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Abstract

Cancer is a disease of the genome. The study of tumor genomic
alterations is used to guide several precision medicine strategies,
some approved and a large number under clinical development. On
the other hand, the study of tumor immunity is recently becoming the
key for the success of other personalized strategies, named
immunotherapies. Along this thesis | have made several
contributions towards the advance of cancer precision medicine,
based on the study of tumor “omics” data. First, | evinced the
landscape of genomic-guided anti-cancer therapies. Second, |
developed OncoPaD, a tool for the rational design of cost-effective
cancer gene panels. Third, | contributed to the development of
Cancer Genome Interpreter, a tool for the biological and therapeutic
interpretation of variants found in newly sequenced tumors. Forth, |
identified tumor intrinsic molecular mechanisms involved in tumor
immune evasion.

Resum

El cancer és una malaltia del genoma. L'estudi de les alteracions
genomiques dels tumors s’utilitza com a guia en varies estrategies
de medicina de precisid, algunes d'elles aprovades i d'altres en
assajos clinics. D'altra banda, I'estudi de la immunitat tumoral esta
esdevenint una pega clau per [lexit daltres estrategies
terapéutiques, anomenades immunoterapies. Al llarg d'aquesta tesi,
mitjangant l'estudi de les dades “Omiques” tumorals, he contribuit de
varies maneres cap a l'avenc de la medicina de precisié pel cancer.
Primer, he identificat el panorama de les terapies anticanceroses
guiades per alteracions genomiques. Segon, he desenvolupat
OncoPabD, una eina pel disseny cost-efectiu i racional de panells de
sequenciacio per cancer. A més, he contribuit al desenvolupament
del Cancer Genome Interpreter, una eina que ajuda a la interpretacié
biologica i terapéutica de les variants presents a tumors novament
sequenciats. Per dltim, he identificat diversos mecanismes
mitjancant els quals els tumors sén capacos d'evadir I'atac del
sistema immunologic.
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1.0verview of cancer disease

The first time the term cancer appeared in the literature was in 400
BC when Hippocrates nominated the tumors of his patients karkinos
-crab in greek- because they resembled him a crab. However, it was
not the first time in human history that cancer was described. The
first documented reference to a disease which could be cancer dates
from 2625 BC, described by the Egyptian physician Imhotep as a
“disease without cure that showed protuberances in the chest”. The
first scientific evidence of cancer appeared many years later, an
abdominal tumor dating from the 7th century AC discovered by the
paleopathologist Arthur Aufderheide in 1990 in the Peruvian
Chiribaya mummies?. Therefore, cancer is not a new nor a modern
disease. It has been part of human history for many years. Yet, the
knowledge about its pathophysiology or about the best therapeutic

strategies for most of the cancer diseases is incomplete.

1.1 Definition and epidemiology

Cancer is defined as a group of diseases characterized by
uncontrolled cellular proliferation, that in solid tissues forms a mass
named tumor, which leads to the exitus of the patient if untreated. A
cancer can begin in a specific organ but eventually it can propagate
either by invading nearby structures or by migrating (i.e.
metastasize), through bloodstream dissemination or through
lymphatic metastases, to farther parts in the human body. The
reasons why cancer leads to the exitus of the patient depends on the
affected organ (e.g. renal carcinoma may lead to renal failure while

liver carcinoma may lead to severe blood toxicity).



There are hundreds of different cancer types and subtypes
described, going beyond the affected organ. The standard
nomenclature for referring to the different cancer types is based on
the International Classification of Diseases for Oncology (ICD-0-3)2.
It classifies the cancer types according to the tissue of origin (i.e.
histological type) in five major categories (carcinomas, sarcomas,
leukemias, lymphomas and mesotheliomes); or according to the
origin body location (i.e. primary site; e.g. breast, lung, stomach,

etc)?.

Cancer diseases are a major cause of morbidity, with 14 million new
cases every year, 182/100,000 incidence rate; and mortality, with 8
million deaths, 102/100,000 mortality rate (data from 2012,
according to the most recent study on cancer distribution
worldwide)3. The incidence of the different cancer types is different,
even at gender level. Among men the most prevalent cancer types
are the ones affecting the lung, representing the 16.7% of all
diagnosed men cancers; and among women the most prevalent
cancer type is breast cancer, representing the 25.2% of the women
diagnosed cancers. Moreover, there are differences between
incidence rate and mortality rate across the different cancer types?3,
mostly depending on each cancer type aggressiveness and the

available therapeutic options.

1.2 Etiology and pathophysiology

Genomic alterations can be somatic -acquired in specific tissues
during the lifetime of the individual- or germline -present in all body
cells since birth. The main cause of tumor development (i.e

tumorigenesis) is meant to be the accumulation of somatic



alterations. Although some germline alterations are also known to
play a role in cancer development. This idea of cancer as a
consequence of somatic DNA alterations (e.g. mutations, copy
number alterations...) has gained general acceptance during the last
25 years. Convincing evidence over many years has been provided
by: systematic studies of X-rays, work on chemical mutagenesis and
the large amount of data demonstrating smoke as the causative

agent of lung cancer*.

Somatic DNA alterations appear in cells due to errors caused by
endogenous or exogenous processes which generate DNA damage.
Most of these errors are repaired through several complex cellular
mechanisms. However, if some of these errors are not properly-
repaired, they give rise to somatic alterations which can, eventually,
give rise to malignant cells over time. Therefore, the rate at which
somatic mutations accumulate in the cells depends on the interplay
between the errors generated by endogenous and exogenous

processes and the rate at which they are repaired®.

The endogenous processes generating DNA damage can be:
random errors during DNA replication in the preparation for cell
division; DNA repair machinery errors, because of the faulty
recognition of DNA damaged regions; or spontaneous chemical
changes in DNA bases (e.g. deamination of cytosine to uracil)®.
Besides, some germline alterations (e.g. BRCA mutation) may have
an influence on these endogenous processes too. Among the
exogenous factors generating DNA damage, the better described
ones for cancer are: exposure to carcinogens such as tobacco
smoke or UV light radiation; and viral infections, such as hepatitis

virus or papillomavirus*.
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Figure 1 | Causative agents of cancer. Diagram of the main causative
agents of DNA somatic alterations: exogenous (exposure to carcinogens,
viral infections) and endogenous (DNA replication errors, DNA repair errors,
germline DNA alterations, viral infections or spontaneous nucleotide
chemical changes). Purple cells in the central circle represent a tumor.



2. Tumor molecular alterations

Cancer is driven by somatic alterations in the cellular DNA (i.e.
genomic alterations). During each person’s lifetime DNA genomic
alterations accumulate in the genome, along with alterations in the
epigenome -the set of DNA modifications not affecting the sequence
which may influence gene activity- and the transcriptome of the cell-
the set of transcribed RNA molecules. These genomic somatic
alterations affect the function of key genes mostly related to cell
growth and survival, de-regulating cellular biological process which
lead to uncontrolled cellular proliferation. There are several types of
genomic alterations which have varying sizes, ranging from
mutations that affect a single nucleotide to chromosomal
rearrangements or whole-genome duplications”®. Even if |
acknowledge that epigenomic alterations are relevant for
tumorigenesis | will focus on genomic and transcriptomic alterations,

as are the ones extensively analyzed in this thesis.

2.1 Mutations

Mutations are a type of genomic alterations which affect one or few
nucleotides in the DNA sequence. When mutations occur in the
coding part of the genome -the DNA regions called exons that are
transcribed into messenger RNA- they can affect the protein
aminoacid sequence. Depending on whether mutations change the
aminoacid sequence, they can be classified into: synonymous (i.e.
silent), that are single nucleotide variants (SNVs) (e.g. C to T) which
do not change the aminoacid sequence because of codon
degeneracy; and non-synonymous mutations (also known as PAMs,
protein affecting mutations), that are DNA variants which alter the

aminoacid sequence of a protein®?*!. There are six main types of



non-synonymous mutations?:

1) Missense mutations: SNVs which cause an aminoacid
substitution (e.g. histidine to arginine). This type of mutations are the
ones classically more frequently associated to tumorigenesis (e.g.
BRAF V600E, KRAS G12D or EGFR L858R).

2) Nonsense mutations: SNVs where any aminoacid codon is

replaced by a stop codon, leading to a premature end of translation.

3) Splice site mutations: SNVs at splice site sequences in the
intron-exon junction. Splice sites are sequence elements essential
for splicing - the process which removes the non-coding parts of the
DNA sequence (introns) and selects the exons to be transcribed.
These SNVs in splice sites may alter the ratio of alternative splicing

patterns or affect the splicing of constitutive exons?2.

4) Translation start mutations: SNVs where at least one base of the
starting codon is changed, they may affect the start of the

transcription.

5) Translation stop mutations: SNVs where at least one base of the
stop codon is changed, they may result in an elongated transcript,

the transcribed RNA molecule.

6) Indels: insertions and deletions of few nucleotides (<100 base

pairs). Indels maintain the open reading frames of the proteins when

1 The types of PAMs 2 to 5 and the frameshift indels are usually referred to

as truncating mutations?°



they are multiples of three, causing the insertion or deletion of
specific aminoacids. However, when not divisible by three, they
induce a change in the reading frame (commonly referred to as
frameshift mutations), generating a dramatically different

transcript'®13,

Of note, some types of non-coding alterations have also been
associated with cancer development, even if they have been less
explored until the date. The better described ones are SNVs in the
promoter region of protein coding genes supporting uncontrolled cell
growth, leading to their overexpression (e.g. mutations in the TERT

promoter or mutations in LMO2 promoter)4-18,

2.2 Chromosomal rearrangements

Chromosomal rearrangements or structural variants (SVs), are
defined as alterations of the DNA sequence of approximately 1
kilobase (1,000 nucleotide base pairs) or larger size, in which DNA
has been broken and rejoined elsewhere in the genome?’.
Chromosomal rearrangements can be balanced, preserving the

amount of genetic information, or unbalanced, not preserving it>1%18,

The number of rearrangements that can be found in a chromosome
can vary from a single rearrangement in a specific genomic region
to thousands of clustered chromosomal rearrangements. This last
phenomenon is termed chromotripsis and during the last years it has
been described as a prevalent genomic aberration in several cancer

types such as colorectal carcinoma?®.



2.2.1 Balanced rearrangements

Balanced rearrangements maintain the two copies of each DNA
region, but re-order them across the genome. They can be caused
by: (i) insertions, of one chromosomal region into the same or
another chromosome; (ii) translocations, interchange of regions
between chromosomes; and (i) inversions, 180-degree

chromosomal rotations®°.

Among the types of balanced rearrangements, those with the most
thoroughly described outcome in cancer are gene fusions. Gene
fusions are translocations of two genes that join their coding
sequences into a new fusion gene which encodes a fusion protein,
with a function different to the one of each initial gene'®. The first
genic fusion in association with tumorigenesis was discovered in
1962, BCR-ABL (also known as Philadelphia chromosome) in
chronic myeloid leukemia?®. Over the last decades, several gene
fusions have been associated to tumorigenesis, more frequently in
hematologic malignancies (e.g. PML-RARA fusions in acute

myelocytic leukemia?! or ALK fusions in lung carcinomas?*2°).

Additionally, there are other types of outcomes for balanced
rearrangements that have also been described in cancer such as:
swapping of 5’ ends, including the promoter, causing a change in the
transcriptional induction either to an enhance or repression;
incorporation of trans (i.e. distant) regulatory elements close to the
transcription start sites, changing the transcriptional induction too;

and gene truncation, generating aberrant transcripts26,

10



2.2.2 Unbalanced rearrangements

Unbalanced rearrangements can be caused by duplications and
multiple repeats, which imply an increase of the genomic content; or
deletions, which cause a loss of genomic content. These
rearrangements can vary in size, affecting from focal regions to
whole chromosomal arms. If the duplications/repeats (i.e.
amplifications) or deletions happen in coding regions of the genome
they induce changes in the number of copies of the genes, referred
to as Copy Number Alterations (CNAs). In turn, CNAs affecting
genes may change their expression levels, either leading to an

overexpression or to an underexpression®?’,

Deletions can cause the loss of the two copies of the gene,
homozygous loss, or just the loss of one of the copies, loss of
heterozygosity. In some cases, the loss of heterozygosity is repaired,
in terms of genomic content, and the remaining copy is duplicated,
this phenomenon is called copy number neutral loss of
heterozygosity. If it is not repaired, in some cases it can lead to an

impaired phenotype due to haploinsufficiency?®.

11
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Figure 2 | Main genomic alterations found in the tumor genome.
Schematic representation of the main tumor genomic alterations. (A) Types
of mutations according to their effect on the coding sequence: (i)
synonymous, mutations not causing any aminoacid change, producing a
normal protein; (ii) non-synonymous, mutations changing the aminoacid
sequence of the protein. (B) Table presenting the types of non-synonymous
Single Nucleotide Variants (SNVs). (C) Structural variants (SVs) classified
into balanced and unbalanced. Balanced SVs can be: inversions, insertions
or translocations, which can cause different outcomes (such as gene fusion
or promoter swapping). Unbalanced SVs can generate a gene
amplification, through duplications or multiple repetitions (not represented)
or a gene deletion, through genomic deletions.
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2.3 Gene expression changes

Changes in the transcriptome have been widely associated to
cancer. It has been observed that many genes, even thousands, are
differentially expressed, either overexpressed or underexpressed,

between normal and tumor samples?3°,

Expression differences at tissue type level have been observed
across normal tissues, comprehensively explored within the
framework of the Genotype-Tissue Expression (GTEX) project which
has sequenced around 8000 normal tissues from autopsies®; as
well as across different tumor tissues, within the framework of The
Cancer Genome Atlas®?. However, it has been shown that the
differences across cancer types are not only explained because of
the tissue of origin, but they are also related to the genomic,
transcriptomic and epigenomic alterations (such as different DNA

methylation patterns)?®3 of the tumor samples®2.

On one hand, genomic alterations can modify the expression of
genes through the alteration of regulatory structures, both cis (i.e.
nearby) or trans, that result in either overexpression or
underexpression of the genes (e.g. mutations or chromosomal
rearrangements in the promoter region of the gene or in the
transcription factors); or through alterations in the number of copies

of the gene, either amplifications or deletions.

On the other hand, non-coding RNA molecules, such as long-non-
coding RNAs (IncRNA) and microRNAs, can also modulate the
expression of protein-coding genes. An example of this is the

INcRNA MALAT1 whose expression has been associated to a
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transcriptional and post-transcriptional regulation of cytoskeleton
and extracellular matrix genes in various cancer types, promoting

invasiveness and metastases3*.
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3. Genomics of the tumorigenesis

Cancer development (i.e. tumorigenesis) is a Darwinian evolutionary
process where tumor cell populations mimic a specie and tumor
microenvironment represents nature environment. Analogous to
neo-Darwinian evolution, also referred to as Darwinism in the context
of genetics, cancer evolution is a branched evolutionary process
based on: (i) the acquisition of heritable genetic variants in single
cells by random alterations; (ii) natural selection acting on the
phenotypic cellular diversity, either wiping out cells with acquired
deleterious alterations (negative selection) or fostering cells with
alterations that proliferate and survive more effectively than
neighboring cells (positive selection); and (iii) gradual accumulation

of the selected variants across each individual life-span®=®,

3.1 Driver and passenger alterations

As explained before, somatic alterations are the cause underlying
virtually all cancers. However, not all somatic alterations lead to a
malignization process. Indeed, because most tumors are
genomically unstable® -they possess a tendency to accumulate
genomic alterations along cell cycles- and may bear thousands of
genomic alterations, it is likely that not all of them contribute to

tumorigenesis®.

Only those alterations conferring the cells biological capabilities
which improve their survival in the microenvironmental context would
be the ones positively selected. These biological capabilities, named
hallmarks, go beyond from uncontrolled cell growth. There are
eleven well-known cancer hallmarks that represent the complexity of

all the processes that may be altered in cancer®’: evasion of cell
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growth regulators (e.g. by loss-of-function alterations in TP53 or
RB®*); sustained proliferative signaling (e.g. by activating alterations
in EGFR®); deregulation of cellular energetics, mostly through of
Warburg effect (i.e. aerobic glycolysis which leads to the production
of lactic acid*°); resistance to apoptosis (e.g. by alterations in BCL-2
family members*!); generation of genomic instability (e.g. by loss-of-
function mutations in BRCA1 or BRCA2%?); induction of angiogenesis
(e.g. alterations in VEGF*); invasion and metastasis (e.g. by
alteration extracellular matrix components*¥); promotion of
inflammation; replicative immortality (e.g. by altering telomerases*);
and avoidance of immune destruction (e.g through exposure of

immune checkpoint proteins*®).

Therefore, alterations found in tumor cells can be divided in two
types, depending on whether they contribute or not to tumorigenesis.

Two different terms have been coined to differentiate them:

e Passenger alterations®. alterations not implicated in
tumorigenesis, which do not exhibit signals of positive selection.
They occur due to the interplay between DNA damage processes
and DNA repair mechanisms. Once a tumor is established, their

generation increases due to tumor genomic instability®.

e Driver alterations?®: the alterations implicated in tumorigenesis,

which confer a growth advantage to the cell bearing them. These

2 The term passenger also extends to the genes which only bear
passenger alterations, the passenger genes*0.

% The term driver is also used for genes. Driver genes are those bearing at
least one driver alteration, but can also bear passenger alterations?©.
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alterations exhibit signals of positive selection, and they either
activate genes, known as oncogenes (OGs) (e.g. KRAS, BRAF), that
promote processes which lead to cell proliferation and survival; or
cause the loss-of-function of genes that prevent the previous
processes to happen, known as tumor suppressor genes (TSGS)
(e.g. APC, TP53). In detalil, the alterations of these two types of driver
genes, OGs and TSGs, are different. While missense mutations in
specific regions of the protein (known as mutational hotspots), gene
amplifications and gene fusions confer gain-of-function properties to
OGs; truncating mutations and deletions lead to the loss-of-function
of TSGs?°.

normal cell normal cell dysplastic early advanced metastatic
(child) (adult) cell tumoral cell tumoral cell tumoral cell

DNA replication
errors

Carcinogen passenger alteration <}

exposures
driver alteration *

Figure 4 | Accumulation of somatic alterations across a tumor cell life-
span. The accumulation of somatic alterations in the body cells starts right
after birth, at a rate which depends on the DNA errors that emerge and the
extent to which they are repaired. Initially, somatic alterations are benign,
passengers, but under environmental selective pressure they could be
positively selected and became drivers. Even after the malignization of the
cells, they keep accumulating more mutations along its life-span, both
passenger and drivers [This figure is an adaptation from Stratton et al.
(2009)].
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3.2 Computational identification of driver genes

During the past four decades, one of the main goals of the genetic
study of cancer has been the identification of all the mutational driver
genes*’. The first driver genes were revealed by individual low
throughput genetic and biochemical studies*®4°. After two decades
of experiments identifying cancer driver genes (CDs), Futreal and
colleagues produced in 2004 the first manually curated consensus
list of CDs, as reported in publications, named Cancer Gene Census
(CGC), now containing approximately 600 genes®°.

More recently, international cancer genomics initiatives sequencing
large cohorts of tumors served the purpose of identifying many more
driver genes using statistical analyses (see below). These large
cohort analyses were made possible by using next-generation
sequencing technologies in large tumor cohorts, and provided the
opportunity of expanding the catalog of CDs. Of note, among the
sequencing consortia, the biggest ones, in terms of number of
sequenced samples and number of different cancer types included,
are:

(i) The Cancer Genome Atlas (TCGA), an American collaborative
effort that began ten years ago and until now has generated multi-
dimensional genomics data -through transcriptome profiling, exome
sequencing, copy number alteration profiling and DNA methylation
analysis and other techniques- for 33 cancer types and 11 thousand
patient tumor samples®..

(ii) International Cancer Genome Consortium (ICGC), a world-wide
collaborative effort which started close in time to TCGA and until now
has collected data for 16 thousand patient tumor samples from 21

cancer types. In contrast to TCGA, ICGC is mainly devoted to study
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of mutations, through exome sequencing. However, it has also data
of transcriptome profiling along with a recent subset of tumor
samples (around 2500) analyzed through whole genome

sequencing®.

