
4 M M M M M M M M M M M
M M M M M M M M M M M r
4 M M M M M M M M M M M

Failure Distance Based Bounds of

Dependability Measures

Victor Manuel Suñé Socías

Departament d'Enginyeria Electrònica
Universitat Politécnica de Catalunya

Doctoral dissertation

submitted in fulfillment of the requirements for the

Doctor degree in Industrial Engineering

2000

Contents

Preface vii

1 Introduction 1

1.1 Fault-Tolerant Systems and Modeling 2

1.2 CTMC and the Largeness Problem 4

1.3 Bounding Methods 6

1.4 A Brief Review of Bag Theory 8

1.5 Class of Models Considered in the Dissertation 10

1.6 Outline of the Dissertation 13

2 Failure Distances and Minimal Cuts 17

2.1 The Problem of Computing the Failure Distance from a State 17

2.2 Algorithms to Compute Failure Distances 20

2.3 An Algorithm to Compute Minimal Cuts 23

2.4 Algorithm Analysis 36

2.5 Conclusions 40

3 Reliability Bounds of Non-repairable Systems using FD 43

3.1 Method Description and Justification 43

iii

3.2 Analysis and Comparison 50

3.3 Conclusions 53

4 Reliability Bounds of Non-repairable Systems using FD Bounds 55

4.1 Bounding Method 57

4.2 Lower Bounds for Failure Distances 62

4.2.1 Recursive Definition of Lower Bounds for Failure Distances 63

4.2.2 Correctness of the Lower Bounds for Failure Distances and Related

Results 64

4.2.3 Algorithms for the Computation of the Lower Bounds for Failure

Distances 72

4.3 Analysis and Comparison 83

4.4 Conclusions 91

5 Availability Bounds of Repairable Systems using FD 93

5.1 Extension to Group Repair 93

5.2 Improved Failure Rate Bounding Structures 106

5.3 State Space Exploration Algorithm 114

5.4 Analysis and Comparison 116

5.5 Conclusions 124

6 Availability Bounds of Repairable Systems using FD Bounds 125

6.1 Bounding Method 125

6.2 Failure Rate Bounding Structures 134

6.3 Analysis 135

6.4 Conclusions 139

V

7 Conclusions and Fu ture Work 141

vi

Preface

A la meva família.

The topic of this dissertation is efficient bounding methods for Markovian depend­

ability models of fault-tolerant systems. Ultimately, the complexity of the fault-tolerant

systems for which reasonably tight bounds can be computed is limited by the memory

consumption of the methods, which depends on their efficiency. The work described in

this dissertation has as baseline the idea that by exploiting the failure distance concept

more efficient bounding methods could be developed. The research described in this dis­

sertation has confirmed that intuitive idea. Although a lot of work remains to be done,

we think that the work described in this dissertation is a good starting point for what is

left.

I am grateful to Prof. Juan A. Carrasco for having introduced me in the area of

this dissertation (Markovian modeling of fault-tolerant systems), for having proposed me

such an exciting research topic, and for his help along the work, especially in the more

difficult spots.

VIH Preface

Chapter 1

Introduction

Increasing complexity of information processing systems and increasing importance of the

dependability of those systems has fostered the use of fault-tolerance. Fault-tolerance is

a methodology to achieve high dependability using components with moderate reliability

and, thus, moderate cost. Fault-tolerance is achieved through the use of redundancy,

that is information, resources, or time beyond what is strictly required for operation in

the absence of faults. Redundancy can take one of several forms [54]:

• Hardware redundancy: extra hardware, usually for the purpose of either detect­

ing or tolerating faults.

• Software redundancy: extra software, beyond what is needed to perform a given

function, to detect and possibly tolerate faults.

• Information redundancy: extra information beyond that required to implement

a given function; for example, error detecting codes.

• Time redundancy: time to perform functions such that fault detection and often

fault tolerance can be achieved.

Through the use of redundancy a fault-tolerant system is able to detect and tolerate

faults, so that the system still continues in correct operation in the presence of faulty

components. Redundancy implies extra cost over a non-fault-tolerant system. However,

fault-tolerance is an attractive alternative to the use of highly reliable components with

high cost, and often results in less costly systems with similar or higher dependability.

It is for this reason that fault-tolerance has achieved increasing popularity and its use

2 1 Introduction

is not restricted to applications requiring very high dependability. Unmanned space

flights, satellites, avionics, nuclear power plants, distributed systems, communication

networks, routers, multiprocessors, interconnection networks and high-density memories

are examples of application areas where fault-tolerance has found wide acceptance.

1.1 Fault-Tolerant Systems and Modeling

A fault-tolerant system is designed to achieve a certain degree of dependability. To

achieve such a degree of dependability, it is necessary to put redundancy in the system.

The addition of redundancy to the system increases its cost. Under that perspective,

the design and implementation of a fault-tolerant system can be seen as an optimization

problem, with the goal of achieving the desired dependability level at the minimum cost.

Fault-tolerance is an art, making the problem very difficult. In practice, the design and

implementation of a fault-tolerant system is strongly guided by heuristics and previous

experience. Nevertheless, usually several candidate architectures with different degrees

of redundancy are considered and their cost and dependability are analyzed. The one

that better solves the optimization problem is the one selected at the considered design

detail. The process continues till the design of the system is completed. After the

system is implemented, it is necessary to certificate that the system achieves the required

dependability level.

Dependability is a generic concept encompassing many measures, such as the steady-

state availability, the mean time to failure, and the reliability. Depending on the appli­

cation, one or several of such measures will be the more appropriate ones and will be

selected to quantify system dependability. Often, the system has graceful degradation.

This means that, as faults occur, the performance of the system degrades before failing.

For that class of systems, a combined evaluation of the system's performance and de­

pendability is appropriate. Such a combined measure is generically called performability

[69]. Performability is itself a generic concept (as dependability is) and can be particu­

larized into many measures. Many of those measures can be defined assuming a reward

structure over a stochastic process [87]. In summary, the system ability to offer correct

service is quantified using some or several dependability/performability measures.

Experimental quantification of the selected dependability/performability measure is

difficult or impossible. It is clearly impossible in a design stage, since the real system is not

available for experimentation. Even when the real system or a prototype is available, di­

rect experimental evaluation of system's dependability/performability is often extremely

1.1 Fault-Tolerant Systems and Modeling 3

difficult. The reason is that, if the fault-tolerant system is well designed, system failures

will be rare events and the time needed for an experimental evaluation of system's de-

pendability/performability will be very long. Several failures of the system will have to

be seen to have enough confidence on the estimation of the measure, making the required

experimentation time even longer. From a practical point of view, direct experimental

quantification of a fault-tolerant system's dependability/performability is only feasible

"a posteriori", when a sufficient number of copies of the system have been deployed and

are in operation. For these reasons, evaluation of a fault-tolerant system's dependabil­

ity/performability is usually accomplished using models. Since component faults, the

efficiency of fault-tolerance mechanisms incorporated in the system, and maintenance

actions have stochastic nature, stochastic models are used in the evaluation.

Stochastic models are not the only methodology required for the evaluation of de­

pendability/performability of fault-tolerant systems. The efficiency of fault-tolerance

mechanisms is characterized using the so-called coverage parameter [14], defined as the

probability that the system recovers given that a fault occurs. Coverage is sensitive

to low-level details of the system design and, although stochastic models help [38], in

general, coverage cannot be evaluated using only stochastic models and fault-injection

experiments are used. Fault injection can be done on the real system or a prototype of it

or in a more or less (typically very) detailed model of the system. Several tools for per­

forming fault-injection experiments have been developed [7, 9, 26, 29, 50, 51, 53, 55, 56].

The values of the coverage parameters obtained using fault-injection, perhaps in com­

bination with stochastic models are then used as parameters of a global dependabil­

ity/performability model of the fault-tolerant system that captures faults, fault recovery

(through the use of the coverage parameters), maintenance, and, if a performability mea­

sure is of interest, perhaps performance activities. Coverage parameters are incorporated

into that global model of the system as switching probabilities, using the so-called be­

havioral decomposition [97]. That approach is justified by the fact that fault-handling

activities are much faster than the remaining activities of the system.

The importance of stochastic modeling in the evaluation of fault-tolerant systems has

fostered the development of software tools with facilities for the specification and solution

of the stochastic models: SURF [58], ARIES [68], HARP [37], SAVE [46], METFAC [16],

SHARPE [86], SPNP [30], UltraSAN [34], SURF-2 [12], METFAC-2 [21], and Galileo

[96], among others. Homogeneous continuous-time Markov chains (CTMC) are the most

widely used type of stochastic process. They are the type of stochastic processes that

result naturally in dependability models when fault production times and maintenance

actions have exponential distributions. For performability models including performance

4 1 Introduction

actions, CTMC arise naturally when performance actions, in addition to fault occurrence

and maintenance actions, have exponential distributions. CTMC models allow also to

capture phase type distributions [73], although the cost is a considerable increase of

the number of states. Since many distribution functions can be approximated with

arbitrary accuracy using phase type distributions, the theoretical power of CTMC is

very high. Most of the stochastic modeling tools accept only CTMC models. Others

accept also non-homogeneous continuous-time Markov chains, which are useful to model

non-repairable fault-tolerant systems with components having non-exponential time to

failure. Finally, a few allow general distributions for the modeled actions, but then the

only available solution method is simulation. In this dissertation we will restrict our

attention to CTMC dependability models having a predefined structure. That class of

models will be detailed later on.

1.2 CTMC and the Largeness Problem

CTMC models allow to capture in a faithful way important details that fault-tolerant

systems have: component failure rates depending on the state of the system, failure prop­

agation, coverage, limited repairmen, repair priorities, etc. However, they suffer from the

well-known largeness problem (also known as state space explosion problem). In brief,

the problem is that the number of states of the CTMC grows fast with the complexity of

the fault-tolerant system and is far beyond current and foreseeable computation capabili­

ties for systems of some complexity. To illustrate the point, assume an availability model

of a fault-tolerant system having N distinguishable components, which can be unfailed

or failed. The up/down state of the system depends on the subset of components which

are failed. A CTMC modeling that system will have 2N states. For N = 20 the number

of states is 1,048,576, which is about what can be held in memory in a current high-end

workstation; for N = 30, the number of states is 1,073,741,824, which is far beyond

current computation capabilities, but which, maybe, will be affordable in 20 years from

now; for N = 40, the number of states is about 1.0995 x 1012, which, we think, is far

beyond what will be affordable in the future. As the examples used in the dissertation

will show, there exist many fault-tolerant systems yielding CTMC models of that size,

and for those systems an exact numerical solution of the corresponding CTMC is simply

infeasible.

The largeness problem is well-known (it also arises in performance CTMC mod­

els) and researchers have worked against it. The most radical approach is the use of

1.2 C T M C and the Largeness Problem 5

combinatorial solution methods. Generally speaking, that approach is possible for some

dependability measures when components have independent behavior. It is certainly

possible for computing the steady-state availability and the reliability of non-repairable

systems. Many combinatorial techniques (see, for instance, [1, 3]) exist when the up/down

state of the system is determined solely by a structure function, usually specified by a

fault tree. However, those techniques do not allow to consider coverage failures, which

in fault-tolerant systems are important. Combinatorial methods allowing imperfect cov­

erage have been developed recently [39, 35, 6]. Those methods are extremely efficient

and should be used when they are applicable. Another approach is the use of hierar­

chical model solution techniques. Those techniques are possible when the fault-tolerant

system can be decomposed in subsystems, each of them behaving independently of the

others. As combinatorial techniques, hierarchical model solution is only possible for some

dependability measures. The software tool SHARPE has the flexibility required to ac­

commodate those solution techniques and the examples presented in [86] illustrate them

very well.

A general approach to tackle the largeness problem is the state aggregation. That

approach is possible when the system exhibits symmetries (i.e. components or subsystems

with identical behavior). A posteriori state aggregation performed at the state level is

computationally expensive and does not solve the largeness problem. However, techniques

have been developed to generate directly the aggregated CTMC from a high-level system

description that makes the symmetries explicit. A simple example of that approach

is the use of the concept of component type in the SAVE package [46], which allows

to capture symmetries at the component level. A more general approach, allowing to

capture hierarchically symmetries at the subsystem as well as the component level is

offered by the UltraSAN software tool in the context of Stochastic Activity Networks

[88]. A more general approach has been also proposed in the context of Stochastic Petri

Nets [28].

Simulation is an approach that by nature does not suffer from the largeness problem,

since only the current state or, at most, the path to it from the initial state has to be kept

in memory. Standard simulation methods work very poorly for dependability models due

to the rarity of the system failure event, which makes enormous the number of model

events that have to be sampled to achieve confidence intervals with reasonable accuracy.

However, fast simulation methods specifically targeted at dependability models have

been developed recently. Most of these methods use importance sampling to drive the

simulation effort towards the more important paths (i.e. those paths that see system

failure and have higher probabilities) [17, 18, 25, 32, 47, 48, 65, 72, 74, 75, 76, 92, 91, 99].

6 1 Introduct ion

Fast balance likelihood ratio simulation methods have been proposed more recently [4, 5],

which seem to perform better than importance sampling methods for systems with high

degree of accuracy. However, although fast simulation is a feasible alternative (and maybe

the only alternative in some cases), the results they give are subject to a fundamental

criticism: there is no absolute guarantee that the estimator is close enough to the real

value of the estimated dependability measure. There is, certainly, a statistical assessment

of the error, but that assessment is itself based on an estimation of the variance of

the estimator and the shape of the distribution of the estimator is not known. Other

problem is the possibility of having estimators with infinite variance. In that case, the

estimated variance of the estimator increases as the simulation progresses and the user

may be deceived by the method, thinking that it has a good estimate of the dependability

measure when, in fact, it has not.

Finally, another approach (and the one we pursue in this dissertation) is the use of

bounding methods. Bounding methods are based on the fact that the probability mass

of the model is often concentrated in a small subset of states (for repairable systems and

non-repairable systems with not too long mission time, in the states with a few failed

components) and that detailed knowledge of the CTMC is required only in this subset.

Bounding methods generate the CTMC in a subset G of states and bound using high-

level knowledge about the model the behavior of the CTMC outside G, yielding bounds

for the dependability/performability measure. Note that in contrast with fast simulation

methods, in bounding methods there is a strict guarantee for the error1. Bounding

methods have experimented a great development in the last years and will be briefly

reviewed in the next section.

1.3 Bounding Methods

As it has been said in the previous section, in bounding methods a subset G of the state

space of the CTMC is generated and the behavior in the remaining states is bounded

somehow, yielding bounds for the desired dependability/performability measure. The

bounds are tight if the global probability of the non-generated portion of the state space

is small enough. Bounding transient dependability/performability measures is relatively

simple. Consider, for instance, bounding the unreliability at time t, ur(t). The exact

measure can be computed by generating a CTMC X = {X(t);t > 0} with state space

1 Of course, the "bounding" model is solved using numerical methods that are subject to roundoff er­

rors; however, typically, the numerical methods are stable and the resulting relative error in the computed

bounds can be neglected, if double precision is used in the computations.

1.3 Bounding Methods 7

S2 U {/}, where Q is the set of states in which the system is operational and entry into

the absorbing state / means system failure. Then, ur{t) = P[X(t) = /] . For simplicity

assume P[X(0) € O] = 1. Then bounds for ur(t) can be obtained by using a CTMC

X' = {X'(t);t > 0} with state space G u { / , a}, where G is a subset of Q and / and a are

absorbing states, having within G the same initial probability distribution as X, with

P[X'(0) = a] — P[X(0) e O - G] , having within G and from G to f the same transition

rates as X, and having transition rates from states in G to a equal to the transitions

rates of the corresponding states in G to Í2 — G in X. Then, it is easy to prove that

P[X'(t) = /] is a lower bound for ur(t) and P[X'(t) 6 {/,«}] is an upper bound for

ur(t).

Bounding steady-state measures is much more complex and several methods have

been developed in the last few years [19, 20, 22, 24, 63, 64, 66, 67, 70, 89, 95]. In

the first of such methods [70], bounds for the steady-state availability were obtained by

partitioning the non-generated portion of the state space, [/, according to the number

of failed components and bounding the behavior of the chain in U using upper bounds

for failure transition rates and lower bounds for repair transition rates. The method

was, however, computationally very costly because a linear system of size ?» \G\ had to

be solved for each return state, i.e. each state through which G can be entered from

U. In the same paper, a state cloning technique is proposed that reduces the number

of linear systems that have to be solved but introduces some looseness in the bounds.

The method proposed in [70] is not restricted to steady-state availability models and can

encompass any finite CTMC having the same structure. Of course, the bounds will be

tight only if the "repair" transition rates are much larger than the "failure" transition

rates. In [63] a refinement of the method is proposed for the particular case in which

all states but the one without failed components are cloned. The technique avoids a

complete reapplication of the algorithm each time G is enlarged in the search for the

desired accuracy but looses up further the bounds. This additional looseness has been

reduced in another paper from the same authors [64]. In the method proposed in [19], the

bounds of [70] are computed without cloning states solving only four linear systems of size

|G|. In addition, for steady-state availability models, iterative methods are very fast for

the solution of those four linear systems. In [89] another bounding method is developed

in which the bounds are iteratively refined using detailed knowledge about the model

in U in the neighborhood of G. No comparison was done with the method proposed in

[70]. An important disadvantage of the method is the need for detailed knowledge of

the model in U in the neighborhood of G, since that detailed knowledge can only be

obtained by generating states in U, increasing significantly the memory requirements of

8 1 Introduct ion

the method. In [22] a bounding method based on the failure distance concept is proposed

that gives bounds that are never worse and are typically better than those given by the

method proposed in [70]. The method uses the cloning technique of [70] but adapts one

of the algorithms developed in [19] so that only five linear systems of size |G| have to

be solved to compute the bounds. The method proposed in [22] is specifically targeted

at steady-state availability models. All previously reviewed methods assume that the

state space of the CTMC is finite and that there is a repair transition involving a single

component in all non-generated states of the CTMC. Both restrictions have been removed

in the generalization of [70] proposed in [66, 67], which allows to obtain bounds for infinite

CTMC and CTMC models in which no every state in U has "repair" transition. However,

"repair" transitions have to involve a single component2. The method has been used to

obtain bounds for the steady-state solution of queueing models. Another generalization

of [70] for finite models has been recently proposed in [24]. In that method, group repair

(i.e. the simultaneous repair of several components) and phase type repair distributions

are allowed. In the methods reviewed so far G includes all states of the CTMC having

up to K failed components. The issue of how to generate G so that it includes as few

states as possible to achieve the required accuracy has also been investigated. In [95],

state space exploration techniques were developed for the bounding method proposed

in [70] with the cloning technique. However, these state space exploration techniques are

expensive since they require the solution of a linear system of size \G\ after the expansion

of every state. More efficient state space exploration techniques based on the concept

of wave expansion and specifically targeted at the method developed in [22] have been

developed in [20].

1.4 A Brief Review of Bag Theory

Throughout the dissertation we will use bag theory. In this section we will briefly review

that theory. The review closely follows that provided in [78].

Bag theory is a natural extension of set theory. A bag, like a set, is a collection of

elements over some domain V. However, unlike a set, bags allow multiple occurrences

(instances) of elements. Consider, for instance, the domain V = {a, 6, c, d}. Examples

of bags over V are b\ = {a, 6, c}, 62 = {a,6, c, c}, and Ò3 = {6, c, b, c}. We will use

the notation b — Ci[ni]c2[w2] • • *c¿[njt] for the bag containing exactly n; instances of

2The subset U is conceptually partitioned into subsets Uk, k > F + l , where for steady-state availability

models Uk would include the states in which there are k failed components and the transitions from Uk

to the left, i.e. to G U U«*t/i , have to go to Uk-i if k > F + 1 or to G if k = F + 1.

1.4 A Brief Review of Bag Theory 9

element c¿, 1 < i < k. With that notation, the previous example bags are described as

Ò! = o[l]6[l]c[l], h = a[l]b[l]c[2], and b3 = b[2]c[2].

In set theory, the basic concept is membership. In bag theory, that concept is

replaced by the number of instances function. For an element x £ V and a bag b, we

denote the number of instances of a; in 6 by #(x,ò) . The cardinality \b\ of a bag b is

simply the number of instances of elements in the bag, i.e.

|6| = £#(*,&).

An element a; is a member of a bag 6 if #(x,b) > 0. This is denoted as x Ç b. If

#(x, 6) = 0, then x £b. The empty bag, 0, is the bag with no members, i.e. #(a;, 0) = 0,

x € V. A bag a is a subbag of a bag b (denoted o C b) if every element of a is also an

element of 6 at least as many times, i.e. if and only if #(a;,a) < #(x,ò) , x G V. Two

bags a and 6 are equal (denoted a — b) if and only if #(a;, a) = #(x, b), x Ç.V.

The following four operations are defined on bags:

bag union a U ò is the bag defined as

(Í , O U 6) = max{#(i ,a) ,#(x ,ò)} , x eV.

bag intersection a D b is the bag defined as

(i , a f l o) = min{#(x,a), #(x,6)}, x Ç.V .

bag sum a + b is the bag defined as

#(x,a + b) = #(x,a) + #(x,b), xeV.

bag difference a — b is the bag defined as

#(x, a — b) = #(x , a) — # (x , a ("l b) — max{#(i , a) - #(x, b), 0}, x € V.

These operators have most of the properties that would be expected. Union, inter­

section, and sum are commutative and associative. In addition, the expected inclusions

hold:

o f l ô C û C o U ô ,

a — b C a C a-\-b.

10 1 Introduction

The distinction between union and sum is clearly stated by

|aUò| < \a\ + \b\,

\a+b\ = \a\ + \b\.

No such simple statement distinguishes a n o from a — b.

1.5 Class of Models Considered in the Dissertation

The topic of this dissertation is bounding methods for dependability measures. The

bounding methods we will develop apply to a certain, wide class of dependability models.

That class of models is described formally in this section. We will also discuss how

coverage failures, which are important in the modeling of fault-tolerant systems, can be

accommodated within the assumed modeling framework. Also, as it has been commented

in Section 1.3, bounding methods require some high-level knowledge about the behavior

of the CTMC model out of the generated state space G. The high-level knowledge

required by the bounding methods developed in the dissertation will also be detailed in

this section.

We consider dependability models that result from conceptualizing a fault-tolerant

system as made up of components (hardware or software). In order to capture elementary

symmetries, we allow component classes, a particular component being an instance of

some component class. Formally, the system includes a bag C of component classes over

a certain domain V. We assume that the up/down state of the system is determined from

the unfailed/failed state of the components of the system through a coherent structure

function (see, for instance, [8]) specified by a fault tree with basic event classes made

up of OR and AND gates and with inputs atoms of the form c[n], c € C, n > 1, which

evaluate to true if and only if at least n instances of component class c are failed. We

allow arbitrary connections between the gates of the fault tree (as far as the fault tree

has only one output and it has not feedback). As an example, Figure 1.1 gives the fault

tree corresponding to a fault-tolerant system that is failed if and only if one instance of

component class a and two instances of component class b or two instances of component

class a and one instance of component class b are failed.

The CTMC models we will consider have "failure" and, for repairable systems, "re­

pair" transitions. Each state s of the CTMC (except the absorbing state indicating

failure of the system when the measure under consideration is the unreliability at time

t, ur(t)) has associated with it a bag of failed component classes F(s). There is a single

1.5 Class of Models Considered in the Dissertation 11

a[l] b[2] a[2] b[l]

Figure 1.1: Example fault tree.

state o without failed components (F(o) = 0). Each failure transition of the CTMC

has associated with it a bag of component classes (the components that fail when the

transition is followed). Similarly, in the case of models of repairable systems, each repair

transition has associated with it a bag of component classes (the components that are

repaired when the transition is followed). In addition, for models of repairable systems,

we assume that every state s ^ o has some outgoing repair transition. Finally, we assume

that the CTMC is finite.

The considered class of models is quite wide and encompasses, for instance, all

CTMC models which can be specified in the SAVE modeling language [46], a well-known

tool. For repairable systems we do not allow deferred repair, i.e. the deferring of repair

till some condition such as having a number of failed components > K is achieved.

Note that the CTMC may have several states with the same bag of failed components,

allowing the consideration of several failure modes for the same component class. Also,

in the case of repairable systems, very complex repair policies are supported: limited

repairmen, priorities, repair preemption, etc. Group repair, i.e. the simultaneous repair

of several components is allowed.

One might think the class of models just described does not encompass coverage

failures, which are important when modeling fault-tolerant systems. Such failures can

be however captured making a "trick". The trick is to introduce a class of "recovery"

components with n instances, at least one of which has to be unfailed for the system to be

up, which do not fail on their own, and to which uncovered failures of other components

are propagated, causing a system failure. Although n — 1 would suffice, that choice

may reduce the failure distances from the operational states to a value smaller than the

value they would have there were not coverage failures and result in a degradation of the

bounds given by the methods. The advisable choice is to take for n a value equal to the

redundancy level of the system, i.e. the minimum number of components that have to be

failed for the system to be failed. In the case of repairable systems, coverage failures are

typically recovered by a restart or similar action, which returns the system to a correct

12 1 Introduct ion

state. Such actions can be modeled by the repair of all the recovery components. Then,

the importance of allowing group repair is clear: without it, n should be chosen equal to

1 and the bounds would be worse. Also, the introduction of recovery components allows

to model more complex situations such as the coverage failures that take a subsystem

down.

Given a fault-tolerant system, we define a failure bag as any bag of component

classes over C that is associated with some failure transition of the model of the system.

Similarly, for repairable systems, a repair bag will be any bag of component classes over

C that is associated with some repair transition of the model of the system. We detail

next the high-level information that is required by the bounding methods developed in

this dissertation. The required information is the following:

• N = \C\, i.e. the number of components of the system,

• set E of failure bags of the model,

• for each failure bag e € E, an upper bound, Aub(e), for the sum of the failure

transition rates from any state of the model that have associated with them the

failure bag e,

• for 1 < k < N, a lower bound, g(k), for the total repair rate from any state with k

failed components.

That information could be extracted from an appropriate high-level specification

of the model, such as the model specification language available in the SAVE tool [46],

perhaps with some user intervention. In our experiments we have used METFAC-2

[21] and have integrated the bounding methods with that tool. The model specification

language of that tool is based on production rules that may have annotations. Such

annotations have been used to specify the "failure" or "repair" nature of the transitions

and the failure or repair bags associated with them. The tool generates the CTMC from

a "start" state, which, when the bounding methods are used, is always the state o. In

that context, it is easy to keep track of the bag of failed components associated with the

states and to identify E. N and the upper bounds Aub(e), e £ E are provided directly

by the user. The lower bounds g(k), 1 < k < N are obtained calling a function provided

by the user that is compiled and linked to the tool.

1.6 Outline of the Dissertation 13

1.6 Outline of the Dissertation

The subject of the dissertation are failure distance based bounding methods for CTMC

dependability models. The failure distance from a state of the fault-tolerant system is

defined as the minimum number of components that have to fail in addition to those

already failed to take the system down. That concept was introduced in [18] to devise

efficient importance sampling based simulation methods for CTMC dependability models

and has been used in [22] to devise a bounding method for the steady-state availability.

Both the simulation and the bounding methods significantly improved the performance

of previous non-failure distance based simulation and bounding methods. Those encour­

aging results were the motivation for the work included in this dissertation. As we will

show in Chapter 2, computing failure distances is an NP-hard problem. The currently

proposed method to perform that computation requires the knowledge of the minimal

cuts 3 of the fault tree of the system. However, we will prove in Chapter 2 that there is no

polynomial algorithm that solves the problem of computing the minimal cuts of a fault

tree with the assumed structure. Thus, for some fault-tolerant systems computation of

the failure distances may be very costly or infeasible. Also, the number of minimal cuts

can be extremely large, introducing a significant memory overhead. The recognition of

those facts led us to the development of failure distance-based bounding methods not

requiring exact failure distances (and, thus, knowledge of the minimal cuts), but easily

computable lower bounds for them.

Two dependability measures/scenarios are considered in the dissertation:

1. The unreliability at time t, ur(t), for non-repairable systems.

2. The steady-state unavailability, UA, for repairable systems.

The unreliability at time t, ur(t) is defined as the probability that the system will

have failed by time t. It is an important dependability measure for many systems and, in

particular, for non-repairable systems. The measure can be computed by using a CTMC

X = {X(t);t > 0} with state space Q U {/}, where fi includes all operational states of

the system and entry in the absorbing state / means failure of the system. Then, clearly

ur(t) = P[X(t) = f).

3 We use the term minimal cut instead of the more common minimal cutset because our minimal cuts

are bags.

14 1 Introduct ion

The steady-state unavailability, UA, is an important dependability measure for re­

pairable fault-tolerant systems. It is defined as the steady-state probability that the sys­

tem is down (failed). It can be computed by using an irreducible CTMC X.= {X(t);t >

0} with state space Í7 = U U D, where U is the subset of up states and D is the subset

of down states as

UA= lim P[X(t) €£>].
Í-+0O

As it has been explained in Section 1.2, the state spaces of the CTMC X can be

far beyond available computational resources, mainly due to memory limitations. The

goal of bounding methods is to obtain accurate enough estimations for the dependability

measure using substantially smaller CTMC models, which, hopefully, can be held in

memory. Bounds tightness increases as more states are generated and the efficiency

of the bounding method (i.e. the extent to which it provides tighter bounds with the

same number of states or, in other words, the extent to which fewer states have to be

generated to obtain the same bounds tightness) ultimately determines the complexity of

the fault-tolerant systems that can be evaluated with reasonable accuracy.

The outline of the dissertation is as follows. Chapter 2 analyzes and solves the prob­

lem of computing failure distances. First, we prove that the problem is NP-hard. Then,

we describe typically efficient algorithms to compute the failure distances assuming the

knowledge of the minimal cuts of the structure function of the system. The efficiency

of that algorithm translates the "complexity" of the problem of computing failure dis­

tances to the problem of obtaining the minimal cuts of the fault tree of the system,

a problem for which there is no polynomial algorithm. Currently proposed algorithms

for computing minimal cuts assume standard fault trees with simple basic events, while

our bounding methods use fault trees with basic event classes (a basic event class is the

failure of a component of a component class). In Chapter 2 we develop an algorithm to

compute the minimal cuts for fault trees with basic event classes. The algorithm seems

to be efficient and has minimum memory requirements. Chapters 3 and 4 presents and

analyzes bounding methods for the unreliability of non-repairable fault-tolerant systems.

The method described in Chapter 3 requires the computation of exact failure distances.

The method described in Chapter 4 uses easily computable lower bounds for failure dis­

tances. Both methods have the interesting property that the bounds are obtained from

the transient solution of "bounding" CTMC, and, thus, the methods can be used with

relative ease in any general-purpose Markovian modeling tool. Chapters 5 and 6 de­

scribe and analyze bounding methods for the steady-state unavailability of repairable

fault-tolerant systems. The work described in those chapters has [22] and [20] as starting

points. Chapter 5 generalizes the bounding method described in [22] by allowing group

1.6 Outline of the Dissertation 15

repair, which, as commented in Section 1.5, is an important generalization. In addition,

the efficiency of the method is increased by improving the failure rate bounding struc­

tures used in the method proposed in [22]. Chapter 6 describes a bounding method with

the same generality as the bounding method described in the previous chapter that uses

the easily computable lower bounds for failure distances derived in Chapter 4. Finally,

Chapter 7 contains the conclusions of the dissertation and highlights related future work.

16 1 Introduction

Chapter 2

Failure Distances and Minimal

Cuts

In this chapter we build the basis for the bounding methods which will be developed in

Chapters 3 and 5. We start by stating formally the problem of computing the failure

distance from a state. Next, we prove that the problem is NP-hard. Then, we describe

typically efficient algorithms to compute the failure distances assuming the knowledge of

the minimal cuts of the structure function of the system. The efficiency ofthat algorithm

translates the "complexity" of the problem of computing failure distances to the problem

of obtaining the minimal cuts of the structure function of the system, a problem for

which there is no polynomial algorithm. Currently proposed algorithms for computing

minimal cuts assume standard fault trees with simple basic events, while our bounding

methods use fault trees with basic event classes (a basic event class is the failure of a

component of a component class). Therefore, we develop an algorithm to compute the

minimal cuts for fault trees with basic event classes. The algorithm seems to be efficient

and has minimum memory requirements.

2.1 The Problem of Computing the Failure Distance from

a State

The bounding methods developed in the dissertation use the failure distance concept.

Two of them require the computation of failure distances from states of the CTMC. As

it has been mentioned in Section 1.6, the failure distance, d(s), from a state s is the

18 2 Failure Distances and Minimal Cuts

minimum number of components that have to fail in addition to those already failed

(F(s)) to take the system down. Since the up/down state of the system is determined

by a fault tree T, with the structure described in Section 1.5, we can paraphrase the

problem as

Problem FD Given a set of component classes D, a fault tree T including AND and

OR gates and having as inputs atoms of the form c[n], c 6 D, n > 1 that evaluate to

true if and only if at least n instances of component class c are failed, and a bag over £),

6, determine the minimum number of components that have to be failed in addition to

those in 6 for the fault tree to evaluate to true.

That problem seems to be hard, in general. We will solve it assuming that the

minimal cuts of the fault tree T are known. A cut is any bag over D such that the

failure of the components in the bag makes T evaluate to true (i.e. takes the system

down). A cut b is minimal if and only if no bag strictly contained in 6 is a cut. In

Section 2.3 we will develop a typically efficient algorithm to compute the minimal cuts

of the structure function represented by a fault tree T. It is known that, for ordinary

fault trees, having as inputs simple events, the problem of computing the minimal cuts is

NP-hard [81]. In fact, we will prove that for our fault trees the problem is not in P (there

is no polynomial algorithm that solves it). Then, a question arises: is our procedure

to solve Problem FD based on the knowledge of the minimal cuts of T more inefficient

than it should be? We will give next a partial answer to that question, proving that

Problem FD is NP-hard. Our algorithms to solve Problem FD have linear complexity

on the number of minimal cuts of F and, thus, are not polynomial, but, since Problem

FD is NP-hard, there is no polynomial algorithm to solve it unless NP = P, which would

mean that for all NP-complete problems there would exist a polynomial algorithm (see

[43] for background).

Let MC be the set of minimal cuts of T. Then, since a state is down if and only if the

failed components in the state make T evaluate to true and a bag b of failed components

imply T to true if and only if b includes some minimal cut, it is clear that the failure

distance d(s) from a state s can be computed as

d(s)= min \m-F(s)\. (2.1)
mfzMC

Use of (2.1) is expensive if the number of minimal cuts is large, as it can be. In Section 2.2

we will describe typically much more efficient algorithms to compute failure distances.

Our algorithms to compute failure distances require the knowledge of all minimal

cuts of the fault tree. We have the following result.

2.1 The Problem of Computing the Failure Distance from a State 19

Theorem 2.1 Computing all minimal cuts of a fault tree with the assumed structure is

a problem outside P, i.e. there is no polynomial algorithm to solve it.

Proof It is enough to show the existence of a fault tree with a number of minimal cuts

exponential on the size of the fault tree. To find such a fault tree consider a system

with n = 2k components of different classes that is failed if and only if n/2 or more

components are failed. The minimal cuts of such system are all collections with n/2

components, whose number is (ny2) > 2n /2 . In addition, a fault tree for the system of

size polynomial on n can be built by considering the set of components partitioned into

two subsets of cardinality n/2 and building networks with outputs that evaluate to true

if and only if k or more components of the subset are failed, k = 1,2, . . . , n/2. Those

outputs can be combined using AND and OR gates to obtain outputs which evaluate

to true if and only if k or more components are failed, k = 1,2,... ,'n. The reduction

procedure can be applied recursively. The resulting fault tree has a number of "stages"

logarithmic on n, and each stage has size quadratic on n. Then, it follows that for such

fault tree the number of minimal cuts is exponential on the size of the fault tree. Q

In the remaining of this section we will prove that the FD problem is NP-hard. We

will consider the following closely related decision problem:

Problem FDD Given a set of component classes D, a fault tree T including AND

and OR gates and having as inputs atoms of the form e[n], c 6 D, n > 1 that evaluate

to true if and only if at least n instances of component class c are failed, a bag over D,

b, and an integer K > 0, is there any bag b' over D, \b'\ < K such that the failure of the

components in 6 + 6' implies T to true?

We will also consider the well-known Vertex Cover problem, which is known to be

NP-complete [43]:

Problem VC Given a graph G = (V, E) and a positive integer K < |V|, is there a

vertex cover of size K or less for G, that is, a subset V C V such that \V'\ < K and, for

each edge {u, v} £ E, at least one of u and v belongs to V ?

Regarding the complexity of Problem FDD we have the following result.

Proposition 2.1 Problem FDD is NP-complete.

Proof We will use the more common approach to prove NP-completeness results [43].

Specifically, we will show that Problem FDD is NP. Then, we will construct a polynomial

transformation of Problem VC, which is NP-complete, into Problem FDD.

20 2 Failure Distances and Minimal Cuts

To show that Problem FDD is NP it is enough to prove the existence of a polynomial

nondeterministic algorithm to solve it. Such an algorithm can be easily built as follows.

Let D? be the subset of D including the component classes c having some input c[n]

in T and, for each c G D?, let np(c, b) be the set of integers n > 1 such that T has

some input c[n + #(c , 6)]. Consider all bags b' over D'T — {c G Dj? : njr(c, b) ^ 0} with

#(c , b') € n^r(c,ò), c G D'-p and |6'| < if. Then, the algorithm proceeds by considering

all such bags b' and, for each 6', evaluate T with the components in 6 + 6' failed. Note

that such evaluation is linear on the size of T. If the fault tree evaluates to true for some

bag b' the answer to the FDD problem is yes.

