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ABSTRACT 

Multimorbidity (i.e. the presence of more than one chronic disease in the same 

patient) and comorbidity (i.e. the presence of more than one chronic disease in the 

presence of an index disease) are main sources of healthcare dysfunction in chronic 

patients and avoidable costs in conventional health systems worldwide. By affecting 

the majority of the population in Western societies, multimorbidity prompts the need 

for revisiting the single disease approach followed by contemporary clinical practice 

and elaborate treatments that target shared mechanisms of associated diseases with 

the potential of decelerating or even halting multimorbid disease progression. 

However, our current understanding on disease interactions is rather limited; and, 

although many disorders have been associated based on their shared molecular traits 

and their observed co-occurrence in different populations, no comprehensive 

approach has been outlined to translate this knowledge into clinical practice 

This PhD thesis aims to explore multimorbidity from a systems medicine perspective 

on the specific use-case of chronic obstructive pulmonary disease (COPD), with the 

outlook of generalising these methods to a broader set of chronic respiratory diseases, 

and other non-communicable diseases. COPD is a major cause of morbidity and 

mortality worldwide, and its disease manifestations often involves non-pulmonary 

effects, including highly prevalent comorbidities, such as type 2 diabetes and 

cardiovascular diseases, and systemic effects. 

The thesis investigates molecular disturbances in the skeletal muscle of patients with 

COPD and their body systems level interactions to identify signature biological 

pathways that potentially play key role in systemic effects and comorbidities. 

Furthermore, the thesis analyses population level patterns of COPD comorbidities and 

investigates their role in the health risk of patients with COPD, indicating its major 

negative impact on highly relevant clinical events, use of healthcare resources and 

prognosis. Finally, the thesis identifies personalized health risk prediction and service 

selection as potential tools for the integration and transfer of scientific evidence on 

multimorbidity to daily clinical practice and explores real-world implementation 

strategies in cloud-based environments.  

The thesis outcomes indicate the need for a novel, systems perspective on patients 

with COPD that considers non-pulmonary manifestations both at the staging and the 

management of the disease. Moreover, the thesis provides specific actionable insights 

for the development of innovative interventions targeting the prevention of non-

pulmonary manifestations. The application of the outcomes of the thesis has a 

credible potential to contribute to personalized care for chronic patients. 
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1 

INTRODUCTION 

1. THE EVOLVING SCENARIO 

Multimorbidity (i.e. the presence of more than one chronic disease in the same 

patient) and comorbidity (i.e. the presence of additional chronic diseases in the 

presence of an index disease) are main sources of dysfunctions and avoidable costs in 

conventional health systems worldwide [1, 2].  

The demonstrated population-wide patterns of disease co-occurrence [3–5], 

pathophysiological linkage of certain diseases [4, 6, 7] and the sheer size of the 

problem , i.e. multimorbidity affects the majority of elderly worldwide [8], prompts the 

need for revisiting the single disease approach of contemporary clinical practice [8], 

which presumes independence among comorbid conditions. Research and 

development of novel treatments that target the source of interactions among 

associated diseases are needed with the potential of decelerating or even halting 

multimorbid disease progression. In this context, several questions arise and need to 

be answered for the successful clinical application of multimorbidity principles: Which 

conditions are associated? What is the nature of their relation (e.g. causal, common 

environmental factor)? What is the molecular cause of the relation? How to translate 

this information into daily clinical practice? 

Since the early 2000s, two key phenomena are prompting substantial changes in both 

biomedical research and clinical management of comorbidity (Figure 1). Firstly, 

systems biology methodologies (i.e. ‘omics’ technologies, use of computational 

modelling, etc.) are being progressively embedded into medical practice shaping the 

practicalities of systems medicine [9–13]. This new field promises a novel approach to 

disease, shifting its definition from phenotypical signs and symptoms towards 

molecular subtypes (i.e. endotypes) of diseases, which is indispensable for precise 

characterization of disease relations and for the evaluation of shared mechanisms [14]. 

Simultaneously, digital health initiatives and wearable devices are facilitating access to 

an enormous amount of patient-related information from whole populations to 

personal levels, and state-of-the art computational models and machine learning tools 

demonstrate high potential for health prediction [15, 16, 25, 17–24]. Given the 

extremely long and expensive bench to clinics cycles of the biomedical sector, these 

technologies promise a fast-track approach where scientific evidence can support 

clinical care while simultaneously collected insights from daily clinical practice 

promote new scientific discoveries and optimize healthcare optimization [26].  
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Figure 1. Data trends in systems medicine. Molecular measurement technologies and 
related systems biology methodologies are facilitating a deeper understanding of 
biological mechanisms. Meanwhile, digital health initiatives and wearable devices are 
facilitating access to enormous amount of patient-related information from whole 
populations (x-axis) and from different organs in the same patient (y-axis). Parts of 
the figure were adapted from [27]. 

 

This PhD thesis research work aims to explore multimorbidity from a systems medicine 

perspective on the concrete and practical use case of chronic obstructive pulmonary 

disease (COPD). COPD constitutes an ideal use case due to several factors, including: 

i) its high impact on healthcare and its ever-increasing burden; ii) its heterogeneous 

disease manifestations, and progress, often involving extra-pulmonary effects, 

including highly prevalent comorbidities (e.g. type 2 diabetes mellitus (T2DM), 

cardiovascular disorders (CVD), anxiety-depression and lung cancer); and, iii) its well 

described systemic effects with evidence suggesting associations with comorbidities 

in terms of underlying mechanisms.  

The PhD thesis applies systems biology tools to analyse the underlying molecular 

mechanisms of COPD systemic effects that might partly explain disease heterogeneity. 

Furthermore, the PhD thesis aims to improve knowledge on the impact of 

comorbidities on healthcare and their potential role in strategies for health risk 

assessment and personalised medicine. The proposed approach should lead to 

generation of novel biomedical knowledge for the enhancement of patient 

stratification while exploring applicable strategies for enhanced patient management. 
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1.1 CONCEPTUALIZATION OF MULTIMORBIDITY 

Burden and challenges 

As alluded to above, multimorbidity generates an ever-increasing burden on 

healthcare systems world-wide. It affects the majority of individuals older than 65 

years, such that in certain western populations the number of people living with 

multiple condition exceeds those living with only one [8] (Figure 2). Risk populations 

include females, people with lower socioeconomic status and those living with mental 

health problems [8, 28], indicating the multifactorial nature of the phenomenon. 

Multimorbidity has a major effect on patients’ lives, most often manifested in the form 

of polypharmacy (i.e. the use of multiple drugs with potential unexpected adverse 

effects) [29, 30] and patients’ frailty [31]. It also shows positive correlations with 

number of outpatient visits [32, 33] and consequently healthcare costs, such that 

some studies showed near exponential association between the number of co-existing 

conditions and healthcare use and costs [34, 35].  

 
Figure 2. Multimorbidity prevalence in the Catalan region (Spain) (7.5M citizens). 
Number of males (left) and females (right) living with chronic conditions by age group. 
Bars are coloured by the number of body systems affected by chronic conditions. 
Data was retrieved form the Catalan Health Surveillance System in 2014. 

 

Therefore, multimorbidity emerges as one of the main sources of dysfunctions and 

avoidable costs in conventional health systems worldwide [1, 2] and highlights a 

complex physiological phenomenon that is influenced by the lifelong interplay of 

genetic and environmental factors. The understanding of these complex interactions 
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needs novel conceptual frames and approaches that are able to accurately capture 

high biological complexity. However, there are several barriers in the current medical 

practice that are hindering the fine-grained understanding of the multimorbidity 

phenomenon.  

One of the main barriers lies in the contemporary disease classification system [14]. 

The roots of this system date back to the 19th century and defines disease according to 

the observational correlation of pathological signs and clinical symptoms, often with 

an organ-centred approach. While two hundred years ago this system provided an 

acceptable base for patient management, our current understanding of disease shows 

that conditions with similar symptoms can arise from molecularly distinct mechanisms 

(e.g. spectrum of obstructive pulmonary diseases), leading to obsolete disease 

definitions. Furthermore, in the conventional approach, disease prevention is 

conceptually difficult, as disease can only be diagnosed when physical manifestations 

are already developed.  

Another barrier lies in the traditional medical definition of comorbidity and 

multimorbidity, which refers to the terms rather as independently co-occurring 

conditions. This assumption is one of the main reasons behind the use of a single 

disease approach (i.e. independent treatment of each condition) in contemporary 

clinical practice. Whereas diseases can co-occur by chance, several recent studies 

have indicated the complex pairwise interaction of comorbidities, including non-

random, population-wide co-occurrence patterns, as well as genetic and metabolic 

interactions [3, 4, 6, 7, 36]. Therefore, more recent models of multimorbidity already 

acknowledge that independent disease co-occurrence is only one type of relationship 

that can occur between two diseases [37]. Diseases can also arise interdependently 

owing to environmental exposures (e.g. smoking, diet, etc.) causing damage to multiple 

organs (e.g. COPD, lung cancer, CVD) [38–40] and also due to causative interactions 

among co-occurring conditions (e.g. skeletal muscle dysfunction, a systemic effect of 

CODP [41]) (Figure 3).  
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Figure 3. Recent models of multimorbidity. Valderas et al. describe five etiological 
models of comorbid diseases that relies on the interaction between diseases and risk 
factors [37]: i) no association: two disease co-occur by chance in the same patient; ii) 
direct causation: one disease may cause the other, e.g. COPD  depression; iii) 
heterogeneity: the risk factors for each disease are not correlated but each one of 
them can cause either disease, e.g. smoking, age and ischemic heart disease, lung 
cancer; iv) associated risk factors: The risk factors for each disease are correlated, 
e.g. smoking, alcohol and COPD, liver cirrhosis; v) associated disease: the presence of 
the diagnostic features of each diagnosis is due to a third distinct disease, e.g. 
hypertension (D1), tension headache (D2) and pheochromocytoma (D3). Figure was 
adapted from [37]. 
 

In summary, a novel approach to classify human diseases and to define disease 

interactions, based on the systemic understanding of the molecular underpinning of 

diseases, arise as a major unmet challenge in modern medicine [36] and an 

indispensable step for the accurate characterisation of the nature of comorbidity 

relations. 

Systems concept of disease and comorbidity 

The advent of novel measurement technologies (e.g. omics) has led to the emergence 

of novel research fields concentrating on the holistic understanding of biology (i.e. 

systems biology) and medicine (i.e. systems medicine) and recently the substantially 

reshaping of the view of disease and disease interactions. Systems biology is based on 

the observation that biological systems are inherently complex and often irreducible 

to the elementary properties of their individual components, thus the understanding 

of these concepts need a holistic approach, studying an organism as a whole living 

system. Systems medicine is the application of systems biology to medical research 
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and practice with the additional goal to integrate a variety of data at all relevant levels 

of cellular organization with clinical and patient-reported disease markers [9].  

It is widely accepted that clinical phenotypes are rarely straight-forward 

consequences of an abnormality in a single gene, but rather reflect the interplay of 

multiple molecular processes. Thus, the identification of the core set of molecular 

elements and processes that underlie a disease (i.e. disease modules) have become 

the main objective of contemporary network medicine approaches [4, 36]. This shift 

of attention from clinical phenotypes to endotypes, i.e. molecular subtypes of the 

disease (pathophenotypes), is a major potential of network medicine that promises a 

more fine-grained disease classification as well as a new way to conceptualize the 

relation of comorbid conditions.  

Figure 4 shows the different levels of abstraction in the systems model of disease. In 

this model, clinical expression of a disease can arise from several endotypes that are 

identified by disease modules, the molecular handprints of a disease [42]. Molecular 

elements of the modules (e.g. genes, proteins, metabolites) are part of a multi-level 

biological network that connects actively interacting molecular elements on the 

cellular level. The genotype gives the base topology of this network that due to the 

lifelong exposure to different environmental factors (e.g. smoking, diet), can be 

perturbed and rewired, i.e. it can change the active interactions. These changes are 

expressed on different biological levels (i.e. genetic, epigenetic, transcriptomic, post-

transcriptional regulation, etc.) and result in altered cellular functions. Disease 

modules emerge when a system is not robust enough to balance perturbations and 

abnormal processes lead to phenotypic abnormalities [43].  

In this systems model of disease, comorbidities can arise when specific genes, 

proteins, or metabolites participate in several disease modules, i.e. through 

overlapping disease modules. Thus, endotypes define the potential space for the 

interaction of diseases, where perturbations caused by a disease can potentially 

provoke other disorders. Whereas this is mainly conceptual model of comorbidity, a 

recent study demonstrated that in fact disease with overlapping disease modules 

display significantly more similar symptoms and co-occur more often than the ones 

that do not overlap [4], which also indicates the potential of the approach.  



 

7 1.1. Conceptualisation of MULTIMORBIDITY 

 
Figure 4. Systems model of disease. Different levels of biological conceptualization 
of disease, showing the associations between genes, environment, biomarkers, 
endotypes and phenotypes. The personal genotype defines the base interactions of 
one’s interactome, i.e. the multi-level biological network that connects all actively 
interacting molecular elements on the cellular level. Continuous exposure to 
environmental factors shape both the genotype (e.g. mutations) and the interactome 
(e.g. rewiring) potentially leading to abnormal cellular regulatory processes, 
represented as disease modules in the interactome. Clinical expression of diseases 
(phenotypes) can arise from different molecular subtypes (endotypes), which in turn 
can be identified by a set of measurable biomarkers, i.e. representative elements of 
the disease modules. Comorbid conditions can arise from molecular interactions 
amongst different disease modules, which can be identified at the endotype level but 
not at the phenotype level. 

 

1.2 COPD: A MODEL OF HETEROGENEOUS CHRONIC DISEASE 

COPD is a major public health problem and it is one of the five major priorities of the 

non-communicable diseases (NCDs) policy of the World Health Organization, together 

with CVD, cancer, T2DM and mental disorders [44]. In 2010, COPD was responsible for 

three million deaths (6% of all deaths), which makes COPD the third leading cause of 

death worldwide, climbing two ranks higher from the fifth place in 1990 [45]. This trend 

is especially alarming, since COPD is one of the only disease with worsening death rates 

in Western societies (Figure 5) [1]. Projections on COPD prevalence and costs over the 

next fifteen years indicate a continuous escalating burden, mainly due to population 
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ageing and impact of comorbidities, on both health and social support systems [46, 

47], such that in 2020 it is projected to rank fifth worldwide in terms of burden of 

disease [48].  

 
Figure 5. Age-standardized relative rate of death in the United States in 1990 and 
2010, as ranked among 187 other countries. Ranks (y-axis) for the 20 leading cause of 
deaths in the US (x-axis) are shown. Rank 1 is the lowest age-standardized mortality 
across the 187 countries, and rank 187 is the highest. Bars indicate 95% uncertainty 
intervals (UIs). COPD denotes chronic obstructive pulmonary disease. This figure was 
adopted from [1]. 
 

COPD is a preventable and partially treatable disorder caused by inhalation of irritants, 

mainly tobacco smoking. However, only 15-20% of all tobacco smokers are prone to 

develop the disease. Early pulmonary-related manifestations of the disease are 

characterized by inflammatory phenomena of peripheral airways progressing to 

destruction of lung parenchyma (i.e. emphysema), abnormalities in pulmonary airways, 

inflammatory changes and remodelling in pulmonary circulation. The most 

characteristic functional finding in the clinical arena is expiratory flow limitation, due 

to reduced pulmonary elastance and increased airways resistance, assessed by a 

reduced Forced Expiratory Volume in one second (FEV1) / Forced Vital Capacity (FVC)) 

ratio in forced spirometry testing [48].  

Highly prevalent chronic conditions such as CVD, T2DM – metabolic syndrome and lung 

cancer are often co-occurring in patients with COPD. These comorbidities influence 

not only the severity of the symptoms and the quality of life of individual patients, but 

also the risk of hospitalization and eventually death [40, 48, 49]. Co-occurrence of 

several comorbid conditions at the same time in patients with COPD is a long standing 
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observation [50, 51], such that this comorbidity clustering has shown to be the major 

characteristic to be taken into account for management of patients with COPD [52]. 

There is evidence indicating that comorbidity clustering is only partly explained by 

shared risk factors (i.e. tobacco smoking, unhealthy diet and sedentarism) [50, 53, 54], 

highlighting the potential role of shared underlying biological mechanisms in the 

development of comorbidities. 

Briefly, several concurrent facts are determining the interest of COPD as a use case 

representative of the challenges associated to NCDs; that is: i) the high prevalence of 

COPD, approximately 9% of the adult population above 40 years of age; ii) the elevated, 

and still steadily increasing, burden of patients with COPD on healthcare and social 

support services mainly due to ageing and high prevalence of co-morbid conditions; 

and, iii) the poor understanding of factors modulating heterogeneities both in terms 

of clinical manifestations and COPD progression due to insufficient knowledge on 

underlying mechanisms of both pulmonary and non-pulmonary manifestations of the 

disease.  

The latter has important consequences in two relevant areas: i) generating potential 

problems in terms of COPD taxonomy overlaps with other pulmonary diseases 

presenting airflow limitation [55, 56]; and ii) poor knowledge on underlying 

mechanisms of patients with COPD limiting mechanism-oriented therapeutic 

strategies. 

Current approaches to COPD heterogeneity 

The Global initiative for Obstructive Lung Disease (GOLD) has played a key role in 

raising awareness of COPD and has been an important initiative towards the 

formulation of evidence-based medicine for care of patients with COPD. GOLD 

recommendations aim to provide expert advice on diagnosis and management of the 

disease worldwide, often through implementation of its recommendations into 

national guidelines [57].  

Classification of patients with COPD into severity groups looking for predictive value 

has been one of the relevant aspects of GOLD recommendations. In the first two 

reports (2001, 2006), COPD staging was solely based on the alteration of FEV1 in 

patients with low FEV1/FVC ratio [58, 59]. The next two updates of GOLD 

recommendations (2011, 2017) supplemented the degree of airflow limitation (FEV1) 

with assessment of symptoms (mMRC dyspnoea scale or the COPD Assessment Test 

(CAT)) and the risk of frequent exacerbations [48, 60].  
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The current GOLD recommendations [60] report disease severity based on FEV1 

impairment, that is: i) GOLD I – FEV1 > 80% reference values – light disease; ii) GOLD II 

– FEV1 between 50% and 80% - moderate disease; iii) GOLD III – FEV1 between 30% 

and 50% FEV1 – severe disease; and, iv) GOLD IV – FEV1 < 30% reference values - 

respiratory failure. Meanwhile, recommendations for pharmacological interventions 

are based on the intensity of symptoms and risk for frequent exacerbations of the 

pulmonary disease.  

Non-pulmonary phenomena; that is, systemic effects and co-morbidities are 

mentioned in the GOLD recommendations as factors associated to a negative impact 

on patient prognosis deserving therapeutic interventions. There is mounting evidence 

indicating that impairment of the central organ (lung) in patients with COPD only partly 

explains disease prognosis [54]. The negative impact of comorbid conditions on 

prognosis is acknowledged since the 2006 GOLD report and it gained increasing 

attention in the recent reporting due to emerging evidence on its role in COPD 

heterogeneity [61]. Despite all this evidence, current guidelines still suggest that 

“presence of comorbidities should not alter COPD treatment, and comorbidities should 

be treated per usual standards regardless of the presence of COPD”. It is of note, 

however, that there is still confusion between systemic effects (conditions that are 

suspected to be in causal relationship with COPD) and comorbidities of the disease 

because of the descriptive nature of the classifications that are poorly based on deep 

knowledge of underlying mechanisms. 

All in all, GOLD recommendations have represented a progress in standard of care of 

the pulmonary disorder, but it shows well accepted limitations for a comprehensive 

assessment of patients with COPD [62–66]. Several alternative approaches have 

emerged aiming at contributing to the prognostic assessment of these patients using 

alternative indices. Broadly used measures include prognostic indices combining 

several patient characteristics, such as BODE index (including body-mass index, airflow 

obstruction, dyspnoea, and exercise capacity) [67], DOSE index (including dyspnoea, 

obstruction, smoking, exacerbations) and the simplified ADO index (including age, 

dyspnoea, and airflow obstruction) [68, 69].  

It is of note that some of the above indices specifically address prediction of mortality 

rather than staging of patients for management purposes. It is of note that general 

multimorbidity indices also have broad applicability in the field, showing a broad 

spectrum of possibilities. This includes simple diseases count, Charlson Index [70] or 

other, more complex indices like Clinical Risk Groups (CRG) [71] or Adjusted Morbidity 
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Groups (GMA) [72, 73], which evaluates prognosis based on age and weightings for 

specific comorbid conditions.  

Challenges of COPD care 

In summary, there are several factors that challenge our current understanding of 

COPD and that are needed to be overcome for a more personalized care of patients 

with COPD. One of the main challenges is the lack of our understanding of the 

underlying biological mechanisms of heterogeneous disease manifestations. There are 

several factors that may lead to disease heterogeneity and that need further attention 

and actions in the future.  

Firstly, the simplistic diagnostic criteria of COPD (i.e. presence of respiratory 

symptoms like dyspnoea and cough, history of inhalation of irritants, and measurable 

airflow limitation) is one of the main sources of heterogeneity, often leading to 

overlapping diagnoses with different chronic obstructive airways diseases (e.g. 

asthma, bronchiectasis, bronchiolitis) [55] or to the exclusion of important 

emphysema-related disorders with similar treatment needs [74, 75]. This highlights the 

need for a better understanding of the key pathobiological mechanisms (endotypes) 

that drive the disease or its subtypes and that can function as potential therapeutic 

targets [76]. Their identification should lead to novel disease taxonomies and will likely 

result in the re-definition of COPD [77].  

Secondly, contemporary lung-centric view of the disease often fails to explain the 

observed heterogeneity and other COPD specific phenomena, such as comorbidity 

clustering. This suggests a non-pulmonary component of the disease that needs a 

better understanding of the interplay between pulmonary and non-pulmonary 

manifestations. To date, the most supported hypothesis was that systemic 

inflammation induced by lung inflammatory processes can cause non-pulmonary 

effects seen in these patients [78–80]. Despite the potential relevance of systemic 

inflammation, many questions about its origin, mechanisms, and effects remain 

unanswered [81]. In fact, persistent systemic inflammation, associated with negative 

physiological effects, was shown to be present in only 16% of patient with COPD [82], 

which, as pointed out by Mohan and colleagues [83], is much less than the prevalence 

of certain co-occurring diseases. Furthermore, several recent studies discarded the 

link between low-grade systemic inflammation and cardiovascular or muscle 

manifestations in COPD [50, 83, 84], indicating that inflammation is unlikely to be the 

only factor relating these manifestations. Therefore, investigating underlying 

mechanisms and pathways shared by COPD, comorbidities and systemic effects [85] is 
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needed and should lead to better characterization of the disease and likely will have 

relevant implications on patient management [86]. 

Another major challenge is the descriptive nature of current classification of non-

pulmonary manifestations in COPD. There is a marked confusion among systemic 

effects, complications and comorbidities. For example, is anxiety-depression a 

systemic effect, a COPD complication or a co-morbid condition? We lack knowledge 

on how comorbidities develop and interact with COPD and with each other, 

concerning the patients’ wellbeing and survival. This indicates the need for a better 

understanding of these factors including gaining insight into the causal links between 

COPD and its comorbidities, which would require both a population level view of 

disease co-occurrence and molecular level evidences on the shared molecular 

mechanisms. 

Finally, current tools for predicting disease severity have not yet been fully validated, 

while others have shown relatively low performance, suggesting the need for novel 

strategies for risk assessment and service selection including cost-effective strategies 

to prevent and stop spread of comorbidities in patients with COPD [73]. 

Overall, there is a strong rationale for a systems approach in COPD research, i.e. 

understanding the disease with all its components rather than concentrating only on 

the pulmonary axis. A better understanding of COPD heterogeneity [87] should permit 

the development and implementation of personalised therapeutic strategies that are 

specific to subgroups of patients, as well as the development of novel therapies [88], 

leading to a significant decrease of disease burden.  

In summary, current COPD care is in great need of innovative approaches that help to 

overcome the long-running stagnation of this field. Better characterization of disease 

severity, novel tools for patient classification and prediction of survival and other 

health related outcomes, as well as novel therapies, are necessary to enhance COPD 

care and to progress towards a subject-specific risk prediction and stratification for 

personalized management of patients [65, 89]. 

1.3 SYNERGY-COPD: A SYSTEMS MEDICINE APPROACH TO COPD HETEROGENEITY 

Synergy-COPD (2011-2014) [90] was a European Union project within the Virtual 

Physiological Human call of the 7th Framework programme (FP7-ICT-270086) tackling 

the main challenges of current COPD care. The unsuccessful attempts of traditional 

clinical approaches to answer the major questions regarding COPD heterogeneity were 

major motivations for Synergy-COPD to consider a holistic approach of the disease, 

focusing on non-pulmonary effects and their underlying mechanisms. The central 
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biomedical hypothesis of the project was that COPD heterogeneities cannot be solely 

explained by the activity of pulmonary disease and that abnormalities in co-regulation 

of core metabolic pathways (bioenergetics, inflammation, tissue remodelling, oxidative 

stress) at systemic level might also play a key role on both systemic effects of COPD 

and comorbidity clustering. The main biological objective of the project was to 

characterize two specific aspects of COPD heterogeneity, namely i) understand the 

mechanisms of a specific systemic effect of COPD, i.e. skeletal muscle dysfunction 

that is widely accepted to be provoked by COPD; and ii) analyse comorbidity clustering 

observed in patients with COPD.  

The systems approach of the project aimed to use computer-based modelling 

techniques and to create an integrated environment that enables the seamless 

communication of novel biological knowledge into clinical practice, as well as the 

dynamic collection and update of data for biological research (Figure 6). The design of 

Synergy-COPD was based on the interaction among four main components: i) the 

COPD knowledge base (COPDkb); ii) a simulation environment for computational 

modelling; iii) clinical decision support systems (CDSS); and iv) an adaptive case 

management system for integrated care of complex chronic patients.  

Figure 6. Schematic diagram of the Synergy-COPD project design. The design of 
Synergy-COPD was based on the interaction among four main components: i) a 
knowledge management system filled with data from clinical studies on COPD and 
related conditions, and publicly available data sources; ii) a simulation environment 
for computational/in-silico modelling; iii) rules generated using the computational 
models that can drive clinical decision systems (CDSS); and iv) an adaptive case 
management approach for integrated care of complex chronic patients. 
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The project aimed to contribute to each of these components by: i) developing and 

filling the COPDkb using clinical studies and publicly available data sources (e.g. 

genetic databases, pathways databases, etc.) as well as to enrich its functionalities with 

tools that can help to create biological models; ii) develop in-silico models to explore 

the main biomedical questions of the project; and, ultimately, iii) use in-silico 

validated computational models to feed CDSS for enhanced individual health risk 

assessment and stratification, leading to innovative patient management strategies. 

Synergy-COPD aimed to explore a wide spectrum of modelling techniques, including 

mechanistic and probabilistic modelling, as well as hybrid models combining these two 

approaches (discussed in detail in the “Current modelling approaches in systems 

medicine” section of the thesis). 

Core aspects of the project design and specific parts of it have been reported in the 

Synergy monograph  [61, 91–94].  

From outcomes and challenges to new research directions 

During the lifetime of the project (2011-2014), significant outcomes were generated, as 

well as challenges and barriers of the project were identified. Worth to mention that 

the contribution of the PhD candidate to the Synergy-COPD project started with a 

research protocol carried out in the frame of the BioHealth Computing Erasmus 

Mundus master course in 2013. At this time the project had been already running for 2 

years and thus several challenges were identified that provided the core research 

directions for this PhD thesis. Some of these main challenges are summarised below. 

First, early modelling efforts of the project indicated the need for further research on 

the molecular mechanisms of skeletal muscle dysfunction. Some of the challenges 

were faced when trying to integrate models at different scales for more accurate 

predictions. Other modelling challenges were related to newly available measurement 

data that required an analysis pipeline that can integrate data coming from different 

compartments (i.e. blood, muscle) and of different measurement type (i.e. 

transcriptomics, various metabolic measures, clinical measures, etc.). Second, registry 

data based analysis of comorbidity clustering indicated need for the validation of the 

results on an independent population. During the project, efforts in this direction 

were mainly hindered by data harmonization issues due to differences between 

disease coding versions of the International Classification of Diseases (ICD) used in 

different healthcare systems (i.e. USA; Sweden and Spain). The validation of the results 

using the same medical coding was identified as central need to prove the high impact 

of the findings 
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2. MULTIMORBIDITY RESEARCH ROADMAP 

The evolving scenario of multimorbidity outlines a general roadmap that should 

facilitate comprehensive characterization of disease relations (Figure 7). In this 

context, population-health and systems medicine approaches are key for the proper 

understanding of the common mechanisms of comorbid conditions.  

Population-health approaches show exciting potential to explore population-wide 

patterns of disease associations and temporal disease progression, however, their true 

potential is currently limited by investigating diseases on the phenotype level. Disease 

classification relying on disease endotypes should lead to efficient retrieval of 

accurate disease comorbidity maps and help to identify causative effects amongst 

comorbid diseases and risk factors. In turn these maps should guide molecular 

research to explore the underlying cause of the interactions and finally to target the 

shared mechanisms that should allow for: i) better early case identification; ii) 

definition of better preventive strategies; and iii) to explore novel therapeutic 

approaches.  

This multimorbidity research roadmap highlights three main fields that are 

indispensable for its successful implementation, namely: i) assessment of the 

multimorbidity dynamics, ii) systems medicine tools that can streamline biomedical 

research results into clinical knowledge; and iii) health risk assessment and 

stratification tools to support clinical decisions. The upcoming three sections 

summarize the state of the art and the main challenges of these fields that support the 

understanding of the work done in the PhD thesis. 
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Figure 7. Multimorbidity research roadmap. Main steps that facilitate the 
comprehensive characterization of disease relations and their transfer to healthcare. 
Endotype-based disease subtypes should enable an accurate global view of disease 
relations, guiding molecular research to uncover mechanisms that can be targeted by 
novel therapies and pharmacological interventions and could lead to personalized 
health risk assessment. All of the stages of the pyramid are currently co-existing 
approaches, however their combined use shall contribute to the acceleration of 
multimorbidity research and knowledge transfer to healthcare. 

2.1 ASSESSING DYNAMIC COMORBIDITY RELATIONS 

Some of the main challenges regarding the assessment of comorbidity relations lie in 

the lack of clear boundaries between diseases (e.g. spectrum of obstructive pulmonary 

diseases) and their diverse molecular background, indicating that analysis of their 

relationships requires further studies taking into consideration several dimensions. 

For example, from a molecular perspective, a pair of diseases can be related because 

they both have been associated with the same genetic or metabolic problem; whereas, 

from an epidemiological perspective, diseases can be related when they affect the 

same individuals substantially more often than expected by chance alone. State of the 

art research on disease co-occurrence is aiming to quantify and identify comorbidities 

with two main strategies: i) mechanism-based analysis of disease co-occurrence; and, 

ii) phenotype-based analysis of disease co-occurrence (Cross-sectional disease maps

and Temporal disease trajectories). 
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Mechanism-based analysis of disease co-occurrence  

The ultimate aim of biomedical research is to decipher the molecular mechanisms that 

are driving diseases and can help to find points of interventions, potentially driving the 

system back to its normal behaviour or slow disease progression. When looking at 

comorbid diseases, there is further potential to find mechanisms that drive the 

emergence of several comorbidities. Recently, the disease module hypothesis opened 

new avenues in comorbidity research and several works have assessed comorbidity 

relation based on shared molecular traits of diseases. For example, Goh et al. created 

a network of Mendelian gene-disease associations by connecting diseases that have 

been associated with mutation in the same genes [6], whereas Lee et al. constructed a 

network in which two diseases are linked if mutated enzymes associated with them 

catalyse adjacent metabolic reactions [7]. Lately, Menche et. al. also showed that the 

distance of disease modules in the interactome has a strong influence on comorbidity 

relations, such that diseases with modules situated closer in the interactome have 

higher risk of showing phenotype-based comorbid relation than the ones situated 

further away, as well closer diseases showed higher similarity in terms of symptoms, 

expressed genes and associated biological function [4]. Uncovering mechanism-based 

comorbidity has huge potential and can lead to the discovery of novel drug targets, 

development of new therapies and enhance clinical decision making.  

Phenotype-based analysis of disease co-occurrence  

Access to well annotated national registry data sources recently opened new avenues 

to analyse disease occurrence and disease progression on a population level, 

permitting unbiased study designs for the analysis of the relation of all diseases 

enlisted in registries. Based on the observation that diseases with shared molecular 

mechanisms have direct epidemiological consequences [4, 36], disease phenotype-

based methods are powerful tools to define the comorbidity relation of disease pairs. 

The phenotype-based approaches define the existence of comorbidity relationship if 

two diseases co-occur more often than it would be expected only by chance.  

Cross-sectional disease maps have emerged as an early use of these approaches, such 

as the work of Hidalgo and colleagues [3], that represented pair-wise comorbidities, 

measured by relative risk and binary correlation, as a disease map. This representation, 

in fact, allows for the identification of specific comorbidity patterns that occur in the 

population. The strength of co-occurrence-based comorbidity relies in highlighting 

diseases that affect large populations and that potentially share common molecular 

mechanisms.  
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From the temporal point of view, comorbidities can have different manifestations, 

which need to be taken into account when assigning treatment or assessing the risks 

of a patient. One thing to consider is that comorbidities can appear one after each 

other or occur within a given period of time without being simultaneously present at 

any given time point [37]. The sequence in which the comorbidities appear may also 

have special importance, e.g. the treatment may be very different for a patient with 

depression who is newly diagnosed with COPD and a patient being diagnose with COPD 

first and then with depression. Earlier approaches to research such time-critical 

disease associations followed hypothesis-driven designs, where a selected index-

disease is compared against other comorbid conditions. Access to well annotated 

national registry data sources recently opened new avenues to population level analysis 

of disease progression.  

Earlier data-driven studies using network-approach showed potential for exploring 

temporal and non-temporal patterns of comorbidities in elderly patients [3] and their 

change over age groups [95]. However, these studies considered relatively short 

periods of time (1-3 years), reducing the possibility of observing the development of 

novel diagnoses. Recent studies aimed to address this problem, for example Jensen et 

al. analysed 14.9 years of registry data to identify temporal disease trajectories, 

defined as ordered series of diagnoses observed in a patient [5]. Five main trajectory 

patterns were identified, from which the one centred on COPD is shown in Figure 8. 

Although the introduced methodology cannot be used to conclude causative effects 

due to possible confounding factors, it can inform on possible directions of 

progression of the disease, which may be used to predict future disease outcomes. 

Similar methodology showed potential in predicting mortality in sepsis patients and 

indicated the potential to incorporate trajectory based risk into clinical mortality risk 

scores [96]. All in all, temporal diagnosis trajectories reassure the existence of patterns 

in the sequence of developing comorbid conditions.  
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Figure 8. COPD disease trajectory. The result of the analysis of Jensen et al. [5], 
showing the COPD cluster with five preceding diagnoses leading to COPD and some 
of the possible following diagnoses. 

