

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

A Multi-core Processor
for Hard Real-Time Systems

Marco Paolieri

2011

A THESIS SUBMITTED IN FULFILLEMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy / Doctor per la UPC

Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya

A Multi-core Processor
for Hard Real-Time Systems

Marco Paolieri

2011

Advisor:
Francisco J. Cazorla Almeida
Barcelona Supercomputing Center

Co-Advisors:
Eduardo Quiñones

Barcelona Supercomputing Center

Mateo Valero Cortés
Universitat Politècnica de Catalunya

A THESIS SUBMITTED IN FULFILLEMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy / Doctor per la UPC

Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya

Acknowledgments

Before concluding my PhD I would like to spend few words to thank all the people

that helped me and supported me during this adventure. It seems like yesterday that

I started and instead another chapter of my life is already at the end. I am really

glad to have decided to do a PhD because I think I learnt a lot from the people who

surrounded me both at personal and professional level.

First and foremost I want to thank my advisor Francisco J. Cazorla and my co-

advisors Eduardo Quiñones and Mateo Valero. It has been an honor to be their PhD

student. Thanks to them I have learnt what research truly means!

The work done in this thesis was part of an FP7 European project called Multi-

Core Execution of Hard Real-Time Applications Supporting Analysability (MERASA

- grant agreement number FP7-216415). I am especially grateful to Prof. Theo Un-

gerer to be the coordinator of such a great project and to all the other partners from

Univesity of Augsburg, Université Paul Sabatier, Rapita Systems Ltd., Honeywell

International s.r.o.: Pascal Sainrat, Guillem Bernat, Zlatko Petrov, Hugues Casse,

Christine Rochange, Sascha Uhrig, Mike Gerdes, Irakli Guliashvili, Michael Hous-

ton, Florian Kluge, Stefan Metzlaff, Jörg Mische and Julian Wolf.

Many thanks to all my colleagues and friends from BSC, and in particular from

the CAOS group with whom I shared the office. Four years have passed so fast that

V

it seems like yesterday I was jumping on the metro towards the university to start my

first day as a PhD student in the beautiful city of Barcelona...and now I can finally

remove the word student. I will miss a lot Barcelona and BSC!

A special thank to my friend Edu for his great help, advices and presence. He

was always there when I had questions, doubts or problems. I really enjoyed all the

business trips we had together.

Thanks to my Italian friends in the group: Roberto and Alessandro. Roberto

thanks for all the advices and all the support! Ale, I will never forget all the time we

spent together, having lunch and discussing about anything, trying to figure out how

we could open our business.

I express deep gratitude and heartfelt thanks to my parents Paolo and Ida for stand-

ing by me. They always have given a good ear to me and helped me. I would also like

to thank them for the advices and the guidelines they gave me whenever I was low!

A really special thank to Mara, who has always been by my side for these four

years, and during the last three she made Barcelona even more beautiful! She is

always able to make me happy and make every day special.

Lastly, thanks to those I have forgotten..sorry about that!

VI

“ You’ve got to find what you love. And that is

as true for your work as it is for your lovers.

Your work is going to fill a large part of your

life, and the only way to be truly satisfied is to

do what you believe is great work. And the

only way to do great work is to love what you

do. If you haven’t found it yet, keep looking.

Don’t settle. As with all matters of the heart,

you’ll know when you find it. And, like any

great relationship, it just gets better and better

as the years roll on. So keep looking until you

find it.

Don’t settle.“

Steve Jobs

Abstract

The increasing demand for new functionalities in current and future hard real-time em-

bedded systems, like the ones deployed in automotive and avionics industries, is driv-

ing an increment in the performance required in current embedded processors. Multi-

core processors represent a good design solution to cope with such higher perfor-

mance requirements due to their better performance-per-watt ratio while maintaining

the core design simple. Moreover, multi-cores also allow executing mixed-criticality

level workloads composed of tasks with and without hard real-time requirements,

maximizing the utilization of the hardware resources while guaranteeing low cost and

low power consumption.

Despite those benefits, current multi-core processors are less analyzable than single-

core ones due to the interferences between different tasks when accessing hardware

shared resources. As a result, estimating a meaningful Worst-Case Execution Time

(WCET) estimation – i.e. to compute an upper bound of the application’s execution

time – becomes extremely difficult, if not even impossible, because the execution time

of a task may change depending on the other threads running at the same time. This

makes the WCET of a task dependent on the set of inter-task interferences introduced

by the co-running tasks. Providing a WCET estimation independent from the other

tasks (time composability property) is a key requirement in hard real-time systems.

IX

This thesis proposes a new multi-core processor design in which time compos-

ability is achieved, hence enabling the use of multi-cores in hard real-time systems.

With our proposals the WCET estimation of a HRT is independent from the other co-

running tasks. To that end, we design a multi-core processor in which the maximum

delay a request from a Hard Real-time Task (HRT), accessing a hardware shared

resource can suffer due to other tasks is bounded: our processor guarantees that a re-

quest to a shared resource cannot be delayed longer than a given Upper Bound Delay

(UBD).

In addition, the UBD allows identifying the impact that different processor con-

figurations may have on the WCET by determining the sensitivity of a HRT to dif-

ferent resource allocations. This thesis proposes an off-line task allocation algorithm

(called IA3: Interference-Aware Allocation Algorithm), that allocates tasks in a task

set based on the HRT’s sensitivity to different resource allocations. As a result the

hardware shared resources used by HRTs are minimized, by allowing Non Hard Real-

time Tasks (NHRTs) to use the rest of resources. Overall, our proposals provide an-

alyzability for the HRTs allowing NHRTs to be executed into the same chip without

any effect on the HRTs.

The previous first two proposals of this thesis focused on supporting the execution

of multi-programmed workloads with mixed-criticality levels (composed of HRTs and

NHRTs). Higher performance could be achieved by implementing multi-threaded ap-

plications. As a first step towards supporting hard real-time parallel applications, this

thesis proposes a new hardware/software approach to guarantee a predictable execu-

tion of software pipelined parallel programs.

This thesis also investigates a solution to verify the timing correctness of HRTs

without requiring any modification in the core design: we design a hardware unit

which is interfaced with the processor and integrated into a functional-safety aware

methodology. This unit monitors the execution time of a block of instructions and it

detects if it exceeds the WCET. Concretely, we show how to handle timing faults on

a real industrial automotive platform.

X

Contents

1 Introduction 1

1.1 Challenges of Future Hard Real-Time Systems 3

1.2 Possible Solutions to Achieve High Performance Guaranteeing Time

Composability . 6

1.3 Thesis Contributions . 8

1.4 Thesis Structure . 11

2 Experimental Setup 13

2.1 Introduction . 13

2.2 Evaluation Tools . 14

2.3 WCET Analysis . 19

2.4 Benchmarks . 20

2.5 Evaluation Criteria . 27

3 Predictable On-Chip Shared Resources: the Bus and the Cache 29

3.1 Introduction . 29

3.2 Interference-Aware Bus Arbiter . 33

3.3 Analyzing the Shared Cache . 38

XI

Contents

3.4 Computing a Safe WCET Estimation on multi-core Processors 42

3.5 Results . 45

3.6 Grouping Technique . 51

3.7 Related Work . 53

3.8 Summary . 54

4 Predictable Off-Chip Shared Resource: the DRAM Memory System 57

4.1 Introduction . 57

4.2 DDRx-SDRAM Fundamentals . 60

4.3 An Analytical Model to Compute the UBD of a Memory Request . . 62

4.4 The Real-Time Capable Memory Controller 73

4.5 Results . 78

4.6 Related Work . 89

4.7 Summary . 90

5 IA3: Interference-Aware Allocation Algorithm 93

5.1 Introduction . 93

5.2 Our Proposal . 97

5.3 Test Methodology . 107

5.4 Results . 109

5.5 Additional Considerations . 112

5.6 Related Work . 114

5.7 Summary . 116

6 A First Step Towards Predictable Parallel Applications 119

6.1 Introduction . 119

6.2 The Software-Pipelined Parallel Programming Model 121

6.3 Our Proposal . 123

6.4 WCET Analysis of a Software-Pipelined Parallel Application 128

6.5 Results . 131

6.6 Summary . 134

XII

Contents

7 WCET On-line Monitoring in an Automotive Environment 137
7.1 Introduction . 137

7.2 Background on Timing Issues . 138

7.3 Our Solution: the TaCMU . 143

7.4 Results . 149

7.5 Related Work . 151

7.6 Summary . 152

8 Conclusions 153
8.1 Thesis Conclusions . 153

8.2 Future Work . 156

Bibliography 159

A Publications 169
A.1 Conferences . 169

A.2 Journals . 170

A.3 Workshops . 170

A.4 Posters . 171

A.5 Submitted Papers . 171

B Glossary 173

XIII

Contents

XIV

CHAPTER 1

Introduction

Real-time embedded systems surround us in every-day life: they are present when we

listen to music, switch on the TV, drive a car or flight on an airplane. The correctness

of these systems does not only rely on the functional correctness of their operations

but also on their time correctness: it is required to guarantee that the execution time

of an operation never exceeds its corresponding deadline. To do so, a Worst Case

Execution Time (WCET) analysis has to be derived. The WCET estimation of a task

is an upper bound estimation of the maximum execution time an operation can take to

execute on a specific hardware platform.

Real-time embedded systems can be classified into several categories depending

on the severity of their time constraints; among them we identified three main classes:

hard real-time, soft real-time and firm real-time.

• Hard Real-time systems composed of Hard Real-time Tasks (HRTs) are in

charge of controlling the most critical functions of a system, e.g. the brake

control system in a car and the flight control system in an airplane. HRTs must

never miss any deadline, since the consequence of missing a deadline could

1

Chapter 1. Introduction

involve critical failures or loss of human lives. Thus, computing safe WCET

estimations becomes mandatory.

• Soft real-time systems are composed by soft real-time tasks. The usefulness of

a result degrades after its deadline, thereby degrading the system’s Quality of

Service (QoS). Hence such systems can allow missing some deadlines because

the consequence is a reduction of the Quality of Service (QoS) [25] [24] [26].

Examples of soft real-time systems are video algorithms and image process-

ing, where deadline misses involve a decreased service quality (e.g., dropping

frames while displaying a video).

• Firm real-time systems are in the border between hard and soft real-time sys-

tems. An example of such systems are Software-Defined Radio applications

[64]. Missing a deadline neither has catastrophic consequences like for hard

real-time systems nor involves a quality of service degradation like for soft

real-time systems, but it is highly undesirable and it may fail to comply with a

given standard, hence being not functionally correct.

In this thesis we focus on hard real-time systems. The market for this kind of

systems is really important: it has experienced unprecedented growth over the last

five years and is expected to continue to grow steadily for the foreseeable future. A

study performed by the international ARC Advisory Group claims that this market is

expected to increase with an yearly rate of over 12% [1], reaching an overall market

of $2.5 billion in 2012. Gartner Inc. has recently reported that the semiconductor

content in automotive safety systems will increase from $2.2 billion in 2009 to $4.3

billion in 2014 [29].

Like in any other computing system in hard real-time systems it is necessary to

ensure functional correctness. In addition to that, like any other embedded system, a

hard real-time system must satisfy the stringent requirements in terms of low power

consumption, low cost and low weight. One of the main requirements that distinguish

hard real-time systems from any other type of systems is the level of assurance on the

functional and time correctness of the system. This additional requirement is neces-

2

1.1. Challenges of Future Hard Real-Time Systems

sary because these systems are in charge of controlling the most critical functions, and

so it is necessary to prevent any catastrophic consequence that could occur due to a

deadline miss or any misbehavior of the system. To ensure correctness hard real-time

systems must be verified. Verification is the process used to check that the require-

ments of a system are satisfied. The verification can be classified into functional

verification and timing verification; the former checks that the system is functionally

correct while the latter verifies that timing constraints are met. Verification is gener-

ally covered by several standards that are used in the different hard real-time domains:

examples of those are ISO26262 [5] in automotive, and DO-178B [6] in avionics. For

industries is of primary importance to keep the costs of such verification low [27].

One of the main goals of this thesis is to provide timing verification at low cost.

During the timing verification phase it is required the system to be timing analyzable.

In other words, it is required to derive a safe and tight WCET for the tasks and perform

a schedulability analysis. The schedulability analysis uses the WCET estimations

derived with the WCET analysis performed for every task of the system on the target

hardware or on a model of the target platform.

1.1 Challenges of Future Hard Real-Time Systems

Until recently, hard real-time systems have been designed following the Federated

Architectures [67] design principle, where each function is implemented in a different

hardware unit (processor, sensors, actuators, etc.). The separation of functions facili-

tates timing and functional verifications, maintaining the cost of the system low. Fed-

erated Architectures simplify the verification, providing a separation of responsibili-

ties, since every provider can implement the hardware and the software for a function,

independently from the other suppliers. Moreover as each function is implemented

on a different hardware unit, the processors commonly used in the hard real-time do-

main are simple uniprocessor architectures, with short pipeline and in-order execution

(e.g. most of the processors used in cars are still 8-bit microcontrollers lacking caches

or pipelines). Such simple processors provide enough performance and time analyz-

3

Chapter 1. Introduction

ability. However, as the number of functions implemented increase, so the number

of units does. Implementing more functions in a system following a Federated Ar-

chitecture approach implies a high number of hardware units. This makes federated

implementations inefficient in terms of size, weight and energy consumption.

Nowadays, the complexity of the systems is rapidly increasing as an answer to the

requirements for more and much better services, and consequently the number of the

functions implemented into a hard real-time system. These new requirements aim to

increase safety, comfort, number and quality of services, and lower emissions as well

as fuel demands for automotive, avionic and automation applications. A typical high

end vehicle, for example, includes more than 70 MCUs (Microcontroller Units) [27].

Moreover, the functions to be implemented are getting more complex. Hence, one of

the main requirements of current and future hard real-time embedded systems is to

provide high performance in order to satisfy the computational requirements of these

functions. Such a demand for increased computational performance is widespread

among the industries [7]:

1. In the avionics industry, the ever increasing demands for additional aircraft

functionality, safety and security drive both commercial and military markets

towards the need for greater performance. For instance, next generation UAVs

(unmanned aerial vehicles) are expected to be much more complex. In addition

to that it would be desirable to host the applications workload of the airplane

functionalities on as few hardware as possible in order to reduce size, weight

and power. As demonstration of such trend, in the last F-35 tactical fighter 90%

of the fuctions are managed by software [18].

2. In the automotive industry weight constraints are less stringent than in avionics

but cost demands are significantly more severe. In today’s automotive designs

MCUs (Microcontroller Units) are involved in controlling function and safety

in airbags, brakes and chassis control, engine control and in the future they will

play a crucial role in x-by-wire cars. If higher performance than what currently

available is provided future automotive systems can evaluate and process more

4

1.1. Challenges of Future Hard Real-Time Systems

sensor data being able to master more complex situations, for instance steer-by-

wire, automatic emergency-braking triggered by collision avoidance systems.

To cope with the inefficiency of Federated Architectures as embedded systems

become more complex, automotive and avionics industries are adopting Integrated

Architectures, such as Integrated Modular Avionics (IMA) [15] or Automotive Open

System Architecture (AUTOSAR) [3]. These architectures are becoming de facto

standard in each industry respectively. Integrated Architectures execute more system

functions into each hardware unit (i.e. a processor). The design principle is conceived

from the fact that most of the federated computers perform essentially the same func-

tions (input acquisitions, processing and computation, and output generation), hence,

a natural optimization of resources is to share common subsystems that perform com-

mon subfunctions, in addition to standardizing interfaces and encapsulating services.

In Integrated Architectures a key design principle in order to contain the cost of

timing verification is to guarantee that there is no interaction between the different

functions sharing the resources. To that end, at functional level, it is necessary to pro-

vide functional isolation, such that a bug/misbehavior in a function does not affect the

others. At timing level, it is necessary to provide timing isolation, such that the timing

behavior of a task is not affected by the others. These features allow the different

suppliers to perform the timing analysis independently. In order to provide functional

and timing isolation, to avoid dependencies among different components, Integrated

Architectures require hardware and software to ensure Incremental Qualification: it

is the property according with, it is not required to re-certify unchanged components

that interact with new components that are integrated into the system. By guaran-

teeing such property, components can be changed or upgraded without affecting the

timing behavior of the others, hence without the need to re-analyze, re-integrate and

in particular re-certify the system.

In order to maintain the timing verification costs at the level of the ones in Fed-

erated Architectures, incremental qualification relies on each software and hardware

component exhibiting the property of time composability. Such property dictates that

the timing behavior of an individual component does not change by the composition,

5

Chapter 1. Introduction

i.e. composing the system. Time composability also alleviates System Integration:

it is well recognized that the most difficult and expensive problems, that appear dur-

ing the development of a system, occur during its integration; multiple components,

indeed, interact at software and hardware level. It is then essential to remove the

dependencies between the different sub-systems, and, in particular, individual sub-

suppliers can perform meaningful timing analysis of their components independently

from other suppliers.

It is important to remark, that to be time composable it is also required to be time

analyzable so the requirements of hard real-time systems of being both timing correct

and to contain the verification costs can be ensured by providing time composabil-

ity. The other main requirement in addition to time composability is, hence, higher

performance that is required to cope with the new system requirements, and to allow

integrating more functions into the same system.

1.2 Possible Solutions to Achieve High Performance Guar-
anteeing Time Composability

Embedded system designers could achieve such required high performance by design-

ing more complex processors with longer pipelines, out of order execution or higher

clock frequency. Unfortunately, these solutions are not suitable, because on the one

hand complex processors with out of order execution suffer timing anomalies [56] due

to their non deterministic run-time behaviors. A timing anomaly is a situation where

the local worst-case does not entail the global worst-case. For instance, a cache miss –

the local worst-case – may result in a shorter execution time, than a cache hit, because

of scheduling effects. On the other hand, the high energy requirements of complex

processors with longer pipeline or higher frequency do not satisfy the low-power con-

straints and the severe cost limitations of common embedded systems.

Embedded processor design is, indeed, not only performance-driven but it also re-

quires meeting other goals as important as the performance: low power consumption,

low cost. Moreover, clocking a processor at a higher frequency would potentially in-

6

1.2. Possible Solutions to Achieve High Performance Guaranteeing Time Composability

crease the number of errors generated by radiations, e.g. on airplane. These multiple-

goals make the design of embedded systems a very hard task; it is then necessary to

trade-off all the requirements.

Multi-core processors are increasingly being considered as an effective solution to

cope with the higher performance requirements while maintaining a relatively simple

core design that avoids suffering from timing anomalies. This kind of processors scale

performance putting multiple cores on a single chip, effectively integrating a complete

multiprocessor on a chip providing better performance per watt ratio, maintaining

low chip costs, low power consumption, etc. Moreover, multi-core processors ideally

enable co-hosting applications with mixed criticality-levels (i.e. hard, soft and non

real-time tasks). Co-hosting non-safety and safety critical applications on a common

powerful multi-core processor is of paramount importance in the embedded system

market. Overall multi-cores allow to schedule a higher number of tasks on a single

processor so that the hardware utilization is maximized, while cost, size, weight and

power requirements are reduced.

Unfortunately, despite the benefits offered by multi-core processors, they are much

harder to analyze than single-core processors, due to inter-task interferences access-

ing shared resources such as on-chip buses and caches. Inter-task interferences ap-

pear when two or more tasks that share a hardware resource try to access it at the

same time, so arbitration is required to select which task is granted access to such a

shared resource, potentially delaying the requests of the other tasks that do not get

the access to the shared resource granted. As a result, the execution time and so the

WCET increase, making the WCET analysis extremely difficult, if not even impos-

sible, because the execution time of a task may change depending on the other tasks

running at the same time, and so this makes the WCET of a task dependent on the set

of inter-task interferences introduced by the co-running tasks. Inter-task interferences

are an important drawback when moving towards integrated architectures, that if not

considered in the design, may prevent timing composability.

Hence, even though multi-core processors are good candidates for hard real-time

systems due to the several advantages they provide, they do not satisfy the easy timing

7

Chapter 1. Introduction

verification requirement. Until now, there is no de facto solution to provide a time

composable multi-core processor.

1.3 Thesis Contributions

This thesis proposes a multi-core processor design that provides time composability,

and hence time analyzability, that is suitable for future hard real-time systems featur-

ing Integrated Architectures. The aim of this thesis is to investigate the design of a

multi-core processor for hard real-time systems that allows executing mixed-criticality

workloads composed of HRTs and Non Hard Real-time Tasks (NHRTs) running at

the same time achieving higher performance, satisfying the timing constraints and

guaranteeing timing composability to maintain the cost of verification low. Our pro-

posals provide analyzability for the HRTs and allow NHRTs to be executed into the

same chip without affecting time analyzability. The HRTs are, in fact, not affected by

NHRTs and the NHRTs can use all the resources that are not used by the HRTs. Our

solution ensures time composability for the HRTs facilitating the timing verification,

hence allowing to change, after the integration phase of the system, the tasks of the

workload. It does not, indeed, require a re-estimation of the WCET of all the tasks

in the task set. This reduces the cost of analyzability, and consequently the cost of

the verification, as only the tasks involved in the change need to be re-analyzed, as

opposed of having to re-analyze the whole system. This work is part of an FP7 Euro-

pean project called Multi-Core Execution of Hard Real-Time Applications Supporting

Analysability (MERASA - grant agreement number FP7-216415).

The approach followed in this thesis is that for every shared resource of our pro-

cessor it is guaranteed that the maximum delay a request to a shared resource from

a HRT can suffer due to other tasks is bounded. Our multi-core processor guaran-

tees that a request from a HRT cannot be delayed longer than a given Upper Bound

Delay (UBD). We analyze the UBD for common shared resources in a multi-core

processor. Concretely, this thesis focuses on a multi-core architecture composed of

a small number of cores (2 to 8), in which each core, that has its private data and

8

1.3. Thesis Contributions

instruction first level caches, is connected to a second level shared cache through a

shared bus. The shared cache is interfaced through a memory controller to an off-chip

Double Data Rate Synchronous Dynamic Random Access Memory (DDRx SDRAM)

memory device. Under this processor configuration the main sources of inter-task in-

terferences are the on-chip shared bus, the shared cache and the memory controller.

By doing so, we can ensure that the WCET is independent from the workload in which

the HRT is running. For this reason we can ensure time composability, reducing the

efforts and the costs necessary to perform the certification and verification phases of

an integrated architecture. In particular:

• We analyze different arbitration policies used in the on-chip shared bus in order

to determine the Upper Bound Delay (UBD) that a request from a HRT can

suffer due to inter-task interferences.

• We also implement a dynamically partitioned cache to allow different HRTs

to benefit from a second level cache. We analyze the effect of different cache

partition sizes on the WCET estimations of different HRTs.

• We propose an analytical model of a JEDEC DDRx DRAM memory system to

compute the UBD that a request from a HRT can suffer due to inter-task in-

terferences accessing the shared memory. We also design a Real-Time Capable

Memory Controller (RTCMC) for our multi-core processor.

• We introduce a hardware feature called WCET Computation Mode. In this ex-

ecution mode, each HRT is run in isolation: The processor – on each access to

both shared resources: the on-chip bus and the memory controller – artificially

introduces the UBD that a request from HRT can suffer because of inter-task

interferences. The result of the WCET analysis, it is an estimation that is guar-

anteed to provide a safe upper bound of the execution of the HRT when it runs in

Standard Execution Mode together with other tasks sharing processor resources.

The main advantage of our proposal is that it allows computing for each HRT a

safe WCET estimation that does not depend on the other co-running tasks. Our

9

Chapter 1. Introduction

proposed multi-core processor can be easily analyzed by current measurement-

based WCET tools without any modification. Hence, it is possible to perform

WCET analysis of a multi-core processor using the same tool chain used for

single-cores.

In addition, the UBD allows identifying the impact that different processor config-

urations may have on the WCET by determining the sensitivity of a HRT to different

resource allocations. This thesis proposes an off-line task allocation algorithm (called

IA3: Interference-Aware Allocation Algorithm), that allocates the task set based on

the HRT’s sensitivity to different resource allocations. As a result the hardware shared

resources used by HRTs are minimized, by allowing NHRTs to use the remaining re-

sources. Hence, our approach also allows NHRTs to satisfy their high data processing

demands using the resources not used by HRTs.

All the previous proposals of this thesis focused on supporting the execution

of multi-programmed workloads composed of single-threaded mixed-criticality tasks

(HRTs and NHRTs). The advantages of this are numerous, in particular the weight of

the system is reduced, a smaller number of hardware units is necessary into the sys-

tem with the consequence that the power consumption is reduced, easier installation

(with less cables necessary to interconnect the systems), smaller costs, etc. Intuitively,

higher average performance could be achieved by implementing multi-threaded appli-

cations.

As a first step towards the support of hard real-time parallel applications, this

thesis proposes a new hardware/software approach to guarantee a predictable exe-

cution of software pipelined parallel programs. Our initial results show that a tight

interaction between the time analysis tool and the programming language is required

to provide reduced WCET estimations. Otherwise, although the average execution

time decreases the WCET estimation may increase. To that end, we describe a soft-

ware/hardware cache partitioning technique that reduces the inter-thread memory in-

terferences generated by hard real-time software-pipelined parallel applications while

still guaranteeing a predictable timing behavior.

10

1.4. Thesis Structure

This thesis also investigates a solution to verify the timing correctness of HRTs

without requiring any modification in the core design: it is commonly the case that

different subsuppliers provide the different IPs of a System-On-Chip, in that case it is

not possible to modify an IP designed by another supplier. Hence, we design a hard-

ware unit which is interfaced with the IP core and integrated into a functional-safety

aware methodology. This unit monitors the execution time of a block of instructions

and it detects if it exceeds the WCET. Concretely, we show how to handle timing

faults on a real industrial automotive platform.

1.4 Thesis Structure

This thesis is composed of these main parts:

• Chapter 2 is devoted to explain our experimental environment. This includes

the processor simulation tools, the WCET analysis tool and the benchmarks

used in this thesis.

• Chapters 3 and 4 describe our proposals for the design of a hard real-time ca-

pable multi-core processor. In particular the design of time-predictable on-chip

bus, shared cache and off-chip DRAM memory controller.

• In Chapter 5 we propose an interference-aware allocation algorithm to create,

given a task set, the task partitions that minimize the resources allocated to each

core. All these chapters describe our research on multi-programmed workloads,

where we propose a multi-core processor capable of executing mixed-criticality

level application workloads and an algorithm to map HRTs to cores.

• Research on parallel applications, where we propose hardware and software

mechanisms to support the execution of hard real-time parallel applications is

described in Chapter 6.

• Chapter 7 presents the work done to introduce a WCET on-line monitoring unit

in an automotive environment.

11

Chapter 1. Introduction

• Chapter 8 shows the conclusions of this thesis.

12

CHAPTER 2

Experimental Setup

In this chapter we describe the set of tools we used to evaluate the multi-core processor

proposed in this thesis: a cycle accurate execution-driven simulator, a commercial

WCET analysis tool and the set of benchmarks used as representative of the HRTs and

NHRTs. In addition to that we also describe the experimental setup for the proposal

of Chapter 7 which differs from the rest of the thesis. In the last part of this chapter

the criteria adopted to evaluate our experiments are addressed.

2.1 Introduction

Simulation is a well known established technique used in both academic and indus-

try research to evaluate new processor architectures. During this thesis we developed

a cycle accurate simulator that models a common homogeneous multi-core processor

composed by simple cores with private level one instructions and data caches, a shared

bus that connects the cores with the shared cache and a shared memory controller that

interfaces the processor to the off-chip main memory. The proposals presented in

Chapters 3, 4, 5 and 6 have been implemented in this simulator. Moreover we inte-

13

Chapter 2. Experimental Setup

Figure 2.1: Baseline multi-core processor

grated a commercial WCET analysis tool into our simulation environment, required

to derive a WCET estimation that is a safe upper bound of the Maximum Observed

Execution Times (MOETs).

For the proposals presented in Chapter 7 we used a different simulation infras-

tructure: our solution was integrated into a gate-level simulation environment of an

existing automotive hardware platform.

2.2 Evaluation Tools

2.2.1 Our Multi-core Cycle-Accurate Simulator

In order to evaluate the work proposed in this thesis we developed a cycle-accurate

execution-driven simulator compatible with TriCore binaries [45]. The simulator is

composed of two main components: a functional emulator, and a timing simulator.

The emulator developed based on CarCore1 [87] is responsible of executing the ap-

1CarCore is a System-C simulator developed by the University of Augsburg (Germany) that models

in detail a single-core multi-threaded processor.

14

2.2. Evaluation Tools

Figure 2.2: Core pipeline details

plications, by maintaining the architectural state of each core in the processor. We

enhanced the emulator with the support for floating-point instructions (based on IEEE-

754 single precision standard) and for the most common Operating System (OS) calls

necessary to perform operations such as open, read, write, close and lseek. This al-

lows benchmarks to work with I/O (file handling), as well as to use printf and similar

functions for debugging purposes.

The timing simulator models the micro-architecture of our multi-core proces-

sor. In the development of the timing simulator we considered as a guideline CMP-

SMTSim [9]: a highly configurable trace-driven simulator, compatible with Alpha

binaries, developed by the University of California (San Diego, USA), and Universi-

tat Politecnica de Catalunya (Spain).

To model the DRAM memory system we used the DRAMsim (Version 1) [89],

which we integrated inside our simulation framework. DRAMsim is a well known

C-based memory system simulator developed by the University of Maryland (USA).

It is highly-configurable, parameterizable and implements detailed timing models for

different types of existing DRAM memory systems.

We have validated the simulator through a high number of tests. Moreover, the

fact that DRAMsim and CarCore emulator have been used by other research groups

provides to our simulator higher confidence in the results we have obtained.

The processor model considered along this thesis is a four core processor con-

nected to an off-chip JEDEC-compliant DDR2-SDRAM memory system. The cores

are connected through an on-chip shared bus to a shared cache, that is interfaced

through a memory controller to the off-chip memory system. A figure of the overall

15

Chapter 2. Experimental Setup

architecture is shown in Figure 2.1, while the details of the pipelines of each core are

shown in Figure 2.2. The front-end of the pipeline includes a Fetch (FE), Decode (DE)

and Issue Stages, while the back-end is composed by two pipelines: one for memory

operations, and the other one for integer and floating point computations. Both back-

end pipelines include a Decode (DE), a Register Read (RR) stages and a Write Back

(WB) stages. In addition to that they include a stage for Address Computation, an

Arithmetic Logic Unit and a Floating Point Unit.

Regarding the core design, each core implements an in-order dual-issue pipeline

inspired from Infineon Tricore [45] and CarCore [87] adding the support for floating

point operations. Each core is single threaded, and contains two pipelines: one for

memory operations and one for the other types of instructions. No branch prediction

is used. The instruction bandwidth between different stages is one instruction. Bypass

mechanisms are implemented. As presented in CarCore [87], microcode sequences

are used: Call (CALL) and return (RET) instructions use the microcode instructions

(i.e. they are split into microcode operations); the additional instructions are inserted

by the issue stage. Each core contains private level one instruction and data caches.

Regarding the data cache, it implements a write-through write-not-allocate policy:

Store (ST) instructions do not stall the pipeline and they access directly the second

level cache through the shared bus. A write buffer is used to maintain multiple pending

ST. Instead Load (LD) instructions are always blocking the pipeline, being possible

to have only one outstanding LD at the time per core.

In particular we chose a shared cache of 128KB in order to have a significant pres-

sure also on the off-chip memory and being able to test also our proposals described

in Chapter 4. As local storages we implemented instruction and data caches to avoid

the drawbacks of the scratchpads where the programmer or the compiler needs to be

aware of the memory regions that are mapped on such memories. However our pro-

posals are independent of the use of level one caches and can work even in presence of

scratchpad memories, implementing solutions like the ones proposed in [60] and [61].

