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Chapter 1 

Introduction 

Increasing complexity of information processing systems and increasing importance of the 

dependability of those systems has fostered the use of fault-tolerance. Fault-tolerance is 

a methodology to achieve high dependability using components with moderate reliability 

and, thus, moderate cost. Fault-tolerance is achieved through the use of redundancy, 

that is information, resources, or time beyond what is strictly required for operation in 

the absence of faults. Redundancy can take one of several forms [54]: 

• Hardware redundancy: extra hardware, usually for the purpose of either detect­

ing or tolerating faults. 

• Software redundancy: extra software, beyond what is needed to perform a given 

function, to detect and possibly tolerate faults. 

• Information redundancy: extra information beyond that required to implement 

a given function; for example, error detecting codes. 

• Time redundancy: time to perform functions such that fault detection and often 

fault tolerance can be achieved. 

Through the use of redundancy a fault-tolerant system is able to detect and tolerate 

faults, so that the system still continues in correct operation in the presence of faulty 

components. Redundancy implies extra cost over a non-fault-tolerant system. However, 

fault-tolerance is an attractive alternative to the use of highly reliable components with 

high cost, and often results in less costly systems with similar or higher dependability. 

It is for this reason that fault-tolerance has achieved increasing popularity and its use 
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is not restricted to applications requiring very high dependability. Unmanned space 

flights, satellites, avionics, nuclear power plants, distributed systems, communication 

networks, routers, multiprocessors, interconnection networks and high-density memories 

are examples of application areas where fault-tolerance has found wide acceptance. 

1.1 Fault-Tolerant Systems and Modeling 

A fault-tolerant system is designed to achieve a certain degree of dependability. To 

achieve such a degree of dependability, it is necessary to put redundancy in the system. 

The addition of redundancy to the system increases its cost. Under that perspective, 

the design and implementation of a fault-tolerant system can be seen as an optimization 

problem, with the goal of achieving the desired dependability level at the minimum cost. 

Fault-tolerance is an art, making the problem very difficult. In practice, the design and 

implementation of a fault-tolerant system is strongly guided by heuristics and previous 

experience. Nevertheless, usually several candidate architectures with different degrees 

of redundancy are considered and their cost and dependability are analyzed. The one 

that better solves the optimization problem is the one selected at the considered design 

detail. The process continues till the design of the system is completed. After the 

system is implemented, it is necessary to certificate that the system achieves the required 

dependability level. 

Dependability is a generic concept encompassing many measures, such as the steady-

state availability, the mean time to failure, and the reliability. Depending on the appli­

cation, one or several of such measures will be the more appropriate ones and will be 

selected to quantify system dependability. Often, the system has graceful degradation. 

This means that, as faults occur, the performance of the system degrades before failing. 

For that class of systems, a combined evaluation of the system's performance and de­

pendability is appropriate. Such a combined measure is generically called performability 

[69]. Performability is itself a generic concept (as dependability is) and can be particu­

larized into many measures. Many of those measures can be defined assuming a reward 

structure over a stochastic process [87]. In summary, the system ability to offer correct 

service is quantified using some or several dependability/performability measures. 

Experimental quantification of the selected dependability/performability measure is 

difficult or impossible. It is clearly impossible in a design stage, since the real system is not 

available for experimentation. Even when the real system or a prototype is available, di­

rect experimental evaluation of system's dependability/performability is often extremely 
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difficult. The reason is that, if the fault-tolerant system is well designed, system failures 

will be rare events and the time needed for an experimental evaluation of system's de-

pendability/performability will be very long. Several failures of the system will have to 

be seen to have enough confidence on the estimation of the measure, making the required 

experimentation time even longer. From a practical point of view, direct experimental 

quantification of a fault-tolerant system's dependability/performability is only feasible 

"a posteriori", when a sufficient number of copies of the system have been deployed and 

are in operation. For these reasons, evaluation of a fault-tolerant system's dependabil­

ity/performability is usually accomplished using models. Since component faults, the 

efficiency of fault-tolerance mechanisms incorporated in the system, and maintenance 

actions have stochastic nature, stochastic models are used in the evaluation. 

Stochastic models are not the only methodology required for the evaluation of de­

pendability/performability of fault-tolerant systems. The efficiency of fault-tolerance 

mechanisms is characterized using the so-called coverage parameter [14], defined as the 

probability that the system recovers given that a fault occurs. Coverage is sensitive 

to low-level details of the system design and, although stochastic models help [38], in 

general, coverage cannot be evaluated using only stochastic models and fault-injection 

experiments are used. Fault injection can be done on the real system or a prototype of it 

or in a more or less (typically very) detailed model of the system. Several tools for per­

forming fault-injection experiments have been developed [7, 9, 26, 29, 50, 51, 53, 55, 56]. 

The values of the coverage parameters obtained using fault-injection, perhaps in com­

bination with stochastic models are then used as parameters of a global dependabil­

ity/performability model of the fault-tolerant system that captures faults, fault recovery 

(through the use of the coverage parameters), maintenance, and, if a performability mea­

sure is of interest, perhaps performance activities. Coverage parameters are incorporated 

into that global model of the system as switching probabilities, using the so-called be­

havioral decomposition [97]. That approach is justified by the fact that fault-handling 

activities are much faster than the remaining activities of the system. 

The importance of stochastic modeling in the evaluation of fault-tolerant systems has 

fostered the development of software tools with facilities for the specification and solution 

of the stochastic models: SURF [58], ARIES [68], HARP [37], SAVE [46], METFAC [16], 

SHARPE [86], SPNP [30], UltraSAN [34], SURF-2 [12], METFAC-2 [21], and Galileo 

[96], among others. Homogeneous continuous-time Markov chains (CTMC) are the most 

widely used type of stochastic process. They are the type of stochastic processes that 

result naturally in dependability models when fault production times and maintenance 

actions have exponential distributions. For performability models including performance 
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actions, CTMC arise naturally when performance actions, in addition to fault occurrence 

and maintenance actions, have exponential distributions. CTMC models allow also to 

capture phase type distributions [73], although the cost is a considerable increase of 

the number of states. Since many distribution functions can be approximated with 

arbitrary accuracy using phase type distributions, the theoretical power of CTMC is 

very high. Most of the stochastic modeling tools accept only CTMC models. Others 

accept also non-homogeneous continuous-time Markov chains, which are useful to model 

non-repairable fault-tolerant systems with components having non-exponential time to 

failure. Finally, a few allow general distributions for the modeled actions, but then the 

only available solution method is simulation. In this dissertation we will restrict our 

attention to CTMC dependability models having a predefined structure. That class of 

models will be detailed later on. 

1.2 CTMC and the Largeness Problem 

CTMC models allow to capture in a faithful way important details that fault-tolerant 

systems have: component failure rates depending on the state of the system, failure prop­

agation, coverage, limited repairmen, repair priorities, etc. However, they suffer from the 

well-known largeness problem (also known as state space explosion problem). In brief, 

the problem is that the number of states of the CTMC grows fast with the complexity of 

the fault-tolerant system and is far beyond current and foreseeable computation capabili­

ties for systems of some complexity. To illustrate the point, assume an availability model 

of a fault-tolerant system having N distinguishable components, which can be unfailed 

or failed. The up/down state of the system depends on the subset of components which 

are failed. A CTMC modeling that system will have 2N states. For N = 20 the number 

of states is 1,048,576, which is about what can be held in memory in a current high-end 

workstation; for N = 30, the number of states is 1,073,741,824, which is far beyond 

current computation capabilities, but which, maybe, will be affordable in 20 years from 

now; for N = 40, the number of states is about 1.0995 x 1012, which, we think, is far 

beyond what will be affordable in the future. As the examples used in the dissertation 

will show, there exist many fault-tolerant systems yielding CTMC models of that size, 

and for those systems an exact numerical solution of the corresponding CTMC is simply 

infeasible. 

The largeness problem is well-known (it also arises in performance CTMC mod­

els) and researchers have worked against it. The most radical approach is the use of 
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combinatorial solution methods. Generally speaking, that approach is possible for some 

dependability measures when components have independent behavior. It is certainly 

possible for computing the steady-state availability and the reliability of non-repairable 

systems. Many combinatorial techniques (see, for instance, [1, 3]) exist when the up/down 

state of the system is determined solely by a structure function, usually specified by a 

fault tree. However, those techniques do not allow to consider coverage failures, which 

in fault-tolerant systems are important. Combinatorial methods allowing imperfect cov­

erage have been developed recently [39, 35, 6]. Those methods are extremely efficient 

and should be used when they are applicable. Another approach is the use of hierar­

chical model solution techniques. Those techniques are possible when the fault-tolerant 

system can be decomposed in subsystems, each of them behaving independently of the 

others. As combinatorial techniques, hierarchical model solution is only possible for some 

dependability measures. The software tool SHARPE has the flexibility required to ac­

commodate those solution techniques and the examples presented in [86] illustrate them 

very well. 

A general approach to tackle the largeness problem is the state aggregation. That 

approach is possible when the system exhibits symmetries (i.e. components or subsystems 

with identical behavior). A posteriori state aggregation performed at the state level is 

computationally expensive and does not solve the largeness problem. However, techniques 

have been developed to generate directly the aggregated CTMC from a high-level system 

description that makes the symmetries explicit. A simple example of that approach 

is the use of the concept of component type in the SAVE package [46], which allows 

to capture symmetries at the component level. A more general approach, allowing to 

capture hierarchically symmetries at the subsystem as well as the component level is 

offered by the UltraSAN software tool in the context of Stochastic Activity Networks 

[88]. A more general approach has been also proposed in the context of Stochastic Petri 

Nets [28]. 

Simulation is an approach that by nature does not suffer from the largeness problem, 

since only the current state or, at most, the path to it from the initial state has to be kept 

in memory. Standard simulation methods work very poorly for dependability models due 

to the rarity of the system failure event, which makes enormous the number of model 

events that have to be sampled to achieve confidence intervals with reasonable accuracy. 

However, fast simulation methods specifically targeted at dependability models have 

been developed recently. Most of these methods use importance sampling to drive the 

simulation effort towards the more important paths (i.e. those paths that see system 

failure and have higher probabilities) [17, 18, 25, 32, 47, 48, 65, 72, 74, 75, 76, 92, 91, 99]. 



6 1 Introduct ion 

Fast balance likelihood ratio simulation methods have been proposed more recently [4, 5], 

which seem to perform better than importance sampling methods for systems with high 

degree of accuracy. However, although fast simulation is a feasible alternative (and maybe 

the only alternative in some cases), the results they give are subject to a fundamental 

criticism: there is no absolute guarantee that the estimator is close enough to the real 

value of the estimated dependability measure. There is, certainly, a statistical assessment 

of the error, but that assessment is itself based on an estimation of the variance of 

the estimator and the shape of the distribution of the estimator is not known. Other 

problem is the possibility of having estimators with infinite variance. In that case, the 

estimated variance of the estimator increases as the simulation progresses and the user 

may be deceived by the method, thinking that it has a good estimate of the dependability 

measure when, in fact, it has not. 

Finally, another approach (and the one we pursue in this dissertation) is the use of 

bounding methods. Bounding methods are based on the fact that the probability mass 

of the model is often concentrated in a small subset of states (for repairable systems and 

non-repairable systems with not too long mission time, in the states with a few failed 

components) and that detailed knowledge of the CTMC is required only in this subset. 

Bounding methods generate the CTMC in a subset G of states and bound using high-

level knowledge about the model the behavior of the CTMC outside G, yielding bounds 

for the dependability/performability measure. Note that in contrast with fast simulation 

methods, in bounding methods there is a strict guarantee for the error1. Bounding 

methods have experimented a great development in the last years and will be briefly 

reviewed in the next section. 

1.3 Bounding Methods 

As it has been said in the previous section, in bounding methods a subset G of the state 

space of the CTMC is generated and the behavior in the remaining states is bounded 

somehow, yielding bounds for the desired dependability/performability measure. The 

bounds are tight if the global probability of the non-generated portion of the state space 

is small enough. Bounding transient dependability/performability measures is relatively 

simple. Consider, for instance, bounding the unreliability at time t, ur(t). The exact 

measure can be computed by generating a CTMC X = {X(t);t > 0} with state space 

1 Of course, the "bounding" model is solved using numerical methods that are subject to roundoff er­

rors; however, typically, the numerical methods are stable and the resulting relative error in the computed 

bounds can be neglected, if double precision is used in the computations. 
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S2 U {/}, where Q is the set of states in which the system is operational and entry into 

the absorbing state / means system failure. Then, ur{t) = P[X(t) = / ] . For simplicity 

assume P[X(0) € O] = 1. Then bounds for ur(t) can be obtained by using a CTMC 

X' = {X'(t);t > 0} with state space G u { / , a}, where G is a subset of Q and / and a are 

absorbing states, having within G the same initial probability distribution as X, with 

P[X'(0) = a] — P[X(0) e O - G ] , having within G and from G to f the same transition 

rates as X, and having transition rates from states in G to a equal to the transitions 

rates of the corresponding states in G to Í2 — G in X. Then, it is easy to prove that 

P[X'(t) = / ] is a lower bound for ur(t) and P[X'(t) 6 {/,«}] is an upper bound for 

ur(t). 

Bounding steady-state measures is much more complex and several methods have 

been developed in the last few years [19, 20, 22, 24, 63, 64, 66, 67, 70, 89, 95]. In 

the first of such methods [70], bounds for the steady-state availability were obtained by 

partitioning the non-generated portion of the state space, [/, according to the number 

of failed components and bounding the behavior of the chain in U using upper bounds 

for failure transition rates and lower bounds for repair transition rates. The method 

was, however, computationally very costly because a linear system of size ?» \G\ had to 

be solved for each return state, i.e. each state through which G can be entered from 

U. In the same paper, a state cloning technique is proposed that reduces the number 

of linear systems that have to be solved but introduces some looseness in the bounds. 

The method proposed in [70] is not restricted to steady-state availability models and can 

encompass any finite CTMC having the same structure. Of course, the bounds will be 

tight only if the "repair" transition rates are much larger than the "failure" transition 

rates. In [63] a refinement of the method is proposed for the particular case in which 

all states but the one without failed components are cloned. The technique avoids a 

complete reapplication of the algorithm each time G is enlarged in the search for the 

desired accuracy but looses up further the bounds. This additional looseness has been 

reduced in another paper from the same authors [64]. In the method proposed in [19], the 

bounds of [70] are computed without cloning states solving only four linear systems of size 

|G|. In addition, for steady-state availability models, iterative methods are very fast for 

the solution of those four linear systems. In [89] another bounding method is developed 

in which the bounds are iteratively refined using detailed knowledge about the model 

in U in the neighborhood of G. No comparison was done with the method proposed in 

[70]. An important disadvantage of the method is the need for detailed knowledge of 

the model in U in the neighborhood of G, since that detailed knowledge can only be 

obtained by generating states in U, increasing significantly the memory requirements of 
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the method. In [22] a bounding method based on the failure distance concept is proposed 

that gives bounds that are never worse and are typically better than those given by the 

method proposed in [70]. The method uses the cloning technique of [70] but adapts one 

of the algorithms developed in [19] so that only five linear systems of size |G| have to 

be solved to compute the bounds. The method proposed in [22] is specifically targeted 

at steady-state availability models. All previously reviewed methods assume that the 

state space of the CTMC is finite and that there is a repair transition involving a single 

component in all non-generated states of the CTMC. Both restrictions have been removed 

in the generalization of [70] proposed in [66, 67], which allows to obtain bounds for infinite 

CTMC and CTMC models in which no every state in U has "repair" transition. However, 

"repair" transitions have to involve a single component2. The method has been used to 

obtain bounds for the steady-state solution of queueing models. Another generalization 

of [70] for finite models has been recently proposed in [24]. In that method, group repair 

(i.e. the simultaneous repair of several components) and phase type repair distributions 

are allowed. In the methods reviewed so far G includes all states of the CTMC having 

up to K failed components. The issue of how to generate G so that it includes as few 

states as possible to achieve the required accuracy has also been investigated. In [95], 

state space exploration techniques were developed for the bounding method proposed 

in [70] with the cloning technique. However, these state space exploration techniques are 

expensive since they require the solution of a linear system of size \G\ after the expansion 

of every state. More efficient state space exploration techniques based on the concept 

of wave expansion and specifically targeted at the method developed in [22] have been 

developed in [20]. 

1.4 A Brief Review of Bag Theory 

Throughout the dissertation we will use bag theory. In this section we will briefly review 

that theory. The review closely follows that provided in [78]. 

Bag theory is a natural extension of set theory. A bag, like a set, is a collection of 

elements over some domain V. However, unlike a set, bags allow multiple occurrences 

(instances) of elements. Consider, for instance, the domain V = {a, 6, c, d}. Examples 

of bags over V are b\ = {a, 6, c}, 62 = {a,6, c, c}, and Ò3 = {6, c, b, c}. We will use 

the notation b — Ci[ni]c2[w2] • • *c¿[njt] for the bag containing exactly n; instances of 

2The subset U is conceptually partitioned into subsets Uk, k > F + l , where for steady-state availability 

models Uk would include the states in which there are k failed components and the transitions from Uk 

to the left, i.e. to G U U«*t/i , have to go to Uk-i if k > F + 1 or to G if k = F + 1. 
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element c¿, 1 < i < k. With that notation, the previous example bags are described as 

Ò! = o[l]6[l]c[l], h = a[l]b[l]c[2], and b3 = b[2]c[2]. 

In set theory, the basic concept is membership. In bag theory, that concept is 

replaced by the number of instances function. For an element x £ V and a bag b, we 

denote the number of instances of a; in 6 by #(x,ò) . The cardinality \b\ of a bag b is 

simply the number of instances of elements in the bag, i.e. 

|6| = £#(*,&). 

An element a; is a member of a bag 6 if #(x,b) > 0. This is denoted as x Ç b. If 

#(x, 6) = 0, then x £b. The empty bag, 0, is the bag with no members, i.e. #(a;, 0) = 0, 

x € V. A bag a is a subbag of a bag b (denoted o C b) if every element of a is also an 

element of 6 at least as many times, i.e. if and only if #(a;,a) < #(x,ò) , x G V. Two 

bags a and 6 are equal (denoted a — b) if and only if #(a;, a) = #(x, b), x Ç.V. 

The following four operations are defined on bags: 

bag union a U ò is the bag defined as 

# ( Í , O U 6 ) = max{#( i ,a ) ,#(x ,ò)} , x eV. 

bag intersection a D b is the bag defined as 

# ( i , a f l o ) = min{#(x,a), #(x,6)}, x Ç.V . 

bag sum a + b is the bag defined as 

#(x,a + b) = #(x,a) + #(x,b), xeV. 

bag difference a — b is the bag defined as 

#(x, a — b) = #(x , a) — # (x , a ("l b) — max{#(i , a) - #(x, b), 0}, x € V. 

These operators have most of the properties that would be expected. Union, inter­

section, and sum are commutative and associative. In addition, the expected inclusions 

hold: 

o f l ô C û C o U ô , 

a — b C a C a-\-b. 
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The distinction between union and sum is clearly stated by 

|aUò| < \a\ + \b\, 

\a+b\ = \a\ + \b\. 

No such simple statement distinguishes a n o from a — b. 

1.5 Class of Models Considered in the Dissertation 

The topic of this dissertation is bounding methods for dependability measures. The 

bounding methods we will develop apply to a certain, wide class of dependability models. 

That class of models is described formally in this section. We will also discuss how 

coverage failures, which are important in the modeling of fault-tolerant systems, can be 

accommodated within the assumed modeling framework. Also, as it has been commented 

in Section 1.3, bounding methods require some high-level knowledge about the behavior 

of the CTMC model out of the generated state space G. The high-level knowledge 

required by the bounding methods developed in the dissertation will also be detailed in 

this section. 

We consider dependability models that result from conceptualizing a fault-tolerant 

system as made up of components (hardware or software). In order to capture elementary 

symmetries, we allow component classes, a particular component being an instance of 

some component class. Formally, the system includes a bag C of component classes over 

a certain domain V. We assume that the up/down state of the system is determined from 

the unfailed/failed state of the components of the system through a coherent structure 

function (see, for instance, [8]) specified by a fault tree with basic event classes made 

up of OR and AND gates and with inputs atoms of the form c[n], c € C, n > 1, which 

evaluate to true if and only if at least n instances of component class c are failed. We 

allow arbitrary connections between the gates of the fault tree (as far as the fault tree 

has only one output and it has not feedback). As an example, Figure 1.1 gives the fault 

tree corresponding to a fault-tolerant system that is failed if and only if one instance of 

component class a and two instances of component class b or two instances of component 

class a and one instance of component class b are failed. 

The CTMC models we will consider have "failure" and, for repairable systems, "re­

pair" transitions. Each state s of the CTMC (except the absorbing state indicating 

failure of the system when the measure under consideration is the unreliability at time 

t, ur(t)) has associated with it a bag of failed component classes F(s). There is a single 



1.5 Class of Models Considered in the Dissertation 11 

a[l] b[2] a[2] b[l] 

Figure 1.1: Example fault tree. 

state o without failed components (F(o) = 0). Each failure transition of the CTMC 

has associated with it a bag of component classes (the components that fail when the 

transition is followed). Similarly, in the case of models of repairable systems, each repair 

transition has associated with it a bag of component classes (the components that are 

repaired when the transition is followed). In addition, for models of repairable systems, 

we assume that every state s ^ o has some outgoing repair transition. Finally, we assume 

that the CTMC is finite. 

The considered class of models is quite wide and encompasses, for instance, all 

CTMC models which can be specified in the SAVE modeling language [46], a well-known 

tool. For repairable systems we do not allow deferred repair, i.e. the deferring of repair 

till some condition such as having a number of failed components > K is achieved. 

Note that the CTMC may have several states with the same bag of failed components, 

allowing the consideration of several failure modes for the same component class. Also, 

in the case of repairable systems, very complex repair policies are supported: limited 

repairmen, priorities, repair preemption, etc. Group repair, i.e. the simultaneous repair 

of several components is allowed. 

One might think the class of models just described does not encompass coverage 

failures, which are important when modeling fault-tolerant systems. Such failures can 

be however captured making a "trick". The trick is to introduce a class of "recovery" 

components with n instances, at least one of which has to be unfailed for the system to be 

up, which do not fail on their own, and to which uncovered failures of other components 

are propagated, causing a system failure. Although n — 1 would suffice, that choice 

may reduce the failure distances from the operational states to a value smaller than the 

value they would have there were not coverage failures and result in a degradation of the 

bounds given by the methods. The advisable choice is to take for n a value equal to the 

redundancy level of the system, i.e. the minimum number of components that have to be 

failed for the system to be failed. In the case of repairable systems, coverage failures are 

typically recovered by a restart or similar action, which returns the system to a correct 
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state. Such actions can be modeled by the repair of all the recovery components. Then, 

the importance of allowing group repair is clear: without it, n should be chosen equal to 

1 and the bounds would be worse. Also, the introduction of recovery components allows 

to model more complex situations such as the coverage failures that take a subsystem 

down. 

Given a fault-tolerant system, we define a failure bag as any bag of component 

classes over C that is associated with some failure transition of the model of the system. 

Similarly, for repairable systems, a repair bag will be any bag of component classes over 

C that is associated with some repair transition of the model of the system. We detail 

next the high-level information that is required by the bounding methods developed in 

this dissertation. The required information is the following: 

• N = \C\, i.e. the number of components of the system, 

• set E of failure bags of the model, 

• for each failure bag e € E, an upper bound, Aub(e), for the sum of the failure 

transition rates from any state of the model that have associated with them the 

failure bag e, 

• for 1 < k < N, a lower bound, g(k), for the total repair rate from any state with k 

failed components. 

That information could be extracted from an appropriate high-level specification 

of the model, such as the model specification language available in the SAVE tool [46], 

perhaps with some user intervention. In our experiments we have used METFAC-2 

[21] and have integrated the bounding methods with that tool. The model specification 

language of that tool is based on production rules that may have annotations. Such 

annotations have been used to specify the "failure" or "repair" nature of the transitions 

and the failure or repair bags associated with them. The tool generates the CTMC from 

a "start" state, which, when the bounding methods are used, is always the state o. In 

that context, it is easy to keep track of the bag of failed components associated with the 

states and to identify E. N and the upper bounds Aub(e), e £ E are provided directly 

by the user. The lower bounds g(k), 1 < k < N are obtained calling a function provided 

by the user that is compiled and linked to the tool. 
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1.6 Outline of the Dissertation 

The subject of the dissertation are failure distance based bounding methods for CTMC 

dependability models. The failure distance from a state of the fault-tolerant system is 

defined as the minimum number of components that have to fail in addition to those 

already failed to take the system down. That concept was introduced in [18] to devise 

efficient importance sampling based simulation methods for CTMC dependability models 

and has been used in [22] to devise a bounding method for the steady-state availability. 

Both the simulation and the bounding methods significantly improved the performance 

of previous non-failure distance based simulation and bounding methods. Those encour­

aging results were the motivation for the work included in this dissertation. As we will 

show in Chapter 2, computing failure distances is an NP-hard problem. The currently 

proposed method to perform that computation requires the knowledge of the minimal 

cuts 3 of the fault tree of the system. However, we will prove in Chapter 2 that there is no 

polynomial algorithm that solves the problem of computing the minimal cuts of a fault 

tree with the assumed structure. Thus, for some fault-tolerant systems computation of 

the failure distances may be very costly or infeasible. Also, the number of minimal cuts 

can be extremely large, introducing a significant memory overhead. The recognition of 

those facts led us to the development of failure distance-based bounding methods not 

requiring exact failure distances (and, thus, knowledge of the minimal cuts), but easily 

computable lower bounds for them. 

Two dependability measures/scenarios are considered in the dissertation: 

1. The unreliability at time t, ur(t), for non-repairable systems. 

2. The steady-state unavailability, UA, for repairable systems. 

The unreliability at time t, ur(t) is defined as the probability that the system will 

have failed by time t. It is an important dependability measure for many systems and, in 

particular, for non-repairable systems. The measure can be computed by using a CTMC 

X = {X(t);t > 0} with state space Q U {/}, where fi includes all operational states of 

the system and entry in the absorbing state / means failure of the system. Then, clearly 

ur(t) = P[X(t) = f). 

3 We use the term minimal cut instead of the more common minimal cutset because our minimal cuts 

are bags. 
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The steady-state unavailability, UA, is an important dependability measure for re­

pairable fault-tolerant systems. It is defined as the steady-state probability that the sys­

tem is down (failed). It can be computed by using an irreducible CTMC X.= {X(t);t > 

0} with state space Í7 = U U D, where U is the subset of up states and D is the subset 

of down states as 

UA= lim P[X(t) €£>]. 
Í-+0O 

As it has been explained in Section 1.2, the state spaces of the CTMC X can be 

far beyond available computational resources, mainly due to memory limitations. The 

goal of bounding methods is to obtain accurate enough estimations for the dependability 

measure using substantially smaller CTMC models, which, hopefully, can be held in 

memory. Bounds tightness increases as more states are generated and the efficiency 

of the bounding method (i.e. the extent to which it provides tighter bounds with the 

same number of states or, in other words, the extent to which fewer states have to be 

generated to obtain the same bounds tightness) ultimately determines the complexity of 

the fault-tolerant systems that can be evaluated with reasonable accuracy. 

The outline of the dissertation is as follows. Chapter 2 analyzes and solves the prob­

lem of computing failure distances. First, we prove that the problem is NP-hard. Then, 

we describe typically efficient algorithms to compute the failure distances assuming the 

knowledge of the minimal cuts of the structure function of the system. The efficiency 

of that algorithm translates the "complexity" of the problem of computing failure dis­

tances to the problem of obtaining the minimal cuts of the fault tree of the system, 

a problem for which there is no polynomial algorithm. Currently proposed algorithms 

for computing minimal cuts assume standard fault trees with simple basic events, while 

our bounding methods use fault trees with basic event classes (a basic event class is the 

failure of a component of a component class). In Chapter 2 we develop an algorithm to 

compute the minimal cuts for fault trees with basic event classes. The algorithm seems 

to be efficient and has minimum memory requirements. Chapters 3 and 4 presents and 

analyzes bounding methods for the unreliability of non-repairable fault-tolerant systems. 

The method described in Chapter 3 requires the computation of exact failure distances. 

The method described in Chapter 4 uses easily computable lower bounds for failure dis­

tances. Both methods have the interesting property that the bounds are obtained from 

the transient solution of "bounding" CTMC, and, thus, the methods can be used with 

relative ease in any general-purpose Markovian modeling tool. Chapters 5 and 6 de­

scribe and analyze bounding methods for the steady-state unavailability of repairable 

fault-tolerant systems. The work described in those chapters has [22] and [20] as starting 

points. Chapter 5 generalizes the bounding method described in [22] by allowing group 
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repair, which, as commented in Section 1.5, is an important generalization. In addition, 

the efficiency of the method is increased by improving the failure rate bounding struc­

tures used in the method proposed in [22]. Chapter 6 describes a bounding method with 

the same generality as the bounding method described in the previous chapter that uses 

the easily computable lower bounds for failure distances derived in Chapter 4. Finally, 

Chapter 7 contains the conclusions of the dissertation and highlights related future work. 
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Chapter 2 

Failure Distances and Minimal 

Cuts 

In this chapter we build the basis for the bounding methods which will be developed in 

Chapters 3 and 5. We start by stating formally the problem of computing the failure 

distance from a state. Next, we prove that the problem is NP-hard. Then, we describe 

typically efficient algorithms to compute the failure distances assuming the knowledge of 

the minimal cuts of the structure function of the system. The efficiency ofthat algorithm 

translates the "complexity" of the problem of computing failure distances to the problem 

of obtaining the minimal cuts of the structure function of the system, a problem for 

which there is no polynomial algorithm. Currently proposed algorithms for computing 

minimal cuts assume standard fault trees with simple basic events, while our bounding 

methods use fault trees with basic event classes (a basic event class is the failure of a 

component of a component class). Therefore, we develop an algorithm to compute the 

minimal cuts for fault trees with basic event classes. The algorithm seems to be efficient 

and has minimum memory requirements. 

2.1 The Problem of Computing the Failure Distance from 

a State 

The bounding methods developed in the dissertation use the failure distance concept. 

Two of them require the computation of failure distances from states of the CTMC. As 

it has been mentioned in Section 1.6, the failure distance, d(s), from a state s is the 
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minimum number of components that have to fail in addition to those already failed 

(F(s)) to take the system down. Since the up/down state of the system is determined 

by a fault tree T, with the structure described in Section 1.5, we can paraphrase the 

problem as 

Problem FD Given a set of component classes D, a fault tree T including AND and 

OR gates and having as inputs atoms of the form c[n], c 6 D, n > 1 that evaluate to 

true if and only if at least n instances of component class c are failed, and a bag over £), 

6, determine the minimum number of components that have to be failed in addition to 

those in 6 for the fault tree to evaluate to true. 

That problem seems to be hard, in general. We will solve it assuming that the 

minimal cuts of the fault tree T are known. A cut is any bag over D such that the 

failure of the components in the bag makes T evaluate to true (i.e. takes the system 

down). A cut b is minimal if and only if no bag strictly contained in 6 is a cut. In 

Section 2.3 we will develop a typically efficient algorithm to compute the minimal cuts 

of the structure function represented by a fault tree T. It is known that, for ordinary 

fault trees, having as inputs simple events, the problem of computing the minimal cuts is 

NP-hard [81]. In fact, we will prove that for our fault trees the problem is not in P (there 

is no polynomial algorithm that solves it). Then, a question arises: is our procedure 

to solve Problem FD based on the knowledge of the minimal cuts of T more inefficient 

than it should be? We will give next a partial answer to that question, proving that 

Problem FD is NP-hard. Our algorithms to solve Problem FD have linear complexity 

on the number of minimal cuts of F and, thus, are not polynomial, but, since Problem 

FD is NP-hard, there is no polynomial algorithm to solve it unless NP = P, which would 

mean that for all NP-complete problems there would exist a polynomial algorithm (see 

[43] for background). 

Let MC be the set of minimal cuts of T. Then, since a state is down if and only if the 

failed components in the state make T evaluate to true and a bag b of failed components 

imply T to true if and only if b includes some minimal cut, it is clear that the failure 

distance d(s) from a state s can be computed as 

d(s)= min \m-F(s)\. (2.1) 
mfzMC 

Use of (2.1) is expensive if the number of minimal cuts is large, as it can be. In Section 2.2 

we will describe typically much more efficient algorithms to compute failure distances. 

Our algorithms to compute failure distances require the knowledge of all minimal 

cuts of the fault tree. We have the following result. 
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Theorem 2.1 Computing all minimal cuts of a fault tree with the assumed structure is 

a problem outside P, i.e. there is no polynomial algorithm to solve it. 

Proof It is enough to show the existence of a fault tree with a number of minimal cuts 

exponential on the size of the fault tree. To find such a fault tree consider a system 

with n = 2k components of different classes that is failed if and only if n/2 or more 

components are failed. The minimal cuts of such system are all collections with n/2 

components, whose number is (ny2) > 2n /2 . In addition, a fault tree for the system of 

size polynomial on n can be built by considering the set of components partitioned into 

two subsets of cardinality n/2 and building networks with outputs that evaluate to true 

if and only if k or more components of the subset are failed, k = 1,2, . . . , n/2. Those 

outputs can be combined using AND and OR gates to obtain outputs which evaluate 

to true if and only if k or more components are failed, k = 1,2,... ,'n. The reduction 

procedure can be applied recursively. The resulting fault tree has a number of "stages" 

logarithmic on n, and each stage has size quadratic on n. Then, it follows that for such 

fault tree the number of minimal cuts is exponential on the size of the fault tree. Q 

In the remaining of this section we will prove that the FD problem is NP-hard. We 

will consider the following closely related decision problem: 

Problem FDD Given a set of component classes D, a fault tree T including AND 

and OR gates and having as inputs atoms of the form e[n], c 6 D, n > 1 that evaluate 

to true if and only if at least n instances of component class c are failed, a bag over D, 

b, and an integer K > 0, is there any bag b' over D, \b'\ < K such that the failure of the 

components in 6 + 6' implies T to true? 

