EVs contribute to the peak load

satisfaction (20:00-21:00). In addition, part of the peak load is covered by importing energy

from the ESS of the civic center (22:00). The ESS of the residential building also contributes

to the evening demand by providing energy that has been stored during 15:00 -18:00.

4.4.3 Participation of additional buildings

The aforementioned results refer to the case where the initial set of six buildings is optimized

over a 20-year project lifetime. In this section, it is considered that two additional buildings

join the MG coalition 5 years after the initial establishment. For comparison purposes, it is

assumed that the two additional buildings have exactly the same characteristics with the

initial civic center and office building. Therefore, the annualized cost of the additional civic

center and office when they are separately optimized is the same with the annualized cost of

the corresponding initial buildings i.e. 48,622 e/yr and 21,650 e/yr, respectively.

By implementing the Nash bargaining method, the obtained optimal PVs’, ESSs’ and

inverters’ sizes for the additional civic center are NPV=250.1 kW, NESS=133.7 kWh and

NINV =189 kW, respectively, while for the additional office the corresponding sizes are

NPV= 64.3 kW, NESS=76 kWh and NINV=72.2 kW. The participation of new buildings

increases the energy exchange potential. Figure 4.13 compares the buildings’ annual energy

exchanges under the initial and under the new MG topology. In the second case, all of

the initial buildings sell greater amounts of energy, while they also import greater amounts

of cheap energy from the MG. The additional buildings also participate in the energy

exchange process, however, the amounts of imported and exported energy are lower than the

corresponding initial buildings. This fact implies that it is more benefiting to participate in

the MG from the beginning than joining it at a later point.

Due to the higher energy exchange potential that is created, the participation of the new

buildings leads to lower annualized costs for the initial buildings; the savings for each of the

initial buildings are further increased by 1900e/year compared to the initial MG topology.

The additional buildings achieve equal amount of savings. However, in their case the savings

refer to the difference between the annualized costs of their separate optimization and the

annualized cost when they participate in the coalition. This fact also indicates that joining

the MG from the beginning is a more profitable choice than joining it some years after its

initial establishment. It is also found that the new coalition is unprofitable, if the additional

buildings join 8 years after its initial establishment because the savings of the new topology

are found to be negative. This is determined in step 3 of the flowchart of Figure 4.2; the total

cost of new coalition is higher than the summation of the total cost of the initial coalition

55



Figure 4.13: Energy exchanges of the MG participants

plus the annualized cost of the additional buildings when they are separately optimized.
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5 Analysis and quality of service evaluation of a

fast charging station for electric vehicles

In this chapter a novel multi-class M/G/s queuing model is presented for analyzing the

operation of a FCS. Two features differentiate the present analysis and make it more realistic

for describing the charging process of EVs over other approaches adopted in the literature.

The first feature refers to the classification of the various EV models by their different

battery sizes. The second feature refers to the fact that the charging time of each EV class

is derived based on a random distribution function that describes the batteries’ SoC when

the EVs arrive at the FCS, as well as based on the charging power provided by the CSs.

The proposed model is used in order to calculate the customers’ queue waiting time, as

well as the maximum amount of EVs that can be served subject to a QoS criterion for the

queue waiting time. Moreover, a charging strategy is proposed, which aims at controlling the

energy demands of the various EV classes. The FCS operator provides financial incentives

to the customers so that they charge their batteries up to a predefined departure SoC level,

instead of the maximum possible. As a result, the charging time of the users accepting the

offer is reduced, and the FCS operator can serve more EVs, while providing a certain level

of QoS, in terms of waiting time in the queue.

This chapter is organized as follows: Section 5.1 presents the FCS architecture, the

EVs’ classification, as well as the way the charging time distribution of each class is derived.

Section 5.2 presents the analysis for the derivation of the EVs’ mean waiting time in the

queue based on the proposed multi-class M/G/s queuing model. In section 5.3, the upper

bound of the EVs’ arrival rates is derived given a corresponding upper bound for the waiting

time in the queue. The charging strategy that allows the FCS operator to accommodate

even greater arrival rates is formulated in section 5.4. The proposed model is evaluated in

section 5.5, where both analytical and simulation results are presented and discussed.

5.1 Fast charging station’s architecture and modeling

The considered FCS is depicted in Figure 5.1 It consists of s CSs each containing both a

CHAdeMO and a CCS outlet that provide the same power rate PDC . The two outlets of

the same CS cannot operate simultaneously [82], and hence a single EV is served by each

CS at a time. As a consequence, in case all CS are occupied, a newly arrived EV waits in

the queue regardless the fast charging inlet it contains (CHAdeMO or CCS).

The EVs are divided into C classes depending on the rated capacity of their batteries

Bc, where c = (1, 2, ...C). It is considered that c-class EVs arrive at the FCS by following

a Poisson process with mean arrival rate λc, while the charging time Tc of c-class EVs is

derived by the following relation:

Tc = (SoCDc − SoCAc)
Bc
PDC

= (0.8− SoCAc)
Bc
PDC

. (5.1)
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Figure 5.1: FCS architecture.

The derivation of the EVs’ charging time Tc is based on the assumption that the power rate

PDC is constant during a fast charging session [83]. SoCDc denotes the state of charge of

the battery when c-class EVs depart from the FCS, while SoCAc when they arrive. It is also

assumed that all customers recharge their batteries up to SoCDc=0.8, which is the maximum

possible level during a fast charging session [73], while SoCAc is considered to be a random

variable that follows a cumulative distribution function (CDF) Fc(x)=P (SoCAc≤x). Based

on equation (5.1) and the aforementioned considerations, Tc is also a random variable. The

CDF Gc, the probability distribution function (PDF) gc and the mean mc of c-class EVs’

charging time Tc are derived by the following equations, respectively:

Gc(t) = P (Tc ≤ t) = P [(0.8− SoCAc) Bc
PDC

≤ t] =

= P (SoCAc > 0.8− PDC
Bc

t) = 1− Fc(xc(t))
(5.2)

gc(t) =
d

dt
Gc(t) (5.3)

mc =

∫
tgc(t)dt (5.4)

where

xc(t) = 0.8− (PDC/Bc)t. (5.5)

Furthermore, in a multi-class queuing system, the load ac of each class represents the mean

number of CSs occupied by the corresponding class, and it is given by [85]:

ac = λcmc. (5.6)
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5.2 Determination of the EVs’ waiting time in the queue

The determination of the mean waiting time of the EVs in the queue is based on the

derivation of the superposed arrival process, the superposed charging time distribution, as

well as the total load and the utilization rate of the system. This procedure is based on the

aggregation of all C classes into a single class [85].

The superposed arrival process of the system is determined as a Poisson process, since

the arrival process of each EV class is also Poisson [86]. Therefore, the mean superposed

arrival rate is of the system is:

λ =

C∑
c=1

λc. (5.7)

The analytical expression of the superposed charging time distribution is derived as

follows: Let T be a random variable that denotes the charging duration at an arbitrary CS,

given that an EV of any class enters for service. The probability that a c-class EV enters

for service at the aforementioned arbitrary CS is [85]:

kc =
λc
λ
. (5.8)

As a result, the charging time CDF G(t)=P (T ≤ t) is equivalent to the probability [k1P (T1 ≤
t)
⋃
k2P (T2 ≤ t)

⋃
...
⋃
kCP (TC ≤ t)]. The events kcP (Tc ≤ t) where c = (1, 2, ...C) are

mutually exclusive because only one EV is being charged at a time in the arbitrary CS.

Therefore, G(t) is determined as follows:

G(t) =

C∑
c=1

kcGc(t). (5.9)

The expression of the CDF is used for the derivation of the PDF g(t), the mean m and the

variance v of the charging time distribution through the following relations, respectively:

g(t) =
d

dt
G(t) (5.10)

m =

∫
tg(t)dt (5.11)

v=

∫
t2g(t)dt−m2 (5.12)

Due to the fact that the arrival process of each EV class is Poisson, the total load of the
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system a equals to the sum of the loads of each class [86]:

a =

C∑
c=1

ac (5.13)

The total load represents the mean number of busy CSs in the steady state condition of the

system [84], while as noted in the previous section, the load ac of each EV class represents

the mean number of CSs occupied by c-class EVs. In addition, the following ratio defines

the utilization rate of a multi-server queuing system:

ρ =
λm

s
=
a

s
. (5.14)

It should be noted that for a queuing system to be stable i.e. to have a finite queue in the

steady state ρ < 1 is a necessary condition [84].

