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Abstract 

Oxidation of H3 on lysine 4 (H3K4ox) by lysyl oxidase–like 2 

(LOXL2) generates a new H3 modification with an unknown 

physiological function. We determined from cell lines and patient–

derived xenographs (PDXs) that the triple-negative breast cancer 

(TNBC) subtype has higher levels of LOXL2 and H3K4ox, and a 

more compact chromatin, than other breast cancer subtypes. 

H3K4ox is mainly in heterochromatin, where it controls compaction 

and inhibits the DNA damage response (DDR). Knocking-down 

LOXL2 reduced H3K4ox levels and “opened” chromatin, resulted 

in DDR activation and increased susceptibility to cell death. This 

critical role of oxidized H3 in chromatin compaction and the DDR 

suggests that targeting it to force open chromatin could be a way to 

sensitize TNBC cells to conventional oncological therapy. 
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Resum  

 
L’oxidació de la histona 3 en la lisina 4 (H3K4ox) per acció de la 

lysil oxidase-like 2 (LOXL2) genera una nova modificació de la H3 

amb una funció desconeguda. En aquesta tesi, hem determinat tant 

en línies cel·lulars com en xenografs derivats de pacients (PDXs) 

que el subtipus de càncers de mama triple negatiu (TNBC) presenta 

uns nivells elevats de LOXL2 i H3K4ox, i una cromatina més 

compactada que els altres subtipus de càncer de mama. L’H3K4ox 

es troba majoritàriament en l’heterocromatina, on controla la 

compactació de l’ADN i inhibeix la resposta al dany en l’ADN 

(DDR). Eliminar la LOXL2 redueix els nivells d’H3K4ox i “obre” 

la cromatina, provocant l’activació del DDR i fent que augmenti la 

susceptibilitat a la mort cel·lular. Aquest paper crucial de l’oxidació 

de l’H3 en la compactació de la cromatina i el DDR suggereix que 

forçar l’obertura de la cromatina podria ser una manera de 

sensibilitzar les cèl·lules TNBC a teràpies oncològiques 

convencionals. 
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1. INTRODUCTION 

In the following sections, I will describe the different molecular 

bases that regulate the biology of a cell from a chromatin 

perspective (section 1.1), the field of cancer in general, and more 

specific in the topics which the work I hereby present belongs 

(section 1.2), and finally the lysil oxidase-like 2 enzyme (LOXL2) 

which activity is under study in the lab currently (section 1.3).  

1.1. A CHROMATIN PERSPECTIVE 

1.1.1. The basic structures 

a) Nucleosomes 

DNA (desoxyribonucleic acid) contains all the information 

necessary to generate and maintain a living organism (Thomas and 

Kornberg 1975). It is made out of two polymeric strains of 4 

different nucleotides (bases): Adenine (A), thymine (T), guanine 

(G) and cytosine (C). DNA forms an antiparallel double helix 

bound together with hydrogen bonds between the bases forming a 

double-stranded chain (Watson and Crick 1953) (Fig.i1). Together 

with and a group of proteins called histones, DNA is compacted 

into the nucleosomes (Luger et al. 1997), the basic element of 

chromatin inside the nucleus (Hewish and Burgoyne 1973; 

Kornberg 1974).  
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Figure.i1. Photograph of a rough scale model of the structure of DNA. An 
original model from Watson & Crick published in 1953. The two antiparallel 
strains forming a double helix and maintained together by hydrogen bonds 
between the bases (Crick and Watson 1954).  

In eukaryotic cells, nucleosomes consist of 147 base pairs (bp) of 

DNA wrapped around two tetramers of histones (Kornberg 1974). 

These two tetramers form the core of the nucleosome. Each 

tetramer is formed by HISTONE 2A (H2A), HISTONE 2B (H2B), 

HISTONE 3 (H3) and HISTONE (H4) (Fig.i2). In addition, there 

are different variants for each histone protein with different 

distribution along the genome and specific features (Weber and 
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Henikoff 2014). Protruding from the core of the nucleosome, there 

are particular domains called the tails of the histones (Strahl and 

Allis 2000; Jenuwein and Allis 2001). The tail of a histone is the N-

terminal region of each histone, and its structure and post-

translational modifications (PTMs) are of crucial importance in 

nucleosome biology.  

 

Figure.i2. Crystal structure of the core of a nucleosome. Classic image of the 
DNA double helix (orange and celeste) wrapping twice the histone core 
composed by two tetramers of histones H2A (yellow), H2B (red), H3 (blue), H4 
(green). (A) Top view of the core of a nucleosome along the DNA superhelical 
axis. (B) and (C) Side views of the nucleosome perpendicular to the DNA 
superhelical axis. 
 

A region of 20-90 bp of free DNA called linker DNA separates 

nucleosomes (Bednar et al. 1998). The length, accessibility, and the 

structure of the linker DNA determine also the role of the 

surrounding DNA. In addition, HISTONE 1 (H1) protein binds to 

the linker DNA adding one step of compaction to the chromatin 

(Woodcock, Skoultchi, and Fan 2006). The presence of H1 is linked 

with the degree of accessibility between the nucleosome-entering 
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and exiting DNA helices and further of all the chromatin 

compaction (Sivolob and Prunell 2003; Kepper et al. 2008) (Fig.i3). 

 

Figure.i3. Nucleosome representation with the linker Histone 1. (A) 
Remarkably, histone 1 (green) couples between the double helix of DNA (grey) 
that is entering and exiting from the nucleosome (blue) (Cutter and Hayes 2016). 
(B) Schematic cartoon of the nucleosome with the linker H1 and different 
examples of histone variants (Tollervey and Lunyak 2012). 
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Based on the DNA sequence, chromatin can be divided into 

different regions (Ogbourne and Antalis 1998). The most important 

elements are the genes. Although modern science does not offer a 

precise definition of a gene, gene consists of a region of DNA that 

contains the information necessary to produce a specific protein 

(Pearson 2006). Genes are composed of exons, regions that will be 

codified into protein, and introns, regions that will not be part of the 

protein. Selected genes will be transcribed into messenger RNAs 

(mRNAs), and finally translated into proteins (Watson and Crick 

1953). Regions that do not code for a protein are important in the 

regulation of the coding parts of the genome. In last years, non-

coding DNA (ncDNA) elements reached increasing importance as 

regulatory elements of both gene regulation and cellular fate (van 

Bakel et al. 2010; Djebali et al. 2012; Consortium 2013). Different 

functions arose in the last years for ncDNA elements, from non-

coding functional RNAs (ncRNA) (van Bakel et al. 2010) to 

protection of the genome (Qiu 2015).  

Important for gene regulation are promoter and enhancer elements 

(Andersson 2015). Promoters are elements of open chromatin 

upstream of the transcriptional start site of the gene (TSS). 

Transcription factors (TFs) bind promoters specifically and promote 

or repress gene transcription by either recruitment of RNA 

polymerase II (RNAPII), or recruitment of other repression 

regulators. Enhancers elements are usually several kilobases away 

from the transcriptional start site (Ogbourne and Antalis 1998; 

Plank and Dean 2014). They are called enhancers when promote 

gene expression, insulators when work indirectly to other elements 
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and silencers when repress gene expression (Wallace and Felsenfeld 

2007). The importance of enhancers and silencers rely on the 

folding capacity of chromatin that allows the gathering sequence-

remote (cis) regions of the DNA (Cremer and Cremer 2010) 

(Fig.i4).  

Figure.i4. Gene transcription requires direct contact between enhancers and 

promoters. The direct contact between the promoter and its enhancer occurs 
throughout the looping of the chromatin fiber and allowing the transcription of 
the gene by the RNAPolII (green). Several transcriptions factors are involved in 
this process (Pombo and Dillon 2015). 
 

In addition, other important mechanisms above the regulator 

elements based on the DNA sequence control the gene expression. 

These mechanisms are known as epigenetics. In the early 90s, 

epigenetics was described as anything other than DNA sequence 
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that influences the development of an organism (R. Holliday 1990). 

Hence, any modification on the chromatin without altering the DNA 

sequence is considered as epigenetic modification. Here, I will point 

out two modifications: DNA methylation and histone post-

translational modifications.  

DNA methylation consists in the addition of a methyl group to the 

DNA molecule (Schübeler 2015). Both cytosine and adenine bases 

are suitable to be methylated. It has been firstly described as a 

defense from bacteriophages. Nowadays, they are described to be a 

silencing mark reducing the transcriptional activity of chromatin. 

Adenine methylation (N6-mA) is almost non-present in mammals, 

and was thought to be exclusive of bacteria and plants, however 

recent evidences suggest important roles in eukaryotic organisms. 

Controversially, a model where this mark is promoting active 

transcription has been described in insects, nematodes and a green 

algae (G. Zhang et al. 2015; Greer et al. 2015; Ye Fu et al. 2015). 

Nevertheless, in mammalian embryonic cells, N6-mA has been 

described a newly silencing element for transposon element (T. P. 

Wu et al. 2016).  

Cytosine methylation is largely studied and nearly all of them 

localize in cytosine residues of CpG dinucleotides, what is referred 

as CpG islands. Most of these CpG islands localize close to the 5’ 

region of genes where they repress transcription (Lister et al. 2009). 

DNA methylation is carried out by DNA methyltransferases 

enzymes (DNMTs) and it can be removed by the TET family of 

enzymes through an oxidation reaction (Yi Zhang and Kohil 2014). 
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b) Chromosomes 

Chromatin is physically divided into structures called chromosomes 

(Cremer and Cremer 2010). In human cells, each cell contains 44 

autosome chromosomes (1-22) and 2 sex chromosomes (X and/or 

Y) (Tjio and Levan 1956; Ford and Hamerton 1956).  Half of them 

belong to each one of the progenitors. Chromosomes can be 

observed in the metaphase of the cell cycle as an X-shaped 

structures of two chromatids containing the two copies of 

information after cell replication (Adolph 1980; Belmont et al. 

1989). In the metaphase, chromosomes have three well-

characterized regions: the centromere where the two sister 

chromatids are joined (Pluta et al. 1995); the telomeres at the end of 

the chromosomes (Olovnikov 1973; Blackburn, Epel, and Lin 

2015); and the chromosome arms (Fig.i5). In the interphase, 

chromosomes are decondensed and distributed over the nucleus 

(Cremer and Cremer 2010). 
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Figure.i5. Human metaphase chromosomes observed using digital 

fluorescence microscopy. Metaphase chromosome spreads in a quantitative 
fluorescence in situ hybridization (Q-FISH). Chromosomes are marked using 
DAPI (blue). Different probes were used to target telomeres (green) and 
centromeres (red) (from Shay/Wright lab).  

1.1.2. A nuclear perspective 

a) Euchromatin vs. Heterochromatin 

Traditionally, interphase staining of the chromatin distinguishes 

between two main regions: Euchromatin (EC) and Heterochromatin 

(HC) (Fig.i6). HC presents a more condensed structure than EC 

(Brown 1966; Becker, Nicetto, and Zaret 2016). Further 
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experiments elucidated more difference between both regions: on 

one hand, HC is characterized by being less accessible or closed, 

enriched in repetitive sequences, present in the centromeres and 

telomeres of chromosomes and is replicated in late S-phase stages. 

On the other hand, EC is less condensed and more accessible or 

open, hence, easily transcribed, gene enriched, present in the 

chromosome arms and is the first region to be replicated during the 

S-phase (Bo Wen et al. 2012; Feng and Michaels 2015; Tamaru 

2010).  

 

Figure.i6. Properties of euchromatin and heterochromatin. Brief list with the 
main properties of euchromatin and heterochromatin. However, some exceptions 
can arise from the two groups (Adapted from  (Grewal and Elgin 2007; Croken, 
Nardelli, and Kim 2012)). 
 

b) Chromosome Territories and the High-throughput data 

Besides this, more evidence in the last years suggested a high order 

of complexity in the architecture of the chromatin inside the 

nucleus: the Chromosome Territories (CTs) (Fig.i7). The CTs 
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consist of specific regions inside the nucleus for each chromosome 

(Cremer and Cremer 2010; Stevens et al. 2017). Laser UV-

microirradiation experiments confirmed, already in the 80’s, the 

presence of these CT in the nuclei of diploid Chinese hamster cells.  

 

Figure.i7. Chromosome Territories in the interphase nucleus. High-
throughput data from single-cell Hi-C experiments allow, recently, a better 
modeling of the chromatin architecture inside the nucleus. 3D structure of an 
haploid mouse ES genome with expanded view of each chromosome (left) and 
the distribution of the compartments A (blue) and B (red) (right) (Stevens et al. 
2017)). 
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Moreover, in the last decades, high-throughput sequencing 

technologies allowed a better understanding of CTs and added new 

concepts in the organization of the chromatin inside the nucleus. 

Chromatin immuno-precipitation sequencing (ChIP-seq) of 

different chromatin-related proteins addresses different regions of 

the chromatin based on their specific characteristics (van Steensel 

2011). For example, the colourful division of the chromatin in 

drosophila cells can discriminate five different types of chromatin 

based on ChIP-seq experiments of 53 chromatin proteins (Filion et 

al. 2010) (Fig.i8). 
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Figure.i8. The colors of the genome. (A)(B)(C)After systematic integration of 
53 protein location maps in the embryonic Drosophila melanogaster cell line 
Kc167 chromatin can be divided into 5 big compartments. (D) Cartoon 
representation of the 5 compartments: Black, used to be associated to the nuclear 
lamina; Blue, mostly repressed by the Polycomb group (PcG) of proteins 
containing genes involved in the regulation of the developmental process. Red 
and yellow, being these ones the highly transcribed ones, with the red showing an 
enrichment of cell-specific genes and yellow the more ubiquitous ones. Green, 
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containing the heterochromatin protein 1 (HP1) related genes (Filion et al. 2010; 
van Steensel 2011). 
 
In fact, genomic architecture can clearly distinguish between two 

compartments A and B that always cluster together and segregate 

from each other (Fig.i7). Moreover, A compartment is the more 

accessible one where mostly all high expressed genes lie, and B the 

more compacted within the nucleolus and close to the nuclear 

lamina (Stevens et al. 2017). Similarly, accessibility studies have 

highlighted important characteristics of nuclear architecture. All of 

them discriminate chromatin by its capacity of being accessible 

(Fig.i9).  

• DNAse-seq and MNase-seq techniques are based on the 

ability of different nucleases to cut the free DNA. Therefore, 

DNAse-seq shows the accessible regions of the genome 

because of the activity of DNAse I on free DNA. In 

addition, deep sequencing allows to study the foot-printing 

of proteins on DNA (Boyle et al. 2008).  

• MNase-seq elucidates the positions of the nucleosomes in 

the chromatin by a complete digestion of the free regions of 

DNA by MNase, a single-strand-specific endo-exonuclease, 

activity (Rizzo, Bard, and Buck 2012). 

• Faire-seq gives information about the accessible regions of 

the genome. It is based on the different solubility of free 

DNA or DNA cross-linked with proteins using phenol-

chloroform separation (Giresi et al. 2007). 
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• ATAC-seq allows inferring accessible regions of the 

genome by the activity of Tn5 transposase. This transposase 

fragments DNA are tagged with adapters followed by library 

preparation. Hence, ATAC-seq allows to uncover open 

chromatin, nucleosome positioning and protein footprints 

genome-wide (Buenrostro, Wu, Chang, et al. 2015). 

• Finally, the chromosome conformation capture techniques 

(3C, 4C, 5C and Hi-C) (Fig.i10) are used to describe the 

interaction between DNA regions (Sati and Cavalli 2016; 

Schmitt, Hu, and Ren 2016; Denker and de Laat 2016). 

These techniques report on the relative frequency in the cell 

population by which two loci are in close spatial proximity. 

After cross-linking step, DNA is cut by enzyme digestion 

into small fragments and ligated again to generate unique 

hybrid DNA molecules. 
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Figure.i9. The accessibility studies. Simplified cartoons of the different 
techniques to infer the chromatin distribution and foot-printing of transcription 
factors (TF), nucleosome position (green circles) and chromatin accessibility. 
ChIP-seq (orange) fragments the chromatin by sonication and enriched the 
chromatin region using an antibody against the studied protein; DNase (blue) uses 
an enzyme to digest the chromatin in the accessible regions; MNase (pink) uses a 
an enzyme that digest the free regions of the genome arising the chromatin in 
nucleosomes; FAIRE-seq (green) fragments the chromatin using sonication and 
separated the free regions of DNA by phenol-chloroform separation; ATAC-seq 
(yellow) uses a transposase to digest the chromatin and tagged it. (Adapted from 
(Tsompana and Buck 2014a; Meyer and Liu 2014). 
 

