
PhD Thesis

Real-time Quality Visualization of
Medical Models on Commodity
and Mobile Devices

Jesús Dı́az-Garćıa

Advisor: Pere-Pau Vázquez Alcocer
Co-advisor: Isabel Navazo Álvaro

Barcelona, April 2018

PhD Programme in Computing
Universitat Politècnica de Catalunya
Department of Computer Science (CS)

ViRVIG Research Group
Visualització, Realitat Virtual i Interacció Gràfica

Abstract

In the medical environment, imaging devices are able to capture data of bi-
ological tissue for their diagnosis. The visualization of such data in 3D is
addressed by the so-called Volume Rendering or Volume Visualization tech-
niques. However, these techniques are challenged by the continuous increase
in the resolution of the datasets produced by modern capture devices.

Thanks to the evolution of graphics chips, most modern workstation/desktop
Graphics Processor Units (GPUs) are able to handle these datasets without
problem with classical visualization algorithms. Furthermore, thanks to their
incredible market penetration and their improvement in performance and dis-
play capabilities in the last years, devices such as mobile phones or commodity
hardware are becoming more and more usual candidates for diagnosis tasks
in clinics. However, the capabilities of such devices are still far from their
desktop counterparts, and applications running classical algorithms on these
less powerful devices do not achieve the minimum desirable requirements re-
garding performance and quality. There is always a compromise between these
two requisites. On the one hand, interactivity can be increased at the expense
of decreasing the workload, sacrificing resolution and quality. On the other
hand, enhancing the visualization quality involves performing a more intensive
computation task that usually kills performance.

This thesis focuses on the rendering of volume datasets on nowadays’ graph-
ics devices with limited capabilities, such as those included in mobile devices,
tablets or modest laptops. More precisely, we contribute with new approaches
to allow the interactive generation of renderings and providing high-quality re-
sults while still not requiring long pre-processing times. To achieve these goals,
we explore areas in the visualization pipeline such as the downsampling filter,
the Transfer Function, and the visualization algorithm.

Multiresolution schemes are the most common way to address the problem
of data size in environments with restrictive capabilities. Typically, volume
data is reduced or simplified in order to provide real-time or interactive explo-
ration during visualization. However, data reduction is accompanied by loss
of features which can provide interesting details and information. In order
to alleviate this data loss, we present a novel downsampling filter for volume
datasets aimed at the preservation of fine details.

The quality of the images generated from downsampled models is greatly
affected by the shading process, which mainly depends on the way in which
gradients are computed. The well-known strategy of computing gradients on-

i

ii

the-fly from the downsampled model at the time of visualization generates
visible artifacts and noticeable differences with respect to the rendering of the
original dataset. To solve this, we approach this issue by using pre-computed
gradients, and we propose a downsampling filter and an encoding scheme for
this kind of data so that the gradients used for shading during the render of
the low-resolution dataset better resemble the gradients computed from the
original, high-resolution dataset.

Another aspect involving the quality of the images generated from down-
sampled datasets is the Transfer Function. Transfer Functions are designed to
reveal specific information and interesting details of a particular dataset with
its own histogram. However, the histogram of a downsampled dataset differs
with respect to the original dataset. Based on this observation, we propose
Adaptive Transfer Functions, an algorithm that, given the original Transfer
Function and based on the differences between the original and the downsam-
pled datasets, automatically generates fitted Transfer Functions that improve
the quality of the renderings of these low-resolution representations.

Finally, and with the intention to put a stepping stone into what the fu-
ture of medicine should be, Mobile Health (i.e., the creation of applications
suitable for mobile and tablets), we focus on the visualization of volumetric
models on mobile devices. In such environments, visualizations are expected
to provide the highest quality and maximum resolution available. Moreover,
in these applications, after exploring a particular model to search for a specific
region of interest, it is interesting to obtain a detailed rendering of the selected
view. We have addressed the problem of efficient generation of high-resolution
images without compromising interactivity. In this field, we propose a mul-
tiresolution rendering scheme for volume models that uses a low-resolution
model during user interaction and a high-resolution dataset for quality visual-
izations when the camera stops. Based on this architecture, we present then,
two new progressive ray casting methods that allow the incremental rendering
from low-resolution images to high-resolution images without compromising
interactivity.

Resumen

En entornos médicos, los dispositivos de adquisición de imagen médica son
capaces de capturar datos de tejido biológico para su diagnosis. La visual-
ización de este tipo de datos en 3D se lleva a cabo con técnicas conocidas como
Volume Rendering o Volume Visualization. Sin embargo, estas técnicas son
desafiadas por el continuo aumento de la resolución de los datos producidos
por los dispositivos de adquisición más modernos.

Gracias a la evolución del hardware, las estaciones de trabajo y las unidades
de procesamiento de gráficos (GPUs) más modernas son capaces de manejar
estos datos sin problemas con algoritmos clásicos de visualización de volumen.
Por otra parte, en los últimos años, gracias a su incréıble disponibilidad en el
mercado y a sus mejoras en factores como su rendimiento y sus capacidades
gráficas, los dispositivos móviles están volviéndose, cada vez más, en candidatos
para las tareas de diagnosis en muchas cĺınicas. Sin embargo, las capacidades
de estos dispositivos todav́ıa están lejos de los equipos de sobremesa. En ese
sentido, muchas aplicaciones que utilizan algoritmos clásicos de visualización,
no funcionan satisfactoriamente en este tipo de dispositivos menos potentes,
en lo que se refiere a calidad y rendimiento. Siempre hay un compromiso
entre estos dos requisitos. Por una parte, el grado de interactividad se puede
aumentar si se sacrifica la calidad de los resultados. Por otra parte, mejorar
la calidad gráfica requiere ejecutar cálculos más intensivos que normalmente
reducen el rendimiento.

Esta tesis se centra en la visualización de modelos de volumen en los dis-
positivos gráficos de hoy d́ıa que son menos potentes. Ejemplos de estos dis-
positivos son los teléfonos móviles, tablets y portátiles de baja gama. En
particular, nuestras contribuciones en esta tesis son métodos que permiten la
visualización interactiva de modelos de volumen y que proporcionan resultados
de buena calidad, sin necesitar largos tiempos de cálculo o pre-proceso. Para
conseguir estos objetivos, se exploran areas en la pipeline de visualización tales
como el filtrado de downsampling, la Función de Transferencia, y el algoritmo
de visualización.

Las técnicas multiresolución son el modo más común de enfrentarse al prob-
lema de los datos grandes en entornos con capacidades limitadas. Normal-
mente, los datos de volumen son reducidos o simplificados para conseguir una
exploración en tiempo real o interactiva durante la visualización. Sin embargo,
la reducción de datos viene de la mano de una pérdida de información, con lo
cual, caracteŕısticas y detalles interesantes se pueden perder en este proceso.

iii

iv

Para minimizar esta pérdida de datos, presentamos un novedoso filtro de down-
sampling para datos de volumen diseñado para preservar detalles del modelo
original.

La calidad de las imágenes generadas de los modelos simplificados tambin
se ve afectada en gran medida por el sombreado. La operación de sombreado
depende principalmente del modo en el que los gradientes del campo escalar
se han calculado. La conocida estrategia de calcular los gradientes on the fly,
directamente a partir del modelo de baja resolución en el algoritmo de visual-
ización, genera artefactos visibles y diferencias notables con respecto a visual-
izaciones del modelo original. Para solucionar esto, proponemos una solución
basada en gradientes precalculados, y proponemos un filtro de downsampling
para gradientes y un esquema de codificación para maximizar el número de
direcciones de gradientes representables, de modo que los gradientes obtenidos
para el modelo de baja resolución se parezcan más a los gradientes del volumen
de alta resolución.

Otro aspecto importante en cuanto a la calidad de la visualización de mod-
elos reducidos es la Función de Transferencia. Las Funciones de Transferencia
son diseñadas para revelar información espećıfica y detalles interesantes de un
modelo de volumen en particular. Sin embargo, el histograma de un modelo
en particular difiere con respecto al histograma de cualquiera de sus mode-
los simplificados. A partir de esta observación, proponemos Adaptive Transfer
Functions, un algoritmo que, dado un modelo de volumen y una Función de
Transferencia diseñada para éste, genera automáticamente Funciones de Trans-
ferencia espećıficas para los modelos simplificados, de modo que la calidad de
las visualizaciones de baja resolución mejoran notablemente.

Por último, con la intención de entrar en el futuro de la visualización en el
ámbito de la medicina (i.e., la creación de aplicaciones adecuadas a móviles y
tablets), nos centramos en la visualización de modelos de volumen en teléfonos
móviles. En entornos médicos, es necesario generar imágenes de alta calidad
con la máxima resolución posible. Por ese motivo, en estas aplicaciones, de-
spués de explorar un modelo en particular para buscar una región de interés
espećıfica, es interesante obtener una imagen lo más detallada posible de la
vista seleccionada. Nosotros hemos tratado este problema a través de un es-
quema multiresolución de visualización que utiliza un modelo de baja resolución
mientras el usuario de la aplicación está interactuando, y un modelo de alta
resolución para proporcionar visualizaciones de calidad cuando la cámara para.
Basándonos en esta arquitectura, presentamos dos nuevos métodos de pintado
de volumen que permiten la generación incremental de imágenes pasando de
la baja a la alta resolución sin comprometer la interactividad.

Agradecimientos

Hab́ıa momentos en los que parećıa que no se iba a terminar, pero ahora parece
que śı, que. . . ¡ya se acaba! Es curioso como cambian las cosas con el tiempo y
según la perspectiva. ¿Y cómo es un doctorado? Para la gente que como yo “es
de gráficos”, seguro que entenderán si digo que la respuesta es view-dependent.
La ilusión, los ánimos, y la enerǵıa fluctúan. Muchas cosas van cambiando.
Uno mismo cambia. La función tiene máximos y mı́nimos, pero lo importante
es que si la paso por un filtro Gaussiano (mejor bilateral, no vayamos a perder
esos contrastes) el resultado es muy positivo. Esta página es para quienes han
hecho subir la media.

Primero y por encima de todo, tengo que dar infinitas gracias a mis tu-
tores, Isabel Navazo y Pere-Pau Vázquez, por haberme ayudado tanto en todo
momento con sus conocimientos, sus ánimos, su paciencia conmigo y su gúıa.
De igual modo, transmito mi gratitud a Pere Brunet, que aunque no oficial-
mente, es mi tercer tutor, y como tal ha contribuido en la misma medida con
su tiempo y dedicación. Gracias a los tres por vuestra labor como tutores y
por ser belĺısimas personas.

Gracias a la UPC y a mi grupo de investigación, ViRVIG, por el soporte y
los medios que me han proporcionado para poder llevar a cabo la tesis. Gracias
al resto de profesores que en algún momento me han ayudado con el trabajo, en
formulaciones matemáticas, en correciones de inglés, con opiniones para mejo-
ras y con halagos por el trabajo hecho. Gracias a mis amigos del CRV, a los
que se ya se fueron y a los que aún siguen, por haber compartido tantos mo-
mentos juntos, en el puesto de trabajo y fuera de él, mientras programábamos
o mientras jugábamos online, hablando de trabajo o hablando de la vida, en
definitiva, por hacer del despacho un lugar tan familiar.

A Alma IT Systems por los primeros años de apoyo en mi tesis. En especial,
quiero mostrar mi agradecimiento a Frederic Pérez por su apoyo y ayuda en
esa etapa. Por todas las reuniones que hicimos para revisar el trabajo hecho y
encontrar nuevas direcciones e ideas para mejorar nuestro trabajo.

Y por descontado, gracias a los mı́os. A mi hermana, Marina, por la portada
tan chula que le ha puesto a esta tesis. A mi familia y a mis amigos, a los más
cercanos, que me han arrancado una sonrisa en un d́ıa de bajón, o me han
soportado cuando me rechazaban un art́ıculo, o ¡celebraban conmigo cuando
me lo aceptaban!, o simplemente están o han estado ah́ı conmigo, pasando
el rato, mirando la tele, comiendo guarradas, yendo a bailar, yendo a hacer
deporte. . . cuidando de mi.

v

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis statement . 3
1.3 Addressed problems and contributions 4
1.4 About this document . 5

2 Preliminaries 7
2.1 Visualization pipeline for 3D medical models 7
2.2 Acquisition process: voxel model 10
2.3 Multiresolution and filtering . 11
2.4 Direct volume rendering . 13
2.5 The Transfer Function . 16
2.6 Ray casting . 18
2.7 Gradient-based illumination . 23
2.8 Visualization artifacts and performance issues 25

3 State of the Art 29
3.1 Multiresolution volume datasets 29
3.2 Downsampling of scalar data 31
3.3 Downsampling of gradient data 33
3.4 Quality visualization of downsampled data 34
3.5 Visualization techniques on mobile devices 35

4 Downsampling of Scalar Fields 39
4.1 Motivation . 39
4.2 Problem addressed . 40
4.3 Analysis of existing downsampling techniques 41
4.4 Feature-preserving downsampling filter 50
4.5 Evaluation and results . 53
4.6 Conclusions and future work 55
4.7 Publications . 56

5 Downsampling of Gradients 59
5.1 Motivation . 59
5.2 Problem addressed . 60
5.3 Gradient estimators . 61

vii

viii Contents

5.4 Downsampling of gradient data 63
5.5 Gradient data storage . 66
5.6 Evaluation and results . 79
5.7 Conclusions and future work 83
5.8 Publications . 84

6 High Quality Visualization of Coarse Datasets 85
6.1 Motivation . 85
6.2 Problem addressed . 87
6.3 Theoretical framework . 88
6.4 Adaptive Transfer Functions . 90
6.5 Fast approximation of Adaptive Transfer Functions 92
6.6 Evaluation and results . 95
6.7 Conclusions and future work 106
6.8 Publications . 107

7 Interactive Rendering on Mobile Devices 109
7.1 Motivation . 109
7.2 Problem addressed . 110
7.3 Framework overview . 111
7.4 Progressive ray casting strategies 112
7.5 Evaluation and results . 120
7.6 Conclusions and future work 132
7.7 Publications . 134

8 Conclusions and Future Work 139
8.1 Conclusions . 139
8.2 Future work . 141
8.3 Publications . 142

Bibliography 143

1
Introduction

Since the beginning of time, humans have felt the creative impulse of reflecting
their experiences and observations through the use of images. This has been
observed in history since the Paleolithic, where the most ancient cave paintings
dated to some 40.000 years ago. With the passage of time, there have been
more and more shreds of evidence, as seen in the Egyptian hieroglyphs, the
Greek geometry, and Leonardo da Vinci’s revolutionary methods of technical
drawing for engineering and scientific purposes.

With the arrival of modern times, the evolution of technology brought with
itself computational devices that were able to perform engineering and mathe-
matical tasks that were not easily solved before (or not possible at all). These
devices evolved up to the point of becoming nowadays’ modern computers
and made possible the ever-growing development of Computer Science, which
studies the automation of algorithmic processes of different nature.

Approaching the discipline concerning this thesis, Visualization is a sub-
field of Computer Science which studies methods and techniques for the gen-
eration of images in order to effectively communicate a message or to provide
some kind of information. Within this field, Scientific Visualization is a branch
of science primarily concerning the realistic graphical representation of three-
dimensional phenomena. Used in many situations with the aim of Scientific
Visualization, Volume Rendering [34] is a set of techniques that generate images
by means of projecting datasets that capture this information of volumetric na-
ture onto a 2D image.

1

2 Chapter 1. Introduction

In the last years, the appearance of Graphics Processing Units (GPUs) has
prompted the implementation of Direct Volume Rendering (DVR) algorithms,
which consist in generating an image directly from a volume dataset, allowing
for real-time or interactive visualization applications. For scalar fields, this
image generation is typically achieved by mapping the scalar values within the
volume domain to color data by means of a Transfer Function (TF) which is
typically represented by a piecewise linear function describing a color table,
although it may take more complex forms. In the case of DVR, both the vol-
umetric scalar field or dataset and the TF are usually stored in the internal
memory of the GPU as a 3D texture and a 2D texture, respectively. Further-
more, the way the color is composed to make the projected 2D image depends
on the rendering technique, which can also be primarily implemented within
the graphics processor using shader programs. Some of the most known DVR
techniques are splatting, shear-warp, slicing, and ray casting, being the latter
the state of the art algorithm for Volume Rendering, due to its parallel nature
that allows to efficiently translate its implementation to GPUs and also due to
the quality of the images it generates.

Volume Rendering techniques can be very convenient in many fields of
research. Some examples are the comprehension of the airflow around planes
and cars in aerodynamics, the analysis of seismic data for the study of terrain
in geoscience, the understanding of meteorological data or the medical imaging
for the clinical practice. Medical Visualization in particular, is a sub-field of
Volume Rendering aimed at the display of 3D medical images to ease specialists’
daily tasks such as clinical diagnosis, surgery planning, and medical education.

1.1 Motivation

Mechanisms for medical imaging acquisition such as Magnetic Resonance Imag-
ing (MRI), Computerized Tomography (CT) and micro-CT scanners are con-
tinuously evolving, up to the point of obtaining volume datasets of large res-
olutions (≥ 5123). These datasets are typically composed of a stacked set of
2D slices. As these datasets grow in resolution, its treatment and visualization
become more and more expensive due to their computational requirements.
Thus, special techniques such as data pre-processing (filtering, construction
of multiresolution structures, etc.) and sophisticated algorithms have to be
introduced in different points of the visualization pipeline in order to achieve
the best visual quality without compromising performance times.

1.2. Thesis statement 3

Managing big datasets becomes a problem in scenarios with limited com-
putational resources. In the last years, Volume Visualization has only been
possible for some medium-large datasets in real time, thanks to the computa-
tional power of newer GPUs. However, dealing with big amounts of data with-
out taking into account special considerations, would require having enough
memory storage and processing power available. The bigger the dataset, the
more demanding these requirements are. For that reason, standard methods
for Volume Visualization that have worked well with medium-large datasets,
are not suitable for those huge datasets on all hardware.

Not long ago, the only physicians that were using 3D medical visualization
tools were radiologists. Nowadays, the outcome of diagnosis is the data itself,
and medical doctors need to inspect them in commodity PCs (even patients
may want to render the data, and the DVDs are commonly accompanied with
a DICOM viewer software, which empowers patients in their health manage-
ment). Furthermore, with the increasing use of technology in daily clinical
tasks, small devices such as mobile phones and tablets can fit the needs of
medical doctors in some specific areas. Visualizing 3D diagnosis images of
patients becomes more challenging when it comes to using these devices in-
stead of desktop computers, as they generally have more restrictive hardware
specifications.

1.2 Thesis statement

The goal of this thesis is the quality, real-time visualization of medium to large
medical volume datasets (resolutions ≥ 5123 voxels) on mobile phones and
commodity devices.

To address this problem, we use multiresolution techniques that apply
downsampling techniques on the full resolution datasets to produce coarser
representations which are easier to handle. We have focused our efforts on the
application of Volume Visualization in the clinical practice, so we have a spe-
cial interest in creating solutions that require short pre-processing times that
quickly provide the specialists with the data outcome, maximize the preserva-
tion of features and the visual quality of the final images, achieve high frame
rates that allow interactive visualizations, and make efficient use of the com-
putational resources.

4 Chapter 1. Introduction

1.3 Addressed problems and contributions

The contributions achieved in this thesis comprise improvements in several
areas of the rendering pipeline. The techniques we propose are meant to im-
prove the stages of multiresolution generation, Transfer Function design and
the GPU ray casting algorithm itself. The following paragraphs briefly describe
the general idea of these contributions:

• Improved feature-preserving downsampling filtering for scalar
fields. In Chapter 4 we present an evaluation of different downsampling
filters used to generate coarser representations of the original dataset,
and we analyze their effectiveness at preserving details. Moreover, we
propose a new Gaussian-based, feature-preserving filter that produces
quality low-resolution representations and conserves small features that
are prone to disappear during the downsampling process [15, 17].

• Improved downsampling and efficient storage of gradient data.
One of the factors that most contribute to the final image quality in
volume rendering is proper shading. Downsampling also affects the way
in which gradients are computed from the scalar field. The most used
method to compute gradients in standard GPU ray casting is performing
the calculation on-the-fly at each sample step. However, this may lead
to severe artifacts if the model has been downsampled aggressively. In
Chapter 5, the effect of shading coarser datasets using different methods
for the computation of gradients is explored. Furthermore, a consistent
way to downsample and efficiently store pre-computed gradients is pro-
posed [18].

• Improved visualization of coarse datasets using Adaptive Trans-
fer Functions. When creating coarse models of a multiresolution hi-
erarchy, the data loss resulting from the downsampling process affects
the visualization quality. In particular, the Transfer Function origi-
nally designed for the original scalar field might be not valid anymore
for coarser representations. In Chapter 6, we present Adaptive Trans-
fer Functions [16], an algorithm that, by modifying the original Transfer
Function, generates custom Transfer Functions for downsampled models
so that the quality of renderings is highly improved. The technique is
simple and lightweight, and it is suitable not only to visualize huge mod-
els that would not fit in a GPU, but also to render not-so-large models
in mobile GPUs, which are less capable than their desktop counterparts.

1.4. About this document 5

Moreover, it can also be used to accelerate rendering frame rates by us-
ing lower levels of the multiresolution hierarchy while still maintaining
high-quality results in a focus and context approach. We also show an
evaluation of these results based on perceptual metrics.

• Interactive high resolution rendering on mobile devices. Mo-
bile devices have experimented an incredible market penetration the last
decade, and currently, medium to premium smartphones are relatively
affordable devices. With the increase in screen size and resolution, to-
gether with the improvements in the performance of mobile CPUs and
GPUs, more tasks have become possible, but DVR remains a challenge
in such devices. We have explored the limitations of rendering from
medium to large volumetric models in mobile devices. Not surprisingly,
we have observed that the interactivity achieved by these devices is easily
affected at the time of visualizing datasets of increasing resolution, even-
tually leading to application stalls and crashes even when the visualized
model fits the memory capabilities of the device. To solve these prob-
lems, Chapter 7 presents two progressive ray casting methods that can
obtain high-quality results on mobile devices for models that some years
ago were only supported by desktop computers without compromising
interactivity at all [19].

1.4 About this document

The remainder of this document is organized as follows: Chapter 2 introduces
key concepts about Direct Volume Rendering, explains the core techniques used
all along the development of this thesis and provides the foundations on which
our contributions are based. This chapter also provides an overall view of the
visualization pipeline and briefly reviews its stages, and identifies their short-
comings as a motivation to glue together the later chapters with the provided
contributions. Chapter 3 gives an overview of the state of the art publications
which are most related to the areas covered by the contributions of this thesis,
mainly those explained in the previous section. The following four chapters ex-
plore in detail the studied subjects, the methods, and the results accomplished
in the course of this thesis. First, Chapter 4 presents an analysis of several
downsampling filters and proposes a novel feature-preserving downsampling
filter for volumetric scalar fields. Chapter 5 proposes a downsampling filter
and an encoding strategy for pre-computed gradient data that avoids common
visualization artifacts when shading coarse datasets. In Chapter 6, we present

6 Chapter 1. Introduction

an algorithm to improve the visualization of multiresolution datasets by means
of generating an adapted version of the original Transfer Function for each
coarse level of resolution. Chapter 7 addresses the problem of high-quality in-
teractive rendering on mobile phones and commodity hardware, combines the
previous contributions into a multiresolution framework with the aim of incre-
mental rendering, and presents two algorithms for the progressive ray casting
of volume datasets. Finally, the conclusions of this thesis are presented in
Chapter 8.

2
Preliminaries

Before getting into any material related to the specific contributions of this
thesis, this chapter will introduce the visualization pipeline and explain its dif-
ferent stages when applied to the visualization of medical models in restrictive
hardware. It will review the acquisition mechanisms and the data structure
used to store the captured information. Then, it will introduce the process-
ing stage, where the data filtering and the multiresolution generation processes
take place. Finally, going into the visualization stage, it will present the Trans-
fer Function, and the specific rendering techniques used in the context of the
ray casting algorithm. This quick overview of the pipeline will serve us as a
starting point in order to identify the common flaws we will build on to provide
the contributions given in the next chapters.

2.1 Visualization pipeline for 3D medical models

A visualization pipeline is a model that describes the visualization process of
some kind of data, which involves several stages, each modeled by a specific
data transformation. Figure 2.1 shows a schematic overview of a standard vi-
sualization pipeline used for volumetric models obtained from 3D image data.
The stages depicted in the figure include data acquisition, data processing (fil-
tering and multiresolution generation), and data visualization (mapping, and
rendering).

7

8 Chapter 2. Preliminaries

Figure 2.1: Schematic overview of a visualization pipeline for volumetric medical
models. After its acquisition, raw data is processed, first filtered and then downsampled
to generate a multiresolution hierarchy. Then, multiresolution datasets are mapped to
GPU assets (textures, primitives, etc.), building a visual representation of the initial
data that can be finally used by a rendering algorithm, to generate output images.

Acquisition

At the beginning of the process, data must be acquired from the biological
tissue into a digital representation. The medical imaging acquisition devices are
the responsible for capturing the information of specific body regions. Typical
examples of this kind of techniques are Computerized Tomography (CT) or
Medical Resonance Imaging (MRI). The captured dataset consists of a series
of stacked images (slices of the captured anatomical part) that represent the
volume, and its most used representations are regular 3D grids of samples (see
Section 2.2). Each sample in these grids represents a single volume element
called voxel, and typically contains the information related to the density of
the material in that region.

Processing

Raw data obtained from medical acquisition devices are not usually in the most
proper form for visualization. As a pre-process, data needs to be typically pre-
pared (filtered) previously in order to remove noise and other imperfections
coming from the acquisition process. Furthermore, depending on the target
platform, data has to be also simplified (multiresolution) in order to fit the ca-
pabilities of the destination hardware to ensure interactive visualizations. This
downsampling process results in the loss of some information. See Section 2.3
for details about multiresolution datasets.

2.1. Visualization pipeline for 3D medical models 9

Visualization

Three-dimensional datasets representing a scalar field cannot be directly visu-
alized with the tools provided by nowadays’ conventional graphics hardware.
In order to transmit this information into the graphics pipeline, we must map
the acquired datasets into a set of graphical primitives (mapping).

There are many strategies which can be followed in order to obtain a visual
representation of a volume dataset (rendering). These strategies can be mainly
classified in two blocks depending on the nature of the algorithm: indirect and
direct volume rendering methods.

Indirect volume rendering extracts an intermediate representation that con-
sists of a set of polygonal primitives (e.g., triangles) that will be rendered later
using traditional polygon-based techniques. The extracted polygonal represen-
tation usually matches a surface conformed by all the points in the scalar field
with a particular value (isovalue). Some of the most famous algorithms for in-
direct volume rendering are Marching Cubes [51] and Projected Tetrahedra [76].
The advantage of these methods is that the rendering step is usually very effi-
cient. However, they do not allow interactive modification of the visualization
criteria (the isovalue) to focus on different features of the source dataset.

Direct volume rendering (DVR) refers to those algorithms that directly
resample the input dataset at many locations and project their visual repre-
sentation to screen. This visual representation is obtained by simulating the
interaction of the optical properties of the sampled material with light. With
direct volume rendering, the data is considered to represent a semi-transparent
light-emitting medium, so phenomena such as gaseous materials can be simu-
lated, and the volume dataset is used as a whole, making it possible to show
all interior structures. There are several methods that have been used for the
purpose of DVR [34], such as shear-warp, splatting, cell projection, texture slic-
ing and ray casting. Among these methods, the tendency is to move toward
GPU implementations of the ray casting algorithm, which is the state of the
art technique for DVR. For the rest of the thesis, we will work mainly on this
visualization algorithm. A brief introduction to ray casting can be found in
Section 2.6.

10 Chapter 2. Preliminaries

2.2 Acquisition process: voxel model

Typically, volume rendering of medical models assumes a continuous 3D scalar
field function V that translates from 3D locations to scalar values. This func-
tion can be written as a mapping:

V (x) : IR3 → IR

However, in order to represent this three-dimensional scalar field into the
discretized world of computers, it needs to be stored in a discretized grid,
because it is the result of a measurement performed at a finite number of sample
locations. Some typical grid structures used to represent discretized data are
tetrahedral grids, distorted hexahedral grids, mixed prism grids, or uniform
n-dimensional grids. The last representation, n-dimensional grids, (and more
precisely 3D grids) are the most commonly used for volume rendering.

Medical imaging acquisition devices such as Computerized Tomography
(CT), or Magnetic Resonance Imaging (MRI), typically provide a stack of 2D
slices uniformly separated along a given axis, composing a uniform 3D grid
that represents the scanned volume region. Each pixel of these 2D images (or
sample in the 3D grid) contains a value representing a scalar property (density
in CTs) in the surrounding volumetric region (see Figure 2.2).

Uniform grids contain samples that are typically evenly separated in the 3D
space along each X, Y and Z axis. This spacing is potentially different in the

Figure 2.2: Medical imaging devices obtain a set of 2D slices containing properties
of the anatomical tissue (e.g. its density, in the case of CTs). These slices, if stacked
compose a 3D voxel model that represents the captured volume.

2.3. Multiresolution and filtering 11

X, Y and Z axes, and is given by the resolution of the scanning or acquisition
device used to make the measurement of the source data. Each one of the
samples in the grid is called a voxel, or volume element, and the whole set of
voxels (i.e. the stacked set of 2D images) is called voxel model. Along the rest
of this document, other names that will refer to this representation may be
volume model, volume dataset or simply model or dataset, indifferently.

An issue of concern about voxel models, which are essentially discrete, is
that they are way far from representing a continuous scalar field V . For that
reason, along with the interpretation of voxel, there must be a reconstruction
filter: an interpolation scheme that fills the in-between space, allowing to eval-
uate values at arbitrary positions in the spatial domain IR3. Unless otherwise
stated, we assume the use of a tri-linear interpolation scheme to query density
values from discretized grids. It provides an acceptably smooth reconstruction
of the original scalar field, and it is usually an accelerated feature implemented
in most current graphics hardware.

Another important consideration is that voxel models make it difficult to
have available a complete statistical description of the underlying physical phe-
nomena. The effects of quantization on the statistics are difficult to account
for. Some studies have explored this field in order to obtain a better under-
standing of discrete representations. For instance, in [21], the authors develop a
mathematical model of quantized statistics of continuous functions and prove
convergence of geometric approximations to continuous statistics for regular
rectilinear grids.

Despite the limitations mentioned just above (discretization and quantiza-
tion), being well structured, and making possible a compact representation as
3D arrays in computer memory and fast access to random data cells, voxel
models are the most common data structure in practical applications such as
Medical Visualization. We will be assuming the usage of this data structure to
store any volume dataset in the rest of the document.

2.3 Multiresolution and filtering

Because modern data acquisition methods have been able to produce datasets
of big resolutions, volume rendering of these kinds of datasets has become a
challenging task for some devices such as mobile devices or the commodity
hardware available in clinics and hospitals. In medical visualization, typical

12 Chapter 2. Preliminaries

Figure 2.3: A multiresolution hierarchy of volume dataset is a set of voxel models
of successively coarser resolutions that represent the same scalar field V . The original
dataset V0 typically contains the raw data obtained by some capture devices after its
acquisition. The lower resolution datasets V1 . . . Vn are obtained using downsampling
methods.

studies provided by CT may easily consist of 2000 slices, with slices of 512×512
pixels, with a precision of 12bit each one. Voxel models of these dimensions
(5122 × 2000) result in roughly a gigabyte of data. Other techniques such
as MicroCT can even achieve higher resolution datasets, resulting in several
gigabytes of data.