The derivation of the superposed arrival rate and the charging time distribution, as

well as the determination of the total load and the utilization rate of the system enables

the simplification of the considered multi-class system into a single-class M/G/s system.

Consequently, the mean waiting time W of the EVs in the queue can be determined by

using the analysis presented in [87].

Initially, the mean number of customers LM/G/s waiting in the queue in a single-class

M/G/s system is approximated by [87]:

LM/G/s ≈
1 + c2

v
2c2v

LM/M/s
+ 1−c2v

LM/D/s

(5.15)

where LM/M/s and LM/D/s denote the mean number of customers waiting in the queue in

the corresponding M/M/s and M/D/s systems, respectively, while c2
v is the square of the

coefficient of variation of the service time PDF:

c2
v =

v

m2
. (5.16)

The mean number LM/M/s of customers waiting in the queue in an M/M/s system is obtained

by [84]:

LM/M/s =
ραs

s!(1− ρ)2

[
s−1∑
r=0

αr

r!
+
αs

s!

(
1− α

s

)−1
]−1

(5.17)

while LM/D/s is approximated using the following equations [87]:

LM/D/s ≈ ψ(s, ρ)LM/M/s (5.18)
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ψ(s, ρ) =
1

2

[
1 + Φ(θ)ζ(ρ)

(
1− exp

{
− θ

Φ(θ)ζ(ρ)

})]
(5.19)

ζ(ρ) =
1− ρ
ρ

(5.20)

Φ(θ) =
θ

8(1 + θ)

(√9 + θ

1− θ
− 2
)
, with θ =

s− 1

s+ 1
(5.21)

Finally, the mean number of customers LM/G/s waiting in the queue in the single-class

M/G/s system is used for the determination of the mean waiting time of customers in the

queue through Little’s law [84]:

W =
LM/G/s

λ
. (5.22)

5.3 Maximum arrival rate capacity of the fast charging sta-

tion

The main advantage of fast charging compared to slow charging at home is the short duration

of the charging session, due to the high power rates provided by the FCSs. However, for a

FCS to provide high QoS, the EVs’ waiting time in the queue should be kept to low levels;

otherwise, the aforementioned advantage is pointless. In this section, the EVs’ maximum

arrival rates are initially computed, subject to a maximum queue waiting time value Wq.

Moreover, in both cases, the operator’s mean revenue during a time interval τ is computed,

by taking into account that the EVs’ mean arrival rates are equal to their maximum values.

As analyzed in the previous section, the mean waiting time of the EVs in the queue

depends on the superposed arrival rate and the superposed charging time distribution of

the system. In turn, the superposed charging time distribution is derived based on the

charging time distribution of each single class, as well as on the probabilities kc. In the

following analysis it is assumed that the values of k c can be approximated based on the

market shares hc of the EV classes in the region where the FCS is located, so that kc=hc.

The aforementioned consideration allows for the computation of the maximum superposed

arrival rate λmax and the maximum arrival rate of each EV class, λc,max by using Algorithm

1, which is presented in Figure 5.2. Algorithm 1 uses as input parameters the QoS criterion

for the waiting time, the battery capacities, the SoCAc CDFs and the market shares of the

EV classes, as well as the number of CSs and the power rate they provide. At the first

stage, the charging time distribution of each class and the system’s superposed charging time

distribution are derived. The second stage refers to a loop that calculates the maximum

superposed arrival rate using the waiting time upper limit as a termination condition. Finally,

the third stage determines the maximum arrival rate of each class based on the result of

stage 2 and the probabilities kc.
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QoS criterion: Wq

EV classes: B1, B2,..., BC
Arrival SoC CDFs: F1, F2,...,FC

Market shares: h1, h2,...,hC
Charging spots: s, PDC

for c = 1 : C

Calculate Gc(t) through equation 5.2
Set kc=hc

Calculate G(t), g(t), m and v
through equations 5.9 -5.12, respectively

λmax=0, W=0

While W≤Wq

λmax = λmax + 0.0001
calculate W through equations 5.15-5.22

λmax

for c = 1 : C

λc,max = λmaxkc

End

Stage 1

Stage 2

Stage 3

Figure 5.2: Flowchart of Algorithm 1.

Next, the operator’s mean revenue R during a time interval τ is calculated under the

assumption that the arrival rates are equal to their maximum values. It is also considered

that the duration τ is long enough so that the queuing system reaches the steady state. The

aforementioned concept may represent a peak traffic period during a typical day. As it is

noticed in section 5.3, the total load of the system represents the mean number of occupied

CSs in the steady state. Hence, the mean power PEVs drawn by the EVs over the interval τ

is given by the product of the mean number of occupied CSs (amax = λmaxm) with their

power rate:

PEVs = amaxPDC (5.23)
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Furthermore, the mean energy supplied to the EVs during the interval τ is:

EEVs = τPEVs (5.24)

Finally, the mean revenue R of the operator is calculated in equation 5.25 where r (e/kWh)

denotes the price that the FCS operator charges the served EVs.

R = rEEVs (5.25)

5.4 Charging strategy for increasing the arrival rate capacity

In this section, a charging strategy is presented that can be implemented by the FCS operator

in order to increase the maximum arrival rate capacity of the system (i.e. λ
′
max > λmax)

while providing the same QoS. According to the proposed strategy the FCS operator provides

financial incentives (price discount) to customers that accept to recharge their batteries up

to an arranged departure SoC threshold SoCthr, which is lower than the maximum possible

departure SoC (i.e. SoCDthr< 0.8).

For the derivation of the maximum arrival rates λ
′
max and λ

′
c,max, in this case, each single

class is divided into two additional subclasses c1 and c2. Subclass c1 contains the percentage

σc of c-class EVs that accept the operator’s offer, hence, kc1 = σckc. On the contrary,

subclass c2 contains the remaining 1-σc percentage of c-class EVs that do not accept the

offer, hence, kc2 = (1− σc)kc. The charging time CDF Gc1(t) and PDF gc1(t), as well as the

mean charging time mc1 for the EVs belonging to subclasses c1 where c = (1, 2, ..., C) are

derived through equations (5.2)-(5.4), respectively, by replacing xc(t) with:

xc1(t) = SoCDthr −
PDC
Bc

t. (5.26)

Regarding the charging time CDF Gc2(t), PDF gc2(t) and mean mc2 of the EVs belonging

to subclasses c2, they have exactly the same form as in the set of equations (5.2)-(5.4).

Based on the aforementioned analysis, the maximum arrival rates λ
′
max and λ

′
c,max, under

the proposed charging strategy, are computed by using Algorithm 2 of Figure 5.3. Note

that compared to Algorithm 1, Algorithm 2 uses two extra input parameters (i.e. σc and

SoCDthr).

Moreover, the operator’s mean revenue R′ under the proposed charging strategy is

calculated by the following relation:

R
′

= τ PDC (1− d) r

C∑
c=1

ac1 + τ PDC r

C∑
c=1

ac2. (5.27)
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QoS criterion: Wq

EV classes: B1, B2,..., BC
Arrival SoC CDFs: F1, F2,...,FC

Market shares: h1, h2,...,hC
Charging spots: s, PCS

Departure SoC threshold, percent-
age of c-class EVs that recharge

up to this threshold: SoCDthr, σc

for c = 1 : C

Calculate Gc1(t) through equations 5.2 and 5.26.
Calculate Gc2(t) through equation 5.2.
Set kc=hc, kc1=σchc and kc2=(1-σc)hc

Calculate G(t), g(t), m and v
through equations 5.11 - 5.12, respectively

λ
′
max=0, W=0

While W≤Wq

λ
′
max = λ

′
max + 0.0001

calculate W through equations 5.15 -5.22

λ
′
max

for c = 1 : C

λ
′
c,max = λ

′
maxkc

End

Stage 1

Stage 2

Stage 3

Figure 5.3: Flowchart of Algorithm 2.

As noted in section 5.4, the load of each class (or subclass) represents the mean number

of CSs occupied by the EVs belonging to this class (or subclass). Under the proposed

strategy the load of subclasses c1 is ac1 = σcλ
′
c,maxmc1, while the load of subclasses c2

is ac2 = (1 − σc)λ
′
c,maxmc2, with c = (1, 2, ..., C). Note also that the EVs belonging to

subclasses c2 are charged with price r, while those belonging to subclasses c1 are offered a

discount d, i.e. r
′

= (1− d)r. Therefore, the first product in equation (5.27) represents the

operator’s mean revenue due to the energy supplied to the EVs belonging to subclasses c1,

while the second one represents the operator’s mean revenue due to the energy supplied to

the EVs belonging to subclasses c2.
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5.5 Numerical results

This section provides analytical and simulation results for the evaluation of the proposed

modeling of a FCS as a multi-class M/G/s system. The considered FCS consists of s=5

CSs and the power rate provided by the CHAdeMO and CCS outlets is PDC=50 kW [82].