Regarding the memory system, in this thesis we model a memory controller interfaced

with three different JEDEC-compliant 256Mb x16 DDR2 SDRAM devices: DDR2-

16

2.2. Evaluation Tools

400B, DDR2-800C and DDR2-800E, each composed by a single DIMM, single rank

and a single 4-banks memory device. We assume a CPU frequency of 800MHz, be-

ing a CPU-SDRAM clock ratio of 2 in case of DDR2-800C and DDR2-800E and 4 in

case of DDR2-400B.

Table 2.1 summarizes the architectural details of our processor providing the val-

ues of the different parameters that we used for our experiments. The configuration

parameters that we used are suggested by the members of the Industrial Advisory

Board of the MERASA project [7], and they characterize the requirements of future

hard real-time systems.

All the proposals of this thesis are independent of the underlying architecture

we have used to carry out the experiments. That is, all new techniques have been

designed at the microarchitectural level without considering any special feature of the

TriCore ISA. We selected such ISA because the TriCore is one of the most common

processor used in real-time systems by industries. It joins the elements of a RISC

processor core, a microcontroller and a DSP in one single chip. Even though this

thesis considers a single-threaded core, different core designs could be used. For

example, in the MERASA project, University of Augsburg proposed a hard real-time

capable SMT core [63] [62]. Their proposals are orthogonal to ours and hence can be

implemented into our proposed multi-core processor.

In this thesis we do not consider the effect of the Operating System (OS) on the

timing behavior of HRTs. In other words, from an execution point of view, we con-

sider HRTs and NHRTs as sequences of instructions executed on the processor, with-

out distinguishing if the instructions belong to the user or the system space. It is in-

teresting to point out that in the MERASA project, University of Augsburg proposed

a predictable system-level software [91] that contains functionalities of a Real-Time

Operating System (RTOS). The system software guarantees an isolation of multiple

HRTs on memory and I/O resources. When isolation cannot be achieved, the system

software ensures a time-bounded access to avoid mutual and possibly unpredictable

interferences. The intention of this isolation and bounding is also to enable an effec-

tive WCET analysis of the application’s code.

17

Chapter 2. Experimental Setup

Table 2.1: Baseline configuration

Parameter Configuration used

Pipeline depth 7 stages

Number of contexts 1 NHRT or 1 HRT

Pipeline stage latency 1 cycle

Functional unit latency 1 cycle

Fetch Width 2

Instruction Buffer Size 16

Instruction Window Size 16

Physical Registers 32 address, 32 data

Branch Predictor none

Write Buffer Entries 8

Primary L2 MSHR Entries 10

Secondary L2 MSHR Entries 10

Icache, Dcache 8 Kbytes, 4-way, 1-bank,

8-byte lines, 1 cycle access

write-through write-not-allocate policy

L2 cache 128 Kbytes, 16-way, 16-bank,

32-byte lines, 4 cycle access

write-back write-allocate policy

Shared Cache Partitioning Techniques Columnization and Bankization

Instruction/Data L1 miss + L2 hit Latency 9 cycles

Bus Latency 2 cycles

Inserting Bus Arbiter 1 cycle

Scheduling Bus Request 1 cycle

Write back into the Register 1 cycle

Bus Arbiter Queue Size 8 entries

DDRx SDRAM Devices 256Mb x16 DDR2 devices: 400B, 800C and 800E [49]

2.2.2 Experimental Setup of an Automotive Platform

The experiments described in Chapter 7 use a simulation framework different from

the one explained in this Chapter. That is, the proposals presented in Chapter 7

were integrated into an internal framework developed by YOGITECH SpA [58] [57].

18

2.3. WCET Analysis

Such platform is composed by different IPs described in Verilog at RTL and sim-

ulated at gate level. The real-platform used for automotive applications includes a

fRCPU_armcm3 [40], an IP for on-line fault detection and fault diagnosis, and an

ARM Cortex-M3 processor [2].

The platform is simulated injecting permanent faults using a fault-injector tool

that was also developed internally by YOGITECH SpA.

2.3 WCET Analysis

In order to verify the timing correctness of a hard real-time application it is necessary

to perform WCET analysis, i.e. to compute a WCET estimation. To do so, today

industries and academias follow two main approaches for WCET analysis [90]: static

analysis and measurements based analysis.

• Static timing analysis, e.g. aiT [42], OTAWA [23], relies on the construction

of a specific cycle accurate model of the processor and the construction of a

mathematical representation of the timing behavior of the application under

analysis running on that processor. The mathematical representation is then

processed with linear programming techniques to determine a safe upper-bound

on the execution time.

• Measurement-based analysis, e.g. [19], relies instead on thorough testing of the

application under analysis on the real processor or a cycle accurate timing sim-

ulator of that processor, with high-coverage stressful input data, and recording

the longest observed execution time.

In this thesis we use the measurement-based WCET analysis tool RapiTime [8].

RapiTime computes the WCET estimation of a program as a whole probability distri-

bution of the execution time of the longest control-flow path, from which the absolute

upper bound (i.e. the WCET estimation) is obtained. To do so, RapiTime first derives

an upper bound of the Maximum Observed Execution Time (MOET) for a particular

section of code (generally a basic block) from measurements; such execution times

19

Chapter 2. Experimental Setup

are then combined with the control flow graph to determine an overall estimation for

the longest control-flow path through the program. In order to generate the control

flow graph, RapiTime automatically instruments the program to be analyzed through

annotations. The granularity level is defined by the user and can be set at the level of

basic block, function, etc. This information is then processed by RapiTime to rebuild

the actual control flow graph and to determine the execution time of the longest path

based on measurements.

The complete overview of our simulation environment comprehensive of the WCET

analysis tool is shown in Figure 2.3. The source code (.c) of the program is instru-

mented by RapiTime (it inserts the so called RapiTime_IDPoint). A RapiTime_IDPoint

is an identifier introduced by RapiTime and used to identify the basic block currently

in execution. The program is then compiled generating the executable file (.elf). When

a RapiTime_IDPoint is processed, the timing simulator appends a new trace line into

the Rapita Trace file (.rpz) with the RapiTime_IDPoint and the time stamp of the

current cycle time. The complete RapiTime trace file (.rpz) is then processed by

RapiTime to estimate the WCET.

Even though we used a measurement-based WCET analysis tool into our simula-

tion environment, the proposals of this thesis are independent from the WCET anal-

ysis tool adopted and they could also be verified with a static based WCET analysis

tool.

2.4 Benchmarks

All experiments conducted in this thesis use several benchmarks suites that are rep-

resentative of both hard real-time and non real-time domains. All benchmarks have

been compiled with Tasking [85], a commercial embedded compiler produced by Al-

tium2 corporation, using maximum optimization levels. This compiler is the defacto

industry standard for TriCore architecture software development.

2www.altium.com

20

2.4. Benchmarks

Figure 2.3: Simulation environment including RapiTime

2.4.1 Hard Real-Time Applications

EEMBC Autobench3 benchmark suite and a real hard real-time application: collision

avoidance algorithm, provided by Honeywell Corporation are the HRTs considered

within this thesis.

The Collision Avoidance (CA) algorithm provided by Honeywell is based on an

algorithm for 3D path planning used in autonomous-driven airplanes to process the

frames captured by on-board cameras and to build the path to reach the target points

avoiding the obstacles. It requires high-performance with high-data rate throughput

and it is strictly hard real-time.

EEMBC AutoBench [77] is a well-known benchmark suite composed by sixteen

applications used in both industry and academia that reflect the current real-world

demands that embedded systems encounter in automotive, industrial, and general-

purpose applications. It includes generic workload tests, basic automotive algorithms

and signal processing algorithms. Unfortunately, the memory requirements of the

EEMBC benchmarks are only around 33 Kilo Bytes each. In order to be represen-

3www.eembc.org

21

Chapter 2. Experimental Setup

tative of future hard-real time applications we increased their memory requirements

according to the memory requirements of CA [7], i.e. we increased the number of

iterations and the size of the data array without modifying any instruction inside the

source code. The new data memory footprint of some of the EEMBC benchmarks

is: aifftr01/aiifft01 (64 KB), aifirf01 (72 KB), pntrch01 (62 KB), ttsprk01 (104 KB),

tblook01 (70 KB), matrix01 (91 KB).

Benchmark Classification

In order to evaluate how benchmarks impact the different shared resources, we evalu-

ate the pressure that EEMBC and collision avoidance benchmarks have on the on-chip

shared resources. To that end, we plot the cache Misses per Kilo Instruction (MpKI)

of first level data and instruction caches (shown in Figure 2.4, when varying its size

from 4KB to 32KB). Increasing the size of first level cache reduces the amount of re-

quests accessing the shared bus and so, the execution time is reduced due to a smaller

delay originated by the contention accessing on-chip shared resources. However, such

reduction does not affect uniformly all benchmarks. While there are benchmarks, like

aiifft01 and aifftr01, that reduce their accesses to shared resources by more than 22%,

others are not affected at all.

On average, EEMBC benchmarks reduce the accesses to the bus and second level

cache by 12% when increasing the size of first level cache from 4KB to 32KB. In case

of the collision avoidance algorithm such cache-size increment does not affect the

MpKI with a consequent reduction by less than 1%. The results of such experiments

are shown in Figure 2.4.

As a result of such experiment, we classified the EEMBC benchmarks into two

groups, according to the MpKI obtained with a first level cache of 4 KB:

• High bus utilization, formed with benchmarks whose MpKI lay between 180

and 40: aiifft01, aifirf01, pntrch01, cacheb01, puwmod01, idctrn01, bitmnp01

and aifftr01.

22

2.4. Benchmarks

Figure 2.4: Misses per Kilo Instruction (MpKI) of first level cache when varying the cache

size from 4KB to 32KB

• Low bus utilization, formed with benchmarks whose MpKI lay between 40

and 0: iirflt01, ttsprk01, tblook01, matrix01, basefp01, canrdr01, rspeed01 and

a2time01.

When accessing the second level cache, benchmarks with higher cache utilization

could potentially produce higher cache interferences. Figure 2.5 shows the perfor-

mance speedup when increasing the size of second level cache from 16 KB to 128

KB, taking as a baseline a first level cache size of 8 KB and having a first level cache

of 4 KB. Increasing the cache size, the amount of accesses to the off-chip memory

reduce and so the performance increase.

According to the results presented in Figure 2.5, the benchmarks are classified

into three groups:

• High memory demanding, composed by benchmarks that increase their perfor-

mance as the cache size increases: aiifft01 and aifftr01.

• Medium memory demanding, composed by benchmarks that increase their per-

formance until a certain cache size is assigned: iirflt01, aifirf01, pntrch01,

ttsprk01, tblook01, matrix01 and cacheb01.

23

Chapter 2. Experimental Setup

Figure 2.5: Performance speedup when varying the second level cache size from 16 KB to

128 KB, taking as a baseline a second level cache size of 4KB

• Low memory demanding, composed by benchmarks that do not increase their

performance as the cache size increases: puwmod01, idctrn01, bitmnp01, basefp01,

canrdr01, rspeed01 and a2time01.

According to the results presented in Figure 2.4 and Figure 2.5, the size of the first

level cache is fixed to 8 KB per core (4 KB of data and 4KB of instruction caches)

and the size of the second level cache is fixed to 128 KB.

To sum up, the on-chip inter-thread4 interferences effect over the execution time

can be classified according to the bus access classification (Figure 2.4), and off-

chip cache classification. Hence, taking into account both effects, we classified the

EEMBC benchmarks in three groups according to the bus utilization and the memory

requirements:

• High shared resource (SR) demanding group, formed by benchmarks with high

bus utilization and high memory demanding: aiifft01, aifftr01 and cacheb01.

4Please consider that in this thesis we use the words: application, thread and task with the same

meaning.

24

2.4. Benchmarks

• Medium SR demanding group, formed by benchmarks with small working set,

independently of the bus utilization: aifirf01, iirflt01, matrix01 and pntrch01

• Low SR demanding group, by benchmarks with low bus utilization and low

memory demanding: a2time01, basefp01, bitmnp01, canrdr01, idctrn01, puw-

mod01, rspeed01, tblook01 and ttsprk01.

The Worst-Opponent

Another contribution of this thesis is the concept of worst-opponent. For a given

task, we define worst-opponent a task that accesses the shared resources just a cycle

before every request produced by the given HRT. This indeed represents the worst-

case scenario. It can be used to verify our proposals; in fact the HRTs must meet their

deadlines even if running in such worst-case workload.

To design the worst-opponent it is necessary to perfectly know the micro-architecture

and even though, in some processors could even be the case that is not possible to de-

fine such task due to the hardware characteristics.

Hence, in this thesis, we developed a synthetic benchmark that tries to resemble

the worst-opponent for our multi-core architecture. To that end, since Store operations

do not block the pipeline and a write-through write-not-allocate policy is used in the

first level cache, all Stores instructions correspond to accesses to the bus and then to

the shared cache. For these reasons the opponent we built is a for-loop of 1000 Stores

operations (i.e. to remove the overhead of loop instructions) where the addresses of

two consecutive stores are generated in such a way that they target different bank of

the shared cache. When performing the experiments for Chapter 4, we modified this

synthetic benchmark such that the stores operations always miss in the shared cache

and hence they always access the off-chip shared memory.

25

Chapter 2. Experimental Setup

Parallel Applications

To evaluate the proposals described in the Chapter 6 we used the parallel version

of the following applications: LU decomposition and stereo navigation provided by

Honeywell Corporation.

LU Decomposition: In linear algebra, the LU decomposition (also called LU

factorization) of the square matrixA is defined asA = L×U , where L and U are lower

and upper triangular matrices of the same size respectively, in which L has only zeros

above the diagonal and U has only zeros below the diagonal. This decomposition

is used in numerical analysis to solve systems of linear equations or to calculate the

determinant. We have split the applications into two stages: Given a n × n square

matrix A, the stage 0 replaces A by the LU decomposition of a row wise permutation

of itself. The resultant matrix A′ is arranged using the Crout’s method. Based on the

stage 0’s output, A′, stage 1 solves the set of n linear equations A′X = B computing

the solution vector X , being B the right-hand side vector.

Stereo Navigation: The stereo navigation application is intended for an aircraft

localization in case that the GNSS (Global Navigation Satellite System) used in air-

craft is temporarily unavailable and the plane has to localize itself for some period of

time. In the latter situation the lack of stereo navigation application responsiveness

may have a catastrophic outcome and therefore it is typically considered as a hard

real-time application. The application is built on the idea that from two independent

images derived from cameras looking in approximately the same direction features

can be extracted (dominant entities in the image invariant to rotation and translation).

Using two cameras recording images at the same time allows for localization of the

features in a 3D-space. Furthermore, from two adjacent image snaps taken in two

subsequent time moments t1 and t2 and the change of position of the features in the

images, absolute translation (dT/(t2 − t1)) and absolute rotation (dR/(t2 − t1))
can be inferred. The stereo navigation computation is composed by the 10 phases

(rectify, tile, sort, match_lr, match_t1t2, circular_check, reproj, ransac_loop, refin,

finit_state). We have split the application in two stages: the two first phases compose

the first stage; the rest composes the second stage.

26

2.5. Evaluation Criteria

2.4.2 Non Hard Real-Time Applications

MediaBench II, SPEC2006 CPU and MiBench Automotive benchmark suites are the

non hard real-time applications considered in this thesis.

MediaBench II5 is a suite of benchmarks representative of the multimedia and

communication industry. This suite reflects the characteristics of most advanced and

most widely-used applications. From this benchmark suite we use h264 coder and

decoder, and mpeg2 coder and decoder.

We also selected some benchmarks from SPEC CPU20066 that is an industry

standard, CPU-intensive benchmark suite, stressing the processor and the memory

subsystem. They are commonly used by high-performance computing community

but we consider them also representative of NHRTs. From this suite we used bzip2.

MiBench Automotive7 includes benchmarks representative of embedded control

systems. They require performance in math computations, bit manipulation, data

input/output and data organization. The benchmarks included in this suite are basic-

math, susan_smooth, susan_corners, bitcount and qsort.

We selected such benchmarks because we consider that they are good examples

of common and future NHRTs that are typically executed on hard real-time systems,

e.g. the payload functions of a satellite that compress acquitted data, or process sig-

nals/images.

2.5 Evaluation Criteria

The criteria that we use to evaluate our proposals are the following:

• The first criterion is to ensure time analyzability: to that end, we need to check

that the WCET estimation we obtain during the analysis is a safe upper bound of

the MOET when running in any workload with other tasks. In other words, we

estimate the WCET for a HRT, and then we run it into a workload composed

5http://euler.slu.edu/ fritts/mediabench/
6www.spec.org/cpu2006/
7www.eecs.umich.edu/mibench

27

Chapter 2. Experimental Setup

by several HRTs verifying that it is safe. In addition to that, we evaluate the

tightness of the WCET estimations, showing the distance between the WCET

estimations obtained and the MOETs. The tighter is the WCET with respect

to the MOET, the less the resources allocated to accommodate the worst-case,

allowing to execute more tasks (both NHRTs and HRTs) on the same processor.

It is also necessary to verify the capability to provide a safe WCET estimation

for HRTs while running together with NHRTs. We also evaluate the impact

that different resource allocations (like the size of the private cache partition of

each HRT) have on the WCET estimations. We show, in other words, how the

WCET of a task varies by changing the configuration of the processor.

• The second criterion is to ensure that time composability is satisfied: the WCET

estimation must be independent of the workload, i.e.. the WCET estimation

does not vary by changing the tasks in the workload. We design our multi-core

architecture such that this property is ensured by construction. Further details

will be shown in Chapters 3 and 4.

• In our multi-core architecture the NHRTs can use the resources that are not

used by HRTs, and our aim is to maximize the utilization of the resources pro-

viding the highest possible throughput to the NHRTs. To that end, an additional

metric of success is to optimize the performance of the NHRTs. In particular,

we choose to optimize the total throughput as it provides a measurement of the

performance per resource we can get from the architecture. Anyway, other met-

rics like weighted speedup 1/N ·(
∑N
i=1

IPCCMP
i

IPCisol
i

) or harmonic mean of relative

IPCs defined as N/(
∑N
i=1

SingleIPCi
IPCi

) can be optimized instead of throughput.

Finally another major goal in the design of our multi-core architecture is the pos-

sibility of using the techniques adopted in single-core processors to perform WCET

analysis without requiring any change. In this thesis we use RapiTime without any

change.

28

CHAPTER 3

Predictable On-Chip Shared Resources: the Bus and the Cache

In this chapter we present our designs for an on-chip shared bus and a shared cache

so that they are time analyzable: regarding the bus we provide the UBD for different

arbitration policies and an interference-aware bus arbiter. Regarding the shared cache

we show the effect of two types of interferences: storage and bank interferences. To

avoid the latter kind of interferences we propose two cache partitioning techniques.

3.1 Introduction

In a common multi-core processor, the different cores are usually connected to shared

memories (e.g. cache, SDRAM and DRAM) through an interconnection network. In

this thesis, since we focus on a small number of cores, the interconnection network

is a bus. In the multi-core processor we consider in this chapter each core, with its

private data and instruction first level cache, is connected to a second level shared

cache through a shared bus. An overall diagram of the multi-core architecture is

shown in Figure 3.1.

29

Chapter 3. Predictable On-Chip Shared Resources: the Bus and the Cache

A bus, used to interconnect several components, is characterized by a latency,

that is a fixed amount of time necessary for a request to cross it. When one request

is granted access to the bus, no other request can use it, so an arbitration policy is

required if two requests try to access the bus at the same time. In such scenario, one

thread will delay the execution of the other one until it frees the bus, producing a bus

interference. We first focus on an architecture where each core has a banked private

memory and the only shared resource is the bus, and then we describe how to use a

shared level of cache. Caches are normally used in high performance processors to

reduce the latency of memory accesses; they are generally implemented using multi-

ple banks to allow parallel accesses. However, a bank can only handle one memory

request at a time, and so if two memory requests try to access the same bank at the

same time a bank interference or bank conflict is originated. This interference may in-

troduce variability in the execution time of a thread. In addition to that, shared caches

have an additional drawback that occurs when one thread evicts valid data of another

thread: the so called storage interferences .

With those inter-task interferences, even if we were able to redefine the WCET

as the longest execution time within all possible workloads, it would be required to

analyze a very huge amount of workloads. For example, for a set of n tasks and a

target processor with k cores, we should profile all n/(k!(n− k)!) possible combina-

tions. Furthermore, any change in the workload, like a shift in the time at which each

application in the workload starts, would invalidate the previous analysis resulting in

an unsafe WCET estimation for the remaining threads. This may be often the case

when running mixed workload applications with non real-time applications.

In a multi-core environment to estimate the WCET taking into account inter-task

interferences it would be required to know beforehand for each task the exact sequence

of accesses to shared resources in the worst-case. This is because different access

sequences to a shared resource may result in different state of such resource, which

leads to different WCET estimations. Unfortunately, it is commonly the case that the

sequence of accesses to shared resources is known only at run-time. Moreover, for

30

3.1. Introduction

Figure 3.1: Multi-core processor with real-time bus and dynamically partitioned cache

non-real time applications it may be impossible to compute such sequence, mainly if

they are programmed using dynamic memory allocation (e.g. pointers).

Let us consider that a HRT T runs in a multicore architecture together with other

tasks and it is then necessary to ensure a safe WCET estimation for T . The solution

we propose in this thesis avoids profiling all worst-case sequences of accesses of all

threads when estimating the WCET. In order to do so, we determine, for every access

to a shared resource r, an Upper Bound Delay (UBD), that T can suffer due to inter-

task interferences. When computing the WCET of T , we assume that the time to

access a shared resource r, equals the access time to that resource with no inter-task

conflicts plus UBD. As a consequence, the resulting WCET estimation WCETmax

is a safe upper bound of the execution time of T , running in the multi-core architecture

31

Chapter 3. Predictable On-Chip Shared Resources: the Bus and the Cache

Figure 3.2: Our interference-aware bus arbiter

and sharing the resource r with the other threads. Moreover, given that UBD does

not depend on the other threads, WCETmax is also independent on the other threads.

In this chapter we focus on predictability issues of both shared resources: the on-

chip bus and the shared cache. In particular, regarding the bus, we analyze different

arbitration policy, computing the UBD that a request may suffer due to inter-task

interferences with the other co-running tasks and propose an interference-aware bus

arbiter. Regarding the cache we study the effect of bank interferences on the UDB and

we evaluate the impact on the WCET of two different cache partitioning technique

necessary to avoid storage interferences.

We recall, from Chapter 2 that in our multi-core processor and along this thesis,

we assume that the arbiter needs 1 cycle to select which request accesses the bus

(labeled as A in following Figures), 2 additional cycles to send the data through the

bus (labeled as B in Figures and Lbus in Formulas) and 4 cycles to access a bank (an

access to bank n is labeled Mn in Figures and Lbank in Formulas).

32

3.2. Interference-Aware Bus Arbiter

3.2 Interference-Aware Bus Arbiter

An overall picture of our interference-aware bus arbiter that controls bus interferences

when computing the WCET is shown in Figure 3.2 . Our proposal splits the bus

arbiter into two hierarchical components: The Inter-Core Bus Arbiter (XCBA) that

schedules among requests from different cores, and several Intra-Core Bus Arbiters

(ICBAs), one per core, which schedules among requests from the same core. The idea

behind our design is to ensure that the delay that a thread can suffer due to requests of

any other thread is bounded by a fixed amount of time.

In our architecture, a thread sends a request to the bus on (1) every data cache load

miss, (2) instruction cache miss and (3) store operation. These requests are handled

by its corresponding ICBA, which selects the next memory request to be sent to the

XCBA. Hence, by maintaining the requests of the different cores apart, the execution

time, and so the WCET of a task does not depend on the number of request from the

other tasks that are ready and waiting to be granted access to the bus. The XCBA is

in charge of selecting which of those requests from different cores access the bus.

In order to accomplish with our second objective of providing high performance,

in each ICBA the requests to the cache are placed in different bank request queues.

There is a bank request queue per second level cache (L2) bank, which holds requests

based on their target destination bank. Bank request queues contain the information

of the memory request and the index to the data buffer entry that stores all the data to

transfer with that request. Thus, once a core sends a request, the ICBA time-stamps

it and inserts it into its corresponding bank request queue. The ICBA implements a

given policy, which selects the next memory request that is forwarded to the XCBA

(that sends it to the bus). In particular, the ICBA applies the following policies among

requests from different bank queues. In the case of NHRTs, we allow parallel out of

order execution of different cache requests that do not address the same bank in order

to increase the overall performance, that is, we apply a First Ready First Serviced

policy. In the case of HRTs, in order to prevent timing anomalies [56] we apply a

FIFO policy, so the oldest request in all bank request queues is selected.

33

Chapter 3. Predictable On-Chip Shared Resources: the Bus and the Cache

Our ICBA splits wide bus transfers into independent request so they can be sent

in non-consecutive bus slots. We allow this way bus transfers wider than the bus

bandwidth. A wide bus transfer is completed when the last request has been sent.

3.2.1 Analyzing the Effect of Different Bus Arbitration Policies

The delay a thread can suffer due to bus interferences depends on the bus arbitration

policy. In this section we analyze the variation that a shared bus can introduce on the

execution time of different tasks. We also show how XCBA enforces that a request

from a given task cannot be delayed longer than UBD, and we determine formally

UBD’s value. Through this section we assume that each task has its own private

memory, so tasks are only affected by bus interferences. In Section 3.3 we study an

architecture in which tasks share both the bus and the cache.

Scheduling One Hard Real-Time and Several Non Hard Real-Time Threads

In a mixed workload composed of only one hard real-time thread and N − 1 non hard

real-time threads, bus interferences could be avoided by flushing the requests from

the NHRT. That is, if the HRT requires the bus and it is being used by a NHRT, the

requests from the NHRT can be flushed, so that the bus arbiter immediately grants

access to the HRT without introducing any extra delay to its execution time. This

technique is too costly in terms of power consumption since it requires re-sending the

flushed request and cannot be applied if we run several HRTs simultaneously.

Analogously, if all shared resources are fully pipelined or they have a single-

cycle access no interferences occurs between the HRTs and NHRTs. In fact, if a

request from a NHRT arrives at the same time as a request from the HRT, the latter

is prioritized. While in the case where the request from the NHRT thread arrives one

cycle before than the request from the HRT, the latter can proceed as the resource is

available in that cycle.

In a more realistic scenario where no flushing technique is used and the access

to shared resources takes multiple cycles, the XCBA arbiter prioritizes requests from

HRTs on NHRTs in order to minimize the interference of NHRTs on HRTs. Hence, if

34

3.2. Interference-Aware Bus Arbiter

a request from the HRT and a request from a NHRT are ready at the same cycle, the

arbiter prioritizes the request from the HRT. However, it may happen that the request

coming from the HRT arrives just one cycle after the request from the NHRT has been

already granted the access to the bus. In such a situation, the request from HRT will

be delayed by the request from the NHRT (see Figure 3.3). In this case, the maximum

delay that a request from HRT can suffer is upper bounded and can be computed by

the following expression: UBD = Lbus − 1

Figure 3.3: Example of interference between a NHRT and a HRT accessing the bus

Scheduling Several Hard Real-Time Threads

In a more realistic scenario, in which we have more than one HRT running at the same

time inside the processor, it may happen that two or more requests from different

HRTs try to access the bus at the same time. In this case, there is not always an upper

bound on the time one HRT can delay the other to access the bus. The existence of

such an upper bound depends on the arbitration policy. We are going to use three

different XCBA arbitration policies for illustrative purposes. Thread Prioritization

always gives priority to requests that are generated from the highest priority HRT (or

a set of HRTs). Round Robin assigns the same priority to all the requests from HRTs.

Finally, FIFO prioritizes the requests in arrival order to the arbiter.

When a thread prioritization is used the maximum delay a thread can suffer is not

bounded. As shown in Figure 3.4, in cycle 0, a request from each HRT is ready. In

cycle 1, the arbiter prioritizes requests from HRT1, so HRT2 is stalled until HRT1

finishes. However, before leaving the bus another request from HRT1 becomes ready

in cycle 2. In this situation, the amount of time HRT2 needs to wait to get access to

the bus depends on the total time the HRT1 has requests ready. Thus, the UBD that

35

Chapter 3. Predictable On-Chip Shared Resources: the Bus and the Cache

Figure 3.4: Thread prioritization. The delay that HRT1 produces over HRT2 is unbounded

HRT2 suffers due to interferences with HRT1, depends on HRT1. Even though this

UBD can be computed knowing HRT1 sequence of accesses, it can be too long/pes-

simistic to be useful.

With round robin, the maximum delay a request from a HRT can suffer is bounded

by the total number of HRTs that can send a request at the same time. Figure 3.5

shows an example of such worst-case scenario that occurs when two requests from

two different HRTs become ready at the same time. In this case, a given HRT, let’s

say HRT2 must wait until the previous request from HRT1 finishes. The maximum

delay HRT2 suffers due to other HRTs, is: UBD = (NHRT −1) ·Lbus, NHRT is the

number of HRTs running at the same time in the processor, which is upper bounded

by the number of cores.

Figure 3.5: Worst-case scenario between two HRTs

Finally, if a FIFO policy is applied, the maximum delay a request from a HRT can

suffer is bounded by the total number of HRTs, that can send a request at the same

time, times the number of entries in the request queues each thread is allowed to have.

36

3.2. Interference-Aware Bus Arbiter

Overall Effect of Bus Arbitration

Our multi-core uses a round robin bus arbitration policy between HRTs and prioritize

them over NHRTs. The maximum delay is determined by the combination of the

effects of the requests coming from HRTs and NHRTs:

UBD = Lbus − 1 + (NHRT − 1) · Lbus. It can be simplified as follows:

UBD = NHRT · Lbus − 1 (3.1)

We want to highlight that the NHRT is the number of HRTs running at the same

time inside the processor (and not the total number of HRTs that form the system),

which is upper bounded by the number of cores.

Therefore, by using round robin policy the maximum delay that a request will

suffer due to bus inferences does not depend on previous knowledge of the workload

(task set), but only on the total number of HRTs that are going to be executed simulta-

neously inside the multi-core processor. Moreover, the WCET analysis of each thread

can be performed in isolation, since by design our architecture ensures that the UBD

of Formula (3.1) is never going to be violated. The requests to the bus from a HRT

will never be delayed longer than UBD due to the interactions with the other threads,

regardless of the workload.

In conclusion, to guarantee a bounded inter-thread interference delay when run-

ning in a mixed application workload, the XCBA applies the following policy to select

the next memory request that will access the bus. First, the requests from HRTs have

priority over requests from NHRTs. Second, between different requests from HRTs, a

round robin policy is applied as well as between different requests from NHRTs. Hav-

ing more than one pending request from the same thread it does not affect inter-thread

interferences but it is a concern of single-core WCET analysis [19].

Although not shown in Figure 3.2, our bus is full-duplex and the same principle is

applied for the bus arbiter that controls the requests that go from second level cache

to the corresponding core, i.e., load misses and instruction misses. Hence, an ICBA

for each core, as well as a global XCBA is required to control the request from L2 to

cores. In this case the L2 banks insert the request into the ICBAs while the cores are

37

Chapter 3. Predictable On-Chip Shared Resources: the Bus and the Cache

the destinations of those requests. Notice that requests from cores to L2 banks do not

interact with requests from L2 banks to cores and vice versa.

3.3 Analyzing the Shared Cache

In this section, we consider a more realistic multi-core scenario in which threads can

suffer interference delays from two shared resources: bus and second level cache.

Such architecture is shown in Figure 3.1. The bus acts as the connection between

cores and L2 banks. The use of shared memories in multi-core systems introduces

unpredictable and not analyzable worst-case behavior due two factors: bank access

interference and storage interference. In this section we will focus on addressing both

problems, enabling multi-core processors to become analyzable.

3.3.1 Bank Access Interference

Caches are normally partitioned into multiple banks to enable parallel operations, i.e.,

different memory operations can access different banks simultaneously. However,

a bank can only handle one memory request at a time. When a bank is serving a

memory request, it is inaccessible to any other request for an amount of cycles equal

to the bank latency. So, if two memory requests try to access the same bank at the

same time, the bus arbiter avoids any conflict by delaying the second access. This

kind of effect, called bank interference or bank conflict, may introduce variability in

the execution time of a thread.