Several problems arise from big datasets. Mainly, due to the amount of data
they contain, they have demanding memory requirements. These issues are not
especially important regarding the storage capabilities of most devices. How-
ever, large datasets may not fit into the main GPU memory, which is scarce in
mobile devices. Furthermore, transmitting big amounts of information require
having large bandwidths in order not to increase the latency of data transport
when this needs to be sent across a network link. Similarly, the same issue
applies locally, at the time of uploading information from the storage device
to main memory. In addition, in the hypothetical case that the memory size
requirements are not a problem, having large amounts of information implies
large amounts of work for the visualization algorithm, which means that the
GPU will take longer to finish rendering a frame, decreasing the frame rate
and consequently reducing the level of interaction.

2.4. Direct volume rendering 13

In order to address these issues, one of the most known approaches is mul-
tiresolution. A multiresolution volume dataset is a set of datasets V0, V1 . . . Vn
of successively coarser resolutions (see Figure 2.3). The reduction factor could
vary and could be applied differently to the different axes of the model. How-
ever, we will assume a reduction factor of two in each dimension from successive
resolutions so that, for k > 0, Vk is stored in a 1/8th of memory required for
Vk−1.

To generate a coarse dataset Vk in the hierarchy, the original (or a higher-
resolution) dataset is usually filtered with a symmetric weighting function w
of a finite domain. After filtering, the high-resolution model is then usually
subsampled or resampled at a lower resolution to finally obtain the coarser
resolution voxel model Vk.

A typical example of the usage of multiresolution is selecting a certain
coarse dataset to be used for visualization whenever any other finer (or higher
resolution) dataset in the hierarchy is too big to be properly managed by the
target hardware (e.g., in terms of memory size or processing speed).

Inevitably, coarse representations in the multiresolution hierarchy lose in-
formation as the level of simplification increases. This point is one of the most
critical stages in the visualization pipeline where information can be lost. Sev-
eral contributions of this thesis focus on this issue from different perspectives.
Chapter 4 in particular studies several filters for the generation of the mul-
tiresolution hierarchy (downsampling) and proposes a novel feature-preserving
filter to achieve higher quality downsampled models.

2.4 Direct volume rendering

The target of Direct Volume Rendering (DVR) is to directly extract the vi-
sual information from a volumetric model V in order to reflect the physical
properties of the participating medium it represents. To provide a volumetric
description of its physical properties, we use an optical model that simplifies
the computationally expensive task of solving the equations of light transport,
which rely on complex geometric optics. The most used optical model, among
others in DVR, is the emission-absorption model [36, 52], in which each particle
of the volume can emit light and absorb incident light, but scattering and indi-
rect illumination are neglected. It provides a good compromise between gener-
ality and efficiency of computation. In order to apply the emission-absorption

14 Chapter 2. Preliminaries

Figure 2.4: Partitioning of the integration domain into several intervals. The inter-
vals are described by locations s0 < s1 < . . . < sn. The ith interval is the one between
the locations [si−1, si]. This image is inspired by Figure 1.4 in [34].

model, two terms q and k that define the optical material properties are needed.
These terms are the emission of light and the true absorption of the material at
a certain point, respectively, as assigned through a Transfer Function (see Sec-
tion 2.5. The emission-absorption model, when integrating along the direction
of light towards the view position, leads to the volume rendering integral [34]:

I(D) = I0e
−

∫D
s0
k(t)dt

+

∫ D

s0

q(s)e−
∫D
s k(t)dtds. (2.1)

where I(D) is the intensity of light (radiance) leaving the volume at the position
s = D and finally reaching the camera. In the first term, I0 represents the
light entering the volume from the background at the position s = s0, and
the following exponential function is the attenuation it suffers as traveling
through the participating medium of the volume from s0 to D. The second
term represents the integral contribution of the illuminated volume attenuated
by the participating medium along the remaining distances to the camera.

The volume rendering integral cannot be computed analytically for most
datasets. The most common approach to implement an approximation as close
as possible to its solution is by splitting it into several integration intervals.
These intervals can be described by locations s0 < s1 < . . . < sn, being s0
the starting point of the integration, located at the back part of the volume,
and sn = D is the endpoint, closer to the camera. Figure 2.4 illustrates the
partitioning of the integration domain into several segments. With this parti-
tioning, the volume rendering integral can be computed in a more friendly way
for numerical methods as follows:

2.4. Direct volume rendering 15

I(D) =
n∑
i=0

ci

n∏
j=i+1

Tj being c0 = I0. (2.2)

where ci is the color contribution of the segment going from si−1 to si, and the
initial case c0 is the color contribution of the light I0 at the point of entering
the volume from behind, in the direction of the eye. Tj is the accumulated
transparency from sj to sj+1. Note that although the previous formula is
dealing with transparencies Tj , it is much more common in computer graphics
in general (and so will be in the rest of the document) speaking about opacities
αj = 1− Tj .

The discretized volume rendering integral (equation 2.2) can be translated
to a more suitable form for processor units. Iterative computation allows solv-
ing the equation by compositing. The idea is to split the summations and
multiplications in equation 2.2 into several, yet simpler operations that are ex-
ecuted sequentially. The integral can be solved by iterating in two directions,
which leaves two different composition schemes: front-to-back and back-to-
front compositing.

When the viewing rays are traversed from the viewing point into the vol-
ume, the front-to-back scheme is applied:

Cdst ← Cdst + (1− αdst)Csrc
αdst ← αdst + (1− αdst)αsrc

(2.3)

In this case, the resulting color and opacity after each compositing step
(Cdst, αdst) are calculated by adding the colors and opacities of the current
interval (Csrc, αsrc) attenuated by the opacity of the front part of the volume,
which was computed in the previous steps. A potential advantage of this
scheme is the possibility of finalizing the computation of the integral before
reaching the final location sn whenever αdst reaches full opacity, which is known
as early ray termination. We will be using this color compositing scheme in all
the visualization algorithms seen along this thesis.

The alternative composition scheme, back-to-front compositing, evaluates
the volume rendering equation along a ray coming from the back part of the
volume and advancing toward the viewing position. Unlike front-to-back com-
positing, early ray termination cannot be performed with this scheme.

16 Chapter 2. Preliminaries

2.5 The Transfer Function

As said, the process of rendering volume datasets relies on performing a classifi-
cation of the volumetric data that allows assigning specific colors and opacities
to different data ranges. Through this process, proper classification of the data
ranges allows revealing relevant information of the input dataset.

The mapping between the input data values and the output material prop-
erties is provided by the so-called Transfer Functions (TF). In this context, a
Transfer Function can be understood as a table or a function that maps input
data values to output visual properties. The simplest ones are 1D Transfer
Functions, and they usually perform a classification of the input data that
maps density values to colors and opacities. There also exist more complex
Transfer Functions that allow using more input data criteria for the classifi-
cation, such as the gradient magnitude or the curvature of the scalar field.
Of course, the output properties resulting from the mapping can vary from
simple RGBA data to more complex optical properties. An in-depth study of
the research done on various aspects of TFs is presented in the state-of-the-art
paper [50] by Ljung et al. In this thesis, we have always used 1D Transfer
Functions. See Figure 2.5 to see an example on how the visualization of the
same volume dataset can vary between different Transfer Functions.

(a) Transfer Function 1 (b) Transfer Function 2

Figure 2.5: The same volume model rendered with two different Transfer Functions.
The left image (a) uses a Transfer Function that helps to show the skin tissue with
slight transparency. In the right image (b), the piece-wise linear shape in the Transfer
Function corresponding to the skin tissue has been interactively removed, so the resulting
rendering now exhibits bone and some venous structures.

2.5. The Transfer Function 17

2.5.1 Pre- and post-classification

As it has been said, rendering algorithms can resample the datasets at random
positions in space, an operation that usually involves interpolating the values of
samples from the original dataset. Considering this, the mapping performed by
the TF can be performed either as a pre-classification or as a post-classification.

Pre-classification performs the mapping assigning the output properties of
the TF to the samples of the original dataset (see Figure 2.6-a). This way, the
visualization algorithm takes samples at random positions directly interpolat-
ing color values after classification. Pre-classification does not reproduce well
high frequencies (e.g., sudden peaks in the TF), which generates noticeable ar-
tifacts in the final image. Furthermore, pre-classification requires a traversal of
the whole input dataset before executing the visualization algorithm whenever
the TF changes, which is a bottleneck point in the pipeline if the application
is supposed to allow interactive modifications of the TF.

On the other hand, post-classification performs the mapping after the in-
tensity values of the input dataset have been interpolated (see Figure 2.6-b).
This way of classification reproduces better the high frequencies in the TF and
provides better final image results. Particularly, in models of low resolution, a
slightly denser sampling of the scalar field (something smaller than the size of
a voxel) can help reproducing those high frequencies, which is not possible at
all in scenarios with pre-classified data.

(a) Pre-classification (b) Post-classification

Figure 2.6: Pre-classification (a) consists in applying the Transfer Function in a
pre-interpolative stage (i.e. the original voxels are classified). In post-classification, the
visualization algorithm takes samples at arbitrary positions, and the reconstructed scalar
values are classified after interpolation. As shown, post-classification achieves better
results than pre-classification, because applying the Transfer Function after interpolating
the voxel values computes more accurate colors for the underlying scalar field.

18 Chapter 2. Preliminaries

2.6 Ray casting

Ray casting has been the DVR algorithm used throughout the whole course
of this thesis. We have based our work on this method because nowadays it is
the most popular image-based method for GPU-aided DVR. Figure 2.7 shows
a schematic overview of the ray casting algorithm. The contributing pixels
are generated by projecting and rasterizing some proxy geometry bounding the
volume, such as the minimum axis-aligned box containing the volume. The ras-
terized fragments are usually mapped to the viewport pixels (if supersampling
is not taken into account). Then, for each rasterized fragment, a GPU pro-
gram following the volume rendering pipeline shown in Figure 2.8 is executed.
To start, it casts a single ray that emerges from the virtual camera, passes
through the current pixel, and finally intersects the volume dataset. Along
the ray, the volume rendering integral (see equation 2.1) is then evaluated by
resampling the volume dataset at discrete intervals, usually in front-to-back
order. The distance between samples is usually set to some value slightly
smaller than the size of a voxel, in order not to lose high frequencies in the
scalar field. Throughout the ray traversal, the optical properties of the sam-
pled material are obtained thanks to the Transfer Function and shaded using
the scalar field gradient at that position. Finally, the color of each pixel is
obtained by iteratively compositing the colors obtained from each sample over
the ray (equation 2.3).

Figure 2.7: In the ray casting algorithm, the color for each pixel is computed by
color-compositing the optical properties of the densities (which are obtained from a
Transfer Function) as resampled from the volume dataset.

2.6. Ray casting 19

Figure 2.8: The volume rendering pipeline. In order to evaluate the resulting color
of a pixel, the dataset must be traversed, taking samples at arbitrary positions. Values
at those samples are evaluated by means of an interpolation filter applied on the discrete
dataset. Density values are in turn classified with a Transfer Function that provides their
optical properties. The gradient can be also estimated for each sample position in order
to apply an illumination model. In the last place, the evaluated colors of all samples in
the traversal are composed along the viewing rays to obtain the final image.

2.6.1 The volume rendering pipeline

The volume rendering pipeline for the ray casting algorithm, like for any other
DVR method, has several subsequent stages (see Figure 2.8):

• Data Traversal. The input dataset is resampled at discrete positions
in order to evaluate the volume rendering integral.

• Interpolation. Usually, the sampling positions do not match the
exact locations of the grid points. Different filters can be used in order
to reconstruct the continuous 3D scalar field at those sampling positions,
being tri-linear interpolation the most common for uniform grids (and
also the one implemented by common graphics hardware).

• Classification. Classification maps values of the input scalar field to
optical properties, which allows distinguishing different materials in the
volume. This feature is usually provided by Transfer Functions, which
are basically tables that assign the optical properties in the form of color
and opacity.

• Gradient Computation. When local illumination is a desirable fea-
ture, the gradient of the scalar field is typically needed. Gradients are
usually approximated at the sampling positions of the data traversal with
gradient estimation techniques such as central differences.

• Shading and Illumination. Volume shading can be incorporated by
adding an illumination term to the emissive source term in the volume
rendering integral. This illumination term is computed using the com-
puted gradient, and the emissive term is obtained by the classification
made with the Transfer Function.

20 Chapter 2. Preliminaries

• Compositing. The iterative computation of the discretized volume
rendering integral (equation 2.2) leads to compositing schemes that al-
low computing the final color incrementally as the data traversal occurs,
either if it happens front-to-back (equation 2.3) or back-to-front.

2.6.2 Improvement techniques

The contributions presented throughout the course of this document, unless
otherwise stated, will assume the usage of some implementation details that
either boost performance or improve the quality of the final renderings. They
are briefly introduced in the subsequent paragraphs.

Empty space skipping (ESS)

Whenever some of the structures of the volumetric dataset are not required
for the final rendering, the Transfer Function sets the opacities for these den-
sities to zero. When this happens, the sampling taken over the ray traversal is
wasting time and computational power, compromising the performance of the
process. ESS is a performance improvement that avoids sampling over those
transparent ray segments that will not have an impact on the final color. We
use a basic form of ESS [44] that consists in subdividing the proxy geometry
(which is originally a cube-like bounding box) into smaller blocks (see Fig-
ure 2.9). These smaller blocks are classified in a pre-processing step, and they
contain the minimum and maximum scalar values contained within its volume.
Based on the Transfer Function and the minimum and maximum values con-
tained in these blocks, we can quickly determine which blocks will be visible
or not. All those visible blocks will build a tightener proxy geometry that
will generate fewer fragments in the viewport space and will also determine a
shorter integration domain over the ray.

Early ray termination (ERT)

Another improvement related to performance is ERT. When tracing rays across
a volume dataset in a front-to-back fashion, many rays will quickly accumu-
late full opacity as color compositing occurs. It makes no sense to continue
iterating through the rays if the contribution of the subsequent samples will
not contribute color and have an impact on the final rendering. ERT [44] is

2.6. Ray casting 21

Figure 2.9: The proxy geometry bounding this volume model is shown in red (in
2D). We subdivide the bounding box of the volume model in a grid and generate a
mesh that envelopes those grid cells containing non-transparent data. We use the proxy
geometry in order to perform empty space skipping, allowing rays to effectively start
where non-transparent data is found, and finishing wherever there is only transparent
data remaining.

another performance improvement that consists in finalizing the ray traversal
at this point. Thanks to the dynamic branching provided by nowadays’ GPUs,
this operation is easily performed in fragment shaders, where a conditional
statement is enough to stop the execution of a loop.

Stochastic jittering

One of the drawbacks resulting from resampling a volume dataset at discrete
intervals in order to evaluate the volume rendering integral is the potential
loss of high-frequencies both in the scalar field and in the Transfer Function,
which generates the well-known wood-grain artifacts (see Figure 2.10-a). This
issue particularly happens when the sampling rate is too low, and it may be
more easily noticed when using Transfer Functions containing peaks with a
steep slope. It can also be seen in regions of sudden change in the scalar field
such as in the boundary between air and skin tissue. In order to capture these
high frequencies, an increase of the sampling rate over the ray could be added.
However, this solution directly decreases performance. This is not acceptable
for our purposes, as it will be shown in the following chapters, where we will

22 Chapter 2. Preliminaries

(a) Wood-grain artifacts (b) Stochastic jittering added

(c) Transfer Function used for the above renderings

Figure 2.10: With an insufficient sampling rate, high frequencies either in the
Transfer Function (c) or in the scalar filed are sometimes missed. As shown in (a),
this may result in wood-grain artifacts due to the spatial coherency among neighboring
pixels. With stochastic jittering (b), these manifested artifacts are suppressed by noise.

deal with multiresolution approaches which will also be combined with lower
sampling rates in order to increase performance.

One common solution to remove these artifacts without increasing the sam-
pling rate is stochastic jittering. This technique hides wood-grain artifacts by
adding small offsets to the sampling positions of rays in the viewing direction.
The sampling positions along each ray through the pixel are offset by a different
random factor. Consequently, the coherence between pixels that manifests as
artifacts is suppressed by noise. The implementation of this technique is simple
and only requires a simple 2D texture with random noise. Each pixel in the
viewport is mapped to a texel of this noise texture, and the resulting ray pass-
ing through this pixel is accordingly offset by the fetched random value from
the texture. The results of using this technique as opposed to visualizations
with wood-grain artifacts can be seen in Figure 2.10-b.

Pre-integrated volume rendering

In order to solve the previously mentioned wood-grain artifacts, instead of in-
creasing the sampling rate, or using stochastic jittering (see Section 2.6.2), the
solution by Engel et al.[23] pre-computes the integration between two different

2.7. Gradient-based illumination 23

(a) Wood-grain artifacts (b) Pre-integrated volume rendering

Figure 2.11: Using standard 1D TFs, when the size of the sampling step is not small
enough, high frequencies either in the TF or in the scalar field can be missed, showing
these wood-grain artifacts (a). With pre-integrated volume rendering [23], this issue is
solved (b) without compromising performance.

density values of the scalar field for a certain separation between samples. In
order to do this, the sampling rate (separation between samples) for a certain
dataset and for each of its coarser dataset representations (in multiresolution
models) is fixed, and the pre-integrated Transfer Functions for each one is pre-
calculated in a separated table. These tables are actually 1D SATs (summed
area tables) that store, at each entry, the summation of the values of the orig-
inal TF from the beginning of the table to the current entry. With them, the
average contribution of colors and opacities in the interval between two samples
over the ray can be estimated. Figure 2.11 shows the results achieved using
pre-integrated volume rendering as opposed to using standard TFs.

Note that stochastic jittering (Section 2.6.2) removes wood-grain artifacts in
favor of noise, which can be annoying in certain circumstances. Pre-integrated
volume rendering, on the other hand, achieves much softer results, but it does
not fully remove wood-grain artifacts because it assumes linear changes in the
density between two samples, which is not the case in many occasions. The
implementations of the visualization algorithms used in this thesis use both,
the combination of stochastic jittering and pre-integrated volume rendering,
which highly improve the quality of the final renderings.

2.7 Gradient-based illumination

Traditional local illumination models use the notion of the normal vector, which
describes the local orientation of a surface, to compute the local illumination.
In DVR, there is not a single surface, defined by a discrete mesh, for which
normals can be provided at each vertex. Instead, we assume that light is

24 Chapter 2. Preliminaries

reflected at isosurfaces inside the volume data. For a fixed isovalue v, an
isosurface, in volumetric models, is the union of all sample points p that share
the same scalar value v. The scalar field gradient for an isosurface can be
computed at a certain point of the volume with the derivative of the scalar
field:

∇f(x) =
(δf(x)

δx
δf(x)
δy

δf(x)
δz

)
(2.4)

which points into the direction of steepest ascent, which is always perpendicular
to the isosurface.

There are several methods for estimating gradient vectors, which differ in
the accuracy of the resulting gradients and the computational cost. Some of the
most common methods are based in finite differences (e.g. forward differences
or central differences), which are generally cheap options that obtain quite
acceptable results, or in discrete filter kernels, such as the Sobel operator, which
achieves better results at the expense of a higher computational cost. The
decision on which gradient estimator to use is mainly tied to the availability
of time at the stage of computation.

2.7.1 Pre-computed vs. on-the-fly gradients

There is a variety of techniques that allow us to estimate the gradient from
discrete data. In GPU-based DVR, the two most important ways of obtaining
gradients while the visualization algorithm takes place are either having pre-
computed gradients at the discrete positions of the samples of the original
dataset, or by estimating them on-the-fly, which means that the computation
of the gradient needs to be executed in real time.

The estimation of pre-computed gradients takes place in a pre-interpolative
stage. Gradients are evaluated either from the scalar field, or from voxels’ opac-
ities if working with pre-classified data. In either case, the evaluation will take
place at the location of the original samples of the regular grid. This implies
that the visualization algorithm will obtain interpolated gradients, which will
be fast to fetch, but whose values will not be the same as if estimated directly
from the interpolated scalar values. Pre-computed gradients may be estimated

2.8. Visualization artifacts and performance issues 25

with higher quality filters that take longer to compute, as time restrictions are
more flexible at this stage.

On the other hand, gradients evaluated on the fly in shader code take place
after interpolation has occurred, which allows evaluating gradients directly at
arbitrary positions between the original samples of the regular grid. This is
obviously slower than fetching a pre-computed gradient, but the evaluated
gradient will be more accurate with respect to the interpolated scalar values.
However, if gradients need to be estimated at this stage, faster approaches are
preferred in order not to compromise factors such as interactivity or power
consumption.

2.7.2 Issues related to gradient illumination

In practice, several problems occur when gradients are used in order to compute
local illumination. The first one is when trying to estimate the gradient in a
homogeneous area with no data variation. In such case, there is not a well
defined isosurface, and thus, the estimated gradient may tend to be (0, 0, 0), or
any other tiny value with an undefined direction due to numerical inaccuracies
or small noise in the dataset. Another issue related to multiresolution datasets
is that, as a consequence of the loss of information, isosurfaces have a different
topology in coarse datasets, and thus, gradients are also different, providing
an inconsistent shading among levels of resolution.

2.8 Visualization artifacts and performance issues

As we have seen, the proposed visualization pipeline consists of several stages
where the involved dataset suffers transformations. From acquisition to the
final rendering, the dataset can be filtered, downsampled, and rendered in
different ways. These transformations may have an impact on the accuracy
of the final ray casting images, and may also require an important amount of
computational resources.

In order to develop good quality and efficient solutions for the visualization
of medical models in mobile and commodity devices, in this thesis, we propose
improvements to existing flaws in those stages of the volume rendering pipeline.
These solutions and improvements can have either impact in the results regard-
ing two different aspects: visual quality and performance/interactivity.

26 Chapter 2. Preliminaries

2.8.1 Visual quality

With the aim of properly managing volume datasets on mobile devices, we
make use of multiresolution techniques, where coarse representations of the
original dataset have smaller resolutions, and thus, loss of information, which
directly affects the fidelity and the visual quality of the generated renderings.
We have identified the following issues, regarding visual quality:

• Loss of features in downsampling: With the aim of providing
high frame rates to provide users interactive camera movements, we will
be working with a multiresolution scheme, which involves filtering and
downsampling strategies (see Figure 2.1). This is the most aggressive
data transformation where a lot of information (e.g., fine details) is lost in
the coarse dataset representations after downsampling. Figure 2.12 shows
an example of this artifact. Chapter 4 introduces a novel downsampling
filter to preserve features which are prone to disappear in this process.

• Erroneous shading in coarse datasets: Many implementations of
the ray casting algorithm compute gradients on-the-fly directly in the
fragment shader, where the ray traversal is performed. Computing gra-
dients this way from a coarse dataset that has been previously down-
sampled, does not provide gradients that match the directions of the
gradients in the original dataset in many cases. Figure 2.13 shows this
issue. The shading of surfaces is a significant contribution to the quality
of the final renderings, and it is very sensitive to the quality of the gradi-
ents provided. To improve this, a proposal that pre-computes gradients
from the original dataset and applies an improved downsampling filter,
along with an efficient encoding scheme, is explained in Chapter 5

• Incorrect colors and opacities in coarse datasets: A Transfer
Function is usually designed to show specific properties of a dataset.
They can be used to visualize similar datasets, such as in medicine, but
slights adjustments are necessary in order to have the best results. As
it is shown in Figure 2.14, using a TF that was specifically designed to
visualize a certain dataset will not be the optimal solution to visualize
its coarse representations in the multiresolution hierarchy, because the
distribution of values varies among levels of resolution. To address this
issue, in Chapter 6 we present an approach that adjusts a TF originally
designed to visualize a given dataset, and creates adjusted TFs for its
coarser representations.

2.8. Visualization artifacts and performance issues 27

(a) Full resolution (b) Low resolution

Figure 2.12: Loss of features in downsampling. The renderings of the full resolution
model (a) have venous structures that mostly disappear in the rendering of the lower
resolution version of the dataset (b).

(a) Full resolution (b) Low resolution

Figure 2.13: Inaccurate shading after downsampling. Images generated from the
high-resolution dataset (a) show a smooth surface on the skull. After downsampling (b)
the surface exhibits a noticeable staircase artifact mainly due to the shading calculations.

(a) Full resolution (b) Low resolution

Figure 2.14: Incorrect colors and opacities in coarse datasets. During downsam-
pling, some tissues, if not disappear, become thicker due to the loss of resolution. If these
tissues are assigned a semi-transparent color by the Transfer Function, this thickening
effect affects the final color of the resulting output image. The full resolution model (a)
exhibits a lower level of transparency than the low resolution image (b), because the
skin tissue is thicker in the second one.

28 Chapter 2. Preliminaries

2.8.2 Performance and interactivity

In medical applications, rendering the full resolution datasets would be desir-
able, but it is not always possible due to hardware limitations. This kind of
software at least needs to give the possibility to generate high-resolution im-
ages at some point. However, the generation of high-resolution images mainly
leads to performance issues:

• Loss of interactivity: Mobile devices, tablets, and commodity PCs
are the hardware which is most available in clinics and hospitals. Those
devices are not provided with high-end graphics chips, so generating ren-
derings of high-resolution datasets in high-resolution viewports takes a
considerable amount of time. In the case of mobile devices, a high-
resolution render can take seconds in complete, which provides blocking,
non-interactive manipulations, and in the worst case, depending on the
device, application crashes. In Chapter 7, we address this problem with
multiresolution datasets and progressive render algorithms. Whenever
interaction is necessary, coarse datasets are rendered using the quality
improvement contributions presented in the previous chapters, and then,
at still frames, a progressive ray casting algorithm renders a higher res-
olution dataset incrementally.

3
State of the Art

This chapter reviews the state of the art in the field of Volume Visualization
that is most related to our global goal: the interactive, high-quality visualiza-
tion of big datasets in commodity and mobile devices. To that aim, the follow-
ing sections develop upon our areas of interest in the field. First, Section 3.1
presents an overview of contributions or approaches related to multiresolution
algorithms, dataset compression, and downsampling methods. Section 3.4 re-
views literature that strives to improve the quality of multiresolution volume
visualizations, and finally, Section 3.5 cites the most recent publications tack-
ling the problem of interactive direct volume rendering on mobile devices.

3.1 Multiresolution volume datasets

With the improvement of modern acquisition devices, the resolution of medical
image datasets has increased continuously. The amount of memory of recent
GPUs is also growing, but unfortunately, the increasing rate of the size of vol-
umetric datasets is even much higher. Different rendering techniques based on
multiresolution have been proposed to obtain interactive visualizations. These
techniques rely on the generation of several levels of detail from the original
dataset and using coarse levels of resolution for the visualization task when
convenient, in order to find an appropriate balance between image quality and
interactivity.

29

30 Chapter 3. State of the Art

Several multiresolution techniques use special data structures such as oc-
trees [7, 46, 29], N3-trees [11], 3D mipmaps, hierarchical grids [26], or other
sparse representations [77, 89], in some cases also combined with compression
techniques [28, 24] and streaming [80]. Some techniques approach the multires-
olution issue through wavelets [31]. In [32], the authors present an algorithm
for the rendering or large volume data based on a compressed hierarchical
wavelet representation of the input dataset. In [82], the authors present a par-
allel multiresolution volume rendering framework for large-scale time-varying
data visualization using wavelet-based time-space partitioning (WTSP) trees.
We will concentrate on regular grids, as they are the most commonly provided
by capture devices in the medical practice.

Some authors have focused their efforts to solve common artifacts regard-
ing mixed multiresolution visualizations. For instance, in [87], an adaptive
approach to volume rendering via 3D textures where their level-of-detail repre-
sentation guarantee consistent interpolation between different resolution levels
is presented. In [5], the authors propose a mixed-resolution volume ray casting
approach that allows freely mixing volume bricks of different levels of resolu-
tion during rendering. Their framework and packing scheme allows mixing the
different bricks in a single 3D texture and is able to obtain a C0-continuous
function over the whole dataset with hardware-native filtering.

Frequently combined with multiresolution approaches, many articles focus
on lossy or lossless data compression in order to reduce the amount of volume
data. For more in-depth information about compressed GPU-based DVR, the
survey on this subject by Balsa et al. is a good starting point [2]. Another
group of techniques partition data in order to make smaller chunks that are then
loaded on demand to the GPU. These techniques include bricking, streaming,
and complex algorithms to transmit data from the main memory to the GPU
memory efficiently. Beyer et al. have gathered quite recent related works in
their survey [6].

Not directly related to multiresolution, but definitely, an important issue
to deal with is the processing of the volumetric datasets. The quality of the
values obtained from datasets represented by uniform grids of samples can be
improved by pre-filtering or using adequate reconstruction filters. For instance,
in [60], the authors present a feature-preserving volume filtering method based
on the optimization of a three-component (original value, feature preservation,
and curvature minimization) penalty function. The solution they propose can
be efficiently solved in the frequency domain using fast Fourier transformation
(FFT). With this filter, typical staircase artifacts are eliminated from visu-

3.2. Downsampling of scalar data 31

alizations without losing fine details. Another, more recent approach, is the
pre-filtered Gaussian reconstruction scheme presented in [12]. This reconstruc-
tion filter first performs a Gaussian deconvolution in the frequency domain as
a pre-process, and then, a spatial-domain convolution with a truncated Gaus-
sian kernel. Although not yet implemented in conventional graphics hardware,
they approximate an ideal reconstruction of the signal and achieve results sig-
nificantly better than previous reconstruction approaches.

In this thesis, we are focusing on generation techniques for multiresolution
models that require little pre-processing time and computational complexity
in general. For this reason, recalling that a desirable requisite is that the
processed medical data is available for its inspection as quickly as possible,
we have strived to avoid using compression techniques or expensive filters that
hinder our performance goals.

3.2 Downsampling of scalar data

An important step in all multiresolution approaches is the way in which reduced
versions of the original data in the multiresolution structure are obtained.
The better the downsampled versions, the better the final images that will
be obtained after rendering.

Following this line, downsampling by means of averaging voxels, or possi-
bly filtering and subsampling the original dataset, are the most common ap-
proaches [7, 49]. Unfortunately, these techniques may rapidly eliminate small
details, as it is expected when the resolution decreases.

In [84], the authors present a feature-preserving volume data reduction
and focus+context visualization method based on Transfer-Function-driven,
continuous voxel repositioning and resampling techniques. Their method uses
a pre-defined Transfer Function in order to perform importance sampling so
that the interesting regions are captured with more detail. Nevertheless, using
Transfer Function dependent techniques is not appropriate in scenarios such
as the presented in this thesis, where medical data can be visualized using
Transfer Functions that can be potentially changed.

Another data reduction technique is topology-guided downsampling [43], a
downsampling method for structured grids which preserves much more of the
topology of a scalar field (i.e., the number of components, tunnels, holes, etc.)

32 Chapter 3. State of the Art

than other existing downsampling methods by preferably selecting scalar values
of critical points. Unlike the previous method, it is completely independent of
the Transfer Function, only taking into account the topology of the original
scalar field. However, the spatial bias introduced by this topology preserving
technique is not desirable in medical visualizations, as the location of features
in the downsampled models changes with respect to the original dataset.