It remains to find a polynomial transformation from Problem VC to Problem FDD.

To find the transformation, let D = V and consider the fault tree T built as follows.

T has as inputs atoms u[l] for each u G V. For each edge {u, v} £ E, T has an OR

gate fed by two atoms: u[l] and u[l]. All OR gates feed an AND gate, whose output

is the output of T. Then, Problem FDD is invoked with set of component classes D,

fault tree .T7, ò = 0, and integer K (the integer K of Problem VC). By construction, it is

clear that the answer to Problem VC is yes if and only if the answer to the invoked FDD

problem is yes. But \D\ and the size of T are linear on the size of G and, therefore, the

transformation is polynomial, fj]

Using Proposition 2.1 we have the desired result.

Theorem 2.2 Problem FD is NP-hard.

Proof Problem FDD can obviously be polynomically transformed into Problem FD,

which by Proposition 2.1 is NP-complete. Q

2.2 Algorithms to Compute Failure Distances

Let G be the set of generated states. The implementation of the bounding methods

developed in this dissertation requires the computation of the failure distance from the

states that are successors (are reached through a single transition) of a generated state

s G G. A trivial computation of these failure distances based on (2.1) can be time

consuming if the number of minimal cuts is large. In this section we review, for the sake

of completeness, significantly more efficient algorithms described in [20].

We start with the observation that most of the transitions leading to the state whose

failure distance has to be computed will be typically of the failure type. To compute more

2.2 Algorithms to Compute Failure Distances 21

efficiently the failure distances associated with these states the concept of after minimal

cut is introduced. The after minimal cut associated with a minimal cut m and a failure

bag e G E is m! = m - e. Let AMCe be the set of after minimal cuts associated with

failure bag e, i.e.

AMCe = {m'\m' = m - e,m € MC, rnOe^}.

Then, the failure distance from any state reached from s through a failure transition

associated with failure bag e, ad(s,e), can be obtained as:

ad(s, e) = m\n{d(s), min \m — F(s)\}. (2.2)
meAMCe

Assuming that d(s) is known, the use of (2.2) instead of (2.1) reduces the number of

distances to minimal cuts \m - F(s)\ that have to be computed to determine ad(s, e),

e £ E from |2?||MC| to the typically much smaller J2eeE \AMCe\. Further reduction in

the number of minimal cut touches and the associated overhead can be obtained with the

two algorithms we describe next. The algorithms assume known the redundancy level of

the system L = d(o) and ad(o, e), e G E. Those quantities can be computed once before

the generation of the bounding model starts using (2.1) and (2.2).

Assume that an upper bound ub for d(s) is known (for instance, ub = L). Since at

most \F{s)\ components can be failed in any minimal cut we only need to consider the

minimal cuts m with \m\ — \F(s)\ < ub. Assume also that we can access the minimal

cuts indexed by order (cardinality) and selectors (bags included in the minimal cut) of

order < R. For \m — F(s)\ < ub, m must contain a selector p with all components failed

and |m| — |p| < ub, i.e. \p\ > \m\ — ub +1. Thus, for each possible minimal cut order c we

can restrict our attention to the minimal cuts of order c containing selectors p with all

components failed and |p| = min{i?, c - ub + 1} = r. Possible selectors can be examined

by generating all bags of order r included in F(s). Actual selectors can be identified

easily if all selectors are kept in a hash table. The discussion justifies the algorithm

computed given in Figure 2.2. The algorithm takes as input a bag of component classes

b and gives as output the failure distance d from 6. To compute d(s), the algorithm

should be invoked with b = F(s).

A similar scheme can be used to compute ad(s,e), e G E, assuming knowledge of

d(s). To reduce the overhead associated with the control of the algorithm we use one

bound and index the selectors for all the failure bags of the model together. The bound

is initialized using ad(o,e). The algorithm, called compute.alLad, is given in Figure 2.2.

The algorithm takes as inputs a bag of component classes b and the failure distance d

22 2 Failure Distances and Minimal Cuts

Algorithm compute-d(b, d)

d = L;
for (increasing minimal cut order c while c < d+ \b\){

r = min{i?, c — d + 1};
Let P be the set of bags of order r included in 6;
for (each p G P){

for (each minimal cut m with \m\ = c and p C ?n){
ci = min{d, \m- 6|};

}
}

}

Figure 2.1: Algorithm to compute the failure distance d from a bag of component classes

6.

Algorithm compute.alLad(d, b, d*(e),e e E)

for (each e £ E) d*(e) = min{c!, ad(o, e)};
adub = maxeg£;{i/*(e)};
for (increasing after minimal cut order c while c < aduò + |6|){

r = min{ñ, c — aduò + 1};
Let P be the set of bags of order r included in ò;
for (each p G P){

for (each after minimal cut m' with \m'\ = c and p C rn'){
Let e be the failure bag associated with m';
d'(e) = min{(i*(e) l |m'-&|};

}
}

}

Figure 2.2: Algorithm to compute the failure distance d*(e) from bags of component

classes of the form b + e, e £ E given the failure distance d from bag b.

2.3 An Algorithm to Compute Minimal Cuts 23

from b and gives as output the failure distances d*(e) from b-\- e, e € E. To compute

ad(s, e), e € E the algorithm should be invoked with d = d(s) and b = F(s).

These algorithms are used as follows. The failure distances from the generated

states are kept in the state descriptions. When a state is expanded, failure distances

from the new states reached through failure transitions are computed using algorithm

compute.alLad{)] the failure distances from the new states reached through repair transi­

tions are computed using algorithm compute.d{). Since typically most of the new states

are reached through failure transitions, algorithm compute.alLad() is invoked much more

often than algorithm compute.d(). The algorithms seem to be extremely efficient with

moderate values of R (it is convenient not to take to a high value for R to keep small the

memory overhead associated with the storage of the selectors) even when the number

of minimal cuts is huge. Thus, for instance, for the second (largest) example used in

Chapter 6, which has 87,031 minimal cuts, when the method developed in Chapter 5

was invoked with a target relative band of 0.01, which required the generation of 26,317

states, for R = 2 the number of minimal cut touches was 35,018,784 for a computation

of 1,926,512 failure distances, i.e. about 18.2 minimal cut touches for computed failure

distance. Using the trivial algorithm for computing the failure distances, the number of

minimal cut touches would be 167,666,265,872 (about 4,788 times more touches). We

have found R — 2 to be a good choice in all examples we have tried. With that selection,

the time overhead associated with failure distances computation is very small.

2.3 An Algorithm to Compute Minimal Cuts

In this section we describe an algorithm to compute the minimal cuts of a fault tree

with basic event classes such as the fault tree T of the class of models considered in

the dissertation. The algorithm uses a decision tree. The search implemented by the

decision tree is guided by heuristics that try to make the overall algorithm as efficient as

possible. In addition, an irrelevance test on the inputs of the fault tree is used to prune

the search. The performance of the new algorithm is illustrated and compared with the

basic top-down and bottom-up algorithms using a set of fault trees, some of which are

very hard. The new algorithm performs reasonably well even in the hard examples. Also,

the memory requirements of the algorithm are small.

Fault trees are a very popular tool in reliability engineering. The knowledge of the

minimal cuts allows the designer to analyze the criticality of the basic events and improve

the reliability of the modeled system. It is well-known that computation of all minimal

24 2 Failure Distances and Minimal Cuts

cuts of an arbitrary fault tree is NP-hard [81]. In spite of this theoretical difficulty, there

exist currently algorithms that will perform reasonably well in many practical cases.

Early algorithms can be classified in two categories: top-down algorithms and bottom-up

algorithms. Computation of all minimal cuts of a fanout free fault tree (i.e. a fault

tree without repeated basic events or gates branching out to more than one gate input)

can be done very easily by traversing the fault tree in a top-down fashion. In the basic

top-down algorithm [42], a set of cuts, often called the superset, is obtained as if the

fault tree were fanout free. The set of minimal cuts is then obtained by using in each cut

the reduction rule xx -> x and keeping those cuts which are not properly contained in

any other cut. The algorithm involves n(n — 1) inclusion tests, where n is the cardinality

of the superset. These inclusion tests can be performed very efficiently by associating

different prime numbers to the basic events and representing the cuts by the product of

the constituent basic events [90]. However, even using these techniques, reduction of the

superset is an expensive task if n is large. Also, some fault trees with manageable number

of minimal cuts have n so large that it is impossible to keep the superset in memory1.

Some improvements to the basic top-down algorithm have been proposed. In [10] the

size of the superset and the number of required inclusion tests is reduced by eliminating

repeated events that only fanout to OR gates. The algorithm described in [79] stops the

top-down expansion process at OR gates with basic event inputs, substitutes OR gates

with repeated basic event inputs by one of those repeated basic events and performs

reduction after each substitution step. The algorithm was to some extent faster than

the basic top-down algorithm in almost all cases. In [59] it is proved that cuts of the

superset without repeated basic events are all minimal and that the test for inclusion can

be performed within the remaining cuts.

Bottom-up algorithms try to avoid the potentially large superset of the top-down

algorithms. In the basic bottom-up algorithm [11] the fault tree is traversed from the

inputs to the top event, obtaining at each step the set of minimal cuts associated with

a given gate of the fault tree from the set of minimal cuts associated with the gates in

its fanin. In general, each step of the bottom-up algorithm requires the reduction of the

superset associated with the processed gate. The reduction is usually not very expensive

for OR gates. For a two-input AND gate, the trivial procedure involves nin2(nin2 - 1)

tests, where n\ and n2 are the number of minimal cuts at the inputs. However, a more

sophisticated algorithm is given in [71] that reduces the number of tests to n i e r a i +

n2 —' 1) in the worst case. A recent [52] elaboration of the bottom-up algorithm includes

Thus, for instance, the example EDF of Section 2.4 has n » 8.75983 x 1024 but only 2,463 minimal

cuts.

2.3 An Algori thm to Compute Minimal Cuts 25

a preprocessing step that yields reduced level fault trees that are processed in descending

level order. The new algorithm can speed up significantly the basic bottom-up algorithm

when the fault tree has gates with fanout.

The concept of module [27] can be exploited to reduce significantly for some fault

trees the computational cost of finding the minimal cuts. A module is a portion of the

fault tree having basic events as inputs and a single gate (the output of the module)

fanning out of the module. Efficient algorithms have been proposed to find modules [40],

[57], [82], [98]. The analysis of a fault tree with modules can be reduced to the analysis of

each module and the fault tree obtained by substituting each module by an independent

input.

More recently, algorithms based on BDD representations [15] of the logic function

implemented by the fault tree have been proposed. In [80], [93] the fault tree is assumed

5-coherent and a BDD is constructed for it. That BDD is then transformed to obtain

another BDD such that each path from the root to the leave 1 represents a minimal cut.

The MetaPrime tool [33] uses a similar approach that can deal with non s-coherent fault

trees, the BDD encoding the minimal cuts being called metaproduct. More recently

[77], another algorithm has also been developed for non s-coherent fault trees that in

many cases gives more compact BDD representations than the metaproducts obtained

by MetaPrime. All these algorithms have been shown to be typically much faster than

the early top-down and bottom-up algorithms.

The algorithm developed in this section considers generalized fault trees with basic

event classes, being the basic events of each class indistinguishable. With classes, the

fault tree does not longer represent a logic function with binary arguments. Also, cuts

and minimal cuts are not longer sets but bags. The algorithm uses a decision tree to

generate cuts of the fault tree. Cuts thus obtained are not guaranteed to be minimal and

a test of minimality has to be carried out. However, instead of inclusion tests, we make

an independent minimality test for each generated cut. Since cuts are generated one

by one, this allows to write sequentially in secondary storage minimal cuts, making the

memory requirements of the algorithm small and independent of the number of minimal

cuts. These small memory requirements are an unique feature of our algorithm (BDD

representations of fault trees are in the worst case of size exponential with the number

of basic events).

In this section we will use the following notation and definitions.

Notation and Definitions

26 2 Failure Distances and Minimal Cuts

C set of basic event classes of the fault tree

ci[ni]c2[n2].. .Ck[rik] bag with n,- > 0 instances of basic event class c¿, 1 < i < k; it

will be said that Ci[ni] is part of the bag

I set of inputs of the fault tree; each input is a bag c[n], c G C, n > 1, meaning

the realization of n basic events of class c

G set of gates of the fault tree

gr root (top) gate

type(<7) type of gate g; it may be AND or OR

val(.) value of an implied input or gate; it may be 0 or 1

node an input or a gate

fo(a:) fanout of node x: set of gates fed by x

fi(¿f) fanin of gate g: set of gates or inputs that feed g

irrelevant a node x is irrelevant if all edges branching out of x are irrelevant; an edge

e is irrelevant if either the gate g to which e goes is irrelevant or has been

previously implied by a node connected to g by another edge

dfo(ar) dynamic fanout of an unimplied node x: set of relevant edges fed by x

fx fanout excess of an unimplied and relevant node x: |dfo(2)| — 1

/ fanout excess of the fault tree: J2 *€/UG fx
x unimplied and relevant

6X for an unimplied and relevant gate, 6X = fx; for an unimplied and relevant

inpUt C[n], Sx = £ e[n']€/,n'<n fc[n']

c[n'] unimplied and relevant

input pattern any compatible combination of assignments of 0, 1 values to inputs of
the fault tree (by compatible we mean that the existence of the assignment

(c[n], 1) implies the existence of the assignments (c[nr\, 1), n' < n, c[n'] G / ,

and that the existence of the assignment (c[nj, 0) implies the existence of the

assignments (c[n'],0), n' > n, c[n'] € /)

reduction of / being / = {cjfni], C2[n2J,... , Cjt[n¿]} a set of inputs implied at 1, gener­

ation of a bag b by traversing / and putting into b each c[n] € / such that no

c[n'], n' > n is in /

cont(x) controllability of an unimplied node x: if x Ç / , cont(x) = 1; if x G G and

type(x) = OR, cont(a;) = min xieñ(x¡ {cont(x')}; if x e G and type(x) =
x' unimplied

AND, cont(x) = £ ,,6fl(x, cont(a:')
x* unimplied

2.3 An Algorithm to Compute Minimal Cuts 27

a[l]
6[1]

a[2]
d[l]

5[1]

a[3]

/[2]

x>
=[1]

Î>7D
=[1]

D

C^

5>

5[1]

Figure 2.3: Example fault tree.

We consider s-coherent fault trees involving OR and AND gates. Figure 2.3 gives a

small example that will be used for illustration purposes.

We begin by clarifying several concepts. Generalization to basic event classes intro­

duces dependences among the inputs related to the same event class. An input Ci[rii] is

implied at 1 if n¿ events of class c, are realized. An input c,[nj] is implied at 0 if nt- events

of class C{ are not realized. Then, val(c,[n,]) = 1 implies val(c,[ji]) = 1 for all j < n¿

because the realization of n,- basic events of class c, obviously implies the realization

of any number j < n,- of basic events of that class. Similarly, val(c¿[n,]) = O implies

val(c,-[j']) = 0 for all j > ni. Implications in the fault tree are performed from inputs to

gr in the usual way: an input of an OR gate at 1 implies the output of the gate at 1;

an input of an AND gate at 0 implies the output of the gate at 0; the output of an OR

gate is implied at 0 when all inputs are implied at 0, and the output of an AND gate is

implied at 1 when all inputs are implied at 1. Since the fault tree is s-coherent and all

gates are either OR or AND such a procedure is enough to know the implication state of

gr. To see that it suffices to note that 0's imply 0's and l's imply l 's and, therefore, an

unimplied output gr can be implied to 0 or 1 by simply implying the unimplied inputs

of the fault tree to 0 or 1, respectively. Therefore, when the procedure does not imply

gr, the root gate gr is really unimplied.

For the example fault tree of Figure 2.3, / = {a[l],a[2],a[3],6[l],c[l],4l],e[l],/[2],

g[l]}. Two possible input patterns might be h = {(a[l], 1), (a[2], 1), (a[3], 0), (6[1], 0),

(c[l], 0), (d[l], 0), (e[l], 1), (/[2], 1), (fl[l], 0)} and l2 = {(a[l], 0), (a[2], 0), (a[3], 0), (6[1], 0),

(c[l], 0), (¿[I], 0), (e[l], 1), (/[2], 1), (g[l], 0)}. For / l t gr is implied at 1. Then, that in­

put pattern "contains" the cut m = a[2]e[l]/[2] obtained by reducing the set of inputs

28 2 Failure Distances and Minimal Cuts

implied at 1 {a[l], o[2], e[l], /[2]}.

The problem to be solved is to find all minimal cuts of a given s-coherent fault tree.

Such a problem may be viewed as a search in a finite space. The. search space is given

by the next Theorem:

Theorem 2.3 All minimal cuts are oftheform Ci[ni]c2[n2¡.. .Cfc[n¿], where eachci[ni\ G

Proof By contradiction. Let m = Ci[nj]c2[n2].. -Ck[nk] be a minimal cut not satisfying

the condition. Then, there exists CÍ[TIÍ] part of m such that c,[n,] £ / . Assume that

there exists Ci\j] G I with j < n¿. Let J,- be the greatest of such integers and consider

the bag m' obtained from m by substituting Ci[ni\ by Ci[Ji\. If there not exists c,[j] G /

with j < nt-, let m' be bag obtained by eliminating c¡[n¿] from m. Clearly, m! performs

the same implications as m does. Therefore, m' is a cut, but being m' C m, m is not

minimal. Q

From the irrelevance definitions, the value of an irrelevant node does not affect

val(<7r). The following theorem relates irrelevance and minimality and will be exploited

in the algorithm.

Theorem 2.4 Let S be the set of implied fault tree inputs. If there exists Ci[ni\ G S that

is implied at 1 and is irrelevant, and there not exists any Ci[j] G / with j > n,-, no input

pattern obtained by implying more inputs will contain a minimal cut.

Proof Let m be any cut obtained by implying more inputs and reducing the set of

inputs implied at 1. Because no C{\j] G / , j > nt- exists, c,[n,] G m. Assume that there

exists at least one c,-[/] Ç. I, j < n,- and let «/,• be the greatest integer j < n,- with c,[j] € / .

Consider the bag m' obtained from m by substituting C{[ni\ by Ci[Ji\. If there not exists

any Ci[j] G / , j < ni, let m' be the bag obtained from m by eliminating Ci[ni\. Because

Ci[n{] is irrelevant, the value of gr is not affected by the value of Ci[ni] and m! is also a

cut. Furthermore, m' C m, implying that m is not minimal. Q

To avoid performing inclusion tests, which are time and memory consuming, a cri­

terion to determine when a cut is minimal or not without knowing any other cut would

be useful. The next theorem gives such a criterion.

Theorem 2.5 A cut m = Ci[ni]c2[n2].. -Ck[nk] is minimal if and only if, after implying

at 1 each Ci[nî\, each unimplication of Ci[ni\, 1 < i < k, followed by, if such J,- exists,

2.3 An Algorithm to Compute Minimal Cuts 29

implication of Ci[Ji\, where J{ is the greatest integer < n¿ with Ci[Ji\ 6 / , leaves gr

unimplied.

Proof We will show necessity and sufficiency.

Necessity: If there exists any Ci[n{] 6 m such that its unimplication followed, if existent,

by the implication of Ci[J{], where J, is the greatest integer < n, with Ci[Ji\ G / , leaves

gr implied at 1, the bag m! obtained from m by either deleting Ci[nj] or replacing Ci[ni\

by ci[Ji] is a l s o à cut, and being m' C rn, m is not minimal.

Sufficiency: Assume that gr is unimplied for each unimplication, followed, if existent, by

implication of Ci[Ji\, and assume that there exists a bag m' C m that is a cut. Being

m' C m, there exists m", m' Ç m" C m such that m" is obtained from m by either

deleting Ci[ni] for some 1 < i < k or replacing for some 1 < i < k c,[n,] by Ci[n'{] with

n¿ < n¿. In both cases gr is not implied at 1 by m" and m" is not a cut, implying that

neither is m' a cut. Then, there not exists any cut m! Cm and m is minimal. Q

From Theorem 2.3, the search space is the space of input patterns of the fault tree.

All minimal cuts can be found by exhaustively searching that space and, for each input

pattern for which val(<7r) = 1, obtaining its associated cut m by reduction of the set of

inputs implied a t . l , and testing m as Theorem 2.5 indicates. However, the algorithm

does not explicitly generate all input patterns, since in some circumstances it detects that

no input pattern containing the current set of implications would yield a minimal cut.

The algorithm also detects when the fault tree becomes fanout free (/ becomes 0) and

uses the top-down algorithm to obtain all potential minimal cuts that can be generated

by performing more implications at the inputs of the fault tree.

The algorithm we propose traverses a decision tree such as the one shown in Fig­

ure 2.5. Initially, all nodes of the fault tree are unimplied and the current node is the root

of the DT. A backtrace procedure selects an input Cj[ni]. The selected input is implied

at v = 1, a successor of the current node is constructed with the pair (c,-[n,-], v) assigned

to it, and the successor is visited. The process continues in a similar way from that node.

After each implication, the relevance status of edges and nodes, fx, / , Sx, and cont(a:)

are updated. In some cases, the search can be pruned. When the search is pruned, the

DT is traversed up to the root till a node y is found that has only a successor with v = 1.

If no such a node y is found, the algorithm finishes. Otherwise, the search is backtracked

up to node y. Backtracking involves the deletion of all the implications done as a direct

consequence of the input assignments associated with the nodes in the path from the

current node to y. It also involves the restoring of the old values of the relevance status

30 2 Failure Distances and Minimal Cuts

of the edges and nodes, fx, / , 8X, and cont(x). Deletion of implications and restoring

of old values of the relevance status of edges and nodes, fx, / , 6X and cont(x) is made

easily because the algorithm stores for each node of the DT the implications performed

and the old values of the relevance status of edges and nodes, fx, / , Sx and cont(a:) which

change as a result of the input implication performed at the node. After backtracking, a

successor of y associated with the input assignment (c,-[n,-],0), where Ci[rii] is the input

of the successor of y, is created, the assignment implied, and the process continues from

that successor. If the implied input value v is 1 the search can be pruned in the following

cases:

1. val(<7r) = 1. Extra input implications at 1 will give cuts which are guaranteed to

be non-minimal.

2. / = 0. The fault tree has been reduced to a fault tree that is fanout free2 and all

minimal cuts beyond that point of the search have to be included in the cuts that

are obtained by adding to the current set of inputs implied at 1 the inputs that are

found using the basic top-down algorithm on the reduced fanout free fault tree and

reducing those sets of inputs.

3. An input c[n] implied at 1 is irrelevant and there not exists c[n'] Ç I, n' > n.

According to Theorem 2.4, no minimal cut will be found by implying more inputs.

For v = 0, case 1 is impossible. Besides cases 2 and 3, there is another situation in

which no more implications are necessary:

4. val(<7r) = 0. Further input assignments will not change the value of gr and no

minimal cut exists from that point.

In case 1, a potential minimal cut is obtained by reducing the set / of inputs implied

at 1. In case 2, the top-down algorithm is used to find potential minimal cuts. The

cuts thus obtained are checked for minimality using the procedure of Theorem 2.5 and

recorded if they are minimal.

Our algorithm has similarities with some ATPG algorithms [2], [41], [44]. Figure 2.4

shows a recursive high-level description of the algorithm that uses a stack to store the

path in the DT to the currently processed node. The algorithm is invoked with an empty

stack. In the worst case the stack will have | / | cells. This together with the fact that

2The reduced fault tree is defined by the relevant and unimplied nodes of the original fault tree.

2.3 An Algorithm to Compute Minimal Cuts 31

Algorithm compute.cuts (INPUTS-ASSIGNMENTSSTACK s)

backtrace (pr, c,-[n,-]);
u = l ;
end = NO;
while (lend) {

imply Ci[ni\ at v;
push((cf[7i,-],u), s);
i f (v a % .) = = l | | / = = 0) {

if (val(ffr) = = 1) {
get cut m;
if (test_minimality(m)) store m; /* m is minimal */

}
else { /* / = = 0 */

collect potential minimal cuts by adding to the current set of
inputs implied at 1 the inputs found by the top-down algorithm
and reducing those sets, for each cut perform the minimality test
and store the cut if it is minimal;

}
}
else if (!(val(<7r) = = 0 or an input c[n] implied at 1 has become irrelevant

and does not exist c[n'] 6 J, n' > n)) compute_cuts(s);
unimply all c,[j] with either j < n,- (case v = 1) or j > n¿ (case v = 0)
that were implied as a direct consequence of setting Ci[ni\ at v;
pop((c¿[n,-],«),«);
if (v = = 1) v = 0 else end = YES;

}

.Figure 2.4: High-level description of the algorithm.

only a minimal cut has to be stored at a given time (possible because the minimality

check does not involve inclusion tests) makes the memory requirements of the algorithm

small. It has been assumed that the fault tree to be solved is not fanout free. To take

into account the special case in which the fault tree is fanout free, it suffices to check the

value of / before calling compute.cuts and invoke the top-down algorithm if / = 0.

The backtrace procedure that selects input assignments is crucial for the performance

of the algorithm and is inspired in ATPG algorithms. The procedure starts at the output

gr of the fault tree and follows a path to a fault tree input by selecting at each gate one

of its unimplied inputs. Gate inputs are selected using the following criteria:

32 2 Failure Distances and Minimal Cuts

(7) ^ (c [l] , l)

fanout free

c[l]a[l] mc
c[l]b[l] mc
c[l]e[l]a[3]
c[l]a[2]e[l]f[2]
c[l]d[l]e[l]a[3]
c[l]d[l]e[l]f[2]
c[l]g[l] mc

" " V T) (c[l],0)

3) (e[l], D (8) (em. 0)

output at 0

(T) (a [3] , l) ? T) (a [3] . 0)

output at 1 S ^v

e[l]a[3] mc (T) (f [2] f i) (7) (fr2], 0)

fanout free et13 irrelevant
output at 0

e[l]f[2]a[l] mc
e[l]f[2]d[l] mc
e[l]f[2]g[l] mc

Figure 2.5: Decision tree for the example of Figure 2.3.

1. Choose the input a; with highest Sx/cont(x).

2. Among the inputs with same Sx/cont(x) choose the input connected to the node

with lowest cont(a;).

If several inputs are identical according to both criteria, then the gate input is chosen

following a predefined ordering (for the fault tree of Figure 2.3 the ordering is from top

to bottom of the figure).

The heuristics used in the backtrace procedure try to reach as soon as possible

nodes with backtracking, either because the fault tree becomes fanout free or because

gr is implied at 1. The Sx is a local measure of how much / will be decreased if x is

implied at 1. The cont(a;) is a measure of the ease with which the considered node will be

implied at 1 (the higher cont(x) the more difficult) and is taken directly from heuristic

measures used to guide ATPG algorithms [45], being the measure in that context called

1-controllability. We tried other combinations, such as selecting first according to cont(x)

and then according to 6X and found that the chosen heuristics gave better performance.

In order to illustrate the algorithm we give in Figure 2.5 the DT corresponding to

the fault tree of Figure 2.3. Nodes are numbered following the creation order. For each

node except the root we give the corresponding input assignment. Also, for nodes with

2.3 An Algori thm to Compute Minimal Cuts 33

a[l]01
6[1] 01

Figure 2.6: Illustration of the backtrace procedure in the case in which there is no input

assignment (node 0 of the DT of Figure 2.5). The 5X and cont(x) are written next to

each node from left to right, respectively.

backtracking we give the reason for backtracking and, for the nodes in which the fault

tree became fanout free or gr was implied at 1, we give the cuts found, indicating by

"rac" those that are minimal. The fault tree has only 7 minimal cuts.

Figure 2.6 illustrates the backtrace procedure in the case in which there is no input

assignment (node 0 of the DT). The input selected is c[l]. Figure 2.7 gives the implication

status of the fault tree when c[l] is implied at 1. That implication makes irrelevant the

edge marked as i, making the fault tree fanout free (/ = 0). The corresponding reduced

fault tree is given in Figure 2.8. Use of the top-down algorithm on the reduced fault tree

gives the set of inputs {a[l]}, {ò[l]}, {a[2],e[l],a[3]}, {a[2],e[l],/[2]}, {d[l],e[l],a[3]},

{d[l],e[l],/[2]} and {^[1]}. The input currently implied at 1 (c[l]) is added to each sets

and the resulting sets are reduced, yielding the cuts shown in Figure 2.5. To illustrate the

minimality test, Figure 2.9 gives the implication status for the cut c[l]e[l]a[3], showing

crossed the unimplications which result when a[3] is unimplied, keeping implied a[2] and

o[l]. Since gr remains implied at 1, according to Theorem 2.5, the cut is not minimal.

Finally, in order to illustrate backtracking by detection of an irrelevant input implied at 1,

we give in Figure 2.10 the implication status and irrelevant nodes and edges corresponding

to node 7 of the DT. Input e[l] is implied at 1, is irrelevant and there not exists any

other input e{j] with j > 1. Then, according to Theorem 2.4, no minimal cut can be

found from that point and the search can be backtracked. At that node of the DT the

search could also be backtracked for gr being implied at 0.

34 2 Failure Distances and Minimal Cuts

«[I]"
Ml]-

a[2]
d[l]

=[1]-L
On

e[l]

a[3]-
/[2]-

D

c [l] JJ ^O-1
*[i]

Figure 2.7: Implication status at node 1 of the DT of Figure 2.5 with indication of

irrelevant edges.

a[l]
Mi]

a[2\-
4i]-

e[l]

a[3]

/[2]

TD-

D

*[i]

Figure 2.8: Reduced fault tree corresponding to node 1 of the DT of Figure 2.5.

2.3 An Algorithm to Compute Minimal Cuts 35

a[l)
Mil

o[2]
d[l]

-TO,
cf l l

e[l] —

a[3].
/[2]

D

c[i]_L

£/[l]
O-1

Figure 2.9: Implication status corresponding to cut c[l]e[l]a[3] and unimplication of a[3],

leaving a[2] and a[l] implied for the fault tree of Figure 2.3.

a[l)
6[1]

a[2] -1
41] - 1

c [l] - ^ ̂
ï>h

e[l] l i

«[3]-£

O 0 5r

C[l] D^
5(1]

Figure 2.10: Implication status and irrelevance status of the nodes for node 7 of the DT

of Figure 2.5.

36 2 Failure Distances and Minimal Cuts

Table 2.1: Fault tree characteristics.

tree

MS5

MS10

BR40

BR80

DR35

DR70

EDF

ELFI

ELF2

ELF3

m
38

68

120

240

112

217

39

61

32

80

l<7|
103

203

42

82

46

46

43

122

65

107

fanout

excess

92

192

3,080

12,560

152

257

9

12

57

87

depth

7

7

2

2

10

10

34

147

12

17

minimal

cuts

511

1,911

3,160

12,720

3,698

14,157

2,463

46,188

4,805

24,386

2.4 Algorithm Analysis

In this section we analyze the algorithm described in Section 2.3 by means of several

examples. Table 2.1 summarizes the characteristics of the fault trees that have been

used to test the algorithm. In all cases the number of basic event classes is equal to the

number of inputs. For each fault tree we give the number of inputs, number of gates,

fanout excess (/) in the unimplied fault tree, depth (maximum number of gates from a

fault tree input to gr) and number of minimal cuts.

Fault trees MS5 and MS10 correspond to the master-slave system depicted in Fig­

ure 2.11 with n = 5 and n = 10, respectively. That system is made up of a cluster of

redundant master processing units MPUi and MPU2 that are communicated with n clus­

ters of redundant slave processing units SPUtii and SPU^ , 1 < i < n. Communication

is done through two redundant buses BA and BB to which the master and slave units

are connected through dedicated interfaces. The system is operational if some fault-free

master processing unit can communicate directly (i.e. through one fault-free bus and

two fault-free interfaces) with at least one fault-free slave processing unit of each slave

cluster. Denoting by "•" and by "+" the logical operators AND and OR, respectively,

and naming each event class as the component type whose failure models, the expression

2.4 Algori thm Analysis 37

BA

MPU,

MPU2

IMAi

1MB,

IMA2

IMB2

ISA!,!

SPU,,,

ISBM

ISA,,2

SPU,,2

ISB,,2

• • •

ISAn,!

SPUn,,

ISBn,i

ISAn,2

SPUn,2

ISBn,2

_
BB

Figure 2.11: Master-slave system with n clusters of redundant slave processing units,

of the fault tree of that system is:

n .

gr = Yl (M P U I [1] + (lMAi[l] + BA[1] + (lSA¡tl[l] + SPU,-,i[l])-
.t'=i

(ISA,-2[1] + SPU t)2[l])) • (lMBa[l] + BB[1] + (lSBM[l] + SPUU[1]) •

(lSBif2[l] + SPU¿,2[l])))
n ,

J2 (MPU2[1] + (lMA2[l] + BA[1] + (lSAu[l] + SPU,-,i[l])-
i'=i -

(lSA,)2[l] + SPU,-,2[1])) • (lMB2[l] + BB[1] + (ISBM[1] + SPUU[1]) •

(ISB¿,2[1] + SPU,-,2[1])))

Fault trees BR40 and BR80 model the failure of the braided ring system of Fig­

ure 2.12 with n = 40 and n = 80, respectively. The braided ring is composed of stations

S¿, 0 < i < n — 1. There are links D; between S$- and S(,+i)modn and links T(,+1)mo<jn

between S; and S(,+2)mod„. All these links are directed. The system is up if it is possible

to build a ring connecting at least n — 1 fault-free stations S,-. The expression for the

fault tree is:

n - l n - 1

5r=x>[i]+D,[i])n
t = 0 1 = 0

n - l n - l

EsiW + E DJ-M+T.-W
3=0 ;=0

\j^i J5¿!,(¿—l)modn /

Fault trees DR35 and DR70 correspond to the system of Figure 2.13 with n = 35

and n = 70, respectively. Two redundant servers Si, S2 are communicated with gateways

Gi, G2 through a double ring network composed of nodes N,-, 0 < i < n — 1. There are

38 2 Failure Distances and Minimal Cuts

Figure 2.12: Braided ring system with n stations.

clockwise links I,- from N(,+1) mod n to N,- and counter-clockwise links D,- from N,- to

N(,-+i)modn- Each node has a spare module SN,- that may bypass N,- if it has failed.

However, those spare components are not connected to servers or gateways. The servers

are connected to nodes N¡„/2j and N¡^/2J+i; gateways Gi and G2 are connected to nodes

No and Ni, respectively. The system is operational if there exists communication in

both directions between at least one fault-free server and one fault-free gateway. Sj

and S2 are indistinguishable; N,- and SN,-, 2 < i < [n/2\ — 1, \n/2\ + 2 < ¿ < n - l

are also indistinguishable. Denoting by S the event class that models the failure of the

components Si, S2, by M,- the event class that models the failure of the components N,-,

SN,-, 2 < i < [n/2j - 1, [n/2\ + 2 < i < n- 1, and denoting the event classes that model

the failure of the other components by the components' names, the fault tree of such a

system is given by the following expressions (there is an expression for gT and each gate

with fanout):

gr = S[2] + (G I [1] + N0[l] + (N ln/2J[1] + C0i ln /2J) • (N l n / 2 J + I [l] + C0 (L n / 2 j + i)) •

(G 2 [1] + Ni[l] + (N ln/2J[1] + C l f lB /2 j) • (N l n / 2 J + I [l] + C l i L n / 2 J + ,)) ,

Co,Ln/2j = (Ni[l] • SNi[l] + NL n / 2 j + 1[l] • S N K 2 j + i [l] + DR) • (Ni[l] • SNjfl] + I0[l] +

Do[l] + RFR) • (NLn/2 j+i[lj • SNL„/2J+1[1] + ILn/2j[l] + D ln /2J[1] + LFR),

Co,ln/2j+i = (Ni[l] • SNi[l] + N lB /2J[l] • SN l n / 2 j[l] + DR) • (Nx[l] • SN^l] +

NL„/2J[1] • SNLn/2j[l] + Io[l] + Do[l] + ILn/2j[l] + DLn/2j[l] + RFR) • LFR,

2.4 Algorithm Analysis 39

N, 0+2

<a+2 SN a _^

N.-1

: 1

k •

N„_,

Figure 2.13: Double ring network (a = [n/2j).

CilL„/2j = (No[l] • SN0[1] + NLn/2j+1[l] • SNLn/2J+1[l] + DR) • RFR • (N0[l] • SN0[1] +

NL„/2j+i[l] • SNL„/2J+1[1] + Io[l] + Do[l] + ILn/2j[l] + D[n/2J[1] + LFR),

CU„/2 j + i = (No[l] • SNo[l] + NLn/2j[1] • SNLn/2j[l] + DR) • (Nln/2J[1] • SNln/2j[l] +

ILn/2j[1] + DLn/2j[1] + RFR) • (N0[l] • SNofl] + I0[l] + D0[l] + LFR),
|n/2j-l „_i / „ - l \ /„_l \

DR = £ M,[2] + J2 MM + EJ«M • 5>[1] .
i-2 «=|n/2j+2 \«'=0

[n/2j-l K 2 J - 1

RFR= 52 M«-[2] + E (I«[l] + D,[l]),

,i=0

>=2

n - 1

i'=l

n - 1

LFR= J2 MM + E (I¿[1] + D¿[1]).
i=[n/2j+2 ¿=ln/2j+l

Fault tree EDF models the failure of the communication network with 14 nodes and
25 directed links depicted in Figure 2.14. Such a network is up if the sender node S and
the receiver node R are both fault-free and there is a path of fault-free components from
S toR.