An example of a bank conflict is shown in Figure 3.6. Two threads, HRT1 and

HRT2, want to access the same memory bank (labeled as M1) at the same time.

Since we assume a memory latency of 4 cycles, HRT2 turns out to be delayed 4

cycles because of a previous request from HRT1.

In order to control the execution time variation caused by bank interference, we

apply the same principle used to avoid bus interference, i.e., determining the maxi-

mum delay a memory request can suffer because of bank interference. Assuming the

same arbitration policy presented in Section 3.2.1, the UBD is determined combin-

38

3.3. Analyzing the Shared Cache

Figure 3.6: Bank conflict example between two HRTs

ing the effects of the requests coming from HRTs and NHRTs. On the one hand, the

maximum delay a request from a HRT request can suffer because of NHRTs appears

when the former arrives just one cycle after the latter was granted the bus (if both

arrive at the same time, the request of the HRT has priority and so it does not suffer

any delay). In this case the maximum expected delay is: UBD = Lbank − 1.

On the other hand, the maximum delay that a request from a HRT can suffer because

of other HRTs occurs when it must wait until all other HRT requests finish. In this case

the maximum expected delay is: UBD = (NHRT − 1) ·Lbank. Hence, by combining

both effects, the maximum delay results in UBD = Lbank−1+(NHRT −1) ·Lbank.

This can be simplified as follows:

UBD = NHRT · Lbank − 1 (3.2)

As in Formula (3.2),NHRT is the number of HRTs running at the same time inside

the processor.

Notice that, as it is commonly the case, a bank access takes longer than accesses

to the bus: We consider a Lbus of 2 and a Lbank of 4 cycles. Hence, the bus latency

is overlapped when accessing the bank, as shown in Figure 3.6 (cycles 6 and 7). For

that reason, the bus latency does not appear in the formula. However, if the bank

latency would be smaller than the bus latency, the bank conflict effect would be hidden

because the time required to access a bank would be overlapped by the bus latency. In

general Formula (3.2) can be expressed as UBD = NHRT ·max(Lbank, Lbus)− 1

39

Chapter 3. Predictable On-Chip Shared Resources: the Bus and the Cache

3.3.2 Storage Interferences

Storage interferences appear in shared memory schemes when one thread evicts data

of another one, potentially delaying the execution time of the second thread. Such

time variation makes WCET estimation harder or even infeasible.

Cache locking [78] helps to make caches more analyzable. This technique pro-

vides hardware support in order to allow the software to control which cache lines can

not be modified by the replacement policy, locking the most frequently used cache

lines, and reducing storage interferences. However, this technique requires knowing

the whole memory footprint of a thread, being hard to implement in multi-cores. In

such case it is necessary to consider all threads that can be co-scheduled into the pro-

cessor at the same time, in order to prevent that two tasks lock the same lines at the

same time. Caches using locking techniques have been shown to have similar behav-

ior of scratchpad memories [78].

Cache partitioning is a well known technique that eliminates completely storage

interferences by splitting the cache into private portions, each assigned to a different

thread. Our mixed workload environment can benefit from cache partition: Storage

interferences between HRTs are avoided by assigning them different partitions of the

cache, while non real-time threads can share the same part of the cache. In this thesis,

we study two different cache partitioning techniques controlled via software: colum-

nization and bankization, and their effect on the WCET computation.

In columnization [28] the cache is partitioned into ways, giving to each thread a

subset of the total number of ways that no other thread can use. In fact this technique

only varies the replacement policy: a thread evicts data only in the assigned ways.

Cache partitions at level of ways can be implemented with column caching [28]: a bit

vector specifies the set of columns (ways) assigned to a given thread. The replacement

algorithm is modified to limit replacement to the columns specified by the bit vector.

In bankization the cache is partitioned into banks, giving to each thread a subset

of the total number of banks that no other thread can use. In any cache access it

is required to remap the destination bank of a memory request to one of the banks

assigned to the thread. The additional hardware necessary to implement bankization,

40

3.3. Analyzing the Shared Cache

Figure 3.7: BRU

is based on a Bank Remapping Unit (BRU) that computes the target L2 bank given the

thread identifier and the memory address, as shown in Figure 3.7. The information

regarding the destination bank of any memory request is contained inside its address.

A given range of bits of the memory address is used to select the destination L2 bank.

Since bankization assigns a subset of the L2 banks to a given thread, it is necessary

to remap the destination bank of a memory request to one of the banks assigned to

the thread. The BRU performs this remapping, i.e., it determines the new destination

bank of a memory request. The table inside the BRU (see Figure 3.7) is updated by

the RTOS based on the subset of banks assigned to each thread. The remapping table

is indexed by the thread id and the original L2 bank id of a memory request. The BRU

output is the new bank id.

The main difference between columnization and bankization is that columnization

prevents only storage conflicts since different threads can still access to the same bank.

As a result, the UBD to use with columnization is the one shown in Formula (3.2).

Meanwhile, with bankization we prevent both storage and bank access conflicts, so the

UBD to use is given by Formula (3.1). Hence, bankization provides tighter WCET

estimation than with columnization. A detailed comparison between columnization

and bankization is done in Section 3.5.2.

41

Chapter 3. Predictable On-Chip Shared Resources: the Bus and the Cache

Inputs Output

NHRTs nHRTs UBD

- 0 0

0 1 0

0 2 4

0 3 8

0 4 12

1 1 3

1 2 7

1 3 11

1 4 15

Figure 3.8: UBD values Figure 3.9: ICU

3.4 Computing a Safe WCET Estimation on multi-core Pro-
cessors

So far we have shown how our multi-core architecture enforces a given UBD that

a thread can suffer due to interferences with other threads accessing on-chip shared

resources. In particular we have computed the UBD due to bus and cache bank

interferences, ensuring that, regardless of the workload any request of a HRT will

never be delayed longer than the UBD. This is a necessary feature to make a multi-

core architecture time analyzable.

In this section we propose a novel hardware feature: the WCET Computation

Mode. The WCET Computation Mode allows computing safe WCET estimations of

HRTs that are going to be executed simultaneously with other tasks on the multi-core

architecture. Our multi-core processors has two execution modes: WCET Computa-

tion Mode and Standard Execution Mode. Our processor is set in the WCET Com-

putation Mode when computing a WCET estimation for the HRT and in Standard

Execution Mode otherwise.

42

3.4. Computing a Safe WCET Estimation on multi-core Processors

3.4.1 The WCET Computation Mode

When analyzing a set of HRTs, the processor is set into WCET Computation Mode

and each HRT is run in isolation. In this execution mode, the processor delays the

execution of every request to a shared resource by UBD cycles. That is, once both,

the request from the HRT and the shared resource (in our case the cache and the bus)

are ready, the XCBA freezes that request by UBD cycles. By doing this, the XCBA

artificially introduces the maximum delay that a request from HRT can suffer because

of inter-thread interferences, that is theUBD. Hence, the execution profile that results

executing the HRT under the WCET computation mode takes into account the worst-

case delay that the HRT can suffer due to inter-task interferences. This execution

profile is passed to RapiTime (our WCET analysis tool) that computes a safe WCET

estimation without any single change in the tool.

Once a WCET estimation has been obtained for each HRT, the processor is set

back to Standard Execution Mode, in which no artificial delay is introduced. Our

bus arbiter ensures that the execution time of a HRT that runs in a given workload

formed byN HRTs running at the same time, will not be longer than its corresponding

WCETN . When running in Standard Execution Mode instructions accessing shared

resources are executed before their estimated WCET, as it is not always the case that

they suffer an inter-task interference. In [14, 83] it has been formally proved that ex-

ecuting an instruction before its estimated WCET, ensures that the WCET estimation

derived running in WCET Computation Mode is safe. As a consequence, the WCET

estimation provided by RapiTime, is a safe upper bound of the execution of the HRTs

when they run in the multi-core processor sharing resources with other tasks.

The UBD artificially introduced by our WCET Computation Mode is computed

using Formula (3.1) or (3.2). The UBD depends on the total number of hard real-time

threads running at the same time in the processor (NHRT), that is upper bounded by

the number of cores. Thus, depending on the number of HRTs the analyzed thread is

going to be co-scheduled with, a different UBD value is used by the WCET Compu-

tation Mode, resulting in different WCET estimation values. In general, we say that a

43

Chapter 3. Predictable On-Chip Shared Resources: the Bus and the Cache

HRT that is co-scheduled at the same time with N HRTs, is analyzed using a WCET

Computation Mode of N , which results in a WCET estimation WCETN .

Our WCET Computation Mode allows analyzing each HRT in isolation, i.e., in-

dependently from the particular task set in which that task is going to be scheduled.

For every HRT we build a WCET-matrix. The WCET-matrix has as many entries as

WCET-computation modes times the number of cache partitions a thread can be as-

signed. In our baseline, we have a total of 25 configurations, 5 WCET-computation

modes (including a configuration that disables it) times 5 cache configurations (as-

signing a power of 2 cache size to each HRT). This WCET-matrix can be computed

in isolation for each HRT. This process can be easily automated, in fact we do so

to run the experiments for this thesis. The next step is to provide the WCET-matrix

to the schedulability algorithm, which selects the best allocation of resources for the

tasks in the task set. In Chapter 5, we elaborate more the schedulability issues of our

proposal.

This WCET Computation Mode can be easily adapted to other processor shared

resources as long as it is possible to compute an Upper Bound Delay of the inter-

thread interferences. Chapter 4 describes how we adopted the WCET Computation

Mode to the off-chip memory system.

Hardware Implementation

The WCET Computation Mode requires extra hardware in the XCBA to store all pos-

sible UBD values (for our architecture they are shown in Figure 3.8) when analyzing

HRT running in a WCET Computation Mode of N . To do so, we introduce the Inter-

ference Control Unit (ICU), shown in Figure 3.9, that contains all precomputed UBD

values corresponding to each N -WCET Computation Mode. Moreover, in order to

generate a tighter WCET estimation, we also include inside the ICU the UBDs that

do not take into account the NHRTs. Hence, since N is bounded by the number of

cores, the size of the ICU is limited to 2 ·Ncores.

To sum up, the WCET Computation Mode works as follows. According to the

number of HRTs (nHRTs) and whether there are NHRTs, the corresponding UBD is

44

3.5. Results

forwarded to XCBA. Then, the XCBA inserts such value into a down-counter that is

reset every time a new request is ready. When the counter reaches zero, the request

is sent through the bus, effectively delaying each request by UBD cycles. To disable

the WCET Computation Mode and run the processor in Standard Execution Mode,

it is necessary to set to zero the nHRTs register. An example of an ICU in a 4-core

architecture using columnization and a bank latency of 4 cycles is shown in Figure 3.9.

For example, when analyzing a HRT that is going to be co-scheduled with 2 more

HRTs and one NHRT, the UBD required is: UBD = NHRT · Lbank − 1 because

there is a NHRT. Thus, being NHRT = 3 and Lbank = 4 this results in a UBD of 11

cycles. ICU can be set either by the RTOS or even by the processor vendor since it

depends on the architecture.

3.5 Results

This section evaluates the effect of WCET Computation Mode on the on-chip shared

bus and it compares the two cache partitioning techniques: Bankization and Colum-

nization. All WCET estimations have been obtained using RapiTime and normalized

to the WCET estimation when the hard real-time task runs in isolation with all the

hardware resources in the multi-core architecture and the WCET Computation Mode

disabled.

3.5.1 WCET Evaluation

To run our experiments we used the HRTs described in Chapter 2. For each bench-

mark we compute a WCET estimation varying the WCET Computation Mode and the

amount of cache assigned to each of them. Bankization is used as a cache partitioning

technique. In Figure 3.10 we show the normalized WCET average between all the

benchmarks belonging to the same high, medium and low demanding group.

Notice that in all cases, the WCET estimation increment when varying the WCET

Computation Mode from 1 to 4 is almost the same regardless of the cache size given to

45

Chapter 3. Predictable On-Chip Shared Resources: the Bus and the Cache

(a) High demanding HRTs (bankization) (b) Medium demanding HRTs (bankization)

(c) Collision Avoidance App. (bankization) (d) Low demanding HRTs (bankization)

Figure 3.10: WCET estimation of different HRTs (using bankization)

the task. This is because the bus is accessed before the cache access, so the introduced

delay is independent of the cache configuration used.

High demanding benchmarks, shown in Figure 3.10a, are very sensitive to both

WCET Computation Mode variation and cache partition size reduction. Varying the

WCET Computation Mode from 1 to 4 and fixing a cache size, the WCET estimation

increases from 5% to 27%. When reducing the cache size from 64KB to 8KB the

WCET estimation increases with respect to using the whole cache (128KB) from 12%

to 62%. Hence, running with 4-WCET Computation Mode and 8KB cache size, the

WCET estimation increases 89% in comparison of not using this mode and having

46

3.5. Results

the whole cache. Such increment comes from the contribution of WCET Computation

Mode (27%) and the cache size (62%).

Medium demanding benchmarks, shown in Figure 3.10b, have a smoother behav-

ior with respect to high demanding ones. The WCET Computation Mode increases

the WCET estimation from 3% to 18% when varying it from 1 to 4 respectively. The

cache size increases the WCET estimation from 13% to 34% when reducing it from

32KB to 8KB respectively (notice that there is no degradation in performance when

reducing the cache size from 128KB to 64KB). Hence, when running with 4-WCET

Computation Mode and 8KB cache size, the WCET estimation increases 52% in com-

parison of not using WCET Computation Mode and having the whole cache.

Low demanding benchmarks, Figure 3.10c, increases the WCET estimation 2%

when running with up to 4 WCET Computation Mode, and it has not effect on WCET

estimation when reducing the cache size.

The collision avoidance algorithm provided by Honeywell, Figure 3.10d, resem-

bles a medium demanding benchmark. The WCET Computation Mode increases the

WCET estimation up to 14% when running in 4 WCET Computation Mode, and the

cache size reduction increases the WCET estimation up to 10% when having a 8KB

cache. This results in an overall WCET estimation increment of 24% in comparison

of not using this mode and having the entire cache.

Unlike single-core scheduling techniques where only one WCET estimation value

per cache size is required, a set of WCET estimations are computed using our WCET

Computation Mode technique, resulting in the WCET-matrix presented in Section 3.4.

As explained, this matrix is given to the scheduling algorithm that looks the best

scheduling. The values presented in Figure 3.10 results in a WCET-matrix of 25

entries, five cache sizes and four WCET Computation Mode. Moreover, since each

WCET estimation is independent of the workload, any change in a WCET-matrix of

a task does not affect any matrix of other tasks.

47

Chapter 3. Predictable On-Chip Shared Resources: the Bus and the Cache

3.5.2 Bankization vs Columnization

The previous subsection uses bankization as cache partitioning technique to evaluate

the WCET increment when using our WCET Computation Mode. In this section we

compare bankization and columnization in terms of WCET estimation variation and

implementation complexity.

Figure 3.11 compares bankization (labeled with B-) and columnization (labeled

with C-) in terms of WCET estimation increment for high, medium and low demand-

ing tasks and the collision avoidance algorithm, when varying the WCET Computation

Mode from 1 to 4. All the values (in case of bankization and columnization) are nor-

malized to the same WCET estimation obtained running the HRTs with the whole

cache (i.e., there is no difference between bankization and columnization) and WCET

computation mode disabled.

Columnization prevents only storage conflicts since different threads can still ac-

cess to the same bank. As a result, the UBD to use with columnization is the one

shown in Formula (3.2). Meanwhile, with bankization we prevent both storage and

bank access conflicts, so the UBD to use is given by Formula (3.1). Hence, bankiza-

tion provides tighter WCET estimation than with columnization. For High demanding

tasks (squares in Figure 3.11) the use of columnization increases their WCET estima-

tion from 4% to 16% when varying the WCET Computation Mode from 1 to 4 respec-

tively. In case of medium demanding tasks (circles) such increment varies from 2% to

9%. Finally, for low demanding tasks (diamonds) the WCET estimation increment is

up to 1.6% when running with 4-WCET Computation Mode. Collision avoidance al-

gorithm (labeled as Hon), has an increment from 2% to 18% when varying the WCET

Computation Mode from 1 to 4 respectively.

Even though it is clear that columnization involves a bigger WCET estimation

than bankization, bankization has an important drawback: It requires bigger cache

area and additional hardware in comparison to columnization. Such increment comes

from two sides. First, a BRU (see Figure 3.7) is required to remap the destination

bank. Second, since the number of banks assigned to a given thread is not fixed, the

number of bits that form the memory address tag cannot be fixed. It is then required

48

3.5. Results

Figure 3.11: Bankization vs Columnization

to reserve space for the maximum tag size, that is when only one bank is assigned

to a thread. In our architecture the cache area is increased by a 3% in comparison to

columnization.

Depending on the allowed WCET estimation increment and the amount the hard-

ware available a designer of an embedded, hard real-time system can choose one of

the two alternatives discussed in this section

3.5.3 Mixed-Application Workload Evaluation

The first objective of our architecture is to ensure that HRTs finish before their dead-

lines, which can produce a performance degradation of NHRTs. For example, high

resource demanding HRTs require reserving a significant part of the cache. As a con-

sequence, when NHRTs are co-scheduled with high-demanding HRTs, NHRTs will

be allowed to use less resources than when they run with low demanding HRTs. In

this section we analyze the performance, IPC throughput, we obtain for the NHRTs

when they run with other HRTs.

We composed 4-thread workloads with 2 HRTs and 2 NHRTs. We use HRTs with

different resource demands: high, medium and low demanding groups (labeled as H,

M and L respectively). As NHRTs we use benchmarks from MediaBench, MiBench

49

Chapter 3. Predictable On-Chip Shared Resources: the Bus and the Cache

Figure 3.12: Normalized throughput of NHRTs. The numbers in parenthesis are the number

of L2 banks required by the HRTs

and SPEC CPU 2006 grouping them as: mpeg2dec - susan, mpeg2enc - qsort and

susan - bzip2.

Figure 3.12 shows the throughput of the NHRTs when they run with other HRTs.

The throughput is normalized to the case when the NHRTs run with no other HRTs at

the same time. In these experiments we have assumed that each HRT has an utilization

of 20%, that is that its deadline is only 20% higher than its WCET estimation when it

runs in isolation (di/WCETi = 1.2). In order to accomplish with this time require-

ment in the x-axis of Figure 3.12 we show the number of L2 banks that the HRTs

must reserve. The number of banks given to the NHRTs is 16 minus the number of

banks given to the HRTs, where 16 are the number of banks L2 has in our baseline

architecture. In all our experiments, the HRTs finished before their deadlines. In all

workloads we observe that, obviously, when the HRTs require less L2 banks to reach

their deadline, Low demanding type of HRTs, the NHRTs run faster. In the case of

mpeg2dec-susan and mpeg2enc-qsort benchmarks, they reach an increment of 10%

and 5% respectively between LL and HH HRTs, obtaining a throughput of 1 in case

of LL (i.e., the maximum we can achieve, because it means we are achieving the same

performance of when there are not HRTs in the workload). These results show that

our multi-core can execute HRTs meeting deadlines and provide high performance to

50

3.6. Grouping Technique

Table 3.1: WCET estimation for some EEMBC benchmarks

Task Resource WCET in isolation Normalized WCET in WCET Computation Mode n

demand (processor cycles) WCET1 WCET2 WCET3 WCET4

aifftr01 High 9.09× 108 1.06 1.15 1.26 1.33

a2time01 Low 6.66× 108 1.001 1.001 1.002 1.003

tblock01 Low 6.40× 108 1.001 1.001 1.002 1.004

NHRTs. In the case of susan-bzip2 the variation in the throughput is also 10% but

in case of LL the normalized throughput is 0.88, i.e., they do not reach 1. This is

because the resources used by HRTs slow down the NHRTs but still they achieve high

performance. In general, the performance that NHRTs achieve depends on their cache

utilization. If they are high-demanding they will be more affected by the use of cache

the HRTs do and vice versa.

Unlike the cache, the bus is not reserved for the HRTs. The bus arbiter just priori-

tizes the requests from the HRT over the requests of the NHRTs. When the bus is not

used by HRTs, NHRTs can use it. The use of the bus done by the HRTs, depends on

the particular HRTs.

3.6 Grouping Technique

The WCET Computation Mode allows analyzing each HRT in isolation, i.e., indepen-

dently from the particular task set in which that task is going to be scheduled. Let’s

define WCET taskik the WCET estimation for taski when it runs in WCET Compu-

tation Mode k. So far we have assumed that all HRTs have the same priority. That

is, in the bus scheduling we use a round robin policy among HRTs, and they have

priority over NHRTs. In this scenario, if we schedule several NHRTs and M HRTs

at the same time, the execution time of each HRT is upper bounded by a WCET es-

timation, WCET taskiM . However, as shown in Figure 3.10, the WCET of tasks with

high resource demands is sensitive to the WCET Computation Mode in which the task

runs. That is, the WCET estimation rapidly increases as we increase the WCET Com-

putation Mode in which we run the task. Meanwhile, tasks with low shared resource

51

Chapter 3. Predictable On-Chip Shared Resources: the Bus and the Cache

demands are almost insensitive to the WCET Computation Mode used (less than 2%

in the worst-case). To maximize the utilization of the processor, we propose to divide

the HRTs into groups. The bus arbiter applies a round robin priority among groups.

Inside each group the arbiter also applies a round robin policy. In general, we create

g groups of HRTs and in a given group we place n tasks. In this scenario, each task in

such group uses a WCET estimation WCET taski
g·n . That is, a thread in a group with n

tasks, has to use the WCET Computation Mode k, where k equals the total number of

groups times the number of HRTs in its group. Hence, tasks in populated groups use

a higher WCET Computation Mode than tasks in smaller groups.

Let’s assume we want to schedule several NHRTs with the following EEMBC

HRTs: aifftr01, a2time01 and tblock01. As shown in Table 3.1, aifftr01 is a high

demanding benchmark, e.g. its WCET is 33% higher when run in WCET Computation

Mode 4 with respect to its WCET in isolation. Meanwhile, a2time01 and tblock01 are

two benchmarks with low resource demands.

If we use a round robin policy, we have to use WCET3 for each task, which is

high for aifft01, 26%. However, if we put aifftr01 alone in a group and a2time01

and tblock01 in another group, each request from aifftr01 may suffer at most a delay

accessing the bus and cache equal to the delay when running in WCET Computa-

tion Mode 2, which leads to a WCET aifftr01
2 = 1.15(15%), meanwhile a2time01

and tblock01 has to run in WCET Computation Mode 4, which leads to an increment

of their WCET less than 0.5% (WCET a2time01
4 = 1.003 and WCET a2time01

4 =
1.004). In this way, the scheduling algorithm can take full advantage of using group-

ing by considering the resource demands of each HRT, which can be determined ana-

lyzing the WCET-matrix of each HRT. Tasks with high resource demands can reduce

its WCET estimation by placing them into different small groups, while putting all

threads with low demand of shared resources into a single group.

The grouping technique requires small hardware modification to XCBA: Instead

of applying a round robin policy between the HRTs, the round robin is applied among

different groups and among threads inside each group. Thus, XCBA requires ad-

52

3.7. Related Work

ditional information: The total number of groups and the group associated to each

thread.

3.7 Related Work

Some works already deal with the problem of analyzability in the presence of some

shared resources [11, 36, 72, 83].

In [83] Rosen et al. described a solution to implement predictable real-time appli-

cations on multiprocessors. They propose a bus scheduling policy based on TDMA

(Time Division Multiple Access) based on a previously statically defined scheduling

policy. Different time-slots to access the bus are allocated to different processors by

static scheduling, i.e., stored in a memory directly connected to the bus arbiter. This

technique needs to know the workload a priori, which is the whole set of tasks that run

on the system at any given time, in order to avoid situations where the bus contention

increases the memory access latency. This solution prevents any deadline miss due to

bus conflicts. The architecture, which is described in [53] for a real-time biomedical

monitoring and analysis system, is a multi-core processor where each core has its own

private memory, connecting all of them with a bus.

The Real-Time Virtual Multiprocessor (RVMP) architecture [36] virtualizes a sin-

gle in-order super-scalar processor into multiple interference-free different-sized vir-

tual processors. The configuration of the virtual processors can be changed at run-

time according to the timing requirements, providing a timing analyzable architecture

together with the flexibility of SMT processors. The processor partitioning is deter-

mined statically by the real-time scheduling framework that preserves the possibility

of analyzing the WCET as in single-cores. The architecture does not include any

cache to reduce the level of non-determinism. In this work, the SMT is assumed to

have fully-pipelined functional units so that every clock cycle a new access to a shared

resource can be performed without any interference.

In [37] the authors propose a real-time multithreading framework, that can be

applied on a switch-on-event single-core multithreaded processor. According to the

53

Chapter 3. Predictable On-Chip Shared Resources: the Bus and the Cache

same authors ([36]), the solution is limited to scalar pipelines with only one of the

hardware threads selected for execution on the pipeline at the time. The main charac-

teristic of this processor is that a thread cannot overlap its computation and its access

to memory. Instead the memory access of one thread can be overlapped with the

computation of other threads. This model cannot be applied in our multi-core ap-

proach, in which multiple threads run in parallel. In [36,83] it is further assumed that

each task has a private piece of memory on chip, either a cache or a scratchpad. In

this thesis, instead of an interference-free architecture we focus on an architecture in

which threads can compete for the hardware shared resources, providing in this way

high performance. Moreover, for the HRTs we provide a WCET estimation that is

independent on the task set in which that HRT is executed.

In [21,72] the authors describe different aspects of accessing shared resources tak-

ing into account cache memories. In [72] they deal with interferences at the bus level

between cache accesses and I/O peripheral transactions, concluding that these kinds

of inferences cause unpredictable behaviors. They present a theoretical framework

able to model the interaction between the CPU and the peripherals accessing the front

side bus. In [21] they address the cache partitioning problem (to avoid interference

between different cores) as an optimization problem. The solution found by the op-

timization algorithm identifies the optimal size of each cache partition such that the

system worst-case utilization is minimized and real-time schedulability is increased.

3.8 Summary

In this chapter we have proposed the fundamental for our multi-core architecture in

which the maximum time that a request from a HRT accessing an on-chip shared re-

source can be delayed by any other task is bounded. That is, our multi-core processor

enforces that a request of a HRT cannot be delayed longer than a given Upper Bound

Delay (UBD).

We extend our multi-core architecture, which allows determining an UBD, with

a novel hardware feature called WCET Computation Mode that allows estimating safe

54

3.8. Summary

WCET of HRTs running into our multi-core architecture. HRTs are run in isolation

with the WCET Computation Mode enabled. In this execution mode, the processor

artificially delays each HRT request by the worst-case delay that every HRT request

can suffer due to the interaction with other tasks when run inside a workload. As

a result, the computed WCET estimation is a safe upper bound of the execution of

the HRT when it runs in Standard Execution Mode together with other tasks in the

multi-core processor.

We have focused on the on-chip shared bus and shared cache, while in the next

chapter we are going to address the off-chip memory, that is the shared resource with

the highest impact on the WCET estimations. Moreover, our proposal can use current

WCET analysis tools without requiring any modification, so whatever analysis tool is

used in single-core systems can be applied to our multi-core architecture.

55

Chapter 3. Predictable On-Chip Shared Resources: the Bus and the Cache

56

CHAPTER 4

Predictable Off-Chip Shared Resource: the DRAM Memory

System

This chapter focuses on the off-chip memory system, which is the hardware shared

resource with the highest impact on the WCET and hence one of the main challenges

for the use of multi-cores in integrated architectures.

4.1 Introduction

An improper design of the memory system may affect system’s predictability [88]

as well as performance. This effect is specially high in multi-core processors, where

inter-task interferences caused by the off-chip shared memory system have the most

significant impact on the execution time [22,66]. Experiments presented in [73] mea-

sured a WCET increment of 2.96 times due to memory interferences on a real multi-

core processor.

In order to evaluate the impact that inter-thread interferences may have on the

WCET estimation of HRT, we have performed the following experiment: we consider

57

Chapter 4. Predictable Off-Chip Shared Resource: the DRAM Memory System

Figure 4.1: Multi-core architecture used

as example

Figure 4.2: MOET of aifft running

with instances of a memory intensive

synthetic benchmark

a processor with 4 cores that are connected through a shared bus to a memory con-

troller that interfaces the cores with a DDR2 SDRAM memory device. We have run

the memory-intensive EEMBC Automotive Benchmark [77] aifft, that is an algorithm

commonly present in any automotive system, co-scheduled with three instances of

a memory-intensive synthetic benchmark that constantly accesses the main memory.

Figure 4.2 shows the Maximum Observed Execution Time (MOET) increment of the

aifft caused by memory interferences with respect to its WCET estimation computed

assuming no conflicts accessing the memory. In particular we have used two different

JEDEC-compliant 256 Mb x16 DDR2 SDRAM devices and we observe an increment

up to 1.95x and 2.20x when using DDR2-800C and DDR2-400B respectively. Hence,

if the inter-thread interferences between threads are not taken into account when com-

puting the WCET estimation, the execution time of a HRT can go largely beyond its

estimated WCET.

Thus, in order to enable a safe use of multi-core processors in integrated archi-

tectures, it is mandatory to consider the memory system into the WCET Analysis. If

this is not the case, time composability cannot be guaranteed and hence integrated

architectures cannot be used. In order to enable the use of multi-core processors in

integrated architectures:

58

4.1. Introduction

1. We present an analytical model, based on a memory controller configuration

that implements a close-page row-buffer policy and an interleaved-bank ad-

dress mapping scheme, to analyze in detail the impact of the SDRAM memory

system on the WCET estimation. To do so, our analytical model computes the

worst-case delay (UBD), that a memory request can suffer due to memory in-

terferences generated by other co-running tasks. The selection of the memory

controller configuration is based on the analysis of six different configurations,

varying the row-buffer policy and the address mapping schemes.

2. We propose a Real-Time Capable Memory Controller (RTCMC) for multi-core

processors. RTCMC is compliant with our analytical model, so it enables the

use of multi-cores in integrated architectures. The RTCMC introduces two new

features to reduce the overall WCET: (1) A mechanism to consider refresh op-

erations in the WCET estimation, which are one of the main contributors of the

low predictability of memory systems, and (2) a mechanism to minimize the

impact of memory interferences caused by non hard real-time tasks (NHRTs)

over hard real-time tasks (HRTs) in a mixed criticality workload.

Our analytical model is based on generic timing constraints as defined in the

JEDEC industrial standard [49], so it can be used with any memory controller con-

figuration, to compare different JEDEC-compliant DDRx SDRAM memory devices.

In particular, in this thesis we analyze the UBD of three different JEDEC-compliant

256Mb x16 DDR2-SDRAM memory devices [49]: DDR2-400B, DDR2-800C and

DDR2-800E.

The UBD can be used in the WCET analysis in order to take into account mem-

ory interferences and obtain a safe and composable WCET estimation for any task.

That is, the resulting WCET estimation of a task is independent of the memory be-

havior of the other co-running tasks because the worst-case memory interference sce-

nario is considered. The UBD information can be used in both WCET analysis tools:

measurement- and static-based approaches, requiring no changes to current WCET

analysis tools, so the same tools and techniques that are used and valid for single-core

59

Chapter 4. Predictable Off-Chip Shared Resource: the DRAM Memory System

Figure 4.3: DDRx SDRAM memory system

processors can be used in the analysis of multi-core processors. Thus, no effort by the

WCET analysis tools developers is required, with a reduction in the overall costs.

4.2 DDRx-SDRAM Fundamentals

In this chapter we focus on DDRx SDRAM off-chip memories1 [46] (DDR, DRR2

and DDR3) that are compliant with the JEDEC industrial standard [49]. This type of

memories is commonly used in high performance computer systems, especially multi-

cores, but designers start to introduce them into hard real-time embedded systems as

performance requirements increase [92], e.g., both Leon3 processor by Gaisler used

in space applications, and MPC8641D processor by Freescale employed in avionics

industry, implement a DDR SDRAM memory controller.