There is another family of methods tailored to improve the quality of the
volumetric datasets by reducing noise. These are more suitable for datasets
with a high amount of noise, such as the ones from ultrasound imaging. In
general, such techniques are more focused on noise reduction, but sometimes
they also combine the noise reduction with downsampling. Kwon et al. [45], for
instance, filter and denoise ultrasound images using a fast bilateral filter. As it
will be reviewed in Chapter 4, the bilateral filter usually produces undesirable
results for downsampling medical datasets such as the ones obtained from CTs.
Another technique, more focused on noise reduction, is the method by Wang
et al. [83].

There is also related bibliography about feature preserving downsampling
methods for 2D images. Although these methods have not been explicitly
designed for volumetric datasets, their idea could be easily adapted to such
case. For instance, Kopf et al. [40] implement a content-adaptive downsam-
pling method that uses a bilateral combination of two Gaussian kernels defined
over space and color, calculated using an iterative maximum-likelihood opti-
mization process using a variation of the Expectation-Maximization algorithm.
Öztireli and Gross [68], formulate image downsampling as an optimization
problem that maximizes a perceptual image quality metric (SSIM) based on
the difference between the input and the output images. The authors state
that their method is preferred by most people, and its performance is faster
than the former. Anyway, with these methods, the process of downsampling
small 2D images takes a computation time of the order of seconds or min-
utes, which translated to volumetric datasets in medicine would result in much
longer times (at least hours). Furthermore, Weber et al. [86] present an al-
gorithm based on convolutional filters where input pixels contribute more to
the output image the more their color deviates from their local neighborhood.
They use a guidance image based on a preliminary downsampled image to be
able to define pixel contributions, and a parameter λ that has to be manually
adjusted, depending on the image, to provide the best results. This filter, al-
though presented for 2D images, is very similar in spirit to the filter we present
in Chapter 4. However, they need a manual adjustment of the parameters.

3.3. Downsampling of gradient data 33

In Chapter 4 we propose an alternative solution for downsampling scalar
data. We present a downsampling filter [15, 17] designed to preserve fea-
tures typically lost during the generation of coarse representations of volume
datasets, and still obtaining smooth results. The presented method takes just a
few minutes to generate a downsampled version from any of the high-resolution
datasets we used. Furthermore, and not less important, it runs completely
unattended, so no need for any user configuration or parameter adjustment is
necessary.

3.3 Downsampling of gradient data

An important stage in the volume rendering pipeline is the computation of
gradients, which are used to simulate both diffuse and specular reflections (in
our case, using the Phong shading model [71]). Therefore, if its calculation
is not accurate, the quality of the resulting rendered images may be affected
as mentioned in Chapter 2, and also shown in Chapter 5. In [4], the authors
present an analysis of the ideal gradient estimator. There are several methods
to evaluate gradients from a scalar field. One of the most used reconstruc-
tion filters designed for that purpose is the central differences approach [34],
which requires six extra texture lookups to perform the difference in the scalar
field along each direction in the XYZ space. There is an even faster version
of this filter, at the expense of introducing a small spatial bias, that only uses
three extra texture lookups by calculating the difference with the central den-
sity. There are also methods that achieve gradients of better quality such as
the Sobel’s operator [20] by sacrificing the performance. The classical Sobel’s
operator, for instance, requires 26 extra texture lookups due to its 3 × 3 × 3
kernel. To alleviate this performance penalty, Sigg and Hadwiger [70], use a
more efficient version of the Sobel’s operator that only needs eight extra tex-
ture lookups at the corners of the voxel containing the sample to shade, and
still obtain similar quality results. Another gradient estimation approach for
volume data (which also provides filtered densities) based on 4D linear regres-
sion is presented in [59]. Their solution leads to a system of linear equations
that can be solved with an efficient convolution, which takes 26 accesses to the
neighboring voxels, similar in spirit to the Sobel operator.

Working with pre-computed gradients [34] allows using slower but accurate
computations for estimating gradients before rendering (as during pre-process,
speed is usually not crucial) and speeds up the visualization algorithms taking

34 Chapter 3. State of the Art

place in the GPU by moving this rather expensive computation to previous
stages. However, most existing algorithms for encoding normal vectors and
gradients cannot be used in the context of volume rendering with gradients
encoded in a 3D texture. Gradient values obtained between several voxels are
always the result of a convex interpolation when the gradients in voxels are
simply encoded by quantizing their cartesian components (Gx, Gy, Gz). Un-
fortunately, this desirable property is not fulfilled by many other well-known
proposals like [13] (spherical coordinates), [66] (recursive subdivision of a Pla-
tonic solid), [14] (indexing spherical triangles) or [9] (encoding a point in the
surface of a cube).

In Chapter 5 we propose a solution based on pre-computed gradients. Our
approach consists of a downsampling filter to generate multiresolution rep-
resentations of gradient data and an encoding scheme based on a monotonic
transformation that guarantees the property of interpolation mentioned above,
thus ensuring that the final algorithm is GPU-friendly.

3.4 Quality visualization of downsampled data

The previous sections have dealt with the generation of downsampled models
that preserve quality. However, we can obtain higher quality renderings by
using other techniques that can complement the previous approaches.

Younesy et al. [90] focus on improving the quality of renderings for coarse
multiresolution levels. They state that the original data distribution in coarse
models might be ideally approximated by storing local histograms at each low-
resolution voxel. However, as the authors note, this is usually impractical
due to its high storage requirements. Thus, they propose a simplification that
consists of representing these histograms with a Gaussian basis function, which
implies storing an average density (µ) and its standard deviation (σ), along
with each voxel. Although they designed an efficient algorithm, the size of the
data is increased with respect to traditional downsampling methods, and this
may be a problem if the available memory is limited.

In [42], Kraus and Bürger defend the fact that downsampling of RGBA
data is a better approach to compute multiresolution hierarchies rather than
downsampling scalar grids, because mixing colors during downsampling pro-
duces the expected results, whereas averaging densities can provide inconsistent
colors after post-classification, depending on the Transfer Function and the na-

3.5. Visualization techniques on mobile devices 35

ture of the data itself. In their paper, the authors present a sampling method
for RGBA volume data that can be also used in the context of multiresolution
datasets. They demonstrate that their method is applicable to the construction
of multiresolution hierarchies of RGBA volume data such as mipmap volume
textures. Although GPU ray casting is typically performed over scalar data in
many applications (thanks to the ease it provides in order to have interactive
changes of the Transfer Function), they state that actual modifications of the
Transfer Function for pre-classified data in interactive time are practically pos-
sible with modern graphics hardware. However, in many cases, the preferred
option is still storing the scalar field of densities into a 3D texture. This avoids
increasing ×4 the memory requirements (as RGBA textures do) which is a
scarce resource in commodity PCs and mobile devices, and allows performing
post-classification during the ray traversal in the ray-casting algorithm, where
the density values can be mapped to opacity-weighted colors by means of a
Transfer Function that can be modified interactively.

More recently Sicat et al. [77] have presented an approach that uses a com-
pact sparse representation of probability density functions (pdf) to capture
voxel neighborhood distributions for consistent multiresolution volume render-
ing. They succeeded in avoiding erroneous data analysis (loss of information)
when coarser models are rendered using the same TF than the initial volume.
However, the significant pre-computation time needed and the increase of stor-
age makes this representation impractical in the current clinical practice. Our
objective is to obtain consistent visualizations for datasets commonly used in
medical environments, minimizing the modifications needed to the rendering
pipeline, the preprocessing time, and the increment of memory storage.

In this line, in Chapter 6 we present a method to improve the visualization
of multiresolution datasets by means of adapting the original TF for coarse
levels. The solution we propose does not require such extra storage but a
simpler small Transfer Function mapping. Furthermore, our system has no
impact in terms of required computational power since we use the same ray
casting algorithm with no modifications.

3.5 Visualization techniques on mobile devices

Since mobile platforms are ubiquitous nowadays, the interest in using mobile
devices for rendering volumetric models, especially medical datasets, is grow-
ing. Approaching these techniques to ubiquitous devices has benefits in several

36 Chapter 3. State of the Art

fields of the medical practice such as diagnosis, treatment, or teaching [62] pur-
poses. Some papers have been published compiling previous work regarding
this field of visualization. In [74], a state of the art of mobile rendering for iOS
devices is presented. In [63], the authors present a wider analysis of several
publications in this field including all kinds of mobile devices.

Several visualization frameworks [79] and applications have been developed
to allow interactive visualizations on mobile phones. Focusing on the rendering
of volume models, an example of a web-based DICOM viewer is Oviyam [72],
an HTML 5 solution that allows displaying series of studies as JPEG images.
OsiriX [67] is a widely used DICOM viewer which is prepared to perform
interactive direct volume rendering on mobile devices. Another toolkit which
allows such kind of visualizations is VES[39], a VTK OpenGL rendering kit
also prepared for mobile devices.

Many previous approaches have addressed the visualization of volumetric
models on mobile devices using two strategies: server dependent methods and
local methods. The following sections provide references to the research carried
out in both strategies.

3.5.1 Server dependent methods

Server dependent methods rely on external servers in order to perform part
of (or the whole) the work of the visualization pipeline. Depending on the
level of dependency, these methods can be classified in thin, balanced, and fat
approaches, depending on their dependence [63].

Server dependent methods that heavily rely on the server side to perform all
power consuming operations are called thin client architectures. Following this
scheme, Lamberti et al. [47] communicate rotation and translation commands
from client devices to the server, and obtain an MPEG video stream with the
rendered results of medical images as a response. In [33], Hachaj et al. propose
a similar solution also based on thin clients, and Gutenko et al. [30] use a more
efficient and modern video codec (H264) to encode the video stream. However,
these methods have strong connectivity restrictions we want to avoid.

Balanced solutions distribute the tasks between the server side and the mo-
bile device. In this line, Campoalegre et al. [8] perform a block-based Transfer
Function aware compression of the target dataset and are able to transmit the
desired regions of interest to support adaptive ray casting on the client side.

3.5. Visualization techniques on mobile devices 37

Fat distribution schemes take more advantage of client desktop machines
and hand-held devices [63]. They mainly rely on the server to provide the
datasets after possibly performing some expensive pre-processing tasks, but
produce the render locally. For instance, Congote et al. [10] present a plat-
form implementing this kind of architecture by means of the WebGL standard.
Movania et al. also developed various algorithms that perform a single-pass
ray casting for the efficient visualization of medical models based on WebGL.
For instance, in [57] and [55] they present a single-pass volume rendering al-
gorithm for 3D medical images using OpenGL ES 2.0. Furthermore, they
present another two high-performance volume renderers in [54]. In addition,
the same authors explain an algorithm that allows performing real-time vol-
umetric lighting on WebGL platforms in [58]. Using a different approach, a
details-on-demand scheme is presented by Schultz et al. [75], where they allow
the user to explore the entire dataset at its original resolution while simulta-
neously constraining the 3D texture size so that it does not exceed the GPU
capabilities of the portable device.

3.5.2 Local methods

Local rendering methods allow the visualization on mobile devices with no
need of network connectivity. 3D textures have been widely available on mo-
bile GPUs just recently, so most methods for rendering volumetric models have
relied on 2D texture stacks or tiled 2D textures emulating 3D textures. Among
others, Moser and Weiskopf [53], Fogal et al. [25] and Noon et al. [65] have de-
veloped tools using stacks of 2D textures representing the 3D volume. Congote
et al. [10], Noguera et al. [64, 61] and Movania et al [56], on the other hand,
emulate 3D textures by using a mosaic layout of its slices within a set of 2D
textures. More recently, when 3D textures have become widely available, both
slicing and ray casting algorithms have been used. In [3] Balsa et al. pre-
sented a practical comparison of volume rendering using several devices and
algorithms, including ray casting with the use of 3D textures, which was far
from interactive at that time. Also using 3D textures, Xin and Wong [88],
presented an intuitive framework for volume data exploration, although they
don’t work with datasets of resolutions higher than 1283.

Nowadays, GPUs in hand-held devices are more capable, so focusing on fat
and local rendering approaches by implementing the ray casting task on mobile
phones seems more feasible. However, porting volume rendering to mobile
devices may be challenged by three main limitations: GPU capabilities (as

38 Chapter 3. State of the Art

they could not provide the proper features to deal with the algorithms used to
visualize volumetric models), RAM size (models might not fit in main memory),
and GPU horsepower (even though models might fit the GPU memory, the
frame rate achieved could be inefficient to support interactivity adequately).

3.5.3 Progressive methods

Although not explicitly working on mobile platforms, the following publica-
tions target the issue of fast volume rendering through incremental ray casting
algorithms. Levoy [48] introduced an incremental way of performing volume
ray casting based on an adaptive image space subdivision. In [41], Kratz et al.
improved Levoy’s approach by introducing an error estimator from the field of
finite element methods. In the same line, Frey et al. [27] presented a scheme for
progressive rendering that adapts to different changes during data exploration.
They demonstrate an automatic parameter optimization scheme using a video
metric to optimize their frame control. These techniques are mainly focusing
on quality metrics to lead the progressive refinement algorithm. However, the
way they distribute rays is not tailored to achieve optimal performance, which
is a very important factor on mobile devices.

To tackle the problem of interactive quality volume visualization on mobile
devices, in Chapter 7 we present a framework for the multiresolution visual-
ization of volume datasets that uses several techniques based on incremental
rendering, and obtains high-quality results without sacrificing interactivity.

4
Downsampling of Scalar Fields

After data acquisition, the next stage of the visualization pipeline is data pro-
cessing. At this point, the generation of multiresolution hierarchies is a crucial
step to achieve interactive visualizations of large voxel models. Through the
downsampling of large volumetric models, we generate coarser models that fit
the limited capabilities of commodity and mobile devices. However, the loss of
resolution comes with a loss of fine details. Regarding that, in this chapter, we
present a comparison of several existing downsampling methods for volumetric
models and analyze their benefits and shortcomings. Based on the observa-
tions made, we finally present a novel feature-preserving downsampling filter
for volumetric datasets.

4.1 Motivation

Interactive visualization of large scalar grids is a required task in fields such as
medical imaging. Several operations, such as model inspection from different
points of view or modification of the Transfer Function to reveal specific fea-
tures, are the typical operations that physicians need to perform on a regular
basis. Interactive visualizations of the volumetric datasets are necessary to
allow these actions. However, datasets of high resolutions may hinder interac-
tivity, especially when visualization algorithms are required to run in modest
hardware, or even in mobile devices.

39

40 Chapter 4. Downsampling of Scalar Fields

A standard approach to provide a higher degree of interactivity when deal-
ing with large models is to reduce the amount of volumetric scalar data in order
to obtain coarse, simplified representations that are easier to handle with the
available hardware resources. This process is typically known as downsam-
pling, because it basically consists in reducing the number of samples of the
original dataset. This data reduction process takes place typically in a previ-
ous stage as a pre-process, before the visualization task is required. As said
in Chapter 2, we will focus on the generation of multiresolution hierarchies
of voxel models, which are the most efficient representations for GPU-aided
volume rendering, and the most commonly used by commercial applications in
the medical environment.

However, one of the common shortcomings of most downsampling methods
is that an important amount of information is lost, resulting in images of
lower quality when rendering the coarse, downsampled models, which tend to
disrespect the original topology and lack fine features of the original dataset.

4.2 Problem addressed

This chapter addresses the problem of information loss during the downsam-
pling process. Naive downsampling methods such as plain subsampling, av-
eraging or Gaussian filtering, are widely used in many volume visualization
applications. These methods are easy to implement and have cheap require-
ments in terms of memory resources and computation time, but the resulting
quality of the downsampled data is clearly reduced. To alleviate this, proper
filtering of the original dataset is an important procedure to carry out before
subsampling. We have performed an analysis of the typical filters used for
downsampling datasets. Based on the observations made on their behavior,
and in order to reduce the amount of interesting information lost due to down-
sampling, we propose a novel downsampling filter based on a Gaussian filter
that is able to preserve structures that are prone to disappear with standard
methods. The method we propose is simple, easy to implement, fast, and
provides good quality results with preservation of features.

4.3. Analysis of existing downsampling techniques 41

4.3 Analysis of existing downsampling techniques

We have analyzed several downsampling methods for volumetric datasets that
range from the typical pure subsampling (i.e. taking one of the samples from
the original dataset) to more elaborated approaches such as the topology-
guided downsampling by Kraus and Ertl [43]. We have observed that the
most important problem with most techniques is the lack of preservation of
fine details. For completeness, we also experimented with other possibilities
such as combining any of the previous downsampling methods with an extra
previous noise reduction stage. Unfortunately, no significant gains are ob-
tained. Thus, for the sake of clarity, we only comment the tested methods that
exhibit a noteworthy behavior and analyze the reasons behind their results. It
should be observed that we are not performing an intrinsic analysis of these
downsampling techniques, but an analysis of the resulting visual quality when
they are used in the context of ray casting volume rendering and 1D Transfer
Functions.

4.3.1 Testing conditions

The results shown in the figures of this chapter have been obtained using a
GPU ray casting algorithm, with a distance between samples proportional to
the size of a voxel (see Section 2.6), and pre-integrated classification. The
camera has been configured to use an orthographic projection of the scene, as
it is usually required to visualize medical images. The values sampled from
each ray have been colored with a pre-defined Transfer Function, and shaded
with the Phong reflection model [71], using the gradient computed on-the-fly
at each sampling step. We have used three datasets, each one with a specific
Transfer Function, designed to reveal specific features of each model:

• Ribs dataset: Original resolution (5123), downsampled resolution (1283),
with a TF designed to reveal bones, heart, and kidneys.

• Aneurysm dataset: Original resolution (2563), downsampled resolu-
tion (643), with a TF designed to visualize blood vessels.

• Head dataset: Original resolution (5123), downsampled resolution (1283,
with a TF designed to reveal bones and skin.

42 Chapter 4. Downsampling of Scalar Fields

4.3.2 Analyzed methods

In the following paragraphs, the following methods will be analyzed: subsam-
pling, averaging, Gaussian filtering, bilateral filtering, and topology-guided
downsampling [43]. Along with the presentation of each method, a schematic
figure is shown in 2D to facilitate its understanding.

Subsampling

Subsampling refers to the method that simply selects
a subset of the original samples as the representative
voxels for the reduced model. In our case, the repre-
sentative voxel is one of the voxels in each subvolume
of 23 voxels. We always select the same voxel of each
subvolume, which means that the representative vox-
els are taken at regular intervals from the voxels of the
high-resolution dataset. On the one hand, the main ad-
vantage of this method is actually the little amount of
data processing required, which only consists in the se-
lection of the representative voxel. On the other hand,
the drawbacks of this method are the exaggerated stair-
case artifact it generates in the downsampled models,
and the evident loss of features (see Figure 4.1).

We did experiments with several strategies for the selection of the represen-
tative value. For instance, we made some tests by selecting the high-resolution
voxel with maximum intensity, minimum intensity, most different intensity,
and averaging values using the densities itself as weights. Some of the results
obtained from these experiments are shown in Section 4.3.4.

(a) (b) (c) (d)

Figure 4.1: The subsampling method generates staircase artifacts (b) with respect
to the original dataset (a). Furthermore, thin structures like the catheter disappear in
the downsampled model (d) whereas they are visible in the original resolution one (c).

4.3. Analysis of existing downsampling techniques 43

Averaging

The averaging filter simply consists in creating a new
value by averaging all the values from the original vol-
ume. In our case, for one-level subsampling, this con-
sists in averaging the eight values (23 subvolumes) of
the upper level. This requires a little more computa-
tional effort than simple subsampling, as the represen-
tative value in the lower resolution levels is the result
of a computation involving eight voxels. As shown in
Figure 4.2, the results generated by this downsampling
method have more aggressive loss of features than plain
subsampling, but provide a smoother look, partially
avoiding the staircase artifact seen in subsampling.

(a) (b) (c) (d)

Figure 4.2: Averaging still presents staircase artifacts in the lower resolution rep-
resentations (b) if compared with the original dataset (a). However, the results are
smoother than plain subsampling without previously filtering the dataset to downsam-
ple. Furthermore, it does not preserve some features of the original dataset (c) in the
downsampled model (d).

Besides those two simple methods, more elaborated techniques include Gaus-
sian filtering and bilateral filtering. Both techniques have been extensively
used in image processing algorithms. The core feature of Gaussian filtering is
the noise reduction, at the cost of blurring the edges. On the contrary, the
bilateral filter is intended to preserve edges. In the following, we introduce
both filters using the notation by Paris et al. [69].

44 Chapter 4. Downsampling of Scalar Fields

Gaussian filtering

Gaussian filtering is a typical operation in image pro-
cessing that consists in applying a low pass filter over
the image samples. Given an image I, its filtered version
is computed as a weighted average of the neighboring
pixels. So pixel p will have a value that depends on the
pixels around a neighborhood q of the original pixel.
Typically, this is denoted as:

GF [I]p =
∑
q∈S

Gσ(|p− q|)Iq,

where S is the kernel support and G is a 2D filter kernel:

Gσ(x) =
1

2πσ2
exp(− x2

2σ2
)

To downsample volumetric models, we apply this transformation in 3D, so the
neighborhood, instead of consisting of a rectangular region, corresponds to a
cube. This process incurs a higher data processing than the previous methods.
Its cost depends on the radius of the kernel, which determines the span the filter
takes in the spatial domain. The representative values in low-resolution voxels
are the filtered high-resolution voxels taken at regular positions. Summarizing,
the original resolution dataset is first filtered and then subsampled to obtain
the low-resolution dataset. The results obtained by the Gaussian filter are a
little smoother than previous methods. As shown in Figure 4.3, it slightly
alleviates the staircase artifacts with respect to averaging. However, it does
not preserve some features, which are clearly visible in the original model.

(a) (b) (c) (d)

Figure 4.3: Gaussian filtering provides smooth results (b), similar to the original
dataset (a). However, like the previous methods (e.g., averaging) it fails at preserving
some features in the downsampled dataset (d) that are visible in the original one (c).

4.3. Analysis of existing downsampling techniques 45

Bilateral filter

Similar to the Gaussian filter, the bilateral filter is a
weighted average of a neighborhood of pixels. The main
difference is that the bilateral filter, besides using a spa-
tial Gaussian kernel, takes into account the variation in
the values of the pixels to preserve the edges. The ratio-
nale behind this is that two pixels should be weighted
similarly, not only if their positions are similar, but also
if their intensities are comparable too. This results in a
formulation such as:

BF [I]p =
1

Wp

∑
q∈S

Gσs(|p− q|)Gσr(Ip − Iq)Iq

where W is a normalization kernel defined as:

Wp =
∑
q∈S

Gσs(|p− q|)Gσr(Ip − Iq)

The bilateral filter appeared in several independent publications [1, 78, 81], and
has since then further improved, especially for speed [69]. Anyhow, the amount
of data processing required for this method is higher than for the Gaussian
filter, in which optimizations are easier to implement. The steps to follow in

(a) (b) (c) (d)

Figure 4.4: The bilateral filter achieves results very similar to plain subsampling.
It is a noise reduction filter that does not avoid aliasing artifacts. As shown in (b), the
low resolution dataset still exhibits staircase artifacts that are not present in the original
dataset (a). Furthermore, thin structures like veins (c) are not preserved convincingly
after downsampling, in the low resolution dataset (d).

46 Chapter 4. Downsampling of Scalar Fields

the implementation of this downsampling method are analogous to those in the
Gaussian filter: the original data first needs to be filtered and then subsampled.
The representative values in lower resolution voxels are values taken from the
original dataset after having been filtered. Not surprisingly, this filter has
no major effect in downsampling, as it is aimed at noise reduction when its
parameters are properly adjusted, and does not reduce the aliasing problems
that lead to the staircase artifacts seen in plain subsampling (see Figure 4.4).
As a consequence, the results it provides with the tested models are quite
similar to the ones achieved by plain subsampling.

Topology-guided downsampling

Topology-guided downsampling is a method by Kraus and Ertl [43] that tries
to preserve the topology of the scalar field as much as possible by preferably
selecting the values of critical points. To do this, every voxel in the original
dataset is classified as a regular, saddle, or extremum point. After this clas-
sification, the most representative sample in the neighborhood of each voxel
is taken during downsampling. Although their technique is optimized to per-
form efficiently, the amount of data processing required is high compared to
the previous filters. The results achieved by this technique are quite good in
terms of the preservation of features. The original topology is preserved better
than classic filters, as seen in Figure 4.5. However, the results provided by this
method are bumpy and distorted, and usually enlarges (mainly because of the
loss of resolution) or displaces structures more than desirable.

(a) (b) (c) (d)

Figure 4.5: Topology-guided downsampling is a feature-preserving downsampling
method. Thin structures like veins in (c) are preserved after downsampling the model
(d). However, these structures are exaggerated or displaced due to the selection strategy
of the representative voxel. Moreover, it can be seen that the smoothness of the original
surfaces (a) is not preserved in the downsampled representations (b).

4.3. Analysis of existing downsampling techniques 47

4.3.3 Results and quality assessment

Note that, among the described methods for the downsampling of medical
models, some choices that work properly for other purposes in 2D images such
as the bilateral filter, and others that aim at the preservation of features such
as the topology-guided downsampling, produce worse results than simpler ap-
proaches such as the Gaussian filter or the average filtering. Even just subsam-
pling the model seems to produce comparable or even better results, in some
cases, than those approaches. This is in part due to the fact that the relation
between the filtered volume and the final rendered image is TF-dependent and
highly non-linear, with the consequence that such successful image processing
techniques may exhibit poor performance in terms of the quality of the final
images. Chapter 6 performs an analysis of the relation between the TF and the
variation of densities of the scalar field among the original resolution dataset
and the coarser resolution datasets. The visualization artifacts due to the loss

(a) Full resolution (b) Subsampling (c) Average

(d) Gaussian (e) Bilateral (f) Topology-guided

Figure 4.6: Comparison of downsampling filters for volumetric scalar fields. (a)
shows the full resolution (5123) CT dataset. The other models (1283) are produced
using different filters. Plain subsampling (b) loses small features and does not pro-
duce smooth results. Applying average (c) and Gaussian (d) filters before subsampling
achieves smoother results, but still fine structures are lost. A bilateral filter (e) is basi-
cally achieving results almost identical to (b). Topology-guided downsampling (f) better
preserves the original topology but the results are undesirably rough and not practical
for medical purposes.

48 Chapter 4. Downsampling of Scalar Fields

(a) Full resolution (b) Subsampling (c) Average

(d) Gaussian (e) Bilateral (f) Topology-guided

Figure 4.7: Performance of several downsampling filters for the aneurysm model
(2563), which has a lot of small details. The downsampled datasets have a resolution of
643 voxels. Most downsampling methods lose a lot of details (b, c, d, and e) or result in
overly exaggerated features (f), leading to undesirable visual artifacts.

(a) Full resolution (b) Subsampling (c) Average

(d) Gaussian (e) Bilateral (f) Topology-guided

Figure 4.8: Effect of the tested downsampling methods on the head dataset (5123).
The downsampled datasets have a resolution of 1283. The algorithms applied are (b)
simple subsampling (i.e. taking samples from the original dataset), (c) averaging the 8
voxels from the higher resolution model, (d) Gaussian filtering (σ = 0.7 in voxel units),
(e) bilateral filter (here we take σ = 0.7 in voxel units, and σ = 6 for the intensity-based
Gaussian, in a range from 0 to 255, and (f) topology-guided downsampling. Finally,
(g) corresponds to our feature preserving downsampling method. The examples show
that none of the most elaborated previous filters improves over the average or Gaussian
filters. In addition, topology-guided downsampling generates really bumpy results.

4.3. Analysis of existing downsampling techniques 49

of resolution are more visible on models that have small features such as the
body model in Figure 4.6, or the aneurysm model in Figure 4.7, where the
loss of small features is evident. They can also be observed in models with
smooth surfaces that exhibit an aliasing problem in their downsampled ver-
sions, showing a staircase artifact like in Figure 4.8. Furthermore, even though
Topology-guided downsampling preserves some fine details, it produces unde-
sirable, bumpy images, because its sampling strategy modifies the location of
the critical points. Note also that even when features are preserved, they tend
to become thicker or larger, due to the loss of resolution.

4.3.4 Density-aware selection of representative values

After testing and analyzing the previously mentioned methods, we imple-
mented some new tests before going in the right direction to achieve a feature
preserving filter. Most voxel models we deal with, contain density values of the
human tissue. A proper feature preserving filter should select the most repre-
sentative density value for the coarse resolution voxels, so that its visualization
resembles the original dataset as much as possible.

Under the assumption that denser tissues are usually more relevant, the
first test we implemented consisted in a simple selection rule: taking the dens-
est voxel values from the original dataset. The idea is quite similar to plain
subsampling, but instead of taking samples at regular intervals, the represen-
tative coarse voxel values are selected from the neighborhood of the original
dataset using a simple criterion (maximum density). Figure 4.9-c shows a ren-
dering of a coarse model obtained by using this filter. The final renderings
seem to preserve fine structures that disappeared using several filters analyzed
previously (e.g., averaging, see Figure 4.9). However, the selection criterion
is biased towards denser values, provoking an undesirable thickening effect on
dense structures. Furthermore, the filter is not fair with less dense, thin struc-
tures, that other TFs might want to reveal. In this case, those structures would
probably disappear, as denser ones would have been preserved in its place.

Another approach we tested was inspired by the good behavior on preserv-
ing some features of the previous approach, but in the spirit of the averaging
filter, in order to achieve smoother results. This approach performs a weighted
average of the neighboring voxel values in the original model, using the very
densities as weights, so denser values contribute more to the final density value.
As we can observe in Figure 4.9-d, details like the catheter and the ureters are

50 Chapter 4. Downsampling of Scalar Fields

(a) V0 (b) V2 average (c) V2 max. density (d) V2 weighted avg.

Figure 4.9: Experiments with downsampling filters considering densities. Image (a)
shows a rendering of the original dataset V0. Image (b) shows the rendering of a coarser
model V2 downsampled with a standard averaging filter. In image (c) the downsampled
model V2 was computed using a filter that selects the voxel of maximum density in the
neighbourhood. Finally, for image (d) the used downsampling method was an averaging
filter benefiting those voxels in the neighbourhood with a higher density. Note that,
in this case, results shown in (d) are better than the previous alternatives, conserving
features not present in (b), but not thickening thin structures and introducing extra
noise as in (c).

preserved such as in Figure 4.9-c, but the structures are not thickened, and the
results look quite similar to the rendering of the original dataset (Figure 4.9-a).
This method, however, is still biased, so dense values have more importance
over less dense ones. Obviously, renderings generated with TFs designed to
visualize less dense structures (e.g., air in small lung cavities) will probably
not exhibit the same good behavior as in this example.

4.4 Feature-preserving downsampling filter

To overcome the problems concerning the previously presented methods, we
have developed a new, Gaussian-based downsampling method that attempts
to preserve small features and still produces smooth results at a low cost, and
that requires no parameterization, so it runs completely unattended, without
any need for user intervention.

In order to preserve details, our algorithm first simulates a downsampling
step based on Gaussian filtering and then uses this information as a guidance
image in the next step. Then, the real downsampling is performed, using the

4.4. Feature-preserving downsampling filter 51

guidance image previously computed to give more importance to those regions
that would previously suffer from excessive degradation so that features are
preserved. Another important factor is that the process should run unattended,
that is, it should not require manual tweaking of parameters for good results.
The rationale behind this is that the filter is intended for use with medical
models, to rapidly downsample larger models that would not fit into the GPU.
This downsampling should be done automatically, since no expert supervision
can be carried out, and fast, so that the physician has the data ready as soon
as possible. Moreover, the process must be robust to different models.