Using the 5C and Hi-C techniques, new organization steps were 

defined (Dixon et al. 2012; Czapiewski, Robson, and Schirmer 

2016). Chromosomes are composed of discrete topologically 
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associating domains (TADs). These TADs are separated from each 

other by striking borders. Interestingly, these borders correlate with 

CCCTC-binding factor protein (CTCF) positions on the genome 

(Holwerda and de Laat 2013; Lupiáñez et al. 2015; Gómez-Marín et 

al. 2015). TADs are proposed as the fundamental structural units of 

the genome. These TADs confined most of the interactions inside 

each TAD and little of them between them. TADs’ contacts 

comprise the interaction between enhancer and promoters regions 

and genetic coregulation is observed inside each TAD. TADs are 

maintained between cells, tissues and species suggesting an 

important role of these discrete contacts in the chromatin 

organization (Denker and de Laat 2016; Dixon et al. 2012; Pombo 

and Dillon 2015; Nora et al. 2012).  
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Figure.i10. The chromosome conformation captures (3C). First, chromatin is 
crosslinked with formaldehyde in order to capture the chromatin organization. 
Then, a restriction enzyme digests the chromatin generating DNA fragments. In 
3C, 4C, 5C these fragments simply re-ligated into circular products. For Hi-C, 
before the ligation, the resection fragments are marked using biotinylated 
nucleotides. During 3C, in order to measure the frequency of contacts, primers 
are designed upstream the specific cut site. Then, a PCR is used to amplify the 
contacts and these are quantified on agarose gel. For 4C, a secondary digestion 
using a more frequent cutting enzyme is done on the 3C library. Then, fragments 
are ligated and circularized. Since, this technique will arise all the contacts 
against the specific region of interest where the primers are designed. In 5C, the 
primers are designed against the restriction ends. After primer annealing they are 
ligated and prepared in a multiplex settings to quantify the abundance of contacts 
between different regions. Finally, in Hi-C, the prepared libraries are sonicated 
and enriched using streptavidin beads. Then, the fragments are ligated to adaptor 
oligos and sequenced (X. Q. D. Wang and Dostie 2017) 
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c) Nuclear structures 

As explained, chromatin resides within the nucleus. The nucleus 

envelope is formed by three different structures: The nuclear 

membranes and the nuclear lamina (Hetzer 2010) (Fig.i11). The 

membranes consist in a two bilayers membrane of lipids (the inner 

and the outer) fused to the endoplasmic reticulum (ER). Different 

proteins are anchored to these membranes and remarkably a group 

of proteins form channels on it, the nucleoporines. The 

nucleoporines are big complexes of proteins that form pores 

allowing the pass of proteins, RNA and ions across the nuclear 

membrane. Inside these two membranes and in contact with 

chromatin is the nuclear lamina (Czapiewski, Robson, and Schirmer 

2016). The nuclear lamina consists in a mesh of fibrilliar network of 

intermediate filaments and membrane associated proteins. These 

intermediate filaments can be divided into two main groups: A-type 

lamins (lamins A/C) and B-type lamins (lamins B1 and B2). The 

different amount of one type or the other in the nuclear lamina 

shows different stiffness of the nucleus. Since, the presence of A-

type laminas is associated to a more stiff nucleus (Swift et al. 2013) 

and to be particularly enriched in differentiated cells 

(Constantinescu et al. 2006).  Nevertheless, B-type lamins has been 

associated with deficiencies in the morphological changes 

associated to migration (Tran, Zheng, and Zheng 2016) and 

chromatin stability (Butin-Israeli et al. 2015). The membrane 

associated group of proteins is composed by 60 different types of 

proteins (Schirmer et al. 2003). They are transmembrane proteins 

anchored into the inner membrane of the nucleus and mainly all of 
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them are able to bind lamins. Moreover some other are able to bind 

also to other chromatin proteins like lamin B receptor that interacts 

with heterochromatin protein 1 (HP1) (Q. Ye and Worman 1996). 

The firstly described function of the nuclear lamina was to serve as 

scaffold for the membranes, although in the last years new functions 

associated to this structure (Schreiber and Kennedy 2013). The 

nuclear lamina has been described to interact with chromatin 

tethering big regions of the genome close to the nuclear membrane, 

the lamina-associated domains (LADs) (Guelen et al. 2008). 

Moreover, this tethering is associated with a repressed state of the 

chromatin and indeed prevalence for heterochromatic domains is 

described to be proximal to the nuclear membrane. Besides, LADs 

are suggested to be constant between cells types, a small fraction of 

these LADs switch between each cell allowing to differentiate 

between the constitutive LADs (cLADs) and the facultative LADs 

(fLADs) (Peric-Hupkes et al. 2010). Alterations in any of the 

components of the nuclear lamina are associated with extremely 

threatening diseases like progeria (Mounkes et al. 2003). 
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Figure.i11. The nuclear envelope. Archetypical representation of the two 

nuclear membranes and the nuclear lamina and of different membrane associated 

proteins (Coutinho et al. 2009). 

1.1.3. EPIGENETICS ON THE HISTONE TAIL 

a)  Epigenetics marks on histones 

As explained, a particular domain of histones protrudes from the 

nucleosomes: the histone tail domain (Jenuwein and Allis 2001; 

Strahl and Allis 2000). This domain establishes a new epigenetic 

step of regulation. Hence, the tail domain becomes an exquisite 

platform for variations in the regulation due to different covalent 

post-translational modifications (PTMs).  

There are more than 50 described PTMs in different residues of the 

histone tail domain of the nucleosome (Kouzarides 2007; Lawrence, 

Daujat, and Schneider 2016) (Fig.i12). The ones more characterized 

are acetylations, methylations and phosphorylations. However, 

several others have been described as ubiquitinations, sumoylations, 

etc.  A new modification described in our group is the deamination 
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of lysine 4 trimethylated in histone 3 (H3K4me3) by the catalytic 

activity of the lysil oxidase like protein 2 (LOXL2) (Herranz et al. 

2016).  

 

Figure.i12. Epigenetic marks on the histone tail. Classic image of a 
nucleosome with the linker H1 and with some of the different PTMs in the 
histone tail that have been described. Acetylation (Ac); Methylation (Me); 
Phosphorylation (Ph); Ubiquitination (Ub). (Cota, Shafa, and E. 2013).  
 

Modifying the histone tail domain could be sufficient to alter the 

nucleosome structure and lead to a change of the regulation as a 

consequence of a direct structural perturbation. For example, lysine 

16 acetylation in histone 4 (H4K1ac) disrupts the electrostatic 

interaction between histones (basic molecules) and DNA (acid 

molecules) (Bradley et al. 2006; Pepenella, Murphy, and Hayes 

2014). Hence, this less compacted chromatin structure promotes 

chromatin accessibility (Bell et al. 2010). Moreover, modifying the 
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histone tail domain may generate new targets recognizable by 

specific proteins. Trimethylation of lysine 9 in histone 3  

(H3K9me3) is one example as it is recognized by Heterochromatin 

protein 1 (HP1) as a signal to compact the surrounding genomic 

region (Lehnertz et al. 2003). Furthermore, post-translational 

modifications in the histone tail are dynamic and, for example, 

suffer change during the cell cycle (Santos-Rosa and Caldas 2005). 

Indeed, the distribution of these epigenetic marks causes different 

and particular effects on those genomic regions where is distributed 

(Fig.i13). In short, the different histone PTMs on the histone tail 

correlate with the biological output of a cell (Fig.i14) (Bannister 

and Kouzarides 2011).  



 

 24

 

Figure.i13. Regulation of gene transcription by histone PTMs. Representative 
image of several histone post-translational modifications and their relevance on 
gene transcription. Remarkably, H3K4me3 is found in the promoter regions 
promoting the transcription and in contrary H3K27me in the same region 
promotes repression (B. Li, Carey, and Workman 2007). 
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Figure.i14. Post-translational modifications of histones are cell-type specific. 

Simplified cartoon of the differences in the histone post-translational 
modifications during induced-pluripotency stem cell (iPS) reprogramming  The 
levels of the histones post-translational modifications changes in different cell-
type and their distribution is implicated in the cellular phenotype of each cell 
(Cota, Shafa, and E. 2013). 
 

b)  Interplay between marks. 

In addition, a bilateral dialogue exists between most of these 

modifications. The communication can be either direct, or through 

chromatin-associated proteins (Fig.i15). Also, this cross-talk can be 

between modifications in the same histone tail domain (cis) or in 

histone tail domains of other histones of the same nucleosomes, and 

from different nucleosomes (trans). An example of the cis 

communication between epigenetic marks is the phosphorylation of 

serine 10 in histone 3 (H3S10P) that leads to a previously described 
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(Mateescu et al. 2004) loss of the H3K9me3. As an example for the 

trans regulation, there is the phosphorylation of threonine 119 in 

histone H2A (H2AT119P) promoting lysine acetylation in residues 

5 of H4 (H4K5ac) and in residue 14 in H3 (H3K14ac) (Ivanovska et 

al. 2005).  

 

Figure.i15. Interplay between histone post-translational modifications. 

Exemplary image of three situations of promotions and repressions between the 
different histone post-translational modifications. (A) Cross-talk (in cis and 
trans), in the tail domains of histone 3 and 4, between the repressive marks 
H3K9me and H4K20me and the mitotic one H3S10P. (B) Cross-talk (in cis and 



 

 27

trans) between the active marks (H3K4me, H3K36me, H3K14ac), the repressive 
mark (H3K9me) and different acetylations in the tail domain of histone 3 and 4. 
(C) Cross-talk (in cis) in the tail domain of histone 4 between different 
epigenetics marks. Dotted lines connecting modifications indicate possible cross-
talk(Latham and Dent 2007). 
 

This interplay between histone modifications leads to the 

establishment of pattern of modifications with a specific output 

(Fig.i16). Hence, those modifications that promote gene 

transcription are found close to each other and at the same time in a 

region of the chromatin. For example, when together, H3K4me3, 

H3K9ac and H4K5ac promote transcription activation (Tollervey 

and Lunyak 2012), while H3K9me3 and H4K20me3 are found 

specifically in heterochromatin establishing a repressing 

environment (Schotta et al. 2004). 
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Figure.i16. Differences in histone PTMs between chromatin. Model 
illustration showing the differences in histone post-translational modifications 
between euchromatin and heterochromatin (Sam Keating 2016). 
 

However, in a particular case, it is possible to find opposite marks 

in the same region at the same time (Fig.i17). Bivalent genes are 

characterized by having both activating and repressing marks in the 

histone tail domains of their nucleosomes, H3K4me3 (activating 

mark) and H3K27me3 (repressing mark) being the most described. 

The presence of these contradictory marks on a promoter is very 

important in developmental tissues ensuring a tight control of the 

activation or repression of the developmental genes (Voigt, Tee, 

and Reinberg 2013; Vastenhouw and Schier 2012). Hence, it gives 
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robustness to the system ensuring an increased activation threshold 

and less spurious activation, is suggested to allow low levels of 

expression of these genes and may have a putative role in stem cell 

maintenance (Voigt, Tee, and Reinberg 2013). 

 

Figure.i17. Paradoxal presence of active and repressive marks in the same 

genes. Simplified cartoon showing the relevance of having contradictory marks 
(H3K4me3 an active mark and H3K27me3 a repressive one) in the same regions 
in pluripotent cells. After the induction of differentiation into a mesodermal 
commitment, the pluripotent genes are repressed. Then, the mesodermal genes 
lose the repressive mark and the endodermal and ectodermal genes lose the 
H3K4me3 (Barrero and Izpisua Belmonte 2008).  
  

c) Beyond the mark: writers, erasers, readers.   

The tightness of control is not only reflected in the presence or 

absence of a certain mark, but different players emerge to provide a 

new level of regulation: the writers, the erasers and the readers 

(Bannister and Kouzarides 2011) (Fig.i18). Those proteins able to 
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deposit an epigenetic mark to the histone tail domain are considered 

as writers. For example, in mammals, lysine 4 methylation in 

histone 3 (H3K4me3) is deposited by the histone methyltransferase 

(HMT) family of proteins with non-overlapping consequences by 

each methyltransferase (H. Wang et al. 2001; Miller et al. 2001). 

Those proteins that remove an epigenetic mark are considered as 

erasers. For example, lysine-specific demethylase 1 (LSD1) is able 

to remove both mono and dimethylated lysine residues 4 or 9 in the 

histone 3 (Metzger et al. 2005; Shi et al. 2004). Last but not least, 

those proteins able to recognize and interact with an epigenetic 

mark in the histone tail domain are considered as readers. HP1 

protein, as previously described, is an example of a reader of 

H3K9me3 (Schotta et al. 2004). Here is important to remark the 

new step of regulation opened by the cross-talk between the 

epigenetic mark and the putative reader (Bannister and Kouzarides 

2011). Hence, each epigenetic mark will be recognized by a specific 

domain in the readers shared among all of them (Musselman et al. 

2012). For example, H3K9me3 is recognized specifically by the 

chromodomain in the N-terminal region of HP1α (Jacobs and 

Khorasanizadeh 2002).  
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Figure.i18. The players of the histone epigenetic mark. Representative 
cartoons showing the three different types of proteins involved in the histone 
modifications. (A) Writers are those proteins able to leave an epigenetic mark on 
the histone tail. Erasers, those ones able to remove the mark. Readers are those 
proteins that bind to the mark in order to regulate the chromatin region where the 
mark is. Some examples of each group are listed and the modification which are 
related to: acetylation (blue), methylation (red) and phosphorylation (purple). (B) 
Examples of the different domains able to recognize different epigenetic marks in 
the tail domain of histone 3. (C) Model cartoon with an increased degree of 
complexity in order to described the intricacy behind the regulation of histone 
PTMs (Adapted from (Tarakhovsky 2010; Yun et al. 2011; Musselman et al. 
2012)). 
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Definitely, the three-dimensional architecture of the genome in the 

nucleus, the chromatin environment, the level of compaction and 

the different modifications in nucleosomes become different levels 

of regulation for the correct development of each cell in a complex 

organism (Fig.i19).  

 

Figure.i19. From the DNA sequence until the genomic organization. 
Schematic representation that shows the different scales of regulation 
summarized in the introduction from 1 bp to 3000 megabases (Mb) (Ea et al. 
2015) 
 

1.2.  A CANCER PERSPECTIVE 

1.2.1. Hallmarks of cancer 

Cancer is a set of heterogeneous diseases that are driven largely by 

the accumulation of genetic and epigenetic abnormalities (D 
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Hanahan and Weinberg 2000) (Fig.i20). Such abnormalities have 

been considered the major causes of neoplasia and metastasis, but in 

the last decades, new features have been identified as cancerous 

events (Douglas Hanahan and Weinberg 2011). Since, these are the 

most accepted characteristics of a tumoral process:  

• Sustaining proliferative signaling 

Cancer cells lose the control on the growth-promoting signals 

leading to an abnormal entrance to the cell growth- and-division 

cycle. Hence, cancer cells gain a characteristic chronic proliferation. 

The abnormal activation of oncogenic programs arises as the main 

responsible pathway, as an example the myelocytomatosis (MYC) 

protein expression (Dang 2012). 

• Evading growth suppressors 

Related to the chronic proliferation, there is the inhibition of the 

tumor suppressor proteins, in order to eliminate a major step of 

abnormal function in cell behavior. A prototypical example of 

tumor suppressor are the Retinoblastoma (RB) proteins (Hinds and 

Weinberg 1994). 

• Aerobic glycolysis inhibition 

Interestingly, cancer cell switch its metabolic pathway from a 

normal glucose metabolism that implies mitochondria organelle, to 

an abnormal glycolysis program, characteristic of anaerobic 

environments. This described as the “Warburg effect” and as an 
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“aerobic glycolysis" program may be counterintuitive due to the 

lower efficiency in ATP production of glycolysis compared to 

normal glucose metabolism. Hence, the glucose import by cancer 

cell is dramatically increased. However, the use of glycolytic 

intermediates in other biological pathways could be an explanation. 

A Warburg-like effect takes place in some rapidly dividing 

embryonic tissues (Gatenby and Gillies 2004).  

• Enabling replicative immortality 

In a highly replicative population as cancer cell, two main barriers 

have to be overcome: senescence induction and replication crisis. 

Rarely normal cells are able to replicate more than a limited number 

of cell cycles. Cancer cells deregulate telomerase protein in order to 

break these two-crucial anticancer defenses. Hence, telomerase 

hyperactivity ensures the enlargement of telomeric regions in order 

to avoid its lose during high replication ratios (Shay and Wright 

2011). 

• Inducing angiogenesis 

Strikingly, a major step that cancer cells need to bypass is the lack 

of vascularization inside the tumor. Thereby, cancer cell promotes 

an angiogenic program to ensure the presence of oxygen and 

nutrients for the tumor. Consequently, factors as vascular 

endothelial growth factor-A (VEGF-A), an angiogenic inducer, are 

promoted (Nishida et al. 2006) and factors as thrombospondin-1 

(TSP-1) an angiogenic inhibitor, repressed (Lawler and Lawler 

2012). 
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• Genome instability and mutation 

Another characteristic of tumor cells is a characteristic pattern of 

mutations on DNA that underlie cancer progression. This has been 

highlight in the last decades thanks to the high-throughput 

sequencing techniques (Negrini, Gorgoulis, and Halazonetis 2010). 

• Resisting cell death 

As cancer cells accumulate mutations, they, definitely, need to 

hijack the directed cell death program also called apoptosis. Hence, 

the suppression of apoptosis inducers as for example the Apoptosis 

regulator BAX (Degenhardt et al. 2002) and/or the induction of 

antiapoptotic proteins as Bcl-2 family of proteins (Delbridge and 

Strasser 2015) are characteristic features of cancer cells. 

• Avoiding immune destruction 

Tumor in tissue may be considered as a strange organ for the 

immune system of human organism. Accordingly, both the innate 

and adaptive cellular arms of the immune system may be able to 

contribute significantly to the tumor eradication (Marcus et al. 

2014). Numerous of immune suppressive cytokines were reported 

to be released in the tumor environment: TNFα, for example 

(Landskron et al. 2014). 

• Tumor-promoting inflammation 

Despite the effort of cancer cells in evading the immune 

destruction, clear evidences have arisen in the last years of an 
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inflammation promotion in tumorigenic environment. Thereby, 

inflammatory reactive species may display tumorigenic features as 

growth factors and proangiogenic products (Whiteside 2008). 

• Activating invasion and metastasis 

An important characteristic of cancer cells, particular in carcinomas 

arising from epithelial cells, is the capacity to invade the 

surrounding tissue and to migrate to different organs of the 

organism and the formation of distant metastasis from the primary 

tumor. This program is known as epithelial-to-mesenchymal 

transition (EMT) (Yang and Weinberg 2008).  

Figure.i20. The hallmarks of cancer. Representative cartoon of the summarized 

characteristics of a cancer disease(Douglas Hanahan and Weinberg 2011) 
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1.2.2. Epithelial-to-mesenchymal transition (EMT) 

a) A transition of properties 

Epithelial-to-mesenchymal transition (EMT) is a key process for the 

embryonic development of an organism (Thiery et al. 2009; Yang 

and Weinberg 2008; X. Ye and Weinberg 2015; Nieto et al. 2016; 

Diepenbruck and Christofori 2016; Cebrià-Costa et al. 2014). EMT 

consists in the phenotypic change of an epithelial cell to a 

mesenchymal cell (Fig.i21). Epithelial cells are characterized by 

being organized in an epithelia establishing close contacts with 

neighbor cells. These contacts, in addition, establish an apicobasal 

axis of polarity through the sequential arrangement of adherent 

junctions, desmosomes and tight junctions. Epithelial cells organize 

as a unit by maintaining a global communication through gap 

junctional complexes. Epithelia remain separated from surrounding 

stroma by a basal lamina. On the other hand, mesenchymal or 

stromal cells are found in the stroma surrounded by the extracellular 

matrix (ECM). They are characterized by being loosely organized 

and by the absence of any kind of polarity. Mesenchymal cells are 

able to migrate along the ECM by extending filopodia through the 

loose matrix to move in response to chemical or mechano-gradients. 