A DDRx SDRAM memory system is composed by a memory controller and one

or more memory devices. The memory controller is the component that controls the

off-chip memory system acting as the interface between the processor and memory

devices, which store the data.

A memory device consists of multiple banks that can be accessed independently.

Each bank comprises rows and columns of DRAM cells and a row-buffer which caches

the most recently accessed row in the bank (see Figure 4.3). A row is loaded into

1By default, the term DRAM memory refers to JEDEC-compliant DDRx SDRAM memory.

60

4.2. DDRx-SDRAM Fundamentals

the row-buffer using a row activate command (ACT). Such command opens the row,

by moving the data from the DRAM array cells to the row-buffer sense amplifiers.

Once a row is open, any read/write operation (CAS/CWD command) can be issued

to read/write a burst (of size BL) of data from/to the row-buffer, with a latency of

BL/2 memory cycles, i.e. the memory is double data rate. Finally, a precharge

command (PRE) closes the row-buffer, storing the data back into the memory cells.

The memory controller can use two different policies to manage the row-buffer: close

page that precharges the row after every access and open page that leaves the row in

the row-buffer open for possible future accesses to the same row.

The DRAM-access protocol defines strict timing constraints [46], specified by

the JEDEC industrial standard [49] and provided by memory vendors, that dictate

the minimum interval of time between different combinations of consecutive DRAM

commands. Such timing constraints strictly depend on the memory characteristics.

Table 4.1 summarizes the most relevant timing constraints of three JEDEC-compliant

256Mb x16 DDR2-SDRAM memory devices considered within this thesis: 400B,

800C and 800E. The values are expressed in memory cycles, except the clock rate of

the memory that is represented in nanoseconds.

The time a request to a DRAM system memory takes to be execute depends on

the memory device and the memory controller. In the memory device, the variabil-

ity is originated by the DRAM-access protocol, which defines the different timing

constraints and so the minimum interval of time between different combinations of

DRAM commands of a memory request. In the memory controller, the variability

depends from the Row-Buffer Management policy, the Address-Mapping Scheme and

the Arbitration policy.

In SDRAM memories, for data integrity, the data must be periodically read out

and restored to the full voltage level with refresh operations (REF commands). Every

tREFI cycles a refresh command (REF) is automatically sent to all banks, refreshing

one row per bank. This operation takes tRFC cycles to be completed.

61

Chapter 4. Predictable Off-Chip Shared Resource: the DRAM Memory System

Table 4.1: Timing constraints of 256Mb x16 DDR2 devices: 400B, 800C and 800E [49]

(values in memory cycles)

Time Description 400B 800C 800E

tCK Clock rate in ns 5ns 2.5ns 2.5ns

tCAS CAS to bus transfer delay 3 4 6

tRCD ACT to CAS/CWD delay 3 4 6

tRP PRE to ACT delay 3 4 6

tRC ACT to ACT delay 11 22 24

tRAS ACT to PRE delay 8 18 18

tBURST Data bus transfer 4 4 4

tCWD CWD to bus transfer delay 2 3 5

tCCD CAS to CAS (same bank) delay 2 2 2

tRTP Last 4-bit prefetch of CAS to PRE delay 2 3 3

tWR End CWD to PRE delay 3 6 6

tWTR End CWD to CAS delay 2 3 3

tRRD ACT to ACT (different bank) delay 2 3 3

tRFC Time required to refresh a row 15 30 30

tREFI REF to REF delay 1560 3120 3120

4.3 An Analytical Model to Compute the UBD of a Memory
Request

In a multi-core architecture several threads run in parallel and each can generate si-

multaneously different requests to memory. Under this scenario the timing behavior

of a memory request is characterized by the Request Inter-Task Delay and the Request

Execution Time. The former represents the delay the memory request can suffer - due

to interferences with other requests generated by co-running tasks running on different

cores - before getting the access granted to the memory device. The latter identifies

the time a memory request takes to be completed, once it cannot suffer interferences

with the other threads’ requests. The goal of our analytical model is to define an

62

4.3. An Analytical Model to Compute the UBD of a Memory Request

Upper Bound Delay (UBD) to the Request Inter-Task Delay, so that by taking it into

account during the WCET analysis of a HRT, the WCET estimations are independent

from the rest of the co-running threads, and so they enable time composability.

First, we are going to define the Request Inter-Task Delay, and then we are going

to describe how to bound it. The Request Inter-Task Delay depends on:

• Number of scheduling-slots2 a thread has to wait before being granted access to

the memory. The channel to access the memory is shared between all of them,

and so they interfere with each other. Among the different memory requests

that access simultaneously the memory, the memory controller is in charge of

scheduling the next request. The arbitration policy implemented into the mem-

ory controller and the structure of the internal queues used to buffer the memory

requests inside the memory controller determines how many scheduling-slots

(rounds) a thread may need to wait to get access to such shared resource.

• Duration of each scheduling-slot: the Issue Delay. The Issue Delay is the time

interval between the issue of two consecutive requests, i.e. from the instant a

request is issued until the next one can be issued. Moreover in this work, we

define the Upper Bound for the Issue Delay, that we called Longest Issue Delay

(tLID).

The Issue Delay depends on the DRAM device used, on the specific timing

constraints (see as a reference Table 4.1), on the Row-Buffer Management pol-

icy and the Address Mapping scheme implemented in the memory controller.

Depending on the row-buffer management policy used (i.e. open page or close

page) and on the previous request, the sequence of DRAM commands that the

memory controller issues to the memory device in order to serve a memory re-

quest can vary. That is, in DDRx DRAM memory systems the time a request

takes to be executed may depend on the previous requests. For example, a read

operation has a shorter duration if the previous request was also a read than

2When using an arbitration policy, we define as scheduling-slot the round, or the time-slot of the

arbitration phase in which a new request is selected by the arbiter.

63

Chapter 4. Predictable Off-Chip Shared Resource: the DRAM Memory System

if the previous request was a write. This significantly complicates the WCET

analysis of HRTs because the duration of a memory request may depend on the

other co-running tasks, and in a multi-core, it is likely the scenario where the

previous request of a certain request R is originated by a different thread. As a

consequence, its execution time depends on the other co-running threads, which

breaks the principle of time composability. The address-mapping scheme de-

fines how a physical address is mapped to banks, rows and columns in the

DRAM device. This can potentially originate a bank conflict if two subsequent

requests access simultaneously the same bank.

In order to ensure time composability of tasks executed on multi-cores, we pro-

pose an analytical model based on generic timing constraints defined in the JEDEC

industrial standard [49], that can be used to compute the Upper Bound Delay (UBD)

of the Request Inter-Task Delay. We also show that, by considering the UBD during

the WCET analysis of a task, the resulting WCET estimation is independent from the

workload, and hence the task becomes time composable.

4.3.1 Analysis of Different Memory Controller Configurations

As pointed in the previous section, the Request Inter-Task Delay depends on differ-

ent configuration parameters of both the memory controller and the memory device.

Making a complete analysis of all possible combinations of parameters is infeasible

given the high number of combinations. We focus on a subset of those configurations,

though our analysis can be easily extended to all the cases.

In particular this section compares six different memory controller configurations:

two row-buffer policies (open-page and close-page row-buffer) and three address

mapping schemes (shared-bank, private-bank and interleaved-bank address mapping

schemes). The shared-bank scheme maps memory addresses as follows: a cache line

is stored into a single memory bank and all tasks share all the memory banks. In the

private-bank scheme (used in [54]), the address mapping scheme maps each cache line

into the memory bank owned by the task and the other tasks cannot access it. In the

interleaved-bank [11] address mapping scheme, a cache line is split among all banks,

64

4.3. An Analytical Model to Compute the UBD of a Memory Request

Table 4.2: Longest Issue Delay for different memory controller configurations and three dif-

ferent JEDEC-compliant 256Mbx16 DDR2 SDRAM devices: 400B, 800C and 800E

400B 800C 800E

close-page/interleaved-bank 21 23 27

close-page/private-bank 21 23 28

close-page/shared-bank 53 89 89

open-page/interleaved-bank 21 26 27

open-page/private-bank 9 11 13

open-page/shared-bank 28 35 43

so each memory request accesses all the banks in sequence (we consider a 4-banks

DRAM device) and this way DRAM commands can be effectively pipelined. In the

last scheme described, the access granularity is equal to BL · Nbanks ·WBUS bytes,

where Nbanks is the number of banks in the DRAM device, and WBUS the bus width

in bytes [11].

For all the memory controller designs we assume that for every memory request a

cache line of 64 bytes is transfered (i.e. the typical size for a second level cache line

in high performance embedded processors [92]). Each of the six memory controller

design configurations is analyzed for three DDR2 DRAM memory devices defined in

the JEDEC industrial standard (400B, 800C and 800E); for a total of 18 cases.

Table 4.2 shows the results (expressed in memory cycles) of comparing the 6

memory controller configurations for 3 different memory devices. We observe that

shared-bank and private-bank schemes benefit from using open-page policy since,

once the row-buffer has been activated, a set of bursts can be transferred to read/write

the complete cache line. Instead, when using close-page policy, the row-buffer is

precharged after every read/write operation, enlarging the duration of the memory

request. This is not the case for the interleaved-bank scheme that provides a lower

Longest Issue Delay when using a close-page policy. The reason is the use of the

auto-precharge feature, while the open-page policy requires sending explicitly a PRE

65

Chapter 4. Predictable Off-Chip Shared Resource: the DRAM Memory System

command through the command bus, and so it results in a bus conflict for the 800C

device.

When comparing the different address mapping schemes: private-bank reduces

the Longest Issue Delay with respect to shared-bank because bank interferences that

are originated due to tasks that access simultaneously the same memory bank are

removed. In the private-bank scheme, in fact, the different HRTs share only the data

and command bus of the DRAM device while in shared-bank all the components of a

DRAM device are shared among the threads.

The Issue Delay has a direct impact on the UBD and so on the WCET of a HRT:

the higher the Issue Delay that a memory request can suffer due to memory inter-

ferences is, the higher the WCET of the HRT. From a WCET point of view, the

private-bank address scheme with open page policy provides the lowest Issue De-

lay. However, this approach does not provide enough system flexibility as it partitions

statically the memory. It would be not possible for different tasks to use the memory

according their requirements, and moreover this approach would require at least one

memory bank per core, which clearly presents scalability issues at architectural im-

plementation level. For example, in a n-core multi-core processor each thread would

receive a partition of 1/n − th of the total memory size, disregarding the memory

requirements of each thread and hence leading to a poor utilization of the memory

because the memory will be partitioned independently of the memory-footprint of the

different HRTs.

For this reason, we select the configuration with the second lowest Longest Issue

Delay but that guarantees flexibility: close-page row-buffer management policy and

interleaved-bank address mapping scheme, for which we provide a complete analysis

of the UBD. However it is worth noticing that, the different steps required to compute

the UBD model of other memory controllers are very similar to the ones provided in

this chapter and can be easily derived.

The first contribution of this chapter is shown in Table 4.2: a comparison of the

Longest Issue Delay for different memory controller and memory device configura-

tions of DDRx SDRAM off-chip memories. This allows one to design hardware from

66

4.3. An Analytical Model to Compute the UBD of a Memory Request

the WCET point of view, and not from the average performance point of view as

usually the case.

4.3.2 Defining an Upper Bound to the Issue Delay

We define the Longest Issue Delay (tLID), Upper Bound for the Issue Delay, using

the generic timing constraints defined in the JEDEC standard (see Table 4.1) for a

memory system that implements a close-page row-buffer management policy and an

interleaved-bank address mapping scheme.

tLID is determined by: (1) the minimum time interval between two consecutive

row activations of the same bank, that we define time issue bank (tIB), and (2) the

data bus serialization that imposes the duration of the data transfer associated with a

request. tIB is at least equal to tRC cycles, that is the timing constraint that determines

the minimum time interval between two row activations issued to the same bank. This

guarantees that, before activating a given bank, the previous request, issued to such

bank, has been completed. However, depending on the type of the previous unfinished

request [46], i.e. either a read or a write, tIB is different, and it is defined as following:

• When the previous request is a read: tIBR = max{(tRCD+max(tBURST, tRTP)+
tRP), tRC}

• When the previous request is a write: tIBW = max{(tRCD + tCWD + tBURST +
tWR + tRP), tRC},

Both tIBR and tIBW are defined as the maximum between tRC and the sequence

of timing constraints associated to the commands issued by the memory controller to

perform respectively a read and a write operation.

The data bus serialization does not allow different banks to be simultaneously acti-

vated: at least a number of cycles equals to tACTB , that we define asmax{tRRD, tBURST },
have to be past. This way tRRD is satisfied and the data can be transfered from/to a

given bank because the data bus is available, after the transmission from the previous

bank is finished (tBURST). In addition to that, it is also required to take into account

67

Chapter 4. Predictable Off-Chip Shared Resource: the DRAM Memory System

Figure 4.4: Timing of two consecutive read operations (one in white and one in gray) using a

4-bank JEDEC 256Mb x16 DDR2-800E SDRAM device

if two consecutive operations are or not of the same type: in case of write after read,

requests are delayed due to both, the minimum time interval between the issue of a

CWD and a CAS command and the tWTR timing constraint. tWTR accounts for the time

that DRAM requires to allow I/O gating to overdrive the sense amplifiers before the

read command can start, switching the direction of the bus. Thus, a write after read

involves an additional delay of tWTR + tCAS. In case of read after write, requests are

delayed by one extra cycle, because the duration of tCWD is always defined as tCAS-1

cycles [49] generating a shift on the data bus of one extra cycle.

To sum up, tLID requires one to consider both the previous issued request and the

current one, resulting in 4 different expressions:

• The read-to-read issue latency tLIDRR = max{tACTB ·Nbanks, tIBR} cycles.

• The read-to-write issue latency tLIDRW = max{tACTB ·Nbanks +1, tIBR} cycles.

• The write-to-write issue latency tLIDWW = max{tACTB ·Nbanks, tIBW} cycles.

68

4.3. An Analytical Model to Compute the UBD of a Memory Request

• The write-to-read issue latency tLIDWR = max{(tACTB · Nbanks) + tWTR +
tCAS, tIBW} cycles.

The worst possible scenario can be considered by defining:

tLID = max{tLIDRR, tLIDRW, tLIDWW, tLIDWR} (4.1)

By taking into account tLID into the WCET analysis, the WCET estimations are time-

independent from the requests sent to memory by the co-runner tasks, because the

worst-case scenario is always considered. This is the key point to provide safe and

composable WCET estimations in a multi-core processor. Even though such tech-

nique may introduce some pessimism (our experiments, presented in Section 4.5,

show less than 29% with actual real-time applications provided by Honeywell into

the WCET estimations.

An example for a 4-bank DDR2-800E device [49] is shown in Figure 4.4: in

particular it shows the command bus (cmd), the data bus (data) and the bank status

(B0 – B3) for two consecutive read requests (the first one in white and second one in

grey).

In the example, each bank is activated every tBURST cycles (at cycles 0, 4, 8 and

12) as in this case tACTB = tBURST , so the data can be transferred in consecutive

cycles (from cycle 13 to cycle 28). However, if a new request is ready to be served

(in grey), it cannot be issued tBURST cycles after activating B3 (crossed cell in cycle

16 of Figure 4.4) because the tIBR of B0, which in this case is equal to tRC cycles,

would be violated. Instead, the new request must wait the Consecutive Issue Delay

(tCID cycles), being not issued until cycle 24. Observe that the tCID also affects the

data bus efficiency, reducing it down to (tACTB ·Nbanks)/tLIDxx · 100%. In general,

tCID can be expressed as |tLIDxx − (tACTB ·Nbanks)|. Note that, if we compute tCID

considering DDR2-400B SDRAM device instead of DDR2-800E device, it equals 0.

Hence, by using the DDR2-400B device, a new request can be issued tBURST cycles

after activating B3 of the previous request achieving a data bus efficiency of 100%.

Our model considers single-DIMM, single-rank and single 4-bank device DDRx

SDRAMs, as this is currently implemented in high performance embedded systems

69

Chapter 4. Predictable Off-Chip Shared Resource: the DRAM Memory System

[46]. Instead, high-performance processors for servers, laptops, market, implement

more performance-oriented techniques (e.g. request bundling), and use more com-

plex DDR2 or DDR3 DRAM memory systems in which additional timing constraints

should be considered (e.g. tRTRS, tFAW). However, before applying any of these tech-

niques and technologies to real-time systems, it is required to analyze the WCET

impact instead of performance improvements.

4.3.3 Refresh Operations

As already mentioned, refresh operations are one of the main contributors of the low

predictability of memory systems [20]. During a refresh operation no other command

can be issued, hence enlarging the latency of a memory request. Since this may delay

the duration of any memory request, as a consequence, it can have effects on the

WCET estimations.

A possible solution to take into account this delay in the computation of the tLID

would be to consider that every single request is affected by a refresh operation:

tLID+REF = tLID + tRFC − 1.

However, it is clear that applying tLID+REF to every memory request would lead

to an overestimated WCET, because a task suffers in the worst-case only a refresh

every tREFI cycles. In Section 4.4 we show how we enhanced our real-time capable

memory controller with a special hardware feature to reduce the refresh impact. In

particular we synchronize the start of the execution of a HRT with the memory refresh.

By doing so, the impact of refreshes during WCET analysis is smaller or equal than

during normal execution.

4.3.4 Bounding the Request Inter-Task Delay: the UBD

In order to compute safe and composable WCET estimations in multi-core processors,

in addition to determine a safe upper bound for the Issue Delay, it is required to

consider the arbitration policy and the internal request queue structure implemented

in the memory controller. This can be represented by defining the function fLARB
that determines the maximum number of scheduling-slots (or Longest Arbitration)

70

4.3. An Analytical Model to Compute the UBD of a Memory Request

that a request may wait before getting the access granted, where the duration of each

scheduling-slot is, in the worst case tLID.

It is then possible, to define a safe upper bound for the overall Request Inter-

Task Delay that Longest Request Inter-Task Delay (tLRITD) or more simply the Upper

Bound Delay (UBD) as a function of tLID, UBD = fLARB(tLID).

In this work we consider a round robin arbitration policy [70], although other

arbitration policies could be considered (like the one used in [11], TDMA, etc.). This

analysis can be easily extended to other arbitration policies.

In the case of round robin, the number of inter-tasks interferences (i.e. arbitration

slots) are upper bounded by the maximum number of tasks that can access simul-

taneously the memory (equal to the number of cores). Moreover, in order to iso-

late intra-task interferences (interferences originated from requests of the same task)

from inter-task interferences (coming from requests of different tasks), our model

considers one request queue per task. By doing this, the memory request scheduler

considers only the top of each queue and not all the requests that are pending to be

served from each thread. The worst-case scenario occurs when all HRTs that are ex-

ecuted simultaneously in the processor try to access the memory at the same time,

and the HRT has to wait up to the total number of different co-running HRTs NoHRT
(i.e. at most the total number of cores). Thus, the fLARB(x) function is defined as

fLARB_HRT (x) = (NoHRT − 1) · x where x is the duration of each scheduling-slot,

being in this case tLID.

Regarding NHRTs, despite of their lower priority, it may happen that a request

coming from a HRT arrives just one cycle after a request from a NHRT was issued to

main memory, so the request from the HRT has to wait fLARB_NHRT (x) = tLID− 1.

The total delay that a memory request can suffer is the sum of both effects:

UBD = fLARB_HRT (x) + fLARB_NHRT (x) = NoHRTs · tLID − 1 where x is

defined as tLID.

71

Chapter 4. Predictable Off-Chip Shared Resource: the DRAM Memory System

Table 4.3: Request Execution Time for different memory controller configurations and three

different JEDEC-compliant 256Mbx16 DDR2 SDRAM devices: 400B, 800C and 800E

400B 800C 800E

close-page/interleaved-bank 16 18 16

close-page/private-bank 43 70 67

close-page/shared-bank 37 70 67

open-page/interleaved-bank 16 19 17

open-page/private-bank 16 16 19

open-page/shared-bank 16 16 19

4.3.5 Request Execution Time

The Request Execution Time (RET) is the amount of time a request takes to be com-

pleted, once it is ready and it cannot suffer interferences with the other threads, i.e.

after UBD cycles in the worst-case. In particular it is the time necessary to transfer

the data of a memory request on the bus from/to the memory banks (starting from the

first until the last bit).

In Table 4.3 we show the Request Execution Time in memory cycles for the differ-

ent configurations that we explore. Request Execution Time depends on two factors:

tACTB that is the interval between the activation of different banks and tBURST that is

the time required to transfer a burst over the data bus.

4.3.6 Including the Effect of the Off-chip Memory Requests into the
WCET Analysis

As explained in previous sections, in a multi-core processor, the timing behavior of

memory requests is characterized by Request Inter-Task Delay and Request Execution

Time. Therefore the maximum memory turn-around time for a memory request can

be expressed as tmem = UBD +RET .

In order to include the effect of the off-chip memory into the WCET estimation,

the WCET analysis must be modified to take into account the tmem computed using

72

4.4. The Real-Time Capable Memory Controller

our analytical model. Depending on the technique used to estimate the WCET we can

apply different strategies:

• Measurement-based techniques: It is required to implement the WCET com-

putation mode [70] in the memory controller. When computing the WCET es-

timation of a HRT, the processor is set in this mode and the HRT under analysis

is run in isolation. Under this mode, the memory controller artificially delays

every memory request by UBD cycles, so the HRT considers the worst-case

delay that each memory request can suffer due to memory interferences of the

other co-running tasks. Once the WCET analysis of all the HRTs is completed

the processor is set to Standard Execution Mode in which no artificial delay is

introduced.

• Static-based techniques: It is required to introduce our analytical model into

the model used for the processor. In particular, instead of considering a fixed

latency, whenever accessing main memory the processor model should consider

that each memory request requires tmem to be completed: UBD cycles to be

issued (i.e. the worst-case needs to be considered to provide a safe WCET) and

RET cycles to be executed.

4.4 The Real-Time Capable Memory Controller

This section presents our Real-Time Capable Memory Controller (RTCMC): a mem-

ory controller designed from a WCET point of view, and not from the performance

point of view as it is generally the case in embedded and high performance systems.

RTCMC is based on our analytical model, allowing to bound the effect that memory

interferences have on the WCET. To that end, it implements a close-page manage-

ment policy, an interleaved-bank address mapping scheme and a round robin arbitra-

tion policy with private request queue per core (an overall diagram of the memory

controller structure is shown in Figure 4.5). RTCMC also implements special hard-

ware features to deal with memory refresh operations and it minimizes the effect of

NHRTs over HRTs, reducing the WCET estimation of HRTs; requests from HRTs

73

Chapter 4. Predictable Off-Chip Shared Resource: the DRAM Memory System

Figure 4.5: Structure of the our memory controller

are, in fact, allowed to preempt on-flight memory requests from NHRTs at memory

bank boundaries.

4.4.1 Reducing the effect of NHRTs on HRTs

This section presents a new hardware mechanism that allows memory requests from

HRTs to preempt on-flight NHRTs memory requests, reducing the memory interfer-

ence caused by NHRTs on HRTs. Our technique exploits the independent function-

ality of the different banks. In particular, in the interleaved-bank address-mapping

scheme, every memory request is composed by a sequence of independent accesses to

all memory banks, so before issuing a NHRT request to a bank, our memory controller

checks if there is any pending HRT request. If this is the case, the scheduler will pri-

oritize the HRT request, stopping the issue of the remaining banks of the NHRT and

assigning those issue slots to the HRT.

For example, let us assume that a request from a NHRT accesses bank B0 but

before accessing B1, a request from a HRT arrives. In this scenario, RTCMC stops

the NHRT request and gives the issue slot to access B1 to the HRT request. Once

the HRT request is completed (sequence B1,B2, B3 and B0), the NHRT request is

resumed starting from the bank it was preempted, i.e. B1. This example is shown in

Figure 4.6. It is important to remark that our technique always maintains the same

bank access order (for this work banks B0, B1, B2 and B3), exploiting the benefits of

the multi-bank memory devices.

74

4.4. The Real-Time Capable Memory Controller

Figure 4.6: Data bus utilization of 2 different memory requests. A HRT request (in gray)

preempts a NHRT request (in white). For each element it is indicated from which bank (Bn)

the burst is transmitted

The use of this technique requires to re-define our analytical model:

concretely fLARB_NHRT (x). It is in fact, not required to wait until the whole NHRT

request is finished (tLID − 1 cycles, in our case) but it is required to wait until the

activation of the next bank. Thus, the worst-case scenario occurs when a HRT arrives

one cycle after the NHRT request has activated the last bank (B3), as it has the longest

bank-to-bank activation interval. In that case the HRT request must wait tACTB + tCID

cycles to activate first bank B0 (see Figure 4.4), resulting in: fLARB_NHRT (x) =
tACTB + tCID − 1. Therefore, the new UBD that a HRT can suffer is: UBD =
(NoHRTs − 1) · tLID + tACTB + tCID − 1

Note that the new fLARBNHRT
does not depend on tLID anymore. Moreover in

certain DRAM devices like DDR2-400B, the fLARB_NHRT (x) becomes equal to

tACTB − 1 cycles because tCID is 0.

Our technique reduces the impact of NHRTs on HRTs from 17 cycles to 3 cycles

in case of DDR2-400B, from 22 to 10 cycles in case of DDR2-800C and from 26

to 14 cycles in case of DDR2-800E, representing a reduction of 82%, 55% and 40%

respectively.

4.4.2 Refresh Operations

As pointed out in Section 4.3, refresh operations can delay HRT memory requests,

and this may increase the WCET of a task. To consider the delay introduced by re-

fresh operations, a possible solution would be to account such delay in every memory

request. However, such approach involves a huge overestimation of the WCET, be-

cause a task suffers exactly NREF refresh interferences and not one for every memory

request.

75

Chapter 4. Predictable Off-Chip Shared Resource: the DRAM Memory System

The number of refresh operations occurring during the WCET of a HRT is defined

by the following iteration: Nk+1
REF = d(WCETNOREF+Nk

REF ·tRFC)÷tREFIewhere

WCETNOREF is the WCET estimation without considering the impact of refreshes

and NREF is the total number of refreshes.

Theoretically it is possible to add the delay suffered due to memory refreshes on

top of the estimated WCET. Thus, the new WCET could be computed as: WCET TOTAL =
WCETNOREF +NREF · tRFC. However, depending on the approach used to perform

the WCET analysis, i.e. static-based or measurement-based, it would be impossible

to compute WCETNOREF. Static-based approaches are based on abstract processor

models, so WCETNOREF could be computed. While, measurement-based approaches

are based on measurements on real processors that execute the tasks, and so refresh

operations cannot be disabled. In this latter scenario it is impossible to compute

WCETNOREF. Moreover, the instant or the point of the program in which the re-

fresh occurs may have a different effect on the WCET. Moreover, the particular time

instant in which the refresh operation occurs cannot be statically determined because

it depends on the exact instant in which the application starts.

To reduce such WCET overestimation, we propose an alternative solution: syn-

chronizing the start of a HRT with the occurrence of a refresh operation during anal-

ysis and execution time, so in both cases the start of the task is delayed until the first

refresh operation takes place. By doing so, refresh commands will produce the same

interferences during the analysis and the execution as they will occur exactly at the

same instant with respect to the start of the task. Hence, our technique only requires

one to take into account the delay introduced due to the synchronization, resulting

in a tight WCET. In the worst-case the task is launched one cycle after the memory

has completed a refresh command, and so it must wait (tREFI - 1) before starting to

execute. The overall WCET is: WCET TOTAL = WCET + tREFI− 1 where WCET

is the measured WCET estimation.

The technique proposed for dealing with refresh operations assumes that the worst-

case path is known and that an input test for such application path can be provided

76

4.4. The Real-Time Capable Memory Controller

during the WCET analysis. Later in this section, we explain the hardware support

necessary to synchronize the start of a task with refresh operations.

4.4.3 Accounting UBD in the WCET Analysis

To consider the UBD provided by our analytical model in the WCET analysis, RTCMC

introduces the WCET computation mode already described in Chapter 3.

The UBD computed by our analytical model only depends on the total number of

HRTs that access the shared resources, which is bounded by the number of cores, and

not on the sequence or history of memory request accesses. Thus, by using it in the

WCET computation mode, RTCMC enables computing a safe and time composable

WCET estimation that is independent from the workload. For instance, if we con-

sider an UBD computed assuming 4 HRTs (WCET-mode 4) in a 4-core processor, the

WCET estimation computed for the HRT under analysis is safe for any workload in

which the HRT runs on this processor.

One of the main advantages of RTCMC is that existing WCET analysis tools

already used in single-core systems can be used to compute WCET estimations from

the UBD estimations. As a matter of example, we used RapiTime (the original version

unchanged) for the WCET analysis of HRTs running in our multi-core architecture.

Once the WCET analysis for all the HRTs is completed, the processor is set to

Standard Execution Mode in which no artificial delay is introduced. In [14, 83] it has

been formally proved that even if instructions execute before their estimated time in

the worst case, the computed WCET is a safe upper-bound of the real WCET.

4.4.4 Hardware Implementation

RTCMC requires simple hardware modifications, with respect to a common memory

controller, to implement the new features that make it time-analyzable and the tasks

composable.

First, in order to allow HRTs to preempt requests from NHRTs, the memory con-

troller implements different request queues: one per core for HRTs and a common

77

Chapter 4. Predictable Off-Chip Shared Resource: the DRAM Memory System

one for all NHRTs, so NHRTs can save the data already transmitted before being pre-

empted without the need of re-starting the request. Moreover, since the first accessed

bank for a memory request does not require to be bank B0 but any other bank, a

multiplexer is required to order the transmitted data properly.

In order to consider the refresh operation in the WCET estimation, the processor

starts to fetch instructions from a new task when a refresh operation finishes. In order

to implement this, the fetch unit of each core is enhanced with the following hardware

mechanism: once the OS schedules a new program onto a core, the fetch unit does

not start fetching instructions until a signal coming from the memory controller is

high. Such signal is controlled by the memory controller, and it is enabled every

time the refresh operation ends, while is low otherwise. This mechanism ensures the

synchronization of the execution of an application with refresh operations.

The WCET computation mode only requires a small lookup table to store the

precomputed UBD values of the different modes and a countdown counter to store

the appropriate UBD that it is decremented every clock cycle. When the counter

reaches zero, i.e. after UBD cycles, the memory request scheduler issues the memory

request that has been artificially delayed as it would be in the worst-case.

RTCMC completes the design of our real-time capable multi-core architecture: in

Chapter 3 we described our solution to take into account on-chip interferences and

the shared cache, here we address off-chip interferences. The overall picture of the

proposed architecture is shown in Figure 4.7. In this thesis, all hardware resources

are accounted to provide a composable WCET estimation. Hence, enabling the use of

multi-cores in Integrated Architectures.

4.5 Results

In this thesis we model our RTCMC interfaced with three different JEDEC-compliant

256Mb x16 DDR2 SDRAM devices: DDR2-400B, DDR2-800C and DDR2-800E,

each composed by a single DIMM, single rank and a single 4-banks memory device

(see Table 4.1). We assume a CPU frequency of 800MHz, being a CPU-SDRAM

78

4.5. Results

Figure 4.7: Our multi-core architecture

clock ratio of 2 in case of DDR2-800C and DDR2-800E and 4 in case of DDR2-

400B.

We run several experiments with mixed application workloads (composed by

HRTs and NHRTs) in order to show that hard real-time constraints of HRTs are sat-

isfied while providing performance to NHRTs with the resources not used by HRTs.

Our goal is to select memory-hungry NHRTs so that they interfere as much as pos-

sible with the HRTs. For the experiments shown in this chapter, we built workloads

composed by 2 HRTs running on 2 cores and 2 NHRTs running on the other 2.