40 2 Failure Distances and Minimal Cuts

Figure 2.14: Communication network for fault tree EDF.

Fault trees ELFI, ELF2 and ELF3 are approximately the fault trees called with

these names in [33].

Table 2.2 shows the results obtained for each fault tree. CPU times have been

measured in a SparclO workstation. The table also shows the number of cuts which

would be processed by the basic top-down and bottom-up algorithms. Notice that for all

fault trees except MS5 and MS10 the use of either top-down or bottom-up algorithm is

impractical. For all fault trees the algorithm outperforms the classical algorithms, with

a ratio of number of processed cuts between 5.6 and 9.8 x 10173.

In order to illustrate the impact of: 1) the heuristics we have used in the backtrace

procedure, and 2) the irrelevance test, we show in Table 2.3 the number of backtracks

that are performed when either the inputs are chosen at random or the test of irrelevance

is disabled. The CPU time was limited to 5 hours and results are not given for the cases

in which more than 5 hours were necessary to compute all minimal cuts. In all cases both

the heuristics for input selection and the irrelevance test reduce significantly the number

of backtracks.

2.5 Conclusions

In this chapter we have stated formally the problem of computing failure distances from

a state (problem FD) and have shown that it is NP-hard. We have reviewed two efficient

algorithms to compute such failure distances using the set of minimal cuts of the fault tree

of the system. The algorithms are not polynomial, but we have proved that there could

exist polynomial algorithms for the problem only if NP = P. Finally, an algorithm to

compute the set of minimal cuts has been described. The algorithm performs reasonably

2.5 Conclusions 41

Table 2.2: Algorithm performance: number of minimal cuts, number of processed cuts,

number of backtracks, CPU time in seconds, and number of cuts that would be processed

by the basic top-down and bottom-up algorithms.

tree

MS5

MS10

BR40

BR80

DR35

DR70

EDF

ELFI

ELF2

ELF3

minimal

cuts

511

1,911

3,160

12,720

3,698

14,157

2,463

46,188

4,805

24,386

processed

cuts

1,473

5,208

3,161

12,721

118,444

808,953

3,435

112,606

13,754

69,488

backtracks

1,936

23,135

821

3,241

60,099

395,907

1,683

169,278

16,842

150,601

CPU

time (s}

1.74

13.6

11.4

175

51.1

536

4.26

235

23.6

150

cuts

top-down

34,225

136,900

3.86255 x 1077

1.24936 x 10178

1.22672 x 1026

8.32281 X 1030

8.75983 x 1024

1.26358 x 1020

4.17538 x 1017

1.45039 x 1016

cuts

bottom-up

8,285

29,345

3.86255 x 107T

1.24936 x 10178

2.90796 x 107

4.75491 X 108

3.81949 x 1010

2.86939 x 108

5.48907 x 108

7.66257 X 107

Table 2.3: Algorithm performance: number of backtracks in the algorithm, and when

either fault tree inputs are selected at random or the irrelevance test is disabled.

tree

MS5

MS10

BR40

BR80

DR35

DR70

EDF

ELFI

ELF2

ELF3

algorithm

1,936

23,135

821

3,241

60,099

395,907

1,683

169,278

16,842

150,601

w/ random

selection

67,619
—

1,849

10,985

233,663

1,798,840

266,611

9,115,802

226,704
—

w/o relevance

test

309,245

—

3,943

15,883-

248,414

1,791,888

22,159

—

101,994

—

42 2 Failure Distances and Minimal Cuts

well even in difficult examples. The number of processed cuts is usually not much larger

than the number of minimal cuts of the fault tree, and, in many cases, it is much smaller

than the number of cuts processed by the basic top-down and bottom-up algorithms.

Compared with recent algorithms based on BDD representations of the fault tree [80,

33, 77], the algorithm seems to be somehow slower. However, the algorithm has very

modest memory requirements whereas in the worst-case the algorithms based on BDD

representations require memory that is exponential in the number of basic events.

Chapter 3

Reliability Bounds of

Non-repairable Systems using FD

In this chapter we will develop the first failure distance based bounding method of the

dissertation. The method obtains bounds for the unreliability at time t, ur(t), of a non-

repairable fault-tolerant system and requires the computation of failure distances. It

has the interesting property that the bounds are obtained from the transient solution

of a "bounding" CTMC and, thus, the bounding method can be accommodated in any

general-purpose Markovian modeling tool. We will start by describing and justifying

theoretically the bounding method. Then, we will analyze its performance and will

compare it with the performance of the trivial bounding method described in Section 1.3,

showing that the proposed method can outperform significantly the trivial method.

3.1 Method Description and Justification

The measure ur{t) can be computed exactly using a CTMC X = {X(t);t > 0} that is

acyclic, has a finite state space Q U {/}, where / is an absorbing state that represents

the failure of the system and Q is the set of states in which the system is operational,

and has transition rates with failure bags e £ E associated with them. We have ur(t) =

P[X{t) = /] . Given ¿ € Í2, j € fi U {/} we will denote by A,j the transition rate of X

from state i to state j and by A,- =]C/eiiu{/} ^»' . ' t n e o u t P u t r a t e of -X" from state i. Being

B a subset of states, we will denote by X^B = Y^ieB ̂ «'-' t n e transition rate from state i

to B.

44 3 Reliability Bounds of Non-repairable Systems using FD

Figure 3.1: State transition diagram of X' for L = 3 and FC = {1,2}.

The bounds for ur(i) will be obtained using a CTMC X' = {X'(t);t > 0} with state

space G U {/} U {u0, • • • , UL}, L — m'mmGMC \m\. G is the subset of Ü that is generated

and the method assumes P[X(0) G G] = 1; / represents the failure of the system from

a state belonging to G; the states uj, 0 < d < L "bound" the behavior of X after it

exits G through a non-failed state. Let U = Í2 — G. The formal proof of the method

assumes that there are not transitions from U to G, For a given partition fi = GUl7 ,

depending on G it could well be that X had transitions from U to G, violating the

assumption. However, the assumption does not in fact impose any real restriction to the

selection of G, since it is enough to redefine X so that U includes copies of the states

of G reachable from U to satisfy the assumption. Thus, the only limitation imposed to

G is P[X(0) € G) = 1. The transition rates among the states of G are as in X; the

transition rates from states o € G to ÍÍ¿, 1 < ¿ < L have values Xa,ud, being Ud the

subset of U including the states with failure distance d; finally, denoting by FC the set

of different cardinalities of the failure events of the model and by E{ the subset of failure

events with cardinality i, and defining /,• = YleeE, ^ub(e), for each 1 < d < L, i € FC

there is a transition rate /,- from u¿ to Mmax{o,ii-i}- Figure 3.1 illustrates the structure

of X'. The initial probability distribution of X' is P[X'{0) = i] = P[X(0) = i], i e G;

P[X'(0) = /] = 0; P[X'(0) = ud) = 0, 0 < d < L.

The bounds are:

[ur(i)]ib = P[X'(t) = /] , (3.1)

{ur(t)]ab = P[X'(t)€{u0,f}}. (3.2)

The correctness of the lower bound (3.1) is trivial, since X' enters / when X enters /

from G; the correctness of the upper bound (3.2) will be shown next.

3.1 Method Description and Justification 45

l-hâJi i /•+/» i /•+/» 1

Figure 3.2: State transition diagram of DTMC Y' for L = 3 and FC = {1,2}.

The proof of the upper bound will be done through a lemma, two propositions

and a theorem and will make reference to the discrete-time Markov chains (DTMC)

Y = {Yn;n — 0 ,1 , . . .} and Y' = {Y^n = 0 ,1 , . . .} obtained by randomizing [49],

respectively, X and X' with a rate A, greater than or equal to the maximum output

rate of X (for instance, A = SeeE^ub(e)). The DTMC Y has the same state space

and initial probability distribution as X and transition probabilities qa¿ = A0i¡,/A, a ^

b, qa>a = 1 — Aa/A. The DTMC Y' has the same state space and initial probability

distribution as X! and transition probabilities q'a b = Â ¡,/A, a ^ b, q'aa = 1 — A^/A,

where Â b and Â are, respectively, the transition and output rates of X'. Figure 3.2

illustrates the state transition diagram of Y'. It is well-known (see, for instance, [83])

that X(t) = y/v(t) and X'(t) = Yj^,^, where Â = {A^i);^ > 0} is a Poisson process with

rate A. These results allow to express the transient solution of X (X') in terms of the

transient solution of y (Y'):

P[X(t) = a] = f^{-^fe-AtP[Yn = a], (3.3)
n=0

P[X'{t) = a] = ¿ M ^ e - A ' P [F n ' = a]. (3.4)

Intuitively, it is clear that the probability that Y' will reach the absorbing state UQ

from Ud, d > 0 in m steps decreases with d. The result is established in the following

lemma. Let

R'm(d) = P[Y^ = u0\Y¿ = ud}.

Lemma 3.1 R'm(d),m > 0, d > 0 is decreasing on d.

46 3 Reliability Bounds of Non-repairable Systems using FD

Proof From the structure of Y' we can write

¿C(0) = l , m > 0 , (3.5)

ieFC
i>d

and for m > 1, d > 0,

R'm(d) = (l - i E fi)R'm-M + E f ^ - i (m a x { 0 , d - ¿}). (3.7)
ieFC ieFC

The proof is by induction on m.

Base case (m = 1): We show R'^d) < R'^d - 1), d > 0. For d = 1, using (3.6) and (3.5)

we have:
Äi(1)= E x < 1 = ̂ (0).

¿eFC

For d > 1, using (3.6),

^) = E i ^ E £ = *!(*-D•
«eFC ¿efC

t>cf ¿ > á - l

Induction step: Let m > 0; we will assume that R'm(d), d > 0 is decreasing on d and will

show R'm+1(d) < R'm+l(d - 1), d > 0. For d = 1, using (3.7), Ä^(l) < 1 and (3.5) we

have:

¿4+i(i) = (i - iE^w+Eftt
ieFC ieFC

* i- lS/.+ E f = 1= ^ + 1 (o) .
ieFC ieFC

For d > 1, using (3.7) and the induction hypothesis,

R'm+1 = (l - T E fi)R'm(d)+ E jR'm(^x{0,d-i})

ieFC ieFC

Ï (i - l E fi)R'm(d-l)+ E jRUm^iO.d-i-l})
ieFC ieFC

= C+ i(¿-i)-D

Let us define i?m(a) = P[Ym = f\Y0 = a]. We have the following result.

3.1 Method Description and Justification 47

Proposition 3.1 Rm{a) < R'm(d), a € U¿, m > 0, d > 0.

Proof Let \l
aj be the contribution to Xaj associated with failure bags e 6 E{. We have

^â / — /»'• Since a failure bag e € E{ reduces the failure distance at most by i, Xaj will

not have contributions X'a , for i < d, and

^w-Eir- (3-8)

ieFC
i>d

Let us denote by Uk,d the subset of U including the states with k failed components

and failure distance d. For m > I, taking into account that / is absorbing,

Rm(a) = (l - ^ W : (a) + £ [^ + £ £ ^Ä»-i(6)
i>d

d

+ £ £ £ ^Äm-i(ft). (3.9)

The proof is by induction on m.

Base case (m = 1): We will show ñi(a) < Äi(d), a 6 í/¿, d > 0. Using (3.8), A*B>/ < / ¡ ,

and (3.6),

*.<•>= E ^ s E r « -
¿eFC ÍÇ.FC

%>d i>d

Induction step: Let m > 0; we will assume Rm(a) < R'm(d),a € U¿,d > 0 and show

Rm+i(a) < R'm+l(d),a G Ud,d> 0. Using (3.9) and the induction hypothesis,

¿w«) < (i-^)R'm(d)+ £ [% + £ £ ^» («0
v ' ieFC d'=\ beuk.i¡d,

+ £ £ £ ^*.eo

48 3 Rel iabi l i ty B o u n d s of Non-repairable S y s t e m s using F D

Taking into account that R'm(d') < 1, ^2beu , K,b = ^a,uk+id,,
 a n d using Lemma 3.1,

7 ieFC
i>d

+ ER'm(d-i) E % ^ . (3.10)
ieFC d ' = d - ¿

Let £/fc be the subset of U including the states with k failed components. The inequality

(3.10) can be written as

Rm+1(a) < (l - ^ W W + E A ^ +
A

A ° ^
V ' ieFC

i>d

+ J2R'm(d-i) ^ p . (3.11)
ieFC

i<d

Taking into account tha t Aa = Xaj + YlieFC Aa,r/*+<,

_ _ 2 ^ ^ + 2 ^ - ^ — . (3.12)

ieFC ieFC
i>d i<d

Combining (3.11) and (3.12),

ieFC
i>d

+ E [R'm(d - i) - R'm(d)}
Aa[yfc+,

A
«eFC

t'<d

Finally, noting tha t , for i > d, X'aj + XaUk+i < fi and tha t , for i < d, XatUk+i < /,-, and

using (3.5) and (3.7),

Rm+1(a) < R'm(d)+J2i1-R^]j+J2iR'm(d-i)-R'm(d))§:
ieFC ieFC

i>d i<d

= (I - A - E / ' K ^
AieFC

+ E jR'm(m^{0,d-i}) = R'm+ï(d).ü
ieFC A

Using Proposition 3.1 it is possible to show the following result.

3.1 Method Description and Justification 49

Proposition 3.2 P[Yn = f) < P[Y¿ e {u0, /}] , n > 0 .

Proof Y can enter / through U or directly from G. Taking into account that / is

absorbing and conditioning the entry of Y in / through U to the step in which Y leaves

G and the entry state in U, we have:

n - l L

P[Yn = f] = E E E P [y — ieGAYm = a}P[Yn = f\Ym = a)
m=l d=l a£U¿

n

+ Y,piY™-ieGAYm=zft
771=1

71-1 L

-m (a)
77i=l d=\ a£Ud

71

+ E p C y — i€GAy m = /] .
771 = 1

Invoking Proposition 3.1 and using the relationships between Y and Y',

71-1 L

P[Yn = f] < YlJ2JlP^-^GAY^=a^Rn-m(d)
77i=l d = l a£Ud

n

+ J2PlY™-l£GAY™=f]
771 = 1

n - l L

= £ E P[y--1 6GAy™ = MK-mid)
m = l d = l

+ E p [y - - i € G A y - = /]
7 7 1 = 1

n - l L

= E E p [y - - i e G A y - = ^ p [y " = U o i y - = ^
m = l d=l

n

+ E p f y - - i e G A y - = /]
m = l

= P K = «o] + P K = /] = P[Yl € {«o, /}]• D

The last proposition allows us to prove the following, desired result.

Theorem 3.1 ur(i) < [ur(i)]ub.

Proof Since Y is the result of randomizing X, using (3.3), taking into account that

50 3 Reliability Bounds of Non-repairable Systems using FD

P[Yo = f) = P[X(0) = f] = 0,

ur(t) = P[X(t) = /] = ¿ Wle-AtP[Yn = f].
n = l

Invoking Proposition 3.2 and using (3.4) with P[Y¿ 6 {«o, /}] = P[X'{0) € {w0, /}] = 0,

and (3.2):

«"•W * E ^ r e " A t W Í e H./>] = ^^'(*) e to./>! = MOWD
n = l n-

3.2 Analysis and Comparison

In this section we analyze the performance of the proposed bounding method using a

complex example with dependencies that prevent from using combinatoric and hierarchi­

cal solution methods, and compare the quality of the bounds obtained with the proposed

method with the bounds obtained using the trivial method in which the upper bound

assumes that the system fails when the model exits G. That bound can be expressed in

terms of the transient regime of X' as:

[ur(t)}'uh = P[X'(t)€{u0,---,uLJ}}.

The transient regime of X' has been solved using the randomization method [49].

The example is a system made up of 38 components. The architecture of the system

is shown in Figure 3.3. The system is made up of a cluster of redundant master processing

units MPUi and MPU2 that are communicated with n = 5 clusters of redundant slave

processing units SPUt(i and SPU¡,2, 1 < ¿ < n. Communication is done through two

redundant buses BA and BB to which the master and slave units are connected through

dedicated interfaces. The system is operational if some fault-free master processing unit

can communicate directly (i.e. through one fault-free bus and two fault-free interfaces)

with at least one fault-free slave processing unit of each slave cluster. The active con­

figuration of the system includes a master processing unit, with priority given to MPUi,

all fault-free slave processing units which can communicate with the active master pro­

cessing unit, and the busses and interfaces among these units and the active processing

master unit. Master processing unit MPU2 is activated only if MPUi IS faulty or it is

impossible to build up an operational configuration with MPUi (for instance, because

both interfaces associated with MPUi a r e failed).

Active master processing units, slave processing units, interfaces and busses fail

with rates AA/, AS, A/, and Aß, respectively. Passive components fail with rates 5M\M,

3.2 Analysis and Comparison 51

BA

MPU,

MPU2

IMA,

1MB,

IMA2

IMB2

ISA,,,

SPUi.1

ISB,,,

ISAil2

SPU,,2

ISB,,2

• • •

ISABll

SPUn,,

ISBn,,

ISA„,2

SPUn>2

ISBn,2

BB

Figure 3.3: Architecture of the example.

5sXs, $1^1, and SB^B, respectively, being 5M, 5S, ¿>¡, and 5B dormancy coefficients

< 1. The fault of an active or passive interface is propagated to the bus to which the

interface is connected with probability v. Coverage failures are modeled by propagating

the component fault to two "recovery" components, one of which has to be unfailed for

the system to be up. The coverage model of the example includes the parameters CM,

coverage to the failure of MPUi, C<¡, CB, Cj?, and C^B, coverages to the failures of,

respectively, a slave processing unit, a bus, an interface whose failure is not propagated to

the bus, and an interface whose failure is propagated to the bus, when the reconfiguration

of the system does not involve the activation of MPU2, and Cg, C B , C\, and C\B,

homologous coverages when the reconfiguration involves the activation of MPU2.

For the example, FC = {1,2,3,4} and for the upper bounds /,• we can take:

h = max{AMCM, AM¿M} + A M + 10max{A5C| r,AsC'|,As¿s}

+ 2 max{ABCf, A B C| , XB5B} + 24(1 - v) max{A/Cf, XjCf, XjSi) ,

h = 24i/max{A/C*jB,A,CfB},

h = A M (l - C M) + 1 0 m a x { A s (l - C f) , A s (l - C f) }

+ 2 max{AB(l - C f) , AB(1 - C*|)}

+ 24(1 - u) max{A/(l - Cf), A/(l - Cf)} ,

U = 2 4 ^ m a x { A / (l - C 7 /
B) , A / (l - C f B) } .

The numerical results have been obtained for AM = 1.2x 10~6 h - 1 , Xs = 6x 10 - 7 h - 1 ,

AB = 6 x l (T 8 h - \ A/ = 1.2 x l O ^ h " 1 , 5M = 5S = 5B = ¿j = 0.2, v = 0.1, CM = 0.95,

Cg = Cg = C? = 0.99, C1¿ = CB
, = C\ = 0.95, CfB = 0.97 and CfB = 0.93. The

corresponding values of the bounds /,- are /1 = 1.096488 x 10 _ 5 h _ 1 , f2 = 2.7936 x

10 _ 7 h - 1 , / 3 = 4.956 x 10 _ 7 h _ 1 and f4 = 2.016 x 1 0 - 8 h - 1 . As initial state we have

52 3 Reliability Bounds of Non-repairable Systems using FD

0.1

0.01

0.001

0.0001
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

t(h)

Figure 3.4: Unreliability bounds obtained with the proposed bounding method as a

function of the time in hours for K = 1,2,3.

assumed the state in which no component is failed. As subset of generated states G we

have taken the set including all operational states with up to K failed components, with

K = 1,2,3. The cardinality \G\ of the generated state space is 39 for K = 1, 735 for

K = 2, and 8,871 for K = 3. The fault tree of the system has 512 minimal cuts: 8 of

cardinality 2, 48 of cardinality 3, 96 of cardinality 4 and 360 of cardinality 6. Failure

distances have been computed with the control parameter R set to 2. The time overhead

associated with failure distances computation is about 10 %. However, the part of that

overhead which depends on the number of minimal cut touches is only 0.3 % and, thus,

we feel that systems with of the order of tens of thousands of minimal cuts can be dealt

with without significant time overhead due to failure distances computations. However,

for systems having that number of minimal cuts the memory overhead associated with

them and the structures required for the efficient computation of failure distances would

be significant. For the example, whose fault tree has only 512 minimal cuts, the memory

overhead for K = 3 was insignificant.

Figure 3.4 shows the unreliability bounds as a function of the time t for the three

considered values of K. It can be shown that very tight bounds are obtained with a

reasonable number of states (8,871 for K = 3) even for large times. The tightness of

the bounds increases for decreasing times. Table 3.1 shows, for several mission times,

the relative band obtained by the proposed method, ([ur(t)]uf, — [ur(t)]¡b)/[ur(t)]u„ and

T r

K=2 --+--
K=3 "B-

3.3 Conclusions 53

Table 3.1: Relative bands for several mission times obtained with the proposed method

(top) and the trivial method (down).

time

1 month

2 months

6 months

1 year

2 years

5 years

10 years

K (states)

1 (39) 2 (735) 3 (8,871)

0.007761 3.213 x lO"5 6.665 x 10"8

1.887 1134 x 10~5 3118 x 10"8

0.01637 1.295 x 10~4 5.300 x 10"7

2.063 230.7 x 10~4 1245 x 10~7

0.05846 1.197 x 10"3 1.400 x 10~5

2.711 73.45 x 10"3 111.1 x 10~5

0.1408 4.930 x 10"3 1.084 x 10~4

3.548 157.2 x 10~3 43.80 x 10"4

0.3545 0.02032 8.114 x 10"4

4.860 0.3424 169.2 x 10"4

1.187 0.1249 0.01043

7.202 0.9228 0.09300

2.724 0.4339 0.06110

8.987 1.740 0.2926

the relative band obtained with the trivial method, ([ur(£)]^6 - [ur(í)];¡,)/[ur(í)]¡¡,. The

proposed bounding method outperforms significantly the trivial method, especially for

short and medium mission times.

3.3 Conclusions

The failure distance-based bounding method for ur(t) developed in this chapter seems

to outperform significantly the trivial method. Its performance degrades as t increases.

Nevertheless, using the method, it is possible to obtain tight bounds with relatively

few states even for significantly large t. The time overhead due to failure distances

computation is small and will remain small even if the fault tree has many minimal cuts

(of the order of tens of thousands). The memory overhead due to holding the minimal

cuts and the structures required for the efficient computation of failure distances can

be significant if the number of minimal cuts is very large. In the next chapter, we will

develop another method to obtain bounds for ur(t) based on lower bounds for failure

54 3 Reliability Bounds of Non-repairable Systems using FD

distances that does not have that memory overhead.

Chapter 4

Reliability Bounds of

Non-repairable Systems using FD

Bounds

In this chapter we will develop and describe a method to compute bounds for the unrelia­

bility at time t, ur(t), based on lower bounds for failure distances which are computed on

the fault tree and, thus, does not require the knowledge of the minimal cuts of the fault

tree. The motivation is, first, to avoid having to solve a hard problem (the determination

of the minimal cuts), for which algorithms could fail to provide a solution in reasonable

memory and time. Secondly, the number of minimal cuts could be very large, making sig­

nificant the memory overhead of the bounding method described in Chapter 3 associated

with the holding of the minimal cuts and structures used by the algorithms for failure

distances computation. Thus, the bounding method developed in this chapter could be

more efficient in terms of memory required to achieve a given bounds tightness than the

method proposed in Chapter 3. We start by stating the properties that the lower bounds

for the failure distances will fulfill and showing how ur(t) can be bounded using those

failure distances bounds. Then we show how lower bounds for failure distances fulfilling

those properties can be computed on the fault tree. We end the chapter by analyzing

the performance of the proposed bounding method and comparing it in terms of bounds

tightness and CPU time with the performances of both the trivial method described in

Section 1.3 and the method proposed in Chapter 3. Throughout the chapter we will use

the following specific notation. Also, to avoid trivialities, we will assume that no fault

tree inputs a;, y with associated bags c[n], c[n'], n ^ n' feed the same gate. This is not a

56 4 Reliability Bounds of Non-repairable Systems using FD Bounds

real restriction since for n' > n and an OR gate, x, y can be substituted by x and for an

AND gate by y.

Notation and Definitions

[«r(i)]ib lower bound for ur(t) obtained with the method proposed in the chapter, the

trivial method and the method proposed in Chapter 3

[ur(f)]ub upper bound for ur{t) obtained with the method proposed in this chapter

[ur(i)](,b upper bound for ur(t) obtained with the method proposed in Chapter 3

[ur(0]ub upper bound for ur(t) obtained with the trivial method

X = {X(t); t > 0} acyclic CTMC modeling the system

X' = {X'(t);t > 0} acyclic CTMC used for computing [ur(£)]ib and [ur(i)]ub

A<n â,&! ̂ a,B respectively, output rate of state a, transition rate from state a to state
b a«d EbeB Kb for CTMC X

Y = {Yn; n = 0 , 1 , . . . } , Y' = {Yn'; n = 0 ,1 , . . .} respectively, DTMC obtained by
randomizing [83] X, X' with rate A greater than or equal to the maximum

output rate of both X and X'

O set of states of X in which the system is operational (up states)

/ ahsorbing state that represents the failure of the system (down state)

G subset of O that is generated

U O-G

L d{6)

Ud {a € U\ d(a) = d}

Uk {a G U\ the number of failed components in a is k}

uk,d uknud

d(a) lower bound for d(a); it verifies d(a) = 0 if and only if d(a) = 0, and d(a) <

d(o)

L d(o)

Ud,i {a<EUd\d(a) = i}

Ud {a € U\ d(a) = d}

Ei {e 6 E\ \e\ = i}

FC set of different cardinalities of failure bags

A(e) rate with which failure bag e G E is realized; it may be state dependent

4.1 Bounding Method 57

fi Ee€£¡ A«b(e)

4.1 Bounding Method

We give in Figure 4.1 the architecture of an example system, adapted from [61], which will

be used for illustration purposes. The system consists of two memory modules MM i and

MM2, three identical CPU chips CPUC and two identical port chips PTC. One CPU

chip and one port chip are spares. Each memory module MMj is made up of ten memory

chips MCj, two of which are spares, and one interface chip ICj. Active memory chips

MCj and interface chips ICj fail, respectively, with rate XMCJ and Xjcr Active port

chips PTC and CPU chips CPUC fail, respectively, with rates Xprc and XCPUC- Spare

chips fail with rates v x XMC,, V X XJC}, V X XPTC, and v x Xcpuc, being v, 0 < v < 1

a dormancy factor. Recovery is hierarchical. A fault in a memory chip is covered with

probability CMC- A faulty memory module, CPU chip and port chip are successfully

covered with probabilities CMMI CCPUC and Cprc, respectively. To model imperfect

coverage, an uncovered fault in a memory chip of memory module MMj is propagated

to a fictitious component RMMj, and an uncovered failure of a memory module MMj,

a CPU chip or a port chip is propagated to two fictitious components RCM. Memory

module MMj is operational if at least eight memory chips MCj, the interface chip ICj

and the fictitious component RMMj are unfailed. The system is operational if at least

one memory module MMj is operational, and at least two CPU chips CPUC, one port

chip PTC and one fictitious component RCM are unfailed.

Table 4.1 gives the failure bags of the example system and, for each failure bag e,

a suitable upper bound Aub(e) expressed in terms of the above failure rates, coverage

probabilities and dormancy factor. Thus, for instance, failure bag e\ stands for the fault

of a memory chip of the first memory module that is covered at memory module level, e2

stands for the fault of that chip that is uncovered at memory module level and covered at

system level, and e^ stands for the uncovered fault of the chip. Note that FC = {1,2,3,4}

and that / i = Aub(ei) + Aub(e4) + Aub(e6) + Aub(e9) + Aub(en) + Aub(e13), f2 = Aub(e2) +

Aub(e7), /3 = Aub(e5) + Aub(ei0) + Aub(ei2) + Aub(ei4), and f4 - Aub(e3) + Aub(e8).

The CTMC X' used to compute [ur(f)]ib and [ur(i)]ub has state space G U {/} U

{UQ,... ,W¿}- Although other selections for G would be possible, we assume that G

includes all the states of the model with up to K failed components and that P[X(0) £

G] = 1. The states u¿, 0 < d < L pessimistically approximate the behavior of X in

U. The transition rates in X' from a to b, a, b e G and from a to / , a € G are as in

58 4 Reliability Bounds of Non-repairable Systems using FD Bounds

Figure 4.1: Architecture of the example system.

Table 4.1: Failure bags of the example system and, for each failure bag e, a suitable

upper bound Aub(e).

ei

e2

Ê3

e4

es

e&

eT

€8

eg

eio

en

ei2

ei3

e14

description

MC i[l]

MCi[l]ÄMMi[l]

MCi[l] RMMi[l] RCM[2]

ICxil]

ICi[l]RCM[2]

MC2[1]

MC2[1]RMM2[1]

MC2[1] RMM2[1] RCM[2]

IC2[1]

IC2[1] RCM[2]

CPUC[1]

CPUC[1] RCM[2]

PTC[1]

PTC[l) RCM[2]

Aub(e)

(8 + 2 Í /)A M C 1 CMC

(8 + 2V)\MCI (1 - CMC)CMM

(8 + 2v)\MCl (1 - C M C) (1 - CMM)

^ICXCMM

A/d(l -CMM)

{8 + 2V)\MC2CMC

(8 + 2V)\MC2 (1 - CMC)CMM

(8 + 2v)\Mc2{l - C M C) (1 - CMM)

^IC2CMM

A/c2(l -CMM)

(2 + V)\CPUCCCPUC

(2 + v)\cpuc{1- - CCPUC)

(1 + v)\pTcCpTC

(l + i/)Aprc(l -CPTC)

4.1 Bounding Method 59

Figure 4.2: State transition diagram of X' for the example system (L = 2, FC =

{1,2,3,4}).

X. The transition rates from states a e G to Ud, 1 < d < Z have values A„ ,7 , and for

each 1 < d < L, i £ FC there ¡s a transition rate /¡- from u¿ to «max{o,d-{}- The initial

probability distribution of X' in G is the same as the initial probability distribution of

X in G. As it will be shown in Section 4.2, L = 2 for the example system. Figure 4.2

shows the structure of X' for the example system.

The bounds are

[ur(t)]lh = P[X'(t) = f],

[«r(i)]ub = -P[A- ,(i)e{t t 0 , /}]. (4.1)

The correctness of [ur(í)]¡b is trivial. The correctness of [ur(£)]ub is proved next under

the conditions:

1. 1 < d(a) < d{a),ae U,

2. d(a) < L.

We will construct the proof with the aid of the DTMC Y and Y'. Since [83] X(t) = YN(t)

and X'(t) = Y^rmi where N = {N(t);t > 0} is a Poisson process with arrival rate A, we

have

P[X(t) = a} = JTe-*A-^P[Yn = a], (4.2)
n=0

P[X'{t) = a] = J2 e-At(-^f-PK = a]. (4.3)
n=0

60 4 Reliability Bounds of Non-repairable Systems using FD Bounds

Let

R'm(d) = P[yl = uo\Y¿ = ud], (4.4)

Rm{a) = P\Yn = f\Y0 = a]. (4.5)

The following two results related to the "bounding" states u, are taken from Chap­

ter 3.

Lemma 4.1 R'm{d), m > 0, d > 0 is decreasing on d.

Proposit ion 4.1 Rm(a) < R'm{d), a £ U¿, m > 0, d > 0.

In Chapter 3 it has also been shown that if X' is built using transition rates \a,ud

from states a £ G to ud, 1 < d < L, then P[Yn = /] < P[Y¿ £ {u0, f}]. Since R'm{d)

decreases on d, it seems intuitively clear that after substituting rates \a,Ud by rates

Xafj (i.e. leading to t¿,-, i < d part of the transitions which went from a £ G to ud),

-PIXÍ £ {uo,f}] will also upper bound P[Yn = /] . This result is formally proved next.

Proposi t ion '4 .2 Assume 1 < d(a) < d(a), a £ U, d(a) < L and P[X(0) £ G] = 1.

Then, P[Yn = f] < P[Y¿ £ {tío,/}], n > 0.

Proof Y can enter / through U or directly from G. Taking into account that / is

absorbing, conditioning the entry of Y in / through U to the step in which Y enters U

and the entry state, and using (4.5),

n - l

P[Yn = /] = E E^ 7 — 1 € GAY™ = a^Yn = f\ym = «]
ro=l a € U

n

+ E p [y — i€GAy m = /]
m = l

n - l n

= E E P [y — » € G A ym = a]Rn.m(a) + E W » - i € G A Km = /] .
ro=l aGi/ m = l

Since 1 < d(a) < d(a), d[a) <L, a £ U, U¿ can be partitioned as

min{d,¿}

ud= (J Vdti.
t = i

4.1 Bounding Method 61

Then, since L = d(o) < d(o) = L,

L L min{d,L} L L

u=\jud = \j ù ^ = UU^-
d-1 d = l t'=l ¿=1 d=i

Using the above partition of U and Proposition 4.1,

n - l L L

p[Yn = f] = E E E E p[y—1 € G A y- =a^"—(°)
m = l t = l d=t „ g j ; .

+ ¿ ? [y m . i e G A y m = /]
m = l

i - l Z L

< E E E E p[y—i e G A7m = a]i?;_m(d)
m = l ¿=1 d=i a e i / d ;

n
+ ^ F [F m _ 1 e G ' A y m = /]

m = l

Then, using Lemma 4.1, Üi = Ud=¿ &d,i, the relations between Y and Y' and (4.4),

P K = /] < E E E E p[y—i € G AFm = a]i2;_m(i)
m i l i = l d=i a€Üdii

+ J2P{ym-ieGAYm = f]
m = l

n - l L

= E E E pty—1 e G A ym = a]fi;_m(¿)
m = l t = l aÇjj.

n

+ Epty— i € G A y m = /]
m = l

= E E p [y - - i e G A y- = « W - Í O + E p[y--i e G A F : = /]
m = l »=1 m = l

= E E p[y--i e G A y - = u ¿]pK = «o i v^ = ti,]
m = l t = l

m = l

= P K = «o] + P K = /] = P K 6 {«o, /}]-D

Finally,

62 4 Reliability Bounds of Non-repairable Systems using FD Bounds

Theorem 4.1 Assume 1 < d(a) < d(a), aeU, d(a) < L and P[X{0) G G] - 1. Then,

ur(t) < [ur(t)]uh.

Proof Using (4.2) and P[Y0 = /] = P[X(Q) = /] = 0,

ur(t) = F[X(i) = /] = ¿ e-Ati-^P[Yn = f].
n = l

Using Proposition 4.2, P[Y0' € {u0 , /}] = P[X'{Q) € {«o,/}] = 0, (4.3), and (4.1),

„(t) < ¿,-Ml/W e {«„,/,] - Ê e - ^ P K e {«o,/}]
n = l n=0

= P[X ' (í)6{«o , /}] = [«r(í)]ub.D

4.2 Lower Bounds for Failure Distances

In this section we obtain lower bounds d(a) = db(F(a),gr) for failure distances from

states a. We prove that the bounds fulfill the necessary requirements: d(a) = 0 if and

only if d(a) = 0 (to know from d(a) if a is operational or down) and 1 < ¿(a) < <f(a),

a € U, d(a) < ,¿ (Theorem 4.1). We give a sufficient condition for d(a) = d(a) and a lower

and an upper bound for dt,(F, x), F = F' + F" in terms of di>(F', x). Finally, an efficient

algorithm to compute the lower bounds for failure distances on the fault tree is derived

and illustrated. Throughout the section we will use the following specific notation and

definitions.

Notation and Definitions

C set of component classes

/ set of inputs (basic events) of the fault tree; each input x has associated a

different bag, b(z), of the form c[n], c € C, n > 1, meaning the failure of n

components of class c

P set of gates (complex events) of the fault tree

gr root gate (top event) of the fault tree

node or event gate or input of the fault tree

type(a;) type of node a;: AND, OR if x £ G; input if x 6 /

related two inputs x, y are related if b(x) = c[n] and b(y) = c[n'], n / n'

fo(:r) fanout of (set of nodes fed by) node x

4.2 Lower Bounds for Failure Distances 63

fi(x) fanin of (set of nodes that feed) node x

val(-) value of an input or a gate, which may be 1 or 0. For inputs x £ I, b(x) = c[n],

val(x) = 1 if and only if n or more components of class c are failed; for gates

x € P, its value is determined as usual from the values of y € fi(x)

realized an event x is said to be realized if val (a:) = 1

lev(-) level of an input or a gate. For inputs x Ç. I, lev(x) = 0; for gates y € P,

lev(y) = 1 + maxz6fi(j/){lev(z)}

path a sequence of nodes x\...Xk such that x,- € fo(a;,+i), i = 1 , . . . , k — 1

reachable node a node x is reachable from node y if there exists a path from y to a;

Reach (a;) set of nodes reachable from node x plus x itself

Support(x) ID Reach(x), i Ç / U P

independent two nodes x, y G I D P are said to be independent if Support(x) n

Support(y) = 0 and for each z € Support(x), b(z) = c[n], no t € Support(y),

b(t) = c[n'} exists

S(F, X) F D (]CyeSupport(i) b(y)) , being F a bag of failed component classes and x

a node

module a node x G / U P is a module if and only if every path z.. .y, z £ Reach(x),

y € Reach(x) contains node x, and for each input y € Support(x), no related

inputs exist outside Support(x)

db(F,x) being F a bag of component classes and x an event, minimum number of

components which have to fail in addition to those in F to realize x; it is

called distance from bag F to event x

db(F,x) lower bound for dt,(F,x)

f?(e) = ¿b(e,y r) lower bound for the failure distance from a failure bag e € E to gr

4.2.1 Recursive Definition of Lower Bounds for Failure Dis tances

Note that from the above definitions, d(a) = dt,(F(a),gr). The computed lower bounds

are d(a) = cib(F(a),yr). The lower bounds d^[F(a),gr) are computed on the fault tree

of the system using the concept of module, which generalizes to component classes the

definition given in [57, 40], in the sense that a module is a node such that the subtree

hanging from it has that node as only entry point and every input of the subtree does

not have related inputs outside the subtree. To determine which gates or inputs of the

64 4 Reliability Bounds of Non-repairable Systems using FD Bounds

fault tree are modules, we use the algorithm LTA/DR of [40] with a small modification

to take into account component classes: during the first depth-first left-most traversal of

the fault tree (step no. 2 of the algorithm), visit to x € I implies simultaneous visit (i.e.

with the same "time stamp" as for x) to all inputs related to it.