 

To summarize, the current state of the art indicates that diseases progress and co-

occur according to the dynamics of underlying molecular mechanisms. Further 

research however is needed to elaborate on specific disease relations and point out 

actionable factors and specific uses of these approaches. 

2.2 CURRENT MODELLING APPROACHES IN SYSTEMS MEDICINE 

Due to the complexity of the interactions of biological systems, computational and 

mathematical modelling has become part of the common toolbox of systems biology 

research. Over the years, several modelling approaches have emerged but in general it 

can be summarized by two main strategies: mechanistic, knowledge-based modelling 

approaches and probabilistic modelling and network analysis approaches.  

Mechanistic models are aiming to simulate the specific biological functions, often 

based on ordinary differential equations. Used in conjunction with quantitative 

experimental data, such models are powerful tools for understanding systems 

dynamics. Their simulations provide quantitative and temporal predictions, which can 

be crucial for understanding biological processes. Wide variety of tools and mature 

simulation environments are available to create such models and simulate their 

behaviour [97]. A limiting factor in the application of such models is that they often 
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need deep understanding of the phenomena that they model. Any given model only 

works with few, but very specific, parameters, whose quality strongly influence the 

results of the simulation. These factors and the advancement of high throughput 

‘omics’ measurements, producing thousands of data points per experiment (e.g. 

Affymetrix Human U133 Plus2 Gene Chip can measure over 47,000 transcripts per 

sample), led to high demand for tools that can handle large quantity of data and filter 

out biologically important details.  

Probabilistic modelling and network analysis tools concentrates on quantifying the 

interaction of biological entities and in the interaction network detect communities 

that play key role in the studied biological function or disease. Functional analysis of 

these entities can be used to characterize processes involved in diseases and reveal 

molecular abnormalities. Besides, they can be used as feature extraction tools to be 

further processed with machine learning algorithms and predict disease related risks. 

Due to their importance and wide use, this approach is further discussed in the next 

sections. 

The combination of different modelling approaches is also a promising field of 

research. In theory, using the top-down approach of network analysis models to 

retrieve specific functional blocs in a manner that it can be subjected to mechanistic 

modelling can lead to systems of models simulating the behaviour of a cell, tissue, 

organ or even a human being. Despite the complexity of this approach, there are 

several methodological attempts [97], as well as several projects aiming to address this 

need, such as the ones under the Virtual Physiological Human topic of the 7th 

Framework Programme of the European Commission [98].  

Probabilistic modelling and network analysis: finding biological function in molecular 

data 

To study biological function, molecular biology for long relies on reverse engineering 

cellular processes by perturbing biological systems, i.e. removing or changing 

molecular entities one-by-one and examining their effect on the system. Traditionally, 

deciphered molecular functions are organized into canonical pathways: a series of 

interactions among molecules in a cell that leads to a certain product or a change in a 

cell, depicted in network diagrams. A wide variety of resources are available to browse 

pathways (e.g. KEGG [99], Reactome [100], WikiPathways [101]), which are most often 

used in conjunction with gene set enrichment tools to analyse lists of genes derived 

from experimental setups (e.g. Enrichr [102, 103], DAVID [104]) (see Figure 9).  
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Early gene expression analysis pipelines consisted of two main steps: i) derive 

differentially expressed genes from the comparison of case-control profiles and then 

(ii) use enrichment tools to find pathways, in which the differentially expressed genes 

represented in greater number than it would be expected by chance. These gene 

expression analyses however showed quite discouraging results in terms of 

reproducibility and comprehensibility. While enrichment tools are still broadly used to 

derive functional insight to gene lists, main limitations have been identified, namely: i) 

the use of canonical pathway for functional annotation, ii) the raw use of differentially 

expressed profiles, and iii) noisy experimental techniques and pipelines that recent 

techniques are trying to address. 

Main limitation of canonical pathway resources is owing to two main factors: i) they 

are mostly derived from hypothesis-driven experiments collected in exceedingly 

diverse contexts, encompassing a large variety of experimental conditions (e.g. 

different species, cell types/tissues, diseases) and/or in-vitro models, therefore they 

represent generalized pathways, i.e. they lack specificity to any tissues, diseases, etc. 

[105, 106]; and, ii) they represent cell functions as separate entities that are shown to 

be much more interrelated than this traditional representation [107, 108]. Two main 

approaches emerged to address these limitations. One of them concentrates on the 

enhanced representation of available knowledge and, the other focuses on data-

driven recreation of pathways. 

The knowledge-driven approach aims to integrate various molecular resources and 

create high-quality and expert community-driven conceptual representation of 

mechanisms specific to a disease, in a machine-readable manner. Following such an 

approach, the Disease Map community constructed maps for cancer signalling [109], 

Alzheimer’s [110, 111], Parkinson’s [12] and influenza [112] and showed possible use cases 

for these enhanced pathways. In fact, some knowledge-driven approaches could be 

viewed as the next step of data driven investigations that is needed for the 

consolidation of their results. 

The data driven approach concentrates on recreating pathways from single 

measurements that ensures their specificity to the experimental context, i.e. disease 

or tissue. Thanks to recent breakthroughs in high-throughput experimental methods 

(e.g. microarray, RNA-seq for transcriptional measurements, yeast 2-hybrid methods 

for measurement of protein-protein interactions), there is an increasing interest in 

these approaches. Due to the strongly specific biological processes (i.e. tissue specific 

processes, disease specific processes, environment- and genotype specific 

processes), dynamic pathway reconstruction comes with a great promise to facilitate 
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personalized medicine [113]. In recent years, two main approaches seem to dominate 

this field [114] (Figure 9):  

 Interaction network-based module identification methods. These methods 

concentrate on finding neighbourhoods of interacting molecules that 

represent functional and disease related mechanisms. Experimental data (i.e. 

expression profile of genes in a cell/tissue) is often used in conjunction with a 

network of physical interaction of gene products to identify modules that show 

different expression profile compared to a control condition [115].  

 Network inference methods, based on solely experimental data, aim to infer 

gene regulatory network (GRN) using correlation and other information theory 

methods [97, 116, 117]. Consequently, they can infer logical relations of non-

interacting genes, which can be especially important to identify the regulatory 

relationships and/or interactions between biological components. 

These methodologies, while representing different approaches, can be used in a 

complementary manner as they study different aspects of cell mechanisms, as well as 

one can reassure the findings of the other.  

 

 
Figure 9. Main approaches to analyse genomic data. Canonical pathway enrichment 
analysis tests the statistical enrichment of pathways elements in gene lists. Network 
inference tools aim to recreate gene regulatory networks based on the correlation of 
measured expression levels. Module identification methods use interaction networks 
(e.g. PPI, metabolic, etc.) and measured expression levels to identify active 
communities. 
 

Whereas in the frame of the Synergy-COPD project there were intentions to integrate 

all the above modelling techniques (mechanistic, network-based and GRN), the 

current PhD thesis mainly concentrates on the use of interaction networks. This 

decision was mainly based on the robust properties of this approach, i.e. it uses a 

fixed, functionally organized map of biological interactions, which works well for 

filtering random noise [118] that is especially important when using noisy biological 
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measurements, such as microarray data, as well as when working with low sample sizes 

that usually characterize clinical studies.  

Major criticisms of this approach are based on the incompleteness of currently 

available interaction networks, which is a possible source of false discoveries and 

could lead to omitting valuable information. Whereas these points are arguably true, 

recent results points out that these effects are minor compared to the potentials of 

these methods and proving their potential for systemic studies of disease mechanisms 

[119]. For these reasons interaction networks are described in detail in the next 

section.  

Module identification for personalized disease profiles 

Cellular organization is thought to be fundamentally modular [120, 121]. At the 

molecular level, modules are defined as groups of genes, gene products or metabolites 

that are functionally coordinated, physically interacting and/or co-regulated [36, 120–

122]. They are described as drivers of common biological processes, and as the 

functional building blocks of the cell [36, 120–122]. To create a complete map of 

biological modules, large networks of intermolecular interactions are being measured 

systematically for humans and many model species. Most attention is focused on 

protein-protein interaction (PPI) networks, whose nodes are proteins linked to each 

other via physical (binding) interactions [123, 124]. Such networks can also include 

protein–DNA physical interactions, metabolic pathways or even functional 

associations. These networks all together are often referred as the interactome [118].  

When integrating biological interactions, some very interesting properties emerge 

from the network structure. One property is the scale-free nature of biological 

networks, highlighting hub proteins that interact with more proteins than most of the 

nodes in the network and that have special biological role, i.e. they tend to be encoded 

by essential genes, they are more conserved proteins, they are more prone to have 

greater phenotypic effect than other proteins in the network, and they tend not to be 

tissue specific and disease related proteins  [6, 36].  

Another important property of biological networks is their modular structure. A 

module is a network substructure with densely connected nodes and sparser 

connections to other, non-module nodes. Such modules are often specialized for 

certain subtasks. Three types of modules are distinguished when looking at their 

context specificity. Topological modules represent densely connected neighbourhood 

in the network, based on purely topological measures. A functional module represents 

a community in the interactome that plays specific role in a cellular process, whereas 
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disease modules represent altered molecular processes that lead to the emergence of 

phenotypic signs of diseases. While topological models are hardcoded in the network, 

the latter two are dynamic structures in the network and depend largely on the 

interplay of the interactome with environmental factors.  

These concepts are connected by the local hypothesis, i.e. molecular elements 

involved in the same function or dysregulated by the same disease show high 

propensity to interact with each other [6, 36]. In this context, cellular components of 

a topological module have closely related functions, thus it approximates a functional 

module; and a disease is a result of alterations in a particular functional module, i.e.  a 

disease module is a disease specific manifestation of the functional module. A recent 

study has also demonstrated the validity of the local hypothesis on relations between 

disease modules. Menche and colleagues have shown that disease pairs with 

overlapping disease modules display significant molecular similarity, elevated co-

expression of their associated genes, and similar disease symptoms and high 

comorbidity, whereas non-overlapping ones lacked any detectable pathobiological 

relationships [4]. 

Numerous approaches have been developed based on these properties to mine such 

networks for identifying biological modules. Especially PPI networks are gaining 

increasing attention in the biomedical research field due to their ability to highlight 

complex cellular mechanisms [115, 125, 126]. Earlier methods concentrated on 

clustering proteins based on topological features of the network such as degree and 

betweenness centrality [127]. However integrative approaches are continuously gaining 

larger interest. One of the most successful integrative approaches has been to overlay 

networks with molecular profiles to identify ‘active modules’ [115]. Molecular profiles 

(i.e. transcriptomics, genomics, proteomics, epigenetics, etc.) capture dynamic and 

process-specific information that is correlated with cellular functions or disease 

states, complementing static interaction data, derived under a single experimental 

condition and representing a generalized state of a cell. Active modules or network 

hotspots are network regions showing marked changes in molecular activity (e.g. 

transcriptomic expression) or phenotypic signatures (e.g. mutational abundance) that 

are associated with a given cellular response [115, 128, 129]. By mapping differential 

network changes across conditions, these methods can inform on cellular rewiring 

happening between the studied conditions [43]. 

Many computational techniques have been developed that automate the large-scale 

identification of active modules in an unbiased manner. An exciting new technique in 

this field, often referred as diffusion-flow and network-propagation methods, aims 
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to simulate the spread of influence of protein activity (often modelled by gene 

differentially expression) to physical interaction partners [115]. For example, the 

HotNet2 algorithm is based on a modified heat diffusion model, where proteins 

function as heat sources and physical interactions amongst them are links where heat 

can diffuse, i.e. simulating the spread of the influence of each protein to its interaction 

partners. This algorithm has been shown to retrieve biologically more meaningful 

modules and has been successfully applied to characterize mutational profiles in 

various cancer types [130–132].  

In summary, the proliferation of ‘omics’ measurements, both in biological research 

and recently in the clinics, creates high demand for methodologies that can retrieve 

and analyse biologically important features from large amount of measurement data. 

In this context, network analysis is a promising framework with high potential for 

generalization and broad applicability. Further research, however is still needed to 

elaborate the potentials of these tools in generating knowledge that can be easily 

transferred to healthcare, for instance, for enhanced health risk assessment of patient 

with multimorbidity.  

2.3 HEALTH RISK ASSESSMENT AND SERVICE SELECTION 

Challenges of clinical decision in multimorbidity care 

Decision making in the clinical setting traditionally faces two types of challenges. On 

the one hand, current healthcare systems are reactive (i.e. aims to solve specific 

disease events, such as pneumonia or appendicitis on the backdrop of chronic 

diseases); as well as disease-centred (i.e. it targets the management of each health 

condition of a patient independently), leading to suboptimal treatment for patients 

with multiple, related chronic disease.  

On the other hand, the design and selection of appropriate therapeutic plans and 

services also constitutes a substantial challenge for multimorbid patients, for whom 

currently available interventions are rather limited in terms of actionable factors and 

show only limited improvement in clinical outcomes and health service use [35, 133].  

Clinical decisions are traditionally based on knowledge, general and field-specific, of 

the health professional, previous experience, as well as intuition. Lately, rule-based 

decision making, relying on robust medical evidence, often generated through 

randomized controlled trials, has also became an essential component of clinical 

decision making process.  



 

26 INTRODUCTION: 2. MULTIMORBIDITY RESEARCH ROADMAP 

 

These factors highlight the potential for a more patient-oriented healthcare, where 

patient care is integrated amongst healthcare tiers and that provide personalized and 

cost-effective preventive interventions to modulate disease progression. In recent 

years, health risk assessment and stratification strategies emerged as potential 

facilitator of these efforts. 

Health risk assessment and stratification for personalized medicine 

Patient-based health risk assessment – In the clinical management domain, risk 

prediction of well-defined medical problems aims to support health professionals in 

the decision making process for a given patient. The definition is valid for example for 

the process solving a clinical episode of pneumonia or exacerbation of a chronic 

disease, but also to define mid- or long-term action plans for chronic patients aiming 

at developing an optimal care plan.  

When considering one disease in a given patient, prognosis is essentially based on two 

main parameters: i) severity, defined as the degree of alteration of the organ/systems 

caused by the disease, which have an impact on the functional reserve; and, ii) activity, 

defined by the rate of progression of the disease. Appropriate markers of these two 

phenomena contribute to define both risk and prognosis of the patient which, in turn, 

facilitates his/her classification into risk strata; that is, patient stratification. 

Moreover, the combination of patient stratification and the identification of the 

disease end-points, or target outcomes, are the two key elements to define specific 

therapeutic strategies or action plans for the patient. The ultimate aim is to classify 

the patient in the appropriate health tier and identify the type of service that would 

allow optimization of healthcare provision. 

Population-based health risk assessment – Risk assessment in the health services 

domain is differentiated from individual clinical risk prediction in the sense that it 

examines patient risk in the context of the entire population of a geographical region. 

These tools are broadly used by policy makers and/or payers for service commissioning 

or other uses like risk adjustment analyses or actuarial approaches. However, these 

tools also show great potential to be applied in the healthcare arena. Population-based 

health risk assessment allows identification of subsets of citizens with similar 

healthcare requirements and thus facilitates both case finding and screening. The 

former, case finding, identifies highly vulnerable patients, allocated at the tip of the 

risk pyramid who are prone to major deleterious health events such as unplanned 

hospital admissions/re-admissions, fast functional decline and/or death [134, 135]. 

Likewise, performing screening for discovery of cases with non-manifest illnesses may 
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benefit from early diagnosis and cost-effective preventive interventions  [136]. 

Comprehensive descriptions of the characteristics of health risk predictive modelling 

and the logistics required for deployment are reported elsewhere [137–141].   

Current status and factors limiting evolution – However, real world healthcare settings 

face high levels of complexity that are imposing huge challenges, specifically on risk 

assessment and patient stratification for adequate service selection. Main 

determinants of such complexity are: i) patient heterogeneity with lack of appropriate 

biomarkers and/or insufficiently defined end-points of the disease; ii) co-existence of 

one main disease and several accompanying disorders (or co-morbidities), in some 

cases showing shared mechanisms that may explain comorbidity clustering [142]; iii) 

poor control on factors determining health status beyond the clinical scenario (socio-

demographics, biological and lifestyle related data); iv) patient health risk is a dynamic 

phenomenon with sometimes unexpected events that requires high levels of flexibility 

in terms of event-handling by the case manager in charge of the patient; and, v) 

fragmentation of healthcare services.  

While adoption of rule-based clinical decision support has made substantial 

progresses over the last years, the use of computational models for patient-based 

health risk predictive modelling to enhance clinical decision support is still in its 

infancy. Limitations of patient-based risk prediction revolve around three main 

factors. Firstly, there is a need for the enrichment of predictive modelling based on 

clinical information with other sources of multidisciplinary health data (i.e. informal 

care, population-health, biological data, etc.) obtained with a multilevel approach 

(Figure 10). A second factor is to ensure general applicability and transferability of 

current predictive tools, addressing specific clinical issues with a high predictive 

power, to other populations outside the source study groups. Last, but not least, there 

is a clear need to overcome limitations of use of risk factors as prognostic factors, as 

described in [143].  
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Figure 10. Patient-based health risk assessment is used as synonymous with 
enhanced clinical risk assessment, which adopts of a holistic approach that fosters 
inclusion of covariates from multilevel data sources, namely: i) clinical, ii) informal 
care; iii) biological research; and, iv) outcomes from population-health risk predictive 
modelling, resulting in enhanced patient-based stratification and optimization of 
service selection. This approach paves the way towards personalized medicine. 
Population-health risk predictive modelling includes all the citizens in a given 
geographical area 
 

Population-based health risk assessment relies on elaborated tools that are broadly 

implemented in some healthcare systems (e.g., CRGs, GMAs), however recent projects 

[73, 144, 145] identified several limiting factors of these tools, such as difficulties in the 

comparability and transferability of risk prediction tools amongst regions, as well as 

they identified evolving requirements for them such as: i) integration between 

healthcare and social services; and, ii) implementation of synergies between 

population-health and clinically oriented risk predictive modelling, as described in 

[73].  

Learning healthcare systems 

The implementation of the setting described above implies realization of a new health 

paradigm, i.e. the learning healthcare systems, recently described by the American 

Heart Association (AHA) [26]. In 2013, the Institute of Medicine reported Best Care and 

Lower Cost: The Path to Continuously Learning Health Care in America [26] wherein 

the concept of Learning Healthcare Systems (LHS) was formulated as a strategy to 

improve the quality and efficiency of healthcare. A recent document generated by the 

AHA [26] further develops the concept of LHS and proposes specific steps to make it 

operational and evaluate its implementation, see Table 2 in [26].  
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Briefly, LHS uses health information technology and the health data infrastructure to 

apply scientific evidence at the point of clinical care while simultaneously collecting 

insights from that care to promote innovation in optimal healthcare delivery and to 

fuel new scientific discovery [26]. Such a system creates an iterative learning process 

where evidence informs practice and practice informs evidence (Figure 11).  

The main goal of LHS is to facilitate an optimal care decision and delivery by reducing 

the complexity of the massive amount of clinical data that’s being produced every day 

and to improve efficiency of health outcomes both in terms of well-being and 

expenditures. The LHS relies on the availability of health-related data and tools that 

process it, such as predictive modelling and clinical decision support contributing to 

the acceleration of evidence diffusion to practice, help to identify gaps in care and to 

target interventions to appropriate population.  

Main technical building blocks of such a system are data availability, predictive 

modelling, service selection and clinical decision support systems. Data is key because 

it provides the continuous feedback from the practice, while predictive modelling 

processes and extracts important information from the produced data. Computed 

patient risk then can be used to stratify patients to intervention groups that help in 

the optimal service selection for the patient. 

 
Figure 11. Basic traits of a Learning Healthcare System (LHS). It constitutes an 
organizational concept technologically supported by the Digital Health Framework. 
The LHS fosters generation of scientifically-based evidence and speed-up its 
applicability into healthcare. Regarding health risk predictive modelling, it shall allow 
inclusion of covariates from multilevel data sources which should enhance model 
robustness and eventually transferability feeding clinical decision support systems 
(CDSS) for appropriate integrated care service selection.   
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3. SUMMARY OF THE INTRODUCTION 

The epidemics of non-communicable diseases and the need for cost-containment in 

healthcare are clearly indicating that the current approach for care delivery needs to 

be profoundly reshaped. On the one hand, personalized medicine is essential for 

achieving better health outcomes and optimal resource allocation. On the other hand, 

the burden of multimorbid conditions on healthcare and patient lives strongly 

questions the single disease approach followed by contemporary clinical practice and 

suggests the need for novel strategies concentrating on multimorbidity prevention and 

treatment. 

The emergence of novel biomedical technologies and related methods in systems 

medicine outline novel strategies for mechanism-based approach to diseases. In this 

context, identifying specific biological mechanisms underlying a disease and that 

potentially lead to the emergence of other diseases constitute major actions to 

achieve current healthcare goals, alluded to above. 

Furthermore, access to population wide registries and other patient related 

multidisciplinary data sources opens new avenues in data driven analysis of diseases. 

Population-wide patterns of disease co-occurrences can facilitate the 

characterisation of disease interactions for the better understanding of the 

comorbidity challenge. Furthermore, these resources show a key role in enhancing 

health risk assessment and patient stratification facilitating decision in the clinical 

practice in general and personalised service selection in particular. 

Synergy-COPD, based on the current challenges of COPD care, envisioned an 

integrated environment to facilitate the systemic study of chronic diseases and the 

seamless communication of results into clinical practice. The work of the current PhD 

thesis was based on the foundations of this project, as well as develops on its vision 

answering challenges identified during the project lifetime. 
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HYPOTHESIS 

The central hypothesis of the PhD thesis builds on the emerging biological evidence 

that clustering of comorbid conditions, a phenomenon seen in complex chronic 

patients, could be due to shared abnormalities in relevant biological pathways (i.e. 

bioenergetics, inflammation and tissue remodelling). It is assumed that a systems 

understanding of the patient conditions may help to uncover the molecular 

mechanisms and lead to the design of preventive and targeted therapeutic strategies 

aiming at modulating patient prognosis.  

The PhD thesis focuses on non-pulmonary phenomena of COPD (i.e., systemic effects 

and comorbidities) often observed in patients with COPD, as a paradigm of complex 

chronic disease. 

 

MAIN OBJECTIVES  

The general objective of the PhD thesis is threefold: i) to investigate molecular 

disturbances at body systems level that may lead to a better understanding of 

characteristic systemic effects and comorbidities of patients with COPD; ii) to analyse 

population level patterns of COPD comorbidities and investigate their role in the 

health risk of patients with COPD; and, iii) to explore technological strategies and tools 

that facilitate the transfer of the collected knowledge on comorbidity into clinical 

practice. 

More specifically, the objectives of this work are: 

OBJECTIVE 1 – ANALYSE THE MECHANISMS OF SKELETAL MUSCLE DYSFUNCTION IN 
PATIENTS WITH COPD  

Rationale: Skeletal muscle dysfunction is a systemic effect of COPD with prominent 

negative impact on prognosis. Due to the multifactorial nature of the condition, its 

underlying mechanisms are still unclear, hindering the development of novel 

preventive and therapeutic strategies. Systemic approaches with the aim of 

uncovering underlying network dynamics show potential to point out relevant 

biological pathways that drives abnormal conditions. 

Objective: The thesis aims: i) to develop a modelling tool to facilitate the integration 

of existing biological models for enhanced prediction of oxidative stress in the skeletal 
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muscle of patients with COPD (Manuscript 1); and, ii) to explore the underlying 

mechanisms of skeletal muscle dysfunction in patients with COPD, before and after 

exercise training, by assessing transcriptionally active network modules (Manuscript 

2). 

 

Manuscript 1 

Tényi Á, de Atauri P, Gomez-Cabrero D, Cano I, Clarke K, Falciani F, Cascante M, Roca 

J, Maier D. ChainRank, a chain prioritisation method for contextualisation of biological 

networks. BMC Bioinformatics 2016; 17: 17. 

Manuscript 2  

Tényi Á, Cano I, Marabita F, Kiani N, Kalko SG, Barreiro E, de Atauri P, Cascante M, 

Gomez-Cabrero D, Roca J. Network modules uncover mechanisms of skeletal muscle 

dysfunction in COPD patients. J. Transl. Med. BioMed Central; 2018; 16: 34. 

OBJECTIVE 2 – ANALYSE MULTIMORBIDITY RISK IN PATIENTS WITH COPD 

Rationale:  Recent publication, using the Medicare (US) registries, showed increased 

risk in COPD to develop comorbid conditions compared to non-COPD population. 

These findings, in accordance with common comorbidity patterns, highlight the 

potential role of multimorbidity as a health risk factor with potential use in 

personalised health risk assessment. 

Objective: The thesis aims to elucidate the role of comorbid conditions in the health 

risk of patient with COPD in Catalonia (ES), with a two-fold objective: i) to assess the 

comorbidity risk of patients with COPD in Catalonia (Manuscript 3); and, ii) to analyse 

the burden of multimorbidity and its effect on adverse hospitalization related events 

in patients with COPD with a population-health analysis (Manuscript 4).  

 

Manuscript 3 

Tényi Á, Vela E, Cano I, Cleries M, Monterde D, Gomez-Cabrero D and Roca J. Risk and 

temporal order of disease diagnosis of comorbidities in patients with COPD: a 

population health perspective. BMJ Open Respiratory Research British Medical Journal 

Publishing Group; 2018; 0: e000302. 
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Manuscript 4 

Vela E, Tényi Á, Cano I, Monterde D, Cleries M, Garcia-Altes A, Hernandez C, Escarrabill 

J, Roca J. Population-based analysis of patients with COPD in Catalonia: a cohort study 

with implications for clinical management. BMJ Open British Medical Journal 

Publishing Group; 2018; 8: e017283. 

OBJECTIVE 3 – ESTABLISH A NEW PERSPECTIVE ON COPD NON-PULMONARY 
EFFECTS AND FACILITATE KNOWLEDGE TRANSFER TO HEALTHCARE 

Rationale: Current standard of care recommendations for COPD concentrates mostly 

on pulmonary events of the disease, while non-pulmonary effects are given suboptimal 

consideration in the assessment and management of the disease. Meanwhile, the 

increasing amount of health-related data being generated in different tiers of 

healthcare, i.e. formal care, informal care and biomedical research, bears with great 

potential to revolutionize healthcare and facilitate personalized health risk prediction 

and stratification for better assessment and management of diseases. 

Objective: The thesis aims to summarize consolidated outcomes on the role of non-

pulmonary effects in COPD heterogeneity, as addressed in the three main biomedical 

dimensions of the Synergy-COPD project (Manuscript 5): i) Skeletal muscle dysfunction 

as a systemic effect of COPD; ii) Comorbidities; and, iii) Proposals for enhanced 

transfer of knowledge into clinical practice. Furthermore, the thesis aims to revise the 

main determinants of knowledge transfer into healthcare and opportunities of Big Data 

analytics in the health area (Manuscript 6). 

 

Manuscript 5 

Cano I, Gomez-Cabrero D, Tényi Á, Jesper Tegner, Wagner P, Maier D, Miralles F, 

Cascante M, and Roca J. Non-pulmonary manifestations of Chronic Obstructive 

Pulmonary Disease: mechanisms, risk assessment and clinical management. Submitted 

to Respiratory Research – April 2018. 

Manuscript 6 

Cano I, Tényi Á, Vela E, Miralles F, Roca J. Perspectives on Big Data applications of 

health information. Curr. Opin. Syst. Biol. 2017; 3: 36–42. 
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MANUSCRIPT 1: CHAINRANK, A CHAIN PRIORITISATION METHOD FOR 
CONTEXTUALISATION OF BIOLOGICAL NETWORKS.  

 

 

 

Tényi Á, de Atauri P, Gomez-Cabrero D, Cano I, Clarke K, Falciani F, Cascante M, Roca 

J, Maier D. ChainRank, a chain prioritisation method for contextualisation of biological 

networks. BMC Bioinformatics 2016; 17: 17. 
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ChainRank, a chain prioritisation method
for contextualisation of biological networks
Ákos Tényi1,4*, Pedro de Atauri1,2, David Gomez-Cabrero3, Isaac Cano1,4, Kim Clarke5, Francesco Falciani5,
Marta Cascante1,2*, Josep Roca1,4 and Dieter Maier6

Abstract

Background: Advances in high throughput technologies and growth of biomedical knowledge have contributed
to an exponential increase in associative data. These data can be represented in the form of complex networks of
biological associations, which are suitable for systems analyses. However, these networks usually lack both, context
specificity in time and space as well as the distinctive borders, which are usually assigned in the classical pathway
view of molecular events (e.g. signal transduction). This complexity and high interconnectedness call for automated
techniques that can identify smaller targeted subnetworks specific to a given research context (e.g. a disease scenario).

Results: Our method, named ChainRank, finds relevant subnetworks by identifying and scoring chains of interactions
that link specific network components. Scores can be generated from integrating multiple general and context specific
measures (e.g. experimental molecular data from expression to proteomics and metabolomics, literature evidence,
network topology). The performance of the novel ChainRank method was evaluated on recreating selected signalling
pathways from a human protein interaction network. Specifically, we recreated skeletal muscle specific signaling
networks in healthy and chronic obstructive pulmonary disease (COPD) contexts. The analysis showed that ChainRank
can identify main mediators of context specific molecular signalling. An improvement of up to factor 2.5 was shown in
the precision of finding proteins of the recreated pathways compared to random simulation.

Conclusions: ChainRank provides a framework, which can integrate several user-defined scores and evaluate their
combined effect on ranking interaction chains linking input data sets. It can be used to contextualise networks,
identify signaling and regulatory path amongst targeted genes or to analyse synthetic lethality in the context of
anticancer therapy. ChainRank is implemented in R programming language and freely available at https://
github.com/atenyi/ChainRank.

Keywords: Biological networks, Protein-protein interaction, Data integration, Filtering, Computational biology,
Bioinformatics, Systems biology, COPD

Background
Canonical pathways are widely used tools to represent
signal transduction and molecular networks. They generally
rely on literature-based information, mostly derived from
hypothesis-driven experiments collected in exceedingly di-
verse contexts, encompassing a large variety of experimen-
tal conditions (e.g. different species, cell-types/tissues,
diseases) and/or in-vitro models. Multiple layers of in-
formation (e.g. direction of a signalling event, type of

interactions or cartoon graphics) make literature-based
pathways a highly accepted and convenient source of
information in biological research. However, the emer-
gence of high-throughput technologies has shown several
limitations of the approach.
By incorporating non-hypothesis based interactions,

high-throughput methods have revealed many previously
unrecognised pathway components [1–3]. Moreover, dif-
ferent studies have shown high interconnectedness of
signalling pathways indicating larger complexity than the
conventional separate representation of molecular events
[4, 5]. Furthermore an increasing amount of evidence
suggests the dependence of biological, cellular and disease
outcomes on the complex of interactions between genes,
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proteins and other molecules [6] which is rarely addressed
in pathway databases. Consequently, it is currently appar-
ent that the classical pathway approach is too simplistic to
properly describe complex cellular events [7–9].
With advances in high-throughput technologies an in-

creasing number of genome scale association data be-
came available. This scenario facilitates the construction
of data-driven biological networks, integrating experimen-
tal data, e.g. on protein-protein interactions (PPI), gene
regulation and metabolic interactions, offering a systems
approach to model molecular events [10]. However, these
networks are too large for human interpretation and their
context specific origin is often unaccounted in databases.
Therefore, filtering these networks and identifying subnet-
works that are important in a certain context (e.g. disease/
health, tissue/cell) are major challenges that make up an
active field of research.
An appealing approach for relevant subnetwork identi-

fication is to model the flow of biological information
(e.g. cell signalling) using chains of interactions. In the
case of protein signalling this means that every protein
in a chain can modify the consequent protein, transmitting
a biological signal (the alternative term “path” is avoided
here to prevent confusion with signalling pathways). Mul-
tiple alternative chains which allow to traverse from a start
to an endpoint may exist within a network. Following this
logic Scott et al. [11] successfully developed an algorithm
to identify protein signalling cascades in a protein network
for pathway discovery purposes. They used interaction
reliability and functional enrichment based scoring to
calculate the significance of the chains. They showed
that this technique has a potential in recovering known
pathways in yeast, however, their algorithm lack context
specificity and is not publicly available. Other method-
ologies use gene expression data to get more context spe-
cific results. Teku et al. [12] developed a filtering method
to identify a core T cell network using the immunome
interactome. They used a co-expression based weight-
ing of the interaction network to compute the signifi-
cance of the links. However, expression based specificity is
not the only factor defining the importance of a protein
in an added context. Functional module identification
methods based on topological structures of unweighted
PPI networks are another active area of research. For
example lately, Liekens et al. [13] introduced a solely
network based methodology for gene prioritisation
using an integrated interaction network. According to
the assessment of the authors, this method, despite its
exclusively topology based search algorithm, was re-
ported to outperform earlier gene prioritisation algo-
rithms based on data fusion of heterogeneous data
sources [13]. Recent reviews on pathway discovery ap-
proaches provide further examples for the interested
readers [14, 15].

Here, we present ChainRank, an enhanced search and
prioritisation tool that allows combining multiple bio-
logical evidences (e.g. topology, experimental molecular
data from expression to proteomics and metabolomics,
literature evidence, meta-analysis results, phenotype as-
sociation) as scores. Similarly to the work of Scott et al.
[11], our method uses a chain based network search al-
gorithm to retrieve chains linking user defined start and
end nodes, e.g. biomarkers associated with a disease
state. In this work, we show that combining different
context specific and topological scores together with a
chain based search approach that simulates real inter-
action mechanisms – instead of focusing on individual
biological elements or their associations – can improve
the prediction of underlying pathway mechanisms. We
introduce a framework over the search algorithm that
can incorporate multiple user defined scores and thus is
able to contextualize search results to e.g. disease states
or tissues. Furthermore, we show that this framework
can evaluate the combined effect of these scores to simu-
late complex phenotypes, e.g. tissue specific effects of a
certain disease. According to our knowledge this is the
first method relying on a chain based approach that is able
to incorporate various scores and combine them and this
is the first study showing the effect of combining different
scores.
To assess ChainRank, we evaluated three scores (topo-

logical, tissue specific and disease state specific) to pri-
oritise chains within a PPI network and evaluate them
against known gold standard signalling pathways. We
focused our analysis on muscle dysfunctions in chronic
obstructive pulmonary disease (COPD) because of its
specificity to a distinctive tissue, and also because of its
clinical relevance. We introduce two complex, biologically
motivated scores that we created integrating multiple dif-
ferential expression studies as well as expression, protein
and metabolite data to describe tissue- and disease wise
importance of the network proteins. We also present a
score describing topological importance and show the
combined effects of the developed scores. Evaluating the
precision and recall of finding gold standard (GS) proteins
in our top scoring results, we show a considerable increase
in precision with comparably good recall rate, compared
to a simulated random scoring. Furthermore we show that
combining different scores can further improve the per-
formance of the prioritisation. The results demonstrate
that our method can effectively identify pathway elements
in a context specific manner. Potential use cases are the
identification of disease specific networks, assessment of
pathway interactions, simulation of the spread of perturb-
ing effects amongst networks (mode-of-actions) and the
elucidation of mechanistic relations between biomarkers.
Our method is implemented in the popular R framework

and freely available at https://github.com/atenyi/ChainRank.
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Methods
The ChainRank method consists of two main steps. The
first step searches for all chains connecting start and end
nodes in a network (Fig. 1c-d). For example given a start
node S which interacts with node C1 which interacts with
proteins C2 and E1 (Fig. 1c), as such we define two chains
between S and E, namely S-C1-E1 and S-C1-C2-E (Fig. 1f).
The next step involves annotating the network nodes with
scores and computing the chain scores and p-values to
provide a ranking and selection (Fig. 1e-f).