It has been shown that most of the CDs are altered at low frequency,
and that the set of genes driving tumorigenesis varies between
cancer types. Therefore, data of large cohorts (such as TCGA and/or
ICGC) is needed to evince a comprehensive catalog of CDs>10%3,
Currently, there is not a gold-standard computational approach for
the detection of CDs (either mutational or with chromosomal
rearrangements), as most of the developed methods have some
drawbacks and/or biases*’. However, most current approaches are
based on the same principle, the detection of signals of positive
selection through the evaluation of somatic alterations across tumor

cohorts*7%4,

3.2.1 Identification of mutational driver genes

The first methods aimed to detect mutational cancer driver genes
date from 2006. These methods were based on the detection of
genes more mutated than a background mutation rate, that was
corrected for gene size, among other variables, aimed to represent
the mutational processes ongoing in the cell that may influence the
mutational rate>>°®, Later, similar approaches have been developed,
mostly focused on improving the mutational background model,
adding other variables known to affect the mutation rate such as
gene expression or replication timing (e.g. MuSiC, MutSig)%"-8.
However, these methods are biased towards the detection of
frequently mutated CDs, making difficult the detection of the lowly

frequently mutated ones®’.
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Other alternative approaches, not focused on the detection of more
frequently mutated driver genes, have been developed. These
mutational driver identification methods are aimed to detect genes
with a particular composition of mutations, with respect to the total of
mutations in the gene, named ratiometric methods®*. Thus, there are
several types of ratiometric methods depending on the mutational

composition evaluated:

e Mutations with specific consequence types. These methods
consider as CDs the genes with a certain ratio of mutations with a
specific consequence type(s). Examples of these methods are:
20/20 rule from Vogelstein et al. (2013), that considers as CDs those
above the 20% threshold of the oncogene score (proportion of
recurrent missense o indel mutations out of the total of mutations)
and tumor suppressor score (proportion of truncating mutations out
the total of mutations); 20/20+ from Karchin et al. (2016), a
RandomForest classifier based on the mutational attributes
evaluated by Vogelstein et al. (2013); and TUSON from Davoli et al.
(2014)°°, another machine learning approach which considers
similar mutational ratios (e.g. proportion of truncating mutations out
of synonymous mutations) and also classifies the CDs as OGs or
TSGs.

e Clustered mutations. These methods identify the genes that
tend to accumulate mutations in certain regions (i.e. clusters or
mutational hotspots) with a higher frequency than expected from the
background mutation model. There are two main types of clustering
methods, those which perform clustering in the 2D sequence of a

protein and those which perform it in the 3D protein structure. For
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example, OncodriveCLUST considers that a gene is a CD if the
distribution of its PAMs in its 2D protein structure tends to be more
clustered than the distribution of its synonymous mutations®’; while
CLUMPS identifies as CDs those genes with an overall enrichment
of mutated residues spatially close to each other in the 3D protein

structure®?,

e Functional impacting mutations. These methods identify as CDs
the genes which accumulate more high impacting mutations than
expected given a background mutational model. Examples of these
methods are OncodriveFM®? and OncodriveFML®3, Both aggregate
the functional impact scores of individual gene mutations to identify
the gene functional impact bias but the background models used are
different: OncodriveFM builds the background model by sampling of
the observed mutations in the analyzed cohort, whereas
OncodriveFML builds the background model by simulating a set of
mutations according to the mutational processes occurring in the
cohort under analysis, or cohorts of the same cancer type. Both
methods use functional impact scores either based on the effect of
the mutation on the protein function (i.e. SIFT®, Polyphen-2% and
Mutation Assessor®®); or based on the effect of the mutation in non-
coding regions such as microRNA targets and transcription factor
binding sites; allowing the discovery of non-coding driver genes (i.e.
CADD®).

e Mutations in special residues. These methods identify CDs that
are biased towards the accumulation of mutations in functionally
important residues. Examples of them are: ActiveDriver, which
identifies genes that tend to accumulate mutations in

phosphorylation sites®; and eDriver, which identifies genes
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accumulating mutations in protein functional regions®®.

Recently, some benchmarking studies have appeared, aimed to
compare the performance of CDs detection methods®*7°. However,
these benchmarking efforts are biased towards the prioritization of
certain methods (e.g. methods trained with CGC genes), producing
contradictory results. In contrast to these studies aimed to identify
the best performing method, integrative approaches using several
methods have also been proposed. These approaches are based on
the assumptions that (i) different driver genes bear different signals
of positive selection that can be identified through different
approaches; and (ii) each method presents various sources of
biases that can be reduced when combining their results. Postulating
that the combination of complementary methods is thought to

provide a more comprehensive catalog of CDs*’.
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Figure 5| Computational detection of cancer driver genes. (A) Schema
of the common principle in which all computational methods detecting for
cancer driver genes (CDs) are based, the identification of signals of positive
selection across large tumor cohorts. There are two main types of methods
for the identification of mutational CDs: those based on detecting genes
more frequently mutated than a background mutation rate (B) and those
which detect genes with specific mutational compositions (C); which can
be: high functional impact mutations, clustered mutations, mutations
localized in particular residues or mutations from a specific consequence
type. (B) and (C) show a cartoon example on how mutations in a gene
would be distributed so that each given method detects them as driver.
Furthermore, examples of different methods of CD detection are also
included.
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3.2.2 ldentification of driver genes bearing chromosomal
rearrangements

Even if less abundant, there are also methods for the computational
identification of cancer driver genes bearing chromosomal

rearrangements.

On one hand, there are methods which detect cancer driver genes
with CNAs, either amplifications or deletions. As for mutational
approaches, the first developed methods detecting CNA drivers
were based on frequency. These methods aimed to identify DNA
regions with CNAs occurring at a significant frequency in a specific
amplitude, when compared to a background rate (e.g. GISTIC)".
However, these methods identify DNA regions with CNAs that may
contain large numbers of genes, not being clear which ones are the
genes with CNAs providing the selective advantage to the tumor. To
solve this hurdle, other methods aimed to simultaneously identify
regions of focal copy number alterations together with gene
expression changes have been developed (e.g. OncodriveCIS?,

FocalScan’).

On the other hand, several computational methods have been
developed to detect the presence of fusion transcripts through the
analysis of RNA-seq data’'®. However, even if fusion transcripts
may be driver events, there are no computational methods based on

the detection of signals of positive selection of gene fusions.

3.3 Tumor genomic heterogeneity
The study of TCGA and ICGC data has not only expanded the

catalog of cancer driver genes but also deepen our understanding of
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how tumor genomes function. One of the first striking observations
when analyzing the genome of thousands of tumors was the
heterogeneity in the repertoire of altered CDs both between and
within cancer types®7’. On one hand, it was observed that few
cancer types were driven by a unique type of alteration. The
observed general trend was intra-cancer type heterogeneity with
most of the patients bearing alterations in a set of frequently altered
CDs and additional alterations in a set of lowly frequently altered
CDs’’ (e.g. TCGA analysis of ovarian serous carcinomas showed
that, with the exception of TP53 the genes identified are mutated in
10% or less of the patients)’®. On the other, the frequently altered
driver genes varied across cancer types (e.g. while most cutaneous
melanoma samples are BRAF mutant, ovarian serous carcinomas

frequently bear mutations in TP53)7879,

In addition to the heterogeneity at the level of driver genes, it was
also observed the alteration level. The heterogeneity of alterations
involves diversity in terms of: (i) alteration type, (ii) number and (iii)
distribution across the genome’’. (i) Alteration type heterogeneity
(e.g. predomination of chromosomal rearrangements vs mutations)
has been observed at inter-cancer type level; for example, while
chromosomal rearrangements are frequent in leukemia, the
tumorigenesis of cutaneous melanomas is mostly driven by
mutations’’. (ii) Alteration number heterogeneity are differences in
the burden of alterations found inter- and intra-cancer type. For
example, Lawrence et al. (2013)8° observed, across 27 cancer types,
a high variation of the mutational frequencies, ranging from a median
of 0.1 mutations per megabase in the genome (i.e. one change
across the entire exome) in pediatric cancers to a median of 100

mutations per megabase in cutaneous melanoma and lung
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carcinomas, related to exposure to carcinogens. Moreover, intra-
cancer type mutational frequency heterogeneity was also observed
(e.g. cutaneous melanomas and lung carcinomas showed a
mutational frequency ranging from 0.1 to 100 mutations per
megabase). At last, (iii) alteration distribution heterogeneity has been
observed as changes in the distribution of mutations across the
tumor genome. Lawrence et al also observed that certain mutation
types (e.g. C to T) were not homogeneously distributed across the
tumor genome between cancer types. For example, cutaneous
melanomas showed a mutational spectrum dominated by C to T
mutations, caused by unrepaired pyrimidine dimers induced by UV
light; conversely C to A dominated the spectrum of lung carcinomas,
caused by the exposure to tobacco smoke. Further study on the
biological processes underlying different mutations led to the
definition of cancer mutational signatures -different combinations of

mutation types generated by different mutational processes®..

26



4. Selective pressure during tumorigenesis

Tumors are not formed by a single population of cells -all of them
genomically and phenotypically equal- but from multiple cell
populations. Tumor clones are subpopulations of tumor cells with the
same phenotype and genomic driver alterations that emerge
because of the accumulation of different driver alterations along the
tumorigenesis®. These tumor clones are shaped by the tumor
microenvironment, which causes a selective pressure and
consequent competition where the clones with the best biological

capabilities survive”’.

4.1 Tumor dynamic clonal evolution

The clonal architecture of tumors -the number of clones, their nature
and their preponderance- is not constant across tumor evolution.
The theory of clonal evolution states that a tumor starts with a
founder clone, that arises as consequence of the accumulation of
driver mutations. After the first cells became tumorigenic, additional
alterations accumulate over time. The alterations conferring the
tumor cells biological capabilities (i.e. cancer hallmarks), that can be
shaped by the tumor microenvironment at different time points, will
be selected and new clones of the tumor may then appear and
expand (becoming major clones)’”. On the contrary, those clones
without biological capabilities that allow them to survive will shrink
(becoming subclonal) and eventually they may disappear. For
example, when a tumor starts an invasive process it acquires
capabilities of invasion and metastasis but after it reaches the new
microenvironment (i.e. metastasizes), cells with mutations providing
capabilities that allow a good implantation (such as angiogenesis

induction) will be selected, the clones bearing them will expand, and
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those clones with migration capabilities will shrink®777:82,

In addition to intrinsic tumor adaptation to the human body, there are
external factors, such as anti-cancer therapies, which exert a
selective pressure on the tumor’”#, Hence, once a patient starts a
round of treatment, all tumor clones may die because of the
treatment -generating a complete disease remission- but some
cancer cells with mutations that allow them to survive the treatment
may remain. In this last scenario, clones with driver alterations that
confer them resistance capabilities to the treatment will expand,
causing a disease relapse®’’. Many studies are emerging providing
solutions to overcome specific drug resistances (described in further
sections). Well-known examples of anti-cancer therapies resistance
alterations include: EGFR T790M resistance mutation to first
generation EGFR inhibitors (e.g. Erlotinib)84, ABL T315I resistance
mutation to BCR-ABL inhibitors (e.g. Imatinib, Nilotinib, Dasatinib)®
or KRAS resistance mutations to EGFR antibody inhibitors (e.g.

Cetuximab, Panitumumab)®®.
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Figure 6 | Tumor dynamic clonal evolution. Tumor clones, each one
represented as a colored bubble, emerge due to the accumulation of driver
alterations. The dynamic clonal evolution is mostly shaped by clonal
competition and environmental selection pressures. Thus, depending on
the time-point of tumor life-span some clones will be larger (major) and
some smaller (subclones). Note that changes in the environment (i.e
treatment initiation) induce the positive selection (from passenger to driver)
of alterations which confer a growth advantage, next undergoing a clonal
expansion [This figure is an adaptation from Yates and Campbell (2012)].

4.2 Selective pressure from the immune system

Many studies have been devoted to get insights into the molecular
basis underlying cancer hallmarks (some examples have already
been cited previously). However, during the last few years, due to
the success of anti-cancer immunotherapies (discussed in further
sections), cancer research community is shifted towards the study of
the interaction between the tumor and the immune system, involving
“tumor promoting inflammation” and “avoiding immune destruction”

Hanahan and Weinberg hallmarks.

The first observation that the immune system could recognize and

attack tumor cells dates from the 1950s®’. Beyond that, we know that
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relationship between the immune system and tumor cells is dual. On
one hand, the immune system suppresses tumor growth by attacking
tumor cells (e.g. through CD8+ cytotoxic T cells). On the other hand,
the immune system exerts a selective pressure on the tumors that
leads to the selection of tumor cells capable of surviving the immune
system attack (e.g. tumor cells presenting PDL-1). This dual process

is known as immunoediting®.

The interaction between the immune system and tumor cells is a
complex state of dynamic equilibrium®. Being a cyclic process
where pro-stimulatory immune factors can enhance anti-tumor
immune responses; but regulatory mechanisms, triggered by the
tumor and its microenvironment, can in turn limit the immunological
response®®%°, According to Chen and Mellman (2013) this cycle can

be divided in 7 major steps:

1) Release of antigens by tumor cells and capturing of those by
dendritic cells (DCs). It is worth to point out that tumors release
antigens different to the ones naturally exposed in normal tissues to
which the immune system is self-tolerant. Non-normal tumor
antigens come from three different sources: mutated peptides with
aberrant conformations, named neoantigens; cancer-germline
antigens, which are not expressed in normal tissues but tumor cells
may express them due to DNA methylation changes; and viral
proteins, expressed if the tumorigenic processes is influenced by a

viral infection.

2) Presentation of the tumor antigens by the DCs and migration to

the lymph node.
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3) In the lymph node, priming and activation of effector cells, CD8
T cells and NK cells. Of note, effector CD8 T cells are primed with

tumor antigens®.

4) Migration of the activated effector cells to the tumor through the
bloodstream, named trafficking.

5) Infiltration of the effector cells into the tumor bed (i.e. the normal

tissue in which the tumor is located).

6) Recognition of tumor antigens through HLA molecules and

binding by effector T cells.

7) Cytotoxic killing of cancer cells by effector cells which produces
the release of tumor antigens (that again leads to step 1).

As mentioned, in cancer patients this cycle is impaired. Inhibition or
impairment of the cycle can happen at any step: (1-2) tumor antigens
may hot be detected by dendritic cells; (2) priming of dendritic cells
may treat the antigens as self, triggering T cell regulatory responses;
(3) activation of T cells may not effectively traffic to the tumors; (5)
effector populations might also be inhibited to infiltrate (e.g. due an
immunosuppressive tumor microenvironment through the release of
pro-angiogenic factors); (6) tumor cells may not be recognized (e.qg.
by occultation of the tumor antigens); or (7) the killing of the tumor
cells by the immune effector cells could be impaired (e.g. through
the inhibition of bind effector T cells by the tumor through checkpoint

molecules such as PDL-1 or PDL-2)%0%,
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Figure 7 | Tumor-immune system interaction cycle. Schema of the
cyclic interaction between the tumor and the immune system which can be
divided in seven steps: (1) release of tumor antigens (represented as green
circles) from the apoptosis of tumor cells, (2) presentation of tumor antigens
to dendritic cells (DCs) which recognize them as non-self, (3) migration of
the DCs into the lymph node and activation of effector cells, (4) trafficking
of the active effector cells to the tumor through the bloodstream
(represented T cells as T and NK cells as NK), (5) infiltration of the effector
cells into the tumor bed, (6) recognition of tumor cells by effector cells,
precisely T cells recognize tumor cells through HLA molecules; and (7)
cytotoxic killing of tumor cells by NK cells and CD8 T cells through perforin
and granzyme molecules (represented as red circles).
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The exact mechanism underlying the tumor evasion of several cycle
steps or the reason why the impairment of the cycle is
heterogeneous across cancer patients is still a key problem to be
solved. Tumor genomic heterogeneity has been postulated as a
possible explanation for the heterogeneous response of cancer
patients to immunotherapies®. Indeed, molecular tumor
heterogeneity could have an impact on most of the steps of the
tumor-immune system cycle. For example, it has been observed that
tumors with truncating mutations in B2M lose the expression of HLA
molecules in the cell surface, escaping from the recognition of T cells
(step 6)%, or that tumors with activation of WNT/bCatenin pathway
show an impaired recruitment and activation of dendritic cells from a
specific lineage (step 1-2)%. Thus, some studies are shedding light
on the tumor evasion of the immune system but still a lot of effort is

needed to understand the whole picture.
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5. Cancer patient tumor profiling

The starting point of the detection of tumor genomic, transcriptomic
and proteomic alterations is a tumor biopsy. After it is obtained, there
are bunch of different experimental techniques that can be used to
identify tumor alterations. Some of these techniques are currently
being used in the clinical practice and others are mostly devoted to
cancer research. Tumor profiling techniques have been typically
classified into cytogenetic and molecular techniques, according to
the molecular structures where they identify alterations, from

chromosomes to DNA/RNA sequences, respectively.

5.1 Detection of chromosomal rearrangements

Cytogenetic techniques detect alterations at chromosome level, i.e.,
chromosomal rearrangements. Karyotyping is the most simple and
cheapest cytogenetic technique, it classifies the 23 pairs of human
chromosomes, allowing a study of the DNA amount in the whole
genome (e.g. it allows identifying a deletion of an entire
chromosome). However, its resolution is low, so short alterations

cannot be visualized®.

Fluorescence In Situ Hybridization (FISH) is another cytogenetic
technique that allows to localize DNA specific sequences on
chromosomes, cells or tissues; through the use of known fluorescent
probes (i.e. specific DNA sequences). It is more suitable to identify
chromosome translocations than karyotyping, as its results are
easier to interpret®. Indeed, it is used in oncology clinical practice to
identify chromosome translocations (e.g. identification of BCR-ABL
translocation in chronic myeloid leukemia patients to prescribe

treatment with imatinib®’).
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Comparative Genomic Hybridization, known as CGH array,
appeared as novel cytogenetic technique, with better resolution. It
used in the research and clinical context and allows the identification
of unbalanced chromosomal rearrangements. CGH array consists of
a series of wells with probes that map to different genome regions,
covering the whole genome. When the DNA of study is added into
the wells, it reacts with the probes and generates an assorted color
light depending on the amount of DNA of study hybridized,
distinguishing between amplifications and deletions®. A variant of
CGH array named Single Nucleotide Polymorphism (SNP) array,
has gained interest during the last decade. The technigue is the
same but probes contain a series of human polymorphisms. Hence,
this technigue also allows to perform polymorphism genotyping and

can discriminate heterozygous alterations from homozygous ones®.

5.2 Detection of DNA sequence alterations

The classical techniqgue to detect DNA mutations is Sanger
sequencing. This technique appeared in 1977 and is based on the
selective incorporation of modified nucleotides by a DNA polymerase
during an in vitro DNA replication. Next, these modified nucleotides
are detected through gel electrophoresis and fluorescence, being the
DNA sequence revealed!®. Sanger sequencing is still the gold-
standard of sequencing, currently being used in the clinical setting
for the detection of point mutations (e.g. identification of BRAF
V600E mutation in cutaneous melanoma patients to prescribe

vemurafenib®?).
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In 2001 the first human genome was published using Sanger
sequencing, as a 13-years multinational and metacentric project°?,
After that, a necessity of sequencing more genomes emerged and
innovative technologies less costly and more efficient were required.
This is how by 2005 next-generation sequencing (NGS)
technologies, also known as high-throughput sequencing
techniques, appeared. Since then, several platforms of NGS have
been developed (e.g. Roche pyrosequencing, lllumina sequencing,
Life Technologies SOLID, etc), being all of them capable of
sequencing simultaneously millions of DNA fragments in a massive
parallel way. The principle underlying all NGS techniques is the
same: first, the whole genome or exome of study (e.g. a tumar) is
fragmented into millions of pieces; next, each of them is sequenced
independently in parallel; generating a large volume of short-read
sequencing datal®. This read-based approach allows detecting not
only mutations but also copy number alterations, by analyzing the
amount of reads in a gene or DNA region, and gene fusions, through

the identification of fusion genes.

A complex computational framework is needed to store, manage and
analyze all the short-read data generated after sequencing. Using as
an example the sequencing of the whole exome of a patient’s tumor
in a clinical context: (1) the resulting reads of the sequencing have
to be aligned to the reference human genome; (2) tumor somatic
variants have to be distinguished from the germline variants of the
patient; (3) the quality of the somatic calls quality has to be assessed
and bad quality variants filtered out; (4) functional impact of the
somatic variants has to be annotated; and (5) among all somatic
variants functionally relevant, a prioritization of the driver tumorigenic

variants or the ones which can benefit from a therapy is needed to
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transfer the knowledge obtained back into the patient care!®.
However, from all this computational framework, there is no a gold-
standard methodology or resource, particularly for step (6),
becoming a bottleneck when trying to apply NGS strategies into the

clinical context.

Because of that, whole genome and exome NGS is mostly used for
research purposes. However, targeted sequencing through gene
panels, another NGS strategy, is already becoming a standard tool
for clinical oncology in some reference hospitals (e.g. MD Anderson,
Vall d’Hebron). Gene panels possess a higher sensitivity and they
are cheaper than performing a whole genome or exome?®,
Moreover, with respect to Sanger sequencing they allow to identify
not a single mutation but a set of mutations, still limited, facilitating
its interpretation. However, its design -the decision of which genes
and gene regions should be included- is not trivial, it requires a
laborious search in the literature, and even though there are some
commercial solutions there is a not a gold standard to design them

in each specific context.
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Figure 8 | From NGS of a patient’s tumor to precision medicine.
Common computational workflow from DNA NGS to its application on the
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scattered resources and integrate all the information in the context of the
tumor being analyzed. Thus, step 5, as represented in the figure, is the
bottleneck between NGS and the application of its results into the clinics [
Adopted from Good et al 2014 ] .
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5.3 Measure of gene expression

The gold standard technique to measure gene expression has been
during several years microarrays, they are still being used but in
recent years RNA sequencing has become also a widely used

technique to measure gene expression.

On the one hand, DNA microarray techniques (also known as DNA
chips) are based on the collection of series of probes into a surface
that when mixed with cellular RNA they hybridize. The quantification
of the hybridization events, through the incorporation of fluorescence
or biotin labeled nucleotides, allows to measure gene expression as

well as genotype a number of DNA regions.

On the other hand, RNA sequencing (RNA-seq) is based on the
fragmentation of the cellular RNA, which is next converted into cDNA
(complementary DNA) that after is prepared as a library (including
adaptor proteins) and lastly sequenced in a high-throughput
manner'®. These techniques allow the quantification of all cell
transcripts, including the product of fusion genes -chimeric
transcripts. As mentioned before for DNA NGS, a complex
computational framework is required after RNA-seq results are
obtained. This framework, which starts also with read counts,
involves: (1) a quality control for detecting sequencing errors or
contamination artifacts; (2) an alignment of the reads to the
reference genome; (3) a quantification of the read counts aligned to
each transcript; and (4) a normalization by transcript length, which
may have some variations. The most common normalizations are:
(i) RPKMs (reads per kilobase per million mapped read), which in

addition to transcript length also normalize by the cDNA library
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used?®®; (i) its derived measurement FPKM (fragments per kilobase
per million mapped read), used for paired-end sequencing, consider
that 2 reads correspond to a single fragment!®®; and (iii) TPMs
(transcripts per million mapped read), which normalize by a constant
variable instead than cDNA library, 1 million transcripts*.

5.4 Profiling of the tumor microenvironment

A tumor biopsy, the starting point for its genomic analysis, is not only
formed by tumor cells. It is an admixture which also contains the
tumor microenvironment (fibroblasts, immune cells, endothelial cells
and normal epithelial cells)!!!. The fraction of cells from the

admixture that are tumor determines the purity of the sample.