Summarizing, the main goals of our downsampling filter are: the preserva-
tion of details, achieving an automatic execution, and a low-cost performance.

Given a volumetric scalar field V0, to compute a coarser representation Vk
(k > 0) our downsampling technique proceeds in three steps:

• First, a temporary coarser volume Sk is computed by means of Gaussian-
filtering and subsampling.

• Next, the difference between V0 and Sk provides hints about the loss
of features in the first step. Using this information we generate a fil-
tered volume F0 using local kernels that better preserve original volume
details that would otherwise disappear with standard Gaussian filtering
and subsampling.

• Finally, F0 is subsampled to obtain Vk.

To compute the filtered volume dataset F0, we perform the following con-
volution:

F0(x) =
∑
i ∈Br

V0(x+ i) · fx(i)

where fx is what we call Local Feature Kernel. It is a normalized, feature-
preserving kernel with support Br, a ball of radius r centered at the origin. fx
is in turn a product of a normalized global Gaussian kernel g and a difference
kernel dx:

fx(i) =
1

α
· g(i) · dx(i), ∀i ∈ Br

52 Chapter 4. Downsampling of Scalar Fields

Figure 4.10: Schematic overview of our feature-preserving downsampling filter using
Local Feature Kernels. As seen in the image, the technique first needs to perform
a Gaussian-based downsampling to generate a guidance downsampled dataset. Then,
the original dataset can be filtered with Local Feature Kernels, which are made of a
combination of a Gaussian kernel and a difference kernel computed from the sample-by-
sample neighborhood differences between the original and the guidance datasets.

The denominator α =
∑

j∈Br
g(j) · dx(j) ensures the sum of weights in

fx equals one. The difference kernel dx is defined as the normalized absolute
difference of values in the neighborhood of x between the original scalar field
V0 and the temporary Gaussian-downsampled scalar field Sk:

dx(i) =
1

β
|V0(x+ i)− Sk(x+ i)|, ∀i ∈ Br

Again, the denominator β ensures the normalization of weights in dx. Note
that V0 and Sk have different resolutions. Sample positions in the kernel domain
happen to be aligned with the center of V0’s voxels, but density values from
Sk must be computed by tri-linear interpolation.

Figure 4.10 shows a schematic overview of the algorithm. The difference
kernel assigns larger weights to those samples in V0 that are prone to disappear
(those that most differ with Sk). As both g and dx are combined into fx,
smoothing or sharpening is done depending on their weights, which are local to
the filtered sample position x. Homogeneous regions will provoke homogeneous
difference kernels, thus giving gx greater influence, whereas feature regions will
provide more characteristic difference kernels for the feature selection task.

4.5. Evaluation and results 53

(a) Full resolution (b) Subsampling (c) Average (d) Gaussian

(e) Bilateral (f) Topology-guided (g) Feature-preserving

Figure 4.11: Comparison of downsampling filters for volumetric scalar fields. (a)
shows the full resolution (5123) CT dataset. The other models (1283) are produced
using different filters. Plain subsampling (b) loses small features and does not pro-
duce smooth results. Applying average (c) and Gaussian (d) filters before subsampling
achieves smoother results, but still fine structures are lost. A bilateral filter (e) is basi-
cally achieving results almost identical to (b). Topology-guided downsampling (f) better
preserves the original topology but the results are undesirably rough and not practical
for medical purposes. Our solution (g) is able to preserve details and also maintains
smooth surfaces.

4.5 Evaluation and results

Figures 4.11, 4.12, and 4.13, show examples of the results obtained by the
analyzed downsampling filters and by the proposed feature-preserving down-
sampling filter. While the plain subsampling and Bilateral filters provide noisy
results, averaging and Gaussian-filters obtain a much softer look, closer to the
original dataset render. All of them, however, fail at preserving thin struc-
tures and other details (see the ureter and the catheter in Figure 4.11, and
the thin veins in Figure 4.12). Not like these approaches, the topology-guided
downsampling method better preserves much of the topology of the original
dataset. However, it displaces the original location of critical data samples,
thus achieving a nondesirable bumpy look.

54 Chapter 4. Downsampling of Scalar Fields

(a) Full resolution (b) Subsampling (c) Average (d) Gaussian

(e) Bilateral (f) Topology-guided (g) Feature-preserving

Figure 4.12: Performance of our downsampling filter for the aneurysm morel (2563),
which has a lot of small details. The downsampled datasets have a resolution of 643

voxels. Most downsampling methods lose a lot of details (b, c, d, and e) or result in
overly exaggerated features (f), leading to undesirable visual artifacts. Our method
(g) performs better than the others, preserving fine details that are visible in the full
resolution model and still providing smooth results.

(a) Full resolution (b) Subsampling (c) Average (d) Gaussian

(e) Bilateral (f) Topology-guided (g) Feature-preserving

Figure 4.13: Effect of the tested downsampling methods on the head dataset (5123).
The downsampled datasets have a resolution of 1283. The algorithms applied are (b)
simple subsampling (i.e. taking samples from the original dataset), (c) averaging the 8
voxels from the higher resolution model, (d) Gaussian filtering (σ = 0.7 in voxel units),
(e) bilateral filter (here we take σ = 0.7 in voxel units, and σ = 6 for the intensity-based
Gaussian, in a range from 0 to 255, and (f) topology-guided downsampling. Finally,
(g) corresponds to our feature preserving downsampling method. The examples show
that none of the most elaborated previous filters improves over the average or Gaussian
filters. In addition, topology-guided downsampling generates really bumpy results. Our
method, in this case, behaves similar to the Gaussian filter, providing smooth results,
and slightly preserves small pieces of bone under the eyebrows and on the base of the
skull.

4.6. Conclusions and future work 55

The feature-preserving downsampling filter just presented is able to pre-
serve those important features that all the previously mentioned methods have
not been able to capture in the downsampling process and also conserves the
smoothness of the original surfaces. Furthermore, it does not require a pre-
computation time much higher than affordable. For instance, without any
optimization, running on a commodity PC (Intel Core i7 CPU, 8GB RAM)
our algorithm takes up to 4 minutes in order to compute the downsampling for
the Thorax dataset shown in Figure 4.11 from 5123 to 1283 voxels. Although
it is a few times more costly than a standard Gaussian-downsampling, it is
reasonable for a pre-process and scales linearly with the resolution of the input
dataset.

4.6 Conclusions and future work

Since medical models are now commonly available (one can get the resulting
data from CT or MRI in CDs, DVDs, or another storage device, after a med-
ical test), the need of rendering such models in commodity PCs has grown.
Reducing the resolution of the scalar field data through downsampling tech-
niques is a key step in several scenarios, such as when the data must fit a small
GPU, or when the models are huge enough that even high-end GPUs in the
market cannot hold it. In these cases, building a multiresolution representation
involves downsampling the original datasets to build the intermediate levels.
However, the main shortcoming of downsampling is that many fine details and
important features are lost in the coarse datasets. With regards to this issue,
this chapter has presented the following contributions:

• A description and an analysis of several techniques for the downsampling
of volumetric models.

• A new filtering method aimed at the feature-preserving downsampling of
volumetric scalar data.

On the one hand, we have identified some flaws in the analyzed filters in
Section 4.3. We have seen that either they fail at the preservation of features
during downsampling, or they preserve features at the expense of introducing
a spatial bias of the preserved features and exhibiting a bumpy look. On the
other hand, in Section 4.4, we have presented a novel feature-preserving filter
for the downsampling of volumetric scalar data with the intention of solving

56 Chapter 4. Downsampling of Scalar Fields

the previously mentioned issues. Our filter adaptively smooths or preserves
features depending on the topology of the surrounding region of the voxel
being filtered. We do this by generating Local Feature Kernels. These are the
product of a smoothing Gaussian kernel and a local distance kernel derived
from the voxel-wise absolute distance between the full resolution dataset and
a previous downsampling simulation. Our proposed heuristic identifies zones
which are potentially likely to disappear and gives them more importance when
filtering. As a result, they are preserved after subsampling.

We have shown that the presented filter improves the quality of several mod-
els with respect to other downsampling techniques, and it is especially suited
for models with small features, such as the aneurysm model (Figure 4.12). In
our experiments, we also found that the improvement over some models was
more limited (see the Head model 4.13), but in any case, the quality was at
least analogous to Gaussian filtering. Thus, our filter can be safely used in
a vast majority of models. Besides the quality of the obtained results, the
method is completely automatic and runs unattended, without requiring any
intervention from the user. Furthermore, the computation times are low, even
without having optimized the algorithm. Another strength is the fact that it is
orthogonal to some compression techniques such as wavelets, which could also
be applied in order to reduce the memory bandwidth requirements.

Since the key of this filtering method resides in suitably adjusted Local
Feature Kernels, we believe that the filter can still be improved. Following this
line, we plan to further explore additional ways to determine their weights,
variance, and radius. Another possible improvement for the presented tech-
nique is its optimization. On this line, some worthy options include the design
of a parallel scheme to take advantage of hardware and some research on the
separability of the filter.

4.7 Publications

This chapter has originated the following publications:

• Jesús Dı́az-Garćıa, Pere Brunet, Isabel Navazo, Pere-Pau Vázquez, Fred-
eric Pérez. (May 2015) Feature-Preserving Downsampling for Medical
Images. In EuroVis 2015: The EG/VGTC Conference on Visualization:
Posters track. European Association for Computer Graphics (Eurograph-
ics) [15]

4.7. Publications 57

• Jesús Dı́az-Garćıa, Pere Brunet, Isabel Navazo, Pere-Pau Vázquez. (July
2017) Downsampling methods for medical datasets. In Proceedings of
the CGVCVIP 2017: International Conference on Computer Graphics,
Visualization, Computer Vision and Image Processing: Lisbon, Portugal,
(pp. 12-20). IADIS Press. [17]

5
Downsampling and Efficient Storage of

Gradient Data

Chapter 4 dealt with the data processing stage of the visualization pipeline,
focusing on the downsampling process of the scalar field. Besides the scalar
field, to afterward render volume data, gradient directions are needed for shad-
ing purposes. If gradients are computed on the fly in GPU shaders by using
surrounding densities in the coarse volume, significant visual errors and ar-
tifacts can be introduced. Approaching this issue from the data processing
stage, to avoid these problems, this chapter handles the shading of coarse
datasets through the use of pre-computed gradients. In the following sections,
we will present a downsampling filter for pre-computed gradient data and a
high-precision, interpolation-friendly, encoding, and decoding scheme for its
storage in GPU 3D textures.

5.1 Motivation

One of the main aspects that directly affect the quality of volume visualization
is shading. In modern ray casting algorithms, shading can be performed after
computing the surface orientation at each sample position by means of the
scalar field gradient, which is typically computed on the fly in shader code by
evaluating the surrounding densities. In multiresolution visualizations, shading
of coarse representations by means of this technique implies computing gradi-
ents from a scalar field that differs from the original dataset, a fact that can

59

60 Chapter 5. Downsampling of Gradients

(a) (b)

Figure 5.1: Ray casting images of the Head model visualized with a TF designed
to show bone surfaces. The left image (a) corresponds to the original dataset (5123)
whereas the image at the right (b) corresponds to a coarser dataset (1283). In (b),
staircase artifacts are visible due to the shading performed using gradients computed on
the fly (with central differences) from the downsampled scalar field.

lead to inconsistent shading among different levels of resolution. This fact is
amplified because of the well-known error increasing effect when approximat-
ing derivatives by finite differences on downsampled representations. Figure 5.1
shows the difference between shading a dataset visualized at its original reso-
lution with respect to a low-resolution representation, computing gradients on
the fly in both cases.

5.2 Problem addressed

The problem faced in this chapter is the fact that the quality of the shading in
multiresolution datasets is greatly affected by the way in which gradients are
computed in coarse levels. As seen in Chapter 4, the downsampling process
drastically reduces the resolution of the datasets, thus provoking an inevitable
information loss and a modification of the topology of the original scalar field.
In Figure 5.2, the effect of downsampling is depicted in a 2D space. It is easily
noticeable how the topology of the represented surface gets drastically changed
as the resolution decreases. The staircase shape exhibited on the surface in
Figure 5.2-b also affects the direction of the computed gradients, not matching
the gradients computed from the original dataset anymore. In Figure 5.1-b,

5.3. Gradient estimators 61

(a) (b) (c)

Figure 5.2: Images (a), (b) and (c) depict the effect of iteratively downsampling
data (images are shown in 2D for simplicity, although the same concept applies for the
3D case). In (a), a feature/surface is well represented by the boundary between different
scalar values. After an iteration of downsampling, image (b) shows how the same feature
is not so suitably represented by the current scalar field anymore, which actually yields
a more staircase-looking topology. In the last image (c), after another downsampling
step, the feature even starts disappearing.

the staircase artifact is mainly visible because the shading is using inaccurate
gradients computed on the fly from the coarse dataset.

In order to solve the stated problem, the solution we propose in this chapter
is using gradients pre-computed from the original scalar field. We will improve
the shading of coarse datasets using these pre-computed gradients after having
been downsampled. The proposed improvements in the current chapter are:

• A downsampling filter for pre-computed gradients that better preserves
gradient directions.

• A storage technique that improves the precision of downsampled gradi-
ents by making better use of the allocated memory.

5.3 Gradient estimators

In order to explore other possibilities to improve the shading of coarse datasets,
before approaching the staircase artifacts issue using pre-computed gradients,
we performed a few tests estimating the gradients on the fly in our DVR
algorithm with some techniques. As explained in Section 3.3, several methods
exist to estimate gradients, which differ in the computational complexity and
the accuracy of the resulting gradients.

62 Chapter 5. Downsampling of Gradients

Finite differences

Finite difference schemes are fast to compute, and thus an ideal candidate for
real time DVR. Within this family of methods, we performed tests with the
two methods, forward differences and central differences, with similar results
in both performance and appearance. Between these two methods, central
differences has been the preferred method to evaluate gradients on-the-fly dur-
ing this thesis, as it is the most common approach for gradient estimation in
volume graphics. The results it provides are slightly smoother and its com-
putational cost is comparable with the former one, even requiring a different
number of texture lookups (probably due to texture cache issues). Each of the
three components of the gradient vector ∇f(x, y, z) is estimated by a central
difference, resulting in:

∇f(x, y, z) ≈ 1

2h

f(x+ h, y, z)− f(x− h, y, z)
f(x, y + h, z)− f(x, y − h, z)
f(x, y, z + h)− f(x, y, z − h)


which requires six additional samples taken at a distance h around the central
sample. For pre-computed gradients, the step size h can directly be the grid
size in order to avoid unnecessary interpolation operations. When computing
gradients on the fly, the step size h is typically small with respect to the grid
size.

The results achieved in shading using central differences are shown in
Figure 5.1, which exhibits the staircase artifact on the surface of the skull.
Smoother results are desirable, which led us trying the well-known gradient
estimator explained in the next section.

Sobel operator

The Sobel operator is a common discrete filter kernel also used for gradient
estimation. The standard 3D Sobel kernel has size 33. Thanks to the more
intense sampling work, the quality of the estimated gradients is better than
using central differences. A comparison between the results obtained using
central differences and the Sobel operator is shown in Figure 5.3. Note that
the staircase artifacts are now less visible, although not completely avoided.
Nonetheless, an obvious disadvantage of a full 33 filter kernel such as this is

5.4. Downsampling of gradient data 63

(a) V0 - Central differences (b) V2 - Central differences (c) V2 - Sobel

Figure 5.3: Rendering of coarse datasets estimating gradients on the fly. An image
of the original dataset estimating the gradient with the central differences method is
shown in (a). The other images show a coarser resolution level, shaded with gradients
estimated with central differences (b) and the Sobel operator. Note that the staircase
artifacts are less visible in (c) than in (b), although not completely avoided.

its computational complexity. Although an optimized implementation of the
filter can be executed in real time in current graphics units, computational
power and battery life are critical issues to take into account when dealing
with hardware such as mobile devices. Therefore, it is preferable exploring
additional ways to improve the quality of the shading of coarse datasets.

5.4 Downsampling of gradient data

In order to avoid costly gradient estimators that improve the quality of shad-
ing, we propose using gradients pre-computed from the original scalar field to
improve the shading of coarse datasets. To keep gradient directions consis-
tent, we pre-compute a dataset of gradients G0 from the original scalar field
V0, and we iteratively downsample G0 to generate coarser representations Gk
of the gradients vector fields that match the resolution of the coarse models
Vk. Thus, the visualization pipeline for multiresolution datasets used in this
chapter uses a three-component 3D texture of pre-computed gradients for the
visualization of each coarse dataset.

5.4.1 Naive downsampling approach

However, a naive downsampling of pre-computed gradients without having
previously applied an appropriate filter achieves unexpected results (see Fig-
ure 5.4). This is due to the fact that the topology of the downsampled dataset
has been modified with respect to the original. For that reason, in some
cases, regions containing boundaries between materials in the coarse resolu-

64 Chapter 5. Downsampling of Gradients

Figure 5.4: This ray casting image is shaded using downsampled pre-computed
gradients. The topology of the downsampled scalar field Vk has changed with respect
to the original dataset V0. Therefore, using a naively filtered downsampled dataset Gk

of the original pre-computed gradients G0 that does not take into account any changes
in the topology produces these annoying hole-like artifacts.

tion dataset could correspond to regions of a homogeneous material in the
high-resolution one. Whenever that happens, the locations of the sampled
gradients in the low-resolution dataset correspond to gradients that are not
properly defined in the high-resolution dataset, and thus, using gradients that
have been downsampled without any further consideration would lead to erro-
neous visualizations such as in Figure 5.4.

5.4.2 Gaussian derivatives

The previously mentioned issue is basically an aliasing problem between the
high-resolution and the low-resolution datasets. To reduce this aliasing prob-
lem, we performed some tests with Gaussian derivative operators in order to
pre-compute gradients from the original resolution dataset with a wider radius
of influence, so that for each voxel of the original dataset, more voxels in the
neighborhood are considered to estimate the gradient. Figure 5.5 shows the
results of shading a downsampled dataset with gradients pre-computed using
several configurations of a Gaussian derivative operator. The results show that
the aliasing hole-like artifacts disappear as we use pre-computed gradients that
were computed with a larger radius in the operator. For a large enough radius,
those annoying artifacts completely disappear. At this point, however, a clear
disadvantage is that the level of smoothness is excessive.

5.4. Downsampling of gradient data 65

V0 V2 V2 - σ = 0.5 V2 - σ = 1 V2 - σ = 2 V2 - σ = 4

Figure 5.5: Using Gaussian derivatives to shade the coarse dataset (V2) at 1/64th
the original resolution (V0). Gaussian kernels of different sizes (σ) have been used in
order to see their results in the downsampled model. Note that, as we increase the
radius of the Gaussian function, the black hole artifacts tend to disappear. However,
the results are excessively smooth and lack surface details.

5.4.3 Proposed filter

In the spirit of Gaussian derivatives, our proposal consists in a downsampling
filter that takes into account the magnitude of the gradients within the support
of a certain kernel. The proposed filter performs a convolution over a certain
dataset of pre-computed gradients Gk with the following kernel:

Gfk(x) =
1

β

∑
i∈Br

Gk(x+ i) ·m(x+ i) · g(i) (5.1)

wherem(x+i) is the magnitude of the gradient at the neighboring position x+i,
g(i) is a Gaussian function that gives more importance to those samples nearer
to center of the kernel support Br of radius r, and β =

∑
i∈Br

m(x + i) · g(i)
is the sum of all weights to ensure a normalized contribution of the gradients.
For the sake of clarity, we have expressed the equation in 1D, although the
same definition applies to the 3D case.

Notice the similarity of equation 5.1 with a bilateral filter [81]. Bilateral
filters act essentially as a standard domain filter, averaging values that are
similar to the value at the kernel center. The main difference between the
bilateral filter and ours is that we are not giving importance to the value at
the kernel center, assuming that the gradient at that point might be poorly
defined, but giving importance to gradients in the kernel support that inform
about a well-defined material boundary. After our filter is applied, the filtered
output Gfk can be safely subsampled to obtain the next coarser dataset Gk+1

in the multiresolution hierarchy.

66 Chapter 5. Downsampling of Gradients

In order to pre-compute the whole multiresolution pyramid of gradient
datasets, the first step consists in pre-computing the gradients from the original
dataset, thus obtaining a new volume dataset of gradient data G0 with the
resolution of the original scalar dataset V0. Note that these pre-computed
gradients G0 can be estimated with any method. In our case, we have used
the central differences finite method and achieved good results, as we will see
in Section 5.6. By applying the proposed filter and then subsampling, the next
level of the multiresolution hierarchy G1 is obtained from G0. Following the
same procedure, G2 is obtained from G1, and subsequent levels are obtained
iteratively until the whole pyramid is generated. Furthermore, as we generate
each coarse level directly from its direct parent, the support of the filter kernel
does not need to be too large. We have used kernels of 33 with satisfactory
results.

Section 5.6 shows some examples of volume images generated using pre-
computed gradients that have been extracted from the original dataset and
downsampled with the proposed filter. The presented images demonstrate how
using quality gradients obtains better results and makes the staircase artifacts
mentioned before disappear.

5.5 Gradient data storage

Before being used in the GPU by the visualization algorithm, we pre-compute
and downsample gradients in the CPU, using a floating point representation to
conserve as much precision as possible. After this pre-processing step is done,
gradient data is ready to be transformed into a more suitable representation
that will be translated to the GPU memory, from where our visualization algo-
rithm will be able to fetch gradient information to perform shading effectively.

Observe that, in the following, we will deal with gradient directions, which
are important to perform shading operations. Besides gradient directions, gra-
dient magnitudes, although used for some purposes like modulating the contri-
bution of shading on the final surface coloring (i.e., large, well-defined gradi-
ents, will be more reliable to perform shading calculations than small, weakly
defined gradients), will not be considered in our rendering algorithms. In what
follows, therefore, we will only be interested in encoding and retrieving gradient
directions (not magnitudes) in the Gauss sphere [22].

5.5. Gradient data storage 67

As said, in order to use these gradients from shaders in the GPU, we need
to choose a proper representation to transmit data into the GPU memory. We
will make use of 3D textures to store per-voxel information. At this point, on
the one hand, it is important to choose an encoding scheme that avoids losing
precision and makes an efficient use of the memory. On the other hand, recall-
ing that the visualization algorithm will take samples at arbitrary positions,
the selected encoding scheme will need to be suitable for hardware-assisted
interpolation.

5.5.1 Spherical coordinates

The first idea we approached in order to represent gradient directions was us-
ing a simplification of spherical coordinates. Spherical coordinates, in our case,
need only two values: a polar angle and an azimuth angle which denote a di-
rection in 3D. Spherical coordinates typically require an extra value, radius,
in order to represent points in the 3D space. We are, however, not interested
in representing locations in space, but directions, and thus this last parameter
can be omitted. With only two values, spherical coordinates have the benefit
of having a smaller memory footprint than other encoding schemes. Another
benefit of this scheme is the lack of redundancy it provides, as no repeated
directions can be obtained with different combinations of the angles. However,
a problem of this representation is that the distribution of gradient represen-
tations is not uniform over the space, having many more gradients grouped
towards the poles of the sphere. However, the main shortcoming of spherical
coordinates, and the reason why it is unusable in the case of our volume ren-
dering algorithms, is the fact that different gradients cannot be interpolated
properly in the direction of the azimuth angle. For instance, the interpolation
of two similar directions like (1, 0) and (359, 0, could result in a direction point
to the opposite direction.

5.5.2 XYZ components

A widely accepted strategy is the use of 8-bit component RGB textures (to store
the X, Y, and Z components of a vector) since they are typically precise enough
for most applications. However, storing gradients this way has two problems:
first, the precision is reduced due to the limited number of bits allocated,
and second, much space is wasted if we take into account that several 24-bit
RGB combinations lead to repeated gradient directions (e.g., vectors (1, 1, 1)

68 Chapter 5. Downsampling of Gradients

(a) (b)

Figure 5.6: Gradients stored into a given texture (drawings are in 2D for clarity) are
quantized to fit the bit size of the components. In the case of using 8 bit components,
this quantization (a) limits the representable space of gradient directions. Furthermore,
the distribution of gradient directions does not fill the representable space uniformly.
The method described here applies a transformation on the pre-computed gradients
recovered from the texture so that the final distribution of directions becomes more
uniformly distributed (b). The result is that quantized values A, B and C encode the
uniform directions gA, gB i gC instead of the uneven directions g′A, g′B i g′C that directly
correspond to A, B, and C.

and (2, 2, 2) represent the same direction). Furthermore, by storing gradients
this way, the distribution of representable directions when queried from the
3D texture is not uniform as shown in Figure 5.6. We could consider using
floating point textures, but they require much more space, and they incur in
a performance penalty at the time of performing texture fetches, as compared
to typical 8-bit RGB textures.

In this section, we propose an encoding scheme that is able to maximize
the representable space of gradient directions when storing them into an RGB
3D texture of byte precision components. For that purpose, as a pre-process,
pre-computed gradients are encoded with a transformation T and quantized
before being stored into the GPU RGB 3D texture. Then, the visualization
algorithm is able to perform texture lookups to recover the encoded gradients,
and perform a fast decoding transformation T−1 in the shader code to obtain
the final gradients that will be used for shading, which better match the original
ones. Figure 5.7 shows a graphical overview of the proposed encoding/decoding
approach.

5.5. Gradient data storage 69

Figure 5.7: Typically, visualization methods that use pre-computed gradients apply
a direct quantization of the normalized floating point vectors (a) in order to store them
into a byte-precision RGB 3D texture. This is an important step where gradients lose
precision. We propose a transformation T that is able to maximize the representable
space of gradients obtained from a byte-precision RGB 3D texture. We encode the
original gradients and quantize them in a smart way to optimize the usage of the encoded
space. Decoding is performed in the GPU using the inverse transformation T−1.

5.5.3 Monotonic gradient encoding

In order to represent a vector in 3D space, the most common approach is to
use three values to specify its X, Y and Z coordinates. The three-dimensional
vector space described by these values has the shape of a cube if represented as
a point cloud, as seen in Figure 5.8-a. Once these vectors are given a common
origin and normalized, the set of points that represent gradient directions can
be shown in the Gauss sphere, Figure 5.8-b. In what follows, gradient points
projected onto the Gauss sphere will be named sphere-dots. We can notice that
there are several patterns of empty regions (that is, regions without sphere-
dots) onto the surface of the sphere (see Figure 5.8-b). Those empty regions
correspond to gradient directions that cannot be directly represented with the
tree coordinates X, Y and Z due to their bit size precision.

To alleviate this issue and to optimize the representable space of gradient
directions, we propose to perform a transformation of the sphere-dots to achieve
a more uniform distribution over the surface of the Gauss sphere. The solution
we propose reduces the biggest hole on the surface of the sphere (that is, the

70 Chapter 5. Downsampling of Gradients

(a) (b)

Figure 5.8: Point cloud represented by three values XY Z. (5 bits per value are used
in this case to avoid cluttering and better illustrate the empty patterns on the surface).
In (a) the points are evenly distributed in the 3D space. On the other hand, (b) shows
the corresponding sphere-dots after projecting the point cloud onto the surface of a unit
sphere.

region with the biggest separation among dots), minimizing the maximum
angle achieved between two neighboring gradient directions.

As the pre-computed datasets of gradients are stored into a 3D texture
in the GPU, and the shader code of the ray casting algorithm queries this
texture to evaluate gradients at any position using hardware-enabled tri-linear
interpolation, it is important that the transformation applied to each dot is
monotonic. With this condition, dots do not get mixed on the surface of the
unit sphere (Figure 5.8-b). In other words, the relative position among dots
on the surface of the sphere before applying the transformation should not
change after applying the transformation. If this condition was not satisfied
during this operation, interpolated vectors could be wrong at the moment the
transformation takes place in the GPU. The condition of monotonicity (see
Figure 5.9) ensures that if we sample the texture using tri-linear interpolation,
the decoded results will provide gradient directions that remain within the
decoded directions of the surrounding voxel centers.

If we project the point cloud in Figure 5.8-a onto the surface of a cube
(instead of a sphere), we obtain the distribution shown in Figure 5.10. The
points projected on the surface of the unit cube will be named cube-dots from
now on to distinguish them from the points on the sphere. With cube-dots,

5.5. Gradient data storage 71

gA gB

A B
v

A B
monotonic

Pv(gA)

Pv(gB)

v

Pv(g)

A B
non-monotonic

Pv(gA)

Pv(gB)

v

Pv(g)

Figure 5.9: Condition of monotonicity. Pv(g) is the projection of g in a given
direction v (Pv(g) = g · v). To ensure that the transformation of a dot (Figure 5.8) is
monotonic, this assertion must be true for all possible tangent directions on the surface
of the Gauss sphere.

the patterns of empty regions on the Gauss sphere are easily noticeable. With
this projection, we can observe that the overall cube-dots follow a pattern of
a triangular region that repeats itself eight times on each face of the cube.
That adds up to a total number of 48 triangular regions on the entire cube.
Figure 5.10-b shows one of these 48 regions. The outer part of each triangle
has an empty margin, not filled with cube-dots. This means that these gradient
directions cannot be properly encoded. In order to improve the distribution
of normals, we need a set of dots that do not exhibit those holes and whose
distribution becomes more uniform.

Thus, our purpose is to treat each of those triangular regions independently,
performing a monotonic transformation on each cube-dot within the space of
its triangle, thus making the empty bands near the edges shrink.

For the sake of clarity, let us start by discussing the decoding of gradient
values obtained from the 3D texture of encoded gradients. To convert the
retrieved, uneven gradient directions g′A onto the corresponding uniform direc-
tions gA (Figure 5.6), we must perform the decoding (inverse) transformation
T−1 of cube-dots in the space of a triangle. This is a simple and GPU-friendly
operation. For that reason, each point in the cloud belonging to a certain
triangle (one of the 48 on the cube), has its Euclidean coordinates (XY Z)
converted into Barycentric coordinates (UVW). We propose the following
equation system using barycentric coordinates to transform the dots:

72 Chapter 5. Downsampling of Gradients

(a) (b)

Figure 5.10: In (a), the point cloud represented by three values XY Z projected onto
cube-dots on the surface of a unit cube (5 bits per value are used in this case to avoid
cluttering and better illustrate the empty patterns on the surface). In (b) one of these
48 triangular regions that we have identified on the surface of the cube is highlighted.

// Attract to vertices
u1 = λu2 + (1− λ)u
v1 = λv2 + (1− λ)v
w1 = λw2 + (1− λ)w

// Normalization
sum = u1 + v1 + w1
u1 = u1/sum
v1 = v1/sum
w1 = w1/sum

(5.2)

where (u1, v1, w1) are the transformed barycentric coordinates. The graphical
effect of this transformation T−1 on the cube-dots is shown in Figure 5.11. Note
that, in those equations, different values of λ cause different final distributions
of dots. We need to find the value of λ that achieves the best distribution, that
is, the optimal value that achieves the best minimization of the empty regions
at the boundaries of the triangles. This can be done by measuring the biggest
angle between the directions of all pairs of neighboring sphere-dots over the
whole sphere.

5.5. Gradient data storage 73

w v

u

Figure 5.11: The effect of the decoding transformation T−1 shown in equation 5.2
can be seen bere. The transformation is applied on the cube-dots once they are expressed
in barycentric coordinates, and it generates the movement of these dots towards the
directions shown by the green arrows, filling the empty areas near the boundaries of the
triangle.