Hence, the conversion of epithelial cells to mesenchymal involves 

the loss of the epithelial characteristics and the acquisition of 

migratory properties. EMT comprises the gradual remodeling of 

epithelial cell architecture losing their epithelial cell–cell junctions 

and apicobasal cell polarity and convert to the low proliferation 

state with spindle-like cell shape, front-back polarity and with 

increased cell migration, invasion and survival of a mesenchymal 
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cell. Interestingly the inverse transition has been largely described 

knew as mesenchymal-to-epithelial transition (MET) (Gunasinghe 

et al. 2012). 

 

Figure.i21.Epithelial-to-mesenchymal transition (EMT) I. Exemplary cartoon 
of the continuous differentiation of the cells that are undergoing an EMT event. 
From left to right, epithelial cells lose the apicobasal polarity and the cell-cell 
contacts. Then, after pass throughout different intermediate states, the cells 
achieve a mesenchymal phenotype with a front-back polarity and increased cell-
matrix contacts. TJ (Tight junction); AD (Adherent junction); DS (Desmosome). 
(Nieto et al. 2016). 
 

The EMT process takes place in a number of cellular contexts 

during the embryonic development as well as in adult tissues 

(Fig.i22). For example, during gastrulation, epithelial cells from the 

epiblast undergo an EMT in order to delaminate and form the 

embryonic tissues of the gastrula. Depletion of different players 

involved in the EMT blocks the gastrulation (Lomelí, Starling, and 

Gridley 2009). Indeed, the similarities between carcinoma 

progression and embryonic development establish EMT as a driver 

of tumors. Hence the EMT will be responsible of distant metastasis 

formation from a primary tumor. However, EMT also participates 

in other events important for tumor progression, for example 

resistance to cell death (Vega et al. 2004), resistance to 
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chemotherapy (Fischer et al. 2015) and stem cell-like phenotype 

(Pandian et al. 2015).  

 

Figure.i22. Epithelial-to-mesenchymal transition (EMT) II. Schematic 
representation of different EMT processes. (A) Three examples of EMT during 
normal embryonic development. Firstly, even before the implantation of the 
blastocyst, the formation of the parietal endoderm requires EMT (left). Then, the 
mesendodermals progenitors undergo a second EMT in the gastrulation process 
(center). Lately, the delamination of the neural crest cells from the dorsal neural 
tube also requires an EMT process (right). (B) EMT events during cancer 
progression. (Adapted from (Thiery et al. 2009; Craene and Berx 2013)).  

 

b)  The SNAIL protein family 

Accordingly, many different players are involved in EMT cascade 

signal. Definitely, the SNAIL protein family of transcription factors 

are the most described. This family contains three different proteins: 

SNAIL protein (SNAI1), SLUG (SNAI2) and SMUC (SNAI3) 

(Nieto 2002; de Herreros et al. 2010). They are characterized by 
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three different domains (Fig.i23): the zinc-finger C-terminal 

domain, which contains from four to six C2H2 type zinc fingers and 

is the domain able to bind to the E-box 5’-CACCTG-3’, the central 

part that contains post-translational modifications and is involved in 

the protein stability and localization and the N-terminal region with 

a SNAG subdomain where interaction with other proteins refine the 

role of SNAI1 in the cell. 

 

Figure.i23. SNAIL protein family. Representative cartoon of the different 
proteins that form the SNAIL family of proteins. (Adapted from (Héctor Peinado, 
Olmeda, and Cano 2007)).  
 

The main function of this family of proteins is the repression of the 

epithelial phenotype and promotion of the mesenchymal one 

(Fig.i24). They are able to bind to the promoter of E-cadherin gene 

(cdh1) and repress its expression (Batlle et al. 2000). The repression 

of CDH1, a typical adhesion molecule, impairs the epithelia 

structure by the loss of cell-cell contacts. SNAI1 expression is 

tightly controlled by many different pathways as TGF-β family of 
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proteins (Hector Peinado, Quintanilla, and Cano 2003; Choi, Sun, 

and Joo 2007), WNT signaling (Yook et al. 2005), NF-κB pathway 

(Julien et al. 2007), hypoxia (Liu et al. 2011; L. Zhang et al. 2013), 

fibroblast growth factors (FGFs), microRNAs (miRNAs) (Díaz-

López, Moreno-Bueno, and Cano 2014) and strikingly, by itself in a 

negative loop, limiting its own expression (Peiró et al. 2006). 

Furthermore, SNAI1 stability is regulated by different proteins in 

order to control its levels in the cell. Since, for example, 

phosphorylation of SNAI1 by the glycogen synthase kinase 3β 

(GSK-3β) exports SNAI1 to the cytoplasm favoring its degradation 

(B. P. Zhou et al. 2004; Schlessinger and Hall 2004). Interestingly, 

LOXL2 is able to interact with the SNAI1 in the N-terminal and 

stabilize it. In addition, this interaction allows the directed 

deamination activity of LOXL2 in the SNAI1 target promoters 

(Herranz et al. 2016).  

Figure.i24. Regulation network of SNAIL protein family. Simplified 
representation of the described regulators of the SNAIL genes. (Adapted from 
(Barrallo-Gimeno and Nieto 2005)). 
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1.2.3. DNA-DAMAGE 

As previously seen, cancer cell is characterized by the accumulation 

of mutations in its DNA sequence. DNA lesions and mutations can 

be induced by endogenous sources, such as defects during DNA 

replication or cell division, metabolic by-products, or exposure to 

damaging agents, UV light, or irradiation (Jackson and Bartek 

2009) (Fig.i25). In fact, a normal cell may suffer a total of about 105 

lesions per day (Lindahl 1993). Each different inductor of DNA 

damage cause different lesions to DNA (Houtgraaf, Versmissen, 

and van der Giessen 2006; Ciccia and Elledge 2010).  

 

Figure.i25. Regulation network of SNAIL protein family. Summary of the 
most common types of DNA lesions. There are list the different damaging agents 
for each DNA lesion (top) and the DNA damage response (DDR) mechanism 
used to resolve it (bottom). ROS (Reactive oxygen species); IR (ionizing 
radiation) (Houtgraaf, Versmissen, and van der Giessen 2006). 
 

In order to fix these lesions, many processes evolved for each type 

of lesion (Jeggo, Pearl, and Carr 2015). These processes are known 

as DNA damage response (DDR) pathways. Moreover, the repair of 
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the different lesions must occur in a chromatin context (Fig.i26). 

There is increasing evidence that the pathways that repair these 

lesions are also regulated by histone modifications and chromatin 

remodelling (Gursoy-Yuzugullu, House, and Price 2016). In fact, 

cancer genome sequencing studies have shown substantial variation 

in somatic mutation rates, with an increase in the rates in 

heterochromatin (closed chromatin) as compared with euchromatin 

(open chromatin) (Hodgkinson, Chen, and Eyre-Walker 2012; 

Schuster-Böckler and Lehner 2012). Furthermore, it has been 

recently reported that DNA mismatch repair (MMR) is more 

efficient in euchromatin genomic regions than in heterochromatin, 

such that no mutations accumulate in these open genomic regions 

(Supek and Lehner 2015). Accordingly, these differences could be 

determined by different accessibility to DNA repair complexes 

(Goodarzi et al. 2008; Sabarinathan et al. 2016) or by variations in 

the ability to activate the DDR (Misteli 2007). 
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Figure.i26. The chromatin accessibility alters the DDR. Schematic drawings 
explaining how the chromatin accessibility present differences in the DDR 
signaling. (A) Recently, the presence of a transcription factor has been described 
as in impediment to the recruitment of NER machinery causing an increase in the 
mutation rates in the transcription factor binding site. (B) The activation of the 
ATM response is smaller in the heterochromatin regions due to the highly 
compaction of the chromatin. In fact, altered heterochromatin enhances the ATM 
response even more than the euchromatin levels (Goodarzi and Jeggo 2012; 
Sabarinathan et al. 2016).  
 

One of the more dramatic lesion on the DNA are the double-strand 

breaks (DSBs) (Houtgraaf, Versmissen, and van der Giessen 2006; 

Watts 2016) (Fig.i27). These lesions pose serious threats to genetic 
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integrity and cell viability, since, if not identified and repaired, they 

can lead to insertions or deletions, or gross chromosomal 

rearrangements. Hence, they cause a signaling response that can 

activate cell cycle checkpoint arrest and/or apoptosis or senescence. 

Briefly, DSB needs to be detected, then the signal is amplified and 

finally there are the effectors mechanism to solve the DSBs 

(Khanna and Jackson 2001; A. Shibata and Jeggo 2014). The major 

DSB sensor mechanism is the MRE11/RAD50/NSB1 (MRN) 

complex. When this complex finds a lesion, it recruits via the C-

terminus of NBS1 the two main proteins in charge of the signal 

amplification: the phosphatidylinositol 3- kinase-related kinases, 

ataxia telangiectasia mutated (ATM) protein and ataxia 

telangiectasia and Rad3-related (ATR). Despite both proteins get 

activated after a DNA lesion, ATM activation is more robust in the 

DSB signaling than ATR which plays a main role in single strand 

break (SSB) repair. The ATM/ATR recruitment promotes their 

autophosphorylation and activation. Swiftly, ATM phosphorylates 

the serine 139 of H2A.X (H2AXS139P or γ-H2A.X), a histone 

variant of H2A. This phosphorylation is a key step for the 

recruitment to chromatin of mediator of damage-checkpoint 1 

(MDC1). Hence, MDC1 recruits two ubiquitin-ligase proteins 

RFN8 and RFN168 which activity is necessary for the correct 

recruitment of p53 binding protein 1 (53BP1). The recruitment of 

all these players stabilizes each one of them and favours their 

activity. In fact, the absence of some of these proteins do not alter 

the recruitment of the others although impairs their stability and the 

DDR (Atsushi Shibata et al. 2010; Fernandez-capetillo et al. 2002).  
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Figure i27.  DSB repair: Detection, amplification, response. Representative 
cartoon of the complex network after a DNA lesion. Focusing on the DSB 
response, the MRN complex detects the lesion, recruits ATM and ATR proteins 
to amplify the signal and regulate the different responses of the cell (B.-B. S. 
Zhou and Bartek 2004). 
 

Besides, ATM/ATR control the cell cycle checkpoints in order to 

arrest the cell cycle progression for an efficient repair (Fig.i28). 

These arrests take place between the different phases of cell cycle 

and three different ones have been reported: G1/S checkpoint, intra-

S checkpoint and G2/M checkpoint (Deckbar et al. 2010; Lukas, 

Lukas, and Bartek 2004). The G1/S checkpoint is activated by the 

direct or indirect phosphorylation of p53 and its regulatory protein 

MDM2 by ATM. This promotes p53 stabilization and transcription 



 

 47

of its target genes, among them the cyclin-dependent kinase (CDK) 

inhibitor p21, which blocks the Retinoblastoma (Rb) 

phosphorylation indispensable for the progression along the G1 

phase. Remarkably, a permanent arrest of heavily damaged cells 

influences the genomic stability of those cells (Brunton et al. 2011; 

A. Shibata and Jeggo 2014). The intra-S checkpoint activates when 

the replicative forks common of the transcription process collapse. 

The intra-S checkpoint relies on the ability of the replication protein 

A (RPA) to protect the single strand DNA (ssDNA) of a collapsed 

fork and the activation of ATR-cascade signaling (Smith-Roe et al. 

2013; Iyer and Rhind 2017). The G2/M checkpoint controls the 

entrance of the cell into mitosis (A. Shibata and Jeggo 2014; 

Fernandez-capetillo et al. 2002). This checkpoint is regulated by the 

checkpoints kinases CHK1 and CHK2. These kinases are activated 

by the phosphorylation of ATR and ATM respectively. The 

checkpoints kinases regulate the levels of CDC25 phosphatase 

delaying the necessary dephosphorylation of the cyclin dependent 

kinase 1 (CDK1).   
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Figure.i28.  DSB repair: Stop at the checkpoint. Schematic picture of the 
different checkpoints that a damaged cell activates(Weitzman and Wang 2013). 
 

Finally, the different arrests allow different and specific strategies 

for the repair of the DSB. Two main pathways turn on to repair 

DSB: the non-homologous end-joining pathway (NHEJ) and the 

homologous recombination (HR) (Fig.i29). NHEJ is faster than HR 

but more prone to errors because it uses short homologous DNA 

sequences for repair instead the large templates used by HR 

(Shaltiel et al. 2015). Under the G1/S checkpoint, the main 

mechanism used to repair DSB is the non-homologous end-joining 

pathway. The NHEJ pathway relies on the INO80 complex 

recruitment by γ-H2A.X (Cairns 2004). The INO80 complex is a 

chromatin remodeler ATP-dependent complex and its function in 

the DNA repair allows a more accessible environment promoting a 

more “open” state by different acetylations in lysine 14 of histone 3 

(H3K14ac) and also serves as a dock for the repair proteins like 
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DNA ligase (Van Attikum et al. 2004; Morrison et al. 2004). Lastly, 

DNA polymerases Pol λ and Pol µ fill in the gaps of the DSB and 

DNA ligase IV and its cofactor XRCC4 performs the ligation step 

of the DNA repair (Davis and Lin 2011). During the G2/M cell 

checkpoint activation, all the genetic material is replicated in order 

to undergo the mitosis. Hence, cells use the sister chromatid or the 

homologous chromosome as a template in order to repair the lesions 

in a process known as homologous recombination (HR) (Ceccaldi, 

Rondinelli, and D’Andrea 2016). HR requires homology search and 

strand invasion mediated by the recombinase RAD51 protein and 

the dsDNA motor protein Rad54. Hence, it generates a D-loop 

structure that allows polymerases to refill the gap of the DSB 

repairing the lesion. HR is typically error-free even though 

completion of HR often requires error-prone polymerases (Heyer, 

Ehmsen, and Liu 2010). 
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Figure.i29.  DSB repair: Repairing the lesion. Simplified diagram of the two 
main pathways in order to repair the DSB (adapted from (Miura et al. 2012)). 
 

It should be noted that all the processes previously described cannot 

be explained without taking into consideration the chromatin 

structure. Indeed, increasing evidence suggests that the higher-order 

chromatin structure affects DSB repair and signaling (Gursoy-

Yuzugullu, House, and Price 2016). For example, chromatin is 

decondensed after DSBs, and this phenomenon is actively regulated 

by the DDR pathway (Ziv et al. 2006). Moreover, the DDR is 
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amplified when chromatin is in an “open” state, as shown in histone 

H1–depleted embryonic stem cells (Murga et al. 2007). As a 

consequence, relaxation of chromatin might facilitate genomic 

surveillance by enabling faster access of DDR factors to the DSBs 

(Gursoy-Yuzugullu, House, and Price 2016; Watts 2016). 

1.2.4. Breast Cancer as a model 

One type of cancer where the processes of EMT and DDR have 

been studied the most is breast cancer. Breast cancer is the leading 

cause of cancer death in women worldwide (Koren and Bentires-Alj 

2015). Moreover, it is also the most diagnosed one (Kumar and 

Aggarwal 2016). Although a lot of information has been reported 

about this type of cancers (Koren and Bentires-Alj 2015; Kumar 

and Aggarwal 2016; Lechner, Boshoff, and Beck 2010; Palma et al. 

2015), they can be divided into at least six different major groups 

with different subgroups, based  on different histopathological 

parameters and molecular profiling such as receptor presence 

(estrogen-receptor, progesterone-receptor, and/ or ERBB2/HER2): 

normal like, luminal A, luminal B, HER2 enriched, claudin low, 

and basal-like (BLBC) (Chiorean, Braicu, and Berindan-Neagoe 

2013; Santagata and Thakkar 2014) (Table.1 and Fig.i30).  
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Classification Immunoprofile Other 

characteristics 

Example 

cell lines 

Normal breast 
like 

Adipose tissue 
gene signature+ 

  

Luminal A 
~40% 

ER+ / PR+/- / 
HER2- 

Ki67 low, endocrine 
responsive, often 
chemotherapy 
responsive 

MCF-7, 
T47D, 
SUM185 

Luminal B 
~20% 

ER+ / PR+/- / 
HER2+ 

Ki67 high, usually 
endocrine responsive, 
variable to 
chemotherapy. Her2+ 
trastuzumab 
responsive 

BT-474, ZR-
75 

Her2 
10-15% 

ER- / PR- / HER2+ 

Ki67 high, 
trastuzumab 
responsive, 
chemotherapy 
responsive 

SKBR3, 
MDA-MB-
453 

Basal 
15-20% 

ER- / PR- / HER2- 

EGFR+ and/or 
cytokeratin 5/6+, Ki67 
high, endocrine 
nonresponsive, often 
chemotherapy 
responsive 

MDA-MB-
468,SUM190 

Claudin-low 
10-15% 

ER- / PR- / HER2- 

Ki67, E-cadherin, 
claudin-3, claudinins 
-4 -7 low. 
Intermediate response 
to chemotherapy. 

MDA-MB-
231, BT549, 
Hs578T, 
SUM1315 

 

Table.1. Molecular classification of human breast carcinoma. Summary of the 
different types of breast cancer. The percentages under each group indicate their 
grade of incidence. The two shaded groups compose the TNBC subtype. Ki67 is a 
marker of proliferation. Trastuzumab is a humanized monoclonal antibody that 
targets the Her2 receptor and blocks the proliferation of the Her2+ cells.  ER 
(Estrogen receptor); PR (Progesterone receptor). (Adapted from (D. L. Holliday 
and Speirs 2011)). 
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Considering, there is compelling evidence for the existence of 

carcinoma cells with a mesenchymal phenotype in human breast 

cancer as well as in mouse breast cancer models (Bill and 

Christofori 2015). Furthermore, the functional manipulation of key 

EMT players in breast cancer has provided clear evidence for a 

causal involvement of EMT-inducing or blocking factors in 

metastasis. For example, as previously explained, the importance of 

CDH1 protein levels in breast cancer under SNAI1 regulation 

highlights the role of EMT and MET programs (Gunasinghe et al. 