The sample purity is usually inferred by a pathologist, through a slide
image analysis of the biopsy. When analyzing tumor sequencing
data, a minimum of purity is usually required (e.g. the international
sequencing consortium The Cancer Genome Atlas set the threshold
at 60% of purity) to consider that the signal from the tumor can be
distinguished from the one of the microenvironment*'2, However, it
has been proved that differences in the level of purity across tumor
samples have an impact on the interpretation of the genomic
analysis, especially in RNA-seq data analysis. Thus, the correction
of RNA-seq data by purity has been shown to reveal masked
pathways or decrease the expression of pathways mostly

overactivated in the microenvironment, not tumorigenic*'2113,
On the other hand, because tumor samples are admixtures, once

sequenced we can analyze not only tumor cells but also the cells of

the tumor microenvironment. Because of this, computational
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methods capable of quantifying the immune infiltrate (e.g.
ESTIMATE), and the individual cell populations infiltrating tumor
samples have emerged during the last years*>-1%, Among the latter
two main types of approaches have been developed: deconvolution
and gene set enrichment methods. Deconvolution methods compute
the proportion of each immune population within the overall set of
immune cells infiltrating the tumor!&11® while enrichment methods
provide the relative estimate of the overall enrichment of the immune
populations of interest!'>17. There is no a gold standard
methodology among both approaches. However, several caveats
have recently been reported for deconvolution methods. For
example, they have not been validated for RNA-seq or have been
shown to be not robust when the expression from few genes of their

training matrix cannot be assessed'?°.
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6. Personalized cancer medicine

Classical pharmacological cancer therapies, chemotherapies, do not
consider the intrinsic features of the patient’s tumor because their
mechanism of action is not specific. These treatments kill all the cells
(i.e. they are cytotoxic compounds) in the human body with a high
replicative rate, causing an important toxicity. Personalized cancer
medicine has emerged as a new therapeutic strategy that looks for
the most suitable pharmacological treatment that, considering the
biology of the tumors, is capable of blocking cell proliferation (i.e.
they are cytostatic compounds). Therefore, when compared to
classical therapies, the effectivity of personalized strategies is meant

to be higher and the toxicity lower, improving patient care.

6.1 Genomics-driven personalized treatments

Cancer personalized treatments are not new, the earliest strategies
date from the 1977, when the first hormone therapy for breast
cancer, tamoxifen, was approved!?’. Hormone therapies are
effective, and still are being used, for the treatment of cancer types
whose growth is dependent on hormones (i.e. breast and prostate
cancer). But even if effective, this kind of treatments could not be
applied to most the cancer types. That is why other strategies, based
on the inhibition of specific oncogenes promoting tumor growth was
undertaken. These new strategies, referred to as targeted therapies,
were based on what was described some years after as “oncogene

addiction” principle*?2,
“Oncogene addiction” is defined as the genomic dependency of the

tumor on specific and few alterations to maintain the tumorigenesis

active (i.e. tumor genomic Achilles Heel), it is based on the
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observations, across many years and experiments, that reversing

one or few driver alterations in OGs inhibited the tumor growth3124,

Trastuzumab -a monoclonal antibody that selectively inhibits HER2-
was the first successful targeted therapy introduced into the clinical
setting in 1998 for breast cancer patients HER2 positive'?®. However,
the mechanism of action of trastumzumab is not exactly as expected.
The drug works through a dual mechanism that in one hand relies
on the principle of “oncogene addiction” because inhibition of HER2
arrests tumor growth, but on the other, it flags the cells for immune
destruction when the drug binds to the tumor cell. It was not until the
approval of imatinib in 2001, that the first prove of “oncogene
addiction” principle to a particular genomic aberration -BCR-ABL
gene fusion in chronic myeloid leukemia- was clinically used!?597,
The success of imatinib provided compelling evidence that OGs
could be potentially good drug targets and targeted treatments for
other cancer types started emerging. Erlotinib was the next one to
be approved, initially introduced in 2004 for the treatment of non-

small cell lung which exhibited EGFR mutations?’-12,

Currently, there are more than 80 anti-cancer targeted therapies
approved for specific cancer types and at least a third of them are
used depending on the presence (or absence) of a genomic
biomarker (e.g. gene fusion, mutation, deletion...) or proteomic
aberration (e.g. HER2+)%,

In most of the cases, targeted therapies are prescribed to patients in
combination with chemotherapies. Besides, there are also
combinations of targeted therapies which are prescribed to cancer

patients. These combinatorial therapies are mostly designed to
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overcome drug resistance (see below) and have synergistic effects.
An example is BRAF and MEK targeting in BRAF V600E mutant
melanoma patients'®!. Of note, the main bottleneck of drug

combinations is the emergence of additive toxicities'®2.

6.1.1 Bottlenecks of anti-cancer therapies development

Even if 80 seems a large number of approved therapies, it is much
smaller than the number of all therapies under investigation. Drug
development is a slow process, having its biggest bottleneck when
facing the clinical trials phase®®*3. Specifically, most of the drugs fail
due to unpredicted clinical toxicity, during clinical phase |

testing34135,

Drug repurposing is a strategy aimed to solve the phase | bottleneck
and has been widely used for cancer targeted therapies. Drug
repurposing refers the re-use of approved drugs for prescriptions
other than the approved one, either different molecular targets or
different diseases. The approval of these strategies is usually faster,
because they do not need to go over phase | again®*. The first drug
with a successful repurposing among cancer targeted therapies was
imatinib, which in 2008 underwent fast approval for a new molecular

target in another disease, KIT mutant gastrointestinal tumors®’.

The classical clinical trial design relies on the fact that molecular
targets are associated to a specific disease, which has been
demonstrated inaccurate now that the molecular profiling of large
tumor cohorts is available. The molecular heterogeneity across
tumors decreases the number of patients in which a genomic-
directed therapy could be beneficial for a specific cancer type. This

impairs the power to assess the outcome of these approaches. An
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innovative design of clinical trials emerged as a solution to this
problem, named “basket trials”. Clinical basket trials design assumes
that drug response is shaped by the tumor genomic alterations, not
the cancer type, and thus a larger number of samples across
different cancers can be pooled together. Moreover, there is variant
of basket trials where several genomic alterations are analyzed
together, allowing to explore several biomarker hypotheses and
recruit more patients®. An example is CUSTOM (Molecular Profiling
and Targeted Therapies in Advanced Thoracic Malignancies) where
after testing 5 drugs across 11 types of molecular alterations the
authors showed that certain genomic alterations shaped the

response to erlotinib and selumetinib®’.
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Figure 8 | Drug development process. (A) Diagram of the drug
development process which starts with preclinical assays, where a lot of
potential targets and compounds are investigated; followed by clinical trials
(phases | to 1ll) with a smaller number of investigational compounds that
drops even more after phase I. In phase | drugs are tested for safety and
toxicity, in phase Il for its efficacy shaped by the molecular target and in
phase 1l the efficacy is compared to the one of the standard-of-care. Drug
repurposing are strategies meant to speed-up this process. They consist of
re-using already approved drugs are for different molecular targets or
diseases than the one approved, they do not need to go over safety tests
again. (B) Schematic representation of the basis of basket clinical trials.
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These trials select patients according their molecular alterations, rather
than their disease type, and test different drugs according to the molecular
alterations beard.

6.1.2 Resistance mechanisms to anti-cancer
pharmacological treatment

Resistance mechanisms have been extensively described for cancer
treatment, either for chemotherapies and targeted therapies.
Resistance mechanisms can be intrinsic, when they are present
already before the treatment (such as mutations in the target if it has
to be wild type for an appropriate drug binding); or acquired,
developed after treatment due to tumor adaptation®,

While intrinsic resistances are easier to foresee, acquired
resistances are more difficult to anticipate. That is why most of the
research efforts have been put in these last type of resistance
mechanisms. The main types of acquired resistance mechanism are

the following:

1) Drug efflux and activation resistances. The first consist of an
overexpression of cell membrane ABC proteins, which regulate the
flux across the plasma membrane, preventing the cells from the
internalization of the compounds. The second has been mostly
observed in chemotherapy resistance (e.g. capecitabine) by
epigenetic inactivation of enzymes which catalyze the conversion
pro-drug (inactive form) to drug (active form) in the tumor cells. Both
resistances can be solved through drug combination therapies, ABC
family  inhibitors and DNA methyltransferase inhibitors,

respectively38139,
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2) Drug target resistance mechanisms. This type of resistance is
caused by alterations in the target of the drug either by a change in
its conformation or an overexpression, leading to impaired drug
effectivity’®®. On the one hand, changes in drug target protein
conformation, caused by mutations, may prevent drug binding or
allow the activation of the protein after drug binding. This latter type
is produced by mutations in the so-called gatekeeper residues,
which can stabilize the protein after drug binding, so that it keeps
being functional®*1%°. The mechanisms of the gatekeeper mutations
are different depending on the target and have been mostly
described for BCR-ABL, KIT, PDGFRA and EGFR!*. For example,
EGFR T/M mutations in the gatekeeper residue 790 are reported to
be responsible of the 50% of resistances to EGFR small molecule
inhibitors; by increasing the binding affinity for ATP by EGFR. As
another example of a different mechanism, resistance to BCR-ABL
inhibitors by ABL1 T315I mutation is suggested to cause resistance
through the stabilization of the ATP-binding active conformation of
the protein'#2, On the other hand, target overexpression reduces
drug effectivity rather than generating a resistance. One example is
the overexpression of the androgen receptor (AR) after the use of

AR antagonists in prostate carcinomal#3,

3) Alternative pathway activation. This resistance arises as an
adaptation to the oncogenic addiction of a tumor after inhibition of a
pathway, leading to maintenance of the function. It is known as
‘oncogenic bypass” and it is becoming the major mechanism of
resistance to targeted therapies'®. MET amplifications acquired as
a resistance mechanism to EGFR inhibitors serve as an example of
these mechanisms. EGFR inhibitors hinder the activation of the

PIBK-AKT pathway, by acquiring the cells amplifications in MET they
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can make this pathway become active again!**. A variant of this
mechanism is the activation of pathways that evade the pro-
apoptotic signal triggered by the drug, impairing the apoptosis
process®®. For example, changes in the expression levels of BIM
pro-apoptotic molecule have been associated to varying degrees of
response to EGFR, HER2 and PI3K inhibitors*.

6.1.3 Therapeutic strategies for tumor suppressor genes

All previously mentioned therapeutic strategies work under the
principle that the tumor cell is addicted to the alteration of a gene that
drives tumorigenesis through its activation, an OG. In 2000 a new
dimension of “oncogene addiction” principle was described by
Weinstein4®, He called it “tumor suppressor hypersensitivity”, and
based its definition on the observation that reintroducing the wild-
type version (i.e. non-genomically altered) of a TSG led to inhibition
of cell growth and/or induction of apoptosis. Nevertheless, strategies
for restoring tumor suppressor function are not as straightforward as
the inhibition of oncogenes!4’. Several approaches can be tackled to
therapeutically exploit genomic vulnerabilities presented by the loss-

of-function of a TSG.

The first mechanism consists in indirectly targeting the TSG by
inhibiting its negative regulators or oncogenes downstream its effect.
On one hand, targeting negative regulators leads to an increase of
the expression levels of the TSG. An example of these inhibitors are
MDM2 inhibitors which increase TP53 protein levels and the activity
of its targets (e.g. CDKN1A)*8 these inhibitors are currently in phase
I/ll trials for several solid tumors. Of note, this therapeutic strategy
does not work if the TSG to be restored is mutated, as it will lead to

expression of the non-functional form of the TSG!*. On the other
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hand, inhibiting the targets negatively regulated by the TSG, would
mimic the regulatory function of it. For example, the inhibitor of the
PIBK-AKT-MTOR pathway everolimus has been shown to be
effective upon PTEN deletions in prostate adenocarcinoma (a
negative regulator of the pathway), being tested in phase I/ll clinical
trials'*®. Indeed, indirect targeting strategy is not only used for TSGs
but also for OGS, as an example MEK inhibitors have been shown

to elicit response in BRAF V600E mutant thyroid carcinomas®*.

The second mechanism, the reintroduction of the TSG, even if it
seems the most straightforward strategy, it is difficult in terms of the
therapeutic approaches to be used. In this direction, gene therapies
for TP53 have been investigated during many years. However, non-
stable levels of efficacy have been reached, reason why TP53 did

not passed phase I trials in USA4’,

The third and last mechanism, is based on principle called “synthetic
lethality”. Synthetic lethality relies on “oncogenic bypass”
phenomena mainly focused on the context of DNA damage repair
pathways. If a tumor cell has an impairment of a DNA damage repair
pathway (e.g. through a homozygous loss of the TSG BRCAL1), it
becomes addicted to another DNA damage repair pathway. If it
becomes impaired too, this will lead to a cell death. Therefore, these
lethal combinations can be therapeutically exploited either by
inhibiting directly the pathway or enhancing DNA damage'#’. A
successful example of synthetic lethality mechanism was the
approval, in 2014, of the first PARP inhibitor, olaparib. Olaparib is an
inhibitor of PARP enzymes, which are involved in cellular
homeostasis, that when inhibited in BRCA deficient cells - that have

impaired DNA damage repair- cause their death (in contrast with the
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other targeted therapies, it is a cytotoxic compound)®>2.
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Figure 9 | Molecular mechanisms of targeted therapies. (A) Oncogene
addiction principle, which explains the effectivity of targeted therapies that
directly bind to OGs. (B) Mechanisms of resistance to targeted therapies.
Only the two mechanisms widely associated to targeted therapies are
represented: left, drug resistance by target alterations; right, drug
resistance by activation of a pathway with the same effect than the one
inhibited. (C) Targeting mechanisms of TSGs, based on the principle of
tumor hypersensitivity: left, indirect targeting by inhibition of up-stream
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6.2 Personalized immunotherapies

Anti-cancer immunotherapies are a family of treatments aimed at
stimulating the immune system of the patients to fight their tumors.
The rationale behind immunotherapies is not new, it appeared in the
19th century, after the observation that the infectious processes,
using bacterial vaccines, could provide anti-cancer therapeutic
benefit!®2, Research on immunotherapies followed this direction
through several decades, and in 1990 the first bacterial vaccine, with
bacillus calmette guerin, was approved for in situ bladder
carcinoma'®®, Some years before, in 1964, another strategy of
immunotherapy was explored by infusing immune lymphocytes into
a rat sarcoma, the positive results obtained were the beginning of
the adoptive cell transfer (ACT) therapies!™.

ACT consists in administering tumor-specific T cells which have
been expanded ex vivo and after are infused back to attack the
tumor. The rationale for its effectiveness is based on T cell response
robust specificity for tumor cells, as T cells can move to the tumor
(even likely reaching distant metastases) and have a memory,
guaranteeing the maintenance of the therapeutic effect after initial
treatment!®. The selection of the T cells that may attack the tumor
for the ex vivo expansion can be done by selecting the T cells
infiltrating the tumor (TILs), and then transferring a synthetic T cell
receptor or a chimeric antigen receptor (CAR) into the T cells. CAR
strategies are recently emerging as powerful therapeutics that have
achieved remission rates up to 70-80% in hematologic
malignancies®®®**’. Briefly, CAR-T cell strategies can recognize
specifically programmed antigens independent of the HLA-complex,

such as CD19, expressed in the cell surface of B cells, making T
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cells attack aberrant B cells from hematologic B cell malignancies®®.

Another type of strategy that emerged several years after ACT is the
inhibition, through monoclonal antibodies (mAbs) of immune
checkpoint molecules. As has been briefly described, checkpoint
molecules are receptors or ligands which mediate the activation of T
cells in the different steps of the cancer immunity cycle. The first step
of the cycle involves the activation of T cells are through their
interaction with DCs in the lymph node. This activation is a three-
step process that requires CTLA4 exposure on the T cell surface in
the last step. If this happens at an earlier stage, it competes with co-
stimulant molecules, leading to T cell inactivation. Moreover, T
regulatory cells also use CTLA4 to suppress the T cell function.
CTLA4 is therefore a checkpoint molecule whose inhibition
contributes to T cell activation[ref]. Another well-known checkpoint is
PD1 that if interacting with PDL1 or PDL2 in the tumor cell leads to
T cell inactivation. Again, the inhibition of either PD1, PDL1 or PDL2
may lead to T cell activation. During the last six years, five
(nivolumab, avelumab, pembrolizumab, atezolizumab, and
ipilimumab) checkpoint inhibitors have been approved, alone or in
combination, for at least 6 different malignancies (merkel cell
carcinoma, head and neck carcinoma, urothelial, non-small cell lung
carcinoma, renal clear cell carcinoma and melanoma), mostly for its
advanced or metastatic stages'*. Moreover, additional checkpoints
are being investigated as potential therapeutic targets (e.g. LAG3 or
TIM3).
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Concurrently with the development of more checkpoint inhibitors
new combinatorial strategies of targeted therapies with checkpoint
inhibitors are being tackled. On the one hand, checkpoint inhibitors
have been evidence to be mostly effective only in high immunogenic
tumors (such as melanoma and lung carcinomas) with high
mutational burden that results into more tumor neoantigens and, in
turn, into more TILs'®®. On the other hand, some targeted therapies
have been shown to boost cancer immunity by influencing T cell
trafficking or T cell tissue infiltration, such as MEK inhibitors or VEGF
inhibitors'®®. Therefore, combinatorial therapies of checkpoint
inhibitors and these targeted therapies may elicit a synergistic
response, expanding the spectrum of patients who could benefit
from checkpoint inhibitors. Some clinical trials in early phases are
already exploring this possibility (NCT01940809, NCT01673854,
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https://clinicaltrials.gov/ct2/show/NCT01940809

NCT02224781, NCT02130466)

Finally, it is important to mention that resistances have been
described for immunotherapies, just as the ones long known for
targeted therapies. These mechanisms are less known than those
for targeted therapies but some, such as up-regulation of checkpoint
molecules different to the one inhibited!®® or acquisition of mutations

which impair immunological response® have been described.
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The focus of my thesis is generating knowledge that contributes to
the progress of cancer precision medicine through the analysis of

cancer genomics data.

Genomics have been proven to be useful for guiding the treatment
of cancer targeted therapies and there are large collections of tumor
sequencing data currently available that provide a comprehensive
view of tumor genomics across several malignancies. The first
objective of my thesis is to understand the current scope of
genomic-guided personalized therapies. This objective involves the
following tasks:

- ldentify the genes driving tumorigenesis in each cancer type

via mutations, CNAs and chromosomal rearrangements.

- Build a comprehensive database of anti-cancer targeted

therapies and the biomarkers of their effect on tumors.

- Develop a method to associate drug response and drug

resistance biomarkers to tumor samples.

- Develop strategies of in silico drug repurposing.

Nowadays there is an urgent need of sequencing tumors in the
clinical and research community. Cancer gene panels have emerged
as a cost-effective solution to this necessity. However, with no guide
to design these panels adapted to the specific needs of researchers,
it is a manual and highly laborious task. The knowledge generated
in the first objective on cancer type cancer driver genes, the
therapeutic options and the mutational data compiled could be
exploited to aid the design of cancer sequencing panels. Therefore,
my second objective is the development of an easy-to-use tool to
support a rational design of cancer gene panels according to the

user’s needs, which includes:
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- Develop a method that prioritizes the genes and/or mutational
hotspots with the highest mutational coverage in a cancer type
or a group of them.

- Build a user-friendly web-tool to carry out the panel design.

- Design interactive reports integrating ancillary information that
aids panel design.

Nevertheless, the bottleneck when sequencing tumor cells is to
interpret the resulting data. We realized that the methodology
developed in the first objective could be a starting point to solve it.
Consequently, my third objective consists in developing a tool
capable of interpreting the relevance of somatic variants observed in
a tumor, with a focus on the identification of those with therapeutic
significance. It includes these tasks:
- Improve the database of anti-cancer targeted therapies
including the level of curation of the database and its extension
with more biomarkers of drug response, resistance and toxicity.
- Build systematic nomenclatures for the classification of the
genomic biomarkers, drugs and cancer types in the therapies
database.
- Develop a method for matching drug biomarkers to tumor
driver alterations considering interactions between genomic

biomarkers and drugs.

Finally, with the emergence of immunotherapies, its success and the
lack of detailed knowledge in most steps of the interaction between
the tumor and the immune system | directed my fourth thesis
objective to understanding molecular mechanisms related to
tumorigenesis that modulate the anti-tumor action of the immune

system. The tasks to fulfill this last objective are:
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- Develop and apply a method to identify immune
subpopulations from the expression data of the tumor bulk
sample.

- Define immunophenotypes given the profile of immune
subpopulations in the tumor infiltrate.

- Identify correlates between the tumor architectures with the

immunophenotypes.
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Chapter 1

GENOMIC-GUIDED THERAPEUTIC
LANDSCAPE OF CANCER

In the first chapter | present a comprehensive landscape of the
therapeutic opportunities of a large cohort of cancer patients based
on their genomic alterations. | have carried out this work together
with Tamborero D, the other first co-author of the publication.

The work done in this chapter has been divided into three main
steps: (i) identification of genes driving tumorigenesis across the 28
cancer types via mutations, copy number alterations and gene
fusions; (i) identification of drugs targeting the driver protein
products; and (iii) in silico prescription of drugs to patients based on
the driver events observed in each patient's tumor. The
implementation of these three steps, in a cohort of 6792 samples
from 28 different cancer types, has identified the most
comprehensive therapeutic landscape of anti-cancer targeted
therapies to date. In turn, this landscape has revealed interesting
messages, such as that 40.2% of all cancer patients could benefit

from drug repurposing opportunities.

From these three steps, | have developed step (ii) and step (iii); and
Tamborero D has also contributed on the integration of some
sources in step (ii). Specifically, | have built a comprehensive
database of anti-cancer therapies targeting driver protein products.
This database also includes genomic biomarkers of response to

approved therapies, as stated in their clinical guidelines, and
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genomic biomarkers of drug resistance, either approved or in clinical
trials. After building the database, | have developed a set of rules for:
prescribing approved drugs according to their clinical guidelines
pertaining genomic and cancer type annotations, repurposing
approved drugs to different cancer types or genomic alterations, and
considering the resistance biomarkers.