Given a bag of component classes F, db(F,x), x € I\JP is recursively defined by

the following expressions:

x € I, b(x) = c[n]

~ , „ . Í n if no c[n'\ is part of F . „,
db(F,x) = \ \ J * . (4.6)

[max{0, n — n j if c[n'\ is part of F
i 6 f ; type(ir) = OR

db{F,x) = min (db(F,y)}. (4.7)

x 6 P; type(ar) = AND

db (F, x)= ^2 db (F, y) + max j J] db (F, y), max j 0, db(F, y)} 1 ,
yeA(x) Ky€B(x) y€ {x) } (4 , 8)

with A{x) = {y6 fi(a:)| y is a module A |fo(y)| = 1}, B{x) = {¡/G fi(a;)| y is a module A

|fo(y)| > 1 V y is not a module A y € / } and C(a;) = {y 6 fi(a;)| y is not a module A y €

Expressions (4.6), (4.7) and (4.8) allow to compute db(F,gr) by traversing the fault

tree depth-first left-most starting at gr. We depict in Figure 4.3 the fault tree of the

example system and show in Table 4.2 how L = db(®,gr) would be computed for that

fault tree. Note that all gates and inputs of the fault tree are modules and, therefore,

(4.8) reduces to db(F,x) = Eyefi(x) ¿b{F, y).

4.2.2 Correctness of the Lower Bounds for Failure Dis tances and Re­

lated Resul ts

First, we prove that given a bag of component classes F and x Ç IU P, 0 < db(F, x) <

db(F, x) and db(F, x) = 0 if and only if db(F, x) — 0. The proof consists of a sequence

of a lemma, two propositions and a theorem.

Lemma 4.2 Let x,y € I U P, and let x be a module. Then, if x,y £ I, Reach(x) (1

Reach (y) = 0; otherwise, Reach (x) n Reach (y) ^ 0 if and only if either x € Reach (y) or

y 6 Reach (x).

4.2 Lower Bounds for Failure Distances 65

Xi X2 X¡

MCi[3] ICi[l] RMMx[l]

X7 X 8 Xg

CPUC[2] PTC[2] RCM[2]

1
X4 X5 X6

MC2[3] IC2[i] RMM2[l]

Figure 4.3: Fault tree of the example system. Bags associated with inputs are given

below to them.

Table 4.2: Computation of L = ¿b(0,5r) traversing depth-first left-most the fault tree of

the example system and using expressions (4.6), (4.7) and (4.8).

step

node x

¿b(0,x)
step

node a:

¿b(0,aO

1

9r

-

10

%5

1

2

fi'l

-

11

X6

1

3

92

-

12

93

1

4

xx

3

13

9i

2

5

x2

1

14

x7

2

6

£ 3

1

15

Z8

2

7

52

1

16

XQ

2

8

53

-

17

9r

2

9

#4

3

66 4 Reliability Bounds of Non-repairable Systems using FD Bounds

Proof If x, y G / , the result is trivial. The three remaining cases we have to deal with

are: x G I,y G P; x G P, y G I; and x,y e P. The if implication for these cases is

also trivial since x G Reach(y) or y € Reach (x) implies (recall that x G Reach (x) and

y G Reach(y)) Reach (x) n Reach (y) ^ 0. Regarding the only if implication, consider first

the case x G I, y G P. Reach(x) n Reach(y) = {a;} n Reach(y) ^ 0 implies x G Reach(y).

The case x G P, y G I is analogous: Reach (x) f~l Reach (y) = Reach(x) D {y} ^ 0 implies

y G Reach(x). Now, consider the case a;, y G P. Assume that Reach(x) n Reach(y) £ 0

and neither a: G Reach(y) nor y G Reach(x), and take z G Reach(x) n Reach(y). Then,

since x $ Reach(y), the path y...z does not contain event x, which contradicts the fact

that x is a module because y £ Reach(x) and z G Reach (x). Q

Proposition 4.3 ¿ei x,y e IU P, z € P, x,y Ç. fi(z), and let x be a module. Then, x

and y are independent if one of the following conditions holds:

a) y el,

b) y € P and y is a module,

c) y G P and |fo(x)| = 1.

Proof If Support(a:) nSupport(y) = 0, the inputs in Support(x) are not related to those

in Support(y) because x is a module and, thus, x and y are independent. Therefore, it

suffices to prove Support(a:) D Support (y) = 0 or, equivalently, Reach(x) D Reach(y) = 0.

Condition a: If x G 7, Reach (x) (1 Reach (y) = 0 by Lemma 4.2. If x G P, Reach (x) D

Reach (y) = Reach (x) n {y} ^ 0 if and only if y G Reach (x) by Lemma 4.2 (x G Reach (y)

is not possible). But y G fi(z) implies the existence of the path zy not containing x, and,

then, y G Reach(x) would contradict the fact that x is a module.

Condition b: Assume that Reach (x) n Reach (y) ^ 0. Using Lemma 4.2, either x G

Reach (y) or y G Reach (x). x G Reach (y) and the existence of the path zx contradicts

the assumption that y is a module. If x G / , y G Reach(x) is not possible. If x G P,

y G Reach(x) and the existence of the path zy contradicts the assumption that x is a

module.

Condition c: Assume as before that Reach (x) n Reach (y) •£ 0. From Lemma 4.2, either

y G Reach (x) or x G Reach (y). If x G / , y G Reach (x) is not possible. If x G F,

y G Reach (x) and the existence of the path zy contradicts the assumption that x is

4.2 Lower Bounds for Failure Distances 67

a module, x G Reach(y) implies |fo(x)| > 1 since x G fi(2), in contradiction with

|fo(x)| = l .D

Proposition 4.4 Let x G P, type(x) = AND. Assume that fi(x) does not contain

related inputs. Let the partition fi(x) = A(x) U B(x) U C{x), where A{x) = {y G

fi(x)|y is a module A |fo(y)| = 1}, B{x) = {y G fi(x)|y ¿5 a module A |fo(y)| > 1 V

y is not a module A y £ 1} and C(x) = {y G fi(x)| y is not a module A y € P}. Then,

a) all y G A(x) are mutually independent,

b) all y G A(x) are independent from all y' G B(x) L)C(i), and

c) all y G B(x) are mutually independent.

Proof We begin with part a. Consider y,y' G A(x). y is a module. If y' G / , condition

a of Proposition 4.3 is satisfied. If y' G P, since y' is also a module, condition b of

Proposition 4.3 is satisfied. To show part b, consider first y G A(x), y' G B(x). y is a

module and y' is an input or a gate. If y' G / , condition a of Proposition 4.3 is satisfied;

if y' G P, y' is a module and condition b of Proposition 4.3 is satisfied. Now we deal with

the case y G A(x), y' G C(x). y is a module, |fo(y)| = 1 and y' G P. Therefore, condition

c of Proposition 4.3 is fulfilled. Regarding part c, let y,y' G B(x). We have to consider

four cases: 1) y, y' G / , 2) y G J, y' G P , 3) y G P, y' G / , and 4) y, y' G P. In case

1 the result holds trivially since, by assumption, y and y' are not related. In case 2, y'

must be a module and y, y' satisfy condition a of Proposition 4.3. Case 3 is symmetric

to case 2. Finally, in case 4 both y and y' are modules and condition b of Proposition 4.3

is satisfied. Q]

Theorem 4.2 Let F be a bag of component classes and x G I U P. Assume that for

every z G P, ft.{z) does not contain related inputs. Then, the dt,(F,x) defined recursively

by (4.6), (4.7) and (4.8) verify

a) 0<db(F,x) <dh(F,x),

b) db(F, x) = 0 if and only if d\>(F, x) = 0 .

Proof By complete induction over lev(x).

68 4 Reliability Bounds of Non-repairable Systems using FD Bounds

Base case (lev(a:) = 0): In this case, x £ I, b(x) = c[n]. From (4.6) and the definition of

db(F, x), 0 < db(F,x) = db(F, x), showing both a and b.

Induction step: We assume that the theorem holds for all x G IUP., lev(x) < /, I > 0 and

show that it also holds for x G P, lev(x) = / + 1 (x cannot be an input since lev(x) > 1).

We begin with part a. Consider first the case type(x) = OR. Using the definition of

db(F,x), the fact that x is realized if and only if some y G fi(x) is realized, the induction

hypothesis for y G fi(x) since lev(y) < I, the monotonicity of min(-), and (4.7),

db(F,x) = min Uh(F,y)\ > min (db(F,y)\ = db(F,x) > 0.
t/€fi(r) <- J yeü(x) <- J

Consider now the case type(x) = AND. Let the partition fi(x) = A(x) U B{x) U C(x)

defined in Proposition 4.4 and let t = AyeB(x) H an<^ u ~ f\yeC(x) V $ t n e subsets B(x)

or C(x) are empty, the corresponding logical variable is equal to the logical constant 1

and db(F, l) = 0). Using the fact that x is realized if and only if all y € fi (a:) are realized,

the definition of db(F,x) and parts a and b of Proposition 4.4,

db{F,x)= Y, db{F,y) + dh(F,tAu)> J^ dh(F,y) + mzx{db{F,t),db(F,u)}.
yeA(x) ySA(x)

Using the definition of failure distance from a bag to an event, the fact that t is realized

if and only if all y € B(x) are realized and u is realized if and only if all y € C(x) are

realized, part c of Proposition 4.4, the induction hypothesis, the monotonicity of max(-),

and (4.8),

4 { F , x) > Y, db(F,y) + maxj] T db(F,y), max (o , d b (F , y) } \
y£A(x) ^yZB(x) v € {x) }

> ^2 db(F,y) + max |] T db(F,y), max (o , 4 (P , y) } |
yeA(x) KyeB{x)

= db(F,x) > 0 ,

where max^ç^^^O, db(F, y)} allows to deal correctly with the case C(x) = 0. Regarding

part b of the theorem, the if implication follows from 0 < db(F,x) < db(F,x). The

only if implication is proved as follows. If type(x) = OR, db(F, x) = 0 implies (4.7)

the existence of a y € fi(x) with db(F,y) = 0. From the induction hypothesis, this

implies db(F,y) = 0, which leads to db(F,x) = 0 by the definition of distance from a

bag to an event and the fact that x is realized if and only if some y € fi(x) is realized.

If type(x) = AND, using (4.8), db(F,x) = 0 requires db(F,y) = 0 for all y G fi(z).

As before, the induction hypothesis implies db(F,y) = 0 for all y G fi(x), and, hence,

4.2 Lower Bounds for Failure Distances 69

db(F, x) = 0 by the definition of db(F, x) and the fact that x is realized if and only if all

y G fi (a;) are realized. Q

Next, we give a sufficient condition for db(F, x) = db(F, x).

Theorem 4.3 Let x £ I U P and F be a bag of component classes. Then, db(F,x) =

db(F, x) if for every z G P with type(z) = AND, û(z) does not contain related inputs

and one of the following conditions holds:

a) every y G fi(z) is a module or an input,

b) there exists only one u G ft(z) which is neither a module nor an input and every

y 6 fi(z)) y i1 u is a module with |fo(y)| = 1.

Proof By complete induction over lev(x).

Base case (lev(x) = 0): In this case, x e I, b(x) = c[n]. From the definition of db(F,x)

and (4.6), db(F,x) = dh(F,x).

Induction step: We assume that the theorem holds for all i Ç / U P , lev(a;) < /, / > 0 and

show that it also holds for x G P, lev (a;) = / + 1 (x cannot be an input since lev(x) > 1) .

We begin by analyzing the case type(x) = OR. Using the definition of db(F, x), the

fact that x is realized if and only if some y G fi(a;) is realized, the induction hypothesis,

and (4.7),

db(F,x)= m i n { 4 (F , y) } = min\db(F,y)}=db(F,x).
3/€fi(x) <• > y€n(r) <• >

Now we deal with the case type(z) = AND. Let the partition fi(x) = A(x) Ufl(i) UC(x)

defined in Proposition 4.4. If condition a of the theorem holds, C(x) = 0. Then, using

the fact that x is realized if and only if all t/ 6 fi(i) are realized, the definition of db{F, x),

the fact that C(x) = 0, and that, according to Proposition 4.4, all y Eñ(x) are mutually

independent,

db(F,x) = ^2 db(F,x).
yeA(x)uB(x)

Using the induction hypothesis, the fact that C(x) = 0 and (4.8),

db{F,x)= J2 ^ (F ' x)
veA(x)uB(x)

= J2 4(F,y) + max{ J] db(F,y), max { 0 , 4 (^) 1 }
yeA(x) yeB(x) ye {x)

= db{F,x).

70 4 Reliability Bounds of Non-repairable Systems using FD Bounds

Assume now that condition b of the theorem holds. We have B(x) = 0 and C(x) = {u}.

Using the fact that a; is realized if and only if all y £ fi(x) are realized, the definition of

db(F,z), the fact that B(x) = 0 and C(x) — {u}, and that, according to parts a and b

of Proposition 4.4, all y Ç. û(x) are mutually independent,

db{F,x)= Y, db(F,x)+dh(F,u).
y£A(x)

Finally, using the induction hypothesis, the fact that B(x) = 0 and C(x) = {u}, and

(4.8):

dh(F,x)= J2 db{F,x)+db{F,u)
y€A(x)

= J2 ¿b (F ,y)+max{ V db(F,y), max {0,db(F,y)}\
yÇA(x) y€B(x) y t v ;

= db{F,x).Q

Finally, we give a lower and an upper bound for db(F, x), F = F' + F" in terms of

db{F',x).

Theorem 4.4 Let F, F' and F" be bags of component classes with F = F' + F" and let

x £ lu P. Assume that for every z € P, fi(z) does not contain related inputs. Then,

db{F',x) > db(F,x) > db{F',x) - S{F",x).

Proof By complete induction over lev(x).

Base case (lev(a;) = 0): Since lev(x) = 0, x 6 / , b(x) = c[n]. The following three cases

cover all possibilities: a) db(F',x) = 0, b) db(F',x) > 0 and no cty') is part of F",

and c) db(F',x) > 0 and there exists c[n'] part of F". In case a, there exists (4.6) c[n']

part of F' with n' > n. Since F = F1 + F", c[n% n" > n' part of F exists. Then,

db(F, x) = 0 = db(F',x) showing both inequalities since S(F",x) > 0. In case b, clearly

db(F,x) = db(F',x) and both inequalities are also shown. In case c, let db(F',x) = n",

0 < n" < n. Since Support(x) = {x}, b(x) = c[n], it follows that S(F",x) = n'. From

(4.6), c[n'"], n'" = n - n" is part of F ' , and since F = F' + F", c[n'" + n'] is part of F.

Then, using (4.6)

db{F', x)=n" = n - n'" > max{0, n - n"' - n'}

= db(F, x)>n- n'" - n' = n" - n' = db(F', x) - S(F", x).

4.2 Lower Bounds for Failure Distances 71

Induction step: We assume that the theorem holds for all x € J UP, lev(x) < /, / > 0 and

show that it also holds for x € P, lev(x) = 1 + 1 (x cannot be an input since lev(z) > 1).

First of all, since Support(a;) = Uj,efi(*) Support(y), it is immediate to see that for

any Ï Ç P ,

S(F»,x) > S(F", y), y € fi(x), (4.9)

S(F",x)> max {S(F" ,y)} . (4.10)
yÇfi(x)

Consider first the case type(x) = OR. Using (4.7), the induction hypothesis, the

monotonicity of min(-), and (4.9),

4(F',x) = ^{d^y)} > ™x){d*(F,y)}

= db(F,x)> min {db{F',y)-S(F",y)}> min \dh{F',y) - S(F",x)\
y€fi(r) <- > j/6fi(i) <• J

= min \db{F',y)}-S{F",x) = dh(F',x)-S(F",x).
y€ñ(x) >• >

Assume now that type(x) = AND. Let the partition fi(x) = A(x) U B(x) U C(x) defined

in Proposition 4.4 and let t = Ay€>i(*) Viu = Ay6B(r) 2/> a n d v = Ayec(«) V (i f s o m e o f t h e

subsets into which fi(x) is partitioned is empty, the corresponding logical variable is equal

to the logical constant 1 and S(F", 1) = 0). Let a = S(F", x),ß = Ey€i4(*) 5 (F " ' v)> ? =

T,y€B(x)S(F"iy)i a n d S = max! /ec(x){5'(F")y)}. We have Support(ar) = Support(í) U

Support(u A v) and, from part b of Proposition 4.4, Support(i) PI Support(w A v) = 0.

Then, using the definition of S(F",-), (4.9) and (4.10),

S(F", x) = S(F", t) + S{F", uAv)> S(F", t) + max{S(F", u),S(F", v)}

>S(F",t) + mzx\s{F",u), max {S(F",y)}\

= 5(F" , i) + max{5(F", v.), 6}.

From parts a and c of Proposition 4.4, S(F", t) = ß and S{F", u) = j . Then, using the

definition of a the last inequality becomes

a > / 3 + max{7,<5}. (4.11)

Using (4.8), the induction hypothesis, the definition of a, ß, y and 6, the monotonic­

ity of max(-), and (4.11),

4 (F ' , x) =

] T ¿b(F',y) + maxj] T db(F
J,y),m3X){o,db(F

J
ty)}}

y€A{x) y€B{x)

72 4 Reliability Bounds of Non-repairable Systems using FD Bounds

> E d b (F , y) + m a x {] T dh(F,y), max { o , 4 (F , y) U = dh(F,x)
ySA(x) lyeB(x) y € (l) J

+ max{ E (db{F',y)-S(F",y)), max (o , 4 (F ' , y) - S (F " , y) })

= E ¿b(F',y)- E 5(F"-y)
yCA(x) yeA(x)

+ max{ E 4 (F ' , y) - E S(F",y) , max { o , 4 (F ' , y) - 5 (F " , y) } |

> £ ¿b(F',y)- £ 5(F",y)

+ max{ E 4 (^ " > y) - E 5(F",y) , max { 0 , 4 (F ' , y) ~ max { S (F " , y) } } |

= E 4 (F ' , y) - / ? + m a x | E ¿b(F',y) - 7, max {o,¿b(F ' ,y)} - ¿J
y€A(x) ^y€B{x

> E 4(F',y)-/?
y€A(x)

+ max< E db(F', y) - max{7,5}, max { 0, db(F', y) \ - max{7,8} >

= E 4 (F ' , y) + m a x { E ¿b(F' ,y), max {o,dh{F',y)}\ - {ß + max{7,¿»
TT, s l r r r > yÇC(x) K J J

= ¿b(F' ,x) - (/3 + max{7,<5}) > 4 (F ' , : r) - a = ¿b(F',x) - 5(F",x) - D

Let a be a state and let x = ^ r . With F = F(a), part b of Theorem 4.2 implies

d(a) = 0 if and only if d(a) = 0, part a implies 0 < d(a) < d(a), and both results imply

1 < d(a) < d{a) for a G U. In addition, taking F ' = 0, F" - F{a) and F = F ' + F " =

F(a), the left inequality of Theorem 4.4 states that Z = ¿b(0,ffr) > ¿b(F(a),y r) = of (a).

Thus, the derived ¿(a) satisfy the requirements of Theorem 4.1. Finally, taking F = F (a),

Theorem 4.3 gives a sufficient condition for d(a) = d(a).

4.2.3 Algor i thms for the Computat ion of the Lower Bounds for Failure

Distances

Let a be a state in G and let 6 be a successor of a reached in a single transition associated

with failure bag e. The generation of the CTMC X' requires to know d(b) (recall that,

4.2 Lower Bounds for Failure Distances 73

as consequence of Theorem 4.2, b is a down state if and only if d(b) = 0).

We have that F(b) = F(a) + e and, therefore, d(b) = dh(F(b),gr) could be computed

traversing the fault tree depth-first left-most starting at gr and using (4.6), (4.7) and (4.8).

However, this procedure could be expensive if the fault tree is large. Next, we describe

an algorithm and, based on it, two procedures to compute d(b) more efficiently.

We first describe the algorithm. The algorithm takes as inputs a bag of component

classes F and a positive integer ub. Each node x of the fault tree holds a "distance

variable" dv(x) properly initialized. The fault tree is processed from inputs to gr as

follows. For each c[n] that is part of F , we make dv(x) = max{0, dv(x) — n} for each

input x, b(x) — c[n']. Each change of dv(x) for an input a; that results in dv(x) < ub

is propagated up the fault tree while dv(z) changes to a value < ub for the visited gate

z. Distance variables of gates are not updated unless the new value is distinct from the

previous one and < ub. dv(z), z £ P is computed from (4.7) for OR gates and (4.8) for

AND gates using dv(y), y G fi(z) instead of d^F,y), y G fi(-z).

The first procedure is called comp.d(F, lb, ub, CS), where F is a bag of component

classes, lb, ub, lb < ub are non-negative integers and CS is a stack. If lb = «ò, the

procedure returns lb without doing anything else. If lb < ub, the fault tree is processed

using the above algorithm. During the traversal of the fault tree, the nodes x whose

distance variable changes as well as the corresponding old value dv(x) are bookkept in

CS. At the end, the procedure returns min{dv(gr), ub). The second procedure is called

restored (CS), where CS is a stack. The procedure simply restores the distance variable

of the nodes kept in CS to its old value.

We prove next two results. The first one shows that if invoked with appropriate ar­

guments, the procedure comp.d returns db(F, gr). The second result shows how d\>(F, gr)

can be computed calling the procedure consecutively twice. The usefulness of the latter

result will become apparent when describing the way the CTMC X' is generated. The

proof consists of a sequence of three propositions and two theorems.

Proposition 4.5 Assume that the distance variable of each node x has been initialized

to db(0,x). After running the algorithm with inputs a bag of component classes F and

a positive integer ub, d^(F,x) — dv(x) if dv(x) < ub and dh(F,x) > ub if dv(x) > ub,

xelUP.

Proof By complete induction on lev (a;), x € IU P.

74 4 Reliability Bounds of Non-repairable Systems using FD Bounds

Base case (lev(x) = 0). We have x £ / , b(x) = c[n]. After running the algorithm,

dv(x) = n if no c[n'] is part of F and du(ï) = max{0, n - n'} if c[n'] is part of F. Then

(4.6), cft?(x) = db(F,x), showing both d b ^ z) = dv(x) if du(x) < u6 and db(F,x) > ub

if dv{x) > ub.

Induction step. We will assume that the result holds for all x £ / U P, lev(x) < /, / > 0

and show that it also holds for all x £ P, lev(x) = I + 1 (x £ I because I + 1 > 0).

Let x £ P, \ev(x) = / + 1 and consider the partition fi(x) = a U ß with a = {y £

fi(x) | dv(y) < ub after running the algorithm} and ß = fi(z) — a = {y ç fi(x) | dt;(y) >

u6 after running the algorithm}. We will show the result first for type(a;) = OR and

next for type(x) = AND.

Let type(x) = OR. Assume a ^ 0. Since, trivially, the values held by the distance

variables cannot increase, dv(y) > ub, y Ç. ß throughout the execution of the algorithm

and, hence, any update of dv(y), y G ß (only possible if y is an input) cannot lead to

updating dv(x). Therefore, only updates of dv(y), y 6 a to values < ub may result in

updating dv(x). Note that, using the induction hypothesis, at the end of the algorithm,

db(F,y) = dv(y) < ub, y £ a and db(F,y) > ub, y € ß. Then (4.7), db(F,x) =

m'my€a{dv(x)} < ub after running the algorithm. If no dv(y), y £ a has been updated,

since dv(x) = miny6fi(a.){du(y)} at the beginning of the algorithm, we have that, at the

end of the algorithm, dv(x) = minyça{dv(y)} — db{F,x) < ub. If some dv(y), y £ a has

been updated, consider the last time a dv(y), y £ a is updated to a value < ub (since at

the end of the algorithm dv{y) < ub for all y £ a, at least one such update must have

happened). All dv(y), y £ a will hold their final values, which are < «6, and dv(x) will

be set to dv' = minyga{du(y)} unless dv(x) were already equal to dv'. Then, at the end

of the algorithm, dv(x) = m'my£Q{dv(y)} = d^^x) < ub. Assume now a — 0 and,

therefore, ß •£ 0. As it has been discussed before, any update of dv(y), y £ ß cannot

have led to updating dv(x). Therefore, dv(x) has not been updated and after running

the algorithm its value is equal to its initial value, which, given the way the distance

variables are initialized and that the values they hold cannot increase, is > ub. Since

fi(x) = ß and, by the induction hypothesis, db(F,y) > ub, y £ ß, it follows (4.7) that

d~b{F,x) > ub.

Let type(ar) = AND. Assume ß ^ 0. As it has been discussed for the case type(x) =

OR, dv(y) > ub, y £ ß throughout the execution of the algorithm. The computed values

for dv(x) will be

J2 dv(y) + max{ ^ dv(y), max {0, dv(y)}} ,
y£A(x) y€B(x) V € (X)

4.2 Lower Bounds for Failure Distances 75

which are not smaller than dv(y), y £ ß. Then, the computed values for dv(x) will

be > ub and dv(x) will never be updated. Given the way the distance variables are

initialized and that the values they hold cannot increase, the final value of dv(x) will be

> ub. Moreover, from (4.8) and the fact that, by the induction hypothesis, db(F, y) > ub,

y £ ß, it follows that d\>(F,x) > ub. Assume now ß = 0. We have ñ(x) = a. If no dv(y),

y £ a has been updated, after running the algorithm dv(x) and dv(y), y £ a hold their

initial values. By the induction hypothesis and the fact that fi(x) = a, dv(y) = db(F,y),

y £ fi(x). Then, from (4.8) and the way the distance variables have been initialized,

dv(x) = </b(F,x) after running the algorithm, which shows both db(F,x) = dv(x) if

dv(x) < ub and db(F, x) > ub if dv(x) > ub. If some dv(y), y £ a has been updated,

consider the last time a dv(y), y £ a is updated to a value < ub (since at the end of the

algorithm dv(y) < ub for all y 6 a, at least one such update must have happened). Since

fi(x) = a, all dv(y), y £ fi(x) will hold their final values and the value dv' to which dv(x)

might be set will be computed as

dv' = YJ dv(y) + m&x{ YJ dv(y), max {0, dv(y)}} .
yeA(x) yeB(x) yeC{x)

From (4.8), the fact that fi(x) = a and that, by the induction hypothesis, dv(y) =

db{F, y), y £ a, it follows that db(F, x) = dv'. Also, since the values held by the distance

variables cannot increase, the current dv(x) will be > dv'. If dv' > ub, dv(x) will not be

set to dv' and, hence, db(F, x) = dv' > ub and dv(x) > dv' > ub. If dv' < ub, dv(x) will

be set to dv' unless it were already equal to dv' and, thus, db(F, x) = dv' = dv(x) < ub.

Ü

Proposit ion 4.6 Let F, F' and F" be bags of component classes with F = F' + F" and

let ub, ub' with ub' < ub be positive integers. Let dvi(x), x £ I U P be the values of

the distance variables that will result after initializing them to dh($,x) and next running

the algorithm with inputs F and ub', and let dv2{x), x £ I U P be the corresponding

values that will result if after performing the same initialization the algorithm is run

consecutively twice, first with inputs F' and ub and next with inputs F" and ub'. Then,

dvi(x) = dv2(x) or dvy{x) > ub' and dv2(x) > ub', x £ Il)P

Proof For the sake of conciseness, let case 1 stand for "the distance variable of each

node x £ IUP has been initialized to ¿b(0, x) and next the algorithm has been run with

inputs F and ub'" and let case 2 stand for "the distance variable of each node x £ Il)P

has been initialized to d\> (0, x) and next the algorithm has been run consecutively twice,

first with inputs F' and «6 and next with inputs F" and ub'". Note that if ub' = ub the

76 4 Reliability Bounds of Non-repairable Systems using FD Bounds

fault tree is dealt with the same in both cases and dvi(x) = dv2(x), x G I UP. Next, we

show the result for the case ub' < ub using complete induction on lev (a;), x G IU P.

Base case (lev(x) = 0). We have x £ I. Since the initial value of dv(x) is the same in

both cases, dv(x) is updated depending only on b(x) and the bag of failed component

classes, and F = F' + F", it follows that dv\(x) = dv2{x).

Induction step. We will assume that the result holds for all x G / U P, lev(x) < /, / > 0

and show that it also holds for all x G P, lev (a;) = / + 1 (a; cannot be an input since

/ + 1 > 0). Let x G F , lev (s) = / + 1 and consider the partition fi(x) = a + ß with

a = {y G fi(x) | dvi(y) = du2(y)} and ß = {y G fi (a;) | dvx{y) ^ dv2(y)}. Note that, using

the induction hypothesis, dvi(y) > ub' and dv2{y) > ub', y G ß and since the values

held by the distance variables cannot increase, dv(y), y G ß will always be > ub' in both

cases. We will show the result first for type(a;) = OR and next for type(a;) = AND.

Let type(a;) = OR. Assume a = 0. We have fi(x) = ß. Since dv(y) > ub', y G fi(z),

dv(x) has not been updated in case 1 and, thereby, it holds the initial value, which, since

dv(y), y G fi(^) cannot increase, is > ub'. Therefore, we have dvi(x) > ub'. Regarding

case 2, either dv(x) has not been updated and, hence, dv2{x) = dvi(x), or it has been

updated (recall that ub' < ub) and, since dv(y) > ub', y G fi(x), dv2(x) > ub'. Assume

now a ,¿ 0. If there exist y G a such that dvi(y) = dv2(y) < ub', since «6' < ub, we have

dvi(x) = min {dv\(y)} = min {dv2{y)} = dv2(x).
dvi(y)<ub' dv2(y)<ub'

If no such y G a exists, dvi(x) holds the initial value, which, since dv(y), y G fi(x)

cannot increase, is > ub', and either dv2(x) also holds the initial value and, hence,

cb2(x) = dvi(x), or dv(x) has been updated in case 2 and, since dv(y) > ub', y G fi(^),

dv2(x) > ub'.

Let type(ar) = AND. If ß ^ 0, in both cases the computed values for dv(x) will be

Y2 dv(y) + max{ J ^ dv(y), max {0, dv{y)}} > ub'.
yeA(x) yeB(x) y 6 (x)

Then, dv(x) will not be updated in case 1. Therefore, dvi(x) will hold the initial value,

which, since dv(y), y G fi(a?) cannot increase, is > ub'. If dv(x) is not updated in case 2,

dvi(x) = <ft;2(a;); if dv(x) is updated in case 2, since dv(y) > ub', y G ß, dv2(x) > ub'.

Assume now ß = 0 and, therefore, fi(a;) = a. If dv(x) is updated in case 1,

dvi(x)- Y] dv1{y) + max{ V dv^y), max {0, dv^y)}}
yÇA(x) yeB(x) y* y '

= S dv2(y) + m&x{ ^ dv2(y), max {0, dv2(y)}} < ub'.
y£A(x) yeB(x) y£ (X)

4.2 Lower Bounds for Failure Distances 77

Therefore, since ub' < ub, dv(x) is also updated in case 2 and dv2(x) = dvi(x). If dv(x)

is not updated in case 1, it may or may not be updated in case 2. If dv(x) is updated in

case 2,

dv2(x)=] T dv2(y) + max{ ^ dv2(y), max {0,dv2(y)}}
yeA(x) yeB(x) veC(*)

- Yl ¿üi(y) + max{ Y^ rf»i(y)> max ÍO.í í^íy)}},

with either ub' < dv2(x) < ub or £¿«2(2) < «&'. Note, however, that if dv2(x) were

< ub', dv(x) would have been updated to dv2(x) by the end of the algorithm in case

1. Therefore, dv2(x) > ub' and since the values held by the distance variables cannot

increase and they are initialized the same in both cases, dv\(x) > dv2(x) > ub'. Finally,

if dv(x) is not updated in either case, dvi(x) = dv2(x). Q

Proposition 4.7 Let F, F' and F" be bags of component classes with F = F' + F"

and let ub, ub' with ub' < ub be positive integers. Assume that the distance variable of

each node x of the fault tree has been initialized to dh($, x). After running the algorithm

consecutively twice, first with inputs F' and ub and next with inputs F" and ub', we have

that di)(F,x) = dv(x) if dv(x) < ub' anddb{F,x) > ub' if dv(x) > ub'.

Proof Let x € IUP and let dvi(x) and dv2(x) as in Proposition 4.6. In this regard, we

have to show that db(F,x) = dv2(x) if dv2(x) < ub' and di,(F,x) > ub' if dv2(x) > ub'.

Using Proposition 4.6, dv2{x) = dvi(x) or dv2(x) > ub' and dv\(x) > ub', and the results

follows immediately from Proposition 4.5. Q

Theorem 4.5 Let F be a bag of component classes, lb and ub non-negative integers with

lb < dh(F,gr) < ub, and CS a stack. Assume that the distance variable of each node

x of the fault tree has been initialized to db(®,x). Then, the call comp.d(F,lb,ub, CS)

returns d^ [F, gr).

Proof If lb = ub, the call comp.d(F, lb, ub, CS) returns lb and since, by assumption,

lb < db(F,gr) < ub, db{F,gr) = lb. If lb < ub, the call returns m'm{dv(gr), ub}..

Two cases are possible: a) dv(gr) < «6 and b) dv(gr) > ub. Since lb < ub and, by

assumption, lb > 0, we have that ub is > 0 and, therefore, Proposition 4.5 with x = gr

can be invoked in both cases. In case a, m'm{dv(gr), ub} = dv(gr) = db(F,<7r). In case

b, m'm{dv(gr), ub} = ub and db(F,gr) > ub, and since, by assumption, dt,(F,gr) < ub,

db(F,gr) = ub. D

78 4 Reliability Bounds of Non-repairable Systems using F D Bounds

Theorem 4.6 Let F, F' and F" be bags of component classes with F = F' + F", lb

and ub' non-negative integers and ub a positive integer with lb < db(F,gr) < ub' < ub,

and let CS, CS' be stacks. Assume that the dv variable of each node x of the fault

tree has been initialized to d\,($,x). Then, after invoking comp.d(F',0, ub, CS), the call

comp.d(F", lb, ub', CS') returns db(F,gr).

Proof If lb = ub', the call comp.d(F", lb, ub', CS') returns lb and, since by assumption,

lb < d\>{F,gr) < ub', db(F,gr) = lb. If lb < ub', the call returns m\n{dv(gr), ub'}. Two

cases are possible: a) dv(gr) < ub' and b) dv(gr) > ub'. We have, by assumption, that

ub > 0 and lb > 0. The fact that ub > 0 implies that the call comp.d(F', 0, ub, CS) results

in processing the fault tree with the described algorithm with inputs F' and ub; the fact

that lb > 0 together with lb < ub' implies that ub' > 0. Therefore, Proposition 4.7 with

x = gr can be invoked in both cases. In case a, mln{dv(gr), ub'} = dv(gr) = db{F,gr). In

case b, mm{dv(gr), ub'} = ub' and db(F,gr) > ub', and since, by assumption, d\,(F,gr) <

ub',db{F,gr) = ub'. D

Computation of d(b) = dh(F(b),gr) using the procedure comp.d requires to know

a lower and an upper bound bound for d(b). From what was shown at the end of

Section 4.2.2, 0 < d(b) < L. If we recall that b is a successor of a reached in a single

transition associated with failure bag e, i.e. F(b) = F(a) + e, these bounds can be

tightened up with the aid of Theorem 4.4 (the tighter the bounds, the faster comp.d). Let

x = gr. Taking F' = F(a) and F" = e, the theorem yields d(a) > d(b) > d(a) — S(e,gr);

taking F' = e and F" = F{a), rj(e) > d(b) > rj(e)-S{F(a),gr). Then, since S(e,gr) < \e\,

S(F(a),gr) < \F(a)\ and d(a) < L, we have max{0,5(a) - \e\,rj(e) - \F(a)\} < d(b) <

m'm{d(a) ,rj(e)}.