Optimization of the Monotonic Gradient Transformation

Figure 5.12 shows that the maximum angle among all possible pairs of neigh-
boring vectors varies as λ goes from 0 to 1. We have found that the optimal
value (theoretical minimum) for λ is 0.61, value for which we achieve a max-
imum angle of 0.1730 deg. Table 5.1 shows the maximum angle between two
neighboring gradients when not treating the projected dots, using the proposed
transformation and the theoretical minimum. The transformation proposed

Method Angle

No treatment 0.3177 deg.

48 regions decoding 0.1730 deg.

Theoretical min. 0.0615 deg.

Table 5.1: Angle denoting the biggest hole in the distribution of dots on the surface of
a sphere. These measures have been achieved by generating a triangulation of the sphere-
dots and taking the diameter of the biggest circumscribed circle among all triangles.

74 Chapter 5. Downsampling of Gradients

Figure 5.12: Maximum angle (hole) in the sphere of transformed projected points
achieved by varying λ from 0 to 1. We can see that the optimal value (theoretical
minimum) for λ is 0.61. With this value, equation 5.2 achieves its best distribution of
dots, maximizing the representability of gradient directions.

Figure 5.13: Comparison of both cases, untransformed and transformed gradients
XY Z (5 bits per value are used in this case to avoid dot cluttering and better illustrate
the empty patterns on the surface). Untransformed gradients (a) present empty bands,
which represents directions that cannot be encoded. Transforming gradients with the
presented method reduces those empty bands, and thus, optimizes the usage of the 3D
space to represent more gradient directions.

here achieves a resulting dot distribution that approaches to the theoretical
optimum (see the explanation below), which might not be achievable, given
the total number of points representable by the three XY Z byte-components.

Figure 5.13 shows the comparison between the sphere-dots in both cases:
without any treatment and with the proposed decoding transformation T−1.
It is clear that empty bands patterns are more evident in the former case.

5.5. Gradient data storage 75

Computation of the theoretical minimum

Let’s suppose that we have 224 points uniformly distributed over the surface
of a unit sphere (consider an almost-isotropic distribution of points over the
sphere given by an iterative subdivision of a tetrahedron). As the surface of a
certain sphere is given by the formula 4πR2, and R = 1 in this case, our sphere
will have a surface of 4π. If points are uniformly distributed, as it is the case, a
triangulation of this point cloud on the surface will only include triangles that
are practically equilateral. In closed triangle meshes, the number of triangles
is twice the number of vertices (T = 2V). Each triangle surface will be then
4π/(2V) = 4π/(2 × 224). The maximum angle (in radians) in this case will
be the diameter of the circumscribed circle of any of these triangles, and that
is because in this distribution of points, we consider all holes between points
to be equal. We have that the surface S of a triangle circumscribed within a
circle of diameter D is S = 3

16

√
3D2. Then:

D = 1.756
√
S = 1.756

√
2π/212 = 4.4/4096 rad = 0.0615 deg

Thus, if we made a “perfect” use of all the bits in our 8-bit RGB texture,
we could store gradient directions with a maximum error of 0.0615 degrees.
However, a standard encoding, as shown above, produce errors up to 0.32
degrees, while our encoding approach has a maximum error of 0.17 degrees.

5.5.4 Decoding

The procedure is able to maximize the representable space of gradient direc-
tions using three values XY Z of 8 bits. That step actually corresponds to
the decoding stage of the pipeline that will take place in the GPU after eval-
uating the gradient from the 3D texture (see Figure 5.14). The gradient to
use in shading operations is, in fact, the one obtained after the transformation
T−1 takes place. Summarizing, the steps to follow in the decoding stage after
obtaining the encoded gradient from the 3D texture are the following:

1. Identify the corresponding triangular region.

2. Obtain the barycentric coordinates of the cube-dot.

3. Perform the transformation T−1 on the cube-dot.

4. Convert the transformed cube-dot back to Euclidean coordinates and nor-
malize to obtain the interpolated gradient direction.

76 Chapter 5. Downsampling of Gradients

Figure 5.14: Diagram of the tasks in the different stages of the encoding/decoding
pipeline. The tasks carried out by the CPU happen in pre-processing time. Encoding
gradients require retrieving the transformed values from the pre-calculated LUT, and
quantization involves performing a linear search to find the best matching quantized
value. In GPU, however, all tasks are fast: dequantization is done at the time of
retrieving the encoded value from the 3D texture, and the decoding transformation T−1

is a fast calculation involving a few product calculations.

5.5.5 Encoding

Figure 5.14 shows an overview of the gradient encoding/decoding pipeline. The
process of encoding gradients T is exactly the inverse to the decoding trans-
formation explained in the previous section. Before performing the encoding
process, the gradients we are working with are stored with floating point pre-
cision coordinates to avoid a precision loss as much as possible. The steps to
follow in order to obtain an encoded vector ~ve given an original vector ~vo are
quite similar to the decoding operation:

1. Identify the corresponding triangular region.

2. Obtain the barycentric coordinates of the cube-dot.

3. Perform the inverse transformation T on the cube-dot.

4. Convert the transformed cube-dot back to Euclidean coordinates.

5. Quantize the transformed gradient.

5.5. Gradient data storage 77

Transformation of barycentric coordinates

During the encoding stage, the transformation T of barycentric coordinates in
the triangular region must be the inverse of the decoding formulae in equa-
tion 5.2 (see the effect of this transformation in Figure 5.11). These equations
are a system of three dependent quadratic equations. The easiest way to find
the inversion of this system is to proceed with numerical methods. External
mathematical packages provide us with tools to solve this problem easily. In
our case, we have used R, a language designed for statistical analysis. How-
ever, this kind of computation is an expensive operation that is better to avoid
during the encoding process of many gradients.

Look up table

To reduce the runtime computation cost, we have numerically solved the inver-
sion of this system for a relatively big set of barycentric coordinates in order
to construct a look-up table that maps barycentric coordinates to their trans-
formed correspondences (T). Figure 5.15 shows the geometrical representation

Figure 5.15: Barycentric transformation T look-up table (LUT). Each point in the
figure corresponds to an entry of the LUT. Entries contain the transformed barycentric
coordinates needed for the encoding process. Notice how, despite the fact that barycen-
tric coordinates have three components, only the subspace depicted by the triangular
plane contained in the cube is used (barycentric coordinates not belonging in this plane
are not normalized and hence they are not useful for us). We can obtain transformed
barycentric coordinates at any arbitrary location in the triangle by interpolating the
contents of the three nearest entries.

78 Chapter 5. Downsampling of Gradients

of the look-up table. Points representing valid barycentric coordinates lie on
the triangular diagonal plane in the cube. This structure stores transformed
barycentric coordinates for several points on that plane. In order to know the
inverse barycentric transformation of a certain coordinate, we find its location
on that plane and compute the interpolation among the tree pre-computed val-
ues stored in the three nearest vertices. By converting the resulting cube-dot
back to Euclidean coordinates again, we obtain a new high-precision gradient
vl that once decoded is almost equal to the original gradient vo.

Quantization

In this step, the high precision transformed gradient vl is downcasted into an
8-bit component quantized gradient vq. This operation finds the point in the
original point cloud (Figure 5.8) that once transformed by the decoding opera-

v0

vl

q0

q1

q2

q3 q5

q4

q7

q6

Figure 5.16: Linear search in the quantization process. The transformed gradient
vl is obtained from the original vector v0 with the help of the LUT. vl is then used to
perform a linear search over a limited subspace of the point cloud. The final quantized
point qi is the one that, after applying the decoding transformation T−1, is more similar
to the original vector v0.

5.6. Evaluation and results 79

tion, best matches the original floating point precision gradient to be encoded.
We use the gradient vl obtained from the look-up table explained above to
perform a linear search over the point cloud, starting at the center of the point
cloud and following the direction of vl. Figure 5.16 shows how the transformed
gradient direction (the one achieved by means of the transformation LUT)
can be used to greatly limit the search space over the whole possible quan-
tized values, only considering the quantized values surrounding the direction
of the transformed gradient. By performing this fast linear search, we select
the quantized value which, once decoded, best represents the original gradient
direction.

5.6 Evaluation and results

In this section, we have presented a downsampling filter for pre-computed
gradients and an encoding/decoding scheme for their storage to maximize the
number of representable gradient directions. In the following sections, we are
showing the visual results obtained by our downsampling and encoding scheme,
its performance (pre-processing time), and some error measures regarding the
use of LUTs of different size.

5.6.1 Visual results

Figure 5.17 shows the difference between shading several coarse datasets using
gradients computed on-the-fly and using pre-computed, filtered gradients, with
respect to the ray casting image of their original datasets. It is easy to see
how the downsampled datasets rendered with pre-computed filtered gradients
obtain much better results than computing gradients on-the-fly, even when the
coarse datasets are the same. This demonstrates the importance of gradients
in shading. The staircase artifacts that are visible in the downsampled datasets
shaded with gradients evaluated on-the-fly in shader code could be smoothened
by increasing the size of the kernel used in the downsampling filter of the scalar
field. However, as the size of the kernel grows, the scalar field becomes smoother
and smoother, and more features are prone to disappear consequently. Using
pre-computed and downsampled gradients makes it possible to remove these
undesirable staircase artifacts without sacrificing important features.

80 Chapter 5. Downsampling of Gradients

Original dataset Downsampled Downsampled

Gradients on-the-fly Gradients on-the-fly Filtered gradients

Vix 5122 × 250 1282 × 63 1282 × 63

Chameleon 5123 1283 1283

Head 5122 × 485 1282 × 122 1282 × 122

(a) (b) (c)

Figure 5.17: Comparison of ray casting images rendered with different gradients.
Column (a) shows ray casting images of several datasets at its original resolution (the
shading was done using gradients computed on-the-fly). Images in column (b) show
a coarse version of the datasets shaded with gradients also computed on-the-fly in the
shader (notice the staircase shape of the surfaces). In (c) the same coarse datasets are
rendered, using pre-computed, filtered gradients that better preserve the orientation of
the original surfaces.

5.6. Evaluation and results 81

Stage Vix Chameleon Head

Pre-computation 10 s 20 s 18 s

Downsampling 75 s 143 s 134 s

Encoding 62 s 129 s 117 s

Table 5.2: Time (in seconds) used to pre-compute, downsample and encode gradient
data of various datasets. The algorithms have been executed in a single CPU thread,
traversing the whole sample space of each dataset without further optimization (note
that, if necessary, these algorithms could be easily parallelized).

5.6.2 Downsampling and encoding pre-computation time

Table 5.2 shows the times for the pre-computation, downsampling, and en-
coding of gradient directions using the three datasets in our tests. We have
used the central differences approach to pre-compute gradients from the origi-
nal dataset. The most time consuming, pre-processing stage, is the use of the
downsampling filter for the generation of the coarse dataset of gradients, fol-
lowed by the encoding (using the LUT) plus the quantization of the gradients
to pass them to the GPU. The whole process takes a few minutes for the bigger
dataset we have tested (Chameleon 5123), which is an acceptable amount of
time for a pre-process. These computations (and the following ones) have been
done in a machine with an Intel(R) Core(TM) i7 CPU 930 at 2.80GHz and
8GB of RAM memory. Although the processor has several cores, the calcula-
tions done have not been optimized to make use of multi-threading or SIMD
instructions.

5.6.3 LUT pre-computation time

In order to perform the encoding of gradients, the LUT for the transformation
T must have been previously generated, as solving such difficult operation
for all gradients, given the large number of voxels contained in a dataset, is
too expensive. This process requires solving the complex system of equations
implied by inverting the simple decoding transformation (equation 5.2). We
have used the software package R in combination with its module rootSolve to
compute the transformation T and to store it into a LUT. We have generated
LUTs of different sizes and tested their effectiveness to encode pre-computed
gradients in terms of encoding time and error. Table 5.3 shows the time taken

82 Chapter 5. Downsampling of Gradients

LUT size Generation time

323 0.55 s

643 1.59 s

1283 6.17 s

Table 5.3: Time needed to generate LUTs of different sizes for the transformation T .
Notice that, although these LUTs represent a space in 3D, the time increases approxi-
mately by a factor of 4 when the dimension of the LUT increases by a factor of 8. This
is due to the fact that the subspace of useful entries in these LUTs is represented by a
triangular plane representing only the useful barycentric coordinates (see Figure 5.15).

Encoding method Max. error

No encoding 0.318 deg.

Encoding (LUT 323) 0.165 deg.

Encoding (LUT 643) 0.165 deg.

Encoding (LUT 1283) 0.165 deg.

Table 5.4: This table shows the maximum error introduced during the storage of
gradients in the 3D texture for a big set of randomly generated gradients. Notice that
encoding gradients using our transformation plus quantization scheme produces results
twice as good as using a plain quantization without any encoding. Given the monotonic
shape of the transformation, even small LUTs (323) are enough to obtain the best results
(the LUTs are encoding a low-frequency transformation, this is why there is no need for
bigger LUTs to achieve good representations of the transformation).

to generate LUTs of three different sizes. Notice that the cost of generating a
LUT of 1283 entries (which is more than needed as explained later) is minimal.

5.6.4 LUT error analysis

We have analyzed the results obtained using a LUT for the barycentric trans-
formation T by completing the whole process of encoding, quantizing, and
decoding, for a huge set of randomly generated gradients. Table 5.4 shows
the maximum error obtained after performing the test with several storing
methods. As we can see, there is no need to use big LUTs (which would be
wasting space in main memory), as the lowest resolution LUT used in our tests
(323) is able to perform the transformation T without exceeding the biggest
hole angle mentioned in Table 5.1. Although the proposed method for gradient

5.7. Conclusions and future work 83

encoding does not provide results that are visually much superior, it achieves
a significant improvement in the numerical results that may be useful in other
scenarios.

5.7 Conclusions and future work

In volume rendering, the way in which gradients are computed affects in great
measure the quality of the shading of coarse datasets in multiresolution struc-
tures. Commonly, gradients are evaluated on-the-fly in shader code by access-
ing neighboring positions. However, the new topology of downsampled datasets
provides gradients of worse quality that do not resemble the originals as much
as desired, and thus shading shows nondesirable artifacts.

To solve this issue, we have presented two contributions:

• A downsampling filter for pre-computed gradients.

• An encoding/decoding scheme for pre-computed gradient directions.

The proposed downsampling filter for pre-computed gradients provides im-
proved gradients that better match the original dataset gradients such that the
previously mentioned artifacts disappear.

Regarding the second contribution, existing algorithms for encoding normal
vectors and gradients cannot be used in the context of volume rendering by
storing them into a 3D texture. These solutions cited in Chapter 3.3 have
serious interpolation issues at the time of sampling values. The presented
method to encode gradient directions into a byte precision 3D texture, besides
not presenting this problem, maximizes the space of representable directions
and reduces the maximum error introduced by the storage format.

In the future, we would like to test the goodness of the proposed encoding
scheme beyond the scope of volume rendering, for instance, in combination
with triangle meshes.

84 Chapter 5. Downsampling of Gradients

5.8 Publications

The algorithm explained in this chapter has produced the following publication:

• Jesús Dı́az-Garćıa, Pere Brunet, Isabel Navazo, Pere-Pau Vázquez. (June
2017) Downsampling and Storage of Pre-Computed Gradients. In CEIG
2017: XXVII Spanish Computer Graphics Conference: Sevilla, Spain,
(pp. 51-60). European Association for Computer Graphics (Eurograph-
ics). [18]

6
High Quality Visualization of Coarse

Datasets

Moving forward through the pipeline, we arrive at the visualization stage. In
this phase, Transfer Functions are the entities in charge of converting input data
values into output colors. They deserve particular attention in the context of
multiresolution visualizations, where other artifacts may appear. This chap-
ter introduces Adaptive Transfer Functions, an algorithm that adapts Transfer
Functions to fit downsampled models. It generates improved versions of the
original Transfer Function, customized to coarse datasets in the multiresolution
hierarchy so that the quality of their renderings is highly improved. The tech-
nique is simple and lightweight, and it is suitable, not only to visualize huge
models that would not fit in a GPU, but also to render not-so-large models in
mobile GPUs, which are less capable than their desktop counterparts.

6.1 Motivation

As already mentioned, multiresolution techniques are broadly used in order
to handle the problem of fitting datasets into limited memory or maintaining
interactivity when dealing with big volume models. In previous chapters, we
have addressed some of the shortcomings of the downsampling process, either
regarding the evaluation of the scalar field and the estimation of gradients.

85

86 Chapter 6. High Quality Visualization of Coarse Datasets

Figure 6.1: Thickening effect on coarse models. Coarse models may not be able to
represent high frequencies of the original scalar field (e.g., sudden intensity changes).
Transfer Functions designed to visualize thin surfaces (e.g., skin tissue) in the original
dataset may detect thicker regions in coarser models, which means that in the case of
semi-transparent TFs, coarse datasets will accumulate the colors and opacities of more
samples, providing different results than in the original dataset.

Now, if we move further down the volume visualization pipeline, we find
Transfer Functions. A TF is a mechanism that allows transforming input
dataset values (typically densities) into color and opacity data, in order to pro-
vide useful visualizations that highlight interesting features. Furthermore, it is
known that Transfer Functions are typically designed by users (usually radiolo-
gists), working on high-end machines, to reveal these features of interest in the
original, high-resolution dataset. However, in multiresolution visualizations,
coarse datasets have suffered a variation in the distribution of density values
with respect to the original data. Due to this, the consistency of multiresolu-
tion visualizations is affected by the Transfer Function. Renderings of different
levels of resolution will have different results if we use the same TF.

High frequencies in the original dataset are not properly represented in
coarser representations of the multiresolution hierarchy. A clear example of
high frequency, to provide some context, is a sudden change of intensity, as it
happens in the boundary between air and skin tissue. As shown in Figure 6.1,
TFs designed to visualize thin structures in the original dataset may behave
unexpectedly with coarse datasets, because thin structures tend to become
thicker with the loss of resolution, and thus, the rendering algorithm may
accumulate more colors and opacities, providing undesired results. Figure 6.2
shows an example of this issue.

6.2. Problem addressed 87

Figure 6.2: Comparison of renderings of the skin tissue. The original dataset (left)
rendered using a TF with a low level of transparency. Using the original TF generates
more opaque results. The method by Younesy et al. [90] also generates undesirable
results in this case. Properly adapting the TF (right) achieves renderings of the coarse
dataset which are much more similar to the renderings of the original dataset.

After observing that the scalar field changes across different levels of reso-
lution, it is reasonable to think that different data may require a different TF
to visualize the originally desired features. This reasoning led us exploring the
possibility of further improving the quality of the renderings of coarse datasets
by means of performing changes on the TF besides using the appropriate filters
to generate the coarse models of the multiresolution hierarchy.

6.2 Problem addressed

The problem addressed in this chapter is the improvement of the renderings of
coarse resolution datasets in a multiresolution hierarchy through the modifica-
tion of the TF. The computation of representative colors and opacity in coarse
datasets has been a subject of study in some previous publications [90, 77].
However, these previous methods do not take into account more restricted
hardware, where the amount of graphics memory or processing power can be
too limited in order to support demanding algorithms. In this chapter, we per-
form an analysis of the variation of density values in coarse resolution datasets
with respect to the original data. Based on this correlation of densities, we
present a novel algorithm that is able to interactively (i.e., allowing interac-
tive TF modification) compute fitted TFs for coarse datasets that achieve a
more accurate computation of colors and opacities. The algorithm is simple
and lightweight in terms of memory and processing power, allowing very re-

88 Chapter 6. High Quality Visualization of Coarse Datasets

stricted hardware to perform flawlessly even in scenarios where an interactive
modification of the Transfer Function is required.

6.3 Theoretical framework

In order to provide a formal context to our problem, let us introduce some
definitions which adapt the general definitions already presented in Chapter 2
to the scope of this chapter.

6.3.1 Downsampling of the scalar field

Given a volume dataset defined in a space D ⊂ IR3, V (x) is a scalar function
that computes a density value for points x ∈ D:

V (x) : D ⊂ IR3 → IR.

Let us assume that this volume is evenly sampled at N3 points xi and
stored in a voxel representation of N3 resolution. For notation convenience,
we use V0 to refer to this original model and z = V0(xi) the density value at
xi.

Formally, a multiresolution volume representation is a set of successively
coarser resolution models V0, V1 . . . Vn. We assume a reduction factor of two
in each dimension from successive resolutions so that, for k > 0, Vk is stored
in a 1/8th of memory required for Vk−1. For k > 0, Vk is usually computed
by filtering and downsampling a higher resolution representation. It is evident
that the distribution of values in the volume changes among the different levels
of resolution.

Without loss of generality and in order to simplify notations, in the rest of
this section we will only consider a 1-dimensional scalar field. Downsampling
filtering is usually performed through a symmetric weighting function w of
finite domain [34]:

Vk(xj) =
∑
i

V0(xi) w(xj − xi) (6.1)

6.3. Theoretical framework 89

where, in uniform voxelizations, we can assume that xj = j · 2kh and that
xi = i · h, with h being a constant spacing.

By considering the voxelization as a discrete representation of a continuous
scalar field we can also write:

s = Vk(x) =

∫ ∞
−∞

V0(y) w(x− y) dy (6.2)

where s is a density value obtained from the downsampled level Vk at a specific
position x. We assume that values retrieved from any discretized volume are
computed by means of a reconstruction filter.

6.3.2 Using TFs with multiresolution datasets

Let TF0 be a 1D Transfer Function specifically designed to map density values
of the original dataset V0 to output color and opacity, TF0 : IR→ (R,G,B, α);
and let ITF0(V0) be the image obtained by rendering V0 using TF0. Therefore,
if Vk is rendered using TF0, the resulting image ITF0(Vk) will differ and lose
details from the render of the original volume ITF0(V0) due to the change of
values on downsampling. The ideal after downsampling would be to have a
new TFk with which ITFk(Vk) = ITF0(V0), that is, TFk(Vk(x)) = TF0(V0(x)) for
all samples x in D.

Several previous papers [90, 42] have tried to compute the RGBA color
Ck for a point x in the downsampled volume Vk by using a color averaging
function wC and defining:

Ck(Vk(x)) =

∫ ∞
−∞

TF0(V0(y)) wC(x− y) dy (6.3)

Notice that, in this equation, Ck(Vk(x)) is local, being in fact a function of
the original densities around x and the original transfer function TF0.

We observed that the downsampling process from the original dataset V0
to a lower-resolution Vk (see equation 6.2) can be characterized by a 3D point
cloud in the (x, z, s) space, where the x-dimension represents the N3 voxels
of V0. Any point (x, z, s) of the cloud represents that the computation of the
downsampled density s = Vk(x) takes into account the density value z = V0(y)

90 Chapter 6. High Quality Visualization of Coarse Datasets

for y in the neighborhood of x (just observe that we have deliberately removed
the second order locality of y in equation 6.2 by ignoring this y value).

We can compact this point cloud in the z-direction by encoding, for each
pair (x, s), the occurrences of the z values used to compute Vk(x). We refer to
this information as the 2D histograms Hx,s(z). Note that Hx,s(z) stores the
distribution of original density values z within a footprint of x in V0.

Younesy et al. [90], by defining an appropriate weighting of these his-
tograms, transform equation 6.3 into:

C1(V1(x)) =

∫ ∞
−∞

TF0(z)Hx,s(z) dz (6.4)

(They focus on the case k = 1.) The direct use of equation 6.4 requires storing
one histogram per voxel in downsampled representations, which is unpractical.
Thus, the authors approximate each of those histograms by two values µ and
σ (mean and standard deviation) to represent the Gaussian curve that better
fits their distribution (note that µ encodes the downsampled voxel density s of
Vk(x)). This is, in fact, a projection of the point cloud in the z direction that
allows pre-computing the integral in equation 6.4 into a 2D Transfer Function
TFk(µ, σ).

6.4 Adaptive Transfer Functions

Our approach was inspired by the experimental behavior of the discretized
projection of the point cloud in the x-direction, which shows a strong z − s
correlation with a curve-shaped cloud. For each pair (z, s) we compute the
number of sample points x such that V0(x) = z and Vk(x) = s. We refer to
this information as the 2D histogram Hd(z, s) (see Figure 6.3). We observed
that this projection was clearly showing the before mentioned z−s correlation,
even when the locality information on x had disappeared. In other words, the
amount of information loss when projecting the point cloud in the x-direction
is limited. By using the histograms Hd(z, s) we are able to get rid of the spatial
dimension, and we still capture most of the downsampling information. By just
changing the projection direction of the point cloud {(x, z, s)}, we move from
local histograms Hx,s to our global histograms Hd(z, s).

6.4. Adaptive Transfer Functions 91

Figure 6.3: The downsampling histogram of Vk is generated by taking pairs of
samples from both the downsampled dataset Vk and the full resolution dataset V0. All
pairs of samples are interpreted as 2D coordinates that can be placed in a bin in the
2D histogram. We set the location of the samples in the middle of the voxels of the full
resolution model. Thus, the values taken from V0 can be the contents of each voxel,
whereas in Vk a reconstruction filter (e.g., tri-linear interpolation) needs to be used.

We decided to use the downsampling global histograms Hd(z, s) in equa-
tion 6.3. The goal is to compute TFk so that the resulting ITFk(Vk) is as close
as possible to ITF0(V0):

TFk(s) =

∫ ∞
−∞

TF0(zH)Hd
k (zH , s) wH(zH − µ(s)) dzH (6.5)

where wH is a weighting function that allows us to focus on the zH -interval
that contributes with the highest information, and µ(s) is the average center
point for every s, which can be directly estimated from Hd

k (zH , s). Now, by
imposing that TFk(s) should be equal (or as close as possible) to TF0(s), we
can write:

TF0(z) =

∫ ∞
−∞

TF0(zH)Hd
k (zH , s) wH(zH − µ(s)) dzH (6.6)

By discretizing equations 6.2 and 6.6 and using the definition of s in equa-
tion 6.2, a specific equation is directly obtained for every sample position x.

92 Chapter 6. High Quality Visualization of Coarse Datasets

Observe that equation 6.5 computes TFk(s), while equation 6.6 imposes that,
for a fixed sample x, TF0(z) = TF0(V0(x)) should be as close as possible to the
resulting value of TFk(s) = TFk(Vk(x)) as evaluated from equation 6.5. The re-
sult of equation 6.5 is TFk(s), while the unknown in equation 6.6 is the function
wH .

The set of equations 6.6 tries to force all colors and opacities in points of
Vk to be identical to their corresponding locations in V0. Note that this is
an overdetermined linear system of equations on the unknown values that the
averaging discrete function wH takes on its finite domain. An optimal solution
of this linear system in the least squares sense could be obtained by quadratic
programming, by imposing that all discretized values wH(i) of the weighting
function must be positive (wH(i) > 0). However, for efficiency purposes, we
have computed the optimum of equation 6.6 in the least squares sense on a
restricted domain of positive weighting functions by testing a bi-parametric
convex set of functions wH , as discussed in Section 6.6. Our results show
that a Gaussian averaging function wH has a good behavior in all cases with
small Root Mean Square (RMS) and perceptual errors. The following section
describes our implementation using these Gaussian averaging functions.

6.5 Fast approximation of Adaptive Transfer Func-
tions

In this section, we present our implementation to approximate the optimal
TFs for coarse levels. This is achieved by analyzing the distribution of density
values at the higher levels in relation to the finest level, once the multiresolution
pyramid has been built.

We precompute Hd
k (z, s) (the 2D-histogram that relates downsampled den-

sities s of Vk and initial densities z of V0) for each coarse level k. Figure 6.4
shows one of these histograms created by evaluating one value per voxel at
the maximum resolution V0. For the lower resolution level Vk, intensity values
are evaluated using trilinear interpolation (mimicking the behavior of GPUs
accessing 3D textures). Another example is depicted in Figure 6.5 for the Head
dataset. Gray points are in zones where the correspondences take place. No-
tice how the loss of the original information is reflected by the spreading of the
points as the downsampling increases. This indicates that the original TF will
not work properly for downsampled levels.

6.5. Fast approximation of Adaptive Transfer Functions 93

Figure 6.4: Histogram of density correspondences between the original volume V0

and a downsampled volume Vk in the multiresolution pyramid. Gray points lay in zones
where the correspondences take place. The green line is a function of s that approximates
a path fitting the mean of each individual row 1D histogram; the row histogram for a
given si contains the overall information about what density used to be si in V0 before
having been downsampled.

(a) Joint histogram Hd
1 (b) Joint histogram Hd

2

Figure 6.5: Histograms of correspondences between the full resolution model V0 and
subsampled versions of the Head dataset (see Figure 6.11). (a) shows the correspon-
dences between V0 and V1, and (b) shows the correspondences between V0 and V2. Note
how the values spread increasingly as long as we go to downsampled levels, because of
the averaging functions that dilute the details of the voxels. This clearly suggests that
using the original TF0 on Vk will likely be suboptimal.

94 Chapter 6. High Quality Visualization of Coarse Datasets

Figure 6.6: Schematic overview of the Adaptive Transfer Functions. The occurrences
in each row of the downsampling histogram between V0 and Vk are used to perform a
weighted sum of the color values in the original Transfer Function TF0, that will provide
more accurate colors for TFk.

As shown in Figure 6.6, an adapted Transfer Function TFk is computed by
traversing the vertical axis of Hd

k (s values in Vk) and, for each value, averaging
the colors of TF0(z) using the information along the row (z values in V0):

TFk(s)←
1

K

∑
z

TF0(z)H
d
k (z, s)Gµs,σs(z) ∀s (6.7)

Here, Gµs,σs is a Gaussian function centered at µs with standard deviation
σs (see Figure 6.4), and the denominator K =

∑
zH

d
k (z, s) Gµs,σs(z), ensures

that the weighted sum of colors is normalized. All rows of the histogram are
visited, and in our current implementation the algorithm only traverses the
values around the mean (we use values of ±3σs around µs).

Once our method is applied, fitted Transfer Functions for Vk can be com-
puted very quickly. The resulting adapted TFs for two coarse levels are shown
in Figure 6.7. Note how our approach improves the result in comparison to
using the original TF as in (b), yielding images that are more similar to the
original model in (a). Images (c) and (e) show, as a temperature map, the
difference images between the image rendered at full resolution, and the ones
obtained with the downsampled models (b) and (d), respectively. The model
rendered with the fitted TF used in (d) yields a much better result than the
original TF.

6.6. Evaluation and results 95

(a) Original TF of the full resolution model.

(b) Corrected TF for the first downsampling level.

(c) Corrected TF for the second downsampling level.

Figure 6.7: Original Transfer Function (top) and the adapted TFs obtained with
our method for two different levels. The bottom one is used for rendering in the Head
in Figure 6.11.

6.6 Evaluation and results

This section presents an assessment of the several aspects of the performance
of Adaptive Transfer Functions. First, a visual quality analysis exploring the
results given by different weighting functions is performed. Then, it discusses
the computational requirements of the technique and compares it with well-
known competitors. The last subsections show examples on which non-medical
models appear, comment about the limitations of our approach and shows some
more comparisons among other techniques.