Chain search
The chain search step is used directly to evaluate all po-
tential chains connecting start and end nodes within the
initial network. This task translates to the “all simple
paths” graph theoretical problem [16] that seeks to find
all simple (non-cyclical) paths between two vertices. A
graph of n vertices contains n! simple paths which makes
a brute force search an NP hard problem. However, for
signalling and gene regulatory networks the biological
relevance of connections between two entities diminishes
with increasing relative distance, i.e. the given distance
relative to the shortest distance [17, 18]. Therefore, the
problem can be addressed by introducing a depth limit for

the search that is greater or equal to the distance of the
shortest path linking the start and end nodes. This prob-
lem can be optimally solved by a depth limited depth first
search (DFS) algorithm. The basic DFS algorithm tra-
verses the network from the starting node and explores a
branch of the network before backtracking (Fig. 1c). Using
a depth limit the search is halted if a chain would exceed a
specified k maximal length (depth limit) which is defined
as the number of nodes a chain contains (Fig. 1b). This al-
gorithm has Ο (bk) time complexity, where b is the
branching factor of the graph and due to its exhaustive
nature it finds an optimal solution within the depth limit k
[19]. We implemented a recursive version of this algo-
rithm and extended it to be able to search simple paths
amongst multiple start and end nodes. Chains connecting
start and end nodes are stored and serve as the output of
the algorithm. The method was implemented in R pro-
gramming language. The pseudo code of the algorithm is
detailed in the Additional file 1: Text S1.

Scoring and prioritisation using p-values
In order to create a general prioritisation framework, we
introduced the concept of element scores. Such scores
are mapped to network nodes and describe a specific

Fig. 1 Schematic overview of the ChainRank method (a-b) and its workflow (c-f). a The input parameters of the algorithm are the investigated
research targets (start and end nodes), a network and the defined scores. b The ChainRank method produces a context specific subnetwork specific to
the research targets. c The method is based on a depth-first search (DFS) algorithm that traverses the network from the starting node and explores a
branch as far as possible before backtracking. d DFS is constrained to search only chains that has a maximal length or smaller. e Network
nodes are annotated with scores. Chain scores then calculated by the sum of the scores of chain elements, normalized by the length of the
chain. f The significance of the chains are calculated using the chain scores. g Most significant chains are selected and used for the construction of a
context and target specific subnetwork
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property of a biological entity that the node represents.
This score can include both topological and biological
characteristics (e.g. the connectivity of a node or tissue
specific expression of the protein/gene that the node
represents or experimental support for a protein-protein
interaction) (Fig. 1) and a node can hold one or more
separate scores. We used these measures to characterize
the interaction chains. Our aim was to maximize the
overall score of the nodes in a chain, therefore we used
the sum of their element scores to calculate the chain
scores. Furthermore, to exclude length based biases we
normalized this score by the length of the chain to get
the final chain score, thus S = ∑i

lsi/l where S denotes the
chain score, l is the length of the chain and si is the
score of the ith element of the chain.
Certain research situations involve several biological

contexts, e.g. disease effects on specific tissue. To address
such needs, we introduced the concept of combined
scores. We introduced three different strategies to com-
bine the scores: (i) Combined scores are calculated as
the weighted product of the normalized element scores
mapped to a node, using the formula ck = ∑j

nwjskj, where ck
is the combined score of the kth node, n is the number of
scores, sj is the jth element score normalized to the range
[0,1] and wj is the weight corresponding to the jth score,
(ii) the filtering strategy pre-filters the chains using a
threshold for the score s1, and then it re-ranks the filtered
chains with score s2 and (iii) the intersection strategy
keeps only those chains that are under a specified thresh-
old for all the selected scores.
To evaluate the chain scores, we calculate the significance

of the chains. We simulated random networks, constructed
by shuffling the weights and edges of the initial network,
while preserving the vertex degrees. For a given chain with
score s, its score p-value is defined as the percentage of
top-scoring chains in random networks that have score s or
higher [11].
We also use the score p-value to generate the list of

prioritised chains. Depending on the application a score
p-value cut-off can be utilized to select the most signifi-
cant chains or alternatively the top scoring n chains can
be selected. Assembling the filtered chains allows for the
reconstruction of a subnetwork that is specific to the
start and end nodes and to the context the score defines.

Evaluation and performance
To evaluate a computational method one can either
apply a measure of stability by cross-validating multiple
runs or, ideally, derive precision and sensitivity informa-
tion from comparison against a standard of truth. As de-
scribed in the introduction there is a lack of context
aware pathways which could be used as standard of
truth. In order to evaluate the results of the ChainRank
we therefore validate our method on two levels. First,

the significance of the chain scores is evaluated. Second,
a reference pathway is used as a validation set and the
enrichment of its members in the top results or the
ranked chains is assessed for the evaluation. This valid-
ation set is referred to as the gold standard (GS). To
judge the stability of the method we compute the preci-
sion and recall of the top n chains or alternatively use a
p-value cut-off. For the validation, positives (P) are de-
fined as the validation elements represented in the input
network but not included in the start and end proteins.
To determine the precision, the occurrence of the valid-
ation set elements are counted in the top chains (exclud-
ing start and end proteins), i.e. the true positives (TP),
while non-validation set elements represents the false pos-
itives (FP). Thus, Precision =TP/(TP + FP) and Recall =
TP/P. Due to the lack of well-defined GS, reaching high
precision values is a highly challenging task. Therefore to
represent our results in a more informative way we de-
fined the metric of improvement. To compute the im-
provement of a ranking we simulate a random score, i.e.
we perform a random sampling from the chains to select
the top results. Then, we compute ovement = (Precision of
ranking)/(Precision of random ranking).

Results
In order to assess the performance of our method we
studied its applicability in protein interaction network
based pathway reconstruction. We specified the domain
of interest to muscle dysfunctions in chronic obstructive
pulmonary disease (COPD) because of its specificity to a
distinctive tissue, its clinical relevance as well as the
wealth of literature mining and experimental data avail-
able for our analysis [20]. We designed two application
cases, each with a specific GS pathway (Table 1.). First,
we aimed to recreate a subnetwork of the IGF-Akt path-
way [21] describing regulation of protein synthesis, an
important aspect of muscle remodelling (Fig. 2a). In the
second case, our goal was to represent the disease spe-
cific involvement of parts of a canonical signalling path-
way. We used disease specific varieties of the canonical
MAPK pathway: the EGF-PI3K and ROS-TGFa-EGFR
pathways (Additional file 1: Table S1, Fig. S7), that are
based on literature mining for COPD related signal trans-
duction events [20]. We note that evidence for the involve-
ment of these specific parts of the GS pathways is not
excluding potential involvement of additional parts. For
the evaluation we selected specific chains from these path-
ways defined by start and end proteins that we refer as gold
standards (Table 1).

PPI network
For the investigations we utilized the complete human
PPI network as the input network. At the time of the
analysis it contained 1.6 million protein interactions that
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were collected and merged from different publicly avail-
able databases and integrated into the COPD knowledge
base [20]. We quality filtered this network by including
only those interactions that were supported by at least
one piece of experimental evidence (in contrast to purely
computationally predicted ones). This resulted in a PPI
network of around 10,000 nodes and 62,000 interactions
(Table 1).

Subnetwork selection and performance
Within this general PPI network we are only interested
in the specific subnetwork that potentially connects our
start and target set, here determined by the endpoints of
our selected gold standard pathways. In order to retrieve
this subnetwork as starting point for the ChainRank
method, we applied the BioXM knowledge management
environment network search tool [22]. This tool is based
on a heuristic breadth-first search algorithm, allows nodes
to be preferred or penalised based on their connectivity
and it retrieves those nodes in the input network that have
the potential to link targeted nodes within a k maximal
distance. Consequently, with this step we omit those

unnecessary nodes and edges that does not lead to any
targeted endpoints in a k maximal length chain. There-
fore, we decided to set the k distance cut-off for the
breadth first search centered on the distance between
the start and the target in our reference GS path. Fur-
thermore, Baudot et al. [18] showed that canonical signal
transduction pathways are enriched for highly connected
protein hubs; therefore, we set the algorithm to encourage
the integration of canonical interactors preferring highly
connected proteins. We generated two subnetworks
(IGF-Akt proximity and MAPK proximity subnetworks,
Table 1.). Because heuristic subnetwork generation methods
introduce an element of variability, we evaluated its effect by
creating further networks with different parameterisation
and analysed them in terms of their overall influence
on the ChainRank results which was not significant
(Additional file 1: Table S2 and S4).
As an alternative to the heuristic network selection

step the ChainRank method could be used to evaluate
all potential chains of a given maximal length within the
overall network. However, the corresponding computa-
tional requirements quickly become prohibitive as longer

Table 1 Overview of the networks used in the evaluation process and the gold standards. Gold standard representation is shown in
the original PPI network and in the selected networks. Edges signify the number of edges connecting GS Nodes in the network

Application case Network properties Gold standard (GS) Start protein End protein GS representation

Edges Nodes Nodes Edges

Human PPI network 61872 10167 IGF-Akt pathway - - 13 20

COPD specific MAPK - - 21 34

Muscle specific case 847 308 IGF-Akt pathway IGF1 RPS6KB1 9 10

COPD related case 544 152 COPD specific MAPK EGFR SRF, CREBBP, ELK1, MYC 11 8

Fig. 2 Changes in the representation of IGF-Akt pathway. a shows the protein synthesis regulation related part of IGF-Akt pathway [21]. In this
pathway representation relations of proteins are well annotated with their directionality, type of interaction, etc. b shows that during manual
conversion of the canonical pathways to PPI network representation (by retrieving all PPI interactions between the fixed set of e nodes) this
kind of information is lost and only undirected edges represent physical binding between proteins. Moreover, the structure of the pathway is
altered by extra edges and some connections are missing. c shows the effect of the network selection which removes redundant edges but
retains most of the nodes
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chains are explored in dense networks (see Chain search).
Runtime of the chain search for the muscle-specific net-
work (314 nodes, 865 edges) with a maximal length of 8 is
14.5 min on a 2.4 GHz processor, finding more than 9000
chains. In addition, we note that the size of the network
that the ChainRank method can process in realistic time
depends strongly on the network complexity (more run-
time data on different networks is available in Additional
file 1: Table S3).

Evaluation of the input network
In order to set a realistic gold standard (GS) for the
evaluation we analysed the changes in the canonical GS
during its manual conversion to a PPI representation
and then the effect of the network selection (Fig. 2). In
canonical pathways relations of proteins are manually se-
lected and well annotated with their directionality, type of
interaction, etc. During the conversion of these pathways to
a PPI network representation the annotation is lost and
only physical interaction without pre-selection are depicted.
Therefore edges appear/disappear during the conversion
and protein complexes become individual, interacting
nodes. These findings show the high complexity of search-
ing in PPI networks and demonstrate that the exact recre-
ation of a canonical pathway cannot be the ultimate metric
of the evaluation process but rather the relative improve-
ment between unranked and ranked searches.

Scores
As mentioned in the introduction there are several methods
that use gene expression data to investigate domain specific
traits. While ChainRank is able to incorporate gene expres-
sion scores, here we focus on more complex scores to repre-
sent localisation or disease relevance. We also introduced a
topology based score.

1. Localisation score: To show the capabilities of the
method in tissue-specific filtering we created a muscle
specificity score. Using this prioritisation with the
ChainRank method would result in those interaction
chains that contain mostly muscle specific proteins
being highly ranked. To create this score we collected
publicly available gene expression measurements from
Gene Expression Omnibus (GEO) [23], studying a
large amount of different conditions in different
tissues. We compared the mean variability of the
genes’ expression value in muscle to their mean
variability in the rest of the body. Genes with highly
variable expression levels under different conditions in
muscle but lower variability in other parts of the body
receive higher scores while genes that are not typically
variable in muscle or are variable throughout all
tissues receive lower score. The corresponding
proteins were mapped to genes to be applicable for

PPI network based analyses. Details on the included
data sets and the exact methodology can be found in
the Additional file 1: Text S2.

2. Relevance score: This score describes the relevance
of a protein in a specific biological process — in this
case a disease. To generate a disease specific score
we used studies that investigated the effect of COPD
on skeletal muscle and other mechanisms that
related to this disease. The selected studies
incorporated diverse experimental paradigms such
as proteomics, metabolomics and gene expression.
From these studies we extracted all genes or proteins
(depending on the type of analysis) that were shown
to be significantly changed in the disease context.
Then we computed the score by counting how many
times a gene/protein occurs with high significance in
any of these study results. The first study we utilized
investigated the training effect on the muscle of
COPD patients [24] integrating measurements of gene
expression, metabolism and protein carbonylation
[25–27]. In addition, as part of this research study, the
effect of angiogenesis on gene expression in young
(<30 year) and elderly (>60) persons was examined
(detailed in the Additional file 1: Text S3). Finally, an
analysis on inactivity-induced wasting in mouse
glycolytic muscle was used to construct the score
[28] (detailed in Additional file 1: Text S3). We
used HomoloGene [29] to find homologous human
genes for the mouse genes and we mapped the
genes to the related proteins in all the studies.

3. Connectivity score: We used a topology based score
to characterize the degree centrality of the proteins
in the network. We reversed the degree centrality to
compute the score, thus Connectivity score(v) = |dc(v) −
max(dc(V))| + 1, where dc(v) is the degree centrality
of v∈ V vertice. This score is a good measure to
distinguish between general hub like proteins with
high degree centrality (and thus with low scores)
and specific proteins with lower degree centrality
(and thus high scores).

To test the sensitivity of our algorithm to different scores
that explain similar biological phenomena, we introduced
two additional scores from external data sources. As an
alternative to Localisation score, we retrieved the Tissue
Specificity (TS) score from the Human Protein Atlas [30],
which corresponds to the score calculated as the fold change
to the second highest tissue (for further information see
Additional file 1: Text S4). As an alternative to Relevance
score we created the Fold change (Fc) score, which we re-
trieved from a recent publication that reported RNA-seq
data for 98 COPD subjects and 91 controls [31]. Score was
computed as Fc = log2(COPD/control), where COPD and
control is the gene expression value of the signed group.
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Evaluation of the scores: distribution, correlations and the
length of the chains
In order to check for the independence of our selected
scores we examined their correlation and their relation
to the length of the chains. We used the IGF-Akt prox-
imity subnetwork, with maximal length 8 for this ana-
lysis. Figure 3a shows that the expression and relevance
scores show a slight correlation which can be explained
by the fact that in this case the relevance score (among
other aspects, such as protein carbonylation and metab-
olites) includes data on gene expression in muscle tissue.
Therefore, although the relevance rank is based on experi-
ments with specific environmental factors, the expression
data is expected to show some correlation with the gen-
eral muscle expression measurements. The other variables
are uncorrelated, therefore we can assume that the differ-
ent ranks explain different properties of the chains. We
found that normalisation of the chain scores by the
number of chain nodes removes most of the length de-
pendency (Fig. 3b). We note that different topological
properties of the networks might have effect on the
connectivity scores’ length dependence. Furthermore, we
showed that the distribution of scores in the generated
subnetworks (Subnetwork selection and performance,
Table 1.) represents well the distribution of scores over
the whole PPI network (Additional file 1: Figure S1).

Evaluation of the performance of the ChainRank method
Having prepared the networks, we applied the Chain-
Rank method on them. To determine the maximal length
parameter for the analysis we took into consideration the
distance of the start and end proteins in the GS. For the
muscle specific application the canonical distance would
be 9, however, due to the differences of the PPI represen-
tation of complexes (see in Evaluation of the input net-
work, Fig. 2b) we rationalized using a maximal length 8.
For the COPD specific application we used 7 for maximal
length, following similar reasoning. In the evaluation
process we assessed the improvement of the different
scores in finding GS proteins in the top ranked results
compared to random prioritisation. We evaluated the per-
formance both by using only individual scores to rank and
also by combining the scores. Figure 4 details the depend-
ence of performance on different p-value cut-offs.
For the muscle specific case we ran the ChainRank

using the IGF-Akt proximity subnetwork and maximal
length 8, retrieved 9351 chains. For the COPD application
case (MAPK proximity subnetwork) we computed the
chains with maximal length 7, finding 71838 chains. In
this case Relevance scores showed high discrepancy
from normal distribution therefore the introduced p-value
calculation can be misleading for this score. Instead, we
show our results by the number of top chains in this
scenario.

In the muscle specific scenario, results show that the
Connectivity score has the highest improvement of the
scores (Fig. 4a). Detailed analysis reveals that this score
show especially high improvement with very low p-values
however, with growing p-values this improvement quickly
decreases to an average of factor 1.8-2 for significant
chains. Furthermore, in the top 5 chains Connectivity
already finds one of the shortest GS path represented
in the input network (Fig. 2c), i.e. IGF1-Akt-mTOR-
RPS6KB1. Localisation also introduces an improvement of
factor 1.5 amongst the significant chains and maximizes the
Recall under 0.001 p-value (Additional file 1: Figure S2). In
the MAPK scenario the Relevance score outperformed the
other scores showing consistent improvement in top chains
(Fig. 4b, Additional file 1: Figure S3). We analyzed the ro-
bustness of the algorithm by comparing the performance of
Localisation score to TS score in the Muscle specific case
and Relevance to Fc score in the COPD specific case. Re-
sults showed that the method produces similar improve-
ment for the scores in these scenarios (Additional file 1:
Figure S6) and thus it is robust to changes of the scores.
We also investigated the performance of the defined

combined strategies. We computed the Combined score
as the equal weighted sum of the three normalized scores
and evaluated its improvement. With these settings this
score could not improve over the best individual scores
and therefore we do not report further results. Further-
more, we applied the filtering strategy for both scenarios.
For the IGF-Akt case we used a Connectivity filter before
evaluating the chains by the Localisation score. We ap-
plied a threshold of 0.05 for the filtering. This method in-
troduces a strong and stable increase in improvement
(Fig. 4a) which shows good applicability in arbitrary sized
subnetwork retrieval. For the MAPK application we inves-
tigated the effects of COPD on muscle, therefore we used
Localisation filtering and evaluated Relevance on the
reduced list of chains. We used the top quartile of the
ranked chains to set a filtering threshold. Together with
the intersection strategy, in which we applied the same
parameters, filtering introduced comparable improvement
to Relevance score. To conclude we showed that combin-
ing different scores can improve the prediction power of
the algorithm and they are capable to mimic complex bio-
logical contexts.
We evaluated the receiver operating characteristic (ROC)

curve and the area under curve (AUC) (Fig. 5) which shows
the significant improvement over random scoring. Next, we
investigated the effect of the maximal length parameter on
the improvement of the chain scores. We found that length
does not have a significant effect on the ranking perform-
ance (Additional file 1: Figure S4).
Finally, we identified relevant thresholds that can be

used to construct significant subnetworks and recreate the
target pathways. Taking into account the improvement-
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Fig. 3 Statistical evaluation of the scores. a shows the correlation between the chain ranks, correlation values are indicated in the lower triangle.
b shows the relation of the length of the chains to the chain scores. Statistical significance between the different length chains’ scores is indicated
(*p ≤0.05)
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recall trade-off we found a p-value of 0.015 or the number
of chains 50 as a good cut-off value. With these thresholds
we show high improvement over random in finding tar-
geted GS proteins (Fig. 6). Assembly of chains under the
cut-off value shows that the algorithm finds the main
chains connecting the targeted start and end proteins and
identifies relevant alternative chains with a recall of 67 %
and a precision of 30 % (Figs. 6, 7 and Additional file 1:
Figures S2, S8). As a further evaluation of the approach,
we show that the distribution of scores in the recreated
pathways are different from the original network. In the
recreated pathways, the distribution means of the simple
scores are shifted to higher values. The combined scores
can further alter this effect, producing a score distribution
that resembles more to the GS (Additional file 1: Figure S5)
indicating that the scores indeed capture biological context.

Discussion and conclusion
In recent decades huge amounts of data have been accu-
mulated in biological research but up to now these valuable
data sources remain underutilized in terms of applications
for integrative analysis and data mining. Systemic use of
biological data could help to create more personalized and
contextualized information and overcome the current rigid
and generally simplistic representations of mechanisms
involved in biological processes and their regulation.
This calls for bioinformatics tools that can facilitate data
analysis and help in the interpretation of these huge data-
sets. Biological networks could play an important role
in this procedure as they have already shown their util-
ity in many applications. Current high-throughput methods,
however, are prone to errors e.g. in yeast two-hybrid systems
high false positive rates and platform-specific biases [32] still

Fig. 4 Improvement of the different scores. a Muscle specific case: Intersection is defined as the common chains that have both a p-values ≤0.05
with Connectivity and Localisation score. These chains are shown with their Localisation score p-values. For Filtering chains with Connectivity score
p-values ≤0.05 were selected, re-ranked and evaluated by Localisation score. Number of chains are indicated at p =0.015 for each score. b COPD
specific case, Intersection here is defined as the common chains in the top quartile of chains ranked by Localisation score and Relevance score. These
chains are shown with the number of top chains ranked by Relevance. For Filtering the top quartile of chains ranked by Localisation score
were selected, re-ranked and evaluated by Relevance
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Fig. 5 ROC curve and AUC of the muscle specific case. Localisation and its combined scores with Connectivity shows the highest AUC. Random
score (dashed line) already has an increased performance over completely random guess (diagonal line, not shown), which can be accounted for
by the constraints introduced by the underlying network topology. AUC values appear below the names of the scores

Fig. 6 Results of the evaluation after cut-off. (A1) For the muscle specific case 0.015 was used as cut-off threshold. (B1) shows the performance of
COPD specific case evaluating the top 50 chains. Red lines show the number of GS proteins (positives), second axis shows the improvement. To
represent the enrichment capabilities of the method we compare the recreated pathways to the input network (A2, B2)
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remain problematic. As a result, inconsistencies could be
present in the PPI networks that create alteration in the rep-
resentation of signalling pathways [4, 33] which our results
also confirmed (Evaluation of the input network).
The ChainRank method introduces a data-driven bio-

logical search tool that can be applied in widespread re-
search situations. Our goal was to create a tool that can
retrieve context specific subnetworks by using different
evidences (e.g. expression profile, literature mining).
Evaluating a specific application case is a complex task,
which we addressed by recreating selected gold stand-
ard pathways.
Overall, our evaluation results showed that the gener-

ated scores can create domain specific effects. We showed
that filtering the chains by scores and intersecting top
scoring chains can create improvements in precision and
can be applied to simulate complex biological contexts.
Although this evaluation is limited only to a few contexts
(muscle and COPD) we believe that it gives a representa-
tive result to show the general applicability of the method
and encourage its usage. Using the three developed ranks,
we showed a 50 % improvement (factor 1.5), on average,
in the precision of finding gold standard proteins in our
top ranked chains. We also showed that combining ranks,
for example by pre-filtering with one score before ranking
by another, can improve the precision by up to a factor of
2.5. We achieved as high as 11 % improvement in the area
under the receiver operating curve (AUC) (Fig. 5) which
compares favourably with Bader’s results [34] who reports
a similar improvement but with a less generic framework
and using protein complexes as a gold standard. Our re-
sults are comparable to [12] and [11] who use signal

transduction pathways in yeast and human respectively
as gold standards and report recall of 50–85 %, and pre-
cision of 18–42 %. Therefore, our method generalises the
achievements introduced by Scott et al. [11] and Teku
et al. [12] by introducing additional, non-expression based
evidences and allowing to tune for multiple contexts such
as tissue specificity or disease association. We were able to
replicate our results with different pathways (IGF-Akt,
COPD specific MAPK sub-pathways) and different initial
conditions (different input networks). Overall the evalu-
ation showed strong evidence that the method provides
improved specificity to generate context-specific networks
and therefore supports the viability of the concept.
Although we only showed the applicability of our meth-

odology using PPI networks and in two different contexts
(muscle and COPD), it is a generic tool that is applicable
for various network types, like metabolic networks or dis-
ease networks. Integrated networks incorporating several
interactome layers, like proteomics, metabolomics, dis-
eases, etc. can also be used with the method. In addition,
scoring criteria can be easily created using various private
and public data sources. Although, the new criteria would
have to be validated, the accumulation of different context
profiles could pave the way for an integrated analysis
framework. The differences in performance of individual
scores in different biological context (Fig. 4) underscore
the importance of appropriate selection of scores depend-
ing on the scientific question.
The method can be utilized to analyse many research

questions, for example: a) given a set of data-driven asso-
ciations, e.g. oxidative stress and proteolysis, what is the
most likely causal, mechanistic connection in a given

Fig. 7 The recreated IGF-Akt pathway. The results of ChainRank were filtered by taking the intersection of the chains that has lower Connectivity
and Localisation score p-values lower than 0.05, then the ones with p-values ≤0.015 were assembled into a network (Fig. 6 (a) Intersection). The
size of the nodes represents the occurrence of a protein in the top chains. Octagons indicate the start and end proteins, nodes with yellow
border shows the gold standard proteins
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context? b) what are the common mechanisms driving
different diseases, e.g. systemic effects of COPD and
diabetes mellitus type 2? c) can computational model-
ling be supported by reducing the number of interac-
tions to the biologically most relevant ones and thereby
generate manageable complexity [35]? Another promis-
ing application field could be the analysis of synthetic
lethality in the context of anticancer therapy. By providing
evidence-supported alternatives to classical consensus path-
ways ChainRank could open up new avenues of investiga-
tion. A possible avenue is the improvement of the search
algorithm for example to use “information propagation”
methods [36] to include information from the neighbour-
hood of a chain into the ranking and thereby see whether
biological modularity can be used to further enhance the
context specificity of the results. Another interesting aspect
would be to implement and compare the current exhaust-
ive search with a heuristic search algorithm that is possibly
usable on the full multi-million node and association
network that makes up our current biological knowledge.

Availability
Project home page: https://github.com/atenyi/ChainRank
Programming language: R

Additional file

Additional file 1: This file contains supplementary tables, figures and
further information on the scores and the search algorithm. (PDF 1.43 MB)
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Abstract 

Background: Chronic obstructive pulmonary disease (COPD) patients often show skeletal muscle dysfunction that 
has a prominent negative impact on prognosis. The study aims to further explore underlying mechanisms of skeletal 
muscle dysfunction as a characteristic systemic effect of COPD, potentially modifiable with preventive interventions 
(i.e. muscle training). The research analyzes network module associated pathways and evaluates the findings using 
independent measurements.

Methods: We characterized the transcriptionally active network modules of interacting proteins in the vastus lat‑
eralis of COPD patients (n = 15,  FEV1 46 ± 12% pred, age 68 ± 7 years) and healthy sedentary controls (n = 12, age 
65 ± 9  years), at rest and after an 8‑week endurance training program. Network modules were functionally evaluated 
using experimental data derived from the same study groups.

Results: At baseline, we identified four COPD specific network modules indicating abnormalities in creatinine metab‑
olism, calcium homeostasis, oxidative stress and inflammatory responses, showing statistically significant associa‑
tions with exercise capacity  (VO2 peak, Watts peak, BODE index and blood lactate levels) (P < 0.05 each), but not with 
lung function  (FEV1). Training‑induced network modules displayed marked differences between COPD and controls. 
Healthy subjects specific training adaptations were significantly associated with cell bioenergetics (P < 0.05) which, in 
turn, showed strong relationships with training‑induced plasma metabolomic changes; whereas, effects of training in 
COPD were constrained to muscle remodeling.

Conclusion: In summary, altered muscle bioenergetics appears as the most striking finding, potentially driving other 
abnormal skeletal muscle responses.
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Background
Patients with chronic obstructive pulmonary disease 
(COPD) show marked individual variability of both clini-
cal manifestations and disease progression with relevant 
implications on prognosis and management [1].

The 2017 GOLD update [2] recommends lung function 
measurements  (FEV1) to assess COPD severity; whereas 
both symptoms intensity and history of COPD exacer-
bations are recommended indexes for the modulation 
of pharmacological therapy. However, these patients can 
also show systemic effects [3] and co-morbid conditions 
[4–6] that are independently associated with poor prog-
nosis [1]. Enhanced knowledge of the underlying mech-
anisms of these two phenomena constitutes a key step 
toward a better understanding of COPD heterogeneity 
and its implications in patient management [7].

The current study focuses on the analysis of skeletal 
muscle dysfunction as a characteristic systemic effect of 
COPD, potentially modifiable with preventive interven-
tions, i.e. exercise training [3, 4, 8–10]. Several studies 
addressed the question of training adaptation of COPD 
muscle, ranging from studies investigating expression 
of specific proteins [11–13] to modeling mitochondrial 
mechanisms [10] and systemic exploration of canoni-
cal pathways’ using gene expression [14, 15]. However, 
a comprehensive view of the disease mechanisms, high-
lighting potential biomarkers and pathway dynamics with 
functional implications is still missing. In our study, we 
applied a robust systems biology approach assuming that 
proteins associated to biological functions or diseases 
interact with each other conforming distinct neighbor-
hoods, or network modules, in the human interactome 
[16, 17]. In other words, the network modules consist of 
clusters of active proteins (approximated in the study by 
transcriptionally active genes), showing high probability 
of functional interactions. We hypothesize that the iden-
tification, functional characterization and independent 
functional evaluation of such network modules can help 
to determine how their disturbance may lead to disease 
and how therapy may affect the molecular machinery 
[18].

To further explore the underlying mechanisms of skel-
etal muscle dysfunction, we compared healthy persons 
and COPD patients before and after exercise training. 
In the pre-training analysis (Fig.  1), we described tran-
scriptionally active network modules that are specific to 
the skeletal muscle of COPD patients. Likewise, in the 
assessment of adaptive mechanisms of endurance train-
ing, we compared the differences between COPD and 
healthy muscle adaptation. Functional implications were 
initially explored through the analysis of network mod-
ule associated pathways and representative differentially 
expressed genes. In a subsequent step, we evaluated the 

functional interpretation of the network modules, and 
relevant genes, with previous experimental data obtained 
in the same study groups [19, 20].

To the best of our knowledge the current research pro-
vides an innovative approach by retrieving disease spe-
cific pathway mechanisms and performing an integrative 
analysis of the relationships of transcriptomics with met-
abolic, redox, inflammatory and clinical measurements 
to investigate COPD muscle dysfunction and training-
induced adaptive changes in these patients. We believe 
that the study sheds novel light on underlying mecha-
nisms of the disease with potential implications for the 
design of innovative preventive strategies.

Methods
Study dataset
The current study is based on a dataset of microarray 
gene expression measurements (Human U133 Plus2 
Gene Chips) performed on open biopsies from the 
limb muscle vastus lateralis, reported in [15]. In all par-
ticipants, these were obtained at rest, before and after 
an 8-week high intensity endurance training program 
(Fig.  1a). The study groups (Table  1) included fifteen 
COPD patients and twelve healthy but sedentary age-
matched controls. The training program is explained in 
details in Additional file  1: Section  1 and in the related 
studies [15, 19, 20].

Analysis strategy
Briefly, network modules were identified for each dif-
ferential condition with the HotNet2 algorithm [22] 
(Fig. 1b), using the genes’ adjusted differential expression 
profile and selected protein–protein interaction (PPI) 
networks [17, 23]. Thereafter (Fig. 1c), each module was 
functionally characterized using gene ontology (GO) [24] 
term enrichment analysis and literature mining. Finally, 
(Fig.  1d), the validity of the matched module func-
tions was evaluated using previous experimental data 
(Tables 1, 2).

Statistical analysis
Differential gene expression
To evaluate the baseline (pre-training) effects, we com-
puted the differential gene expression between COPD 
and healthy individuals, referred as COPD disease effects 
(COPD-DE) (Fig.  1a). To evaluate the training induced 
changes in the molecular mechanisms (training effects, 
TE), we investigated the post and pre-training differen-
tial gene expression in COPD (COPD-TE) and healthy 
(Healthy-TE) separately (Fig.  1a). The non-parametric 
rank product method [25] was used to compute the sig-
nificance and false discovery rate (FDR) of differential 
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gene expression, due to its reliable and consistent perfor-
mance with noisy, low sample size measurements.

Network module identification
For each condition, we used the HotNet2 algorithm 
[22] to identify network modules (Fig.  1c), taking into 
account: (i) the FDR of differential gene expression and, 
(ii) publicly-available high quality protein–protein inter-
action (PPI) networks [17, 23] (see Fig.  1b). A statisti-
cal test included in the HotNet2 algorithm was used to 
determine the significance of the number and size of the 
network modules. The HotNet2 algorithm was selected 
due to its specific feature of the use of a heat diffusion/
random walk model to simulate the spread of influ-
ence of protein activity to their physical interaction 
partners. This feature makes this approach less reliant 
on the significance test and enables the identification 
of key proteins with less significant changes but with 

high biological meaning (i.e. due to topology: hub pro-
teins, high betweenness centrality proteins, etc.). For 
more details see extended methods in Additional file  1: 
Section 1.

Functional characterization
We conducted Gene Set Analysis to investigate the 
enrichment of GO terms in modules (Fig.  1c) using the 
clusterProfiler R library [26]. Network modules were 
considered functionally significant if it had at least one 
associated GO term that: (i) had Benjamin–Hochberg 
corrected P value < 0.05; and, (ii) were related to at least 
two module genes.