We will also consider the well-known Vertex Cover problem, which is known to be 

NP-complete [43]: 

Problem VC Given a graph G = (V, E) and a positive integer K < |V|, is there a 

vertex cover of size K or less for G, that is, a subset V C V such that \V'\ < K and, for 

each edge {u, v} £ E, at least one of u and v belongs to V ? 

Regarding the complexity of Problem FDD we have the following result. 

Proposition 2.1 Problem FDD is NP-complete. 

Proof We will use the more common approach to prove NP-completeness results [43]. 

Specifically, we will show that Problem FDD is NP. Then, we will construct a polynomial 

transformation of Problem VC, which is NP-complete, into Problem FDD. 
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To show that Problem FDD is NP it is enough to prove the existence of a polynomial 

nondeterministic algorithm to solve it. Such an algorithm can be easily built as follows. 

Let D? be the subset of D including the component classes c having some input c[n] 

in T and, for each c G D?, let np(c, b) be the set of integers n > 1 such that T has 

some input c[n + #(c , 6)]. Consider all bags b' over D'T — {c G Dj? : njr(c, b) ^ 0} with 

#(c , b') € n^r(c,ò), c G D'-p and |6'| < if. Then, the algorithm proceeds by considering 

all such bags b' and, for each 6', evaluate T with the components in 6 + 6' failed. Note 

that such evaluation is linear on the size of T. If the fault tree evaluates to true for some 

bag b' the answer to the FDD problem is yes. 

It remains to find a polynomial transformation from Problem VC to Problem FDD. 

To find the transformation, let D = V and consider the fault tree T built as follows. 

T has as inputs atoms u[l] for each u G V. For each edge {u, v} £ E, T has an OR 

gate fed by two atoms: u[l] and u[l]. All OR gates feed an AND gate, whose output 

is the output of T. Then, Problem FDD is invoked with set of component classes D, 

fault tree .T7, ò = 0, and integer K (the integer K of Problem VC). By construction, it is 

clear that the answer to Problem VC is yes if and only if the answer to the invoked FDD 

problem is yes. But \D\ and the size of T are linear on the size of G and, therefore, the 

transformation is polynomial, fj] 

Using Proposition 2.1 we have the desired result. 

Theorem 2.2 Problem FD is NP-hard. 

Proof Problem FDD can obviously be polynomically transformed into Problem FD, 

which by Proposition 2.1 is NP-complete. Q 

2.2 Algorithms to Compute Failure Distances 

Let G be the set of generated states. The implementation of the bounding methods 

developed in this dissertation requires the computation of the failure distance from the 

states that are successors (are reached through a single transition) of a generated state 

s G G. A trivial computation of these failure distances based on (2.1) can be time 

consuming if the number of minimal cuts is large. In this section we review, for the sake 

of completeness, significantly more efficient algorithms described in [20]. 

We start with the observation that most of the transitions leading to the state whose 

failure distance has to be computed will be typically of the failure type. To compute more 
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efficiently the failure distances associated with these states the concept of after minimal 

cut is introduced. The after minimal cut associated with a minimal cut m and a failure 

bag e G E is m! = m - e. Let AMCe be the set of after minimal cuts associated with 

failure bag e, i.e. 

AMCe = {m'\m' = m - e,m € MC, rnOe^}. 

Then, the failure distance from any state reached from s through a failure transition 

associated with failure bag e, ad(s,e), can be obtained as: 

ad(s, e) = m\n{d(s), min \m — F(s)\}. (2.2) 
meAMCe 

Assuming that d(s) is known, the use of (2.2) instead of (2.1) reduces the number of 

distances to minimal cuts \m - F(s)\ that have to be computed to determine ad(s, e), 

e £ E from |2?||MC| to the typically much smaller J2eeE \AMCe\. Further reduction in 

the number of minimal cut touches and the associated overhead can be obtained with the 

two algorithms we describe next. The algorithms assume known the redundancy level of 

the system L = d(o) and ad(o, e), e G E. Those quantities can be computed once before 

the generation of the bounding model starts using (2.1) and (2.2). 

Assume that an upper bound ub for d(s) is known (for instance, ub = L). Since at 

most \F{s)\ components can be failed in any minimal cut we only need to consider the 

minimal cuts m with \m\ — \F(s)\ < ub. Assume also that we can access the minimal 

cuts indexed by order (cardinality) and selectors (bags included in the minimal cut) of 

order < R. For \m — F(s)\ < ub, m must contain a selector p with all components failed 

and |m| — |p| < ub, i.e. \p\ > \m\ — ub +1. Thus, for each possible minimal cut order c we 

can restrict our attention to the minimal cuts of order c containing selectors p with all 

components failed and |p| = min{i?, c - ub + 1} = r. Possible selectors can be examined 

by generating all bags of order r included in F(s). Actual selectors can be identified 

easily if all selectors are kept in a hash table. The discussion justifies the algorithm 

computed given in Figure 2.2. The algorithm takes as input a bag of component classes 

b and gives as output the failure distance d from 6. To compute d(s), the algorithm 

should be invoked with b = F(s). 

A similar scheme can be used to compute ad(s,e), e G E, assuming knowledge of 

d(s). To reduce the overhead associated with the control of the algorithm we use one 

bound and index the selectors for all the failure bags of the model together. The bound 

is initialized using ad(o,e). The algorithm, called compute.alLad, is given in Figure 2.2. 

The algorithm takes as inputs a bag of component classes b and the failure distance d 
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Algorithm compute-d(b, d) 

d = L; 
for (increasing minimal cut order c while c < d+ \b\){ 

r = min{i?, c — d + 1}; 
Let P be the set of bags of order r included in 6; 
for (each p G P){ 

for (each minimal cut m with \m\ = c and p C ?n){ 
ci = min{d, \m- 6|}; 

} 
} 

} 

Figure 2.1: Algorithm to compute the failure distance d from a bag of component classes 

6. 

Algorithm compute.alLad(d, b, d*(e),e e E) 

for (each e £ E) d*(e) = min{c!, ad(o, e)}; 
adub = maxeg£;{i/*(e)}; 
for (increasing after minimal cut order c while c < aduò + |6|){ 

r = min{ñ, c — aduò + 1}; 
Let P be the set of bags of order r included in ò; 
for (each p G P){ 

for (each after minimal cut m' with \m'\ = c and p C rn'){ 
Let e be the failure bag associated with m'; 
d'(e) = min{(i*(e) l |m'-&|}; 

} 
} 

} 

Figure 2.2: Algorithm to compute the failure distance d*(e) from bags of component 

classes of the form b + e, e £ E given the failure distance d from bag b. 
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from b and gives as output the failure distances d*(e) from b-\- e, e € E. To compute 

ad(s, e), e € E the algorithm should be invoked with d = d(s) and b = F(s). 

These algorithms are used as follows. The failure distances from the generated 

states are kept in the state descriptions. When a state is expanded, failure distances 

from the new states reached through failure transitions are computed using algorithm 

compute.alLad{)] the failure distances from the new states reached through repair transi­

tions are computed using algorithm compute.d{). Since typically most of the new states 

are reached through failure transitions, algorithm compute.alLad( ) is invoked much more 

often than algorithm compute.d(). The algorithms seem to be extremely efficient with 

moderate values of R (it is convenient not to take to a high value for R to keep small the 

memory overhead associated with the storage of the selectors) even when the number 

of minimal cuts is huge. Thus, for instance, for the second (largest) example used in 

Chapter 6, which has 87,031 minimal cuts, when the method developed in Chapter 5 

was invoked with a target relative band of 0.01, which required the generation of 26,317 

states, for R = 2 the number of minimal cut touches was 35,018,784 for a computation 

of 1,926,512 failure distances, i.e. about 18.2 minimal cut touches for computed failure 

distance. Using the trivial algorithm for computing the failure distances, the number of 

minimal cut touches would be 167,666,265,872 (about 4,788 times more touches). We 

have found R — 2 to be a good choice in all examples we have tried. With that selection, 

the time overhead associated with failure distances computation is very small. 

2.3 An Algorithm to Compute Minimal Cuts 

In this section we describe an algorithm to compute the minimal cuts of a fault tree 

with basic event classes such as the fault tree T of the class of models considered in 

the dissertation. The algorithm uses a decision tree. The search implemented by the 

decision tree is guided by heuristics that try to make the overall algorithm as efficient as 

possible. In addition, an irrelevance test on the inputs of the fault tree is used to prune 

the search. The performance of the new algorithm is illustrated and compared with the 

basic top-down and bottom-up algorithms using a set of fault trees, some of which are 

very hard. The new algorithm performs reasonably well even in the hard examples. Also, 

the memory requirements of the algorithm are small. 

Fault trees are a very popular tool in reliability engineering. The knowledge of the 

minimal cuts allows the designer to analyze the criticality of the basic events and improve 

the reliability of the modeled system. It is well-known that computation of all minimal 
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cuts of an arbitrary fault tree is NP-hard [81]. In spite of this theoretical difficulty, there 

exist currently algorithms that will perform reasonably well in many practical cases. 

Early algorithms can be classified in two categories: top-down algorithms and bottom-up 

algorithms. Computation of all minimal cuts of a fanout free fault tree (i.e. a fault 

tree without repeated basic events or gates branching out to more than one gate input) 

can be done very easily by traversing the fault tree in a top-down fashion. In the basic 

top-down algorithm [42], a set of cuts, often called the superset, is obtained as if the 

fault tree were fanout free. The set of minimal cuts is then obtained by using in each cut 

the reduction rule xx -> x and keeping those cuts which are not properly contained in 

any other cut. The algorithm involves n(n — 1) inclusion tests, where n is the cardinality 

of the superset. These inclusion tests can be performed very efficiently by associating 

different prime numbers to the basic events and representing the cuts by the product of 

the constituent basic events [90]. However, even using these techniques, reduction of the 

superset is an expensive task if n is large. Also, some fault trees with manageable number 

of minimal cuts have n so large that it is impossible to keep the superset in memory1. 

Some improvements to the basic top-down algorithm have been proposed. In [10] the 

size of the superset and the number of required inclusion tests is reduced by eliminating 

repeated events that only fanout to OR gates. The algorithm described in [79] stops the 

top-down expansion process at OR gates with basic event inputs, substitutes OR gates 

with repeated basic event inputs by one of those repeated basic events and performs 

reduction after each substitution step. The algorithm was to some extent faster than 

the basic top-down algorithm in almost all cases. In [59] it is proved that cuts of the 

superset without repeated basic events are all minimal and that the test for inclusion can 

be performed within the remaining cuts. 

Bottom-up algorithms try to avoid the potentially large superset of the top-down 

algorithms. In the basic bottom-up algorithm [11] the fault tree is traversed from the 

inputs to the top event, obtaining at each step the set of minimal cuts associated with 

a given gate of the fault tree from the set of minimal cuts associated with the gates in 

its fanin. In general, each step of the bottom-up algorithm requires the reduction of the 

superset associated with the processed gate. The reduction is usually not very expensive 

for OR gates. For a two-input AND gate, the trivial procedure involves nin2(nin2 - 1) 

tests, where n\ and n2 are the number of minimal cuts at the inputs. However, a more 

sophisticated algorithm is given in [71] that reduces the number of tests to n i e r a i + 

n2 —' 1) in the worst case. A recent [52] elaboration of the bottom-up algorithm includes 

Thus, for instance, the example EDF of Section 2.4 has n » 8.75983 x 1024 but only 2,463 minimal 

cuts. 
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a preprocessing step that yields reduced level fault trees that are processed in descending 

level order. The new algorithm can speed up significantly the basic bottom-up algorithm 

when the fault tree has gates with fanout. 

The concept of module [27] can be exploited to reduce significantly for some fault 

trees the computational cost of finding the minimal cuts. A module is a portion of the 

fault tree having basic events as inputs and a single gate (the output of the module) 

fanning out of the module. Efficient algorithms have been proposed to find modules [40], 

[57], [82], [98]. The analysis of a fault tree with modules can be reduced to the analysis of 

each module and the fault tree obtained by substituting each module by an independent 

input. 

More recently, algorithms based on BDD representations [15] of the logic function 

implemented by the fault tree have been proposed. In [80], [93] the fault tree is assumed 

5-coherent and a BDD is constructed for it. That BDD is then transformed to obtain 

another BDD such that each path from the root to the leave 1 represents a minimal cut. 

The MetaPrime tool [33] uses a similar approach that can deal with non s-coherent fault 

trees, the BDD encoding the minimal cuts being called metaproduct. More recently 

[77], another algorithm has also been developed for non s-coherent fault trees that in 

many cases gives more compact BDD representations than the metaproducts obtained 

by MetaPrime. All these algorithms have been shown to be typically much faster than 

the early top-down and bottom-up algorithms. 

The algorithm developed in this section considers generalized fault trees with basic 

event classes, being the basic events of each class indistinguishable. With classes, the 

fault tree does not longer represent a logic function with binary arguments. Also, cuts 

and minimal cuts are not longer sets but bags. The algorithm uses a decision tree to 

generate cuts of the fault tree. Cuts thus obtained are not guaranteed to be minimal and 

a test of minimality has to be carried out. However, instead of inclusion tests, we make 

an independent minimality test for each generated cut. Since cuts are generated one 

by one, this allows to write sequentially in secondary storage minimal cuts, making the 

memory requirements of the algorithm small and independent of the number of minimal 

cuts. These small memory requirements are an unique feature of our algorithm (BDD 

representations of fault trees are in the worst case of size exponential with the number 

of basic events). 

In this section we will use the following notation and definitions. 

Notation and Definitions 
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C set of basic event classes of the fault tree 

ci[ni]c2[n2].. .Ck[rik] bag with n,- > 0 instances of basic event class c¿, 1 < i < k; it 

will be said that Ci[ni] is part of the bag 

I set of inputs of the fault tree; each input is a bag c[n], c G C, n > 1, meaning 

the realization of n basic events of class c 

G set of gates of the fault tree 

gr root (top) gate 

type(<7) type of gate g; it may be AND or OR 

val(.) value of an implied input or gate; it may be 0 or 1 

node an input or a gate 

fo(a:) fanout of node x: set of gates fed by x 

fi(¿f) fanin of gate g: set of gates or inputs that feed g 

irrelevant a node x is irrelevant if all edges branching out of x are irrelevant; an edge 

e is irrelevant if either the gate g to which e goes is irrelevant or has been 

previously implied by a node connected to g by another edge 

dfo(ar) dynamic fanout of an unimplied node x: set of relevant edges fed by x 

fx fanout excess of an unimplied and relevant node x: |dfo(2)| — 1 

/ fanout excess of the fault tree: J2 *€/UG fx 
x unimplied and relevant 

6X for an unimplied and relevant gate, 6X = fx; for an unimplied and relevant 

inpUt C[n], Sx = £ e[n']€/,n'<n fc[n'] 

c[n'] unimplied and relevant 

input pattern any compatible combination of assignments of 0, 1 values to inputs of 
the fault tree (by compatible we mean that the existence of the assignment 

(c[n], 1) implies the existence of the assignments (c[nr\, 1), n' < n, c[n'] G / , 

and that the existence of the assignment (c[nj, 0) implies the existence of the 

assignments (c[n'],0), n' > n, c[n'] € /) 

reduction of / being / = {cjfni], C2[n2J,... , Cjt[n¿]} a set of inputs implied at 1, gener­

ation of a bag b by traversing / and putting into b each c[n] € / such that no 

c[n'], n' > n is in / 

cont(x) controllability of an unimplied node x: if x Ç / , cont(x) = 1; if x G G and 

type(x) = OR, cont(a;) = min xieñ(x¡ {cont(x')}; if x e G and type(x) = 
x' unimplied 

AND, cont(x) = £ ,,6fl(x, cont(a:') 
x* unimplied 
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a[l] 
6[1] 

a[2] 
d[l] 

5[1] 

a[3] 

/[2] 

x> 
=[1] 

Î>7D 
=[1] 

D 

C^ 

5> 

5[1] 

Figure 2.3: Example fault tree. 

We consider s-coherent fault trees involving OR and AND gates. Figure 2.3 gives a 

small example that will be used for illustration purposes. 

We begin by clarifying several concepts. Generalization to basic event classes intro­

duces dependences among the inputs related to the same event class. An input Ci[rii] is 

implied at 1 if n¿ events of class c, are realized. An input c,[nj] is implied at 0 if nt- events 

of class C{ are not realized. Then, val(c,[n,]) = 1 implies val(c,[ji]) = 1 for all j < n¿ 

because the realization of n,- basic events of class c, obviously implies the realization 

of any number j < n,- of basic events of that class. Similarly, val(c¿[n,]) = O implies 

val(c,-[j']) = 0 for all j > ni. Implications in the fault tree are performed from inputs to 

gr in the usual way: an input of an OR gate at 1 implies the output of the gate at 1; 

an input of an AND gate at 0 implies the output of the gate at 0; the output of an OR 

gate is implied at 0 when all inputs are implied at 0, and the output of an AND gate is 

implied at 1 when all inputs are implied at 1. Since the fault tree is s-coherent and all 

gates are either OR or AND such a procedure is enough to know the implication state of 

gr. To see that it suffices to note that 0's imply 0's and l's imply l 's and, therefore, an 

unimplied output gr can be implied to 0 or 1 by simply implying the unimplied inputs 

of the fault tree to 0 or 1, respectively. Therefore, when the procedure does not imply 

gr, the root gate gr is really unimplied. 

For the example fault tree of Figure 2.3, / = {a[l],a[2],a[3],6[l],c[l],4l],e[l],/[2], 

g[l]}. Two possible input patterns might be h = {(a[l], 1), (a[2], 1), (a[3], 0), (6[1], 0), 

(c[l], 0), (d[l], 0), (e[l], 1), (/[2], 1), (fl[l], 0)} and l2 = {(a[l], 0), (a[2], 0), (a[3], 0), (6[1], 0), 

(c[l], 0), (¿[I], 0), (e[l], 1), (/[2], 1), (g[l], 0)}. For / l t gr is implied at 1. Then, that in­

put pattern "contains" the cut m = a[2]e[l]/[2] obtained by reducing the set of inputs 



28 2 Failure Distances and Minimal Cuts 

implied at 1 {a[l], o[2], e[l], /[2]}. 

The problem to be solved is to find all minimal cuts of a given s-coherent fault tree. 

Such a problem may be viewed as a search in a finite space. The. search space is given 

by the next Theorem: 

Theorem 2.3 All minimal cuts are oftheform Ci[ni]c2[n2¡.. .Cfc[n¿], where eachci[ni\ G 

Proof By contradiction. Let m = Ci[nj]c2[n2].. -Ck[nk] be a minimal cut not satisfying 

the condition. Then, there exists CÍ[TIÍ] part of m such that c,[n,] £ / . Assume that 

there exists Ci\j] G I with j < n¿. Let J,- be the greatest of such integers and consider 

the bag m' obtained from m by substituting Ci[ni\ by Ci[Ji\. If there not exists c,[j] G / 

with j < nt-, let m' be bag obtained by eliminating c¡[n¿] from m. Clearly, m! performs 

the same implications as m does. Therefore, m' is a cut, but being m' C m, m is not 

minimal. Q 

From the irrelevance definitions, the value of an irrelevant node does not affect 

val(<7r). The following theorem relates irrelevance and minimality and will be exploited 

in the algorithm. 

Theorem 2.4 Let S be the set of implied fault tree inputs. If there exists Ci[ni\ G S that 

is implied at 1 and is irrelevant, and there not exists any Ci[j] G / with j > n,-, no input 

pattern obtained by implying more inputs will contain a minimal cut. 

Proof Let m be any cut obtained by implying more inputs and reducing the set of 

inputs implied at 1. Because no C{\j] G / , j > nt- exists, c,[n,] G m. Assume that there 

exists at least one c,-[/] Ç. I, j < n,- and let «/,• be the greatest integer j < n,- with c,[j] € / . 

Consider the bag m' obtained from m by substituting C{[ni\ by Ci[Ji\. If there not exists 

any Ci[j] G / , j < ni, let m' be the bag obtained from m by eliminating Ci[ni\. Because 

Ci[n{] is irrelevant, the value of gr is not affected by the value of Ci[ni] and m! is also a 

cut. Furthermore, m' C m, implying that m is not minimal. Q 

To avoid performing inclusion tests, which are time and memory consuming, a cri­

terion to determine when a cut is minimal or not without knowing any other cut would 

be useful. The next theorem gives such a criterion. 

Theorem 2.5 A cut m = Ci[ni]c2[n2].. -Ck[nk] is minimal if and only if, after implying 

at 1 each Ci[nî\, each unimplication of Ci[ni\, 1 < i < k, followed by, if such J,- exists, 
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implication of Ci[Ji\, where J{ is the greatest integer < n¿ with Ci[Ji\ 6 / , leaves gr 

unimplied. 

Proof We will show necessity and sufficiency. 

Necessity: If there exists any Ci[n{] 6 m such that its unimplication followed, if existent, 

by the implication of Ci[J{], where J, is the greatest integer < n, with Ci[Ji\ G / , leaves 

gr implied at 1, the bag m! obtained from m by either deleting Ci[nj] or replacing Ci[ni\ 

by ci[Ji] is a l s o à cut, and being m' C rn, m is not minimal. 

Sufficiency: Assume that gr is unimplied for each unimplication, followed, if existent, by 

implication of Ci[Ji\, and assume that there exists a bag m' C m that is a cut. Being 

m' C m, there exists m", m' Ç m" C m such that m" is obtained from m by either 

deleting Ci[ni] for some 1 < i < k or replacing for some 1 < i < k c,[n,] by Ci[n'{] with 

n¿ < n¿. In both cases gr is not implied at 1 by m" and m" is not a cut, implying that 

neither is m' a cut. Then, there not exists any cut m! Cm and m is minimal. Q 

From Theorem 2.3, the search space is the space of input patterns of the fault tree. 

All minimal cuts can be found by exhaustively searching that space and, for each input 

pattern for which val(<7r) = 1, obtaining its associated cut m by reduction of the set of 

inputs implied a t . l , and testing m as Theorem 2.5 indicates. However, the algorithm 

does not explicitly generate all input patterns, since in some circumstances it detects that 

no input pattern containing the current set of implications would yield a minimal cut. 

The algorithm also detects when the fault tree becomes fanout free ( / becomes 0) and 

uses the top-down algorithm to obtain all potential minimal cuts that can be generated 

by performing more implications at the inputs of the fault tree. 

The algorithm we propose traverses a decision tree such as the one shown in Fig­

ure 2.5. Initially, all nodes of the fault tree are unimplied and the current node is the root 

of the DT. A backtrace procedure selects an input Cj[ni]. The selected input is implied 

at v = 1, a successor of the current node is constructed with the pair (c,-[n,-], v) assigned 

to it, and the successor is visited. The process continues in a similar way from that node. 

After each implication, the relevance status of edges and nodes, fx, / , Sx, and cont(a:) 

are updated. In some cases, the search can be pruned. When the search is pruned, the 

DT is traversed up to the root till a node y is found that has only a successor with v = 1. 

If no such a node y is found, the algorithm finishes. Otherwise, the search is backtracked 

up to node y. Backtracking involves the deletion of all the implications done as a direct 

consequence of the input assignments associated with the nodes in the path from the 

current node to y. It also involves the restoring of the old values of the relevance status 
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of the edges and nodes, fx, / , 8X, and cont(x). Deletion of implications and restoring 

of old values of the relevance status of edges and nodes, fx, / , 6X and cont(x) is made 

easily because the algorithm stores for each node of the DT the implications performed 

and the old values of the relevance status of edges and nodes, fx, / , Sx and cont(a:) which 

change as a result of the input implication performed at the node. After backtracking, a 

successor of y associated with the input assignment (c,-[n,-],0), where Ci[rii] is the input 

of the successor of y, is created, the assignment implied, and the process continues from 

that successor. If the implied input value v is 1 the search can be pruned in the following 

cases: 

1. val(<7r) = 1. Extra input implications at 1 will give cuts which are guaranteed to 

be non-minimal. 

2. / = 0. The fault tree has been reduced to a fault tree that is fanout free2 and all 

minimal cuts beyond that point of the search have to be included in the cuts that 

are obtained by adding to the current set of inputs implied at 1 the inputs that are 

found using the basic top-down algorithm on the reduced fanout free fault tree and 

reducing those sets of inputs. 

3. An input c[n] implied at 1 is irrelevant and there not exists c[n'] Ç I, n' > n. 

According to Theorem 2.4, no minimal cut will be found by implying more inputs. 

For v = 0, case 1 is impossible. Besides cases 2 and 3, there is another situation in 

which no more implications are necessary: 

4. val(<7r) = 0. Further input assignments will not change the value of gr and no 

minimal cut exists from that point. 

In case 1, a potential minimal cut is obtained by reducing the set / of inputs implied 

at 1. In case 2, the top-down algorithm is used to find potential minimal cuts. The 

cuts thus obtained are checked for minimality using the procedure of Theorem 2.5 and 

recorded if they are minimal. 

Our algorithm has similarities with some ATPG algorithms [2], [41], [44]. Figure 2.4 

shows a recursive high-level description of the algorithm that uses a stack to store the 

path in the DT to the currently processed node. The algorithm is invoked with an empty 

stack. In the worst case the stack will have | / | cells. This together with the fact that 

2The reduced fault tree is defined by the relevant and unimplied nodes of the original fault tree. 
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Algorithm compute.cuts (INPUTS-ASSIGNMENTSSTACK s) 

backtrace (pr, c,-[n,-]); 
u = l ; 
end = NO; 
while (lend) { 

imply Ci[ni\ at v; 
push((cf[7i,-],u), s); 
i f ( v a % . ) = = l | | / = = 0 ) { 

if (val(ffr) = = 1) { 
get cut m; 
if (test_minimality(m)) store m; /* m is minimal */ 

} 
else { /* / = = 0 */ 

collect potential minimal cuts by adding to the current set of 
inputs implied at 1 the inputs found by the top-down algorithm 
and reducing those sets, for each cut perform the minimality test 
and store the cut if it is minimal; 

} 
} 
else if (!(val(<7r) = = 0 or an input c[n] implied at 1 has become irrelevant 

and does not exist c[n'] 6 J, n' > n)) compute_cuts(s); 
unimply all c,[j] with either j < n,- (case v = 1) or j > n¿ (case v = 0) 
that were implied as a direct consequence of setting Ci[ni\ at v; 
pop((c¿[n,-],«),«); 
if (v = = 1) v = 0 else end = YES; 

} 

.Figure 2.4: High-level description of the algorithm. 

only a minimal cut has to be stored at a given time (possible because the minimality 

check does not involve inclusion tests) makes the memory requirements of the algorithm 

small. It has been assumed that the fault tree to be solved is not fanout free. To take 

into account the special case in which the fault tree is fanout free, it suffices to check the 

value of / before calling compute.cuts and invoke the top-down algorithm if / = 0. 

The backtrace procedure that selects input assignments is crucial for the performance 

of the algorithm and is inspired in ATPG algorithms. The procedure starts at the output 

gr of the fault tree and follows a path to a fault tree input by selecting at each gate one 

of its unimplied inputs. Gate inputs are selected using the following criteria: 
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( 7 ) ^ ( c [ l ] , l ) 

fanout free 

c[l]a[l] mc 
c[l]b[l] mc 
c[l]e[l]a[3] 
c[l]a[2]e[l]f[2] 
c[l]d[l]e[l]a[3] 
c[l]d[l]e[l]f[2] 
c[l]g[l] mc 

" " V T ) (c[l],0) 

3 ) (e[l], D ( 8 ) (em. 0) 

output at 0 

( T ) ( a [ 3 ] , l ) ? T ) ( a [ 3 ] . 0 ) 

output at 1 S ^v 

e[l]a[3] mc ( T ) ( f [ 2 ] f i) ( 7 ) ( fr2], 0) 

fanout free et13 irrelevant 
output at 0 

e[l]f[2]a[l] mc 
e[l]f[2]d[l] mc 
e[l]f[2]g[l] mc 

Figure 2.5: Decision tree for the example of Figure 2.3. 

1. Choose the input a; with highest Sx/cont(x). 

2. Among the inputs with same Sx/cont(x) choose the input connected to the node 

with lowest cont(a;). 

If several inputs are identical according to both criteria, then the gate input is chosen 

following a predefined ordering (for the fault tree of Figure 2.3 the ordering is from top 

to bottom of the figure). 

The heuristics used in the backtrace procedure try to reach as soon as possible 

nodes with backtracking, either because the fault tree becomes fanout free or because 

gr is implied at 1. The Sx is a local measure of how much / will be decreased if x is 

implied at 1. The cont(a;) is a measure of the ease with which the considered node will be 

implied at 1 (the higher cont(x) the more difficult) and is taken directly from heuristic 

measures used to guide ATPG algorithms [45], being the measure in that context called 

1-controllability. We tried other combinations, such as selecting first according to cont(x) 

and then according to 6X and found that the chosen heuristics gave better performance. 

In order to illustrate the algorithm we give in Figure 2.5 the DT corresponding to 

the fault tree of Figure 2.3. Nodes are numbered following the creation order. For each 

node except the root we give the corresponding input assignment. Also, for nodes with 
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a[ l ]01 
6[1] 01 

Figure 2.6: Illustration of the backtrace procedure in the case in which there is no input 

assignment (node 0 of the DT of Figure 2.5). The 5X and cont(x) are written next to 

each node from left to right, respectively. 

backtracking we give the reason for backtracking and, for the nodes in which the fault 

tree became fanout free or gr was implied at 1, we give the cuts found, indicating by 

"rac" those that are minimal. The fault tree has only 7 minimal cuts. 

Figure 2.6 illustrates the backtrace procedure in the case in which there is no input 

assignment (node 0 of the DT). The input selected is c[l]. Figure 2.7 gives the implication 

status of the fault tree when c[l] is implied at 1. That implication makes irrelevant the 

edge marked as i, making the fault tree fanout free ( / = 0). The corresponding reduced 

fault tree is given in Figure 2.8. Use of the top-down algorithm on the reduced fault tree 

gives the set of inputs {a[l]}, {ò[l]}, {a[2],e[l],a[3]}, {a[2],e[l],/[2]}, {d[l],e[l],a[3]}, 

{d[l],e[l],/[2]} and {^[1]}. The input currently implied at 1 (c[l]) is added to each sets 

and the resulting sets are reduced, yielding the cuts shown in Figure 2.5. To illustrate the 

minimality test, Figure 2.9 gives the implication status for the cut c[l]e[l]a[3], showing 

crossed the unimplications which result when a[3] is unimplied, keeping implied a[2] and 

o[l]. Since gr remains implied at 1, according to Theorem 2.5, the cut is not minimal. 

Finally, in order to illustrate backtracking by detection of an irrelevant input implied at 1, 

we give in Figure 2.10 the implication status and irrelevant nodes and edges corresponding 

to node 7 of the DT. Input e[l] is implied at 1, is irrelevant and there not exists any 

other input e{j] with j > 1. Then, according to Theorem 2.4, no minimal cut can be 

found from that point and the search can be backtracked. At that node of the DT the 

search could also be backtracked for gr being implied at 0. 
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«[I]" 
Ml]-

a[2] 
d[l] 

=[1]-L 
On 

e[l] 

a[3]-
/[2]-

D 

c [ l ] JJ ^O-1 
*[i] 

Figure 2.7: Implication status at node 1 of the DT of Figure 2.5 with indication of 

irrelevant edges. 

a[l] 
Mi] 

a[2\-
4i]-

e[l] 

a[3] 

/[2] 

TD-

D 

*[i] 

Figure 2.8: Reduced fault tree corresponding to node 1 of the DT of Figure 2.5. 
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a[l) 
Mil 

o[2] 
d[l] 

-TO, 
cf l l 

e[l] — 

a[3]. 
/[2] 

D 

c[i]_L 

£/[l] 
O-1 

Figure 2.9: Implication status corresponding to cut c[l]e[l]a[3] and unimplication of a[3], 

leaving a[2] and a[l] implied for the fault tree of Figure 2.3. 

a[l) 
6[1] 

a[2] -1 
41] - 1 

c [ l ] - ^ ̂
ï>h 

e[l] l i 

«[3]-£ 

O 0 5r 

C[l] D^ 
5(1] 

Figure 2.10: Implication status and irrelevance status of the nodes for node 7 of the DT 

of Figure 2.5. 
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Table 2.1: Fault tree characteristics. 

tree 

MS5 

MS10 

BR40 

BR80 

DR35 

DR70 

EDF 

ELFI 

ELF2 

ELF3 

m 
38 

68 

120 

240 

112 

217 

39 

61 

32 

80 

l<7| 
103 

203 

42 

82 

46 

46 

43 

122 

65 

107 

fanout 

excess 

92 

192 

3,080 

12,560 

152 

257 

9 

12 

57 

87 

depth 

7 

7 

2 

2 

10 

10 

34 

147 

12 

17 

minimal 

cuts 

511 

1,911 

3,160 

12,720 

3,698 

14,157 

2,463 

46,188 

4,805 

24,386 

2.4 Algorithm Analysis 

In this section we analyze the algorithm described in Section 2.3 by means of several 

examples. Table 2.1 summarizes the characteristics of the fault trees that have been 

used to test the algorithm. In all cases the number of basic event classes is equal to the 

number of inputs. For each fault tree we give the number of inputs, number of gates, 

fanout excess (/) in the unimplied fault tree, depth (maximum number of gates from a 

fault tree input to gr) and number of minimal cuts. 