6.6.1 Visual quality analysis

We have analyzed different candidate weighting functions for equation 6.5. To
ensure positiveness of this weighting function wH in the least squares solution
of equation 6.6, we have restricted our optimization to a bi-parametric convex
set of weighting functions. We use barycentric coordinates on a triangular
domain of functions to interpolate among three basis functions: a normalized
Gaussian G(x), a constant function C(x) and a triangular function T (x) =
0.4 · (1− 0.4 · |x|). The bi-parametric weighting function is wH(x) = s ·C(x) +
t · T (x) + (1− s− t) ·G(x), with s and t being defined in the interval [0, 1] and

96 Chapter 6. High Quality Visualization of Coarse Datasets

Figure 6.8: RMS analysis of tested weighting functions wH in equation 6.6. Trian-
gles show the RMS error of all bi-parametric interpolated functions among a Gaussian
(bottom-left corner), a Constant (bottom-right) and a Triangular (top) weighting func-
tion are shown for two models. The best behavior corresponds to Gaussian weighting,
although the color scales show that differences are more important in the Foot dataset.
The bottom of the figure also shows the perceptual errors (computed using SSIM mea-
sure on 20 views) to further evaluate the effects of both approximations on rendering
(see Figure 6.9).

x in the centered interval [−2.5, 2.5]. All functions are normalized, having a
unit area in this interval. The equations, once normalized, are used to compute
the root-mean-square (RMS) error for any wH defined by a pair of parameters
(s, t).

Experiments performed on our test models confirm that the minimum error
is obtained at s = 0, t = 0 in most cases (see Figure 6.8), while in the rest of
the cases the resulting error is almost not sensible to (s, t) and to the shape of
wH .

We have also compared the visual quality obtained with the different weight-
ing functions using series of 20 images generated by positioning the camera at
the center of all faces of an icosahedron bounding the volume. Each render-
ing of a downsampled model is compared against the rendering of the original
full resolution model using the Structural Similarity (SSIM) index for image
quality assessment [85]. The results using Gaussian and Constant weighting
functions for equation 6.5 are shown in Figure 6.9, where lower values indicate
less error. Errors are higher when using barycentric coordinate interpolation
and also using triangle-shaped functions. By analyzing these results, we de-
cided to use Gaussian averaging functions in our implementation. In this way,
we reduce RMS and perceptual errors while automatically removing outliers
in the histogram of density correspondences. In addition, we have performed
a set of experiments to show the advantages of using Adaptive TFs versus the

6.6. Evaluation and results 97

Figure 6.9: Perceptual analysis of two tested weighting functions: Constant and
Gaussian. Dissimilarities have been computed with the SSIM perceptually-based metric,
as in Figure 6.10. The Gaussian weighting function produces either comparable or better
results than the constant function.

original TF with different models. We have used a Quad Core i7 PC and a
Core 2 Duo equipped with a GeForce GTX 470 with 1GB of RAM, and GTX
280 with 1GB of RAM, respectively. The resolutions of the models go up to
5122 × 1559 for the Body model, 5123 for the Head and the Chameleon, and
2563 for the Foot and Aneurysm. The rendering algorithm is a GPU-based ray
casting with pre-integrated classification and on-the-fly gradient computation,
and the sampling step is of the size of the voxel (for the corresponding resolu-
tion level). In the first PC, the framerate was interactive, and no change was
produced with the Adaptive TF. The second PC could only render the large
model at 2-3 fps, while our multiresolution rendering with Region of Interest
(ROI) is one order of magnitude faster.

In all the examined cases, Adaptive TFs clearly improve the quality of the
rendered downsampled model with respect to using the original TF, as shown
in Figures 6.11 and 6.12. These images correspond to a two-level simplification
from their full resolution models. This data reduction would allow the models
shown in this chapter to fit into the GPUs of commodity PCs and most modern
tablets and smartphones. We have compared the original models versus three
different downsampling levels (see Figure 6.10). Observe that the pairs of bars
corresponding to the V2 and V3 levels show that adapted TFs are always better

98 Chapter 6. High Quality Visualization of Coarse Datasets

Figure 6.10: Comparison of original models vs. three different downsampling lev-
els (V1, V2, and V3) of the models used in this chapter. The values are computed as
the average similarity of 20 regularly spaced views using the SSIM perceptually-based
metric [85]. Note that here we use dissimilarity, so lower values indicate better perfor-
mance. Only two models (Body and Head) do not represent an improvement at the first
downsampling level, with nonsignificant differences of only 0.0013 and 0.0003.

at these levels. The first downsampling level V1 also improves in three cases
while having similar values in the Body and Head models, with negligible
differences. Note that, except for two cases where the first level does not
improve (only a very small worsening), in all the rest of the cases the differences
are noticeable.

6.6.2 Computational requirements

Our method has scarce storage requirements. We need to store an adapted TF
at each coarse level, and since it will be recomputed if the original TF changes,
we must also keep the downsampling histograms information. Medical data
often uses 12 bits per voxel, but in order to reduce storage and computational
complexity, we use 8 bits per voxel in downsampled data, as we have seen that
this optimization is in fact much milder than the actual subsampling in these
kinds of models. Considering this, our technique requires 1 byte per voxel in
downsampled levels, plus 256kB (histogram) and 256×4b = 1kB (adapted TF)
per level.

6.6. Evaluation and results 99

V0 V2 – Original TF V2 – Adapted TF

(a) at 5123 (b) at 1283 (c) at 1283

(a) at 2563 (b) at 643 (c) at 643

(a) at 2563 (b) at 643 (c) at 643

Figure 6.11: Results obtained with our modified TFs for two example datasets
(Head and Aneurysm). The leftmost column shows models at full resolution. The
second column shows the result of a two-level downsampling without TF change. Our
TF adaptation method generates better results as shown in the fourth column. We
compare the difference maps from the full resolution model in the third and last columns.

(a) Original (5122 × 1559) (b) Reduced (1282 × 389) (c) Difference images

Figure 6.12: The results of our method applied to a simplification of two levels of a
5122 × 1559 model. The images show the improvement that is very noticeable (zooming
in will reveal more details). The top row contains the original model (left), and the
downsampling without TF adaptation. The bottom row uses an adapted TF. Note how
different structures such as the kidneys are better preserved and the overall color of the
image is highly improved. The images on the right illustrate the differences between the
low-resolution model and the original one.

100 Chapter 6. High Quality Visualization of Coarse Datasets

Method Dataset Total Overhead

resolution size vs 2563 + 1283

[90] 5123 226MB 75.5MB

[77] 5123 241MB 90MB

Ours 5123 151MB 256kB+1kB

Table 6.1: Storage requirements comparison for a multiresolution of the 8 bits per
voxel 5123 Shepp-Logan model with two levels of downsampling. The original down-
sampling (2563 + 1283) requires 151MB. The method by Younesy et al. [90] requires 4
bytes per voxel: one byte for the average µ, one byte for the standard deviation σ and
two bytes for the gradient. The approach by Sicat et al. [77] uses a sparse structure.
The values here are the ones declared by the authors applied for the 5123 Shepp-Logan
model.

Whenever the user changes the original TF, we need to adapt the TFs
of the downsampled levels. This entire process takes fractions of a second
(less than 0.01 seconds in our tests using 8 bits per voxel), so it is performed
interactively. The achieved computation time is an insignificant amount of
time, and it is definitely much faster than the time required by other, more
complex techniques. A nice feature of Adaptive TFs is that they do not require
special purpose modification of the rendering algorithm. Thus, the framerates
do not decay, while still improving the quality.

We compare our requirements with the one specified by Younesy et al. [90]
and Sicat et al. [77], as declared by the authors in their respective publications.
In the first case they require 4 bytes per voxel, and in the second case, they
store a sparse histogram whose size may vary depending on the model data.
Table 6.1 shows a comparison of the storage requirements for the Shepp-Logan
model of 5123 voxels. As it can be seen, our method clearly compares favorably
against the others.

6.6.3 Behavior on non-medical models and other examples

Although our research has been focused on medical data, Adaptive TFs can
also be successfully applied to other volumetric models. We show an example
in Figure 6.13 where the Nucleon and the Chameleon datasets are shown. Note
that even with an aggressive downsampling such as the one in the Nucleon,
where the original model is only of 413, and thus the 2-level simplified version

6.6. Evaluation and results 101

Original Original TF Adapted TF

model at 413 model at 103 model at 103

Original Original TF Adapted TF

model 5123 model at 1283 model at 1283

Figure 6.13: Using adapted TFs for non-medical models, the Nucleon and the
Chameleon, with two levels of downsampling, also achieves good results. The Nucleon
dataset is very small; it is only used to illustrate that even with an aggressive downsam-
pled version of 103, our fitted TF is able to recover quite a lot of information from the
original model.

is only of 103, the information we are able to preserve is quite important. We
can see it in the perceptual-based comparison where dissimilarity (computed
using 20 views as in the previous chart) for the Nucleon dataset is on average
0.216 when we compare the 2-level downsampled model with the original one
while when using our Adaptive TF it is reduced to 0.078. For the chameleon,
the 2-level downsampled comparison yields dissimilarities of 0.062 with the
original TF and 0.044 with our Adaptive TF.

Our approach can be used to render a simplified version of the model while
showing the model at maximum resolution inside a user-defined ROI (see Fig-
ure 6.14). Note that the transition between the two resolutions is not perceived.

The results obtained outdo the performance of commonly applied algo-
rithms, since they allow us to recover information that was lost during the
downsampling at a low cost, both in terms of memory and speed.

102 Chapter 6. High Quality Visualization of Coarse Datasets

(a) V0 (b) V2 with ROI (c) V2 with ROI

(boundary shown) (boundary hidden)

Figure 6.14: Part of the model in Figure 6.12 at the original resolution (a) and
two levels of subdivision with the proposed algorithm (b) and (c). In (b) and (c), the
simplified model V2 is shown outside the Region of Interest (ROI), while the ROI shows
the original model V0. The ROI boundary is drawn in (b) for the purpose of comparison
with (c).

6.6.4 Limitations

A limitation of our technique is its inherent global character. Different neigh-
borhoods of the voxels in the original dataset may be downsampled to the same
value on the lower resolution model. Given this fact, although we achieved quite
successful results in the models we tested, our TF adaption technique is not
able to capture little and thin features. Its improvements will likely be limited
in scenarios with highly heterogeneous models, and in the worst case, different
textured structures could be equally colored, although it is unlikely that typ-
ical medical models will behave this way. To that aim, the feature-preserving
downsampling filter presented in Chapter 4 may be worth being introduced in
the visualization pipeline. As they are not exclusive, the combination of both
techniques, Adaptive Transfer Functions and the presented feature-preserving
downsampling filter, is a solution that achieves renderings of low-resolution
datasets with an accurate computation of colors and opacities, and preserva-
tion of fine details.

6.6.5 Comparison with other techniques

We have performed comparisons of Adaptive Transfer Functions with other
techniques that supposedly generate good quality coarse representations of the
original data in terms of the evaluated colors and opacities.

First, we implemented the method proposed by Younesy et al. [90]. As
explained in Section 6.3.2, their technique generates coarse representations
that store extra per-voxel information. More precisely, at each voxel of the
coarse dataset, they store a mean density value and the standard deviation

6.6. Evaluation and results 103

of densities in its footprint in the original resolution dataset. With these two
values and a precomputed 2D Transfer Function, they are able to obtain a
more accurate color contribution. Figure 6.15 shows a comparison of several
downsampled models rendered with different techniques to obtain the contri-
bution of colors and opacities. The worse results are obtained using the original
Transfer Function to render the coarse dataset. Either using Adaptive Trans-
fer Functions or Younesy’s method, the evaluated colors and opacities exhibit
a great improvement with respect to the previous case. Younesy et al., with
their method, are able to preserve some thin structures (e.g., the catheter in
the Thorax model) thanks to its higher degree of locality. However, their im-
plementation has higher pre-processing and memory size requirements, which
make this technique less practical for systems with more restricted capabilities.
Our method, Adaptive Transfer Functions, achieves comparable results with
much fewer requirements.

We also implemented another downsampling method, based on the previous
pre-classification of scalar data, and later downsampling of RGBA data. As
stated in Kraus and Bürger’s paper [42], downsampling of scalar volume data
for post-classification volume rendering is considerably more difficult and less
well understood than downsampling of RGBA volume data. That is due, as
said, because Transfer Functions are highly non-linear, and as a result, the re-
lationship between mutations in the scalar field and the final renderings is also
non-linear. According to this statement, the renderings shown in Figure 6.16
tend to show better results in the case of downsampling of RGBA data. The
technique presented in this chapter also exhibits good behavior, but more ag-
gressive simplifications would incur stronger visual penalties. Downsampling
of RGBA data, although robust and more predictable, comes with important
drawbacks. Mainly, it needs four times as much memory space as the method
we propose, which makes RGBA data not suitable for commodity and mobile
devices. Moreover, the computation of color (actually, the whole multiresolu-
tion hierarchy) is generated at a pre-processing stage, which means that the TF
cannot be changed interactively, as the whole multiresolution hierarchy should
be rebuild.

For these reasons, the competitors we compare against may be good options
for more powerful hardware such as desktop computers, but actually not good
candidates to be implemented in many less powerful, portable devices.

104 Chapter 6. High Quality Visualization of Coarse Datasets

V0 V2

Original TF Original TF Adapted TF Younesy et al.

(a) (b) (c) (d)

Figure 6.15: Comparison of different levels of resolution of several models whose
colors and opacities were obtained using different methods. Column (b) shows the
downsampled models (V2) rendered with the original Transfer Function, the same one
used in column (a), for the original dataset V0. In column (c), coarse datasets V2 are
rendered with our Adaptive Transfer Functions. Column (d) shows renderings of V2

using the technique by Younesy et al. [90]. Our method (c) achieves quality results
comparable to (d), requiring less computational resources.

6.6. Evaluation and results 105

V0 V2

Original TF Original TF Adapted TF Downsampled RGBA

(a) (b) (c) (d)

Figure 6.16: Comparison of different levels of resolution of several models whose
colors and opacities were obtained using different methods. Column (b) shows the
downsampled models (V2) rendered with the original Transfer Function, the same one
used in column (a), for the original dataset V0. In column (c), coarse datasets V2 are
rendered with our Adaptive Transfer Functions. Column (d) shows renderings of RGBA
datasets V2 that were downsampled after the pre-classification of V0. The last case tends
to provide a higher fidelity as compared to V0. However, it needs a pre-computation of
the RGBA multiresolution hierarchy, the amount of memory needed is four times the
required by our approach, and does not allow an interactive modification of the TF.

106 Chapter 6. High Quality Visualization of Coarse Datasets

6.7 Conclusions and future work

In this chapter, we have addressed the problem of the correct computation
of colors and opacities in the visualization of coarser levels of multiresolution
datasets through Adaptive Transfer Functions. This technique takes into ac-
count how scalar field values have changed during the downsampling to com-
pute, for each coarse level, a joint histogram of the correlation between the
original density values and the downsampled ones. With these histograms,
and starting from the original Transfer Function, it creates fitted Transfer
Functions for coarse datasets so that the quality of those renderings is highly
improved with respect to always using the original Transfer Function. Unlike
other approaches [90, 77], it does not store extra local information at the voxels
level, so its memory footprint is very small. It is a global approach, and as
such, it succeeds in preserving global features such as an improved estimation
of the overall color and opacity.

This technique has four main advantages:

1. Storage costs are negligible (256+1kB for each coarse model).

2. The rendering is not affected using pre-integrated or post-classification,
and the gradient -so shading- may be computed on-the-fly (thus, it can
be combined with other data storage management methods).

3. The computation requires no manual parameter setting and is fully au-
tomatic.

4. It is performed interactively, allowing interactive modification of the
Transfer Function.

It is important to note that the method is orthogonal to any downsam-
pling method, so it is not restricted to a subset of the original points, and
so it may use any downsampling filter. It may also be seamlessly combined
with any compression technique that generates density values. In this case,
the decompressed model would be the one used to create the histograms, and
during rendering time, it is then just necessary to substitute the TF fetch for
a function that fetches the newly created adapted TFs. This approach allows
to automatically obtain coarser models that can be used in modest GPU envi-
ronments and is a good candidate technique for mobile rendering. Obviously,
its combination with off-line or bricking techniques is straightforward.

6.8. Publications 107

For the preservation of thinner and smaller features, the adapted TF may
still not be enough, as a higher degree of locality would be needed. We think
that exploring other criteria for the construction of the downsampling his-
togram could provide valuable information about the downsampling process
and would help to recover a certain degree of locality. Right now, just the vari-
ation of densities among levels of resolution are used to generate the downsam-
pling histograms used by the Adaptive Transfer Functions algorithm. Other
alternatives could include using the gradient magnitude, or the distribution of
densities in the neighbourhood of the low-resolution voxels.

Anyway, with the aim of preserving fine details, the feature preserving
downsampling filter presented in Chapter 4 is an ideal candidate to include
in the volume rendering pipeline. The combination of both techniques, the
feature-preserving downsampling filter, and the Adaptive Transfer Functions,
produces outstanding results.

6.8 Publications

The technique described in this chapter has produced the following publication:

• Jesús Dı́az-Garćıa, Pere Brunet, Isabel Navazo, Frederic Pérez, Pere-Pau
Vázquez. (June 2016) Adaptive Transfer Functions. Improved Multires-
olution Visualization of Medical Models. The Visual Computer, 32(6-8),
835-845. [16]

7
Interactive Rendering on Mobile Devices

The previous chapters have proposed improvements to some known issues and
artifacts in prior stages of the visualization pipeline. This chapter approaches
the last stage of the visualization pipeline: the rendering algorithm. Here, we
explore the rendering of medium to large volumetric models on mobile and
low-performance devices in general. To do so, we propose a multiresolution
framework based on the use of an incremental rendering scheme that provides
a smooth transition between low-resolution and high-resolution models. Then,
we present two new progressive GPU ray casting techniques that fit this scheme
so that the achieved visualizations are able to obtain interactive frame rates
and high-quality results for models that not long ago were only supported by
desktop computers.

7.1 Motivation

In the last years, thanks to its ubiquity and increasing computational power,
smartphones, tablets and mobile devices in general, are more and more suit-
able for applications that require high-quality visualization of volume data in
real time, being the clinical practice one of the most important fields in such
scenario. Unfortunately, despite the fact that their capabilities, in terms of
computational power, visual quality and storage capacity are undeniably rais-
ing, there are certain tasks such as the interactive inspection and high-quality
visualization of high-resolution medical datasets which still entails a challeng-
ing problem in this kind of hardware.

109

110 Chapter 7. Interactive Rendering on Mobile Devices

Previous experiments [3] have shown that, even though big models might
fit into such GPUs memory, the rendering performance achieved by mobile
devices is still not enough. Usually, the visualization of models with larger
resolutions (> 5122) that still fit in the graphics memory of mobile devices,
achieves low frame rates which are far from being interactive and prevent the
user from experiencing a smooth inspection of the model.

When the calculations needed to generate a high-resolution output image
exceed an amount of time that allows interactive visualizations, a viable so-
lution is splitting the whole process into several batches whose computation
time fit in a reasonable frame time, thereby completing the process incremen-
tally. There are several techniques aimed at the incremental generation of
volume renderings, which allow separating the workload in several time steps
(see Section 3.5.3 for further details on some techniques using this approach).
However, none of the previous work is aimed at the efficient design of an in-
cremental technique suitable for mobile devices.

7.2 Problem addressed

This chapter focuses on solving the issue of high-resolution renderings in mobile
devices while maintaining interactivity. Because mobile devices have hardware
specifications much more restrictive than desktop machines, special consider-
ations have to be taken into account to visualize medium to large datasets on
these devices. For that purpose, we have identified two separated use cases in
the application workflow: interaction (to find an interesting view) and inspec-
tion (to observe the selected view in detail). We have proceeded differently
depending on the use case, as the interaction phase mainly requires the appli-
cation to be responsive to the input events, whereas, in the inspection phase,
the most important requisite is a high-quality visualization.

We have approached the problem described above with use of multiresolu-
tion techniques for volume rendering on mobile devices. Our framework uses a
low-resolution model during user interaction, and a high-resolution dataset for
quality visualization when the camera stops. The solution we propose employs
progressive GPU-aided ray casting algorithms to generate the high-resolution
renderings. By progressive we mean that the whole high-resolution render-
ing, when required, is split into parts and distributed over subsequent frames.
This strategy prevents blocking and provides a higher degree of interactivity.
Specifically, the main contributions presented in this chapter are:

7.3. Framework overview 111

• A strategy pattern for incremental rendering that provides a smooth
transition from the low-resolution visualization to the high-resolution vi-
sualization, preventing blocking to avoid undesirable application aborting
and allowing for smooth interactions at any time.

• The proposal of two new progressive ray casting methods that fulfill the
goals mentioned above, and their analysis, and a comparison with other
existing techniques.

7.3 Framework overview

We use GPU-aided ray casting to perform direct volume rendering, as it is
the state of the art technique for the task [34]. For details on the ray casting
algorithm, the reader may refer to Chapter 2. Ray casting is easy to implement
and performs highly optimally in graphics chips thanks to the possibility to
directly map the rays of the volume rendering integral to individual shader
processing units. However, the visualization of large datasets involves costly
computations of the ray integral, which implies a bottleneck in the fragment
shader performing that calculation.

Our implementation of the ray casting algorithm uses several existing meth-
ods that help to improve the visual quality of the final renderings and the
performance of the visualization process (see also Chapter 2). For instance,
stochastic jittering and pre-integrated Transfer Functions [23] are used in or-
der to avoid undesired wood-grain artifacts without sacrificing performance.
We also have incorporated acceleration techniques such as Empty Space Skip-
ping (ESS) using close-fitting proxy geometry, and Early Ray Termination
(ERT) whenever possible. In addition, we perform downsampling to achieve a
low-resolution dataset that allows interactive exploration, and also whenever
the original resolution dataset does not fit the GPU memory. Regarding the
contributions of this thesis, we use the feature-preserving downsampling fil-
ter described in Chapter 4, which is able to preserve important features that
are typically lost during the downsampling process. Finally, we use Adaptive
Transfer Functions (see Chapter 6) to visualize the coarser levels with higher
accuracy.

The standard way used by medical experts to inspect medical images is
based on orthographic projections. For this reason, we use orthographic cam-
eras to generate our renders.

112 Chapter 7. Interactive Rendering on Mobile Devices

Since our goal involves implementing a scalable system that is able to
perform interactive high-resolution ray casting of large models, we propose
a framework based on multiresolution. Our solution uses a lower resolution
dataset for the visualization while the user is exploring the model, which en-
sures interactive frame rates, and a high-resolution dataset along with a pro-
gressive refinement algorithm for high-quality rendering of the desired regions
of interest after each user interaction.

The usage of a progressive rendering algorithm ensures that, by splitting
the ray casting into several frames, the control of execution is returned back to
the application loop more frequently. This way, it cannot stall for long periods
of time, allowing the user to start new interactions at any time, even before
the progressive render has finished (thus canceling the process).

Based on this general strategy, we propose two different approaches, de-
picted in Figures 7.1 and 7.3. Both share the same structure: during user
interaction, rendering is performed using low-resolution ray casting (top row).
Every time the user stops at a certain view, the progressive high-resolution ray
casting starts so that the static image of the selected view evolves smoothly
from the low-resolution ray casting result to the full resolution image.

The main differences between both strategies are the way the high-resolution
images are produced. In one case, the final image is obtained by rendering the
high-resolution dataset in separated slabs in front-to-back order (we call this
technique Front-to-back Slabs, or FBSlabs). The second strategy, on the con-
trary, splits the viewport into several tiles and sorts them by cost in order to
group them into batches of a similar cost that can be efficiently rendered at
each frame until a certain time budget is reached (we refer to this technique
as Sorted Tiles, or STiles).

7.4 Progressive ray casting strategies

In this section, we present details on each of the two proposals for incremental
rendering: FBSlabs and STiles. On the one hand, FBSlabs (which stands for
front-to-back slabs) is an incremental ray casting algorithm based on object
space partitioning, where thin slabs of the scalar field are rendered in subse-
quent frames in front-to-back order. On the other hand, STiles (which stands
for sorted tiles) is another incremental ray casting algorithm, based on screen
space partitioning. It splits the screen space into square blocks of pixels with

7.4. Progressive ray casting strategies 113

an assigned a cost, and the high-resolution rendering is incrementally com-
puted in subsequent frames, rendering batches of tiles by cost order. The next
subsections go into more detail on these algorithms.

7.4.1 FBSlabs (front-to-back slabs)

This progressive algorithm splits each ray into several segments of a fixed length
and then starts rendering those segments in front to back order over subsequent
frames after the user finishes interacting. The algorithm renders the incremen-
tal high-resolution results into a texture Thigh, the low-resolution results into
another texture Tlow and finally composites both textures to achieve the final
image at each frame. These are the main steps followed by this algorithm:

1. Low Resolution Ray Casting (during user interaction)

• The ray casting color is stored in a 2D texture

2. Progressive High-Resolution Ray Casting

(a) A 2D texture Thigh is cleared

(b) The first sampling position for each ray (one per viewport pixel)
is placed at the entry point on the proxy geometry bounding the
volume model

(c) A fixed number of ray casting steps are performed advancing over
each ray (rendering a non-regular slab perpendicular to the viewing
direction), and the resulting color is composited with the previous
high-resolution partial result in Thigh

(d) The remaining part of the volume is rendered with low-resolution
ray casting, starting at the sample position where the previous step
finished, and then stored in Tlow

(e) The current image is generated by compositing Thigh on top of Tlow
with alpha blending

(f) In the next frame, a frame counter is increased, and the process
resumes ray casting from (c) until the sampling positions exceed
the volume boundaries

In Figure 7.1, step 1 indicates that the low-resolution rendering is generated
by a standard ray casting algorithm, with no modifications, into a 2D texture
Tlow.

114 Chapter 7. Interactive Rendering on Mobile Devices

Figure 7.1: Schematic overview of the FBSlabs algorithm. Step 1) depicts the initial
low-resolution standard ray casting performed while the user is moving the camera.
Each time the interaction stops, in step 2), the high-resolution image is incrementally
composited by rendering slabs in front-to-back order, one at a time every frame. Then,
at each frame, this high-resolution image is composited on top of the remaining part of
the model rendered at low resolution.

Low res. 25% 50% 75% High res.

Figure 7.2: Vix dataset (5122 × 250 high res., 1282 × 63 low res.). This sequence of
images shows the transition process from the low-resolution to the high-resolution ray
castings obtained by the FBSlabs method. The top row shows the renderings as shown in
the application, whereas in the bottom row, the low-resolution part of the same images
is lightened in order to reveal the updated portions of the image more clearly.

7.4. Progressive ray casting strategies 115

Then, in step 2 of Figure 7.1, a chain of partial ray castings is performed
in separated slabs to render the high-resolution dataset progressively. A 2D
texture Thigh is used to store the progressive state of the high-resolution render.
To start the process, in the first frame after the user interaction finished, the
initial segments of all rays emerging from the viewport pixels are rendered in
Thigh. Those ray segments start at the entry points on the proxy geometry and
perform a fixed number of samples (N = 40 in our case) in each ray casting
frame, making each slab have a fixed thickness. During the next frames, the
same slab rendering process is repeated. At each frame, in order to resume the
high-resolution ray casting where the previous frame finished, we only need
to know the current frame counter (number of frames since the progressive
ray casting started), as each slab is rendered with a fixed number of samples
and a constant sampling space between them. Note that the camera is con-
figured to perform an orthographic projection of the scene, as commonly used
in medicine. This way the generated slabs remain planar as they originated
from the proxy geometry. A perspective projection could be used otherwise
without causing any trouble, this way leading to pseudo-spherical slabs as they
get far from the starting point at the proxy geometry. The blending state is
configured to add color in a front to back order in order to update Thigh with
each rendered slab. In Tlow, the remaining part of the ray casting is computed
at low resolution, which implies almost no penalty in time. At each frame, the
resulting partial image Thigh is composited over the low-resolution image Tlow
using alpha blending. The high-resolution ray casting is completely finished
whenever all the ray segments rendered exit the proxy geometry. We conser-
vatively approximate this moment by repeating this iterative process until the
computed rays are longer than the diagonal of the volume bounding box. Fig-
ure 7.2-top shows the transition effect of this technique (in Figure 7.2-bottom,
color is modified to better perceive the boundary between the low-resolution
and the high-resolution rendered parts).

7.4.2 STiles (sorted tiles)

This progressive ray casting algorithm first decomposes the high-resolution
image space into square blocks of pixels (tiles) and then renders them pro-
gressively over subsequent frames (see Figure 7.3). The rationale behind this
method comes from the tile-based behavior of the GPU rasterizer and cache
usage. Analogously to FBSlabs, the low-resolution rendering is stored into a
low-resolution texture Tlow and the high-resolution results are incrementally
rendered into a high-resolution texture Thigh. The algorithm pipeline proceeds

116 Chapter 7. Interactive Rendering on Mobile Devices

Figure 7.3: Schematic overview of the STiles algorithm. Step 1) depicts the initial
low-resolution standard ray casting performed while the user is moving the camera (the
ray cost hint is stored in the alpha channel). Each time the interaction stops, in step
2), the screen space is split into tiles and sorted according to this ray cost hint, and two
mapping textures that are able to convert from one space to another are generated. In
step 3), the incremental rendering proceeds frame by frame, rendering tiles in order and
compositing the final image by selecting pixels either from the low-resolution texture or
from the high-resolution tiled texture.

Low res. 25% 50% 75% High res.

Figure 7.4: Vix dataset (5122 × 250 high res., 1282 × 63 low res.). This sequence of
images shows the transition process from the low-resolution to the high-resolution ray
castings obtained by the STiles method. The top row shows the renderings as shown in
the application, whereas in the bottom row, the low-resolution part of the same images
is lightened in order to reveal the order in which the image is updated.

7.4. Progressive ray casting strategies 117

through the following steps:

1. Low Resolution Ray Casting (during user interaction)

• The ray casting color is stored in a 2D texture Tlow

• The ray cost (number of ray samples) is stored in the alpha channel
of Tlow

2. Tile Sorting (once after interaction finished)

• Once the user interaction stops, the screen space is split into tiles,
and then, tiles are sorted by cost (using a series of compute shaders),
generating two correlation maps that allow converting between un-
sorted and sorted tile coordinates.

3. Progressive High Resolution Ray Casting

(a) The high-resolution ray casting of a few tiles (rendered in order) is
performed until a fixed time budget is reached

(b) The current image is composited, selecting either the high-resolution
pixels from Thigh when already computed, or the low-resolution ones
from Tlow otherwise

(c) In the next frame, the process is resumed from (a) until all the tiles
are rendered

During user interaction, a standard low-resolution ray casting for interac-
tive rendering is performed in a fragment shader (see step 1 of Figure 7.3).
At each pixel, together with the low-resolution color in the RGB channels, the
number of ray samples is stored in the alpha channel of the output texture Tlow
as an estimation of the ray cost. This ray cost approximation is crucial for the
main goal of the algorithm.

The second step starts once the user stops interacting. The viewport is then
divided into small tiles, and these tiles are in turn sorted according to the ray
cost hint provided by the previous stage (see step 2 of Figure 7.3), by means of
a few compute shaders that implement a GPU radix sort algorithm [35]. The
sorting pipeline proceeds in three steps, each one carried out by a compute
shader: i) Group counting, ii) Group offset setting and iii) Sorting. During
the first step i), the tiles are grouped by cost, so that we finally have a counter
of the number of tiles belonging to each group. We consider the cost of a tile to

118 Chapter 7. Interactive Rendering on Mobile Devices

be the number of ray samples (previously stored in the alpha channel of Tlow)
at the center of the tile. The second stage ii) scans these counters to establish
an offset for each group of tiles so that they can be later placed in an output
texture without overlapping. Finally, the third and last step iii) proceeds by
sorting tiles, placing them into the right position defined by their group offset,
depending on their cost. The actual outputs of this compute shader are two
texture maps that allow translating from sorted to unsorted tile coordinates
and vice versa.