Evaluation of the module functions with experimental data
To evaluate the identified functions, modules were 
compared with experimental data obtained in the 
same study group (Fig.  1a, Tables  1, 2), firstly the 

Fig. 1 Schematic diagram of the workflow of the study. (a) Study design of the used datasets. COPD patients (n = 15) and healthy controls (n = 12) 
were studied before (BT) and after (AT) an 8‑week endurance training program. Measurements of skeletal gene expression [15] were used for 
network modules identification. Differential conditions of COPD disease effects (COPD‑DE) and training‑induced effects in COPD (COPD‑TE) and 
in healthy muscles (Healthy‑TE) were analyzed in the study. (b) Network modules were identified for each differential condition with the HotNet2 
algorithm [22], using the gene’s false discovery rate (FDR) adjusted differential expression P values and selected protein–protein interaction (PPI) 
networks [17, 23] as explained in details in Additional file 1: Section 1. Thereafter (c), each module was functionally characterized using gene 
ontology (GO) term enrichment analysis. (d) Correlation of network modules with independent multilevel measurements was analyzed for 
evaluation purposes. Specifically, independent measurements were sampled both pre‑ and post‑training and consisted of physiological parameters 
measured with a constant‑work rate exercise at 75% of pre‑training maximum peak exercise, inflammatory and redox biomarkers measured in 
plasma and in skeletal muscle [20], as well as plasma metabolomics measured at rest and after exercise [19]



Page 4 of 12Tényi et al. J Transl Med  (2018) 16:34 

transcriptional activity of the network modules were 
summarized using their first three principal compo-
nents, i.e. their first three eigengenes [27, 28], which 
on average explained 83% of the modules’ overall vari-
ability. Then, associations of the principal components 
with the previous experimental data [19, 20] were iden-
tified using non-parametrical Kendall correlation and 
selecting those associations with absolute value of rho 
(|R|) ≥ 0.4 and P value (P) < 0.05. Significant differen-
tially expressed genes within functionally significant 
network modules were also considered for comparison 
with previous experimental data.

Results
Study workflow
In the pre-training analysis, we describe transcription-
ally active network modules that are specific to COPD 
patients (Fig.  1a–c). Likewise, in the analysis of the 
training-induced effects, we separately analyze network 
modules that changed in response to training in COPD 
and healthy and compare the differences between them. 
Functional implications of the network modules were ini-
tially determined through the analysis of pathways asso-
ciated to module genes and then specific mechanisms 
were deduced from the gene functions and interactions. 
In a subsequent step, the network modules and repre-
sentative genes of specific pathways are compared with 
previous experimental data obtained in the two study 
groups both showing clear training-induced physiologi-
cal responses, as described in Fig. 1d and in Tables 1 and 
2.

Alterations in skeletal muscle of COPD patients at rest
The pre-training study identified four significant COPD 
specific network modules, that were functionally charac-
terized, on the basis of significantly enriched GO terms 
in the modules (see Additional file 2: Table S5), as: cre-
atine metabolism,  Ca2+ dependent binding, TGF-β sign-
aling and Interferon response (Fig. 2a).

Defective skeletal muscle energy metabolism in COPD 
was indicated by the creatine metabolism module. The 
module presented four out of the nine genes of the cre-
atine metabolism pathway significantly down-regulated, 
two related to creatine synthesis (GAMT, GATM) and 
two creatine kinase (CK) genes (CKB, CKMT2). Over-
all, down-regulation of creatine metabolism suggests 
impairment of muscle energy production, which is con-
sistent with studies showing low baseline creatine kinase 
and ATP concentrations [29, 30]; and low post-exercise 
recovery rate in COPD skeletal muscle [31–33].

Table 1 Characteristics of the study groups

Results are expressed as mean ± SD

In the post-training study, lactate measurements during constant-work rate 
exercise were done at the same workload and duration than the pre-training 
exercise protocol

FFMI fat free mass index, FEV1 forced expiratory volume in the first second, FEV1/
FVC  FEV1 to forced vital capacity ratio, VO2 peak peak oxygen uptake difference 
post minus pre-training, [La]a arterial lactate concentration difference

Unpaired t test was used to compare controls and COPD, * P < 0.05. Paired t test 
was used to compare post-training and baseline time points in both healthy 
controls and COPD patients, †P < 0.05. Low FFMI was defined as < 17.05 kg/
m2 for men [21]. It is of note that three COPD patients were discarded from the 
analysis because they did not pass the Agilent analysis

Healthy COPD

Sex (M/F) 10/2 15/0

Age, years 65 ± 9 69 ± 7

FFMI, kg/m2 21 ± 2 19 ± 3

FEV1, L (mean % pred) 3.46 ± 0.69 (107) 1.34 ± 0.37 (46)*

FEV1/FVC 0.75 ± 0.04 0.43 ± 0.08*

VO2 peak, L/min (mean  VO2 peak/
kg)

1.70 ± 0.5 (22) 0.91 ± 0.3 (14)*

[La]a peak, mEq/L 10.60 ± 2.7 6.8 ± 2.3*

VO2 peak training diff (post–pre), 
L/min

0.25 ± 0.11† 0.14 ± 0.18†

[La]a training diff (post–pre), mEq/L − 4.60 ± 0.6† − 1.5 ± 2†

Table 2 Summary of experimental data obtained from the same study groups

Summary description of the results of previous experimental measurements on plasma metabolomics [19], as well as on both muscle and blood inflammatory 
cytokines and redox status [20], carried out at rest before training and after endurance training. The term training diff refers to training-induced adaptive changes. For 
comprehensive list of measured variables see Additional file 2: Tables S2, S7 for the differentials

Measurements COPD versus health
Summary of results

Plasma metabolomics [19] The two groups showed differences in metabolomic profiles at rest (P < 0.05). Levels of valine, alanine and 
isoleucine were associated with FFMI (P < 0.01 each)

Plasma metabolomics training diff [19] In Healthy, training generated marked changes in amino acids, creatine, succinate, pyruvate, glucose and 
lactate (P < 0.05 each). But, COPD patients only showed lactate decrease (P < 0.05)

Inflammatory cytokines [20] COPD patients showed high levels of circulating cytokines (P < 0.05), not seen in healthy

Inflammatory cytokines training diff [20] No training‑induced changes were observed in circulating cytokines levels

Redox status [20] COPD patients showed blood and muscle oxidative stress at baseline. Muscle and blood protein carbon‑
ylation levels were correlated (P < 0.05)

Redox status training diff [20] In COPD patients, protein nitration levels decreased after training
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It is of note that impaired creatine metabolism would 
primarily affect work performance and  Ca2+ homeo-
stasis, especially in the presence of oxidative stress [34, 
35]. In line with this, we found clustering of S100 fam-
ily calcium-dependent protein binding genes in the 
 Ca2+ dependent protein binding module. The potential 
deleterious effect of the module is well represented by 
the down-regulation of S100A1 gene, which could lead 
to abnormal sarcoplasmic reticulum  Ca2+ content and 
fluxes, deteriorating muscle contractility and work per-
formance [36, 37]. Furthermore, several module genes 
(S100B, S100A4, S100A6, MYH9) are related to cell mor-
phogenic processes.

The TGF-β signaling module displayed an interplay of 
genes related to muscle remodeling (SMURF1, SMURF2, 
SMAD7) and cellular stress response (MAP3K2, SPP1). 
Abnormal TGF-β signaling was suggested by up-regula-
tion of its inhibitor SMURF1 and further strengthened 
by the observed down-regulation of SMURF1’s bind-
ing competitor (PDLIM7) [38] potentially leading to 
increased protein degradation by ubiquitination [39]. The 
associated gene functions suggest an interplay between 
TGF-β signaling and oxidative stress, which has been 
reported in the literature highlighting the specific role of 

SMURF1 in these processes [40, 41]. Furthermore, over-
expression of SMURF1 may attenuate IFN-γ-mediated 
immune responses of the Jak-STAT pathway, by inhib-
iting STAT1 [42, 43], positive regulator of IFIT gene 
expression [44], which could explain systematic down-
regulation of these genes in the interferon response 
module.

Evaluation of alterations in COPD patients at rest
In order to evaluate the functions of the COPD specific 
network modules, their association with previous experi-
mental data was analyzed (see Fig.  2b and for details 
Additional file 2: Table S8).

The Creatine metabolism module showed statisti-
cally significant associations with systemic inflamma-
tory markers, namely IFN-γ (|R| = 0.42, P = 0.041), IL7 
(|R| = 0.5, P = 0.016) and CXCL9 (|R| = 0.58, P = 0.003) 
as well as with pre-training blood lactate levels at a con-
stant-work rate exercise at 75%  VO2 peak (|R| =  0.49, 
P = 0.013) suggesting relationships between altered cell 
bioenergetics and abnormal inflammatory processes.

The association of the  Ca2+ dependent protein binding 
module with muscle mass (FFMI) (|R| = 0.45, P = 0.026) 

Fig. 2 Disease effects (COPD‑DE) network modules. a The four network modules associated to COPD disease effects and their composing 
genes. Genes are colored according to their differential regulation, namely: up regulation—red nodes; and down regulation—blue nodes. 
Significantly differentially expressed genes are indicated by * (FDR ≤ 0.05) (for detailed information see Additional file 2: Table S6). b The significant 
correlations of independent measurements with any of the network modules’ first three principal components. Blue squares depict exercise related 
independent variables [19]; red squares show cytokines measured in blood [20]; yellow squares correspond to amino acids measured in serum [19]; 
and, green squares represents redox biomarkers [20]
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and with exercise capacity, expressed by the composite 
BODE index [45] (|R| =  0.47, P =  0.033) confirms the 
physiological impact of defective  Ca2+ homeostasis. Such 
an association at module level is further strengthened by 
the correlations of the S100A1 gene expression with both 
 VO2 peak (R = 0.52, P = 0.006) (Fig. 3a) and peak work 
rate (Watts peak) (R = 0.53, P = 0.005).

Consistent with the functional analysis, TGF-β sign-
aling module showed significant correlations with 
increased skeletal muscle nitrosative stress in COPD 
patients (|R| =  0.49, P =  0.031), as well as with abnor-
mally low levels of blood valine amino acids (|R| = 0.41, 
P =  0.047). Likewise, blood cytokines IFN (|R| =  0.44, 
P = 0.03) and IL4 (|R| = 0.47, P = 0.024) also showed sig-
nificant associations with the module. At gene level, sta-
tistically significant negative correlations were observed 
between SMURF1 and nitrosative stress levels in skeletal 
muscle of COPD patients (R = −  0.66, P =  0.017), not 
seen in healthy subjects (Fig. 3b).

As expected, interferon response module showed sig-
nificant correlations with IFN (|R| = 0.63, P = 0.015) and 
several other cytokines, which presented elevated blood 
levels in COPD patients (Table 2). Furthermore, the mod-
ule also presented significant relationships with FFMI 
(|R| = 0.47, P = 0.019) and peak work rate (|R| = 0.40, 
P = 0.047) in COPD patients.

Inefficient training‑induced responses in COPD patients
In the analysis of the training-induced effects (TE), we 
identified and evaluated network modules separately for 
COPD patients (COPD-TE) and for healthy sedentary 
subjects (Healthy-TE). The research identified a total of 
six functionally enriched network modules (Fig. 4a).

It is of note that Hippo signaling was the only COPD-
TE specific module; whereas, some genes of the Inter-
feron response were observed in both COPD-TE and 
Healthy-TE. Likewise, Oxidative phosphorylation, Amino 
acid biosynthesis, Epigenetic regulation of metabolic pro-
cesses and Intracellular transport functional modules 
were only observed in Healthy-TE and were named after 
significantly enriched GO terms in the modules.

In COPD-TE, the Hippo pathway module suggests 
abnormal training-induced activation of skeletal muscle 
remodeling, as reported in detail in the extended results 
section in Additional file 1: Section 1.

Endurance training induced inflammatory responses in 
skeletal muscle, as indicated by the Interferon response 
module that showed a consistent increase in gene expres-
sion levels in both COPD-TE and Healthy-TE. The 
module could signal the local inflammatory response 
to muscle damage caused by exercise, which reportedly 
coincides with muscle repair, regeneration, and growth 
[46].

It is of note that the four Healthy-TE network modules 
indicated strong associations of training responses with 
bioenergetics changes and their joint regulation with 
other molecular functions (see extended results in Addi-
tional file 1: Section 2).

Evaluation of training‑induced responses in COPD patients
The analysis of associations between TE network mod-
ules and previous experimental data was carried out in 
COPD-TE and Healthy-TE separately, as displayed in 
Fig.  4b (for details see Additional file  2: Table  S8). We 
observed a significant association between training-
induced increase in peak work rate (Watts) and the inter-
feron response module in the two groups (|R|COPD = 0.48, 
 PCOPD =  0.019; |R|Healthy =  0.53,  PHealthy =  0.018), sug-
gesting training-induced increase of inflammatory 
responses both in healthy subjects and in COPD patients. 
However, the most relevant findings were the strong 
relationships between Healthy-TE network modules 

Fig. 3 Relationships between genes from COPD specific modules 
(disease effects) and previous experimental data. a The relationships 
between S100A1, from the  Ca2+ dependent binding module, and 
 VO2max. The two groups, healthy subjects (blue circles) and COPD 
patients (low and normal FFMI, empty and filled squares, respectively) 
fell on the same regression line (R = 0.52, P = 0.006, FDR = 0.026). 
b The relationships between SMURF1 from the TGF‑β signaling 
module and skeletal muscle nitrosative stress. A statistical significant 
correlation was seen in the COPD group, both normal and low FFMI 
(R = − 0.67, P = 0.018 and FDR = 0.07), but not in healthy subjects 
(R = − 0.2, P = 0.55)
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Fig. 4 Training effects (TE) network modules. a Active network modules identified in case of COPD‑TE, Healthy‑TE and in both (shared). Genes are 
colored according to their differential regulation in COPD‑TE (inner color of the nodes) and in Healthy‑TE (border color of the nodes): up regulation 
with training (red circles), down regulation with training (blue circles). Modules are named after significantly enriched GO terms. Training differential 
expression significance is signed by * for COPD‑TE, and § for Healthy‑TE (FDR < 0.05) (for detailed information see Additional file 2: Table S6). b The 
significant correlations of the independent measurements with any of the significantly‑changed training modules’ first three principal components 
in COPD, depicted as purple dashed lines, and in healthy subjects, depicted as blue dotted‑dashed lines. Blue squares depict exercise related 
independent variables; red squares show cytokines measured in blood; and yellow squares correspond to amino acids measured in serum
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associated to different aspects of muscle bioenergetics 
and metabolomics training-induced changes, not seen in 
COPD patients. Likewise, statistically significant associa-
tions were observed between training-induced transcrip-
tional changes at gene level and plasma metabolomics 
responses in healthy subjects, but not in COPD patients, 
as shown in Fig.  5 wherein the relationships between 
training-induced changes the splicing factor SF3A3 
(∆SF3A3) and ∆glutamine are depicted for healthy sub-
jects  (RHealthy  =  0.7,  PHealthy  =  0.001) and for COPD 
patients  (RCOPD = − 0.14,  PCOPD = 0.518).

Discussion
The approach adopted in the current study contributed 
to uncover novel interactions among biological pathways 
of skeletal muscle dysfunction in COPD patients, as well 
as suggest biomarkers, while reinforcing previous results 
on the mechanisms related to the disease. The applied 
methodological framework also shows high potential to 
explore relations between clinical and omics platforms, 
facilitating interpretation of biological measurements.

The four network modules identified in the pre-
training analysis (Fig.  2a) correspond to COPD specific 
mechanisms related to abnormal energy production and 
contractility, as well as to alterations in both inflam-
matory and oxidative stress pathways. Moreover, they 
showed significant associations with previous measure-
ments carried out in the same study group (Figs. 2b, 3). 
To be noted that lung function  (FEV1) only presented a 
weak negative relationship with the interferon module 
that did not meet the inclusion criteria of the analysis. 
In contrast, several COPD specific modules, and genes 

(Fig. 2b) consistently showed associations with different 
indices reflecting exercise capacity, namely: BODE,  VO2 
peak, Watts peak and lactate levels.

The two study groups showed significant physiological 
training effects as displayed in Table  1. The differences 
in the training-induced responses between COPD and 
healthy (Fig.  4a) further contributed to shed novel light 
on the underlying mechanisms of skeletal muscle dys-
function in these patients. The most striking finding was 
that the physiological bioenergetics responses, strongly 
correlated with plasma metabolomics (Fig. 4b), were not 
observed in the patients. Instead, in the COPD group, 
the training-induced changes were mostly related with 
skeletal muscle remodeling (Hippo signaling pathway), 
without significant adaptive changes in oxidative phos-
phorylation and related bioenergetics pathways. It is of 
note that in a post hoc analysis, we explored the impact 
of FFMI on the modules, which consistently indicated 
that training adaptation seen in COPD patients with 
normal FFMI were more similar to the ones of healthy 
subjects than those observed in COPD patients with low 
FFMI (see Additional file  1: Section  2). Regarding the 
training-induced inflammatory responses, the healthy 
and COPD groups only shared part of the genes of the 
network module that indicates increased inflamma-
tory changes induced by training in COPD. It is of note 
that significant associations of peak work rate with the 
inflammatory network modules were observed in the dis-
ease effects (Fig. 2a, b) and in the training-induced effects 
(Fig. 4a, b).

As acknowledged below, the current study cannot 
inform on causality and temporal sequence of the skeletal 
muscle abnormalities observed in the COPD group. The 
marked differences between COPD patients and healthy 
subjects regarding training adaptations of skeletal muscle 
bioenergetics (Fig. 4a) seem to suggest that the abnormal 
energy production, already depicted in the pre-training 
analysis (Fig.  2a), is the most visible and likely the pri-
mary phenomenon of skeletal muscle dysfunction in 
COPD. It is of note that a recent report using data from 
the same study group [10], but focusing on the analysis 
of gene regulatory networks, highlighted the existence of 
significant COPD abnormalities at mitochondrial level 
with impact on skeletal muscle inflammatory responses, 
and explored potential therapeutic strategies.

Abnormal bioenergetics may likely trigger changes 
in skeletal muscle  Ca2+ homeostasis, which ultimately 
may lead to impairment of the contractile mechanisms 
and alterations in muscle morphogenesis, as suggested 
by the  Ca2+ dependent protein binding module (Fig. 2a) 
and the Hippo signaling pathway module (Fig. 4a). These 
mechanisms might be related to generation of abnormal 
muscle fiber type distribution with increased glycolytic 

Fig. 5 Relationships between genes from Healthy‑TE specific 
modules and previous experimental plasma metabolomics data. 
The figure depicts the relationships between training‑induced 
changes in both SF3A3, from the Amino acid biosynthesis module, 
and glutamine. A strong correlation was seen in healthy subjects 
(blue circles) (R = 0.70, P = 0.001), but not in COPD patients (low and 
normal FFMI, empty and filled red squares, respectively) (R = − 0.14, 
P = 0.518)
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(Type II and IIX) to oxidative (Type I) fiber ratio in these 
patients [47, 48]. In the study, physiological inflammatory 
response pathways at baseline showed to be inhibited, 
potentially by SMURF1, and most likely be modulated by 
oxidative stress, which might indicate counter-regulatory 
processes related with low-grade systemic inflamma-
tion. The partly abnormal training-induced inflammatory 
responses observed in the study might also constitute a 
secondary phenomenon modulated by nitroso-redox dis-
equilibrium reported in these patients [3, 8, 20].

The network biology techniques used in the current 
study to identify and characterize skeletal muscle net-
work modules are gaining increasing attention in the 
biomedical research field due to their ability to highlight 
complex cellular disease mechanisms [49–51]. An added 
potential of PPI based methods is the constraint that the 
interaction network represents, whose topology already 
encodes basic biological functions [16, 52] and provides 
high performance in predicting biologically meaningful 
pathways [53]. Additionally, the model used in HotNet2, 
simulating the spread of influence of protein activity, 
enables the identification of key proteins with less sig-
nificant changes but with high biological meaning due to 
surrounding expression patterns as well as due to topol-
ogy (e.g. hub proteins, proteins with high betweenness 
centrality, etc.), which complement standard differential 
expression measures with deeper biological insights. We 
believe that the approach adopted in the current study 
facilitates a comprehensive analysis and understanding 
of complex cellular mechanisms overcoming limitations 
of traditional research only addressing analysis of target 
biological pathways. Furthermore, the applied methodol-
ogy has high potential for creating a standardized analy-
sis pipeline for the integrative analysis of multi-level data.

Study limitations
We acknowledge, however, that further longitudinal 
studies are needed to support the above statements, 
as well as to properly clarify the relationships between 
skeletal muscle dysfunction and pulmonary impairment 
provoked by the disease. We also acknowledge that the 
microarray dataset used in the study is lacking stand-
ard qPCR validation of specific biomarkers, which we 
aimed to overcome by showing the high concordance 
of specific markers with qPCR validation of two earlier 
studies on skeletal muscle of patients with COPD (Addi-
tional file 2: Table S9). However, we believe that given our 
system-based approach, the validation of a few genes is 
less relevant compared to the functional evaluation of 
the modules with independent measurements that was 
conducted in the study. Furthermore, the completeness 
and/or bias of the publicly available PPI networks [17, 23] 

are intrinsic limitations of the methodological approach 
which, additionally, does not provide information on 
causality. The rather small sample size constituted a 
problem such that a type II error limiting our interpre-
tations of the results cannot be excluded. Furthermore, 
the limitation of sample size has been addressed using 
robust statistical approaches at each step of the analy-
sis. In particular, when choosing the HotNet2 algorithm 
and its application, as explained in detail in the extended 
methods and, in general, when considering protein–pro-
tein interactions (PPI) network based methods, which 
offer a more robust performance in small sample size 
environments [54] compared to other systems medicine 
approaches [15]. Moreover, the identification of both 
statistically and biologically significant relationships of 
the resulting functional modules (and genes) with pre-
vious experimental multilevel data obtained in the same 
study groups [19, 20] provided additional robustness to 
the evaluation and functional characterization of the 
core findings of the study. Summing up, different fac-
tors emerging from the study design, such as sample 
size, noisy clinical environment and factors originating 
from the modeling technique in use, such as (i) current 
constraints of available PPI networks, (ii) modeling pro-
teins levels with gene expression, (iii) relying on arbitrary 
significance thresholds, and (iv) comparing of measure-
ments of different body compartments (blood, muscle) 
may lead to confounding results, which prompts for 
future validation of the study. The consistency of the 
results, however highlights the potential of biological 
modeling as a preliminary step for future discoveries. The 
above mentioned factors may also explain that the study 
did not identify specific pathways that are known to play 
a significant role in skeletal muscle dysfunction in COPD, 
such as the FoxO signaling pathway [3, 14, 55].

We acknowledge that differences in training intensity 
between healthy subjects and COPD patients (Table  1) 
should be considered in the interpretation of the results. 
However, the findings of the study are supported by the 
following factors: (i) pre-training COPD specific findings; 
and, (ii) qualitative nature of the training-induced differ-
ences between healthy and COPD unlikely explained only 
by differences in training intensity. A final methodologi-
cal consideration is that the COPD group includes only 
males, which constitute an over-representation of this 
gender (Table  1), as compared to current COPD preva-
lence in men. However, no reports on gender specificity 
of the findings have been found neither in the literature 
nor in our dataset (Additional file 1: Figure S5).

Future work
We believe that the current study significantly contrib-
uted to enhance our understanding of skeletal muscle 
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dysfunction in patients with COPD. Further research 
addressing the molecular mechanisms of impaired mus-
cle energy production in these patients should shed light 
on remaining challenges such as, causality, lung-muscle 
interactions and design of cost-effective strategies aiming 
at preventing non-pulmonary effects in COPD patients. 
The central role of impaired bioenergetics seems to 
endorse that promotion of daily physical activity at early 
disease stages may have a role preventing skeletal mus-
cle dysfunction in these patients. We believe that future 
longitudinal studies using the current methodological 
approach will generate further evidence supporting our 
interpretations of the current study findings.

A better knowledge on underlying mechanisms of non-
pulmonary effects of COPD should necessarily lead to 
enhanced patient risk assessment and better health ser-
vice selection. Moreover, continuous progresses in our 
understanding of mechanisms of COPD heterogeneity 
might prompt the need for revisiting the taxonomies of 
obstructive airways diseases.

Conclusions
The research provides a comprehensive view of the core 
mechanisms involved in skeletal muscle dysfunction as a 
systemic effect of COPD. The results indicate that COPD 
patients show impaired training-induced responses in 
skeletal muscle bioenergetics, with abnormal inflamma-
tory changes and altered tissue remodeling, as compared 
to healthy sedentary subjects. The current network medi-
cine approach shows high potential for future longitudi-
nal analyses exploring preventive strategies addressing 
non-pulmonary effects of COPD.
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Chronic obstructive pulmonary disease

AbstrAct
Introduction Comorbidities in patients with chronic 
obstructive pulmonary disease (COPD) generate a 
major burden on healthcare. Identification of cost-
effective strategies aiming at preventing and enhancing 
management of comorbid conditions in patients with 
COPD requires deeper knowledge on epidemiological 
patterns and on shared biological pathways explaining co-
occurrence of diseases.
Methods The study assesses the co-occurrence of 
several chronic conditions in patients with COPD using two 
different datasets: Catalan Healthcare Surveillance System 
(CHSS) (ES, 1.4 million registries) and Medicare (USA, 
13 million registries). Temporal order of disease diagnosis 
was analysed in the CHSS dataset.
results The results demonstrate higher prevalence of 
most of the diseases, as comorbid conditions, in elderly 
(>65) patients with COPD compared with non-COPD 
subjects, an effect observed in both CHSS and Medicare 
datasets. Analysis of temporal order of disease diagnosis 
showed that comorbid conditions in elderly patients with 
COPD tend to appear after the diagnosis of the obstructive 
disease, rather than before it.
conclusion The results provide a population health 
perspective of the comorbidity challenge in patients with 
COPD, indicating the increased risk of developing comorbid 
conditions in these patients. The research reinforces 
the need for novel approaches in the prevention and 
management of comorbidities in patients with COPD to 
effectively reduce the overall burden of the disease on 
these patients.

IntroductIon
Projections on healthcare impact of chronic 
obstructive pulmonary disease (COPD) over 
the next 15 years indicate a rapidly escalating 
health and societal burden mainly due to 
population ageing and comorbidities.1 2 It 
is well-known that highly prevalent chronic 
conditions such as cardiovascular disorders, 
type 2 diabetes mellitus—metabolic syndrome 
and/or anxiety–depression often occur as 
comorbid conditions in patients with COPD.3 

Whereas the current standards on COPD
management4 acknowledge the adverse
effects of comorbidities on COPD prognosis,
they suggest that ‘presence of comorbidities
should not alter COPD treatment, and comor-
bidities should be treated per usual stan-
dards regardless of the presence of COPD’.
However, recent evidence prompts the need
for novel approaches in the prevention and
management of comorbidities in patients
with COPD to effectively reduce the overall
burden of the disease.5 6

Identification of such cost-effective strat-
egies aiming at preventing and enhancing
management of comorbid conditions in
patients with COPD requires deeper knowl-
edge on epidemiological patterns and shared
biological pathways explaining co-occur-
rence of diseases.7 Recently, Gomez-Cabrero
et al8 reported the higher risk of developing
certain comorbidities in patients with COPD,
as compared with patients without COPD.
The study used a data-driven analysis of
Medicare registries from 13 million hospital-
ised patients over 65 years. The authors also
proposed underlying biological mechanisms
that may explain the identified comorbidities.
Another direction of comorbidity research
aims to uncover temporal disease co-occur-
rence patterns, showing great potential to
explain the dynamics of disease co-occur-
rence and to highlight characteristic disease
sequences potentially caused by underlying
mechanisms and common risk factors. As an 
example, a recent study identified COPD as 
a central disease with rapid progression to 
many other conditions, stressing the impor-
tance of its early diagnosis.9

In order to gain deeper knowledge on 
epidemiological patterns explaining co-oc-
currence of diseases,7 the primary aim of 
the current study is to reinforce previous 

http://bmjopenrespres.bmj.com/
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evidence on the higher risk of comorbidities in patients 
with COPD.8 To this end, we conducted a similar analysis 
to the recent work by Gomez-Cabrero et al8 on an inde-
pendent dataset retrieved from the Catalan Healthcare 
Surveillance System (CHSS) in Spain,10 which accounts 
for 1.4 million patients over 65 years with chronic condi-
tions recruited across all healthcare tiers. The research 
also explored the temporal order of disease diagnosis 
of COPD and comorbidities at a population level which 
might help to further understand the dynamics of comor-
bidity clustering often seen in patients with COPD.3 11

Methods
dataset and study population
The study is based on registry data of over 7.6 million 
inhabitants retrieved from the CHSS, including: primary 
care consultations, hospital-related events (hospital-
isations, emergency room consultations and special-
ised outpatient visits), pharmacy, mental health events, 
socio-sanitary services and other items, such as home-
based respiratory therapies, dialysis, outpatient rehabil-
itation and non-urgent healthcare transportation.12 13 
The study used a cross-sectional analysis, incorporating 
all patients over 65 years and registered in the CHSS who 
were active and alive during 2016 (n=1 433 376).

The research considered only chronic conditions of 
the patients, expressed with the Chronic Condition Indi-
cator for International Classification of Diseases, Ninth 
Revision, Clinical Modification (ICD-9-CM) coding 
(Agency for Healthcare Research and Quality, USA).14 
Diagnosis of COPD was based on the ICD-9 coding 
(online supplementary table S1) declared by the patient’s 
responsible physician, either a primary care professional 
or a specialist. The study did not take into account back-
ground clinical information nor forced spirometry data. 
The study identified patient with COPD (n=2 11 418) 
and their concomitant diseases, which were aggregated 
in 27 disease groups (DGs) (see online supplemen-
tary table S2) representing clinically significant traits.8 
DGs with <1% prevalence in the study population were 
excluded from the study.

Heterogeneities between the Medicare dataset8 and 
the current study were identified (table 1) and were 
taken into account in the analysis of the results. Briefly, 
the Medicare dataset included registries from hospital-
ised patients over 65 years, considering both acute and 
chronic conditions, from 1990 to 1993. In contrast, the 

current study considered chronic diagnosis of patients 
over 65 years during 2016, obtained from a broader 
healthcare scenario, including all hospital visits since 
2005 as well as diagnoses made in the primary care 
centres since the first visit of the patient.

statistical analysis
For each DG, period prevalence was computed as the 
proportion of existing DG cases between 1 January 
2016 and 31 December 2016 compared with the total 
population in the dataset. Age-associated prevalence 
was computed for each DG in patients with COPD and 
without COPD for 5-year age windows between ages 
65 and 90 (eg, 75 denotes the prevalence between 73 and 
77 years, both included).

Comorbidity association between COPD and DGs was 
measured using relative risk (RR) and phi correlation 
coefficient (Φ) (for detailed definition, see online supple-
mentary methods).8 15 Significance of these measures 
were assessed at the stringent threshold p<0.0001, 
associated with a Bonferroni corrected p-value<0.01. 
Healthcare system-related differences in comorbidity 
associations were compared using two-sided t-tests of RR 
measures, where p<0.0001 was considered significant.

temporal order of disease diagnosis
Diagnosis history of the patients included in the CHSS 
registries was used to study the temporal order of disease 
diagnosis (COPD ↔ disease). Date of diagnosis for a 
given DG was defined by the first diagnosis of any corre-
sponding disease in the DG. Patient DG diagnoses, made 
before and after the COPD diagnosis, were counted to 
characterise their temporal order. Cases in which COPD 
was diagnosed simultaneously with other DGs for the first 
time in the same visit were disregarded from the temporal 
analysis (see online supplementary figure S1).

For significant comorbid conditions, the directionality 
of temporal order of disease diagnosis was tested. Preferred 
direction (the one that appears more often) was assigned 
to those COPD–DG pairs where significantly more 
patients were diagnosed with the DG before COPD or the 
other way around, using a binomial test for each direc-
tion with a probability of success equals to 0.5 and sample 
size NDG+Nsimultaneous+ NCOPD, where Nsimultaneous indicates 
the number of patients with simultaneous first diagnosis 
of COPD and the DG.9 To estimate the strength of the 

Table 1 Description of the datasets and methodological considerations of the current study and the previous study of 
Gomez-Cabrero and colleagues8

Study population Study period Scope of data
Diseases 
considered

Current study 1.4 million (CHSS) 2016
+diagnosis history

Primary care, hospital 
claims, social care, others

Chronic

Gomez-Cabrero et al8 13 million (Medicare) 1990–1993 Hospital claims Chronic, acute

CHSS, Catalan Healthcare Surveillance System.
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directional associations, the causal information fraction 
(CIF) was used, which, in contrast to RR and Φ, considers 
the order of occurrence of the disease pairs and empha-
sises possible causative effects.16 CIF is defined between a 
pair of diseases i and j, as

 fi→j =
ni→j

ni
− nj

2N
where  ni   and  nj   denote the prevalence of the diseases, 

 ni→j   is the number of individuals diagnosed with disease
i followed by disease j and N is the population size. In 
the current analysis, CIF was used to compute COPD–DG 
associations.

results
comorbidity risk in patients with coPd in different healthcare 
systems
Nine DGs were discarded from the comparative analysis 
due to containing solely acute diseases (two DGs) and 
because of showing <1% prevalence (seven DGs) (online 
supplementary table S3).

The prevalence of 18 DGs included in the analysis is 
indicated in figure 1 by the size of the bars. Comparison 
of prevalence results within the CHSS dataset (red bars) 
indicates that patients with COPD (dark colour) have 
higher risk of developing most of the DGs compared with 
a general patient of the healthcare system (light colour). 
Identical prevalence patterns are observed in the Medi-
care dataset (cyan bars). These results are also consistent 
with the analysis of COPD comorbidity risk based on 
comorbidity measures (ie, RR, Φ-correlation), indicating 
significant (p<0.0001) disease association between COPD 
and all the DGs in both healthcare systems (online supple-
mentary table S3). The comparative analysis between 
the two datasets (figure 1) shows significant differences 
in the RR for several DGs that are fully explainable by 
the heterogeneities in the data sources described in the 
section Methods. For example, acute diseases, not consid-
ered in the current analysis (CHSS), accounted for more 
than 90% of Medicare cases in endocrine disorders and skin 
alterations (online supplementary table S4) leading to the 
visible differences in prevalence.