Next, | have developed a decision-algorithm, referred to as in silico
drug prescription, that matches the drugs in the database to the
alterations affecting driver genes, as identified by Tamborero D. The
in silico drug prescription is able to take into account the genomic
biomarkers of drug response and resistance, the cancer types to
which the drugs are prescribed, the oncogenic role of the driver

genes, and the mechanism of action of the drug.

Additionally, | participated in drafting the manuscript and preparing

most of the figures and supplementary information.

Rubio-Perez* C, Tamborero* D, Schroeder MP, Antolin AA, Deu-Pons J,
Perez-Llamas C, Mestres J, Gonzalez-Perez' A, Lopez-Bigas™ N. (2015).
In silico prescription of anticancer drugs to cohorts of 28 tumor types
reveals targeting opportunities. Cancer cell, 27(3), 382-396.

* co-first authors T co-corresponding authors
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Chapter 2

RATIONAL DESIGN OF CANCER SEQUENCING PANELS

In the second chapter, | present a web-application aimed to rationally
design next generation sequencing (NGS) mutational cancer panels.
The web-application, named OncoPaD, designs NGS cancer panels
for specific cancer types, or groups thereof, considering the role in
cancer and therapeutic actionability of the genes included. By means
of its prioritization algorithm, OncoPaD is able to identify which
genes or mutational hotspots would increase more the coverage of
the panel, converging to the most cost-effective solution. Moreover,
the performance of OncoPaD panels, in terms of cost-effectiveness,
is higher than that of commercially available panels, especially when
focused on panels for specific cancer types or groups of them.
OncoPaD is open-source and is available at

http:/www.intogen.org/oncopad.

The work presented here was divided into two parts: the
development of the web platform and the algorithm of selection and
prioritization of genes and mutational hotspots. | have conceived and
implemented both parts, with technical assistance by the second
author of the publication, Deu-Pons J, in the web platform
development. Additionally, | drafted the manuscript and prepared all

the figures and supplementary information.
First, | implemented the algorithm, which I divided into five different

parts: (1) sub-setting the pan-cancer cohort (7298 samples) by the

cancer type(s) of interest, or panel cohort; (2) selection of the genes
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driving tumorigenesis in the panel cohort; (3) identification of the
mutational hotspots in each gene in (2), by identifying the minimum
number of base pairs regions across the sequence of the gene that
contain most of its mutations; (4) computing the cumulative
mutational frequency (CMF) distribution of the panel cohort
(coverage), as the number of tumors bearing protein affecting
mutations in the genes and mutational hotspots identified in (2) and
(3), and prioritization of the genes or mutational hotspots which
contribute more to tumorigenesis in Tiers 1 and 2; and (5) collection

of the data to be displayed into the web platform.

Next, | designed and developed the web tool, mainly formed by an
input and results sections. The input section allows the introduction
of all the parameters needed to run the algorithm, or fine-tune its
configuration. The results section is based on five reports: (i) CMF
distribution in the panel cohort with additional information for each
gene and mutational hotspot about the actionability; (i) CMF
considering more than one gene or mutational hotspots per tumor in
the panel cohort; (iii) mutational distribution per each gene in Tiers 1
and 2; (iv) drug actionability details of the genes and mutational
hotspots; and (v) general features of the genes, such as the mode of

action in cancer or its clonality.

As a snapshot in time of its use, from 13th October 2016 until 15th
of May 2017 OncoPaD has been accessed 794 times by 521 users;

with a median of 12 sessions per week.

Rubio-Perez C, Deu-Pons J, Tamborero D, Lopez-Bigas N, & Gonzalez-
Perez A. (2016). Rational design of cancer gene panels with OncoPaD.
Genome Medicine, 8(1), 98.
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Chapter 3

BIOLOGICAL AND THERAPEUTIC
INTERPRETATION OF CANCER VARIANTS

In the third chapter of my thesis | present another web tool, named
Cancer Genome Interpreter (CGIl). CGI interprets the oncogenic
relevance of tumor variants and identifies suitable therapies to target
them according to several levels of evidence. On the one hand, it
interprets the role in cancer of the input variants, mutations, copy
number alterations and chromosomal rearrangements. On the other
hand, it identifies and in silico prescribes the most suitable therapies
according to the driver alterations present in the tumor. CGI uses
include a broad range of applications that range from basic research
to translational oncology. It has been implemented as a freely

available online resource at http://cancergenomeinterpreter.org.

The output of the CGI is divided into two different analysis: the
alteration analysis, that predicts the significance of the analyzed
variants; and the prescription analysis, that identifies the best
therapeutic options of the previously identified driver variants. My
contribution to this project is limited to the prescription analysis. The
prescription analysis is based on two steps: (i) building a
comprehensive database of drugs including genomic biomarkers of
response, resistance or toxicity and distinct levels of evidence and
(ii) developing a method to prescribe the anti-cancer therapies in (i)

to the identified driver alterations.
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To generate a reliable database of anti-cancer therapies with drug
biomarkers we took advantage of a pre-existing manually curated
effort (Drug Knowledge Database) and extended it by including
external cancer research curators. My work has consisted in
integrating all data sources; generating a systematic nomenclature
for the genomic biomarkers, the drugs and the cancer types; and
keeping it up-to-date. Besides, | have generated another resource
with ligands targeting altered driver genes according to different
levels of potency of the interaction, which has been also integrated
within CGI web tool. Additionally, | have conceived the algorithm for
the prescription of driver alterations to drug biomarkers and ligands.
The complex part of this algorithm is the proper handling of drugs
with different genomic types of alterations (e.g. copy number
alteration and mutation biomarkers); drugs with wild type genomic
biomarkers; drugs with more than one genomic biomarker of
response; and drugs with response and resistance biomarkers that
can be simultaneously present in a tumor. The conception of the
algorithm also includes the decision of which drug repurposing
opportunities should be considered and consequently shown to the

user.

As a snapshot in time, from 13th October 2016 until 15th of May
2017 CGI has been accessed 7200 times by 2600 users.

Tamborero D, Rubio-Perez C, Deu-Pons J, Schroeder MP, Vivancos A,
Rovira A, Tusquets I, Albanell J, Rodon, J, Tabernero J, de Torres C,
Dienstmann R, Gonzalez-Perez A, Lopez-Bigas N. (Submitted) .Cancer
Genome Interpreter Annotates The Biological And Clinical Relevance Of
Tumor Alterations

BioRxiv pre-print: https://doi.org/10.1101/140475
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Chapter 4

TUMOR MOLECULAR MECHANISMS
OF IMMUNE EVASION

In this last chapter, together with Tamborero D, we present a
comprehensive identification of tumor molecular mechanisms which

may allow evade the immune system.

The basement of this work is the identification of the infiltration
patterns of sixteen immune populations across 28 solid tumors (9403
samples) through a sample-level enrichment method. Upon it, we
first analyzed the infiltration patterns of the immune populations,
revealing that the immune infiltration patterns did not correlate with
the tissue of origin. This suggested that tumor intrinsic features may
be responsible of the different infiltration patterns. To further explore
this, we refined the immune infiltrates at cancer type level and
grouped the tumors in immune-clusters, which represented the
effectivity of the immune system attack. We observed that similar
levels of cytotoxicity across immune-clusters showed different
immune infiltrating patterns across cancer types. Next, we evinced if
clinical features could explain the immune clusters and observed a
tendency of low cytotoxicity in advanced stage tumors, suggesting
this phenotype as a possible pre-requisite for tumors to progress. At
last, we looked for pathways active in the tumor across the different
immune-clusters, adjusting expression data for its immune
component. High cytotoxic clusters were mostly enriched by
pathways related with high immune infiltration and energy cell

metabolism, intermediate cytotoxic clusters were enriched in
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angiogenesis and extracellular matrix pathways and low cytotoxic
immune-clusters were mostly enriched by cell division pathways and
others (such as TGFb) described to lead to low cytotoxicity. We
finally integrated all the results into a reasoned biological model.

I explored different methodologies aimed to assess the infiltration of
immune populations. | made a comparison with a deconvolution
method (CIBERSORT) and a comparison between two sample-level
enrichment methods (ssGSEA vs GSVA), to rationally decide which
approach would meet our needs the better (everything described in
the supplementary methods). After deciding for GSVA, | explored
which gene sets to use for the identification of the immune
populations. Next, | identified the immune infiltration pan-cancer and
per-cancer type. Then, | explored the infiltration patterns across
cancer types, comparing them with the infiltration of its normal
tissues, and exploring them within the immune-clusters. | have
carried out and explored the results of the pathway analysis and
integrated them into a reasoned biological model. At last, | have
written most of the sections in this chapter, including the
supplementary, and done most of the figures and supplementary

tables.

Here | present a first draft of a manuscript in preparation that will
include all the results presented and additional ones where we are
working on: analysis of the mutational load, copy number alterations

and driver genomic correlates across immune-clusters.

Rubio-Perez C*, Tamborero D*, Muifios F, Lopez-Bigas N, Gonzalez-
Perez A'. Identification of tumor immune avoidance processes across 28

solid tumors (In preparation)

* co-first authors T co-corresponding authors
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ABSTRACT

There is a growing need of in depth understanding the tumor mechanisms that modulate the immune response.
The availability of large tumor cohorts with transcriptome profiling, together with the development of methods
which detect tumor immune infiltrating cell types from the transcriptome has opened the possibility of
comprehensively studying tumor immune avoidance mechanisms. Here, we present the first comprehensive
assessment of the tumor intrinsic pathways underlying the avoidance to the infiltration of sixteen different
immune populations across 28 solid tumors. After discovering that immune infiltration profiles could not be
explained by the tissue of origin, we hypothesized that tumor intrinsic mechanisms may be shaping the different
immune profiles. Grouping cancer type specific profiles in three different scenarios of immune cytotoxicity
revealed different tumor pathways active across the scenarios. The identified tumor specific pathways of immune
avoidance attack may be good mechanisms for exploring combinatorial therapies with immunotherapies.
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INTRODUCTION

The recent success of cancer immunotherapies and
the observation that some patients do not respond
to these treatments have increased the necessity of
in depth understanding the relationship between
tumor and immune cells. The mechanisms of
interaction between tumor and immune cells are
complex. They are usually referred to as a dynamic
cycle in which immune system modulates tumor
development and tumors can modulate the immune
system response’. The idea that tumors can avoid
the immune system response is not new, being the
first hypotheses formulated by Sir Macfarlane Burnet
in 19572, However, this idea did not become
accepted until the beginning of the 21st century?,
when data supporting it appeared. In 2011 tumor
avoidance of immune destruction was formally
considered as one of the cancer hallmarks®.

Since then, several mechanisms of tumor avoidance
of the immune system attack have been identified.
An example is the presentation by tumor cells of
immune checkpoint molecules in their cell surface
(e.g. PDL-1), that prevent from T cell cytotoxicity
when binded®. Indeed, inhibitory molecules have
been designed for some of these checkpoints and
have been shown to be successful in the clinical
setting®'?, emphasizing the impact that the
identification of new immunomodulatory targets
could have in patient care. Nevertheless, even if
some successful mechanisms of immune avoidance
have already been identified, cancer research
community has not yet evinced a comprehensive
view of the tumor mechanisms avoiding the immune
system response.

During the last years, several large-scale studies
aimed to comprehensively identify tumor immune
infiltration profiles are emerging'''%. These studies
have benefited from the systematic profiling of the
transcriptome from tumor bulk samples, mostly from
RNA-seq data. Tumor bulk samples contain not only
tumor but also the cells of its microenvironment,
which includes immune infiltrating cells. Several
computational approaches, mainly sample-level
enrichment'?'3'® or deconvolution strategies''®,
have been developed to reconstruct the immune
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infiltrate from the transcriptome profiling of a tumor
bulk sample. Thus, the development of these
methodologies together with the large collection of
tumor RNA-seq data available, have opened the
possibility of identifying the mechanisms of tumor
immune evasion by analyzing tumor features across
the different immune infiltrates.

Recent efforts, even if have produced interesting
results, to our knowledge are not carried out in a
comprehensive way. They are mainly focused: (i) on
the study of the clinical impact of the immune
infiltrates across different cell populations''%; (ii) on
the study of specific diseases (e.g. Senbabaoglu et
al. 2017 focused their work in kidney clear cell
carcinoma, Ali et al. 2016 in breast cancer and
Angelova et al. 2015; in colorectal cancer)'®1929; (jii)
on the analysis of specific tumor alterations (e.g.
Davoli et al. 2017; mainly focus on the study of tumor
mutational burden and aneuploidy in relationship
with immune evasion)’ or (iv) both (e.g.
Chaorentong et al. 2017; only give insights for two
cancer types and their molecular subtypes)'. To our
knowledge the most comprehensive assessment of
the tumor mechanisms underlying immune response
tumor evasion was the work done by Rooney et al
(2015)?2. However, they only considered genomic
tumor alterations (not considering transcriptomic
changes) and measured only the cytolytic activity,
not considering the role of the other immune
populations in relationship with the tumor.

Here, we present, to our knowledge, the first
comprehensive assessment of tumor pathways
modulating the immune system response. Briefly,
using a sample-level enrichment analysis we
reconstructed the infiltration profiles of sixteen
immune populations across 9403 patients from 28
different solid tumors, revealing that the immune
infiltration patterns could not be explained by the
tissue of origin. Thus, we hypothesized that tumor
intrinsic features could be shaping the immune
profiles. With the aim of exploring this possibility, we
refined the immune infiltration patterns at cancer
type level and grouped the tumors in three immune
cytotoxicity scenarios. Finally, after adjusting the
expression by the immune infiltration we observed a
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heterogeneous activity of several tumor pathways
across the three scenarios. Namely, we identified
different pathways enriched in high, intermediate
and low cytotoxic scenarios, and summarized all the
knowledge generated into a plausible biological
model of tumor immune evasion. We hypothesize
that the set of pathways identified to be active in the
tumors across different immune infiltration patterns
are potentially good mechanisms for exploration in
the context of new therapeutic interventions.

METHODS

Patient data collection

TCGA RNA-seq data for 28 solid tumors and 9403
patients (see Table S1 for a summary) was
downloaded Firebrowse (20160128 version,
rnaseqv2 RSEM genes normalized data) along with
clinical data (20160128 version). In the clinical data
we did a manual annotation of those samples with
ambiguous stage. When there was more than one
sample per patient, we kept only one, following the
guidelines available in Firebrowse. TCGA patient
virus infection data was obtained from Rooney et al
2015. To identify the infected tumors we followed the
criteria stated in the same publication. Data on
normal donors was retrieved from GTEx (v6). RPKM
sample level matrix was downloaded from
GTExportal (https://gtexportal.org). We additionally
downloaded RNAseq data from melanoma patients
treated with: anti-CTLA4?® (provided by the authors,
42 patients) and anti-PD1% (retrieved from GEO:
GSE78220, 28 patients).

Identification of immune populations

We have estimated the infiltration within tumors of
16 different immune populations. We have obtained
the gene signatures of each cell type (Table S2A)
from two different  publications'>'®  (see
Supplementary Methods). We have used the names
of the cell types as used in the corresponding
publications.

Following the rationale of'#'3'6'% we have used a
sample-level enrichment method, GSVA?, to
measure the infiltration of each immune population
in tumor RNA-seq data for 28 solid tumors (9403
samples). We have used the GSVA implementation
available in R Bioconductor package gsva (see
3|Page

Supplementary methods for details on the selection
of the enrichment method and the comparison of this
approach with a deconvolution method). Pan-cancer
GSVA results, which implies a pan-cancer
normalization, and per-cancer type level, which
implies a different normalization in each cancer type,
are available in Table S3.

Identification of immune-clusters

Hierarchical clustering was performed minimizing
the squared Euclidean distance between the
agglomerated samples by using the Ward method,
through hierarchy module from SciPy clustering
python library®®, Samples were assigned to one of
the “n” clusters according to the resulting linkage
matrix: where “n” represents the total number of
clusters of the partition. The number of clusters was
selected observing the percentage of variance of the
data explained as a function of a range of “n” values
(see Supplementary Methods). The pan-cancer
GSVA cluster analysis was unbiased, whereas the
per-cancer type GSVA clustering was performed by
setting a weight of 3 to the cytotoxic cell levels.
Sample grouping in immune-clusters is available in
Table S4, either pan-cancer (Table S4A) and per
cancer type (Table S4B).

Statistical tests

Pearson’s correlation was performed using
linregress module from python SciPy library®.
Multiple testing correction, when necessary, was
applied using multipletests module from python
statsmodel library. In all the cases where we
corrected for multiple testing we used a Benjamini-
Hochberg False Discovery Rate. Survival analysis
was done building a Cox regression model, using
python lifelines library, for each cancer type,
adjusted by stage, age and gender when applicable
(e.g. ovarian cancer was not adjusted by gender as
all patients are females). Fisher exact test was
performed using fisher_exact module from python
SciPy library?®.

Expression adjustment

To adjust expression values of tumor bulk samples
by its immune component, we followed the rationale
described by Aran et al. (2016)%” (Figure S1). Briefly,
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we adjusted the expression levels of each gene, per
each sample, according to the contribution of CD45
in the expression of each gene in normal tissues
(see Supplementary Methods). Gene expression
values which turned negative or zero after the
adjustment process were set to -6 log2(RSEM) in
downstream analysis and plots.

Pathway enrichment analysis

We performed a Gene Set Enrichment Analysis
(GSEA)? to identify enriched pathways per immune-
cluster, comparing against the other immune-
clusters pooled together. We used GSEA R software
available for download at
http://software.broadinstitute.org/. We downloaded
the pathway gene sets from MSigDB?¢. From the
available gene set collections, we included all broad
hallmark gene sets and specific pathways of interest
from the curated gene sets, canonical pathways
collection. Moreover, we also included some
manually curated pathways, not found in the
mentioned collections or from other publications. We
minimized including pathways with high gene
overlap (Figure S2, Table S2B). All GSEA results are
available in Table S5.

RESULTS & DISCUSSION

Identification of sixteen tumor infiltrating
immune populations

First, we sought to characterize the immune infiltrate
of solid tumors by means of the prevalence of 16 cell
populations: B cells, eosinophils, macrophages,
mast cells, NK CD56bright cells (NKbright), NK
CD56dim cells (NKdim), neutrophils, T helper cells,
Tem cells, Tem cells, Tth cells, iDC, aDC, activated
CD8 T cell (CD8), gamma delta T cell (Tgd) and
regulatory T cell (Treg). We obtained the gene
signatures from these gene sets from two different
publications: Bindea et al. (2013) and Charoentong
et al. (2016) (see Methods and Supplementary
methods for details). Of note, the gene sets of the
different immune populations showed no overlap
among them or very few genes overlapping (Table
S2A).
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We employed a sample-level enrichment method,
following the rationale of previous studies'?1316.1¢ to
quantify the infiltration of the immune cell
populations in each tumor in a cohort of 9403 solid
tumors from 28 different cancer types. Nevertheless,
we did a comparison with a deconvolution method
which suggested that sample-level enrichment
methods would be more suitable for the current
work, as it is based on RNA-seq data analysis (see
details in Supplementary Methods). Indeed, this
statement has recently been reported by
Senbabaoglu et al (2017) where they discuss the
advantages of enrichment methods over
deconvolution approaches for analyzing RNA-seq
data.

Among the available sample-level enrichment
methods, we used Gene Set Variation Analysis
(GSVA)* (scored from -1 to +1). Comparing GSVA
with single-sample Gene Set Enrichment Analysis
(ssGSEA)?*, another widely used sample-level
enrichment method, we yielded a high correlation
(Pearson’s correlation coefficient, 0.87). However,
we decided to use GSVA over ssGSEA due to its
intrinsic normalization step, which helps to reduce
the noise.

Immune cells tend to co-infiltrate across
tumors and are clinically relevant

We first investigated the different prevalence of cell
populations of the immune infiltrate across cancer
types in the cohort through a pan-cancer GSVA.

We first studied how correlated different cell
populations are in the immune infiltrate. Most cell
populations, independent of their specific immune
functions were positively correlated (Pearson’s
correlations from 0.63 to 0.1, with few cases of weak
negative correlations; Figure 1A). This suggests that
an important force driving the enrichment is the
overall magnitude of infiltration across tumors.
Macrophages, iDCs and neutrophils exhibited the
strongest correlations (0.63 Pearson’s correlation),
followed by NKdim and CD8s (0.59 Pearson’s
correlation). The other well-known effector immune
population, Tgd, was highly correlated with the latter
two (0.42 with NKdim and 0.52 with CD8s),
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Figure 1 | Co-infiltration and clinical impact of sixteen immune populations. (A) Heatmap with the median Pearson’s
correlation values between the enrichment of the sixteen immune cell types. Negative correlations are colored in a violet
color-scale and positive correlations in a green color-scale. (B) Heatmap with the Hazard ratio of the influence of each
immune cell type on patient survival. It is sorted by the cancer types and cell types with more significant associations. Cell
type infiltration associated to a bad outcome is colored orange and infiltration associated to good outcome is colored yellow,

colored pale in both cases if not significant.

suggesting that effector immune populations
(NKdim, NKbright, CD8 and Tgd) tend to co-
infiltrate. The same pattern of co-infiltration with high
correlations (0.57 median Pearson's correlation)
was observed in suppressor immune populations
(macrophages and Treg).