2012; de Herreros et al. 2010). Likewise, for those breast cancers 

that are intrinsically chemotherapy resistant, chemotherapy induces 

a mesenchymal phenotype rather than alter the genetic tumor cell 

diversity (Almendro et al. 2014). Remarkably, breast cancer has 

been used largely to study the effects and relevance of DNA 

damage and chemotherapy in the different breast cancer cells (Davis 

and Lin 2011; J. and Li 2012). For example, mutations in the Breast 

cancer type 1 susceptibility protein (BRAC-1) (Hall et al. 1992), a 

crucial protein in the cell cycle arrest after ionizing radiation, is 

responsible for approximately 40% of sporadic breast cancers and 

more than 80% of inherited breast and ovarian cancers (J. and Li 

2012). Understanding the mechanisms underlying the chemotherapy 

resistance utilized by cancer cell populations may become basic in 

the development of efficient treatments in breast cancer patients 

chiefly with poor prognosis such as TNBC or BLBC (Davis and Lin 

2011). 
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Figure.i30.  Molecular classification of human breast carcinoma. Schematic 
cartoon highlighting the grade of differentiation, the genetic stability, the 
prognosis and the response to the medical therapy. (Adapted from (Sims et al. 
2007; Rossi, Chaudry, and Wong 2012)). 
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1.3. A LOXL2 PERSPECTIVE 

1.3.1.  LOX FAMILY OF PROTEINS 

a)  Structure 

Lysyl oxidase like-2 protein (LOXL2) belongs to the family of the 

lysyl-oxidaze (LOX) proteins. The LOX family contains 5 different 

paralogues: lox (LOX), loxl1 (lysyl oxidase like-1, LOXL1), loxl2 

(lysyl oxidase like-2, LOXL2), loxl3 (lysyl oxidase like-3, LOXL3), 

and loxl4 (lysyl oxidase like-4, LOXL4) (Iturbide, García De 

Herreros, and Peiró 2015). The expression of the members of LOX 

family proteins is tightly controlled during normal development and 

in the adult tissues suggesting different roles for each member of 

the family (Iturbide, García De Herreros, and Peiró 2015; Hein et al. 

2001; Akiri et al. 2003). However, different diseases present 

mutations and abnormalities in the expression of the LOX family of 

proteins family, for example fibrotic disorders (Byers et al. 1980; 

Khakoo et al. 1997), cardiovascular diseases (Bonnans, Chou, and 

Werb 2014) and cancer (Herranz et al. 2016; Ahn et al. 2013; Hase 

et al. 2014; Seong Park et al. 2016).  

The main characteristic of the LOX family members is a conserved 

carboxy-terminal (C-terminal) amine oxidase catalytic domain, 

which contains a His-X-His-X-His copper binding motif and a 

lysine tyrosylquinone (LTQ) cofactor (Fig.i31). Although sharing 

more than a 50% of homology in the C-terminal catalytic domain 

the family can be separated into two different groups based on their 

amino-terminal (N-terminal) structure (Moon et al. 2014; L. Wu 
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and Zhu 2015). On one hand we find LOX and LOXL1 proteins 

that contain an small highly basic propeptide at their N-terminal 

region and on the other hand, LOXL2, LOXL3 and LOXL4 each 

contain four scavenger receptor cysteine-rich (SRCR) domains in 

the N-terminal, that are suggested to act as platforms for the 

interaction with other proteins and could modulate the catalytic 

activity (Barker, Cox, and Erler 2012; Lugassy et al. 2012). 

 

Figure.i31.  LOX family of proteins: Structure. Model picture of the structure 
of the different members of the LOX family. All of them share the same C-
terminal domain with the copper binding domain, the lysine tyrosylquinone 
(LTQ) cofactor residues, and the cytokine receptor‑like (CRL) domain. Instead, 
their N‑terminal are variable, LOX and LOXL1 contain pro‑sequences, 
especially the proline‑rich region in LOXL1. LOXL2‑4 contain four scavenger 
receptor cysteine‑rich (SRCR) domains that are thought to be involved in 
protein‑protein interactions. (Mayorca-Guiliani and Erler 2013).  
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b)  Activity 

The primary function for LOX family of proteins is the covalent 

crosslinking of collagens and elastin in the extracellular matrix 

(ECM), essential for ECM formation and stiffness. Indeed, LOX 

and LOX-like proteins catalyze an oxidative deamination of the 

epsilon-amino group of lysines and hydroxylsines thereby 

generating an aldehyde group (Siegel 1974; Yamauchi and 

Sricholpech 2012) (Fig.i32). Being highly reactive, these aldehyde 

groups can spontaneously condense with other aldehyde groups or 

with epsilon-amino groups of lysine residues to generate the intra- 

or intermolecular crosslinkages (Byers et al. 1980; Williamson and 

Kagan 1986; Khakoo et al. 1997; Hase et al. 2014; Yamauchi and 

Sricholpech 2012). Despite this extracellular role, more evidences 

suggested important intracellular roles for the LOX family of 

proteins (Herranz et al. 2016; Iturbide et al. 2014; Smith-Mungo 

and Kagan 1998; L. Ma et al. 2017).  
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Figure.i32.  LOX family of proteins: Extracellular activity. Simplified cartoon 
showing the activity of LOX family of proteins in the extracellular matrix during 
the crosslink of collagen fibers. Squared, in the bottom left, all the steps in the 
collagen formation (Adapted from (Domene et al. 2016)). 
 

LOXL2 protein has been reported to interact with SNAIL 1 

(SNAI1) protein, the main inductor of epithelial-to-mesenchymal 

transition (EMT). This interaction prevents the degradation of 

SNAI1 by GSK3β, leading to reduced expression of CDH1 (Héctor 

Peinado, Portillo, and Cano 2005). In addition, LOXL2 also 

regulates the expression and activity of two well-characterized 

inductors of cellular invasion: tissue inhibitor of metalloproteinase-

1 (TIMP1) and matrix metalloproteinase-9 (MMP9) (Barker et al. 

2011). Moreover, previous work in our group described an 

important role for LOXL2 oxidizing TAF10 protein in embryonic 
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stem cells after neuronal induction by retinoic acid. The 

deamination of TAF10 disassembles the TFIID complex repressing 

the expression of the pluripotency genes (Iturbide et al. 2014) 

leading to a correct neuronal development (Fig.i33)  

Recently, a new activity for the LOXL3 has been described inside 

the nucleus. LOXL3 deacetylates STAT3 protein inhibiting its 

dimerization and the transcription of the STAT3 target genes. This 

LOXL3-STAT3 regulation affects the cellular differentiation of T-

cell differentiation in inflammatory response (L. Ma et al. 2017).  
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Figure.i33.  LOXL2 Oxidizes Methylated TAF10 and Controls TFIID-

Dependent Genes during Neural Progenitor Differentiation. Representative 
scheme of the oxidation of TAF10 by LOXL2 after stem cell differentiation. The 
activity of LOXL2 leads to the degradation of TAF10 and the repression of 
pluripotency genes expression (Iturbide et al. 2014).  
 

1.3.2. LOXL2 a new epigenetic writer 

Interestingly, previous works from our group described a role for 

LOXL2 as an epigenetic eraser (Herranz et al. 2016; Millanes-
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Romero et al. 2013). Indeed, LOX family members were shown to 

interact with histones (Kagan et al. 1983; Giampuzzi, Oleggini, and 

Di Donato 2003). For example, LOX protein has been reported to 

interact with histone H1 and its activity generates mitotic 

abnormalities. 

Hence, LOXL2 specifically, deaminates trimethylated lysine 4 in 

histone H3 (H3K4m3) (Herranz et al. 2016) (Fig.i34). This reaction 

was described in the promoter of the cdh1 gene, collaborating with 

the SNAI1 transcription factor during the onset of the EMT. The 

down-regulation of H3K4me3 in cdh1 gene promoter contributes to 

the down-regulation of CDH1 protein. Indeed, as H3K4me3 is an 

active mark and its presence in the promoter stimulates the 

transcription of cdh1 gene, LOXL2 is considered a repressor 

enzyme that causes the deposition of an aldehyde group in the 

histone tail, the oxidized histone H3 (H3K4ox). Since, LOXL2, the 

eraser of H3K4me3 becomes the writer of H3K4ox. 
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Figure.i34.  LOXL2 oxidizes H3K4me3. Schematic diagram of the reaction of 
LOXL2 in the deamination of H3K4me3. Firstly, the catalytic activity of LOXL2 
removes the amino group on the lyisine promoting the intermediate alcoholic 
form that is rapidly oxidized by the LTQ cofactor of LOXL2 generating the 
aldehyde group (Adapted from (Herranz et al. 2016)). 
 

This deamination of histone 3 by LOXL2 has been described as 

crucial in the regulation  of heterochromatin transcription during 

EMT (Millanes-Romero et al. 2013) (Fig.i35). LOXL2, in 

collaboration with SNAI1 deaminates H3K4me3 in the 

pericentromeric regions leading to a down-regulation of major 

satellite transcripts, a particular ncRNAs from the repetitive 

sequences in the pericentromeric regions of chromosomes. The 

down-regulation of the major satellites leads to a release of HP1α 

from the pericentromeric regions. The release of HP1α is necessary 

for chromatin reorganization. Thereby, during an EMT program, 

LOXL2 is necessary to induce global chromatin changes to allow a 

correct transition between the two phenotypic states. Subsequently, 

the activity of LOXL2 down-regulating the major satellite 

transcripts causes the release of HP1α allowing the chromatin 

reorganization necessary for the complete EMT.  
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Figure.i35.  LOXL2 activity is necessary for HP1α release to undergo EMT. 

Upon TGF-β induction, SNAI1 and LOXL2 are rapidly upregulated and recruited 
to the pericentromeric regions oxidizing H3 and repressing major satellite 
transcription. This causes the release of HP1α from heterochromatin allowing 
chromatin reorganization and acquisition of mesenchymal traits (Millanes-
Romero et al. 2013).  
 

LOXL2 has been reported to be particularly enriched in breast 

cancer tumors (Barker, Cox, and Erler 2012; Ahn et al. 2013), and 

its presence correlated with metastasis and decreased survival in 

patients (Barker et al. 2011). Strikingly, upregulation of LOXL2 in 

various breast tumor cells has been shown to promote their 

invasiveness in vitro and in vivo (Moon et al. 2013; Hollosi et al. 

2009). Thus, in the subgroup of triple-negative breast cancers 

(TNBC), there are evidences of increased levels of LOXL2 

expression (Ahn et al. 2013; Y. Wang et al. 2016). For that reason, 
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we used breast cancer as a model to study the role of LOXL2 in 

breast cancer cells.  

Accordingly, in this project we define the LOXL2 activity on the 

histone tail as a new epigenetic regulator. The deamination 

H3K4me3 opens the door to a new epigenetic mark, the H3K4ox. 

High levels of LOXL2 and H3K4ox in TNBC unveil the existence 

of an active molecular mechanism that ensures the compaction of 

heterochromatin regions to actively avoid the DDR pathway, which 

gives these cancer cells an evolutionary advantage despite the 

accumulation of DNA lesions. 
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2. METHODS 

2.1. Laboratory procedures and materials 

2.1.1. Cell Lines, Transfections, and Infections 

All cell lines (HEK293T, basal breast cancer MDA-MB-231, 

luminal A T-47D, MCF-7, and luminal B BT-474) were maintained 

in Dulbecco’s modified Eagle’s medium (Invitrogen) with 10% 

fetal bovine serum (Invitrogen) at 37ºC in 5% CO2. For lentiviral 

infections to knock-down LOXL2, HEK293T cells were used to 

produce lentiviral particles. Cells were grown to 70% confluency 

and then transfected by drop-wise addition of a mixture of NaCl, 

DNA composed of 50% pLKO-shCT/shLOXL2, 10% pCMV-

VSVG, 30% pMDLg/pRRE, 10% pRSV rev, and polyethylenimine 

polymer (Polysciences Inc), which was pre-incubated for 15 min at 

room temperature. The transfection medium was replaced with 

fresh medium after 24 hour, and the viral particles were 

concentrated using Lenti-X Concentrator product (Clontech). 

MDA-MB-231 cells were infected using the concentrated viral 

particles (Millanes-Romero et al. 2013). For retroviral infections, 

HEK293 gag-pol cells were used to produce retroviral particles. 

Cells were transfected as described for the HEK293T cells with a 

DNA mixture comprising DNA (2.5 µg of pCMV-VSV-G and 7.5 

µg of pMSCV, pMSCV-LOXL2 wt-FLAG or pMSCV-LOXL2 

mutFLAG ires GFP vectors) and polyethylenimine polymer 

(Polysciences Inc) that were pre-incubated for 15 min at room 
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temperature. The transfection medium was replaced with fresh 

medium after 24 hours, and the viral particles were concentrated 

using Retro-X Concentrator product (Clontech). MDA-MB-231 

cells were infected using the concentrated viral particles. For 

LOXL2-Flag overexpression assays, MCF-7 cells were seeded for 

24 hours and transfected with 10 µg of pcDNA3-hLOXL2-Flag 

vector using polyethylenimine polymer. For lentiviral infections to 

express H1-GFP, HEK293T cells were used to produce lentiviral 

particles. Cells were grown to 70% confluency and then transfected 

as explained with a mixture of NaCl, DNA composed of 50% 

FUGW-H1-empty vector/FUGW-H1-GFP, 10% pCMV-VSVG, 

30% pMDLg/pRRE and 10% pRSV rev, and polyethylenimine 

polymer (Polysciences Inc), which was pre-incubated for 15 min at 

room temperature. The transfection medium was replaced with 

fresh medium after 24 hours and the viral particles were 

concentrated using Lenti-X Concentrator product (Clontech). 

MDA-MB-231 cells were infected using the concentrated viral 

particles. 

2.1.2. Cell Extracts 

To obtain nuclear fractions of LOXL2-Flag–transfected MCF-7 

cells and HEK293T cells, cells were lysed in soft-lysis buffer (50 

mM Tris, 2 mM EDTA, 0.1% NP-40, 10% glycerol, supplemented 

with protease and phosphatase inhibitors) for 5 min on ice. Samples 

were centrifuged at 3,000 rpm for 15 min, and the supernatant was 

discarded. The nuclear pellet was lysed in High-salt lysis buffer (20 
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mM HEPES pH 7.4, 350 mM NaCl, 1 mM MgCl2, 0.5% Triton X-

100, 10% glycerol, supplemented with protease and phosphatase 

inhibitors) for 30 min at 4°C, and samples were centrifuged at 

13,000 rpm for 10 min. Supernatant NaCl concentration was 

reduced to 300 mM NaCl with balanced buffer (20 mM HEPES pH 

7.4, 1 mM MgCl2, 10 mM KCl). Cells extracts from MDA-MB-

231, MCF-7, T-47D, and BT-474 cell lines were obtained with SDS 

lysis buffer (2% SDS, 50 mM Tris-HCl, 10% glycerol). Cell 

extracts of PDXs samples were obtained with SDS lysis buffer (2% 

SDS, 50 mM Tris-HCl, 10% glycerol). Proteins were separated by 

SDS-polyacrylamide gel electrophoresis gel and analyzed with the 

indicated antibodies. 

2.1.3. Antibodies 

The following antibodies were used: anti-FLAG (F7425, Sigma), 

anti-LOXL2 (NP1-32954, Novus), anti-H3K4me3 (07-473, EMD 

Millipore), anti-phospho-histone H2A.X (Ser139p) clone JBW301 

(05-636, EMD Millipore), anti-GFP (ab6556, Abcam), anti-53BP1 

(NB100-904, Novus Biologicals), anti-Phospho-chk1 (S317) 

(A300-163A, Bethyl), anti-Chk2 clone 7 (05-649, EMD Millipore), 

anti-cleaved caspase 3 (Asp175) (9661, Cell Signaling) and anti-

histone H3 (ab1791, Abcam). An anti-H3K4ox antibody was 

developed using modified peptides coupled to Keyhole limpet 

hemocyanin (KLH).  
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2.1.4. Recombinant LOXL2 Purification 

LOXL2-Flag recombinant proteins (wild-type and mutant) were 

purified from Sf9 insect cells (Herranz et al., 2016). Briefly, 

LOXL2-encoding baculovirus were amplified, and the proteins 

were produced in Sf9 cells according to standard procedures. Cell 

lysis was performed as previously described  (M. Wu et al. 2008). 

Cell extracts were incubated with Flag M2 beads for 4 hour at 4ºC 

and washed 4× with Washing buffer (20 mM HEPES (pH 7.4), 1 

mM MgCl2, 300 mM NaCl, 10 mM KCl, 10% glycerol, and 0.2% 

Triton X-100). Recombinant proteins were eluted with the Flag 

peptide (1 µg/µL) for 1 hour at 4ºC. 

2.1.5. Dot Blot Assay 

For dot blot assays, 1 µg of each peptide (in 10 µL of sample) were 

applied under low vacuum to a pre-wetted nitrocellulose membrane 

(Amersham Protran 0.45 nitrocellulose, GE Healthcare) using a dot 

blot apparatus (HYBRI-DOT Manifold; Life Technologies). The 

entire blot was blocked in 15 mL of 5% non-fat dry milk and 0.1% 

Tween-20 Tris-buffered saline (TBS) for 1 hour at room 

temperature and then probed with the indicated antibodies. 