Figure 2 compares the age-associated prevalence of 
heart diseases, circulatory disorders and digestive alterations8 
between patients with COPD and without COPD in the 
two datasets. The figure indicates that in the two datasets 
the prevalence of the three DGs is consistently higher 
in patients with COPD (red lines), and that similar 
age-associated comorbidity patterns are observed. 
Interestingly, the prevalence of heart diseases for the two 
groups, COPD and non-COPD, is higher in the Medi-
care dataset than in the current study, representative 
of a Mediterranean population with mostly non-hospi-
talised patients. However, prevalence of heart diseases 
increases more steeply with age in the CHSS dataset. 
Similar age-associated prevalence of the remaining DGs 
in the CHSS dataset is displayed in online supplemen-
tary figure S2.

temporal order of disease diagnosis
The analysis of temporal order of disease diagnosis with 
respect to COPD is shown in figure 3A. Red bars indicate 
the patients in whom the first diagnosis of a disease from 
a given DG was done before the diagnosis of COPD. The 
number of patients in whom the corresponding DG was 

Figure 1 Prevalence (x axis) of disease groups (DGs)
(y axis) in the population of Medicare (light cyan) and 
Catalan Healthcare Surveillance System (CHSS) (light red), 
and in patients with chronic obstructive pulmonary disease 
(COPD) in Medicare (dark cyan) and in CHSS (dark red). 
The comparative analysis within datasets shows that the 
prevalence of most of the DGs is higher in patients with 
COPD (dark colour) than in the entire population (light 
colour). Differences in the prevalence between datasets are 
fully explainable by methodological heterogeneities, 
detailed in the main text. Healthcare system-related 
differences in comorbidity associations were compared 
using two-sided t-tests of relative risk measures (*), 
p<0.0001.

https://dx.doi.org/10.1136/bmjresp-2018-000302
https://dx.doi.org/10.1136/bmjresp-2018-000302
https://dx.doi.org/10.1136/bmjresp-2018-000302
https://dx.doi.org/10.1136/bmjresp-2018-000302
https://dx.doi.org/10.1136/bmjresp-2018-000302
https://dx.doi.org/10.1136/bmjresp-2018-000302


4 Tényi Á, et al. BMJ Open Resp Res 2018;0:e000302. doi:10.1136/bmjresp-2018-000302

Open Access

identified after the diagnosis of COPD are indicated by 
the cyan bars. It is of note, that for the majority of DGs, 
COPD was diagnosed first (G1). Interestingly, only heart 
diseases (G2) were more often diagnosed before COPD 
than after COPD. A  third group of DGs (G3) showed 
no preferred direction. Figure 3B translates these 
interac-tions to a network representation, with 
directional edges based on the grouping. Directional 
strengths of the asso-ciation (ie, CIF measure).

dIscussIon
The current research confirms in the CHSS dataset that 
patients with COPD are in higher risk of developing 
certain comorbidities than in patients without COPD, 
along with the results reported in Gomez-Cabrero et al .8 
Despite marked methodological heterogeneities, similar 
age-related prevalence patterns were also observed 
between the current study and the Medicare dataset in 
elderly patients, as displayed in figure 2. These results 
provide a population health perspective of the comor-
bidity challenge in patients with COPD. It is of note that 

they are in line with a recent independent report carried 
out using a similar population-based analysis.17

It is known that clinical prevalence of certain comor-
bidities is higher in patients with COPD than in those 
without COPD.18 19 In this study, we show that this effect 
is also observable using registry data, independently of 
the population (ES, USA) and the specificities of the 
healthcare system (figure 1). This relation also persists 
if studying both acute and chronic (Medicare, USA) or 
only chronic diseases (CHSS, ES), suggesting the validity 
of disease interactions on the functional trait level repre-
sented by the DGs. Interestingly, age-related patterns of 
elevated comorbidity risk are similarly observable in the 
different healthcare systems reinforcing that this effect is 
persistent in the elderly population (>65 years).

The results also showed that comorbid conditions in 
elderly patients with COPD tend to appear after the diag-
nosis of the obstructive disease, which seems to be in line 
with other studies on disease trajectories.9 20 Different 
reports17 21 have suggested age-dependent comorbidity 
patterns in patients with COPD, which indicate an 

Figure 3 (A) Temporal order of pairwise diagnoses in patients with chronic obstructive pulmonary disease (COPD). Red 
bars show the number of patients whose first diagnosis of a disease from the corresponding disease group (DG) happened 
before COPD, whereas cyan bars show the cases when such diagnoses were done after COPD. DGs are grouped into 
preferred directions: (1) G1, DG diagnosis after COPD, (2) G2, disease diagnosis before COPD and (3) G3, no significant 
directionality. (B) Elderly comorbidity network. Network nodes represent COPD and the different DGs. DGs are coloured by 
their directionality grouping: cyan for G1, red for G2 and grey for G3. The size of the nodes is proportional to the number of 
cases affected by both COPD and the DG, colour and thickness of edges are proportional to the strength of the directional 
association based on the causal information fraction measure. It is of note that simultaneous diagnoses were excluded from 
the analysis or accounted for when computing binomial directionality. This mainly influenced the data shown on respiratory 
diseases (>45% of COPD diagnoses were made simultaneously, online supplementary figure S1).
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interesting direction for future analysis of temporal order 
of disease diagnoses. Furthermore, the results showing the 
distinguished role of cardiovascular health in COPD are 
also in line with earlier studies on comorbidity clustering21 
and with its consistent relation to systemic effects of the 
disease.22 23 This indicate potential synergies between the 
management of pulmonary and cardiovascular health and 
the promotion of physical activity from early stages of the 
disease with the potential to modulate prognosis in these 
patients.

The increased risk of developing comorbid conditions 
in patients with COPD, as well deleterious interactions 
among concurrent diseases,24 25 indicates the need for 
refining current strategies aiming at reducing the burden 
of COPD on healthcare systems. In this context, prevention 
and appropriate treatment of comorbidities arise as central 
goals in the management of patients with COPD. These 
considerations are especially relevant in light of reports 
indicating that the majority of hospital admissions (and 
increased patients costs) are associated with comorbidities 
instead of the pulmonary events.6

Considering the high predictive potential of comorbidity 
groupers on these events,6 further evaluation of other 
modalities of disease interactions, such as temporal order of 
appearance,9 26 concomitant clinical characteristics,21 life-
style and genetic risk,27 constitute as interesting next step 
towards high accuracy health risk prediction, as proposed 
in Dueñas-Espín et al.10 Furthermore, a better knowledge 
of the underlying molecular mechanisms that modulate 

susceptibility for developing comorbidities in patients with
COPD also emerges as major priority. It constitutes an
initial step toward elaboration of cost-efficient strategies to
prevent comorbid conditions.28

However, a large-scale combined approach is indispens-
able in order to define efficient strategies coping with
comorbidity clustering in patients with COPD. It involves
meaningful integration of registry data with other infor-
mation sources reflecting a broader health status, such
as electronic health records, environmental and occupa-
tional exposures and genetic risks. Furthermore, the evolu-
tion of population-based analyses towards personalised
approaches, such as identifying personal disease progres-
sion9 26 or their transcriptional patterns29 and comparing
it with similar patients profiles,30–32 is needed to address
disease heterogeneity often seen in COPD and to progress
towards personalised health risk assessment and service
selection.6 10

Finally, it is acknowledged that risk of developing comor-
bidities can be modulated by confounding risk factors
not included in the current analysis, such as degree of 
airflow limitation and smoking history. It is important to 
note, however, that risk factors alone cannot explain the 
observed effects,17 33 which reinforces the need for a large-
scale, combined approaches incorporating patient infor-
mation at population and patient-specific level.

It is acknowledged that registry information alone reflects 
underdiagnosis of COPD and the lack of forced spirom-
etry data constitutes a significant limitation for accurate 

Figure 2 Comparison of the age-associated prevalence (y axis) in the Catalan Healthcare Surveillance System (CHSS) and
Medicare datasets of selected disease groups in patients with chronic obstructive pulmonary disease (COPD) (red) and non-
COPD (blue) individuals over windows of 5 years (x axis). This figure shows that patients with COPD in both datasets showed
a higher risk for heart disease, circulatory disorders and digestive alterations.
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diagnosis of COPD. These barriers also indicate the need 
for speeding-up efforts to facilitate integration between 
clinical and registry data.

conclusIon
The current research confirms that patients with COPD 
are in higher risk of developing certain comorbidities than 
patients without COPD. The study results, as well as ongoing 
research on time-related analyses of disease trajectories,7 9 
strengthen the need for further investigations on under-
lying mechanisms of non-pulmonary phenomena observed 
in patients with COPD with focus on altered regulation of 
biological pathways likely shared by different comorbid 
conditions. Furthermore, the study suggests the need for 
exploring novel modalities for health risk assessment and 
patient management aiming at consolidating cost-effec-
tive strategies to prevent comorbidities.6 10 In this context, 
current standard of care recommendations4 should neces-
sarily evolve from the current organ-centred orientation to 
a systems approach.
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AbstrACt
background Clinical management of patients with 
chronic obstructive pulmonary disease (COPD) shows 
potential for improvement provided that patients’ 
heterogeneities are better understood. The study 
addresses the impact of comorbidities and its role in 
health risk assessment.
Objective To explore the potential of health registry 
information to enhance clinical risk assessment and 
stratification.
Design Fixed cohort study including all registered patients 
with COPD in Catalonia (Spain) (7.5 million citizens) at 31 
December 2014 with 1-year (2015) follow-up.
Methods A total of 264 830 patients with COPD diagnosis, 
based on the International Classification of Diseases (Ninth 
Revision) coding, were assessed. Performance of multiple 
logistic regression models for the six main dependent 
variables of the study: mortality, hospitalisations (patients 
with one or more admissions; all cases and COPD-
related), multiple hospitalisations (patients with at least 
two admissions; all causes and COPD-related) and users 
with high healthcare costs. Neither clinical nor forced 
spirometry data were available.
results Multimorbidity, assessed with the adjusted 
morbidity grouper, was the covariate with the highest 
impact in the predictive models, which in turn showed high 
performance measured by the C-statistics: (1) mortality 
(0.83), (2 and 3) hospitalisations (all causes: 0.77; COPD-
related: 0.81), (4 and 5) multiple hospitalisations (all 
causes: 0.80; COPD-related: 0.87) and (6) users with high 
healthcare costs (0.76). Fifteen per cent of individuals with 
highest healthcare costs to year ratio represented 59% of 
the overall costs of patients with COPD.
Conclusions The results stress the impact of assessing 
multimorbidity with the adjusted morbidity grouper on 
considered health indicators, which has implications for 
enhanced COPD staging and clinical management.
trial registration number NCT02956395.

IntrODuCtIOn 
Chronic obstructive pulmonary disease 
(COPD) is one of the major disorders 
included in the WHO programme addressing 
non-communicable diseases.1 It is estimated 
that COPD will become the third leading 
cause of death by 2020.2 Moreover, projec-
tions on COPD prevalence and costs over 

the next 15 years indicate a rapidly escalating 
burden, mainly due to population ageing, on 
both health and social support systems.3 4 

While acknowledging the progress made in 
terms of standard of care recommendations,5 
it is accepted that a better understanding of 
patients’ heterogeneities constitutes a key 
challenge to further enhance both preven-
tion and management of patients with 
COPD aiming at healthcare value genera-
tion.6 7 Recent studies indicate a high impact of 
comorbidities on use of healthcare resources 
in patients with COPD prompting the need 
for assessing novel integrated care strategies 
with a patient-oriented approach.8 9 It is well 
accepted that several prevalent chronic condi-
tions often occur as clusters of comorbidities 
in patients with COPD10–12 and potential 
explanatory mechanisms for the phenom-
enon have been proposed.13 14

The current study addresses comorbidities 
in patients with COPD based on the hypoth-
esis that assessment of all patients with COPD 
living in a given geographical area, a popu-
lation-based analysis of the patients with 
the disease, can provide valuable insights 

strengths and limitations of this study

 ► The main strength of the study is that it contributes 
to risk prediction of relevant clinical events in 
patients with chronic obstructive pulmonary disease 
(COPD).

 ► The study shows high potential to assess health 
risk factors at population level indicating the high 
impact of comorbidities. It can contribute to define 
innovative strategies aiming at reducing the 
healthcare impact of patients with COPD.

 ► Full potential of the approach should be proven 
by integrating registry information and electronic 
medical records.

 ► Lack of clinical information, spirometric data and 
history of tobacco smoking reduces the potential for 
standardised risk characterisation of patients with 
COPD.
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to better understand COPD heterogeneity. Specifically, 
the research objective was to explore the potential of 
the health registry information contained in the Health 
Surveillance System of the region of Catalonia (Spain) 
(7.5 million inhabitants) to enhance health risk assess-
ment and stratification in the clinical arena.15 16 To this 
end, we analysed a total of 264 830 patients with COPD 
from all healthcare layers, registered in 31 December 2014 
and followed up in 2015, to elaborate predictive models 
for six key health indicators: (1) mortality, (2 and 3) 
hospitalisations (all causes and COPD-related), (4 and 5) 
multiple hospitalisations (all causes and COPD-related) 
and (6) users with high healthcare costs. Ultimately, this 
study aimed to consider the weight of the different covari-
ates included in the predictive models to provide useful 
information to enhance clinical management.

The study is a relevant component of the programme 
for collaborative management of complex chronic 
patients being deployed in the region during the period 
2016–2020.17 An ancillary aim of the research was to assess 
factors determining the economic impact of the patients 
with the disease, as well as to identify areas of action to 
increase healthcare efficiencies in the management of 
these patients.

MethODs
Population-based risk assessment: adjusted morbidity 
grouper
The Catalan Health Surveillance System (CHSS) includes 
updated registries of the region of Catalonia (Spain) 
(7.5 million inhabitants) from Primary Care, Hospital-re-
lated events (hospitalisations, emergency room consulta-
tions and specialised outpatient visits), Pharmacy, Mental 
Health, Socio-sanitary services and other items (home-
based respiratory therapies, dialysis, outpatient rehabil-
itation and non-urgent healthcare transportation) since 
2011.18 19 It allows analyses on use of healthcare resources, 

pharmacy consumption, prevalence of key disorders and 
population-based health risk assessment.15 16 It is of note 
that although integration of CHSS registry data with elec-
tronic medical records is not yet in place, it constitutes 
the main goal of the PADRIS programme,20 officially 
launched on January 2017.

The regional population-based health risk assessment 
tool, named GMA (Adjusted Morbidity Groups), is used 
to elaborate the health risk strata pyramid of the general 
population of Catalonia (figure 1, left triangle).15 16 The 
GMA tool predicts individual patient risk, periodically 
updated on a 6-month basis, based on multimorbidity 
information gathered from CHSS registry data. The ratio-
nale behind the use of GMA, against alternative health 
risk assessment tools, is that it complies with four main 
recommended criteria,15 that is, (1) a population health 
approach (uses the entire population of 7.5 million 
inhabitants of the region), (2) publicly owned without 
licensing constraints, (3) open source computational 
algorithms and (4) the adjusted morbidity grouper relies 
mostly on statistical criteria, as opposed to other tools that 
include expert-based coefficients, thus facilitating quick 
transferability to other territories. Detailed descriptions 
of the GMA, as well as its evaluation, have been reported 
elsewhere.15 16 Methodological details of the GMA algo-
rithm are described in the online supplementary figure 
1S.

study dataset and design
The current study design is a fixed cohort analysis of the 
entire population of 264 830 patients, alive and above 
39 years of age, included in the CHSS on 31 December 
2014 with the clinical diagnosis of COPD. New patients 
registered during 2015 were not included in the study. 
For the study purposes, the diagnosis of COPD was based 
on the International Classification of Diseases (Ninth 
Edition) coding21 (online supplementary table 1S) 
declared by the patient’s responsible physician, either a 

Figure 1 GMA health risk grades. The left triangle depicts the distribution of all Catalan citizens, expressed as percentage, 
in five arbitrary health risk layers defined using the GMA (Adjusted Morbidity Groups)15 16 as a population-based health risk 
stratification tool. The central triangle indicates the distribution in these five health risk layers of the subset of Catalan citizens 
older than 39 years. The right triangle displays the distribution of the study group of patients with chronic obstructive pulmonary 
disease (COPD) (264 830 patients) across the GMA health risk grades: baseline, low, moderate, high and very high.
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primary care professional or a specialist. The study did 
not take into account background clinical information, 
nor forced spirometry data.

The analyses were carried out for the entire population 
of patients with COPD, but the study considered different 
subsets of patients based on the GMA health risk grading: 
(1) baseline, (2) low, (3) moderate, (4) high and (5) very-
high-risk patients. The thresholds defining these subsets 
of patients correspond to the percentiles 50, 80, 95 and 99 
of the GMA grading for the general population (figure 1, 
left triangle). For the purposes of the study, patients with 
COPD falling into the baseline health risk group (1%) 
were merged with the low-risk group such that only four 
GMA grades were considered in the analysis (figure 1, 
right triangle).

Health risk predictive modelling was elaborated with 
registry data from year 2015 for the six main dependent 
variables: (1) mortality, (2 and 3) hospitalisation (all 
causes and COPD-related), (4 and 5) multiple hospital-
isations (all causes and COPD-related) and (6) users with 
high healthcare costs, as described below. In the study, 
dependent variables were defined as binary variables. 
Mortality was defined as true if a patient died during the 
period from 1 January to 31 December 2015, regardless 
of whether it occurred in the hospital, at the patient’s 
home or in other settings such as skilled nursing facili-
ties. The category all causes hospitalisations was true if a 
patient had one or more hospital admissions due to any 
cause during 2015. COPD-related hospitalisations refer 
only to events triggered by acute exacerbations of COPD. 
Multiple hospitalisations were defined as two or more 
hospital admissions. Users with high healthcare costs 
refer to subjects above percentile 85 (PCT85) in terms of 
yearly healthcare costs during 2015.

The study used retrospective deidentified data from 
administrative databases (CHSS). Therefore, neither 
informed consent nor ethical committee approval was 
required according to the current legislation in Catal-
onia. The analyses were developed under the umbrella 
of the Nextcare project (http://www. nextcarecat. cat/) 
(https:// clinicaltrials. gov/: NCT02956395).

Assessment of economic burden
Allocation of healthcare expenditure to each patient, 
including pharmacy, was done through the Personal 
Health Identification Number since it allows each billing 
invoice to be attributed to a given patient. The health-
care expenditure includes hospitalisation, primary care, 
pharmacy, health transport, respiratory home care ther-
apies, outpatient visits and skilled nursing facilities. The 
key outcome variable of the analysis was 1-year healthcare 
resource use and expenditure by patient.19 Calculation of 
individual healthcare costs was done by addition of costs 
for each item included in the CHSS registries alluded to 
above. This methodology allows calculation of the total 
healthcare expenditure in patients with COPD. Conse-
quently, it allows to perform a holistic analysis of health-
care expenditure.

statistical analysis
The study outcomes are described for the entire popula-
tion of patients with COPD. Comparisons among the four 
subgroups defined by GMA health risk grades were done. 
The results are summarised in the main manuscript and 
complementary information is reported in detail in the 
online supplementary material. In this population-based 
analysis (table 1), age and number of chronic comor-
bidities are summarised as mean and SD, the propor-
tion of women and the morbidities are expressed as 
percentages, while mortality rate, hospitalisation rate and 
COPD-related hospitalisation rate are expressed per 100 
patients with COPD among patient groups. Comparisons 
among groups were done using analysis of variance for 
continuous variables, and χ2 test for binary and nominal 
variables.

Statistical analyses were performed using SPSS soft-
ware V.18.0. All statistical tests and confidence intervals 
were constructed with a type I error (alpha) level of 5%, 
and P values lower than 0.05 were considered statistically 
significant.

Predictive modelling
Multiple logistic regression analyses were used to generate 
health risk predictive models for the six main outcome 
variables of the study, namely, (1) mortality, (2 and 3) 
hospitalisation (all causes and COPD-related), (4 and 5) 
multiple hospitalisations (all causes and COPD-related) 
and (6) users with high healthcare costs. The following 
model independent variables were considered: age, sex, 
GMA health risk grades, previous history of hospital 
admissions, emergency room consultations and use of 
social support services. Each independent variable was 
included in the model as a categorical variable to allow 
for possible non-linearity in the relationship between vari-
ables and the relevant outcomes. For each measure, we 
collapsed the uppermost categories to ensure there were 
enough individuals in each cell to allow estimation of 
the parameters. All covariates were entered in the model 
one by one and retained when they showed a signifi-
cant contribution to the predictive accuracy (P<0.10). 
The predictive role of each covariate into the model was 
assessed with a log-likelihood ratio test. To evaluate the 
performance of the resulting predictive models, we calcu-
lated the C-statistics (ie, the area under the receiver oper-
ating characteristic curve).22 23

results
Population-based analysis
The distribution of the entire population of the region in 
the health risk strata pyramid is depicted in figure 1, left 
triangle, wherein citizens are distributed in five health risk 
grades defined by the GMA percentiles, namely, (1) 50% 
of the population with baseline health risk (green), (2) 
30% of individuals with low health risk (yellow), (3) 15% 
with moderate health risk (orange), (4) four percent with 
high risk and (5) 1% with very high health risk (brown). 
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These risk strata show strong associations with mortality, 
hospital admissions, use of healthcare resources and 
expenditures, as reported in detail elsewhere.15 16

The central triangle (figure 1) indicates the distribu-
tion of the general population older than 39 years in 
the five health risk grades, described above. It consti-
tutes the reference risk strata pyramid to be compared 
with the population-based COPD analysis. Finally, the 
distribution of the study group of patients with COPD is 
depicted in the right triangle that indicates the effects of 
the chronic pulmonary disease on health risk stratifica-
tion. As expected, most of the patients with COPD (84%) 
were distributed between moderate (46%), high (29%) 
and very high (9%) health risk layers. Only 15% of the 
patients fell in the low risk level (yellow) and 1% were 
allocated in the baseline health risk level (green).

The study showed a COPD prevalence of 6.6% of all 
subjects above 39 years of age. The mean age was 70 

(SD 12.5) years. Women represented 36% of the study 
group. On average, these patients presented 5.6 (SD 2.1) 
comorbid conditions. The mortality rate was 6.2%. The 
hospitalisation rate, all causes, was 17.4% (n=46 149), 
whereas the rate of COPD-related hospitalisations was 
4.3% (n=11 470), which represents 24.9% of the total 
number of hospitalisations registered in these patients. As 
expected, the rate of comorbidities showed a consistent 
increase with GMA grading, which was the most apparent 
for cardiovascular disorders, type 2 diabetes mellitus–
metabolic syndrome and/or anxiety–depression, as 
displayed in table 1.

Predictive modelling
The summary information of the predictive modelling 
for each of the six outcome variables—mortality, hospi-
talisations (all causes and COPD-related hospitalisations), 
multiple hospitalisations (all causes and COPD-related 

Table 1 Main characteristics of the study group by GMA health risk grades

Low risk Moderate risk High risk Very high risk Total

Patients (n) 41 809 121 918 76 237 24 866 264 830

Age (years)* 60.8±11.8 69.4±11.8 75.1±10.9 77.4±10.1 70.5±12.5

Women (%)* 36.0 36.2 35.9 35.3 36.0

Morbidity

  No of chronic comorbidities* 2.9±1.1 5.2±1.4 7.0±1.6 8.4±1.7 5.6±2.1

  Diabetes (%)* 5.2 22.7 39.4 52.6 27.5

  Heart failure (%)* 0.2 5.2 30.7 63.7 17.2

  Hypertension (%)* 24.0 60.4 81.1 88.9 63.3

  Renal failure (%)* 0.3 5.8 23.4 47.8 13.9

  Dementia (%)* 0.3 2.6 7.8 13.6 4.7

  Cirrhosis (%) 0.5 1.6 3.0 4.8 2.1

  Depression (%) 8.8 20.1 28.6 34.2 22.1

  Stroke (%)* 0.5 5.9 19.2 31.8 11.3

  Ischaemic coronary disease (%)* 0.9 9.0 28.0 42.7 16.4

  Malignancy (%)* 4.2 17.0 32.1 40.9 21.6

  Locomotor system (%)* 29.3 56.3 67.9 72.0 56.8

  Osteoporosis (%)* 3.9 10.0 14.3 17.9 11.0

  Arthrosis (%)* 9.8 32.8 47.6 51.0 35.1

2015 events n (%) n (%) n (%) n (%) n (%)

  Mortality* 391 (0.9) 3213 (2.6) 6792 (8.9) 5955 (23.9) 16 351 (6.2)

  Patients with hospitalisations (all causes)* 1785 (4.3) 12 451 (10.2) 19 417 (25.5) 12 496 (50.3) 46 149 (17.4)

  Patients with hospitalisations (COPD 
related)*

404 (1.0) 2769 (2.3) 4697 (6.2) 3600 (14.5) 11 470 (4.3)

  Patients with multiple hospitalisations (all 
causes)*

366 (0.9) 3026 (2.5) 6687 (8.8) 6035 (24. 0) 16 114 (6.1)

  Patients with multiple hospitalisations 
(COPD related)*

71 (0.2) 524 (0.4) 1169 (1.5) 1210 (4.9) 2974 (1.1)

  Users with high healthcare costs* 1119 (2.7) 10 064 (8.3) 17 333 (22.7) 11 609 (46.7) 40 125 (15.2)

Age and number of chronic comorbidities expressed as mean±SD; gender and morbidities are expressed as percentages; comparisons 
among risk grades were done using analysis of variance for continuous variables and χ2 test for binary and nominal variables.
*P<0.01.
COPD, chronic obstructive pulmonary disease; GMA, Adjusted Morbidity Groups.
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repeated admissions) and users with high healthcare 
costs—are depicted in table 2, wherein significant covari-
ates, the corresponding ORs and the C-statistics are indi-
cated for each predictive model.

It is of note that age, closely followed by GMA grading, 
showed the two highest independent associations in the 
mortality model. Likewise, GMA grading depicted the 
highest predictive role in three out of the six models: 
hospitalisations (all causes), multiple hospitalisations (all 
causes) and users with high healthcare costs. Interestingly, 

for COPD-related events (hospitalisations and multiple 
hospitalisations), the covariate with highest predictive 
role was history of hospitalisations, whereas the ORs of 
the covariate GMA grades were markedly lower than in 
the other predictive models.

economic impact of patients with COPD
Figure 2 compares the costs of the different items, 
expressed as percentages, for the general population of 
Catalonia (outer circle) and those generated by the study 

Table 2 Summary description of the six predictive models

Mortality

Hospitalisations Multiple hospitalisations Users with high healthcare 
costs (PCT85)All causes COPD related All causes COPD related

C-statistics (AUC) 0.829 0.766 0.807 0.803 0.865 0.763

Covariates OR

Sex

   Male 1 1 1 1 1 1

   Female 0.701 0.825 0.885 0.818 0.823 0.84

Age (years)

   40–54 1 1 1 1 1 1

   55–64 1.693 1.254 1.435 1.308 1.428 0.884

   65–74 2.103 1.506 1.675 1.576 1.7 0.91

   75–84 3.749 2.054 2.017 1.983 1.634 0.898

  >84 9.911 2.827 2.049 2.335 1.272 0.681

Admissions

   Group A 1 1 1 1 1 1

   Group B 1.394 1.903 4.699 1.952 6.952 1.59

   Group C 1.368 2.039 8.592 2.266 15.214 1.577

GMA grade

   Low 1 1 1 1 1 1

   Moderate 1.826 1.896 1.644 2.128 1.649 3.125

   High 4.316 3.998 2.646 5.419 2.852 8.858

   Very high 8.919 7.851 3.548 11.042 3.891 20.285

Emergency room visits

   0 1 1 1 1 1 1

   1–2 1.106 1.405 1.37 1.526 1.505 1.353

   3–5 1.276 1.865 1.684 2.179 2.013 1.771

  >5 1.643 2.615 2.235 3.354 3.032 2.428

Social support

   No 1 1 1 1 1 1

   Yes 2.289 1.008 0.892 0.917 0.922 0.877

The intensities of grey background colour reflect the magnitude of ORs, being white when value is one and stronger grey when they are closer 
to 0 or have a higher positive value.
Admissions:
Group A corresponds to patients with no registries of hospital admissions within the period 2011–2014; Group B includes patients with history 
of admissions before 2014, but without admissions in that year; Group C includes patients with hospital admissions during 2014. Graphical 
representation and details of the six predictive models with the corresponding 95% CIs of the ORs are shown in the online supplementary 
figures 2S–7S and tables 2S–7S.
AUC, area under the receiver operating characteristic curve; COPD, chronic obstructive pulmonary disease; GMA, Adjusted Morbidity 
Groups.
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group of patients with COPD (inner circle). Briefly, COPD 
hospitalisations, pharmacy, skilled nursing care and other 
costs (respiratory therapies) are above the mean cost of 
the corresponding items in the general population of the 
region.

The average healthcare costs of patients with COPD 
per year was €4238 as compared with a mean of €987 
a year per citizen in the region. It is of note that the cost 
generated by patients with COPD represents 13.5% of the 
overall healthcare costs in the region.

The cost analysis by GMA grading (figure 3) clearly 
showed a steady increase of costs per patient/year 
with considered GMA risk grades: (1) low, €1284; (2) 
moderate, €2944; (3) high, €5933; and (4) very high, 
€11 537. Hospitalisation and pharmacy are the two items 
with highest impact on costs associated to GMA grading. 
It is worth to mention that we observed huge differences 
(7.41 times) between the users with high healthcare costs 
per year (PCT85: €16 131), which represents 59% of the 
overall costs of patients with COPD, and patients with 
COPD below PCT85 (€2177). Online supplementary table 
8S indicates use of healthcare resources by GMA category.

DIsCussIOn
Interpretation of the main findings
The main finding of the current study was the identifica-
tion of comorbidities, expressed as GMA grades, as the 
covariate with highest discriminative impact on target 
events (mortality, hospitalisations) (table 2) and on yearly 
healthcare costs per patient (figure 3). These results can 
be relevant for commissioning of innovative healthcare 
services aiming at preventing materialisation of recent 
predictions on increases of healthcare impact of patients 
with COPD over the next 15 years.3 4 However, they may 
also foster enhanced clinical management of individual 
cases with COPD.

It is of note that the performance of these models 
(table 2 and online supplementary figure S2–S7) shows 
quite acceptable goodness of fit (ie, C-statistics), indi-
cating the potential of exploring synergies between popu-
lation-health risk assessment (ie, GMA grading system) 
and clinical information to enhance health risk assess-
ment and stratification in the clinical arena, as reported 
in Dueñas-Espín et al.15 Ultimately, integration between 
registry data and electronic medical records of healthcare 
providers emerge as a high priority goal to properly pave 
the way towards personalised medicine for patients with 
chronic disorders.24

As expected, the covariate GMA showed a higher contri-
bution in all causes hospital-related events than in only 
COPD-related admissions (table 2). It is of note that the 
latter represented only 22% of all admissions (table 1). 
While current GOLD recommendations address pulmo-
nary events explaining frequent COPD exacerbations, the 
results of the current study suggest the need for further 
analyses aiming at identifying specific management 
needs for complex patients with COPD and comorbid 
conditions.

two complementary healthcare strategies
The distribution of patients with COPD in the regional 
health risk stratification pyramid (figure 1, right triangle) 
allows identification of two different scenarios with 
well-defined associated challenges.

Patients with high health risk
The distribution of yearly healthcare costs per patient 
(figure 3) provides a strong rationale for targeting 

Figure 2 Indicates the distribution of costs of main items, 
expressed as percentages. The outer circle corresponds to 
overall cost for the Catalan Health System, whereas the inner 
circle indicates the corresponding relative costs ascribed to 
patients with chronic obstructive pulmonary disease (COPD). 
The absolute values are (1) Hospitalisation (€2291.8 million 
and €356.6 million, respectively), (2) Pharmacy (€2193.4 
million and €325.8 million), (3) Primary care (€1745.0 million 
and €158.9 million), (4) Outpatient specialised care (€842.9 
million and €98.1 million), (5) Emergency department (€401.5 
million and €29.7 million), (6) Skilled nursing facility (Catalonia 
€155.1 million; COPD €37.5 million), and (7) Other (€404.0 
million and €78.0 million). The last item, Others, includes 
home-based respiratory therapies, dialysis, outpatient 
rehabilitation and non-urgent healthcare transportation.

Figure 3 Average patient cost per year and relative 
contribution of the seven items (see text and figure 2 legend) 
for the four subgroups of patients with chronic obstructive 
pulmonary disease classified according to the GMA (Adjusted 
Morbidity Groups) scoring from low health risk (left column) to 
very high health risk (right column).
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patients close to the tip of the risk stratification pyramid 
as candidates for large-scale deployment of innovative 
services based on care coordination. However, two main 
limiting factors should be overcome in order to achieve 
proper designs of integrated care services.25 First, poor 
comparability among interventions assessing effects on 
integrated care management for patients with COPD 
indicates an urgent need for standardisation of service 
workflows. Second is the limited healthcare impact of 
standard interventions addressed to patients at the tip of 
the pyramid,26 that is, the low ratio between magnitude 
of the interventional effects and the resources devoted 
to achieve them, which may imply little healthcare value 
generation.6 7 These two factors strengthen the need for 
further evidence on cost-effectiveness of well-defined inte-
grated care interventions for complex chronic patients.27

Patients with low and moderate health risk
A better understanding of underlying mechanisms of 
comorbidity clustering in these patients emerges as a 
central need to effectively slow down patients’ progress 
towards the tip of the pyramid. A natural consequence 
should be the development of efficient preventive inter-
ventions28 aiming at delaying patients’ worsening in terms 
of health risk scoring, which is recognised as a central 
unmet need for enhanced COPD management.

strengths and limitations of the study
The uniqueness of the current study is that it was carried 
out using registry data that allow population-based anal-
yses of all patients with a given condition(s) in the region. 
It is of note that complexities involved in implementation 
and optimisation of large-scale health information tech-
nology systems often impede health assessment of the 
entire population in a real-world setting.29

We acknowledge, however, that the use of registry infor-
mation alone reflects underdiagnosis of COPD and consti-
tutes a significant limitation that may explain a rather low 
figure for COPD prevalence in the region.5 30 The lack 
of clinical information, spirometric data and history of 
tobacco smoking reduces the potential for a proper char-
acterisation of patients with COPD. As indicated above, 
the barriers associated to the existence of health informa-
tion silos further strengthens the need for speeding up 
the current efforts to achieve real integration between 
clinical and registry data5 that will open new avenues to 
enhance both medical knowledge and clinical practice.

Episodes of inpatient and outpatient care carried out 
in private hospitals were not available for analysis because 
private providers do not use the Personal Health Identifi-
cation Number. Nevertheless, the vast majority (approxi-
mately 97.5% in 2015) of COPD hospitalisations are done 
in public hospitals.

Clinical impact and perspectives generated by the study
The current study confirms that prevalent chronic condi-
tions such as cardiovascular disorders, type 2 diabetes 
mellitus–metabolic syndrome and/or anxiety-depression 

often occur in high-risk patients with COPD.10–12 We 
believe that the study provides a strong rationale for 
further research on subject-specific health risk prediction 
and stratification aiming at early identification of patients 
with low to moderate health risk who are prone to develop 
comorbid conditions in order to enhance preventive 
management in a cost-effective manner.31 32 The current 
research may contribute to foster future developments 
of GOLD recommendations5 addressing non-pulmo-
nary manifestations of COPD that should have a positive 
impact on both staging and management of complex 
chronic patients.

Moreover, the study reinforces the ongoing strategies 
aiming at speeding up the evolution of the current health 
surveillance system in Catalonia towards a Digital Health 
Framework conceptually formulated in Cano et al33 34 
with potential to articulate three categories of data: (1) 
outcomes from population-based health-risk predictive 
models; (2) healthcare and biomedical research knowl-
edge resulting from integration of clinical, physiolog-
ical and biological/molecular information; and (3) 
informal care information from in-place personal health 
folders15 17 encompassing information on lifestyle, adher-
ence profile, socioeconomic status, social support and 
environmental factors. It is envisaged that inclusion of 
all these covariates influencing patient health should 
markedly increase the predictive accuracy and facilitate 
clinical decision-making based on sound estimates of the 
prognosis of an individual.