Depending on the battery sizes, the EVs are divided into C=3 classes, which correspond

to the 3 of the most popular EV models of the Spanish market [88]; namely, Nissan Leaf

(B1=24 kWh), BMW i3 (B2=18.8 kWh) and Mitsubishi i-MiEV (B3=16 kWh). It is also

considered that the random variables SoCA1, SoCA2 and SoCA3 follow the normal CDF

with mean 0.25 and standard deviation 0.059. This selection is based on the assumption that

the vast majority of EVs seek for fast charging facilities when their batteries’ SoC ranges in

the interval [0.15, 0.4], which is the 95% confidence interval of the CDF.

The accuracy of the proposed mathematical model is confirmed through the comparison

of analytical results with corresponding results from simulation. To this end, a simulator

was built in Matlab, which creates events (EV arrivals and departures) based on random

numbers. In order to simulate the Poisson arrival process, the simulator considers a large

number of EV arrivals i.e. 106. For each simulated EV, it records the time of its arrival,

the time of its entering for charging and the time of its departure from a CS, in order to

determine the EVs’ mean waiting time in the queue. Simulation results that are presented

in this section are obtained as mean values of 20 runs, which are performed on an Intel Core

i7-4712MQ 2.30GHz CPU and 8 GB RAM. For the computation of the queue waiting time,

each simulation run lasts 12 minutes, on average. On the contrary, the analytical model

computes the queue waiting time in less than 0.2 seconds.

The analytical and simulation results for the EVs’ mean waiting time in the queue versus

the superposed arrival rate of the system are presented in Figure 5.4. For the derivation

of the waiting-time results, 3 different scenarios are considered regarding the values of

the probabilities kc. For each scenario, Table 5.1 summarizes the set of values for kc and

the system’s mean charging time, which is calculated through equation (5.11). Scenario 1

considers that the arrival rate of Leaf (class 1), which is the EV model with the biggest

battery, is double the arrival rates of i3 (class 2) and i-MiEV (class 3). On the other hand,

scenario 3 considers that the arrival rate of i-MiEV, which is the EV model with the smallest

battery, is double the arrival rates of the other EV models. For this reason, scenario 1 is

Table 5.1: Parameters for the 3 evaluation scenarios.

Scenario k1 k2 k3 m (h)

1 0.5 0.25 0.25 0.2277

2 0.25 0.5 0.25 0.2134

3 0.25 0.25 0.5 0.2057
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Figure 5.4: Waiting-time results for the 3 evaluation scenarios.

characterized by the longest mean charging time, while scenario 3 is characterized by the

shortest one.

As Figure 5.4 indicates, despite the different mean charging time values under the 3

scenarios, the performance of the system is quite similar for arrival rate values up to 14

(EVs/hour). After that point, the waiting time curve becomes steeper with the increase of λ.

As noted in section 5.2, a queuing system has a finite queue if the utilization rate is lower

than 1 (ρ < 1). Therefore, the aforementioned outcome can be interpreted by mapping the

arrival rate values to utilization rate values through equation (5.14). The waiting time curve

becomes steeper as the utilization rate of the system approaches its limiting value. This is

more intense under scenario 1, which is characterized by the highest mean charging time.

Finally, it should also be pointed out that the comparison of analytical and simulation results

of Figure 5.4 reveals that the accuracy of the proposed queuing model is very satisfactory;

in all cases the difference between analysis and simulation is smaller than 1%.

Next, the maximum arrival rates of the EVs are computed given that the mean waiting

time in the queue is equal to a maximum acceptable limit Wq=1 min, which is the QoS

criterion. In this case, the derivation of the ratios kc is based on the market shares hc of the

EV classes in Spain [88]. By dividing the population of Leaf with the aggregate population

of the 3 EV models, it is derived that k1 = h1 = 0.543. Following the same process for i3

and i-MiEV, k2 and k3 are found to be 0.133 and 0.324, respectively. Given the kc values,

the QoS criterion, and the arrival SoC CDFs, Algorithm 1 computes the maximum value for

the superposed arrival rate, which is λmax=13.37 (EVs/h), as well as the maximum arrival

rates for the three EV classes, which are λ1,max=7.26 (EVs/h), λ2,max=1.78 (EVs/h) and

λ3,max=4.33 (EVs/h). By assuming that the operator’s energy tariff is r=0.15 (e/kWh), as
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Figure 5.5: Effectiveness of the proposed charging strategy in terms of arrival rate capacity
increase.

well as that the EVs’ arrival rates are equal to their maximum values during a period of

τ=4 h, the FCS operator’s revenue during this period is R=91.4 e (equation 5.25).

In what follows, the operator’s capability to increase the maximum arrival rate capacity

of the system by γ = λ
′
max

/
λmax, while keeping the same QoS level, is examined. This can

be achieved by implementing the charging strategy in section 5.4. Crucial for the effectiveness

of the proposed charging strategy are the values of parameters σc where c = (1, 2, 3), which

determine the percentage of the EVs that belong to subclasses c1. Figure 5.5 presents

analytical results for the increase in the arrival rate capacity of the system γ versus the

percentages σc. For presentation purposes it is assumed that σ1=σ2=σ3=Σ. Furthermore,

the performance of the proposed strategy is evaluated by considering two departure SoC

thresholds (0.65 and 0.7, respectively). As it was anticipated, the potential of the FCS to

serve greater arrival rates providing the same QoS level increases with the increase of Σ.

This is due to the fact that the EVs belonging to subclasses c1 obtain less amount of energy

than those belonging to subclasses c2. Hence, the greater the values of Σ, the shorter the

mean charging time of the system becomes. Furthermore, the EVs of subclasses c1 obtain

less energy when SoCDthr=0.65 compared to the case where SoCDthr=0.7. Therefore, for

the same values of Σ, the performance of the proposed strategy is better in the former case.

The proposed charging strategy dictates that the operator makes a discount d to those

EVs that accept to recharge up to SoCDthr. Figure 5.6 presents the maximum discount dmax

that the operator is able to make versus the parameter Σ. The values of dmax are obtained

by setting R
′
=R. Recall that R is calculated through equation (5.25) and represents the

revenue of the operator during a period τ where all EVs recharge up to SoCD=0.8 and

67



Figure 5.6: Maximum discount the FCS operator can make under the implementation of the
proposed charging strategy.

the arrival rates are equal to λmax. On the other hand, R
′

is calculated through equation

(5.27) and represents the revenue of the operator during τ when a percentage of EVs (Σ)

recharge up to SoCDthr and the arrival rates are equal to their maximum values (λ
′
c,max), as

calculated by Algorithm 2.

Without loss of generality, let us interpret the outcomes of Figure 5.6 by comparing the

case where all EVs (Σ=100%) recharge up to SoCDthr=0.7 with the case where all EVs

recharge up to SoCD=0.8 (departure SoC when the proposed strategy is not applied). In

the former case, each single EV obtains less energy than in the latter. However, the total

amount of energy that the operator provides is higher under the SoCDthr=0.7 scenario

than under the SoCD=0.8 one, due to the increase in the EVs’ maximum arrival rates (by

γ=1.28, Figure 5.5). As a result, the operator can make a discount dmax=4.23% (Figure

5.6) in the price that sells energy without financial losses. For the same reason (increase in

the maximum arrival rate by γ=1.47), the maximum discount in the case where Σ=100%

and SoCDthr=0.65 is dmax=6.54%. Therefore, although it is reasonable to assume that the

EV drivers would more easily accept to recharge their batteries up to SoCDthr=0.7 instead

of SoCDthr=0.65, the FCS operator can make the SoCDthr=0.65 case more attractive by

providing greater discounts. Finally, it should be noted that any discount lower than dmax

results in higher operator’s revenue. This is shown in Table 5.2, which presents the revenue

of the operator versus different discount levels.
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Table 5.2: Operator’s revenue versus different discount levels.