2.1.6. ChIP-seq and ChIP-qPCR experiments 

ChIP experiments were performed similar as described (Herranz et 

al. 2016). Cells were crosslinked in 1% formaldehyde for 10 min at 
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37ºC. Crosslinking was stopped by adding glycine to a final 

concentration of 0.125 M for 2 min at room temperature. Cell 

monolayers were scraped in cold soft-lysis buffer (50 mM Tris pH 

8.0, 10 mM EDTA, 0.1% NP-40, 10% glycerol). Cell extracts were 

centrifuged at 3000rpm for 15 min.. Nuclei pellets were lysed with 

SDS lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris pH 8.0) and 

incubated 20 min on ice. Nuclear extracts were centrifuged at 

13000rpm for 10’ and pellet and supernatants were kept. 

Supernatants were sonicated to generate 200- to 1,500-bp DNA 

fragments. Protein was quantified. For immunoprecipitation, 

supernatants were diluted 1:10 with dilution buffer, and precleared 

for 3 hours rotating at 4ºC with agarose beads (Diagenode 

#C03020003) and irrelevant IgGs. Samples were centrifuged 5 min 

at 2000rpm. Beads were discarded. Samples were incubated with 

rotation overnight at 4ºC with primary antibody or irrelevant IgGs. 

Samples were incubated with BSA-blocked beads for 3 hours 

rotating at 4ºC. Washing protocol was performed by column 

purification (Mobitec #M1002S). Samples were washed 3× with 

Low salt buffer (20mM Tris pH 8.0, 150mM NaCl, 2mM EDTA, 

0,1% SDS, 1% Triton X-100), 3× with High salt buffer (20mM Tris 

pH 8.0, 500mM NaCl, 2mM EDTA, 0,1% SDS, 1% Triton X-100) 

and 2× with LiCl buffer (10mM Tris pH 8.0, 1mM EDTA, 1% NP-

40, 1% NaDOC, 250mM LiCl). Samples were then treated with 

elution buffer (100 mM Na2CO3 and 1% SDS) for 1 hour at 37 ºC. 

After centrifugation for 3 min at 2000rpm beads were discarded. 

Eluted samples incubated at 65ºC overnight after addition of NaCl 

to a final concentration of 200 mM, to reverse formaldehyde 
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crosslinking. After proteinase K treatment for 1 hour at 55ºC, DNA 

was purified with MinElute PCR purification kit from Qiagen and 

eluted in Milli-Q water. Genomic regions were detected by 

quantitative PCR SYBR green staining (Qiagen), and the ChIP 

results were quantified relative to the input amount and the amount 

of H3 immunoprecipitated in each condition. 

2.1.7. ATAC-seq and ATAC-qPCR experiments. 

ATAC experiments were performed as described (Buenrostro, Wu, 

Chang, et al. 2015). Cells were harvested and treated with 

transposase Tn5 (Nextera DNA Library Preparation Kit, Illumina). 

DNA was first purified using MinElute PCR purification kit 

(Qiagen), samples were amplified by PCR using NEBNext High-

Fidelity 2x PCR Master Mix (New Englands Biolabs), and DNA 

was again purified with the MinElute PCR purification kit. Finally, 

qPCR with the same primers as in the ChIP experiments was 

performed on a 1/50 dilution of the eluted DNA.  
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2.1.8. Primer list. 

Gene 
Forward 

Reverse 

prHPRT 
ATTCACGCGATGACTGGA 

AGGCTCACTAGGTAGCCGTG 

prRNAPolII 
CTGAGTCCGGATGAACTGGT 
ACCCATAAGCAGCGAGAAAG 

Hit1_chr14 
ATAAGCTTTTTGATGTGCTGCTG 
GAGCTGCTAGCATTCCTTCTAA 

Hit2_chr5 
TAACTCATTTATGAGGCCAACGTC 

CTTGTGCATATTGAACCAGCCT 

Hit4_chr2 
AGCTCTGTAAGAACTAAGATTGGGCT 

TTCTATCTTCACGGTTCTCCAAGA 

Hit5_chr17 
TAAGAGAGCCTTGCATCCCA 
AGGCCAGCATCATCCTGATA 

Hit6_chr4 
AGGGGATATCACTGCCGATC 

TTATTGCCACAATTTCAGAGCC 

Hit7_chr6 
GCCTTTGACAAACTTCAACAATG 

TAAATAGGAGTGGTGAAGGAGGG 

Hit8_chr5 
TGTATTTCTGTGGGATCAGTTGG 

GCAGAACTGAAGGAGATAGAGACACA 

Hit9_chr13 
GTGATTATATACCACCATTTGCCCT 

GAAAGGCATTGGTAGCTTGATG 

prSMIM5 
CAAGGGAAATTGTCCAGACTTC 

AGTAGCTGGGACTACAGGCG 

LOXL2 
ACTGACTGCAAGCACACGGA 

TCAGGTTCTCTATCTGGTTGATCAA 

Pumilio 
CGGTCGTCCTGAGGATAAAA 
CGTACGTGAGGCGTGAGTAA 

 
Table.2. Human primers used for mRNA, ChIP-qPCR and ATAC-qPCR 

analysis. The sequences of the different human primers used in this study are 
listed. All of them are shown in 5’ to 3’ direction. The eleven first primers 
amplify genomic DNA and were used in the ChIP-qPCR and in the ATAC-qPCR 
while the two shadowed ones were used in the mRNA analysis. 
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2.1.9. Cell Cycle Analysis 

MDA-MB-231–infected cells under selection were first 

synchronized through the double thymidine block protocol. Cells 

were seeded to 50% confluency and then incubated for 14 hours 

with complete growth medium supplemented with 2 mM thymidine. 

Cells were washed 2× with PBS and released by a 9-hours 

incubation with complete medium growth. Cells were washed again 

2× with PBS and subjected to a second 14-hours incubation with 2 

mM thymidine. Finally, cells were released with the complete 

growth medium until harvesting at the designed time points. Cells 

were harvested and fixed with 100% cold ethanol. Two days later, 

fixed cells were stained with propidium iodide (PI) staining and 

analyzed by flow cytometry using BD FACSCalibur (Becton 

Dickinson). Results were analyzed using BD CellQuest Pro 

software. 

2.1.10. Cell Irradiation 

MDA-MB-231–infected cells under selection were seeded for 24 

hours after selection. Cells were then irradiated using γ-irradiation 

until 0.5 Gy was achieved. Cells were fixed at designed time points. 
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2.1.11. Non-Replicative Cell Experiment 

MDA-MB-231 cells were seeded in coverslips and maintained 

during all the experiment in Dulbecco’s modified Eagle’s medium 

(Invitrogen) with 0.5% fetal bovine serum (Invitrogen) at 37ºC in 

5% CO2. After 24 hours, cells were infected with lentiviral particles 

for LOXL2 knock-down. After 96 hours under selection, cells were 

fixed. 

2.1.12. Rescue Experiments and Sorting 

MDA-MB-231–infected cells under selection were seeded for 24 

hours after selection. Cells were then re-infected with retroviral 

particles for LOXL2-FLAG or lentiviral particles for H1 

expression. After 24 hours, cells were fixed. GFP-positive cells 

were sorted using BD INFLUX (Becton Dickinson) and analyzed 

using BD FACS SORTWARE 1.0.0.650. 

2.1.13. Immunofluorescence, Image Acquisition, 
and Analysis 

Cells were fixed with 4% PFA for 15 min at room temperature, 

blocked for 1 hr with 1% PBS-BSA, incubated at room temperature 

for 2 hours with primary antibody, washed 3x with PBS, and then 

incubated for 1 hour at RT with the secondary antibody. Cells were 

washed again 3x with PBS, incubated for 5 min with DAPI (0.25 

mg/mL) for cell nuclei staining, and then mounted with 

fluoromount. Fluorescence images corresponding to DAPI, 
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γH2A.X, 53BP1 and H3K4ox were acquired in a Leica TCS SPE 

microscope using a Leica DFC300 FX camera and the Leica IM50 

software. Analyses of intensity and number of dots were performed 

with the ImageJ software by first defining the cell nuclei with DAPI 

staining. Max projection of the confocal images was performed. To 

define the expression of γH2A.X and 53BP1 per cell, the average 

intensity of pixels in the reference channel (Alexa 488, Alexa 555) 

and the number of dots within the defined nuclear region was 

measured. 

2.1.14. Breast Cancer Patient-Derived Xenografts 
(BC-PDXs) 

BC-PDXs were generated as previously described (Morancho et al. 

2016). Briefly, six- to eight-week-old female NOD.CB17-

Prkdc<scid>J (NOD/SCID) mice were purchased from Charles 

River Laboratories (Paris, France). Mice were maintained and 

treated according to institutional guidelines of Vall d’Hebron 

University Hospital Care and Use Committee. Fragments of patient 

samples were implanted into the fat pad of the mice, and 17 ß-

estradiol (1 µM) (Sigma) was added to drinking water. The breast 

tumor samples used in this study were either from a surgical 

resection (PDX-71, PDX-251, PDX-8, PDX-345 and PDX-385) or 

a cutaneous metastasis biopsy (PDX-118) obtained at Vall 

d’Hebron University Hospital following the institutional guidelines. 

Written informed consent for the performance of tumor molecular 

studies was obtained from the patients who provided tissue. 

Histopathologic characteristics were confirmed by a pathologist. 
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PDX-71 is a luminal B breast tumor carrying a BRCA2 gene 

mutation c.3264dupT in exon11; PDX-251 and PDX118 are 

luminal B, HER2-positive breast tumors; and PDX-8, PDX-347, 

and PDX-385 are TNBC tumors.  

 To perform ATAC-qPCR protocols with these samples, tumoral 

cells were isolated from PDXs using the tumor dissociation kit 

(MACS, Miltenyi Biotech) to obtain a single cells suspension.  

Representative westerns blots used to detect LOXL2 and H3K4ox 

expression levels in these samples were digitally analyzed using the 

software package Photoshop CS4. Integrated densities for each 

band were determined for the background and for each protein of 

interest and its corresponding loading control (Tubulin for LOXL2 

and total H3 for H3K4ox). The background was subtracted for each 

specific band, and the ratio of band intensity of LOXL2 and 

H3K4ox of the corresponding loading control was used as the 

relative protein expression level. 

2.2. Bioinformatic processing 

2.2.1. ChIP-seq analysis 

Peaks of H3K4ox were called from sequence reads detected through 

ChIP-seq using the MACS2 tool (Zhang et al., 2008) . The 

chromatin states files for Hpeg2 and HMEC cells were computed by 

the ENCODE project using the ChromHMM tool (Ernst and Kellis, 

2012) from https://genome.ucsc.edu/cgi-
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bin/hgFileUi?db=hg19&g=wgEncodeBroadHmm. The statistical 

overrepresentation of H3K4ox peaks detected by ChIP-seq was 

assessed, across several chromatin states from these two cell lines: 

heterochromatin, repressed, insulator, strong enhancer (sum of 

states 4 and 5), weak enhancer (sum of states 6 and 7), promoter 

(sum of states 1 and 2), and poised promoter. The contingency table 

of the Fisher's test carried out to this end contained the number of 

nucleotides within: peaks, chromatin states, intersections thereof, 

and the remaining portion of the genome (computed as the 

difference from the effective genome size for ChIP-seq peaks 

calling). The same procedure was applied to detect the 

overrepresentation of oxH3 peaks in lamin-associated domains of 

chromatin, obtained from (Guelen et al., 2008). 

2.2.2. ATAC-seq analysis 

Reads produced by ATAC sequencing of two control (shControl) 

replicates and two LOXL2 knock-down sequencing replicates 

(shLOXL2) were aligned to the hg19 build of the reference human 

genome using Bowtie2 (Langmead et al., 2009) with default 

parameters for pair-end sequencing. ATAC peaks were then called 

combining aligned reads of both replicates of the control and the 

knock-down using the MACS2. No FDR restrictions were imposed 

on the ATAC peak calling, to allow for FDR threshold selection 

further downstream in the analysis. 
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2.2.3. RNA-Seq Analysis 

Reads produced by RNA sequencing of the same two control 

(shControl) and two LOXL2 knock-down (shLOXL2) replicates as 

above were aligned to the hg19 build of the reference human 

transcriptome using TopHat2 (Kim et al., 2013) with default 

parameters for pair-end sequencing. Aligned reads were then 

analyzed using a standard Cufflinks (Trapnell et al., 2012) pipeline 

to detected differentially expressed genes between the two 

conditions (LOXL2 knock-down and shControl).  

2.2.4. Replicates Correlation 

The read count (coverage) at each position of the hg19 human 

reference genome was computed for each replicate of the H3K4ox 

ChIPseq, and the shControl and shLOXL2 ATAC sequencing using 

the bedtools (Quinlan and Hall, 2010) genomecov capability. 

Genomic positions with zero read counts were filtered out. 

Replicates files of each experiment (or control) were merged to 

produce a single file aligned by genomic position, and the 

corresponding Pearson’s correlation coefficient of read counts were 

computed. For the graphical representation of the correlation, 

100,000 genomic positions were randomly selected.  
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2.2.5. Analysis of ATAC Peaks Overlapping 
H3K4ox Peaks 

First, we intersect all significant (p < 10–5) ATAC peaks 

(shLOXL2 versus shControl) and H3K4ox peaks with the bedtools 

(Quinlan and Hall, 2010) intersect program. Based on this 

intersection, ATAC peaks were classified as overlapping (if they 

intersected an H3K4ox peak) or orphan (if not). Only intersections 

involving more than 95% of the sequence of ATAC peaks were 

considered. shControl and shLOXL2 read counts over all genomic 

positions (see above) were intersected with both overlapping and 

orphan peaks. Read counts over genomic positions of control and 

experiment replicates were averaged. To carry out the heatmap 

representation, peak sequences (overlapping or orphan) were 

aligned by their summits. For the linear representation, the average 

experimental read counts at each downstream and upstream position 

were summed, and the same was done for the average control read 

counts at each position. Position-wise sums were then divided by 

the read count sum value obtained for the summit of control read 

counts, thus making all sums relative to the maximum control value. 
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2.2.6. Integrated Analysis of H3K4ox and ATAC 
Peaks and Differentially Expressed Genes 

We selected the differentially expressed genes detected through the 

RNAseq analysis of shControl and shLOXL2 cells that were close 

(upstream or downstream) overlapping ATAC peaks. We employed 

two different distance thresholds to detect close differentially 

expressed genes: 0.5 Mb and 1 Mb. 
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3. OBJECTIVES  

Deamination of trimethylated lysine 4 in histone 3 by LOXL2 has 

been described as a key step in EMT and in cancer progression. 

However, the relevance of the released oxidation in histone 3, 

H3K4ox, still remains elucidated. 

The general objective of this thesis is thus to describe the role and 

relevance of H3K4ox mark in the histone tail. To this aim we 

focused on: 

I. Generation and validation of an antibody against H3K4ox 

II. Characterization of H3K4ox in the breast cancer model 

III. Finding biological relevance of H3K4ox and LOXL2 in TNBC 

cells and PDXs.  
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4. RESULTS 

4.1.H3K4ox is a new epigenetic mark 

LOXL2 reaction on H3K4me3 generates an aldehyde group highly 

reactive (Herranz et al. 2016). The described reaction involves a 

nucleophilic attack by a water-derived OH- to the Cε of the lysine 

with the release of the N(CH3)3. The generated alcohol is rapidly 

oxidized by the internal redox cofactor lysine-tyrosilquinone (LTQ) 

driving the aldehyde group release in the histone tail. The LTQ is 

reoxidized with the consequent release of H2O2. The high reactivity 

of the aldehyde group does not allow the generation of an antibody 

against this chemical group. Hence, we raised a modification-

specific antibody that detects the intermediate alcohol of LOXL2 as 

readout of the oxidized H3K4. This antibody was produced using a 

peptide (Fig.r1A) containing the artificial amino acid 6-

hydroxinorleucine.  

We demonstrated the specificity of the antibody using dilution 

series of peptides with the histone tail sequences and different 

modifications, verifying that the H3K4ox antibody only recognizes 

specifically the H3K4ox peptide but not an unmodified peptide of 

the H3 tail neither modified peptides with a methylation in lysine 4 

or 9 (H3K4me3 and H3K9me3 respectively) (Fig.r1B). Moreover, 

its specificity was further demonstrated by Western Blot, 

immunofluorescence and ChIP experiments (Fig.r1C-1H). Then, we 

performed an in vitro reaction using purified nucleosomes and 
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recombinant LOXL2 proteins. Purified nucleosomes were obtained 

from 293T cells after a MNase treatment. Recombinant proteins 

were obtained from Sf9 insect cells using LOXL2-encoding 

baculovirus. The mutant LOXL2 contains two point mutations in 

the positions 626 and 628 were two histidine residues were mutated 

to glutamine. These residues are predicted as Cu(II) binding sites 

and are important for the catalytic activity of all LOX family 

members (Herranz et al. 2016). Accordingly, H3K4ox was 

enriched, with a corresponding reduction in H3K4me3 levels, in the 

LOXL2 wild-type (LOXL2) compared to the catalytically inactive 

mutant (LOXL2mut) (Fig.r1C). In addition, transient transfection of 

LOXL2 flag-tagged in breast cancer cells MCF-7, a cell line with an 

epithelial phenotype and low basal levels of LOXL2 (D. L. Holliday 

and Speirs 2011; Ahn et al. 2013), increased the levels of H3K4ox 

compared to the empty-vector (Ø) transfected cells (Fig.r1D). Also, 

LOXL2 was depleted from a mesenchymal-like breast cancer 

MDA-MB-231 cells with high expression of LOXL2 (D. L. 

Holliday and Speirs 2011; Ahn et al. 2013) using a short-harpin 

RNA (shRNA) that interferes with the mRNA of LOXL2 (Herranz 

et al. 2016). The down-regulation of LOXL2 in MDA-MB-231 cells 

leads to a reduction in H3K4ox levels compared to cells infected 

with an irrelevant shRNA (shControl) by Western blot analysis 

(Fig.r1E) and in ChIP-qPCR experiments on the previously 

described target E-cadherin gene promoter (Herranz et al. 2016) 

(Fig.r1F). Finally, H3K4ox showed a nuclear location by 

immunofluorescence experiments both in MDA-MB-231 cells 
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(Fig.r2A) and in mouse embryonic fibroblast (MEFs) cells 

(Fig.r2B). 