Fault trees MS5 and MS10 correspond to the master-slave system depicted in Fig­

ure 2.11 with n = 5 and n = 10, respectively. That system is made up of a cluster of 

redundant master processing units MPUi and MPU2 that are communicated with n clus­

ters of redundant slave processing units SPUtii and SPU^ , 1 < i < n. Communication 

is done through two redundant buses BA and BB to which the master and slave units 

are connected through dedicated interfaces. The system is operational if some fault-free 

master processing unit can communicate directly (i.e. through one fault-free bus and 

two fault-free interfaces) with at least one fault-free slave processing unit of each slave 

cluster. Denoting by "•" and by "+" the logical operators AND and OR, respectively, 

and naming each event class as the component type whose failure models, the expression 
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BB 

Figure 2.11: Master-slave system with n clusters of redundant slave processing units, 

of the fault tree of that system is: 

n . 

gr = Yl ( M P U I [ 1 ] + (lMAi[l] + BA[1] + (lSA¡tl[l] + SPU,-,i[l])-
.t'=i 

(ISA,-2[1] + SPU t)2[l])) • (lMBa[l] + BB[1] + (lSBM[l] + SPUU[1]) • 

(lSBif2[l] + SPU¿,2[l]))) 
n , 

J2 (MPU2[1] + (lMA2[l] + BA[1] + (lSAu[l] + SPU,-,i[l])-
i'=i -

(lSA,)2[l] + SPU,-,2[1])) • (lMB2[l] + BB[1] + (ISBM[1] + SPUU[1]) • 

(ISB¿,2[1] + SPU,-,2[1]))) 

Fault trees BR40 and BR80 model the failure of the braided ring system of Fig­

ure 2.12 with n = 40 and n = 80, respectively. The braided ring is composed of stations 

S¿, 0 < i < n — 1. There are links D; between S$- and S(,+i)modn and links T(,+1)mo<jn 

between S; and S(,+2)mod„. All these links are directed. The system is up if it is possible 

to build a ring connecting at least n — 1 fault-free stations S,-. The expression for the 

fault tree is: 

n - l n - 1 

5r=x>[i]+D,[i])n 
t = 0 1 = 0 

n - l n - l 

EsiW + E DJ-M+T.-W 
3=0 ;=0 

\j^i J5¿!,(¿—l)modn / 

Fault trees DR35 and DR70 correspond to the system of Figure 2.13 with n = 35 

and n = 70, respectively. Two redundant servers Si, S2 are communicated with gateways 

Gi, G2 through a double ring network composed of nodes N,-, 0 < i < n — 1. There are 
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Figure 2.12: Braided ring system with n stations. 

clockwise links I,- from N(,+1) mod n to N,- and counter-clockwise links D,- from N,- to 

N(,-+i)modn- Each node has a spare module SN,- that may bypass N,- if it has failed. 

However, those spare components are not connected to servers or gateways. The servers 

are connected to nodes N¡„/2j and N¡^/2J+i; gateways Gi and G2 are connected to nodes 

No and Ni, respectively. The system is operational if there exists communication in 

both directions between at least one fault-free server and one fault-free gateway. Sj 

and S2 are indistinguishable; N,- and SN,-, 2 < i < [n/2\ — 1, \n/2\ + 2 < ¿ < n - l 

are also indistinguishable. Denoting by S the event class that models the failure of the 

components Si, S2, by M,- the event class that models the failure of the components N,-, 

SN,-, 2 < i < [n/2j - 1, [n/2\ + 2 < i < n- 1, and denoting the event classes that model 

the failure of the other components by the components' names, the fault tree of such a 

system is given by the following expressions (there is an expression for gT and each gate 

with fanout): 

gr = S[2] + ( G I [ 1 ] + N0[l] + (N ln/2J[1] + C0i ln /2J) • (N l n / 2 J + I [ l ] + C0 ( L n / 2 j + i)) • 

( G 2 [ 1 ] + Ni[l] + (N ln/2J[1] + C l f lB /2 j) • (N l n / 2 J + I [ l ] + C l i L n / 2 J + , ) ) , 

Co,Ln/2j = (Ni[l] • SNi[l] + NL n / 2 j + 1[l] • S N K 2 j + i [ l ] + DR) • (Ni[l] • SNjfl] + I0[l] + 

Do[l] + RFR) • (NLn/2 j+i[lj • SNL„/2J+1[1] + ILn/2j[l] + D ln /2J[1] + LFR), 

Co,ln/2j+i = (Ni[l] • SNi[l] + N lB /2J[l] • SN l n / 2 j[l] + DR) • (Nx[l] • SN^l] + 

NL„/2J[1] • SNLn/2j[l] + Io[l] + Do[l] + ILn/2j[l] + DLn/2j[l] + RFR) • LFR, 
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N, 0+2 

<a+2 SN a _^ 

N.-1 

: 1 

k • 

N„_, 

Figure 2.13: Double ring network (a = [n/2j). 

CilL„/2j = (No[l] • SN0[1] + NLn/2j+1[l] • SNLn/2J+1[l] + DR) • RFR • (N0[l] • SN0[1] + 

NL„/2j+i[l] • SNL„/2J+1[1] + Io[l] + Do[l] + ILn/2j[l] + D[n/2J[1] + LFR), 

CU„/2 j + i = (No[l] • SNo[l] + NLn/2j[1] • SNLn/2j[l] + DR) • (Nln/2J[1] • SNln/2j[l] + 

ILn/2j[1] + DLn/2j[1] + RFR) • (N0[l] • SNofl] + I0[l] + D0[l] + LFR), 
|n/2j-l „_i / „ - l \ /„_l \ 

DR = £ M,[2] + J2 MM + EJ«M • 5>[1] . 
i-2 «=|n/2j+2 \«'=0 

[n/2j-l K 2 J - 1 

RFR= 52 M«-[2] + E (I«[l] + D,[l]), 

,i=0 

>=2 

n - 1 

i'=l 

n - 1 

LFR= J2 MM + E (I¿[1] + D¿[1]). 
i=[n/2j+2 ¿=ln/2j+l 

Fault tree EDF models the failure of the communication network with 14 nodes and 
25 directed links depicted in Figure 2.14. Such a network is up if the sender node S and 
the receiver node R are both fault-free and there is a path of fault-free components from 
S toR. 
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Figure 2.14: Communication network for fault tree EDF. 

Fault trees ELFI, ELF2 and ELF3 are approximately the fault trees called with 

these names in [33]. 

Table 2.2 shows the results obtained for each fault tree. CPU times have been 

measured in a SparclO workstation. The table also shows the number of cuts which 

would be processed by the basic top-down and bottom-up algorithms. Notice that for all 

fault trees except MS5 and MS10 the use of either top-down or bottom-up algorithm is 

impractical. For all fault trees the algorithm outperforms the classical algorithms, with 

a ratio of number of processed cuts between 5.6 and 9.8 x 10173. 

In order to illustrate the impact of: 1) the heuristics we have used in the backtrace 

procedure, and 2) the irrelevance test, we show in Table 2.3 the number of backtracks 

that are performed when either the inputs are chosen at random or the test of irrelevance 

is disabled. The CPU time was limited to 5 hours and results are not given for the cases 

in which more than 5 hours were necessary to compute all minimal cuts. In all cases both 

the heuristics for input selection and the irrelevance test reduce significantly the number 

of backtracks. 

2.5 Conclusions 

In this chapter we have stated formally the problem of computing failure distances from 

a state (problem FD) and have shown that it is NP-hard. We have reviewed two efficient 

algorithms to compute such failure distances using the set of minimal cuts of the fault tree 

of the system. The algorithms are not polynomial, but we have proved that there could 

exist polynomial algorithms for the problem only if NP = P. Finally, an algorithm to 

compute the set of minimal cuts has been described. The algorithm performs reasonably 
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Table 2.2: Algorithm performance: number of minimal cuts, number of processed cuts, 

number of backtracks, CPU time in seconds, and number of cuts that would be processed 

by the basic top-down and bottom-up algorithms. 

tree 

MS5 

MS10 

BR40 

BR80 

DR35 

DR70 

EDF 

ELFI 

ELF2 

ELF3 

minimal 

cuts 

511 

1,911 

3,160 

12,720 

3,698 

14,157 

2,463 

46,188 

4,805 

24,386 

processed 

cuts 

1,473 

5,208 

3,161 

12,721 

118,444 

808,953 

3,435 

112,606 

13,754 

69,488 

backtracks 

1,936 

23,135 

821 

3,241 

60,099 

395,907 

1,683 

169,278 

16,842 

150,601 

CPU 

time (s} 

1.74 

13.6 

11.4 

175 

51.1 

536 

4.26 

235 

23.6 

150 

cuts 

top-down 

34,225 

136,900 

3.86255 x 1077 

1.24936 x 10178 

1.22672 x 1026 

8.32281 X 1030 

8.75983 x 1024 

1.26358 x 1020 

4.17538 x 1017 

1.45039 x 1016 

cuts 

bottom-up 

8,285 

29,345 

3.86255 x 107T 

1.24936 x 10178 

2.90796 x 107 

4.75491 X 108 

3.81949 x 1010 

2.86939 x 108 

5.48907 x 108 

7.66257 X 107 

Table 2.3: Algorithm performance: number of backtracks in the algorithm, and when 

either fault tree inputs are selected at random or the irrelevance test is disabled. 

tree 

MS5 

MS10 

BR40 

BR80 

DR35 

DR70 

EDF 

ELFI 

ELF2 

ELF3 

algorithm 

1,936 

23,135 

821 

3,241 

60,099 

395,907 

1,683 

169,278 

16,842 

150,601 

w/ random 

selection 

67,619 
— 

1,849 

10,985 

233,663 

1,798,840 

266,611 

9,115,802 

226,704 
— 

w/o relevance 

test 

309,245 

— 

3,943 

15,883-

248,414 

1,791,888 

22,159 

— 

101,994 

— 
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well even in difficult examples. The number of processed cuts is usually not much larger 

than the number of minimal cuts of the fault tree, and, in many cases, it is much smaller 

than the number of cuts processed by the basic top-down and bottom-up algorithms. 

Compared with recent algorithms based on BDD representations of the fault tree [80, 

33, 77], the algorithm seems to be somehow slower. However, the algorithm has very 

modest memory requirements whereas in the worst-case the algorithms based on BDD 

representations require memory that is exponential in the number of basic events. 



Chapter 3 

Reliability Bounds of 

Non-repairable Systems using FD 

In this chapter we will develop the first failure distance based bounding method of the 

dissertation. The method obtains bounds for the unreliability at time t, ur(t), of a non-

repairable fault-tolerant system and requires the computation of failure distances. It 

has the interesting property that the bounds are obtained from the transient solution 

of a "bounding" CTMC and, thus, the bounding method can be accommodated in any 

general-purpose Markovian modeling tool. We will start by describing and justifying 

theoretically the bounding method. Then, we will analyze its performance and will 

compare it with the performance of the trivial bounding method described in Section 1.3, 

showing that the proposed method can outperform significantly the trivial method. 

3.1 Method Description and Justification 

The measure ur{t) can be computed exactly using a CTMC X = {X(t);t > 0} that is 

acyclic, has a finite state space Q U {/}, where / is an absorbing state that represents 

the failure of the system and Q is the set of states in which the system is operational, 

and has transition rates with failure bags e £ E associated with them. We have ur(t) = 

P[X{t) = / ] . Given ¿ € Í2, j € fi U {/} we will denote by A,j the transition rate of X 

from state i to state j and by A,- = ]C/eiiu{/} ^»' . ' t n e o u t P u t r a t e of -X" from state i. Being 

B a subset of states, we will denote by X^B = Y^ieB ̂ «'-' t n e transition rate from state i 

to B. 
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Figure 3.1: State transition diagram of X' for L = 3 and FC = {1,2}. 

The bounds for ur(i) will be obtained using a CTMC X' = {X'(t);t > 0} with state 

space G U {/} U {u0, • • • , UL}, L — m'mmGMC \m\. G is the subset of Ü that is generated 

and the method assumes P[X(0) G G] = 1; / represents the failure of the system from 

a state belonging to G; the states uj, 0 < d < L "bound" the behavior of X after it 

exits G through a non-failed state. Let U = Í2 — G. The formal proof of the method 

assumes that there are not transitions from U to G, For a given partition fi = GUl7 , 

depending on G it could well be that X had transitions from U to G, violating the 

assumption. However, the assumption does not in fact impose any real restriction to the 

selection of G, since it is enough to redefine X so that U includes copies of the states 

of G reachable from U to satisfy the assumption. Thus, the only limitation imposed to 

G is P[X(0) € G) = 1. The transition rates among the states of G are as in X; the 

transition rates from states o € G to ÍÍ¿, 1 < ¿ < L have values Xa,ud, being Ud the 

subset of U including the states with failure distance d; finally, denoting by FC the set 

of different cardinalities of the failure events of the model and by E{ the subset of failure 

events with cardinality i, and defining /,• = YleeE, ^ub(e), for each 1 < d < L, i € FC 

there is a transition rate /,- from u¿ to Mmax{o,ii-i}- Figure 3.1 illustrates the structure 

of X'. The initial probability distribution of X' is P[X'{0) = i] = P[X(0) = i], i e G; 

P[X'(0) = / ] = 0; P[X'(0) = ud) = 0, 0 < d < L. 

The bounds are: 

[ur(i)]ib = P[X'(t) = / ] , (3.1) 

{ur(t)]ab = P[X'(t)€{u0,f}}. (3.2) 

The correctness of the lower bound (3.1) is trivial, since X' enters / when X enters / 

from G; the correctness of the upper bound (3.2) will be shown next. 
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l-hâJi i /•+/» i /•+/» 1 

Figure 3.2: State transition diagram of DTMC Y' for L = 3 and FC = {1,2}. 

The proof of the upper bound will be done through a lemma, two propositions 

and a theorem and will make reference to the discrete-time Markov chains (DTMC) 

Y = {Yn;n — 0 ,1 , . . .} and Y' = {Y^n = 0 ,1 , . . .} obtained by randomizing [49], 

respectively, X and X' with a rate A, greater than or equal to the maximum output 

rate of X (for instance, A = SeeE^ub(e)). The DTMC Y has the same state space 

and initial probability distribution as X and transition probabilities qa¿ = A0i¡,/A, a ^ 

b, qa>a = 1 — Aa/A. The DTMC Y' has the same state space and initial probability 

distribution as X! and transition probabilities q'a b = Â  ¡,/A, a ^ b, q'aa = 1 — A^/A, 

where Â  b and Â  are, respectively, the transition and output rates of X'. Figure 3.2 

illustrates the state transition diagram of Y'. It is well-known (see, for instance, [83]) 

that X(t) = y/v(t) and X'(t) = Yj^,^, where Â  = {A^i);^ > 0} is a Poisson process with 

rate A. These results allow to express the transient solution of X (X') in terms of the 

transient solution of y (Y'): 

P[X(t) = a] = f^{-^fe-AtP[Yn = a], (3.3) 
n=0 

P[X'{t) = a] = ¿ M ^ e - A ' P [ F n ' = a]. (3.4) 

Intuitively, it is clear that the probability that Y' will reach the absorbing state UQ 

from Ud, d > 0 in m steps decreases with d. The result is established in the following 

lemma. Let 

R'm(d) = P[Y^ = u0\Y¿ = ud}. 

Lemma 3.1 R'm(d),m > 0, d > 0 is decreasing on d. 
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Proof From the structure of Y' we can write 

¿C(0) = l , m > 0 , (3.5) 

ieFC 
i>d 

and for m > 1, d > 0, 

R'm(d) = ( l - i E fi)R'm-M + E f ^ - i ( m a x { 0 , d - ¿}). (3.7) 
ieFC ieFC 

The proof is by induction on m. 

Base case (m = 1): We show R'^d) < R'^d - 1), d > 0. For d = 1, using (3.6) and (3.5) 

we have: 
Äi(1)= E x < 1 = ̂ (0). 

¿eFC 

For d > 1, using (3.6), 

^ ) = E i ^ E £ = *!(*-D• 
«eFC ¿efC 

t>cf ¿ > á - l 

Induction step: Let m > 0; we will assume that R'm(d), d > 0 is decreasing on d and will 

show R'm+1(d) < R'm+l(d - 1), d > 0. For d = 1, using (3.7), Ä^(l ) < 1 and (3.5) we 

have: 

¿4+i(i) = ( i - iE^w+Eftt 
ieFC ieFC 

* i- lS/.+ E f = 1= ^ + 1 ( o ) . 
ieFC ieFC 

For d > 1, using (3.7) and the induction hypothesis, 

R'm+1 = ( l - T E fi)R'm(d)+ E jR'm(^x{0,d-i}) 

ieFC ieFC 

Ï ( i - l E fi)R'm(d-l)+ E jRUm^iO.d-i-l}) 
ieFC ieFC 

= C+ i(¿-i)-D 

Let us define i?m(a) = P[Ym = f\Y0 = a]. We have the following result. 
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Proposition 3.1 Rm{a) < R'm(d), a € U¿, m > 0, d > 0. 

Proof Let \l
aj be the contribution to Xaj associated with failure bags e 6 E{. We have 

^â / — /»'• Since a failure bag e € E{ reduces the failure distance at most by i, Xaj will 

not have contributions X'a , for i < d, and 

^w-Eir- (3-8) 

ieFC 
i>d 

Let us denote by Uk,d the subset of U including the states with k failed components 

and failure distance d. For m > I, taking into account that / is absorbing, 

Rm(a) = ( l - ^ W : ( a ) + £ [ ^ + £ £ ^Ä»-i(6) 
i>d 

d 

+ £ £ £ ^Äm-i(ft). (3.9) 

The proof is by induction on m. 

Base case (m = 1): We will show ñi(a) < Äi(d), a 6 í/¿, d > 0. Using (3.8), A*B>/ < / ¡ , 

and (3.6), 

*.<•>= E ^ s E r « -
¿eFC ÍÇ.FC 

%>d i>d 

Induction step: Let m > 0; we will assume Rm(a) < R'm(d),a € U¿,d > 0 and show 

Rm+i(a) < R'm+l(d),a G Ud,d> 0. Using (3.9) and the induction hypothesis, 

¿w«) < (i-^)R'm(d)+ £ [ % + £ £ ^» («0 
v ' ieFC d'=\ beuk.i¡d, 

+ £ £ £ ^*.eo 
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Taking into account that R'm(d') < 1, ^2beu , K,b = ^a,uk+id,,
 a n d using Lemma 3.1, 

7 ieFC 
i>d 

+ ER'm(d-i) E % ^ . (3.10) 
ieFC d ' = d - ¿ 

Let £/fc be the subset of U including the states with k failed components. The inequality 

(3.10) can be written as 

Rm+1(a) < ( l - ^ W W + E A ^ +
A

A ° ^ 
V ' ieFC 

i>d 

+ J2R'm(d-i) ^ p . (3.11) 
ieFC 

i<d 

Taking into account tha t Aa = Xaj + YlieFC Aa,r/*+<, 

_ _ 2 ^ ^ + 2 ^ - ^ — . (3.12) 

ieFC ieFC 
i>d i<d 

Combining (3.11) and (3.12), 

ieFC 
i>d 

+ E [R'm(d - i) - R'm(d)} 
Aa[yfc+, 

A 
«eFC 

t'<d 

Finally, noting tha t , for i > d, X'aj + XaUk+i < fi and tha t , for i < d, XatUk+i < /,-, and 

using (3.5) and (3.7), 

Rm+1(a) < R'm(d)+J2i1-R^]j+J2iR'm(d-i)-R'm(d))§: 
ieFC ieFC 

i>d i<d 

= ( I - A - E / ' K ^ 
AieFC 

+ E jR'm(m^{0,d-i}) = R'm+ï(d).ü 
ieFC A 

Using Proposition 3.1 it is possible to show the following result. 
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Proposition 3.2 P[Yn = f) < P[Y¿ e {u0, /}] , n > 0 . 

Proof Y can enter / through U or directly from G. Taking into account that / is 

absorbing and conditioning the entry of Y in / through U to the step in which Y leaves 

G and the entry state in U, we have: 

n - l L 

P[Yn = f] = E E E P [ y — ieGAYm = a}P[Yn = f\Ym = a) 
m=l d=l a£U¿ 

n 

+ Y,piY™-ieGAYm=zft 
771=1 

71-1 L 

-m (a) 
77i=l d=\ a£Ud 

71 

+ E p C y — i€GAy m = / ] . 
771 = 1 

Invoking Proposition 3.1 and using the relationships between Y and Y', 

71-1 L 

P[Yn = f] < YlJ2JlP^-^GAY^=a^Rn-m(d) 
77i=l d = l a£Ud 

n 

+ J2PlY™-l£GAY™=f] 
771 = 1 

n - l L 

= £ E P[y--1 6GAy™ = MK-mid) 
m = l d = l 

+ E p [ y - - i € G A y - = /] 
7 7 1 = 1 

n - l L 

= E E p [ y - - i e G A y - = ^ p [ y " = U o i y - = ^ 
m = l d=l 

n 

+ E p f y - - i e G A y - = /] 
m = l 

= P K = «o] + P K = /] = P[Yl € {«o, /}]• D 

The last proposition allows us to prove the following, desired result. 

Theorem 3.1 ur(i) < [ur(i)]ub. 

Proof Since Y is the result of randomizing X, using (3.3), taking into account that 



50 3 Reliability Bounds of Non-repairable Systems using FD 

P[Yo = f) = P[X(0) = f] = 0, 

ur(t) = P[X(t) = / ] = ¿ Wle-AtP[Yn = f]. 
n = l 

Invoking Proposition 3.2 and using (3.4) with P[Y¿ 6 {«o, /}] = P[X'{0) € {w0, /}] = 0, 

and (3.2): 

«"•W * E ^ r e " A t W Í e H./>] = ^^'(*) e to./>! = MOWD 
n = l n-

3.2 Analysis and Comparison 

In this section we analyze the performance of the proposed bounding method using a 

complex example with dependencies that prevent from using combinatoric and hierarchi­

cal solution methods, and compare the quality of the bounds obtained with the proposed 

method with the bounds obtained using the trivial method in which the upper bound 

assumes that the system fails when the model exits G. That bound can be expressed in 

terms of the transient regime of X' as: 

[ur(t)}'uh = P[X'(t)€{u0,---,uLJ}}. 

The transient regime of X' has been solved using the randomization method [49]. 

The example is a system made up of 38 components. The architecture of the system 

is shown in Figure 3.3. The system is made up of a cluster of redundant master processing 

units MPUi and MPU2 that are communicated with n = 5 clusters of redundant slave 

processing units SPUt(i and SPU¡,2, 1 < ¿ < n. Communication is done through two 

redundant buses BA and BB to which the master and slave units are connected through 

dedicated interfaces. The system is operational if some fault-free master processing unit 

can communicate directly (i.e. through one fault-free bus and two fault-free interfaces) 

with at least one fault-free slave processing unit of each slave cluster. The active con­

figuration of the system includes a master processing unit, with priority given to MPUi, 

all fault-free slave processing units which can communicate with the active master pro­

cessing unit, and the busses and interfaces among these units and the active processing 

master unit. Master processing unit MPU2 is activated only if MPUi IS faulty or it is 

impossible to build up an operational configuration with MPUi (for instance, because 

both interfaces associated with MPUi a r e failed). 

Active master processing units, slave processing units, interfaces and busses fail 

with rates AA/, AS, A/, and Aß, respectively. Passive components fail with rates 5M\M, 
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BA 

MPU, 

MPU2 

IMA, 

1MB, 

IMA2 

IMB2 
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ISB,,2 

• • • 

ISABll 
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ISBn,, 
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SPUn>2 

ISBn,2 

BB 

Figure 3.3: Architecture of the example. 

5sXs, $1^1, and SB^B, respectively, being 5M, 5S, ¿>¡, and 5B dormancy coefficients 

< 1. The fault of an active or passive interface is propagated to the bus to which the 

interface is connected with probability v. Coverage failures are modeled by propagating 

the component fault to two "recovery" components, one of which has to be unfailed for 

the system to be up. The coverage model of the example includes the parameters CM, 

coverage to the failure of MPUi, C<¡, CB, Cj?, and C^B, coverages to the failures of, 

respectively, a slave processing unit, a bus, an interface whose failure is not propagated to 

the bus, and an interface whose failure is propagated to the bus, when the reconfiguration 

of the system does not involve the activation of MPU2, and Cg, C B , C\, and C\B, 

homologous coverages when the reconfiguration involves the activation of MPU2. 

For the example, FC = {1,2,3,4} and for the upper bounds /,• we can take: 

h = max{AMCM, AM¿M} + A M + 10max{A5C| r,AsC'|,As¿s} 

+ 2 max{ABCf, A B C| , XB5B} + 24(1 - v) max{A/Cf, XjCf, XjSi) , 

h = 24i/max{A/C*jB,A,CfB}, 

h = A M ( l - C M ) + 1 0 m a x { A s ( l - C f ) , A s ( l - C f ) } 

+ 2 max{AB(l - C f ) , AB(1 - C*|)} 

+ 24(1 - u) max{A/(l - Cf), A/(l - Cf )} , 

U = 2 4 ^ m a x { A / ( l - C 7 /
B ) , A / ( l - C f B ) } . 

The numerical results have been obtained for AM = 1.2x 10~6 h - 1 , Xs = 6x 10 - 7 h - 1 , 

AB = 6 x l ( T 8 h - \ A/ = 1.2 x l O ^ h " 1 , 5M = 5S = 5B = ¿j = 0.2, v = 0.1, CM = 0.95, 

Cg = Cg = C? = 0.99, C1¿ = CB
, = C\ = 0.95, CfB = 0.97 and CfB = 0.93. The 

corresponding values of the bounds /,- are /1 = 1.096488 x 10 _ 5 h _ 1 , f2 = 2.7936 x 

10 _ 7 h - 1 , / 3 = 4.956 x 10 _ 7 h _ 1 and f4 = 2.016 x 1 0 - 8 h - 1 . As initial state we have 
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Figure 3.4: Unreliability bounds obtained with the proposed bounding method as a 

function of the time in hours for K = 1,2,3. 

assumed the state in which no component is failed. As subset of generated states G we 

have taken the set including all operational states with up to K failed components, with 

K = 1,2,3. The cardinality \G\ of the generated state space is 39 for K = 1, 735 for 

K = 2, and 8,871 for K = 3. The fault tree of the system has 512 minimal cuts: 8 of 

cardinality 2, 48 of cardinality 3, 96 of cardinality 4 and 360 of cardinality 6. Failure 

distances have been computed with the control parameter R set to 2. The time overhead 

associated with failure distances computation is about 10 %. However, the part of that 

overhead which depends on the number of minimal cut touches is only 0.3 % and, thus, 

we feel that systems with of the order of tens of thousands of minimal cuts can be dealt 

with without significant time overhead due to failure distances computations. However, 

for systems having that number of minimal cuts the memory overhead associated with 

them and the structures required for the efficient computation of failure distances would 

be significant. For the example, whose fault tree has only 512 minimal cuts, the memory 

overhead for K = 3 was insignificant. 

Figure 3.4 shows the unreliability bounds as a function of the time t for the three 

considered values of K. It can be shown that very tight bounds are obtained with a 

reasonable number of states (8,871 for K = 3) even for large times. The tightness of 

the bounds increases for decreasing times. Table 3.1 shows, for several mission times, 

the relative band obtained by the proposed method, ([ur(t)]uf, — [ur(t)]¡b)/[ur(t)]u„ and 

T r 

K=2 --+--
K=3 "B-
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Table 3.1: Relative bands for several mission times obtained with the proposed method 

(top) and the trivial method (down). 

time 

1 month 

2 months 

6 months 

1 year 

2 years 

5 years 

10 years 

K (states) 

1 (39) 2 (735) 3 (8,871) 

0.007761 3.213 x lO"5 6.665 x 10"8 

1.887 1134 x 10~5 3118 x 10"8 

0.01637 1.295 x 10~4 5.300 x 10"7 

2.063 230.7 x 10~4 1245 x 10~7 

0.05846 1.197 x 10"3 1.400 x 10~5 

2.711 73.45 x 10"3 111.1 x 10~5 

0.1408 4.930 x 10"3 1.084 x 10~4 

3.548 157.2 x 10~3 43.80 x 10"4 

0.3545 0.02032 8.114 x 10"4 

4.860 0.3424 169.2 x 10"4 

1.187 0.1249 0.01043 

7.202 0.9228 0.09300 

2.724 0.4339 0.06110 

8.987 1.740 0.2926 

the relative band obtained with the trivial method, ([ur(£)]^6 - [ur(í)];¡,)/[ur(í)]¡¡,. The 

proposed bounding method outperforms significantly the trivial method, especially for 

short and medium mission times. 

3.3 Conclusions 

The failure distance-based bounding method for ur(t) developed in this chapter seems 

to outperform significantly the trivial method. Its performance degrades as t increases. 

Nevertheless, using the method, it is possible to obtain tight bounds with relatively 

few states even for significantly large t. The time overhead due to failure distances 

computation is small and will remain small even if the fault tree has many minimal cuts 

(of the order of tens of thousands). The memory overhead due to holding the minimal 

cuts and the structures required for the efficient computation of failure distances can 

be significant if the number of minimal cuts is very large. In the next chapter, we will 

develop another method to obtain bounds for ur(t) based on lower bounds for failure 
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distances that does not have that memory overhead. 



Chapter 4 

Reliability Bounds of 

Non-repairable Systems using FD 

Bounds 

In this chapter we will develop and describe a method to compute bounds for the unrelia­

bility at time t, ur(t), based on lower bounds for failure distances which are computed on 

the fault tree and, thus, does not require the knowledge of the minimal cuts of the fault 

tree. The motivation is, first, to avoid having to solve a hard problem (the determination 

of the minimal cuts), for which algorithms could fail to provide a solution in reasonable 

memory and time. Secondly, the number of minimal cuts could be very large, making sig­

nificant the memory overhead of the bounding method described in Chapter 3 associated 

with the holding of the minimal cuts and structures used by the algorithms for failure 

distances computation. Thus, the bounding method developed in this chapter could be 

more efficient in terms of memory required to achieve a given bounds tightness than the 

method proposed in Chapter 3. We start by stating the properties that the lower bounds 

for the failure distances will fulfill and showing how ur(t) can be bounded using those 

failure distances bounds. Then we show how lower bounds for failure distances fulfilling 

those properties can be computed on the fault tree. We end the chapter by analyzing 

the performance of the proposed bounding method and comparing it in terms of bounds 

tightness and CPU time with the performances of both the trivial method described in 

Section 1.3 and the method proposed in Chapter 3. Throughout the chapter we will use 

the following specific notation. Also, to avoid trivialities, we will assume that no fault 

tree inputs a;, y with associated bags c[n], c[n'], n ^ n' feed the same gate. This is not a 
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real restriction since for n' > n and an OR gate, x, y can be substituted by x and for an 

AND gate by y. 

Notation and Definitions 

[«r(i)]ib lower bound for ur(t) obtained with the method proposed in the chapter, the 

trivial method and the method proposed in Chapter 3 

[ur(f)]ub upper bound for ur{t) obtained with the method proposed in this chapter 

[ur(i)](,b upper bound for ur(t) obtained with the method proposed in Chapter 3 

[ur(0]ub upper bound for ur(t) obtained with the trivial method 

X = {X(t); t > 0} acyclic CTMC modeling the system 

X' = {X'(t);t > 0} acyclic CTMC used for computing [ur(£)]ib and [ur(i)]ub 

A<n â,&! ̂ a,B respectively, output rate of state a, transition rate from state a to state 
b a«d EbeB Kb for CTMC X 

Y = {Yn; n = 0 , 1 , . . . } , Y' = {Yn'; n = 0 ,1 , . . .} respectively, DTMC obtained by 
randomizing [83] X, X' with rate A greater than or equal to the maximum 

output rate of both X and X' 

O set of states of X in which the system is operational (up states) 

/ ahsorbing state that represents the failure of the system (down state) 

G subset of O that is generated 

U O-G 

L d{6) 

Ud {a € U\ d(a) = d} 

Uk {a G U\ the number of failed components in a is k} 

uk,d uknud 

d(a) lower bound for d(a); it verifies d(a) = 0 if and only if d(a) = 0, and d(a) < 

d(o) 

L d(o) 

Ud,i {a<EUd\d(a) = i} 

Ud {a € U\ d(a) = d} 

Ei {e 6 E\ \e\ = i} 

FC set of different cardinalities of failure bags 

A(e) rate with which failure bag e G E is realized; it may be state dependent 
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fi Ee€£¡ A«b(e) 

4.1 Bounding Method 

We give in Figure 4.1 the architecture of an example system, adapted from [61], which will 

be used for illustration purposes. The system consists of two memory modules MM i and 

MM2, three identical CPU chips CPUC and two identical port chips PTC. One CPU 

chip and one port chip are spares. Each memory module MMj is made up of ten memory 

chips MCj, two of which are spares, and one interface chip ICj. Active memory chips 

MCj and interface chips ICj fail, respectively, with rate XMCJ and Xjcr Active port 

chips PTC and CPU chips CPUC fail, respectively, with rates Xprc and XCPUC- Spare 

chips fail with rates v x XMC,, V X XJC}, V X XPTC, and v x Xcpuc, being v, 0 < v < 1 

a dormancy factor. Recovery is hierarchical. A fault in a memory chip is covered with 

probability CMC- A faulty memory module, CPU chip and port chip are successfully 

covered with probabilities CMMI CCPUC and Cprc, respectively. To model imperfect 

coverage, an uncovered fault in a memory chip of memory module MMj is propagated 

to a fictitious component RMMj, and an uncovered failure of a memory module MMj, 

a CPU chip or a port chip is propagated to two fictitious components RCM. Memory 

module MMj is operational if at least eight memory chips MCj, the interface chip ICj 

and the fictitious component RMMj are unfailed. The system is operational if at least 

one memory module MMj is operational, and at least two CPU chips CPUC, one port 

chip PTC and one fictitious component RCM are unfailed. 

Table 4.1 gives the failure bags of the example system and, for each failure bag e, 

a suitable upper bound Aub(e) expressed in terms of the above failure rates, coverage 

probabilities and dormancy factor. Thus, for instance, failure bag e\ stands for the fault 

of a memory chip of the first memory module that is covered at memory module level, e2 

stands for the fault of that chip that is uncovered at memory module level and covered at 

system level, and e^ stands for the uncovered fault of the chip. Note that FC = {1,2,3,4} 

and that / i = Aub(ei) + Aub(e4) + Aub(e6) + Aub(e9) + Aub(en) + Aub(e13), f2 = Aub(e2) + 

Aub(e7), /3 = Aub(e5) + Aub(ei0) + Aub(ei2) + Aub(ei4), and f4 - Aub(e3) + Aub(e8). 