Case Revenue (e)

SoCD=0.8 91.4

Discount (%) 1 2 3 4.23 5 6.54 7

Case Revenue (e)

SoCDthr=0.7, Σ = 100% 94.5 93.5 92.6 91.4 90.7 89.2 88.8

SoCDthr=0.65, Σ = 100% 96.8 95.9 94.9 93.7 92.9 91.4 91.0
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6 Performance evaluation of a multi-standard fast

charging station for electric vehicles

In this chapter, a more holistic approach is presented for the derivation of the EV classes’

recharging patterns compared to the analysis of the previous chapter. Specifically, the

recharging patterns of the EV classes are denoted by the increase of their batteries’ SoC,

which is considered to be a random variable that may follow any possible distribution

function. This consideration enables the utilization of real-case statistical data regarding

the amount of energy obtained during a fast charging session, such as the data presented in

[89]. Moreover, it contributes to a more flexible analysis because the EVs are not necessarily

assumed to recharge their batteries up to the maximum departure SoC level, as in chapter 5.

An additional novelty of the present analysis is that the EVs are classified not only by their

battery size, but also by the fast charging option (DC or AC) they use. This issue enables

the modeling of FCSs that consist of multi-standard CSs containing a CHAdeMO, a CCS

and an AC outlet in the same cabinet [90].

Based on the aforementioned novelties, a FCS is modeled as two multi-class M/G/s

queues (one for the AC and one for the DC charging queue). The operator’s overall daily

profit margin, the EVs’ mean waiting time in each queue and the tail of the queue waiting

time are initially derived under the assumption that a flat-rate pricing policy (FPP) is

implemented during the entire duration of the day. Under the FPP, the amount of energy

obtained by the EVs is likely to be high because it is mainly determined by the drivers’

preferences, rather than actual needs. In turn, this may lead to long waiting times in the

queue, especially during peak traffic periods. The flat fee per obtained kWh pricing scheme

is one of the most prevalent pricing policies in the existing market of fast charging services

[91]-[94], while it also indicates the upper bound of the EVs’ queue waiting time.

A different pricing policy is also proposed, where the FCS operator sets energy thresholds

and increases the price per obtained kWh for those customers that request amounts of

energy greater than the arranged thresholds. The proposed scheduled pricing policy (SPP)

is activated during parts of the day where the load of the FCS is high and the queue waiting

time rises to unacceptably high levels. The objective of the SPP is to reduce the load of the

system and the queue waiting time by regulating both the EVs’ arrival rates and recharging

patterns.

This chapter is organized as follows. In section 6.1, we derive the FCS operator’s daily

profit, the EVs’ mean waiting time in the queue and the tail of the queue waiting time when

the FPP is activated. In section 6.2, the SPP is formulated, while it is also presented the

analysis of the FCS when the FPP or the SPP are activated during different parts of the

day. Finally, in section 6.3, we evaluate the operation of the FCS and the effectiveness of

the SPP by providing numerical examples.
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6.1 Fast charging station’s operation when the FPP is acti-

vated

The FCS is located in a densely populated area and consists of s multi-standard CSs. The

CSs are equipped with a CHAdeMO and a CCS outlet that provide the same power PDC ,

as well as with an AC outlet that provides PAC . According to the technical specifications of

the CSs [90], CHAdeMO and CCS outlets of the same CS cannot operate simultaneously.

On the contrary, the simultaneous operation of the AC outlet with one of the DC outlets

is feasible. For this reason, the EVs that request service by either a CHAdeMO or a CCS

outlet form a DC queue, while the EVs that request service by an AC outlet form a separate

AC queue. In this section, the operation of the DC system is thoroughly analyzed; due to

the fact that the analysis of the AC system follows a similar process, the derivation of the

AC performance metrics is described in a more synoptic manner.

6.1.1 EVs’ recharging pattern and charging time

The EVs served by the DC outlets (CHAdeMO and CCS) are divided into CDC classes,

based on their battery size, Bc with c= (1, 2, ..., CDC). The amount of energy Ec that a

c-class EV obtains is defined by the following relation:

Ec = ∆SoCcBc (6.1)

where ∆SoCc is the increase in its battery SoC during the fast charging session. Under the

FPP, the amount of energy that the EVs obtain depends only on the drivers’ preferences

and/or estimated needs, since the price does not alternate with the amount of the obtained

energy. Therefore, ∆SoCc is considered to be a random variable that follows a general

CDF Fc(x) = P (∆SoCc ≤ x), with a corresponding PDF fc(x). In practice, ∆SoCc ranges

between a minimum and a maximum value ∆SoCc,min and ∆SoCc,max, respectively (i.e.

fc(x) is truncated in the interval [∆SoCc,min,∆SoCc,max]).

By taking into account that the charging power PDC is constant during fast charging

[83], the charging time Tc of a c-class EV is derived as:

Tc = ∆SoCc
Bc
PDC

. (6.2)

Based on (6.2), Tc is also a random variable, with a minimum value Tc,min = ∆SoCc,min (Bc/PDC)

and a maximum value Tc,max =∆SoCc,max (Bc/PDC). The CDF of Tc is derived by:

Gc(t)=P (Tc ≤ t)=P (∆SoCc ≤ PDC
Bc

t)=Fc(xc(t)) (6.3)

where xc(t)=(PDC/Bc)t. Furthermore, the PDF gc(t) and the mean mc of Tc are respectively
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obtained as follows:

gc(t) =
d

dt
Gc(t) =

PDC
Bc

fc(xc(t)). (6.4)

mc =

∫
tgc(t)dt (6.5)

6.1.2 Fast charging station’s load and operator’s daily profit margin

The EVs arrive at the FCS by following a Poisson process, while the mean arrival rates

of the EV classes differ during the day, depending mainly on the traffic. For example, the

expected arrival rates may be higher during afternoon when people return from their jobs

and the traffic is heavy, compared to the arrival rates at night when the majority of the

people are at their homes and the traffic is lighter. Therefore, the mean arrival rate of c-class

EVs during a time interval Iδ of duration τδ is denoted as λc,δ, while the load of c-class EVs

during the same interval is defined as:

ac,δ = λc,δ mc. (6.6)

As noted in the previous chapter, in a multi-class queuing system where the arrival process

of each class is Poisson, the superposed arrival process is also Poisson. The aggregated mean

arrival rate of the system at the time interval Iδ is computed by summing the mean arrival

rates the EV classes:

λδ =

C∑
c=1

λc,δ. (6.7)

For the same reason (Poisson arrival process), the total load of the system equals the sum of

the loads of the EV classes:

aδ =
C∑
c=1

ac,δ. (6.8)

Recall also (from section 5.2) that the total load of the system aδ represents the mean

number of busy CSs, while ac,δ represents the mean number of CSs occupied by c-class EVs

at time interval Iδ. Therefore, the mean power charged to the EVs during an interval Iδ is

calculated by multiplying the mean number of occupied CSs aδ by the power output of each

CS:

PV,δ = aδPDC (6.9)

while the mean energy provided to the EVs is obtained as follows:

EV,δ = τδPV,δ (6.10)
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When the FPP is activated, the operator charges the served EVs with a constant price R.

Therefore, the revenue of the operator during the time interval Iδ is:

RVNδ = R EV,δ (6.11)

In order to compute the operator’s expenses (cost of supplied energy) during the same time

interval, we make the following considerations: i) the interval Iδ consists of Hδ time slots Zh

of duration dh, where h= {1, 2, . . . Hδ} and τδ=
∑Hδ

h=1 dh. ii) During these time-slots, the

price Rh that the FCS operator buys energy is constant. The expenses of the operator are

then determined by the following relation:

EXPδ =

Hδ∑
h=1

Rh dh PV,δ (6.12)

which expresses the sum of products of the mean charging energy dhPV,δ during each time

slot by the cost of the supplied energy Rh. The revenue and the expenses of the FCS

operator during a time interval Iδ are computed through the relations (6.11) and (6.12). By

assuming that a day consists of ∆ time intervals, the operator’s daily revenue and expenses

for the DC system are respectively obtained as follows:

RVNDC =

∆∑
δ=1

RVNδ. (6.13)

EXPDC =

∆∑
δ=1

EXPδ. (6.14)

Given the battery sizes, the recharging patterns and the arrival rates of the AC classes

CAC , as well as the power rate of the AC outlets, the operator’s daily revenue RVNAC and

expenses EXPAC for the AC system are calculated by following the same process (6.1)-(6.14).