Finally, the last step of STiles corresponds to the progressive ray casting,
carried out again by a fragment shader. It renders a variable number N of
screen tiles, in order, in a separated 2D texture alias of sorted tiles. Thanks to
the mapping textures produced in the sorting stage, the tiles can be rendered in
strict order. The variable number of tiles depends on a fixed time budget (0.1
seconds in our case). The algorithm proceeds by rendering a window of N tiles.
After rendering these N tiles, the elapsed time is measured in order to know if
the time budget has been exceeded, and in this case, it does not render any more
tiles during this frame. If the budget has not been exceeded, it renders N more
tiles until the time budget is reached. The final image is composited by either
selecting, for each pixel, the high-resolution ray casting color if available (again,
using the mapping textures produced in the sorting stage to know its position in
the sorted tiles texture), or the low-resolution ray casting color otherwise. This
last step is repeated in successive frames, rendering as many tiles as possible
without exceeding the fixed time budget, until the whole high-resolution ray
casting image has completely substituted the low-resolution one (see step 3 of
Figure 7.3). Figure 7.4-top shows the transition effect of this technique (in
Figure 7.4-bottom, color is modified to better perceive the boundary between
the low-resolution and the high-resolution pixels).

7.4.3 Discussion of decisions and alternatives

We have described two different strategies based on GPU ray casting for the
incremental rendering of high-resolution volume datasets. Both are fast and
complete the render of the final image quick enough to be considered good can-
didates for our purposes. One of the main strengths of the FBSlabs method is
its low requirements regarding GPU specifications and OpenGL version. As our
architecture is based on the use of 3D textures, a minimum version of OpenGL
ES 3.0 is needed, but a different implementation that makes use of 2D textures
to store the dataset in GPU memory could support lower versions of OpenGL.

7.4. Progressive ray casting strategies 119

In this sense, STiles has stricter requirements, demanding a minimum version
of OpenGL ES 3.1 on mobile devices, due to the usage of compute shaders,
which were not available in previous versions. For this reason, not only old
graphics chips but also WebGL platforms, which today still do not provide a
sufficiently updated version of OpenGL (and thus compute shaders are also
not available), are not able to use STiles.

We have decided to implement the sorting step of STiles with a GPU
radix sort [35] using compute shaders. This sorting strategy performs ef-
ficiently enough for our purposes, yielding negligible computation times, so
the interactivity is not compromised. An implementation of this method in
CUDA was also demonstrated to outperform other sorting algorithms in mod-
ern GPUs [73]. Another version based on fragment shaders could have been
implemented with the aim of enabling older devices to execute STiles [38].
However, too many rendering passes are required to carry out the task (with a
complexity of O(n log2 n+ log n)), yielding a serious penalty on mobile GPUs
and likely providing less interactive results.

We have implemented some other alternatives for progressive ray casting
with less satisfactory results. One of our first experiments was based on a naive
separation of the high-resolution viewport into several tiles. We configured
various splitting sizes: we found a grid of 8×8 = 64 tiles to be the optimal case
for this technique, which was raising the completion time to at least one second
due to the number of frames (64) needed to finish the render. Unfortunately,
the transition between the low and high-resolution images was not pleasant
due to its blocky appearance. This effect could be alleviated by increasing the
number of tiles, but this would increase the total render time. Furthermore,
we implemented and tested an early version of STiles that consisted in sorting
individual rays instead of tiles, also using compute shaders. Although the idea
of sorting seemed sound, the performance also dropped (see Section 7.5.1).
Again, we believe that this is due to the fact that dealing with single rays
breaks texture access coherence.

Another approach we implemented was a simple form of progressive ray
casting (we name it Simple in what follows). It is a screen space refinement
method that consists in starting with the render of a low-resolution ray casting
image, and then progressively sampling new high-resolution rays on the screen
surface at each frame until a time budget is expired, finishing when all the
pixels of the high-resolution image have been computed. The high-resolution
pixels computed at each frame are accumulated in an extra texture so that they
can be reused in subsequent frames. The sampling scheme for the selection of

120 Chapter 7. Interactive Rendering on Mobile Devices

new high-resolution pixels (to generate new rays) at each frame, is analogous
to other techniques of progressive ray casting mentioned in Chapter 3.5. The
new rays are generated and computed at each frame, covering the screen in a
uniform way over time. We have tested two slightly different approaches, one
where the pixels for the high-resolution ray sampling are selected randomly
(referred to as Simple random in the figures), and another one where the pixels
are selected using a uniform distribution over the screen surface (labeled as
Simple structured). The number of refinement steps is variable and depends on
the number of rays computed at each frame without exceeding the fixed time
budget, which is directly related to the complexity of the rendering process (i.e.,
resolution of the model, opacity of the Transfer Function, viewport resolution,
etc.). The transition effect between the low-resolution and the high-resolution
images was highly smooth, up to the point of almost not noticing the transi-
tion. We used the same performance optimizations used in the other methods
presented (i.e., ERT and ESS). However, the performance of this approach was
worse than our proposed methods (see Section 7.5.1). We hypothesize that
the pseudo-random distribution of rays was preventing all kinds of cache usage
on the GPU, thus increasing the render time at each frame and achieving a
much less interactive experience. We present an evaluation of this method in
Section 7.5 together with the evaluation of our proposed techniques.

7.5 Evaluation and results

Rendering high-quality images of a relatively large dataset on low-performance
devices such as mobile devices is a task that requires a significant amount of
time. We have proposed an incremental approach that splits this process into
separated steps that are completed over subsequent frames. This way, each
step can be executed during an application frame not exceeding an acceptable
amount of time. This avoids blocking the application and provides smooth
interactivity, allowing the interruption of the high-quality render at any time if
the user desires to continue interacting. Our two proposed methods accomplish
this task quickly and in a visually pleasing way. So, from the point of view of
the user, the only visible difference is the transition from the low-quality image
to the high-quality image.

We performed several experiments to measure the advantages of both ap-
proaches in terms of performance (Section 7.5.1) and visual quality (Section 7.5.2).
The experiments were run on two mobile devices, a Motorola Nexus 6 (equipped

7.5. Evaluation and results 121

with an Adreno 420 GPU and a screen resolution of 1440 × 2560) and an
Huawei Nexus 6P (equipped with an Adreno 430 GPU and a screen resolution
of 1440× 2560). On both devices, the viewport resolutions were scaled to half
the screen size on both axes for the high-resolution ray castings (720 × 1280,
which is still a good resolution due to the small pixel size given on these devices’
screens) and to one eight of the screen size for the low-resolution ray castings
(180× 320). We used datasets of different resolutions with Transfer Functions
having different levels of transparency: Vix (5152 × 256), Head (5122 × 485),
Obelix (2562 × 780), Chamaleon (5123) and Melanix (2562 × 602).

7.5.1 Transition from low to high resolution: performance

FBSlabs distributes the workload over time by splitting the rays into segments.
At each frame of this progressive method, a limited number of ray casting
samples is fixed, so the maximum number of samples within the ray casting
shader, for a single frame, is O(Vw×Vh×N), where Vw×Vh is the total number
of pixels in the viewport and N is the fixed number of samples to take from
each ray segment during a single frame of the incremental render. We have
fixed N = 40 in our experiments so that a small loop is performed for each pixel
in the viewport at each frame. Besides the rendering of each slab, the amount
of time required for blending both, the low-resolution and the high-resolution
images, is negligible. Some results are shown in Figure 7.5 (FBSlabs series).
On average, our experiments obtain completion times under 1 second for the
tested models.

In order to improve FBSlabs, we made a test that stored per-ray accumu-
lated opacity after each frame, so that a global ERT is enabled. However, this
implementation requires an extra pass to copy the high-resolution results into
another texture that can be queried during the next frame to know whether or
not the current ray/pixel was completed and can be discarded. Unfortunately,
this extra pass incurs a time penalty that is larger than the benefits obtained
from ERT. The algorithm can still perform per-slab early ray termination, but
it will not avoid starting the ray traversal for the next slab in the next frame.

In STiles, the workload is split into screen-space tiles that can have different
costs depending on the length of the rays they contain. Then, they are sorted
before proceeding to the progressive ray casting step. The sorting step cost is
actually negligible, and it is computed only once after each user interaction (see
step 2 of Figure 7.3). We base our strategy on the experimental results shown

122 Chapter 7. Interactive Rendering on Mobile Devices

Figure 7.5: Average completion time (in seconds) of progressive ray casting methods
run on different devices for several datasets. These times are an average measure cal-
culated by performing the transition process from 3 different zoom levels with different
screen pixel coverages, and 20 different camera positions uniformly distributed on the
surface of a surrounding sphere for each zoom level (60 camera configurations in total).
Note that the measurements for the Classic RC complete faster in average, which is
the expected behavior as the rendering task is not split over several frames. However,
this does not implies better interactivity than progressive methods, because these dis-
tribute the workload over several frames, returning the control to the application more
frequently. Note also the high bars in the Classic RC, indicating that some renderings
were not completed due to an application crash.

in Figure 7.6. If tiles are sorted by increasing cost, it can be observed that the
accumulated time of the incremental rendering along subsequent frames (when
a fixed number of tiles is rendered at each frame) increases in a non-linear way,
due to the obvious fact that rendering the first tiles is faster than rendering
the last ones. Our strategy, based on the charts in Figure 7.6, is to render
more tiles in the first frames and a lower number of tiles in the last frames to
compensate for their higher cost. Based on the shape of the curves in these
charts, we estimate a tile budget for each subsequent frame that guarantees
an estimated time budget of 0.1 seconds per frame. Estimated tile budgets are
decreasing from the first frame to the last one, resulting in a greater number of
tiles being rendered in the first frames and on a stable frame rendering time. As
shown in Figure 7.5, we achieve completion times faster than FBSlabs method
(approximately half the time for all the tested datasets on all devices).

7.5. Evaluation and results 123

Figure 7.6: Charts showing the accumulated time over subsequent frames in STiles
for two datasets. The lines correspond to different levels of camera zoom, corresponding
Zoom 0 to the smallest, and Zoom 2 to the largest screen pixel coverage. A fixed number
of tiles is rendered at each frame, and the tiles have been previously sorted by increasing
cost. Last frames obviously take longer to finish.

One could argue that rendering tiles in ascending order in STiles implies
rendering big empty regions of the screen first (which should have cost zero)
whenever the footprint of the proxy geometry is much smaller than the actual
screen resolution. The ideal procedure would be to directly discard those tiles
without effective work to process, or those not overlapping the proxy geome-
try. However, discarding tiles with zero cost is not reliable, as tile costs are
computed from a low-resolution image rendering, so the ray costs in low reso-
lution might be inconsistent with the same rays traversing the high-resolution
dataset. In addition, we actually classify each tile by the cost queried from
a single sample position at its center, which is a fast approximation that dis-
cards many texels with information (a sample fetched from the center of the
tile could have cost zero, but one of its corners could have a high costs, if the
region covered by that tile corresponded to an edge of the model). However,
this issue is not a problem, as the rendering of empty, and almost empty tiles,
completes instantly when the fragment shader discards rays not intersecting
the proxy geometry, so it is actually normal completing all the empty regions
and part of the effective ray casting workload during the first frame.

As previously commented, we tested an initial version of STiles that con-
sisted in sorting individual rays, achieving poorer performance. We were then
inspired by an analysis of the rasterization patterns followed by several GPUs

124 Chapter 7. Interactive Rendering on Mobile Devices

Figure 7.7: These charts show the overall completion times (in seconds) obtained
for the STiles algorithm under several tile size configurations. The tests were run on
two different devices (Huawei Nexus 6P on the top, Motorola Nexus 6 at the bottom)
with several datasets. The tested tile sizes were: 12, 22, 42, 82, 162 and 322. We can
see how the completion time decreases as the tile size increases. More precisely, the
performance gain is particularly low for sizes greater than 82, which is actually the size
of the rasterization patterns used by those GPUs.

in [37], where the authors were able to reveal the order in which pixels are ren-
dered by the GPUs by means of using atomic counters in a fragment shader.
Based on this observation we performed an analysis of the performance by run-
ning some tests, packing groups of rays in tiles of several sizes (see Figure 7.7).
As expected, increasing the tile size boosts performance. The rationale be-
hind this is that packing neighbouring rays together takes advantage of the
3D texture cache. Following this argumentation, performing the whole render
at once would achieve an optimal result. However, the measurements shown
in Figure 7.7 are averaged over a big variety of camera configurations where
some renderings are generated very quickly, and others can take much longer
(e.g., the Body model seen from above through its longest axis), and they could
provoke the aforementioned application crash issue if not split over time. We
finally decided to use a minimum tile size of 8 × 8 pixels, as the performance
gain considerably decreases for larger tile sizes. As shown in Section 7.5.2,
this tile size achieves a good compromise between the rendering time and the
perceived transition between different frames.

We also tested the performance of the Simple progressive ray caster. The
achieved completion times were the higher among all methods (see Figure 7.5).
This is due to the distribution pattern followed to generate rays for the high-
resolution ray casting. It does not take into consideration any locality pattern,

7.5. Evaluation and results 125

breaking the spatial coherence and not making possible the use of the 3D
texture cache, finally increasing the total completion time. In addition, we
executed performance tests of a classic non-progressive ray casting algorithm
to compare the achieved times with the result of our proposed progressive
methods. The average rendering times obtained may seem lower than our two
proposals (see Figure 7.5, Classic RC). However, these are averaged numbers
only from successful frames. Other images, taking longer to be rendered stall
the application until finishing, not giving the user the opportunity to interact.
Some others cannot even be averaged as they make the application crash due
to long stalls (this is the case of the Obelix dataset when visualized along its
longest axis, as the used Transfer Function is barely opaque, and that generates
very long rays). Furthermore, it is desirable to receive partial results of the
final image right after finishing interacting (even if it takes a bit longer to
complete the image), which gives the user a hint to perceive that the application
is actually working. This performance is again not offered by classic non-
progressive ray casting algorithms.

Some extra tests were performed in order to measure and compare the
interactivity of the presented progressive ray casting methods. As seen in
Table 7.1, all progressive methods present an acceptable frame rate in all cases
during the generation of the high-resolution image, being FBSlabs the more
interactive, followed by STiles, and being the Simple progressive method in
third place. Note, however, that the classic non-progressive ray casting provides
worse frame rates and hence bad interactivity in average, provoking application
crashes occasionally, as shown in Figure 7.5.

7.5.2 Transition from low to high resolution: visual effect

The visual effect of the transition between low-resolution and high-resolution
images obtained by FBSlabs and STiles is quite different. Figures 7.2, 7.4,
7.12, 7.13, 7.14 and 7.15 (at the end of the chapter) show the progression of
each method during the transition time with renderings of several datasets,
visualized with Transfer Functions designed with different colors and opacities.

The progressive FBSlabs method has the effect of the high-resolution im-
age appearing on top of the low-resolution one (see Figure 7.8, FBSlabs) and
completes gradually replacing the low-resolution image in front-to-back order.
During the incremental rendering, the final color that is presented on the screen
is the composition of the high-resolution image on top of the remaining part of

126 Chapter 7. Interactive Rendering on Mobile Devices

N
e
x
u
s
6

S
im

p
le

F
B

S
la

b
s

S
T

iles
C

la
ssic

R
C

D
a
ta

set
M

in
M

a
x

A
v
g

M
in

M
a
x

A
v
g

M
in

M
a
x

A
v
g

M
in

M
a
x

A
v
g

V
ix

8
.0

3
6

1
1
.6

1
2

8
.8

4
5

1
0
.7

5
2

3
2
.6

4
1

2
0
.6

2
5

1
2
.5

1
0

2
3
.0

7
7

1
6
.5

2
5

2
.2

4
3

1
1
.2

0
7

4
.9

7
9

H
ea

d
8
.1

6
6

1
1
.1

8
8

9
.7

3
1

1
7
.5

9
9

3
7
.4

9
2

2
5
.4

2
4

1
1
.0

7
2

2
3
.2

7
2

1
6
.2

0
8

3
.3

0
9

1
1
.4

1
3

6
.4

4
4

O
b

elix
7
.8

5
7

1
0
.2

9
3

8
.8

3
8

1
3
.8

6
6

4
0
.3

1
9

2
3
.9

0
7

9
.2

9
1

2
6
.8

6
3

1
7
.0

6
8

×
1
3
.3

7
8

6
.7

1
4

C
h
a
m

a
leo

n
7
.9

0
5

1
0
.8

3
6

9
.7

5
8

1
7
.1

3
5

3
7
.2

8
1

2
5
.3

5
7

1
3
.5

1
1

2
3
.7

0
5

1
6
.8

9
8

2
.0

4
5

6
.9

4
1
7

4
.4

8
1

M
ela

n
ix

7
.9

2
8

1
0
.2

9
1

8
.6

5
4

1
5
.1

9
6

4
2
.8

4
1

2
5
.5

5
3

1
3
.0

5
8

2
8
.4

4
1

1
9
.7

3
4

4
.1

6
0

1
9
.5

4
8

9
.9

8
1

N
e
x
u
s
6
P

S
im

p
le

F
B

S
la

b
s

S
T

iles
C

la
ssic

R
C

D
a
ta

set
M

in
M

a
x

A
v
g

M
in

M
a
x

A
v
g

M
in

M
a
x

A
v
g

M
in

M
a
x

A
v
g

V
ix

9
.0

4
2

1
0
.8

1
1

9
.6

5
8

1
8
.3

2
9

4
7
.7

0
5

2
8
.8

6
6

1
3
.4

1
9

2
4
.1

4
1

1
6
.6

2
1

3
.8

4
1

1
6
.7

8
5

7
.9

6
3

H
ea

d
7
.8

0
5

1
0
.5

1
9

9
.6

5
3

2
3
.0

5
6

5
1
.6

8
2

3
1
.5

4
8

1
3
.7

8
6

2
4
.4

3
9

1
7
.2

6
3

4
.0

3
9

1
4
.8

9
9

8
.7

0
4

O
b

elix
8
.6

5
0

1
2
.5

4
1

9
.6

8
3

1
7
.7

1
3

4
8
.3

2
8

2
6
.7

6
2

9
.6

8
4

2
6
.2

8
9

1
6
.4

4
2

×
1
9
.3

7
2

9
.0

7
6

C
h
a
m

a
leo

n
8
.8

2
4

1
2
.9

4
8

9
.5

9
7

1
7
.1

3
6

4
7
.9

7
5

2
6
.1

9
8

1
2
.1

1
7

2
1
.7

7
7

1
5
.7

7
0

2
.3

4
3

1
1
.5

4
2

6
.3

7
9

M
ela

n
ix

9
.1

8
8

1
3
.3

7
9

1
0
.1

3
0

1
8
.5

4
5

5
4
.0

8
8

2
6
.9

1
8

1
3
.1

7
3

3
2
.5

8
6

2
0
.3

0
3

4
.9

9
8

2
2
.5

8
7

1
2
.6

9
7

T
a
b

le
7
.1

:
T

h
ese

fra
m

e
ra

tes
refl

ect
th

e
in

tera
ctiv

ity
o
f

th
e

p
resen

ted
p
ro

g
ressiv

e
ray

ca
stin

g
m

eth
o
d
s

w
ith

resp
ect

to
a

cla
ssic

n
o
n
-p

ro
g
ressiv

e
ray

ca
stin

g
a
lg

o
rith

m
o
n

tw
o

d
iff

eren
t

m
o
b
ile

d
ev

ices.
A

ll
p
ro

g
ressiv

e
m

eth
o
d
s

p
erfo

rm
in

tera
ctiv

ely
in

a
ll

ca
ses

d
u
rin

g
th

e
g
en

era
tio

n
o
f

th
e

h
ig

h
-reso

lu
tio

n
im

a
g
e,

b
ein

g
F

B
S

la
bs

th
e

m
o
re

in
tera

ctiv
e,

fo
llow

ed
b
y

S
T

iles
a
n
d

b
ein

g
th

e
S

im
p

le
p
ro

g
ressiv

e
m

eth
o
d

in
th

ird
p
la

ce.
N

o
te,

h
ow

ev
er,

th
a
t

th
e

cla
ssic

n
o
n
-p

ro
g
ressiv

e
ray

ca
stin

g
p
rov

id
es

w
o
rse

fra
m

e
ra

tes
a
n
d

h
en

ce
b
a
d

in
tera

ctiv
ity

in
av

era
g
e,

p
rov

o
k
in

g
o
cca

sio
n
a
l

a
p
p
lica

tio
n

cra
sh

es
a
s

sh
ow

n
in

F
ig

u
re

7
.5

.

7.5. Evaluation and results 127

FBSlabs STiles Final image

Figure 7.8: Detail of an intermediate step during the high-resolution transition
process (Head dataset 5122 × 485 high res., 1282 × 122 low res.). In FBSlabs, the
transition boundary is more evident and reveals patterns generated by the fact that
ray sampling proceeds front-to-back from the proxy geometry. The boundary is less
perceivable in STiles, which furthermore has a pseudo-random transition pattern that
makes it less evident over time.

the low-resolution image using alpha blending. An issue regarding this way of
compositing images is that we are mixing viewport resolutions. In the context
of ray casting, this means two things. The first one is the fact that the rays
in the low-resolution image do not perfectly match rays in the high-resolution
image. And the second one is that we are performing an upsampling of the
low-resolution image, so we are interpolating color to match the sizes of both
images. This sometimes results in slight seam artifacts revealed in the bound-
ary between the high-resolution and the low-resolution models.

STiles also reveals the final high-quality image gradually, but in this case,
small tiles with the corresponding part of the high-resolution image appear in
a pseudo-random order (see Figure 7.8, STiles). It also gives the impression of
completing the result in some sort of front-to-back order (or back-to-front order,
it actually depends on the sorting strategy) but each tile with high-resolution
color that has been computed completely replaces the initial low-resolution
color, instead of compositing the high-resolution color over the low-resolution
color as in FBSlabs. We can choose between sorting tiles in increasing or
decreasing order of ray cost. In the first case, tiles with small cost (e.g., those
with rays that become completely opaque very quickly) are rendered first.
This way, models visualized with Transfer Functions designed to reveal opaque
isosurfaces exhibit a transition effect that gives the perception of most parts
of the final image appearing first, and then the silhouettes appearing in the
end. A reverse sorting strategy, starting from tiles with an estimated high cost

128 Chapter 7. Interactive Rendering on Mobile Devices

Figure 7.9: This chart shows the measured average perceptual error (and its stan-
dard deviation) on the transition process (going from the low-resolution image to the
high-resolution image). The perceptual metric used is the structural dissimilarity metric
(DSSIM). The average error was computed using pairs of consecutive frames in several
series of the incremental ray casting process. We can observe that the transition becomes
perceptually more evident (i.e., has a higher error measure) as the tile size increases,
being significantly greater for tile sizes greater than 82 (note that 162 has a considerably
higher standard deviation).

and then rendering tiles in decreasing order gives the contrary visual effect:
first, translucent areas and most silhouettes are revealed, and then opaque
areas with a little translucent component are computed in the last place. We
decided to sort tiles by increasing order because, in most cases, the effect it
achieves is more desirable, and furthermore, the transition achieved gives the
perception of completing sooner due to the fact of rendering more tiles in the
first frames.

As explained in Section 7.5.1, we empirically determined a lower bound
of the tile size (in pixels) based on an analysis of the GPU rasterization pat-
tern [37] and a series of experiments regarding performance (Figure 7.7). These
experiments show a tendency to gain performance when increasing the tile size.
However, STiles performs a tile-based rendering, and it consequently presents
a blocky transition effect that becomes more evident when the tiles are too
large. To determine an appropriate tile size, we also performed a series of
experiments to measure the transition changes over time using a perceptual
structural dissimilarity metric (DSSIM) [85]. Figure 7.9 shows averaged per-
ceptual differences over time. The perceptual differences shown in the chart are

7.5. Evaluation and results 129

Figure 7.10: Perceptual changes of progressive methods over time. The data was
taken from rendering the Vix and the Obelix datasets (see Figures 7.4 and 7.14) and
comparing each frame resulting image with the final image (ground truth). Here we can
see that FBSlabs is the fastest in converging towards the final image, even when the
Transfer Function is more transparent, such as in the case of the Obelix dataset. STiles
and the Simple progressive ray casters converge to the final image more smoothly, being
STiles the most performant approach.

obtained by comparing each intermediate frame with the previous one. Based
on the obtained results, we decided to fix the tile size to 8×8, as the perceptual
differences increase for larger tile sizes. This size is actually the lower bound
determined in the previous section, and also the size of the tiles generated by
the rasterization process on these GPUs. This size is small enough so that the
blocky nature of this method is not evident or annoying during the transition
between the low-resolution and the high-resolution images.

We did another set of tests to measure and evaluate the quality of the
transition of both methods on several datasets, also using perceptual metrics
(DSSIM). Figure 7.10 shows the perceptual transition profile of our presented
progressive methods (FBSlabs and STiles) and of the two different approaches
of the Simple progressive ray caster, one distributing rays in a pseudo-random
order (random), and another in a more structured way (structured). These
tests were done using the Vix and the Obelix datasets (see Figures 7.4 and
7.14), which are visualized using Transfer Functions with different levels of
transparency. The charts show the perceptual image variation of each frame
with respect to the final (ground truth) image. In both figures, we can see
how FBSlabs converges to the resulting image faster than the other methods,
approximating to the final result in the first frames. However, it keeps on
executing during several frames until all the model has been rendered. This

130 Chapter 7. Interactive Rendering on Mobile Devices

Figure 7.11: Perceptual changes of STiles over time using different tile sizes. Data
taken from rendering the Vix dataset (see Figures 7.2 and 7.4) and comparing each pair
of subsequent frames in the timeline. Larger tile sizes achieve higher perceptual changes
between subsequent frames. This is actually normal considering that the final image
completion is usually achieved in less frames when using larger tile sizes. Note that tiles
of size 8 × 8 and smaller achieve similar measures over time, yet tiles of size 8 × 8 take
less frames to finish among those small tile sizes (and less time, see Figures 7.7 and 7.5).

quick convergence is due to the front-to-back nature of the method, as the
front part of the model usually covers most part of the image, yet the back
part of it has less impact on the final result. The other methods have a more
constant transition effect, being STiles better than the two approaches of the
Simple method (which behave very similarly), as it converges to the final result
uniformly in less time. These observations confirm the perception we had
when analyzing the running application and our preference towards STiles,
as it converges quite fast to the final image and keeps a gradual and smooth
transition over time.

Figure 7.11 shows DSSIM measurements of each frame of the progressive
render with respect to its previous frame for different tile size configurations
in STiles. In this case, the charts show that the biggest tile sizes achieve a
higher error, meaning that the transition is less smooth and more perceivable.
However, tiles of size 8× 8 and smaller have a similar profile. Taking this into
account and considering the performance results in the previous section (see
Figure 7.7), we decided to use tiles of size 8× 8 as the default option.

7.5. Evaluation and results 131

Feature FBSlabs STiles

OpenGL
version

Requires OpenGL ES 3.0 or
lower if the 3D volume is
managed with 2D textures.

Requires OpenGL ES 3.1
because it needs compute
shaders.

Transition
effect

High-resolution image ap-
pearing front to back. Ma-
jor changes occur during
the first frames. More
perceivable seams between
low-resolution and high-
resolution models.

Better DSSIM perceptual
results. Transition occurs
more regularly distributed
over time. Pseudo-random
substitution pattern of the
low-res image by the high-
res one.

Transition
time

Good average completion
times. A small number of
ray casting samples is fixed
at each frame. High inter-
activity rate.

Better average completion
times. A time budget is
fixed for each frame that
cannot be exceeded. At
each step, as many tiles
as possible are rendered.
Good interactivity rate.

Table 7.2: Characteristic features of the FBSlabs and STiles methods for progressive
ray casting.

7.5.3 Final remarks

Both FBSlabs and STiles are usable when generating progressive renderings
of volume data. The presented performance tests show that they enable less
powerful devices to render big volumes of data otherwise not feasible. Table 7.2
summarizes the main features of the two proposed algorithms. We recommend
using STiles over FBSlabs whenever possible. It fits devices with OpenGL
ES 3.1 (needed for the compute shaders). The results obtained for STiles
are better both in performance and in visual quality as demonstrated in the
previous sections. It completes the high-quality image in less time than FBSlabs
and the perceptual variation over time as the transition advances is smaller, a
fact that matches our visual assessment. Not far from it, however, FBSlabs is
a good candidate to use in less powerful devices that do not provide compute
shaders. Furthermore, even when running on more capable hardware, FBSlabs
is a good choice on platforms such as WebGL, whose standard still does not

132 Chapter 7. Interactive Rendering on Mobile Devices

support modern features such as compute shaders. Moreover, it could even
be adapted for older devices that do not provide 3D textures using a scheme
based on flat 3D textures or stacked 2D textures, for instance.

7.6 Conclusions and future work

In this chapter, we have proposed a multiresolution architecture based on ray
casting aimed at achieving the interactive rendering of volume ray casting
in less powerful devices, such as mobile phones and PCs with low-end and
old graphics chips. We use a low-resolution dataset to perform interactive
visualizations during user interaction, and the higher resolution version of the
same dataset (that still fits the target’s GPU memory) to perform a high-
quality visualization each time the user stops interacting.

Our main contributions are two scalable methods for the progressive ray
casting of high-resolution datasets that are able to decouple the rendering
process into separated batches that can be rendered over subsequent frames:
FBSlabs and STiles. These algorithms are able to provide an interactive user
experience without application stalls at any time. Based on the performed
experiments, we conclude that STiles achieves better results in both perfor-
mance and visual quality than FBSlabs, as presented in Section 7.5. FBSlabs
is, however, a good candidate for less up to date devices that do not provide
modern GPU features (e.g., compute shaders).

In order to improve the quality of the visualization of the low-resolution
datasets, we make use of some of the contributions presented in the previous
chapters in this thesis. First, the coarse versions of the original dataset were
generated using the feature-preserving downsampling filter presented in Chap-
ter 4. Furthermore, the computation of colors and opacities in the coarser
datasets were done using our algorithm, Adaptive Transfer Functions, ex-
plained in Chapter 6. With the use of these two techniques, the renderings
obtained from coarse models of the multiresolution hierarchy preserve fine and
small details that usually disappear when using conventional downsampling
methods, and the perceived colors and opacities better match the colors and
opacities of renderings of the original dataset. Besides the contributions in
the previous chapters of this thesis, other standard methods to improve effi-
ciency (ESS and ERT) and image quality (pre-integrated volume rendering)
were incorporated in the algorithms presented in this chapter.

7.6. Conclusions and future work 133

We have not included the use of pre-computed gradients (see Chapter 5) in
the system here presented. Although it makes sense in terms of performance
(fast retrieval of gradient data instead of several texture lookups to perform
the computation on-the-fly) and in terms of quality (previous tests in desktop
machines have demonstrated to improve this aspect), the fact that graphics
memory is a scarce resource in mobile devices prevented us from using it. Right
now, the low-resolution and the high-resolution datasets are stored in graph-
ics memory simultaneously. The low-resolution dataset is chosen so that the
frame rate obtained achieves a high degree of interactivity. The high-resolution
dataset, however, is the highest resolution dataset from the multiresolution hi-
erarchy that fits the device memory. Besides that, using an extra volume with
pre-computed gradients and having it in the GPU is not possible because there
is not enough memory available. Then, the only option in order to use pre-
computed gradients would be using lower-resolution datasets, but that would
decrease the overall quality of renderings anyway. Out-of-core techniques could
be employed in order to incorporate datasets of higher resolutions, and with
more per-voxel information such as pre-computed gradients, or alleviating the
simultaneous usage of graphics memory so that the low-resolution dataset could
use fast, high-quality pre-computed gradients. This is however out of the scope
of this thesis.