The CTMC X' used to compute [ur(f)]ib and [ur(i)]ub has state space G U {/} U 

{UQ,... ,W¿}- Although other selections for G would be possible, we assume that G 

includes all the states of the model with up to K failed components and that P[X(0) £ 

G] = 1. The states u¿, 0 < d < L pessimistically approximate the behavior of X in 

U. The transition rates in X' from a to b, a, b e G and from a to / , a € G are as in 
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Figure 4.1: Architecture of the example system. 

Table 4.1: Failure bags of the example system and, for each failure bag e, a suitable 

upper bound Aub(e). 

ei 

e2 

Ê3 

e4 

es 

e& 

eT 

€8 

eg 

eio 

en 

ei2 

ei3 

e14 

description 

MC i[l] 

MCi[l]ÄMMi[l] 

MCi[l] RMMi[l] RCM[2] 

ICxil] 

ICi[l]RCM[2] 

MC2[1] 

MC2[1]RMM2[1] 

MC2[1] RMM2[1] RCM[2] 

IC2[1] 

IC2[1] RCM[2] 

CPUC[1] 

CPUC[1] RCM[2] 

PTC[1] 

PTC[l) RCM[2] 

Aub(e) 

(8 + 2 Í / )A M C 1 CMC 

(8 + 2V)\MCI (1 - CMC)CMM 

(8 + 2v)\MCl (1 - C M C ) ( 1 - CMM) 

^ICXCMM 

A/d( l -CMM) 

{8 + 2V)\MC2CMC 

(8 + 2V)\MC2 (1 - CMC)CMM 

(8 + 2v)\Mc2{l - C M C ) ( 1 - CMM) 

^IC2CMM 

A/c2(l -CMM) 

(2 + V)\CPUCCCPUC 

(2 + v)\cpuc{1- - CCPUC) 

(1 + v)\pTcCpTC 

(l + i/)Aprc(l -CPTC) 
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Figure 4.2: State transition diagram of X' for the example system (L = 2, FC = 

{1,2,3,4}). 

X. The transition rates from states a e G to Ud, 1 < d < Z have values A„ ,7 , and for 

each 1 < d < L, i £ FC there ¡s a transition rate /¡- from u¿ to «max{o,d-{}- The initial 

probability distribution of X' in G is the same as the initial probability distribution of 

X in G. As it will be shown in Section 4.2, L = 2 for the example system. Figure 4.2 

shows the structure of X' for the example system. 

The bounds are 

[ur(t)]lh = P[X'(t) = f], 

[«r(i)]ub = -P[A- ,(i)e{t t 0 , /}]. (4.1) 

The correctness of [ur(í)]¡b is trivial. The correctness of [ur(£)]ub is proved next under 

the conditions: 

1. 1 < d(a) < d{a),ae U, 

2. d(a) < L. 

We will construct the proof with the aid of the DTMC Y and Y'. Since [83] X(t) = YN(t) 

and X'(t) = Y^rmi where N = {N(t);t > 0} is a Poisson process with arrival rate A, we 

have 

P[X(t) = a} = JTe-*A-^P[Yn = a], (4.2) 
n=0 

P[X'{t) = a] = J2 e-At(-^f-PK = a]. (4.3) 
n=0 
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Let 

R'm(d) = P[yl = uo\Y¿ = ud], (4.4) 

Rm{a) = P\Yn = f\Y0 = a]. (4.5) 

The following two results related to the "bounding" states u, are taken from Chap­

ter 3. 

Lemma 4.1 R'm{d), m > 0, d > 0 is decreasing on d. 

Proposit ion 4.1 Rm(a) < R'm{d), a £ U¿, m > 0, d > 0. 

In Chapter 3 it has also been shown that if X' is built using transition rates \a,ud 

from states a £ G to ud, 1 < d < L, then P[Yn = / ] < P[Y¿ £ {u0, f}]. Since R'm{d) 

decreases on d, it seems intuitively clear that after substituting rates \a,Ud by rates 

Xafj (i.e. leading to t¿,-, i < d part of the transitions which went from a £ G to ud), 

-PIXÍ £ {uo,f}] will also upper bound P[Yn = / ] . This result is formally proved next. 

Proposi t ion '4 .2 Assume 1 < d(a) < d(a), a £ U, d(a) < L and P[X(0) £ G] = 1. 

Then, P[Yn = f] < P[Y¿ £ {tío,/}], n > 0. 

Proof Y can enter / through U or directly from G. Taking into account that / is 

absorbing, conditioning the entry of Y in / through U to the step in which Y enters U 

and the entry state, and using (4.5), 

n - l 

P[Yn = /] = E E^ 7 — 1 € GAY™ = a^Yn = f\ym = «] 
ro=l a € U 

n 

+ E p [ y — i€GAy m = /] 
m = l 

n - l n 

= E E P [ y — » € G A ym = a]Rn.m(a) + E W » - i € G A Km = / ] . 
ro=l aGi/ m = l 

Since 1 < d(a) < d(a), d[a) <L, a £ U, U¿ can be partitioned as 

min{d,¿} 

ud= (J Vdti. 
t = i 
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Then, since L = d(o) < d(o) = L, 

L L min{d,L} L L 

u=\jud = \j ù ^ = UU^-
d-1 d = l t'=l ¿=1 d=i 

Using the above partition of U and Proposition 4.1, 

n - l L L 

p[Yn = f] = E E E E p[y—1 € G A y- =a^"—(°) 
m = l t = l d=t „ g j ; . 

+ ¿ ? [ y m . i e G A y m = /] 
m = l 

i - l Z L 

< E E E E p[y—i e G A7m = a]i?;_m(d) 
m = l ¿=1 d=i a e i / d ; 

n 
+ ^ F [ F m _ 1 e G ' A y m = / ] 

m = l 

Then, using Lemma 4.1, Üi = Ud=¿ &d,i, the relations between Y and Y' and (4.4), 

P K = /] < E E E E p[y—i € G AFm = a]i2;_m(i) 
m i l i = l d=i a€Üdii 

+ J2P{ym-ieGAYm = f] 
m = l 

n - l L 

= E E E pty—1 e G A ym = a]fi;_m(¿) 
m = l t = l aÇjj. 

n 

+ Epty— i € G A y m = /] 
m = l 

= E E p [ y - - i e G A y- = « W - Í O + E p[y--i e G A F : = /] 
m = l »=1 m = l 

= E E p[y--i e G A y - = u ¿]pK = «o i v^ = ti,] 
m = l t = l 

m = l 

= P K = «o] + P K = /] = P K 6 {«o, /}]-D 

Finally, 
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Theorem 4.1 Assume 1 < d(a) < d(a), aeU, d(a) < L and P[X{0) G G] - 1. Then, 

ur(t) < [ur(t)]uh. 

Proof Using (4.2) and P[Y0 = / ] = P[X(Q) = /] = 0, 

ur(t) = F[X(i) = /] = ¿ e-Ati-^P[Yn = f]. 
n = l 

Using Proposition 4.2, P[Y0' € {u0 , /}] = P[X'{Q) € {«o,/}] = 0, (4.3), and (4.1), 

„(t) < ¿,-Ml/W e {«„,/,] - Ê e - ^ P K e {«o,/}] 
n = l n=0 

= P[X ' ( í )6{«o , /} ] = [«r(í)]ub.D 

4.2 Lower Bounds for Failure Distances 

In this section we obtain lower bounds d(a) = db(F(a),gr) for failure distances from 

states a. We prove that the bounds fulfill the necessary requirements: d(a) = 0 if and 

only if d(a) = 0 (to know from d(a) if a is operational or down) and 1 < ¿(a) < <f(a), 

a € U, d(a) < ,¿ (Theorem 4.1). We give a sufficient condition for d(a) = d(a) and a lower 

and an upper bound for dt,(F, x), F = F' + F" in terms of di>(F', x). Finally, an efficient 

algorithm to compute the lower bounds for failure distances on the fault tree is derived 

and illustrated. Throughout the section we will use the following specific notation and 

definitions. 

Notation and Definitions 

C set of component classes 

/ set of inputs (basic events) of the fault tree; each input x has associated a 

different bag, b(z), of the form c[n], c € C, n > 1, meaning the failure of n 

components of class c 

P set of gates (complex events) of the fault tree 

gr root gate (top event) of the fault tree 

node or event gate or input of the fault tree 

type(a;) type of node a;: AND, OR if x £ G; input if x 6 / 

related two inputs x, y are related if b(x) = c[n] and b(y) = c[n'], n / n' 

fo(:r) fanout of (set of nodes fed by) node x 
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fi(x) fanin of (set of nodes that feed) node x 

val(-) value of an input or a gate, which may be 1 or 0. For inputs x £ I, b(x) = c[n], 

val(x) = 1 if and only if n or more components of class c are failed; for gates 

x € P, its value is determined as usual from the values of y € fi(x) 

realized an event x is said to be realized if val (a:) = 1 

lev(-) level of an input or a gate. For inputs x Ç. I, lev(x) = 0; for gates y € P, 

lev(y) = 1 + maxz6fi(j/){lev(z)} 

path a sequence of nodes x\...Xk such that x,- € fo(a;,+i), i = 1 , . . . , k — 1 

reachable node a node x is reachable from node y if there exists a path from y to a; 

Reach (a;) set of nodes reachable from node x plus x itself 

Support(x) ID Reach(x), i Ç / U P 

independent two nodes x, y G I D P are said to be independent if Support(x) n 

Support(y) = 0 and for each z € Support(x), b(z) = c[n], no t € Support(y), 

b(t) = c[n'} exists 

S(F, X) F D (]CyeSupport(i) b(y)) , being F a bag of failed component classes and x 

a node 

module a node x G / U P is a module if and only if every path z.. .y, z £ Reach(x), 

y € Reach(x) contains node x, and for each input y € Support(x), no related 

inputs exist outside Support(x) 

db(F,x) being F a bag of component classes and x an event, minimum number of 

components which have to fail in addition to those in F to realize x; it is 

called distance from bag F to event x 

db(F,x) lower bound for dt,(F,x) 

f?(e) = ¿b(e,y r) lower bound for the failure distance from a failure bag e € E to gr 

4.2.1 Recursive Definition of Lower Bounds for Failure Dis tances 

Note that from the above definitions, d(a) = dt,(F(a),gr). The computed lower bounds 

are d(a) = cib(F(a),yr). The lower bounds d^[F(a),gr) are computed on the fault tree 

of the system using the concept of module, which generalizes to component classes the 

definition given in [57, 40], in the sense that a module is a node such that the subtree 

hanging from it has that node as only entry point and every input of the subtree does 

not have related inputs outside the subtree. To determine which gates or inputs of the 
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fault tree are modules, we use the algorithm LTA/DR of [40] with a small modification 

to take into account component classes: during the first depth-first left-most traversal of 

the fault tree (step no. 2 of the algorithm), visit to x € I implies simultaneous visit (i.e. 

with the same "time stamp" as for x) to all inputs related to it. 

Given a bag of component classes F, db(F,x), x € I\JP is recursively defined by 

the following expressions: 

x € I, b(x) = c[n] 

~ , „ . Í n if no c[n'\ is part of F . „, 
db(F,x) = \ \ J * . (4.6) 

[ max{0, n — n j if c[n'\ is part of F 
i 6 f ; type(ir) = OR 

db{F,x) = min (db(F,y)}. (4.7) 

x 6 P; type(ar) = AND 

db (F, x)= ^2 db (F, y) + max j J ] db (F, y), max j 0, db(F, y)} 1 , 
yeA(x) Ky€B(x) y€ {x) } (4 , 8 ) 

with A{x) = {y6 fi(a:)| y is a module A |fo(y)| = 1}, B{x) = {¡/G fi(a;)| y is a module A 

|fo(y)| > 1 V y is not a module A y € / } and C(a;) = {y 6 fi(a;)| y is not a module A y € 

Expressions (4.6), (4.7) and (4.8) allow to compute db(F,gr) by traversing the fault 

tree depth-first left-most starting at gr. We depict in Figure 4.3 the fault tree of the 

example system and show in Table 4.2 how L = db(®,gr) would be computed for that 

fault tree. Note that all gates and inputs of the fault tree are modules and, therefore, 

(4.8) reduces to db(F,x) = Eyefi(x) ¿b{F, y). 

4.2.2 Correctness of the Lower Bounds for Failure Dis tances and Re­

lated Resul ts 

First, we prove that given a bag of component classes F and x Ç IU P, 0 < db(F, x) < 

db(F, x) and db(F, x) = 0 if and only if db(F, x) — 0. The proof consists of a sequence 

of a lemma, two propositions and a theorem. 

Lemma 4.2 Let x,y € I U P, and let x be a module. Then, if x,y £ I, Reach(x) (1 

Reach (y) = 0; otherwise, Reach (x) n Reach (y) ^ 0 if and only if either x € Reach (y) or 

y 6 Reach (x). 
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Xi X2 X¡ 

MCi[3] ICi[l] RMMx[l] 

X7 X 8 Xg 

CPUC[2] PTC[2] RCM[2] 

1 
X4 X5 X6 

MC2[3] IC2[i] RMM2[l] 

Figure 4.3: Fault tree of the example system. Bags associated with inputs are given 

below to them. 

Table 4.2: Computation of L = ¿b(0,5r) traversing depth-first left-most the fault tree of 

the example system and using expressions (4.6), (4.7) and (4.8). 

step 

node x 

¿b(0,x) 
step 

node a: 

¿b(0,aO 

1 

9r 

-

10 

%5 

1 

2 

fi'l 

-

11 

X6 

1 

3 

92 

-

12 

93 

1 

4 

xx 

3 

13 

9i 

2 

5 

x2 

1 

14 

x7 

2 

6 

£ 3 

1 

15 

Z8 

2 

7 

52 

1 

16 

XQ 

2 

8 

53 

-

17 

9r 

2 

9 

#4 

3 
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Proof If x, y G / , the result is trivial. The three remaining cases we have to deal with 

are: x G I,y G P; x G P, y G I; and x,y e P. The if implication for these cases is 

also trivial since x G Reach(y) or y € Reach (x) implies (recall that x G Reach (x) and 

y G Reach(y)) Reach (x) n Reach (y) ^ 0. Regarding the only if implication, consider first 

the case x G I, y G P. Reach(x) n Reach(y) = {a;} n Reach(y) ^ 0 implies x G Reach(y). 

The case x G P, y G I is analogous: Reach (x) f~l Reach (y) = Reach(x) D {y} ^ 0 implies 

y G Reach(x). Now, consider the case a;, y G P. Assume that Reach(x) n Reach(y) £ 0 

and neither a: G Reach(y) nor y G Reach(x), and take z G Reach(x) n Reach(y). Then, 

since x $ Reach(y), the path y...z does not contain event x, which contradicts the fact 

that x is a module because y £ Reach(x) and z G Reach (x). Q 

Proposition 4.3 ¿ei x,y e IU P, z € P, x,y Ç. fi(z), and let x be a module. Then, x 

and y are independent if one of the following conditions holds: 

a) y el, 

b) y € P and y is a module, 

c) y G P and |fo(x)| = 1. 

Proof If Support(a:) nSupport(y) = 0, the inputs in Support(x) are not related to those 

in Support(y) because x is a module and, thus, x and y are independent. Therefore, it 

suffices to prove Support(a:) D Support (y) = 0 or, equivalently, Reach(x) D Reach(y) = 0. 

Condition a: If x G 7, Reach (x) (1 Reach (y) = 0 by Lemma 4.2. If x G P, Reach (x) D 

Reach (y) = Reach (x) n {y} ^ 0 if and only if y G Reach (x) by Lemma 4.2 (x G Reach (y) 

is not possible). But y G fi(z) implies the existence of the path zy not containing x, and, 

then, y G Reach(x) would contradict the fact that x is a module. 

Condition b: Assume that Reach (x) n Reach (y) ^ 0. Using Lemma 4.2, either x G 

Reach (y) or y G Reach (x). x G Reach (y) and the existence of the path zx contradicts 

the assumption that y is a module. If x G / , y G Reach(x) is not possible. If x G P, 

y G Reach(x) and the existence of the path zy contradicts the assumption that x is a 

module. 

Condition c: Assume as before that Reach (x) n Reach (y) •£ 0. From Lemma 4.2, either 

y G Reach (x) or x G Reach (y). If x G / , y G Reach (x) is not possible. If x G F, 

y G Reach (x) and the existence of the path zy contradicts the assumption that x is 
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a module, x G Reach(y) implies |fo(x)| > 1 since x G fi(2), in contradiction with 

|fo(x)| = l .D 

Proposition 4.4 Let x G P, type(x) = AND. Assume that fi(x) does not contain 

related inputs. Let the partition fi(x) = A(x) U B(x) U C{x), where A{x) = {y G 

fi(x)|y is a module A |fo(y)| = 1}, B{x) = {y G fi(x)|y ¿5 a module A |fo(y)| > 1 V 

y is not a module A y £ 1} and C(x) = {y G fi(x)| y is not a module A y € P}. Then, 

a) all y G A(x) are mutually independent, 

b) all y G A(x) are independent from all y' G B(x) L)C(i), and 

c) all y G B(x) are mutually independent. 

Proof We begin with part a. Consider y,y' G A(x). y is a module. If y' G / , condition 

a of Proposition 4.3 is satisfied. If y' G P, since y' is also a module, condition b of 

Proposition 4.3 is satisfied. To show part b, consider first y G A(x), y' G B(x). y is a 

module and y' is an input or a gate. If y' G / , condition a of Proposition 4.3 is satisfied; 

if y' G P, y' is a module and condition b of Proposition 4.3 is satisfied. Now we deal with 

the case y G A(x), y' G C(x). y is a module, |fo(y)| = 1 and y' G P. Therefore, condition 

c of Proposition 4.3 is fulfilled. Regarding part c, let y,y' G B(x). We have to consider 

four cases: 1) y, y' G / , 2) y G J, y' G P , 3) y G P, y' G / , and 4) y, y' G P. In case 

1 the result holds trivially since, by assumption, y and y' are not related. In case 2, y' 

must be a module and y, y' satisfy condition a of Proposition 4.3. Case 3 is symmetric 

to case 2. Finally, in case 4 both y and y' are modules and condition b of Proposition 4.3 

is satisfied. Q] 

Theorem 4.2 Let F be a bag of component classes and x G I U P. Assume that for 

every z G P, ft.{z) does not contain related inputs. Then, the dt,(F,x) defined recursively 

by (4.6), (4.7) and (4.8) verify 

a) 0<db(F,x) <dh(F,x), 

b) db(F, x) = 0 if and only if d\>(F, x) = 0 . 

Proof By complete induction over lev(x). 
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Base case (lev(a:) = 0): In this case, x £ I, b(x) = c[n]. From (4.6) and the definition of 

db(F, x), 0 < db(F,x) = db(F, x), showing both a and b. 

Induction step: We assume that the theorem holds for all x G IUP., lev(x) < /, I > 0 and 

show that it also holds for x G P, lev(x) = / + 1 (x cannot be an input since lev(x) > 1). 

We begin with part a. Consider first the case type(x) = OR. Using the definition of 

db(F,x), the fact that x is realized if and only if some y G fi(x) is realized, the induction 

hypothesis for y G fi(x) since lev(y) < I, the monotonicity of min(-), and (4.7), 

db(F,x) = min Uh(F,y)\ > min (db(F,y)\ = db(F,x) > 0. 
t/€fi(r) <- J yeü(x) <- J 

Consider now the case type(x) = AND. Let the partition fi(x) = A(x) U B{x) U C(x) 

defined in Proposition 4.4 and let t = AyeB(x) H an<^ u ~ f\yeC(x) V $ t n e subsets B(x) 

or C(x) are empty, the corresponding logical variable is equal to the logical constant 1 

and db(F, l ) = 0). Using the fact that x is realized if and only if all y € fi (a:) are realized, 

the definition of db(F,x) and parts a and b of Proposition 4.4, 

db{F,x)= Y, db{F,y) + dh(F,tAu)> J^ dh(F,y) + mzx{db{F,t),db(F,u)}. 
yeA(x) ySA(x) 

Using the definition of failure distance from a bag to an event, the fact that t is realized 

if and only if all y € B(x) are realized and u is realized if and only if all y € C(x) are 

realized, part c of Proposition 4.4, the induction hypothesis, the monotonicity of max(-), 

and (4.8), 

4 { F , x ) > Y, db(F,y) + maxj ] T db(F,y), max ( o , d b ( F , y ) } \ 
y£A(x) ^yZB(x) v € {x) } 

> ^2 db(F,y) + max | ] T db(F,y), max ( o , 4 ( P , y ) } | 
yeA(x) KyeB{x) 

= db(F,x) > 0 , 

where max^ç^^^O, db(F, y)} allows to deal correctly with the case C(x) = 0. Regarding 

part b of the theorem, the if implication follows from 0 < db(F,x) < db(F,x). The 

only if implication is proved as follows. If type(x) = OR, db(F, x) = 0 implies (4.7) 

the existence of a y € fi(x) with db(F,y) = 0. From the induction hypothesis, this 

implies db(F,y) = 0, which leads to db(F,x) = 0 by the definition of distance from a 

bag to an event and the fact that x is realized if and only if some y € fi(x) is realized. 

If type(x) = AND, using (4.8), db(F,x) = 0 requires db(F,y) = 0 for all y G fi(z). 

As before, the induction hypothesis implies db(F,y) = 0 for all y G fi(x), and, hence, 
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db(F, x) = 0 by the definition of db(F, x) and the fact that x is realized if and only if all 

y G fi (a;) are realized. Q 

Next, we give a sufficient condition for db(F, x) = db(F, x). 

Theorem 4.3 Let x £ I U P and F be a bag of component classes. Then, db(F,x) = 

db(F, x) if for every z G P with type(z) = AND, û(z) does not contain related inputs 

and one of the following conditions holds: 

a) every y G fi(z) is a module or an input, 

b) there exists only one u G ft(z) which is neither a module nor an input and every 

y 6 fi(z)) y i1 u is a module with |fo(y)| = 1. 

Proof By complete induction over lev(x). 

Base case (lev(x) = 0): In this case, x e I, b(x) = c[n]. From the definition of db(F,x) 

and (4.6), db(F,x) = dh(F,x). 

Induction step: We assume that the theorem holds for all i Ç / U P , lev(a;) < /, / > 0 and 

show that it also holds for x G P, lev (a;) = / + 1 (x cannot be an input since lev(x) > 1) . 

We begin by analyzing the case type(x) = OR. Using the definition of db(F, x), the 

fact that x is realized if and only if some y G fi(a;) is realized, the induction hypothesis, 

and (4.7), 

db(F,x)= m i n { 4 ( F , y ) } = min\db(F,y)}=db(F,x). 
3/€fi(x) <• > y€n( r ) <• > 

Now we deal with the case type(z) = AND. Let the partition fi(x) = A(x) Ufl(i) UC(x) 

defined in Proposition 4.4. If condition a of the theorem holds, C(x) = 0. Then, using 

the fact that x is realized if and only if all t/ 6 fi(i) are realized, the definition of db{F, x), 

the fact that C(x) = 0, and that, according to Proposition 4.4, all y Eñ(x) are mutually 

independent, 

db(F,x) = ^2 db(F,x). 
yeA(x)uB(x) 

Using the induction hypothesis, the fact that C(x) = 0 and (4.8), 

db{F,x)= J2 ^ ( F ' x ) 
veA(x)uB(x) 

= J2 4(F,y) + max{ J ] db(F,y), max { 0 , 4 ( ^ ) 1 } 
yeA(x) yeB(x) ye {x) 

= db{F,x). 
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Assume now that condition b of the theorem holds. We have B(x) = 0 and C(x) = {u}. 

Using the fact that a; is realized if and only if all y £ fi(x) are realized, the definition of 

db(F,z), the fact that B(x) = 0 and C(x) — {u}, and that, according to parts a and b 

of Proposition 4.4, all y Ç. û(x) are mutually independent, 

db{F,x)= Y, db(F,x)+dh(F,u). 
y£A(x) 

Finally, using the induction hypothesis, the fact that B(x) = 0 and C(x) = {u}, and 

(4.8): 

dh(F,x)= J2 db{F,x)+db{F,u) 
y€A(x) 

= J2 ¿b (F ,y )+max{ V db(F,y), max {0,db(F,y)}\ 
yÇA(x) y€B(x) y t v ; 

= db{F,x).Q 

Finally, we give a lower and an upper bound for db(F, x), F = F' + F" in terms of 

db{F',x). 

Theorem 4.4 Let F, F' and F" be bags of component classes with F = F' + F" and let 

x £ lu P. Assume that for every z € P, fi(z) does not contain related inputs. Then, 

db{F',x) > db(F,x) > db{F',x) - S{F",x). 

Proof By complete induction over lev(x). 

Base case (lev(a;) = 0): Since lev(x) = 0, x 6 / , b(x) = c[n]. The following three cases 

cover all possibilities: a) db(F',x) = 0, b) db(F',x) > 0 and no cty') is part of F", 

and c) db(F',x) > 0 and there exists c[n'] part of F". In case a, there exists (4.6) c[n'] 

part of F' with n' > n. Since F = F1 + F", c[n% n" > n' part of F exists. Then, 

db(F, x) = 0 = db(F',x) showing both inequalities since S(F",x) > 0. In case b, clearly 

db(F,x) = db(F',x) and both inequalities are also shown. In case c, let db(F',x) = n", 

0 < n" < n. Since Support(x) = {x}, b(x) = c[n], it follows that S(F",x) = n'. From 

(4.6), c[n'"], n'" = n - n" is part of F ' , and since F = F' + F", c[n'" + n'] is part of F. 

Then, using (4.6) 

db{F', x)=n" = n - n'" > max{0, n - n"' - n'} 

= db(F, x)>n- n'" - n' = n" - n' = db(F', x) - S(F", x). 
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Induction step: We assume that the theorem holds for all x € J UP, lev(x) < /, / > 0 and 

show that it also holds for x € P, lev(x) = 1 + 1 (x cannot be an input since lev(z) > 1). 

First of all, since Support(a;) = Uj,efi(*) Support(y), it is immediate to see that for 

any Ï Ç P , 

S(F»,x) > S(F", y), y € fi(x), (4.9) 

S(F",x)> max {S(F" ,y )} . (4.10) 
yÇfi(x) 

Consider first the case type(x) = OR. Using (4.7), the induction hypothesis, the 

monotonicity of min(-), and (4.9), 

4(F',x) = ^{d^y)} > ™x){d*(F,y)} 

= db(F,x)> min {db{F',y)-S(F",y)}> min \dh{F',y) - S(F",x)\ 
y€fi(r) <- > j/6fi(i) <• J 

= min \db{F',y)}-S{F",x) = dh(F',x)-S(F",x). 
y€ñ(x) >• > 

Assume now that type(x) = AND. Let the partition fi(x) = A(x) U B(x) U C(x) defined 

in Proposition 4.4 and let t = Ay€>i(*) Viu = Ay6B(r) 2/> a n d v = Ayec(«) V ( i f s o m e o f t h e 

subsets into which fi(x) is partitioned is empty, the corresponding logical variable is equal 

to the logical constant 1 and S(F", 1) = 0). Let a = S(F", x),ß = Ey€i4(*) 5 ( F " ' v)> ? = 

T,y€B(x)S(F"iy)i a n d S = max! /ec(x){5'(F")y)}. We have Support(ar) = Support(í) U 

Support(u A v) and, from part b of Proposition 4.4, Support(i) PI Support(w A v) = 0. 

Then, using the definition of S(F",-), (4.9) and (4.10), 

S(F", x) = S(F", t) + S{F", uAv)> S(F", t) + max{S(F", u),S(F", v)} 

>S(F",t) + mzx\s{F",u), max {S(F",y)}\ 

= 5(F" , i) + max{5(F", v.), 6}. 

From parts a and c of Proposition 4.4, S(F", t) = ß and S{F", u) = j . Then, using the 

definition of a the last inequality becomes 

a > / 3 + max{7,<5}. (4.11) 

Using (4.8), the induction hypothesis, the definition of a, ß, y and 6, the monotonic­

ity of max(-), and (4.11), 

4 ( F ' , x ) = 

] T ¿b(F',y) + maxj ] T db(F
J,y),m3X){o,db(F

J
ty)}} 

y€A{x) y€B{x) 



72 4 Reliability Bounds of Non-repairable Systems using FD Bounds 

> E d b ( F , y ) + m a x { ] T dh(F,y), max { o , 4 ( F , y ) U = dh(F,x) 
ySA(x) lyeB(x) y € ( l ) J 

+ max{ E (db{F',y)-S(F",y)), max ( o , 4 ( F ' , y ) - S ( F " , y ) } ) 

= E ¿b(F',y)- E 5(F"-y) 
yCA(x) yeA(x) 

+ max{ E 4 ( F ' , y ) - E S(F",y) , max { o , 4 ( F ' , y ) - 5 ( F " , y ) } | 

> £ ¿b(F',y)- £ 5(F",y) 

+ max{ E 4 ( ^ " > y ) - E 5(F",y) , max { 0 , 4 ( F ' , y ) ~ max { S ( F " , y ) } } | 

= E 4 ( F ' , y ) - / ? + m a x | E ¿b(F',y) - 7, max {o,¿b(F ' ,y)} - ¿J 
y€A(x) ^y€B{x 

> E 4(F',y)-/? 
y€A(x) 

+ max< E db(F', y) - max{7,5}, max { 0, db(F', y) \ - max{7,8} > 

= E 4 ( F ' , y ) + m a x { E ¿b(F' ,y), max {o,dh{F',y)}\ - {ß + max{7,¿» 
TT, s l r r r > yÇC(x) K J J 

= ¿b(F' ,x) - (/3 + max{7,<5}) > 4 (F ' , : r ) - a = ¿b(F',x) - 5(F",x) - D 

Let a be a state and let x = ^ r . With F = F(a), part b of Theorem 4.2 implies 

d(a) = 0 if and only if d(a) = 0, part a implies 0 < d(a) < d(a), and both results imply 

1 < d(a) < d{a) for a G U. In addition, taking F ' = 0, F" - F{a) and F = F ' + F " = 

F(a), the left inequality of Theorem 4.4 states that Z = ¿b(0,ffr) > ¿b(F(a),y r) = of (a). 

Thus, the derived ¿(a) satisfy the requirements of Theorem 4.1. Finally, taking F = F (a), 

Theorem 4.3 gives a sufficient condition for d(a) = d(a). 

4.2.3 Algor i thms for the Computat ion of the Lower Bounds for Failure 

Distances 

Let a be a state in G and let 6 be a successor of a reached in a single transition associated 

with failure bag e. The generation of the CTMC X' requires to know d(b) (recall that, 
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as consequence of Theorem 4.2, b is a down state if and only if d(b) = 0). 

We have that F(b) = F(a) + e and, therefore, d(b) = dh(F(b),gr) could be computed 

traversing the fault tree depth-first left-most starting at gr and using (4.6), (4.7) and (4.8). 

However, this procedure could be expensive if the fault tree is large. Next, we describe 

an algorithm and, based on it, two procedures to compute d(b) more efficiently. 

We first describe the algorithm. The algorithm takes as inputs a bag of component 

classes F and a positive integer ub. Each node x of the fault tree holds a "distance 

variable" dv(x) properly initialized. The fault tree is processed from inputs to gr as 

follows. For each c[n] that is part of F , we make dv(x) = max{0, dv(x) — n} for each 

input x, b(x) — c[n']. Each change of dv(x) for an input a; that results in dv(x) < ub 

is propagated up the fault tree while dv(z) changes to a value < ub for the visited gate 

z. Distance variables of gates are not updated unless the new value is distinct from the 

previous one and < ub. dv(z), z £ P is computed from (4.7) for OR gates and (4.8) for 

AND gates using dv(y), y G fi(z) instead of d^F,y), y G fi(-z). 

The first procedure is called comp.d(F, lb, ub, CS), where F is a bag of component 

classes, lb, ub, lb < ub are non-negative integers and CS is a stack. If lb = «ò, the 

procedure returns lb without doing anything else. If lb < ub, the fault tree is processed 

using the above algorithm. During the traversal of the fault tree, the nodes x whose 

distance variable changes as well as the corresponding old value dv(x) are bookkept in 

CS. At the end, the procedure returns min{dv(gr), ub). The second procedure is called 

restored (CS), where CS is a stack. The procedure simply restores the distance variable 

of the nodes kept in CS to its old value. 

We prove next two results. The first one shows that if invoked with appropriate ar­

guments, the procedure comp.d returns db(F, gr). The second result shows how d\>(F, gr) 

can be computed calling the procedure consecutively twice. The usefulness of the latter 

result will become apparent when describing the way the CTMC X' is generated. The 

proof consists of a sequence of three propositions and two theorems. 

Proposition 4.5 Assume that the distance variable of each node x has been initialized 

to db(0,x). After running the algorithm with inputs a bag of component classes F and 

a positive integer ub, d^(F,x) — dv(x) if dv(x) < ub and dh(F,x) > ub if dv(x) > ub, 

xelUP. 

Proof By complete induction on lev (a;), x € IU P. 
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Base case (lev(x) = 0). We have x £ / , b(x) = c[n]. After running the algorithm, 

dv(x) = n if no c[n'] is part of F and du(ï) = max{0, n - n'} if c[n'] is part of F. Then 

(4.6), cft?(x) = db(F,x), showing both d b ^ z ) = dv(x) if du(x) < u6 and db(F,x) > ub 

if dv{x) > ub. 

Induction step. We will assume that the result holds for all x £ / U P, lev(x) < /, / > 0 

and show that it also holds for all x £ P, lev(x) = I + 1 (x £ I because I + 1 > 0). 

Let x £ P, \ev(x) = / + 1 and consider the partition fi(x) = a U ß with a = {y £ 

fi(x) | dv(y) < ub after running the algorithm} and ß = fi(z) — a = {y ç fi(x) | dt;(y) > 

u6 after running the algorithm}. We will show the result first for type(a;) = OR and 

next for type(x) = AND. 