COnClusIOns
The current study provides a population-based analysis 
of 264 830 patients with COPD based on administra-
tive health registries in Catalonia. The results illustrate 
the high impact of comorbidities on undesirable clin-
ical events. We believe that the results highly encourage 
further developments fostering interoperability between 
health registries and electronic medical records to 
enhance clinical risk prediction.

Acknowledgements We want to acknowledge the support of NEXTCARE team 
(COMRDI15-1-0016), AGAUR research groups (2009SGR911 and 2014SGR661) and 
CERCA Programme/Generalitat de Catalunya.

Contributors Study conception and design: EV, AT, IC and JR. Data acquisition: EV, 
DM and MC. Data analysis: EV, DM and MC. Manuscript preparation: EV, AT, IC, CH, 
JE, AGA and JR. Manuscript revision: all authors.

Funding This work was supported by the European Commission grants 
CONNECARE (H2020-689802).

Competing interests None declared.

Patient consent Obtained.

ethics approval Hospital Clinic of Barcelona.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

Open Access This is an Open Access article distributed in accordance with the 
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which 
permits others to distribute, remix, adapt, build upon this work non-commercially, 
and license their derivative works on different terms, provided the original work is 

group.bmj.com on March 9, 2018 - Published by http://bmjopen.bmj.com/Downloaded from 

http://bmjopen.bmj.com/
http://group.bmj.com


8 Vela E, et al. BMJ Open 2018;8:e017283. doi:10.1136/bmjopen-2017-017283

Open Access 

properly cited and the use is non-commercial. See: http:// creativecommons. org/ 
licenses/ by- nc/ 4. 0/

© Article author(s) (or their employer(s) unless otherwise stated in the text of the 
article) 2018. All rights reserved. No commercial use is permitted unless otherwise 
expressly granted.

reFerenCes
 1. WHO. Innovative care for chronic conditions: building blocks 

for action. Geneva: World Health Organization (WHO/MNC/
CCH/02.01), 2002. http://www. who. int/ chp/ knowledge/ publications/ 
icccglobalreport. pdf (accessed 9 Mar 2017).

 2. Murray CJ, Lopez AD. Measuring the global burden of disease.  
N Engl J Med 2013;369:448–57.

 3. Khakban A, Sin DD, FitzGerald JM, et al. The projected epidemic of 
COPD hospitalizations over the next 15 years: a population based 
perspective. Am J Respir Crit Care Med 2016:rccm.201606-1162PP.

 4. McLean S, Hoogendoorn M, Hoogenveen RT, et al. Projecting the 
COPD population and costs in England and Scotland: 2011 to 2030. 
Sci Rep 2016;6:31893.

 5. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global Strategy for the 
Diagnosis, Management, and Prevention of Chronic Obstructive 
Lung Disease 2017 Report. GOLD Executive Summary. Am J Respir 
Crit Care Med 2017;195:557–82.

 6. Porter ME. What is value in health care? N Engl J Med 
2010;363:2477–81.

 7. Porter ME, Larsson S, Lee TH. Standardizing patient outcomes 
measurement. N Engl J Med 2016;374:504–6.

 8. van Boven JFM. Costly comorbidities of COPD: the ignored side of 
the coin? Eur Respir J 2017;50:1700917.

 9. Chen W, FitzGerald JM, Sin DD, et al. Excess economic burden 
of comorbidities in COPD: a 15-year population-based study. Eur 
Respir J 2017;50:1700393.

 10. Vanfleteren LE, Spruit MA, Groenen M, et al. Clusters of 
comorbidities based on validated objective measurements and 
systemic inflammation in patients with chronic obstructive pulmonary 
disease. Am J Respir Crit Care Med 2013;187:728–35.

 11. Divo MJ, Casanova C, Marin JM, et al. COPD comorbidities network. 
Eur Respir J 2015;46:640–50.

 12. Vanfleteren LE, Spruit MA, Franssen FM. Tailoring the approach to 
multimorbidity in adults with respiratory disease: the NICE guideline. 
Eur Respir J 2017;49:1601696.

 13. Barnes PJ. Mechanisms of development of multimorbidity in the 
elderly. Eur Respir J 2015;45:790–806.

 14. Menche J, Sharma A, Kitsak M, et al. Disease networks. Uncovering 
disease–disease relationships through the incomplete interactome. 
Science 2015;347:1257601.

 15. Dueñas-Espín I, Vela E, Pauws S, et al. Proposals for enhanced 
health risk assessment and stratification in an integrated care 
scenario. BMJ Open 2016;6:e010301.

 16. Monterde D, Vela E, Clèries M. Los grupos de morbilidad ajustados: 
nuevo agrupador de morbilidad poblacional de utilidad en el ámbito 
de la atención primaria. Atención Primaria 2016;48:674–82.

 17. Department of Health C. Catalonia health plan for 2016–2020. 2016. 
http:// salutweb. gencat. cat/ web/. content/ home/ el_ departament/ Pla_ 
salut/ pla_ salut_ 2016_ 2020/ Documents/ Pla_ salut_ Catalunya_ 2016_ 
2020. pdf

 18. Farré N, Vela E, Clèries M, et al. Real world heart failure epidemiology 
and outcome: a population-based analysis of 88 195 patients. PLoS 
One 2017;12:e0172745.

 19. Farré N, Vela E, Clèries M, et al. Medical resource use and 
expenditure in patients with chronic heart failure: a population-based 
analysis of 88 195 patients. Eur J Heart Fail 2016;18:1132–40.

 20. Department of Health C. Programa públic d’analítica de dades per 
a la recerca i la innovació en salut (PADRIS). 2017. http:// salutweb. 
gencat. cat/ web/. content/ home/ ambits_ tematics/ linies_ dactuacio/ 
recerca/ enllacos/ Programa_ analitica_ dades_ PADRIS_ aquas2017_ 
publica. pdf

 21. Cherkin DC, Deyo RA, Volinn E, et al. Use of the International 
Classification of Diseases (ICD-9-CM) to identify hospitalizations for 
mechanical low back problems in administrative databases. Spine 
1992;17:817–25.

 22. Zou KH, O'Malley AJ, Mauri L. Receiver-operating characteristic 
analysis for evaluating diagnostic tests and predictive models. 
Circulation 2007;115:654–7.

 23. Ware JH. The limitations of risk factors as prognostic tools. N Engl J 
Med 2006;355:2615–7.

 24. Cano I, Tenyi A, Vela E, et al. Perspectives on big data applications of 
health information. Curr Opin Syst Biol 2017;3:36–42.

 25. McWilliams JM, Schwartz AL. Focusing on high-cost patients—the 
key to addressing high costs? N Engl J Med 2017;376:807–9.

 26. Lewis GH. ‘Impactibility models’: identifying the subgroup of 
high-risk patients most amenable to hospital-avoidance programs. 
Milbank Q 2010;88:240–55.

 27. Cano I, Dueñas-Espín I, Hernandez C, et al. Protocol for regional 
implementation of community-based collaborative management of 
complex chronic patients. NPJ Prim Care Respir Med 2017;27:44.

 28. Escarrabill J, Torrente E, Esquinas C, et al. Auditoría clínica de los 
pacientes que ingresan en el hospital por agudización de EPOC. 
Estudio MAG-1. Arch Bronconeumol 2015;51:483–9.

 29. Cresswell KM, Bates DW, Sheikh A. Ten key considerations for the 
successful optimization of large-scale health information technology. 
J Am Med Inform Assoc 2017;24:182–7.

 30. Miravitlles M, Soriano JB, García-Río F, et al. Prevalence of COPD in 
Spain: impact of undiagnosed COPD on quality of life and daily life 
activities. Thorax 2009;64:863–8.

 31. Gomez-Cabrero D, Menche J, Vargas C, et al. From comorbidities 
of chronic obstructive pulmonary disease to identification of shared 
molecular mechanisms by data integration. BMC Bioinformatics 
2016;17:23–35.

 32. Roca J, Vargas C, Cano I, et al. Chronic obstructive pulmonary 
disease heterogeneity: challenges for health risk assessment, 
stratification and management. J Transl Med 2014;12 (Suppl 2):S3.

 33. Cano I, Lluch-Ariet M, Gomez-Cabrero D, et al. Biomedical research 
in a digital health framework. J Transl Med 2014;12 (Suppl 2):S10.

 34. Cano I, Alonso A, Hernandez C, et al. An adaptive case management 
system to support integrated care services: lessons learned from the 
NEXES project. J Biomed Inform 2015;55:11–22.

group.bmj.com on March 9, 2018 - Published by http://bmjopen.bmj.com/Downloaded from 

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://www.who.int/chp/knowledge/publications/icccglobalreport.pdf
http://www.who.int/chp/knowledge/publications/icccglobalreport.pdf
http://dx.doi.org/10.1056/NEJMra1201534
http://dx.doi.org/10.1164/rccm.201606-1162PP
http://dx.doi.org/10.1038/srep31893
http://dx.doi.org/10.1164/rccm.201701-0218PP
http://dx.doi.org/10.1164/rccm.201701-0218PP
http://dx.doi.org/10.1056/NEJMp1011024
http://dx.doi.org/10.1056/NEJMp1511701
http://dx.doi.org/10.1183/13993003.00917-2017
http://dx.doi.org/10.1183/13993003.00393-2017
http://dx.doi.org/10.1183/13993003.00393-2017
http://dx.doi.org/10.1164/rccm.201209-1665OC
http://dx.doi.org/10.1183/09031936.00171614
http://dx.doi.org/10.1183/13993003.01696-2016
http://dx.doi.org/10.1183/09031936.00229714
http://dx.doi.org/10.1126/science.1257601
http://dx.doi.org/10.1136/bmjopen-2015-010301
http://dx.doi.org/10.1016/j.aprim.2016.06.003
http://salutweb.gencat.cat/web/.content/home/el_departament/Pla_salut/pla_salut_2016_2020/Documents/Pla_salut_Catalunya_2016_2020.pdf
http://salutweb.gencat.cat/web/.content/home/el_departament/Pla_salut/pla_salut_2016_2020/Documents/Pla_salut_Catalunya_2016_2020.pdf
http://salutweb.gencat.cat/web/.content/home/el_departament/Pla_salut/pla_salut_2016_2020/Documents/Pla_salut_Catalunya_2016_2020.pdf
http://dx.doi.org/10.1371/journal.pone.0172745
http://dx.doi.org/10.1371/journal.pone.0172745
http://dx.doi.org/10.1002/ejhf.549
http://salutweb.gencat.cat/web/.content/home/ambits_tematics/linies_dactuacio/recerca/enllacos/Programa_analitica_dades_PADRIS_aquas2017_publica.pdf
http://salutweb.gencat.cat/web/.content/home/ambits_tematics/linies_dactuacio/recerca/enllacos/Programa_analitica_dades_PADRIS_aquas2017_publica.pdf
http://salutweb.gencat.cat/web/.content/home/ambits_tematics/linies_dactuacio/recerca/enllacos/Programa_analitica_dades_PADRIS_aquas2017_publica.pdf
http://salutweb.gencat.cat/web/.content/home/ambits_tematics/linies_dactuacio/recerca/enllacos/Programa_analitica_dades_PADRIS_aquas2017_publica.pdf
http://dx.doi.org/10.1097/00007632-199207000-00015
http://dx.doi.org/10.1161/CIRCULATIONAHA.105.594929
http://dx.doi.org/10.1056/NEJMp068249
http://dx.doi.org/10.1056/NEJMp068249
http://dx.doi.org/10.1016/j.coisb.2017.04.012
http://dx.doi.org/10.1056/NEJMp1612779
http://dx.doi.org/10.1111/j.1468-0009.2010.00597.x
http://dx.doi.org/10.1038/s41533-017-0043-9
http://dx.doi.org/10.1016/j.arbres.2014.06.023
http://dx.doi.org/10.1093/jamia/ocw037
http://dx.doi.org/10.1136/thx.2009.115725
http://dx.doi.org/10.1186/s12859-016-1291-3
http://dx.doi.org/10.1186/1479-5876-12-S2-S3
http://dx.doi.org/10.1186/1479-5876-12-S2-S10
http://dx.doi.org/10.1016/j.jbi.2015.02.011
http://bmjopen.bmj.com/
http://group.bmj.com




 

81 

 

MANUSCRIPT 5: Non-pulmonary manifestations of Chronic Obstructive Pulmonary 
Disease: mechanisms, risk assessment and clinical management 

 

 

 

Cano I, Gomez-Cabrero D, Tényi Á, Jesper Tegner, Wagner P, Maier D, Miralles F, 

Cascante M, and Roca J. Non-pulmonary manifestations of Chronic Obstructive 

Pulmonary Disease: mechanisms, risk assessment and clinical management. Submitted 

to Respiratory Research – April 2018. 

 

 

 

• Journal: Respiratory Research  

• Impact factor: 3.841 

• Quartile: 1st 

• Status: Submitted to Respiratory Research – April 2018. 

 



1 

A systems approach to non-pulmonary manifestations of COPD 

Isaac Cano1,2*, David Gomez-Cabrero3*, Akos Tenyi1,2, Jesper Tegner3,4, Peter Wagner5, 
Dieter Maier6, Felip Miralles7, Marta Cascante8, and Josep Roca1,2 

*The two authors contributed equally

1 Hospital Clínic. IDIBAPS, Facultat de Medicina. Universitat de Barcelona, 08036, 

Barcelona, Catalunya, Spain. 

2 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias 

(CIBERES), Spain. 

3 Unit of Computational Medicine, Department of Medicine, Center for Molecular 

Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden 

4 Biological and Environmental Sciences and Engineering Division (BESE), Computer, 

Electrical and Mathematical Sciences and Engineering Division (CEMSE), King 

Abdullah University of Science and Technology (KAUST), Thuwal 23955–6900, 

Kingdom of Saudi Arabia  

5 Division of Physiology, Pulmonary and Critical Care Medicine, University of California, 

San Diego, La Jolla, California. 

6 Biomax Informatics AG, Robert-Koch-Str. 2, Planegg, Germany. 

7 Technology Centre of Catalonia (Eurecat). Barcelona, Catalonia. Spain. 

8 Departament de Bioquimica i Biologia Molecular i IBUB, Facultat de Biologia, 

Universitat de  Barcelona, 08028 Barcelona, Catalunya, Spain 

Correspondence  

Josep Roca (jroca@clinic.cat). Hospital Clínic, IDIBAPS, Universitat de Barcelona, 

C/Villarroel 170, 08036, Barcelona, Spain. Phone: +34-932275747, Fax: +34-

932275455. 

Article type: Review 

mailto:jroca@clinic.cat


2 

Abstract  

Background: The Synergy-COPD project was conceived as a systems medicine 

approach to study underlying biological mechanisms of skeletal muscle dysfunction 

and the phenomenon of co-morbidity clustering observed in patients suffering from 

chronic obstructive pulmonary disease (COPD). The overarching hypothesis was that 

non-pulmonary manifestations cannot solely be explained by the activity of the 

pulmonary disease. This paper summarizes the biomedical outcomes of the project.  

Main body: Synergy-COPD identified abnormalities in co-regulation of bioenergetics, 

inflammation and tissue remodelling processes, operating as central players in non-

pulmonary manifestations, and a relevant role for oxidative stress as a key 

characteristic mechanism in these patients. The findings showed significant 

associations with aerobic capacity, but not with lung function. In addition, a data-driven 

analysis of the Medicare dataset indicated higher risk for co-morbidities in patients with 

COPD. Moreover, a population-health risk assessment of COPD cases in Catalonia 

(Spain) suggested a high predictive role of co-morbidities in terms of mortality, 

hospitalizations, multiple hospital admissions, and high healthcare costs.  

Conclusions: These findings on mechanisms of non-pulmonary phenomena and co-

morbidities, indicate the need for novel risk assessment strategies. Synergy-COPD 

outcomes strongly points out that current standards for clinical management should be 

complemented by a patient-oriented approach considering enhanced comorbidity 

prevention and management. 

 

Key words: Bioenergetics; Multimorbidity; Predictive Medicine; Redox disequilibrium; 

Systems Medicine. 
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Background  

Patients with chronic obstructive pulmonary disease (COPD) produce a huge health 

and societal burden worldwide [1–4], which unfortunately is expected to increase in the 

coming years mainly due to population ageing [5, 6].  

While acknowledging the progress achieved in terms of standard of care 

recommendations addressing COPD [2], a deeper knowledge of non-pulmonary 

manifestations [7–9], as well as their implications for clinical care, are well-recognized 

unmet needs.  

The EU project Synergy-COPD [10] was formulated on the basis of the hypothesis that 

a better insight into the biological mechanisms involved in non-pulmonary 

manifestations [11–13] may contribute to improved care of patients suffering from 

COPD. The project (Figure 1) was therefore conceived as a systems medicine 

analysis of unknown aspects of two specific non-pulmonary manifestations: skeletal 

muscle dysfunction/wasting [7] and the phenomenon of co-morbidity clustering [13]. It 

is of note that the latter seems to be only partly explained by shared risk factors among 

concurrent diseases [8, 13], such as tobacco smoking, nutritional disbalance and 

sedentarism. 

 

Figure 1 – Main biomedical areas of the EU project Synergy-COPD. The project 

analysed experimental, “omics”, physiological, clinical and epidemiological information 

addressing underlying mechanisms of two major non-pulmonary phenomena often seen 

in patients with COPD: Skeletal muscle dysfunction and Co-morbidities. A third area of 

the project was to design and evaluate strategies for transferring novel knowledge into 
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clinical practice with a patient-oriented approach. The ultimate aim was to explore 

strategies leading to modulation of disease progress and cost-effective management of 

these patients. 

Synergy-COPD was designed as an iterative research process wherein data from 

several sources, encompassing animal experimentation [14], human studies [15–17], 

epidemiological research [18] and registry information [19, 20], were analysed using 

several, and in some cases complementary, computational modelling techniques.  

Besides its core biomedical dimension, the project had two additional objectives: i) 

technological developments facilitating generation and integration of knowledge; and, 

ii) transfer of acquired knowledge into clinical settings.  

Whereas the details of the project design, methodological issues and initial results of 

Synergy-COPD have been previously described in a dedicated monograph [21], the 

current paper summarizes consolidated outcomes for each of the three biomedical 

areas of the project (Figure 1): i) Skeletal muscle dysfunction; ii) Co-morbidities; and, 

iii) Proposals for enhanced transfer of knowledge into clinical practice. 

The report also presents limitations, and facilitators, encountered during the project 

lifespan with impact on future developments and action plans. It is of note, that the 

current manuscript does not specifically address the technological aspects of Synergy-

COPD. 

Skeletal muscle dysfunction 

Skeletal muscle dysfunction is a well-accepted systemic effect of COPD associated 

with poor prognosis and high use of healthcare resources, independently of the degree 

of lung function impairment (FEV1) [2, 7]. The phenomenon has a multifactorial basis 

and it may affect up to 30% of patients [22] with a wide spectrum of manifestations, 

from subclinical findings to overt muscle wasting, defined as a low Fat Free Mass Index 

(FFMI<16kg/m2 in men and FFMI<15kg/m2 in women) [23]. Synergy-COPD performed 

six studies [14, 24–28] addressing two specific aspects of skeletal muscle dysfunction, 

namely: i) Molecular mechanisms [14, 24, 28]; and, ii) Lung-limb muscle relationships 

associated to oxygen  transport [25–27]. 

Molecular mechanisms – The transcriptionally active network modules of interacting 

proteins in the vastus lateralis of patients with COPD (n= 15, FEV1 46 ± 12 % 

predicted, age  68 ± 7 yrs.) and healthy sedentary controls (n= 12, age 65 ±9 yrs.) [28] 

were characterized for each differential condition, at rest and after an 8-week 

endurance training program, using the HotNet2 algorithm [29]. Results were evaluated 
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with previous experimental multilevel data derived from the same study groups [15–17], 

not used in the analysis. At baseline, the study identified four COPD specific network 

modules indicating abnormalities in creatinine metabolism, calcium homeostasis, 

oxidative stress and inflammatory responses, showing statistically significant (p<0.05) 

associations with exercise capacity (VO2 peak, BODE index and blood lactate levels), 

but not with lung function (FEV1). It is of note that endurance training-induced effects, 

assessed through changes in the network modules, displayed marked differences 

between COPD patients and controls (Figure 2). In healthy subjects, skeletal muscle 

training adaptations were significantly associated with changes in cell bioenergetics 

(p<0.05) which, in turn, showed strong relationships with plasma metabolomics 

adaptations; whereas, effects of training in COPD were confined to muscle remodelling 

with abnormal inflammatory changes.  

 

Figure 2 – Main Training effects (TE) on network modules. The figure depicts network 

modules that were found to be modified by the 8-week training program. The figure 

depicts on the left, network modules identified in patients with COPD (COPD-TE); on the 

right, network modules identified in healthy controls (Healthy-TE); in the middle, (sub) 

modules that were identified in both groups (Shared). Genes are colored according to 

their differential regulation in COPD-TE (inner colour of the nodes) and in Healthy-TE 

(border colour of the nodes): up regulation with training (red circles), down regulation with 

training (blue circles). Modules are named after significantly enriched Gene Ontology 

terms. Training differential expression significance is signed by * for COPD-TE, and § for 

Healthy-TE (False Discovery Rate < 0.05) [28].  
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The defective muscle adaptation to training in patients with COPD [24] was also 

assessed using a novel computational approach combining the benefits of probabilistic 

and classical model-driven methods (i.e., Thomas networks) [30] to address the 

complex dynamics of energy-metabolism-associated gene regulatory networks. Briefly, 

alterations in tricarboxylic acid (TCA) cycle, electron transport chain, creatine kinase, 

cytokines regulation and insulin receptor factor were unveiled as key players in the 

abnormal training-induced responses in patients with COPD. Moreover, the study [24] 

suggested new avenues to explore drug repurposing in subsets of patients with COPD. 

Synergy-COPD also showed that guinea pigs exposed to long-term cigarette smoking 

accurately reflected most of the transcriptional changes observed in dysfunctional limb 

muscle of patients with COPD when compared to matched controls [14]. Using network 

inference techniques, the study indicated that the expression profile in whole lung of 

genes encoding for soluble inflammatory mediators is informative of the molecular state 

of skeletal muscles in the guinea pig smoking model. These findings suggested 

abnormal interactions between lung and skeletal muscle that deserve to be further 

explored. It was shown that two cytokines [CXCL10 and CXCL9, Chemokine (C-X-C 

motif) ligand 9 and ligand 10, respectively] are promising candidate inflammatory 

signals linked to the regulation of central metabolism genes in skeletal muscles. These 

two cytokines had been reported as biomarkers of abnormal cardiac remodelling [31, 

32]. 

Dissociation between lung function and limb muscle bioenergetics – Synergy-

COPD developed one integrated mechanistic mathematical model to predict 

intracellular oxygen levels [25, 26] which was linked to mitochondrial metabolism [33], 

to estimate mitochondrial reactive oxygen species (ROS) production [27]. A sensitivity 

analysis of the relationships between cell oxygenation and mitochondrial ROS 

production was carried out [34] in a group of 21 patients with mild to severe COPD 

(GOLD: II 33%; III 43%, and, IV 24%) [35] exercising at peak aerobic capacity (VO2 

peak). Two central messages emerged from this analysis: i) Both estimated tissue 

oxygenation levels and VO2 peak were unrelated to measured FEV1,  and ii) Low 

intracellular oxygen levels, stimulating abnormally high mitochondrial ROS production, 

were predicted to occur at peak exercise in these patients [27, 36]. The latter is 

consistent with the deleterious effects of high intensity training on skeletal muscle 

performance observed in severe COPD patients [37].  

Lessons learned and clinical perspectives – Anomalous gene regulatory network 

dynamics in skeletal muscle of patients with COPD constituted the most striking 

findings of the above studies. Skeletal muscle abnormalities leading to less efficient 
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energy metabolism, and potentially driving other abnormal skeletal muscle responses 

were common characteristics. In our view, the consistent relationship between these 

results and aerobic capacity makes it a priority to characterize each patient’s exercise 

performance and physical activity in the clinic. The results of Synergy-COPD endorse 

the need for optimizing early cardiopulmonary rehabilitation strategies, and promote 

physicial activity, as a way to modulate prognosis in these patients [38]. Moreover, the 

results foster the need for novel longitudinal studies with multilevel measurements to 

further refine operational strategies for prevention of skeletal muscle dysfunction and 

for a better understanding of the abnormal interplay between lung and skeletal muscle 

in patients with COPD.  

Co-morbidities  

The high impact of co-morbidities on healthcare burden prompts the need for revisiting 

current strategies for management of multimorbidity in these patients [9, 39, 40]. 

Whereas the current recommendations suggest to deal with each co-morbidity as a 

separate condition [2], different studies have identified some recurring co-morbidity 

patterns in patients with COPD [8, 41]. However, there are several key unanswered 

questions, namely: i) Is co-morbidity prevalence in patients with COPD fully explained 

by well identified risk factors, especially tobacco smoking and air pollution?; ii) Can 

abnormalities in gene-regulatory pathway dynamics be shared by co-morbid conditions 

explaining the common patterns of co-morbidities?; iii) Can susceptibility for 

development of co-morbidities be early identified and prevented?; and, iv) Should the 

importance of co-morbidities in patients with COPD trigger novel interventional 

approaches both at population and at individual levels?. Synergy-COPD partly 

addressed these issues through two different data driven analyses [19, 20], as briefly 

described below. 

Co-morbidity risk and shared molecular mechanisms – A data driven analysis of 13 

million people from the Medicare dataset [19] identified higher risk for co-morbidity 

clustering in patients with COPD, for all age windows explored, when compared to 

patients without COPD (Figure 3). It is of note that a similar analysis carried out with 

the Catalan health surveillance dataset [20] confirm these findings. Gomez-Cabrero et. 

al. [19] also identified a dysregulated set of genes shared by common co-morbid 

conditions (e.g., IL5, TNF, JUP and some genes of the HLA family), as previously 

reported in [8, 42].  
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Figure 3 – Prevalence of selected disease groups (DG), based on ICD9 coding, over age 

for COPD and non-COPD individuals from the Medicare dataset, as previously published 

in [19]. Each panel shows, for a given DG, the prevalence of the DG in non-COPD (blue) 

and in COPD (red) individuals using a 0 to 1 scale. DGs 2 (heart diseases), 8 (digestive 

alterations) and 11 (circulation disorders) are shown in panels (a), (b) and (c), 

respectively. In all cases the prevalence was higher in COPD patients. However, the 

effect of age was different among groups [19]. 

Population-health analyses of co-morbidities – The project also explored the impact 

of co-morbidities in patients with COPD [20] through a population-health analysis, 

which accounted for all registered cases with diagnosis of COPD (n=264,830) in 

Catalonia (7.5 million inhabitants) using a fixed cohort design (Figure 4).  Main study 

findings were the identification of co-morbidities, aggregated with an adjusted morbidity 

grouper (AMG - Adjusted Morbidity Groups) [44], as the covariate with highest 

discriminative impact on target events such as mortality, hospitalizations (all causes 

and COPD-related), multiple admissions (related and not related to COPD ) and on 

annual healthcare costs per patient. The results may suggest the need for designing 

novel strategies for management of COPD patients aiming at containing the increasing 

healthcare burden of these patients, a well-identified unmet need [5, 6, 9, 39]. A highly 

relevant information of the study was that less than 25% of unplanned hospitalizations 

in patients with COPD were registered as associated with pulmonary events which may 

have important implications in the management of these patients. In the study, AMG-

based predictive modelling derived from the same study dataset showed an acceptable 

predictive capacity [area under the Receiver Operating Characteristic (ROC) curve of 

0.83 (mortality), 0.77 (all causes of hospitalizations), 0.81 (COPD-related 

hospitalizations), 0.80 (all causes of multiple hospitalizations), 0.87 (COPD-related 

multiple hospitalizations) and 0.76 (users with high healthcare costs)]. These results 

generate two relevant messages. Firstly, the high impact of co-morbidities (AMG 

grading) on clinical events in patients with COPD which strengthen the need for novel 



9 

strategies for both prevention and enhanced management of co-morbid conditions in 

these patients. Secondly, the results indicate the potential for exploring synergies 

among population-health analyses, clinical information and information on underlying 

biological mechanisms of COPD to enhance health risk assessment and stratification in 

the clinical arena (Figure 4) [43].  

 

Figure 4 – Population-based health risk stratification pyramid in Catalonia previously 

published in [20]. The left triangle depicts the distribution of all citizens in the region (7.5M 

people), expressed as percentage, in five arbitrary health risk layers defined using the 

AMG (Adjusted Morbidity Groups) [20, 43, 44] as a population-based health risk 

stratification tool. The thresholds defining the five health risk layers in all three triangles 

correspond to the percentiles 50, 80, 95 and 99 of the AMG grading calculated for the 

general population (left triangle).The central triangle indicates the distribution in these five 

health risk layers of the subset of citizens older than 39 years. The right triangle displays 

the distribution of the study group of all cases with COPD in the region (264,830 patients) 

across the AMG health risk grades [20]. 

Lessons learned and clinical perspectives – Synergy-COPD results indicate that 

longitudinal analyses of co-morbidity clustering should constitute a priority area for 

biomedical research with important implications on patient management. It should 

ultimately aim for better understanding COPD heterogeneities to enable early 

identification of patients susceptible for the development of abnormal dynamics of key 

gene regulatory networks. To this end, recent analyses of disease trajectories [45–47] 

are prompting a highly attractive research scenario leading to a better understanding of 

co-morbidity clustering observed both in cross-sectional analyses [19, 20] and in 

longitudinal studies [45]. The rationale is that known risk factors would generate target 

co-morbid conditions especially in those patients with COPD that may show early 

indicators of abnormal gene regulatory network dynamics [14, 24]. Synergy-COPD 

seems to provide appropriate grounds for further research aimed at identifying such 

early indicators (Figure 5). Moreover, the holistic approach used in the project may 
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shed light on related issues such as identification of shared mechanisms to explain 

increased rate of lung cancer in these patients, and possible links between skeletal 

muscle dysfunction and co-morbidity clustering. It is of note that recent advances in 

targeted plasma metabolomics analyses may provide an operational approach for early 

identification of candidate patients for preventive interventions [48, 49].  

 

Figure 5 – A holistic approach of health risk assessment involves inclusion of covariates 

from multilevel domains, namely: i) Clinical, ii) Informal care; iii) Biological research; and, 

iv) Outcomes from population-health risk predictive modelling, which includes all the 

citizens in a given geographical area and results in enhanced patient-based stratification 

and optimization of service selection. Left-hand-side of the figure displays the Catalan 

risk stratification-pyramid in 2014 [20, 43, 44]. Synergy-COPD hypothesizes synergies 

between population-health predictive modelling and clinical risk assessment that should 

pave the way towards personalized medicine for patients with chronic diseases, as 

explained in [43]. 

Transfer into clinical practice  

As alluded to above, a core component of Synergy-COPD was the transfer of the 

acquired knowledge on non-pulmonary phenomena seen in patients with COPD into 

the clinical arena with a twofold purpose. Firstly, to enhance individual health-risk 

assessment and service selection, leading to innovative management strategies for 

these patients. A second general aim was to explore and identify novel organizational 

and technological settings to facilitate generation of medical evidence through 

enhanced interplay between healthcare and biomedical research [50, 51].  
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Accordingly, the project promoted convergence of Synergy-COPD outcomes with 

specific ongoing initiatives contributing to large scale deployment of care coordination 

for chronic patients in Catalonia [52], namely: i) Early diagnosis and collaborative lung 

function testing; ii) Enhanced health risk assessment and service selection; and, iii) 

Management of cases with advanced disease.  

Early diagnosis and collaborative lung function testing – Previous studies have 

indicated that collaborative forced spirometry (FS) testing between specialized and 

primary care may generate significant healthcare efficiencies and provide valuable 

information on longitudinal changes of lung function either spontaneously or due to 

therapeutic interventions. The project hypothesized that the approach may overcome 

historical limitations for extensive use of forced spirometry in primary care, due to 

suboptimal quality of testing while generating cost-effectiveness [53].  

All the above elements were supported by Synergy-COPD outcomes and substantiated 

the pivotal components of the collaborative FS program [54] across healthcare tiers 

being currently deployed in Catalonia. The three principal expected outcomes of the 

program are: i) Early diagnosis; ii) Enhanced quality and accessibility of FS testing 

across the health system; and, iii) Availability of longitudinal FS testing information for 

individual risk health risk assessment.   

Enhanced patient stratification and service selection – Synergy-COPD outcomes 

on non-pulmonary phenomena are clearly opening exciting new avenues mainly 

addressing secondary prevention in patients in low to high layers of the health-risk 

pyramid (Figure 4), in whom there is still potential for modulating prognosis. It is of 

note that the statement refers to health risk assessment of patients with COPD, not to 

severity, and/or activity, of the pulmonary disease. This is because the latter is only one 

of the elements influencing patient-based health risk assessment.  

Patients with COPD showing low to high health-risk require management of the 

pulmonary disease following standards of care recommendations [2]. However, the 

results of the project clearly indicate the need for preventive interventions on actionable 

factors determining non-pulmonary phenomena in order to 1) effectively modulate 

patients’ natural history and improve prognosis, which are recognized as unmet needs 

for enhanced COPD management; and 2) reduce health care costs. 

Specifically, the project points out on two main directions in terms of early diagnosis, 

monitoring and action. Firstly, detection and prevention of abnormalities in skeletal 

muscle bioenergetics. In this regard, promotion of daily physical activity appears as a 

relevant intervention in these patients [55–57]. A second major area for action is early 
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identification of susceptibility to develop common co-morbid conditions, as well as 

enhanced management of patients with co-morbidities through patient-oriented 

strategies rather than to current disease-oriented approaches. However, full 

development and validation of suitable non-pharmacological and pharmacological 

interventions on non-pulmonary phenomena in these patients will require further 

longitudinal research on shared underlying mechanisms.  

Synergy-COPD makes a strong argument for the high potential of population-health 

risk assessment (Figures 4 and 5) in contributing to enhance clincal health risk 

assessment for decision making, as proposed in [43].   

Advanced case management – The project did not focus on management of  patients 

close to the tip of the health-risk stratification pyramid (Figure 4). However, a logical 

priority is the achievement of cost-effective management of high and very high health-

risk cases, which imposes a strong need for care coordination across healthcare tiers 

(i.e., integrated care) towards: i) Prevention of severe exacerbations leading to hospital 

admissions, both related and not related to COPD; ii) Enhanced resilience and health-

related quality of life; and, iii) Increased survival.  

We acknowledge, however, two main limiting factors that should be solved in order to 

achieve adoption of integrated care services in patients with COPD [58]. Firstly, poor 

comparability among interventions assessing effects of integrated care on patients with 

COPD indicates an urgent need for standardization of service workflows able to be 

adapted to the evolving conditions of patients. It is compulsory in order to generate 

evidence, as well as to facilitate transferability of outcomes among sites [2]. To this 

end, assessment methodologies based on implementation science are clearly needed 

[59–61]. A second challenge is to overcome the limited healthcare impact of usual 

interventions addressed to patients that are high consumers of healthcare resources 

[62]. That is, low ratio between the magnitude of intervention benefits and the 

resources devoted to achieve them, which may imply little healthcare value generation 

[63, 64]. These two factors strengthen the need for further evidence on cost-

effectiveness of well-defined integrated care interventions for complex chronic patients 

[65].  