Regarding STiles a slight improvement would be the ability to split the
current individual ray batches into several parts. It is not likely that our
algorithms are going to deal with volume datasets large enough to make the
device stall by only rendering a single ray group. However, that could happen
if rays were long enough, which could be solved by also allowing incremental
rendering of individual tiles.

Current sizes of really large datasets (≥ 10243) cannot fit current GPUs’
memory specifications. A possible way to extend our architecture is the im-
plementation of an out-of-core block based scheme that allows fetching blocks
as needed during the high-resolution rendering process, so our progressive ren-
dering algorithm could require the needed blocks from the storage memory
or server at each frame. At first sight, it seems that the implementation of a
block-based on-demand architecture like this could be easier to extend FBSlabs,
which already performs an object space partition to carry out the progressive
render, rather than STiles, which is a screen space approach.

134 Chapter 7. Interactive Rendering on Mobile Devices

7.7 Publications

The techniques presented in this chapter have generated the following paper:

• Jesús Dı́az-Garćıa, Pere Brunet, Isabel Navazo, Pere-Pau Vázquez. (2018)
Progressive Ray Casting for Volumetric Models on Mobile Devices. Com-
puters & Graphics. DOI: https://doi.org/10.1016/j.cag.2018.02.007 [19]

7.7. Publications 135

S
im

p
le

F
B

S
la

b
s

S
T

il
e
s

Low res. 25% 50% 75% High res.

Figure 7.12: Illustration of the transition in the presented algorithms for the Head
dataset (5122 × 485 high res., 1282 × 122 low res.). These figures do not correspond to
the actual rendering, but we modified them in order to show which parts of the image
are updated over subsequent frames in both algorithms: the region that has not yet
been updated with the high-quality rendering is shown with a semi-transparent look.
Note that Simple has the more incremental transition. Note also that FBSlabs has
homogeneous boundaries that are easier to perceive during the progression than STiles,
and STiles provides a pseudo-random transition pattern that is more difficult to notice
during the incremental rendering (see Figure 7.8).

136 Chapter 7. Interactive Rendering on Mobile Devices

S
im

p
le

F
B

S
la

b
s

S
T

il
e
s

Low res. 25% 50% 75% High res.

Figure 7.13: Melanix dataset (2562 × 602 high res., 642 × 151 low res.). Transition
effect of the two proposed incremental ray casting algorithms using a Transfer Function
with almost opaque colors.

7.7. Publications 137

S
im

p
le

F
B

S
la

b
s

S
T

il
e
s

Low res. 25% 50% 75% High res.

Figure 7.14: Obelix dataset (2562 × 780 high res., 642 × 195 low res.). Transition
effect of the Simple, FBSlabs and STiles incremental ray casting algorithms using a
Transfer Function with some opaque colors (bones, kidneys, etc.) and semitransparent
colors (skin).

138 Chapter 7. Interactive Rendering on Mobile Devices
S

im
p

le
F

B
S

la
b

s
S

T
il
e
s

Low res. 25% 50% 75% High res.

Figure 7.15: Chameleon dataset (5123 high res., 1283 low res.). Transition effect
of the two proposed incremental ray casting algorithms using a Transfer Function with
some opaque colors (bones, muscles, etc.) and semitransparent colors (skin). Although
we are mainly focusing on medical datasets, the presented algorithms are perfectly suited
for any other kinds of volume datasets such as this one.

8
Conclusions and Future Work

This chapter ends this document by drawing some conclusions out of our re-
search work and pointing out the main contributions achieved during the time
of this thesis. Also, a few lines of future work that would complete some as-
pects of the presented material or would be worth exploring are mentioned.
Finally, a list of the published papers that have been the results of this thesis
is given at the end of the chapter.

8.1 Conclusions

During this thesis, we have addressed the problems arisen from visualizing
medium to large models (5123 voxels) in low-end or mobile devices, whose
capabilities are far below their desktop counterparts. The requirements of the
developed methods have been the generation of good quality results (i.e., as
similar as possible as possible to the original data) striving to avoid significant
performance penalties, thus obtaining small pre-processing times (when pre-
processing is necessary at all), and achieving high frame rates that ensure
interactive visualizations.

We have approached the previously mentioned problems by embedding spe-
cific techniques in the visualization pipeline (see Section 2.1) both in the data
processing stage (e.g., filtering and generation of multiresolution hierarchies)
and in the data visualization stage (GPU-based ray casting).

139

140 Chapter 8. Conclusions and Future Work

The main contributions in the course of this thesis have been:

• An analysis of the performance of various downsampling filters for volu-
metric models.

• A novel Gaussian-based fast and feature-preserving downsampling filter
to generate multiresolution volumetric models.

• A downsampling filter for pre-computed gradients to better preserve gra-
dient directions, and an effective method for their encoding and storage.

• An efficient algorithm that interactively generates Transfer Functions
specially tailored for coarse resolution datasets to improve the quality of
renderings.

• Two novel techniques for the incremental high-quality rendering of big
volume datasets in commodity hardware and mobile phones that ensure
interactivity.

To properly improve downsampling methods, we have started the thesis
with an evaluation and comparison between several existing downsampling
filters for scalar data. Based on these observations, we have developed two
downsampling techniques, one for scalar fields and another one for gradient
directions.

The Gaussian-based feature-preserving downsampling filter for scalar data
we have designed is able to generate coarser resolution models, obtaining
smooth results and preserving small and fine features that usually disappear
with standard downsampling methods such as averaging or applying a Gaussian
filter before subsampling. Besides achieving good results, the filter performs
fast and is completely automatic. We have shown several comparisons be-
tween the results obtained with our proposed filter and several other common
approaches used for the downsampling of volume models.

Concerning gradients, we have developed a technique to perform filtered
downsampling of pre-computed gradient data that is able to preserve gradient
directions better than computing on-the-fly gradients directly from the down-
sampled scalar fields. The filter we have proposed avoids common artifacts
that appear during downsampling gradient data due to regions where gradi-
ents are not well defined. Moreover, we have presented an effective method
to encode and store gradients that maximizes the number of representable
directions using a representation of three 8-bit components.

8.2. Future work 141

Regarding Transfer Functions, we have presented a method that computes
Transfer Functions specially tailored for coarse resolution datasets so that the
quality of renderings is highly improved with respect to using the originally
designed Transfer Function. The technique requires a light pre-process to con-
struct downsampling 2D joint histograms for each coarse dataset in the mul-
tiresolution pyramid, and performs interactively generating adapted Transfer
Functions whenever the original Transfer Function is modified by the user.

Finally, we have designed a multiresolution, scalable rendering framework
that uses a low-resolution configuration (dataset and viewport) during inter-
active manipulations of the viewpoint, and a high-resolution one intended for
static inspection/observation when the interaction stops. In order to make the
transition from the low-resolution and the high-resolution images, we have pre-
sented two progressive ray casting strategies that ensure interactivity during
the process of rendering high-quality images in mobile devices, allowing user
interactions at any time.

8.2 Future work

There are still pending tasks for further exploration and ideas that we would
like to test. Regarding the feature-preserving filter, it would be interesting
to explore the possibility of generating adaptive kernel sizes depending on the
statistical information derived from each point in the dataset. Our idea is
that smoothing regions with little variance and doing the opposite for regions
with higher variance would contribute achieving smoother results while still
preserving sharp, fine-grained features.

Adaptive Transfer Functions perform an adaption of the color based on a
global analysis of the whole coarse dataset with respect to the original. How-
ever, there are still details lost during the downsampling process. We believe
that we can further preserve some details by improving the Adaptive TFs. One
idea that comes to mind is trying to introduce some locality into the resulting
Transfer Functions by adding some extra parameter (e.g., gradient length) and
extending them to 2D Transfer Functions. Experimenting more on this area
will be definitely worth it.

We would also like to extend our architecture to use an out-of-core block-
based scheme that allows fetching blocks as needed so that the progressive ray
casting can be done for models of larger resolutions not fitting current mobile
devices’ GPUs.

142 Chapter 8. Conclusions and Future Work

8.3 Publications

This thesis has generated the following publications:

• Jesús Dı́az-Garćıa, Pere Brunet, Isabel Navazo, Pere-Pau Vázquez, Fred-
eric Pérez. (May 2015) Feature-Preserving Downsampling for Medical
Images. In EuroVis 2015: The EG/VGTC Conference on Visualization:
Posters track. European Association for Computer Graphics (Eurograph-
ics) [15]

• Jesús Dı́az-Garćıa, Pere Brunet, Isabel Navazo, Frederic Pérez, Pere-Pau
Vázquez. (June 2016) Adaptive Transfer Functions. Improved Multires-
olution Visualization of Medical Models. The Visual Computer, 32(6-8),
835-845. [16]

• Jesús Dı́az-Garćıa, Pere Brunet, Isabel Navazo, Pere-Pau Vázquez. (July
2017) Downsampling methods for medical datasets. In Proceedings of
the CGVCVIP 2017: International Conference on Computer Graphics,
Visualization, Computer Vision and Image Processing: Lisbon, Portugal,
(pp. 12-20). IADIS Press. [17]

• Jesús Dı́az-Garćıa, Pere Brunet, Isabel Navazo, Pere-Pau Vázquez. (June
2017) Downsampling and Storage of Pre-Computed Gradients. In CEIG
2017: XXVII Spanish Computer Graphics Conference: Sevilla, Spain,
(pp. 51-60). European Association for Computer Graphics (Eurograph-
ics). [18]

• Jesús Dı́az-Garćıa, Pere Brunet, Isabel Navazo, Pere-Pau Vázquez. (2018)
Progressive Ray Casting for Volumetric Models on Mobile Devices. Com-
puters & Graphics. DOI: https://doi.org/10.1016/j.cag.2018.02.007 [19]

Bibliography

[1] Aurich, V., and Weule, J. Non-linear gaussian filters performing edge
preserving diffusion. In Mustererkennung 1995, 17. DAGM-Symposium
(London, UK, UK, 1995), Springer-Verlag, pp. 538–545.

[2] Balsa Rodŕıguez, M., Gobbetti, E., Iglesias Guitián, J. A.,
Makhinya, M., Marton, F., Pajarola, R., and Suter, S. State-of-
the-Art in Compressed GPU-Based Direct Volume Rendering. Computer
Graphics Forum 33, 6 (2014), 77–100.

[3] Balsa Rodŕıguez, M., and Vázquez Alcocer, P.-P. Practical vol-
ume rendering in mobile devices. In International Symposium on Visual
Computing (2012), Springer, pp. 708–718.

[4] Bentum, M. J., Lichtenbelt, B. B. A., and Malzbender, T. Fre-
quency analysis of gradient estimators in volume rendering. IEEE Trans-
actions on Visualization and Computer Graphics 2, 3 (Sep 1996), 242–254.

[5] Beyer, J., Hadwiger, M., Möller, T., and Fritz, L. Smooth
Mixed-Resolution GPU Volume Rendering. In IEEE/ EG Symposium
on Volume and Point-Based Graphics (2008), H.-C. Hege, D. Laidlaw,
R. Pajarola, and O. Staadt, Eds., The Eurographics Association.

[6] Beyer, J., Hadwiger, M., and Pfister, H. A Survey of GPU-Based
Large-Scale Volume Visualization. Proceedings EuroVis 2014 (2014).

[7] Boada, I., Navazo, I., and Scopigno, R. Multiresolution Volume
Visualization with a Texture-based Octree. The Visual Computer 17, 3
(2001), 185–197.

[8] Campoalegre, L., Brunet, P., and Navazo, I. Interactive visualiza-
tion of medical volume models in mobile devices. Personal and Ubiquitous
Computing 17, 7 (2013), 1503–1514.

[9] Campoalegre, L., Navazo, I., and Crosa, P. B. Gradient octrees:
A new scheme for remote interactive exploration of volume models. In
2013 International Conference on Computer-Aided Design and Computer
Graphics (Nov 2013), pp. 306–313.

143

144 Bibliography

[10] Congote, J., Segura, A., Kabongo, L., Moreno, A., Posada, J.,
and Ruiz, O. Interactive visualization of volumetric data with webgl in
real-time. In Proceedings of the 16th International Conference on 3D Web
Technology (2011), ACM, pp. 137–146.

[11] Crassin, C., Neyret, F., Lefebvre, S., and Eisemann, E. Gi-
gavoxels: Ray-guided streaming for efficient and detailed voxel rendering.
In Proceedings of the 2009 Symposium on Interactive 3D Graphics and
Games (New York, NY, USA, 2009), I3D ’09, ACM, pp. 15–22.

[12] Csébfalvi, B., and Domonkos, B. Prefiltered gradient reconstruction
for volume rendering. Journal of WSCG 17, 1 (Jan 2009), 49–56.

[13] Décoret, X., Durand, F., Sillion, F. X., and Dorsey, J. Billboard
clouds for extreme model simplification. ACM Trans. Graph. 22, 3 (July
2003), 689–696.

[14] Deering, M. Geometry compression. In Proceedings of the 22Nd Annual
Conference on Computer Graphics and Interactive Techniques (New York,
NY, USA, 1995), SIGGRAPH ’95, ACM, pp. 13–20.

[15] D́ıaz-Garćıa, J., Brunet, P., Navazo, I., Pérez, F., and
Vázquez Alcocer, P.-P. Feature-preserving downsampling for med-
ical images. In EuroVis, posters (May 2015).

[16] D́ıaz-Garćıa, J., Brunet, P., Navazo, I., Perez, F., and
Vázquez Alcocer, P.-P. Adaptive transfer functions. Vis. Comput.
32, 6-8 (June 2016), 835–845.

[17] D́ıaz-Garćıa, J., Brunet, P., Navazo, I., Pérez, F., and
Vázquez Alcocer, P.-P. Downsampling methods for medical datasets.
In 11th International Conference on Computer Graphics, Visualization,
Computer Vision and Image Processing (CGVCVIP 2017) (May 2017).

[18] D́ıaz-Garćıa, J., Brunet, P., Navazo, I., and Vázquez Alcocer,
P.-P. Downsampling and storage of pre-computed gradients for volume
rendering. In Congreso Español de Informática Gráfica (CEIG 2017)
(June 2017).

[19] D́ıaz-Garćıa, J., Brunet, P., Navazo, I., and Vázquez Alcocer,
P.-P. Progressive ray casting for volumetric models in mobile devices.
Computers and Graphics (2017).

Bibliography 145

[20] Duda, R. O., and Hart, P. E. Pattern Classification and Scene Anal-
ysis. John Wiley and Sons, 1973.

[21] Duffy, B., Carr, H., and Möller, T. Integrating isosurface statis-
tics and histograms. IEEE Transactions on Visualization and Computer
Graphics 19 (February 2013), 263–277.

[22] Elber, G., Chen, X., and Cohen, E. Mold accessibility via gauss map
analysis. Journal of Computing and Information Science in Engineering
5, 2 (December 2004), 79–85.

[23] Engel, K., Kraus, M., and Ertl, T. High-quality pre-integrated
volume rendering using hardware-accelerated pixel shading. In Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware (New York, NY, USA, 2001), HWWS ’01, ACM, pp. 9–16.

[24] Fisher, M., Dorgham, O., and Laycock, S. D. Fast reconstructed
radiographs from octree-compressed volumetric data. International Jour-
nal of Computer Assisted Radiology and Surgery 8, 2 (2013), 313–322.

[25] Fogal, T., and Krüger, J. Tuvok, an Architecture for Large Scale
Volume Rendering. In Proceedings of the 15th International Workshop on
Vision, Modeling, and Visualization (November 2010).

[26] Fogal, T., Schiewe, A., and Krüger, J. An analysis of scalable GPU-
based ray-guided volume rendering. In Large-Scale Data Analysis and
Visualization (LDAV), 2013 IEEE Symposium on (2013), IEEE, pp. 43–
51.

[27] Frey, S., Sadlo, F., Ma, K. L., and Ertl, T. Interactive progres-
sive visualization with space-time error control. IEEE Transactions on
Visualization and Computer Graphics 20, 12 (Dec 2014), 2397–2406.

[28] Gobbetti, E., Iglesias Guitián, J., and Marton, F. COVRA: A
compression-domain output-sensitive volume rendering architecture based
on a sparse representation of voxel blocks. Computer Graphics Forum 31,
3pt4 (2012), 1315–1324. Proc. EuroVis 2012.

[29] Gobbetti, E., Marton, F., and Iglesias Guitián, J. A single-
pass GPU ray casting framework for interactive out-of-core rendering of
massive volumetric datasets. The Visual Computer 24, 7-9 (2008), 797–
806. Proc. CGI 2008.

146 Bibliography

[30] Gutenko, I., Petkov, K., Papadopoulos, C., Zhao, X., Park,
J. H., Kaufman, A., and Cha, R. Remote volume rendering pipeline
for mHealth applications. vol. 9039, pp. 903904–903904–7.

[31] Guthe, S., and Straßer, W. Advanced techniques for high-quality
multi-resolution volume rendering. Computers & Graphics 28, 1 (2004),
51–58.

[32] Guthe, S., Wand, M., Gonser, J., and Straßer, W. Interactive
Rendering of Large Volume Data Sets. In Proceedings of the Conference on
Visualization ’02 (Washington, DC, USA, 2002), VIS ’02, IEEE Computer
Society, pp. 53–60.

[33] Hachaj, T. Real time exploration and management of large medical
volumetric datasets on small mobile devicesevaluation of remote volume
rendering approach. International Journal of Information Management
34, 3 (2014), 336–343.

[34] Hadwiger, M., Kniss, J. M., Rezk-salama, C., Weiskopf, D., and
Engel, K. Real-time Volume Graphics. A. K. Peters, Ltd., Natick, MA,
USA, 2006.

[35] Harada, T., and Howes, L. Introduction to GPU Radix Sort.

[36] Hege, H. C., Hollerer, T., and Stalling, D. Volume rendering
mathematical models and algorithmic aspects, 1993.

[37] JeGX. OpenGL 4.2 Atomic Counters: Rasterization Pattern, Helper for
Rendering Optimization (Windows, Linux). http://www.geeks3d.com,
oct 2013. [Online; accessed 14-December-2016].

[38] Kipfer, P., and Westermann, R. Improved gpu sorting. In GPU
Gems 2, M. Pharr, Ed. Addison-Wesley, 2005, pp. 733–746.

[39] Kitware, Inc. VES, the VTK OpenGL ES rendering toolkit.
http://www.vtk.org/Wiki/VES, November 2014. [Online; accessed 23-
March-2017].

[40] Kopf, J., Shamir, A., and Peers, P. Content-adaptive image down-
scaling. ACM Trans. Graph. 32, 6 (Nov. 2013), 173:1–173:8.

[41] Kratz, A., Reininghaus, J., Hadwiger, M., and Hotz, I. Adaptive
screen-space sampling for volume ray-casting. Tech. Rep. 11-04, ZIB,
Takustr.7, 14195 Berlin, 2011.

http://www.geeks3d.com

Bibliography 147

[42] Kraus, M., and Bürger, K. Interpolating and Downsampling RGBA
Volume Data. In Proceedings of Vision, Modeling, and Visualization 2008
(2008).

[43] Kraus, M., and Ertl, T. Topology-Guided Downsampling. In Volume
Graphics (2001), K. Mueller and A. Kaufman, Eds., The Eurographics
Association.

[44] Krüger, J., and Westermann, R. Acceleration Techniques for GPU-
based Volume Rendering. In Proceedings of the 14th IEEE Visualization
2003 (VIS’03) (Washington, DC, USA, 2003), VIS ’03, IEEE Computer
Society, pp. 38–.

[45] Kwon, K., Kim, M.-S., and Shin, B.-S. A fast 3d adaptive bilateral fil-
ter for ultrasound volume visualization. Computer Methods and Programs
in Biomedicine 133 (Sept. 2016), 25 – 34.

[46] LaMar, E., Hamann, B., and Joy, K. I. Multiresolution Techniques
for Interactive Texture-based Volume Visualization. In Proceedings of the
Conference on Visualization ’99: Celebrating Ten Years (Los Alamitos,
CA, USA, 1999), VIS ’99, IEEE Computer Society Press, pp. 355–361.

[47] Lamberti, F., and Sanna, A. A solution for displaying medical data
models on mobile devices. SEPADS 5 (2005), 1–7.

[48] Levoy, M. Volume rendering by adaptive refinement. The Visual Com-
puter 6, 1 (1990), 2–7.

[49] Levoy, M., and Whitaker, R. Gaze-directed Volume Rendering. SIG-
GRAPH Comput. Graph. 24, 2 (Feb. 1990), 217–223.

[50] Ljung, P., Krüger, J., Gröller, E., Hadwiger, M., Hansen,
C. D., and Ynnerman, A. State of the art in transfer functions for di-
rect volume rendering. In Proceedings of the Eurographics / IEEE VGTC
Conference on Visualization: State of the Art Reports (Goslar Germany,
Germany, 2016), EuroVis ’16, Eurographics Association, pp. 669–691.

[51] Lorensen, W. E., and Cline, H. E. Marching cubes: A high resolution
3d surface construction algorithm. SIGGRAPH Comput. Graph. 21, 4
(Aug. 1987), 163–169.

[52] Max, N. Optical models for direct volume rendering. IEEE Transactions
on Visualization and Computer Graphics 1, 2 (June 1995), 99–108.

148 Bibliography

[53] Moser, M., and Weiskopf, D. Interactive volume rendering on mobile
devices. In In Vision, Modeling, and Visualization VMV 2008 Conference
Proceedings (2008), pp. 217–226.

[54] Movania, M. M., Chiew, W. M., and Lin, F. On-site volume render-
ing with gpu-enabled devices. Wirel. Pers. Commun. 76, 4 (June 2014),
795–812.

[55] Movania, M. M., and Lin, F. High-performance volume rendering
on the ubiquitous webgl platform. In High Performance Computing and
Communication & 2012 IEEE 9th International Conference on Embed-
ded Software and Systems (HPCC-ICESS), 2012 IEEE 14th International
Conference on (2012), IEEE, pp. 381–388.

[56] Movania, M. M., and Lin, F. Mobile visualization of biomedical volume
datasets. J. Internet Technol. Secur. Trans 1, 2 (2012), 52–60.

[57] Movania, M. M., and Lin, F. Ubiquitous medical volume rendering
on mobile devices. In International Conference on Information Society
(i-Society 2012) (June 2012), pp. 93–98.

[58] Movania, M. M., and Lin, F. Real-time volumetric lighting for webgl.
WebGL Insights (2015), 261.

[59] Neumann, L., Csebfalvi, B., König, A., and Gröller, M. E. Gra-
dient estimation in volume data using 4d linear regression. Tech. Rep.
TR-186-2-00-03, Institute of Computer Graphics and Algorithms, Vienna
University of Technology, Favoritenstrasse 9-11/186, A-1040 Vienna, Aus-
tria, Feb. 2000. human contact: technical-report@cg.tuwien.ac.at.

[60] Neumann, L., Csebfalvi, B., Viola, I., Mlejnek, M., and
Gröller, M. E. Feature-preserving volume filtering. In Data Visu-
alization 2002 (May 2002), ACM, pp. 105–114.

[61] Noguera, J., and Jiménez, J. Visualization of very large 3d volumes
on mobile devices and webgl. In 20th WSCG international conference
on computer graphics, visualization and computer vision. WSCG (2012),
Citeseer.

[62] Noguera, J. M., Jiménez, J. J., and Osuna-Pérez, M. C. Develop-
ment and evaluation of a 3d mobile application for learning manual ther-
apy in the physiotherapy laboratory. Computers & Education 69 (2013),
96–108.

Bibliography 149

[63] Noguera, J. M., and Jiménez, J. R. Mobile volume rendering: Past,
present and future. IEEE transactions on visualization and computer
graphics 22, 2 (2016), 1164–1178.

[64] Noguera, J. M., Jiménez, J.-R., Ogáyar, C. J., and Segura, R. J.
Volume rendering strategies on mobile devices. In GRAPP/IVAPP (2012),
pp. 447–452.

[65] Noon, C. J. A Volume Rendering Engine for Desktops, Laptops, Mobile
Devices and Immersive Virtual Reality Systems using GPU-Based Volume
Raycasting. Master’s thesis, Iowa State University, 2012.

[66] Oliveira, J. a. F., and Buxton, B. F. Pnorms: Platonic derived nor-
mals for error bound compression. In Proceedings of the ACM Symposium
on Virtual Reality Software and Technology (New York, NY, USA, 2006),
VRST ’06, ACM, pp. 324–333.

[67] OsiriX Imaging Software. OsiriX HD. http://www.osirix-
viewer.com/, November 2014. [Online; accessed 23-March-2017].

[68] Öztireli, A. C., and Gross, M. Perceptually based downscaling of
images. ACM Trans. Graph. 34, 4 (July 2015), 77:1–77:10.

[69] Paris, S., and Durand, F. A fast approximation of the bilateral filter
using a signal processing approach. International Journal of Computer
Vision 81, 1 (Jan. 2009), 24–52.

[70] Pharr, M., and Randima, F. GPU Gems 2. Addison-Wesley Profes-
sional, 2005.

[71] Phong, B. T. Illumination for computer generated pictures. Commun.
ACM 18, 6 (June 1975), 311–317.

[72] Raster Images. Oviyam - Web DICOM browser.
http://oviyam.raster.in/ioviyam2.html, November 2014. [Online;
accessed 23-March-2017].

[73] Satish, N., Harris, M., and Garland, M. Designing efficient sorting
algorithms for manycore gpus. In 2009 IEEE International Symposium
on Parallel Distributed Processing (May 2009), pp. 1–10.

[74] Schiewe, A., Anstoots, M., and Krger, J. State of the Art in
Mobile Volume Rendering on iOS Devices. In Eurographics Conference on
Visualization (EuroVis) - Short Papers (2015), E. Bertini, J. Kennedy,
and E. Puppo, Eds., The Eurographics Association.

150 Bibliography

[75] Schultz, C., and Bailey, M. Interacting with large 3d datasets on a
mobile device. IEEE Computer Graphics and Applications 36, 5 (2016),
19–23.

[76] Shirley, P., and Tuchman, A. A polygonal approximation to direct
scalar volume rendering. SIGGRAPH Comput. Graph. 24, 5 (Nov. 1990),
63–70.

[77] Sicat, R., Hadwiger, M., Krüger, J., and Möller, T. Sparse PDF
volumes for consistent multi-resolution volume rendering. IEEE Transac-
tions on Visualization and Computer Graphics (Proc. IEEE Visualization)
20, 12 (2014), 2417–2426.

[78] Smith, S. M., and Brady, J. M. Susan—a new approach to low
level image processing. Int. J. Comput. Vision 23, 1 (May 1997), 45–78.

[79] Sousa, R., Nisi, V., and Oakley, I. Glaze: A visualization frame-
work for mobile devices. In Human-Computer Interaction–INTERACT.
Springer, 2009, pp. 870–873.

[80] Thelen, S., Meyer, J., Ebert, A., and Hagen, H. Giga-scale mul-
tiresolution volume rendering on distributed display clusters. In Human
Aspects of Visualization. Springer, 2011, pp. 142–162.

[81] Tomasi, C., and Manduchi, R. Bilateral filtering for gray and color
images. In Sixth International Conference on Computer Vision (IEEE
Cat. No.98CH36271) (Jan 1998), pp. 839–846.

[82] Wang, C., Gao, J., Li, L., and Shen, H.-W. A multiresolution vol-
ume rendering framework for large-scale time-varying data visualization.
In Proceedings of the Fourth Eurographics/IEEE VGTC conference on
Volume Graphics (2005), Eurographics Association, pp. 11–19.

[83] Wang, L., Meng, Z., Yao, X. S., Liu, T., Su, Y., and Qin, M.
Adaptive speckle reduction in oct volume data based on block-matching
and 3-d filtering. IEEE Photonics Technology Letters 24, 20 (Oct 2012),
1802–1804.

[84] Wang, Y. S., Wang, C., Lee, T. Y., and Ma, K. L. Feature-
Preserving Volume Data Reduction and Focus+Context Visualization.
IEEE Transactions on Visualization and Computer Graphics 17, 2 (Feb
2011), 171–181.

Bibliography 151

[85] Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.
Image quality assessment: from error visibility to structural similarity.
Image Processing, IEEE Transactions on 13, 4 (April 2004), 600–612.

[86] Weber, N., Waechter, M., Amend, S. C., Guthe, S., and Goe-
sele, M. Rapid, detail-preserving image downscaling. ACM Trans.
Graph. 35, 6 (Nov. 2016), 205:1–205:6.

[87] Weiler, M., Westermann, R., Hansen, C., Zimmermann, K., and
Ertl, T. Level-of-detail volume rendering via 3D textures. In Proceedings
of the 2000 IEEE Symposium on Volume Visualization (New York, NY,
USA, 2000), VVS ’00, ACM, pp. 7–13.

[88] Xin, Y., and Wong, H. C. Intuitive volume rendering on mobile de-
vices. In 2016 9th International Congress on Image and Signal Process-
ing, BioMedical Engineering and Informatics (CISP-BMEI) (Oct 2016),
pp. 696–701.

[89] Xu, X., Sakhaee, E., and Entezari, A. Volumetric data reduction in
a compressed sensing framework. Computer Graphics Forum 33, 3 (2014),
111–120.

[90] Younesy, H., Möller, T., and Carr, H. Improving the quality of
multi-resolution volume rendering. In Proc. Joint Eurographics/IEEE
VGTC conference on Visualization (2006), Eurographics Association,
pp. 251–258.

	Introduction
	Motivation
	Thesis statement
	Addressed problems and contributions
	About this document

	Preliminaries
	Visualization pipeline for 3D medical models
	Acquisition process: voxel model
	Multiresolution and filtering
	Direct volume rendering
	The Transfer Function
	Ray casting
	Gradient-based illumination
	Visualization artifacts and performance issues

	State of the Art
	Multiresolution volume datasets
	Downsampling of scalar data
	Downsampling of gradient data
	Quality visualization of downsampled data
	Visualization techniques on mobile devices

	Downsampling of Scalar Fields
	Motivation
	Problem addressed
	Analysis of existing downsampling techniques
	Feature-preserving downsampling filter
	Evaluation and results
	Conclusions and future work
	Publications

	Downsampling of Gradients
	Motivation
	Problem addressed
	Gradient estimators
	Downsampling of gradient data
	Gradient data storage
	Evaluation and results
	Conclusions and future work
	Publications

	High Quality Visualization of Coarse Datasets
	Motivation
	Problem addressed
	Theoretical framework
	Adaptive Transfer Functions
	Fast approximation of Adaptive Transfer Functions
	Evaluation and results
	Conclusions and future work
	Publications

	Interactive Rendering on Mobile Devices
	Motivation
	Problem addressed
	Framework overview
	Progressive ray casting strategies
	Evaluation and results
	Conclusions and future work
	Publications

	Conclusions and Future Work
	Conclusions
	Future work
	Publications

	Bibliography