The L and 77(e), e € E are computed prior to the generation of the CTMC X'. The

distance variable of each node x of the fault tree is initialized to ¿b(0,z) by traversing

the fault tree depth-first left-most starting at gr and using (4.6), (4.7) and (4.8). After

the initialization, L = dv(gr). Computation of rj(e) = db(e,gr), e € E using comp.d

requires to know a lower and an upper bound for ??(e). From part a of Theorem 4.2 with

x = gr and F = e, 0 < db(e,gr) — rj(e); from the left inequality of Theorem 4.4 with

x = gr, F' = 0 and F" = e, L — db(Ç>,gr) > db(e,5v) = f?(e). Therefore, based on

Theorem 4.5 with F = e, lb = 0 and «6 = L, rj{e), e £ E are computed calling, for each

e, comp.d{e, 0, L, CS) followed by a call to restore.d (CS). Note that after computing all

77(e), e € E, the distance variable of each node x still holds its initial value ¿t>(0, a:)-

We sketch next how the CTMC X' is generated breadth-first using 77(e), e € E and

4.2 Lower Bounds for Failure Distances 79

the procedures comp.d and restored. The state o in which all components are unfailed

is put in G and, with d(o) = L, in an empty first-in first-out (FIFO) queue. That queue

contains the states to be processed and each state a in the queue has associated with it

its lower bound for the failure distance d(a). From that point, the generation process

continues as follows. The first state a in the queue is pulled out, comp.d(F(a), 0, d(a), CS)

is called and the list of failure bags which are active in a is obtained. Each such active

e € E has associated with it one or more transitions to states b satisfying F(b) = F(a)+e.

For each active e, lb = max{0,¿(a) — |e|, 77(e) - |F(a)|} and ub' = min{d(a), 77(e)} are

computed and, based on Theorem 4.6 with F' = F(a), F" = e, F = F' + F" = F(b),

and ub = d(a) (it is trivial to check that ub' — min{d(a), 77(e)} < d(a) = ub, ub > 0

and ub' > 0), d(b) for the successors b of a associated with e is computed by calling

comp.d(e, lb, ub', CS'). If d(b) = 0, states b are down and the corresponding transition

rates A0i& are directed to / ; if d(b) > 0 and \F(a) + e| > K, states b belong to U and the

corresponding transition rates Aa>6 are directed to u j , ^ ; if d(b) > 0 and \F(a) + e| < K,

states b are put in G and, with the corresponding d(b), in the FIFO queue if they were

not in G yet and the corresponding transition rates \a¿ are directed to b. Once all the

successors 6 of a associated with e have been processed, restored (CS') is invoked to

allow another failure bag active in a to be dealt with. When all active failure bags in

a have been processed, restore.d(CS) is invoked before processing another state of the

FIFO queue. The.generation of X' finishes when the FIFO queue becomes empty.

To illustrate how the procedures comp.d and restore.d work, consider again the

example system described in Section 4.1 and its fault tree depicted in Figure 4.3. Let

a Ç: G with F(a) = AfCi[l] and let us discuss the processing of two successors, b and c,

where transition from a to 6 is associated with failure bag e\ = ICi[l) (see Table 4.1)

and transition from a to c is associated with failure bag er = AfC2[l] RMMill]. For

the example, L = 2, J7(e4) = 1, rjiej) = 1, and d(a) = 2. Let CS and CS' be empty

stacks. As it has been explained before, computation of d(b) and d(c) requires to invoke

comp.d(F(a), 0, d(a) = 2, CS) first. Figure 4.4 illustrates the processing of the fault tree

during that invocation. Recall that dv(x) is initialized to e?b(0,x) for all nodes a;. The

procedure starts by making (4.6) dv(xi) = max{0,3 - 1} = 2. Since this value is not

smaller than d(a) = 2, the change is not propagated up the fault tree and the procedure

finishes. The only contents of the stack CS is the pair (xi,3). The d(b) is the value

returned by the call comp.d(e4, lb, ub, CS') with /6 = max{0, d(a) - |e4 |, 7/(e4) - |F(a)|} =

max{0 ,2 - 1,1 - 1} = 1 and «6 = min{d(a),^(e4)} = min{2,1} = 1. Since lb = ub,

the invocation returns lb = 1 without traversing the fault tree. Finally, d(c) is the value

returned by the call comp.d(e7, lb, ub, CS') with lb = max{0, d(a) - \e7\, rj(e7) - \F(a)\} =

80 4 Reliability Bounds of Non-repairable Systems using FD Bounds

dv=2

x\ x2 x3

dv = 3 -+ 2 dv = 1 dv = 1
MCX\2,] 7C,[1] ÄAfAfill]

2?7 Xs X9

dv = 2 dv = 2 dv = 2
CPUC[2] PTC[2] RCM[2)

dv = l

x4 xh x6

dv = 3 dv = 1 dv = 1
MC2[3) IC2[l] RMM2[1]

Figure 4.4: Up traversal (thick line) of the fault tree of the example system during the

call comp.d(F(a), 0,2, CS), F(a) = MCi[l]. The values of the distance variables are

given next to each node. A rightward arrow signals the values of the distance variables

that change during the traversal.

max{0 ,2 -2 ,1 -1} = 0 and «6 = min{d(a), 57(67)} = min{2,1} = 1. Figure 4.5 illustrates

the processing of the fault tree during the invocation comp-d(e7,0,1, CS'). The procedure

starts with the part MC2[1] of ey. Using (4.6) and the dv value of input X4, the procedure

makes dv(x4) = 2. This change is bookkept in the stack CS' but it is not propagated up

the fault tree since this new dv value is not smaller than ub = 1. Next, the procedure deals

with the remaining part RMMzil]- Using (4.6) and the value of dv(xe), the procedure

makes dv(x&) = 0 < 1 and propagates the change up to 53. Using (4.7), dv(g3) changes

from 1 to 0, which is again < 1. Since this new value of dv(gz) would result (4.8) in

dv(gi) = 1, which is not smaller than «6 = 1, dv(gi) is not updated and the procedure

finishes returning min{dt;(<7r), ub} = min{2,1} = 1. The contents of the stack CS' are,

from top to bottom, the pairs (33,1), (xß, 1) and (£4,3). The fault tree is restored to its

original state by calling, in this order, restore.d (CS') and restore.d (CS).

The trivial bounding method requires the knowledge of the operational/down state

of the single-transition successors 6 of an operational state a. We describe next the

procedures to determine that which have been used in our implementation of the trivial

bounding method. The procedures are analogous to the procedures used in the proposed

bounding method to compute lower bounds for failure distances and allow to make a

fair comparison of both methods regarding CPU time consumption. The procedures are

4.2 Lower Bounds for Failure Distances 81

dv = 2

Xj X$ Xg

dv = 2 dv = 2 dv = 2
CPUC[2] PTC[2] RCM{2)

dv = 1 -> 0

X\ X-i Xz

dv = 2 dv = 1 du = 1
M<7![3] 7(7i[l] ÄMM41]

X4 X5 Xß

iv = 3 -» 2 dv = 1 <fo = 1 -» 0
AfC2[3] JC2[1] ÄMM2[1]

Figure 4.5: Up traversal (thick lines) of the fault tree of the example system during the

call comp.d(e7,0,1, CS1), e7 = MC2IL] M M 2 [1] . The values of the distance variables

are given next to each node. A rightward arrow signals the values of the distance variables

that change during the traversal.

evahft and restorer. The procedure evaLfl returns val(#r) for a given bag of failed

component classes. Using both procedures as described next, we imply to 1 the inputs

x, b(x) = c[n] such that cln1], n' > n is part of the bag of failed component classes under

consideration. Implications in the fault tree are done from inputs to gr in the usual way:

if type(x) = OR, val(y) = 1 for some y € fi(2:) implies val(x) = 1; if type(x) = AND,

val(y) = 1 for all y € fi(z) implies val(x) = 1. Since all gates are either OR or AND,

that procedure is enough to know val((?r) (if gr is implied to 1, val(<7r) = 1; if gr is not

implied, val(<5rr) = 0 since implication to 0 of the unimplied inputs of the fault tree would

imply gr to 0). Each input x, b(x) = c[n] of the fault tree holds a "value" variable

vv{x) = max{0, n — n '}, where n' is the number of components of class c that are failed.

Initially, vv(x) = n and all gates of the fault tree are set to the unimplied state. The

procedure eval.ft(F, CS), where F is a bag of failed component classes and CS is a stack,

works as follows. For each input x, b(x) = c[n] for which c^n7] is part of F, we make

vv(x) = max{0, vv(x) - n'} and imply x to 1 if vv(x) becomes 0. Each implication of an

input x is propagated up the fault tree while the visited gate z becomes implied. Inputs

x whose value variable changes as well as gates z that become implied are bookkept

in CS. A call to restore.v(CS) undoes the changes done within the previous call to

evaLft(F, CS). Recall that in the trivial method the CTMC is modified so that exits of

82 4 Reliability Bounds of Non-repairable Systems using FD Bounds

X from G not going to / are directed to an absorbing state u0. Such a modified CTMC

is generated breadth-first in a similar way as X' is generated in the proposed bounding

method. Starting from the point in which a state a has been pulled out of the FIFO

queue and the list of failure bags that are active in a has been obtained, the generation

procedure proceeds as follows. The fault tree is set up by calling eval.ft(F(a), CS). For

each active failure bag e, the operational/down state of all successors b of a associated

with e is obtained by calling evaLfl(e, CS'). If the call results in val(<?r) = 1, successors

ò are down and the corresponding transition rates Aai(, are directed to / . If val(gr) = 0,

successors b are up. In that case, the corresponding transition rates Aa)¡, are directed to

u0 if \F(b)\ = \F(a) + e\ > K; otherwise, successors b are put in G and in the FIFO queue

if they were not in G yet and transitions A0i¡, are directed to ò. Each call evaLft(e, CS')

is followed by a call restore.v(CS'), and once all successors of a have been processed,

restore.v(CS) is invoked. The generation of the modified CTMC finishes when the FIFO

queue becomes empty.

We next compare for the particular case L = 1 the effort in the proposed bounding

method associated with the computation of the lower bound for the failure distances from

states with the effort in our implementation of the trivial method associated with the

evaluation of the fault tree. Note that d(a) = 1 for up states a and that 0 < 77(e) < 1.

Beginning at the point in which a state a has been pulled out of the FIFO queue and the

list of failure bags that are active in a has been obtained, the proposed bounding method

continues by calling comp.d(F(a), 0,1, CS). From the description of comp.d, this call

results in traversing up the fault tree following the nodes z such that dv(z) changes

to 0, i.e. the nodes that would become implied, exactly as eval.ft(F(a), CS) does in

our implementation of the trivial bounding method. Next, in the proposed bounding

method lb = max{0,if(a) — |e|, 77(e) — |F(a)|} and ub = min{d(a), 77(e)} are computed for

each active e, and d(b) for the successors b of a associated with e is obtained by calling

comp.d(e, lb, ub, CS') once. Since a is an up state, d(a) = 1. Furthermore, 0 < 77(e) < 1

and |e | , |F(a) | > 1. Then, lb - 0 and 0 < ub < 1, with ub = 0 only if 77(e) = 0.

Therefore, if 77(e) > 0, the call comp.d(e, 0,1, CS') again involves traversing up the fault

tree following the nodes which would become implied, exactly as eval.fi(e, CS') does

in our implementation of the trivial bounding method; if ub = 0, comp.d returns 0

without traversing the fault tree. Therefore, for the particular case L — 1 the effort in

the proposed bounding method associated with the computation of the lower bounds for

the failure distances from states is at most equal to the effort in our implementation of

the trivial method associated with the evaluation of the fault tree.

http://eval.fi

4.3 Analysis and Comparison 83

Figure 4.6: Architecture of the first example.

4.3 Analysis and Comparison

In this section we analyze the proposed bounding method by means of two large examples

representing the following two scenarios:

1. the fault tree satisfies the conditions of Theorem 4.3,

2. the fault tree does not satisfy the conditions of Theorem 4.3 and L > 1.

In both examples the state o without failed components is the initial state and the CTMC

X' is solved using the randomization technique [49].

The bounds obtained with the proposed bounding method are compared with those

obtained with the trivial method and the method described in Chapter 3. The lower

bound is the same for the three methods.

The first example, adapted from [61] and corresponding to scenario 1, is a system

including 114 components whose architecture is shown in Figure 4.6. The system is made

up of three computing modules CMi, 1 < i < 3, one of which is spare. Each computing

84 4 Reliability Bounds of Non-repairable Systems using FD Bounds

module CM i includes three memory modules MMij, 1 < j < 3, three identical CPU

chips CPUCi and two identical port chips PTCi. One memory module, one CPU chip

and one port chip are spares. Each memory module MMij is made up of ten identical

memory chips MCij, two of which are spares, and one interface chip JC,-,j. All memory

chips within the same memory module are identical. The memory chips and interface

chips included in each memory module, and the CPU and port chips included in each

computer module are different and have different failure rates. Active memory chips

MC i j and active interface chips ICij fail, respectively, with rates \MC3 and ^Wj ; active

port chips PTCi and active CPU chips CPUCi fail, respectively, with rates Aprc¿ and

^CPUCr Spare chips fail with rates v x \MC}, V X A/C,-, V X Aprc;, and v x XCPUCH

being v, 0 < v < 1 a dormancy factor. Recovery is hierarchical. A fault in a memory

chip is covered with probability Cue- A failure of a memory module, CPU chip and port

chip is successfully covered with probabilities CMM, CCPUC and Cpjc, respectively. The

failure of a computing module is covered with probability CQM-

Coverage faults are modeled by introducing "recovery" components. In this exam­

ple, an uncovered fault in a memory chip of memory module MMij is propagated to a

recovery component RMMij; an uncovered failure of a memory module MM{¿, a CPU

chip CPUCi o r a port chip PTCi is propagated to two recovery components RCMi;

an uncovered failure in a computing module CMi is propagated to four recovery com­

ponents RSYS. Memory module MMij is operational if at least eight memory chips

MCij, the interface chip ICij and the recovery component RMMij are unfailed. Com­

puting module CMi is operational if at least two memory modules MMij, two CPU

chips CPUCi, one port chip PTCi, and one recovery component RCMi are unfailed. Fi­

nally, the system is operational if at least two computing modules CMi an one recovery

component RSYS are unfailed. Components of non-operational memory modules and

non-operational computing modules do not fail.

The fault tree of the first example has 37 inputs, all of which are modules, 25 gates,

13 of which are modules, and 73 edges. Note that the generalization to component classes

allows to exploit the symmetries of the system thus reducing the number of inputs of the

fault tree from 133 (114 components plus 19 fictitious components) to 37. The fault tree

is defined by the following logical expressions:

FMitj = Tij V Uij V Vi j , 1 < i, j < 3 ,

FMMi,i,k = FMij A FMitk , 1 < ¿ < 3 , 1 < / < A ; < 3 ,

FCi = FMMiti,2 V FMMi,ifl V FMMia¿ VWi V X{ V Y-, 1 < i < 3 ,

FCCij = FCi AFCj, 1 < i < j < 3 ,

4.3 Analysis and Comparison 85

gr = Z V FCCia V FCCh3 V FCC2¿ ,

the bags associated with the inputs of the fault tree being b(T,j) = MC,j[3], b({7t)j) =

ICij[l], b(Vij) = RMMitj[l], b(Wi) = CPUd[2], b(Xt) = PTC,[2], b(V-) = ÄCM,[2],

and b(Z) = RSYS[4].

The example has 2,701 minimal cuts and L = L = 4. The numerical results

have been obtained for the following parameter values: XMCI = 10~ 7h - 1 , XMC2 =

2 x l O ^ h " 1 , AMC3 = 3 x 10 - 7 h _ 1 , A /Cl = 2 x l O ^ h " 1 , A/c2 = 4 x 10-7h~1 , A/c3 =

6x lO"7h"1 , Xcpuci = 6x 10"7 h"1, XCpuc2 = 1.2x 10~6 h"1 , XCpuc3 = 1.8x 10"6 h"1,

XpTd = 6 x 10- 7 h- 1 , XpTCi = 1.2 x l O - H - 1 , XpTc3 = 1.8 x l O ^ h " 1 , u = 0.2,

CMC = 0.99, CMM = 0.95, Ccpt/c = 0.99, CPTc = 0.97, and CCM = 0.95.

The second example, corresponding to scenario 2, is the system made up of 60

components whose architecture is sketched in Figure 4.7. The system includes four

processing clusters that communicate through two independent double-ring networks A

and B. Processing cluster ¿, 0 < i < 3 includes three identical processing units PU{.

Network A includes eight nodes NA{, 0 < i < 7 and direct (clockwise) links DA{ and

reverse (counter-clockwise) links iL4¿, linking nodes NAi and NA^+1^mo¿ 8 . The structure

of network B is the same as that of network A and its nodes, direct links and reverse links

are called, respectively, NBi, DBi and RB{. Processing clusters can communicate using

one of the configurations for network A or B described in the following. The operational

configuration of the system includes two processing units from the processing clusters

with two or three unfailed processing units, one processing unit from the processing

clusters with one unfailed processing unit, and the components of network A or B, with

priority given to network A, required to build one of the operational configurations of

the networks described next. The network configuration that is tried first is a direct

ring including all nodes and direct links. The second configuration that is tried is a

reverse ring including all nodes and reverse links. The third configuration is used when

parallel direct and inverse links i are failed and includes all nodes and links except the

two failed links. The last configuration, which is used when, for instance, node i fails,

includes all nodes except node i and all links except those between node i and nodes

(i ± 1) mod 8. The components included in the operational configuration of the system

are called active. Active processing units, active nodes and active links fail with rates

Xpui Ajv and A¿, respectively. Inactive components fail with rates v x Xpu, v x Ajv

and v x A¿, where i>, 0 < v < 1 is a dormancy factor. Components of non-operational

network A do not fail. Coverage is assumed perfect for link faults. Faults in processing

units and nodes are covered with probabilities Cpu and CN, respectively. Coverage faults

are modeled by adding three recovery components RSYS and propagating to them all

86 4 Reliability Bounds of Non-repairable Systems using FD Bounds

PUiß PUi/2+1

Figure 4.7: Architecture of the second example.

any uncovered fault. The system is operational if each processing cluster has at least

one unfailed processing unit, all processing clusters can communicate using one of the

given configurations of network A or B, and at least one recovery component RSYS is

unfailed.

The fault tree of the system has 53 inputs, all of which are modules, 40 gates, 4

of which are modules, and 764 edges. The fault tree can be described by the following

expressions:

7

DRA = \/(SiVT¿)t

:=0
7

DRB = V(VfVWi) .
i=0
7

RRA = \f(SiwUi)!

»=o
7

RRB=y(ViVXi)t

•=o
7 7

FRAi=ySjv\/{TjVUj),
J=0 j=o

7 7

FRBi=yVjvy(WjVXj),
3=0 j-o

3&

4.3 Analysis and Comparison 87

7 7

i=o j=o
J^' J5¿¿,(t-l)mod 8

7 7

¿=o j=o
i # * J5¿í,(l '-l)mod S

7 7

tf£T¿ = 0 A 4 A RRA A / \ ^Ä4t- A f\ FRA¡ ,
! = 0 t'=0

7 7

iV£T5 = DRB A £ # £ A / \ FRBi A / \ F ü ß ^ ,

NET = NETA A NETB,
3

5r = ^ rvzv \ /y ¿ ,
»=o

the bags associated with the inputs of the fault tree being b(5,) = iVA,-[l], b(Tt) = ZM,[l],

b(Ui) = RAi[l], b(Vi) = NBi[l), b(Wi) = DBi[l], b{X{) = Äß,[l], b(Y¿) = P£/,[3], and

b(Z) = ASTS[3].

The second example has 32,405 minimal cuts and L = 3, L = 2. The numerical

results have been obtained for the following parameter values: \pu = 1 0 - 6 h - 1 , Ajv =

5 x 10- 7h" 1 , XL = 3 x l O ^ h " 1 , v = 0.2, CPU = 0.99 and CN = 0.99.

We have considered K = 2, 3, 4, and 5 for the first example and K = 2, 3 and 4

for the second one. Figures 4.8 and 4.9 show the unreliability bounds obtained using the

proposed bounding method for the first and second examples, respectively, as a function

of time in years1. The bounds degrade as time increases. In both examples, however, the

proposed bounding method achieves tight bounds for mission times up to 5 years using

affordable numbers of states (respectively, 114,243 and 251,920).

In Tables 4.3 and 4.4 we compare, for the two examples and several mission times,

the relative unreliability band obtained with the proposed bounding method, urb(t) =

([ur(i)]u t l- [ur(í)]ib)/[«r(í)]ib against that obtained with the method proposed in Chap­

ter 3, urb'(t) = ([wr(i)](lb- [ur(f)]ib)/[tir(i)]ib and that obtained with the trivial method, .

urb"(t) = ([ur(í)]*b-[ur(í)]ib)/[ur(í)]ib. The band urb'(t) is not shown in Table 4.3 since

for the first example [ur(t)]'ub = [ur{t)]ub and, therefore, urb'(t) = urb(t). The proposed

bounding method clearly outperforms the trivial method. Thus, for mission times up to

1 year, the ratio urb" (t) / urb{t) is greater than or equal to 21 for the first example and 30

1 1 month = 730 h and 1 year = 8,760 h.

88 4 Reliability Bounds of Non-repairable Systems using FD Bounds

0.01

0.001

0.0001

le-05

K=2 (|G|=325)
K=3 (|G|=2,922)
K=4 (|G|=20,256)
K=5 (|G|=114,243)

1

Figure 4.8: Unreliability bounds for the first example as a function of time in years and

the value of K.

0.01

0.001

0.0001

K=2 (|G|=1,383)
K=3 (|G|=23,231)
K=4 (|G|=251,920)

1

Figure 4.9: Unreliability bounds for the second example as a function of time in years

and the value of K.

4.3 Analysis and Comparison 89

Table 4.3: Relative unreliability band obtained with the proposed bounding method,

urb(t) (top) and with the trivial method, urb"(t) (bottom) for the first example.

time

1 month

2 months

6 months

1 year

2 years

5 years

K (states)

2 (325) 3 (2,922) 4 (20,256) 5 (114,243)

5.6074 x 10~3

1.9121 x 101

1.4916 x 10"2

1.9310 x 101

8.8675 x lO"2

2.0721 x 101

3.0844 x 10"1

2.4590 x 101

1.1610

3.7307 x 101

7.9242

9.5814 x 101

9.0751 x 10~4

5.3599 x lO"1

3.4877 x 10"3

7.5534 x lO-1

3.0034 x lO"2

1.6262

1.1625 x lO-1

2.9683

4.4492 x 10"1

6.0617

2.6360

1.9943 x 101

2.4718 x 10~5

5.9234 x 10"3

1.1790 x 10"4

1.4218 x lO"2

1.7085 x 10"3

7.0069 x lO"2

1.0286 x lO"2

2.1744 x 10_1

6.3144 x lO"2

7.2137 x 10"1

6.0118 x 10"1

3.6513

2.4558 x 10"7

5.1234 x 10~5

1.7226 x 10"6

1.9082 x 10~4

5.1856 x 10-5

2.0870 x lO-3

5.2415 x 10"4

1.1154 x lO-2

5.5772 x 10"3

6.4111 x lO-2

1.0547 x 10"1

6.0539 x 10"1

for the second one. In addition, the proposed method allows to compute bounds that are

almost as tight or even tighter than those given by the trivial method using significantly

fewer states. Thus, for the first example and t = 2 years, the relative band obtained by

the proposed method with K = 4 (\G\ = 20,256) is better than that obtained by the

trivial method with K = 5 (|G| = 114,243). For the second example and f = 2 years,

the relative band obtained by the proposed method with K = 3 (\G\ = 23,231) is only

slightly worse than that obtained by the trivial method with K = 4 (|G| = 251,920).

The bounds looseness introduced by the proposed method with regard to the method

described in Chapter 3 is reasonable. For the first example, urb(t) — urb'(t) because

the fault tree satisfies the conditions of Theorem 4.3; for the second example, the use of

minimal cuts to compute exact failure distances less than halves the relative unreliability

band.

In Table 4.5 we give the CPU time in seconds to generate the CTMC and compute

the unreliability bounds for t = 5 years for both examples and the three methods. The

CPU time has been measured in a 167 MHz, 128 MB SPARC Ultra 1 workstation. With

respect to the trivial method, our method introduces a CPU time overhead due to the

computation of lower bounds for failure distances from states only when L > 1. This

90 4 Reliability Bounds of Non-repairable Systems using FD Bounds

Table 4.4: Relative unreliability band obtained with the proposed bounding method,

urb(t) (top), with the method described in Chapter 3, urb'(t) (middle) and with the

trivial method, urb"(t) (bottom) for the second example.

time

1 month

2 months

6 months

1 year

2 years

5 years

K (states)

2 (1,383) 3 (23,231) 4 (251,920)

8.0995 x lO"6

4.2519 x lO"6

3.4966 x lO"3

6.4332 x 10"5

3.4014 x lO - 5

1.3816 x lO"2

1.6870 x lO"3

9.1670 x 10"4

1.1952 x 10"1

1.2903 x lO"2

7.2810 x lO"3

4.5153 x lO - 1

9.4070 x lO - 2

5.6666 x 10"2

1.6114

1.0991

7.6243 x 10"1

7.1970

2.7765 x 10~8

1.9822 x lO"8

1.0013 x 10~5

4.3975 x 10~7

3.1450 x 10~7

7.9310 x 10~5

3.4190 x 10-5

2.4625 x 10~5

2.0576 x lO - 3

5.1391 x HT4

3.7395 x lO"4

1.5491 x lO"2

7.2234 x lO - 3

5.3589 x lO - 3

1.0930 x 10-1

1.8392 x 10-1

1.4348 x lO - 1

1.1300

5.9186 x HT1 1

5.1065 x 1 0 - "

2.1062 x lO - 8

1.8731 x 10~9

1.6169 x 10~9

3.3356 x 10~7

4.3531 x 10-7

3.7652 x lO - 7

2.5930 x 10~5

1.3015 x 10~5

1.1291 x lO"5

3.8967 x 10~4

3.6184 x lO - 4

3.1572 x lO - 4

5.4737 x lO - 3

2.1999 x 10~2

1.9505 x lO - 2

1.3744 x lO - 1

4.4 Conclusions 91

Table 4.5: CPU time in seconds to generate the CTMC and compute the unreliability

bounds for t = 5 years for both examples using the proposed bounding method (top),

the method described in Chapter 3 (middle) and the trivial method (bottom).

example

first

second

K

2

0.271

1.72

0.197

3.21

16.4

2.42

3

2.12

4.38

1.52

44.8

68.8

36.4

4

14.8

29.3

11.0

510

998

427

5

90.4

268

73.2

—

overhead is reasonable, ranging from 20% in the second example with K = 4 to 40% in

the first example with K = 3. Regarding the method proposed in Chapter 3, the method

proposed in this chapter is always faster.

For the first example, the proposed bounding method should be the method of choice

since it is faster than the method described in Chapter 3 and gives the same unreliability

bounds. For the second example, at the price of introducing some looseness in the bounds,

the proposed bounding method is faster than that described in Chapter 3. In addition,

the method described in Chapter 3 has a significant memory overhead due to storage of

minimal cuts, so the proposed method is also the method of choice.

4.4 Conclusions

In this chapter, we have developed a bounding method for the unreliability at time t,

ur(t), which exploits the concept of failure distance, but does not require the knowledge

of the minimal cuts of the fault tree of the system. The method is based on lower bounds

for failure distances that can be computed inexpensively on the fault tree. The method

can be preferable to both the trivial method and the method proposed in Chapter 3 with

the same generated subset of states in several cases. Thus, the proposed method gives

tighter bounds than the trivial method with a moderate CPU time overhead if L > 1

and without any overhead if L = 1. Regarding the method described in Chapter 3, the

proposed method seems to be faster and in some cases it gives exactly the same bounds.

92 4 Reliability Bounds of Non-repairable Systems using FD Bounds

In many other cases, though, the proposed method gives bounds that are looser than the

bounds given by the method proposed in Chapter 3. However, that method requires the

knowledge of the minimal cuts of the system, whose computation can be infeasible in a

reasonable amount of time. Also, the number of minimal cuts can be very large and, in

those cases, the method proposed in this chapter may be more efficient from a memory

usage point of view.

Chapter 5

Availability Bounds of Repairable

Systems using FD

Chapters 3 and 4 have been devoted to develop bounding methods for the unreliability

of non-repairable systems. In this chapter we develop a method to upper bound the

steady-state unavailability, UA, for repairable systems. The method requires the com­

putation of failure distances. The method developed here takes a particular case of the

method described in [22] as starting point and uses one of the state exploration algo­

rithms developed in [20]. The method proposed in [22] was developed for the same class

of models considered in this dissertation except that it assumed that repairs involved just

one component. We begin by extending that method and showing that it allows group

repair, which, as it has been commented in Section 1.5, is an important generalization.

Secondly, we improve that method by deriving failure rate bounding structures that are

typically better and never worse than the ones used in [22]. Next, we review the state

space exploration algorithm developed in [20] we use in our method. Finally, we analyze

the performance of the proposed bounding method and compare it with the performances

of the methods described in [22] and [70].

5.1 Extension to Group Repair

Let Ü be the state space of the CTMC modeling the system. The method proposed in

[22] obtains bounds for the steady-state unavailability generating a subset, G, of Q. That

method also uses a cloning technique that consists in the modification of Q by adding to

U = Q — G clones of states of G with more than F failed components. Note that the

94 5 Availability Bounds of Repairable Systems using FD

cloning technique does not modify UA. In this section we review that method for the

particular case F — 0, i.e. when all states of G but o (the only state of Q, without failed

components) are cloned, and show that it allows group repair.

We start by introducing some notation. Let X = {X(t);t > 0} be the CTMC

modeling the system with the state cloning technique applied and let Q be the state

space of X. Throughout the section we will denote by A,j, i,j € f2 the transition

rate from state i to state j , by At- = S i g n ^t'j) ' € ^ the output rate of state ¿, and

by ^t,B = X^jeB^î'ji • É fií ß C !î the transition rate from state i to subset B, all

referred to X unless stated otherwise. We will also consider a number of transient

CTMCs Y. Each such CTMC Y has a state space of the form B U {a}, where all

states in B are transient and a is an absorbing state, and has a well-defined initial

probability distribution with P[Y(0) £ B] = 1. We will denote by T(Í,Y), i £ B

the mean time spent by Y in i before absorption (r(i, Y) = J"0°° P[Y(t) = i]dt). We

will also use the notation T(B',Y) = J2ieB' r(z>^r)i B' C B. It is well known (see,

for instance, [13]) that the mean times to absorption vector r = (r(i, F)) , e£ is the

solution of the linear system TTA = — qT, where A is the restriction of the transition

rate matrix of Y to B and q = (P[Y(0) = i])ieB- The expected number of times that

a transition (i,j) with rate AtJ- is followed is ßij = r(i , F)A,j. The result follows easily:

W = Jo°° p[Y(0 = i\\A = Ati /0°° P[Y(t) = i]dt = \ijT(i, Y).

Consider the regenerative behavior of X defined by the times at which X hits state

o from U. Let To and Tu be, respectively, the contributions of the subsets G and U to

the mean time between regenerations. Let CG and Cjj be, respectively, the contributions

of the subsets G and U to the mean down time between regenerations. Let [ïi/]ub be an

upper bound for Tu and let [C[/]ub be an upper bound for Cu- Then, we have [22] the

following lower and upper bounds for the steady-state unavailability UA:

[UA]]h= Ca t (5 J)

J-G + [J-Ulub

r , M i CG + [Cu]ub ,_9v
[UA\ub = r 1 . (5.2)

J-G + L̂ C/Jub

Let D be the subset of down states of X and let YG be the transient CTMC with

state space G U {a} and initial state o, built from X by directing to a transitions from

states in G to states in U. The quantities TG and CG can be computed from the mean

5.1 Extension to Group Repair 95

m) m)

(a)

Figure 5.1: State transition diagrams of the transient CTMCs Y' (top) and Y (bottom)

of Lemma 5.1.

time to absorption vector of YQ, (T(i,YG))ieG, as

TG = J] r (i > y G) , (5.3)
ieG

CG= Y. T^YG)- (5-4)
ieGnD

In the following we will denote by C, N and MC the bag of component classes, the

number of components and the set of minimal cuts of the system, respectively. We will

also denote by FC the set of distinct cardinalities of the failure bags of the system and

by E{, i € FC the set of failure bags e, e 6 E with cardinality i. Let Uk be the subset

of U including the states with k failed components. Let YUk be a transient CTMC with

state space {u\,..., UN} U {a}, initial state u^ and state transition diagram like the one

shown in Figure 5.1, b: there is a transition with rate #(1) from u\ to a, a transition

with rate g(k), 2 < k < N from u¿ to u^-i, and, for each i € FC, i < N — k, a transition

with rate /,• = YleeE ^ub(e) from Uk to Uk+i- The upper bound [T[/]ub is

N
[TuU = J2nkT(k), (5.5)

fc=i

where

n- = YlT(h YG) \ijjk (5.6)
ieG

96 5 Availability Bounds of Repairable Systems using FD

is the probability that X with initial state o will enter U through subset Uk and T(k)

is the mean time to absorption of YUk. An efficient procedure for computing T(k),

k = 1 , . . . , N is described in [22].

Next, we prove the correctness of [T[/]ub when repairs may involve an arbitrary

number of components. Let N' < N and let Y' = {Y'(t); t > 0} be a transient CTMC

with state space {u l 5 . . . , «# '} U {a}, initial probability distribution P[Y'(0) = «¡] = TT¡,

1 < i < N', J2i=i ""»' = 1, and the state transition diagram shown in Figure 5.1, a: there

is a transition with rate g¡(k), 1 < k < N', 1 < i < k from uk to t/fc-i, a transition

with rate gk(k), 1 < k < N' from uk to a, and a transition with rate //(&), i < N' - k,

1 < k < N' from uk to uk+i. Let Y = {Y(t); t > 0} be a transient CTMC with state

space {« i , . . . , ujv} U {a}, initial probability distribution P[Y(0) = ut] = 7r¿, 1 < i < iV',

P[y(0) = u,] = 0, N' < i < N, and same state transition diagram as YUk (the one shown

in Figure 5.1, b). We have the following result.

Lemma 5.1 Assume fj > 0, fj > /j(¿), 1 < * < N' and 0 < g(i) < £j=iffj(0>

1 < i < N'. Then, T{UUY) > T{UUY'), \<i<N'.

Proof The proof is by induction on k. We will use the balance equation applied to

a subset of states of a transient CTMC, which states that the initial probability of the

subset plus the expected number of entries in it is equal to the final probability of the

subset plus the expected number of exits of it. Note that the states ut-, 1 < i < N of Y

and the states ÍÍ¿, 1 < i < N' oí Y' are transient and, therefore, have final probabilities

equal to zero.

Let Ty = r(u,-,y) and T¡ = T(UÍ,Y'). The balance equation applied to the subset of

states ufL^i of Y' yields

N'

1 = E r^, ' (0 , (5-7)
t= i

T, _ l-E^r¡g¡(i)
g[(l) • (5-8)

The balance equation applied to the subset of states U^u,- of Y yields

1 = ng{l), (5.9)

n = j iy . (5.10)

Using (5.8), T[> 0, 1 < i < N', g(l) < g[(l) and (5.10),

r i ' - ^ ï) - ^) = r i '

5.1 Extension to Group Repair 97

which proves the result for k = 1. Next, we assume r[< r¿, 1 < i < k — 1, k > 2 and

show r'k < Tfc. The balance equation applied to the subset of states U^T^u,- of Y' yields

k-l N' t - 1 k-l k-l N'-i

E-.+E^ E sK^E^ 'w+E^EW-
i = l i=k j—i—k+1 t = l t = l j—k—i

Using 1 = E-Ji1 ÍT¿ + E S * ** a n d (5-7)>

JV' k-l AT' i - l N' k-1 N'-i

i -E^+^E^)+ I N £ ^w = i-E^i'w+E^ E #o.
t = fc j = l t = f c + l j = t —fc+1 t = fc 1 = 1 j = k — i

ri _ ¿2i=k ni ~ 2-/i=fc+i r¿ 2Jj=i-fc+i g j (0 + 2-/i=i r¿ 2Jj=fe-i / j (0

Zj=i9j(k) (5.H)

rL =

Similarly, applying the balance equation to the subset of states Ui=^U{ oí Y and using

1 = ZU *i + £ £ * *¿ and (5.9) gives

2^i=A: ^ + ¿ J I = 1 "«' L·j-k-i Jj / r ION
T1 = iw • (5'12)

Finally, using (5.11), r[> 0, 1 < i < N\ the induction hypothesis, fj > 0, fj > ñ{i),

l<i< N', N' < N, g{i) < £ } = 1 9j{i), 1 < * < W, and (5.12),

v-^A" „ , -r^k-1 ^ -c^N'-i f ir^N' „ , v-^fc-1 , . v-^A/-¿ f
L·i=k ni + 2^t=i Ti L·j=k-i Jj < 2^i=fc "t T 2^i=i ri' L·j=k-i Jj

2J:=fc 7r« + E t = l T« Z/j=fc-i /?' r—i
7TT = Tk . U

The remaining of the proof is based on the concept of exact aggregation for transient

CTMCs. The following result, which defines the exact aggregation of a transient CTMC,

is proved in [22, Theorem 3].