Let type(x) = OR. Assume a ^ 0. Since, trivially, the values held by the distance 

variables cannot increase, dv(y) > ub, y Ç. ß throughout the execution of the algorithm 

and, hence, any update of dv(y), y G ß (only possible if y is an input) cannot lead to 

updating dv(x). Therefore, only updates of dv(y), y 6 a to values < ub may result in 

updating dv(x). Note that, using the induction hypothesis, at the end of the algorithm, 

db(F,y) = dv(y) < ub, y £ a and db(F,y) > ub, y € ß. Then (4.7), db(F,x) = 

m'my€a{dv(x)} < ub after running the algorithm. If no dv(y), y £ a has been updated, 

since dv(x) = miny6fi(a.){du(y)} at the beginning of the algorithm, we have that, at the 

end of the algorithm, dv(x) = minyça{dv(y)} — db{F,x) < ub. If some dv(y), y £ a has 

been updated, consider the last time a dv(y), y £ a is updated to a value < ub (since at 

the end of the algorithm dv{y) < ub for all y £ a, at least one such update must have 

happened). All dv(y), y £ a will hold their final values, which are < «6, and dv(x) will 

be set to dv' = minyga{du(y)} unless dv(x) were already equal to dv'. Then, at the end 

of the algorithm, dv(x) = m'my£Q{dv(y)} = d^^x) < ub. Assume now a — 0 and, 

therefore, ß •£ 0. As it has been discussed before, any update of dv(y), y £ ß cannot 

have led to updating dv(x). Therefore, dv(x) has not been updated and after running 

the algorithm its value is equal to its initial value, which, given the way the distance 

variables are initialized and that the values they hold cannot increase, is > ub. Since 

fi(x) = ß and, by the induction hypothesis, db(F,y) > ub, y £ ß, it follows (4.7) that 

d~b{F,x) > ub. 

Let type(ar) = AND. Assume ß ^ 0. As it has been discussed for the case type(x) = 

OR, dv(y) > ub, y £ ß throughout the execution of the algorithm. The computed values 

for dv(x) will be 

J2 dv(y) + max{ ^ dv(y), max {0, dv(y)}} , 
y£A(x) y€B(x) V € ( X ) 
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which are not smaller than dv(y), y £ ß. Then, the computed values for dv(x) will 

be > ub and dv(x) will never be updated. Given the way the distance variables are 

initialized and that the values they hold cannot increase, the final value of dv(x) will be 

> ub. Moreover, from (4.8) and the fact that, by the induction hypothesis, db(F, y) > ub, 

y £ ß, it follows that d\>(F,x) > ub. Assume now ß = 0. We have ñ(x) = a. If no dv(y), 

y £ a has been updated, after running the algorithm dv(x) and dv(y), y £ a hold their 

initial values. By the induction hypothesis and the fact that fi(x) = a, dv(y) = db(F,y), 

y £ fi(x). Then, from (4.8) and the way the distance variables have been initialized, 

dv(x) = </b(F,x) after running the algorithm, which shows both db(F,x) = dv(x) if 

dv(x) < ub and db(F, x) > ub if dv(x) > ub. If some dv(y), y £ a has been updated, 

consider the last time a dv(y), y £ a is updated to a value < ub (since at the end of the 

algorithm dv(y) < ub for all y 6 a, at least one such update must have happened). Since 

fi(x) = a, all dv(y), y £ fi(x) will hold their final values and the value dv' to which dv(x) 

might be set will be computed as 

dv' = YJ dv(y) + m&x{ YJ dv(y), max {0, dv(y)}} . 
yeA(x) yeB(x) yeC{x) 

From (4.8), the fact that fi(x) = a and that, by the induction hypothesis, dv(y) = 

db{F, y), y £ a, it follows that db(F, x) = dv'. Also, since the values held by the distance 

variables cannot increase, the current dv(x) will be > dv'. If dv' > ub, dv(x) will not be 

set to dv' and, hence, db(F, x) = dv' > ub and dv(x) > dv' > ub. If dv' < ub, dv(x) will 

be set to dv' unless it were already equal to dv' and, thus, db(F, x) = dv' = dv(x) < ub. 

Ü 

Proposit ion 4.6 Let F, F' and F" be bags of component classes with F = F' + F" and 

let ub, ub' with ub' < ub be positive integers. Let dvi(x), x £ I U P be the values of 

the distance variables that will result after initializing them to dh($,x) and next running 

the algorithm with inputs F and ub', and let dv2{x), x £ I U P be the corresponding 

values that will result if after performing the same initialization the algorithm is run 

consecutively twice, first with inputs F' and ub and next with inputs F" and ub'. Then, 

dvi(x) = dv2(x) or dvy{x) > ub' and dv2(x) > ub', x £ Il)P 

Proof For the sake of conciseness, let case 1 stand for "the distance variable of each 

node x £ IUP has been initialized to ¿b(0, x) and next the algorithm has been run with 

inputs F and ub'" and let case 2 stand for "the distance variable of each node x £ Il)P 

has been initialized to d\> (0, x) and next the algorithm has been run consecutively twice, 

first with inputs F' and «6 and next with inputs F" and ub'". Note that if ub' = ub the 
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fault tree is dealt with the same in both cases and dvi(x) = dv2(x), x G I UP. Next, we 

show the result for the case ub' < ub using complete induction on lev (a;), x G IU P. 

Base case (lev(x) = 0). We have x £ I. Since the initial value of dv(x) is the same in 

both cases, dv(x) is updated depending only on b(x) and the bag of failed component 

classes, and F = F' + F", it follows that dv\(x) = dv2{x). 

Induction step. We will assume that the result holds for all x G / U P, lev(x) < /, / > 0 

and show that it also holds for all x G P, lev (a;) = / + 1 (a; cannot be an input since 

/ + 1 > 0). Let x G F , lev (s) = / + 1 and consider the partition fi(x) = a + ß with 

a = {y G fi(x) | dvi(y) = du2(y)} and ß = {y G fi (a;) | dvx{y) ^ dv2(y)}. Note that, using 

the induction hypothesis, dvi(y) > ub' and dv2{y) > ub', y G ß and since the values 

held by the distance variables cannot increase, dv(y), y G ß will always be > ub' in both 

cases. We will show the result first for type(a;) = OR and next for type(a;) = AND. 

Let type(a;) = OR. Assume a = 0. We have fi(x) = ß. Since dv(y) > ub', y G fi(z), 

dv(x) has not been updated in case 1 and, thereby, it holds the initial value, which, since 

dv(y), y G fi(^) cannot increase, is > ub'. Therefore, we have dvi(x) > ub'. Regarding 

case 2, either dv(x) has not been updated and, hence, dv2{x) = dvi(x), or it has been 

updated (recall that ub' < ub) and, since dv(y) > ub', y G fi(x), dv2(x) > ub'. Assume 

now a ,¿ 0. If there exist y G a such that dvi(y) = dv2(y) < ub', since «6' < ub, we have 

dvi(x) = min {dv\(y)} = min {dv2{y)} = dv2(x). 
dvi(y)<ub' dv2(y)<ub' 

If no such y G a exists, dvi(x) holds the initial value, which, since dv(y), y G fi(x) 

cannot increase, is > ub', and either dv2(x) also holds the initial value and, hence, 

cb2(x) = dvi(x), or dv(x) has been updated in case 2 and, since dv(y) > ub', y G fi(^), 

dv2(x) > ub'. 

Let type(ar) = AND. If ß ^ 0, in both cases the computed values for dv(x) will be 

Y2 dv(y) + max{ J ^ dv(y), max {0, dv{y)}} > ub'. 
yeA(x) yeB(x) y 6 ( x ) 

Then, dv(x) will not be updated in case 1. Therefore, dvi(x) will hold the initial value, 

which, since dv(y), y G fi(a?) cannot increase, is > ub'. If dv(x) is not updated in case 2, 

dvi(x) = <ft;2(a;); if dv(x) is updated in case 2, since dv(y) > ub', y G ß, dv2(x) > ub'. 

Assume now ß = 0 and, therefore, fi(a;) = a. If dv(x) is updated in case 1, 

dvi(x)- Y] dv1{y) + max{ V dv^y), max {0, dv^y)}} 
yÇA(x) yeB(x) y* y ' 

= S dv2(y) + m&x{ ^ dv2(y), max {0, dv2(y)}} < ub'. 
y£A(x) yeB(x) y£ (X) 
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Therefore, since ub' < ub, dv(x) is also updated in case 2 and dv2(x) = dvi(x). If dv(x) 

is not updated in case 1, it may or may not be updated in case 2. If dv(x) is updated in 

case 2, 

dv2(x)= ] T dv2(y) + max{ ^ dv2(y), max {0,dv2(y)}} 
yeA(x) yeB(x) veC(*) 

- Yl ¿üi(y) + max{ Y^ rf»i(y)> max ÍO.í í^íy)}}, 

with either ub' < dv2(x) < ub or £¿«2(2) < «&'. Note, however, that if dv2(x) were 

< ub', dv(x) would have been updated to dv2(x) by the end of the algorithm in case 

1. Therefore, dv2(x) > ub' and since the values held by the distance variables cannot 

increase and they are initialized the same in both cases, dv\(x) > dv2(x) > ub'. Finally, 

if dv(x) is not updated in either case, dvi(x) = dv2(x). Q 

Proposition 4.7 Let F, F' and F" be bags of component classes with F = F' + F" 

and let ub, ub' with ub' < ub be positive integers. Assume that the distance variable of 

each node x of the fault tree has been initialized to dh($, x). After running the algorithm 

consecutively twice, first with inputs F' and ub and next with inputs F" and ub', we have 

that di)(F,x) = dv(x) if dv(x) < ub' anddb{F,x) > ub' if dv(x) > ub'. 

Proof Let x € IUP and let dvi(x) and dv2(x) as in Proposition 4.6. In this regard, we 

have to show that db(F,x) = dv2(x) if dv2(x) < ub' and di,(F,x) > ub' if dv2(x) > ub'. 

Using Proposition 4.6, dv2{x) = dvi(x) or dv2(x) > ub' and dv\(x) > ub', and the results 

follows immediately from Proposition 4.5. Q 

Theorem 4.5 Let F be a bag of component classes, lb and ub non-negative integers with 

lb < dh(F,gr) < ub, and CS a stack. Assume that the distance variable of each node 

x of the fault tree has been initialized to db(®,x). Then, the call comp.d(F,lb,ub, CS) 

returns d^ [F, gr). 

Proof If lb = ub, the call comp.d(F, lb, ub, CS) returns lb and since, by assumption, 

lb < db(F,gr) < ub, db{F,gr) = lb. If lb < ub, the call returns m'm{dv(gr), ub}.. 

Two cases are possible: a) dv(gr) < «6 and b) dv(gr) > ub. Since lb < ub and, by 

assumption, lb > 0, we have that ub is > 0 and, therefore, Proposition 4.5 with x = gr 

can be invoked in both cases. In case a, m'm{dv(gr), ub} = dv(gr) = db(F,<7r). In case 

b, m'm{dv(gr), ub} = ub and db(F,gr) > ub, and since, by assumption, dt,(F,gr) < ub, 

db(F,gr) = ub. D 
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Theorem 4.6 Let F, F' and F" be bags of component classes with F = F' + F", lb 

and ub' non-negative integers and ub a positive integer with lb < db(F,gr) < ub' < ub, 

and let CS, CS' be stacks. Assume that the dv variable of each node x of the fault 

tree has been initialized to d\,($,x). Then, after invoking comp.d(F',0, ub, CS), the call 

comp.d(F", lb, ub', CS') returns db(F,gr). 

Proof If lb = ub', the call comp.d(F", lb, ub', CS') returns lb and, since by assumption, 

lb < d\>{F,gr) < ub', db(F,gr) = lb. If lb < ub', the call returns m\n{dv(gr), ub'}. Two 

cases are possible: a) dv(gr) < ub' and b) dv(gr) > ub'. We have, by assumption, that 

ub > 0 and lb > 0. The fact that ub > 0 implies that the call comp.d(F', 0, ub, CS) results 

in processing the fault tree with the described algorithm with inputs F' and ub; the fact 

that lb > 0 together with lb < ub' implies that ub' > 0. Therefore, Proposition 4.7 with 

x = gr can be invoked in both cases. In case a, mln{dv(gr), ub'} = dv(gr) = db{F,gr). In 

case b, mm{dv(gr), ub'} = ub' and db(F,gr) > ub', and since, by assumption, d\,(F,gr) < 

ub',db{F,gr) = ub'. D 

Computation of d(b) = dh(F(b),gr) using the procedure comp.d requires to know 

a lower and an upper bound bound for d(b). From what was shown at the end of 

Section 4.2.2, 0 < d(b) < L. If we recall that b is a successor of a reached in a single 

transition associated with failure bag e, i.e. F(b) = F(a) + e, these bounds can be 

tightened up with the aid of Theorem 4.4 (the tighter the bounds, the faster comp.d). Let 

x = gr. Taking F' = F(a) and F" = e, the theorem yields d(a) > d(b) > d(a) — S(e,gr); 

taking F' = e and F" = F{a), rj(e) > d(b) > rj(e)-S{F(a),gr). Then, since S(e,gr) < \e\, 

S(F(a),gr) < \F(a)\ and d(a) < L, we have max{0,5(a) - \e\,rj(e) - \F(a)\} < d(b) < 

m'm{d(a) ,rj(e)}. 

The L and 77(e), e € E are computed prior to the generation of the CTMC X'. The 

distance variable of each node x of the fault tree is initialized to ¿b(0,z) by traversing 

the fault tree depth-first left-most starting at gr and using (4.6), (4.7) and (4.8). After 

the initialization, L = dv(gr). Computation of rj(e) = db(e,gr), e € E using comp.d 

requires to know a lower and an upper bound for ??(e). From part a of Theorem 4.2 with 

x = gr and F = e, 0 < db(e,gr) — rj(e); from the left inequality of Theorem 4.4 with 

x = gr, F' = 0 and F" = e, L — db(Ç>,gr) > db(e,5v) = f?(e). Therefore, based on 

Theorem 4.5 with F = e, lb = 0 and «6 = L, rj{e), e £ E are computed calling, for each 

e, comp.d{e, 0, L, CS) followed by a call to restore.d (CS). Note that after computing all 

77(e), e € E, the distance variable of each node x still holds its initial value ¿t>(0, a:)-

We sketch next how the CTMC X' is generated breadth-first using 77(e), e € E and 
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the procedures comp.d and restored. The state o in which all components are unfailed 

is put in G and, with d(o) = L, in an empty first-in first-out (FIFO) queue. That queue 

contains the states to be processed and each state a in the queue has associated with it 

its lower bound for the failure distance d(a). From that point, the generation process 

continues as follows. The first state a in the queue is pulled out, comp.d(F(a), 0, d(a), CS) 

is called and the list of failure bags which are active in a is obtained. Each such active 

e € E has associated with it one or more transitions to states b satisfying F(b) = F(a)+e. 

For each active e, lb = max{0,¿(a) — |e|, 77(e) - |F(a)|} and ub' = min{d(a), 77(e)} are 

computed and, based on Theorem 4.6 with F' = F(a), F" = e, F = F' + F" = F(b), 

and ub = d(a) (it is trivial to check that ub' — min{d(a), 77(e)} < d(a) = ub, ub > 0 

and ub' > 0), d(b) for the successors b of a associated with e is computed by calling 

comp.d(e, lb, ub', CS'). If d(b) = 0, states b are down and the corresponding transition 

rates A0i& are directed to / ; if d(b) > 0 and \F(a) + e| > K, states b belong to U and the 

corresponding transition rates Aa>6 are directed to u j , ^ ; if d(b) > 0 and \F(a) + e| < K, 

states b are put in G and, with the corresponding d(b), in the FIFO queue if they were 

not in G yet and the corresponding transition rates \a¿ are directed to b. Once all the 

successors 6 of a associated with e have been processed, restored (CS') is invoked to 

allow another failure bag active in a to be dealt with. When all active failure bags in 

a have been processed, restore.d(CS) is invoked before processing another state of the 

FIFO queue. The.generation of X' finishes when the FIFO queue becomes empty. 

To illustrate how the procedures comp.d and restore.d work, consider again the 

example system described in Section 4.1 and its fault tree depicted in Figure 4.3. Let 

a Ç: G with F(a) = AfCi[l] and let us discuss the processing of two successors, b and c, 

where transition from a to 6 is associated with failure bag e\ = ICi[l) (see Table 4.1) 

and transition from a to c is associated with failure bag er = AfC2[l] RMMill]. For 

the example, L = 2, J7(e4) = 1, rjiej) = 1, and d(a) = 2. Let CS and CS' be empty 

stacks. As it has been explained before, computation of d(b) and d(c) requires to invoke 

comp.d(F(a), 0, d(a) = 2, CS) first. Figure 4.4 illustrates the processing of the fault tree 

during that invocation. Recall that dv(x) is initialized to e?b(0,x) for all nodes a;. The 

procedure starts by making (4.6) dv(xi) = max{0,3 - 1} = 2. Since this value is not 

smaller than d(a) = 2, the change is not propagated up the fault tree and the procedure 

finishes. The only contents of the stack CS is the pair (xi,3). The d(b) is the value 

returned by the call comp.d(e4, lb, ub, CS') with /6 = max{0, d(a) - |e4 |, 7/(e4) - |F(a)|} = 

max{0 ,2 - 1,1 - 1} = 1 and «6 = min{d(a),^(e4)} = min{2,1} = 1. Since lb = ub, 

the invocation returns lb = 1 without traversing the fault tree. Finally, d(c) is the value 

returned by the call comp.d(e7, lb, ub, CS') with lb = max{0, d(a) - \e7\, rj(e7) - \F(a)\} = 
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dv=2 

x\ x2 x3 

dv = 3 -+ 2 dv = 1 dv = 1 
MCX\2,] 7C,[1] ÄAfAfill] 

2?7 Xs X9 

dv = 2 dv = 2 dv = 2 
CPUC[2] PTC[2] RCM[2) 

dv = l 

x4 xh x6 

dv = 3 dv = 1 dv = 1 
MC2[3) IC2[l] RMM2[1] 

Figure 4.4: Up traversal (thick line) of the fault tree of the example system during the 

call comp.d(F(a), 0,2, CS), F(a) = MCi[l]. The values of the distance variables are 

given next to each node. A rightward arrow signals the values of the distance variables 

that change during the traversal. 

max{0 ,2 -2 ,1 -1} = 0 and «6 = min{d(a), 57(67)} = min{2,1} = 1. Figure 4.5 illustrates 

the processing of the fault tree during the invocation comp-d(e7,0,1, CS'). The procedure 

starts with the part MC2[1] of ey. Using (4.6) and the dv value of input X4, the procedure 

makes dv(x4) = 2. This change is bookkept in the stack CS' but it is not propagated up 

the fault tree since this new dv value is not smaller than ub = 1. Next, the procedure deals 

with the remaining part RMMzil]- Using (4.6) and the value of dv(xe), the procedure 

makes dv(x&) = 0 < 1 and propagates the change up to 53. Using (4.7), dv(g3) changes 

from 1 to 0, which is again < 1. Since this new value of dv(gz) would result (4.8) in 

dv(gi) = 1, which is not smaller than «6 = 1, dv(gi) is not updated and the procedure 

finishes returning min{dt;(<7r), ub} = min{2,1} = 1. The contents of the stack CS' are, 

from top to bottom, the pairs (33,1), (xß, 1) and (£4,3). The fault tree is restored to its 

original state by calling, in this order, restore.d (CS') and restore.d (CS). 

The trivial bounding method requires the knowledge of the operational/down state 

of the single-transition successors 6 of an operational state a. We describe next the 

procedures to determine that which have been used in our implementation of the trivial 

bounding method. The procedures are analogous to the procedures used in the proposed 

bounding method to compute lower bounds for failure distances and allow to make a 

fair comparison of both methods regarding CPU time consumption. The procedures are 
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dv = 2 

Xj X$ Xg 

dv = 2 dv = 2 dv = 2 
CPUC[2] PTC[2] RCM{2) 

dv = 1 -> 0 

X\ X-i Xz 

dv = 2 dv = 1 du = 1 
M<7![3] 7(7i[l] ÄMM41] 

X4 X5 Xß 

iv = 3 -» 2 dv = 1 <fo = 1 -» 0 
AfC2[3] JC2[1] ÄMM2[1] 

Figure 4.5: Up traversal (thick lines) of the fault tree of the example system during the 

call comp.d(e7,0,1, CS1), e7 = MC2IL] M M 2 [ 1 ] . The values of the distance variables 

are given next to each node. A rightward arrow signals the values of the distance variables 

that change during the traversal. 

evahft and restorer. The procedure evaLfl returns val(#r) for a given bag of failed 

component classes. Using both procedures as described next, we imply to 1 the inputs 

x, b(x) = c[n] such that cln1], n' > n is part of the bag of failed component classes under 

consideration. Implications in the fault tree are done from inputs to gr in the usual way: 

if type(x) = OR, val(y) = 1 for some y € fi(2:) implies val(x) = 1; if type(x) = AND, 

val(y) = 1 for all y € fi(z) implies val(x) = 1. Since all gates are either OR or AND, 

that procedure is enough to know val((?r) (if gr is implied to 1, val(<7r) = 1; if gr is not 

implied, val(<5rr) = 0 since implication to 0 of the unimplied inputs of the fault tree would 

imply gr to 0). Each input x, b(x) = c[n] of the fault tree holds a "value" variable 

vv{x) = max{0, n — n '}, where n' is the number of components of class c that are failed. 

Initially, vv(x) = n and all gates of the fault tree are set to the unimplied state. The 

procedure eval.ft(F, CS), where F is a bag of failed component classes and CS is a stack, 

works as follows. For each input x, b(x) = c[n] for which c^n7] is part of F, we make 

vv(x) = max{0, vv(x) - n'} and imply x to 1 if vv(x) becomes 0. Each implication of an 

input x is propagated up the fault tree while the visited gate z becomes implied. Inputs 

x whose value variable changes as well as gates z that become implied are bookkept 

in CS. A call to restore.v(CS) undoes the changes done within the previous call to 

evaLft(F, CS). Recall that in the trivial method the CTMC is modified so that exits of 
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X from G not going to / are directed to an absorbing state u0. Such a modified CTMC 

is generated breadth-first in a similar way as X' is generated in the proposed bounding 

method. Starting from the point in which a state a has been pulled out of the FIFO 

queue and the list of failure bags that are active in a has been obtained, the generation 

procedure proceeds as follows. The fault tree is set up by calling eval.ft(F(a), CS). For 

each active failure bag e, the operational/down state of all successors b of a associated 

with e is obtained by calling evaLfl(e, CS'). If the call results in val(<?r) = 1, successors 

ò are down and the corresponding transition rates Aai(, are directed to / . If val(gr) = 0, 

successors b are up. In that case, the corresponding transition rates Aa)¡, are directed to 

u0 if \F(b)\ = \F(a) + e\ > K; otherwise, successors b are put in G and in the FIFO queue 

if they were not in G yet and transitions A0i¡, are directed to ò. Each call evaLft(e, CS') 

is followed by a call restore.v(CS'), and once all successors of a have been processed, 

restore.v(CS) is invoked. The generation of the modified CTMC finishes when the FIFO 

queue becomes empty. 

We next compare for the particular case L = 1 the effort in the proposed bounding 

method associated with the computation of the lower bound for the failure distances from 

states with the effort in our implementation of the trivial method associated with the 

evaluation of the fault tree. Note that d(a) = 1 for up states a and that 0 < 77(e) < 1. 

Beginning at the point in which a state a has been pulled out of the FIFO queue and the 

list of failure bags that are active in a has been obtained, the proposed bounding method 

continues by calling comp.d(F(a), 0,1, CS). From the description of comp.d, this call 

results in traversing up the fault tree following the nodes z such that dv(z) changes 

to 0, i.e. the nodes that would become implied, exactly as eval.ft(F(a), CS) does in 

our implementation of the trivial bounding method. Next, in the proposed bounding 

method lb = max{0,if(a) — |e|, 77(e) — |F(a)|} and ub = min{d(a), 77(e)} are computed for 

each active e, and d(b) for the successors b of a associated with e is obtained by calling 

comp.d(e, lb, ub, CS') once. Since a is an up state, d(a) = 1. Furthermore, 0 < 77(e) < 1 

and |e | , |F(a) | > 1. Then, lb - 0 and 0 < ub < 1, with ub = 0 only if 77(e) = 0. 

Therefore, if 77(e) > 0, the call comp.d(e, 0,1, CS') again involves traversing up the fault 

tree following the nodes which would become implied, exactly as eval.fi(e, CS') does 

in our implementation of the trivial bounding method; if ub = 0, comp.d returns 0 

without traversing the fault tree. Therefore, for the particular case L — 1 the effort in 

the proposed bounding method associated with the computation of the lower bounds for 

the failure distances from states is at most equal to the effort in our implementation of 

the trivial method associated with the evaluation of the fault tree. 

http://eval.fi
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Figure 4.6: Architecture of the first example. 

4.3 Analysis and Comparison 

In this section we analyze the proposed bounding method by means of two large examples 

representing the following two scenarios: 

1. the fault tree satisfies the conditions of Theorem 4.3, 

2. the fault tree does not satisfy the conditions of Theorem 4.3 and L > 1. 

In both examples the state o without failed components is the initial state and the CTMC 

X' is solved using the randomization technique [49]. 

The bounds obtained with the proposed bounding method are compared with those 

obtained with the trivial method and the method described in Chapter 3. The lower 

bound is the same for the three methods. 

The first example, adapted from [61] and corresponding to scenario 1, is a system 

including 114 components whose architecture is shown in Figure 4.6. The system is made 

up of three computing modules CMi, 1 < i < 3, one of which is spare. Each computing 
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module CM i includes three memory modules MMij, 1 < j < 3, three identical CPU 

chips CPUCi and two identical port chips PTCi. One memory module, one CPU chip 

and one port chip are spares. Each memory module MMij is made up of ten identical 

memory chips MCij, two of which are spares, and one interface chip JC,-,j. All memory 

chips within the same memory module are identical. The memory chips and interface 

chips included in each memory module, and the CPU and port chips included in each 

computer module are different and have different failure rates. Active memory chips 

MC i j and active interface chips ICij fail, respectively, with rates \MC3 and ^Wj ; active 

port chips PTCi and active CPU chips CPUCi fail, respectively, with rates Aprc¿ and 

^CPUCr Spare chips fail with rates v x \MC}, V X A/C,-, V X Aprc;, and v x XCPUCH 

being v, 0 < v < 1 a dormancy factor. Recovery is hierarchical. A fault in a memory 

chip is covered with probability Cue- A failure of a memory module, CPU chip and port 

chip is successfully covered with probabilities CMM, CCPUC and Cpjc, respectively. The 

failure of a computing module is covered with probability CQM-

Coverage faults are modeled by introducing "recovery" components. In this exam­

ple, an uncovered fault in a memory chip of memory module MMij is propagated to a 

recovery component RMMij; an uncovered failure of a memory module MM{¿, a CPU 

chip CPUCi o r a port chip PTCi is propagated to two recovery components RCMi; 

an uncovered failure in a computing module CMi is propagated to four recovery com­

ponents RSYS. Memory module MMij is operational if at least eight memory chips 

MCij, the interface chip ICij and the recovery component RMMij are unfailed. Com­

puting module CMi is operational if at least two memory modules MMij, two CPU 

chips CPUCi, one port chip PTCi, and one recovery component RCMi are unfailed. Fi­

nally, the system is operational if at least two computing modules CMi an one recovery 

component RSYS are unfailed. Components of non-operational memory modules and 

non-operational computing modules do not fail. 

The fault tree of the first example has 37 inputs, all of which are modules, 25 gates, 

13 of which are modules, and 73 edges. Note that the generalization to component classes 

allows to exploit the symmetries of the system thus reducing the number of inputs of the 

fault tree from 133 (114 components plus 19 fictitious components) to 37. The fault tree 

is defined by the following logical expressions: 

FMitj = Tij V Uij V Vi j , 1 < i, j < 3 , 

FMMi,i,k = FMij A FMitk , 1 < ¿ < 3 , 1 < / < A ; < 3 , 

FCi = FMMiti,2 V FMMi,ifl V FMMia¿ VWi V X{ V Y-, 1 < i < 3 , 

FCCij = FCi AFCj, 1 < i < j < 3 , 
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gr = Z V FCCia V FCCh3 V FCC2¿ , 

the bags associated with the inputs of the fault tree being b(T,j) = MC,j[3], b({7t)j) = 

ICij[l], b(Vij) = RMMitj[l], b(Wi) = CPUd[2], b(Xt) = PTC,[2], b(V-) = ÄCM,[2], 

and b(Z) = RSYS[4]. 

The example has 2,701 minimal cuts and L = L = 4. The numerical results 

have been obtained for the following parameter values: XMCI = 10~ 7h - 1 , XMC2 = 

2 x l O ^ h " 1 , AMC3 = 3 x 10 - 7 h _ 1 , A /Cl = 2 x l O ^ h " 1 , A/c2 = 4 x 10-7h~1 , A/c3 = 

6x lO"7h"1 , Xcpuci = 6x 10"7 h"1, XCpuc2 = 1.2x 10~6 h"1 , XCpuc3 = 1.8x 10"6 h"1, 

XpTd = 6 x 10- 7 h- 1 , XpTCi = 1.2 x l O - H - 1 , XpTc3 = 1.8 x l O ^ h " 1 , u = 0.2, 

CMC = 0.99, CMM = 0.95, Ccpt/c = 0.99, CPTc = 0.97, and CCM = 0.95. 

The second example, corresponding to scenario 2, is the system made up of 60 

components whose architecture is sketched in Figure 4.7. The system includes four 

processing clusters that communicate through two independent double-ring networks A 

and B. Processing cluster ¿, 0 < i < 3 includes three identical processing units PU{. 

Network A includes eight nodes NA{, 0 < i < 7 and direct (clockwise) links DA{ and 

reverse (counter-clockwise) links iL4¿, linking nodes NAi and NA^+1^mo¿ 8 . The structure 

of network B is the same as that of network A and its nodes, direct links and reverse links 

are called, respectively, NBi, DBi and RB{. Processing clusters can communicate using 

one of the configurations for network A or B described in the following. The operational 

configuration of the system includes two processing units from the processing clusters 

with two or three unfailed processing units, one processing unit from the processing 

clusters with one unfailed processing unit, and the components of network A or B, with 

priority given to network A, required to build one of the operational configurations of 

the networks described next. The network configuration that is tried first is a direct 

ring including all nodes and direct links. The second configuration that is tried is a 

reverse ring including all nodes and reverse links. The third configuration is used when 

parallel direct and inverse links i are failed and includes all nodes and links except the 

two failed links. The last configuration, which is used when, for instance, node i fails, 

includes all nodes except node i and all links except those between node i and nodes 

(i ± 1) mod 8. The components included in the operational configuration of the system 

are called active. Active processing units, active nodes and active links fail with rates 

Xpui Ajv and A¿, respectively. Inactive components fail with rates v x Xpu, v x Ajv 

and v x A¿, where i>, 0 < v < 1 is a dormancy factor. Components of non-operational 

network A do not fail. Coverage is assumed perfect for link faults. Faults in processing 

units and nodes are covered with probabilities Cpu and CN, respectively. Coverage faults 

are modeled by adding three recovery components RSYS and propagating to them all 
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PUiß PUi/2+1 

Figure 4.7: Architecture of the second example. 

any uncovered fault. The system is operational if each processing cluster has at least 

one unfailed processing unit, all processing clusters can communicate using one of the 

given configurations of network A or B, and at least one recovery component RSYS is 

unfailed. 

The fault tree of the system has 53 inputs, all of which are modules, 40 gates, 4 

of which are modules, and 764 edges. The fault tree can be described by the following 

expressions: 

7 

DRA = \/(SiVT¿)t 

:=0 
7 

DRB = V(VfVWi) . 
i=0 
7 

RRA = \f(SiwUi)! 

»=o 
7 

RRB=y(ViVXi)t 

•=o 
7 7 

FRAi=ySjv\/{TjVUj), 
J=0 j=o 

7 7 

FRBi=yVjvy(WjVXj), 
3=0 j-o 

3& 
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7 7 

i=o j=o 
J^' J5¿¿,(t-l)mod 8 

7 7 

¿=o j=o 
i # * J5¿í,(l '-l)mod S 

7 7 

tf£T¿ = 0 A 4 A RRA A / \ ^Ä4t- A f\ FRA¡ , 
! = 0 t'=0 

7 7 

iV£T5 = DRB A £ # £ A / \ FRBi A / \ F ü ß ^ , 

NET = NETA A NETB, 
3 

5r = ^ rvzv \ /y ¿ , 
»=o 

the bags associated with the inputs of the fault tree being b(5,) = iVA,-[l], b(Tt) = ZM,[l], 

b(Ui) = RAi[l], b(Vi) = NBi[l), b(Wi) = DBi[l], b{X{) = Äß,[l], b(Y¿) = P£/,[3], and 

b(Z) = ASTS[3]. 

The second example has 32,405 minimal cuts and L = 3, L = 2. The numerical 

results have been obtained for the following parameter values: \pu = 1 0 - 6 h - 1 , Ajv = 

5 x 10- 7h" 1 , XL = 3 x l O ^ h " 1 , v = 0.2, CPU = 0.99 and CN = 0.99. 

We have considered K = 2, 3, 4, and 5 for the first example and K = 2, 3 and 4 

for the second one. Figures 4.8 and 4.9 show the unreliability bounds obtained using the 

proposed bounding method for the first and second examples, respectively, as a function 

of time in years1. The bounds degrade as time increases. In both examples, however, the 

proposed bounding method achieves tight bounds for mission times up to 5 years using 

affordable numbers of states (respectively, 114,243 and 251,920). 