Additionally, we characterized the clinical
significance of the immune population infiltration, as
done in13,18. An adjusted Cox regression (see
Methods) per cancer type showed that the
enrichment of all immune populations had significant
(Q-value < 0.1) influence in the clinical outcome in at
least one cancer type (Figure 1B). Suggesting that
the identified immune infiltration patterns are
biologically meaningful. In half of the cell types we
observed heterogeneity in the survival influence
across cancer types (e.g. CD8s, Tem and NKbright).
Cell types described as suppressors (Treg and
Macrophages) tended to be associated to bad
outcome and effector cell types to be associated to
good outcome (NK cells and CD8s). Nevertheless,
we observed a degree of heterogeneity across
cancer types. Counterintuitively, gamma delta T
cells were associated to bad outcome in two cancer
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types. This heterogeneity suggests that using a
cytotoxicity measure may not be enough to capture
the effect of the immune system infiltration, being
more accurate using the infiltration patterns across
immune populations.

Immune infiltration is not explained by the tissue
of origin

We next carried out a more detailed analysis of the
immune infiltration patterns across the different
cancer types (Figure S3). We re-covered the
previously observed pattern of co-infiltration across
cancer types for some immune-populations (e.g. B
cells, Tcm, Tem). But for most of them we observed
heterogeneity of infiltration, alone or in combination
with other immune populations, across cancer types.
Consequently, we hypothesized whether the
different patterns of immune infiltrate across cancer
types were primarily driven by differences observed
in the tissue of origin of the tumors. We carried out
two different analyses to answer this question.

First, we compared the infiltration of tumors (TCGA

data) with those from healthy donor samples (GTEx
data) corresponding to their respective tissue of
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Figure 2 | Immune infiltration patterns in normal donors versus tumors. (A) Schema of the GTEx comparison
analysis. We correlated GTEX and TCGA data GSVA scores (right) for each cancer type — tissue (Figure S4B), here
only Cervix squamous carcinoma (CESC) correlation is shown. For each correlation, we considered that a cell type was
enriched/depleted in TCGA vs GTEXx if the difference of enrichment was > 0.2 GSVA score. (B) Bar plot summarizing
the difference of enrichment for each immune cell types in GTEX vs TCGA GSVA correlations. Cancer types are ordered
according its overall infiltration in normal tissues (Figure S4B), being lung the highest infiltrated tissue and ovary the
lowest infiltrated one. (C) Boxplots representing the distribution of CD45 expression across TCGA solid tumors log2
RSEM, each dot represents a sample.

6|Page

178



GSVA
-___-

-1

Activated CD8 T cell || || |
NK CD56dim cells |

Macrophages |
Neutrophils
Regulatory T cell
Tem cells

B cells

Gamma delta T cell

1 il e
iDC | * L L

I\

|Il H ”\I\

Eosinophils.
Tth cells
Mast cells| | | |] | \
NK CD56bright cells | Il || \ ]]| || 1 ]
Tem cells. | I |
T helper cells|| | I/} | | I \ |
8 | 9 |10]1 12] 13 14 ]151617
sample
B clusters proportion
A
0.001 1
sTD 0052 0069 I8N 008 01 0042 0096 0017 00099 0017 0072 0047 0042 0027 5N
oL 0028 011 0056 0028 0028 011 0028 011 0056 0028 0056 - 0028 0083 0028

wsc 0085 0033 0089 [[017] 0014 0039 0037
BRCA 0036 0026 0026 0042 0014 oou@om

KM -0041 0044 0016 0081 00092 0012 0028 0062

0004100041 0012 011 011 0027 011
0027 oooa7- 0037 0051 0035 00076 0051

0055 00069 0016 QAZ 0016 0021
U)QAD- 00088 0018 0048 0021 0099 0048 00018 0023 0081 00018 0025 0011 0012 0053 01 011

HNSC - 0056 - 0076 0043 00019 0021 00039 0047 00058 00039 0 0039 0 0039 0062 0012 0068
BI.CA. 0027 005 0037 0017 0015 0017 002 0032 0012 00099 0 0099 0089 0092 0059

011 001 0034 ooos- 011 0042
00039 0016 0082 0045

mea B} o0s

wao BBY 0041 0039 on [EEN
cesc [ | 0053 [ o 017 00033 0063 002 00066 0013
esca [ 0033 006 0099 0027 0016 0077 0038
xwe @ (00035 0011 0007 0028 |01 0025 0056
sm(. 0024 0024 004 -Eooaz oona

00033 0013 008 0023 0043 0067 0013 002

ux@ 00082 0035 0016 ooosam 0033 0016 [JO8H 0 0027 0 0027

002 00028/ 012 00056 0014 -f’ﬁi 0093 0059

wec8 | 002 0042 0002800028 002 002 00028

PAAD 1.8 0019 00054- 01 0013 0013- 0051
xc e 0051- 0038 |
weso 18 0011 0011 008 0069 0023 0023 0011

XRC 116 oomsuoossooon"’ja 0027 00019

usi1s| 0018 0018 0018 0053 0053 007 0035
wm1s| 0013 0025

xicn 1.4 0015 0031 0031 0015 0031

00063 0013
00041 0026 00041

o R oo
00041

ol

0008 ooos-oosz 0044 001 0002 0028
0002 0007800059 0029 0018 0018 0014 0031
0023 00066 001 [[OAFNBREY o023 0073

0027 0044 0049 0099 uou

0011 0014 012 0014 0014 0007 0032
0004 0032 002

o oo QY 0w

00027 0033 0011 0068 0022

00033

0013 00064 01
0026

0026 0013 00064
o oo
0046 0011 0011 0011 0011
00039 0021 00039 00019 00019 0 0058
0053 0018 0018
005 0025
0015 0046

0035

oozs- 005 0037
] 0062

013 0013

00061 0002 _ 0022 0022 0014 00081 00041 00061

66 . 00019 00019 011 008 0001900019 0 oosa 00058
pcpc.- L 10039, 000560011 0011 0011, 0011 | | 000560022 0011 |
dispersion 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
score : B
low high 7_

Figure 3 | Pan-cancer distribution of immune infiltration patterns. (A) Heatmap with the GSVA score (from -1 to 1
and colored from blue to red) per sample across the sixteen immune populations. GSVA values have been clustered
in the x-axis, identifying 17 clusters. (B) Heatmap representing the proportion of samples from each cancer type that
are found in each cluster (from 0 to 1, from pale pink to dark purple). On the left, there is a representation of the entropy
score of each cancer type across the clusters, where brown corresponds to low entropy (most of the cancer type
samples are in a single or few clusters) and dark green corresponds to high entropy (more heterogeneous distribution

of cancer tvbe samples across clusters). Bottom. same dispersion score is show. at cluster level.
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origin (see Supplementary Methods). We carried out
the comparison both at the level of overall immune
infiltrate (measured as the level of CD45; Figure 2A
and B and Figure S4B), and for the immune
infiltration pattern provided by the 16 populations. At
the overall level, we observed few cancer types (e.g
lung carcionomas) infiltrated at levels comparable to
their tissue of origin. In most cases, we found little
coherence. For example, pancreas adenocarcinoma
(PAAD) and kidney clear cell carcinoma (KIRC)
were among the highest infiltrated tumors but their
normal tissues (pancreas and kidney, respectively)
were among the lower infiltrated ones. Similar low
coherence was observed when we compared the
pattern of immune infiltration of tumors and their
tissue of origin (Figure 2A and B and S4A). For
example, adrenal cortical carcinoma (ACC) and
pheocromocytoma and paraganglioma (PCPGC)
showed high enrichment for seven different immune
cell types in normal tissues which were not enriched
in their tumor tissues, which were enriching other cell
types.

Second, we clustered the immune infiltrate of all
tumors in the pan-cancer cohort (Figure 3A, Table
S4A). We obtained 17 separate groups reflecting
distinct immune infiltrate profiles in cancer. The
clusters captured patterns of immune infiltration
raging from overall low infiltration (e.g. cluster 12) to
others with a high infiltration (e.g. 1). In the middle,
there was a range of clusters with mixed infiltration.
Most of the cancer types showed a heterogeneous
immune infiltrate, being the samples of these
cancers grouped in different clusters (Figure 3B).

Stomach adenocarcinoma (STAD),
cholangiocarcinoma (CHOL), lung squamous
carcinoma (LUSC), breast cancer (BRCA),
cutaneous melanoma (SKCM) and colorectal
adenocarcinoma (COADREAD) samples were
among those more distributed across distinct
immune infiltrates. As  opposite, prostate
adenocarcinoma (PRAD), PCPG, lower grade
glioma (LGG) and glioblastoma (GBM) tumors
exhibited a more homogeneous infiltrate and most
(>65%) of the samples of these cancers appeared
grouped in a single immune cluster (Figure 3B).
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Besides, large subsets of certain cancer types
shared the same immune profiles, converging in the
same immune-clusters. For example, most (65%) of
the GBM tumors were in cluster 7, together with a
significant percentage (23%) of thyroid carcinoma
(THCA) tumors, sharing an immune infiltrate that
exhibited low levels of Nkdim and CD8 and higher
abundance of Tregs and macrophages.

Taken together, these results suggest that
differences observed in the immune infiltrate across
cancer types are not driven by their tissue of origin,
but rather by the molecular features of the tumors.
Moreover, they provide a general overview of the
specific immune profiles of specific cancer types,
and therefore provide a description of that infiltrate
which may be used to study the interaction of the
molecular characteristics of the tumors and the
immune system.

Three different scenarios of immune infiltration
are found across solid tumors

Given our hypothesis that tumor intrinsic molecular
characteristics are shaping the immune infiltration
profile, we next fine-tuned the immune infiltration
profiles by identifying them at cancer type level (see
Methods). Then, we grouped the tumors in each
cancer type according to their pattern of immune
infiltrate, with an overweight given to the population
of cytotoxic cells (see Methods). The rationale
behind this weighted clustering aims to separate
tumors by their pattern of effective immune
infiltration. We hypothesize that different patterns of
immune infiltration effectivity may correlate with
different mechanisms of immune evasion.

The clustering approach identified six groups of
tumors with distinct pattern of immune infiltration in
each cancer type (Table S4B). These six groups, as
expected, reflected three scenarios of immune
infiltration across solid tumors: low cytotoxic infiltrate
(groups 1/2), mid cytotoxic infiltrate (groups 3/4) and
high cytotoxic infiltrate (groups 5/6). Figure 4 shows
an example of two of the 28 per-cancer type
clustering (Figure S5 shows the 28) for two cancer
types at the extremes of overall infiltration range, by
means of CD45: KIRC and uveal melanoma (UVM).
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Note that, despite the differences of overall
infiltration (Figure 2C), in both cancer types the three
scenarios of immune infiltration are apparent. These
three scenarios are detected across all cancer
types, although their relative prevalence varies in
each of them (Figure 4C), likely due to the
heterogeneity of immune infiltration patterns across
cancer types.
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Tumors in immune-cluster 1 showed a depletion of
most immune cell types across cancer types, which
resemble an immune desert phenotype (as
described by*°3"), except for an enrichment of aDC
in THCA (Figure S6). Tumors in immune-cluster 2,
as the previous ones, showed low infiltration of most
immune cell types. Interestingly, 7/28 cancer types
showed a high infiltration (GSVA > 0.2) of Treg
and/or macrophages -both suppressor immune
populations-, while no cancer type showed high
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infiltrations of effector immune cells. Thus,
collectively, tumors in immune clusters 1 and 2
possess either a very low infiltrate or mostly
suppressive infiltrate, respectively.

Immune-clusters 3 and 4 showed varying degrees of
enrichment and depletion of different cell types
across cancer types, producing heterogeneous
infiltrates. Of note, while tumors of immune-cluster 3
exhibited depletion of cell populations across the
board, those of immune-cluster 4 showed a median
higher infiltration of suppressor vs effector
populations (median GSVA across cancer types

Tumors of immune-cluster 5 showed enrichment of
effector populations and depletion of suppressor
ones in seven cancer types (suppressor populations
showing a median GSVA < 0 and at least 3 out of
the 4 effector populations with GSVA > 0). Moreover,
the median GSVA of effector populations was higher
than that of suppressor population across all cancer
types (0.16 and 0.06, respectively). Immune-cluster
6 showed a high infiltration of most immune cell
populations, coherent with an inflamed phenotype
(as described by**?*"), Hence, clusters 6 and 5
collectively grouped tumors with an infiltrate of high
immune infiltration or majority effector infiltrate,
respectively.

Stage and viral infection as clinical correlates
across immune-clusters

Our next objective was to identify the characteristics
of the tumors in each cancer type immune-cluster
that could explain the features of their immune
infiltrates.

First, we hypothesized that the presence of viral
infections in patients could yield more highly
immunogenic tumors due to the expression of viral
antigens32. To evaluate this question, we collected
the tumor expression of four known oncogenic
viruses (see Methods): Epstein-Barr virus (EBV),
human papillomavirus (HPV), hepatitis B and C
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(HBV and HCV) and observed the distribution of
infected tumors across immune-clusters (Figure 5A).

We observed that EBV-infected STAD and HPV-
infected head and neck squamous carcinoma
(HNSC) tumors were significantly (P-value < 0.05)
enriched (according to Fisher exact test) in high
cytotoxic immune-clusters, whereas HPV-infected
cervical squamous carcinoma (CESC) tumors did
not exhibited any relationship. HCV-infected
hepatocellular carcinoma (LIHC) was more frequent
across tumors in high cytotoxic immune clusters,
although it did not reach statistical significance, but
strikingly, HBV infection appeared significantly
enriched across LIHC tumors with a lower immune
infiltrate. These results show a heterogeneous
landscape of immunogenicity of viral-infected tumor
samples, influenced by both the tumor and virus

type.

Second, we hypothesized that the clinical stage of
the tumor could also be a major determinant of its
immune infiltrate. As a general trend, we observed
that tumors of advanced stages (llI/IV) were
depleted for tumors in highly cytotoxic clusters
(Figure 5B). This, suggests that tumor progression
correlates with the immune infiltrate, either by
directly influencing the status of the cell populations
present, or because a less cytotoxic infiltrate is
needed for tumor development. We observed a
significant (P-value < 0.05) depletion of high
cytotoxic immune-clusters (5-6) in early (stages I/11)
versus advanced stages in seven cancer types,
according to Fisher's exact test. The opposite
relationship was observed in KIRC, where tumors
with the highest cytotoxic infiltrate significantly
enriched for tumors of stage III/IV, which may
explain why the presence of immune infiltrate has
been found to be a factor of bad prognosis in this
cancer type when not adjusted by other clinical
variables™.
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Figure 5 | Effect of clinical
variables in the immune
infiltrates. (A) Bar plot showing the
proportion of infected patients (dark
turquoise) versus non-infected
(turquoise) with  four different
viruses in five different cancer types
across immune-clusters (grouped

[ Inon-infected
B infected

[T early stage
Il 2dvanced stage

Lusc*

UCEC

by its cytotoxic phenotype in 1-2, 3-
4 and 5-6). (B) Proportion of
samples in early (stages | or Il) and
advanced clinical stages (stages IlI

ESCA

or V) across immune-clusters
(grouped as in A). Significant
associations (Fisher exact test P-

value < 0.05) in both (A) and (B) are
marked with an asterisk.

immune-clusters

Transcriptomic tumor programs modulate their
immune infiltrate.

Next, we wanted to explore which transcriptomic
programs of the tumors are active during immune
evasion. To use tumor bulk expression to delineate
these transcriptomic programs across tumors, we
first needed to adjust the expression measured for
each gene in each tumor sample to eliminate the
contribution of the immune content (see Methods,
Figure S1A). We then used the adjusted tumor
expression of all genes to perform a Gene Set
Enrichment Analysis (GSEA) of 52 selected
pathways (Figure S2, Table S2B) to dissect the
molecular mechanisms of tumors that may influence
their immune infiltrate.

First, we checked that overall gene expression was
homogeneous across immune-clusters, so no
cluster biases were present (Figure S7). We next
asked how much the adjustment of tumors
expression changed the enrichment of each
pathway across tumors (Figure 6A, detailed
examples in Figure S1C). We observed that immune
related pathways suffered the most with the
adjustment process, e.g. more than 70% of the
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genes in the chemokines reactome pathway had
lower expression levels after the adjustment process
(n=57 genes). On the other hand, pathways related
to oncogenic processes remained mostly
unchanged after the adjustment; e.g. the expression
of any gene in G2M checkpoint hallmark (n=200
genes) was lowered or increased after expression
adjustment. Interestingly, the expression of some
pathways such as cancer germline antigens would
be masked if the expression was not adjusted, as
the expression levels of the genes in this gene set
were increased after the adjustment.

After adjusting the expression data, we ran the
GSEA?, Thus, we only performed GSEA analysis on
cancer types whose expression we could correct:
ie., all but UVM, mesothelioma (MESO) and
cholangiocarcinoma (CHOL) (see Supplementary
Methods). The GSEA computed the enrichment of
up-regulated genes in tumors of each cluster in each
cancer type with respect to the other clusters in the
same cancer type (Figure 6B and C, Table S4). The
heterogeneity of tumor pathways enriched for up-
regulated genes in each cluster suggested that
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Figure 6 | Tumor pathway enrichment across immune-clusters. (A) Bar plot representing the proportion of genes in
each pathway gene set that after expression adjustment its expression has been lowered (pale green), increased (dark
green) or remains stable (grey). (B) Dot plot with the distribution of enriched pathways in adjusted expression data (Q-value
< 0.25) across the immune-clusters. Each dot size represents the proportion of cancer types enriching the pathway and the
x-axis the median immune-cluster enriched across cancer types. Dots also show the dispersion of enriched immune-clusters
as a black line and they are colored according to the median NES across cancer types. Bottom bar plot represents the total
of pathways enriched in each cluster. (C) Heatmap representing the cancer types enriching each pathway colored by the
cluster enriched in each cancer type (see in B bottom bar plot the color legend).

different tumors may influence their immune infiltrate
through the activation of a panoply of molecular
mechanisms.

Pathways with a median enrichment in high
cytotoxic tumors were consistently enriched across
cancer types in immune-clusters 5 or 6 (80.3% of the
significant enrichments). Six diverse types of tumor
pathways were enriched in a high cytotoxic immune
context. In turn, these pathways may be classified in
pro-immunogenic and immune-resistant pathways.

Pro-immunogenic  pathways include: cancer
germline antigen (CGA) pathways, which have been
described to lead to an immunogenic phenotype and
postulated as candidate targets for
immunotherapies because of that®®3*; some
cytokines and chemokines pathways (e.g.
Reactome chemokine receptors bind chemokines or
Pro-inflammatory cytokines & chemokines), HLA
class | and Il and apoptosis pathways (e.g. hallmark
apoptosis and Reactome extrinsic apoptosis
pathway). On the other hand, likely immune-
resistant pathways involve: STAT signaling (e.g.
hallmark /L6 JAK/STAT3 signaling), associated to
an inhibition in the production of pro-inflammatory
cytokines and chemokines®**¢; energy metabolism
(e.g. hallmark fatty acid metabolism and KEGG
oxidative phosphorylation among others), which
may deplete the stroma of nutrients, and
consequently prevent from effector immune
population differentiation®*; some inhibitory
cytokines and chemokines and negative
checkpoints. These findings suggest that tumors
highly infiltrated survive in a dynamic equilibrium
between pro-immunogenic and anti-immunogenic
signals.
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Pathways with a median enrichment in intermediate
cytotoxic clusters (hypoxia, angiogenesis and
extracellular matrix pathways) were lowly enriched
in these immune-clusters (3 or 4) across cancer
types (46% of all significant enrichment were in
cluster 3 or 4). We hypothesized that cancer types
enriched in the same pathway, even if in different
immune-clusters, showed a similar immune profile,
but at different cytotoxicity levels across cancer
types.

Hypoxia hallmark was significantly enriched in
LUSC, SKCM and PCPG for immune clusters with
different cytotoxicities (2, 6 and 4 respectively).
When observing in detail the immune populations
mostly enriched in these immune-clusters (Figure
S6), we observed that all of them showed high
infiltration of Treg and neutrophils, across different
cytotoxic scenarios by the tumors. This observation
was coherent with the literature, as hypoxia can
induce the recruitment of Tregs, via the expression
of specific chemokines®***°, Thus, hypoxic conditions
of the microenvironment, generating an up-
regulation of the hypoxia response pathway in the
tumor, may be associated to an increased
recruitment of Tregs across different cytotoxic
scenarios by the tumors. Angiogenesis pathways,
according to literature are intimately linked to
hypoxia*'~*, they were enriched in seven cancer
types in immune-clusters 3 and 4, all of them
exhibiting high infiltration by macrophages (median
GSVA of 0.297), which are known to be recruited
during angiogenic processes*4. Besides, the
cancer types enriched in other immune-clusters
showed also infiltration by macrophages (median
GSVA of 0.3). Extracellular matrix (ECM) pathways
were enriched in 15/25 cancer types. Changes in
ECM proteins have been shown to have an influence
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in the leukocyte trafficking into the tumor (either
acting as a biophysiological barrier, promoting
certain cell types to migrate or even modulating the
migration mechanisms of the immune cells) and in
the leukocyte polarization. These ECM changes
have been associated to both pro-inflammatory and

anti-inflammatory phenotypes, having a dual role*’~
49

Low cytotoxic clusters were consistently enriched
across cancer types (68.5% of all enrichments were
in immune clusters 1 or 2). There were six pathways
enriched in low-cytotoxic clusters: TGFSB signaling,
WNT-BCatenin pathway, cell cycle pathways, DNA
damage repair and telomerase pathways, protein
synthesis pathways and Hedgehog (SHH) signaling.
TGFB signaling has been described to prevent
immune infiltration via chemokine and cytokine
suppression®, or stromal proliferation®®5!, and also
triggering immune regulatory response by favoring
the development of Treg according to literature®'.
LUAD and PRAD showed Treg infiltration (median
GSVA 0.23) in clusters enriched for TGFf pathway
(2 and 3, respectively), suggesting that the activation
of TGF( pathway in both cancer types may promote
Treg infiltration, while other TGFB enriched cancer
types, with depletion of Tregs, (KIRP, LIHC and
UCEC) may activate TGFB pathway to avoid
immune infiltration. WNT-GCatenin  pathway,
enriched only in four cancer types, has been
suggested to lead to a T cell immune-excluded
phenotype®?5%. Concordantly we found median
depletion (GSVA =-0.05) of all T cells (comprising 7
cell types) across the cancer immune-clusters
enriched in this pathway. Cell cycle pathways (e.g.
E2F targets or G2M checkpoints) are enriched
across 14 cancer types, high cellular proliferation is
associated to a reduction of immunogenicity (and so
cytotoxicity) due to the generation of many new non-
recognized tumor antigens by the immune system®.
DNA damage repair and telomerase pathways (e.g.
DNA repair or mismatch repair), were likely enriched
due to the identified increased rate of cellular
proliferation as they are tightly bound to DNA
replication, 11/15 cancer types with enrichment of
immune-clusters for DNA damage pathways
showed consistent enrichment for cell cycle. Protein
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synthesis pathways, similar as DNA damage could
be linked to an increased rate of cellular proliferation,
as a cell division implies a duplication of the protein
content; 12 out of the 18 cancer types with
enrichment of immune-clusters for these pathways
showed also enrichment for the same immune
clusters of at least one cell cycle pathway.
Hedgehog (SHH) signaling was enriched in 5 cancer
types. An activation of this pathway has been
associated to a decreased immunogenicity by
regulation of HLA molecules (downregulation, with a
consequent decrease in CD8 and CD4 T cell
infiltration) and STAT proteins®58. Concordantly,
enriched cancer types showed a depletion in CD8s.