Theorem 5.1 (Exact aggregation for transient CTMCs) Let Y = {Y(t)\ t > 0}-

be a transient CTMC with state space B U {a}, where all states in B are transient and

a is an absorbing state, transition rates A,,j, i € B, j Ç. B U {a}, i ^ j , and initial

probability distribution P[Y(0) = i] = TT,-, i G B, YlieB K¡ — 1- Assume r(i, Y) > 0 for ail

i e B. Let B\ U Bi U • • • U Bn be a partition of B. Then, there exists a transient CTMC

Y' = {Y'(t); t > 0} (the exact aggregation of Y) with state space {61,62,.. -,bn} U {a},

98 5 Availability Bounds of Repairable Systems using FD

transition rates A ' ^ = £ i e B j k w* A i iB | , 1 < A, / < n, A; ̂ /, and A ' ^ = £ i 6 B j k «>* A,-,«,,

1 < k < n, with u!¡ > 0, YlieB ui ~ 1» and initial probability distribution P[Y'(0) =

h] = K = T,ieBk
 ni> such that Tih,Y') = T{Bk,Y).

Let YJJ, s G U be the transient CTMC with state space Us U {a}, Us including the

states reachable from s before exit from U, and initial state s, built from X by directing

to a the transitions from states in Us to o. Let Tv be the mean time to absorption of

Y{j. Noting that J^Í^G
 r(í> YG)^Í,J 1S the probability that X with initial state o will enter

U through state j and grouping the contributions of the states j G U according to the

subsets Uk they belong to, we can write

Tu = EET(i 'yG)A · ·^ = EET(i·yG)A,·lj2é
jeUieG ieGjeu

N

i€G fc=l s€Uk

Theorem 5.2 Tu < [Ï£/]ub> where [Tu)ub is given by (5.5) and (5.6).

Proof Let s G Uk and consider the exact aggregation Y¿ of Y¿ under the partition
N'

Ufjji/f, where Uf is the subset of U¡ including the states reachable from s before exit

from U and 1 < N's < N. The state transition diagram of Y¿ looks like the one depicted

in part a of Figure 5.1, with N' replaced by N's. Using the notation of the figure we have,

by Theorem 5.1,

W = Eu',sA«.f«+>- i<i<Kj<N'.-i,
ieu>

í/í(0=Ewí , ,Aw->' 1<líK 3<i,
i€U>

ieu-

and

T{U;,Yu) = T{ui,Yu'). (5.14)

The transition rates Atit/(+j, i G Uf are associated with failure bags involving j

components and, therefore, are upper bounded by fj. The repair rate of i G Uf, A,)0 +

!Cj=i A«,£/i-¿i i s l ° w e r bounded by #(/). Then, using u>j's > 0, i G £/* and ^ ¡ ^ . u , - ' 5 = 1,

5.1 Extension to Group Repair 99

we have

i i-i z-i

Z>i(0 = 9\{l) + Eg'jii) = E ^SA¿,0 + £ 53 "i^w-i
i = i j = i ¿et;,* i = i ¿et;/

= E w.!'s (A «>+E ^ i - i) ^ E "!•'*(') = *(')•
¿et/,s j = i ieut>

Since P p # (0) = ti*] = 1 and N'S < N, Y¿' and YUk fulfill the requirements of Lemma 5.1.

Then, using (5.14), N's < N and the lemma,

Ni N', N's N

n = E7"^-^) = Er(u»-'y^') ̂ Er(u'>yu*) ^ E^- 1 "*) = T^ •
¿=i ¿=i ¿=i ¿=i

Finally, using (5.5), (5.6) and (5.13),

N N
Tu ^ E E E r(i,YG)XiiST(k) = EE r(¿>yG)A¿,t4r(¿)

¿6G fc=l s€t;fc ¿€G A;=l
N N

= ^Jr(¿ ,FG)A l AT(fc) = j > T (*) = [3VU-D
fc=l ¿€G A=l

Let £/jt|(i be the subset of U including the states with k failed components and failure

distance d. Let L = mmmçMc |w| be the redundancy level of the system. The domain

1Z of pairs (k, d) for which Uk,d may be non-empty is defined by [22]

Tl = {(jfc, d):l<k<N, max{0,1 - Jfe} < d < min{£, N - k}}. (5.15)

Let C\j be the mean down time to absorption of Yy. The upper bound [Cf/]ub is

[CuU= E *k¿C(k,d), (5.16)

where

Wk'd = E T(i» Ya)Kukld (5-17)
¿€G

is the probability that X with initial state o will enter £/ through subset Uk,d, and C(fc, d)

are upper bounds for Cfr, s £ Uk,d-

The upper bounds C(k,d), (k,d) € 1Z are computed using an iterative procedure.

The procedure starts with

N

C(k, d) = C(k) = J2 Hm, YUk), (5.18)

100 5 Availability Bounds of Repairable Systems using FD

for (all (k, d) £ U) C{k, d) = C(Jfc);
d o {

e' = 0;
for (k=l; k<N; k++)

for (d = max{0, L - k}; d < min{L, N - k}; d++) {
Compute C'(k,d) using (5.22);
if (C'(k,d)<C(k,d)) {

e' = max{(', (C(k, d) - C'{k, d))/C'(k, d)};

C(k,d) = C'{k,d);

}
}

} while (e' > e);

Figure 5.2: Algorithm to compute the C(k,d) bounds.

and improves the bounds using potentially better bounds C'(k,d) until no significant

improvement is achieved. Let

W = {{k, d, i, r) : (k, d) <=Tl,ie FC, i < N - k,

ma,x{Q,d-i} < r < mm{d,N - k - i}} . (5.19)

Let Fitr(k,d), (k,d,i,r) € 11' be upper bounds for ^/,u0<</,<ri/fc+I·id,, I € Uk,d, i.e. for the

total failure rate involving i components from any state in U with k failed components and

failure distance d to states with failure distance < r. Let Jm (k, d, i) = max{0, k+d+i—N}

and JM{Ú, i) = min {d, ¿} and let

fij{k, d) = Fitd-j(k,d) - Fj.d-j-i (k, d) , Jm(k, d, i) < j < JM{d, i) ,

(5.20)

fi,jM(d,i)(k>d) = Fi,d-JM{d,i)(k, d). (5.21)

The upper bounds C'{k,d), (k,d) € 11 are computed using

C'(k, d)=^ + Ik>l [Id>L-kC{k -l,d) + Id<L-kC(k - 1, d+ 1)]

Ju{d,i)
+ 7ñA J2 É fij(k,d)C(k + i,d-j), (5 2 2)

yK ' ieFC 3=Jm(k,d,i)
i<N-k

where Ic denotes the indicator function returning the value 1 if condition c is satisfied

and the value 0 otherwise. The algorithm to compute the C(k, d) bounds is given in

Figure 5.2. The parameter e is a tolerance factor that determines when the improvement

is small enough for the algorithm to stop.

5.1 Extension to Group Repair 101

In [22, Theorem 5] it is proved that C\j < [Cu]ub provided that C(j < C(k,d),

s G Uk,d- In the following we prove that if Fi,r(k,d), (k,d,i,r) G TZ', and Fi¿(k,d),

{k,d,i,d) G TZ' are decreasing on d, then the bounds C(k,d) computed by the algorithm

of Figure 5.2 upper bound Cy, s G Vk,¿ when repairs may involve an arbitrary number

of components. The proof consists of a sequence of two propositions, a lemma and a

theorem. In the following, we will denote by RC the set of distinct cardinalities of the

repair bags of the system.

Proposition 5.1 Assume Cfj < C(k,d), s G £4,<¿ and that C(k,d), (k,d) G TZ are

increasing on k and decreasing on d. Then, C[j < C'(k, d), s G Uk,d-

Proof Let s G Uk,d- Cfj is equal to the mean down time in s, if d = 0, plus the mean

down time from the next visited state m, if m G U. Let us discuss now to which subsets

Uk',d> the state m may belong to. Consider first repair transitions involving i, i G RC,

i < k components. These transitions lead to states with k' = k — i failed components

whose failure distance is neither smaller than d nor larger than min{L,ei+ i'}. Also, if

i = k, the reached state is o ̂ U. Therefore, only repair transitions involving i G RC,

i < k — 1 components have to be considered and they may lead to m G Uk-i,d+j, 0 < j < i.

By imposing (k-i, d+j) G 7£ we get max{0, L-k+i-d} < j < min{¿, L-d}. Transitions

associated with failure bags e G Ei, i G FC, i < N - k can be analyzed in a similar way

by noting that they lead to states with k + i failed components whose failure distance is

neither larger than d nor smaller than rnax{0, d - i}. Imposing (k + i,d- j) G TZ yields

Jm(k,d,i) < j < JM{<1,Í)- Based on the previous discussion and denoting J'm{k,d,i) =

max{0, L-k + i-d} and J'M(d, i) — min{¿, L - d}, we can write

C£ = Ti(d) + T2{k, d, i) + T3{k, d, i), (5.23)

T1(d) =
A, '

T2(k,d,i)= E E E x ^ '
i<k-l

JM(<Í,Í) ,

T3(k,d,i)= E E E x 1 ^ -
iÇFC 3=Jm(k,d,i)rn&UkJfi,d-i

i<N-k

Since Xs > g(k),

TM<^y (5-24)

102 5 Availability Bounds of Repairable Systems using FD

If k - 1, T2(k,d,i) = 0. Assume k > 1. Using Cff < C(k',d'), m G t4',d', the

fact that C(k',d') are increasing on fc' and decreasing on d', and noting that Xs >

i=J'm(k,d,i) ¿sTneUk_ijd+3
 As,m,

T 2 (M , 0 < E E c{k-i,d + j) E i n
1GÄC J=J!n(kÂ,i) n»€l/*_,-i<J+>

 S

t'<fc-l

* E C(*-M+J;(M,O) E E x 1

i<k-i

= E C(¿r-M + max{0,I,-£ + ¿-(¿}) J^ £ 2^L
i£RC j=J^(k,d,i)m€Uk.i¡d+j

i<k-l

<C(Jb-l,d+max{0,I-ifc + l-d}) E E "f2

j=J^n(k,d,i) meUk-i,d+j

< C(k - 1, d+ max{0,1 - k + 1 - d}).

If d > L - k, max{0,L - k + 1 - d} = 0 and T2(fc,d,i) < C(k - 1, d); if d < Z, - k,

since (k, d) € 72. implies d = £ — A, we have max{0, L — A-f l — d} = 1 and, therefore,

T2(A;, d, i) < C(k - l ,d + 1). To summarize,

r2(A, d, i) < Ik>i{h>L-kC{k - 1, d) + Id<L.kC(k - l , d + 1)). (5.25)

To bound T3(&, d, ¿),let us denote fij(s) = Xs,uk+iid_r Recalling that C™ < C(k+i, d-j),

m Ç. Uk+i,d-j,

Ju(d,i) .

T3(k,d,i)< E E E ^c{k+i,d-j)
ieFC j=Jm(k,d,i)meUk+itd_:¡

i<N-k

v L
» Xs

ieFC 3=Jm(k,d,i)
i<N-k

E E ^ c (* + , - , d - j) .

Let Fitr(s) be the sum of failure transition rates from s involving i components and leading

to states with failure distance < r, i.e. Ft>(s) = Ylj~d-'r /»'j(s)» d — J M (d, i) < r <

d- Jm(k,d,i). Clearly, Fi<r(s) < Fi<r(k,d). Note also that /,-,jM(<i,t)(*) = FiÀ_jM(dii)(s)

and that / , j (s) = Fijd-j(s) - Fitd-j-i(s), Jm{k,d,i) < j < J A / K O -
 T h e n . u s i n g

*

5.1 Extension to Group Repair 103

K > g(k), (5.20), (5.21) and the fact that the bounds C(k',d') are decreasing on d\

ieFC
i<N-k

JM(d,i)-l

r3(M,f)< Yl
zFC

:N-

Fi,d-jM(d,i)is)

E
•j-Jm{k,d,t)

Fi,d-j(s) - Fi,d-j-l(s)
C(k + i,d- j)

+

= E
ieFC

i<N-k

Fi,d-jm(k,d,i)(s)

C(k + i,d— JM(d, i))

C(k + i,d- Jm(k,d,i))

JM(d,i)
Fi,d-j(s) + E

j=jm(k,d,i)+i

Fi,d-jm(k,d,i){k,d)

(C(k +i,d- j) - C(k + i,d-j + 1))

* E
ieFC

i<N-k

9(k)
C(k + i,d- Jm{k, d, i))

JM(d,i)

+ E
Fi,d-j(k,d)

= E
j=Jm(k,d,i)+l

JM(d,i)-l

g(k)
{C{k + i,d-j)- C(k + i,d-j + 1))

ieFC
i<N-k

E
•j=Jm{k,d,i)

Fj,d-j{k, d) - Fiid-j-i(k, d)

9(k)
C(k + i,d-j)

+ ñéz^átlñC(k + i,d- JM(d, i))
9(k)

= E
ieFC

i<N-k

JM{d,i)-l

E fi,j{k,d)
C(k + i,d- j)

+

•j=Jm(k,d,i)

fijM(d,i){k,d)

9(k)

9(k)

C(k + i,d— JM(d, i))

JM(d,i)

= 77M E E fi,j(k,d)C(k + i,d-j).
9[' ieFC j=Jm(k,d,i)

i<N-k

Finally, the result follows from (5.24), (5.25), (5.26), (5.23), and (5.22). D

(5.26)

Lemma 5.2 The bounds C(k), 1 < k < N defined by (5.18) are increasing on k.

Proof The proof is by induction on k. Let X(k) = g(k) + T, .„„„ /,•. The bound C{k)
k+i<N

is equal to the mean time in u/t, if k > L, plus the mean down time from the next visited

104 5 Availability Bounds of Repairable Systems using FD

state. Thus, in view of Figure 5.1, b we can write

C(N) = ~ + C(N-1), (5.27)

cM=m+WJcik~1)+ s mc(k+ih 1<k<N- (5-28)

i€FC
k+i<N

The case k = N is trivial since, from (5.27), C(N) > C{N - 1). Assume that C(k'),

k<k'<N,l<k<N are increasing on k. Using (5.28), the definition of X(k) and the

induction hypothesis,

C(fc-l) = ^[A(*)C(fc)-/,,>£- E fiC(k + i)
ieFC

k+i<N

(g(k)+ J2 fi)c(k)-h>L- J2 fiC(k + i)
i£FC ieFC

k+i<N k+i<N

=c{k)-m-mLft(c{k+i)~c{k)ï (5-29)

<c(k).u

i^FC
k+i<N

Using (5.27) and (5.29) it is possible to define an efficient procedure to compute

C(k), 1 < k < N. Let Au be the restriction of the transition rate matrix of the CTMC

YUk to its transient states U^.x{u¿} and let qw be a column vector with component N

set to one and all its remaining components set to zero. The mean times to absorption

vector of YUk with initial state u^r, rjv = (T(W¡, ^ U *)) I< (<ÍV) is the solution of the linear

system

TJJAU = -ql. (5.30)

Then, we solve (5.30), compute C(N) using (5.18), compute (5.27) C(N - 1) = C{N) -

l/g{N) and, finally, compute C{k), 1 < k < N - 2 using (5.29).

Proposition 5.2 Assume that Fiir(k,d), (k,d,i,r) € TV and Fitd(k,d), (k,d,i,d) £ TV

are decreasing on d. Then, the bounds C(k,d), (k,d) 6 TZ are increasing on k and

decreasing on d.

Proof Consider the algorithm that improves the bounds C(k, d) split into phases, where

each phase includes the operations performed within the ¿-loop, and let C^m\k, d), m > 0

5.1 Extension to Group Repair 105

be the bounds C(k, d) available after phase m. We start by proving that the bounds are

decreasing on d. The proof is by induction on m. For m = 0, C(°) (M) = C(k), which,

trivially, are (non-strictly) decreasing on d. Assume that C^m'\k, d), 0 < m! < ra, m > 0

are decreasing on d and let k' be the value of k for which the bounds are updated in

phase m + 1. We have (5.22) that C'{k',d) only depend on C^m">{k,d), 0 < m' < m,

k ^ k'. Using the induction hypothesis, this implies [22, Proposition 3] that C'(k',d)

are decreasing on d. Therefore, since, by hypothesis, C^m\k',d) are decreasing on d,

C(m+1\k',d) = min{C'(k',d),C^m\k',d)} are decreasing on d.

Next, we prove by induction on m that the bounds C(k, d) are increasing on k. Let

(k, d), (k — 1, d) G 71. For m = 0, using Lemma 5.2,

C<°>(fc,d) = C{k) > C{k - 1) = Cl°\k -l,d).

Assume that C^m \k, d), 0 < m' < m, m > 0 are increasing on k. Let k' be the value of

k for which the bounds are updated in phase m + 1. Let (k' — l,d) € 1Z, which implies

k' > 1 and d > max{0, L - k'+ 1} > L - k'. We have (5.22)

c'{k''d) = W)+c(m){k'~hd) + W) £ ^ W) '
\Ç~F C

i<N-k'
JM{<1,Í)

A(k',d,i) = J2 fiAk',d)C{m'Hk' + i,d-j), mi<m.
j=Jm(k',d,i)

Using (5.20), (5.21) and recalling that C^m\k,d) are decreasing on d,

JM{d,i)-i

A(k',d,i) = J2 \.Fi¿-¡<*''d) - F ¿ . ^ - 1 ^'d)]C(m,){k' + i,d- j)
j=Jm(k',d,i)

+ Fitd_jM{d,i}(k',d)C^(k' + i,d- JM(d,i))

JM(d,i)

J2 Fiid^(k',d)[C^(k' + i,d-j)-C^'Hk' + i,d-j + l)]
j=Jm(k',d,i)+l

+ Fi4_jm{k,4<i){k',d)C^{k' + i,d- Jm(k',d,*)) > 0.

Therefore, C'(k',d) > C^m\k' — l,d). Using the induction hypothesis, this implies

C(m+l>(k',d) = min{C'(k',d),C(m\k',d)} > C^m)(k'-l,d).U

Theorem 5.3 Assume that Fiir(k,d), (k,d,i,r) € TV and Fi4{k,d), (k,d,i,d) 6 TV are

decreasing on d. Then, Cfj < C(k,d), s Ç. Uk,d-

106 5 Availability Bounds of Repairable Systems using FD

Proof Consider the algorithm the algorithm that improves the bounds C(k, d) split

into phases as in the proof of Proposition 5.2. The proof is by induction on m. For

m = 0, C(°) (M) = C(k), which [22, Theorem 6] upper bound Cfj, s G Uk,d- Assume

that C(m">(k,d), 0 < m! < m, m > 0 upper bound Cfj, s € Uk4. Let k' be the

value of k for which the bounds are updated in phase m + 1. According to (5.22),

C(k',d) only depend on C^m^{k,d), 0 < m' < m, k ^ k'. Proposition 5.2 guarantees

that C(m\k,d) are increasing on k and decreasing on d. Then, using the induction

hypothesis and invoking Proposition 5.1, C'(k',d) upper bound Cfj, s G Uk',d- Finally,

recalling that, by hypothesis, C^m\k\ d) upper bound Cfj, s € f4',<¿, we have that

C(m+1î(k',d) = min{C'(A;',íí),C("l)(A;,,d)} upper bound Cfj, s € Uk>4. \J

5.2 Improved Failure Rate Bounding Structures

The set of bounds i*i,r (fc, d), (k, d, i, r) 6 TV used in [22] was

Fi,min{d,N-k-i}(k, d) = /,-, (k, d, i, mm{d, N - k - i}) £ W, (5.31)

Fitr(k,d)= Y2 Aub(c), {k,d,i,r)€TZ',r <min{d,N-k-i},

eeEi (5.32)
m n e ^ 0 for some m G MC

Imp(e)<k+r
Act(e)>d-r

where

Imp(e) — min |m — e|,
m E M C
mneyí í

Act(e) = max Imfl el.

In this section we derive bounds Fi,r(k,d), (k,d,i,r) 6 1Z', r < m'm{d,N — k — i}

that are potentially better than the bounds given by (5.32). In the following we will

call F{r(k,d) the bounds given by (5.32) and F-'r(k,d) the new bounds. The bounding

method will use (5.31) and

Fitr(k,d) = min{Fiir(k,d),F?r(k,d)}, (k,d,i,r) €lZ',r< m i n - { d , N - k - i}.

(5.33)

The bound [£M]ib does not depend on C(k, d) and, thus, that bound will be identical

for the method described in [22] and the method proposed here. However, the bound

5.2 Improved Failure Rate Bounding Structures 107

[£^4]ub does depend on C(k, d) and that bound may be different for the method described

in [22] and the method proposed here. We start proving that smaller bounds Fi<r(k,d)

potentially give a smaller and thus tighter [CM]ub.

Theorem 5.4 Smaller Fiir(k,d) bounds give a potentially smaller [UA]ub-

Proof Combining (5.20), (5.21) and (5.22) we obtain

C'(k, d) = ^0- + Ik>1 [ld>L.kC(k - 1, d) + Id<L-kC(k - 1, d + 1)]

JM(d,i)-i

+ -7Ü E E {Fi^i^d)- F^-^d^Cik + ̂ d- j)
ieFC j-Jm(k,d,i)

i<N-k

+ Fi4-jM(dti)(k, d)C{k + i,d- JM{d, i))

= ^ + Ik>i[ld>L-kC(k-l,d) + Id<L.kC(k-l,d+l)]
+ ^ 7 M E Fi,d-Jm(k,d,i)(k>d)C(k + i ' d - Jm{k,d,i))

9(K) ieFC L

i<N-k

JM(d,i)

+ E Fi4-j{k,d)(C{k + i,d-j)-C(k + i,d-j + l))
j=Jm(k,d,i)+l

But, since the bounds C(k,d) are decreasing on d by Proposition 5.2, it follows that

smaller Fi,r(k,d) bounds give smaller C'(k,d) bounds, potentially smaller final C(k,d)

bounds, a potentially smaller (5.16) [CV]ub and, since [£/^]ub is increasing on [Ct/]ub

(5.2), a potentially smaller [tMjub- Ö

In the following we derive the new bounds F-'r(k,d). The intuition on which the

new bounds are based is the following. Consider a fault-tolerant system composed of

3 instances of component classes ct-, 1 < i < n, with n large. The failure bags of the

model are c,[l], 1 < i < n. The system is failed if and only if all 3 instances of the same

component class are failed. Thus, the minimal cuts are c,[3], 1 < i < n. Assume that we

want to upper bound the transition rate to states with 2 failed components and failure

distance < 1 from any state with 1 failed component and failure distance 2 and that the

Aub(e), e € E are approximately equal. Using (5.32), all failure bags will be included

in the summatory. This is, really, a consequence of the fact that F¡r(k,d) is obtained

by adding up the Aub(e) for all failure bags e for which there exists some state with

108 5 Availability Bounds of Repairable Systems using FD

k = 1 and d = 2 for which the failure of the components in e make the failure distance

< 1. For the example and failure bag c,[l], such a state is the state x with F(x) = c,[l].

However, this is very pessimistic, since it is clear that no state with k = 1 and d = 2

exists in which all failure bags make the failure distance < 1. In fact, for the example,

for a state x with F{x) = c,[l] only the failure bag e = c,[l] makes the failure distance

< 1, and a significantly tighter upper bound (since n is large and the Aub(e), e G E are

approximately equal) to the rate to states with 2 failed components and failure distance

< 1 from any state with 1 failed component and failure distance 2 is maxeç£Àub(e).

For other values of k and d, the situation is more complex, but the basic intuition still

applies: we have to take into account the failure bags that may reduce simultaneously

the failure distance.

Let 5 be a bag (set). A collection T = {Si, S2,... , Sn} of subbags (subsets) of 5 is a

Sperner collection on S if no subbag (subset) of T contains another. Let T be a collection

of bags (sets). We will denote by Ni(T) the number of bags (sets) in T of cardinality i.

Using Lubell's theorem [62], we will prove a sequence of two lemmas. The first lemma

extends Lubell's theorem to bags; the second lemma is a direct consequence of the first

one and will be used in future developments.

Lemma 5.3 Let V be a Sperner collection on a bag S. Then

h (?) -

Proof Let T = {Si, S2 , . . . , 5„}. Let D be the domain of S (set of different elements

in 5). Consider the set S' obtained from S by replacing for each x Ç D the # (x ,5)

occurrences of x in S by distinct elements xi,X2,.-. ,%#(X,S)- For instance, if S =

a[2]ò[3]c[l], S' would be {ai,a2i^i)^2i^3; ci}. Consider the collection T' of subsets of 5 '

obtained from F by replacing each subbag 5¿ of 5 by all different subsets S¡!,£,• 2, • • •

that can be obtained by replacing the #{x, 5t) occurrences of a; in 5,- by distinct elements

from xi,X2,... ,£#(x,s)- For instance, for S = a[2]6[3]c[l] and 5¿ = a[l]6[2] we would

have S'itl = {01,61,62}, 5¿,2 = {01,61,63}, 5/ i3 = {ai,62 ,63}, S¡A = {a2 ,6i,62}, S'ifi =

{02,61,63}, and S'i6 = {02,62,63}. Since T is a Sperner collection on 5 , T' is a Sperner

collection on S'. In addition, iV,(r) < iV,-(r') and \S\ = \S'\. Then, we have

^ Nj(r) j£l NW)

h Cf') - h ci'1) *

5.2 Improved Failure Rate Bounding Structures 109

But, using LubelPs Theorem [62],

U (T)
and the result follows. Q

L·i f\s'\\ -

Lemma 5.4 Let T be a Sperner collection on a bag S and let Mi > 0, i — 1,2,... , | 5 |

Then

ÍTNi(r)Mi< max f ' ^ ' W .

Proof Let j be any index 1 < j < \S\ for which ('¿')M¿ = m a x ^ ^ i ('f')M,-. For

1 < i < \S\ we have (If)M¿ < ('f^Mj, i.e.

(|S |)
Mi < j^Mj.

Then, using Lemma 5.3

~ V 3 J 1<*<|5| V * /

Let F,(r) be the set of failure bags of cardinality i such that the failure of the

components in the failure bag makes the failure distance < r, i.e. the set of failure bags

e € E{ with m'mmeMC \m — e\ < r. Let F be a subbag of C, let / be an integer > 0, and

consider the collections of subbags of F , Alj(F), j = 1 ,2, . . . , \F\ defined recursively as

follows. Al,p,(F) is {F} if F is included in some minimal cut of cardinality \F\ + I and 0

otherwise. For 1 < j < |F | , Alj(F) includes the subbags of F of cardinality j included in

some minimal cut of cardinality j + I and not included in any subbag of U'pJj+1Ap(F).

We have the following result.

Theorem 5.5 Let e 6 Ei~Ei(r), i € FC and let F be a subbag ofC with m'mm€Mc \m —

F\ = d. Then, for 0 < r < d, minmeMC \m - F — e\ < r if and only if minm€MC \m -

s- e\ <r for some s € UI<J<\F\ Ud<i<r+i Al-{F).

110 5 Availability Bounds of Repairable Systems using FD

Proof The sufficiency is obvious since the bags s in UKJ<|JT| L>d<i<r+i AlAF) are subbags

of F and, therefore, minmeMC \m-F-e\ < minm£MC |m — s — e| < r. We prove next the

necessity. If minmeMC \m — F — e\ <r, there exists m' G MC with \m' — F — e\ < r. Let

n = \(m'-F)ne\ and j = \m'\ -r-n. Since e G Ei-Ei(r), n = \(m'-F)r\e\ < \e\ = i.

Also, recall from Section 1.4 that given bags x, y,

\x - y\ = \x\ - \x(~)y\. (5.34)

Then, using (5.34) with x = m'-F and y = e, m\nmeMC \m — F\ = d and \m' — F—e\ < r,

n = \(m' - F)De\ = \m' - F\ - \m' - F - e\ > d- r.

To summarize,

d-r <n<i. (5.35)

Regarding j , we have

1 <j < \m'r\F\ < \F\. (5.36)

The left-hand side of the previous inequality follows using (5.34) with x = m' and y = e,

and noting that, since e £ £ ¡ - Ei(r), minm&MC |m — e| > r:

j = \m'\ — r — n = \m' — e\ + |m 'n e| - r - n > |m' — e| + \{m' — F) (~\e\ — r — n

> r + |(m' — F) D e | — r — n — r + n — r — n = 0 .

The right-hand side of (5.36) can be shown using (5.34) twice, first with x = m' — F and

y — e, and next with x = m' and y = F, and recalling that minmgA/C |m' — F — e| < r:

j = |m'| - r - n = |m' - F - e| + |m' n F\ + \(m' - F) D e| - r - n

< r+ \m'nF\ + \(m' - F)De\-r-n

= r + \m' n F\ + n - r - n = \m' n F\ < \F\.

Consider any subbag b of m' D F of cardinality j . Since (5.36) j > 1, such a subbag
Im'I— i

exists and, obviously, it is included in both m' and F . Then, either (1) b € A'¡ ' (F)

or (2) b is (strictly) contained in some bag, s, of u '_-+ 1 / lp (F). Note that (5.35),

d<r + n<r + i. Then, since \m'\ — j = r + n,
d<\m'\-j <r + i. (5.37)

In case 1, using (5.34) twice, first with x = m' — b and y = e and next with x = w! and

y = ò, and recalling that ò C m', 6 C F, and |m'| = j + r + n,

min \m- b- e\ < \m' - b- e\ = \m'\ - | m ' n ò | - \{rri - 6)f"ïe|
mÇ.MC

= \m'\ - \b\ - \(m' - b) n e| < \m'\ - \b\ - |(m' - F) n e|

= j + r + n— j — n = r . (5.38)

5.2 Improved Failure Rate Bounding S t ructures 111

Therefore (5.36), (5.37), there exists s = 6 G öi<j<\F\Ud<i<r+iAj(F) for which minmgA/c

|ro - s - e| < r. In case 2, there exists p,j + l<p<\F\ and (5.37), s G Al™'hJ(F) =

Ud</<r+¡.Ap(F) that strictly includes ò. But, since 6 C s and (5.38), minmGMC |m—s—e| <

minmÇA/c |m — 6 — e| < r. Therefore, (5.36), (5.37), there exists s G VJ+KP<\F\ U<¿</<r+»'

Ap(F) G Ui^xiKi Ud<;<r+t- Alj(F) for which minm6Airc \m - s - e| < r. •

Denote by MCC the set of minimal cuts of cardinality c and let

A(c, n, i, r)

max ^.,n < T* Aub(e) > if MCC ± 0 and 1 < n < c
¿ a s i l . e € V' (í ,< J " ~(5-39)
cv. »,i»l v minm/6AiC |m'-6-e |<r ' v y

0 otherwise

For MCC T¿ 0 and 1 < n < c, A(c, n, ¿, r) is the maximum sum of Aub(e) corresponding to

the failure bags e G £¡ - F,(r) that assuming n components included in some minimal

cut of cardinality c failed make the failure distance after e smaller than or equal to r.

Note that, for r > L, Ei(r) = E¡, and, therefore, only A(c, n, ¿, r), r < L have to be

computed. We have the following result.

Theorem 5.6 Let E¡(r), i G FC be the set of failure bags e G Ei - F,(r) for which

minmçMC \m — s — e\ < r. Let F be a subbag of C with mmmeMC \m — F\ = d. Then,

E *ub(e)< ¿ ^ M ,- }MJ + r + l,j,i,r).

Proof Using Theorem 5.5

Ef(r)= (J U U ^(r).
l < j < | F | ¿ - r < / < « s 6 i 4 r + í (F)

Therefore,
\F\ i

E ^)-<EE E E A^)-
çgBf (r) J=l '=«*-r ,6yi;+'(F) «eE?(r)

Assume MCj+r+¡ # 0. By definition, J2eçE?(r) Aub(e), s G Ar-+l(F) is upper bounded by

A(j + r + l,j,i,r). In the case M C i + r + / = 0, ^ + ' (F) = 0, A(j + r + / , j , i,r) = 0 and we

112 5 Availability Bounds of Repairable Systems using FD

can write £ a 6 i 4 r+i (F) £eeE?(r) Aub = 0 < J2seA
r+'(F) A(J + r + lJ,¿»r) = °- T h e n

\F\ i

Y Kb(e)<J2J2 Y A(i + r + /,i,i,r)
eeEF(r) ¿=1 l=d-r a €Ar+'(F)

= E E |Af'(F)|A(j + r+ /,;,*>) = £ £|Af'(F)|A(j + r + /,j,i,r).
j = l l-=d—r l—d—r j—1

But the collection {s : s Ç /l^ (F), 1 < j < \F\} is a Sperner collection on F and, since

thesubbagssG Aj+ ' (F) have cardinality j , using Lemma 5.4,

Y Aub(e)< ¿ max (| F |) A (j + r + / , j , ¿ , r) . n

We are now in position to derive the new bounds F"r(k, d). Let x € Uk,d, (k, d) Ç.1Z

and let (k, d, ¿, r) € 7£', r < min{d, N - k — i}. Failure transitions from x associated with

failure bags e € Ei(r) lead to states with failure distance minmeMC I'm — F(x) — e\ <

minmeMC \fn — e\ < r. The failure transitions associated with failure bags in E¡ — E{(r)

that lead to states with failure distance < r are those associated with failure bags in

E{ (r). Then, we have

K,ur
dl=0uk+i¡d, < Y Aub(e)+] T Aub(c),

e€Ei(r) e£E?{x\r)

and since |F(a:)| = k, using Theorem 5.6,

A^.ud'=o^+.,d' - Y A u b(e) + Y ima<x
fc (j) AÜ + r + ' ' •?' *» r) = ^ ' r i*» d) •

ee£.(r) /=á- r ~ J - U / (5 . 4 0)

It is immediate to see that F¡r(k,d) and F[[r{k,d), (k,d,i,r) € W are (5.32), (5.40)

decreasing on d and, thereby, Fi<r(k,d) — mm{F{r(k,d),F"r(k,d)}, (k,d,i,r) £ TZ' are

decreasing on d. Also, for (k,d,i,d) G 7S', we have (5.31) Fitd(k,d) = £ e € £ . Aub(e),

independent on d and, therefore, Fi¿(k, d), (k,d,i,d) € 72' are (non-strictly) decreasing

on d. Then, the new bounds Fi¡r(k,d) satisfy the conditions required by Theorem 5.3.

Computation of A(c, n, i, r) using (5.39) may introduce an unaffordable overhead

especially when the number of minimal cuts is large. First, all subbags of cardinality n

of each minimal cut must be generated and, for each such subbag b and for each e G E{ —

Ei(r) T¿ 0, all minimal cuts have to be visited to know whether m'mmiçMC \m'-b-e\ < r.

Note that if we regard minmiç\fc \m' — b\ as the failure distance from a state s with

5.2 Improved Failure Rate Bounding Structures 113

F(s) = b, then minmi€Mc \mr — b — e\ can be viewed as the failure distance from a state s'

reached from s in a single transition associated with failure bag e. Therefore, computation

of minm'ejvfc \m' — b — e| can be done efficiently using the algorithms compute„d() and

compute-alLad() reviewed in Section 2.2. Besides the previous comment, the main idea

to improve the efficiency of the expensive trivial procedure to compute A(c, n, i, r) is the

observation that, typically, many minimal cuts will share the same subbag, especially

when |ò| is small, and that computation of minm<ejv/<7 \m' — b — e\ < r should not be

repeated. Recall from Section 2.2 that the control parameter R of algorithm compute„d()

stands for the maximum cardinality of selectors (bags included in some minimal cut) that

are stored. Then, we proceed as follows. Let R\ maxm£MC \m\ > R' > R- First, we

generate and store all distinct subbags of cardinality up to R' included in some minimal

cut. Let B be the set of such subbags. For each b 6 B, we also generate and store the list,

/ (6), of distinct cardinalities of minimal cuts including b. We initialize all A(c, n, i, r) to 0.

Then, for each b G B, we compute S(b) = mmm>€MC lTO' ~ b\ invoking computed (b, S (b)),

compute Vb{e) = minm /eMc|w' — b — e\, e £ E invoking compute-alLad(5(b),b,i>b{e)),

and for each c 6 1(b), set (5.39) A(c, |6|, i, r) = max{A(c, |6|, i, r),J2eçA ^ub(e)}i A = {e e

E{ — Ei(r) : v\¡(e) < r}. The remaining updates associated with subbags b ^ 1Z are

done generating and processing for each m £ MC all subbags b £ m, \b\ > R'. Subbags

b € B with |6| > R are freed once the coefficients A(c, n, i, r) are computed (compute.d()

requires the knowledge of all subbags b, \b\ < R). Selection of an appropriate value for

R' involves a tradeoff between memory consumption and CPU time. As R' gets higher,

the algorithm to compute the A(c, n,i,r) coefficients becomes faster but the memory

requirements increase. Memory requirements are only significant when \MC\ is large.

We will illustrate the tradeoff using an example with 87,031 minimal cuts.

We finish this section by showing how to reduce the effort required to compute the

set of bounds F{ir(k, d), r < min{ci, N - k - i} once F¡r(k, d) and A(c, n, i, r) have been

computed. To that end, we need the following result.

Proposition 5.3 The set of bounds F"r(k,d), r < min{d,N - k - i), (k,d,i,d) € TV, .

are increasing on k.

Proof Let (fc, d, i, r'), (k + 1, d, i, r') € 11', r' < min{d, N - (k + 1) - i). Then, using

114 5 Availability Bounds of Repairable Systems using FD

(5.40) and noting that r' < min{d, N — k — i},

£. , (+ l,rf) = Y] Aub(e)+ ¿ max/max fÄ + 1) A (i + r ' + / , i ,z , r ') ,

A(k+l + r' + l,k + l,i,r')}

= J2 Aub(e)+ Y] max{ max -—— : (.)A{j + r ' + l,j,i,r'),

A(k+l + r' + l,k + l,i,r')j

> ^2 Aub(e)+ ^2 maxj max I .jA(j + r' + lJ,i,r%

A(k+l + r' + l,k + l,i,r')}

> £ A"b(e)+ ¿ max : (k)A(j+ r'+ l,j,i,r') = F¡'y(k,d) .Q
eeE,(r>) l=d-r> - ' - U /

Let k > maxee£Imp(e) and assume F-'r(k,d) > F!r(k,d) for all (tí,¿, r). It is

immediate to see (5.32) that F¡r(k,d) = F{r(k',d), k' > k. Then, for k' > k we have,

using Proposition 5.3,

£ (' , ci) > F¡'¡r(k, d) > F¡,(k, d) = Fitr(k', d).