In order to study the impact of memory interferences on WCET estimations, we

modified the synthetic benchmark called opponent, already described in Chapter 2, in

such a way that each store instruction systematically misses in L2 cache (L1 cache

implements a write-through policy) and so it always accesses the DRAM memory

system. Thus, HRTs that are co-scheduled with such task will suffer a tremendous

impact on their execution time. We show the impact that inter-task memory interfer-

79

Chapter 4. Predictable Off-Chip Shared Resource: the DRAM Memory System

Table 4.4: UBD in ns of DDR2-400B, 800C and 800E memory devices, considering NoHRT=4

400B 800C 800E

tLID 21 23 27

UBD 63 69 81

UBD (in ns) 315 172.5 205.5

ences have on the WCET estimation when using RTCMC, based on the UBD provided

by our analytical model. We also compare the impact of the DRAM memory system

with the impact of the inter-task on-chip interferences on the WCET estimation [70].

As main metrics we use the capability to provide tight WCET estimations to HRTs

when running in a multi-core processor together with NHRTs and the level of per-

formance that NHRTs achieve with the resources not used by the HRTs. Finally, in

subsection 4.5.5 we compare RTCMC with a proposal of the state of the art, Preda-

tor [10, 11].

We also show an use case of our analytical model: in particular, we show how our

model allows selecting the best DRAM device from a WCET point of view.

4.5.1 Use Case for the Analytical Model: Selecting the Best DRAM De-
vice from a WCET Point of View

Our analytical model can be used to determine the best memory device from the

WCET point of view. In this section we compare DDR2-400B, DDR2-800C and

DDR2-800E devices. Let us consider an execution workload composed by four HRTs

(NoHRT=4) running simultaneously. It is important to remark that NoHRT is the num-

ber of HRTs running at the same time inside the processor, which is upper bounded

by the number of cores (4 in our baseline setup), and not the total number of HRTs

that form the complete task set3. By considering the clock rate of each DRAM device

(tCK), our analytical model can determine which DRAM device introduces the highest

3The Operating System scheduler will be in charge of selecting which are the four HRTs that run

simultaneously at every instant.

80

4.5. Results

Figure 4.8: WCET estimation and execution time of CA on 5 different workloads

delay in the WCET estimation of a HRT. Table 4.4 shows the results of this compari-

son. The DDR2-400B DRAM device has the highest impact on the WCET, delaying

every request by 315 ns, while the DDR2-800C has the lowest impact, delaying each

request by 172.5 ns, representing a reduction of 44% with respect to DDR2-400B.

The DDR2-800E delays every request by 205.5 ns.

4.5.2 Composable WCET Estimations

Time composability enables Incremental Qualification in Integrated Systems, which

allows upgrading or changing a given function in a system without this affecting the

WCET of other functions running on the same hardware. This section evaluates the

execution time variation of the CA application in the 4-core architecture that has been

previously described.

Figure 4.8 shows the execution time of CA when it runs in 4 different workloads

each composed of three more tasks. The dark grey bar shows the WCET estimation

for the CA based on the UBD (as described in Section 4.3).

We observe that depending on the interferences the other tasks of the workload

have with CA, the observed execution time is different. The difference between the

Observed Execution Time of the worst workload, workload5 and the WCET esti-

mation is less than 29%. Although the workload5 is composed by several opponent

benchmarks, which have a very aggressive memory behavior, we cannot ensure that

81

Chapter 4. Predictable Off-Chip Shared Resource: the DRAM Memory System

the opponent represents the worst-case scenario that CA could suffer. Building such

actual worst-case opponent is hard or even impossible as it depends on the underlying

processor and memory architecture and the particular HRT under study, requiring an

enormous amount of time to be built and tested. Hence, a new workload composed of

more memory hungry tasks, could lead to a higher execution time of CA. Any CA’s

execution time would be always lower than its WCET estimation, as, by design, we

know which is the maximum delay CA can suffer and we take it into account in the

WCET estimation.

The main conclusion we can extract is that the WCET provided is safe and time

composable. At deployment time, all the other tasks with which CA runs, can be

changed or updated without affecting the WCET of CA. This is a key feature of Inte-

grated Architectures to heavily reduce design and deployment costs.

4.5.3 Tightness of the WCET estimations

In this section, we further evaluate the tightness of our WCET estimations under a

wide set of configurations. Figures 4.9 and 4.10 show the WCET estimation provided

by RapiTime for the CA application as we vary (1) the number of HRTs running

simultaneously, (2) for each HRT count, we vary the private cache partition size as-

signed (from 128KB to 8KB) to show how the WCET changes as the pressure on the

memory system increases. In order to ease the comparison of the WCET under dif-

ferent configurations, all WCET estimations are normalized to the WCET estimation

in isolation, without conflicts accessing all the hardware shared resources (L2 cache,

bus and DRAM memory).

For each configuration we compute the WCET estimation under two different sce-

narios: (1) assuming a Private DRAM Memory Controller for each HRT and so hav-

ing interferences only in the on-chip resources [70], which has a high hardware cost

in term of chip pins (labeled as PR_MC); and (2) on-chip and memory interferences

are considered at the same time, our memory controller is shared among the different

cores (labeled as RTCMC). For the latter scenario, in order to evaluate whether the

WCET estimations are tight, we measure the Maximum Observed Execution Time

82

4.5. Results

(a) 4 HRTs (b) 3 HRTs

(c) 2 HRTs (d) 1 HRT

Figure 4.9: Normalized WCET estimation for the CA application using JEDEC DDR2-400B

(labeled as MOET) of the HRT when running in a high memory-intensive workload

composed by several opponents. For example, in Figure 4.9(a) for the 8KB configura-

tion we observe that when the memory controller is not shared the WCET estimation

is PR_MC is 1.25. When the memory controller is shared and we use RTCMC the

WCET estimation is around 2.22, being the MOET 1.72.

By comparing PR_MC and RTCMC, we observe that memory interferences have

a tremendous impact on the WCET estimation, significantly higher than on-chip inter-

ferences. In the scenario with the biggest amount of memory accesses, i.e. assigning

8KB of L2 and 4 HRTs in the workload (Figures 4.10(a) and 4.9(a)), the memory

interferences increase the WCET estimations from 1.25 (PR_MC) to 2.22 (RTCMC)

using DDR2-400B and from 1.19 (PR_MC) to 1.83 (RTCMC) using DDR2-800C,

83

Chapter 4. Predictable Off-Chip Shared Resource: the DRAM Memory System

(a) 4 HRTs (b) 3 HRTs

(c) 2 HRTs (d) 1 HRT

Figure 4.10: Normalized WCET estimation for the CA application using JEDEC DDR2-800C

which represents an increment of 0.97x and 0.64x respectively. Obviously, as mem-

ory pressure decreases, i.e. the size of the L2 cache partition assigned to the HRT

increases and/or WCET computation mode decreases (Figures 2 (b) and 3(b)), the

impact of memory interferences also decreases.

Even though memory interferences have such high impact, when comparing the

MOET and the WCET of the CA application in the highest memory-intensive work-

load, i.e. assigning a cache partition of 8KB and running with 3 HRTs opponents (Fig-

ures 4.10(a) and 4.9(a)), we observe moderate increments: 29% (from 1.72x to 2.22x)

in the case of DDR2-400B and 23% (from 1.41x to 1.83x) in the case of DDR2-800C.

Note that, since the actual WCET of a HRT is bigger than any MOET and equal or

smaller than any WCET estimation (MOET ≤ WCETactual ≤ WCETestimation)

84

4.5. Results

[86], the WCET estimation obtained using RTCMC is less than 29% and 23% bigger

than the actual WCET for DDR2-400B and DDR2-800C respectively. The average

difference in percentage between MOET and RTCMC is 22% for DDR2-400B and

20% for DDR2-800C.

Table 4.5 shows the results for the experiments described above when using as

HRTs the EEMBC Automotive benchmarks in the High (H) and Low (L) groups under

the worst possible scenario, running in a workload with 4 tasks. Experiments are

shown for two different DRAM memory devices: DDR2-400B and DDR2-800C.

Memory interferences introduce an increment in the WCET estimation of 167%

(from 2.04x to 4.84x) for the high group, 64% (from 1.51x to 2.63x) for the medium

group and 15% (from 1,03x to 1,18x) using DDR2-400B. When using DDR2-800C

these increments are 97%, 49% and 10% for high, medium and low groups respec-

tively.

The WCET estimations are quite tight with respect to the MOET. For HRT counts

of 2 and 4 and all cache configurations (8KB to 128kB) the WCET estimations are

37%, and 3% higher in average than the MOET for the high, and low EEMBC groups

respectively, when using DDR2-400B. For the same groups the increments are 29%,

and 3% respectively when using DDR2-800C. Note that, as the memory pressure

decreases, i.e. less HRTs access the memory, such difference also reduces. Medium

EEMBC group resembles the results of CA application.

Finally, it is important to remark that the fact of delaying every memory request

by UBD cycles when computing the WCET estimation, allows our memory controller

to be time composable. However, the UBD can be used in non composable systems as

well, for example by applying it only to certain memory requests if information about

the actual inter-task interferences that a given task can suffer is available. By doing

this, the WCET estimation can be reduced at the price of breaking the time compos-

ability property as the WCET estimation will be fully dependent of the composition.

85

Chapter 4. Predictable Off-Chip Shared Resource: the DRAM Memory System

Table 4.5: Normalized WCETs for EEMBC using DDR2-400B and DDR2-800C respectively

(H=High, M=Medium, L=Low) in 4 HRTs workload

DDR2-400B DDRS2-800C

128KB 64KB 32KB 16KB 8KB 128KB 64KB 32KB 16KB 8KB

PR_MC 1.27 1.40 1.46 1.67 2.04 1.27 1.34 1.38 1.49 1.67

H MOET 1.11 1.44 1.67 2.30 3.67 1.07 1.24 1.37 1.75 2.53

RTCMC 1.35 1.94 2.25 3.10 4.84 1.32 1.65 1.83 2.32 3.29

PR_MC 1.18 1.18 1.32 1.47 1.51 1.18 1.18 1.26 1.35 1.37

M MOET 1.09 1.07 1.43 1.78 1.94 1.05 1.05 1.24 1.46 1.53

RTCMC 1.26 1.28 1.82 2.44 2.63 1.24 1.25 1.57 1.93 2.04

PR_MC 1.02 1.02 1.03 1.03 1.03 1.02 1.02 1.02 1.03 1.03

L MOET 1.08 1.09 1.10 1.10 1.12 1.05 1.05 1.06 1.06 1.07

RTCMC 1.12 1.13 1.15 1.15 1.18 1.09 1.09 1.11 1.11 1.13

4.5.4 NHRT Performance Impact

The main goal of our architecture is to allow estimating tight, safe and composable

WCETs for HRTs. The second goal is to get the maximum performance for the

NHRTs that will benefit from the resources not used by the HRTs. In this section

we analyze the IPC throughput we obtain for the NHRTs. We composed workloads

with 4 threads, 2 HRTs and 2 NHRTs. We use HRTs with different memory demands:

high, medium and low groups. We generate a memory-intensive pair mpeg2dec -

qsort, which frequently misses in L2; and a CPU-intensive pair susan - bzip2. We

study the throughput of the NHRTs when they run simultaneously with other HRTs,

normalized to the case when the NHRTs run with no other HRTs at the same time. For

memory-intensive NHRTs the normalized throughput ranges from 70% when they run

with HRTs from low group, up to 50% whey they run with memory-intensive HRTs.

CPU-intensive NHRTs do not show any performance degradation. Their normalized

throughput ranges between 97% and 99% as their number of L2 misses is reduced.

We observe that, our memory controller effectively allows NHRTs to exploit all the

resources not used by the HRTs. As a rule of thumb, we can claim that the higher the

86

4.5. Results

pressure of HRTs on the memory controller is, the lower the bandwidth available for

NHRTs and hence the lower the performance are.

4.5.5 Comparing RTCMC and Predator

This section compares RTCMC with Predator [10, 11]. Predator is a memory con-

troller for multi-processor system-on-chip designed for data-flow applications (e.g.

some multimedia applications). It cannot be applied directly to hard-real time envi-

ronments, which is the focus of RTCMC. If so, it would require the WCET analysis

tool to be changed to provide worst case bandwidth estimations. Although the appli-

cations of both memory controllers, RTCMC and Predator are different, in this section

we provide some quantitative comparison.

Predator guarantees an user-defined bandwidth to tasks based on user-defined

fixed task priority. Task priorities are defined in a strict monotonic fashion, i.e. two

different tasks cannot have the same priority. Based on the assigned bandwidth and

priority, Predator provides a bound on the maximum latency of a memory request. The

lower the priority of a task is the higher the upper bound delay is. In fact, according

to the results presented in [11] assigning a priority of 3 will involve an upper bound

delay 8 times higher than assigning a priority of 0. Defining the proper bandwidth

is crucial because if a thread has higher bandwidth requirements that what expected

by the user, the upper bound delay of a memory request may increase, involving po-

tential deadline misses. Predator implements the same address mapping scheme used

in this thesis: interleaved-bank. Predator focuses on streaming/multimedia real-time

applications, in which bandwidth requirements can be easily determined. However,

in other application domains, such as control-based applications, bandwidth require-

ments are unknown, hence we target different systems. RTCMC approach requires

neither knowing the bandwidth requirements nor assigning a fixed priority to each

thread allowing RTCMC being applied to control-based applications. Moreover, our

analytical model allows quantifying the impact of the DRAM device, being suitable

to any JEDEC-compliant DRAM device: our solution defines the UBD based on the

generic DRAM timing constraints and the number of HRTs running simultaneously

87

Chapter 4. Predictable Off-Chip Shared Resource: the DRAM Memory System

Table 4.6: Normalized WCET estimation of CA application using UBDs provided by RTCMC

and Predator [11]

RTCMC PREDATOR

128KB 32KB 8KB 128KB 32KB 8KB

1 HRT 1,00 1,07 1,23 priority 0 1,36 1,67 1,98

2 HRTs 1,30 1,30 1,56 priority 1 1,70 2,31 2,99

3 HRTs 1,53 1,53 1,89 priority 2 2,37 3,59 5,02

4 HRTs 1,76 1,76 2,22 priority 3 4,77 7,50 11,19

in the processor. With RTCMC requests coming from different HRTs suffer the same

UBD, however, although not presented in this chapter, RTCMC also allows defining

priorities by applying, a two-level round-robin policy for HRTs, as shown in Section

3.6 for accessing the on-chip shared bus.

In order to provide a more accurate comparison between RTCMC and Predator,

we used the UBDs provided by Predator to compute the WCET estimation of the CA

application using the WCET computation mode technique. Concretely, we computed

4 different UBDs, one per each priority value, using the formulas presented in [11] and

considering a workload composed by four CA applications with the same bandwidth

requirements, and also varying the size of the cache partition (from 128KB to 8KB)

for each priority. Only DDR2-400B SDRAM device is used because that is what

authors use in [11]. Table 4.6 shows the WCET estimation of Predator with respect to

the WCET running in isolation without inter-task interferences, i.e, the same baseline

of the other experiments. We observe that in the highest memory-intensive scenario,

i.e. assigning a cache partition of 8KB, Predator increases the WCET estimation of the

highest priority HRT by 1.98x and by 11.19x for the lowest priority HRT. Instead, by

using RTCMC with the same L2 cache partition size, memory interferences increase

the WCET estimation of CA application with WCET computation mode 4 only by

2.22x. Therefore, although Predator reduces the WCET estimations of the HRTs with

priority 0 it increases them for HRTs with priority 1, 2 and 3 with respect to RTCMC.

88

4.6. Related Work

4.6 Related Work

Memory interferences have the highest impact on the WCET estimations of HRTs

running on multi-cores, though they have not been widely studied. Many works deal

with the execution of HRTs in multi-core/SMT processors [37] [70] [87] [14] [83] [41]

focusing on how on-chip interferences affect the WCET analysis but without taking

into account off-chip memory interferences. Predator [11] the most similar study

done in this field, is a memory controller with which we compare RTCMC in Section

4.5.5. However, the goal of Predator’s authors is to design a memory controller real-

time capable for multimedia/streaming applications and for multi-processor system-

on-chip that guarantees an user-defined bandwidth to tasks based on user-defined fixed

task priority. Task priorities are defined in a strict monotonic fashion, i.e. two different

tasks cannot have the same priority. The PRET machine [54] is a processor designed

from a predictable point of view where the memory is statically partitioned, each

thread gets different memory banks and the accesses are managed through a memory

wheel. A TDMA-like policy is used to manage the memory wheel such that each

thread can access to its bank during a static-assigned slot. However, the DRAM-

access protocol is not taken into account.

In [37] it is proposed a switch-on-event single-core multi-threaded processor for

real-time systems. The chapter presents a coarse grain timing analysis of the impact of

bank and bus memory interferences on the WCET estimation without taking into ac-

count the DRAM-access protocol. Other approaches [66] [44] [80] [79] focus on the

DRAM-access protocol from a high performance point of view, with Quality of Ser-

vice (QoS) capabilities but without upper bounds on the latency of DRAM commands

so they are not real-time capable. Nesbit et al. [66] propose a memory controller in

which each task is provided with an average assigned bandwidth regardless of the load

placed on the memory system from other threads.

Akesson et al. [12] presented an approach for composable resource sharing based

on latency-rate servers. As case study they describe an SRAM memory controller.

Their solution, is orthogonal to our, it would be possible to use our analytical model in

89

Chapter 4. Predictable Off-Chip Shared Resource: the DRAM Memory System

combination with their arbitration scheme to design an hard real-time capable memory

controller.

The impact of DRAM refresh on task execution times with the focus on how

predictability is adversely affected leading to unsafe hard real-time system design is

shown in [20]. The authors propose an approach to overcome this problem through

software-initiated DRAM refresh that they tested on a single core board.

Pitter and Schoeberl [74] [75] [76] introduce a real-time Java multiprocessor

called JopCMP. It is a symmetric shared-memory multiprocessor and consists of up

to 8 Java Optimized Processor (JOP) cores, an arbitration control device, and a shared

memory. All components are interconnected via a system on chip bus. No details

about the memory controller and the off-chip memory are provided.

4.7 Summary

In this chapter we have proposed an analytical model that (1) helps understanding the

impact that different JEDEC-compliant DDRx SDRAM memory systems have on the

WCET estimation of HRTs running in a multi-core. (2) Provides an Upper Bound

Delay to the maximum effect of inter-task memory interferences. This enables the

computation of WCET estimations for any HRT independently from the workload on

which this task runs, making WCET estimations composable. (3) Allows designing

hardware to reduce WCET (instead of reducing average case execution). We exem-

plified the use of our model by evaluating six different memory controller designs for

three different JEDEC-compliant 256Mbx16 DDR2 SDRAM.

We propose a Real-Time Capable Memory Controller (RTCMC) for multi-core ar-

chitectures. RTCMC is compliant with our analytical model, hence allows estimating

the Upper Bound Delay (UBD) that each memory request can suffer, hence enabling

the use of multi-cores in Integrated Architectures. RTCMC includes a new feature to

deal with refresh operations, that are one of the main contributors to the variability in

the low predictability of memory systems.

90

4.7. Summary

Overall, we have studied the problems related to inter-thread interferences access-

ing the main memory and proposed a possible approach to reduce the WCET of a

HRT running in a multi-core processor.

91

Chapter 4. Predictable Off-Chip Shared Resource: the DRAM Memory System

92

CHAPTER 5

IA3: Interference-Aware Allocation Algorithm

Once we designed a real-time capable multi-core processor in order to execute multi-

programmed workload, it is necessary to assign the different tasks to the different

cores in an efficient way. To that end, this chapter describes our allocation algorithm

proposal that take advantage of multiple values of WCETs to consider different level

of interferences, trying to minimize the resources used by the HRTs and hence, max-

imize the resources left to execute the NHRTs.

5.1 Introduction

A common problem addressed by system designers is the allocation of tasks to the

different cores of a multi-core or multi-processor platform. Given a set of independent

HRTs (defined as the task set), there is a huge number of different combinations on

how executing those tasks on the given processor. Those combinations are determined

by the order in which the different tasks are executed, the release time of the different

jobs, the resources allocated to such tasks and the timing constraints they have (like

the deadline).

93

Chapter 5. IA3: Interference-Aware Allocation Algorithm

Figure 5.1: Normalized WCET estimations of aifftr under fifteen execution environments, de-

fined by the number of simultaneous HRTs and the cache partition size assigned to each task,

taking as a baseline the WCET estimation computed assuming no inter-task interferences, i.e.

running in isolation

We identify as one of the main aspects that the designer should consider when

defining the task allocation, the set of inter-task interferences that affect the execution

of a task. Such inter-task interferences are determined by the execution environment

in which the task runs. The execution environment is defined as the environment in

which the task is executed; in a multi-core processor, it depends on both the workload

and the hardware configuration. Regarding the workload, the scheduling/allocation

algorithm determines the tasks that will execute simultaneously, defining the patterns

of access to shared resources. Regarding the hardware configuration, in some ar-

chitectures [28, 70], like the one proposed in this thesis, the hardware provides the

software with some ‘levers’ to configure the arbitration policy of buses, the amount of

cache assigned to each task, etc. Hence, the execution environment of a task depends

on the workload with which the task runs and on the hardware configuration. There-

fore, the execution of a HRT under different execution environments leads to different

inter-task interference scenarios, and hence different WCETs for the task.

Despite the impact that the execution environment has on the WCET estimation,

most approaches to hard real-time task scheduling consider only a single WCET value

for each HRT: the highest among all execution environments in which the HRT can

94

5.1. Introduction

run. Two notable exceptions to this are the works of Kato et al. [52] and Jain et.al. [47],

which consider multi-case execution times. The research presented in this thesis dif-

fers in that our approach focuses on the WCET estimations of each HRT considering

only the parameters that determine the execution environment in which a task runs,

rather than on estimations of the execution time variations due to details of the various

tasks when scheduling them in a simultaneous multi-threading environment. Hence

our approach enables system composition based on information about individual com-

ponents (i.e. applications or tasks) whereas previous work does not.

In this chapter we propose IA3: an off-line Interference-Aware Allocation Algo-

rithm that uses a set of WCET estimations corresponding to all the execution environ-

ments in which this task may run. IA3, which is based on the first fit decreasing heuris-

tic [31], introduces two novel concepts: the WCET matrix and the WCET-sensitivity.

The WCET-matrix is an n-dimensional vector space per HRT, where each dimen-

sion represents the parameters that determine different execution environments that

may affect the WCET of the HRT. Thus, each execution environment has a WCET

estimation associated with it. For example, in Figure 5.1, the WCET-matrix of the ai-

ifft task is a 2-dimensional vector space that considers the cache partition size and the

number of HRTs in the workload in which aifft runs. The WCET-sensitivity comple-

ments the WCET-matrix by making the IA3 algorithm aware of the impact of changing

the execution environment on the WCET estimation. The WCET-sensitivity is derived

from, and represents the variation across, the WCET-matrix.

The abstraction provided by the WCET-matrix and the WCET-sensitivity allows

IA3 to generate a very efficient partition that reduces the amount of resources (e.g.

number of cores, cache partition size assigned to each core, etc.) required to sched-

ule a given task set. Reducing the number of processors and hence the weight of

the system is of significant benefit in many embedded systems, particularly those in

avionics and space systems. Moreover, in mixed-criticality workloads, reducing the

resources assigned to HRTs, allows the NHRTs to use more hardware resources and

hence increase their quality of service.

95

Chapter 5. IA3: Interference-Aware Allocation Algorithm

We illustrate the concept of the IA3 by using the multi-core architecture proposed

in this thesis which has two main features: (1) the hardware allows the software to

configure the size of cache partition assigned to each running task; (2) the inter-task

interferences that a HRT may suffer depend only on the number of HRTs running

simultaneously and not on the particular HRTs.

5.1.1 Notation

This chapter focuses on the allocation problem in homogeneous multi-core proces-

sors, considering a partitioned scheduling approach in which once a task has been

assigned to one core it is not allowed to migrate. Moreover, we consider a sporadic

task model, in which the arrival times of jobs of the same task are separated by a

minimum inter-arrival time, referred to as the task’s period. The arrival times of jobs

of different tasks are assumed to be independent. At any point in time a job can exe-

cute on at most one core and, at most m HRTs can run simultaneously in an m-core

processor.

In general, an allocation algorithm assigns a task set τ composed of n independent

tasks (τ0, ...τn) to a set ofm identical cores (s1, .., sm). Each task, τi, is characterized

by a WCET estimation Ci, a period Pi, and a hard deadline Di, assuming implicit

deadlines, i.e. Di = Pi. The utilization of a task, ui, is defined as Ci
Pi

and it ranges

between 0 ≤ ui ≤ 1. The utilization of a task set, usum, is defined as
∑
τi∈τ ui.

The static partition generated by the allocator assigns a subset of tasks γk ⊆ τ to

core sk with a cumulative utilization uksum =
∑
τi∈γk

ui ≤ 1. However, finding an

optimal allocation is an NP-hard problem in the strong sense [39] and so non-optimal

solutions derived from the use of bin-packing heuristics are typically used [35,55,69].

In a partitioned scheduling scheme, once tasks are allocated to cores, an on-line

uniprocessor scheduling algorithm is used. In this thesis we consider non-preemptive

EDF scheduling. A γk is schedulable using a non-preemptive EDF scheduling al-

gorithm if the following conditions [50] are satisfied: (1) uksum ≤ 1 and (2) ∀τi ∈
γk | ∀L : P1 < L ≤ Pi, L ≥ Ci +

∑i−1
j=1bL−1

Pj
cCj .

96

5.2. Our Proposal

However, any other non-preemptive uniprocessor scheduling algorithm can be

used. Note, we consider non-preemptive scheduling as this is used in many commer-

cial systems, particularly those in aerospace applications. Non-preemptive scheduling

significantly reduces the difficulty involved in obtaining valid estimates of the WCET,

as the use of preemption can introduce new inter-tasks interferences due to the cold

start when the task is resumed.

We consider the analyzable multi-core processor described in Chapters 3 and 4

as the target processor in which task sets are allocated. Under this architecture, the

execution environment in which a given HRT can run is identified by two parameters:

(1) the cache partition size assigned to each core and (2) the number of HRTs running

simultaneously at any point in time.

Therefore, under this architecture, there are as many execution environments as

possible cache partitions multiplied by the number of simultaneous HRTs, upper

bounded by the total cache size and the number of cores respectively.

5.2 Our Proposal

This section describes in detail the algorithm we propose to generate a more efficient

allocation, but focusing first on the novel concepts we introduce: the WCET-matrix

and the WCET-sensitivity.

5.2.1 WCET-matrix and WCET-sensitivity

Current scheduling approaches typically consider only a single WCET value per task

to perform the allocation, which usually corresponds to the highest WCET estima-

tion in all execution environments in which the HRT can run [47]. Instead, in this

thesis we propose an allocation algorithm that considers a set of WCET-values, each

corresponding to a different execution environment in which the task can run.

Definition 1. Given a HRT, the WCET-matrix is the collection of WCET estimations

of this HRT when it runs on a processor under different execution environments.

97

Chapter 5. IA3: Interference-Aware Allocation Algorithm

16KB 32KB 64KB

1 HRT 1 1,2 1,4

2 HRTs 1,3 1,5 1,8

3 HRTs 1,4 1,8 2,3

Figure 5.2: Example of WCET-matrix

from 16KB from 32KB

to 32KB to 64KB

1 HRT 0,2 0,2

2 HRTs 0,2 0,3

3 HRTs 0,4 0,5

Figure 5.3: Example of WCET-

sensitivity

Thus, each WCET estimation inside the WCET-matrix is identified by the exe-

cution environment parameters that result in that WCET. For example the number

of simultaneous HRTs that run in a multi-core processor, and the size of the cache

partition assigned to each task.

Note, not all HRTs are affected in the same way due to inter-task interferences.

For example, when comparing the WCET estimation of a memory intensive HRT that

requires a lot of accesses to main memory in an execution environment with two, three

or four HRTs running simultaneously, its WCET estimations will vary more than the

WCET estimations of a CPU bounded HRT that does not access the main memory.

Definition 2. Given a HRT, the WCET-sensitivity measures the WCET estimation

variation among the different execution environments that comprise the WCET-matrix.

Thus, a HRT with low WCET-sensitivity means that the variation of the WCET

estimations under different execution environments is small, while a HRT with high

WCET-sensitivity means that different execution environments in which the task is

executed make the WCET change significantly.

Figures 5.2 and 5.3 show two simple examples to better understand the concepts

of WCET-matrix and WCET-sensitivity. The two matrices consider an execution envi-

ronment where it is possible to configure the number of simultaneously running HRTs

and the size of the cache partition. Each element of the WCET-sensitivity matrix is

obtained by subtracting two adjacent elements of the WCET-matrix.

Therefore, by considering the WCET-matrix and the WCET sensitivity, the alloca-

tion algorithm can be aware of how the execution environment impacts on the WCET

98

5.2. Our Proposal

estimation of each task, thus enabling a more efficient allocation to be found. Current

partitioning allocation approaches, e.g. first-fit decreasing, prioritize tasks by sort-

ing them based on their utilization, so tasks with higher utilization are allocated first.

Instead, WCET sensitivity enables partitioning based on the execution environment

required, such that tasks with higher resource demand are allocated first.

5.2.2 Re-defining Terminology and Notations

The introduction of the WCET-matrix and the WCET-sensitivity makes it necessary

to extend the terminology and notations provided in Section 5.1.1.

Our interference-aware allocation algorithm not only assigns a task set τ com-

posed of n independent tasks (τ1, ...τn) to a set of m identical cores (s1, .., sm),

but also selects the execution environment in which each task will run based on the

WCET-matrix and the WCET-sensitivity. For that, we define configuration ϕ as the

set of tuples (< e1, a1 >, ..., < en, an >), such that each task ti ∈ τ has an associated

tuple < ei, ai > that specifies the execution environment ei in which ti runs, and the

core ai to which ti is allocated. It is important to remark that, in a partitioned schedul-

ing approach such as the one considered in this thesis, tasks are statically assigned to

different cores, forcing each task to be executed exclusively on one core. Therefore,

all tasks that have been assigned to a given core are forced to have the same execution

environment.

The relationship between the WCET estimation and the execution environment

can be defined as an n-dimensional vector space M ⊆ Nz+1 of n = z + 1 di-

mensions, in which the first z dimensions identify all possible parameters that de-

fine an execution environment and the (z + 1)-th dimension identifies all possible

WCET estimations of a HRT under the different execution environments. A vector

v̂ =< v1, ..., vz+1 > associates each WCET-estimation (vz+1) with its corresponding

execution environment (v1, ..., vz). The WCET-matrix of each task τi ∈ τ is a vector

sub-space WM ⊆ M that corresponds to the set of v̂ in which this task can run. We

require that all WCET-matrices are such that: Given a task τi and two vectors v̂1 and

v̂2 both from the same task, if the execution environment of v̂1 requires less resources

99

Chapter 5. IA3: Interference-Aware Allocation Algorithm

than v̂2, the associated WCET estimation of v̂1 is equal to or higher than the associated

WCET estimation of v̂2.

Similarly, the variation that the WCET estimation has among all different exe-

cution environments can be defined as a n-dimensional vector space S ⊆ Zz+1. A

vector ŵ, defined as v̂1 − v̂2 where v̂1 and v̂2 ∈ M , measure the WCET estimation

variation when changing the execution environment from the one defined in v̂2 to the

one defined in v̂1. Hence, the WCET-sensitivity of each task τi ∈ τ is a vector sub-

space WS ⊆ S that corresponds to the set of ŵ = v̂1 − v̂2 in which v̂1 and v̂2 belong

to τi and where they represent all the different execution environments.

It is important to remark that configuration ϕmust contain a valid set of execution

environments. If we consider the previous example in which different cache partitions

can be assigned to each core, the size of each cache partition in the configuration ϕ

must be equal to or less than the total cache size. Moreover, the maximum number

of simultaneous HRTs considered must be equal to or less than the total number of

cores. In this case we say that configuration ϕ is valid.