Finally, we evaluated whether the analysis of the 52
selected pathways may inform of tumors response
to immune-checkpoint blockade. We performed a
GSEA of the 52 pathways comparing the up-
regulation of genes between responders and non-
responder tumors of the two available melanoma
cohorts with transcriptome profiling and data of
response to immune checkpoint blockade therapy
response®?, We found three significant
enrichments considering a P-value < 0.05 in the anti-
PD1 treated cohort. We observed that up-regulated
genes in non-responders were enriched in
angiogenesis pathway from Senbabaoglu et al.
(2017) (P-value = 0.02), extracellular matrix
organization (Reactome) (P-value = 0.04) and Wnt-
BCatenin hallmark (MSigDB hallmark) (P-value =
0.02). The enrichment of the first two pathways was
already reported in the original publication of the
cohort, as part of the IPRES signature?®, but the
enrichment for Whnt-BCatenin had not been
previously reported by performing this type of
analyses, although it has been reported in the
literature®2%3, Even if limited, the pathway
enrichment analysis of patients responding and not
to immunotherapies sheds light into the underlying
mechanisms of therapy no response. As more
datasets with RNAseq data and the response to
immune-checkpoint blockers appear, a more
comprehensive analysis could be done than the
snapshot provided here.
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Figure 7 | Representation of the mechanisms underlying the tumor cytotoxic scenarios. A detailed explanation is
found in the results section. SHH: sonic hedgehog; CGA: cancer germline antigens; Treg: T regulatory cell; CD8: Active

CD8 T cells; ECM: extracellular matrix.

Integrative biological model of tumor intrinsic
immune evasion mechanisms

Finally, we propose some potential mechanistic links
between tumor molecular characteristics and their
immune infiltrate pattern based on the results of our
analyses. We use the three cytotoxicity scenarios
already described to illustrate it: low cytotoxic
infiltrate (clusters 1 and 2), intermediate cytotoxic
infiltrate (3 and 4) and high cytotoxic infiltrate (5 and
6) (Figure 7).

The low cytotoxicity infiltrate scenario in 25% of the
tumors in immune-cluster 2 showed an increased
infiltration of suppressor populations in comparison
to effector ones. While, tumors in immune-cluster 1
presented a phenotype of immune desert®' (i.e .low
cytotoxic). Tumors in these clusters tend to be of
advanced clinical stages, suggesting that this
immune phenotype could be a pre-requisite for
tumor progression. The high proliferative state
identified in 14 cancer types (marked by the
enrichment of cell cycle, DNA damage and protein
synthesis pathways) could be also responsible of
lowering the immunogenicity by generating new
non-recognized antigens because of the massive
cellular proliferation®. Besides, the phenotype of
immune exclusion could be explained in some
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tumors by the activation of pathways which impair
leukocyte recruitment (SHH, TGFBS and Wnt-
BCatenin signaling).

The intermediate cytotoxic scenario showed an
heterogenous profile of immune infiltrates, with
predominance of suppressor populations in 25% of
the cancer types in immune-cluster 4. These tumors
showed consistently enrichment for only two
pathways: angiogenesis, which may impair
leukocyte trafficking and contribute to a decrease in
the cytotoxicity via recruitment of macrophages®*'~*?
and ECM changes. In turn, ECM changes could
either promote or suppress cytotoxicity and
leukocyte recruitment through different
mechanisms*"—49,

The high cytotoxic infiltrate scenario could be
explained in immune-cluster 5 by a predominance of
effector populations over suppressor ones in 25% of
the cancer types, and in immune-cluster 6 due to
their inflamed phenotype (i.e. high cytotoxic)®'. In
LIHC and HNSC high cytotoxicity could be caused
by viral infection too. In tumor from these clusters we
found activation of processes that promoted the
cytotoxic infiltrate (e.g. viral processes, high
expression of HLA molecules and CGAs) and
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processes that presumably allow tumor cells to
survive in it (e.g. negative checkpoints, anti-
inflammatory cytokines). Additionally, we identified
an enrichment of up-regulated energy metabolism
pathways in tumors with high cytotoxic infiltrate that
may establish a competition for nutrients with
immune effector cells that would impair the
differentiation of the latter®”-3,

Herein we have identified many biological processes
whose activation we suggest may influence the
pattern of their immune infiltrate. We thus contribute
to shed light onto the mechanisms of immune
evasion by tumors. Besides, the identified pathways
active in the tumor evasion of the immune system
could be good candidates for further investigation as
potential targets for a combinatorial immunotherapy,
as has already been suggested for Wnt-BCatenin
pathway®2.

A clear limitation of this study is causality of the
tumor pathways and its effect in the immune
infiltration could not be inferred. Besides, we have
not considered genetic and epigenetic tumor
alterations. These may be positively selected due to
the environmental pressure of the immunologic
microenvironment, providing the tumor capabilities
of immune resistance by activation of the identified
pathways or other mechanisms, such as the
described mutation of HLA and B2M molecules,
preventing from the recognition of T cells or the
mutations in CASP8 which avoid apoptosis induced
by immune cells®? . Besides, we are aware that other
genomic alterations, tumor mutational load and
aneuploidy, have been described as markers of
increased cytotoxicity?':??, likely represented in the
tumors of our high cytotoxic scenario.

CONCLUSIONS

In this study we explored the pan-cancer immune
infiltration profiles of sixteen different immune
populations across 9403 samples and 28 cancer
types. The identified immune infiltration profiles were
of clinical relevance and could not be explained by
the tissue of origin. Given that, we explored tumor
intrinsic features that may be shaping the immune
infiltration of the different cancer types. To do so, we
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refined the immune infiltration profiles at cancer type
level and described three different scenarios of
cytotoxicity, divided in six immune-clusters. We
showed that different profiles of infiltration may lead
to the same levels of cytotoxicity across cancer
types, to our knowledge not previously
comprehensively described.

For the first time, we did a comprehensive analysis
on the tumor mechanisms and clinical features
underlying immune system evasion by tumors
across 28 solid tumors. By adjusting the expression
levels, we prevented highly infiltrated tumors from
appearing only enriched in immune system related
pathways and we identify other interesting ongoing
processes, such as cellular metabolism, that
otherwise would be masked. Albeit incomplete here
we have presented a biological model which
explains three different cytotoxic scenarios (high,
intermediate and low) by the activation of tumor
signaling pathways. These pathways, may allow the
tumor resist and module a high cytotoxicity
microenvironment, such as enhanced energy
metabolism pathways in the tumor, or may lead to
low cytotoxic environment, like a high cellular
proliferative rate. The identified tumor mechanisms
of immune avoidance are potential candidates to be
explored as potential targets for combinatorial
therapy with immunotherapies.
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SUPPLEMENTARY METHODS

1.Selection of immune population identification method

Immune populations can be estimated from RNA-seq bulk tumors through computational
methods. There are two different types of methods currently being used to identify immune cell
populations: (i) gene set enrichment methods '2%* used to estimate the absolute amount of
each cell population in each tumor sample, so taking into account not only the relative amount
of the population but also the overall immune infiltrate; and (ii) deconvolution methods %%, used
to estimate the relative proportion of each cell type in each tumor sample.

Deconvolution methods have several pros and cons. As a “pro”, they identify the exact
proportion of each cell type within a sample. As drawbacks (i) they have not been validated for
RNAseq data, (ii) they rely on reference expression matrices that cannot be customized, as the
populations and genes in the matrix are fixed; and (iii) they should be used with another
method/estimate to assess the overall infiltration within the samples. On the contrary, gene set
enrichment methods (i) can be customized, at the level of which gene signatures and which
genes in each signature should be included, (ii) they have been validated for RNAseq data’,
and (iii) they identify the overall infiltration for each cell type. Therefore, given the aim of this
work and the sequencing data available, we decided to use gene set enrichment methods to

estimate immune population infiltration within the tumors.

2.Selection of sample level enrichment method

The most widely used methods to perform a sample level enrichment are Gene Set Varation
Analysis (GSVA)’ and single sample Gene Set Enrichment Analysis (ssGSEA?®). Both are
unsupervised Gene Set Enrichment (GSE) methods that compute an enrichment score for each
gene set in each individual sample. The main difference is that GSVA first normalizes gene
expression profiles over the analyzed samples, helping to reduce the noise, while ssGSEA does
not normalize. Moreover, the comparison with ssGSEA in Hanzelmann et al. (2013) shows that
GSVA performs better than ssGSEA when modeling gene set enrichment over a sample

population
Using the gene sets of Bindea et al. (2013) we compared the gene set enrichment scores

(GSEs) computed through both methods, ssGSEA and GSVA, across cancer types. We run

them using the R Bioconductor package gsva 3.5 with default parameters. We found a positive
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significant (P-value < 0.05) Pearson’s correlation of 0.87 between both methodologies. The
scatter plot below represents the correlation between GSEs of ssGSEA and GSVA, with the
regression line. The immune population Tgd was discarded for the sake of representation for
being a depleted outlier according ssGSEA. The GSEs were normalized across each cell type in
each cancer type through a Z-score to make the scales comparable.

All cell types Zscore GSE scores

Zscore GSVA score

-6 -4 -2 0 2 4 6 8
Zscore ssGSEA NES

3.Selection of immune signatures for GSE

We downloaded immune signatures from the supplemental material of three different studies:
(1) Bindea et al. (2013), (2) Angelova et al. (2014) and (3) Charoentong et al. (2016). The
methodology followed to identify the gene signatures by the three works was similar. The only
dataset with experimental validation was (1). Senbabaoglu et al. validated the enrichment of 5
immune populations (NK, T cell CD8, T cell CD4, T regulatory and Macrophages) from (1)
according to ssGSEA enrichment score with FACS and/or immunoflucrescence. To decide
which gene signature dataset would be better to use, we observed the performance of the

enrichment of the different signatures.

First, we tested if the enrichment between the different populations in each gene signature
dataset was highly correlated among all cell types, to evince if each dataset could discriminate
better between cell populations. We observed that GSEs from (3) were highly correlated, with a
median Pearson correlation across all cell types 0.5; (2) dataset showed very highly correlated
GSEs across cell types and anti-correlated ones too for certain populations across most of the
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other cell types (e.g. Activated CD8); GSEs from (1) were mostly positively correlated among
cell populations in a lower degree than (3). After this analysis, we decided to exclude dataset (2)
from further selection due to the anti-correlations among certain cell populations, a priori without
a biological explanation. Moreover, we decided to prioritize the selection of dataset (1) as

seemed better to distinguish between cell types, for showing lower correlations.
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Next, we correlated the GSEs from (1) and (3) with well-known markers of certain immune
populations:
e Macrophages with the myeloid marker CD68
e Effector populations (T cells CD8, NK cells and T cells gamma delta) with cytolytic
activity as described by Rooney et al. (2015)%° (computing the geometric mean between
the expression of PRF1 and GZMA).

The boxplots below show the correlation values with macrophage gene signatures and CD68
(A) and effector immune populations and cytolytic activity (B), measured as the geometric mean
between GZMA and PRF1 expression. Only significant correlations are shown (Q value < 0.1).

Beside each boxplot the median of all spearman correlation values is shown.
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We observed how among Macrophages gene signatures the one performing better
corresponded to gene set (1) and among effector populations NK cells dim subtype was also

performing better in (1), while CD T cells and T cells gamma delta performed better in (3).

Due to all argued reasons we decided to focus on immune populations from (1) but changing
the gene signatures of CD8 T cells and T cells gamma delta for those from (3). Besides, we also
considered the (3) gene signature for T regulatory cells instead of the one in (1) because in (1) it
was formed by a single gene. GSE methods are known to overestimate enrichment if they are

run with very small gene sets, not being suitable for using a single gene. Following this
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rationale, we also discarded the gene signature of pDC from (1). At last, we discarded some cell
types from (1) for being redundant (e.g. NK cells include NK CD56 bright and dim).

We ended up with a dataset of sixteen gold immune signatures (hereafter named GImmS).
From them, three were from data set (3) and 13 from dataset (1): B cells, Eosinophils,
Macrophages, Mast cells, NK CD56bright cells, NK CD56dim cells, Neutrophils,T helper cells,
Tem cells, Tem cells, Tfh cells, iDC, aDC, Activated CD8 T cell, Gamma delta T cell and
Regulatory T cell.

Cytotoxic cells gene signature was discarded from the GImmS dataset for being redundant with
other immune populations (Gamma delta T cell, NK CD58bright cells, NK CD56dim cells and
Activated CD8 T cell). However, it was used after for the identification of immune-clusters at

cancer type level (see Methods).

4.Comparison between a deconvolution method and a GSE method

To be exhaustive, even if we have already decided to use a GSE method, we compared the
performance of GSVA with the one of a deconvolution method, CIBERSORT?. We did not
consider comparing with MCP-counter® because they only consider 8 immune lineages (and
fibroblast). The selected GImmS were more specific and did not only include many immune
lineages, being better comparable with CIBERSORT. CIBERSORT is a deconvolution method
that estimates the fraction of infiltration for 22 cell types (LM22 matrix). It is trained with
microarray data. Because the distribution between microarrays and RNA-seq data is different,
input directly RNA-seq data into CIBERSORT impairs the fitting with LM22 matrix, worsen the
performance of the method. Moreover, not having data for all the genes in LM22 matrix (548
genes) also impairs the performance of the method.

There is only microarray data for three cancer types (OV, GBM and LUSC) out of the 28 solid
tumors currently available with RNA-seq data in TCGA. Following the procedure described in
Charoentong et al 2016, we build a model with the TCGA microarray data to transform the RNA-

seq data of all the cancer types into microarray-like.
First, we downloaded HG platform (level 2) data on probe-sample-intensities from the GEO

repository for OV, GBM and LUSC. If one probe was mapping to more than one gene, the probe

with the highest mean intensity was kept. Probe-symbol mapping was done with Ensembl v79,
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we also re-mapped manually some gene symbols to maximize LM22 matrix coverage. We
retrieved intensities for 13872 genes, 533/548 were found in the LM22 matrix. Additionally, we
performed a quantile-normalization of microarray data, following the standard procedure of
microarray data analysis. The plot below shows the contribution of the genes from LM22 matrix
not found in TCGA microarray data to the identification of each cell type. It can be observed how

some of the missing genes (specially TRBC1) may impair the detection of several cell types.
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Second, we built an univariate cubic smoothing spline (CSS) model with four degrees of
freedom with TCGA microarray data using the interp1d library from scipy interpolate python
module. Then, we used this model to transform the RNA-seq data into microarray-like data. The
performance of the model was assessed for OV, GBM and LUSC with a leave-one-out cross-
validation. Considering all the cell types and cancer types together, we obtained a good overall
performance of the method. We found a 0.79 significant (P-value < 0.05) Spearman correlation
between the immune cell fractions of RNA-seq transformed data and microarray data. The plot
below shows the correlation, each dot represents the sample fraction of a tumor sample, and

each color represents a different cell population.
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Going into detail, we observed how using the CSS to transform RNA-seq data did not performed
equally for the estimation of all cell populations. The plot below shows the correlation value of
immune cell fraction values per each cell type using microarray data and RNA-seq transformed
data. Hence, even if the overall modeling of RNA-seq data looks good, we cannot conclude that
the identification of all cell types through CIBERSORT with RNA-seq is adequate.

Spearman correlation value per cell type
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Third, we compared the enrichment values of the GImmS by using GSVA with the cell fractions
obtained after running CIBERSORT with RNA-seq transformed data. To do so, we first mapped
the cell types of the GImmS to the ones of the LM22 matrix. We did not found good correlation
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for most the cell types. Indeed, we found anti-correlations for some cell types (e.g. NK cells
activated from CIBERSORT with Cytotoxic cells from GSE). The box plots below represent the
significant (Q-value < 0.1) median Pearson correlation values in each cancer type across cell
types. Correlations are labeled as GImmS GSVA cell type vs CIBERSORT cell type.

Spearman correlation values per cancer type per each cell type
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At last, we repeated the same comparison considering that CIBERSORT and GSE methods do
not measure the same. While GSEA methods infer the overall infiltration for each cell type,
CIBERSORT infers the relative abundance of each cell type infiltrating the tumor. Thus, we
looked again the same correlation but multiplying CIBERSORT cell proportions times overall
infiltration of the tumor. We used ESTIMATE Immune score' to measure the overall infiltration
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in each tumor. As can be observed in the boxplots below, the correlations improved,

dramatically for some cell type comparisons.

Spearman correlation values per cancer type per each cell type
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From these analyses, we concluded that after modeling RNA-seq data into microarray-like,

CIBERSORT can be run. However, the relative proportions of some cell types, such as NK

cells, should be considered cautiously, as according the CSS modeling they do not highly

correlate with their identification in microarray data. Besides, the correlation with a GSE

approach shows positive concordance between both methodologies, even if not quite high

across all cell types.
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5. Immune-cluster hierarchical clustering

Hierarchical clustering was performed minimizing the squared Euclidean distance between the
agglomerated samples by using the Ward method. Samples were assigned to one of the n
clusters according to the resulting linkage matrix, where n represents the total number of
clusters of the partition. To determine the number of clusters in which the cohort is divided, we
measured the percentage of variance (VAR) of the data explained as a function of a range of n
values:

VAR=1—(SSE/SST) SST=D.d(x,,x) SSE=) SSE, SSE=>, d(x,%)
i=1

j=1 X€C,

where m is the overall number of samples of the cohort, and i represents one of the n clusters; d
states the euclidean distance and the cohort and cluster centroids, respectively.

In the case of the pan-cancer pooled analysis, the VAR increased at a similar rate (<1%) for
each additional cluster after n=9, and a clear cutoff (e.g. following the elbow approach) could
not be established. Therefore, and as an orthogonal observation, we evaluated how the cancer
cohorts distributed across the clusters when the n was larger than 9. First, we estimated the
degree of dispersion in the distribution of cancer types in each of the n clusters by the entropy

scaore:

k
H=-) plog,(p,)
=1

where p is the proportion of tumors of a given cancer cohort grouped in the cluster i, and k is

the total number of cancer cohorts.

As a result, we found that the first tercile of the Hi values did not decrease significantly after
n=15; in other words, the samples grouped in those clusters more enriched by one or more
cancer type(s) tend to remain stable even if the overall cohort is further split in more clusters.
Second, we identified those clusters grouping large proportions (>25% of the samples) of
different cancer types. We found that these pan-cancer groups do not separate in more cancer-
specific clusters after n=17. Taken all these results together, and with the aim of favoring the
creation of clusters capturing specific cancer-type immune signatures rather than to group the
tumors in wider pan-cancer clusters, we opted for dividing the overall immune infiltrates in 17

groups.
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6. GTEx immune infiltration

GTEX data v6 was downloaded from GTEXportal (https://gtexportal.org/home/) (sample level

RPKM matrix). When there was more than one entry per gene symbol, we kept the one with the
highest median expression (RPKM) across samples. GTEX tissues were mapped to TCGA
cancer types according tissue SMTS GTEX annotation correspondence (e.g. Lung was mapped
to LUAD and LUSC) below:

|

|Adipose Tissue SARC
|Adrenal Gland |ACC,PCPG
Bladder BLCA

Brain LGG,GBM
Breast BRCA
Cervix Uteri CESC
[Colon COADREAD
Esophagus ESCA
Kidney KICH,KIRC,KIRP
Liver LIHC

lLung LUAD,LUSC
Muscle SARC
Nerve SARC
Ovary oV
Pancreas PAAD
|Prostate PRAD
Salivary Gland HNSC

{Skin SKCM,HNSC
Stomach STAD
[Testis TGCT
Thyroid THCA
{Uterus UCS,UCEC

We ran GSVA with GImmS across all normal tissues in GTEX and compared the immune
infiltration pattern with the one of pan-cancer GImmS GSVA. We also looked at the overall

immune infiltration in normal tissues by looking at CD45 (PTPRC) expression in GTEx samples.

We correlated the GSVA scores of the GImms with the GSVA of the corresponding tumors with
a Pearson’s correlation. We considered that an immune cell type was more enriched in tumors

or normals when it deviated +/-0.2 of the correlation diagonal (Figure S3).
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7. TCGA expression adjustment for its immune component

To adjust TCGA expression for its immune component we have followed the rationale
suggested by Aran et al. (2016)"" (Figure S1A). We have adjusted the expression levels of each
gene according the expression value of CD45. From GTEx normal tissues, we first learnt how
much each gene expression was influenced by CD45 in each tissue. We extracted the slope of
the correlation between each gene and CD45 in each tissue, by fitting it in a degree one
polynomial. Next, we mapped the GTEXx tissues to TCGA tumors (see above) and for each gene
expression value in each sample we subtracted the expression value of CD45 in the sample
times the slope learnt from GTEx. Note that we were not able to adjust expression for UVM,
CHOL and MESOQ for not having normal tissue data in GTEx.