Furthermore, the operator’s overall profit margin is expressed as the normalized profit:

Γ =
(RVNDC +RVNAC)− (EXPDC + EXPAC)

RVNDC +RVNAC
. (6.15)

6.1.3 EVs’ queue waiting time

In this section the QoS metrics of the system i.e. the EVs’ mean waiting time in the queue

and the tail of the queue waiting time are calculated. The EVs’ mean waiting time in the

queue in a multi-class M/G/s system is determined based on the analysis presented in the

former chapter. The first and foremost step is to derive the CDF of the superposed charging

74



time of the system Tδ during the interval Iδ:

Gδ(t) = P (Tδ ≤ t) =

C∑
c=1

kc,δGc(t) (6.16)

where kc,δ = λc,δ/λδ denotes the probability that a c-class EV enters an arbitrary CS. The

the mean mδ and the coefficient of variation vδ of the superposed charging time distribution

are then derived as follows:

mδ =

∫
tgδ(t)dt, gδ(t) =

d

dt
Gδ(t) (6.17)

vδ =

∫
t2gδ(t)dt−m2

δ (6.18)

while, the utilization rate of the system during the interval Iδ is:

ρδ =
λδ mδ

s
=
aδ
s
. (6.19)

The determination of the aforementioned parameters enables the computation of the

EVs’ mean waiting time in the DC queue WDC,δ during the time interval Iδ by following

the process described in the previous chapter (equations (5.15)-(5.22)).

Besides the mean waiting time in the queue, an additional criterion for assessing the

effective operation of a FCS is the tail of the queue waiting time, which denotes the probability

that the customers’ waiting time in the queue TQ,δ is longer than a predefined time period

TL. This probability is approximated through the following relation, by incorporating the

superposed multi-class metrics mδ, ρδ and aδ into the single-class analysis presented in [87]:

P (TQ,δ > TL) = Q(s, ρδ) exp

{
−
s(1− ρδ

)
TL

mδOG,δ

}
(6.20)

Q(s, ρδ) =
(ρδs)

s

s!(1− ρδ)

[
s−1∑
r=0

αrδ
r!

+
αsδ
s!

(
1− αδ

s

)−1
]−1

(6.21)

OG,δ =
Lδ,M/G/s

Lδ,M/M/s
(6.22)

where Lδ,M/G/s and Lδ,M/M/s denote the mean number of customers waiting in the queue in

an M/G/s and an M/M/s system, respectively, and they are calculated as in section 5.2.

Finally, given the battery sizes, the recharging patterns and the arrival rates of the AC

classes, as well as the power rate of the AC outlets, the mean waiting time and the tail of

the queue waiting time for the AC system are calculated by following the process described

in this section regarding the DC system.
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6.2 Fast charging station’s operation when the SPP is acti-

vated

The queue waiting time depends on the EVs’ arrival rates and charging times. Taking into

account that the FCS is located in a densely populated area, the EVs’ arrival rates are

expected to be high, especially during peak traffic hours. Furthermore, the charging times

depend on the amount of energy obtained during a charging session. Researchers in [95]

report that the EV drivers usually overestimate their energy needs. Moreover, under the

FPP, the amount of obtained energy is likely to be high because it is mainly determined by

the drivers’ preferences or/and overestimated needs, rather than actual needs. Therefore,

the queue waiting time may rise to unacceptably high levels. In this section we consider that

there is a subset {Ω}∈{∆} of time intervals Iω, ω∈{Ω} during which the waiting time Wω

is higher than a maximum allowed for QoS satisfaction limit WQ. Over these time intervals

the operator activates the SPP, which aims at reducing the system’s load and queue waiting

time by regulating both the EVs’ arrival rates and recharging patterns.

The main feature of the SPP is that the FCS operator sets various energy thresholds

Ethr,j (j = 1, 2, ..., J) for all EVs, which correspond to thresholds in the change of SoC of

c-class EVs ∆SoCc,thr,j = Ethr,j/Bc. SPP dictates that the EVs are allowed to obtain up to

Ethr,j kWh at the same price R as in the FPP. However, in case they request to get more

than Ethr,j , they are charged with a higher price R
′
j>R. The operator determines the Ethr,j

values depending on the level of the queue waiting time. Specifically, when the waiting time

lies on the range Wl,j < Wω ≤Wl,j+1, the activated energy threshold is Ethr,j . As shown in

Figure 6.1, higher waiting time levels correspond to the activation of lower energy thresholds.

The consideration of multiple thresholds minimizes the effect of an abrupt energy reduction

that could result in significant decrease in customers’ convenience and comfort. Furthermore,

the minimum value of the selected energy thresholds Ethr,J can be determined by taking into

account statistical data for the EVs’ mean covered distance between two consecutive charging

events [96]. The aforementioned selection reflects the operator’s intention to promote a more

sensible recharging pattern during peak traffic periods.

In order to derive the queue waiting time and the operator’s profit when the SPP is

activated, we divide each EV class into 3 additional subclasses c1, c2 and c3. The rationale of

this division, the determination of the arrival rate, as well as the derivation of the recharging

pattern and charging time distribution of each subclass are presented in the following section,

which refers to the DC system. The same process can be used for the analysis of the AC

system.

6.2.1 EVs’ subclasses

Under the SPP, the division of each EV class to 3 subclasses is necessary, due to the fact that

the price change may affect the number of the EVs that will enter the FCS and the amount
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Figure 6.1: Activated energy thresholds depending on the waiting time level.

of energy they will eventually obtain. The proportion of c-class EVs that would request

more than Ethr,j kWh under the FPP is computed by the integral Πc,j =
∫ ∆SoCc,max

∆SoCc,thr,j
fc(x)dx.

Due to the price increase under the SPP, we assume that a percentage of those EVs Ξc,j

quit the FCS without recharging, while a percentage Σc,j decide to obtain exactly as much

energy as the operator’s threshold, in order to avoid the higher price.

Subclass c1 consists of the remaining Nc1,j = Πc,j(1 − Ξc,j − Σc,j) percentage of EVs

which, despite the price increase, request the same amount of energy as in the FPP because

it is necessary for reaching their destination. It should be noted that the proposed SPP

dictates that if the EV drivers charge more than the arranged energy threshold, then they

have to pay the higher price R
′
j for each kWh obtained. Hence, since subclass c1 drivers

decide to charge their EVs under a higher price (because they need more energy for reaching

their destination than the arranged threshold), it is considered that they are not strongly

motivated to change their recharging pattern. Therefore, the mean arrival rate of subclass

c1 EVs is λc1,ω,j=Nc1,jλc,δ, while their recharging pattern is obtained by truncating the

function fc(x) in the interval [∆SoCc,thr,j ,∆SoCc,max]:

fc1,j(x)=


fc(x)∫ ∆SoCc,max

∆SoCc,thr,j
fc(x)dx

, ∆SoCc,thr,j≤x≤∆SOCc,max

0 otherwise.
(6.23)

The above normalization is necessary so as the integral of fc1,j(x) to become equal to 1. The

charging time PDF gc1,j(t) of subclass c1 EVs is derived by following the same procedure as

in section 6.1.1 for the derivation of gc(t) from fc(x):

gc1,j(t) =

{
PDC
Bc

fc1,j(xc(t)), Tthr,j ≤ t ≤ Tc,max

0 otherwise
(6.24)

where xc(t) = (PDC/Bc)t and Tthr,j = Ethr,j/PDC . By defining as mc1 the mean of gc1(t),

the load of subclass c1 is αc1,ω,j=λc1,ω,j mc1,j .
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Subclass c2 consists of the proportion Nc2,j =Πc,jΣc,j of the EVs that decide to obtain

exactly Ethr,j kWh. For these EVs, it is assumed that requesting more than Ethr,j kWh

is not indispensable; they can satisfy their urgent needs by obtaining as much energy as

the arranged threshold. The mean arrival rate of subclass c2 EVs is λc2,ω,j=Nc2,jλc,δ, while

their recharging pattern and charging time CDF are denoted, respectively, as:

Fc2,j(x) =

{
1 x = ∆SoCc,thr,j

0 otherwise
(6.25)

Gc2,j(t) =

{
1 t = Tthr,j

0 otherwise.
(6.26)

The mean charging time of subclass c2 EVs is mc2,j=Tthr,j , while the load of subclass c2 is

αc2,ω,j = λc2,ω,jmc2,j .