5.2.3 The Algorithm

The main objective of IA3 is to determine a valid set of ϕ to schedule a task set τ that

minimizes the resources assigned to HRTs and hence enables the rest of the resources

to be assigned to NHRTs, thus maximizing the hardware utilization and taking full

advantage of multi-core processors.

The IA3 is composed of two phases: the common partitioned phase, in which

the same execution environment is considered in all cores, and the WCET-sensitivity

phase, in which different execution environments are assigned to different cores. Fig-

ure 5.4 shows the pseudo-code implementation of IA3 considering the multi-core pro-

cessor described in this thesis, in which the execution environment is identify by: (1)

the number of HRTs that run simultaneously (NoHRT) and (2) the size of the cache

partition assigned to each core (p). Thus, the WCET-matrix of a task is a vector sub-

space of z = 2 dimensions with m · x vectors (where x is number of cache partition

sizes, and m is the number of cores), such that given a v̂ =< k, p, c > it associates

100

5.2. Our Proposal

the WCET estimation c with the cache partition p and the number of cores k used

by HRTs. Moreover, given two different vectors v̂1 =< k1, p1, c1 > and v̂2 =<
k2, p2, c2 >, the WCET-sensitivity is defined as ŵ =< k1 − k2, p1 − p2, c1 − c2 >,

where c1 − c2 is the WCET estimation variation changing the execution environment

from < k2, p2 > to < k1, p1 >. We note that IA3 can be generalized for additional

dimensions (Section 5.5 considers execution environments identified by different pa-

rameters).

Concretely, IA3 takes as input the task set τ , the total number of cores m and the

different cache partition sizes cache_partitions. As output it provides a list of valid

configurations φ that schedule τ .

The IA3 iterates over all z = 2 dimensions of the WCET-matrix, i.e. overNoHRT
(line 2) and p (line 7), using a depth-first search approach [30] in increasing order, i.e.

from the execution environment in the WCET-matrix that leads to the lowest WCET

estimation for each task (NoHRT = 1 and p1 = biggest size of cache partition), to

the one that leads to the highest WCET estimation (NoHRT = m and px which

refers to the smallest size of cache partition). Note this ordering is used because

we are interested in solutions that use the least processing capacity, thus maximizing

the available spare capacity for NHRTs. At the beginning of every new iteration

of the outermost loop (line 2), NoHRT determines the number of cores available

(n_av_cores) for the HRTs (line 3) and a working copy (τ ′) of the original task set

(τ) is set (line 4). Note that the selected starting point, i.e. the one that leads to the

lowest WCET estimation, aims to determine the minimum number of processors that

could possibly result in a solution, and then refine the solution from there.

During the common partitioning phase, the IA3 tries to allocate the task set τ ′

using n_av_cores cores, assigning to each core the execution environment defined

by NoHRT and p, and generating configuration ϕffdtmp.

101

Chapter 5. IA3: Interference-Aware Allocation Algorithm

Input τ : task set

m: total number of cores,

cache_partitions: cache partition sizes

Output listϕ: list of valid ϕ

1 l i s t _ ϕ := ∅ ;

2 f o r NoHRT in [1 :m]

3 n _ a v _ c o r e s :=NoHRT ;

4 τ ′ := τ ;

5 tmplistϕ := ∅ ;

6 ϕwcstmp , ϕffdtmp := ∅ ;

7 f o r each pj in cache_partitions_sizes (d e c r e a s i n g o r d e r)

8 / / Common P a r t i t i o n Phase

9 <ϕffdtmp ,∅> := f f d (τ ′ , n_av_cores ,NoHRT ,pj ,∅) ;

10 i f (s c h e d u l a b l e (τ ,ϕffdtmp ∪ ϕwcstmp))

11 i f (v a l i d (ϕffdtmp ∪ ϕwcstmp)

12 add−to− l i s t (ϕffdtmp ∪ ϕwcstmp , tmplistϕ) ;

13 e n d i f
14 e l s e
15 i f (p = max (cache_partitions))

16 break ;

17 e n d i f
18 / / WCET s e n s i t i v i t y Phase

19 wst := compute−s e n s i t i v i t y (τ ′ ,NoHRT ,pj ,pj−1) ;

20 < ϕ1c ,τ ′ > := f f d (τ ′ , 1 ,NoHRT ,pj−1 , wst) ;

21 ϕwcstmp := ϕ1c ∪ ϕwcstmp ;

22 n _ a v _ c o r e s := n _ a v _ c o r e s − 1 ;

23 <ϕffdtmp ,∅> := f f d (τ ′ , n_av_cores ,NoHRT ,pj ,∅) ;

24 i f (s c h e d u l a b l e (τ , ϕffdtmp ∪ ϕwcstmp))

25 i f (v a l i d (ϕffdtmp ∪ ϕwcstmp)

26 add−to− l i s t (ϕffdtmp ∪ ϕwcstmp , tmplistϕ) ;

27 e n d i f
28 e l s e
29 break ;

30 e n d i f
31 e n d i f
32 endfor
33 ϕmin := f i n d−minimum−ϕ (tmplistϕ) ,

34 add−to− l i s t (ϕmin , l i s t _ ϕ) ;

35 endfor
36 re turn l i s t _ ϕ ;

Figure 5.4: Pseudo-code implementation of the IA3 considering the multi-core architecture

presented in this thesis with z = 2.

102

5.2. Our Proposal

To do so, the IA3 applies a first-fit decreasing heuristic [31] (ffd function) using

the WCET-estimations ci such that v̂i =< ki, pi, ci >∈ WM (the WCET-matrix),

ki = NoHRT and pi = pj (line 9)1. The last parameter of the ffd function (in this

case ∅) defines the criteria used to sort tasks before allocating them: ∅ indicates to

use the WCET estimations. Then, if the resulting ϕffdtmp (joined with the result of

previous WCET sensitivity phases) can schedule the complete task set τ (line 10) and

it is a valid configuration (line 11), i.e. the amount of resources required by τ do not

exceed the actual amount of resources available in the processor, it is stored (line 12).

Let us assume that the execution environment e2 (defined by NoHRT and pj)

cannot schedule τ while e1 (defined by NoHRT and pj−1) can. Note that the size

of the cache partition considered in e1 (pj−1) is bigger than the one considered in

e2 (pj). In this case, the IA3 starts the WCET-sensitivity phase (line 18), in which it

identifies those tasks whose WCET estimations suffer a higher impact when changing

the execution environment from e1 to e2. To do so, the IA3 computes the WCET-

sensitivity ŵ = v̂1− v̂2 for all tasks in τ ′, such that the first 2 dimensions of v̂1 and v̂2

are equal to e1 and e2 respectively, and it sorts all the tasks by the 3rd dimension of ŵ

(line 19). The task order2 is stored in wst. Note that, since the amount of resources

assigned to e2 is less than e1, the 3rd dimension of ŵ will be always bigger than or

equal to 0.

Then, the subset of tasks γ ∈ τ ′ with higher sensitivity are allocated to one core,

fixing e1 as the execution environment of that core. To do so, the ffd function uses

the WCET estimations ci such that v̂i =< ki, pi, ci >∈ WM, ki = NoHRT and

pi = pj−1 and the task order defined by wst (line 20). As a result the ffd function

provides the partial configuration ϕ1c, which only contains the set of tuples< ei, ai >

assigned to γ, being ei = e1, and a new task set τ ′ that replaces the previous one, such

that for all ti ∈ τ ′, ti /∈ γk and ti ∈ τ . This new ϕ1c is then added to other allocations

that have been computed during previous WCET sensitivity phases (ϕwcstmp)(line

1v̂i exists as all execution environments considered by IA3 have a corresponding v̂i per task
2We also checked ordering tasks using the sensitivity/period rather than just sensitivity criteria,

expecting that tasks with a large decrease in utilization by virtue of having more cache, could be assigned

on a core with a larger cache partition. However, both heuristics have very similar results.

103

Chapter 5. IA3: Interference-Aware Allocation Algorithm

21) and the number of available cores is reduced (line 22). By doing so we expect

to assign the tasks γ with the highest WCET-sensitivity to a core with an execution

environment e1, so the new task set τ ′ may be scheduled with e2 or less resources on

the remaining cores.

Finally, the ffd function is called with the remaining tasks contained in the new

τ ′, the current available cores and the execution environment e2, resulting in a new

partial configuration ϕffdtmp (line 23). Then, it is checked whether the complete

configuration made up of ϕffdtmp and ϕwcstmp can schedule the complete task set τ

(line 24). If the unified ϕ is valid and it can schedule τ , it is added to the tmplistϕ
(line 25). If τ is not schedulable, the cache partition exploration finishes (line 29).

Note that the IA3 uses two different first fit decreasing sorting criteria: one uses

the WCET estimation and it does not modify τ ′ (lines 9 and 23 with ∅ in the input and

output), and one that uses the WCET sensitivity and generates a new τ ′ (line 20).

For a given NoHRT IA3 generates at most one valid configuration. That is, fix-

ing NoHRT , the algorithm selects the configuration, if there is one, that minimizes

the total cache used. This is performed at the end of every iteration of the pj loop,

by calling the function find-minimum-ϕ (line 33) that, given the list of ϕs stored

during the exploration of cache partition sizes pj , selects the one that requires the

smallest amount of cache. However, different number of cores (NoHRT) can lead to

multiple configurations (ϕs), so the same τ can be scheduled using different execu-

tion environments and different task-to-core mappings (line 34). Then, the embedded

system designer can select the proper solution according to the system constraints.

It is important to remark that the IA3 explores invalid configurations, i.e. with

more resources than the ones available in the processor, in order to reach a valid one.

For example, it can be the case that the IA3 explained above explores a configuration

in which the sum of the cache partition sizes assigned to each core exceeds the total

cache size. Then, the goal of the WCET sensitivity phase is to identify those tasks that

require a higher cache partition and group them into a core, such that the remaining

tasks may be assigned to cores with a smaller cache partition. By doing this a valid

104

5.2. Our Proposal

configuration in which the sum of the cache partition sizes does not exceed the total

cache size can be reached.

5.2.4 Example: Applying IA3 to a four-core processor with partitioned
cache

This section explains all the steps of the IA3 implementation described in Section 5.2.3

considering the following input parameters: a task set τ ,m = 4 and cache_partitions =
[64, 32, 16, 8].

Let us assume that the first iteration of the common partition phase (NoHRT = 1,

p = 64) results in a ϕffdtmp that cannot schedule τ (line 10) (no WCET sensitivity

phase has been executed, so ϕwctmp is empty). Then, since p1 = 64, i.e. the biggest

cache partition size (line 15), IA3 breaks out of the pj loop (line 16). The same con-

ditions are verified in the next iteration (NoHRT = 2, p1 = 64). Instead, with NoHRT
= 3 and p1 = 64, τ is schedulable (line 10), but the resultant ϕffdtmp is not stored

because it is not valid (line 11) (ϕffdtmp assigns 64 KB to each core but the total

available cache size is 64 KB). The same happens in the next iteration (NoHRT = 3

and p2 = 32). Note that in these two cases the IA3 is exploring invalid configurations.

Instead, when performing the common partition phase with NoHRT = 3 and p3 = 16,

τ is not schedulable with the resultant ϕffdtmp. In this case, the condition stated in

line 15 does not hold, so the WCET sensitivity phase starts.

In the WCET-sensitivity phase, the WCET-sensitivity vectors ŵ are computed (line

19), such that NoHRT = 3, p3 = 16, and p2 = 32, storing the sort criteria in wst.

Table 5.1 shows an example of the computation of the WCET-sensitivity of the three

highest sensitive tasks in τ ′, please note that the first z dimensions of ŵ are not con-

sidered. Then, the IA3, using a first-fit decreasing heuristic, allocates the tasks with

the highest WCET-sensitivity to a single core, and it fixes NoHRT = 3, p2 = 32 as

the execution environment of this core (line 20). This allocation is stored in ϕ1c and

the set of tasks that have not been allocated are stored in τ ′. Then, ϕ1c is joined with

the results of the previous WCET sensitivity phases, ϕwcstmp (which in this case is

empty), and the number of available cores is reduced to 2. Finally, a first fit decreas-

105

Chapter 5. IA3: Interference-Aware Allocation Algorithm

Table 5.1: WCET-sensitivity computation (ŵ) of 3 tasks considering k1 = 3, k2 = 3, p1 = 16
and p2 = 32. Ordered by the 3-rd dimension

v̂1 v̂2 ŵ

task6 < 3, 16, 132 > < 3, 32, 101 > < −,−, 31 >
task2 < 3, 16, 100 > < 3, 32, 75 > < −,−, 25 >
task5 < 3, 16, 256 > < 3, 32, 235 > < −,−, 21 >

ing algorithm is applied on the remaining 2 cores, with NoHRT = 3, p3 = 16 and

the new task set τ ′. The resultant ϕffdtmp is joined with ϕwcstmp, i.e. considering 3

cores, with respectively 32, 16 and 16 KB of cache partition. Let us assume that τ is

schedulable. Thus, since the new ϕ is valid, it is added to tmplistϕ (line 26).

In the next iteration (NoHRT = 3 and p4 = 8) the common partition phase is

started again, but considering 2 available cores and the new τ ′ (line 9). In this case,

the resultant ϕffdtmp is joined with the previous ϕwcstmp (line 10), i.e. considering

3 cores, with respectively 32, 8 and 8 KB of cache partitions. Let us assume, τ is

schedulable and the resultant ϕ is valid, so it is added to the list tmplistϕ. However,

in the next iteration (NoHRT = 3 and p5 = 4) the common partition phase results

in a ϕ that cannot schedule τ so the WCET sensitivity phase starts again. In the

WCET sensitivity phase, the resultant joined ϕffdtmp and ϕwcstmp is 3 cores, with

respectively 32, 8 and 4 KB of cache partition, which cannot schedule τ so IA3 breaks

out of the p loop (line 29).

Once the cache size dimension pj has been fully explored, the function find −
minimum−ϕ finds, among all the stored ϕ (3 cores, with respectively 32, 16 and 16

KB of cache partition and 3 cores, with respectively 32, 8 and 8 KB of cache partition),

the one with the smallest amount of cache used, i.e. 3 cores, with respectively 32, 8

and 8 KB of cache partition. Thus, in order to reach this valid configuration, the IA3

has explored invalid ones, i.e. assigning to each core 32 KB. Then, a new iteration

starts withNoHRT = 4. The same steps are carried out, but they are omitted here due

to lack of space.

106

5.3. Test Methodology

It is important to remark that this implementation can lead to multiple allocation

solutions. That is, the same τ can be scheduled, for example, using a configuration

with three cores and cache partitions equal to 32, 8, 8 KB, and with a configuration

with four cores but with less cache, allowing the embedded system designer to select

the best solution according to the system constraints.

5.3 Test Methodology

Evaluating the effectiveness of the IA3 requires a methodology of generating task

sets. However, in order to perform an effective evaluation of our proposal, it is impor-

tant to consider tasks with different levels of WCET-sensitivity. To that end, we first

characterized the WCET-sensitivity of the EEMBC Autobench [77] (see Chapter 2)

benchmark suite under different execution environments considering the multi-core

architecture introduced in Chapter 3 and 4.

In order to characterize their WCET-sensitivity, we computed the WCET estima-

tion of each EEMBC benchmark considering that each request to a shared resource

is delayed by UBD cycles, under 20 different execution environments, as a result of

assigning different cache partition sizes (128 KB, 64 KB, 32 KB, 16 KB and 8 KB)

and varying the number of HRTs that access simultaneously the shared bus and the

memory controller, i.e. different UBDs corresponding to NoHRT from 1 HRT to 4

HRTs. Hence, the WCET-matrix of each benchmark results in a 2-dimensional vector

space indexed by the cache partition size and the number of simultaneous HRTs.

All WCET estimations were computed using our multi-core simulator infrastruc-

ture and RapiTime [8] tool, as already described in Chapter 2.

Once the WCET-matrix of each benchmark had been generated, we analyzed the

results according to WCET-sensitivity, i.e. how the WCET estimations vary across the

different execution environments, creating 3 sensitivity groups called High, Medium

and Low Sensitivity. Each group, whose WCET-matrix is the average of the WCET-

matrices of all tasks that form the group, is formed by the following EEMBC bench-

107

Chapter 5. IA3: Interference-Aware Allocation Algorithm

Table 5.2: The WCET-sensitivity range of each sensitivity group considered in the generation

of the tasks’ WCET-matrix

Cache Partition Number of simultaneous HRT

High Sensitivity 0.10 - 0.25 0.10 - 0.50

Medium Sensitivity 0.07 - 0.14 0.05 - 0.18

Low Sensitivity 0.00 - 0.03 0.00 - 0.01

marks: High (aifftr,aiifft,cacheb), Medium (aifirf, iirflt, matrix, pntrch), Low (a2time,

basefp, bitmnp, canrdr, idctrn, puwmod, rspeed, tblook, ttsprk).

For each sensitivity group, we identified the WCET-sensitivity between two adja-

cent execution environments of the WCET-matrix. To do so, starting from the execu-

tion environment with 1 HRT and 128KB of cache, we compute the WCET-sensitivity

as we reduce the cache size, and increase the number of simultaneous HRTs. Table

5.2 shows the range of the WCET-sensitivity when the cache size and the number of

simultaneous HRTs changes in each group.

5.3.1 Randomly-Generated Tasksets

We randomly-generated task sets based on the WCET-sensitivity ranges shown in

Table 5.2: Starting from an initial WCET (corresponding to an execution environment

with 32KB of cache partition and 1 HRT) we generate a complete WCET-matrix by

applying the variations among the different execution environments that resembles the

WCET-matrix of a given sensitivity group. In order not to generate identical WCET-

matrices, we use a uniform random-generator that considers the maximum and the

minimum variance of the corresponding groups.

We assume two different classes of initial WCETs: a High Utilization class, cor-

responding to a task with an utilization ranging between 0.3 and 0.6; and a Low Uti-

lization class, with an utilization ranging between 0.1 and 0.3. The initial WCET is

also generated using an uniform random-generator that considers the corresponding

utilization ranges. For these simple experiments, we are interested only in the effect

108

5.4. Results

Table 5.3: Percentage of type of tasks in the task set considering the initial WCET class and

the sensitivity group

High u (30%). Low u (70%)

High Sensitivity (20%) 20%× 30% = 6% 20%× 70% = 14%
Medium Sensitivity (30%) 30%× 30% = 9% 30%× 70% = 21%

Low Sensitivity (50%) 50%× 30% = 15% 50%× 70% = 42%

of different execution environments on the partitioning. We therefore fixed all of the

task periods to have the same value (and the deadlines equal to the periods).

Finally, in order to generate task sets composed of tasks with different require-

ments, we assume that 30% of the tasks belong to the high utilization class and 70%

belong to the low utilization class. Moreover, from the characterization of the EEMBC

Automotive benchmark suite we assume that 20% of the tasks in the taskset have a

high sensitivity, 30% have a medium and 50% have a low one. Note that, each task can

belong to a high or a low utilization class, and its WCET-matrix can have a WCET-

sensitivity that resembles a high, medium or low sensitivity group. Table 5.3 shows

the percentage of tasks considering the sensitivity group and the initial WCET. The

total utilization of the generated tasksets, i.e. the target Ut, is computed using the

WCET value of each task when running in the initial execution environment.

5.4 Results

This section evaluates the IA3. To do so, we have generated 10 series of 10,000 task

sets, each composed of 10 tasks, using the methodology explained in Section 5.3.

Concretely, for each series, we have fixed a target utilization Ut (i.e. usum computed

considering the initial WCET of each task in the task set t), ranging from 2.9 to 3.9

with an increment step of 0.1. To do so, we used the simple naive and unbiased

method described in [32], [33]: we generate 9 out of 10 random WCET matrices in

high and low utilization ranges and then check if the remaining task with utilization

equal to Ut − usum belongs to the low utilization class; if not we discard the task

109

Chapter 5. IA3: Interference-Aware Allocation Algorithm

Figure 5.5: Percentage of schedulable task sets when applying FF, UPP and IA3 in a 4-core

processor, ranging the total utilization from 2.9 to 3.9 with an increment step of 0.1

set and start the process again. Moreover, we also consider a real task set composed

of the sixteen EEMBC Autobench benchmarks (described in Section 5.3), ranging its

total utilization from 2.7 to 3.3 with an increment step of 0.1.

The target multi-core architecture considered is a 4-core processor with a 128

KB partitioned cache. The architecture allows assigning dynamically to each core a

private partition of cache ranging in size from 4 KB to 128 KB.

We also compare IA3 to an idealized scheme that assumes each core has the same

cache partition size, and checks a necessary feasibility condition (labeled UPP). In

this case we simply check that, given an execution environment with k cores and a

cache partition size assigned to each core identified by p, that for all v̂ =< k, p, c >,

the cumulative utilization
∑
u∈v̂ ≤ k. If this test fails, then the configuration could

not possibly be schedulable as it has a higher utilization that the available processor

capacity. UPP represents an upper bound on the maximum possible performance of a

global scheduling approach with no migration overheads.

Moreover, we also compare IA3 with a partitioned scheduling algorithm that uses

a First-Fit Decreasing Heuristics (labeled as FF) [31] that assigns to each core the

same execution environment such that the resources used are minimized, i.e. the

110

5.4. Results

Figure 5.6: 10,000 Task set with Total Utilization 2.9

cache partition assigned and the number of cores. For FF we are effectively applying

only the common partitioning phase of the IA3.

Figure 5.5 compares the percentage of schedulable task sets using IA3, FF and

UPP, increasing the Ut from 2.9 to 3.9. As expected, our allocation algorithm is able

to consistently schedule more task sets than FF, while achieving almost the same ratio

of scheduled task sets as the hypothetical upper bound given by UPP. On average,

when compared to FF, IA3 is able to schedule 20% more tasksets, with a maximum

difference of 32% when considering Ut = 3.2.

However, the benefit of IA3 is not only the number of schedulable task sets, but the

resources used to schedule them. Figures 5.6 and 5.7 show the cumulative distribution

function of the resources required to schedule task sets with a Ut equal to 2.9 and 3.3

respectively, when using IA3 and FF. Concretely, the figures show the percentage of

scheduled task sets with a certain number of cores (X-axis division on Figure 5.6)

and the size of cache partition assigned (in KB) to each core. For example, when

considering a total utilization equal to 2.9 (Figure 5.6), the IA3 is able to schedule

more than 70% of the tasksets with only 3 cores, while, in the case of FF, less than 5%

of the tasksets have been scheduled with 3 cores. With a total utilization of 3.3, both

schemes require 4 cores to schedule all tasksets. However, IA3 is able to schedule

more than 30% of the tasksets without requiring the complete cache size, i.e 128

KB. Therefore, IA3 generates a very efficient partition scheme by assigning different

environments to different cores and so reducing the resources required. Reducing the

111

Chapter 5. IA3: Interference-Aware Allocation Algorithm

amount of resources assigned to HRTs is particularly beneficial in mixed-application

workloads, because the resources not used by HRTs can be assigned to NHRTs. For

example, in Figure 5.6, 50% of the tasksets have been scheduled using only 3 cores

and less than 96 KB of cache partition, so the rest of the resources, i.e. one core and

32 KB of cache partition can be assigned to NHRTs. By contrast, in the case of FF,

only 15% of the tasksets are able to be scheduled with less than 64 KB, but requiring

4 cores, and so giving less resources to NHRTs.

Finally, Table 5.4 shows the number of cores and the total cache partition size

required to schedule the real task set composed of the sixteen EEMBC benchmarks

when using FF, UPP and IA3, with utilization Ut scaled from 2.7 to 3.3. IA3 requires

consistently less resources than the other schemes. Notice that IA3 performs better

than UPP because UPP assumes that all cores have an equally sized cache partition to

ensure, after a task migration, that the destination core has the same cache partition as

the source one.

Figure 5.7: 10,000 Task set with Total Utilization 3.3

5.5 Additional Considerations

The IA3 permits a WCET-matrix of z dimensions, z ⊆ N. However, in this thesis we

have considered only a simple WCET-matrix of z = 2 dimensions that includes the

112

5.5. Additional Considerations

Table 5.4: Number of cores and cache partition size (in KB) required to schedule a task set

composed of the 16 EEMBC benchmarks when applying FF, UPP and IA3, ranging the total

utilization from 2.7 to 3.3 with and increment step of 0.1

FF UPP IA3

Ut cores cache (KB) cores cache (KB) cores cache (KB)

2.7 4 32 3 48 3 40
2.8 4 32 4 32 3 52
2.9 4 32 4 32 4 20
3.0 4 64 4 32 4 28
3.1 4 64 4 64 4 32
3.2 4 64 4 64 4 32
3.3 not schedulable 4 64 4 40

number of simultaneous HRTs and the size of the cache partitions assigned to each

core, which improves task set schedulability when compared to a classical partitioned

scheme. However the benefit of making task allocation aware of the impact that dif-

ferent execution environments have on the WCET is potentially much bigger. For

example, the WCET-matrix can potentially be applied to heterogeneous multi-core

processors, in which each core has a different computational power. In this case, an

extra dimension is required to measure the WCET of the different tasks under the dif-

ferent cores, Thus, the IA3 will consider a WCET-matrix of z = 3, assigning to the

most powerful cores those tasks with the highest WCET-sensitivity.

An important future research line of IA3 is to consider a preemptive scheduling

approach. Some works introduce a factor in the WCET estimation [13,43,84] in order

to consider the impact of inter-tasks interferences introduced by preemption due to the

cold start when the task is resumed. These factors can be introduced in the WCET-

matrix to allow IA3 to use preemption. Similarly, the WCET-matrix can consider

other execution environment parameters such as the number of TDMA-slots assigned

to a HRT, different frequencies at which the processor can run, etc.

113

Chapter 5. IA3: Interference-Aware Allocation Algorithm

However, it is important to notice that adding additional dimensions to the WCET-

matrix increases the computational complexity of IA3 because the current implemen-

tation of the algorithm effectively searches over all combinations of parameters (e.g.

number of cores, and cache partition size). The complexity can be reduced by apply-

ing a search algorithm optimization, for example, Emberson et. al. [38]. However,

as WCET estimates need to be obtained for each task in all the execution environ-

ments of the WCET-matrix, in practice the dimension of the matrix will be limited

to a small number of important factors such as cache size, number of simultaneous

HRTs, computational speed, etc.

5.6 Related Work

There are two main strands of research in multiprocessor scheduling [34], reflecting

the ways in which tasks are allocated to cores. Partitioned approaches allocate each

task to a single core, dividing the problem into one of task allocation (bin-packing)

followed by single processor scheduling. In contrast, global approaches allow tasks

to migrate from one core to another at run-time. In partitioned scheduling finding an

optimal task allocation is an NP-hard problem in the strong sense [39] and so non-

optimal solutions derived from the use of bin-packing heuristics are typically used.

Dhall and Liu [35] proposed two heuristic assignment schemes: rate-monotonic

next-fit and rate-monotonic first-fit based on the next-fit and first-fit bin-packing heuris-

tics. In both schemes, tasks were sorted in decreasing order of their periods and as-

signed to a so-called current core until the schedulability condition was not achieved.

Davari and Dhall [31] proposed a variation of the rate-monotonic first-fit, the first-fit

decreasing utilization, in which tasks were sorted by their utilization. Similarly, Oh

and Son [68] proposed a best-fit decreasing utilization in which tasks were allocated

to the cores that would then have the least remaining utilization. However, all these

approaches did not consider the effect that interferences have on the WCET estima-

tion. Jain et al. [47] proposed a scheduler for a two-way simultaneous multithreading

processor in which the WCET estimation for each soft real-time task depends on the

114

5.6. Related Work

co-running task. In this case, there is a single hardware configuration so the execution

environment of each task only depends on the particular soft real-time task with which

it is executed. This approach has not been applied to hard real-time systems.

Global scheduling approaches have also considered the effect of the execution

environment on WCET estimation. Holman et al. [43] realized that scheduling all

processors simultaneously can result in a heavy bus contention at the start of the

scheduling quantum due to reloading data into caches. To reduce such bus contention

they presented a new global scheduling model that distributes more uniformly the bus

traffic by shifting the scheduling decisions of the different tasks. Anderson et al. [13]

proposed a new task organization, called megatasks as a way to reduce the miss rate in

shared caches on multi-core platforms. Megatasks artificially inflate their utilization

factors in order to consider cache contention. Both techniques have good results in the

average case, reducing the bus and cache contention. However, interferences remain

uncontrolled, and they are still unknown in the worst case.

Kato et al. [52] considered the use of multiple execution time estimations (EET)

using U-Link Scheduling to schedule a task set in a soft real-time simultaneous multi-

threading (SMT) environment. Concretely, they provided the EET of a task in an

SMT execution environment based on WCET estimation in a single-threading execu-

tion and the execution variation introduced by the details of the other co-scheduled

tasks. The research presented in this thesis differs from that of Kato et al. in that our

approach focuses on the WCET estimations of each HRT considering only the param-

eters that determine the execution environment in which a task runs, rather than on

estimations of the execution time variations due to details of the various tasks when

scheduling them in a simultaneous multi-threading environment.

We note that multiple execution times per task have also been considered as part

of approaches to improve quality of service on single processors [48].

The work of Pellizzoni et al. [73] considers the effect of contention for access to

main memory on WCETs of tasks. This is done by abstracting the accesses of each

interfering core into an arrival curve which combined with peripheral traffic gives a

delay bound for the task under analysis. Again this means that the analysis is depen-

115

Chapter 5. IA3: Interference-Aware Allocation Algorithm

dent on the individual characteristics of the tasks, rather than just the characteristics

of the execution environment.

Banus et al. propose a dual priority algorithm to schedule real-time tasks in a

shared memory multiprocessor using a global scheduler for both periodic and soft-

aperiodic tasks. Migration is allowed between processors [17]. The same authors

in [16] propose a technique to allocate aperiodic tasks after having statically allocated

the periodic hard real-time tasks.

To the best of our knowledge, IA3 is the first task allocation algorithm that consid-

ers a matrix of WCET estimations for the different execution environments in which

tasks can run.

5.7 Summary

In this chapter we presented IA3, an new off-line interference-aware allocation algo-

rithm for multi-core processors. The IA3 is based on two novel concepts: the WCET-

matrix and the WCET-sensitivity.

The WCET-matrix is a z-dimensional vector space that contains the WCET es-

timations of each task under different execution environments. Each dimension rep-

resents a different execution environment parameter (e.g. number of simultaneous

HRTs, size of the cache partition assigned to each core, etc.) that makes the WCET

estimation vary. The WCET-sensitivity measures the impact of changing the execu-

tion environment, i.e. modifying the parameters that define it, on the WCET estima-

tion. These two concepts allow IA3 to consider not just a single WCET estimation but

a set of WCET-estimations generating a more efficient partitioning.

For the target multi-core architecture considered in this thesis an execution envi-

ronment can be identified based on the number of simultaneous HRTs and the size of

the cache partition assigned, and so having a WCET-matrix of z = 2 dimensions.

In our simple experiments, comparing IA3 with a classical first-fit decreasing par-

titioning scheme under the target architecture, IA3 is able to schedule, on average,

20% more tasksets. Moreover, when considering the amount of resources used, IA3

116

5.7. Summary

schedules more than 70% of the tasksets with only 3 cores, while the first-fit partition-

ing approach is able to schedule only 5% of the tasksets with 3 cores. Finally, using

IA3 50% of the tasksets that are scheduled using 3 cores require less than 96 KB of

cache, and so leaving one free core and 32KB of cache to NHRTs. Instead, using

first-fit only 15% of the tasksets that are scheduled in four cores require less than 64

KB, which does not leave any core to NHRTs.