It is acknowledged that the messages raised from the population-health risk 

assessment analysis were originated only from registry information. However, because 

of its clinical relevance, they clearly deserve further research and actions in this 

direction. 
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Conclusions 

The Synergy-COPD project showed the potential of systems medicine to generate 

knowledge on underlying mechanisms of non-pulmonary effects in patients with COPD 

with impact on clinical practice. The project results indicate the need for novel 

therapeutic and care coordination strategies that should be validated in future 

longitudinal studies carried out in real-world settings. 

The biomedical results from Synergy-COPD are opening new avenues to better 

understand the interplay of factors modulating non-pulmonary manifestations in 

patients with COPD. Abnormalities in co-regulation of core biological pathways (i.e., 

bioenergetics, inflammation and tissue remodelling) at systemic level seem to play a 

central role on both skeletal muscle dysfunction and co-morbidity clustering [66], with 

evidence of the relevant role of oxidative stress as a characteristic mechanism in these 

patients [13]. All in all, Synergy-COPD strongly points out the need for a broader vision 

in the care and management of COPD by adopting a patient-oriented approach that 

addresses much more than just the pulmonary manifestations of the disease. 

Further research is still needed to identify potential causal factors of non-pulmonary 

manifestations, namely: i) in-born genetic susceptibility; ii) epigenetic changes 

associated with unhealthy lifestyles and/or to activity/severity of pulmonary disease; 

and, iii) unknown interactions with gut microbiome, among others. Accordingly, a better 

understanding of the interplay between pulmonary disease and systemic alterations in 

these patients also constitutes an unmet need. Likewise, identification of metabolomics 

patterns facilitating early identification of subsets of patients with COPD that are 

candidates for secondary prevention of non-pulmonary manifestations would also be a 

major achievement. It is hoped that plasma samples would be sufficient for this [67]. 

We propose that both the design and evaluation of novel non-pharmacological and 

pharmacological preventive interventions in COPD patients will require well-designed 

longitudinal studies using an integrated, multidisciplinary, systems approach. 

Ultimately, multilevel integrative analyses of registry data, biomedical research 

information, electronic medical records and informal care data seems to constitute a 

high priority to properly pave the way toward enhanced clinical management and 

personalized medicine for patients with chronic disorders (Figure 5) [68–70].  

One of the major strengths of the Synergy-COPD design was the combination of well-

defined biomedical goals with parallel technological developments beyond the current 

state of the art in terms of novel modelling approaches, knowledge generation tools 

and information and communication technologies supporting care coordination. As 
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described in [21, 71], conceptualization of a digital health framework and formulation of 

the roadmap for its ongoing deployment, together with technologies supporting 

systematic collection of different types of data over time, for the benefit of clinical and 

biomedical research are urgently needed [72–74]. Overall, the results indicate that 

convergence between a systems approach to COPD and care coordination may 

conform an optimal scenario to foster cross-fertilization between biomedical research 

and clinical practice [50, 75]. 
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technologies that aim toanalyzeat real timehigh-volumesand/or
complex of data from healthcare delivery (e.g., electronic health
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these same lines, advances in the field of genomics are revolu-
tionizing biomedical research, both in terms of data volume and
prospects, as well as in terms of the social impact it entails.
The potential of Big Data applications that consider all of the
above levels of health information lies in the possibility of
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Introduction
The high prevalence of chronic patients with one or 
more associated disorders, known as multi-morbidity, is 
the main source of dysfunctions and avoidable costs in 
conventional health systems worldwide [1,2]. In this 
scenario, health risk assessment and stratification are 
widely accepted tools facilitating large-scale adoption of 
integrated care of chronic patients [3,4] while gener-
ating efficient healthcare and supporting the vision of 
personalized medicine. However, only a small propor-
tion of the huge potential of risk predictive modeling is 
being applied [5] for health forecasting of chronic pa-
tients due to the lack of in-place procedures for 
accessing and mining health information from daily 
clinical practice.

Applying holistic strategies for subject-specific risk 
prediction and stratification, that consider multilevel 
covariates influencing patient health, would increase the 
predictive accuracy and facilitate clinical decision-
making based on sound estimates of individual prog-
nosis [6]. For instance, on a daily clinical setting early 
identification of patient susceptibility to multi-
morbidity might enable cost-effective preventive stra-
tegies (pharmacological and non-pharmacological) and 
enhance management of chronic patients [7].

Such strategies require dealing with highly complex data 
and creating new biomedical knowledge, which opens 
entirely new translational medicine scenarios and re-
quires interplay between clinical practice and biomed-
ical research. This holistic approach generates novel 
requirements to be adopted by the field. Firstly, the 
need for multilevel integration of heterogeneous patient 
information, namely: socio-economical, life-style, 
behavioral, clinical, physiological, cellular and “omics” 
data [8], and their use for the study of disease mecha-
nisms. Secondly, the need to extend current trends on 
open data from the biomedical community [9] to the 
clinical practice and the whole society, by engaging cit-
izens and solving privacy and regulatory constraints.

A core element for addressing current unmet needs in 
any given healthcare setting is the deployment of a 
Digital Health Framework (DHF), as displayed in 
Figure 1 and extensively described in [10]. A DHF aims 
at fostering communication among health registries
www.sciencedirect.com
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Key dimensions of a digital health framework for enhancing communication among informal care, health care and biomedical research, as first described 
at [10].

Big Data applications in health Cano et al. 37
containing health information from various sources,
namely: (i) healthcare; (ii) informal care, with special
emphasis on environmental and self-management in-

formation potentially gathered via personal health
folders; and (iii) biomedical research.

Driven by recent advances on big data applications [11e
17] and the potentials of the vast amount of accumu-
lated patient data, the scope of this manuscript is to 
firstly report on the key dimensions of a DHF to provide 
unified access to health registries with all information 
about the patient’s health determinants. Then, we 
report on current and future potential applications to 
gain new understanding about the patient’s health 
through big data and modeling tools [15]. It shall ulti-
mately contribute to enhance dynamic health risk 
assessment and patient stratification, as well as a tech-
nological facilitator to support collaborative case man-
agement [10].
Health information within a digital health 
framework
Worldwide, most national and/or regional health services 
have positioned themselves to allow secondary uses of 
digitalized real-world data for quality and safety of care, 
financial management and most recently for research 
purposes [18]. Examples include, the Clinical Practice 
Research Datalink health registry [19,20] in UK, the 
National population-based registries in the Nordic 
countries [21] or the Medicare registries from the 
Centers for Medicare & Medicaid Services (www.cms.
www.sciencedirect.com
gov) in US. However, most of these health registries are 
being adapted and expanded in order to include 
necessary information not being captured by formal care 
providers, namely: i) informal care, and, ii) biomedical 
research. Briefly, informal care includes any aspect with 
impact on health (e.g. life style, environmental and 
behavioral aspects, etc.) occurring in the community, 
whereas biomedical research refers to all research levels 
from bench to clinical and to public health. This re-
quires development of policies and software solutions 
[11,12,15,16] that enable smooth data collection and 
storage as well as data linkage in order to facilitate the 
extraction of relevant data, its analysis and the 
communication of findings to relevant parties [10].

Formal care information
Apart from administrative and reimbursement needs, 
formal care registries aim to focus on health care of the 
patient, so they contain information from all clinicians 
involved in the patient’s care. This information is mainly 
captured through Electronic Health Records (EHRs). 
EHRs refer to the electronic systems that health care 
professionals use to manage, store, share, and increas-
ingly to analyze heterogeneous health information from 
emergency room visits and hospitalizations, primary care 
visits, mental health centers, socio-sanitary centers, 
drug prescriptions, etc. EHRs allow doctors to better 
keep track of patients’ health information in structured 
(e.g., ICD [22], HL7-CDA [23], etc.) or non-structured 
(e.g., free text, pdf, etc.) formats and make it easier to 
ensure privacy and security of patients’ health
Current Opinion in Systems Biology 2017, 3:36–42
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information by recording and tracking who has accessed
what information and encrypting the information.

Standards like HL7 (Health Level 7 [24]) have 
contributed to normalize the adoption of EHRs, but 
current approaches are mostly generating information 
silos. Hence, further adoption is needed to effectively 
enable communication across healthcare providers 
though the exchange of health information of various 
sources need to be linked in order to provide a 
comprehensive picture of patients’ entire care pathway 
and care history. To this end, focus should also be set on 
integrating formal care registries with contextual, real-
world data, directly gathered from patients.

Informal care information
Patients are increasingly being considered as potential 
sources of health information to be linked with pro-
vider’s EHRs through the use of Personal Health Re-
cords (PHRs). PHRs [25] can be used to keep track of 
information on an ongoing treatment or active moni-
toring as well as for the management of health condi-
tions partnering with care professionals. The PHR can 
also contain data on the patient’s health priorities 
toward self-management, such as tracking food, daily 
activity, blood pressure, etc. Nowadays, a lot of products 
and mobile health apps [26], aiming at giving patients 
greater and better control over their health conditions, 
are available on the market, mostly as standalone 
applications.

Nevertheless, current PHRs do not reach the scale to 
have an impact at population level, yet. In fact, they are 
mostly disconnected from any formal healthcare support 
(i.e., supervision of the data generated by a healthcare 
professional, integration with EHRs, etc.). These limi-
tations should be overcome by making sure that health 
apps support evidence-based health services and that 
are not purely designed in the interest of market en-
tities, and by establishing reference policies and plat-
forms to support dialog between health apps and PHRs/
EHRs [27].

Biomedical research information
To enhance scientific analysis, it is crucial to comple-
ment and expand previously discussed sources of health

information (e.g. data repositories of formal and informal
care settings) with necessary information from
biomedical research, not yet linked. This requires
stepwise implementation strategies wherein the
following key aspects clearly emerge as main short-term
priorities.

Firstly, standardization (ISA-Tab [28], MIAME, etc.) is 
a prerequisite for proper management of biomedical 
data and metadata that has been already 
implemented in some public repositories (e.g. 

Ensembl, Uniprot and
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KEGG). A second element is the convergence of on-
going developments in the area of knowledge manage-
ment giving particular priority to the assessment of 
multilevel interactions that should foster the bridging 
between omics-generated knowledge and the clinical 
arena (e.g., disease maps [29e31]). Last but not least, 
developments aiming at generating user-friendly portals 
for clinicians devoted to translational research are 
required. Good examples are the COPD-KB [32], 
eTRIKS [33], EHR4CR [34] and BioMart [35] 
platforms.
Potential of health information within a 
digital health framework
Incorporation of non-clinical information into patient 
management bears with a major potential to improve 
formal healthcare. Current advancements in the devel-
opment of innovative digital health devices and appli-
cations [36] are outlining a unique environment where 
patient-reported outcomes could be used to person-
alize care [37]. Such informal resources of health in-
formation on the one hand potentially enable patients to 
be more active players in their own health [38,39]. O n
the other hand, informal care data can greatly enrich the 
clinical insight to patient’s life. Over the already proven 
applicability in telemedicine programs [36], self-tracked 
data such as physical activity has high potential to be 
used in identifying groups of patients potentially 
addressed by different interventions [40].

Moreover, articulation of this scenario with systems-
oriented biomedical research would provide contin-
uous cross-fertilization between research and patient 
care [41]. Tools for the integration, management and 
exploration of high-throughput molecular analyses in the 
context of clinical care have flourished in the recent 
years [33,41e43], however current applications mostly 
include separate cohort studies. Integrating such sys-
tems with working EMR solutions in hospitals would 
enable the development of dynamic predictive modeling 
approaches, which by taking into account broader 
biological background of a patient, should facilitate the 
way toward truly personalized medicine [44]. This will 
open entirely new and fascinating sce-narios for the 
interplay between clinical practice and biomedical 
research professionals.

In this setting, user-profiled business intelligence
functionalities and clinical decision support systems can
facilitate the use of the same information in different
medical services. For example, primary care pro-
fessionals, specialized care and social care workers could
access patient information on clinically-oriented in-
terfaces; whereas, a more detailed view of the patient
data could facilitate the work of translational research
scientists and clinicians interested in biomedical
research. To achieve this scenario huge volume of
www.sciencedirect.com
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information in various format have to be processed and 
made available for clinical use, which calls for the use of 
big data tools. An emerging idea in this field is person-
alized predictive analytics based on patient similarity. At 
the arrival of a new patient this approach aims to identify 
similar patients from the historical data and derive in-
sights from their records to provide personalized pre-
dictions [45e47]. Examples of current applications of 
this approach varies from prediction of heart failure from 
telemonitoring data [48], risk factor Identification of 
similar patients [49] and personalized treatment and 
drug recommendation systems [50,51], which list could 
be further broadened in the DHF scenario.

Overall, the unique potential of information from health 
data within a digital health framework is the enhanced 
extraction/generation of novel impactful knowledge 
through the integration of multiple information sources 
[48e51]. Development of new models for patient 
stratification based on this foundation would help to 
define the most appropriate action plan for the patients, 
supporting the vision of personalized healthcare. A 
proper implementation strategy, tackling privacy and 
regulatory constraints, would highly contribute to 
enhance healthcare outcomes and patient experience of 
care while reducing costs and improving the health of 
populations.
Barriers and opportunities
Barriers and opportunities to enable the previously 
described potential Big Data applications in Health [15] 
have been identified in a European Union study on Big 
Data in Public Health, Telemedicine and Healthcare 
[52]. As a result of the systematic review recommen-
dations were identified for ten relevant fields, which has 
been taken into account to structure the following list of 
potential areas of improvement:

Standards and protocols
Health data is not always available in a digitized form. 
Its transformation into structured formats (e.g., HL7 
CDA [23]) and to move health registries out of current 
silos in formal care, informal care and biomedical 
research might be costly. Moreover, current de-
velopments focus on standards to guarantee data stan-
dardization and interoperability (e.g., ICD [22], 
DICOM [53], SNOMED [54], HL7 [24], ISATab [28], 
etc.), but do not consider data quality and how to 
manage patient identity across data sources (e.g., 
unique patient identifiers).

Technological developments
New technological and software developments can
improve the utility and security of health registries and
enable data analysis in real-time settings. However, in
order to run preprocessing routines and machine
learning algorithms to build predictive models and
www.sciencedirect.com
perform integrative multi-scale simulations [55], i
arises the need to allocate clusters of computers workin
in a collaborative way [56] and supporting novel stack
of privacy-preserving software frameworks and tools [57
which require expert Big Data scientists and engineers.

Data analytics
High awareness and understanding of the added-value 
of Big Data applications with Health information can 
promote the development of success stories. Consid-
ering that real-time, menu-driven, user-friendly and 
transparent data analytics tools might not be fully 
developed yet [58], entrepreneurs [59] and early-
adopters [60] might foster the use of innovative Big 
Data analytics in health.

Privacy and data protection
Balancing the priorities of maintaining and promoting 
public health and R&D with information from health 
registries against the privacy of personal data might be a 
challenge. A shift of collective mind-set toward open 
data and data sharing scenarios [61] that encourage data 
authorship as an incentive to data sharing [62] and that 
are compliant with well-designed and aligned privacy 
policies might enable a more transparent and compre-
hensive data value chain.

Legal aspects
Although the General Data Protection Regulation (EU) 
2016/679 [63] provides more precise definitions of 
health data, consent and scientific research, most rules 
relevant for health (such as the eventual requirement of 
informed consent, the potential use of professional se-
crecy as an obstacle to share health information, and the 
many references to member state laws) might hinder 
gathering and sharing personal health data. Therefore, 
there is an urgent EU need for aligning existing frag-
mented national legislations [64] on collection, storage, 
analysis, use and dissemination of health data toward the 
foundation of global legal frameworks to support 
development and assessment of digital health services 
[65].

Stakeholders
There is an increasing need for the coordination of in-
terests and responsibilities among different stake-
holders (e.g., payers, healthcare providers, academia,
clinicians, patients and patients associations, etc.).
Involving opinion leaders in different public and private
stakeholders groups in public consultations [66] might
reduce risk while increasing acceptance and the proba-

bility of successful applications.

Business models
Huge potential health and economic benefits can be
envisaged in terms of accelerating cross-fertilization
between knowledge generation (biomedical research)
Current Opinion in Systems Biology 2017, 3:36–42
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and both health and informal care data. Progress in this 
direction will be strongly associated to innovative busi-
ness models, such as bundle payment for care 
improvement [67e69], providing sustainability of plat-
forms beyond specific projects that triggered the initial 
settings.
Conclusions
In the current paper, latent sources of information about
the patient’s health determinants are presented and
potential strategies are proposed within a digital health
framework that aims to support emerging requirements
of applied systems medicine. Development of patient

health risk assessment and stratification models, inte-
grating health information from informal care, formal
healthcare and biomedical research, while creating new
knowledge on disease mechanisms, are foreseen as the
most promising strategies to support healthcare pro-
fessionals. The current manuscript also covered current
barriers and opportunities concerning technological, legal
and economic aspects for an effective improvement of
patient experience of care and the health of populations.
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DISCUSSION 

The work presented in this PhD thesis has introduced a systems medicine approach to 

study specific aspects of multimorbidity in chronic diseases, including the 

development of a novel system biology tool, an analysis of molecular disease 

mechanisms, an analysis of population-wide comorbidity patterns, and a review and a 

perspectives paper. The thesis generated outcomes on the concrete and practical use 

case of chronic obstructive pulmonary disease (COPD) heterogeneity and comorbidity 

clustering, with the outlook of generalising these methods to non-communicable 

diseases. In this chapter the main findings, clinical implications, limitations and 

opportunities of the work are summarised. 

MAIN FINDINGS 

This PhD thesis has achieved relevant outcomes that support the initial hypothesis and fully 

achieved main points of the general objectives, namely: 

 To investigate molecular disturbances at body systems level that may lead to a better 

understanding of characteristic systemic effects and comorbidities of patients with 

COPD (Manuscript 1, Manuscript 2, Manuscript 5). 

 To analyse population level patterns of COPD comorbidities and investigate their role 

in the health risk of patients with COPD (Manuscript 3, Manuscript 4, Manuscript 5). 

 To explore technological strategies and tools that facilitate the transfer of the 

collected knowledge on comorbidity into clinical practice (Manuscript 1, Manuscript 

5, Manuscript 6). 

 

Firstly, the PhD thesis introduced a novel knowledge management tool (Manuscript 1) 

for targeted molecular analysis of underlying disease mechanisms of skeletal muscle 

dysfunction in patients with COPD. The presented ChainRank approach facilitated the 

integration of Synergy-COPD models at different scales for more accurate predictions 

of COPD molecular events, as well as it indicated high potential as a general search tool 

for exploring interactions between relevant biological pathways. It is of note that the 

methodological approach of ChainRank was integrated as part of the knowledge 

management platform of Biomax Informatics AG.  

Next, a systems biology analysis was outlined in Manuscript 2 to further study the 

mechanisms of skeletal muscle dysfunction in patients with COPD and the causes of 

their abnormal adaptation to exercise training. This research work, together with three 
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other studies [146–148], also aimed to reveal the general underlying causes of 

comorbidity clustering in COPD using different modelling approaches (i.e. 

mechanistic, probabilistic and hybrid modelling approaches and animal experiments) 

(Manuscript 5). Overarching outcome of these studies indicated complex co-

regulation of core biological pathways (i.e. bioenergetics, inflammation, oxidative 

stress and tissue remodelling) both on muscle and body systems level (blood, lung). 

While these results need further validation in independent datasets and comparisons 

with molecular causes of other comorbid condition of COPD, a major conclusive 

outcome of these studies was the strong relation of muscle related dysregulations and 

training adaptation to cardiopulmonary factors, aerobic capacity, whereas the 

pulmonary severity of COPD did not show significant relation to muscular 

abnormalities. Further research of the PhD thesis also highlighted the distinctive role 

of cardiovascular diseases in COPD comorbidities (Manuscript 3, Manuscript 4). These 

findings have far reaching potential in COPD care, starting from defining the need for 

better characterization of exercise performance in the clinic practice and the 

promotion of physical activity from early stages of the disease.  

The PhD thesis also generated outcomes with respect to the risk of multimorbidity in 

patients with COPD using a population-health approach. The adverse effects of 

multimorbidity on patients’ health is largely acknowledged since 2006 in COPD 

treatment guidelines [39], however changes in treatment regimens of the patients are 

yet discouraged in the latest 2017 report [60], indicating that further evidence is 

needed on actionable factors for clinical application. In Manuscript 3, the thesis 

validated that patients with COPD are in increased risk to co-occur with other diseases 

compared to non-COPD patients, regardless of the population and healthcare system 

specificities of different regions (i.e. Catalonia, US). These findings indicated the 

potential role of multimorbidity as a health risk factor in patients with COPD that was 

evaluated in Manuscript 4 by constructing health risk assessment models to predict 

unexpected medical events in patients with COPD. The promising performance of the 

models and the prominent role of multimorbidity in these models presented a 

powerful argument for its role in clinical staging of the disease and their potential in 

clinical decision support. Furthermore, the outcomes on temporal disease diagnosis 

patterns, presented in Manuscript 3, could further improve the performance of the 

predictive models used for health risk assessment. 

Finally, the thesis made substantial effort to consolidate and summarize current 

knowledge on COPD comorbidities and contributed to establish a new perspective 

of non-pulmonary effects in COPD, involving strategies for transferring biomedical 
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research results to healthcare (Manuscript 5). Big Data analytics, as the most promising 

translational field, was further analysed and main implementation challenges were 

assessed, including strategies to overcome current distributed and inaccessible 

storage of health data, and other technological and legal elements of this process 

(Manuscript 6).  

Clinical implications 

The multilevel systems medicine approach adopted by the thesis is of particular 

importance in clarifying COPD heterogeneity and comorbidity clustering due to several 

factors that hindered earlier progress in this field. First, lung-centric view of the 

disease often failed to explain the observed heterogeneity and other COPD specific 

phenomena, such as clustering of comorbid conditions. Second, hypotheses on the 

interplay between pulmonary and non-pulmonary manifestations of COPD was based 

on simplistic assumptions that could not explain the observed comorbidity related 

phenomena. Finally, the descriptive nature of current classification of non-pulmonary 

manifestations in COPD leads to confusion in the field and indicated lack of knowledge 

on how comorbidities develop and interact with COPD and with each other, 

concerning the patients´ wellbeing and survival.  

The holistic analysis of health factors, applied in this PhD thesis, enabled to produce 

several outcomes with relevant implications on clinical management of COPD 

heterogeneity and comorbidity clustering. First, the revealed complex endotype of 

skeletal muscle dysfunction and its interplay with multiple systemic factors should 

guide further investigations on the causes of comorbidity clustering in COPD. These 

results also indicate that management of patients with COPD must be increasingly 

based on a better understanding of underlying disease mechanisms. Such systems 

medicine approach should also help to overcome current problems of disease 

taxonomy, accurately identify patients in risk and should open new avenues for 

preventive and personalised management of these patients, including drug 

repurposing.  

Second, the proven impact of multimorbidity in patients with COPD strongly points out 

that current staging of the disease should move from assessing patient risk and 

interventional needs based solely on pulmonary manifestations, towards a patient-

oriented approach that addresses patient as a whole, including non-pulmonary 

manifestations of the disease. In this context, management of patients with COPD 

should also move towards integrative approaches targeting prevention of non-

pulmonary manifestations in patients with COPD. A specific example pointed out by 
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the thesis is cardiovascular health that was shown to be a risk factor for both COPD 

and skeletal muscle dysfunction, indicating synergies between the management of 

pulmonary and cardiovascular health, including the promotion of physical activity of 

patients with COPD, which could potentially slow down the progression of other 

comorbid diseases. 

Finally, the thesis provides strong rationale for the application of health risk 

assessment in daily clinical decision making. These tools show high potential to 

enhance healthcare outcomes and patient experience of care while reducing costs and 

improving the health of populations. For instance, in a clinical setting, early 

identification of patient susceptibility to multimorbidity might enable cost-effective 

preventive strategies (pharmacological and non-pharmacological) and enhance 

management of chronic patients reducing healthcare burden. In COPD care, health 

risk assessment should address 3 priority areas: i) lung abnormalities (early COPD 

progression); ii) interplay between pulmonary and systemic effects; and, iii) 

comorbidities, that should allow for preventive and predictive approaches,  

Future developments should consider implementation of appropriate decision 

support systems in real world settings, gaining inputs from both evidence-based 

clinical rules and enhanced clinical predictive modelling, that contribute to foster 

GOLD recommendations [60] by addressing non-pulmonary manifestations of COPD 

and generate a positive impact on staging and management of COPD. 

Strengths and limitations 

Several principal limitations in the studies presented in the thesis need to be 

acknowledged. Methodological limitations, originating from the applied modelling 

techniques in Manuscript 1 and in Manuscript 2, are acknowledged, such as i) current 

constraints of available PPI networks [119, 123, 124, 149], ii) modelling proteins levels 

with gene expression, and iii) comparing body compartments (blood, muscle), may lead 

to confounding results. It is of note, that these limitations represent current 

challenges of state-of-the-art systems biology research and utility of similar tools have 

been broadly demonstrated [36, 109, 114, 119, 132, 150–152]. 

Moreover, the molecular analysis described in Manuscript 2 faced several challenges 

originated from the study design, such as the rather small sample size of the study 

combined with noisy, heterogeneous in-vivo measurements. These effects were 

mainly addressed using robust statistical approaches at each step of the analysis, and 

at project level, through comparing the results of different analysis strategies using the 

same dataset [147, 153], as well as comparing outcomes to an analysis based on animal 
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experimentation [148] (Manuscript 5). However, it is acknowledged that further 

longitudinal studies with multilevel measurements are needed to support the main 

biomedical outcomes and to refine operational strategies. 

We acknowledge that molecular heterogeneity of COPD was not specifically addressed 

in the current PhD thesis. Main reason for this is that disease heterogeneity is rarely 

taken into account in contemporary network analysis methodologies, which mainly rely 

on phenotype based grouping of patients, assuming molecular homogeneity 

legitimated by group based statistics. To avoid such potentially false assumptions, 

unsupervised approaches for defining sub-groups with similar molecular [154, 155] or 

disease trajectory background [5, 156] are key for better characterisation of 

heterogeneity. 

Finally, registry information for the identification of COPD cases in Manuscript 3 and 

in Manuscript 4 reflects under-diagnosis of COPD and constitutes a significant 

limitation. The lack of clinical information forced spirometry data, history of tobacco 

smoking and information on other risk common factors reduces the potential for 

exhaustive characterization of patients with COPD. The full spectrum of this 

information, however, is hardly accessible and their integration raises several 

technical, ethical and privacy questions that are currently poorly solved in the 

biomedical sector. Addressing these issues has immense potentials to bridge current 

gaps between biomedical research and clinical care, as discussed in the upcoming 

section. 

CHALLENGES AND OPPORTUNITIES  

The current PhD thesis indicated the potential of systems medicine approaches of 

health risk assessment for personalized clinical decision making and for large-scale 

adoption of integrated chronic care. However, their application currently faces major 

limitations when it comes to accessing and mining health data, stored in distributed 

silos of information. In this context, integrating and analysing highly complex data 

would open new avenues for digital health in the clinical arena. Incorporating multi-

level determinants of health into risk models would substantially increase the 

predictive accuracy and facilitate clinical decision-making [157]. Such strategies, 

however generate several requirements to be adopted by the field. Firstly, there is a 

need for multilevel integration of heterogeneous patient information, namely: socio-

economical, lifestyle, behavioural, clinical, physiological, cellular and “omics” data 

[157]; and its better exploitation for the study of disease mechanisms. Notwithstanding 

that already available knowledge is not used enough for bringing conclusions and 
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hypothesis to clinical practice.  Secondly, the open data trends in biomedical research 

showed high innovative power in this field [158] and thus should be similarly extended 

to clinical practice by solving privacy and regulatory constraints. Thirdly, the 

incorporation of non-clinical information into patient management bears with a major 

potential to improve formal healthcare.  

Current advancements in the development of innovative digital health devices and 

applications [159] are outlining a unique environment where patient-reported 

outcomes could be used to personalise healthcare delivery [160]. Furthermore, such 

informal resources of health information potentially enable patients to be more active 

players in their own health [161, 162] and can greatly enrich the clinical insight to 

patients’ life. Over the already proven applicability in telemedicine programs  [159], 

self-tracked data such as physical activity, as well as patient reported outcomes, have 

high potential to be used for the identification of patient groups with similar 

therapeutic needs that can be addressed by more precise interventions [163].  

Systems for the integration, management and exploration of high-throughput 

molecular analyses in the context of clinical care have flourished in the recent years 

[164–167], however current applications are mainly restricted to separate cohort 

studies. The integration of such systems with in-place electronic health records (EHR) 

in hospitals and in primary care centres, would enable the development of dynamic 

predictive modelling approaches, opening up entirely new and fascinating scenarios 

for the interplay between clinical practice and biomedical research [168]. In this 

setting, user-profiled business intelligence functionalities and decision support 

systems (DSS) would facilitate the use of the same information in different medical 

services. For example, primary care professionals, specialized care and social care 

workers could access patient information on clinically-oriented interfaces; whereas, a 

more detailed view of the patient data could facilitate the work of translational 

research scientists and clinicians interested in biomedical research. Articulation of 

this scenario with the systems-oriented biomedical research approach of this PhD 

thesis would provide continuous cross-fertilization between research and patient care 

[167]. 

An ideal digital health and care setting (Figure 12) should facilitate an optimal support 

to care decisions and delivery by reducing the complexity of the massive amount of 

clinical and multi-disciplinary data being produced every day and to improve efficiency 

of health outcomes both in terms of well-being and expenditures. Such a health system 

relies on the availability of health-related data, tools that process it, such as clinical 

predictive modelling (CPM), and personalised diagnostic and treatment tools, such as 
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clinical and patient decision support systems (CDSS/PDSS), contributing to the 

acceleration of evidence diffusion to practice, helping to identify gaps in care and to 

target interventions to the most appropriate sub-population of patients. 

 

 
Figure 12. Ideal digital health and care concept for dynamic enhancement of clinical 
predictive modelling (CPM) feeding clinical DSS (CDSS) and/or patient DSS (PDSS) in 
cloud-based environments. Development of enhanced CPM to feed DSS will require 
consideration, and eventual integration, of computational modelling of four 
different dimensions: i) Underlying biological mechanisms; ii) Current evidence-
based clinical knowledge; iii) Patients’ self-tracked data, including sensors, 
behavioural, environmental and social information; and, iv) Population-based health 
risk assessment data. CDSS/PDSS should be designed to interoperate with existing 
centralised or distributed hospital information systems, and ultimately with learning 
health systems (i.e. systems in which science, informatics, incentives, and culture 
are aligned for continuous improvement and innovation, with best practices 
seamlessly embedded in the delivery process and new knowledge captured as an 
integral by-product of the delivery experience). 

 

This PhD thesis has identified four main interrelated enablers of this scenario [169, 

170]: i) Cloud-based tools and services: allowing secure analysis of patient-centric 

distributed and multi-disciplinary health-related information; ii) In-silico modelling: 

Systems Medicine approaches to generate CPM that feed CDSS/PDSS; iii) 

Implementation and evaluation: strategies for real-world implementation and 

assessment of cloud-based services, and, iv) Governance, regulatory aspects and 

service adoption.  
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Cloud-based tools and services 

End-to-end exploitation of cloud infrastructures for large-scale data analytics has 

been so far held back by the lack of a well-integrated set of reliable and flexible 

services, and user-friendly interfaces. This problem is particularly true for medical 

research and clinical applications where the additional complexity of handling 

personal information requires particular care. In this context, a cloud-based data 

analytics platform shall unlock the full potential of CPM by solving issues around 

integration, harmonization and privacy of data coming from different sources in an 

integrated manner, and by providing a general interface for developing and deploying 

predictive models. 

Added benefit of such solution includes rapid local prototyping, cost-effective 

parameter sweeping and validation scale-out to high-performance, large-scale 

modelling. It should also enable the deployment of the same services across different 

infrastructures, institutes, laboratories or projects according to local policies, while 

maintaining interoperability and consistency at the platform layer. Specific 

implementation of such platform should identify and deploy cloud-based services for 

private and public uses with a design that is versatile, scalable, trusted and abstract 

enough to support a wide range of CPM approaches and application in broad 

operational contexts for digital health and daily clinical practice.  

A high-level description of a proposed cloud-based data analytics platform is 

displayed in Figure 13 indicating the 4 types of data sources that are considered for 

multi-disciplinary computational modelling: i) healthcare data from electronic health 

records; ii) patient self-tracked information, including: sensor-based data, patient 

reported outcomes and other social/environmental information; iii) population-based 

information from health registries; and, iv) biomedical research information. 

Computational modelling in combining these 4 dimensions should provide the basis 

for enhanced CPM and elaboration of cloud-based CDSS/PDSS embedded into clinical 

processes. 
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Figure 13. Conceptual view of the proposed cloud-based data analytics platform. 
Properly harmonised multi-disciplinary data sources provide the basis for enhanced 
clinical predictive models that feed real-time decision support systems able to guide 
health professionals in the clinical decision making process. 

 

In the implementation process of such platform, specific requirements include i) 

development of data interoperability engine for standardised data exchange and 

semantic interoperability among multi-disciplinary data sources; ii) deployment of 

technologies to handle personal data in compliance with agreed legal, policy and 

standardization requirements; and iii) defining standard interfaces in compliance with 

user needs. 

Data Interoperability Engine – A critical aspect of the proposed platform is the 

development of an efficient data interoperability engine compliant with European 

regulations and FAIR data principles: i) Findable: data must be easy to find by both 

humans and computer systems; ii) Accessible: data must be put in long-term storage 

in such a way that either the data itself or its metadata can be accessed easily; iii) 

Interoperable: datasets can be combined by humans as well as computer systems, in 

which the use of shared vocabularies and/or ontologies is of special importance; and, 

iv) Re-usable: data can be used for future research and to be processed further by 

computer programs. To this end, several initiatives are available for consideration, e.g. 

the ELIXIR (www.elixir-europe.org) interoperability platform or commercial medical 

data federation tools such as FedEHR (www.fedehr.com).  

Data Security and Data Protection – Given the need to handle sensitive data, 

particular attention is needed to be paid to security and data protection aspects. 