Finally, subclass c3 consists of the proportion Nc3,j=1−Πc,j of c-class EVs that would

request up to Ethr,j kWh under the FPP. This type of EVs do not alternate their recharging

pattern under the SPP because they are charged with the same price as in the FPP. The

mean arrival rate of subclass c3 EVs is λc3,ω,j=Nc3,jλc,δ, while their recharging pattern is

obtained by truncating the function fc in the interval [∆SoCc,min,∆SoCc,thr,j ]:

fc3,j(x)=


fc(x)∫ ∆SoCc,thr,j

∆SoCc,min
fc(x)dx

, ∆SoCc,min≤x≤∆SOCc,thr,j

0 otherwise.
(6.27)

Furthermore, the corresponding charging time PDF is:

gc3,j(t) =

{
PDC
Bc

fc1,j(xc(t)), Tc,min ≤ t ≤ Tthr,j
0 otherwise

(6.28)

By defining as mc3 the mean of gc3,j(t), the load of subclass c3 EVs is αc3,ω,j=λc3,ω,jmc3,j .

Having determined the arrival rate and the charging time distribution of each subclass,

the mean and the tail of the queue waiting time under the SPP can be derived by following

the procedure described in section 6.1.3.

6.2.2 Operator’s daily profit margin

In this section the operator’s revenue and expenses are initially determined during a time

interval Iω where the SPP is activated. Afterwards, the operator’s overall daily profit margin

is also computed given that the SPP is activated during the intervals Iω, ω∈{Ω}, and the

FPP is activated during the intervals Iδ, δ∈{∆}−{Ω}.
Under the SPP, the EVs that belong to subclasses c1 recharge at price R

′
j , while the

EVs that belong to subclasses c2 and c3 recharge at price R. As it is noted in section 5.2,
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the load of each class (or subclass) represents the mean number of CSs occupied by the EVs

belonging to this class (or subclass). Hence, the amount of energy provided to the EVs at

price R
′
j during each time interval Iω is:

E
V,ω,j,R

′
j

= τωPDC

C∑
c=1

ac1,ω,j (6.29)

while, the energy provided to the EVs at price R is:

EV,ω,j,R = τωPDC

C∑
c=1

(ac2,ω,j + ac3,ω,j). (6.30)

Therefore, the operator’s revenue during the time intervals that the SPP is activated is

determined as follows:

RVNω,j = REV,ω,j,R +R
′
j EV,ω,j,R′

j
(6.31)

while the daily revenue for the DC system is obtained by:

RVN
′
DC =

∑
∀δ∈{∆}−{Ω}

RV Nδ +
∑
∀ω∈{Ω}

RV Nω,j (6.32)

where the two summations correspond to the operator’s revenue during the time intervals

that the FPP or the SPP is activated, respectively.

Furthermore, the operator’s expenses during a time interval that the SPP is activated is

computed by the following relation:

EXPω,j =

Hω∑
h=1

Rh dh PV,ω,j (6.33)

Note that equation (6.33) has the same form with equation (6.12); the only difference is

that PV,δ (the power charged to the EVs under the FPP) is replaced by the power charged

to the EVs under the SPP:

PV,ω,j = PDC

C∑
c=1

(ac1,ω,j + ac2,ω,j + ac3,ω,j) (6.34)

Therefore, the operator’s daily expenses for the DC system when the SPP is activated during

the intervals Iω, ω∈{Ω}, and the FPP is activated during the intervals Iδ, δ∈{∆}−{Ω} is

determined as follows:

EXP
′
DC =

∑
∀δ∈{∆}−{Ω}

EXPδ +
∑
∀ω∈{Ω}

EXPω,j . (6.35)

79



For the AC system, the operator’s daily revenue RVN
′
AC and expenses EXP

′
AC when

the SPP is activated during specific time intervals over the day are calculated by following

the same process. Recall also that the SPP is applied when the queue waiting time is

unacceptably high, and that the arranged energy thresholds depend on the level of the queue

waiting time. Therefore, the time intervals where the SPP is activated and the arranged

energy thresholds for the AC system may be different than those for the DC system.

Based on the aforementioned analysis and considerations, the overall daily profit margin

of the FCS operator is computed by the following relation:

Γ
′

=
(RVN

′
DC +RVN

′
AC)− (EXP

′
DC + EXP

′
AC)

RVN
′
DC +RVN

′
AC

. (6.36)

6.3 Numerical results

In this section, we evaluate the operation of a FCS that consists of s=5 multi-standard CSs.

The power output of the DC outlets (CHAdeMO and CCS) is PDC=45 kW, while the power

output of the AC outlet is PAC=43 kW [90]. We also consider the four most popular EV

models of the Spanish market, which are: i) Nissan Leaf (battery capacity: B1=24 kWh, fast

charging option: DC), ii) BMW i3 (battery capacity: B2=18.8 kWh, fast charging option:

DC), iii) Mitsubishi i-MiEV (battery capacity:B3=16 kWh, fast charging option: DC) and

iv) Renault ZOE (battery capacity: B1=22 kWh, fast charging option: AC) [88]. Given the

fast charging options and the battery capacities of the aforementioned EV models, the DC

system consists of CDC=3 EV classes, whereas the AC system consists of CAC=1 EV class.

The operation of the FCS is evaluated during a day, which is considered to be divided

into ∆=3 time intervals (TI) I1=16.00-22.00, I2=22.00-08.00 and I3=08.00-16.00. The FCS

operator is supplied with energy from a Spanish energy retailer [97]. Table 6.1 summarizes

the number of time slots Zh that each TI contains, and the price Rh of the supplied energy

during these time slots. Furthermore, each TI is characterized by a Poisson procedure for the

EV arrivals; Table 6.2 presents the mean arrival rates of the EV classes for each TI expressed

in number of EVs per hour. It is assumed that during I1 the traffic is heavy (a great number

of people returns from their jobs), and therefore the arrival rates are high. In contrast,

during night hours (I2), the traffic is light, and hence the arrival rates are considered to be

low. For the third time interval (I3), which corresponds to working hours, the arrival rates

are assumed to take intermediate values. Given that Leaf is the most popular EV model,

its arrival rate is used as reference for the computation of the arrival rates of the other EV

models. To this end, λ1 takes integer values, while the arrival rates of the other EV models

are computed by dividing their population by the population of Leaf [88]. Note also that

λDC,δ represents the superposed arrival rate of the whole DC system, and it is computed

through equation 6.7, while λAC,δ tackles the arrival rate of Zoe, which is the only AC class.
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Table 6.1:Energy tariffs of the Spanish retailer [97]

Time Intervals Time slots Energy price (e/KWh)

I1= 16.00-22.00 Z1= 16.00-18.00 0.1

Z2= 18.00-22.00 0.119

I2= 22.00-08.00 Z1= 22.00-00.00 0.1

Z2= 00.00-08.00 0.072

I3= 08.00-16.00 Z1= 08.00-16.00 0.1

Table 6.2: Mean arrival rates of the EV classes

TI Mean arrival rates (EVs/h)

λ1 (Leaf) λ2 (i3) λ3 (i-MiEV) λDC,δ λAC,δ (Zoe)

I1 10 2.5 6 18.5 5

I2 2 0.5 1.2 3.7 1

I3 6 1.5 3.6 11.1 3

When the FPP is activated during the whole day, the FCS operator charges the served

EVs with a constant price R. In this case, we consider that the EVs’ recharging patterns

fc(x) with c=1, 2, 3, for the DC system and c=1 for the AC system follow the Beta PDF.

The aforementioned PDF is appropriate for modeling random variables that are limited

to intervals of finite length [98], such as the EVs’ ∆SoC in an FCS, which is limited to

the interval [∆SoCc,min, ∆SoCc,max] = [0, 0.8]. The shape parameters αc, bc of each Beta

PDF, as well as the resulting mean values are summarized in Table 6.3. The values of αc, bc

have been selected based on the data presented in [89] regarding the recharging pattern

of Nissan Leaf in a FCS. The mean value of ∆SoC1 in Table 6.3 corresponds to the mean

energy obtained by the Leaf drivers during a fast charging session (9.3 kWh [89]). Due to

lack of data regarding the other EV classes, it is considered that they also obtain 9.3 kWh,

on average, during a fast charging session. The resulting recharging patterns of the three

DC classes are shown in Figure 6.2. Given the recharging patterns, Table 6.3 also presents

the corresponding mean charging times of the EV classes, which are calculated based on

the analysis of section 6.1.1. Furthermore, the analysis of section 6.1.2 can be used for the

determination of R given the operator’s desirable profit margin Γ. Based on the energy

tariffs (Table 6.1), the EVs’ arrival rates (Table 6.2) and mean charging times (Table 6.3),

as well as a desirable daily profit margin of Γ=30%, the price is computed to be R=0.146

(e/KWh).
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Table 6.3: Recharging patterns of the EV classes

DC system, PDC = 45 kW

c Model Ec (kWh) αc bc mean ∆SoCc mc (EVs/h)

1 Leaf 24 4.3 6.8 0.39 0.21

2 i3 18.8 9.3 9.5 0.49 0.21

3 i-MiEV 16 14 10.1 0.58 0.21

AC system, PAC = 43 kW

1 Zoe 22 8.8 12 0.42 0.22

Figure 6.2: Recharging patterns of the DC classes.