Therefore, for k' > k we can stop computing F"r(k', d) and set i%)f.(A:', eQ = F{r(k', d).

5.3 State Space Exploration Algorithm

In the method proposed in this chapter the subset G is enlarged incrementally until the

relative unavailability band, rb = ([UA]^ - \UA\\b)/[UA]\\„ is smaller than or equal to

the desired one, rò r, using the state space exploration algorithm CONT-TG-W proposed

in [20]. In this section we review that algorithm.

The algorithm uses approximate estimates for the unavailability band, [(Z4]ub —

[(7i4]ib, and performs the expansions by waves. A wave includes a set of consecutive addi­

tions of states into G without computing (r(s, Yo))seG- Let G* and r* = (r(s, YG»))3qG'

5.3 State Space Exploration Algorithm 115

Compute T(k), 1 < k < N, and C(k, d), (k, d) £ TZ using the methods described
in [22], Section 5.1, (5.18), and the algorithm of Figure 5.2;
G = {o}, T = 0, T(O,YG) = 1/A0, TG = T(O,YG), CG = 0;

G* = G, T* = (T(S,YG))S€G, T G . = TG, CG. = CG\

Compute rb=([UA]uh-[UA]ih)/[UA]ih using (5.5), (5.6), (5.16), (5.17), (5.1),
and (5.2);
while (rò > rbr) {

Compute bc using (5.41);
bt — max{ßß X bc, (rbr/rb) X bc};
while (bc > bt) {

Select the tuple (s,k,d), s G G* with largest r(s, YG*)ßs{k,d);
bc = bc- r(s,YG*)ßs(k,d);
Let S(s) be the set of states in Uk,d reached from s in a single transition;
for (each s ' e S (s)) {

Add to T all transitions from s' to G;

Add to T all transitions from s" G G to s' updating bc if necessary;

G = GU{s '} ;

}
}
Compute (r(s,YG))seG;
Compute CG and TG using (5.4) and (5.3);
Compute rb = ([UA]uh - [UA]ib)/[UA]lb using (5.5), (5.6), (5.16), (5.17), (5.1),
and (5.2);
G* = G, T* = (T(S, FG)) s 6 G , TG. = TG, CG- = CG-

Figure 5.3: Algorithm CONT.TG.W.

116 5 Availability Bounds of Repairable Systems using FD

be, respectively, the subset G and the corresponding mean times to absorption vector at

the end of the last wave. The unavailability band is approximated in terms of a sum,

bc, of contributions associated with transition groups (s,k,d), s € G*, {k,d) € TZ. Each

transition group accounts for the transitions from state s to states s' £ G with k failed

components and failure distance d:

K= Y, r{s,YG*)ßs{k,d), (5.41)
s€Gm

(k,d)en

with

ßs(k, d) = As>l/M fe T(k) + Ta'~ CG' C(k, d)\ . (5.42)
L J G ' 1G- J

Initially, G = G* = {o}, r* = [1/Aj, TG* = 1/A0 and CG* = 0. The next wave starts

by choosing the tuple (s,k,d), s € G* with largest T(S, YG*)ßs(k,d). Next, we add into

G the states in Uk,d reached from s in a single transition and update Xs,Uk d, $ € G and

bc accordingly. This procedure continues until bc becomes small enough. In that point,

we set G* = G, compute r*, TQ* and CG* and, if the new relative unavailability band

is still larger than the desired one, continue with a new wave. We give in Figure 5.3

a description of the algorithm. The description is done in terms of the subset T of

transitions included in the generated portion of X as well as the equations derived so

far. The control parameter BR, 0 < BR < 1 allows to tradeoff the number of times

(T(s,YG))seG is computed against how accurately the state space is explored (the larger

BR, the more accurate but the more costly the exploration). After performing some

experiments we have chosen BR = 0.1.

5.4 Analysis and Comparison

In this section we analyze the performance of the bounding method using two examples

and compare it with that of the bounding methods described in [22] and [70]. For the

method proposed in [22] we use the state space exploration algorithm CONT-TG-W.

The lower bound in the method described in [70] is the same as the one proposed in this

chapter and the upper bound is

CG + [Tc/]ub
[UA]'ub =

TG + [Tu]ub '

The state space exploration algorithm we use with that method is analogous to the

algorithm CONT.TG.W. The unavailability band, 6' = [UA]'üh-[UA}\h, is approximated

5.4 Analysis and Comparison 117

Dl.1,1 D l , l , 2 Dl.1,3 Dl , l ,4 D l i 2 | l D l , 2 2 Dl,2,3 Dl,2,4 Dl ,3 , l Dl,3,2 Dl,3,3 D l , 3 , 4 Dl ,4 , l D),4,2 Dl,4,3 Dl,4,4

Figure 5.4: Block diagram of the fault-tolerant database example.

as a sum, b'c, of contributions associated with transition groups (s, k), s 6 G*, 1 < k < N.

Each transition group accounts for the transitions from s to states $' £ G with k failed

components:

K= E T*(s,YG.)ls(k),
sec*

Kk<N

with

T(k)
7s{k) = Xs,uk T m •

Within a wave we choose the pairs (s, k), s 6 G* with largest r*(s,YG')js{k), and add

to G all states in Uk reached from s in a single transition.

The results have been obtained using a 128 MB UltraSparc 1 workstation. For both

examples the control parameter R to compute failure distances has been set to 2 and the

total memory consumption has been limited to 100 MB.

The first example is the fault-tolerant database system whose block diagram is

sketched in Figure 5.4. The system includes two front-ends FE and five processing clus- •

ters. Processing cluster PC,-, 1 < i < 5 consists of two processing units P,-, four controller

sets C, j , j < 4 with two controllers per set and sixteen disk clusters D;^*, 1 < k < 4

with four disks per cluster. Each controller set controls four disk clusters. The system

has 372 components. The system is operational if at least one front-end is unfailed and

all processing clusters are operational. A processing cluster is operational if at least one

118 5 Availability Bounds of Repairable Systems using P D

0.1

| 0.01

I
1

0.001
0 30000 60000 90000

states

Figure 5.5: Relative unavailability band for the fault-tolerant database example as a

function of the size of the generated subset.

processing unit is operational, at least one controller of each set is unfailed, and at least

three disks of each cluster are unfailed. Front-ends fail with rate l/20,000h""1. Processing

units P, fail with rate 1/40,000 + 5 x 10_6(¿ - 1) h - 1 . Controllers of set Qj fail with

rate 1/100,000 + 2 x 10_6(¿ - 1) + 5 x 10^7(j - 1) h - 1 . Finally, disks of cluster D,-,^

fail with rate 1/200,000 + 2 x 10~6(¿ - 1) + 2.5 x 10"7(; - 1) + 6.25 x 10-8{k - 1) h"1 .

When both front-ends are unfailed, the failure of one of them is propagated to the other

with probability 0.01. Similarly, when both processing units of a processing cluster are

operational, failure of a processing unit is propagated to the other unfailed processing

unit with probability 0.02. Components continue to fail when the system has failed.

Repair rates are 1/8 h - 1 for front-ends and processing units and 1/12 h - 1 for controllers

and disks. There is a single repair person who gives priority first to front-ends, next

to processing units, next to controllers, and next to disks. Failed components with the

same priority are taken at random for repair. For this example L = 2 and the structure

function has 106 minimal cuts, all of cardinality 2.

In Figure 5.5 we give the relative unavailability band as a function of the number

of states in the generated subset G. It can be seen that the bounding method developed

in this chapter outperforms significantly the methods described in [70] and [22]. Thus,

the number of states required by the method described in [70] to achieve a given relative

unavailability band ranges from 83 to 92 times the number of states required by the

5.4 Analysis and Comparison 119

0.001

[22] -
[70] - a -

20 40 60 80 100
MB

Figure 5.6: Relative unavailability band for the fault-tolerant database example as a

function of the memory consumption in MB.

proposed bounding method. Regarding the bounding method described in [22], the

proposed method requires a number of states between 2.6 and 13.7 times smaller.

Since the memory requirements for the same number of generated states of the

three methods are different, we also compare them in terms of memory consumption.

The comparison is done in Figure 5.6. Again, the proposed method is far better than

the methods described in [70] and [22]. The amount of memory required by the method

described in [70] to achieve a given relative unavailability band ranges from 35 to 37 times

the amount of memory required by the proposed method. Note that the improvement in

terms of memory consumption is smaller than it was in terms of size of G. This can be

explained as follows. The proposed method has to hold, for each state in the frontier of

G, lists of contributions to the unavailability band associated with the parameters k and

d, while the lists of contributions that have to be held in the method described in [70]

are associated only with the parameter k. With regard to the method described in [22],

the improvement factor in terms of memory consumption is of the same order as it was

in terms of size of the generated subset, ranging from 2.3 to 11.

According to Theorem 5.4, the improvement that the bounding method described

in this chapter may achieve in relation to the one proposed in [22] is due to the reduction

in the Fi¡r(k,d) bounds and, consequently, in the C(k,d) bounds. It is difficult to predict

120 5 Availability Bounds of Repairable Systems using FD

Table 5.1: First values of the bounds C(k,d) for the fault-tolerant database example.

k d

1 2

1 1

2 2

2 1

2 0

C(k,d)

proposed [22]

7.382 x IÓ - 3 9.418 x 10~2

2.299 x 10 - 2 0.6174

2.413 x 10~2 0.2812

0.1005 1.881

13.23 13.23

up to which extend the new bounds Fitr(k,d) will be smaller than the ones given by

(5.32), since the reduction depends on the structure of the minimal cuts of the system.

Apart from the Fiir(k,d) bounds being smaller, the proposed method requires the down

states in the frontier of G to be sparse for the method to be significantly better than

the one described in [22]. This is so because although not mentioned in Section 5.3, the

bounds C(k, 0) are the same for both methods and, therefore (5.16), the upper bound

[Ci/]ub will be appreciably reduced only if the outgoing transitions of G to down states

(states with d = 0) are relatively rare. In Table 5.1 we show the first values of the

bounds C(k,d) obtained with the proposed method and the method described in [22].

The bounds C(k, 0) are the same but the bounds C(k, d), d > 0 are significantly smaller.

Since in this example most of the exits from G are made through states with non-zero

failure distance, the bounds [Ct/]ub and (5.2) [fL4]ub obtained with the proposed method

are, for a given subset G, appreciably smaller than the corresponding bounds obtained

with the method described in [22].

The second example, whose architecture is depicted in Figure 5.7, includes five pro­

cessing clusters that communicate through two independent double-ring networks A and

B. Processing cluster ¿, 0 < i < 4, includes three identical processing units PU,-. Net­

work A consists often nodes NA,-, 0 < i < 9, and direct (clockwise) and reverse (counter­

clockwise) links, DA,- and RA,-, respectively, linking nodes NA,- and NA,-+imodio- Network

B has the same structure as network A and its direct and reverse links are called, re­

spectively, DB,- and RB,. The system has 78 components. The system is operational if

each processing cluster has at least an unfailed processing unit and all processing clusters

can communicate using one of the networks. The operational configuration of the system

includes two processing units for the processing clusters with two or three unfailed pro-

5.4 Analysis and Comparison 121

Figure 5.7: Block diagram of the second example.

cessing units, one processing unit for the processing clusters with one unfailed processing

unit, and the components of either network .4 or B, with priority given to network A,

required to build one of the operational configurations of the networks described next.

The network configuration that is tried first is a direct ring including all nodes and direct

links. The second configuration that is tried is a reverse ring including all nodes and

reverse rings. The third configuration is used when parallel direct and inverse link i fail

and it includes all nodes and links except links between nodes i and i + 1 mod 10. The

last configuration is used when node i fails and it includes all nodes except node i and all

links except those between node i and nodes i ± 1 mod 10. A fault in a processing unit

of a cluster contaminates another unfailed unit in the same cluster with probability 0.05.

The components included in the operational configuration of the system are called ac- •

tive. Active processing units, active nodes and active links fail with rates 4.6 X 10 - 4 h - 1 ,

2.3 x 10~4 h - 1 and 1.1 x 10 - 4 h _ 1 . Inactive components fail with the same rates multi­

plied by a dormancy factor of 0.2. We assume that there is a single repair person who

takes for repair failed components at random. Repair rates for processing units, nodes

and links are, respectively, 0.5 h _ 1 , 0.7 h - 1 and 1.0 h - 1 . Components continue to fail

122 5 Availability Bounds of Repairable Systems using FD

Table 5.2: Memory overhead in MB due to storing all distinct subbags of cardinality > R

and < R' included in some minimal cut and CPU time in seconds required to compute

the A(c, n, i, r) coefficients for the second example as a function of R' .

R'

overhead (MB)

CPU time (s)

2

0

3,611

3

3.0

1,906

4

10

1,216

5

11

1,197

6

11

1,197

when the system has failed. For this example L = 3 and the structure function has 87,031

minimal cuts, 6 of cardinality 3, 75,625 of cardinality 4, 11,000 of cardinality 5, and 400

of cardinality 6.

In this example the number of minimal cuts, and, therefore, the number of subbags

that would have to be processed to compute the A(c, n, ¿, r) coefficients using the trivial

procedure is quite large. We start by illustrating the tradeoff involved by the selection

of an appropriate value for R'. In Table 5.2 we show, for R' = 2, 3, 4, 5 and 6 the

memory overhead in MB due to storing all distinct subbags of cardinality > R and < R'

included in some minimal cut, and the CPU time in seconds required to compute the

A(c, n, i, r) coefficients. Note that, as it was anticipated in Section 5.2, the larger R' the

more faster and memory consuming the computation of the coefficients. Note also that

beyond R' = 4 no significant improvement is achieved. This is mainly due to the fact

that subbags with small cardinalities tend to be shared by several minimal cuts much

more often than subbags with larger cardinalities do. Thus, for instance, among the

420,506 subbags of cardinality 3, only 18,946 are really distinct, while 12,600 subbags of

cardinality 5 out of 13,400 are distinct.

In Figure 5.8 we give the relative unavailability band as a function of the number of

states in the generated subset G. The results have been obtained with R' — 6. For this

example, the reduction in the size of G achieved by the proposed method with regard to

the method described in [70] is still appreciable. However, that reduction is more modest

when the proposed method is compared with the method described in [22]. We have

analyzed the bounds F{r(k,d) and F-'r(k,d) and found that because of the particular

structure of the minimal cuts of the example, the bounds F"r(k,d) are not much smaller

than the bounds F{r(k,d) and, consequently, the reduction in the C(k,d) bounds is

more modest than it was for the previous example. The relative unavailability band as

a function of the memory consumption in MB is given in Figure 5.9. Note, again, that

the method described in this chapter and the one proposed in [22] compare the same in

5.4 Analysis and Comparison 123

0.1

C

XS

X>

.2
>
C
3
«

1>
0.01

^ , ^ !
I E3-.
ft "a...
Vi- "Q-

' E. '"B-

f\
9 +
\ \
\ \. proposed -©—
> -H [22] --t--
\ \ + [70] •B--

% *

**v + \

1 — _ ^ s i * i

1

"B . . .
u

-
•

i

30000 60000 90000
states

Figure 5.8: Relative unavailability band for the second example as a function of the size

of the generated subset.

0.1

-a c
X)

Xi

'3 >
c
3
<D

>̂
"jU

0.01 -

20

,

'
'

•

'

- proposed -©—
[22] - + -
[70] - B -

,

—-c¡-, B - 1 , , TV t i ­l l "B-9+ -s..
U -Q.

<

h Q
B.. . ""B..

% Q •

> *
V

4* V
\ +
A t
\ +
> -t;
\ ^
>, X
% \

<& He

<& '-K.

^ \ " ^ " - - - - . .
^^^~ -_ " ~+

" - " - - - n '

40 60 80 100
MB

Figure 5.9: Relative unavailability band for the second example as a function of the

memory consumption in MB.

124 5 Availability Bounds of Repairable Systems using FD

terms of memory consumption as they did in terms of size of the generated subset, while

the improvement in terms of memory consumption achieved by the proposed method

with respect to the one of [70] is appreciably smaller than it was in terms of size of

G, especially for medium and large values of the relative unavailability band. For this

example the reduction in the improvement is due not only to the different size of the

lists of contributions both methods have to bookkeep for each state in the frontier of G,

but also to the amount of memory required to store the set of minimal cuts and related

structures for the computation of the failure distances. For this example, \MC\ = 87,031

and its storage takes about 35 MB.

5.5 Conclusions

In this chapter we have developed a bounding method for the steady-state unavailability

that exploits the failure distance concept and requires the knowledge of the minimal cuts

of the system. From a memory consumption point of view, the method seems to be better

than the method described in [70], which is not based on the failure distance concept.

The proposed method may also outperform significantly a previous method [22] based

on the failure distance concept. It is difficult, however, to predict the improvement in

advance since it depends on the sparseness of the down states in the frontier of G and

the structure of the minimal cuts of the fault tree of the system. The method suffers

from a memory overhead due to holding the minimal cuts and subbags required for the

computation of failure distances and A(c, n, i, r) coefficients, which, as it has been shown

by means of the second example analyzed in this chapter, can be significant if the number

of minimal cuts is large. At this point one might ask whether it would not be possible

to devise another bounding method for the steady-state unavailability based on lower

bounds for failure distances, similarly as we did for the first method presented in this

dissertation. The next chapter is devoted to give an affirmative answer to that question.

Chapter 6

Availability Bounds of Repairable

Systems using FD Bounds

In this chapter we will develop a method to compute bounds for the steady-state un­

availability, UA, based on the lower bounds for failure distances developed in Section 4.2.

The motivation is similar to the one that brought us to develop the method to compute

bounds for the unreliability described in Chapter 4: we want to have a bounding method

that does not rely on solving a hard problem (the determination of the minimal cuts)

and, secondly, it is desirable to be able to bound UA without incurring the memory

overhead due to storing minimal cuts and related structures, especially when the number

of minimal cuts is large. The first section of this chapter will be devoted to describe

the method and prove its correctness. Next, we will derive suitable failure rate bound­

ing structures based on lower bounds for failure distances. Finally, we will analyze the

method by means of several examples and compare it with the method described in the

previous chapter and the methods described in [22, 70].

6.1 Bounding Method

Let X = {X(t); t > 0} be the finite CTMC modeling the system and let fi be its state •

space. The method computes bounds for UA using detailed knowledge of X in the

generated subset, G, and bounding the behavior of X in U = Í2 - G. The method uses

the state cloning technique proposed in [70]. The technique consists in modifying X by

adding to U clones of the states in G with more than F failed components, accounting

for the visits to the corresponding states of G after X exits G and before the number of

126 6 Availability Bounds of Repairable Systems u s i n g J D Bounds

Figure 6.1: State transition diagram of the CTMC X after applying the state cloning

technique with F = 0.

failed components has fallen below F + 1. Note that the application of the state cloning

technique does not modify the steady-state unavailability UA. We apply the technique

with F = 0 in order to ease state space exploration. The modified X has the structure

depicted in Figure 6.1, where Uk includes all states in U with exactly k failed components

and N' < N, being N the number of components of the system. In the following, X will

denote the modified X.

The notation we will use throughout this chapter is essentially the same we used in

Chapter 5. Thus, we will denote by XStS>, s,s' € Í2, the transition rate from state s to

state s', by A„ = Yïs'çnK,*', s € O, the output rate of s, and by XStc = £<'<=<? ^5,s'>
aïs'

s 6 f i , C c f i , the transition rate from s to the subset of states C, all referred to X unless

otherwise stated. We will also consider several transient CTMC Y. Each such Y has state

space B U {a}, where all states in B are transient and a is an absorbing state, and has

defined initial probability distribution with P[Y(0) G B] = 1. T(S,Y),S £ B, will denote

the mean time spent by y in 5 before absorption, and r(C,Y) = £ i e c r (s > ^) > C C B,

will denote the mean time to absorption in subset C. Finally, recall that r(s,Y)Xs<s> is

the expected number of times that a transition from s to s', s 6 B, s' Ç B U {a}, is

followed.

Consider the regenerative behavior of X, taking as regeneration points the times at

which X enters o from U. Let TG and Tv be the contributions of G and U to the mean

time between regenerations of X, and let CG and Cv be the respective contributions to

the mean down time. From regeneration process theory (see, for instance [31]), we have:

UA=CG + CU

TG + TU

upper bounds [2V]ub and [Q/]u b for, respectively, Tv and Cv are known.

6.1 Bounding Method 127

Then [22, Theorem 2]

[UA]lb= °? , • (6.1)
-LG + L-tt/Jub

r r n l _CG + [Cu]ub ip.0s
[UA\uh = , (6.2)

-ÍG + [C[/Jub
are, respectively, a lower and an upper bound for UA.

The quantities TQ and CG are computed as in Section 5.1 from the transient CTMC

YG as

TG = 5>(S ,Y G) , (6.3)
seG

CG= Y, T(s,yG), (6.4)
seGnü

where D is the subset of down states of X.

In the following, we will denote by FC and RC the set of distinct cardinalities of,

respectively, failure and repair bags of the system, and by E{ the set of failure bags with

cardinality i.

The bound [2V]ub and, therefore , the lower bound [£Ot]ib are the same as those

of the method developed in Chapter 5. Since the transient CTMC YUk introduced in

Section 5.1 to compute [ÍL4]ib will be referred to later on in this section, let us recall

its definition. The chain has state space {ui,..., u¡y} U {a}, initial state Uk and state

transition diagram like the one shown in Figure 5.1, b: there is a transition with rate

g(l) from uy to a, a transition with rate g(k), 2 < k < N from Uk to Uk-i, and, for each

i G FC, i < N - k, a transition with rate /,• = 2 e e £ ^ub(e) from Uk to Ufc+¿.

The upper bound [C[/]Ub is based on the lower bounds for failure distances derived

in Section 4.2. Let s G Çî and let d(s) be a lower bound for the failure distance from s,

d(s). Since theorems 4.2 and 4.4 we have:

0 < d{s) < d{s), (6.5)

d{s) = 0 if and only if s G D, (6.6)

d(s) - \F(s') - F{s)\ < d{s') < d(s), F{s)cF(s'). (6.7)

Let s' G ÍÍ be a state reached from s in a single-step transition associated with failure

bag e G E and let s" G O, be a state reached from s in a repair transition involving i

components. Then, (6.7) implies

d(s) - \e\ < d{s') < d{s), (6.8)

128 6 Availability Bounds of Repairable Systems using F D Bounds

and

d{s) < d(s") < d{s) + i. (6.9)

Let Uk,d be the subset of U including all states s with k failed components and

d(s) = d, and let L — d(o). The set TÍ of (k, d) pairs for which Uk,d might be ^ 0 is given

by the constraints

l<k<N,

max{0, L - k} < d < min{Z, N - k) .

The constraints on k are obvious. The constraints L — k < d and d < L follow from (6.7)

and the definition of L; 0 < d follows from (6.5). Finally, d < N - k follows from (6.7)

and the fact that the structure function of the system is coherent by taking s' the state

with all components failed and noting that d(s') < d(s') = 0 and, therefore, d(s') = 0.

Let Yy, s € U be the transient CTMC with state space Us U {a}, (Is including the

states reachable from s before exit from U, and initial state s, built from X by directing

to a the transitions from states in U to o. Let Cy be the mean down time to absorption

of Yy. Recalling that J2s'eGT(s''^G)^s',s; s £ U, is the probability that X enters U

through s, we have

cu = £ J2r(s'>yo)A.»,.c&=E E E r(s''y«)x°'<°cu•
s'eGset/ s'^G(k4)&ñseüKd (6.10)

Let C(k,d) be upper bounds for Cy, s G Uk,d, and

ÏM = Er(a'yG)A . .oM- (6-U)

Let

[Ct/]ub= £ ñk,dC(k,d). (6.12)

We have the following result.

Theorem 6.1 Assume C{¡ < C{k,d), s £ Uk,d, Then, Cu < [Cu]ub-

6.1 Bounding Method 129

Proof Using (6.10), the fact that Cfj < C{k,d), s G Ûk4, (6.11), and (6.12):

Cu=J2 Y, T, r(s',YG)Xsl,sC
s
u<Y^ E E T(s',YG)\s,,sC(k,d)

s'eG (k,d)eñ seük¡d ^'GG (k,d)eñ seükid

= E E T(s>,YG)\slAdc(k,d)= E E ^ ^ - Ä ^ M)
«'eG(fc,ti)eÄ (k,d)eñs'eG

= E ^ M ^ . d) = [C[/]ub.n
(k,d)£Ü

Let L be the exact failure distance from state o, i.e. L = d(o), and let

N

C(fc) = E r(«¿. I™')- (6.13)
¿=L

Theorem 6.2 C£ < C(fc), s G £4-

Proof Since (6.5), Z < L. Using that [22, Theorem 6] Cfj < Yl^=LT(uùYUk) a n d

(6.13):

JV N

cb < Er(u«-yUfc) ^ ET(U i 'y t t f c) = Ô(*)-D
i = L t=L

The bounds C(&, d) are computed using an iterative procedure that starts with

C(k,d) = C(k) and improves the bounds using potentially better bounds C'(k,d) until

no significant improvement is achieved.

Let s G Uk,d and consider a transition from s to s' G U associated with failure bag

e G Ei, i G FC. Clearly, s' G Uk+i,d> for suitable <¿' values. Imposing (k + i, d') G TZ yields

i < iV - Jfc and d' < min{Z, N -k-i}. Moreover (6.5), (6.8), max{0, d - i} < d' < d.

Therefore, the only feasible destination subsets Uk+i,d' , i G FC, are those satisfying

i < N - k and (recall that d < L) max{0,d - i) < d' < min{d, JV - k - i}. Let

ñ'= {(k,d,i,d')\ (k,d) eÜ,ie FC, max{0,d-¿} < d' < min{<¿, N-k-i}}. Assume

that upper bounds Fiir(k,d), (k,d,i,r) G TZ' for Y?d'=o^sü • »' s ^ ^fc-d' a r e available

and let

~ \Fi}d-j(k,d)-Fi4-j-1{k,d), Jm(k,d,i) < j < JM{d,i)
fi,j(k,d)= i

[Fitd-j{k,d), j = Jni{d,i), ^6<14^

130 6 Availability Bounds of Repairable Systems using FD Bounds

where Jm(k,d,i) = max{0,ft + d + i - N} and JM(d, i) = min{z, d}. The upper bounds

C'(k, d) are computed using

C'(k,d) = ^ + Ik>1[ld>z_kC(k-l,d) + Id^L_kC(k-l,d+l)

JM(d,i) ^ ^

+ ¡?ü J2 J2 / ¿ ¿ (M ^ + ̂ - J) , (6.15)
i<7v — k

where Ic is the indicator function returning 1 if c is true and 0 otherwise. The algorithm

to compute the C(k, d) bounds is exactly the same as the one given in Figure 5.2 replacing

L, TZ, C(k), C{k,d), and C'{k,d) by, respectively, L, % C{k), C{k,d), and C'{k,d).

Next, we prove C^ < C(k, d),s G Uk,d, (k, d) £TZ provided that Fi,r(k, d), (A;, e?, i, r) G

TZ', and Fti(fc, cQ, (k,d,i,d) G TZ' are decreasing on d. The proof consists of a sequence

of two lemmas, three propositions and a theorem.

We start with two technical results. The first one has been adapted from [22, Propo­

sition 2] and is included here for the sake of completeness. The second result is very

similar to Lemma 5.2.

Lemma 6.1 Assume that C(k,d), (k,d) G TZ, Fi¡r(k,d), (k,d,i,r) G TZ' and Fi¿{k,d),

(k, d, i, d) G TZ' are decreasing on d. Then,

JM(<Í,Í) _

Ä{k,d,i)= J ^ fitj(k,d)C{k + i,d-j), ¿G FC,i<N -k,
j=Jm(k,d,i)

is decreasing on d.

Proof Let (k,d), (k,d+ 1) G TZ. Using (6.14) and making the index change r = d — j ,

JM(d,i)-i

Ä{k, d, i) = J2 iFi,d-Ak> d) - Fij-j-í (k, d)]C{k + i,d- j)
j-Jm(k,d,i)

+ Fi4-JM(d,i){k, d)C{k + i,d- JM(d, i))

£ FiÀ.j(k,d)[C(k + i,d-j)-C(k + i,d-j + l)}
j=Jm(k,d,i) + l

+ Fi,d-Jm(k¿,i){k,d)C(k + i,d- Jm(k,d, i))

d-Jm(k,d,i)-l __

£ Fi,r (k, d) [C(k + i, r) - C(k + t, r + 1)]
r=d-JM(d,i)

+ FiÀ-Jm(k,d,i)(k> dÏC{k + i,d- Jm{k, d, i)).

6.1 Bounding Method 131

Similarly, for A(k,d + l , i) ,

d—Jm(k,d+l,i)

A(k,d+l,i) = ¿ Fiir(k,d+l)[C{k + i,r)-C{k + i,r + l)]
r=d+l-JM(d+l,i)

+ Fi4+i-Jm(k,d+i,i){k>d+ l)C{k + i,d+ \-jm(k,d+ 1,0)

Therefore,

A(fc, d, i) - A(k,d+ 1, z) =

d—Jm(k,d,i)—1

J] [Fi,r{k, d) - Fi<r{k, d + 1)]]c{k + i, r) - C(fe + ¿, r + 1)
r=d+l-JM(d+l,i)

d-JM(d+l,i) ^

+ J2 Fiir{k,d)[c{k + i,r)-C{k + i,r+l)
r=d—JM(d,i)

+ Fi,d-Jm(k,d,i)(k, d)C{k + ^d~ Jm{k, d, i))
d-Jm(k,d+l,i)

Y^ Fitr(k,d+l)\c{k + i,r)-C{k + i,r+l)
r=d—Jm(k,d,i)

- Fi,d+i-Jm(k,d+U)(k,d+ l)C{k + i,d+l - Jm(k,d+l,i)).

The assumed monotonie properties for Fi¡r(k,d) and C(k,d) ensure that the first two

terms above are non-negative. Let B(d,d,i) be the sum of the remaining three terms.

Note that, trivially,

d — Jm(k,d,i) = <
N - k - i iïk + d + i>N-l

d otherwise

and

d- Jm(k,d+ l , i) = i
N-k-i-1 iîk + d+i>N-l

d otherwise

Then, if k + d + i > N - 1,

B(k, d, i) = FitN-k-i(k, d)C(k + i,N-k- i) - FitN-k-i{k,d + l)C{k + i,N-k-i)

= [FitN-k-i(k, d) - FitN-k-i{k, d + 1)] C{k + i,N-k-i)>0,

and, if k + d + i < N - 1,

B(k, d, i) = Fi<d{k, d)C(k + i, d) - Fi4{k, d+l) [C(k + i, d) - C(k + i,d+ 1)

-Fi4+i(k,d+l)C(k + i,d+l)

= Fi,d(k,d)-Fi,d(k,d+l)j [c{k + i,d) - C(k + i,d+l)

+ ¡Fi<d(k, d)-Fi}d+1{k, d+l)]c{k + i, d+1)>0.Q

132 6 Availability Bounds of Repairable Systems using FD Bounds

Lemma 6.2 The bounds C(k), 1 < k < N defined by (6.13) are increasing on k.

Proof The proof is exactly as the one of Lemma 5.2 replacing L and C(k) by L and

C(k) respectively.

Proposition 6.1 Let (k,d) G It. Assume Cfj < C(k,d), s G Uk,d, and that C(k,d) are

increasing on k and decreasing on d. Then, Cy < C'(k,d), s G Uk,d-

Proof Let s G Uk,d- Since (6.6), C{¡ is equal to the mean time in s, if d = 0, plus the

mean down time from the next visited state m, if m G U. Let us analyze the subsets

Uk',d> to which m may belong. From (6.9), a repair transition involving i, i G RC, i < k

components can only lead to states in £7fc_ti<¿', k > i (if k = i the reached state would be

o £ U), d < d' < d+i. Making the change d' = d+j and imposing (k — i, d+j) G 1Z yields

max{0, L — k + i — d} < j < min{¿ — d, i}. Consider now the states that can be reached

from s following a transition associated with failure bag e G Ei, i G FC. From (6.8),

m G Uk+i,d-j, 0 < j < i. Imposing (k + i, d - j) G 11 we get Jm(k, d, i) < j < JM(¿, i).

Based on the previous discussion and denoting J'm(k, d, i) = max{0, L — k + i + d} and

J'M (d, i) = min L — d,i we have

CO = fx(d) + f2(k, d, Ï) + f3(k, d, i),

fl(d)=1-^,

•WO x

f2(k,d,i)= E E E x^fr.
i<k—1

f3(k,d,i)= E E E x 1 ^ '
iÇFC Í=Jm(k,d,i) mçÜk+i d -

i<N-k

From this point the proof continues exactly as the proof of Proposition 5.1 replacing

Ti(d), T2(k,d,i), T3(k,d,i), and Uk,d by, respectively, ?i(d), f2(k,d,i), f3(k,d,i), and

Uk,d, and using C(k,d), L, 11, Fi¡r(k,d), and fi¿(k,d) instead of C(k, d), L, 11, Fi>r(k,d),

and fi,j(k,d).[J

Proposition 6.2 Assume that C(k,d), (k,d) G 7£, F(k,d, i,r), (k,d, i,r) G 11', and

F(k,d, i,d), (k,d,i,d) G it', are decreasing on d. Then, the bounds C'(k,d), (k,d) G H,

are decreasing on d.

6.1 Bounding Method 133

Proof Let {k,d), (k,d+ 1) G Tl. Using (6.15),

C'(k,d)-C'(k,d+l) = Tl + T2 + £ r3(t)
¿e FC

i<N-k

with

rj, Id=Q — Id+\=0
-Í1 =

9(k)

h>

r3(0 =

h>i-k c(* - 1 , «0 + h<i-k c(k-i,d+i)

- h+^i-kW - M + 1) - id+1<z.kc(k -1,d+2)

Ä(k,d,i) - Ä(k,d + l,i)

where A(/:, d, i) is defined as in Lemma 6.1. We will show that T\, T2 and Tz{i) are all

> 0. Since (k,d) G Ü, d > 0 and d+ 1 > 0. Therefore, Ti = Id=o/g{k) > 0. Regarding

T2, three cases must be considered: a) k = 1, b) k > 1, d > ¿ — k, and c) fc > 1,

d < L - k. In case a, T2 = 0; in case b, T2 = C(k — l,d) — C(k — 1, d + 1) > 0 because

C(&', d'), (&', d') € 7¿, is assumed decreasing on d; in case c, d+1 > L — k because (k, d),

(k,d+ 1) G 7è, and, thereby, T2(t) = C(fc - l , d + 1) - C(fc - l , d + 1) = 0. Finally,

r3(t) > Oby Lemma 6.1.D

Proposition 6.3 Assume that C(k,d), (k,d) G TZ, F(k,d, i,r), (k,d, i,r) G TZ', and

F(k,d, i,d), (k,d,i,d) G 7£', are decreasing on d. Then, the bounds C(k,d), (k,d) G TI,

are increasing on k.

Proof Consider the algorithm which improves the bounds C(k, d) split into phases,

where each phase includes the operations performed within the fc-loop, and let C^m>(k, d),

m > 0 be the bounds C(k, d) available after phase m. The proof is by induction on m.

Let (k, d), (k — 1, d) G Tl. For m = 0, using Lemma 6.2,

C(0){k, d) = C(k) > C{k - 1) = C{0){k - 1, d) .

Assume that C^m)(k, d), 0 < m' < m, m > 0 are increasing on k and let fc' be the value

of k for which the bounds are updated in phase m+ 1. Let (&' — 1, d) G TI, which implies

fc' > 1 and d > max{0, L - k' + 1} > L - k'. We have (6.15)

i<N-k'

JM(d,i)

Ä{k',d,i) = J2 fiAk',d)C(mi)(k' + i,d-j), mi<m.
j=Jm(k',d,i)

134 6 Availability Bounds of Repairable Systems using FD Bounds

Using (6.14) and Proposition 6.2,

A(k',d,i) = Yl [hd-j(k',d)-FiÀ^1(k',d)}C^iHk' + hd-j)
j=Jm(k' ,d,i)

+ hd-JM(d,i)(k'' d)C^(k' + i,d- JM(d, ¿))
JM(<Í,Í)

J2 Fi4-j(k\d)[C^(k' + i,d-j)-C^(k' + i,d-j + l)]
j=jm(k',d,i)+i

+ FiA-Jm(k<,d,i){k',d)CÍmi\k' + i,d- Jm(k',d,i)) > 0.

Therefore, C'(k',d) > C^m\k' — l,d). Using the induction hypothesis, this implies

C{m+1){k',d) = mm{C'{k',d),C{m\k',d)} > C(m}{k' - l,d) . Q

Theorem 6.3 Assume that FitT.(k,d), (k,d,i,r) G Tí' and Fitd(k,d), (k,d,i,d) G Tí' are

decreasing on d. Then, C[¡ < C(k, d), s G Uk,d o,nd the bounds C{k, d) are decreasing on

d.