117

Chapter 5. IA3: Interference-Aware Allocation Algorithm

118

CHAPTER 6

A First Step Towards Predictable Parallel Applications

To exploit the full benefits of multi-core processor and increase the performances,

applications can be parallelized. So far, parallel programs have been developed in

high performance computing but not in hard real-time systems. This chapter is a first

attempt of achieving higher performance for HRTs by supporting predictable parallel

hard real-time applications.

6.1 Introduction

In the previous chapters of this thesis we have been focusing on multi-programmed

workloads composed of HRTs and NHRTs, however higher performance can be achieved

using multi-core architectures if applications are made multi-threaded by exploiting

Thread-Level Parallelism (TLP): applications are split into threads that run in parallel

on different cores and synchronize whenever they need to communicate. This chapter

focuses on the software-pipelined parallel programming technique, i.e. a particu-

lar implementation of the producer-consumer programming model. In the software-

pipelined approach, a stream of data is passed through a sequence of pipeline stages

119

Chapter 6. A First Step Towards Predictable Parallel Applications

and each stage performs a step of the overall computation. These stages can be imple-

mented as individual threads. Since the different stages that compose the application

access different portions of data, the stage threads can be executed in parallel on dif-

ferent cores of a multi-core processor.

However, each thread may also suffer from inter-thread interferences like accesses

to shared resources, which can potentially reduce the performance benefits brought by

TLP. The shared resource with the highest impact on the WCET is the main memory

(see Chapter 4). Therefore, the inter-thread interferences generated by simultaneously

executed threads when accessing the memory may destroy the advantage of TLP. That

is also the case of the software-pipelined approach. In fact, the data that has been

processed by stage n is stored in memory, so it can be accessed by the next stage

n + 1. Concurrently, stage n starts to process a new portion of data that has been

stored also in memory by stage n − 1, originating memory contention between the

two stages.

Shared caches have traditionally been used to alleviate the impact of accessing the

main memory in multi-core processors. However, their use in hard real-time scenar-

ios complicates considerably the WCET analysis or make it even infeasible, as shared

caches generate storage interferences: a thread evicts data of another one, originating

additional misses and it potentially delays the execution time of the second thread,

and so the benefits of caches are lost. Partitioned caches (see Chapter 3) have been

proposed to increase the predictability of shared caches in multi-core processors by

assigning private portions of the cache to each thread and so eliminating the stor-

age interferences. However, cache partitioning techniques are not suitable for the

software-pipelined pattern, due to the fact that moving the data among the different

stages of the application, would require to copy such data among the different cache

partitions in order to have the proper data stored in the correct cache partition.

The most relevant related work is the one presented in [81] where the authors

provide a high-level preliminary WCET analysis of the communication and synchro-

nization patterns for a data parallel application.

120

6.2. The Software-Pipelined Parallel Programming Model

This chapter proposes a software/hardware cache partitioning approach that ex-

ploits the benefits of TLP by reducing the memory contention in hard real-time pipelined

parallel applications guaranteeing a predictable timing behavior. The hardware tech-

nique, called bankization (see Chapter 3), which allows to dynamically assign private

cache banks to cores at run-time, has been extended with a software interface which

ensures a correct behavior of the cache partition remapping mechanism and provides

the foundation for developing multi-threaded applications using the bankization tech-

nique. By doing so, the data generated by one stage and stored into its corresponding

cache partition can be easily accessed by another stage executed in another core, with-

out requiring the copy/movement of the entire chunk of data among the different cache

partitions.

6.2 The Software-Pipelined Parallel Programming Model

Among the different existing parallel programming models [51] we selected the software-

pipelined parallel programming technique because it is simple and it is the one that

can take higher advantage of our hardware proposals. In particular we were able

to provide a solution that could allow the execution of parallel applications satisfy-

ing the real-time constraints by effectively using the bankization cache partitioning

mechanism.

The software-pipelined parallel programming technique, i.e. a particular imple-

mentation of the producer-consumer programming model, is a very popular program-

ming model in which a stream of data is passed through a sequence of pipeline stages,

where each of them performs a part of the overall computation. With the exception of

the first stage of the pipeline, which is fed with the original input data, the execution of

each following stage requires the output of the preceding one. Hence, the data moves

through the pipeline in discrete clocking steps. The length of such a clocking step

and herewith the performance of the pipeline, is defined by the longest pipeline stage

i.e., by the pipeline stage with the highest WCET in case of a hard real-time system.

121

Chapter 6. A First Step Towards Predictable Parallel Applications

Figure 6.1: The original application is split into two stages. Each iteration of the application

is represented in a different color (light-blue, blue and grey). In a single-core processor, each

stage runs one after the other. Instead, in a multi-core processor, each stage can run in a

different core

Improving the execution speed of the longest pipeline stage also improves the overall

performance of the pipeline while improving any other pipeline stage is useless.

As an example, we consider the two-staged pipeline shown in Figure 6.1. In the

case of a single-core, the processor has to execute the two stages sequentially and also

multiple times to process a stream of incoming data portions. On a multi-core system,

the two pipeline stages can be executed simultaneously working on different iterations

of the incoming data stream. This means that the second iteration of the pipeline stage

0 starts processing the second data portion of the input stream while, in parallel, stage

1 performs the second processing part of the first data portion.

By doing so, it would be reasonable to expect that, without considering the first

and the last stages of the execution, the execution time of the application can be re-

duced by a factor of two. However, because of inter-thread interferences accessing

the main memory, the performance benefits of parallel pipelining can be significantly

reduced. That is, the data processed by stage 0 is stored in main memory, so stage 1

can access it. At the same time, stage 0 starts to process a new stream of data also

stored in main memory, generating memory contention between the two stages.

Traditionally, caches have been used to alleviate the impact of memory interfer-

ences. If we consider the example above, the data processed by the stage 0 in core

0 should be available to the stage 1 in core 1 without requiring to access the main

122

6.3. Our Proposal

memory, resulting in a reduced number of accesses to main memory and hence mem-

ory interferences. However, concurrently to the execution of stage 1, stage 0 is also

executed for the next iteration, generating storage interferences among the two stages.

These storage interferences lead to an unpredictable cache state at any point in

time of the execution. Hence, a tight WCET estimation is infeasible as the cache must

be assumed to produce cache misses only.

6.3 Our Proposal

In this section we propose a new technique to propagate data through a software-

pipeline using our multi-core processor described in Chapters 3 and 4 that implements

dynamic cache partitioning. Besides a performance increase compared to a single-

threaded version of the same application, the pipelined version is still suitable for

hard real-time systems.

6.3.1 Bankization: A Dynamically Partitioned Cache

Cache partitioning has been proposed to completely eliminate storage interferences

by splitting the cache into private portions, each assigned to a different thread. Un-

fortunately, this makes each partition private to each thread and so not visible to the

rest of the threads. Thus, if we consider the example of Figure 6.1, and we assign a

different cache partition to each stage, the storage interferences would be eliminated,

but the data generated by stage 0 would be invisible to stage 1. A naive solution is

to copy the data from the cache partition assigned to stage 0 to the cache partition

assigned to stage 1. However, the overhead introduced could reduce the performance

benefits of the pipelining.

The dynamically cache partitioning technique called bankization that is integrated

in our architecture (see Figure 4.7) allows to assign a subset of the total number of

cache banks to each thread so that no other thread can access it (see Chapter 3 for

more details).

123

Chapter 6. A First Step Towards Predictable Parallel Applications

Figure 6.2: A two-stage pipeline application running in a two-core processor. Bankization

allows to reassign the bank used by stage 0 to stage 1

To do so, bankization introduces the Bank Remapping Unit (BRU) that determines

the bank assigned to a given thread based on the thread identifier and the accessed

memory address (the destination bank of any memory request is contained inside its

address). By changing the bank assignment defined inside the BRU, bankization al-

lows to remap the banks assigned to the different threads at runtime such that the data

visible to one thread can be accessed by another one without requiring the movement

of data among banks.

Let us consider the pipelined example shown in Figure 6.2. The first stage of the

pipeline, stage 0 (light-blue box) is assigned to an empty bank: bank 0, such that no

other thread can access it. Then, once stage 0 has finished, bank 0 is re-assigned to

stage 1 (light-blue box), such that it can access the data stored by stage 0. At the same

time, a new empty bank (bank 1) is assigned to a new execution of stage 0 (blue box)

such that it can compute a new stream of data without interfering with bank 0. Once

stage 1 (light-blue box) has finished its computation, bank 0 can be re-assigned to a

new execution of stage 0 (grey box) as an empty bank, and so all the content will be

invalidated.

124

6.3. Our Proposal

6.3.2 System Software Bankization Interface

For the work presented in this Chapter we have used the MERASA system-level soft-

ware [91]: it contains functionalities of a real-time operating system (RTOS) and it

provides the proper interfaces to implement our techniques.

The memory management of the MERASA system-level software minimizes in-

terferences of different threads by providing a flexible two-layered memory manage-

ment. The first layer allows pre-allocation of memory regions to threads while the sec-

ond layer is in charge of memory management inside each thread. The pre-allocation

of the heap regions is used to guarantee the isolation of different threads’ memory re-

gions [59]. After the pre-allocation of memory regions to the threads, the dynamically

partitioned cache is configured accordingly.

In parallel programming models, such as the software pipelined model considered

in this Chapter, multiple threads of the application need access to a shared heap mem-

ory region for data exchange. Using the pure bankization technique would not allow

to access shared data because memory regions are visible only to a single thread.

However, in order to guarantee the correct functional behavior of bankization as

well as to provide time predictability we introduced two types of heap regions: private

heap and shared heap. Both types of regions only allow accesses of one thread at a

time (during one clocking step) but the shared regions can be exchanged between

pipeline stages. To reach that, it is required to: (1) isolate the shared heap regions

from the private heap regions such that accesses to the shared heap do not collide

with private heap accesses inside the same bank, and (2) synchronize the accesses

to the shared data. We enhanced, in collaboration with University of Augsburg, the

MERASA system-level software to address both requirements.

First, we provide a mechanism to split the heap memory region of the application

into two independent regions: the private heap region and the shared heap region.

The private region uses a real-time capable two-level allocation mechanism [59] to

maximize the isolation of different threads’ memory regions. Instead, in the shared

heap region, which allows the access of multiple threads, the two-level allocation is

reduced to one real-time capable allocation level. It is important to remark that the

125

Chapter 6. A First Step Towards Predictable Parallel Applications

shared allocation during the application’s execution must be performed in a mutually

exclusive way to keep the state of memory consistent. Nevertheless, we are able to

guarantee timing predictability, as the number of potentially waiting threads, i.e. the

list of HRTs is bounded by the number of cores in our architecture.

Moreover, in order to avoid storage interferences among different accesses to the

private and shared heap regions, we extended the BRU (explained in Chapter 3) such

that both regions are mapped into different banks. To do so, it is required to con-

sider only few most significant bits of the address defined by the linker, that distin-

guish the two regions. The information about the heap region type is set using the

set_privateheap_size and set_sharedheap_size functions that control the BRU based

on the given cache partition size of each region.

Second, we guarantee that a bank used by one thread is not remapped until this

thread has finished. However, such a synchronization is not done at a single stage basis

but at the application basis. In other words, the bank remapping has to be done once

all stages that run simultaneously have finished. Such a constraint is fundamental to

allow the computation of the WCET estimation, as the WCET of each parallel phase

can be expressed as the maximum WCET of all different stages. Section 6.4 analyses

in detail the WCET estimation of a pipelined parallel application. We have integrated

the following functionalities into the MERASA system-software, which will ensure

the correct behavior of the cache by synchronizing the bank remapping at the end of

all threads:

• init_pipeline: This function sets the number of stages and it assigns to the first

stage/thread of the pipelined parallel application its corresponding set of banks

based on the cache size given to each stage. The size is forced to be a multiple

of the size of a cache bank. Moreover, it initializes two barriers for synchro-

nization which are used in the clock_edge function. This functions uses the

set_sharedheap_size to identify the set of banks as shared heap region.

• start_pipeline: It stalls each thread until the data coming from the previous

thread is available. This function is composed of a loop controlled by the num-

126

6.3. Our Proposal

ber of stages that have not being executed yet for the first time. Each iteration,

the clock_edge function is called.

• stop_pipeline: This function does the same as start_pipeline but at the end of

the execution. Thus, it stalls each thread until all the subsequent threads finish.

• clock_edge: It is the core of the software-pipelining technique and ensures the

correct setting of the bankization parameters and the synchronous start of all

pipeline stages (threads). Two barriers are required for this purpose. The first

barrier ensures that all stages have finished their computation. When all stages

have reached that barrier, the remapping of the banks is performed. After that,

the second barrier ensures that the new bank assignment has finished and all

threads start execution of the next iteration. The first pipeline stage is the one

in charge of generating the banks’ reassignment.

Moreover, the MERASA system software is equipped with time predictable syn-

chronization primitives, which implement the barriers required for the bankization

interface [82].

Figure 6.3 shows an example of using the software pipelining interface in a n-

stage pipelined parallel application. The pipelining mechanism is initialized using

init_pipeline (line 2). At the beginning of each stage, e.g. stage n, the function

start_pipeline (line 9) stalls it until its previous stage, stage n−1, finishes. This func-

tion call is also responsible of reassigning the new bank when the computation starts

with the data produced by stage n− 1. Once the stage has performed its computation

(line 11), it is stalled again in the clock_edge (line 12) waiting all stages to finish in

order to perform the remapping. Finally, when the pipeline finishes, stop_pipeline

(line 14) stalls all stages until the last stage finishes.

127

Chapter 6. A First Step Towards Predictable Parallel Applications

1 void main () {

2 init_pipeline(n, 4096);
3 s t a g e 0 in c o r e 0 ;

4 s t a g e 1 in c o r e 1 ;

5 . . .

6 s t a g e n in c o r e n ;

7 }

8 s t a g e n {

9 start_pipeline(n) ;

10 whi le (t rue) {

11 d o _ s t a g e n ;

12 clock_edge(n) ;

13 }

14 stop_pipeline(n) ;

15 }

Figure 6.3: An n-stage pipelined parallel application using the bankization interface

6.4 WCET Analysis of a Software-Pipelined Parallel Appli-
cation

6.4.1 WCET Estimation Without Cache

In the WCET analysis of a pipelined application it is required to consider the longest

execution time of all the stages that compose the application, considering the im-

pact that inter-thread interferences have on the WCET due to the parallel execution

of multiple stages. However, the impact that interferences have along the execution

is different depending on the execution phase in which they are: the initialization

phase (prologue), finalization phase (epilogue) and the central phase of the execution

(kernel).

Figure 6.4 shows a four-stage pipelined application that is executed five times

(each color represents a different iteration). Let us assume that WCETn is the com-

puted WCET estimation of the stage n. However, this WCET is not the same along

the execution of the application, because the number of stages that run simultaneously

128

6.4. WCET Analysis of a Software-Pipelined Parallel Application

changes in the prologue and epilogue phase. Therefore, it is required to consider the

WCET in the different phases. Let us assume that the WCETn(m) is the WCET of

stage n when running withm simultaneous stages. In other words,WCETn(m) con-

siders the impact that inter-thread interferences have on the WCET estimation stage

n introduced by the other stages. Thus, the WCET estimation of each stage can be

represented as:

• During the prologue phase, stage 0 runs alone and simultaneously with one and

two more stages (stage 1 and 2). Hence, the WCET of the prologue (WCETpro)

can be expressed as:

WCETpro = WCET0(0) +

max{WCET0(1),WCET1(1)}+

max{WCET0(2),WCET1(2),WCET2(2)} (6.1)

• During the epilogue phase, stage 3 runs alone and simultaneously with one and

two more stages (stage 1 and 2). Hence, the WCET of the epilogue (WCETepi)

can be expressed as:

WCETepi = WCET3(0) +

max{WCET2(1),WCET3(1)}+

max{WCET1(2),WCET2(2),WCET3(2)} (6.2)

• Finally, during the kernel phase, all stages run simultaneously. Hence, the

WCET of the kernel (WCETkernel) can be expressed as:

WCETkernel = 2×max{WCET0(3),WCET1(3),

WCET2(3),WCET3(3)} (6.3)

were 2 is the number of iterations executed during the kernel phase.

129

Chapter 6. A First Step Towards Predictable Parallel Applications

Figure 6.4: The prologue, kernel and epilogue phase of a 4-stage pipelined application that

runs five times, each represented with a different color (light-blue, blue, dark-blue, light-grey

and grey)

Therefore, the overall WCET of a pipelined application can be expressed as:

WCETpipe = WCETpro +WCETepi +WCETkernel (6.4)

6.4.2 Considering The Cache into the WCET Estimation

However, when introducing the bankization technique in the computation of the WCET

of each stage, it is required to consider the state of the cache at the end of the previous

stage. That is, because each stage consumes the bank used by the previous one, a

WCET analysis chain is created, in which the analysis of each state is used to feed the

analysis of the next stage. It is worth noting that the analysis of a given stage does not

require to know the state of the cache in all previous stages but just the previous one.

Hence, we can define WCETn(m, cachen−1) as the WCET estimation of stage n,

being n any stage except stage 0, running with m simultaneous stages and consider-

ing the cache state at the end of stage n− 1. In case of stage 0, the WCET remains as

WCET0(0), because it starts the computation of the streaming with the cache empty.

Therefore, the computation of the WCET estimation in every pipeline phase re-

sults in:

130

6.5. Results

• The prologue phase:

WCETpro_b = WCET0(0) +

max{WCET0(1),WCET1(1, 0)}+

max{WCET0(2),WCET1(2, 0),WCET2(2, 1)} (6.5)

• The epilogue phase:

WCETepi_b = WCET3(0, 2) +

max{WCET2(1, 1),WCET3(1, 2)}+

max{WCET1(2, 0),WCET2(2, 1),WCET3(2, 2)} (6.6)

• The kernel phase:

WCETkernel_b = max{WCET0(3),WCET1(3, 0),

WCET2(3, 1),WCET3(3, 2)} (6.7)

Therefore, the overall WCET of a pipelined application when using bankization

can be expressed as:

WCETpipe_b = WCETpro_b +WCETepi_b +

numiterations ∗WCETkernel_b (6.8)

It is important to remark that the bankization interface ensures that the end of the

stage n and the beginning of stage n + 1 are synchronized. By doing so, we can

ensure that the WCET estimation of multiple stages running in parallel is equal to the

highest WCET estimation among the different stages. Note that, in case of not using

bankization, such synchronization among the stages is also required.

6.5 Results

This section presents the impact of the bankization technique on the WCET estimation

of the two-stage pipelined parallel version of the two applications described in Section

131

Chapter 6. A First Step Towards Predictable Parallel Applications

2.4.1: LU Decomposition and Stereo Navigation. We consider the WCET estimation

of each application under three different scenarios. For each scenario, we define n as

the number of iterations of each application (n = 5 for LU Decomposition and n = 4
for stereo navigation).

1. Single-thread version (WCETst): The two stages run one after the other into

the same core. We assume that no other threads run concurrently, so the bench-

mark does not suffer from any inter-thread interferences from other applica-

tions. A private cache partition of 32 KB is assigned to this core. The WCET

expression used is: WCETst = n× [WCET0(0) +WCET1(0, 0)]

2. Pipelined parallel version without cache (WCETpipe, see equation 6.4): Each

stage runs in a separate core. Again, no other threads run in parallel, so each

stage may suffer only from inter-thread interferences from the other stage. The

cache has been disconnected, so all memory requests go directly to the memory

controller through the bus.

3. Pipelined parallel version with bankization (WCETpipe_b, see equation 6.8):

Same as above but with cache and bankization technique enabled. So the cache

partition used by stage 0 can be consumed by stage 1. A private cache partition

of 16 KB has been assigned to each core.

6.5.1 LU Decomposition

Figure 6.5 shows the WCET estimation when running the two-stage LU decom-

position application into two different scenarios: Using the bankization technique

(WCETpipe_b) and not using a shared cache (WCETpipe). Values are normalized to

the WCET estimation of the single-threaded version of the LU decomposition appli-

cation (WCETst).

As expected, without a cache (WCETpipe) the memory access interferences de-

stroy completely the benefits brought by the pipelined model and increase the WCET

estimation by up to 30% with respect to the single-threaded version. Instead, if us-

ing the bankization technique, the memory interferences are considerably reduced.

132

6.5. Results

Figure 6.5: WCET estimation of the two-stage LU decomposition application using no shared

cache (WCETpipe) and bankization (WCETpipe_b). Values are normalized to the WCET

estimation of the single-threaded version (WCETst)

As a consequence the WCET estimation is reduced by 28% compared to the single-

threaded version, taking full advantage of the parallel execution.

To better understand the benefits of bankization, Table 1 shows the WCET esti-

mation increment of each stage of the LU decomposition (stage 0 and 1) during the

three phases of the application (prologue, epilogue and kernel) if the shared cache is

not used (WCETpipe, see equations 6.1, 6.2 and 6.3) and if cache and bankization is

enabled (WCETpipe_b, see equations 6.5, 6.6 and 6.7). Values are normalized to the

WCET estimation of the corresponding stage in the single-threaded version: stage 0

for the prologue phase, stage 1 for the epilogue phase and the sum of both stages for

kernel phase (note that in this case, stages do not suffer inter-thread interferences).

Not using bankization, impacts negatively on the WCET estimation of each stage, in-

creasing the WCET estimation in all phases, including the kernel phase whose WCET

estimation is higher that the sum of the WCET estimation of the two stages in the

single-threaded version. However, in case of using bankization, although the WCET

estimation increases in the prologue and epilogue phase by 0.1% and 0.5% due to

having a smaller cache (16KB) with respect to the single-threaded version (32KB).

133

Chapter 6. A First Step Towards Predictable Parallel Applications

Table 6.1: WCET estimation increments of the LU decomposition during the three phases

using no cache (WCETpipe) and bankization (WCETpipe_b). Values are normalized to the

WCET estimation of the single-threaded version using cache

WCETpipe WCETpipe_b

stage 0 (prologue) 24.06% 0.10%

stage 1 (epilogue) 30,07% 0,50%

max{stage 0, stage 1} (kernel) 22,73% -33,43%

The benefit comes from the kernel phase that reduces the WCET estimation by 33%

due to executing both stages in parallel.

6.5.2 Stereo Navigation

Figure 6.6 shows the WCET estimation of the two-stage stereo navigation application

in the two different scenarios: Using the bankization technique (WCETpipe_b) and not

using a shared cache (WCETpipe)). Values are normalized to the WCET estimation

of the single-threaded version of the stereo navigation application (WCETst).

Similarly to the LU decomposition case study, the interferences introduced by

main memory when not using a cache (WCETpipe) destroy completely all the benefits

brought by the pipelined parallel model and increases the WCET estimation by up to

48% with respect to the single-threaded version. Instead, when using the bankization

technique, the memory interferences are considerably reduced, taking full advantage

of the parallel execution and so allowing the WCET estimation to be reduced by 15%

compared to the single-threaded version.

6.6 Summary

This chapter proposes a software/hardware cache partitioning approach that exploits

the benefits of the software pipelined parallel programming model to effectively re-

duce inter-thread interferences when accessing the main memory, and so the WCET

estimation with respect to the single-threaded programming model. Our approach

134

6.6. Summary

Figure 6.6: WCET estimation of the two-stage stereo navigation application using no shared

cache (WCETpipe) and bankization (WCETpipe_b). Values are normalized to the WCET

estimation of the single-threaded version (WCETst)

extends the bankization mechanism proposed in Chapter 3: a dynamically cache par-

titioning technique that allows to assign at run-time a private set of cache banks to a

thread that no other can use, by providing an interface to guarantee the correct func-

tional behavior of bankization as well as to provide the time predictability required by

hard real-time applications. The programming model splits the heap memory region

into two isolated regions: the shared heap region and the private heap region, such

that accesses to the shared heap do not collide with private heap accesses. The used

system-level software provides a set of synchronization primitives that ensures that a

bank used by one thread is not remapped until this thread has finished. Hence, we can

compute the WCET estimation of a software-pipelined parallel application.

In this Chapter we describe a first attempt towards the execution of hard real-time

parallel applications; the work done in this chapter represents the foundations for the

research that will be carried out in an European FP7 Project called parMERASA that

has been accepted recently.

135

Chapter 6. A First Step Towards Predictable Parallel Applications

136

CHAPTER 7

WCET On-line Monitoring in an Automotive Environment

This chapter describes a proposal to verify the timing correctness of HRTs without

requiring any modification in the processor: we design a hardware unit which is inter-

faced with the processor and integrated into a functional-safety aware methodology.

This unit monitors the execution time of a block of instructions and it detects if it

exceeds the WCET.

7.1 Introduction

Systems used in modern cars, are a typical example of hard real-time systems, in fact

they are in charge of controlling the functionality and the safety of airbags, brakes,

chassis control, engine control and in the future they will play a crucial role in x-by-

wire cars.

It is commonly the case, in automotive systems, that different subsuppliers provide

the different IPs of a System-On-Chip. In such scenario it is not possible to modify

an IP designed by another supplier. Hence, we propose a timing and functional-safety

aware methodology to combine software tools and a special hardware unit to support

137

Chapter 7. WCET On-line Monitoring in an Automotive Environment

time correctness at system level. We design a hardware unit which is interfaced with

the IP of the core and integrated into the functional-safety aware methodology. This

unit monitors the execution time of a block of instructions and it detects if it exceeds

the WCET. In other words it monitors any WCET violation due to timing faults. Con-

cretely, we show how to handle timing faults on a real industrial automotive platform.

We implemented our complete flow and ran some experiments to check its effective-

ness simulating our hardware platform at RTL.

This chapter also describes why timing dependability issues are of primary impor-

tance in automotive systems: we provide a formalization of the problem by defining

timing faults and how they are considered by current certification standards. We in-

deed propose the fundamental notions behind timing correctness to be integrated in

an automotive standard.

7.2 Background on Timing Issues

Automotive systems must satisfy ISO 26262 [5] functional safety norm, for example

in terms of how to detect, correct or tolerate errors before that they cause a failure

leading to a potential critical hazard, or in terms of how to guarantee the coexistence

of different functions having different safety integrity levels without any mutual inter-

ference. Potential failures due to timing issues are also subject of several requirements

of ISO 26262. At the same way, the increasing complexity of automotive systems is

the main driver of AUTOSAR [3], the open and standardized automotive software

architecture, jointly developed by automobile manufacturers, suppliers and tool de-

velopers. Timing correctness is one of the topics in AUTOSAR as well. However,

both ISO 26262 and AUTOSAR are describing timing issues without the level of

detail that such important and emerging problem would require. For example, ISO

26262 does not include any specific guideline about how to prevent, detect or tolerate

timing faults.

In the automotive domain there are three main standards that designers use to fol-

low when designing their systems: IEC 61508 [4], ISO 26262 [5] and AUTOSAR [3].

138

7.2. Background on Timing Issues

The first one is related to the development of safety-related electronic systems, while

the last one describes an open and standardized automotive software architecture. IEC

61508 was recently replaced by ISO 26262 to comply with needs specific to the ap-

plication sector of Electrical and/or Electronic (E/E) systems within road vehicles.

Among the three standards the one with major focus on timing issues is AUTOSAR.

7.2.1 Definition of a Timing Fault

As pointed out in the AUTOSAR [3] standard, a timing fault, at system level, refers

to a process or service that is not delivered or completed within the specified time

interval. The execution time of a task is not only restricted by the computing power

of a processing unit but also depends on interferences generated by other tasks. The

reasons for such interferences can be twofold:

1. Inter-thread interferences [70,71] generated accessing the same hardware shared

resource if more than one task runs at the same time on a processor (valid only

for multicore or multiprocessor systems).

2. Interrupt delay: whenever interrupts triggered by external devices (e.g. hard-

ware watchdogs, peripherals) preempt the current task, this may lead to an un-

foreseeable delay of execution.

If, due to one of the reasons listed above, the execution time of one or more tasks

in the system takes longer than what considered when defining the global scheduling

of the system, a timing fault1 is generated. The system, then, can react in different

ways: task retry, function retry, function priority re-ordering, function replacing, mi-

crocontroller reset and microcontroller reconfiguration. The timing faults, as specified

in the ISO 26262 for other types of faults, can be caused by:

1. Systematic faults: on the one hand, they are originated, if the designer under-

allocates the time budget for a task, i.e. considering an unsafe WCET that is

1During system integration designers consider the Worst Case Execution Time (WCET) of a task:

the maximum possible execution time along all the different paths of the program.

139

Chapter 7. WCET On-line Monitoring in an Automotive Environment

smaller than the Maximum Observed Execution Time (MOET). On the other

hand, they occur, if the designer changes the tasks that are scheduled together,

so that different interference scenarios accessing shared resources occur [70,

71]. This generates timing faults, due to a longer execution time, with a con-

sequent WCET violation. This kind of faults can be avoided by using a strong

verification flow with the aid of tools that help the designer in the timing char-

acterization of the tasks.

2. Hardware faults: random faults on hardware resources, e.g. the memory con-

troller, that do not alter the data but delay the execution of the tasks can originate

timing faults. These random faults cause, for instance, a wrong scheduling se-

quence in the memory controller of the requests to the memory. Such faults

cannot be eliminated, but they can be reduced or limited if they are considered

in the WCET analysis. Due to the technology scaling the number of hardware

faults is increasing and such faults are becoming one of the primary issues for

chip designers. However most of the works in research have been focusing

on solutions that guarantee the functional correctness of a circuit (even in the

presence of faults) but they do not deal with timing correctness that, in critical

systems, is as important as functional one.

Timing faults, if not detected, can or cannot lead to the violation of the safety

goal. The safety goal from a timing perspective is the WCET. Safe faults are the ones

that do not involve a violation of the WCET, i.e. even in presence of the timing fault

the execution of a task takes shorter than its WCET. If the timing fault leads to an

execution time longer than the WCET then it violates the safety goal. In Figure 7.1

we define a flow to classify the faults.

7.2.2 Timing Fault Models

Regarding the timing correctness of an automotive critical task, examples of timing

fault models are:

140

7.2. Background on Timing Issues

Figure 7.1: Flow to classify timing faults

141

Chapter 7. WCET On-line Monitoring in an Automotive Environment

1. Interrupt handling: external interrupts preempting a task in execution could lead

to timing faults.

2. Caches: since the cache is a memory that does not have a constant access time

(it depends on the current state of the memory), different states of the cache

could lead to different execution times and so to different timing faults.

3. DMA/Memory controller: a problem in the memory controller, e.g. in the arbi-

tration scheme, that could involve different memory access patterns, could lead

to timing faults. Moreover, most memory controllers, especially the ones for

FLASH memories, contain buffers and state machines that could cause timing

faults.

4. Inter-thread interferences on shared resources: inter-thread interferences ac-

cessing shared resources [70, 71] could cause a thread to execute longer than

what expected and consequently could cause timing faults.

5. Faults (systematic or random) of the CPU that could cause timing faults include:

(a) Instruction Latency: if due to a fault, the latency of instructions changes,

the total execution time of a task could suffer a delay, and so it could result

in a timing fault.

(b) High performance features, e.g. out of order execution, branch prediction,

etc, use complex logic and buffers that, in case of a fault, could cause a

delay in the execution (e.g. a different instruction issue sequence) with

consequent timing faults.

6. Common-cause faults (either systematic or random) could originate timing faults

and depending on the design could or not be detected by the safety mechanism:

for e.g. if a fault is present in the clock tree, it can be detected if the safety

mechanism and the CPU use different clock trees; otherwise not. Similarly a

temperature increase could slow down the CPU and would be detected. An er-

ror in the configuration of the registers of the safety mechanism could also lead

to a failure.

142

7.3. Our Solution: the TaCMU

7.3 Our Solution: the TaCMU

YOGITECH’s faultRobust technology provides a set of IPs [58] and methodologies

[57] for the analysis, detection and correction of faults affecting the different parts of

the electronic equipment or SoC. With respect to the faultRobust IPs (fRIP), each of

them protects a particular component such as CPU, memory system and peripherals.