To validate the results of the adjustment method we looked at specific genes described to be
expressed: (1) mostly in immune but not tumor cells (e.g. PD1), (2) in both immune and tumor
cells (e.g. HLA molecules), and (3) mostly in tumor but not immune cells (e.g. NOTCH1). The
adjustment method worked as expected. The expression levels of genes from (1) to (3) were

lowered, ranging from a dramatic decrease to almost the same expression level (Figure S1B).

Moreover, we also explored how the expression adjustment influenced the enrichment of gene
sets. Again, as expected, we observed that the expression of most genes in immune-related
gene sets was lowered while in oncogenic gene sets it remained stable (Figure S1C). We
considered that the expression of a gene was lowered/increased if it deviated -/+2 from the

diagonal of the correlation plot between adjusted and unadjusted expression.
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.« HALLMARK_INFLAMMATORY_RESPONSE = HALLMARK_ANGIOGENESIS - HALLMARK_G2M_CHECKPOINT
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Figure S1. Tumor expression adjustment for its immune component. (A) Schema of the
adjustment method which consists mainly of two steps, (i) learning slopes on CD45 influence in
gene expression in normal tissues and (ii) applying the learnt slopes to TCGA data (see
supplementary methods). (B) Top. Correlation plots of the pan-cancer expression and adjusted
pan-cancer expression, in log2 RSEM, of three different genes: PDCD1 (known as PD-1) which
is mostly expressed in immune cells, HLA-A expressed in immune and tumor cells and
NOTCH1 mostly expressed in tumor cells. Bottom. Correlation plots of the pan-cancer
expression of each gene with CD45. (C) Gene expression changes after expression adjustment
in three different pathways, from left to right inflammatory response (tightly related to the
immune component of the tumors), angiogenesis (mildly related) and G2M checkpoint (mostly
tumor cell specific). Each plot represents the median pan-cancer expression of each gene
(represented as a dot) in the gene set before adjustment (y-axis) and after adjustment (x-axis).
The genes outside the diagonal grey area, are the ones where expression is changed after
adjustment (+/- 2 log2 RSEM deviation from the diagonal), leading to a gene expression
decrease (on the left of the diagonal) or increase (on the right of the diagonal).
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Figure S2. Overlap between selected pathways. Heatmap representing the Jaccard index

between the selected pathways. Grey color gradient corresponds to the Jaccard index too. Note
that the highest Jaccard index is 0.4 between REACTOME_EXTENSION_OF_TELOMERES
and KEGG_MISS_MATCH REPAIR while in most of the comparisons there is no overlap or

very

low.
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Figure S3. Enrichment distribution of cell type across cancer types.

Bottom panel, heatmap with the median pan-cancer GSVA score per cell type across cancer
types. GSVA scores are colored from blue (depletion, -1) to red (enrichment, +1). X-axis
represents the sixteen immune cell types and y-axis the 28 cancer types analyzed. X-axis is
sorted according the number of cancer types with high enrichment in the cell type (see below).
Y-axis is sorted according the number of infiltrating cell types per cancer type (GSVA > 0). Top
panel, barplot of the proportion of cancer types that show a high enrichment (GSVA > 0.2), a
strong depletion (GSVA < -0.2) or an intermediate infiltration pattern (-0.2 < GSVA < 0.2) across
cancer cell types.
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CD45 expression across GTEX tissues
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Figure S4. Comparison of immune population infiltration in normal tissues versus
tumors. (A) Boxplots representing the distribution of CD45 expression across GTEX tissues in
log2 RPKM, each dot represents a sample. (B) GSVA score of the sixteen immune cell types in
tumors (y-axis) versus normal tissues (x-axis) across 25 cancer types (the ones with a matching
normal tissue in GTEXx). Each dot represents the median GSVA score of each immune cell type
in each tumor-normal tissue pair. Dots outside the grey area, are the ones more differently
enriched/depleted in tumors vs normal tissues (+/- 0.2 median GSVA). Scatter plots are sorted
from the highest infiltration tumor (KIRC) to the lowest infiltrated one (ACC).
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Figure S5. Per-cancer type immune-clustering.

Heatmaps with the distribution of GSVA values (from -1 to 1, from blue to red), across the 16
immune cell populations and cytotoxic cells, giving an overweight to cytotoxic cells to perform
the hierarchical clustering. Hierarchical clustering is found in the top-panel of each heatmap. A
heatmap for each of the remaining 26 cancer types is displayed (not including KIRC and UVM
as they are found in Figure 4), each cancer type acronym is found in the top-left corner of each
heatmap.
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Median gene expression (adjusted) across clusters
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Figure S7. Expression homogeneity across immune-clusters.

Boxplots representing the median expression for each gene analyzed in the pathway analysis
(3901 genes) across each immune-cluster. Below each boxplot the log Fold Change between
each immune-cluster and the rest of immune-cluster pooled together is shown. An asterisk is
added if the Mann Whitney U test of the mentioned comparison is significant (P-value < 0.05).

Note how, even if some differences are significant any Fold Change is higher than 0.3.
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SUPPLEMENTARY TABLES

Cancer type acronym Cancer type full name Number of patients (RNA-seq)

ACC Adrenocortical carcinoma

BLCA Bladder Urothelial Carcinoma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and
endocervical adenocarcinoma

CHOL Cholangiocarcinoma

COADREAD Colorectal adenocarcinoma

ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

HNSC Head and Neck squamous cell carcinoma

KICH Kidney Chromophobe

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

LGG Brain Lower Grade Glioma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

MESO Mesotelioma

oV Ovarian serous cystadenocarcinoma

PAAD Pancreatic adenocarcinoma

PCPG Pheochromocytoma and Paraganglioma

PRAD Prostate adenocarcinoma

SARC Sarcoma

SKCM Skin Cutaneous Melanoma

STAD Stomach adenocarcinoma

THCA Thyroid carcinoma

UCEC Uterine Corpus Endometrial Carcinoma

ucs Uterine Carcinosarcoma

UVM Uveal Melanoma

Table S1. Tumor cohort details

78
404
1082

301

36
599
182
163
515
65
515
285
514
368

485
87
300
156
178
493
254
434
405
499
357
57
80

Table with the details of the analyzed cohort. It contains the acronym, full name and number of

samples with RNAseq data of the 28 solid tumors.
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Table S$2. Immune cell type and pathway gene sets.

(Table S2A). Table including the genes used to identify each immune populations and the
source of each gene signature. It includes the gene signatures of the 16 immune populations
and the gene signature of Cytotoxic cells.

(Table S2B). Table including the genes used to identify each tumor pathway and the source of
each gene set.

Table S$3. Pan-cancer and per-cancer type GSVA scores across immune populations.
GSVA enrichment scores per tumor samples of pan-cancer GSVA (Table S3A) and per-cancer
type GSVA analyses (Tables S3B to S3ZC). Tumor samples are represented in columns and
the immune cell types in rows. Each cell shows the GSVA enrichment score.

Cancer type Table
Pan-cancer TableS3A

THCA TableS3B
ucs TableS3C
STAD TableS3D
SARC TableS3E
SKCM TableS3F
PCPG TableS3G
HNSC TableS3H
LUSC TableS3l
UCEC TableS3J
KIRC TableS3K
CESC TableS3L
ov TableS3M
LGG TableS3N
MESO TableS30
GBM TableS3P
COADREAD TableS3Q
ESCA TableS3R
PAAD TableS3S
BRCA TableS3T
LUAD TableS3U
KICH TableS3V
ACC TableS3wW
BLCA TableS3X
KIRP TableS3Y
PRAD TableS3Z
LIHC TableS3ZA
CHOL TableS3ZB
UVM TableS3ZC
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Table S4. Pan-cancer and per-cancer type level immune-clusters.
(Table S4A). Classification of each patient across the seventeen pan-cancer immune clusters.
(Table S4B). Classification of each patient across the six immune-clusters in each cancer type.

Table S5. Results of the GSEA enrichment

Table containing the output of GSEA analysis. Each row corresponds to an enrichment of a
pathway in a cancer type immune-cluster compared to the other immune-clusters of the cancer
type. Only significant enrichments (Q-value < 0.25) are shown. GSEA NES corresponds to the
Normalized Enrichment Score of the pathway in the immune-cluster, as provided by GSEA
software. GSEA FDR Q-value corresponds the P-value of the enrichment adjusted for gene set
size and multiple testing, as provided by GSEA software.
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Cancer precision medicine is aimed to choose the most
suitable anti-cancer therapy for each patient based on the
study of the biology of its tumor. In this direction, the evolution
of the cancer molecular knowledge has provided the
community remarkable advances, such as the development of
the first targeted therapy, trastuzumab, which has significantly
improved the prognosis of HER2+ breast cancer patients!?>161,
Besides, cancer genomics studies have proven useful for
guiding targeted therapeutic strategies. Examples of this are
the clinical use of vemurafenib in BRAF V600E mutant
melanoma patients!®, cetuximab in EGFR L858R mutant non-
small cell lung carcinoma patients'®? or imatinib in BCR-ABL

chronic myeloid leukemia patients®’.

Therefore, the availability of the sequences of the exomes or
genomes of tumors from thousands of patients has opened the
possibility of not only comprehensively identifying the genes
driving tumorigenesis, but also of estimating the scope of
current and future cancer targeted therapies. The first work
presented here (Chapter 1) aimed to contribute to both
objectives: uncovering the landscape of cancer driver genes
and the landscape of genomic-guided therapeutic
opportunities available for cancer patients, based on the
analysis of a large pan-cancer cohort of tumor samples
(n=6792). Of note, by the start of the project, similar efforts on
the direction of the pan-cancer comprehensive identification of

cancer driver genes had been carried out, mostly within the
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framework of The Cancer Genome Atlas (TCGA) consortia and
predominantly based on the study of mutational cancer driver
genes*’57.163 Even if cancer type level comprehensive
integrations of driver genes bearing several types of genomic
alterations had been published within TCGA framework®?, to
our knowledge we evinced one of the first pan-cancer driver
integrative landscapes, by analyzing driver genes bearing
mutations, copy number alterations (CNA) and chromosomal
translocations (referred to as fusion drivers in Chapter 1) in 28
different cancer types. Besides, as far as we knew, only one
previous study (Van Allen et al 2014) had attempted to identify
the landscape of genomic-guided therapeutic opportunities in
cancer, even though several strategies for compiling anti-
cancer drug targets and response biomarkers were
emerging!64-166 Of note, that previous study did not consider
the genes driving tumorigenesis in each cohort analyzed but
pan-cancer cancer driver genes, nor considered most of the
rules of our database of targeted therapies and the cohort
analyzed was less comprehensive, with a smaller number of

samples and cancer types analyzed.

In Rubio-Perez and Tamborero et al (2015) (Chapter 1) we
developed an in silico drug prescription approach which linked
targeted drugs to the driver genes altered in each patient-tumor
sample considered. First, we identified the driver genes
through their signals of positive selection in each cancer type.

On detail, we used several methods following complementary
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criteria with the rationale that the combination of their results
minimizes the number of false positives derived from each
model*’. Additionally, we classified the cancer driver genes
according to their role in tumorigenesis in activating (i.e.
oncogene) or loss of function (i.e. tumor suppressor)®’ (see
Appendix 1). This identification of the mode of action of the
driver genes was essential for exploring their therapeutic
opportunities, since different targeting molecular mechanisms
are associated to either type of driver genes!30.137.147_ Second,
we compiled drugs able to interact with the driver gene
products in distinct phases of their development, including
therapies approved for their clinical use, therapies tested in
clinical trials and ligands). We also included rules for:
prescribing approved drugs according to their guidelines of
use; considering resistance biomarkers co-occurring or not
with other drug prescriptions in the same tumor; repurposing
approved drugs for other prescriptions than the one approved,
and for prescribing ligands, taking into account the ligand
mechanism of action and the driver gene role. Third, we used
the generated information on cancer drivers (hnamed Drivers
Database) and anti-cancer targeted therapies (named Drivers
Actionability Database) to in silico prescribe treatments based
on the genomic alterations of each sample, revealing a
snapshot in time of the therapeutic landscape of cancer

patients.

225



The landscape of driver genes revealed in our work, although
thorough according to state-of-the-art methods, was still likely
incomplete. On one hand, because of the low recurrence of
some driver genes®3. On the other hand, at the level of
alteration type, neither epigenomic alterations nor non-coding
elements were considered. Of note, recent advances
pertaining the identification of driver non-coding elements,
have recently expanded our results (see Appendix 5).
Regarding the driver gene alterations with drug prescriptions,
we are aware that not all alterations found in a driver gene are
drivers®10; thus, a prioritization of these alterations would refine
the results and produce more accurate landscapes. We also
consider that a better exploration of tumor clonality would
refine the prescription of drugs to alterations found in tumor
major clones which would exert a higher therapeutic benefit.
Furthermore, in this analysis we have considered that more
than one drug can be prescribed to a single patient (i.e. drug
combinations). Combinatorial approaches have to be
cautiously considered as drug combination toxicities, not
addressed in the former work, have been described for
targeted therapies combinations?®?. At last, we acknowledge
that the incompleteness of the Drivers Actionability Database
would have revealed an incomplete landscape, and that a
more exhaustive manual curation of it would provide more

accurate results.
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Despite the presented limitations, that must be taken into
consideration, our work produced a proof of principle strategy
of comprehensively exploiting cancer genomic data to identify
personalized medicine strategies; becoming one of the first
comprehensive and integrative analyses of cancer driver
genes and targeted therapies that has shed light into the
molecular understanding of tumorigenesis and the scope and
future perspectives of cancer genome-guided personalized
medicine. As a snapshot in time we observed that very few
cancer patients (5.9%) could benefit from approved therapies
based on their tumor genomic alterations, but that this small
fraction could be expanded up to a 40% when considering
repurposing options and up to 73% when considering
treatments undergoing clinical trials, not before estimated.
Besides, we provided the cancer research community all the
results generated, including the database of cancer driver
genes and of anti-cancer therapies, as well as a prioritization
list of 80 therapeutically unexploited driver genes with

druggability features.

The evolution of the work described until now became the seed
for other two of my projects (Chapter 2 and Chapter 3). On the
one hand, observing that virtually all cancer patients (90%)
bore at least an alteration of a driver gene, led us to explore
the use of the Drivers Database on the design of informative
sequencing cancer gene panels (Chapter 2). On the other,

upon mounting evidence that not all mutations in driver genes
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are necessarily tumorigenic, we worked on overcoming the
limitation of driver gene level analyses and moved to a better
strategy to identify individual driver alterations in each single
tumor. Besides, we thought that if we were able to overcome
this limitation, an implementation into a tool of the driver
alteration identification and the in silico drug prescription,
refined at alteration level, would have potential broad
applications from its use in pre-clinical to translational research
(Chapter 3). Indeed, the in silico drug prescription strategy was
useful not only for the work produced in our research group,
but provided an extra value to other projects (see Appendix 2-
4).

As already mentioned, alterations in the tumor genome may
have an influence not only in drug response, but they can also
inform about patient prognosis (e.g. different structural variants
in chronic myeloid leukemia)'68169 contribute to disease early
diagnosis through liquid biopsies and be used as a way to
monitor relapse also through liquid biopsiest’®-172, That is why
profiling the tumor genome is becoming a standard tool in
current clinical oncology. However, deciding the sequencing
technique is not trivial. To identify a single predictive alteration,
such as BRAF V600E mutation in a melanoma patient to
prescribe vemurafenib!%, using Sanger sequencing could be
enough. However, to enter a refractory patient into a clinical
trial, which may have accumulated several relevant genomic

alterations, or to investigate the tumor genome of a tumor
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cohort; sequencing few specific mutations with Sanger will not
be enough. At that point, Next Generation Sequencing (NGS)
techniques should be considered, but even among them a
decision on whether sequencing the whole tumor genome,
exome or only a set of genes and gene regions, by using a
gene panel; must be taken. Of note, sequencing through gene
panels possess a higher sensitivity and specificity in the variant
detection step, when compared to whole exome
sequencing!®; which makes it effectively the most cost-
effective option for both the translational research and clinical

setting.

Several cancer gene panels are commercially available;
relying most of these panels on manually gathered lists of
genes or genomic regions decided at pan-cancer level. To
design a panel for a specific question (e.g. identify the genomic
markers of tumor relapse in a specific cancer type), a laborious
search in the literature, extended to bioinformatic resources to
estimate its cost-effectiveness (i.e. estimate the proportion of
patients bearing the alteration in the gene or gene region in the
disease of study, the panel coverage); needs to be carried out.
Exploiting the resources generated in my previous work,
discussed above, in Rubio-Perez et al (2016) we developed
OncoPaD, the first tool aimed to the rational design of NGS
sequencing mutational cancer gene panels

(www.intogen.org/oncopad).
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http://www.intogen.org/oncopad

Through a user-friendly interface, OncoPaD suggests
researchers sets of genes and/or gene regions to be included
in a gene panel tailored for one or several cancer types, based
on its cost-effectiveness. The genes suggested by OncoPaD
either are: well-known cancer driver genes, bear mutations that
are biomarkers of drug response, or have been identified as
drivers via the detection of signals of positive selection across
large tumor cohorts. Additionally, the user may decide to use
its own list of genes. Next, OncoPaD estimates the cost-
effectiveness of including each of the genes in the panel, on
the basis of the selected cancer type(s), either considering all
the exons in the gene, or only mutational hotspots (referred to
as gene regions). From the cost-effectiveness estimation, the
user obtains a prioritization of the genes and gene regions in
three tiers. From 1 to 3 these include the genes and/or gene
regions which increase the most the coverage (tier 1) up to
those which do not increase the coverage at all (tier 3). Finally,
OncoPaD results on the gene prioritization are shown to the
researcher together with reports on the relevance of individual
mutations for tumorigenesis or for anti-cancer treatment,

supporting the interpretation of the generated results.

We acknowledge that before OncoPaD three approaches with
similar aim than ours were already available!’3-17> (see
Chapter 3 Table 1 for the exhaustive comparison). However,
they either make no previous selection of the gens based on

driver gene identification'’®, or consider only genes with high
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impacting mutations or frequently mutated'’3174, respectively.
However, it is known that not all genes bearing high impacting
mutations or frequently mutated are relevant for cancer
development!®, leading to the inclusion of likely false positive
candidates. OncoPaD, as well as the two latter approaches,
have a common limitation: no considering other alteration type
drivers than mutational (e.g. drivers bearing structural variants)
and among mutational no considering non-coding alterations.
The limitation to mutational coding drivers is inherited by
OncoPaD from the Cancer Drivers database. However, as
more comprehensive lists of driver genes bearing structural
variants or non-coding mutations emerge, we will incorporate

them to OncoPabD.

Nevertheless, even if OncoPaD is limited to the design of
coding mutational cancer gene panels, we expect that it can
become a useful and used tool in the cancer research and
clinical community, because of the necessity of tumor genome
sequencing, all the features included that minimize the
inclusion of false positive candidates (either non driver genes
and/or gene regions with very low coverage), the results
reports generated and the outperformance, in terms of cost-
effectivity, when compared to commercially available panels.
Indeed, since we started the user tracking (from October 2016
until May 2017) we have registered around 800 accessions
from 521 different users, showing that OncoPaD is used by the

community, although more diffusion effort is needed.
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Considering the opposite scenario, where the whole exome of
the tumor is profiled instead of a gene panel, the interpretation
of the obtained results may be more challenging, as a plethora
of variants of unknown significance may be identified. The
prioritization and interpretation of tumor somatic variants (i.e.
the interpretation of the tumor genome), mostly in the context
of exome sequencing, is still a non-resolved problem, being a
bottleneck in the clinical and translational setting®. Once a
tumor is sequenced most of the reported variants, even if
located in cancer driver genes, are of uncertain significance
and querying several scattered bioinformatic resources is
needed to identify the variants driving the tumorigenesis.
Moreover, once we identify the relevant tumor variants if we
want to obtain information about its actionability we also need
to go through different and scattered resources. Therefore,
there is a necessity of developing new computational tools
aimed to solve both hurdles, including the identification of
driver variants among all variants found in a tumor and the

identification of actionable variants104.166.176

To meet these necessities, we developed the Cancer Genome
Interpreter (CGI) a web platform aimed to aid the interpretation
of tumor genomes by contributing to solve the two hurdles

(www.cancergenomeinterpreter.org) (Chapter 3). The specific

aim of the CGl is, first, the identification of tumor variants more
likely to drive the tumorigenesis, including those already

validated as oncogenic and computational estimations of the
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effect of the remaining variants of unknown significance. And
second, it also aims to identify the variants which shape the
response to anti-cancer therapies (either response, resistance
or toxicity), according to several levels of clinical evidence
(either approved prescriptions, advanced clinical trials, early
clinical trials, case reports or pre-clinical assays).

On detall, the CGI workflow starts with the set of alterations of
a patient's tumor -either mutations, CNAs and/or chromosomal
rearrangements- and the cancer type. The first step is the
identification of the genes that putatively drive the
tumorigenesis in the analyzed tumor. We based their
identification on manually curated lists of cancer genes (e.qg.
Cancer Gene Census®’) and catalogs of driver genes obtained
from bioinformatic analyses of large tumors cohorts'’’. In the
case of mutations, the CGI performs an additional step to
evaluate each individual variant, since not all the mutations in
cancer genes are equally relevant?. As in the first step, we
used as basis a priori knowledge, by compiling mutations with
a clinically or experimentally validated oncogenic effect,
including cancer-predisposing germline variants. However,
most of the variants observed in tumors are of unknown
significance, and the estimation of their effect still relies on
computational approaches. We did this using a novel tool,
OncodriveMUT, which distinguishes from other methods with
similar purpose, because it combines the mutation-centric

measurements of the gene (or gene region) with the
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knowledge generated from the analyses of thousands of
tumors. This provides statistically robust information that

refines the evaluation of individual mutations.