In Tables 4.3 and 4.4 we compare, for the two examples and several mission times, 

the relative unreliability band obtained with the proposed bounding method, urb(t) = 

([ur(i)]u t l- [ur(í)]ib)/[«r(í)]ib against that obtained with the method proposed in Chap­

ter 3, urb'(t) = ([wr(i)](lb- [ur(f)]ib)/[tir(i)]ib and that obtained with the trivial method, . 

urb"(t) = ([ur(í)]*b-[ur(í)]ib)/[ur(í)]ib. The band urb'(t) is not shown in Table 4.3 since 

for the first example [ur(t)]'ub = [ur{t)]ub and, therefore, urb'(t) = urb(t). The proposed 

bounding method clearly outperforms the trivial method. Thus, for mission times up to 

1 year, the ratio urb" (t) / urb{t) is greater than or equal to 21 for the first example and 30 

1 1 month = 730 h and 1 year = 8,760 h. 
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Figure 4.8: Unreliability bounds for the first example as a function of time in years and 

the value of K. 
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Figure 4.9: Unreliability bounds for the second example as a function of time in years 

and the value of K. 
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Table 4.3: Relative unreliability band obtained with the proposed bounding method, 

urb(t) (top) and with the trivial method, urb"(t) (bottom) for the first example. 

time 

1 month 

2 months 

6 months 

1 year 

2 years 

5 years 

K (states) 

2 (325) 3 (2,922) 4 (20,256) 5 (114,243) 

5.6074 x 10~3 

1.9121 x 101 

1.4916 x 10"2 

1.9310 x 101 

8.8675 x lO"2 

2.0721 x 101 

3.0844 x 10"1 

2.4590 x 101 

1.1610 

3.7307 x 101 

7.9242 

9.5814 x 101 

9.0751 x 10~4 

5.3599 x lO"1 

3.4877 x 10"3 

7.5534 x lO-1 

3.0034 x lO"2 

1.6262 

1.1625 x lO-1 

2.9683 

4.4492 x 10"1 

6.0617 

2.6360 

1.9943 x 101 

2.4718 x 10~5 

5.9234 x 10"3 

1.1790 x 10"4 

1.4218 x lO"2 

1.7085 x 10"3 

7.0069 x lO"2 

1.0286 x lO"2 

2.1744 x 10_1 

6.3144 x lO"2 

7.2137 x 10"1 

6.0118 x 10"1 

3.6513 

2.4558 x 10"7 

5.1234 x 10~5 

1.7226 x 10"6 

1.9082 x 10~4 

5.1856 x 10-5 

2.0870 x lO-3 

5.2415 x 10"4 

1.1154 x lO-2 

5.5772 x 10"3 

6.4111 x lO-2 

1.0547 x 10"1 

6.0539 x 10"1 

for the second one. In addition, the proposed method allows to compute bounds that are 

almost as tight or even tighter than those given by the trivial method using significantly 

fewer states. Thus, for the first example and t = 2 years, the relative band obtained by 

the proposed method with K = 4 (\G\ = 20,256) is better than that obtained by the 

trivial method with K = 5 (|G| = 114,243). For the second example and f = 2 years, 

the relative band obtained by the proposed method with K = 3 (\G\ = 23,231) is only 

slightly worse than that obtained by the trivial method with K = 4 (|G| = 251,920). 

The bounds looseness introduced by the proposed method with regard to the method 

described in Chapter 3 is reasonable. For the first example, urb(t) — urb'(t) because 

the fault tree satisfies the conditions of Theorem 4.3; for the second example, the use of 

minimal cuts to compute exact failure distances less than halves the relative unreliability 

band. 

In Table 4.5 we give the CPU time in seconds to generate the CTMC and compute 

the unreliability bounds for t = 5 years for both examples and the three methods. The 

CPU time has been measured in a 167 MHz, 128 MB SPARC Ultra 1 workstation. With 

respect to the trivial method, our method introduces a CPU time overhead due to the 

computation of lower bounds for failure distances from states only when L > 1. This 
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Table 4.4: Relative unreliability band obtained with the proposed bounding method, 

urb(t) (top), with the method described in Chapter 3, urb'(t) (middle) and with the 

trivial method, urb"(t) (bottom) for the second example. 

time 

1 month 

2 months 

6 months 

1 year 

2 years 

5 years 

K (states) 

2 (1,383) 3 (23,231) 4 (251,920) 

8.0995 x lO"6 

4.2519 x lO"6 

3.4966 x lO"3 

6.4332 x 10"5 

3.4014 x lO - 5 

1.3816 x lO"2 

1.6870 x lO"3 

9.1670 x 10"4 

1.1952 x 10"1 

1.2903 x lO"2 

7.2810 x lO"3 

4.5153 x lO - 1 

9.4070 x lO - 2 

5.6666 x 10"2 

1.6114 

1.0991 

7.6243 x 10"1 

7.1970 

2.7765 x 10~8 

1.9822 x lO"8 

1.0013 x 10~5 

4.3975 x 10~7 

3.1450 x 10~7 

7.9310 x 10~5 

3.4190 x 10-5 

2.4625 x 10~5 

2.0576 x lO - 3 

5.1391 x HT4 

3.7395 x lO"4 

1.5491 x lO"2 

7.2234 x lO - 3 

5.3589 x lO - 3 

1.0930 x 10-1 

1.8392 x 10-1 

1.4348 x lO - 1 

1.1300 

5.9186 x HT1 1 

5.1065 x 1 0 - " 

2.1062 x lO - 8 

1.8731 x 10~9 

1.6169 x 10~9 

3.3356 x 10~7 

4.3531 x 10-7 

3.7652 x lO - 7 

2.5930 x 10~5 

1.3015 x 10~5 

1.1291 x lO"5 

3.8967 x 10~4 

3.6184 x lO - 4 

3.1572 x lO - 4 

5.4737 x lO - 3 

2.1999 x 10~2 

1.9505 x lO - 2 

1.3744 x lO - 1 
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Table 4.5: CPU time in seconds to generate the CTMC and compute the unreliability 

bounds for t = 5 years for both examples using the proposed bounding method (top), 

the method described in Chapter 3 (middle) and the trivial method (bottom). 

example 

first 

second 

K 

2 

0.271 

1.72 

0.197 

3.21 

16.4 

2.42 

3 

2.12 

4.38 

1.52 

44.8 

68.8 

36.4 

4 

14.8 

29.3 

11.0 

510 

998 

427 

5 

90.4 

268 

73.2 

— 

overhead is reasonable, ranging from 20% in the second example with K = 4 to 40% in 

the first example with K = 3. Regarding the method proposed in Chapter 3, the method 

proposed in this chapter is always faster. 

For the first example, the proposed bounding method should be the method of choice 

since it is faster than the method described in Chapter 3 and gives the same unreliability 

bounds. For the second example, at the price of introducing some looseness in the bounds, 

the proposed bounding method is faster than that described in Chapter 3. In addition, 

the method described in Chapter 3 has a significant memory overhead due to storage of 

minimal cuts, so the proposed method is also the method of choice. 

4.4 Conclusions 

In this chapter, we have developed a bounding method for the unreliability at time t, 

ur(t), which exploits the concept of failure distance, but does not require the knowledge 

of the minimal cuts of the fault tree of the system. The method is based on lower bounds 

for failure distances that can be computed inexpensively on the fault tree. The method 

can be preferable to both the trivial method and the method proposed in Chapter 3 with 

the same generated subset of states in several cases. Thus, the proposed method gives 

tighter bounds than the trivial method with a moderate CPU time overhead if L > 1 

and without any overhead if L = 1. Regarding the method described in Chapter 3, the 

proposed method seems to be faster and in some cases it gives exactly the same bounds. 
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In many other cases, though, the proposed method gives bounds that are looser than the 

bounds given by the method proposed in Chapter 3. However, that method requires the 

knowledge of the minimal cuts of the system, whose computation can be infeasible in a 

reasonable amount of time. Also, the number of minimal cuts can be very large and, in 

those cases, the method proposed in this chapter may be more efficient from a memory 

usage point of view. 



Chapter 5 

Availability Bounds of Repairable 

Systems using FD 

Chapters 3 and 4 have been devoted to develop bounding methods for the unreliability 

of non-repairable systems. In this chapter we develop a method to upper bound the 

steady-state unavailability, UA, for repairable systems. The method requires the com­

putation of failure distances. The method developed here takes a particular case of the 

method described in [22] as starting point and uses one of the state exploration algo­

rithms developed in [20]. The method proposed in [22] was developed for the same class 

of models considered in this dissertation except that it assumed that repairs involved just 

one component. We begin by extending that method and showing that it allows group 

repair, which, as it has been commented in Section 1.5, is an important generalization. 

Secondly, we improve that method by deriving failure rate bounding structures that are 

typically better and never worse than the ones used in [22]. Next, we review the state 

space exploration algorithm developed in [20] we use in our method. Finally, we analyze 

the performance of the proposed bounding method and compare it with the performances 

of the methods described in [22] and [70]. 

5.1 Extension to Group Repair 

Let Ü be the state space of the CTMC modeling the system. The method proposed in 

[22] obtains bounds for the steady-state unavailability generating a subset, G, of Q. That 

method also uses a cloning technique that consists in the modification of Q by adding to 

U = Q — G clones of states of G with more than F failed components. Note that the 
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cloning technique does not modify UA. In this section we review that method for the 

particular case F — 0, i.e. when all states of G but o (the only state of Q, without failed 

components) are cloned, and show that it allows group repair. 

We start by introducing some notation. Let X = {X(t);t > 0} be the CTMC 

modeling the system with the state cloning technique applied and let Q be the state 

space of X. Throughout the section we will denote by A,j, i,j € f2 the transition 

rate from state i to state j , by At- = S i g n ^t'j) ' € ^ the output rate of state ¿, and 

by ^t,B = X^jeB^î'ji • É fií ß C !î the transition rate from state i to subset B, all 

referred to X unless stated otherwise. We will also consider a number of transient 

CTMCs Y. Each such CTMC Y has a state space of the form B U {a}, where all 

states in B are transient and a is an absorbing state, and has a well-defined initial 

probability distribution with P[Y(0) £ B] = 1. We will denote by T(Í,Y), i £ B 

the mean time spent by Y in i before absorption (r(i, Y) = J"0°° P[Y(t) = i]dt). We 

will also use the notation T(B',Y) = J2ieB' r(z>^r)i B' C B. It is well known (see, 

for instance, [13]) that the mean times to absorption vector r = (r(i, F)) , e£ is the 

solution of the linear system TTA = — qT, where A is the restriction of the transition 

rate matrix of Y to B and q = (P[Y(0) = i])ieB- The expected number of times that 

a transition (i,j) with rate AtJ- is followed is ßij = r(i , F)A,j. The result follows easily: 

W = Jo°° p[Y(0 = i\\A = Ati /0°° P[Y(t) = i]dt = \ijT(i, Y). 

Consider the regenerative behavior of X defined by the times at which X hits state 

o from U. Let To and Tu be, respectively, the contributions of the subsets G and U to 

the mean time between regenerations. Let CG and Cjj be, respectively, the contributions 

of the subsets G and U to the mean down time between regenerations. Let [ïi/]ub be an 

upper bound for Tu and let [C[/]ub be an upper bound for Cu- Then, we have [22] the 

following lower and upper bounds for the steady-state unavailability UA: 

[UA]]h= Ca t ( 5 J ) 

J-G + [J-Ulub 

r , M i CG + [Cu]ub ,_9v 
[UA\ub = r 1 . (5.2) 

J-G + L̂ C/Jub 

Let D be the subset of down states of X and let YG be the transient CTMC with 

state space G U {a} and initial state o, built from X by directing to a transitions from 

states in G to states in U. The quantities TG and CG can be computed from the mean 
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m) m) 

(a) 

Figure 5.1: State transition diagrams of the transient CTMCs Y' (top) and Y (bottom) 

of Lemma 5.1. 

time to absorption vector of YQ, (T(i,YG))ieG, as 

TG = J ] r ( i > y G ) , (5.3) 
ieG 

CG= Y. T^YG)- (5-4) 
ieGnD 

In the following we will denote by C, N and MC the bag of component classes, the 

number of components and the set of minimal cuts of the system, respectively. We will 

also denote by FC the set of distinct cardinalities of the failure bags of the system and 

by E{, i € FC the set of failure bags e, e 6 E with cardinality i. Let Uk be the subset 

of U including the states with k failed components. Let YUk be a transient CTMC with 

state space {u\,..., UN} U {a}, initial state u^ and state transition diagram like the one 

shown in Figure 5.1, b: there is a transition with rate #(1) from u\ to a, a transition 

with rate g(k), 2 < k < N from u¿ to u^-i, and, for each i € FC, i < N — k, a transition 

with rate /,• = YleeE ^ub(e) from Uk to Uk+i- The upper bound [T[/]ub is 

N 
[TuU = J2nkT(k), (5.5) 

fc=i 

where 

n- = YlT(h YG) \ijjk (5.6) 
ieG 
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is the probability that X with initial state o will enter U through subset Uk and T(k) 

is the mean time to absorption of YUk. An efficient procedure for computing T(k), 

k = 1 , . . . , N is described in [22]. 

Next, we prove the correctness of [T[/]ub when repairs may involve an arbitrary 

number of components. Let N' < N and let Y' = {Y'(t); t > 0} be a transient CTMC 

with state space {u l 5 . . . , «# '} U {a}, initial probability distribution P[Y'(0) = «¡] = TT¡, 

1 < i < N', J2i=i ""»' = 1, and the state transition diagram shown in Figure 5.1, a: there 

is a transition with rate g¡(k), 1 < k < N', 1 < i < k from uk to t/fc-i, a transition 

with rate gk(k), 1 < k < N' from uk to a, and a transition with rate //(&), i < N' - k, 

1 < k < N' from uk to uk+i. Let Y = {Y(t); t > 0} be a transient CTMC with state 

space {« i , . . . , ujv} U {a}, initial probability distribution P[Y(0) = ut] = 7r¿, 1 < i < iV', 

P[y(0) = u,] = 0, N' < i < N, and same state transition diagram as YUk (the one shown 

in Figure 5.1, b). We have the following result. 

Lemma 5.1 Assume fj > 0, fj > /j(¿), 1 < * < N' and 0 < g(i) < £j=iffj(0> 

1 < i < N'. Then, T{UUY) > T{UUY'), \<i<N'. 

Proof The proof is by induction on k. We will use the balance equation applied to 

a subset of states of a transient CTMC, which states that the initial probability of the 

subset plus the expected number of entries in it is equal to the final probability of the 

subset plus the expected number of exits of it. Note that the states ut-, 1 < i < N of Y 

and the states ÍÍ¿, 1 < i < N' oí Y' are transient and, therefore, have final probabilities 

equal to zero. 

Let Ty = r(u,-,y) and T¡ = T(UÍ,Y'). The balance equation applied to the subset of 

states ufL^i of Y' yields 

N' 

1 = E r^, ' (0 , (5-7) 
t= i 

T, _ l-E^r¡g¡(i) 
g[(l) • ( 5-8 ) 

The balance equation applied to the subset of states U^u,- of Y yields 

1 = ng{l), (5.9) 

n = j iy . (5.10) 

Using (5.8), T[ > 0, 1 < i < N', g(l) < g[(l) and (5.10), 

r i ' - ^ ï ) - ^ ) = r i ' 
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which proves the result for k = 1. Next, we assume r[ < r¿, 1 < i < k — 1, k > 2 and 

show r'k < Tfc. The balance equation applied to the subset of states U^T^u,- of Y' yields 

k-l N' t - 1 k-l k-l N'-i 

E-.+E^ E sK^E^ 'w+E^EW-
i = l i=k j—i—k+1 t = l t = l j—k—i 

Using 1 = E-Ji1 ÍT¿ + E S * ** a n d (5-7)> 

JV' k-l AT' i - l N' k-1 N'-i 

i -E^+^E^)+ I N £ ^w = i-E^i'w+E^ E #o. 
t = fc j = l t = f c + l j = t —fc+1 t = fc 1 = 1 j = k — i 

ri _ ¿2i=k ni ~ 2-/i=fc+i r¿ 2Jj=i-fc+i g j (0 + 2-/i=i r¿ 2Jj=fe-i / j ( 0 

Zj=i9j(k) (5.H) 

rL = 

Similarly, applying the balance equation to the subset of states Ui=^U{ oí Y and using 

1 = ZU *i + £ £ * *¿ and (5.9) gives 

2^i=A: ^ + ¿ J I = 1 "«' L·j-k-i Jj / r ION 
T1 = iw • (5'12) 

Finally, using (5.11), r[ > 0, 1 < i < N\ the induction hypothesis, fj > 0, fj > ñ{i), 

l<i< N', N' < N, g{i) < £ } = 1 9j{i), 1 < * < W, and (5.12), 

v-^A" „ , -r^k-1 ^ -c^N'-i f ir^N' „ , v-^fc-1 , . v-^A/-¿ f 
L·i=k ni + 2^t=i Ti L·j=k-i Jj < 2^i=fc "t T 2^i=i ri' L·j=k-i Jj 

2J:=fc 7r« + E t = l T« Z/j=fc-i /?' r—i 
7TT = Tk . U 

The remaining of the proof is based on the concept of exact aggregation for transient 

CTMCs. The following result, which defines the exact aggregation of a transient CTMC, 

is proved in [22, Theorem 3]. 

Theorem 5.1 (Exact aggregation for transient CTMCs) Let Y = {Y(t)\ t > 0}-

be a transient CTMC with state space B U {a}, where all states in B are transient and 

a is an absorbing state, transition rates A,,j, i € B, j Ç. B U {a}, i ^ j , and initial 

probability distribution P[Y(0) = i] = TT,-, i G B, YlieB K¡ — 1- Assume r(i, Y) > 0 for ail 

i e B. Let B\ U Bi U • • • U Bn be a partition of B. Then, there exists a transient CTMC 

Y' = {Y'(t); t > 0} (the exact aggregation of Y) with state space {61,62,.. -,bn} U {a}, 
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transition rates A ' ^ = £ i e B j k w* A i iB | , 1 < A, / < n, A; ̂  /, and A ' ^ = £ i 6 B j k «>* A,-,«,, 

1 < k < n, with u!¡ > 0, YlieB ui ~ 1» and initial probability distribution P[Y'(0) = 

h] = K = T,ieBk
 ni> such that Tih,Y') = T{Bk,Y). 

Let YJJ, s G U be the transient CTMC with state space Us U {a}, Us including the 

states reachable from s before exit from U, and initial state s, built from X by directing 

to a the transitions from states in Us to o. Let Tv be the mean time to absorption of 

Y{j. Noting that J^Í^G
 r(í> YG)^Í,J 1S the probability that X with initial state o will enter 

U through state j and grouping the contributions of the states j G U according to the 

subsets Uk they belong to, we can write 

Tu = EET( i 'yG)A · ·^ = EET(i·yG)A,·lj2é 
jeUieG ieGjeu 

N 

i€G fc=l s€Uk 

Theorem 5.2 Tu < [Ï£/]ub> where [Tu)ub is given by (5.5) and (5.6). 

Proof Let s G Uk and consider the exact aggregation Y¿ of Y¿ under the partition 
N' 

Ufjji/f, where Uf is the subset of U¡ including the states reachable from s before exit 

from U and 1 < N's < N. The state transition diagram of Y¿ looks like the one depicted 

in part a of Figure 5.1, with N' replaced by N's. Using the notation of the figure we have, 

by Theorem 5.1, 

W = Eu',sA«.f«+>- i<i<Kj<N'.-i, 
ieu> 

í/í(0=Ewí , ,Aw->' 1<líK 3<i, 
i€U> 

ieu-

and 

T{U;,Yu) = T{ui,Yu'). (5.14) 

The transition rates Atit/(+j, i G Uf are associated with failure bags involving j 

components and, therefore, are upper bounded by fj. The repair rate of i G Uf, A,)0 + 

!Cj=i A«,£/i-¿i i s l ° w e r bounded by #(/). Then, using u>j's > 0, i G £/* and ^ ¡ ^ . u , - ' 5 = 1, 
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we have 

i i-i z-i 

Z>i(0 = 9\{l) + Eg'jii) = E ^SA¿,0 + £ 53 "i^w-i 
i = i j = i ¿et;,* i = i ¿et;/ 

= E w.!'s ( A «>+E ^ i - i ) ^ E "!•'*(') = *(')• 
¿et/,s j = i ieut> 

Since P p # ( 0 ) = ti*] = 1 and N'S < N, Y¿' and YUk fulfill the requirements of Lemma 5.1. 

Then, using (5.14), N's < N and the lemma, 

Ni N', N's N 

n = E7"^-^) = Er(u»-'y^') ̂  Er(u'>yu*) ^ E^- 1 "*) = T^ • 
¿=i ¿=i ¿=i ¿=i 

Finally, using (5.5), (5.6) and (5.13), 

N N 
Tu ^ E E E r(i,YG)XiiST(k) = EE r(¿>yG)A¿,t4r(¿) 

¿6G fc=l s€t;fc ¿€G A;=l 
N N 

= ^Jr(¿ ,FG )A l AT(fc) = j > T ( * ) = [3VU-D 
fc=l ¿€G A=l 

Let £/jt|(i be the subset of U including the states with k failed components and failure 

distance d. Let L = mmmçMc |w| be the redundancy level of the system. The domain 

1Z of pairs (k, d) for which Uk,d may be non-empty is defined by [22] 

Tl = {(jfc, d):l<k<N, max{0,1 - Jfe} < d < min{£, N - k}}. (5.15) 

Let C\j be the mean down time to absorption of Yy. The upper bound [Cf/]ub is 

[CuU= E *k¿C(k,d), (5.16) 

where 

Wk'd = E T(i» Ya)Kukld (5-17) 
¿€G 

is the probability that X with initial state o will enter £/ through subset Uk,d, and C(fc, d) 

are upper bounds for Cfr, s £ Uk,d-

The upper bounds C(k,d), (k,d) € 1Z are computed using an iterative procedure. 

The procedure starts with 

N 

C(k, d) = C(k) = J2 Hm, YUk ), (5.18) 
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for (all (k, d) £ U) C{k, d) = C(Jfc); 
d o { 

e' = 0; 
for (k=l; k<N; k++) 

for (d = max{0, L - k}; d < min{L, N - k}; d++) { 
Compute C'(k,d) using (5.22); 
if (C'(k,d)<C(k,d)) { 

e' = max{(', (C(k, d) - C'{k, d))/C'(k, d)}; 

C(k,d) = C'{k,d); 

} 
} 

} while (e' > e); 

Figure 5.2: Algorithm to compute the C(k,d) bounds. 

and improves the bounds using potentially better bounds C'(k,d) until no significant 

improvement is achieved. Let 

W = {{k, d, i, r) : (k, d) <=Tl,ie FC, i < N - k, 

ma,x{Q,d-i} < r < mm{d,N - k - i}} . (5.19) 

Let Fitr(k,d), (k,d,i,r) € 11' be upper bounds for ^/,u0<</,<ri/fc+I·id,, I € Uk,d, i.e. for the 

total failure rate involving i components from any state in U with k failed components and 

failure distance d to states with failure distance < r. Let Jm (k, d, i) = max{0, k+d+i—N} 

and JM{Ú, i) = min {d, ¿} and let 

fij{k, d) = Fitd-j(k,d) - Fj.d-j-i (k, d) , Jm(k, d, i) < j < JM{d, i) , 

(5.20) 

fi,jM(d,i)(k>d) = Fi,d-JM{d,i)(k, d). (5.21) 

The upper bounds C'{k,d), (k,d) € 11 are computed using 

C'(k, d)=^ + Ik>l [Id>L-kC{k -l,d) + Id<L-kC(k - 1, d+ 1)] 

Ju{d,i) 
+ 7ñA J2 É fij(k,d)C(k + i,d-j), ( 5 2 2 ) 

yK ' ieFC 3=Jm(k,d,i) 
i<N-k 

where Ic denotes the indicator function returning the value 1 if condition c is satisfied 

and the value 0 otherwise. The algorithm to compute the C(k, d) bounds is given in 

Figure 5.2. The parameter e is a tolerance factor that determines when the improvement 

is small enough for the algorithm to stop. 
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In [22, Theorem 5] it is proved that C\j < [Cu]ub provided that C(j < C(k,d), 

s G Uk,d- In the following we prove that if Fi,r(k,d), (k,d,i,r) G TZ', and Fi¿(k,d), 

{k,d,i,d) G TZ' are decreasing on d, then the bounds C(k,d) computed by the algorithm 

of Figure 5.2 upper bound Cy, s G Vk,¿ when repairs may involve an arbitrary number 

of components. The proof consists of a sequence of two propositions, a lemma and a 

theorem. In the following, we will denote by RC the set of distinct cardinalities of the 

repair bags of the system. 

Proposition 5.1 Assume Cfj < C(k,d), s G £4,<¿ and that C(k,d), (k,d) G TZ are 

increasing on k and decreasing on d. Then, C[j < C'(k, d), s G Uk,d-

Proof Let s G Uk,d- Cfj is equal to the mean down time in s, if d = 0, plus the mean 

down time from the next visited state m, if m G U. Let us discuss now to which subsets 

Uk',d> the state m may belong to. Consider first repair transitions involving i, i G RC, 

i < k components. These transitions lead to states with k' = k — i failed components 

whose failure distance is neither smaller than d nor larger than min{L,ei+ i'}. Also, if 

i = k, the reached state is o ̂  U. Therefore, only repair transitions involving i G RC, 

i < k — 1 components have to be considered and they may lead to m G Uk-i,d+j, 0 < j < i. 

By imposing (k-i, d+j) G 7£ we get max{0, L-k+i-d} < j < min{¿, L-d}. Transitions 

associated with failure bags e G Ei, i G FC, i < N - k can be analyzed in a similar way 

by noting that they lead to states with k + i failed components whose failure distance is 

neither larger than d nor smaller than rnax{0, d - i}. Imposing (k + i,d- j) G TZ yields 

Jm(k,d,i) < j < JM{<1,Í)- Based on the previous discussion and denoting J'm{k,d,i) = 

max{0, L-k + i-d} and J'M(d, i) — min{¿, L - d}, we can write 

C£ = Ti(d) + T2{k, d, i) + T3{k, d, i), (5.23) 

T1(d) = 
A, ' 

T2(k,d,i)= E E E x ^ ' 
i<k-l 

JM(<Í,Í) , 

T3(k,d,i)= E E E x 1 ^ -
iÇFC 3=Jm(k,d,i)rn&UkJfi,d-i 

i<N-k 

Since Xs > g(k), 

TM<^y (5-24) 
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If k - 1, T2(k,d,i) = 0. Assume k > 1. Using Cff < C(k',d'), m G t4',d', the 

fact that C(k',d') are increasing on fc' and decreasing on d', and noting that Xs > 

i=J'm(k,d,i) ¿sTneUk_ijd+3
 As,m, 

T 2 ( M , 0 < E E c{k-i,d + j) E i n 
1GÄC J=J!n(kÂ,i) n»€l/*_,-i<J+>

 S 

t'<fc-l 

* E C(*-M+J;(M,O) E E x 1 

i<k-i 

= E C(¿r-M + max{0,I,-£ + ¿-(¿}) J^ £ 2^L 
i£RC j=J^(k,d,i)m€Uk.i¡d+j 

i<k-l 

<C(Jb-l,d+max{0,I-ifc + l-d}) E E "f2 

j=J^n(k,d,i) meUk-i,d+j 

< C(k - 1, d+ max{0,1 - k + 1 - d}). 

If d > L - k, max{0,L - k + 1 - d} = 0 and T2(fc,d,i) < C(k - 1, d); if d < Z, - k, 

since (k, d) € 72. implies d = £ — A, we have max{0, L — A-f l — d} = 1 and, therefore, 

T2(A;, d, i) < C(k - l ,d + 1). To summarize, 

r2(A, d, i) < Ik>i{h>L-kC{k - 1, d) + Id<L.kC(k - l , d + 1)). (5.25) 

To bound T3(&, d, ¿),let us denote fij(s) = Xs,uk+iid_r Recalling that C™ < C(k+i, d-j), 

m Ç. Uk+i,d-j, 

Ju(d,i) . 

T3(k,d,i)< E E E ^c{k+i,d-j) 
ieFC j=Jm(k,d,i)meUk+itd_:¡ 

i<N-k 

v L 
» Xs 

ieFC 3=Jm(k,d,i) 
i<N-k 

E E ^ c ( * + , - , d - j ) . 

Let Fitr(s) be the sum of failure transition rates from s involving i components and leading 

to states with failure distance < r, i.e. Ft>(s) = Ylj~d-'r /»'j(s)» d — J M (d, i) < r < 

d- Jm(k,d,i). Clearly, Fi<r(s) < Fi<r(k,d). Note also that /,-,jM(<i,t)(*) = FiÀ_jM(dii)(s) 

and that / , j (s) = Fijd-j(s) - Fitd-j-i(s), Jm{k,d,i) < j < J A / K O -
 T h e n . u s i n g 

* 
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K > g(k), (5.20), (5.21) and the fact that the bounds C(k',d') are decreasing on d\ 

ieFC 
i<N-k 

JM(d,i)-l 

r3(M,f)< Yl 
zFC 

:N-

Fi,d-jM(d,i)is) 

E 
•j-Jm{k,d,t) 

Fi,d-j(s) - Fi,d-j-l(s) 
C(k + i,d- j) 

+ 

= E 
ieFC 

i<N-k 

Fi,d-jm(k,d,i)(s) 

C(k + i,d— JM(d, i)) 

C(k + i,d- Jm(k,d,i)) 

JM(d,i) 
Fi,d-j(s) + E 

j=jm(k,d,i)+i 

Fi,d-jm(k,d,i){k,d) 

(C(k +i,d- j) - C(k + i,d-j + 1)) 

* E 
ieFC 

i<N-k 

9(k) 
C(k + i,d- Jm{k, d, i)) 

JM(d,i) 

+ E 
Fi,d-j(k,d) 

= E 
j=Jm(k,d,i)+l 

JM(d,i)-l 

g(k) 
{C{k + i,d-j)- C(k + i,d-j + 1)) 

ieFC 
i<N-k 

E 
•j=Jm{k,d,i) 

Fj,d-j{k, d) - Fiid-j-i(k, d) 

9(k) 
C(k + i,d-j) 

+ ñéz^átlñC(k + i,d- JM(d, i)) 
9(k) 

= E 
ieFC 

i<N-k 

JM{d,i)-l 

E fi,j{k,d) 
C(k + i,d- j) 

+ 

•j=Jm(k,d,i) 

fijM(d,i){k,d) 

9(k) 

9(k) 

C(k + i,d— JM(d, i)) 

JM(d,i) 

= 77M E E fi,j(k,d)C(k + i,d-j). 
9[ ' ieFC j=Jm(k,d,i) 

i<N-k 

Finally, the result follows from (5.24), (5.25), (5.26), (5.23), and (5.22). D 

(5.26) 

Lemma 5.2 The bounds C(k), 1 < k < N defined by (5.18) are increasing on k. 

Proof The proof is by induction on k. Let X(k) = g(k) + T, .„„„ /,•. The bound C{k) 
k+i<N 

is equal to the mean time in u/t, if k > L, plus the mean down time from the next visited 



104 5 Availability Bounds of Repairable Systems using FD 

state. Thus, in view of Figure 5.1, b we can write 

C(N) = ~ + C(N-1), (5.27) 

cM=m+WJcik~1)+ s mc(k+ih 1<k<N- (5-28) 

i€FC 
k+i<N 

The case k = N is trivial since, from (5.27), C(N) > C{N - 1). Assume that C(k'), 

k<k'<N,l<k<N are increasing on k. Using (5.28), the definition of X(k) and the 

induction hypothesis, 

C(fc-l) = ^[A(*)C(fc)-/,,>£- E fiC(k + i) 
ieFC 

k+i<N 

(g(k)+ J2 fi)c(k)-h>L- J2 fiC(k + i) 
i£FC ieFC 

k+i<N k+i<N 

=c{k)-m-mLft(c{k+i)~c{k)ï (5-29) 

<c(k).u 

i^FC 
k+i<N 

Using (5.27) and (5.29) it is possible to define an efficient procedure to compute 

C(k), 1 < k < N. Let Au be the restriction of the transition rate matrix of the CTMC 

YUk to its transient states U^.x{u¿} and let qw be a column vector with component N 

set to one and all its remaining components set to zero. The mean times to absorption 

vector of YUk with initial state u^r, rjv = (T(W¡, ^ U *) ) I< ( <ÍV) is the solution of the linear 

system 

TJJAU = -ql. (5.30) 

Then, we solve (5.30), compute C(N) using (5.18), compute (5.27) C(N - 1) = C{N) -

l/g{N) and, finally, compute C{k), 1 < k < N - 2 using (5.29). 

Proposition 5.2 Assume that Fiir(k,d), (k,d,i,r) € TV and Fitd(k,d), (k,d,i,d) £ TV 

are decreasing on d. Then, the bounds C(k,d), (k,d) 6 TZ are increasing on k and 

decreasing on d. 

Proof Consider the algorithm that improves the bounds C(k, d) split into phases, where 

each phase includes the operations performed within the ¿-loop, and let C^m\k, d), m > 0 
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be the bounds C(k, d) available after phase m. We start by proving that the bounds are 

decreasing on d. The proof is by induction on m. For m = 0, C(°) (M) = C(k), which, 

trivially, are (non-strictly) decreasing on d. Assume that C^m'\k, d), 0 < m! < ra, m > 0 

are decreasing on d and let k' be the value of k for which the bounds are updated in 

phase m + 1. We have (5.22) that C'{k',d) only depend on C^m">{k,d), 0 < m' < m, 

k ^ k'. Using the induction hypothesis, this implies [22, Proposition 3] that C'(k',d) 

are decreasing on d. Therefore, since, by hypothesis, C^m\k',d) are decreasing on d, 

C(m+1\k',d) = min{C'(k',d),C^m\k',d)} are decreasing on d. 

Next, we prove by induction on m that the bounds C(k, d) are increasing on k. Let 

(k, d), (k — 1, d) G 71. For m = 0, using Lemma 5.2, 

C<°>(fc,d) = C{k) > C{k - 1) = Cl°\k -l,d). 