Table 6.4: Queue waiting time results

DC system AC system

M/G/s vδ=0.087 Analysis Simulation vδ=0.063 Analysis Simulation

TI ρDC,δ Wδ (min.) Tail (%) Wδ (min.) Tail (%) ρAC,δ Wδ (min.) Tail (%) Wδ (min.) Tail (%)

I1 0.77 3 25.55 3.03 25.75 0.22 0.013 0.103 0.013 0.103

I2 0.15 0.003 0.021 0.003 0.021 0.04 0 0 0 0

I3 0.46 0.29 2.53 0.29 2.54 0.13 0.001 0.01 0.001 0.01

M/M/s vδ=1 Analysis Simulation vδ=1 Analysis Simulation

TI ρDC,δ Wδ (min.) Tail (%) Wδ (min.) Tail (%) ρAC,δ Wδ (min.) Tail (%) Wδ (min.) Tail (%)

I1 0.77 5.28 33.91 5.32 34.15 0.22 0.018 0.161 0.018 0.162

I2 0.15 0.004 0.031 0.004 0.031 0.04 0 0 0 0

I3 0.46 0.45 4.14 0.46 34.15 0.13 0.002 0.015 0.002 0.015
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Figure 6.3: Activated energy thresholds depending on the waiting time level.

In what follows, we present analytical and simulation results for the EVs’ mean waiting

time in the DC and AC queue, as well as the tail of the queue waiting time when the FPP

is activated. Recall that the tail of the queue waiting time denotes the probability that

the customers’ queue waiting time will be longer than a specified time period TL. For the

present numerical evaluation we assume that TL= 4 min.. Table 6.4 compares the results of

our multi-class M/G/s model with a corresponding M/M/s model. For a fair comparison of

the two models, the recharging patterns of the EV classes in the M/M/s case are considered

to follow the exponential distribution with the same mean ∆SoCc values as in Table 6.3.

Furthermore, in both cases, the EVs’ arrival rates are given in Table 6.2. The simulation

results are obtained by our EV simulator that considers the same arrival and charging

procedures with the corresponding analytical models. For the derivation of the analytical

results, the arrival rates λDC,δ and λAC,δ are mapped to utilization rate values ρDC,δ and

ρAC,δ, respectively, by using equation 6.19. Table 6.4 also contains the coefficient of variation

of the superposed charging time distribution vδ, which is derived through equation 6.18.

The results prove the high precision of our model, since the difference between analysis

and simulation is less than 1%. Furthermore, the results indicate that the M/M/s model

overestimates the queue waiting time. This is because the sensitivity introduced by vδ is not

taken into account. In the M/M/s model vδ = 1, by definition. Another advantage of our

model is the utilization of real-case statistical data for the EVs’ recharging patterns [89],

which is not possible when the M/M/s model is applied.

We proceed by assessing the effectiveness of the proposed SPP in terms of EVs’ waiting

time reduction. As shown in Figure 6.3, we consider that the FCS provides high QoS when

the EVs’ mean waiting time in the queue is less than WQ=2min. Based on this QoS criterion

and the results presented in Table 6.4, the AC system operates effectively during the entire

duration of the day when the FPP is implemented. On the other hand, the EVs’ mean

waiting time in the DC queue exceeds the targeted value during the time interval I1. The

FCS operator can activate the SPP during this specific interval in order to reduce both the

EVs’ mean waiting time in the DC queue and the tail of the queue waiting time. Since the

queue waiting time during is 3 mins., the selected energy threshold according to Figure 6.3

is Ethr,1=11 kWh.
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Figure 6.4: Mean waiting time reduction, Ethr,1=11 kWh.

Figure 6.5: Tail of the queue waiting time reduction, Ethr,1=11 kWh.
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Figures 6.4 and 6.5 evaluate the effectiveness of the proposed SPP versus the parameters

Ξc,j and Σc,j . Recall that Ξc,j denotes the amount of the EVs of each class that quit the

FCS without recharging, while Σc,j denotes the amount of the EVs of each class that decide

to obtain as much energy as the selected energy threshold. For presentation purposes, we

assume that Ξ1,1=Ξ2,1=Ξ3,1=Ξ1 and Σ1,1=Σ2,1=Σ3,1=Σ1. It should also be noted that

the case where Σ1=Ξ1=0 corresponds to the queue waiting time when the FPP is applied.

According to figure 6.4, as the amount Σ1 of the EVs that decide to obtain less energy under

the SPP compared to the FPP case increases, the queue waiting time is reduced. This is

due to the decrease of the system’s superposed charging time, which based on equation

6.19 leads to lower utilization rate values. According to figure 6.5, the utilization rate and

the queue waiting time are further reduced with the increase of Ξ1, which reflects the EVs’

arrival rate reduction.

Next, it is considered that the EVs’ arrival rates are 10% higher than those presented

in Table 6.2, which result in a queue waiting time during the interval I1, WDC,1 = 5.7

mins.. In this case, the operator sets the energy threshold to be equal to its minimum

value. Specifically, it is considered that the Ethr,2 value is selected by taking into account

the EVs’ mean traveled distance between two consecutive charging events and the energy

consumption of the EV class with the largest battery capacity. In [96], the mean traveled

distance is reported to be 45 km, while the average energy consumption of a Nissan Leaf

EV, according to real-case tests, is 0.2 kWh/km [99]. By multiplying the the mean traveled

distance with average energy consumption, the energy threshold is set to be equal to 9 kWh.

Figure 6.6 evaluates the effectiveness of SPP for this energy threshold.

The aforementioned case studies prove that given the expected level of the queue waiting

time, under the FPP, the operator can effectively reduce it to acceptable limits by activating

the SPP and by appropriately selecting different energy thresholds.

We now proceed to the determination of the operator’s daily profit margin Γ
′

when the

SPP is activated during the interval I1 and the FPP is activated during the intervals I2 and

I3. It should be noted that the EVs’ arrival rates are assumed to be equal to the values

provided by Table 6.2, and hence the energy threshold is set to be Ethr,1 = 11 kWh. We also

consider that under the SPP, the price R
′
1 for those EVs that obtain more than Ethr,1 = 11

kWh is set to be 5% higher than R. Figure 6.7 presents the profit margin Γ
′

versus the

Σ1 − Ξ1 pairs of Figures 6.4 and 6.5. It is observed that the activation of the SPP during

the time interval I1 leads to higher profit margins, compared to the case where the FPP is

activated during the whole day. On the one hand, this is because the operator charges the

EVs that obtain more than Ethr,1 kWh, i.e. those belonging to subclasses c1,1, with a higher

price. On the other hand, it is also observed that Γ
′

gradually rises with the increase of the

EVs Ξ1 that quit the FCS. This outcome can be interpreted as follows: greater values of Ξ1

correspond to lower amount of energy drawn by the EVs during the interval I1. This, in

turn, leads to both lower operator’s revenue and expenses. Despite the decrease in revenue,
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Figure 6.6: Mean waiting time reduction, Ethr,2=9 kWh.

Figure 6.7: Profit margin when the SPP is activated during peak energy cost.
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Figure 6.8: Profit margin when the SPP is activated, the energy cost is flat-rate.

the fact that the operator buys energy at a higher price over the interval I1, compared to

the intervals I2 and I3 (Table 6.1), combined with the decrease in the energy need to be

bought during this specific interval, result in higher daily profit margins.

The aforementioned outcome is derived when the activation of the SPP coincides with

the peak energy price period (Table 6.1). We also consider another case study where the

operator buys energy at a constant price during the whole day. As Figure 6.8 shows, in this

case, the profit margin Γ
′

is higher than Γ = 30% (profit margin when the FPP is applied

during the whole day) as far as there are EVs belonging to subclasses c1,1 (Ξ1 + Σ1 < 1).

This is because those EVs obtain more than Ethr,1 kWh, and hence they are charged with a

higher price when the SPP is activated.