Next, the CGI is aimed to identify which of these tumor
alterations may shape the response to anti-cancer therapies.
Scattered and unstructured information on the identification of
genomic biomarkers which shape the response to anti-cancer
therapies is continuously generated in clinical trials and/or pre-
clinical assays, being the compilation and maintenance of this
information a laborious task. We developed an expert curated
resource, named Cancer Biomarkers database, as an
extension of the Driver Actionability Database from Rubio-
Perez and Tamborero et al (2015). Here, we increased the
number and level of curation (through collaboration with
oncology experts) of the genomic biomarkers. We added new
types of biomarkers (i.e. toxicity, no response) and increased
its degree of complexity (e.g. we added more alteration types
such as biallelic inactivation, considered mutation
consequence types or wild type variants). Moreover, we also
added more multi-biomarker drug associations, even including
biomarkers from different genomic types and stratified all the
biomarkers according to the level of evidence of the biomarker-
drug association, not only the drug status of approval (as done
before). However, we acknowledge that such a manually
curated database is costly to maintain. The mid-term

maintenance of the Cancer Biomarkers database is supported
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by the collaborative H2020 MedBioinformatics project and we
expect that its long-term maintenance will be supported by the
Global Alliance for Health and Genomics (GA4H), which has
the aim of unifying efforts such as the Cancer Biomarkers
database and similar resources: CIViC18 JAX-CKB17®,
MyCancerGenome®®*, OncoKB'®°, PMKB*®! and PCT
(https://pct.mdanderson.org). Of note, besides the Cancer
Drivers Database we also developed a database containing
the interactions of cancer driver genes with ligands (named
Cancer Bioactivities database), with distinct levels of binding
affinity. We suggest this resource as an interesting annotation

for driver genes without biomarkers of drug response.

Beyond Cancer Biomarkers database maintenance, CGI
inherits the limitations of Chapter 1, as it is based on the
knowledge generated there. Additionally, we acknowledge
that the assessment of the mutational signatures would be also
of interest either for interpreting the biology of the tumor as well
as for its therapeutic interpretation. Hence, we are planning to

add this feature in next CGI updates.

Even if the pipeline for the integration of all the steps in CGl is
complex. One of the main advantages of the CGI is the
intuitiveness of its interface, including the visualization of all the
variants identified in the tumor, the assessment of whether they
are tumorigenic, and all annotations employed to classify them;

which is not a trivial issuel’®. The actionable variants in tumors
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are stratified following levels of confidence and/or evidence,
and presented to the user through interactive reports which
help analyzing the results obtained. Several flexible input
formats for the alterations are accepted, and an Application
Programming Interface (API) has been developed to allow
programmatic access. Additionally, we provide all resources
supporting the CGI, including the Cancer Biomarkers
Database and the catalog of driver genes and validated driver
alterations, which may be of interest beyond its use in CGlI.
Taking all that into account, we think of the CGI as a versatile
platform which automatizes highly laborious steps in the
interpretation of cancer genomes. Due to CGI characteristics
and our commitment of keeping it up to date with the evolving
knowledge we expect that CGI will become a widely used tool
either in the clinical, translational and basic research settings.
Indeed, since October 2016 until May 2017, CGI website has
had 2600 users and 7200 accessions, giving support to our
expectations.

The CGI, however is not currently focused on assessing the
extent of response to immunotherapies, since comparably
much less is known about them, than about targeted therapies
biomarkers. Due to the remarkable success of cancer
immunotherapies, both T cell adoptive cell transfer in
haematologic malignancies and immune checkpoint blockers
in solid tumors'®8, the translational cancer research community

is recently shifting its focus towards the study of the tumor
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immune system interaction, to identify new immunotherapy
strategies. The discovery of immune checkpoint molecules,
among others, has shown that tumors have active mechanisms
to resist the immune attack. However, even if some examples
have been identified, there is an incomplete knowledge on the
tumor mechanisms that modulate the action of the immune

system.

Trying to contribute to fill up this gap, we evinced the last
section of my thesis (Chapter 4), where we identified tumor
pathways that become activated in correspondence with
different patterns of cell populations in the immune infiltrate in
the tumor. These pathways are candidates to tumor
mechanisms through which the tumor may evade or counteract
the activity of the immune infiltrate. First, we measured the
degree of infiltration of sixteen different immune populations
using sample-level gene set enrichment analysis of gene
signatures representing each of immune population. To that
end, we analyzed the bulk tumor RNA-seq data, following the
rationale of previous works!'>117, Gene set enrichment
analysis is not the only approach used to identify immune
populations, deconvolution methods have also been
developed with the same aim!'®119 and both methods have
been equally used in several works!16.120.182-184  However,
deconvolution methods are mostly machine learning
approaches that have been trained on DNA microarray data,

being unclear to which extent they can be applied to RNA-seq
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data’?. That is the reason why we decided to use a gene set
enrichment approach. Besides, an analysis carried out by us
using one of these deconvolution methods, CIBERSORT, on
the same cohort of tumors under study, demonstrated that the
infiltration patterns of all immune cell populations could not
properly reproduced. Giving strength to our decision of using a

sample-level enrichment method.

After deciding for a sample-level enrichment method, we
estimated the fraction of each cell population in the infiltrate of
each tumor across the entire pan-cancer cohort through the
enrichment of their representative gene signatures. We
observed inter- and intra- tumor heterogeneity of
immunological infiltrates. This finding, together with a
comparison with data from normal donors, suggested that the
differences in the immune infiltration patterns observed across
cancer types cannot be explained solely by their tissue of
origin. In turn, this observation further advocate that tumor
intrinsic features may be responsible of the different infiltration
patterns. To explore this hypothesis, we refined the
identification of immune infiltration patterns at cancer type level
and grouped the tumors of each cancer type in immune-
clusters weighted by the effectivity of the immune system
attack, as we hypothesized that the tumor mechanisms would
be different depending on immune system effectivity, based on
previous evidences'®18  After applying this approach to the

28 solid tumors, three different scenarios of cytotoxicity
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emerged across all cancer types, with different immune
infiltration patterns. Suggesting that different immune cell

compositions may lead to an equivalent level of cytotoxicity.

Next, we proceed to identify the tumor intrinsic features across
these three scenarios. We first observed that, as already
described!®, viral infections correlated with a higher
cytotoxicity of the infiltrate in several cases, probably due to the
increase of cell stress signaling and the expression of viral
antigens'®’. On the other hand, we found that the group of
tumors with lowest cytotoxic infiltrate was enriched for tumors
of later stages, which may account for part of their increment
in aggressiveness and worse prognosis. Next, we investigated
the tumor pathways active in the different scenarios of
cytotoxicity. Here we introduced a relevant methodological
change with respect to other studies that made similar
analyses!?%.188 \We adjusted the expression levels of the tumor
bulk samples for its immune component, following the rationale
of Aran et al (2016)3. This adjustment revealed pathways that
otherwise would be masked due to the contribution of the
microenvironment to the bulk RNA. We checked that the failure
to do this adjustment affects the results of enrichment

analyses, as has already been proposed 2.
We found a heterogeneous enrichment of pathways across the

three different scenarios that we integrated into a reasoned

biological model. In the low cytotoxicity scenario, we identified
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an overexpression of high proliferative pathways identified in
14 of the cancer types (by the enrichment of cell cycle, DNA
damage and protein synthesis pathways) which could be
responsible of lowering the immunogenicity due to the
generation of a large number of new non-recognized tumor
antigens, as product of the newly emerging cells'®. Besides,
the phenotype of immune exclusion could be explained in
some tumors by the activation of pathways which impair
leukocyte recruitment (SHH, TGFb and Wnt-bCatenin
signaling)®*1%0191  The intermediate cytotoxic scenario
appeared consistently enriched for only two pathways:
angiogenesis, which may impair leukocyte trafficking and
contribute to a decrease in the cytotoxicity by the recruitment
of macrophages!®?1%9; and ECM changes, that could either
promote or suppress cytotoxicity and leukocyte
recruitment®*19_ In the high cytotoxic scenario, we found
activation of processes leading to the cytotoxic phenotype (e.g.
viral processes, high expression of HLA molecules and CGAS)
and processes that presumably allowed tumor cells to survive
on it (e.g. negative checkpoints, anti-inflammatory cytokines).
Of note, we identified an enrichment of energy metabolism
pathways in high cytotoxic tumors that may establish a
competition by nutrients between tumors and immune effector

cells that would impair its differentiation96-198,

A limitation of this work is that we have not considered genetic

and epigenetic tumor alterations. These may be positively
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selected due to the selective pressure of the immunologic
microenvironment, providing the tumor capabilities of immune
resistance by activation of the identified pathways or other
mechanisms, such as the described mutation of HLA and B2M
molecules, preventing from the recognition of T cells or the
mutations in CASP8 which avoid apoptosis induced by immune
cells'®. However, albeit incomplete, we have identified several
biological processes which constitute potential good
mechanisms for further research, and could be explored in the
context of the combination of a targeted therapy and
immunotherapies, as has already been suggested for Wnt-
bCatenin pathway!®°. Besides, to our knowledge, this analysis
is one of the most comprehensive landscapes on the tumor
mechanisms related to immune evasion. Previous efforts are
limited either because they focus in a single disease!!>120.182,
or simplify the tumor molecular mechanisms to be

analyzed*'6:2% or the measure of immune infiltration'8,

To sum up, | have acknowledged several limitations present
across the thesis chapters. A common point is the lack of
integration of epigenomic data. The consideration of
epigenomic data could have increased the scope and
comprehensiveness of the analyses carried out in Chapters 1
and 3, and it could explain some of the transcriptomic changes
identified in Chapter 4. Non-coding mutations have not been
considered either, mostly because to date there is no a

comprehensive identification of non-coding driver alterations,
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even though efforts on this direction are ongoing (see
Appendix 5). The incompleteness of the anti-cancer drug
databases is also a limitation affecting more than one chapter
(1, 2 and 3), and could decrease the comprehensiveness of

the results obtained.

However, even if | acknowledge all these limitations, the work
done in this thesis has been carried out methodically,
comprehensively and integrative; generating knowledge and
resources that contribute to the advance of cancer precision
medicine. Chapter 1 has provided the cancer research
community one of the first, if not the first most comprehensive,
therapeutic landscape, shedding light into the scope of anti-
cancer therapies in the most prevalent cancer types together
with a list of good candidates targets for the design of new anti-
cancer therapies. Chapter 2 has given the community a tool for
the rational and cost-effective design of cancer gene panels,
which may contribute to move a step forward the sequencing
of new tumor cohorts either in the research and clinical field.
Chapter 3 has given the community another tool that aids the
interpretation of newly sequenced tumors, allowing interpret
variants of unknown significance which could improve the
patient handling, for example prioritizing patients for entering
clinical trials, along with giving insights in the molecular
mechanisms underlying newly sequenced tumor cohorts. At
last, the tumor mechanisms identified in Chapter 4 shed light

into a hot topic of current cancer research, the mechanisms of
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immune evasion by tumors, which can be potential targets to

be explored for combinatorial therapies with immunotherapies.
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PART V

CONCLUSIONS
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The work produced in this thesis, with limitations acknowledged in
the discussion, and to the extent of the state-of-the art of cancer
genomics research, has made several contributions towards the

advance of cancer precision medicine.

Together with Tamborero D. we have identified the therapeutic
landscape of anti-cancer therapies, based on cancer patient
genomic alterations in driver genes (mutational and with
chromosomal rearrangements), as a shapshot in time. It has
provided information on the extent of targeted therapies and their
potential future progress (through the analysis of treatments in
clinical trials) across 28 prevalent cancer types. Besides, we have
identified a list of potential good targets for anti-cancer drug design

as well as several drug repurposing opportunities.

| have developed a tool for the rational design of cancer NGS
mutational panels, that works at cancer type level or in groups
thereof. OncoPaD maximizes the coverage of tumors in a cohort that
a panel can achieve and minimizes the amount of DNA to be
sequenced to obtain that result. Additionally, it provides the user
ancillary annotations (such as which genes have biomarkers of drug
response) that helps to decide which candidates include in the panel.
OncoPaD is open source and freely available at

www.intogen.org/oncopad.

Complementary to OncoPaD, | contributed to the development of the
Cancer Genome Interpreter, a tool for guiding the interpretation of
newly sequenced tumors, to identify which of the alterations
observed in a tumor are oncogenic and which may inform a

therapeutic benefit. The Cancer Genome Interpreter has been
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developed along with a database of drug response biomarkers and
cancer target ligands, where | contributed the most. The Cancer
Genome interpreter is freely available at

www.cancergenomeinterpreter.org

Finally, | focused on the study of tumor mechanisms of immune
evasion. In this part, through the analysis of tumor RNA-seq bulk
data, together with Tamborero D., we identified the patterns of
infiltration of sixteen immune cell populations. Next, we grouped the
infiltrating immune populations in clusters reflecting their cytotoxicity.
We then performed ad in-depth study of the clusters and identified
clinical correlates and tumor active pathways involved in the evasion

of the immune system.
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In this section, | cite and attach other publications where |
contributed, thanks to the knowledge acquired and produced during
my thesis.

Appendix 1

In Schroeder et al. (2014) we developed OncodriveROLE, a machine
learning approach that classifies genes according to their role in
tumorigenesis, either Activating or Loss of function. The classifier
uses the distribution of genomic alterations in the genes (mutations
and/or copy number alterations) to classify them. We achieved a
0.93 accuracy when applying the classifier to Cancer Gene Census
gene list and a Matthew Correlation Coefficient of 0.84. The classifier
is available at http://bg.upf.edu/oncodrive-role .

Here, | contributed in the exploration of the machine learning
approaches which could be used for building the classifier and in the
selection and generation of the genomic attributes to classify the

driver genes.

Schroeder MP, Rubio-Perez C, Tamborero D, Gonzalez-Perez A, Lopez-
Bigas N. OncodriveROLE classifies cancer driver genes in loss of function
and activating mode of action. Bioinformatics. 2014 Sep 1;30(17):i549-
55.
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Appendix 2

Briefly, in Biton et al. (2014) they analyse the transcriptome of
bladder cancer and identify bladder-specific biological components.
They also characterized bladder subtypes (luminal, basal-like and
muscle-invasive). The study of the urothelial differentiation in luminal
bladder carcinomas revealed a pro-tumorigenic role of PPARG in

these tumors.

In this publication, | contributed, together with my supervisor N.
Lopez-Bigas in the discussion of PPARG therapeutic implications.

Biton A, Bernard-Pierrot |, Lou Y, Krucker C, Chapeaublanc E, Rubio-
Pérez C, Lépez-Bigas N, Kamoun A, Neuzillet Y, Gestraud P, Grieco L,
Rebouissou S, de Reyniés A, Benhamou S, Lebret T, Southgate J, Barillot
E, Allory Y, Zinovyev A, Radvanyi F. Independent Component Analysis
Uncovers the Landscape of the Bladder Tumor Transcriptome and
Reveals Insights into Luminal and Basal Subtypes. Cell Rep. 2014 Nov
20;9(4):1235-45.
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Appendix 3

In brief, Puente et al. (2016) did a comprehensive identification of
the genomic driver alterations, coding and non-coding, in a cohort of
452 chronic lymphocytic leukemia (CLL) cases and 54 with
monoclonal B-lymphocytosis, a stage previous to CLL. They
identified novel recurrent genomic alterations in the disease of study,
such as NOTCH1 3’ alterations.

In this project, | explored the therapeutic implications of the identified
driver alterations in CLL patients (Figure S6, Table S9). Tamborero
D. helped me in the curation of the drug response biomarkers.

Puente XS, Bea S, Valdés-Mas R, Villamor N, Gutiérrez-Abril J, Martin-
Subero JI, Munar M, Rubio-Pérez C, Jares P, Aymerich M, Baumann T,
Beekman R, Belver L, Carrio A, Castellano G, Clot G, Colado E, Colomer
D, Costa D, Delgado J, Enjuanes A, Estivill X, Ferrando AA, Gelpi JL,
Gonzalez B, Gonzalez S, Gonzalez M, Gut M, Hernandez-Rivas JM,
Lépez-Guerra M, Martin-Garcia D, Navarro A, Nicolas P, Orozco M, Payer
AR, Pinyol M, Pisano DG, Puente DA, Queirdés AC, Quesada V, Romeo-
Casabona CM, Royo C, Royo R, Rozman M, Russifiol N, Salaverria I,
Stamatopoulos K, Stunnenberg HG, Tamborero D, Terol MJ, Valencia A,
Lépez-Bigas N, Torrents D, Gut |, Lépez-Guillermo A, Lépez-Otin C,
Campo E. Non-coding recurrent mutations in chronic lymphocytic
leukaemia. Nature. 2015 Oct 22;526(7574):519-24
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Appendix 4

Shortly, Karube et al., (Submitted) genomically characterized a large
cohort of diffuse large B-cell lymphoma (DLBCL). They found that
germinal center B-cell and activated B-cell DLBCL had a differential
profile of mutations, altered pathogenic pathways and CNA;

recognizing potential targets for new intervention strategies

In this project | have applied the in silico prescription strategy,
exploring the therapeutic options, including drug repurposing
opportunities, of the DLBCL cohort analyzed (Figure 5).

Karube K, Enjuanes A, Dlouhy I, Jares P, MartinGarcia D, Nadeu F,
Ordéfiez GR, Rovira J, Clot G, Royo C, Navarro A, Gonzalez-Farre B,
Vaghefi A, Castellano G, Rubio-Perez C, Tamborero D, Briones J, Salar
A, Sancho JM, Mercadal S, Gonzalez-Barca E, Escoda L, Miyoshi H,
Ohshima K, Miyawaki K, Kato K, Akashi K, Mozos A, Colomo L, Alcoceba
M, Valera A, Carrié A, Costa D, Lopez-Bigas N, Schmitz R, Staudt LM,
Salaverria |, LopezGuillermo A, Campo E. Integrating genomic alterations
in diffuse large B-cell lymphoma identifies new relevant pathways and
potential therapeutic targets. (Submitted)
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Appendix 5

Briefly, Sabarinathan and Pich et al. (submitted) did a
comprehensive analysis of the driver alterations (mutations and
chromosomal rearrangements) that contributed to tumorigenesis in
a cohort of 2583 whole-genome sequenced tumors from 37 different
cancer types. They find a genomic driver alteration in more than 90%
of the patients, proving that cancer is driven by genetic events.
Besides, they observed that the average of driver events per patient
(around 4.6) was stable across tumors even if they showed huge
differences of mutational burden.

In this publication, | explored the therapeutic landscape of the tumor
cohort, including either driver coding and non-coding alterations
(Figure 6).

Radhakrishnan Sabarinathan*, Oriol Pich*, Ifiigo Martincorena, Carlota
Rubio-Perez, Malene Juul Rasmussen, Jeremiah Wala, Steven
Schumacher, Ofer Shapira, Nikos Sidiropoulos, Sebastian Waszak, David
Tamborero, Loris Mularoni, Esther Rheinbay, Henrik Hornshgj, Jordi Deu-
Pons, Ferran Muifios, Johanna Bertl, Qianyun Guo, PCAWG-2,5,9,14,
Joachim Weischenfeldt, Jan Korbel, Gad Getz, Peter Campbell, Jakob
Skou Pedersen, Rameen Beroukhim, Abel Gonzalez-Perez, Nuria Lopez-
Bigas. The whole-genome panorama of cancer drivers. (Submitted)

* Co-first author
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Schroeder MP, Rubio-Perez C, Tamborero D, Gonzalez-Perez
A, Lopez-Bigas N. OncodriveROLE classifies cancer driver
genes in loss of function and activating mode of action.
Bioinformatics. 2014 Sep 1;30(17):1549-55. DOI: 10.1093/
bioinformatics/btu467
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Biton A, Bernard-Pierrot I, Lou Y, Krucker C, Chapeaublanc
E, Rubio-Pérez C, et al. Independent component analysis
uncovers the landscape of the bladder tumor transcriptome
and reveals insights into luminal and basal subtypes. Cell Rep.
2014 Nov 20;9(4):1235-45. DOI: 10.1016/j.celrep.2014.10.035


https://www.sciencedirect.com/science/article/pii/S2211124714009048

Puente XS, Bea S, Valdés-Mas R, Villamor N, Gutiérrez-
Abril ], Martin-Subero JI, et al. Non-coding recurrent
mutations in chronic lymphocytic leukaemia. Nature. 2015
Oct 22;526(7574):519-24. DOI: 10.1038/nature14666
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Karube K, Enjuanes A, Dlouhy I, Jares P, Martin-Garcia D,
Nadeu F, et al. Integrating genomic alterations in diffuse
large B-cell lymphoma identifies new relevant pathways
and potential therapeutic targets. Leukemia. 2018 Mar
14;32(3):675-84. DOI: 10.1038/leu.2017.251
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CAR
CD
cDNA
CGC
CGH
CNA
DC
DNA
DNA-seq
FISH
FPKM
GTEx
ICD-O
ICGC
IncRNA
mAB
NGS
0G
PAM
RNA
RNA-seq
RPKM
SNP
SNV
SV
TCGA
TIL
TPM
TSG
uv

Chimeric Antigen Receptor

Cancer Driver

Complementary DNA

Cancer Gene Census

Comparative Genomic Hybridization

Copy Numer Alteration

Dendritic cell

Desoxiribonucleic acid

DNA sequencing

Fluorescence In Situ Hybridization
Fragments per kilobase per million mapped read
Genotype-Tissue Expression

Interantional Classification of Diseases for Oncology
International Cancer Genome Consortium
Long-non coding RNA

Monoclonal Antibody

Next Generation Sequencing

Oncogene

Protein Affecting Mutation

Ribonucleic acid

RNA sequencing

Reads per kilobase per million mapped read
Single Nucleotide Polymorphism

Single Nucleotide Variant

Structural Variant

The Cancer Genome Atlas

Tumor infiltrating lymphocyte

Transcripts per million mapped read

Tumor suppressor gene

Ultraviolet
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