 

Figure.r1 Quality Control of the Anti-H3K4ox antibody. (A) Diagram of the 
peptide used to develop the anti-H3K4ox antibody with the artificial aminoacid 
a6-hydroxynorleucine. (B) Western blot using the anti-H3K4ox antibody in two 
replicates of dot blots of dilution series of oxidized histone H3 peptide or 
unmodified H3 peptide (upper panel) and in a representative dot blot of dilution 
series of H3K9me3, H3K4ox, H3K4me3, and H3 peptide (lower panel). (C) 
Recombinant LOXL2 wild-type (wt) or a catalytically inactive LOXL2 (mut) 
purified in baculovirus were incubated 4 hr at 4ºC with nucleosomes, and the 
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formation of H3K4ox and the decrease of H3K4me3 were detected with the 
indicated antibodies. (D) Western blot with the indicated antibodies on lysates of 
MCF7 cells transfected with an empty vector (ø) or with LOXL2. (E)  Western 
blot for LOXL2, H3K4ox, and total H3 in MDA-MB-231 cells infected with 
short hairpin RNA as a control (shControl) or specific for LOXL2 (shLOXL2). 
(F) Anti-H3K4ox Chip-qPCR for cdh1 promoter in MDA-MB-231 cells infected 
with shControl (grey bar) or shLOXL2 (black bar). Data of qPCR amplification 
were normalized to the input and to total H3 and expressed as the fold-change 
relative to the data obtained in shControl conditions, which were set as 1.  
 

 

Figure.r2 Nuclear distribution of the H3K4ox antibody. (A-B) Confocal 
microscopy of MDA-MB-231 and MEFs cells, respectively, using the anti-
H3K4ox antibody (green). Nuclei were staining with DAPI. 
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4.2.H3K4ox is enriched in TNBC breast cancer 

cell 

Since LOXL2 expression correlates with cancer (Barker, Cox, and 

Erler 2012) and particularly with breast cancer (Cano, Santamaría, 

and Moreno-Bueno 2012), we checked the levels of LOXL2 and 

H3K4ox in several breast cancer cell lines: luminal A T-47D and 

MCF-7 cells lines (ER+/HER2-/PR+/-), luminal B BT-474 cell line 

(ER+/HER2+/PR+/-) and the basal triple negative breast cancer cell 

line MDA-MB-231 (ER-/HER2-/PR- e.g. TNBC) (D. L. Holliday 

and Speirs 2011). We observed high levels of H3K4ox in the TNBC 

cells by Western blot analysis (Fig.r3A) and this correlated with 

higher amount of LOXL2 both at protein (Fig.r3A) and mRNA 

expression (Fig.r3B). 
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Figure.r3 H3K4ox is enriched in TNBC breast cancer cell. (A) Western blot 
for the indicated antibodies in a panel of breast cancer cell lines. (B) LOXL2 
mRNA levels for the indicated breast cancer analyzed by RT-qPCR. Data of 
qPCR amplification were normalized to the Pumilio housekeeping gene and 
expressed as the fold-change relative to the data obtained in BT-474 cells, which 
was set as 1. 
 

4.3. H3K4ox localizes in heterochromatin in 

TNBC MDA-MB-231 cells 

In order to explore the in vivo function of H3K4ox in TNBC breast 

cancer cells, ChIP-seq experiment was performed in human breast 

cancer MDA-MB-231 cell lines, using the anti-H3K4ox antibody to 

determine the genomic distribution of this H3 modification. Peaks 

called using Model-based Analysis for ChIP-seq (MACS) (Yong 

Zhang et al. 2008) showed low differences in H3K4ox distribution 
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in two sequencing replicates with a 0,997 Pearson correlation 

coefficient (Fig.r4A). MACS is an algorithm that capture local 

biases in the genome improving the robustness and specificity of the 

prediction. Then, using the ChromHMM tool (Ernst and Kellis 

2012), chromatin was classified to the different states that have 

been computed by the ENCODE project. ChromHMM is a software 

based on a Hidden Markov Model that allows the characterization 

of chromatin states. It integrates multiple chromatin datasets in 

order to discover de novo the major re-ocurring combinatorial and 

spatial patterns of a mark. Hence, statistical overrepresentation of 

the H3K4ox peaks through different chromatin states: promoter, 

weak and strong enhancer, insulator, repressed chromatin and 

heterochromatin. The contingency table of the Fisher's test carried 

out for this contained the number of nucleotides in: peaks, 

chromatin states, intersections thereof, and the remaining portion of 

the genome (computed as the difference from the effective genome 

size for ChIP-seq peaks calling) (Fig.r4B). The same procedure was 

applied to detect the overrepresentation of H3K4ox peaks in already 

published lamin-associated domains (LADs) (Guelen et al. 2008). 

Fisher’s test uncovered a significant overrepresentation of H3K4ox 

in heterochromatin and LADs (Fig.r4B). A large fraction of 

H3K4ox peaks from both replicates were located within 

heterochromatin regions and LADs. (Figr4C-D) We validated this 

H3K4ox enriched regions from the ChIP-seq by ChIP-qPCR assay 

in shControl and shLOXL2 cells (Fig.r5). The results showed a 

decrease in the H3K4ox enrichment in the selected regions when 

LOXL2 was knocked-down with no changes in an irrelevant 
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promoter. This distribution suggested a correlation between 

H3K4ox and chromatin compaction as heterochromatin 

characterizes to be highly compacted and H3K4ox, as observed, 

mainly concentrated in this region.  

 

Figure.r4 H3K4ox localizes in heterochromatin in TNBC breast cancer 

MDA-MB-231 cells I. (A) Distribution of all H3K4ox ChIP-seq peaks in MDA-
MB-231 cells, with the indicated percentages shown. Pearson correlation was 
used. (B) Contingency table of the Fisher's test showed the statistical 
overrepresentation of the H3K4ox peaks through different chromatin states. (C) 
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Venn diagrams representing the enrichment of H3K4ox peaks in heterochromatin 
and LADs. (D) Circus plot illustrating the location of H3K4ox (orange) peaks in 
both replicates across chromosome 12, with heterochromatic regions (green) and 
LADs (red) in the chromosome represented in the innermost tracks. 
 

 
Figure.r5 H3K4ox localizes in heterochromatin in TNBC breast cancer 

MDA-MB-231 cells II. H3K4ox and LOXL2 Chip-qPCR validation for the 
selected hits in MDA-MB-231 cells infected with shControl or shLOXL2. Data of 
qPCR amplifications were normalized to the input and to total H3 for H3K4ox 
and expressed as a fold change relative to the data obtained in shControl 
conditions, which was set as 1. The RNA pol II promoter (RNAPII) was used as a 
negative control. *p<0.05, **p<0.01, ***p<0.001. 
 

4.4. Chromatin conformation is altered in 

MDA-MB-231 cells in absence of LOXL2 

and decreased levels of H3K4ox 

As previously explained, heterochromatin characterize for being 

highly compacted compared with euchromatin. This difference in 

compaction, the striking distribution of H3K4ox in the 

heterochromatin and the removal of an active mark as H3K4me3 

suggested an important role for this mark in chromatin structure. 
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Hence, chromatin conformation was determined using the assay for 

transposase-accessible chromatin (ATAC) (Buenrostro, Wu, Chang, 

et al. 2015; Tsompana and Buck 2014a) followed by deep-

sequencing (ATAC-seq). This technique exploits the ability of the 

prokaryotic transposes Tn5 to integrate into accessible (open) 

regions of chromatin. We assessed the conformation of chromatin in 

MDA-MB-231 cells knock-down for LOXL2 (shLOXL2) compared 

to shControl. The results showed an increased in accessibility at the 

H3K4ox-positive sites in shLOXL2 compared to shControl and 

minor differences in H3K4ox-negative regions (Fig.r6). Heatmaps 

show the ATAC signals in H3K4ox positive and negative regions 

from the ChIP-seq in shLOXL2 versus shControl. These results 

were validated by ATAC-qPCR (Fig.r7). The regions used in the 

ChIP-qPCR showed an increased accessibility in shLOXL2 

compared to shControl and not in an irrelevant promoter. So, these 

data suggest that, in absence of LOXL2 and with a decreased 

H3K4ox levels, chromatin adopts a more open conformation 

suggesting a new putative role for LOXL2 in directly maintain a 

subset of closed chromatin regions throughout the oxidation of H3. 

Since the generation of the aldehyde in H3 results in a loss of the 

positive charge and the creation of a very reactive group could 

explain this particular chromatin conformation. Moreover, these 

changes in chromatin conformation with a transposes-increased 

accessibility and reduced levels of H3K4ox did not correlate with 

increase gene transcription. RNA-seq in shLOXL2 cells found 339 

deregulated genes (FC, 2; q value < 0,05), of which 151 were up-

regulated and 188 were down-regulated. Furthermore, the 
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transcriptional behavior of those genes close to the 

ATAC+/H3K4ox+ sites (at 0,5 Mb, 1 Mb, and 5 Mb) still did not 

reveal any preference, suggesting that chromatin accessibility and 

H3K4ox is not related to transcriptional repression but rather to 

chromatin conformation (Fig.r8). 

 
Figure.r6 Chromatin conformation is altered in absence of LOXL2 (I). 
Significant (p < 1 x10-5) ATAC peaks overlapping chromosomic regions (left 
panel graphs) within significant (p < 1 x10-5) H3K4ox ChIP peaks exhibit higher 
normalized read count than non-overlapping ATAC peaks (right panel graphs). 
Heatmaps at the top represent the difference of read count (between the knocked-
down and control cell lines) at genomic positions covered by peaks. Peaks are 
stacked as the rows of the heatmap, whose columns are relative genomic 
positions, centered at peaks summits. Analogously, bottom panels represent the 
quotient of normalized read count in the knocked-down and control cell lines as a 
continuous line. The value of the line in each point is the sum of the read count at 
the corresponding relative position of the peak, resulting from centering all peaks 
at their summits. For the sake of comparison, right panel graphs represent only 
the top-ranking non-overlapping 339 peaks (equal to the number of overlapping 
peaks). 
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Figure.r7 Chromatin conformation is altered in absence of LOXL2 (II). 

Chromatin compaction was assessed in MDA-MB-231 infected with shControl or 
shLOXL2 by ATAC-qPCR. Chromatin was obtained from shControl and 
shLOXL2 cells and then was treated with the transposase Tn5 that will be 
incorporated only in regions with an open chromatin. qPCR amplification of the 
H3K4ox-selected hits were normalized to unchanging genomic region (HPRT) 
and expressed as the fold-change relative to the data obtained in shControl 
conditions, which were set as 1. RNAPII was used as a control. Error bars 
indicated standard deviation of at least three independent experiments. *p<0.05, 
**p<0.01, ***p<0,001. 
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Figure.r8 H3K4ox is not related to transcriptional repression. (A) 
Differentially expressed genes in shLOXL2 compared with shControl (B) 
Heatmaps of the differentially expressed genes in MDA-MB-231 cells infected 
with the shLOXL2 compared to shCT. Each heatmaps contains those genes close 
to ATAC+/H3K4ox+ sites (at 0.5 Mb and 1 Mb). RNA-seq in shLOXL2 cells 
found 339 deregulated genes (FC, 2; q value < 0.05), of which 151 were up-
regulated (blue colour) and 188 were down-regulated (red colour). 
 

 



 

 98

4.5. Increased accessibility in 

heterochromatin of MDA-MB-231 cells 

activates DDR  

As described in the introduction, somatic mutations and DNA 

lesions in cancer tend to accumulate in heterochromatin (Schuster-

Böckler and Lehner 2012; Supek and Lehner 2015), and since there 

is a clear relation between DDR and chromatin accessibility, we 

hypothesized whether there is any correlation between LOXL2 and 

H3K4ox in heterochromatin and DDR. For this purpose, staining 

for phosphorylated H2AX (ɣ-H2AX) and 53 binding protein 

(53BP1) were performed at 2 days after puromycin selection in 

MDA-MB-231 cells infected with shLOXL2 or shControl (Fig.r9). 

As previously seen, the recruitment of these two proteins is an early 

step in the DDR signaling after a DSB lesion. Interestingly, we 

observed a higher number of ɣ-H2AX and 53BP1 foci in shLOXL2 

compared to shControl cells. These results suggested an increased 

DDR activation in the absence of LOXL2 and within an open 

chromatin context. In addition, we analyzed the cell cycle profile to 

measure the output of DDR activation and accordingly, the 

knocked-down cells, the ones with increased DDR and open 

chromatin, were arrested in G1/S. Fluorescence-activated cell 

sorting (FACS) analysis of asynchronous cells did not show 

significant differences in cell cycle progression (Fig.r10A). Then, in 

order to address the arrest, we performed a synchronization assay 

consisting in the induction of cellular arrest by blocking the 

replication machinery due to an excess of the nuclear base pair 
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thymidine. Hence, cells get arrested in the early moments of S 

phase (H. T. Ma and Poon 2011). Here, after synchronization with 

double thymidine blockage shLOXL2 cells were not able to 

progress throughout the S phase and were arrested in the early 

moments of the cell cycle (Fig.r10B).  

 

Figure.r9 MDA-MB-231 cells lacking LOXL2 showed increased DDR. (A) ɣ-
H2AX staining and foci quantification is showed by immunofluorescence with 
and specific antibody for ɣ-H2AX. Graphs indicated changes in the number of the 
ɣ-H2AX foci in shControl and shLOXL2 MDA-MB-231 cells. (B) 53BP1 
staining and foci quantification is showed by immunofluorescence with and 
specific antibody for 53BP1. Graphs indicated changes in the number of the 
53BP1 foci in shControl and shLOXL2 conditions. Nuclei were staining with 
DAPI. ***p<0,001. 
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Figure.r10 Knocking-down LOXL2 arrest MDA-MB-231 cells in G1/S 

phase. (A) Quantification of three different experiments using asynchronous 
shControl and shLOXL2. (B) Cell cycle profile of shControl and shLOXL2 
MDA-MB-231 cells at 0, 2.5, 5, and 7.5 hours upon release from a double 
thymidine block. Cells were analyzed by FACS upon propidium iodide staining.  
 

These results suggest an activation of the G1/S checkpoint in 

shLOXL2 cells. Consistently, we observed the phosphorylation of 

both checkpoint kinase 2 (Chk2) (Sancar et al. 2004) and cell cycle 

checkpoint 1 (Chk1 ) (Zhao, Watkins, and Piwnica-Worms 2002) 

(Fig.r11A). Here, in order to elucidate if the increase in the ɣ-H2AX 

foci number was due to the entrance into the apoptosis pathway in 

shLOLX2 cells at this time point, we analyzed by Western Blot the 

presence of cleaved caspase-3. However, we discarded it, as we did 

not observe either in shControl or shLOXL2 cells (Fig.r11B). These 

results are in accordance with the idea that reduced amount of 
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H3K4ox and an open chromatin context in the absence of LOXL2 

enhances the DDR. Despite the aberrant activation of DDR 

compared with shControl cells, shLOXL2 cells are more sensitive 

and are not able to survive, as shown by colony-formation (Fig. 

r11C).  

 

Figure.r11 In absence of LOXL2, MDA-MB-231 cells activate cell cycle 

checkpoints but not the apoptosis pathway. (A) Western blot analysis for the 
indicated cell cycle checkpoint proteins in shControl and shLOXL2 MDA-MB-
231 total extracts. GAPDH was used as a loading control (B) Western blot 
analysis using shControl and shLOXL2 MDA-MB-231 total extracts to the 
indicated marker of apoptosis. Tubulin was used as a loading control. Activated 
fibroblasts were used as a positive control for the antibodies. (C) Colony-survival 
assay in shControl and shLOXL2 MDA-MB-231 cells. 
 
Moreover, the damage observed may be generated the novo by 

altering the chromatin structure inducing problems in the replication 

of the DNA (Zeman and Cimprich 2013). Indeed, stalled DNA 

replication forks are a major source of endogenous DNA damage, 

particularly in cancer cells (Khurana and Oberdoerffer 2015). So, in 

order to discard replicative stress, we analyzed the number of ɣ-

H2AX and 53BP1 foci in non-replicative cells. However, results 
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still showed enhanced activation of the DDR in non-replicative 

shLOXL2 cells compared with control ones (Fig.r12). Hence, we 

can discard replicative stress as the damage source in shLOXL2. 

Considering, our data suggests that in TNBC cells, changing the 

chromatin conformation to a more accessible state exposes the 

DNA damage and DNA lesions, allowing the DDR to be activated 

more efficiently than in TNBC cells with closed chromatin. 

Importantly, the TNBC cells in the open chromatin state are not 

able to repair and die after several days in culture. 
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Figure.r12 Enhanced DDR in the absence of LOXL2 persists in non-

replicative cells. ɣ-H2AX and 53BP1 staining and foci quantification are showed 
by immunofluorescence with the indicated antibody. Graphs indicated changes in 
the number of the ɣ-H2AX and 53BP1 foci in shControl and shLOXL2 MDA-
MB-231 cells under non-replicative conditions. ** p<0,01. 
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4.6. Rescue experiments confirm the role of 

chromatin condensation by LOXL2 and 

H3K4ox in DDR activation.    

Based in the above observations, we hypothesized that LOXL2 

induces a structural change in heterochromatin through the 

oxidation of histone H3, leading to a more compacted chromatin 

and a less efficient DDR. To further confirm the role of the catalytic 

activity of LOXL2, a rescue experiment was performed. shLOXL2 

cells were re-infected with the ectopic vector expressing LOXL2-

ires-GFP or a version of LOXL2 catalytically inactive (Herranz et 

al. 2016) LOXL2mut-ires-GFP and we analyzed the DDR by ɣ-

H2AX and 53bp1 staining in GFP positive cells (Fig.r13). 