The scenarios examined in this section refer to the operation of a single FCS, which

consists of 5 CSs. Next, we consider that the same operator owns two additional neighboring

FCSs, consisting of 4 and 8 CSs, respectively. It is also assumed that the arrival rates

of the former (4 CSs station) are 40% lower, while the arrival rates of the latter (8 CSs

station) are 40% higher than the arrival rates presented in Table 6.2. In this new case

study, it is considered that the EV drivers visiting the initial FCS have three choices; a)

charge up to Ethr,1 at price R, b) charge more than Ethr,1 at price R
′
1, or c) visit one of

the neighboring FCSs and obtain as much energy as they want at price R. For this new

case study, the performance of the two additional FCSs when all customers quit the initial

FCS (Ξ1 = 1) seeking for being served to the neighboring stations is evaluated. Figure

6.9 presents the queue waiting time during the interval I1 versus the parameter U , which

denotes the percentage of EVs that leave the initial FCS and join any of the additional FCSs.

It is observed that the small FCS can accommodate up to 25% of the drivers coming from

the initial station, while the large FCS can accommodate up to 75%. Hence, by optimally

routing the EV drivers with high energy needs to the proper stations, the operator can keep

the queue waiting time in all stations lower than the QoS criterion.
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Figure 6.9: Waiting time in the two additional FCSs.
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7 Thesis conclusions and future works

This chapter completes the dissertation by summarizing our main contributions and providing

some potential research lines for future investigation. In particular, section 7.1 contains

the most significant concluding remarks, while section 7.2 outlines the open research issues

related to our contributions.

7.1 Concluding remarks

The major contributions of this thesis are divided into two main parts. The first part is

confined to chapters 3 and 4, which determine the optimal sizing and operation planning of

MGs by using the MILP optimization technique, while the second part includes chapters 5

and 6, which analyze the operation of FCSs for EVs by using queuing theory models.

Chapter 3: This chapter demonstrates the advantages of cooperation among neighboring

urban buildings that form a MG and are able to exchange energy in order to achieve reduced

energy costs. A MILP optimization model is proposed that targets to determine the optimal

capacities of the buildings’ equipment (PVs, inverters and ESSs), as well as the optimal

power operation plan of the MG, by incorporating the buildings’ power consumption patterns,

the electricity prices and the carbon emission taxes. The cooperative scheme is compared

with the case where the buildings optimize their equipment sizes and power operation plan

individually (energy exchanges do not take place). The obtained results indicate that energy

exchanges affect the equipment sizing and vice versa, since the optimal capacities to be

installed are higher under the cooperation scenario. On the one hand, this leads to higher

installation, maintenance and replacement costs. On the other hand, the energy supplying

and carbon emission costs are much lower, and hence the cooperative scheme’s total cost is

lower than the sum of the buildings’ total costs when they are optimized individually.

Chapter 4: The analysis of chapter 3 has two main limitations. The first one is that the

energy exchanges take place only among buildings that are connected to the low voltage

of the same distribution transformer. A more flexible and efficient topology is proposed in

chapter 4 where the various buildings are interconnected through a DC bus. In this way,

neighboring buildings that are fed by different distribution transformers can exchange energy

without needing to use the medium voltage lines of the distribution system. The second

limitation of the analysis in chapter 3 is the formulation of the objective function, which

minimizes the total cost of the system. By doing so, some MG participants may achieve more

savings than other members. In chapter 4 the objective function is formulated based on the

Nash bargaining method, which maximizes the deviation of the buildings’ costs from their

maximum cost (i.e. the cost when they are optimized individually). In this way the coalition

savings are equally distributed among the participating members. Moreover, the analysis of

89



chapter 4 takes into account the operation of V2B systems, which provides extra flexibility

on the MGs’ power management. Finally, a significant contribution of this chapter is that

examines the possibility of more buildings to be part of an already existing coalition several

years after its formation. This event improves the energy exchange potential in the MG and

it is profitable for both the old and new participants. However, it is proved that participating

in the MG from the beginning is a more profitable choice. In addition, there is a max-

imum lag beyond which joining in an already established coalition becomes fully unattractive.

Chapter 5: This chapter analyzes the operation of a FCS as a multi-class M/G/s sys-

tem. The customers’ mean waiting time in the queue, the EVs’ charging load, and the

operator’s revenue are computed with high precision, as the comparison of analytical and

simulation results indicates. The main advantages of the proposed analysis are: a) the

classification of the various EV models by their battery size, and b) the derivation of

the charging time distribution of each class based on the state of charge of its battery

when arriving at the charging station. The proposed model is also used to compute the

maximum arrival rate capacity of the FCS, given a maximum value for the queue waiting

time. Firstly, the number of efficiently served customers and the operator’s revenue are

computed under the assumption that the EVs’ charging demands are uncontrolled. Moreover,

a charging strategy is formulated, which enables the operator to increase its revenue and

the arrival rate capacity of the FCS by motivating customers to reduce their energy demands.

Chapter 6: The model of chapter 5 is limited to the analysis of EV classes that use DC

power, while it is also assumed that customers recharge their batteries up to the maximum

level. Going one step forward, this chapter takes into account EVs that use both DC and

AC outlets, and hence the FCS consists of two separate queues. In addition, a more realistic

approach is adopted for modeling the EVs’ recharging patterns, which are denoted by the

increase in their batteries’ charging level. Based on the random arrival rates and recharging

patterns of the DC and AC classes, the proposed model determines the mean waiting time

in each queue, as well as the operator’s overall profit margin. The system is firstly evaluated

under the assumption that the EVs are allowed to obtain as much energy as they want at

a flat-rate price. In this case the queue waiting time may rise to unacceptably high levels

during peak-traffic hours. The impact of a different pricing policy on the queue waiting

time is also examined. According to this policy the operator sets fixed energy thresholds

and penalizes those customers that request amounts of energy greater than the arranged

thresholds. The activation of the proposed pricing policy during peak-traffic periods leads

to not only lower queue waiting times, but also higher profits margins for the FCS operator.
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7.2 Future works

The main contributions presented in this dissertation are precursors of several new research

lines for future investigation.

The cooperative scheme of chapter 3 considers that the buildings are equipped with

PVs, and ESSs, while the scheme of chapter 4 takes also into account the presence of V2B

systems. Although these units satisfy the customers’ electrical demands, sources that satisfy

the buildings’ thermal and cooling loads are not taken into account. For example, CHP

units that provide both electrical and thermal energy can increase the self-sufficiency of

the MGs in winter months. In addition, the heat output of CHP units can be used as a

source of energy to drive a cooling system, such as an absorption chiller, increasing the MGs’

self-sufficiency in summer months. Such units will be taken into account in our future work.

Chapters 3 and 4 examine the energy exchange potential being created by neighboring

residential, public and commercial buildings, however, the presence of industrial loads is not

taken into account. The cooperation of multiple urban MGs with MGs located in industrial

areas of the cities will be examined in a future work. In this case, the energy transfer losses

should be taken into consideration due to the long distances among the sites.

The cooperation of public charging stations, equipped with RES, with neighboring urban

MGs is also an interesting topic for future investigation. For example, the charging spots

and the RES of a FCS can be connected to the DC bus of the MG topology presented in

chapter 4. In this case, a multi-objective optimization scheme will be formulated where the

MGs’ implementation and operating costs, the utilization of RES, as well as the charging

station’s operator profits and the EV users’ QoS are jointly optimized.

Chapters 5 and 6 evaluate the operation of a single FCS in terms of customers’ QoS and

operator’s profits. The mathematical modeling and performance evaluation of a network

of FCSs will be part of a future work. The impact of such a network on the distribution

system will be examined by considering technical objectives, such as the minimization of

load variance and power losses, and the preservation of voltage quality.

Finally, although a deterministic model can be effectively used for describing the long-

term operation of MGs when the optimal sizing problem is examined (as in chapters 3

and 4), a stochastic model is required for describing the short-term (i.e. daily) operation.

Therefore, the problem of optimizing the daily cooperation of urban MGs with charging

stations for EVs and industrial loads will be described by combining the stochastic model

developed in chapter 6 for analyzing the operation of FCSs, with the stochastic modeling of

load demands, RES production and price variability. In this scenario, the MPC technique

will be integrated into the model, since it is an effective way for mitigating forecast errors.

Moreover, the concept of virtual energy transactions will be investigated, since it allows

prosumers without physical connection to participate in the energy exchange process. In

this scenario, the participating members make bids (offers to buy or sell energy) in the

day-ahead market without the intent of delivering or consuming physical energy real-time.
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