Proof Consider the algorithm that improves the bounds C(k, d) split into phases as in

the proof of Proposition 6.3. The proof is by induction on m. For m = 0, Theorem 6.2

ensures that C(°\k,d) = C(k), which are (non-strictly) decreasing on d, upper bound

Cy, s G Uk,d- Assume that C^m'^(k,d), 0 < m' < TO, TO > 0 upper bound Cfr, s G Uk,d

and are decreasing on d. Let k' be the value of k for which the bounds are updated in

phase m + 1. According to (6.15), C'(k',d) only depend on C^m'^(k,d), 0 < m' < TO,

k ^ k', which, by Proposition 6.3, are increasing on k. Propositions 6.1 and 6.2 guarantee,

respectively, that C'(k', d) upper bound C(j, s G Uk',¿ and are decreasing on d. Therefore,

C(m+1){k',d) = m\n{C'(k',d),C(m)(k',d)} upper bound Cfj, s G Uk>td and are decreasing

on d. Q

6.2 Failure R a t e Bounding S t r u c t u r e s

In this section we derive suitable upper bounds Fi<r(k,d), (k,d,i,r) G Tí' for Yld'-O

For r = min{d, N — k — i} we take the same upper bound as for the method derived

in Chapter 5:

Fi,mm{d,N-k-i}(k> d) = /,• .

6.3 Analysis 135

Let 77(e), e G E be the lower bound for the failure distance from a state whose bag of

failed components is e. Let s' G U be a state reached from s G Uk,d in a single-step

transition associated with failure bag e, i.e F(s') = F(s) + e. Note that from the bag of

failed components point of view, nothing prevents us from regarding s' as the result of

two single-step "transitions" : the first one, associated with e, from o to a dummy state

s" with F(s") = e, and the second transition, involving F(s) components, from s" to

s. Since d{s") = 77(e), we have (6.8) d(s') > 77(e) - \F(s)\ = 77(e) - k. Therefore, for

(k, d, i, r) G 72.', r < min{cí, N — k - i} we can write

r

FiAk,d)= £ Aub(e)> £ A S) ¿ W .
__ e£Et <¿'=max{0,<¿-t'}
r¡(e)<k+r

Since neither Fi¡r(k,d), (k,d,i,r) G 7Î' nor Fi¿(k,d), (k,d,i,d) G 72/ depend on d, they

are (non-strictly) decreasing on d and, thereby, fulfill the conditions imposed by Theo­

rem 6.3.

6.3 Analysis

In this section we analyze the performance of the bounding method described in this

chapter and compare it with the bounding method developed in Chapter 5 and the

methods described in [22] and [70]. In all cases the subset G is incrementally generated

until the relative unavailability band, ([£M]ub-[£^4]lb)/[£^4]lb, is smaller than or equal to

the desired one. For the first three methods we use the state space exploration algorithm

CONT-TG-W reviewed in Section 5.3. For the last method we use an analogous state

exploration algorithm with the modifications described in Section 5.4.

The analysis and comparison will be made using two examples. The architecture of

the first example is depicted in Figure 6.2. The system is exactly as the last example we

used in Section 5.4, but with the number of nodes of both networks reduced to six and

the number of processing clusters reduced to three. The system has 48 components and

8,653 minimal cuts, 4 with cardinality 3, 6,561 with cardinality 4, 1,944 with cardinality

5, and 144 with cardinality 6. As a second example we use the last one of Section 5.4,

which has 78 components and 87,031 minimal cuts, 6 with cardinality 3, 75,625 with

cardinality 4, 11,000 with cardinality 5, and 400 with cardinality 6. For both examples,

L = 3 and L = 2. All results have been obtained in a 128 MB UltraSparc 1 workstation

with the control parameter BR of algorithm CONT-TG-W set to 0.1. For the method

described in Chapter 5, the control parameter R to compute failure distances has been

136 6 Availability Bounds of Repairable Systems using FD Bounds

DA!

Figure 6.2: Architecture of the first example.

set to 2 and the control parameter R' to compute subbags of minimal cuts has been set

to 6.

We show in Figure 6.3 the relative unavailability band as a function of the number of

states in G for the first example. The proposed method clearly outperforms the method

described in [70]. Hence, the number of states required by that method to achieve a given

relative unavailability band ranges from 4.6 to 12.2 times the number of states required

by the method developed in this chapter. Regarding the method described in [22], the

proposed method requires a number of states between 1.6 and 30.6 times larger. The

comparison is even worse for the method described in Chapter 5, which requires a number

of states between 2.1 and 42 times smaller than the method proposed in this chapter.

Those figures are somewhat misleading since they do not take into account the amount

of memory required in the methods described in [22] and Chapter 5 to store all minimal

cuts and related structures. In Figure 6.4 we compare the methods in terms of memory

consumption, which is really the figure of interest. The proposed method is again better

than the method described in [70], with a memory consumption for a given relative band

between 4.1 and 7.6 times smaller. Regarding the two methods that use exact failure

distances, the proposed method is more efficient for moderate values of the desired relative

unavailability band. For this example, storing the minimal cuts takes about 4.5 MB of

6.3 Analysis 137

0.1

C
es

X>

Xi
eu

1 >
ca
c
3
Sí

0.01

0.001

i v
? *
3> X

l·

R
« \
-fe \
'4ù \

Aá V
\B \
\ Q \
+ 0 *

i_i i

%
X

X

k

*
k
\

N

1

X.
X

X .

•

i

x

1

1 1 ' "l

proposed -o—
Chapter 5 --*-—

[22] "S--
[70] x

_

•

"x
x

""""•X"-.

" x.......
• ' '

10000 20000 30000 40000 50000 60000 70000
states

Figure 6.3: Relative unavailability band as a function of the number of states in G for

the first example.

0.1

c
XI

XI

.3
>
c
3
o
_>
js
13

0.01

0.001

:<f m ' ' "
\ Î* •o I k

<> 41 k
' <> $ X

<> 43 k
;: i

\ V *
| í k.

- ^ $ X.

\ è \ \ f? X.

&i
\s
\h
\ ö

i \ \ i

i

""X...

i .

i - i i • i — i

•

proposed -e—
Chapter 5 -+—-

[22] --a--
[70] x

-
•

"X

"x
"~-x

x
'""X

I I I I . Ï :-i—

10 15 20 25 30 35 40 45 50
MB

Figure 6.4: Relative unavailability band as a function of memory consumption for the

first example.

138 6 Availability Bounds of Repairable Systems using FD Bounds

30000 60000 90000
states

Figure 6.5: Relative unavailability band as a function of the number of states in G for

the second example.

memory. As it can be seen in Figure 6.4, this is approximately the difference in terms

of memory consumption between the proposed method and the methods described in

[22] and Chapter 5 for a relative band equal to 0.1. The smaller the relative band,

however, the larger the generated subset and, thereby, the memory consumption due to

storing state descriptions and list of contributions becomes relatively more important

than the overhead introduced by storing the minimal cuts and related data structures.

This explains why the difference in terms of memory consumption between the proposed

method and the methods described in [22] and Chapter 5 decreases as the target band

gets smaller and, eventually, the proposed method becomes more memory consuming.

In figures 6.5 and 6.6 we show the relative unavailability band for the second ex­

ample in terms of, respectively, size of the generated subset and memory consumption.

The same comments we did for the previous example apply here: the proposed method

outperforms the method described in [70] and, in terms of memory consumption, it is

more efficient than the methods described in [22] and Chapter 5 for large to moderate

relative unavailability bands.

6.4 Conclusions 139

0.1

•M
>
ni c
D 0.01

Y '

T

-

proposed
Chapter 5

[22]
[70]

-e—
-H

"B—-
-X-—

* h *T- 1 1
;n X

>Ù '-X
•HD X
't? *

ft
+ S
\ G)
^ Q

* ip
+ Q

t. ; Q

T Î ^ ^ O

X , Q ^ 6 ^ ^

v , """-sTr

1 1 1

"X

"~--.

•

-

'
•

" :
"•'E

20 40 60 80 100
MB

Figure 6.6: Relative unavailability band as a function of memory consumption for the

second example.

6.4 Conclusions

In this chapter we have developed a bounding method for the steady-state unavailability

that is based on lower bounds for failure distances and, therefore, does not require the

knowledge of the minimal cuts of the system. The method seems to be better than the

method described in [70], which is not based in the failure distance concept. Regarding

the methods described in [22] and Chapter 5, which require to know and hold in memory

the set of minimal cuts of the system, the proposed method can outperform both of them

for moderate values of the relative unavailability band when the number of minimal cuts

is large.

140 6 Availability Bounds of Repairable Systems using FD Bounds

Chapter 7

Conclusions and Future Work

The goal of the dissertation was the development of failure distance based bounding

methods for two dependability measures/scenarios: 1) the unreliability at time t, ur(£),

for non-repairable fault-tolerant systems, and 2) the steady-state unavailability, UA, for

repairable fault-tolerant systems. The goal has been achieved for a quite wide class of

models and the required high-level knowledge about the model is reasonable and mod­

est. We have developed four methods: two using failure distances, and two using lower

bounds for failure distances that can be inexpensively computed on the fault tree of the

system. For the same number of generated states, the first two give, in general, tighter

bounds, but those methods have the potential limitation that computing failure distances

is an NP-hard problem. The algorithms we have used to compute the failure distances

assume the knowledge of the minimal cuts of the fault tree. The algorithms seem to be

very efficient from a time point of view even when the number of minimal cuts is large

(tens of thousands). However, computation of the minimal cuts in a reasonable amount

of time may be impossible and, then, the methods could not be used. Also, the number

of minimal cuts can be very large and, in that case, the memory overhead associated

with them may be important, making the other bounding methods more efficient from a

memory usage point of view. As the examples we have presented show, all four methods

can outperform significantly previously available methods and extend significantly the

complexity of the fault-tolerant systems for which tight bounds for the considered de­

pendability measures can be computed. In that regard, we want to note that the method

described in Chapter 5 has obtained very tight bounds for a fault-tolerant system with

372 components using 100 MB of memory. Workstations with 1 GB of memory are

common today and, we estimate, with such a workstation tight bounds should be attain­

able for fault-tolerant systems having of the order of 1,000 components. Fault-tolerant

142 7 Conclusions and Future Work

interconnection networks [36] are fault-tolerant systems having that complexity. Once

solving the difficulty of building a fault tree for those systems, their dependability could

be analyzed precisely using the methods described in the dissertation.

Much research work related with the dissertation remains and the author wants

to undertake it in the future. First, it is tempting to develop bounding methods for

ur(t) for non-repairable fault-tolerant systems using structures Fi<r(k, d) similar to those

used by the proposed bounding methods for UA. Secondly, efficient state space explo­

ration algorithms for those methods could be developed. Finally, other dependability

measures/scenarios could be considered such as ur(t) for repairable systems, the point

unavailability and the expected interval unavailability for repairable systems, and the dis­

tribution of the interval availability for repairable systems. The latter would have special

interest, since available numerical methods for computing that measure [23, 84, 85, 94]

are expensive and keeping the size of the generated state space as small as possible is an

important issue. Finally, all these methods should be offered in a tool with an as flexible

as possible modeling language encompassing the class of models for which the bounding

methods have been developed.

Bibliography

[1] J. A. Abraham, "An improved algorithm for network reliability," IEEE Trans, on Reliability,

vol. R-28, April 1979, pp. 58-61.

[2] M. Abramovici, J. J. Kulikowski, P. R. Menon, and D. T. Miller, "SMART and FAST: Test

Generation for VLSI Scan-Design Circuits,", IEEE Design and Test of Computers, vol. 3,

no. 4, August 1986, pp. 43-54.

[3] K. K. Aggarwal, K. B. Misra, and J. S. Gupta, "A fast algorithm for realiability evaluation,"

IEEE Trans, on Reliability, vol. R-24, April 1975, pp. 83-85.

[4] Ch. Alexopoulos and B. C. Shultes, "The Balanced Likelihood Ratio Method for Estimating

Performance Measures of Highly Reliable Systems," in Proc. Winter Simulation Conference,

Piscataway, New Jersey, 1998.

[5] Ch. Alexopoulos and B. C. Shultes, "Estimating Reliability Measures for Highly-reliable

Markovian Systems Using Balanced Likelihood Ratios," Technical Report, Georgia Institute

of Technology, March 1999.

[6] S. V. Amari, J. B. Dugan and R. B. Misra, "A separable method for incorporating imper­

fect fault-coverage into combinatorial models," IEEE Trans, on Reliability, vol. 48, no. 3,

September 1999, pp. 267-274.

[7] J. Arlat, M. Agüera, L. Amat, Y. Crouzet, J. C. Fabre, J. C. Laprie, E. Martins, and D. Pow­

ell, "Fault Injection for Dependability Validation—A Methodology and Some Applications,"

IEEE Trans, on Software Engineering, vol. 16, no. 2, pp. 166-182, February 1990.

[8] R.E. Barlow and F. Proschan, Statistical Theory of Reliability and Life Testing. Probability

Models, McArdle Press, Silver Spring, 1981.

[9] J. H. Barton, E. W. Czeck, Z. Z. Segall, and D. P. Siewiorek, "Fault Injection Experiments

Using FIAT," IEEE Trans, on Computers, vol. 39, no. 4, pp. 575-582, April 1990.

[10] N. N. Bengiamin, B. A. Bowen, and K. F. Schenk, "An Efficient Algorithm for Reducing

the Complexity of Computation in Fault Tree Analysis," IEEE Trans, on Nuclear Science,

vol. NS-23, no. 5, October 1976, pp. 1442-1446.

144 BIBLIOGRAPHY

[11] R. G. Bennets, "On the analysis of fault trees," IEEE Trans, on Reliability, vol. R-24,

August 1975, pp. 175-185.

[12] C. Béounes, M. Agüera, J. Arlat, S. Bachman, C. Bourdeau, J. E. Doucet, K. Kanoun, J. C.

Laprie, S. Metge. J. Moreira de Souza, D. Powell, and P. Spiesser, "SURF-2: A Program for

Dependability Evaluation of Complex Hardware and Software Systems," Proc. 23rd IEEE

Int. Symp. on Fault-Tolerant Computing (FTCS-23), Toulouse, 1993, pp. 668-673.

[13] U. N. Bhat, Elements of Applied Stochastic Processes, John Wiley and Sons, 1984.

[14] W. G. Bouricious, W. C. Carter and P. R. Scheider, "Reliability modeling techniques for

self-repairing computer systems," in Proc. 24th Annual ACM Nat. Conf., 1969, pp. 295-309.

[15] R. Bryant, "Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams," ACM

Computing Surveys, vol. 24, 1992, pp. 293-318.

[16] J.A. Carrasco and J. Figueras, "METFAC: Design and Implementation of a Software Tool

for Modeling and Evaluation of Complex Fault-Tolerant Computing Systems," Proc. of the

16th Int. Symp. on Fault-Tolerant Computing FTCS-16, 1986, pp. 424-429.

[17] J. A. Carrasco, "Efficient Transient Simulation of Failure/Repair Markovian Models," in

Proc. 10th IEEE Symp. on Reliable Distributed Systems, 1991, pp. 152-161.

[18] J. A. Carrasco , "Failure Distance-based Simulation of Repairable Fault-Tolerant Systems,"

in Computer Performance Evaluation, Elsevier, 1992, pp. 351-365.

[19] J. A. Carrasco, A. Calderón, and J. Escrivà, "Two new algorithms to compute steady-state

bounds for Markov models with slow forward and fast backward transitions," in Proc. 4th

Int. Workshop on Modeling, Analysis and Simulation of Computer and Telecommunication

Systems (MASCOTS'96), February 1996, pp. 89-95.

[20] J.A. Carrasco, J. Escriba and A. Calderón, "Efficient Exploration of Availability Models

Guided by Failure Distances", Performance Evaluation Review, vol. 24, no. 1, May 1996.

[21] J. A. Carrasco and J. L. Domingo, "METFAC-2: A Tool for Specification and Solution of

Markov Performance, Dependability and Performability Models," in Proc. XII Design of

Circuits and Integrated Systems Conference, Sevilla, Spain, November 1997, pp. 195-200.

[22] J. A. Carrasco, "Tight Steady-state Availability Bounds using the Failure Distance Con­

cept," Performance Evaluation, vol. 34, September 1998, pp. 27-64.

[23] J. A. Carrasco, "Solving Large Interval Availability Models using a Model Transformation

Approach," Technical Report, Universitat Politècnica de Catalunya, March 1999, available

at f t p : / / f t p - e e l . u p c . e s / t e c h r e p o r t s under the nameDMSD_99_3.ps

[24] J. A. Carrasco, "Bounding steady-state availability models with group repair and phase type

repair distributions," Performance Evaluation, vol. 35, no. 4, 1999, pp. 193-214.

ftp://ftp-eel.upc.es/techreports

BIBLIOGRAPHY 145

[25] J. A. Carrasco, "Failure-distance-based importance sampling schemes for simulation of re­

pairable fault-tolerant computer systems," 1998, under review for IEEE Trans, on Comput­

ers.

[26] J. Carreira, H. Madeira and J. G. Silva, "Xception: Software Fault Injection and Monitoring

in Processor Functional Units," in Proc. 5th Int'l Working Conf. on Dependable Computing

for Critical Applications (DCCA-5), September 1995, pp. 135-149.

[27] P. Chatterjee, "Modularization of fault trees: A method to reduce the cost of analysis,"

Reliability and Fault Tree Analysis, SIAM, 1975, pp. 101-137.

[28] G. Chiola. C. Dutheillet, G. Franceschinis, and S. Haddad, "Stochastic Well-Formed Colored

Nets and Symmetric Modeling Applications," IEEE Trans, on Computers, vol. 42, no. 11,

November 1993, pp. 1343-1360.

[29] G. S. Choi, R. K. Iyer and V. Carreno, "FOCUS: An Experimental Environment for Fault

Sensitivity Analysis," IEEE Trans, on Computers, vol. 41, no. 12, pp. 1,515-1,526, December

1992.

[30] G. Ciardo, J. Muppala and K. Trivedi, "SPNP: Stochastic Petri Net Package," Proc. 3rd

IEEE Int. Workshop on Petri Nets and Performance Models (PNPM89), Kyoto, 1989, pp.

142-150.

[31] E. Çinlar, Introduction to Stochastic Processes, Prentice-Hall, 1975, Englewood Cliffs, NJ,

USA.

[32] A. E. Conway and A. Goyal, "Monte Carlo Simulation of Computer Systems Availabil­

ity/Reliability Models," in Proc. 17th IEEE Int. Symp. on Fault-Tolerant Computing, 1987,

pp. 230-235.

[33] O. Coudert and J. C. Madre, "MetaPrime: An Interactive Fault-Tree Analyzer," IEEE

Trans, on Reliability, vol. 43, no. 1, March 1994, pp. 121-127.

[34] J. Couvillion, R. Freiré, R. Johnson, W. Obal II, A. Qureshi, M. Rai, W. Sanders, and J.

Tvedt, "Performability modelling with UltraSAN," IEEE Software, September 1991, pp.

69-80.

[35] S. A. Doyle, J. B. Dugan and F. A. Patterson-Hine, "A combinatorial approach to modeling

imperfect coverage," IEEE Trans, on Reliability, vol. 44, March 1995, pp. 87-94.

[36] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks, an engineering approach,

IEEE Computer Society, 1997.

[37] J. B. Dugan, K. S. Trivedi, M. K. Smotherman, and R. M. Geist, "The hybrid automated

reliability predictor," AIAA J. Guidance, Contr., Dynam., vol. 9, May-June 1986, pp. 319-

331.

146 BIBLIOGRAPHY

[38] J. B. Dugan and K. S. Trivedi, "Coverage Modeling for Dependability Analysis of Fault-

Tolerant Systems," IEEE Trans, on Computers, vol. 38, no. 6, June 1989, pp. 775-787.

[39] J. B. Dugan, "Fault trees and imperfect coverage," IEEE Trans, on Reliability, vol. 38, no.

2, June 1989, pp. 177-185.

[40] Y. Dutuit and A. Rauzy, "A Linear-Time Algorithm to Find Modules of Fault Trees", IEEE

Trans, on Reliability, vol. 45, no. 3, September 1996, pp. 422-425.

[41] H. Fujiwara and T. Shimano, "On the Acceleration of Test Generation Algorithms", IEEE

Transactions on Computers, vol. C-32, no. 12, December 1983, pp. 1137-1144.

[42] J. B. Fussell and W. E. Vesely, "A New Methodology for Obtaining Cut Sets for Fault

Trees," Trans, of the American Nuclear Society, vol. 15, June 1972, pp. 262-263.

[43] M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide to the Theory of

NP-Completeness, W. H. Freeman and Company, 1979.

[44] P. Goel, "An Implicit Enumeration Algorithm to Generate Tests for Combinational Logic

Circuits," IEEE Transactions on Computers, vol. C-30, no. 3, March 1981, pp. 215-222.

[45] L. H. Goldstein, "Controllability/Observability Analysis of Digital Circuits," IEEE Trans­

actions on Circuits and Systems, vol. CAS-26, no. 9, September 1979, pp. 685-693.

[46] A. Goyal, W.C. Carter, E. de Souza e Silva, S.S. Lavenberg, and K.S. Trivedi, "The System

Availability Estimator," Proc. of the 16th Int. Symp on Fault-Tolerant Computing FTCS-16',

1986, pp. 84-89.

[47] A. Goyal, P. Heidelberger and P. Shahabuddin, "Measure Specific Dynamic Importance

Sampling for Availability Simulations," in Proc. 1987 Winter Simulation Conference, A.

Thesen, H. Grant and W. D. Kelton (eds.), 1987, pp. 351-357.

[48] A. Goyal, P. Shahabuddin, P. Heidelberger, V. F. Nicola, and P. W. Glynn, "A Unified

Framework for Simulating Markovian Models of Highly Dependable Systems," IEEE Trans,

on Computers, vol. 42, no. 1, January 1992, pp. 36-51.

[49] D. Gross and D. Miller, "The randomization technique as a modeling tool and solution

procedure for transient Markov processes", Operations Research, vol. 38, no. 2, 1984, pp 334-

361

[50] U. Gunneflo, J. Karlsson and J. Torin, "Evaluation of Error Detection Schemes Using Fault

Injection by Heavy-Ion Radiation," in Proc. 19th Int'l Symp. on Fault-Tolerant Computing

(FTCS-19), June 1989, pp. 340-347.

[51] S. Han, K. G. Shin and H. A. Rosenberg, "DOCTOR: An IntegrateD SOftware Fault In-

jeCTiOn Environment for Distributed Real-Time Systems," in Proc. 1st Int'l Computer

Performance and Dependability Symp., April 1995, pp. 204-213.

BIBLIOGRAPHY 147

[52] W. Hennings and N. Kuznetsov, "FAMOCUTN & CUTQN: Programs for Fast Analysis of

Large Fault Trees with Replicated & Negated Gates," IEEE Trans, on Reliability, vol. 44,

no. 3, September 1995, pp. 368-376.

[53] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson, "Fault Injection into VHDL Mod­

els: The MEFISTO Tool," in Proc. 24th Int'lSymp. on Fault-Tolerant Computing (FTCS-

24), 1994.

[54] B. W. Johnson, Design and Analysis of Fault Tolerant Digital Systems, Addison-Wesley,

1989.

[55] G. A. Kanawati, N. A. Kanawati and J. A. Abraham, "FERRARI: A Tool for the Validation

of System Dependability Properties," in Proc. 22nd Int'l Symp. on Fault-Tolerant Computing

(FTCS-22), July 1992, pp. 336-344.

[56] W. L. Kao and R. Iyer, "DEFINE: A Distributed Fault Injection and Monitoring Environ­

ment," Fault-Tolerant Parallel and Distributed Systems, D. K. Pradhan and D. R. Avresky,

eds., IEEE CS Press, 1995, pp. 252-259.

[57] T. Kohda, E. J. Henley and K. Inoue, "Finding Modules in Fault Trees," IEEE Trans, on

Reliability, vol. 38, no. 2, June 1989, pp. 165-176.

[58] C. Landrault and J. C. Laprie, "SURF—A program for modeling and reliability predic­

tion for fault-tolerant computing systems," Information Technology, J. Moneta, ed., North-

Holland, 1978.

[59] N. Limnios and R. Ziani, "An Algorithm for Reducing Cut Sets in Fault-Tree Analysis,"

IEEE Trans, on Reliability, vol. R-35, no. 5, December 1986, pp. 559-561.

[60] W.S. Lee, D.L. Grosh, F.A. Tillman, and C.H. Lie, " Fault Tree Analysis, Methods and

Applications-A Review," IEEE Trans, on Reliability, vol. R-34, no. 3, August 1985, pp. 194-

203.

[61] D. Lee, J. Abraham, D. Rennels and G. Gilley, "A Numerical Technique for the Hierarchical

Evaluation of Large, Closed Fault-Tolerant Systems," in Dependable Computing for Critical

Applications, Springer-Verlag, 1992, pp. 95-114.

[62] D. Lubell, "A Short Proof of Sperner's Lemma," Journal of Combinatorial Theory, 1996,

no. 1, p. 299.

[63] J .CS. Lui and R. R. Muntz, "Evaluating Bounds on Steady-State Availability of Repairable

Systems from Markov Models," in Numerical Solution of Markov chains, Marcel Dekker,

New York, pp. 435-454, 1991.

[64] J.C.S. Lui and R.R. Muntz, "Computing Bounds on Steady State Availability of Repairable

Computer Systems," Journal of the ACM, vol. 41, no. 4, July 1994, pp. 676-707.

148 BIBLIOGRAPHY

[65] E. E. Lewis and F. Böhm, "Monte Carlo Simulation of Markov Unreliability Models," Nu­

clear Engineering and Design, vol. 77, 1984, pp. 49-62.

[66] S. Mahévas and G. Rubino, "Bounding asymptotic dependability and performance mea­

sures," in Proc. 2nd IEEE Int. Performance and Dependability Symp., Urbana-Champaign,

USA, September 1996, pp. 176-186.

[67] S. Mahévas and G. Rubino, "Bound computation of dependability and performance mea­

sures," Technical report no. 3135, IRISA, March 1997, to appear in IEEE Trans, on Com­

puters.

[68] S.V. Makam and A. Avizienis, "ARIES 81: A reliability and life-cycle evaluation tool for

fault-tolerant systems," in Proc. 12th Int. Symp. on Fault-Tolerant Computing FTCS-12,

June 1982, pp. 266-274.

[69] J. F. Meyer, "On Evaluating the Peformability of Degradable Computing Systems," IEEE

Trans, on Computers, vol. C-29, no. 8, August 1980, pp. 720-731.

[70] R.R. Muntz, E. de Souza e Silva and A. Goyal, "Bounding Availability of Repairable Com­

puter Systems," IEEE Trans, on Computers, vol. 38, no. 12, pp. 1714-1723, December

1989.

[71] K. Nakashima and Y. Hattori, "An Efficient Bottom-up Algorithm for Enumerating Minimal

Cut Sets of Fault Trees," IEEE Trans, on Reliability, vol. R-28, no. 5, December 1979, pp.

353-357.

[72] M. K. Nakayama, "General Conditions for Bounded Relative Error in Simulations of Highly

Reliable Markovian Systems," Advances in Applied Probability, vol. 28, 1996, pp. 687-727.

[73] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models. An Algorithmic Approach,

Dover Publications Inc., New York, 1994, chapter 2.

[74] V. F. Nicola, P. Heidelberger and P. Shahabuddin, "Uniformization and Exponential Trans­

formation: Techniques for Fast Simulation of Highly Dependable Non-Markovian Systems,"

in Proc. 22nd IEEE Int. Symp. on Fault-Tolerant Computing, 1992, pp. 130-139.

[75] V. F. Nicola, P. Shahabuddin, P. Heidelberger, and P. W. Glynn, "Fast Simulation of Steady-

State Availability in Non-Markovian Highly Dependable Systems," in Proc. 23th IEEE Int.

Symp. on Fault-Tolerant Computing, 1993, pp. 38-47.

[76] V. F. Nicola, M. K. Nakayama, P. Heidelberger, and A. Goyal, "Fast Simulation of Highly

Dependable Systems with General Failure and Repair Processes," IEEE Trans, on Comput­

ers, vol. 42, no. 12, December 1993, pp. 1440-1452.

[77] K. Odeh and N. Limnios, "A new algorithm for fault trees prime implicant computations,"

ESREL'96, Crete (Greece), June 1996, pp. 1085-1090.

[78] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, 1981.

BIBLIOGRAPHY 149

[79] D. M. Rasmuson and N. H. Marshall, "FATRAM—A Core Efficient Cut-Set Algorithm,"

IEEE Trans, on Reliability, vol. R-27, no. 4, October 1978, pp. 250-253.

[80] A. Rauzy, "New algorithms for fault trees analysis," Reliability Engineering and System

Safety, vol. 40, 1993, pp. 203-211.

[81] A. Rosenthal, "A computer scientist looks at reliability computations," in Reliability and

Fault Tree Analysis, R. Barlow, J. Fusell and N. Singpurwalla, eds., SIAM, Philadelphia,

1975, pp. 133-152.

[82] A. Rosenthal, "Decomposition Methods for Fault Tree Analysis," IEEE Trans, on Reliability,

vol. R-29, no. 2, June 1980, pp. 136-138.

[83] S.M. Ross, Stochastic Processes, John Wiley & Sons, New York, 1983.

[84] G. Rubino and B. Sericola, "Interval Availability Distribution Computation," in Proc. 23th

Int. Symp. on Fault-Tolerant Computing (FTCS-23), Toulouse, June 1993, pp. 48-55.

[85] G. Rubino and B. Sericola, "Interval Availability Analysis Using Denumerable Markov Pro­

cesses: Application to Multiprocessor Subject to Breakdowns and Repair," IEEE Trans, on

Computers, vol. 44, no. 2, February 1995, pp. 286-291.

[86] R.A. Sahner and K.S. Trivedi, "Reliability Modeling Using SHARPE," IEEE Trans, on

Reliability, vol. R-36, no. 2, pp. 186-193, June 1987.

[87] W. H. Sanders and J. F. Meyer, "A Unified Approach for Specifying Measures of Perfor­

mance, Dependability, and Performability," Dependable Computing for Critical Applications,

vol. 4, A. Avizienis and J. C. Laprie, eds., Springer-Verlag, 1991, pp. 215-237.

[88] W. H. Sanders and J. F. Meyer, "Reduced Base Model Construction Methods for Stochastic

Activity Networks," IEEE Journal on Selected Areas in Communications, special issue on

Computer-Aided Modeling, Analysis, and Design of Communication Networks, vol. 9, no. 1,

January 1991, pp. 25-36.

[89] P. Semal, "Refinable Bounds for Large Markov Chains," IEEE Trans, on Computers, vol.

44, no. 10, October 1995, pp. 1216-1222.

[90] S. N. Semanders, '"ELRAFT: A Computer Program for the Efficient Logic Reduction Analy-.

sis of Fault Trees," IEEE Trans, on Nuclear Science, vol. NS-18, February 1971, pp. 481-487.

[91] P. Shahabuddin, "Importance Sampling for the Simulation of Highly Reliable Markovian

Systems," Management Science, vol. 40, no. 3, March 1994, pp. 333-352.

[92] P. Shahabuddin, V. F. Nicola, P. Heidelberger, A. Goyal, and P. W. Glynn, "Variance Re­

duction in Mean Time to Failure Simulations," in Proc. 1988 Winter Simulation Conference,

M. Abrams, P. Haigh and J. Comfort (eds.), 1988, pp. 491-499.

150 BIBLIOGRAPHY

[93] R. M. Sinnamon and J. D. Andrews, "Fault Tree Analysis and Binary Decision Diagrams,"

in Proc. Annual Reliability and Maintainability Symp., 1996, pp. 215-222.

[94] E. de Souza e Silva and H. R. Gail, "Calculating Cumulative Operational Time Distributions

of Repairable Computer Systems," IEEE Trans, on Computers, vol. C-35, no. 4, April 1986,

pp. 322-332.

[95] E. de Souza e Silva and P.M. Ochoa, "State Space Exploration in Markov Models," Perfor­

mance Evaluation Review, vol. 20, no. 1, June 1992, pp. 152-166.

[96] K. J. Sullivan, D. Coppit and J. B. Dugan, "The Galileo Fault Tree Analysis Tool," in Proc.

29th Fault Tolerant Computing Symp. (FTCS-29), 1999.

[97] K. S. Trivedi, R. Geist, M. Smotherman, and J. B. Dugan, "Hybrid modeling of fault-tolerant

systems," Còmput. Elec. Eng. Int. J., vol. 11, no. 2 & 3, 1985, pp. 87-108.

[98] J. M. Wilson, "Modularizing and Minimizing Fault Trees," IEEE Trans, on Reliability, vol.

R-34, no. 4, October 1985, pp. 320-322.

[99] T. Zhuguo and E. E. Lewis, "Component Dependency Models in Markov Monte Carlo

Simulation," Reliability Engineering, vol. 13, 1985, pp. 45-62.

	TJACL00001.pdf
	TJACL00002.pdf
	TJACL00003.pdf
	TJACL00004.pdf
	TJACL00005.pdf
	TJACL00006.pdf
	TJACL00007.pdf
	TJACL00008.pdf
	TJACL00009.pdf
	TJACL00010.pdf
	TJACL00011.pdf
	TJACL00012.pdf
	TJACL00013.pdf
	TJACL00014.pdf
	TJACL00015.pdf
	TJACL00016.pdf
	TJACL00017.pdf
	TJACL00018.pdf
	TJACL00019.pdf
	TJACL00020.pdf
	TJACL00021.pdf
	TJACL00022.pdf
	TJACL00023.pdf
	TJACL00024.pdf
	TJACL00025.pdf
	TJACL00026.pdf
	TJACL00027.pdf
	TJACL00028.pdf
	TJACL00029.pdf
	TJACL00030.pdf
	TJACL00031.pdf
	TJACL00032.pdf
	TJACL00033.pdf
	TJACL00034.pdf
	TJACL00035.pdf
	TJACL00036.pdf
	TJACL00037.pdf
	TJACL00038.pdf
	TJACL00039.pdf
	TJACL00040.pdf
	TJACL00041.pdf
	TJACL00042.pdf
	TJACL00043.pdf
	TJACL00044.pdf
	TJACL00045.pdf
	TJACL00046.pdf
	TJACL00047.pdf
	TJACL00048.pdf
	TJACL00049.pdf
	TJACL00050.pdf
	TJACL00051.pdf
	TJACL00052.pdf
	TJACL00053.pdf
	TJACL00054.pdf
	TJACL00055.pdf
	TJACL00056.pdf
	TJACL00057.pdf
	TJACL00058.pdf
	TJACL00059.pdf
	TJACL00060.pdf
	TJACL00061.pdf
	TJACL00062.pdf
	TJACL00063.pdf
	TJACL00064.pdf
	TJACL00065.pdf
	TJACL00066.pdf
	TJACL00067.pdf
	TJACL00068.pdf
	TJACL00069.pdf
	TJACL00070.pdf
	TJACL00071.pdf
	TJACL00072.pdf
	TJACL00073.pdf
	TJACL00074.pdf
	TJACL00075.pdf
	TJACL00076.pdf
	TJACL00077.pdf
	TJACL00078.pdf
	TJACL00079.pdf
	TJACL00080.pdf
	TJACL00081.pdf
	TJACL00082.pdf
	TJACL00083.pdf
	TJACL00084.pdf
	TJACL00085.pdf
	TJACL00086.pdf
	TJACL00087.pdf
	TJACL00088.pdf
	TJACL00089.pdf
	TJACL00090.pdf
	TJACL00091.pdf
	TJACL00092.pdf
	TJACL00093.pdf
	TJACL00094.pdf
	TJACL00095.pdf
	TJACL00096.pdf
	TJACL00097.pdf
	TJACL00098.pdf
	TJACL00099.pdf
	TJACL00100.pdf
	TJACL00101.pdf
	TJACL00102.pdf
	TJACL00103.pdf
	TJACL00104.pdf
	TJACL00105.pdf
	TJACL00106.pdf
	TJACL00107.pdf
	TJACL00108.pdf
	TJACL00109.pdf
	TJACL00110.pdf
	TJACL00111.pdf
	TJACL00112.pdf
	TJACL00113.pdf
	TJACL00114.pdf
	TJACL00115.pdf
	TJACL00116.pdf
	TJACL00117.pdf
	TJACL00118.pdf
	TJACL00119.pdf
	TJACL00120.pdf
	TJACL00121.pdf
	TJACL00122.pdf
	TJACL00123.pdf
	TJACL00124.pdf
	TJACL00125.pdf
	TJACL00126.pdf
	TJACL00127.pdf
	TJACL00128.pdf
	TJACL00129.pdf
	TJACL00130.pdf
	TJACL00131.pdf
	TJACL00132.pdf
	TJACL00133.pdf
	TJACL00134.pdf
	TJACL00135.pdf
	TJACL00136.pdf
	TJACL00137.pdf
	TJACL00138.pdf
	TJACL00139.pdf
	TJACL00140.pdf
	TJACL00141.pdf
	TJACL00142.pdf
	TJACL00143.pdf
	TJACL00144.pdf
	TJACL00145.pdf
	TJACL00146.pdf
	TJACL00147.pdf
	TJACL00148.pdf
	TJACL00149.pdf
	TJACL00150.pdf
	TJACL00151.pdf
	TJACL00152.pdf
	TJACL00153.pdf
	TJACL00154.pdf
	TJACL00155.pdf
	TJACL00156.pdf
	TJACL00157.pdf
	TJACL00158.pdf