Consistently, the results showed a decreased in the number of ɣ-

H2AX and 53BP1 foci only when the wild-type version of LOXL2 

was re-infected. Finally, in order to discard the possibility that 

LOXL2 could be affecting other DDR players to produce the same 

outcome, we forced chromatin condensation in the absence of 

LOXL2 expression.  
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Figure.r13 LOXL2 reinfection recovers shControl DDR levels in shLOXL2 

MDA-MB-231 cells due to its catalytically activity. (A) Western blot analysis 
from total extracts of 293 cells infected with the indicated retrovirus particle. 
Actin is used as a loading control. (B) ɣ-H2AX staining and foci quantification is 
showed by immunofluorescence with the indicated antibody. Graphs indicated 
changes in the number of the ɣ-H2AX foci in shControl and shLOXL2 MDA-
MB-231 cells GFP positive cells. * p<0,05. 
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Since one of the main factors involved in chromatin condensation is 

the linker histone H1 (Woodcock, Skoultchi, and Fan 2006), H1-

GFP was over expressed in shLOXL2 cells, and the DDR analyzed 

by counting ɣ-H2AX and 53BP1 foci. Interestingly, the number of 

foci in shLOXL2 cells reinfected with H1-GFP was restored as 

compared with the MOCK-GFP (Fig.r14A). These results suggest 

that LOXL2 activity oxidizing H3 leads to a chromatin 

condensation that impairs DDR activation. . Consistently, decrease 

in chromatin accessibility (closed chromatin) at selected genomic 

sites in LOXL2 knock-down cells upon H1-GFP over expression 

was confirmed by ATAC-qPCR of GFP-sorted cells (Fig.r14B). 

Importantly, clonogenic assays using GFP-sorted cells showed that 

recondensation of chromatin by H1 over expression in shLOXL2 

cells partially blocked cell death (Fig.r14C).  
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Figure.r14 Chromatin compaction induced by H1 infection recovers 

shControl DDR levels in shLOXL2 MDA-MB-231 cells. (A) ɣ-H2AX staining 
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and foci quantification is showed by immunofluorescence. Graphs indicated 
changes in the number of the ɣ-H2AX foci in shControl and shLOXL2 MDA-
MB-231 cells GFP positive cells. **p<0.01. (B) ATAC-qPCR was performed in 
sorted shLOXL2 GFP positive cells in order to assess chromatin compaction. 
qPCR amplification of the H3K4ox-selected hits were normalized to unchanging 
genomic region (HPRT) and expressed as the fold-change relative to the data 
obtained in shControl conditions, which were set as 1. RNAPII was used as a 
control. Error bars indicated standard deviation of at least three independent 
experiments. *p<0.05. (C) Colony-survival assay in GFP-sorted shControl and 
shLOXL2 MDA-MB-231 cells. 
 

Moreover, in the RNA-seq analysis none of the 339 differentially 

expressed genes in shControl and shLOXL2 were associated with 

the activation of the DDR. Gene ontology (GO) analyses of those 

genes indicated that LOXL2 regulates genes involved in Wnt 

signaling pathway, cell adhesion, and morphogenesis. Furthermore, 

Gene Set Enrichment Analysis (GSEA) of specific signatures of the 

RNA-seq data showed an overrepresentation of genes involved in 

EMT (Fig.r15A-B). 
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Figure.r15 LOXL2 down-regulation in MDA-MB-231 cells did not alter 

DDR proteins by RNA-seq analysis. (A) Heat-map showing differentially 
expressed genes for each biological replicate in shControl and shLOXL2 (log2 
fold change > 1, p < 0.01). (B) Gene ontology of differentially expressed genes in 
shLOXL2 vs shControl conditions. 
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4.7. TNBC MD-MB-231 cells are more 

sensitive to DNA lesions after LOXL2 

down-regulation.    

We then reasoned that inhibition of LOXL2 activity would induce a 

decrease in levels of H3K4ox, a more open chromatin 

conformation, contributing to expose the DNA lesions and therefore 

increasing cellular sensitivity, which could be a therapeutic 

opportunity to treat these highly resistant cells. In order to test this, 

we analyzed how shControl and shLOXL2 cells respond to ionizing 

radiation (IR) at low doses. ɣ-H2AX staining increased in 

shLOXL2 conditions at 1 hour after IR at 0,5 Gy (Fig.r16A). This 

increase in ɣ-H2AX staining could indicate either increased DSBs 

under these IR conditions or a higher level of signaling generated 

per DSB sites. Image analysis showed that the number of ɣ-H2AX 

foci was increased in shLOXL2 compared with shControl cells but 

the intensity per nucleus was not significant different than 

shControl cells. The increased number of dots and the absence of 

differences in intensity discarding an hyperactivation of the DDR 

signaling (Fig.r16A) suggest that in the absence of LOXL2 more 

DSBs are generated by IR at low doses. Furthermore, colony-

survival showed that shControl cells are more resistant to irradiation 

than shLOXL2 (Fig.r16B). We then analyzed the DSB repair 

efficiency by quantifying the amount of ɣ-H2AX and 53BP1 foci 

loss by immunofluorescence after irradiation (Fig.r17A-B). The 

results showed a significant delay in DSB repair in shLOXL2 cells 

compared with shControl. Consistently, these results are in 
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agreement with the colony-survival assay showing that shControl 

cells are more resistant against cell death. 

 

Figure.r16 Increased sensitivity in TNBC MDA-MB-231 cells after 

shLOXL2 down-regulation. (A) ɣ-H2AX staining and foci quantification and 
intensity are showed by immunofluorescence. Graphs indicated changes in the 
number of the ɣ-H2AX foci or intensity in shControl and shLOXL2 MDA-MB-
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231 cells 1 hour after the indicated levels of irradiation. **p<0.01. (B) Colony-
survival assay in shControl and shLOXL2 MDA-MB-231 cells under irradiation. 

 

Figure.r17 TNBC MDA-MB-231 cells after shLOXL2 down-regulation show 

a delay in DSB repair. (A) ɣ-H2AX and 53BP1 staining and foci quantification 
is showed by immunofluorescence. (B) Graphs indicated changes in the number 
of the ɣ-H2AX and 53BP1 foci in shControl and shLOXL2 MDA-MB-231 cells 
at different points after 0.5 Gy irradiation. *<p0.05 **p<0.01. 
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4.8. H3K4ox is enriched in Triple Negative 

Breast Cancer Patient-Derived Xenographs 

(PDXs) compared to Luminal PDXs 

 

Although experiments using cell lines have many limitations. For 

instance, a cell culture never has the heterogeneity of a solid tumor, 

the continuous cross-talk between the cells in a tissue and the 

surrounding environment is lost, the doubling potency has been 

altered, etc (Kaur and Dufour 2012).  In addition, cell lines cultured 

in vitro did not contribute significantly to the discovery of targets 

that have had an important impact on patient survival (Williams et 

al. 2013). Since, we decided to check the levels of LOXL2 and 

H3K4ox in a panel of patient-derived xerography (PDXs) from 

different subtypes of breast cancer. By Western Blot analysis, 

LOXL2 and H3K4ox levels were higher in the TNBC PDXs (PDXs 

8, 347, 385) compared with the luminal-origin ones (PDXs 71, 

251M, 118), in agreement with our results in cancer cell lines 

(Fig.r18 A-B). In addition, ATAC-qPCR for selected H3K4ox 

regions showed less accessibility for the transposase in the TNBC 

PDX-8 compared to the luminal PDX-71 and did not in an 

irrelevant promoter (Fig.r18C). 
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Figure.r18 Biological Significance of LOXL2 and H3K4ox Levels in a Panel 

of Breast Patient–Derived Xenographs (PDXs) (A) Heatmaps of LOXL2 and 
H3K4ox levels in a panel of breast PDXs (PDX-71 is as Luminal B breast tumor 
carrying a BRCA2 gene mutation; PDX-251M and PDX118 are Luminal B, 
HER2-positive breast tumors; and PDX-8, 347 and 385 are triple negative breast 
tumors). Westerns blots were digitally analyzed by integrating the density of each 
protein band and its corresponding loading control (see materials and methods). 
The ratio of the band intensity of LOXL2 or H3K4ox versus the band intensity of 
the corresponding loading control was defined as the relative protein expression 
level. The color key shown reveals the color-code used to visualize the relative 
protein expression levels,  green correspond to low relative protein expression 
levels while red colors correspond to high relative protein expression levels. (B) 
Western blot analysis from the panel of breast PDX using the indicated antibody. 
Tubulin and H3 are used as a loading control. (C) ATAC-qPCR was used to 
assess open chromatin at selected genomic regions in PDX-71 and PDX-8. Data 
of qPCR amplification were normalized to unchanging genomic region (HPRT) 
and expressed as the fold-change relative to the data obtained in shControl 
conditions, which were set as 1. 
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5. DISCUSSION 

In the following sections, I will discuss the genuineness of H3K4ox 

as an epigenetic mark (section 5.1), the relevance of its distribution 

in heterochromatic regions (section 5.2), the relation between 

LOXL2 and H3K4ox with the DDR (section 5.3), the importance of 

LOXL2 as a chromatin remodeler due to the generation of H3K4ox 

(section 5.4) and the value of targeting LOXL2 in oncologic 

therapies (section 5.5).  

5.1. H3K4ox as a new epigenetic mark 

In this work, we generate a new antibody that permitted us to 

identify the presence of oxidized lysine 4 in the tail domain of 

histone 3. The impossibility to generate an antibody against the 

final oxidized product of the LOXL2 due to the highly reactivity of 

the aldehyde group arises the necessity of an alternative approach. 

This was overcome using the TET enzyme reaction as an 

inspirational resolution (Fig.d1). TET enzymes remove the methyl 

groups from DNA by different independent oxidation reactions to 

first hydrolaze the 5-methylcytosine (5mC) and then the 5-

hydroxilmethylcytosine (5hmC) to the 5-formylcytosine (5fC) 

(Münzel, Globisch, and Carell 2011; Kafer et al. 2016). Considering 

the similarities between the demethylation activity of LOXL2 and 

the activity of TET enzymes the use of the intermediate alcoholic 

form of the reaction arises as an interesting solution. Therefore, the 

use of the artificial aminoacid 6-hydroxinorleucine allows the 
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generation of a peptide that resembles to the intermediate alcohol 

product in the histone tail due to the LOXL2 activity.  

Figure.d1. Similarities between TET enzymes and LOXL2. Schematic cartoon 
highlighting the similarities between the reactions undergone by LOXL2 and TET 
enzymes. By the action of DNA methyltransefarses (DNMT), cytosine is 
methylated. The activity of the TET enzymes family eliminates this methylation 
by different oxidation reactions. Also lysines on the histone tail can be 
methylated by the activity of Histone Methyltransferases (HMT) enzymes. Here, 
it is LOXL2 who removes the trimethylated amino group promoting the 
intermediate alcoholic form that is rapidly oxidized by the LTQ cofactor of 
LOXL2 generating the aldehyde group. (Adapted from (Nightingale 2016)). 
 

The use of the intermediate product of the reaction opens the door 

to different issues as for example the possibility of overestimate the 

distribution of the final product. However, according to the LOXL2 

reaction, the LTQ domain rapidly converts the intermediate alcohol 

group to the final aldehyde group (Herranz et al. 2016). In addition, 

the results obtained using the antibody for the intermediate alcohol 

tightly correlate with the results prior obtain by our group 

determining the presence of the aldehyde group. Previously, in our 
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laboratory, a biotin-hydrazide approach has been used to determine 

the oxidation of histone 3. This approach relies on the ability of 

hydrazide to react with aldehyde groups and crosslink biotin. The in 

vitro experiments and also several ChIP experiments using the 

biotin-hydrazide approach tightly coincide with the results obtained 

with the generated antibody. So, the correlation between the two 

strategies allows us to back our antibody as a good tool to study the 

putative role of H3K4ox as an epigenetic mark. 

In addition, as previously described, epigenetic marks in the histone 

tail are suitable to be recognized by other proteins. Temptingly, we 

assessed an in vitro experiment in order to elucidate the readers of 

the oxidized histone. Taking advantage of the recombinant LOXl2 

proteins, H3K4me3 biotinylated peptide was oxidized using the 

mutant LOXL2 protein as a control. Then, peptides were recovered 

using streptavidin beads and incubated with nuclear extracts from 

293T cells. Finally, the putative readers were obtained by mass-

spectrometry (MS) analysis. Disappointingly, the results were not 

enough reliable and we discarded them. The use of recombinant 

protein does not actually guarantee a complete oxidation of the 

H3K4me3 peptide distorting, then, the results with readers of this 

mark. Thus, considering the use of the intermediate peptide and/or 

different nuclear extracts of breast cancer cells may be interesting 

steps to improve this approach. Indeed, the relevance of the readers 

of H3K4ox remains as an interesting future goal. The presence of 

different LOXL2 copartners with a chromatin-related activity 

(Herranz et al. 2016) also suggests that oxidized H3 can be 

considered as a new epigenetic mark. For example, CHAF1B, 
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HDAC1/2, RBBP4, EZH2, and Sin3A were described to be co-

immunoprecipitated with LOXL2. Indeed, all of them are members 

of complexes implicated in the generation of a repressive 

environment in agreement with the repressive role of H3K4ox. As 

explained, different marks interplay to generate large stable 

environments, so H3K4ox could be a new epigenetic mark 

implicated in the constitution of large closed chromatin regions. 

Besides, previous work in our group described that oxidation of 

TAF10 by LOXL2, induces degradation of TAF10 (Iturbide et al. 

2014). Nevertheless, how TAF10 oxidation induces its protein 

degradation is still unknown. Since oxidized TAF10 was prevented 

to interact with other members of the TFIID complex, the lack of 

partners could make it sensitive to degradation. Moreover, the 

presence of oxidized residues in different substrates does not need 

to have the same implications and although it leads to the 

degradation of TAF10 it could implicate also an epigenetic mark in 

histones. However, if oxidation of H3 induces histone degradation 

and incorporation of a new unmodified histone is still unknown. All 

things considered, oxidized H3 has to be considered as a suitable 

epigenetic mark.  

5.2. H3K4ox heterochromatin distribution and 

relevance 

Our results unveil the presence of H3K4ox in heterochromatic 

regions of MDA-MB-231 cells and how the presence of this 

oxidized histone favors the high compaction characteristic for 
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heterochromatin. Although the LOXL2 target H3K4me3 is 

described to be enriched in promoters (Santos-Rosa et al. 2002), 

LOXL2 activity in heterochromatin was previously described in our 

group. LOXL2 activity in pericentromeric regions of NMuMG  

cells under EMT process transiently down-regulates the 

transcription of long-noncoding major satellites (Millanes-Romero 

et al. 2013). In addition, this was crucial for the chromatin 

reorganization necessary for the transition from epithelial to 

mesenchymal state (Millanes-Romero et al. 2013; Casanova et al. 

2013). Accordingly, LOXL2 activity emerges as a dual effect with 

different implications. Firstly, transcription and chromatin structure 

are altered by the deamination of H3K4me3 and secondly the 

release of an aldehyde group in the histone tail generates a specific 

chromatin environment. 

Indeed, H3K4me3 is an important regulator of the cellular 

phenotype (Benayoun et al. 2014). Its deposition on the promoter of 

the different genes is related with the recruitment of the RNAPolII 

protein and consistent levels of transcription. Consequently, the 

regular transcription of different regions structures the chromatin 

from these transcription factories (Bortle and Corces 2017). It is 

possible that during tumor evolution, some cancer cells undergo 

EMT and start to express LOXL2. The transcription factor SNAI1, 

together with LOXL2, would participate in the permanent down-

regulation of the CDH1 protein and in the transient heterochromatin 

transcripts inhibition, giving rise to the transformation of cancer 

epithelial cells into mesenchymal cells (Héctor Peinado et al. 2005; 

Schietke et al. 2010; Voloshenyuk et al. 2011). Accordingly, the 
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alteration of the established chromatin organization, such as by 

H3K4me3 deamination, arises as a necessary step for any cellular 

response that implies changes in cell phenotype and LOXL2 could 

be one reliable contributor to this alteration. 

Moreover, the presence of H3K4ox alters the structure of 

heterochromatic regions. We demonstrated using ATAC-seq that 

the down-regulation of LOXL2 and the consequent loss of H3K4ox 

increase the accessibility of the Tn5 transposase to these H3K4ox 

positive regions with minor differences in the negative ones. Hence, 

our results suggest that the increase in LOXL2 levels generates an 

overrepresentation of H3K4ox in heterochromatin, thereby 

increasing its compaction. Still, the role of H3K4ox promoting 

chromatin compaction is unclear and several explanations could be 

going on. Certainly, the loss of H3K4me3 causes the displacement 

of different chromatin factors that contribute to an increased 

chromatin accessibility, such as CHD1 (chromo-ATPase/helicase-

DNA-binding 1) (Flanagan et al. 2005) or NURF (Nucleosome 

Remodelling Factor) (H. Li et al. 2006). Even, LOXL2 reaction 

could disturb the electric charge of the histone tail since the loss of 

the amino group by the deamination diminishes positives charges 

(Hatasa et al. 2016). However, these changes do not reveal as 

relevant as they may promote a chromatin opening due to the loss of 

interaction between a positive histone tail and a negative charged 

DNA as happens with the addition of acetyl groups by histone 

acetyl transferases (HAT) (Bannister and Kouzarides 2011). 

Although, H3K4ox could promote lysine cross-link between 

histones as it happens in the collagen fiber generation. Indeed, 
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aldehyde groups are very reactive and easily interact with different 

chemical groups as other aldehydes (Yamauchi and Sricholpech 

2012) or amino groups (Takahashi 1977). Moreover, as a putative 

epigenetic mark, H3K4ox could be recognized by different proteins 

related with chromatin compaction. In fact, current work in the 

laboratory unveils the relation between H3K4ox and the ATP-

dependent DNA helicases RUVBL1 and RUVBL2 that may 

promote the deposition of the histone variant H2A.Z with an 

important role in chromatin structure (Rege et al. 2015) opening an 

interesting line of investigation. Indeed, a possible role by which 

H3K4ox would promote histone deposition fits excellently with the 

relevance of the deposition of histone variants like H2A.Z or H3.3 

in heterochromatin. Certainly, H2A.Z and H3.3 are enriched in 

heterochromatin (de Castro et al. 2017) and their deposition 

contribute to the pericentromeric heterochromatin organization 

during early development (Corpet et al. 2014; Rangasamy et al. 