Assume that C^m \k, d), 0 < m' < m, m > 0 are increasing on k. Let k' be the value of 

k for which the bounds are updated in phase m + 1. Let (k' — l,d) € 1Z, which implies 

k' > 1 and d > max{0, L - k'+ 1} > L - k'. We have (5.22) 

c'{k''d) = W)+c(m){k'~hd) + W) £ ^ W ) ' 
\Ç~F C 

i<N-k' 
JM{<1,Í) 

A(k',d,i) = J2 fiAk',d)C{m'Hk' + i,d-j), mi<m. 
j=Jm(k',d,i) 

Using (5.20), (5.21) and recalling that C^m\k,d) are decreasing on d, 

JM{d,i)-i 

A(k',d,i) = J2 \.Fi¿-¡<*''d) - F ¿ . ^ - 1 ^'d)]C(m,){k' + i,d- j) 
j=Jm(k',d,i) 

+ Fitd_jM{d,i}(k',d)C^(k' + i,d- JM(d,i)) 

JM(d,i) 

J2 Fiid^(k',d)[C^(k' + i,d-j)-C^'Hk' + i,d-j + l)] 
j=Jm(k',d,i)+l 

+ Fi4_jm{k,4<i){k',d)C^{k' + i,d- Jm(k',d,*)) > 0. 

Therefore, C'(k',d) > C^m\k' — l,d). Using the induction hypothesis, this implies 

C(m+l>(k',d) = min{C'(k',d),C(m\k',d)} > C^m)(k'-l,d).U 

Theorem 5.3 Assume that Fiir(k,d), (k,d,i,r) € TV and Fi4{k,d), (k,d,i,d) 6 TV are 

decreasing on d. Then, Cfj < C(k,d), s Ç. Uk,d-
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Proof Consider the algorithm the algorithm that improves the bounds C(k, d) split 

into phases as in the proof of Proposition 5.2. The proof is by induction on m. For 

m = 0, C(°) (M) = C(k), which [22, Theorem 6] upper bound Cfj, s G Uk,d- Assume 

that C(m">(k,d), 0 < m! < m, m > 0 upper bound Cfj, s € Uk4. Let k' be the 

value of k for which the bounds are updated in phase m + 1. According to (5.22), 

C(k',d) only depend on C^m^{k,d), 0 < m' < m, k ^ k'. Proposition 5.2 guarantees 

that C(m\k,d) are increasing on k and decreasing on d. Then, using the induction 

hypothesis and invoking Proposition 5.1, C'(k',d) upper bound Cfj, s G Uk',d- Finally, 

recalling that, by hypothesis, C^m\k\ d) upper bound Cfj, s € f4',<¿, we have that 

C(m+1î(k',d) = min{C'(A;',íí),C("l)(A;,,d)} upper bound Cfj, s € Uk>4. \J 

5.2 Improved Failure Rate Bounding Structures 

The set of bounds i*i,r (fc, d), (k, d, i, r) 6 TV used in [22] was 

Fi,min{d,N-k-i}(k, d) = /,-, (k, d, i, mm{d, N - k - i}) £ W, (5.31) 

Fitr(k,d)= Y2 Aub(c), {k,d,i,r)€TZ',r <min{d,N-k-i}, 

eeEi (5.32) 
m n e ^ 0 for some m G MC 

Imp(e)<k+r 
Act(e)>d-r 

where 

Imp(e) — min |m — e|, 
m E M C 
mneyí í 

Act(e) = max Imfl el. 

In this section we derive bounds Fi,r(k,d), (k,d,i,r) 6 1Z', r < m'm{d,N — k — i} 

that are potentially better than the bounds given by (5.32). In the following we will 

call F{r(k,d) the bounds given by (5.32) and F-'r(k,d) the new bounds. The bounding 

method will use (5.31) and 

Fitr(k,d) = min{Fiir(k,d),F?r(k,d)}, (k,d,i,r) €lZ',r< m i n - { d , N - k - i}. 

(5.33) 

The bound [£M]ib does not depend on C(k, d) and, thus, that bound will be identical 

for the method described in [22] and the method proposed here. However, the bound 
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[£^4]ub does depend on C(k, d) and that bound may be different for the method described 

in [22] and the method proposed here. We start proving that smaller bounds Fi<r(k,d) 

potentially give a smaller and thus tighter [CM]ub. 

Theorem 5.4 Smaller Fiir(k,d) bounds give a potentially smaller [UA]ub-

Proof Combining (5.20), (5.21) and (5.22) we obtain 

C'(k, d) = ^0- + Ik>1 [ld>L.kC(k - 1, d) + Id<L-kC(k - 1, d + 1)] 

JM(d,i)-i 

+ -7Ü E E {Fi^i^d)- F^-^d^Cik + ̂ d- j) 
ieFC j-Jm(k,d,i) 

i<N-k 

+ Fi4-jM(dti)(k, d)C{k + i,d- JM{d, i)) 

= ^ + Ik>i[ld>L-kC(k-l,d) + Id<L.kC(k-l,d+l)] 
+ ^ 7 M E Fi,d-Jm(k,d,i)(k>d)C(k + i ' d - Jm{k,d,i)) 

9(K) ieFC L 

i<N-k 

JM(d,i) 

+ E Fi4-j{k,d)(C{k + i,d-j)-C(k + i,d-j + l)) 
j=Jm(k,d,i)+l 

But, since the bounds C(k,d) are decreasing on d by Proposition 5.2, it follows that 

smaller Fi,r(k,d) bounds give smaller C'(k,d) bounds, potentially smaller final C(k,d) 

bounds, a potentially smaller (5.16) [CV]ub and, since [£/^]ub is increasing on [Ct/]ub 

(5.2), a potentially smaller [tMjub- Ö 

In the following we derive the new bounds F-'r(k,d). The intuition on which the 

new bounds are based is the following. Consider a fault-tolerant system composed of 

3 instances of component classes ct-, 1 < i < n, with n large. The failure bags of the 

model are c,[l], 1 < i < n. The system is failed if and only if all 3 instances of the same 

component class are failed. Thus, the minimal cuts are c,[3], 1 < i < n. Assume that we 

want to upper bound the transition rate to states with 2 failed components and failure 

distance < 1 from any state with 1 failed component and failure distance 2 and that the 

Aub(e), e € E are approximately equal. Using (5.32), all failure bags will be included 

in the summatory. This is, really, a consequence of the fact that F¡r(k,d) is obtained 

by adding up the Aub(e) for all failure bags e for which there exists some state with 
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k = 1 and d = 2 for which the failure of the components in e make the failure distance 

< 1. For the example and failure bag c,[l], such a state is the state x with F(x) = c,[l]. 

However, this is very pessimistic, since it is clear that no state with k = 1 and d = 2 

exists in which all failure bags make the failure distance < 1. In fact, for the example, 

for a state x with F{x) = c,[l] only the failure bag e = c,[l] makes the failure distance 

< 1, and a significantly tighter upper bound (since n is large and the Aub(e), e G E are 

approximately equal) to the rate to states with 2 failed components and failure distance 

< 1 from any state with 1 failed component and failure distance 2 is maxeç£Àub(e). 

For other values of k and d, the situation is more complex, but the basic intuition still 

applies: we have to take into account the failure bags that may reduce simultaneously 

the failure distance. 

Let 5 be a bag (set). A collection T = {Si, S2,... , Sn} of subbags (subsets) of 5 is a 

Sperner collection on S if no subbag (subset) of T contains another. Let T be a collection 

of bags (sets). We will denote by Ni(T) the number of bags (sets) in T of cardinality i. 

Using Lubell's theorem [62], we will prove a sequence of two lemmas. The first lemma 

extends Lubell's theorem to bags; the second lemma is a direct consequence of the first 

one and will be used in future developments. 

Lemma 5.3 Let V be a Sperner collection on a bag S. Then 

h (?) -

Proof Let T = {Si, S2 , . . . , 5„}. Let D be the domain of S (set of different elements 

in 5). Consider the set S' obtained from S by replacing for each x Ç D the # (x ,5 ) 

occurrences of x in S by distinct elements xi,X2,.-. ,%#(X,S)- For instance, if S = 

a[2]ò[3]c[l], S' would be {ai,a2i^i)^2i^3; ci}. Consider the collection T' of subsets of 5 ' 

obtained from F by replacing each subbag 5¿ of 5 by all different subsets S¡!,£,• 2, • • • 

that can be obtained by replacing the #{x, 5t) occurrences of a; in 5,- by distinct elements 

from xi,X2,... ,£#(x,s)- For instance, for S = a[2]6[3]c[l] and 5¿ = a[l]6[2] we would 

have S'itl = {01,61,62}, 5¿,2 = {01,61,63}, 5/ i3 = {ai,62 ,63}, S¡A = {a2 ,6i,62}, S'ifi = 

{02,61,63}, and S'i6 = {02,62,63}. Since T is a Sperner collection on 5 , T' is a Sperner 

collection on S'. In addition, iV,(r) < iV,-(r') and \S\ = \S'\. Then, we have 

^ Nj(r) j£l NW) 

h Cf') - h ci'1) * 
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But, using LubelPs Theorem [62], 

U (T) 
and the result follows. Q 

L·i f\s'\\ -

Lemma 5.4 Let T be a Sperner collection on a bag S and let Mi > 0, i — 1,2,... , | 5 | 

Then 

ÍTNi(r)Mi< max f ' ^ ' W . 

Proof Let j be any index 1 < j < \S\ for which ('¿')M¿ = m a x ^ ^ i ('f')M,-. For 

1 < i < \S\ we have (If )M¿ < ('f^Mj, i.e. 

( |S |) 
Mi < j^Mj. 

Then, using Lemma 5.3 

~ V 3 J 1<*<|5| V * / 

Let F,(r) be the set of failure bags of cardinality i such that the failure of the 

components in the failure bag makes the failure distance < r, i.e. the set of failure bags 

e € E{ with m'mmeMC \m — e\ < r. Let F be a subbag of C, let / be an integer > 0, and 

consider the collections of subbags of F , Alj(F), j = 1 ,2, . . . , \F\ defined recursively as 

follows. Al,p,(F) is {F} if F is included in some minimal cut of cardinality \F\ + I and 0 

otherwise. For 1 < j < |F | , Alj(F) includes the subbags of F of cardinality j included in 

some minimal cut of cardinality j + I and not included in any subbag of U'pJj+1Ap(F). 

We have the following result. 

Theorem 5.5 Let e 6 Ei~Ei(r), i € FC and let F be a subbag ofC with m'mm€Mc \m — 

F\ = d. Then, for 0 < r < d, minmeMC \m - F — e\ < r if and only if minm€MC \m -

s- e\ <r for some s € UI<J<\F\ Ud<i<r+i Al-{F). 
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Proof The sufficiency is obvious since the bags s in UKJ<|JT| L>d<i<r+i AlAF) are subbags 

of F and, therefore, minmeMC \m-F-e\ < minm£MC |m — s — e| < r. We prove next the 

necessity. If minmeMC \m — F — e\ <r, there exists m' G MC with \m' — F — e\ < r. Let 

n = \(m'-F)ne\ and j = \m'\ -r-n. Since e G Ei-Ei(r), n = \(m'-F)r\e\ < \e\ = i. 

Also, recall from Section 1.4 that given bags x, y, 

\x - y\ = \x\ - \x(~)y\. (5.34) 

Then, using (5.34) with x = m'-F and y = e, m\nmeMC \m — F\ = d and \m' — F—e\ < r, 

n = \(m' - F)De\ = \m' - F\ - \m' - F - e\ > d- r. 

To summarize, 

d-r <n<i. (5.35) 

Regarding j , we have 

1 <j < \m'r\F\ < \F\. (5.36) 

The left-hand side of the previous inequality follows using (5.34) with x = m' and y = e, 

and noting that, since e £ £ ¡ - Ei(r), minm&MC |m — e| > r: 

j = \m'\ — r — n = \m' — e\ + |m 'n e| - r - n > |m' — e| + \{m' — F) (~\e\ — r — n 

> r + |(m' — F ) D e | — r — n — r + n — r — n = 0 . 

The right-hand side of (5.36) can be shown using (5.34) twice, first with x = m' — F and 

y — e, and next with x = m' and y = F, and recalling that minmgA/C |m' — F — e| < r: 

j = |m'| - r - n = |m' - F - e| + |m' n F\ + \(m' - F) D e| - r - n 

< r+ \m'nF\ + \(m' - F)De\-r-n 

= r + \m' n F\ + n - r - n = \m' n F\ < \F\. 

Consider any subbag b of m' D F of cardinality j . Since (5.36) j > 1, such a subbag 
Im'I— i 

exists and, obviously, it is included in both m' and F . Then, either (1) b € A'¡ ' (F) 

or (2) b is (strictly) contained in some bag, s, of u '_-+ 1 / lp (F). Note that (5.35), 

d<r + n<r + i. Then, since \m'\ — j = r + n, 
d<\m'\-j <r + i. (5.37) 

In case 1, using (5.34) twice, first with x = m' — b and y = e and next with x = w! and 

y = ò, and recalling that ò C m', 6 C F, and |m'| = j + r + n, 

min \m- b- e\ < \m' - b- e\ = \m'\ - | m ' n ò | - \{rri - 6)f"ïe| 
mÇ.MC 

= \m'\ - \b\ - \(m' - b) n e| < \m'\ - \b\ - |(m' - F) n e| 

= j + r + n— j — n = r . (5.38) 
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Therefore (5.36), (5.37), there exists s = 6 G öi<j<\F\Ud<i<r+iAj(F) for which minmgA/c 

|ro - s - e| < r. In case 2, there exists p,j + l<p<\F\ and (5.37), s G Al™'hJ(F) = 

Ud</<r+¡.Ap(F) that strictly includes ò. But, since 6 C s and (5.38), minmGMC |m—s—e| < 

minmÇA/c |m — 6 — e| < r. Therefore, (5.36), (5.37), there exists s G VJ+KP<\F\ U<¿</<r+»' 

Ap(F) G Ui^xiKi Ud<;<r+t- Alj(F) for which minm6Airc \m - s - e| < r. • 

Denote by MCC the set of minimal cuts of cardinality c and let 

A(c, n, i, r) 

max ^.,n < T* Aub(e) > if MCC ± 0 and 1 < n < c 
¿ a s i l . e € V' ( í ,< J " ~(5-39) 
cv. »,i»l v minm/6AiC |m'-6-e |<r ' v y 

0 otherwise 

For MCC T¿ 0 and 1 < n < c, A(c, n, ¿, r) is the maximum sum of Aub(e) corresponding to 

the failure bags e G £¡ - F,(r) that assuming n components included in some minimal 

cut of cardinality c failed make the failure distance after e smaller than or equal to r. 

Note that, for r > L, Ei(r) = E¡, and, therefore, only A(c, n, ¿, r), r < L have to be 

computed. We have the following result. 

Theorem 5.6 Let E¡(r), i G FC be the set of failure bags e G Ei - F,(r) for which 

minmçMC \m — s — e\ < r. Let F be a subbag of C with mmmeMC \m — F\ = d. Then, 

E *ub(e)< ¿ ^ M ,- }MJ + r + l,j,i,r). 

Proof Using Theorem 5.5 

Ef(r)= (J U U ^(r). 
l < j < | F | ¿ - r < / < « s 6 i 4 r + í ( F ) 

Therefore, 
\F\ i 

E ^)-<EE E E A^)-
çgBf (r) J=l '=«*-r ,6yi;+'(F) «eE?(r) 

Assume MCj+r+¡ # 0. By definition, J2eçE?(r) Aub(e), s G Ar-+l(F) is upper bounded by 

A(j + r + l,j,i,r). In the case M C i + r + / = 0, ^ + ' ( F ) = 0, A(j + r + / , j , i,r) = 0 and we 
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can write £ a 6 i 4 r+i ( F ) £eeE?(r) Aub = 0 < J2seA
r+'(F) A(J + r + lJ,¿»r) = °- T h e n 

\F\ i 

Y Kb(e)<J2J2 Y A(i + r + /,i,i,r) 
eeEF(r) ¿=1 l=d-r a €Ar+'(F) 

= E E |Af'(F)|A(j + r+ /,;,*>) = £ £|Af'(F)|A(j + r + /,j,i,r). 
j = l l-=d—r l—d—r j—1 

But the collection {s : s Ç /l^ (F), 1 < j < \F\} is a Sperner collection on F and, since 

thesubbagssG Aj+ ' (F) have cardinality j , using Lemma 5.4, 

Y Aub(e)< ¿ max ( | F | ) A ( j + r + / , j , ¿ , r ) . n 

We are now in position to derive the new bounds F"r(k, d). Let x € Uk,d, (k, d) Ç.1Z 

and let (k, d, ¿, r) € 7£', r < min{d, N - k — i}. Failure transitions from x associated with 

failure bags e € Ei(r) lead to states with failure distance minmeMC I'm — F(x) — e\ < 

minmeMC \fn — e\ < r. The failure transitions associated with failure bags in E¡ — E{(r) 

that lead to states with failure distance < r are those associated with failure bags in 

E{ (r). Then, we have 

K,ur
dl=0uk+i¡d, < Y Aub(e)+ ] T Aub(c), 

e€Ei(r) e£E?{x\r) 

and since |F(a:)| = k, using Theorem 5.6, 

A^.ud'=o^+.,d' - Y A u b(e) + Y ima<x
fc ( j ) AÜ + r + ' ' •?' *» r) = ^ ' r i*» d) • 

ee£.(r) /=á- r ~ J - U / ( 5 . 4 0 ) 

It is immediate to see that F¡r(k,d) and F[[r{k,d), (k,d,i,r) € W are (5.32), (5.40) 

decreasing on d and, thereby, Fi<r(k,d) — mm{F{r(k,d),F"r(k,d)}, (k,d,i,r) £ TZ' are 

decreasing on d. Also, for (k,d,i,d) G 7S', we have (5.31) Fitd(k,d) = £ e € £ . Aub(e), 

independent on d and, therefore, Fi¿(k, d), (k,d,i,d) € 72' are (non-strictly) decreasing 

on d. Then, the new bounds Fi¡r(k,d) satisfy the conditions required by Theorem 5.3. 

Computation of A(c, n, i, r) using (5.39) may introduce an unaffordable overhead 

especially when the number of minimal cuts is large. First, all subbags of cardinality n 

of each minimal cut must be generated and, for each such subbag b and for each e G E{ — 

Ei(r) T¿ 0, all minimal cuts have to be visited to know whether m'mmiçMC \m'-b-e\ < r. 

Note that if we regard minmiç\fc \m' — b\ as the failure distance from a state s with 
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F(s) = b, then minmi€Mc \mr — b — e\ can be viewed as the failure distance from a state s' 

reached from s in a single transition associated with failure bag e. Therefore, computation 

of minm'ejvfc \m' — b — e| can be done efficiently using the algorithms compute„d() and 

compute-alLad() reviewed in Section 2.2. Besides the previous comment, the main idea 

to improve the efficiency of the expensive trivial procedure to compute A(c, n, i, r) is the 

observation that, typically, many minimal cuts will share the same subbag, especially 

when |ò| is small, and that computation of minm<ejv/<7 \m' — b — e\ < r should not be 

repeated. Recall from Section 2.2 that the control parameter R of algorithm compute„d( ) 

stands for the maximum cardinality of selectors (bags included in some minimal cut) that 

are stored. Then, we proceed as follows. Let R\ maxm£MC \m\ > R' > R- First, we 

generate and store all distinct subbags of cardinality up to R' included in some minimal 

cut. Let B be the set of such subbags. For each b 6 B, we also generate and store the list, 

/ (6), of distinct cardinalities of minimal cuts including b. We initialize all A(c, n, i, r) to 0. 

Then, for each b G B, we compute S(b) = mmm>€MC lTO' ~ b\ invoking computed (b, S (b)), 

compute Vb{e) = minm /eMc|w' — b — e\, e £ E invoking compute-alLad(5(b),b,i>b{e)), 

and for each c 6 1(b), set (5.39) A(c, |6|, i, r) = max{A(c, |6|, i, r),J2eçA ^ub(e)}i A = {e e 

E{ — Ei(r) : v\¡(e) < r}. The remaining updates associated with subbags b ^ 1Z are 

done generating and processing for each m £ MC all subbags b £ m, \b\ > R'. Subbags 

b € B with |6| > R are freed once the coefficients A(c, n, i, r) are computed (compute.d( ) 

requires the knowledge of all subbags b, \b\ < R). Selection of an appropriate value for 

R' involves a tradeoff between memory consumption and CPU time. As R' gets higher, 

the algorithm to compute the A(c, n,i,r) coefficients becomes faster but the memory 

requirements increase. Memory requirements are only significant when \MC\ is large. 

We will illustrate the tradeoff using an example with 87,031 minimal cuts. 

We finish this section by showing how to reduce the effort required to compute the 

set of bounds F{ir(k, d), r < min{ci, N - k - i} once F¡r(k, d) and A(c, n, i, r) have been 

computed. To that end, we need the following result. 

Proposition 5.3 The set of bounds F"r(k,d), r < min{d,N - k - i), (k,d,i,d) € TV, . 

are increasing on k. 

Proof Let (fc, d, i, r'), (k + 1, d, i, r') € 11', r' < min{d, N - (k + 1) - i). Then, using 
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(5.40) and noting that r' < min{d, N — k — i}, 

*£. , (*+ l,rf) = Y] Aub(e)+ ¿ max/max fÄ + 1 ) A ( i + r ' + / , i ,z , r ' ) , 

A(k+l + r' + l,k + l,i,r')} 

= J2 Aub(e)+ Y] max{ max -—— : ( . )A{j + r ' + l,j,i,r'), 

A(k+l + r' + l,k + l,i,r')j 

> ^2 Aub(e)+ ^2 maxj max I .jA(j + r' + lJ,i,r% 

A(k+l + r' + l,k + l,i,r')} 

> £ A"b(e)+ ¿ max : ( k )A( j+ r'+ l,j,i,r') = F¡'y(k,d) .Q 
eeE,(r>) l=d-r> - ' - U / 

Let k > maxee£Imp(e) and assume F-'r(k,d) > F!r(k,d) for all (tí,¿, r). It is 

immediate to see (5.32) that F¡r(k,d) = F{r(k',d), k' > k. Then, for k' > k we have, 

using Proposition 5.3, 

*£ (* ' , ci) > F¡'¡r(k, d) > F¡,(k, d) = Fitr(k', d). 

Therefore, for k' > k we can stop computing F"r(k', d) and set i%)f.(A:', eQ = F{r(k', d). 

5.3 State Space Exploration Algorithm 

In the method proposed in this chapter the subset G is enlarged incrementally until the 

relative unavailability band, rb = ([UA]^ - \UA\\b)/[UA]\\„ is smaller than or equal to 

the desired one, rò r, using the state space exploration algorithm CONT-TG-W proposed 

in [20]. In this section we review that algorithm. 

The algorithm uses approximate estimates for the unavailability band, [(Z4]ub — 

[(7i4]ib, and performs the expansions by waves. A wave includes a set of consecutive addi­

tions of states into G without computing (r(s, Yo))seG- Let G* and r* = (r(s, YG»))3qG' 
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Compute T(k), 1 < k < N, and C(k, d), (k, d) £ TZ using the methods described 
in [22], Section 5.1, (5.18), and the algorithm of Figure 5.2; 
G = {o}, T = 0, T(O,YG) = 1/A0, TG = T(O,YG), CG = 0; 

G* = G, T* = (T(S,YG))S€G, T G . = TG, CG. = CG\ 

Compute rb=([UA]uh-[UA]ih)/[UA]ih using (5.5), (5.6), (5.16), (5.17), (5.1), 
and (5.2); 
while (rò > rbr) { 

Compute bc using (5.41); 
bt — max{ßß X bc, (rbr/rb) X bc}; 
while (bc > bt) { 

Select the tuple (s,k,d), s G G* with largest r(s, YG*)ßs{k,d); 
bc = bc- r(s,YG*)ßs(k,d); 
Let S(s) be the set of states in Uk,d reached from s in a single transition; 
for (each s ' e S ( s ) ) { 

Add to T all transitions from s' to G; 

Add to T all transitions from s" G G to s' updating bc if necessary; 

G = GU{s '} ; 

} 
} 
Compute (r(s,YG))seG; 
Compute CG and TG using (5.4) and (5.3); 
Compute rb = ([UA]uh - [UA]ib)/[UA]lb using (5.5), (5.6), (5.16), (5.17), (5.1), 
and (5.2); 
G* = G, T* = (T(S, FG)) s 6 G , TG. = TG, CG- = CG-

Figure 5.3: Algorithm CONT.TG.W. 
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be, respectively, the subset G and the corresponding mean times to absorption vector at 

the end of the last wave. The unavailability band is approximated in terms of a sum, 

bc, of contributions associated with transition groups (s,k,d), s € G*, {k,d) € TZ. Each 

transition group accounts for the transitions from state s to states s' £ G with k failed 

components and failure distance d: 

K= Y, r{s,YG*)ßs{k,d), (5.41) 
s€Gm 

(k,d)en 

with 

ßs(k, d) = As>l/M fe T(k) + Ta'~ CG' C(k, d)\ . (5.42) 
L J G ' 1G- J 

Initially, G = G* = {o}, r* = [1/Aj, TG* = 1/A0 and CG* = 0. The next wave starts 

by choosing the tuple (s,k,d), s € G* with largest T(S, YG*)ßs(k,d). Next, we add into 

G the states in Uk,d reached from s in a single transition and update Xs,Uk d, $ € G and 

bc accordingly. This procedure continues until bc becomes small enough. In that point, 

we set G* = G, compute r*, TQ* and CG* and, if the new relative unavailability band 

is still larger than the desired one, continue with a new wave. We give in Figure 5.3 

a description of the algorithm. The description is done in terms of the subset T of 

transitions included in the generated portion of X as well as the equations derived so 

far. The control parameter BR, 0 < BR < 1 allows to tradeoff the number of times 

(T(s,YG))seG is computed against how accurately the state space is explored (the larger 

BR, the more accurate but the more costly the exploration). After performing some 

experiments we have chosen BR = 0.1. 

5.4 Analysis and Comparison 

In this section we analyze the performance of the bounding method using two examples 

and compare it with that of the bounding methods described in [22] and [70]. For the 

method proposed in [22] we use the state space exploration algorithm CONT-TG-W. 

The lower bound in the method described in [70] is the same as the one proposed in this 

chapter and the upper bound is 

CG + [Tc/]ub 
[UA]'ub = 

TG + [Tu]ub ' 

The state space exploration algorithm we use with that method is analogous to the 

algorithm CONT.TG.W. The unavailability band, 6' = [UA]'üh-[UA}\h, is approximated 
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Figure 5.4: Block diagram of the fault-tolerant database example. 

as a sum, b'c, of contributions associated with transition groups (s, k), s 6 G*, 1 < k < N. 

Each transition group accounts for the transitions from s to states $' £ G with k failed 

components: 

K= E T*(s,YG.)ls(k), 
sec* 

Kk<N 

with 

T(k) 
7s{k) = Xs,uk T m • 

Within a wave we choose the pairs (s, k), s 6 G* with largest r*(s,YG')js{k), and add 

to G all states in Uk reached from s in a single transition. 

The results have been obtained using a 128 MB UltraSparc 1 workstation. For both 

examples the control parameter R to compute failure distances has been set to 2 and the 

total memory consumption has been limited to 100 MB. 

The first example is the fault-tolerant database system whose block diagram is 

sketched in Figure 5.4. The system includes two front-ends FE and five processing clus- • 

ters. Processing cluster PC,-, 1 < i < 5 consists of two processing units P,-, four controller 

sets C, j , j < 4 with two controllers per set and sixteen disk clusters D;^*, 1 < k < 4 

with four disks per cluster. Each controller set controls four disk clusters. The system 

has 372 components. The system is operational if at least one front-end is unfailed and 

all processing clusters are operational. A processing cluster is operational if at least one 
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Figure 5.5: Relative unavailability band for the fault-tolerant database example as a 

function of the size of the generated subset. 

processing unit is operational, at least one controller of each set is unfailed, and at least 

three disks of each cluster are unfailed. Front-ends fail with rate l/20,000h""1. Processing 

units P, fail with rate 1/40,000 + 5 x 10_6(¿ - 1) h - 1 . Controllers of set Qj fail with 

rate 1/100,000 + 2 x 10_6(¿ - 1) + 5 x 10^7(j - 1) h - 1 . Finally, disks of cluster D,-,^ 

fail with rate 1/200,000 + 2 x 10~6(¿ - 1) + 2.5 x 10"7(; - 1) + 6.25 x 10-8{k - 1) h"1 . 

When both front-ends are unfailed, the failure of one of them is propagated to the other 

with probability 0.01. Similarly, when both processing units of a processing cluster are 

operational, failure of a processing unit is propagated to the other unfailed processing 

unit with probability 0.02. Components continue to fail when the system has failed. 

Repair rates are 1/8 h - 1 for front-ends and processing units and 1/12 h - 1 for controllers 

and disks. There is a single repair person who gives priority first to front-ends, next 

to processing units, next to controllers, and next to disks. Failed components with the 

same priority are taken at random for repair. For this example L = 2 and the structure 

function has 106 minimal cuts, all of cardinality 2. 

In Figure 5.5 we give the relative unavailability band as a function of the number 

of states in the generated subset G. It can be seen that the bounding method developed 

in this chapter outperforms significantly the methods described in [70] and [22]. Thus, 

the number of states required by the method described in [70] to achieve a given relative 

unavailability band ranges from 83 to 92 times the number of states required by the 
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Figure 5.6: Relative unavailability band for the fault-tolerant database example as a 

function of the memory consumption in MB. 

proposed bounding method. Regarding the bounding method described in [22], the 

proposed method requires a number of states between 2.6 and 13.7 times smaller. 

Since the memory requirements for the same number of generated states of the 

three methods are different, we also compare them in terms of memory consumption. 

The comparison is done in Figure 5.6. Again, the proposed method is far better than 

the methods described in [70] and [22]. The amount of memory required by the method 

described in [70] to achieve a given relative unavailability band ranges from 35 to 37 times 

the amount of memory required by the proposed method. Note that the improvement in 

terms of memory consumption is smaller than it was in terms of size of G. This can be 

explained as follows. The proposed method has to hold, for each state in the frontier of 

G, lists of contributions to the unavailability band associated with the parameters k and 

d, while the lists of contributions that have to be held in the method described in [70] 

are associated only with the parameter k. With regard to the method described in [22], 

the improvement factor in terms of memory consumption is of the same order as it was 

in terms of size of the generated subset, ranging from 2.3 to 11. 

According to Theorem 5.4, the improvement that the bounding method described 

in this chapter may achieve in relation to the one proposed in [22] is due to the reduction 

in the Fi¡r(k,d) bounds and, consequently, in the C(k,d) bounds. It is difficult to predict 
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Table 5.1: First values of the bounds C(k,d) for the fault-tolerant database example. 

k d 

1 2 

1 1 

2 2 

2 1 

2 0 

C(k,d) 

proposed [22] 

7.382 x IÓ - 3 9.418 x 10~2 

2.299 x 10 - 2 0.6174 

2.413 x 10~2 0.2812 

0.1005 1.881 

13.23 13.23 

up to which extend the new bounds Fitr(k,d) will be smaller than the ones given by 

(5.32), since the reduction depends on the structure of the minimal cuts of the system. 

Apart from the Fiir(k,d) bounds being smaller, the proposed method requires the down 

states in the frontier of G to be sparse for the method to be significantly better than 

the one described in [22]. This is so because although not mentioned in Section 5.3, the 

bounds C(k, 0) are the same for both methods and, therefore (5.16), the upper bound 

[Ci/]ub will be appreciably reduced only if the outgoing transitions of G to down states 

(states with d = 0) are relatively rare. In Table 5.1 we show the first values of the 

bounds C(k,d) obtained with the proposed method and the method described in [22]. 

The bounds C(k, 0) are the same but the bounds C(k, d), d > 0 are significantly smaller. 

Since in this example most of the exits from G are made through states with non-zero 

failure distance, the bounds [Ct/]ub and (5.2) [fL4]ub obtained with the proposed method 

are, for a given subset G, appreciably smaller than the corresponding bounds obtained 

with the method described in [22]. 

The second example, whose architecture is depicted in Figure 5.7, includes five pro­

cessing clusters that communicate through two independent double-ring networks A and 

B. Processing cluster ¿, 0 < i < 4, includes three identical processing units PU,-. Net­

work A consists often nodes NA,-, 0 < i < 9, and direct (clockwise) and reverse (counter­

clockwise) links, DA,- and RA,-, respectively, linking nodes NA,- and NA,-+imodio- Network 

B has the same structure as network A and its direct and reverse links are called, re­

spectively, DB,- and RB,. The system has 78 components. The system is operational if 

each processing cluster has at least an unfailed processing unit and all processing clusters 

can communicate using one of the networks. The operational configuration of the system 

includes two processing units for the processing clusters with two or three unfailed pro-
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Figure 5.7: Block diagram of the second example. 

cessing units, one processing unit for the processing clusters with one unfailed processing 

unit, and the components of either network .4 or B, with priority given to network A, 

required to build one of the operational configurations of the networks described next. 

The network configuration that is tried first is a direct ring including all nodes and direct 

links. The second configuration that is tried is a reverse ring including all nodes and 

reverse rings. The third configuration is used when parallel direct and inverse link i fail 

and it includes all nodes and links except links between nodes i and i + 1 mod 10. The 

last configuration is used when node i fails and it includes all nodes except node i and all 

links except those between node i and nodes i ± 1 mod 10. A fault in a processing unit 

of a cluster contaminates another unfailed unit in the same cluster with probability 0.05. 

The components included in the operational configuration of the system are called ac- • 

tive. Active processing units, active nodes and active links fail with rates 4.6 X 10 - 4 h - 1 , 

2.3 x 10~4 h - 1 and 1.1 x 10 - 4 h _ 1 . Inactive components fail with the same rates multi­

plied by a dormancy factor of 0.2. We assume that there is a single repair person who 

takes for repair failed components at random. Repair rates for processing units, nodes 

and links are, respectively, 0.5 h _ 1 , 0.7 h - 1 and 1.0 h - 1 . Components continue to fail 
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Table 5.2: Memory overhead in MB due to storing all distinct subbags of cardinality > R 

and < R' included in some minimal cut and CPU time in seconds required to compute 

the A(c, n, i, r) coefficients for the second example as a function of R' . 