Future data architectures should assume that sensitive data cannot be moved around, 

but rather code and models have to be moved to the data. When considering such 

architectures three levels of data should be considered: i) public data; ii) anonymized 
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data; iii) pseudo-anonymized data. Public data includes public datasets that can be 

freely shared and access from well-known, community curated data banks and 

repositories. In this context, creation of public “data lakes” shared across the 

community and used for example to train the machine learning services and build 

reference models is needed. Anonymized data need to be defined in compliance with 

existing and future legal definitions and need to be accessed and contributed based 

on agreed policies of use within specific projects or communities. Such data, although 

anonymized, is richer than completely public data as it might convey a specific context 

of use, thus it is of high interest for research purposes. Finally, pseudo-anonymized 

data should be used to generate models for the CDSS/PDSS that can then be applied 

to patients in clinically relevant scenarios. In light of the new European General Data 

Protection Regulation (GDPR) new technologies are also needed to be considered to 

manage and audit access to data and to move in the direction of implementing the 

GDPR norms of data ownership and usage. Data transactions and “smart” user 

consents could be stored and managed using blockchain technologies to enable the 

implementation of transparent, end-to-end policies for data governance. 

User-Profiled Interfaces: One of the main barriers for translational researcher and 

clinicians in accessing cloud-based services is currently the lack of intuitive, easy-to-

use user interfaces. The main objective of the technical implementation should be to 

provide an intuitive way for healthcare researchers and practitioners to exploit the 

capabilities of distributed infrastructures, i.e. accessing wide range of data sources 

and services without having to understand any of the complexity of the system. At least 

two levels of interfaces should be provided in a desired platform, which should be co-

designed with the communities of use of reference: 

 Data analysis interfaces for translational researchers: this type of interfaces 

provide an intuitive, scriptable, portable access to the platform services. 

Technologies like Jupyter Notebooks, CERN SWAN (Service for Web based 

ANalysis) and other similar approaches provide good examples of such 

environments. The possibility of supporting different types of scripting engines 

including familiar systems such as the R analysis framework is critical to ease the 

transition from local computers to cloud-based services. 

 Decision support interfaces for healthcare professionals and patients: this type 

of interfaces should provide clean, web-based access to specialized services and 

applications, hiding from the end-user (i.e. healthcare professional and patients) 

the complexity of the underlying infrastructure are service layers. 
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In-silico modelling 

To comply with the vision of the cloud-based data analytics platform, methodologies 

used in biological and clinical modelling should converge towards standard operations 

and tools that can be integrated into general pipelines and implemented in analysis 

platforms. These pipelines shall be ready to analyse data independent of their source 

or type, i.e. molecular, clinical or wearable measurements, and integrate them in an 

operational manner. This assumes pre-processed and well formatted data input, as 

well as standardised outputs (Figure 13). When considering subject-specific health risk 

prediction and stratification as the desired output of such system, the framework of 

machine learning defines these input and output needs as well as the identified 

challenges. In this regard, main factors to consider should be the dimensionality of the 

data sources, i.e. number of features that are used for health prediction, their sample 

size and differences in sample sizes when considering the integration of multiple 

datasets. Registry data, EHR data and wearable technologies come with the great 

promise to bring biomedical research to the Big Data era with 

population/subpopulation size data, whereas molecular data have great potential to 

gain biological insight into disease mechanisms, however for these data sources 

population-wide availability is yet awaited. The integration of such data sources should 

enable mining health related patterns from data with state-of-the art technologies, 

such as deep learning that show exciting potential for identifying non-linear patterns 

from large amount of raw biomedical data [171–173]. Major potential of this technology 

is that it promises a universal approximator for many learning and prediction tasks that 

could substitute several processes that are currently done separately in biomedical 

and machine learning fields. A fascinating way of using deep learning could help to 

select biologically important features, organise them into higher abstraction level 

biological assemblies (e.g. pathways, disease modules), highlight their role in the 

disease and also to predict disease risk using them [171]. A major obstacle, however, is 

that they are often associated with the need for large longitudinal sample sizes, which 

is a barrier especially in molecular data sources. Furthermore, more research is 

needed in this field to abolish its current stigmatization as a “black box” approach, 

which is often seen as a barrier for clinical application. 

Moreover, integration of data from different sources and with different formats is a 

major challenge of in-silico modelling pipelines. Current practice shows that in 

different fields different models evolve, such as the disease maps, disease 

trajectories, mechanistic models, other multiscale hybrid modelling already combining 

some of the previous approaches; or, data-driven approaches using machine learning. 
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In order not to waste the field specific knowledge encapsulated in these models, 

integrative approaches are needed. In this context, patient similarity framework shows 

immense potential to be applied in the clinical field, mainly due its high abstraction 

level leading to broad applicability, its patient centred approach and its transparent 

methodology, which is especially important for acceptability from the clinical side [174, 

175]. Patient similarity enables the separate comparison of patients on different 

biological organisational levels, e.g. using molecular profile (transcriptome, genome, 

epigenome, etc.), clinical traits, comorbidities, and allows to retrieve groups of similar 

patients, or the most successful treatments based on similar cases, as well as to 

predict health risk on an unsupervised manner [176–179]. 

Implementation and evaluation  

For successful adoption in real world settings, interoperability of the proposed cloud-

based data analytics platform (Figure 14) with healthcare information systems is 

indispensable. On the one hand, cloud-based services should be integrated at site 

level with the required structured and unstructured data sources. 

 
Figure 14. Proposed interoperability architecture. The data sourcing layer is 
responsible for integrating cloud-based services to required structured and 
unstructured data sources at site-level. The ETL (Extract-Transform-Load) layer is 
where data is extracted from homogeneous or heterogeneous data sources and 
transformed for storing in the proper format or structure for the purposes of querying 
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and analysis the target data lake or data warehouse. Finally, the application layer 
provides access to common platform services for data analytics whereas the pre-
processing layer is responsible for integrating DSS with site-specific clinical 
workstations and patient gateways (e.g. Cat@Salut La Meva Salut in Catalonia, ES). 

 

On the other hand, information systems departments of clinical sites should take into 

account in-place health information exchange infrastructures, where standard 

terminology (e.g. SNOMED-CT, SERAM, SEMN, LOINC, etc.), message encoding (e.g. HL7 

2.x / 3.x, MLHIM, openEHR, ISO 13606, etc.), message routing and security (e.g. IPSec, 

Audit trail, Node authentication, etc.) are of special importance. Where available, 

existing controlled vocabularies such as the ICD-10 or the FMA human anatomy, 

standards for data and metadata format (e.g. ISA-TAB) and content (e.g. MSI or MIAME) 

should be used. Where standards are currently not yet broadly accepted, agreements 

should be generated to deploy site-level interoperability middleware based on an HL7 

FHIR standard specification (e.g. HAPI FHIR, hapifhir.io). 

Moreover, successful adoption in real world settings will likely require specific 

evaluation designs ranging from standard randomized controlled trials to different 

implementation science designs [180, 181] depending upon both the Technology 

Readiness Level of the proposed cloud-based data analytics platform and the clinical 

setting wherein it should be implemented. 

Governance, regulatory aspects and service adoption  

Governance of a cloud-based system based on FAIR data principles generates several 

major challenges in terms of: i) data/services administration accessibility; ii) 

continuous control of quality assurance programs; iii) compliance with ethical and 

regulatory issues; as well as, iv) sustainability of the approach over time. These 

management and governance challenges are expected to be overcome by adopting 

block chain technology that allow complete traceability of transactions, and most 

importantly finely granular enforcement of rules in observance of regulation at data 

origins, and of consent design. All actors of cloud-based systems should be able to 

verify that sharing, analysis and other handling and use of the information is in 

accordance of the individual's intentions and applicable laws, regulations and 

processes.   

Regulatory aspects – Several ethical and regulatory issues currently fall into grey areas 

in terms of regulation (i.e. computational modelling and DSS assessment for medical 

use). In this regard, generation of recommendations on grey areas should be addressed 

in future works, with the specific objectives to be covered: 
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 To ensure the protection of privacy and compliance with the GDPR (EU) 

2016/679, Directive 95/46/EC and ISO27001 conformance for secure storage 

of pseudonymised multi-disciplinary data, which will improve trust in health 

research and therefore will facilitate adoption of innovative digital health 

services;  

 To advise on applicable legislation and regulations to which innovative 

mathematical models, and components using them, need to comply before they 

can be deployed and used in healthcare settings; 

 To ensure the ethical use of innovative models within patient and professional 

decision-making. 

 

Service adoption – Adoption and both organizational (e.g. data processing agreements, 

liability/responsibility aspects, etc.) and financial sustainability (e.g. entrepreneurial 

actions) of cloud-based services constitutes a major challenge, wherein service models 

such as those developed in projects like MyHealthMyData (ICT-18-2016-732907) could 

be considered. The development of a roadmap for large scale deployment and 

adoption of cloud services at national and EU level should be of main interest for future 

initiatives pursuing adoption of novel cloud-based services. 

Summary 

The proposed cloud-based data analytics platform has been conceived to successfully 

address the implicated potentials of health risk assessment and stratification and to 

facilitate large-scale adoption of integrated care of chronic patients [73, 182], 

contributing to enhance healthcare outcomes and patient experience of care while 

reducing costs and improving the health of populations. Applying holistic strategies for 

subject-specific risk prediction and stratification, that consider multilevel covariates 

influencing patient health, would increase the predictive accuracy and facilitate 

clinical decision-making based on sound estimates of individual prognosis [157]. Future 

developments and evaluation of novel DSS fed by enhanced CPM tackling the 

multimorbidity phenomena constitutes an efficient manner to bring the achievements 

of the PhD thesis into the real clinical scenario. 
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CONCLUSIONS 

The PhD thesis achieved main points of the general objectives, namely: i) to perform a 

systems analysis of patients with COPD by investigating molecular disturbances at body 

systems level leading to a better understanding of characteristic systemic effects and 

comorbidities of patient with COPD; ii) to analyse population level patterns of COPD 

comorbidities and investigate their role in the health risk of patients with COPD; and 

iii) to explore technological strategies and tools that facilitate the transfer of the 

collected knowledge on comorbidity into clinical practice. Accordingly, the following 

conclusions arise: 

1. Non-pulmonary manifestations in patients with Chronic Obstructive Pulmonary 

Disease (COPD) have a major negative impact on: highly relevant clinical events, use 

of healthcare resources and prognosis. Accordingly, the following indications were 

made: 

a. Actionable insights on non-pulmonary phenomena should be included in 

the clinical staging of these patients in an operational manner. 

b. Management of patients with COPD should be revisited to incorporate an 

integrative approach to non-pulmonary phenomena. 

c. Innovative cost-effective interventions, and pharmacological and non-

pharmacological treatments targeting prevention of non-pulmonary 

manifestations in patients with COPD should be developed, and properly 

assessed.  

2. Abnormal co-regulation of core biological pathways (i.e. bioenergetics, 

inflammation, tissue remodelling and oxidative stress), both in skeletal muscle and 

at body systems level, are common characteristics of patients with COPD, which 

potentially play a major role in comorbidity clustering.  

3. Consistent relationships between cardiovascular health, skeletal muscle 

dysfunction and clinical outcomes in patients with COPD was identified, which 

makes it a priority to characterize patient exercise performance and physical 

activity in the clinic, and to adopt early cardiopulmonary rehabilitation strategies 

to modulate prognosis and prevent comorbidity clustering in these patients. 

4. Multimorbidity is a strong predictor of unplanned medical events in patients with 

COPD and shows high potential to be used for personalized health risk prediction 

and service workflow selection.  

5. Personalized health risk prediction was identified as a high potential tool for the 

integration and transfer of scientific evidence on multimorbidity to daily clinical 
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practice. Limiting factors of its present applicability were explored and 

implementation strategies based on cloud computing solutions were proposed. 
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SUMMARY IN ENGLISH 

Background 

Multimorbidity (i.e. the presence of more than one chronic disease in the same 

patient) and comorbidity (i.e. the presence of more than one chronic disease in the 

presence of an index disease) are main sources of dysfunction in chronic patients and 

avoidable costs in conventional health systems worldwide. By affecting a majority of 

elderly population worldwide, multimorbidity prompts the need for revisiting the 

single disease approach followed by contemporary clinical practice and elaborate 

strategies that target shared mechanisms of associated diseases with the potential of 

preventing, decelerating or even halting multimorbid disease progression. However, 

our current understanding on disease interactions is rather limited, and although many 

disorders have been associated based on their shared molecular traits and their 

observed co-occurrence in different populations, no comprehensive approach has 

been outlined to translate this knowledge into clinical practice. 

The advent of novel measurement technologies (e.g. omics) and recent initiatives on 

digital health (e.g. registries, electronic health records) are facilitating access to an 

enormous amount of patient-related information from whole populations to 

molecular levels. State-of-the art computational models and machine learning tools 

demonstrate high potential for health prediction and together with systems biology 

are shaping the practicalities of systems medicine. Given the extremely long and 

expensive bench to clinics cycles of the biomedical sector, systems medicine promises 

a fast track approach where scientific evidence support clinical care, while 

simultaneously collected insights from daily clinical practice promote new scientific 

discoveries and optimize healthcare. 

The PhD thesis aims to explore multimorbidity from a systems medicine perspective 

on the concrete and practical use case of chronic obstructive pulmonary disease 

(COPD). COPD constitutes an ideal use case due to several factors, including: i) its high 

impact on healthcare and its ever-increasing burden; ii) its heterogeneous disease 

manifestations, and progress, often involving extra-pulmonary effects, including highly 

prevalent comorbidities (e.g. type 2 diabetes mellitus, cardiovascular disorders, 

anxiety-depression and lung cancer); and, iii) its well described systemic effects that 

are suggested associations with comorbidities in terms of underlying mechanisms.  

 

 



 

128 SUMMARY 

 

Hypothesis 

The central hypothesis of the PhD thesis builds on the emerging biological evidence 

that clustering of comorbid conditions, a phenomenon seen in complex chronic 

patients, could be due to shared abnormalities in relevant biological pathways (i.e. 

bioenergetics, inflammation and tissue remodelling). It is assumed that a systems 

understanding of the patient conditions may help to uncover the molecular 

mechanisms and lead to the design of preventive and targeted therapeutic strategies 

aiming at modulating patient prognosis.  

The PhD thesis focuses on non-pulmonary phenomena of COPD; that is, systemic 

effects and comorbidities, often observed in patients with COPD as a paradigm of 

complex chronic disease. 

Objectives 

The general objective of the PhD thesis is threefold: i) to investigate molecular 

disturbances at body systems level that may lead to a better understanding of 

characteristic systemic effects and comorbidities of patients with COPD; ii) to analyse 

population level patterns of COPD comorbidities and investigate their role in the 

health risk of patients with COPD; and, iii) to explore technological strategies and tools 

that facilitate the transfer of the collected knowledge on comorbidity into clinical 

practice. 

Main findings 

Firstly, the PhD thesis introduced a novel knowledge management tool for targeted 

molecular analysis of underlying disease mechanisms of skeletal muscle dysfunction 

in patients with COPD. Second, a network analysis approach was outlined to further 

study this systemic effect, as well as the causes of abnormal adaptation of COPD 

muscle to exercise training. Furthermore, this work together with three other studies 

also aimed to reveal the general underlying causes of comorbidity clustering in COPD, 

using different modelling approaches. Overarching outcome of these studies indicates 

abnormalities in the complex co-regulation of core biological pathways (i.e. 

bioenergetics, inflammation, oxidative stress and tissue remodelling) both on muscle 

and body systems level (blood, lung), which paves the way for the development of novel 

pharmacological and non-pharmacological preventive interventions on non-

pulmonary phenomena in patients with COPD. Furthermore, results indicated strong 

relation of muscle related dysregulations to aerobic capacity, in opposed to pulmonary 
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severity of COPD. These findings have far reaching potential in COPD care, starting 

from defining the need for better characterization of exercise performance in the 

clinic practice and the promotion of physical activity from early stages of the disease.  

This PhD thesis also generated outcomes with respect to the risk of multimorbidity in 

patients with COPD using a population health approach. The thesis validated that 

patients with COPD are in increased risk to co-occur with other diseases compared to 

non-COPD patients, regardless of the population and healthcare system specificities 

of different regions (i.e. Catalonia, US). These findings indicated the potential role of 

multimorbidity as a risk factor for COPD, that was evaluated in the PhD thesis by 

constructing health risk assessment models to predict unexpected medical events in 

patients with COPD. The promising performance of the models and the prominent role 

of multimorbidity in these models presented a powerful argument for its role in clinical 

staging of the disease and their potential in clinical decision support.  

Conclusions 

The PhD thesis achieved main points of the general objectives, namely: i) to perform a 

systems analysis of patients with COPD by investigating molecular disturbances at body 

systems level leading to a better understanding of characteristic systemic effects and 

comorbidities of patient with COPD; ii) to analyse population level patterns of COPD 

comorbidities and investigate their role in the health risk of patients with COPD; and 

iii) to explore technological strategies and tools that facilitate the transfer of the 

collected knowledge on comorbidity into clinical practice. Accordingly, the following 

conclusions arise: 

1. Non-pulmonary manifestations in patients with Chronic Obstructive Pulmonary 

Disease (COPD) have a major negative impact on: highly relevant clinical events, use 

of healthcare resources and prognosis. Accordingly, the following indications were 

made: 

a. Actionable insights on non-pulmonary phenomena should be included in 

the clinical staging of these patients in an operational manner. 

b. Management of patients with COPD should be revisited to incorporate an 

integrative approach to non-pulmonary phenomena. 

c. Innovative cost-effective interventions, and pharmacological and non-

pharmacological treatments targeting prevention of non-pulmonary 

manifestations in patients with COPD should be developed, and properly 

assessed.  
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2. Abnormal co-regulation of core biological pathways (i.e. bioenergetics, 

inflammation, tissue remodelling and oxidative stress), both in skeletal muscle and 

at body systems level, are common characteristics of patients with COPD, which 

potentially play a major role in comorbidity clustering.  

3. Consistent relationships between cardiovascular health, skeletal muscle 

dysfunction and clinical outcomes in patients with COPD was identified, which 

makes it a priority to characterize patient exercise performance and physical 

activity in the clinic, and to adopt early cardiopulmonary rehabilitation strategies 

to modulate prognosis and prevent comorbidity clustering in these patients. 

4. Multimorbidity is a strong predictor of unplanned medical events in patients with 

COPD and shows high potential to be used for personalized health risk prediction 

and service workflow selection.  

5. Personalized health risk prediction was identified as a high potential tool for the 

integration and transfer of scientific evidence on multimorbidity to daily clinical 

practice. Limiting factors of its present applicability were explored and 

implementation strategies based on cloud computing solutions were proposed. 
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RESUM EN CATALÀ 

Introducció 

Tant la multimorbiditat (la presència de més d'una malaltia crònica en el mateix 

pacient), com la comorbiditat (la presència de més d'una malaltia crònica quan hi ha 

una malaltia de referència) són una font important de disfuncions en l’atenció sanitària 

dels pacients crònics i generen importants despeses evitables en sistemes de salut 

arreu del món. La multimorbiditat/comorbiditat afecta la majoria de població de més 

de 65 anys. El seu gran impacte sanitari i social fa necessària la revisió d’aspectes 

essencials de la pràctica mèdica convencional, molt enfocada al tractament de cada 

malaltia de forma aïllada. En aquest sentit, cal elaborar estratègies que considerin els 

mecanismes biològics comuns entre patologies, per tal de prevenir, retardar o fins i 

tot aturar la progressió del fenomen. Malauradament, el poc coneixement dels 

mecanismes biològics que modulen les interaccions entre malalties és un factor 

limitant important. Hi ha estudis sobre els mecanismes moleculars comuns entre 

malalties i s’han realitzat anàlisis poblacionals de la multimorbiditat, però no existeix 

encara una aproximació holística per tal de traduir aquest coneixement a la pràctica 

clínica. 

L’aparició de noves tecnologies òmiques, així com iniciatives recents en l’àmbit de la 

salut digital, han facilitat l'accés a una quantitat enorme d'informació dels pacients, 

tant a nivell poblacional com a nivell molecular. A més, les eines computacionals i 

d'aprenentatge automàtic existents estan demostrant un gran potencial predictiu que, 

conjuntament amb les metodologies de la biologia de sistemes, estan conformant els 

aspectes pràctics del desplegament de la medicina de sistemes. De forma progressiva, 

aquesta última esdevé una via efectiva per accelerar el rol de l’evidència científica com 

a suport a la atenció clínica. De forma recíproca, la digitalització sistemàtica de la 

pràctica clínica diària, permet la generació de noves descobertes científiques i la 

optimització de l’assistència sanitària. 

Aquesta tesis doctoral pretén explorar la multimorbiditat des d’una perspectiva de 

medicina de sistemes, considerant com a cas d'ús concret i pràctic la malaltia 

pulmonar obstructiva crònica (MPOC). La MPOC constitueix un cas d'ús ideal a causa 

de diversos factors: i) el seu alt impacte a nivell sanitari; ii) la heterogeneïtat en quant 

a manifestacions i progrés, sovint amb efectes extra-pulmonars, incloent de forma 

freqüent comorbiditats com la diabetis mellitus tipus 2, trastorns cardiovasculars, 

l'ansietat-depressió i el càncer de pulmó; i, iii) els efectes sistèmics de la malaltia 
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pulmonar, que podrien presentar mecanismes biològics comuns a algunes 

comorbiditats. 

Hipòtesis 

La hipòtesi central d’aquesta tesis doctoral considera que la multimorbiditat podria 

explicar-se per alteracions en les xarxes de regulació de mecanismes biològics 

rellevants com la bioenergètica, inflamació i remodelació de teixits. En aquest sentit, 

l’anàlisi holística del problema podria millorar la comprensió dels mecanismes 

moleculars que modulen les associacions entre malalties i, per tant, facilitar el disseny 

d'estratègies terapèutiques preventives i dirigides a modular el pronòstic dels 

pacients.  

Aquesta tesis doctoral estudia els fenòmens extra-pulmonars de la MPOC; és a dir, 

efectes sistèmics (disfunció del múscul esquelètic) i comorbiditats, com a paradigma 

de malalties cròniques complexes. 

Objectius 

L'objectiu general d’aquesta tesis doctoral és triple: i) l’anàlisi holístic de pacients amb 

MPOC amb focus en la disfunció muscular i les comorbiditats; ii) avaluar el paper de 

les comorbiditats en el risc de salut dels pacients amb MPOC, tant a nivell poblacional 

com individual; i, iii) explorar estratègies tecnològiques i eines de salut digital que 

facilitin la transferència de coneixement a la pràctica clínica diària. 

Resultats 

El primer manuscrit de la tesi descriu una nova eina de gestió del coneixement per 

l’anàlisi molecular dels mecanismes de disfunció del múscul esquelètic en pacients 

amb MPOC. També dins el primer objectiu de la tesi, s’efectua un anàlisi de xarxes 

orientat a la identificació de mòduls biològics explicatius de la disfunció muscular i de 

l’adaptació anòmala d’aquests malalts a l’entrenament físic, tal com es descriu en el 

segon manuscrit. Els tres articles següents exploren, des de diferents perspectives, 

l’impacte i mecanismes de les comorbiditats en els pacients amb MPOC. Els principals 

resultats d'aquests estudis indiquen una complexa i anormal regulació de vies 

biològiques principals, com es el cas de la bioenergètica, inflamació, estrès oxidatiu i 

remodelació de teixits, tant a nivell del múscul com a nivell sistèmic (sang, pulmó). 

Aquests resultats obren noves vies per a intervencions preventives, tant 

farmacològiques com no farmacològiques, sobre els fenòmens no pulmonars que 

presenten els pacients amb MPOC. Els resultats indiquen una associació de les 
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alteracions musculars amb la capacitat aeròbica, i no pas amb la gravetat de la malaltia 

pulmonar. Aquestes troballes tenen un gran potencial en la millora de la gestió dels 

pacients amb MPOC, començant per la necessitat d’una millor caracterització de la 

capacitat aeròbica en la pràctica clínica i la promoció d'activitat física des de les 

primeres etapes de la malaltia. 

La tesi també ha generat resultats d’interès en relació amb el risc de multimorbiditat 

en pacients amb MPOC, mitjançant un enfocament de salut poblacional. Els resultats 

evidencien que els pacients amb MPOC presenten un risc mes elevat de comorbiditat 

que els pacients sense MPOC, independentment de les especificitats de la població i 

del sistema sanitari de les àrees analitzades (Catalunya, EUA). La tesi també demostra 

el paper de la multimorbiditat com a factor modulador del risc clínic dels pacients amb 

MPOC. Aquests resultats indiquen l’interès de l’ús de la multimobiditat en l’estadiatge 

dels pacients amb MPOC i en l’elaboració d’eines de suport al procés de decisió 

clínica. 

Conclusions 

Aquesta tesi doctoral ha assolit els objectius generals plantejats i proposa les següents 

conclusions: 

1. Les manifestacions no pulmonars en els pacients amb malaltia pulmonar 

obstructiva crònica (MPOC) tenen un impacte negatiu respecte a esdeveniments 

de gran rellevància clínica, ús de recursos sanitaris i pronòstic. En conseqüència, 

es fan les següents recomanacions: 

a. Els fenòmens no pulmonars de la MPOC s’haurien d’incloure de manera 

operativa en l’estadiatge d'aquests pacients. 

b. S’hauria de redefinir la gestió clínica dels pacients amb MPOC tot 

incorporant un enfocament holístic dels fenòmens no pulmonars. 

c. S’haurien de desenvolupar i avaluar correctament noves intervencions, 

farmacològiques i no farmacològiques, per a la prevenció de les 

manifestacions no pulmonars en pacients amb MPOC.  

2. Les alteracions de la regulació de vies biològiques rellevants com la bioenergètica, 

inflamació, estrès oxidatiu i la remodelació de teixits a nivell del múscul esquelètic, 

i també a nivell sistèmic, s’observa en els pacients amb MPOC i pot tenir un paper 

important en les co-morbiditats.  

3. Les relacions entre alteracions cardiovasculars, disfunció del múscul esquelètic i 

altres aspectes clínics dels pacients amb MPOC, indiquen la necessitat de 

caracteritzar la capacitat aeròbica i els nivells d'activitat física en la pràctica 
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clínica, així com la implementació d’estratègies de rehabilitació cardiopulmonar 

en les primeres etapes de la malaltia, per tal de modular la prognosis dels malalts i 

prevenir l’aparició de comorbiditats. 

4. La multimorbiditat és un bon predictor d’esdeveniments clínics rellevants en 

pacients amb MPOC i mostra un gran potencial per a personalitzar l’estimació de 

risc i la selecció de serveis.  

5. La predicció de risc de forma personalitzada s’ha identificat com una eina amb 

molt potencial per a la gestió de la multimorbiditat en la pràctica clínica diària. 

S’han explorat els factors limitants de la seva aplicabilitat i s’han proposat 

estratègies d'implementació d’eines predictives adients, basades en solucions de 

computació en el núvol. 
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RESUMEN EN CASTELLANO 

Introducción 

Tanto la multimorbilidad (la presencia de más de una enfermedad crónica en un mismo 

paciente) como la comorbilidad (la presencia de más de una enfermedad crónica en 

presencia de una enfermedad de referencia) son una fuente importante de 

disfunciones en la atención sanitaria de los pacientes crónicos y generan importantes 

costes evitables en los sistemas de salud de todo el mundo. La 

multimorbilidad/comorbilidad afecta a la mayoría de la población de más de 65 años.  

Debido a su gran impacto sanitario y social, resulta necesaria la revisión de aspectos 

esenciales de la práctica médica convencional, muy enfocada en el tratamiento de 

cada enfermedad de forma aislada. En este sentido, es necesario elaborar estrategias 

que consideren mecanismos biológicos comunes entre patologías, con el fin de 

prevenir, retrasar o incluso detener la progresión del fenómeno. Desgraciadamente, 

el escaso conocimiento de los mecanismos biológicos que modulan las interacciones 

entre enfermedades es un factor limitante importante. Existen estudios sobre los 

mecanismos moleculares comunes entre enfermedades y se han realizados análisis 

poblaciones de la multimorbilidad, pero no existe aún una aproximación holística que 

permita traducir este conocimiento a la práctica clínica. 

La aparición de nuevas tecnologías ómicas, así como recientes iniciativas en el ámbito 

de la salud digital, han facilitado el acceso a una cantidad enorme de información 

sobre los pacientes, tanto a nivel poblacional como a nivel molecular. Además, las 

herramientas computacionales y de aprendizaje automático existentes demuestran un 

gran potencial predictivo que, conjuntamente con las metodologías de biología de 

sistemas, están conformando los aspectos prácticos de la medicina de sistemas. De 

manera progresiva esta última se está convirtiendo en una vía efectiva para acelerar el 

papel de la evidencia científica como soporte a la atención clínica. De forma recíproca, 

la digitalización sistemática de la práctica clínica diaria permite la generación de 

nuevos descubrimientos científicos y la optimización de la asistencia sanitaria.  

Esta tesis doctoral pretende explorar la multimorbilidad desde una perspectiva de 

medicina de sistemas, considerando como caso de uso concreto y práctico la 

enfermedad pulmonar obstructiva crónica (EPOC). La EPOC constituye un caso de uso 

ideal debido a diversos factores: i) su alto impacto a nivel sanitario; ii) la 

heterogeneidad en cuanto a manifestaciones y progreso, a menudo con efectos extra 

pulmonares, incluyendo de forma frecuente comorbilidades como la diabetes mellitus 

tipo 2, trastornos cardiovasculares, la ansiedad-depresión y el cáncer de pulmón; y, 
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iii) los efectos sistémicos de la enfermedad pulmonar, que podrían presentar 

mecanismos biológicos comunes a algunas comorbilidades.        

Hipótesis 

La hipótesis central de esta tesis doctoral considera que la multimorbilidad podría 

explicarse por alteraciones en las redes de regulación de mecanismos biológicos 

relevantes como la bioenergética, inflamación y remodelación de tejidos. En este 

sentido, el análisis holístico del problema podría mejorar la comprensión de los 

mecanismos moleculares que modulan las asociaciones entre enfermedades y, por 

tanto, facilitar el diseño de estrategias terapéuticas preventivas y dirigidas a modular 

el pronóstico de los pacientes. 

Esta tesis doctoral estudia los fenómenos extra pulmonares de la EPOC; es decir, 

efectos sistémicos (disfunción del músculo esquelético) y comorbilidades, como 

paradigma de enfermedades crónicas complejas. 

Objetivos 

El objetivo general de esta tesis doctoral es triple: i) el análisis holístico de pacientes 

con EPOC focalizando en la disfunción muscular y la comorbilidades; ii) evaluar el 

papel de las comorbilidades en el riesgo de salud de los pacientes con EPOC, tanto a 

nivel poblacional como individual; y, iii) explorar estrategias tecnológicas y 

herramientas de salud digital que faciliten la transferencia de conocimiento a la 

práctica clínica diaria. 

Resultados 

El primer manuscrito de la tesis describe una nueva herramienta de gestión del 

conocimiento para el análisis molecular de los mecanismos de disfunción del músculo 

esquelético en pacientes con EPOC. Incluido en el primer objetivo de la tesis, se 

efectúa un análisis de redes orientado a la identificación de módulos biológicos que 

explican la disfunción muscular y la adaptación anómala de estos pacientes al 

entrenamiento físico, tal y cómo se describe en el segundo manuscrito. Los tres 

artículos siguientes exploran, desde perspectivas diferentes, el impacto y mecanismos 

de las comorbilidades en los pacientes con EPOC. Los principales resultados de estos 

estudios indican una compleja y anormal regulación de vías biológicas principales, 

como es el caso de la bioenergética, inflamación, estrés oxidativo y remodelación de 

tejidos, tanto a nivel del músculo como a nivel sistémico (sangre, pulmón). Estos 

resultados abren nuevas vías para intervenciones preventivas, tanto farmacológicas 
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como no farmacológicas, sobre los fenómenos no pulmonares que presentan los 

pacientes con EPOC. Los resultados indican una asociación de las alteraciones 

musculares con la capacidad aeróbica, y no con la gravedad de la enfermedad 

pulmonar. Estos hallazgos tienen un gran potencial en la mejora de la gestión de los 

pacientes con EPOC, empezando por la necesidad de una mejor caracterización de la 

capacidad aeróbica en la práctica clínica y la promoción de actividad física desde 

etapas tempranas de la enfermedad. 

La tesis también ha generado resultados de interés en relación con el riesgo de 

multimorbilidad en pacientes con EPOC, mediante un enfoque de salud poblacional. 

Los resultados evidencian que los pacientes con EPOC presentan un mayor riesgo de 

comorbilidad que los pacientes sin EPOC, independientemente de las especificidades 

de la población y del sistema sanitario de las áreas analizadas (Cataluña, EUA). La tesis 

demuestra también el papel de la multimorbilidad como factor modulador del riesgo 

clínico de los pacientes con EPOC. Estos resultados indican la conveniencia del uso de 

la multimorbilidad en el estadiaje de los pacientes con EPOC y en la elaboración de 

herramientas de soporte al proceso de decisión clínica. 

Conclusiones 

Esta tesis doctoral ha conseguido los objetivos generales planteados y propone las 

siguientes conclusiones:  

1. Las manifestaciones no pulmonares en los pacientes con enfermedad pulmonar 

obstructiva crónica (EPOC) tienen un impacto negativo respecto a eventos de gran 

relevancia clínica, uso de recursos sanitarios y pronóstico. En consecuencia, se 

formulan las siguientes recomendaciones: 

a) Los fenómenos no pulmonares de la EPOC deberían incluirse de manera 

operativa en el estadiaje de estos pacientes. 

b) Se debería redefinir la gestión clínica de los pacientes con EPOC incorporando 

un enfoque holístico de los fenómenos no pulmonares.  

c) Se deberían desarrollar y evaluar correctamente nuevas intervenciones, 

farmacológicas y no farmacológicas, para la prevención de las manifestaciones 

no pulmonares en pacientes con EPOC. 

2. Las alteraciones de la regulación de vías biológicas relevantes como la 

bioenergética, inflamación, estrés oxidativo y la remodelación de tejidos a nivel del 

músculo esquelético y también a nivel sistémico, se observa en pacientes con 

EPOC y puede tener un papel importante en las comorbilidades. 
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3. Las relaciones entre alteraciones cardiovasculares, disfunción del músculo 

esquelético y otros aspectos clínicos de los pacientes con EPOC, indican la 

necesidad de caracterizar la capacidad aeróbica y los niveles de actividad física en 

la práctica clínica, así como la implementación de estrategias de rehabilitación 

cardiopulmonar en las primeras etapas de la enfermedad, con el fin de modular el 

pronóstico de los pacientes y prevenir la aparición de comorbilidades.  

4. La multimorbilidad es un buen predictor de eventos clínicos relevantes en 

pacientes con EPOC y muestra un gran potencial para personalizar la estimación 

de riesgo y la selección de servicios.  

5. La predicción del riesgo de forma personalizada se ha identificado como una 

herramienta con alto potencial para la gestión de la multimorbilidad en la práctica 

clínica diaria. Se han explorado los factores limitantes de su aplicabilidad y se han 

propuesto estrategias de implementación de herramientas predictivas adecuadas, 

basadas en soluciones de computación en la nube. 
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