2003; Santenard et al. 2010). Finally, as explained, LOXL2 

copartners included several chromatin remodelers implicated in 

repression as histone deacetylases (Herranz et al. 2016). Hence, 

LOXL2 copartners could contribute to the less accessibility since 

deacetylation in the histone tail increases the chromatin compaction 

(Eskeland et al. 2010). Absolutely, further experiments are 

necessary to elucidate the different contribution of these different 

hypotheses. 

As described, chromatin accessibility approaches allow inferring 

direct effects of chromatin structure modifications on cellular 

biology. Together with ChIP-seq data, they become a powerful tool 
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to link regulatory elements with disease phenotypes and the 

assessment of clinical samples for epigenetic biomarkers of disease 

(Tsompana and Buck 2014b). Increasing number of publications 

use the ATAC-seq approach in order to infer the importance of 

chromatin structure and occupancy (Buenrostro, Wu, Litzenburger, 

et al. 2015; Giorgetti et al. 2016; J. Wu et al. 2016). A recently 

published surprising variation of the technique used the transposase 

activity to selectively and covalently insert fluorophores (ATAC-

see) at open chromatin sites genome wide allowing visualization by 

common immunofluorescence (IF) (Chen et al. 2016). In the future, 

these approaches will allow the identification of the unique spatial 

organization of the accessible genome and the changes of the 

chromatin structure between the different human cell types in 

normal and pathogenic situations. Interestingly, studying the role of 

LOXL2 using the ATAC-see approach could be an interesting tool 

to visualize by immunofluorescence the effects of LOXL2 in the 

TNBC cells. For example, the down-regulation of LOXL2 may 

enhance the ATAC-see signaling and the immunofluorescence 

could enlighten the distribution of the newly opened regions. Also, 

IF of the fluorophores of the ATAC-see in the opened regions with 

the DNA damaged signals such as 53BP1 or γ-H2AX will allow a 

better understanding of the chromatin structure relevance in the 

DNA damage response signaling.  

Recently, different groups have suggested the importance of 

maintaining the compaction of heterochromatin in order to prevent 

an increase of the expression of noncoding RNAs produced from 

heterochromatin sequences, the genomic instability associated with 
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heterochromatin dysfunction (Grézy et al. 2016; Molina et al. 2016; 

Postepska-Igielska et al. 2013) and to prevent alterations in the 

cellular fate (Boonsanay et al. 2016; Gonzalez-Sandoval et al. 

2015). Indeed, the presence of H3K4ox is related with major 

satellite repression during the EMT (Millanes-Romero et al. 2013). 

Clearly, upon TGF-β induction of EMT, SNAI1 is rapidly 

upregulated, binds to pericentromeric regions, and recruits LOXL2 

to oxidize H3 and repress major satellite transcription enabling 

chromatin reorganization and acquisition of mesenchymal traits. 

Moreover, two different groups have suggested that EMT is 

dispensable for lung and pancreas initial metastasis but contributes 

significantly to the formation of recurrent metastasis after 

chemotherapy  (Fischer et al. 2015; X. Zheng et al. 2015). 

Considering, these findings agree with our results, in which we 

observed how resistance shown by MDA-MB-231 breast cancer 

cells is linked to both the mesenchymal phenotype and the increase 

in H3K4ox levels in heterochromatin. 

5.3. LOXL2 and H3K4ox prevent activation of 

DDR 

Strikingly, our results disclose the relation between activation of the 

DDR with LOXL2 expression, H3K4ox levels and chromatin 

compaction. Certainly, chromatin compaction would allow the 

accumulation of mutations and DNA lesions in these cells, which 

could be linked with increased tumor aggressiveness (Schuster-

Böckler and Lehner 2012; Supek and Lehner 2015). In TNBC cells, 
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this chromatin compaction seems to be induced by high H3K4ox 

levels and increased LOXL2 expression. Notably, the LOXL2 

activity also leads to an increase in H2O2 production contributing to 

a more stressing environment. In fact, H2O2, like other reactive 

oxygen species (ROS), is a largely described DNA damage agent 

(Jena 2012; Cadet and Wagner 2013) moreover this is not relevant 

in our model because increased damage is observe in the absence of 

LOXL2 where less H2O2 is produced. Hence, the production of a 

ROS agent could be considered as a lesser evil in the TNBC with 

high LOXL2 protein levels. Nevertheless, the activation of the DDR 

machinery when chromatin acquires a more open state in the 

absence of LOXL2 could be due to DNA lesions that are either 

already present in these cells or newly formed by the cellular stress 

generated by the new chromatin conformation. Still, current work in 

the laboratory using the comet assay experiment (data not shown) 

do not show differences between control and LOXL2 knock-down 

cells suggesting that the absence of LOXL2 does not generate new 

damage. Indeed, our results in rescue experiments highlight the 

relevance of the chromatin structure and the importance of H3K4ox 

in this conformation. The rescue experiment using the wild-type and 

the catalytic mutant of LOXL2 clearly showed how the presence of 

the catalytically active form of LOXL2 impairs the DDR signaling. 

Although as LOXL2 has several substrates besides histones related 

with DNA damage (Iturbide et al. 2014) we cannot discard a role 

for LOXL2 in the direct regulation of the DDR machinery. For 

example, LOXL2 is suggested to oxidize MRE11 and RAD50, two 

proteins of the MRN complex. As previously explained, this 
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complex has a crucial role in identifying the DSB presence in the 

genome. As described for TAF10 protein, the oxidation of these 

proteins could be altering its interaction and the complex formation 

impairing its main function detecting DSB. Accordingly, it cannot 

be discard that the down-regulation of LOXL2 could alter the 

activity of a putative reader of H3K4ox implicated in DDR. 

Furthermore, the absence of H3K4ox mark could alter the 

recruitment of a putative reader related with the impairment of 

DDR. For example, the recruitment of the nuclear receptor NR1D1a 

to the DSB sites impairs the recruitment of DDR proteins (Ka et al. 

2017). However, the fact that the DDR can be inhibited by only 

forcing the compaction of chromatin—H1 overexpression in the 

absence of LOXL2—suggests that the main molecular mechanism 

of LOXL2 diminishing the DDR signaling is to induce chromatin 

compaction.  

The correlation between chromatin compaction and DDR has been 

largely reported in the literature and different theories highlight the 

importance of establishing a closed or an open chromatin 

environment after a DNA lesion (Cann and Dellaire 2011; M. L. Li, 

Yuan, and Greenberg 2014). Thus, chromatin compaction during 

DNA damage repair is likely to be dynamic both at the break and in 

the surrounding chromatin neighborhood. In addition, different 

strategies are proposed in order to repair euchromatin or 

heterochromatin (Goodarzi et al. 2008; Gursoy-Yuzugullu, House, 

and Price 2016). Indeed, the relation between chromatin compaction 

and DDR is controversial. For example, persistent chromatin 

compaction was recently described to promote DDR signaling 
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(Burgess et al. 2014). Interestingly, while the persistent chromatin 

compaction enhanced DDR activation after irradiation-induced 

breaks, it reduced the recovery and survival of those cells. Still, an 

open chromatin state in glioma cancer cells enhances DDR signal 

(Murga et al. 2007). This chromatin decompaction generated by H1 

down-regulation or using histone deacetylase inhibitors was 

described to enhance DDR signal. In agreement, H1-depleted cells 

are hyperresistant to DNA damage lesions and show hypersensitive 

checkpoints. These characteristics are explained by a transient 

increase in the amount of signaling generated by an external DNA 

break (Bao et al. 2006). Accordingly, impairing DDR signaling by 

compacting chromatin (Murga et al. 2007) or by blocking 

checkpoint kinase activity could be a source of radiosensitization in 

glioma cancer cells (Bao et al. 2006). However, according to our 

results this is not the case for TNBC cells; rather, for these cells, 

chromatin compaction seems to be one of the players directly 

responsible for acquisition of resistance. Actually, the importance of 

chromatin compaction in preventing the DNA lesions was 

highlighted by studying the different distribution of DSB produced 

by ionizing radiation in a comparative study with human embryonic 

stem cells (hESC) and a set of differentiated cell lines (Venkatesh et 

al. 2016). Remarkably, hESC cells show considerably more DSB 

than differentiated derivate cell lines and this correlates with the 

increased H3K9me3 staining in the differentiated ones (Venkatesh 

et al. 2016) according to the loss of chromatin accessibility during 

differentiation (Meshorer et al. 2006). Strikingly, hESC cells 

differentiation into neuronal progenitor stem cells by retinoic acid 
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(RA) induction requires LOXL2 activity and increases H3K4ox 

levels (Iturbide et al. 2014) suggesting the relevant role of H3K4ox 

in chromatin compaction and DDR skipping.  

Finally, the promotion of translocations by DSB highlights the link 

between DDR and chromatin structure (Ghezraoui et al. 2014).  

Translocations have been largely associated with cancer and 

learning how to face them may open new therapeutic opportunities 

(Hromas et al. 2016; J. Zheng 2013). Interestingly, these 

translocations are able even to draw an interaction map of the 

genome of a cell just by their frequency (Yu Zhang et al. 2012). 

Hence, translocations are generated by DSB and this is confirmed 

by direct-targeted nuclease DSB (Weinstock, Brunet, and Jasin 

2008; Frock et al. 2014). Also, these translocations are promoted by 

the recruitment of nuclear myosin 1 (NM1) by γ-H2A.X, leading to 

chromosome territories relocation during DNA repair 

(Kulashreshtha et al. 2016). Interestingly, it has been also reported 

that increased levels of transcription moderate the frequency of 

mutations in H3K9me3-dense regions by reducing the limitations 

imposed by chromatin structure on the DDR (C. L. Zheng et al. 

2014). To sum up, these works demonstrate the importance of 

chromatin compaction for DNA protection and DNA damage repair 

(Qiu 2015) and here we demonstrated that, in addition to H1 levels, 

oxidation of H3 by LOXL2 is another molecular mechanism that 

induces compaction in MDA-MB-231 cells and that this 

compaction exhorts a protective role. 
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5.4. LOXL2 as a chromatin remodeler 

The relevance of LOXL2 in cancer and the acquisition of cellular 

malignancy has been largely described, since it is overexpressed in 

many tumors (Fong et al. 2007; Moreno-Bueno et al. 2011; Héctor 

Peinado et al. 2008; Torres et al. 2015; Wong et al. 2014) and has 

an important role in tumor formation (Martin et al. 2015). A 

putative role of LOXL2 as a chromatin remodeler involved in 

cellular differentiation arises from our results. Considering the 

cancer stem cell (CSC) paradigm (Singh et al. 2015), based on the 

observation that distinct tumor cell populations are uniquely capable 

of tumor growth in serial passages, LOXL2 arises as a putative 

chromatin remodeler involved in cellular survival. In addition, as 

previously explain, LOXL2 fully activation after RA-induction is a 

necessary step in embryonic stem cells differentiation into neuronal 

progenitor cells, diminishing the expression of the different 

embryonic genes and increasing H3K4ox levels (Iturbide et al. 

2014). Indeed, it could be also related to the acquisition of a more 

closed chromatin conformation. Actually, LOXL2 could also play a 

role during the differentiation of CSCs towards progenitor cancer-

initiating cells, with an increase in the levels of oxidized H3 

conferring an evolutionary advantage by inhibiting the DDR in 

heterochromatin. Several examples of a putative differentiation role 

for LOXL2 have been described. In addition to the already 

mentioned differentiation of embryonic stem cells, LOXL2 

overexpression in skin carcinogenesis depends on its ability to 

negatively modulate epidermal differentiation by repressing the 
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NOTCH1 promoter activity (Martin et al. 2015). Also, 

overexpression of nuclear LOXL2 in MCF-7 cells, a luminal A 

noninvasive breast cancer cell, promotes a rapidly transition to a 

mesenchymal phenotype (Moon et al. 2013; Hollosi et al. 2009). 

Together, these observations suggest that chromatin compaction 

induced by LOXL2 in order to bypass the accumulation of DNA 

lesions is a part of the differentiation program. Besides, the 

importance of chromatin compaction in differentiation is 

increasingly relevant (B Wen, Wu, and Shinkai 2009; McDonald et 

al. 2011; Ricci et al. 2015). According to the RNA-seq data shown 

here, the relevance of LOXL2 and the compaction of the chromatin 

by the presence of H3K4ox induce the expression of a set of EMT-

related genes. Remarkably, chromatin accessibility studies in a set 

of cells with specific differentiation rates (Gomez et al. 2016; 

Buenrostro, Wu, Litzenburger, et al. 2015; Cusanovich et al. 2015) 

and the loss of hyperdynamic plasticity of chromatin proteins after 

differentiation of pluripotent ESC (Meshorer et al. 2006) are some 

examples that highlight the role of chromatin compaction in cellular 

differentiation. 

Moreover, the hypothesis of a specific chromatin compaction 

profile for each cell opens the possibility for a highly-compacted 

chromatin-containing nucleus as a characteristic of the/a 

mesenchymal phenotype. In fact, the relevance of mechanical 

perturbations on chromatin compaction is clear in mesenchymal 

stem cell differentiation (Heo, Driscoll, et al. 2016). The 

establishment of a baseline level of cellular contractility is 

necessary for chromatin condensation and TGF-β signaling in 
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response to whole-cell mechanical alterations. Hence, specific 

chromatin condensation patterns may favor the expression of 

specialized sets of genes, rendering particular cell types finely-

tuned to respond to the mechanical stimuli they experience (Heo, 

Han, et al. 2016). Remarkably, chromatin compaction has been 

described as a promoter of cellular migration. In breast cancer cells, 

the highly metastatic line MDA-MB-231 showed higher 

transmigration capabilities than the poorly metastatic MCF7. Since 

chromatin decondensing drug MTA reduced the transmigration 

efficiency of MDA-MB-231 cells along microchannels in a width-

dependent manner, the mesenchymal phenotype may be related to 

the chromatin condensation status (Yi Fu et al. 2012). Also, altering 

the levels of H4K20me3 and H3K9me3 heterochromatin marks 

correlated with migration capacity. Interestingly, breast cancer cells 

ectopically overexpressing the methyltransferase SUV420H1 or 

SUV420H2, increasing H4K20me3, showed suppressed cell 

invasiveness, whereas knock-down of SUV420H2 in vitro activated 

a normal mammary epithelial-cell invasion (Yokoyama et al. 2014). 

Besides, overexpressing SUV39H1, the methyltransferase writer of 

H3K9me3, in the same cell lines activated cell migration and these 

effects are absolutely impaired using SUV39H1 mutant (Yokoyama 

et al. 2013). Finally, in a different EMT-associated context, wound 

healing, cells in the edge of the wound showed increased 

heterochromatin markers like H3K27me3 and H4K20me1 

compared to cells far from the wound edge. In addition, those cells 

closer to the edge of the wound showed increased resistance to 

DNaseI activity in comparison to cells far from the wound edge 
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(Gerlitz and Bustin 2010). Accordingly, cells closer to the wound 

edge show more compacted chromatin than the distant ones. 

5.5. Targeting LOXL2 as a therapeutic target 

Importantly, we have shown that patient-derived samples from 

TNBC tumors have the same behavior than MDA-MB-231 breast 

cancer cells; specifically, as observed for the cell line, TNBC 

tumors express more LOXL2, have higher H3K4ox levels, and 

show more compacted chromatin compared to luminal tumors in the 

ChIP-H3K4ox positive regions by ATAC-qPCR. Indeed, assessing 

the global chromatin structure using genome-wide ATAC-seq data 

will be a necessary step to further characterizes these tumors. This 

makes LOXL2 a good candidate as a therapeutic target in these 

TNBC tumors. Certainly, on one hand, the development of 

inhibitors of LOXL2 could be a promising success. Moreover, 

several inhibitors have been described for LOXL2 (Chang et al. 

2017; Hutchinson et al. 2017). However, the effects of these 

inhibitors alter the extracellular activity of LOXL2 and do not focus 

on the importance of LOXL2 and H3K4ox neither for compaction 

nor for DDR signaling. Accordingly, our group is working on the 

characterization of a putative LOXL2 inhibitor, zonisamide. 

Interestingly, zonisamide is a described anti-epileptic generic drug 

that is already used in humans and has been suggested as a putative 

LOXL2 inhibitor by a drug-repurposing approach. Hence, the 

zonisamide inhibits in vitro the enzymatic activity of human 

recombinant LOXL2 enzyme, and that such inhibition decreases the 
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proliferative capacity of breast cancer cells in vivo and causes cell 

death. Breast cancer triple negative cells with high LOXL2 levels 

died after 4 days of zonisamide treatment. On the other hand, a 

relevant humanized monoclonal antibody against LOXL2, 

simtuzumab, has been tested for the treatment of aberrant fibrosis 

(Meissner et al. 2016). Disappointingly, it has been stopped the 

phase 2 trials for idiopathic pulmonary fibrosis (IPF) due to the lack 

of results (Raghu et al. 2017). 

Considering, our results suggest that using inhibitors that could 

affect chromatin conformation as adjuvants in conventional therapy 

would provide novel therapeutic opportunities for TNBC tumors. 

Indeed, recent different studies support the combination of 

inhibitors of chromatin compaction with conventional therapy. 

First, the use of a hypomethylation therapy (HMT) impairs MDA-

MB-231 cells altering the levels of H4K20me2 and H3K79me2 and 

sensitizes them to IR or to the DNA-damage inducer cisplatin, 

leading to apoptosis (Montenegro et al. 2016). Also, the use of 

histone deacetylases inhibitors (HDACi) combined with PARP 

inhibitors impair the DDR, leading cells to apoptosis (Ha et al. 

2014).  

Summarizing, impairing H3K4ox accumulation with LOXL2 

inhibitors alters chromatin compaction. This enhances DDR 

signaling and sensitizes TNBC to conventional therapies. Therefore, 

using LOXL2 inhibitors as adjuvants to present therapies is a 

promising strategy for treating TNBC tumors.  
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