R' 

overhead (MB) 

CPU time (s) 

2 

0 

3,611 

3 

3.0 

1,906 

4 

10 

1,216 

5 

11 

1,197 

6 

11 

1,197 

when the system has failed. For this example L = 3 and the structure function has 87,031 

minimal cuts, 6 of cardinality 3, 75,625 of cardinality 4, 11,000 of cardinality 5, and 400 

of cardinality 6. 

In this example the number of minimal cuts, and, therefore, the number of subbags 

that would have to be processed to compute the A(c, n, ¿, r) coefficients using the trivial 

procedure is quite large. We start by illustrating the tradeoff involved by the selection 

of an appropriate value for R'. In Table 5.2 we show, for R' = 2, 3, 4, 5 and 6 the 

memory overhead in MB due to storing all distinct subbags of cardinality > R and < R' 

included in some minimal cut, and the CPU time in seconds required to compute the 

A(c, n, i, r) coefficients. Note that, as it was anticipated in Section 5.2, the larger R' the 

more faster and memory consuming the computation of the coefficients. Note also that 

beyond R' = 4 no significant improvement is achieved. This is mainly due to the fact 

that subbags with small cardinalities tend to be shared by several minimal cuts much 

more often than subbags with larger cardinalities do. Thus, for instance, among the 

420,506 subbags of cardinality 3, only 18,946 are really distinct, while 12,600 subbags of 

cardinality 5 out of 13,400 are distinct. 

In Figure 5.8 we give the relative unavailability band as a function of the number of 

states in the generated subset G. The results have been obtained with R' — 6. For this 

example, the reduction in the size of G achieved by the proposed method with regard to 

the method described in [70] is still appreciable. However, that reduction is more modest 

when the proposed method is compared with the method described in [22]. We have 

analyzed the bounds F{r(k,d) and F-'r(k,d) and found that because of the particular 

structure of the minimal cuts of the example, the bounds F"r(k,d) are not much smaller 

than the bounds F{r(k,d) and, consequently, the reduction in the C(k,d) bounds is 

more modest than it was for the previous example. The relative unavailability band as 

a function of the memory consumption in MB is given in Figure 5.9. Note, again, that 

the method described in this chapter and the one proposed in [22] compare the same in 
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Figure 5.8: Relative unavailability band for the second example as a function of the size 

of the generated subset. 

0.1 

-a c 
X) 

Xi 

'3 > 
c 
3 
<D 

>̂ 
"jU 

0.01 -

20 

, 

' 
' 

• 

' 

- proposed -©— 
[22] - + -
[70] - B -

, 

—-c¡-, B - 1 , , TV t i ­l l "B-9+ -s.. 
U -Q. 

< 

h Q 
B.. . ""B.. 

% Q • 

> * 
V 

4* V 
\ + 
A t 
\ + 
> -t; 
\ ^ 
>, X 
% \ 

<& He 

<& '-K. 

^ \ " ^ " - - - - . . 
^^^~ -_ " ~+ 

" - " - - - n ' 

40 60 80 100 
MB 

Figure 5.9: Relative unavailability band for the second example as a function of the 

memory consumption in MB. 



124 5 Availability Bounds of Repairable Systems using FD 

terms of memory consumption as they did in terms of size of the generated subset, while 

the improvement in terms of memory consumption achieved by the proposed method 

with respect to the one of [70] is appreciably smaller than it was in terms of size of 

G, especially for medium and large values of the relative unavailability band. For this 

example the reduction in the improvement is due not only to the different size of the 

lists of contributions both methods have to bookkeep for each state in the frontier of G, 

but also to the amount of memory required to store the set of minimal cuts and related 

structures for the computation of the failure distances. For this example, \MC\ = 87,031 

and its storage takes about 35 MB. 

5.5 Conclusions 

In this chapter we have developed a bounding method for the steady-state unavailability 

that exploits the failure distance concept and requires the knowledge of the minimal cuts 

of the system. From a memory consumption point of view, the method seems to be better 

than the method described in [70], which is not based on the failure distance concept. 

The proposed method may also outperform significantly a previous method [22] based 

on the failure distance concept. It is difficult, however, to predict the improvement in 

advance since it depends on the sparseness of the down states in the frontier of G and 

the structure of the minimal cuts of the fault tree of the system. The method suffers 

from a memory overhead due to holding the minimal cuts and subbags required for the 

computation of failure distances and A(c, n, i, r) coefficients, which, as it has been shown 

by means of the second example analyzed in this chapter, can be significant if the number 

of minimal cuts is large. At this point one might ask whether it would not be possible 

to devise another bounding method for the steady-state unavailability based on lower 

bounds for failure distances, similarly as we did for the first method presented in this 

dissertation. The next chapter is devoted to give an affirmative answer to that question. 



Chapter 6 

Availability Bounds of Repairable 

Systems using FD Bounds 

In this chapter we will develop a method to compute bounds for the steady-state un­

availability, UA, based on the lower bounds for failure distances developed in Section 4.2. 

The motivation is similar to the one that brought us to develop the method to compute 

bounds for the unreliability described in Chapter 4: we want to have a bounding method 

that does not rely on solving a hard problem (the determination of the minimal cuts) 

and, secondly, it is desirable to be able to bound UA without incurring the memory 

overhead due to storing minimal cuts and related structures, especially when the number 

of minimal cuts is large. The first section of this chapter will be devoted to describe 

the method and prove its correctness. Next, we will derive suitable failure rate bound­

ing structures based on lower bounds for failure distances. Finally, we will analyze the 

method by means of several examples and compare it with the method described in the 

previous chapter and the methods described in [22, 70]. 

6.1 Bounding Method 

Let X = {X(t); t > 0} be the finite CTMC modeling the system and let fi be its state • 

space. The method computes bounds for UA using detailed knowledge of X in the 

generated subset, G, and bounding the behavior of X in U = Í2 - G. The method uses 

the state cloning technique proposed in [70]. The technique consists in modifying X by 

adding to U clones of the states in G with more than F failed components, accounting 

for the visits to the corresponding states of G after X exits G and before the number of 
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Figure 6.1: State transition diagram of the CTMC X after applying the state cloning 

technique with F = 0. 

failed components has fallen below F + 1. Note that the application of the state cloning 

technique does not modify the steady-state unavailability UA. We apply the technique 

with F = 0 in order to ease state space exploration. The modified X has the structure 

depicted in Figure 6.1, where Uk includes all states in U with exactly k failed components 

and N' < N, being N the number of components of the system. In the following, X will 

denote the modified X. 

The notation we will use throughout this chapter is essentially the same we used in 

Chapter 5. Thus, we will denote by XStS>, s,s' € Í2, the transition rate from state s to 

state s', by A„ = Yïs'çnK,*', s € O, the output rate of s, and by XStc = £<'<=<? ^5,s'> 
aïs' 

s 6 f i , C c f i , the transition rate from s to the subset of states C, all referred to X unless 

otherwise stated. We will also consider several transient CTMC Y. Each such Y has state 

space B U {a}, where all states in B are transient and a is an absorbing state, and has 

defined initial probability distribution with P[Y(0) G B] = 1. T(S,Y),S £ B, will denote 

the mean time spent by y in 5 before absorption, and r(C,Y) = £ i e c r ( s > ^ ) > C C B, 

will denote the mean time to absorption in subset C. Finally, recall that r(s,Y)Xs<s> is 

the expected number of times that a transition from s to s', s 6 B, s' Ç B U {a}, is 

followed. 

Consider the regenerative behavior of X, taking as regeneration points the times at 

which X enters o from U. Let TG and Tv be the contributions of G and U to the mean 

time between regenerations of X, and let CG and Cv be the respective contributions to 

the mean down time. From regeneration process theory (see, for instance [31]), we have: 

UA=CG + CU 

TG + TU 

upper bounds [2V]ub and [Q/]u b for, respectively, Tv and Cv are known. 
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Then [22, Theorem 2] 

[UA]lb= °? , • (6.1) 
-LG + L-tt/Jub 

r r n l _CG + [Cu]ub ip.0s 
[UA\uh = , (6.2) 

-ÍG + [C[/Jub 
are, respectively, a lower and an upper bound for UA. 

The quantities TQ and CG are computed as in Section 5.1 from the transient CTMC 

YG as 

TG = 5>( S ,Y G ) , (6.3) 
seG 

CG= Y, T(s,yG), (6.4) 
seGnü 

where D is the subset of down states of X. 

In the following, we will denote by FC and RC the set of distinct cardinalities of, 

respectively, failure and repair bags of the system, and by E{ the set of failure bags with 

cardinality i. 

The bound [2V]ub and, therefore , the lower bound [£Ot]ib are the same as those 

of the method developed in Chapter 5. Since the transient CTMC YUk introduced in 

Section 5.1 to compute [ÍL4]ib will be referred to later on in this section, let us recall 

its definition. The chain has state space {ui,..., u¡y} U {a}, initial state Uk and state 

transition diagram like the one shown in Figure 5.1, b: there is a transition with rate 

g(l) from uy to a, a transition with rate g(k), 2 < k < N from Uk to Uk-i, and, for each 

i G FC, i < N - k, a transition with rate /,• = 2 e e £ ^ub(e) from Uk to Ufc+¿. 

The upper bound [C[/]Ub is based on the lower bounds for failure distances derived 

in Section 4.2. Let s G Çî and let d(s) be a lower bound for the failure distance from s, 

d(s). Since theorems 4.2 and 4.4 we have: 

0 < d{s) < d{s), (6.5) 

d{s) = 0 if and only if s G D, (6.6) 

d(s) - \F(s') - F{s)\ < d{s') < d(s), F{s)cF(s'). (6.7) 

Let s' G ÍÍ be a state reached from s in a single-step transition associated with failure 

bag e G E and let s" G O, be a state reached from s in a repair transition involving i 

components. Then, (6.7) implies 

d(s) - \e\ < d{s') < d{s), (6.8) 
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and 

d{s) < d(s") < d{s) + i. (6.9) 

Let Uk,d be the subset of U including all states s with k failed components and 

d(s) = d, and let L — d(o). The set TÍ of (k, d) pairs for which Uk,d might be ^ 0 is given 

by the constraints 

l<k<N, 

max{0, L - k} < d < min{Z, N - k) . 

The constraints on k are obvious. The constraints L — k < d and d < L follow from (6.7) 

and the definition of L; 0 < d follows from (6.5). Finally, d < N - k follows from (6.7) 

and the fact that the structure function of the system is coherent by taking s' the state 

with all components failed and noting that d(s') < d(s') = 0 and, therefore, d(s') = 0. 

Let Yy, s € U be the transient CTMC with state space Us U {a}, (Is including the 

states reachable from s before exit from U, and initial state s, built from X by directing 

to a the transitions from states in U to o. Let Cy be the mean down time to absorption 

of Yy. Recalling that J2s'eGT(s''^G)^s',s; s £ U, is the probability that X enters U 

through s, we have 

cu = £ J2r(s'>yo)A.»,.c&=E E E r(s''y«)x°'<°cu• 
s'eGset/ s'^G(k4)&ñseüKd (6.10) 

Let C(k,d) be upper bounds for Cy, s G Uk,d, and 

ÏM = Er(a'yG)A . .oM- ( 6-U ) 

Let 

[Ct/]ub= £ ñk,dC(k,d). (6.12) 

We have the following result. 

Theorem 6.1 Assume C{¡ < C{k,d), s £ Uk,d, Then, Cu < [Cu]ub-
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Proof Using (6.10), the fact that Cfj < C{k,d), s G Ûk4, (6.11), and (6.12): 

Cu=J2 Y, T, r(s',YG)Xsl,sC
s
u<Y^ E E T(s',YG)\s,,sC(k,d) 

s'eG (k,d)eñ seük¡d ^'GG (k,d)eñ seükid 

= E E T(s>,YG)\slAdc(k,d)= E E ^ ^ - Ä ^ M ) 
«'eG(fc,ti)eÄ (k,d)eñs'eG 

= E ^ M ^ . d ) = [C[/]ub.n 
(k,d)£Ü 

Let L be the exact failure distance from state o, i.e. L = d(o), and let 

N 

C(fc) = E r(«¿. I™')- (6.13) 
¿=L 

Theorem 6.2 C£ < C(fc), s G £4-

Proof Since (6.5), Z < L. Using that [22, Theorem 6] Cfj < Yl^=LT(uùYUk) a n d 

(6.13): 

JV N 

cb < Er(u«-yUfc) ^ ET(U i 'y t t f c) = Ô(*)-D 
i = L t=L 

The bounds C(&, d) are computed using an iterative procedure that starts with 

C(k,d) = C(k) and improves the bounds using potentially better bounds C'(k,d) until 

no significant improvement is achieved. 

Let s G Uk,d and consider a transition from s to s' G U associated with failure bag 

e G Ei, i G FC. Clearly, s' G Uk+i,d> for suitable <¿' values. Imposing (k + i, d') G TZ yields 

i < iV - Jfc and d' < min{Z, N -k-i}. Moreover (6.5), (6.8), max{0, d - i} < d' < d. 

Therefore, the only feasible destination subsets Uk+i,d' , i G FC, are those satisfying 

i < N - k and (recall that d < L) max{0,d - i) < d' < min{d, JV - k - i}. Let 

ñ'= {(k,d,i,d')\ (k,d) eÜ,ie FC, max{0,d-¿} < d' < min{<¿, N-k-i}}. Assume 

that upper bounds Fiir(k,d), (k,d,i,r) G TZ' for Y?d'=o^sü • »' s ^ ^fc-d' a r e available 

and let 

~ \Fi}d-j(k,d)-Fi4-j-1{k,d), Jm(k,d,i) < j < JM{d,i) 
fi,j(k,d)= i 

[Fitd-j{k,d), j = Jni{d,i), ^6<14^ 
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where Jm(k,d,i) = max{0,ft + d + i - N} and JM(d, i) = min{z, d}. The upper bounds 

C'(k, d) are computed using 

C'(k,d) = ^ + Ik>1[ld>z_kC(k-l,d) + Id^L_kC(k-l,d+l) 

JM(d,i) ^ ^ 

+ ¡?ü J2 J2 / ¿ ¿ ( M ^ + ̂ - J ) , (6.15) 
i<7v — k 

where Ic is the indicator function returning 1 if c is true and 0 otherwise. The algorithm 

to compute the C(k, d) bounds is exactly the same as the one given in Figure 5.2 replacing 

L, TZ, C(k), C{k,d), and C'{k,d) by, respectively, L, % C{k), C{k,d), and C'{k,d). 

Next, we prove C^ < C(k, d),s G Uk,d, (k, d) £TZ provided that Fi,r(k, d), (A;, e?, i, r) G 

TZ', and Fti(fc, cQ, (k,d,i,d) G TZ' are decreasing on d. The proof consists of a sequence 

of two lemmas, three propositions and a theorem. 

We start with two technical results. The first one has been adapted from [22, Propo­

sition 2] and is included here for the sake of completeness. The second result is very 

similar to Lemma 5.2. 

Lemma 6.1 Assume that C(k,d), (k,d) G TZ, Fi¡r(k,d), (k,d,i,r) G TZ' and Fi¿{k,d), 

(k, d, i, d) G TZ' are decreasing on d. Then, 

JM(<Í,Í) _ 

Ä{k,d,i)= J ^ fitj(k,d)C{k + i,d-j), ¿G FC,i<N -k, 
j=Jm(k,d,i) 

is decreasing on d. 

Proof Let (k,d), (k,d+ 1) G TZ. Using (6.14) and making the index change r = d — j , 

JM(d,i)-i 

Ä{k, d, i) = J2 iFi,d-Ak> d) - Fij-j-í (k, d)]C{k + i,d- j) 
j-Jm(k,d,i) 

+ Fi4-JM(d,i){k, d)C{k + i,d- JM(d, i)) 

£ FiÀ.j(k,d)[C(k + i,d-j)-C(k + i,d-j + l)} 
j=Jm(k,d,i) + l 

+ Fi,d-Jm(k¿,i){k,d)C(k + i,d- Jm(k,d, i)) 

d-Jm(k,d,i)-l __ 

£ Fi,r (k, d) [C(k + i, r) - C(k + t, r + 1)] 
r=d-JM(d,i) 

+ FiÀ-Jm(k,d,i)(k> dÏC{k + i,d- Jm{k, d, i)). 
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Similarly, for A(k,d + l , i ) , 

d—Jm(k,d+l,i) 

A(k,d+l,i) = ¿ Fiir(k,d+l)[C{k + i,r)-C{k + i,r + l)] 
r=d+l-JM(d+l,i) 

+ Fi4+i-Jm(k,d+i,i){k>d+ l)C{k + i,d+ \-jm(k,d+ 1,0) 

Therefore, 

A(fc, d, i) - A(k,d+ 1, z) = 

d—Jm(k,d,i)—1 

J ] [Fi,r{k, d) - Fi<r{k, d + 1)] ]c{k + i, r) - C(fe + ¿, r + 1) 
r=d+l-JM(d+l,i) 

d-JM(d+l,i) ^ 

+ J2 Fiir{k,d)[c{k + i,r)-C{k + i,r+l) 
r=d—JM(d,i) 

+ Fi,d-Jm(k,d,i)(k, d)C{k + ^d~ Jm{k, d, i)) 
d-Jm(k,d+l,i) 

Y^ Fitr(k,d+l)\c{k + i,r)-C{k + i,r+l) 
r=d—Jm(k,d,i) 

- Fi,d+i-Jm(k,d+U)(k,d+ l)C{k + i,d+l - Jm(k,d+l,i)). 

The assumed monotonie properties for Fi¡r(k,d) and C(k,d) ensure that the first two 

terms above are non-negative. Let B(d,d,i) be the sum of the remaining three terms. 

Note that, trivially, 

d — Jm(k,d,i) = < 
N - k - i iïk + d + i>N-l 

d otherwise 

and 

d- Jm(k,d+ l , i) = i 
N-k-i-1 iîk + d+i>N-l 

d otherwise 

Then, if k + d + i > N - 1, 

B(k, d, i) = FitN-k-i(k, d)C(k + i,N-k- i) - FitN-k-i{k,d + l)C{k + i,N-k-i) 

= [FitN-k-i(k, d) - FitN-k-i{k, d + 1)] C{k + i,N-k-i)>0, 

and, if k + d + i < N - 1, 

B(k, d, i) = Fi<d{k, d)C(k + i, d) - Fi4{k, d+l) [C(k + i, d) - C(k + i,d+ 1) 

-Fi4+i(k,d+l)C(k + i,d+l) 

= Fi,d(k,d)-Fi,d(k,d+l)j [c{k + i,d) - C(k + i,d+l) 

+ ¡Fi<d(k, d)-Fi}d+1{k, d+l)]c{k + i, d+1)>0.Q 
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Lemma 6.2 The bounds C(k), 1 < k < N defined by (6.13) are increasing on k. 

Proof The proof is exactly as the one of Lemma 5.2 replacing L and C(k) by L and 

C(k) respectively. 

Proposition 6.1 Let (k,d) G It. Assume Cfj < C(k,d), s G Uk,d, and that C(k,d) are 

increasing on k and decreasing on d. Then, Cy < C'(k,d), s G Uk,d-

Proof Let s G Uk,d- Since (6.6), C{¡ is equal to the mean time in s, if d = 0, plus the 

mean down time from the next visited state m, if m G U. Let us analyze the subsets 

Uk',d> to which m may belong. From (6.9), a repair transition involving i, i G RC, i < k 

components can only lead to states in £7fc_ti<¿', k > i (if k = i the reached state would be 

o £ U), d < d' < d+i. Making the change d' = d+j and imposing (k — i, d+j) G 1Z yields 

max{0, L — k + i — d} < j < min{¿ — d, i}. Consider now the states that can be reached 

from s following a transition associated with failure bag e G Ei, i G FC. From (6.8), 

m G Uk+i,d-j, 0 < j < i. Imposing (k + i, d - j) G 11 we get Jm(k, d, i) < j < JM(¿, i). 

Based on the previous discussion and denoting J'm(k, d, i) = max{0, L — k + i + d} and 

J'M (d, i) = min L — d,i we have 

CO = fx(d) + f2(k, d, Ï) + f3(k, d, i), 

fl(d)=1-^, 

•WO x 

f2(k,d,i)= E E E x^fr. 
i<k—1 

f3(k,d,i)= E E E x 1 ^ ' 
iÇFC Í=Jm(k,d,i) mçÜk+i d -

i<N-k 

From this point the proof continues exactly as the proof of Proposition 5.1 replacing 

Ti(d), T2(k,d,i), T3(k,d,i), and Uk,d by, respectively, ?i(d), f2(k,d,i), f3(k,d,i), and 

Uk,d, and using C(k,d), L, 11, Fi¡r(k,d), and fi¿(k,d) instead of C(k, d), L, 11, Fi>r(k,d), 

and fi,j(k,d).[J 

Proposition 6.2 Assume that C(k,d), (k,d) G 7£, F(k,d, i,r), (k,d, i,r) G 11', and 

F(k,d, i,d), (k,d,i,d) G it', are decreasing on d. Then, the bounds C'(k,d), (k,d) G H, 

are decreasing on d. 
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Proof Let {k,d), (k,d+ 1) G Tl. Using (6.15), 

C'(k,d)-C'(k,d+l) = Tl + T2 + £ r3(t) 
¿e FC 

i<N-k 

with 

rj, Id=Q — Id+\=0 
-Í1 = 

9(k) 

h> 

r3(0 = 

h>i-k c(* - 1 , «0 + h<i-k c(k-i,d+i) 

- h+^i-kW - M + 1 ) - id+1<z.kc(k -1,d+2) 

Ä(k,d,i) - Ä(k,d + l,i) 

where A(/:, d, i) is defined as in Lemma 6.1. We will show that T\, T2 and Tz{i) are all 

> 0. Since (k,d) G Ü, d > 0 and d+ 1 > 0. Therefore, Ti = Id=o/g{k) > 0. Regarding 

T2, three cases must be considered: a) k = 1, b) k > 1, d > ¿ — k, and c) fc > 1, 

d < L - k. In case a, T2 = 0; in case b, T2 = C(k — l,d) — C(k — 1, d + 1) > 0 because 

C(&', d'), (&', d') € 7¿, is assumed decreasing on d; in case c, d+1 > L — k because (k, d), 

(k,d+ 1) G 7è, and, thereby, T2(t) = C(fc - l , d + 1) - C(fc - l , d + 1) = 0. Finally, 

r3(t) > Oby Lemma 6.1.D 

Proposition 6.3 Assume that C(k,d), (k,d) G TZ, F(k,d, i,r), (k,d, i,r) G TZ', and 

F(k,d, i,d), (k,d,i,d) G 7£', are decreasing on d. Then, the bounds C(k,d), (k,d) G TI, 

are increasing on k. 

Proof Consider the algorithm which improves the bounds C(k, d) split into phases, 

where each phase includes the operations performed within the fc-loop, and let C^m>(k, d), 

m > 0 be the bounds C(k, d) available after phase m. The proof is by induction on m. 

Let (k, d), (k — 1, d) G Tl. For m = 0, using Lemma 6.2, 

C(0){k, d) = C(k) > C{k - 1) = C{0){k - 1, d) . 

Assume that C^m )(k, d), 0 < m' < m, m > 0 are increasing on k and let fc' be the value 

of k for which the bounds are updated in phase m+ 1. Let (&' — 1, d) G TI, which implies 

fc' > 1 and d > max{0, L - k' + 1} > L - k'. We have (6.15) 

i<N-k' 

JM(d,i) 

Ä{k',d,i) = J2 fiAk',d)C(mi)(k' + i,d-j), mi<m. 
j=Jm(k',d,i) 
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Using (6.14) and Proposition 6.2, 

A(k',d,i) = Yl [hd-j(k',d)-FiÀ^1(k',d)}C^iHk' + hd-j) 
j=Jm(k' ,d,i) 

+ hd-JM(d,i)(k'' d)C^(k' + i,d- JM(d, ¿)) 
JM(<Í,Í) 

J2 Fi4-j(k\d)[C^(k' + i,d-j)-C^(k' + i,d-j + l)] 
j=jm(k',d,i)+i 

+ FiA-Jm(k<,d,i){k',d)CÍmi\k' + i,d- Jm(k',d,i)) > 0. 

Therefore, C'(k',d) > C^m\k' — l,d). Using the induction hypothesis, this implies 

C{m+1){k',d) = mm{C'{k',d),C{m\k',d)} > C(m}{k' - l,d) . Q 

Theorem 6.3 Assume that FitT.(k,d), (k,d,i,r) G Tí' and Fitd(k,d), (k,d,i,d) G Tí' are 

decreasing on d. Then, C[¡ < C(k, d), s G Uk,d o,nd the bounds C{k, d) are decreasing on 

d. 

Proof Consider the algorithm that improves the bounds C(k, d) split into phases as in 

the proof of Proposition 6.3. The proof is by induction on m. For m = 0, Theorem 6.2 

ensures that C(°\k,d) = C(k), which are (non-strictly) decreasing on d, upper bound 

Cy, s G Uk,d- Assume that C^m'^(k,d), 0 < m' < TO, TO > 0 upper bound Cfr, s G Uk,d 

and are decreasing on d. Let k' be the value of k for which the bounds are updated in 

phase m + 1. According to (6.15), C'(k',d) only depend on C^m'^(k,d), 0 < m' < TO, 

k ^ k', which, by Proposition 6.3, are increasing on k. Propositions 6.1 and 6.2 guarantee, 

respectively, that C'(k', d) upper bound C(j, s G Uk',¿ and are decreasing on d. Therefore, 

C(m+1){k',d) = m\n{C'(k',d),C(m)(k',d)} upper bound Cfj, s G Uk>td and are decreasing 

on d. Q 

6.2 Failure R a t e Bounding S t r u c t u r e s 

In this section we derive suitable upper bounds Fi<r(k,d), (k,d,i,r) G Tí' for Yld'-O 

For r = min{d, N — k — i} we take the same upper bound as for the method derived 

in Chapter 5: 

Fi,mm{d,N-k-i}(k> d) = /,• . 
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Let 77(e), e G E be the lower bound for the failure distance from a state whose bag of 

failed components is e. Let s' G U be a state reached from s G Uk,d in a single-step 

transition associated with failure bag e, i.e F(s') = F(s) + e. Note that from the bag of 

failed components point of view, nothing prevents us from regarding s' as the result of 

two single-step "transitions" : the first one, associated with e, from o to a dummy state 

s" with F(s") = e, and the second transition, involving F(s) components, from s" to 

s. Since d{s") = 77(e), we have (6.8) d(s') > 77(e) - \F(s)\ = 77(e) - k. Therefore, for 

(k, d, i, r) G 72.', r < min{cí, N — k - i} we can write 

r 

FiAk,d)= £ Aub(e)> £ A S ) ¿ W . 
__ e£Et <¿'=max{0,<¿-t'} 
r¡(e)<k+r 

Since neither Fi¡r(k,d), (k,d,i,r) G 7Î' nor Fi¿(k,d), (k,d,i,d) G 72/ depend on d, they 

are (non-strictly) decreasing on d and, thereby, fulfill the conditions imposed by Theo­

rem 6.3. 

6.3 Analysis 

In this section we analyze the performance of the bounding method described in this 

chapter and compare it with the bounding method developed in Chapter 5 and the 

methods described in [22] and [70]. In all cases the subset G is incrementally generated 

until the relative unavailability band, ([£M]ub-[£^4]lb)/[£^4]lb, is smaller than or equal to 

the desired one. For the first three methods we use the state space exploration algorithm 

CONT-TG-W reviewed in Section 5.3. For the last method we use an analogous state 

exploration algorithm with the modifications described in Section 5.4. 

The analysis and comparison will be made using two examples. The architecture of 

the first example is depicted in Figure 6.2. The system is exactly as the last example we 

used in Section 5.4, but with the number of nodes of both networks reduced to six and 

the number of processing clusters reduced to three. The system has 48 components and 

8,653 minimal cuts, 4 with cardinality 3, 6,561 with cardinality 4, 1,944 with cardinality 

5, and 144 with cardinality 6. As a second example we use the last one of Section 5.4, 

which has 78 components and 87,031 minimal cuts, 6 with cardinality 3, 75,625 with 

cardinality 4, 11,000 with cardinality 5, and 400 with cardinality 6. For both examples, 

L = 3 and L = 2. All results have been obtained in a 128 MB UltraSparc 1 workstation 

with the control parameter BR of algorithm CONT-TG-W set to 0.1. For the method 

described in Chapter 5, the control parameter R to compute failure distances has been 
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DA! 

Figure 6.2: Architecture of the first example. 

set to 2 and the control parameter R' to compute subbags of minimal cuts has been set 

to 6. 

We show in Figure 6.3 the relative unavailability band as a function of the number of 

states in G for the first example. The proposed method clearly outperforms the method 

described in [70]. Hence, the number of states required by that method to achieve a given 

relative unavailability band ranges from 4.6 to 12.2 times the number of states required 

by the method developed in this chapter. Regarding the method described in [22], the 

proposed method requires a number of states between 1.6 and 30.6 times larger. The 

comparison is even worse for the method described in Chapter 5, which requires a number 

of states between 2.1 and 42 times smaller than the method proposed in this chapter. 

Those figures are somewhat misleading since they do not take into account the amount 

of memory required in the methods described in [22] and Chapter 5 to store all minimal 

cuts and related structures. In Figure 6.4 we compare the methods in terms of memory 

consumption, which is really the figure of interest. The proposed method is again better 

than the method described in [70], with a memory consumption for a given relative band 

between 4.1 and 7.6 times smaller. Regarding the two methods that use exact failure 

distances, the proposed method is more efficient for moderate values of the desired relative 

unavailability band. For this example, storing the minimal cuts takes about 4.5 MB of 
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Figure 6.3: Relative unavailability band as a function of the number of states in G for 

the first example. 
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30000 60000 90000 
states 

Figure 6.5: Relative unavailability band as a function of the number of states in G for 

the second example. 

memory. As it can be seen in Figure 6.4, this is approximately the difference in terms 

of memory consumption between the proposed method and the methods described in 

[22] and Chapter 5 for a relative band equal to 0.1. The smaller the relative band, 

however, the larger the generated subset and, thereby, the memory consumption due to 

storing state descriptions and list of contributions becomes relatively more important 

than the overhead introduced by storing the minimal cuts and related data structures. 

This explains why the difference in terms of memory consumption between the proposed 

method and the methods described in [22] and Chapter 5 decreases as the target band 

gets smaller and, eventually, the proposed method becomes more memory consuming. 

In figures 6.5 and 6.6 we show the relative unavailability band for the second ex­

ample in terms of, respectively, size of the generated subset and memory consumption. 

The same comments we did for the previous example apply here: the proposed method 

outperforms the method described in [70] and, in terms of memory consumption, it is 

more efficient than the methods described in [22] and Chapter 5 for large to moderate 

relative unavailability bands. 
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second example. 

6.4 Conclusions 

In this chapter we have developed a bounding method for the steady-state unavailability 

that is based on lower bounds for failure distances and, therefore, does not require the 

knowledge of the minimal cuts of the system. The method seems to be better than the 

method described in [70], which is not based in the failure distance concept. Regarding 

the methods described in [22] and Chapter 5, which require to know and hold in memory 

the set of minimal cuts of the system, the proposed method can outperform both of them 

for moderate values of the relative unavailability band when the number of minimal cuts 

is large. 
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Chapter 7 

Conclusions and Future Work 

The goal of the dissertation was the development of failure distance based bounding 

methods for two dependability measures/scenarios: 1) the unreliability at time t, ur(£), 

for non-repairable fault-tolerant systems, and 2) the steady-state unavailability, UA, for 

repairable fault-tolerant systems. The goal has been achieved for a quite wide class of 

models and the required high-level knowledge about the model is reasonable and mod­

est. We have developed four methods: two using failure distances, and two using lower 

bounds for failure distances that can be inexpensively computed on the fault tree of the 

system. For the same number of generated states, the first two give, in general, tighter 

bounds, but those methods have the potential limitation that computing failure distances 

is an NP-hard problem. The algorithms we have used to compute the failure distances 

assume the knowledge of the minimal cuts of the fault tree. The algorithms seem to be 

very efficient from a time point of view even when the number of minimal cuts is large 

(tens of thousands). However, computation of the minimal cuts in a reasonable amount 

of time may be impossible and, then, the methods could not be used. Also, the number 

of minimal cuts can be very large and, in that case, the memory overhead associated 

with them may be important, making the other bounding methods more efficient from a 

memory usage point of view. As the examples we have presented show, all four methods 

can outperform significantly previously available methods and extend significantly the 

complexity of the fault-tolerant systems for which tight bounds for the considered de­

pendability measures can be computed. In that regard, we want to note that the method 

described in Chapter 5 has obtained very tight bounds for a fault-tolerant system with 

372 components using 100 MB of memory. Workstations with 1 GB of memory are 

common today and, we estimate, with such a workstation tight bounds should be attain­

able for fault-tolerant systems having of the order of 1,000 components. Fault-tolerant 
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interconnection networks [36] are fault-tolerant systems having that complexity. Once 

solving the difficulty of building a fault tree for those systems, their dependability could 

be analyzed precisely using the methods described in the dissertation. 

Much research work related with the dissertation remains and the author wants 

to undertake it in the future. First, it is tempting to develop bounding methods for 

ur(t) for non-repairable fault-tolerant systems using structures Fi<r(k, d) similar to those 

used by the proposed bounding methods for UA. Secondly, efficient state space explo­

ration algorithms for those methods could be developed. Finally, other dependability 

measures/scenarios could be considered such as ur(t) for repairable systems, the point 

unavailability and the expected interval unavailability for repairable systems, and the dis­

tribution of the interval availability for repairable systems. The latter would have special 

interest, since available numerical methods for computing that measure [23, 84, 85, 94] 

are expensive and keeping the size of the generated state space as small as possible is an 

important issue. Finally, all these methods should be offered in a tool with an as flexible 

as possible modeling language encompassing the class of models for which the bounding 

methods have been developed. 
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