Among the fRIPs, fRCPU is a scalable and flexible family of IPs for protection of

CPU sub-system. fRCPU is not a replication of the CPU and it is architecturally and

functionally diverse from the CPU. It is smaller than the CPU since it covers only what

it is really relevant in the CPU sub-system to reach the highest safety integrity level

(SIL3 according IEC 61508, ASIL D according to ISO 26262). Its main functions

are fault detection and fault diagnosis. An example of fRCPU is fRCPU_armcm3,

i.e. the specific fRCPU to be used in conjunction with an ARM Cortex-M3 processor

[40]. fRCPU_armcm3 is designed to detect hardware random faults that could affect

the ARM Cortex-M3 processor during its normal operation, such as permanent and

transient faults. It also offers additional functions to support the detection of software

systematic faults. In this chapter we propose a timing and functional-safety aware

methodology to combine software tools and a special hardware unit integrated into

the fRCPU_armcm3 to verify the time-correctness of an application. The special

hardware unit is called Timing-aware Coverage Monitor Unit (TaCMU), it checks

that the execution time of every Block of Instructions (BI) in the application is shorter

than the corresponding WCET. A BI can be a basic block, a sequence of instructions,

a function, or a set of functions; the level at which checks are performed depends on

the granularity level fixed by the software developer. The timing and functional safety

aware methodology we propose is composed by the following main steps:

1. The software developers write the source code of the program.

2. The source code is then automatically instrumented by the WCET analysis tool,

that inserts, according to the granularity level set by the programmer, the in-

structions used to build the trace.

3. After that, the source code is compiled.

143

Chapter 7. WCET On-line Monitoring in an Automotive Environment

Figure 7.2: Diagram of the Timing and Functional-Safety aware methodology

144

7.3. Our Solution: the TaCMU

4. The executable is downloaded on the CPU.

5. Then it is executed disabling the TaCMU (this is necessary to prevent any er-

ror for timing failures while performing the analysis) and an execution trace is

captured.

6. The trace is processed by the WCET analysis tool, which provides the user

with the results of the WCET and the MOET for each block of instructions,

according to the granularity level set by the designer.

7. The user can decide how to set the timing constraints for each block selecting

the MOET, or the WCET or applying a safety factor to the MOET.

8. The value selected for each block is then inserted into the source code.

9. The program is compiled again.

10. When it is executed, with TaCMU enabled, the TaCMU checks for every block

of instructions that the execution time between the first instruction and the last

one of the block is smaller or equal than the value set in the source code as

WCET. If this is not the case an error is generated. The overall scheme of our

flow is shown in Figure 7.2.

The advantages of our proposal for the designers are twofold:

• On the one side, the designer can benefit from a framework that: 1) can auto-

matically insert/control watchdogs-like timers, 2) provides an integrated envi-

ronment to analyze the timing behavior of an application, 3) allows to set the

watchdog-like timers according to application/user requirements.

• On the other hand, the program flow monitoring assures that the program exe-

cution has completed the major parts of the program, and that it has completed

them in the correct order.

The only disadvantage for the designer, that we identified, is the following: the

source code instrumentation and annotation involve an overhead in terms of code size.

145

Chapter 7. WCET On-line Monitoring in an Automotive Environment

However this overhead can be easily controlled by the final users by leveraging the

granularity of the timing annotations. For example, if the user instruments the source

code to check the WCET at basic block level it has a consequent higher impact in

terms of code size with respect to an annotation at function level.

7.3.1 Hardware Implementation

The overall hardware structure of TaCMU includes:

• A Stack structure to support timing monitoring of nested blocks of instructions.

• A tick counter to have an internal reference of the current time.

• A mechanism to save the stack structure in case of task context switch.

• Support to read the timing annotations set in the task source code.

• A mechanism to raise an exception in case of a timing fault.

• Comparators to check the violation of the WCET.

7.3.2 Software Environment

The software platform to support TaCMU includes:

• The integration of the WCET analysis tool inside the timing and functional

safety aware methodology.

• An extension of the fault injector already included in the faultRobust faultInjec-

tor (fRFI, see [57]) to introduce timing faults and verify the safety mechanism.

• An instrumentation tool able to insert instructions to specify the WCET of the

block of instructions.

146

7.3. Our Solution: the TaCMU

7.3.3 CPU-Independence

An important property of TaCMU is that it is CPU-independent and it does not require

any modification to be used with a different CPU than the ARM Cortex-M3. The

TaCMU is coupled together with the fRCPU and it exchanges a small amount of data

with it. On the other side, the TaCMU takes benefit of the tightly-coupled interface

between the CPU and fRCPU described in [40]. The information it requires are the

timing footprints of the running task (i.e. the WCET of different block of instructions

that the designer want to monitor). In addition to that, it requires triggering the check

points when they are reached during the execution. TaCMU can be easily adapted

to any CPU (e.g. ARM A9) as long as the fRCPU for that CPU exists: there is no

dependency with the configuration of the CPU and with the features it contains, and

it only requires few special registers that need to be configured by software.

7.3.4 Safety Considerations about TaCMU

As for any other safety mechanism in the CPU, the ISO 26262 norm requires to an-

alyze the safety aspects of the TaCMU itself, since it can also suffer from random

hardware faults that, combined with another independent hardware or systematic fault

in the mission function, could lead to an undetected timing fault (the so-called latent

fault). In case of a fault in the TaCMU, there are two scenarios that can occur:

• A timing fault is detected even if it was not present.

• A timing fault that is present it is not detected.

To avoid the second scenario (and prevent the degradation of function availability as

a consequence of the first scenario), it is necessary to provide TaCMU with hardware

and software safety mechanisms that guarantee coverage (greater or equal than 90%

for ASIL D safety goals) with respect to those latent faults, for example:

• A parity bit in all the stack memory entries and for each internal register.

• A software test or hardware testing unit to check the correctness of the com-

parators.

147

Chapter 7. WCET On-line Monitoring in an Automotive Environment

Figure 7.3: Multi-core Architecture with TaCMU Supervisor

• It is moreover required to use a different clock tree with respect to the one of

the processor core to avoid common-cause failures on the clock tree.

Our TaCMU is able to detect the timing faults that are originated by random hardware

faults, while the software tools used in the time dependable flow help the designers

to avoid timing faults caused by systematic faults. Once the TaCMU detects a timing

fault, due to a WCET violation of a block of instructions it notifies an error to the OS

specifying the identifier of the block of instructions that violated the timing constraint.

7.3.5 TaCMU in a Multi-core Processor

The idea is still valid for multi-core processors: each core will have its own TaCMU.

Moreover it is going to be even more useful than in single core processors because

of inter-core interferences. Timing faults, in a multi-core scenario, are in fact more

likely to happen due to inter-core interferences accessing shared resources.

Such inter-thread interferences [70] [71] have the consequence of delaying the

other tasks that are executed on the other cores. The amount of such delay strictly

depends on the hardware architecture and the tasks that are running simultaneously.

We propose, in a multi-core environment, to have each core equipped with its own

148

7.4. Results

fRCPU (that includes the TaCMU) and a global TaCMU Supervisor that communi-

cates with all the fRCPUs. The TaCMU supervisor has an overall view of what it is

running and what are the timing issues in each core. The TaCMUs Supervisor can

implement a failures control strategy, and it proceeds to one of the following opera-

tions in case timing failures occur: Instruction Block retry, Task retry, Function retry,

Function priority re-ordering, Function replacing, Core reset and MCU reset.

Moreover the TaCMU supervisor can change the scheduling in each core, if too

many inter-thread interferences are occurring, with the consequent side effect of orig-

inating timing faults. An example of multi-core architecture equipped with the TaC-

MUs Supervisor is shown in Figure 7.3.

7.4 Results

To run our experiments, we implemented a Verilog synthesizable version of our TaCMU

unit, and we integrated it into the internal YOGITECH platform composed of an fR-

CPU_armcm3 [40] connected with an ARM Cortex-M3 processor [2] described in

Section 2.2.2.

The software platform, we used, includes:

• A simple emulation of a WCET measurement-based analysis tool that provides

the WCET estimations analyzing the trace of the RTL simulation.

• An additional instrumentation tool, we developed, to specify which blocks of

instructions/functions need to have the timing monitored.

• A prototype of a fault injector to inject timing fault by enlarging the execution

time of a task by adding a random number of instructions.

To perform the experiments, we executed the complete flow (described in Figure

7.3) on some of the EEMBC automotive benchmarks (see Chapter 2), in particular

on aifirf01, a2time01, idctrn01. To check the correctness of our timing flow, we

estimated the WCET using the emulation of a WCET measurement based tool and

instrumenting the source code at basic block level with the TaCMU timing monitoring

149

Chapter 7. WCET On-line Monitoring in an Automotive Environment

feature at function level. We injected timing faults by modifying the source code of

the benchmarks to introduce timing faults by executing an additional random number

of instructions to enlarge the execution time in the function under analysis. Such

number of extra-instructions is parameterizable and it can be set by the designer.

For each benchmark we estimated the WCET; such WCET values are annotated

into the source code in order to be read by TaCMU.

We executed each task 300 times introducing a random number of timing faults.

In 100 of those simulations the faults did not lead to the violation of the safety goal,

i.e. they were safe faults; this test is necessary to check that TaCMU does not detect

false positive (faults that do not lead to the safety goal violation). The other 200 cases

were simulations with faults that lead to an execution time that violates the WCET;

hence the TaCMU must detect those cases. The results shown in the following table

indicate the number of faults that were undetected and the ones that were detected

in case of dangerous faults injected, and the false positive and undetected faults in

case of unobservable/safe faults. The last column of the table shows the Diagnostic

Coverage (DC).

Table 7.1: Results of the simulations with a selection of EEMBC benchmarks

Benchmark Dangerous Faults Safe Faults DC

Detected Undetected False Positive Undetected

a2time01 191 9 0 100 94.5%

aifirf01 200 0 0 100 100%

idctrn01 194 6 0 100 98%

The results (see Table 7.1) show that TaCMU does not detect any false positive

fault and that the DC is always higher than 94.5%. The DC is not 100% in all cases,

because the fault injector does not have the accuracy to increase the execution time

of the task by one cycle. For that reason there could be faults that are safe (for few

cycles) but they are considered dangerous. As part of the future work we plan to

improve the accuracy of the fault injector to solve such problem.

150

7.5. Related Work

Table 7.2: Results of the instrumentation of EEMBC benchmarks

Benchmark
Overhead at Overhead at

Basic Block level (%) Function level (%)

a2time01 6.1% < 1 %

aifir01 3.1% < 1 %

idctrn01 3.6% < 1 %

In addition to DC, we also analyzed our idea in terms of code size overhead. The

overhead introduced by the timing and functional-safety aware methodology in terms

of code size is strictly dependent on the granularity chosen by the designer and the

characteristics of the source code itself. For the EEMBC benchmarks that we used to

test our prototype we instrumented the source code at basic block level and at function

level, the results of the source code overhead are shown in Table 7.2.

7.5 Related Work

One of the approaches used in industry nowadays involves the use of watchdog timers

[3]. A watchdog timer is a device that helps to assure that the microcontroller is

operating properly. A watchdog timer may be internal or external to the system. It

is a mechanism that begins to count down once it has been initiated. The device

needs to be toggled / refreshed by software within a certain period of time to prevent

a microcontroller from resetting. Watchdog timers are useful for detecting failures

such as timing delays, infinite loops, and hung interrupts. The watchdogs need to set

by the programmer and they need to be manually used. An alternative to the use of

watchdogs, it is the unit included into the RENESAS Electronics V850E2R-V3 CPU

[65]. Such CPU is equipped with a timing supervision unit to realize timing protection

that can prevent the user application that operates under management of the OS from

inappropriate possession of the CPU time by performing strict time management of

the user application. If a violation is detected as a result of supervising the CPU

151

Chapter 7. WCET On-line Monitoring in an Automotive Environment

status by each counter in accordance with the setting, an exception occurs. The main

advantages of TaCMU with respect to the other solutions presented are the flexibility

and the fact that is part of an automatic flow. TaCMU is more flexible than using

a watchdog because it can check more than one block of instructions at the time,

i.e. it supports functions nesting. Moreover the programmer does not have to set the

counters manually because the flow is partially automatic. With respect to solution

proposed by RENESAS Electronics the advantages of TaCMU are still flexibility and

the automatic characteristic.

7.6 Summary

This chapter has shown that is recommendable to extend functional safety and soft-

ware architecture standards to cover timing dependability, and to guarantee it with

proper software and hardware solutions. In this chapter, we show an idea towards the

support of timing correctness describing what could be achieved by extending fRCPU

by means of a TaCMU. It is also shown the importance of a timing and functional-

safety aware methodology to enable designers to avoid systematic failures that derive

from a wrong timing analysis.

152

CHAPTER 8

Conclusions

8.1 Thesis Conclusions

In current and future hard real-time systems it is fundamental for the hardware and

the software to provide high performance while maintaining the time composabil-

ity property. Higher performance is necessary to satisfy the increasing complexity

of the functions that are implemented into the system. More complex functions al-

low increasing safety, comfort, number and quality of services, and lower emissions

as well as fuel demands for automotive, avionics and automation applications. More-

over higher performance is mandatory when moving towards Integrated Architectures

because multiple functions from different subsystems are integrated into each hard-

ware unit. Time composability property is fundamental to maintain the cost of timing

verification low by ensuring Incremental Qualification.

Multi-core processors provide better performance-per-watt ratio compared to single-

core architectures, maximizing the utilization of the resources while guaranteeing low

cost and low power consumption. All these features make multi-core architectures

a very attractive solution for hard real-time systems. Moreover, the core design is

153

Chapter 8. Conclusions

maintained simple avoiding undesirable timing anomalies. Unfortunately, it is hard,

or even impossible to perform trustworthy WCET analysis for HRTs running on such

processors due to inter-task interferences accessing hardware shared resources, that

make the execution time, and so the WCET of a task dependent on the other co-

running tasks. This makes not possible to achieve time composability.

In this thesis we have accomplished major results towards the use of multi-core

processors in hard real-time systems by proposing a new multi-core design that en-

ables time composability while providing high performance. In our proposed multi-

core architecture the WCET estimation of a HRT is independent of the workloads in

which it runs into. To that end, the maximum delay a request from a HRT accessing a

hardware shared resource can suffer due to inter-task interferences is bounded. That

is, our multi-core processor guarantees that a request to a shared resource cannot be

delayed longer than a given Upper Bound Delay (UBD), ensuring the time compos-

ability property.

We have focused on the most common shared resources in a multi-core processor:

the shared bus, the shared cache and the shared memory controller that interfaces the

cores to the off-chip memory system:

1. Regarding the on-chip shared bus we have computed an UBD based on bus

properties such as the latency and the different arbitration policies, identifying

the ones that provide a bounded and tight worst-case access delay. To that end,

we have proposed an interference-aware bus arbiter composed of an Inter-Core

Bus Arbiter (XCBA) that schedules among requests from different cores, and

several Intra-Core Bus Arbiters (ICBAs), one per core, which schedules among

requests from the same core.

2. Concerning the shared cache, we have studied the effect of storage and bank

interferences on the UBD of a HRT. We have evaluated two different cache

partitioning techniques - namely columnization and bankization - which assigns

private cache partitions to the different tasks in order to avoid storage and bank

interferences. In case of bankization this is achieved by a Bank Remapping Unit

154

8.1. Thesis Conclusions

(BRU), that we designed; in case of columnization the replacement algorithm

is modified to limit replacement to the columns assigned to a given task.

3. Finally, regarding the off-chip memory system we have computed an UBD to

evaluate the impact that different JEDEC-compliant DDRx SDRAM memory

systems have on the WCET estimation. First, we have proposed an analytical

model based on generic timing constraints to compare different SDRAM mem-

ory devices from a WCET point of view. Second, we have presented the effect

of the memory controller arbitration on the UBD, enabling the computation of

WCET estimations for any HRT. In addition to that, we have designed a Real-

Time Capable Memory Controller (RTCMC) that includes two new features to

deal with refresh operations, that are one of the main contributors to the vari-

ability in the low predictability of memory systems, and to reduce the impact of

NHRTs over HRTs.

Moreover, we extend the bus and the memory controller with a hardware feature

called WCET Computation Mode that allows computing a safe WCET estimation,

which is independent of the workload and so accomplishing the time composabil-

ity property. When a HRT is being time analyzed the processor is set in the WCET

Computation mode and the task is run in isolation. In this execution mode, the proces-

sor artificially delays each HRT request by UBD cycles. As a result, the computed

WCET estimation is a safe upper bound of the execution of the HRT as it considers

the worst possible interferences with other tasks that run inside a workload. Hence,

with our proposal, the WCET analysis of each HRT can be performed in isolation as

done in single-core processors.

In this thesis we also have investigated an allocation algorithm to allow multi-

cores to execute mixed-criticality level application workloads. To that end, we pre-

sented IA3, an new off-line interference-aware allocation algorithm for multi-core

processors. The IA3 is based on two novel concepts: the WCET-matrix and the

WCET-sensitivity. These two concepts allow IA3 identifying those tasks with higher

resource requirements, allowing to minimize the resources assigned to HRTs and

hence enables the rest of the resources to be assigned to NHRTs, thus maximizing

155

Chapter 8. Conclusions

the hardware utilization and taking full advantage of multi-core processors. To do

so, IA3 considers not just a single WCET estimation but a set of WCET-estimations

generating a more efficient partitioning.

Moreover, in order to improve the performance of the HRTs, we have made a first

analysis towards the possibility of executing parallel applications guaranteeing hard

real-time requirements. To that end, this thesis proposes a software/hardware cache

partitioning approach that exploits the benefits of the software pipelined parallel pro-

gramming model to effectively reduce inter-thread interferences when accessing the

main memory. The WCET is hence reduced with respect to the single-threaded ver-

sion of the HRT. The programming model has been defined considering the effects of

the software parallelization on the WCET of an application. In fact, if an application is

parallelized without considering the effects on its WCET high average performances

can be achieved while the WCET may increase a lot, removing all the benefits intro-

duced by the parallelization.

Finally, this thesis also investigates a solution to verify the timing correctness of

HRTs without requiring any modification in the core design. To that end, we have

designed a hardware unit which is interfaced with the processor and integrated into

a functional-safety aware methodology. This unit monitors the execution time of a

block of instructions and it detects if it exceeds the WCET. Concretely, we show how

to handle timing faults on an industrial automotive platform.

8.2 Future Work

The work done in this thesis opens several research lines targeting new challenges in

hard real-time systems some of which are already pursued by other PhD students in

the Universitat Politecnica de Catalunya.

In particular, this thesis is one of the first attempts showing that it is possible to

design a time composable multi-core processor. Starting from the proposals described

in this thesis it is possible to research on a many-core processor composed by 32, 64

or more cores. The design of such time composable many-core processor would al-

156

8.2. Future Work

low to integrate all the functions of a car into few chips being extremely advantageous

in terms of cost, weight and power consumption. Of course, the design of such pro-

cessor involves several challenges that need to be addressed: more than one memory

controller needs to be implemented into the processor, the interconnection network

between the cores and the main memory should be designed to be time composable

while providing high performance.

In such a many-core architecture it would be possible to fully exploit the thread

level parallelism, it is then mandatory the definition of a parallel programming model

that allows software developers to easily parallelize the applications achieving high

performance while satisfying predictability and time composability properties. Some

of these issues are going to be addressed by other PhD students of Universitat Politec-

nica de Catalunya who will be part of an European FP7 Project called parMERASA

that has been recently accepted in the FP7-ICT-2011-1 call. The focus of such project

is a many-core processor with hardware and software support for parallel hard real-

time applications. In particular future work will be focused on applying the same

approach presented in this thesis in a many-core processor (up to 64 cores) addressing

complex network on chip, the memory hierarchy and predictable parallel program-

ming models.

Other research lines, include the investigation of applying the proposals of this

thesis to existing hardware architectures, like the Next Generation Multipurpose Mi-

croprocessor (NGMP) by Gaisler that the European Space Agency (ESA) plans to use

for future space missions. In particular it is required to investigate the possibility of

performing the analysis of the UBD and implementing the Worst Case Computation

Mode to the AMBA bus developed by ARM Ltd. It is also going to be required the

investigation of composable I/O devices, like the possibility of designing a real-time

capable DMA controller, and a mechanism to handle interrupts in a safe and com-

posable way. Interrupts may delay the execution of a HRT, resulting in a deadline

miss. Two collaboration projects have been established with ESA to investigate some

of the previously mentioned aspects. In particular those two projects will focus on the

following shared resources: AMBA bus and DDR3 SDRAM memory devices.

157

Chapter 8. Conclusions

158

Bibliography

[1] ARC Study: Process Safety System Worldwide Outlook - Market Analysis and

Forecast Through 2012.

[2] ARM Cortex-M3 Technical Reference Manual

http://infocenter.arm.com/help/index.jsp.

[3] AUTOSAR Glossary V2.2.0 R4.0 Rev 1.

[4] IEC 61508-1 Ed. 2.0: Functional safety of electrical/electronic/programmable

electronic safety-related systems.

[5] ISO/FDIS 26262-1:2010(E) Road vehicles – Functional safety.

[6] RTCA/DO-178B Software Considerations in Airborne Systems and Equipment

Certification.

[7] MERASA EU-FP7 Project: www.merasa.org, 2007.

[8] RapiTime: Worst-case execution time analysis. User Guide. Rapita Systems.

Ltd., 2007.

159

Bibliography

[9] C. Acosta, F. J. Cazorla, A. Ramirez, and M. Valero. The MPsim Simulation

Tool. Technical Report UPC-DAC-RR-CAP-2009-15, in UPC, 2009.

[10] B. Akesson. Predictable and Composable System-on-Chip Memory Controllers.

PhD thesis, Eindhoven University of Technology, feb 2010.

[11] B. Akesson, K. Goossens, and M. Ringhofer. Predator: a predictable SDRAM

memory controller. In CODES+ISSS, USA, 2007. ACM.

[12] B. Akesson, A. Hansson, and K. Goossens. Composable resource sharing based

on latency-rate servers. In Proc. DSD, Aug. 2009.

[13] J. H. Anderson, J. M. Calndrino, and D. C. UmaMaheswari. Real-time schedul-

ing on multicore platforms. In RTAS, pages 179–190, 2006.

[14] A. Andrei, P. Eles, Z. Peng, and J. Rosen. Predictable implementation of real-

time applications on multiprocessor systems-on-chip. In VLSID, USA, 2008.

[15] ARINC. Specification 651: Design Guide for Integrated Modular Avionics.

Aeronautical Radio, Inc, 1997.

[16] J. M. Banús, A. Arenas, and J. Labarta. An efficient scheme to allocate soft-

aperiodic tasks in multiprocessor hard real-time systems. In Proceedings of

the International Conference on Parallel and Distributed Processing Techniques

and Applications - Volume 2, PDPTA ’02, pages 809–815. CSREA Press, 2002.

[17] J. M. Banús, A. Arenas, and J. Labarta. Dual priority algorithm to schedule

real-time tasks in a shared memory multiprocessor. In IPDPS, page 112, 2003.

[18] S. Becz, A. Pinto, L. E. Zeidner, R. Khire, A. Banaszuk, and H. M. Reeve.

Design system for managing complexity in aerospace systems. In 2010 AIAA

ATIO/ISSMO Conference, September 2010.

[19] G. Bernat, A. Colin, and S. Petters. WCET analysis of probabilistic hard real-

time systems. In RTSS, 2002.

160

Bibliography

[20] B. Bhat and F. Mueller. Making dram refresh predictable. In Proceedings of

the 2010 22nd Euromicro Conference on Real-Time Systems, ECRTS ’10, pages

145–154, Washington, DC, USA, 2010. IEEE Computer Society.

[21] B. D. Bui, M. Caccamo, L. Sha, and J. Martinez. Impact of cache partitioning

on multi-tasking real time embedded systems. RTCSA, Aug. 2008.

[22] D. Burger, J. R. Goodman, and A. Kägi. Memory bandwidth limitations of future

microprocessors. In ISCA, US, 1996.

[23] H. Cassé and P. Sainrat. OTAWA, a framework for experimenting WCET

computations. In 3rd European Congress on Embedded Real-Time Software,

Toulouse, France, January 2006.

[24] F. J. Cazorla, P. M. W. Knijnenburg, R. Sakellariou, E. Fernández, A. Ramírez,

and M. Valero. Feasibility of qos for smt. In Euro-Par, pages 535–540, 2004.

[25] F. J. Cazorla, P. M. W. Knijnenburg, R. Sakellariou, E. Fernández, A. Ramírez,

and M. Valero. Predictable performance in smt processors: Synergy between the

os and smts. IEEE Trans. Computers, 55(7):785–799, 2006.

[26] F. J. Cazorla, A. Ramírez, M. Valero, P. M. W. Knijnenburg, R. Sakellariou, and

E. Fernández. Qos for high-performance smt processors in embedded systems.

IEEE Micro, 24(4):24–31, 2004.

[27] R. N. Charette. This car runs on code. IEEE Spectrum, February, 2009.

[28] D. Chiou, P. Jain, S. Devadas, and L. Rudolph. Dynamic cache partitioning via

columnization. In DAC, Los Angeles, CA, USA, 2000.

[29] P. Clarke. Automotive chip content growing fast, says gartner. EETimes, 2010.

[30] T. H. Cormen, C. E. Leiserson, R. L. R. Rivest, and C. Stein. Introduction to

Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001.

[31] S. Davari and S. Dhall. An on line algorithm for real-time allocation. In ICSS,

pages 133–141, 1986.

161

Bibliography

[32] R. Davis and A. Burns. Priority assignment for global fixed priority pre-emptive

scheduling in multiprocessor real-time systems. In RTSS, Washington, USA,

2009.

[33] R. Davis and A. Burns. Improved priority assignment for global fixed priority

pre-emptive scheduling in multiprocessor real-time systems. Real-Time Systems,

2010.

[34] R. Davis and A. Burns. A survey of hard real-time scheduling for multiproces-

sor systems. ACM Computing Surveys (to appear) available from http://www-

users.cs.york.ac.uk/ robdavis/, 2010.

[35] S. Dhall and C. L. Liu. On a real-time scheduling problem. In Operation Re-

search, pages 127–140, 1978.

[36] A. El-Haj-Mahmoud, A. S. AL-Zawawi, A. Anantaraman, and E. Rotenberg.

Virtual multiprocessor: an analyzable, high-performance architecture for real-

time computing. In CASES, USA, 2005. ACM.

[37] A. El-Haj-Mahmoud and E. Rotenberg. Safely exploiting multithreaded proces-

sors to tolerate memory latency in real-time systems. In CASES, USA, 2004.

ACM.

[38] P. Emberson and I. Bate. Extending a task allocation algorithm for graceful

degradation of real-time distributed embedded systems. In RTSS, pages 270–

279, 2008.

[39] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., 1990.

[40] T. Halfill. Fault tolerance for Cortex-M3. Microprocessor Report, 2008.

[41] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken. Compsoc: A template

for composable and predictable multi-processor system on chips. ACM Trans.

Des. Autom. Electron. Syst., 2009.

162

Bibliography

[42] R. Heckmann and C. Ferdinand. Worst-case execution time prediction by static

program analysis. AbsInt White paper, 2009.

[43] P. Holman and J. H. Anderson. Adapting pfair scheduling for symmetric multi-

processors. Journal of Embedded Computing, 1(4):543–564, 2005.

[44] I. Hur and C. Lin. Adaptive history-based memory schedulers for modern pro-

cessors. IEEE Micro, 2006.

[45] Infineon. Tricore 1. 32-bit Unified Processor Core v1.3, October 2005.

[46] B. Jacob, S. W. Ng, and D. T. Wang. Memory Systems: Cache, DRAM, Disk.

Morgan Kaufmann, 2008.

[47] R. Jain, C. J. Hughes, and S. V. Adve. Soft real- time scheduling on simultaneous

multithreaded processors. In RTSS, page 134, 2002.

[48] K. jay Lin, S. Natarajan, and J. Liu. Imprecise results: Utilizing partial compu-

tations in real-time systems. In RTSS, 1987.

[49] JEDEC Solid State Techn. Assoc. JEDEC DDR2 SDRAM Specification JEDEC

Standard No. JESD79-2E, April 2008.

[50] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive scheduling of

periodic and sporadic tasks. In RTSS, pages 129–139, 1991.

[51] H. Kasim, V. March, R. Zhang, and S. See. Survey on parallel program-

ming model. In Proceedings of the IFIP International Conference on Network

and Parallel Computing, NPC ’08, pages 266–275, Berlin, Heidelberg, 2008.

Springer-Verlag.

[52] S. Kato and N. Yamasaki. Extended u-link scheduling to increase the execu-

tion efficiency for smt real-time systems. Real-Time Computing Systems and

Applications, International Workshop on, 0:373–377, 2006.

163

Bibliography

[53] I. A. Khatib, F. Poletti, D. Bertozzi, L. Benini, M. Bechara, H. Khalifeh,

A. Jantsch, and R. Nabiev. A multiprocessor system-on-chip for real-time

biomedical monitoring and analysis: architectural design space exploration. In

DAC, pages 125–130, USA, 2006. ACM.

[54] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and E. A. Lee. Predictable

programming on a precision timed architecture. In CASES, 2008.

[55] J. Liebeherr, A. Burchard, Y. Oh, and S. H. Son. New strategies for assigning

real-time tasks to multiprocessor systems. IEEE Trans. Comput., 44(12):1429–

1442, 1995.

[56] T. Lundqvist and P. Stenstrom. Timing anomalies in dynamically scheduled

microprocessors. In RTSS, 1999.

[57] R. Mariani and G. Boschi. A systematic approach for failure modes and effects

analysis of system-on-chips. In Proceedings of the 13th IEEE International On-

Line Testing Symposium, pages 187–188, Washington, DC, USA, 2007. IEEE

Computer Society.

[58] R. Mariani, P. Fuhrmann, and B. Vittorelli. Fault-robust microcontrollers for

automotive applications. In Proc. 12th IEEE Int. On-Line Testing Symp. IOLTS

2006, 2006.

[59] M. Masmano, I. Ripoll, A. Crespo, and J. Real. TLSF: A New Dynamic Mem-

ory Allocator for Real-Time Systems. In Proceedings of the 16th Euromicro

Conference on Real-Time Systems (ECRTS ’04), pages 79–86, Washington, DC,

USA, 2004. IEEE Computer Society.

[60] S. Metzlaff, I. Guliashvili, S. Uhrig, and T. Ungerer. A dynamic instruction

scratchpad memory for embedded processors managed by hardware. In Pro-

ceedings of the 24th international conference on Architecture of computing sys-

tems, ARCS’11, pages 122–134, Berlin, Heidelberg, 2011. Springer-Verlag.

164

Bibliography

[61] S. Metzlaff, S. Uhrig, J. Mische, and T. Ungerer. Predictable dynamic instruction

scratchpad for simultaneous multithreaded processors. In Proceedings of the 9th

MEDEA workshop, MEDEA ’08, pages 38–45, New York, NY, USA, 2008.

ACM.

[62] J. Mische, I. Guliashvili, S. Uhrig, and T. Ungerer. How to Enhance a Super-

scalar Processor to Provide Hard Real-Time Capable In-Order SMT. In 23rd

International Conference on Architecture of Computing Systems (ARCS 2010),

Hannover, Germany, Feb. 2010.

[63] J. Mische, S. Uhrig, F. Kluge, and T. Ungerer. Exploiting Spare Resources of

In-order SMT Processors Executing Hard Real-time Threads. In IEEE Interna-

tional Conference on Computer Design 2008 (ICCD 08), pages 371–376, Lake

Tahoe, CA, USA, Oct. 2008.

[64] O. Moreira, F. Valente, and M. Bekooij. Scheduling multiple independent hard-

real-time jobs on a heterogeneous multiprocessor. In Proceedings of the 7th

ACM & IEEE international conference on Embedded software, EMSOFT ’07,

pages 57–66, New York, NY, USA, 2007. ACM.

[65] NEC. V850E2R-V3 32-bit Microprocessor Core Architecture, Preliminary

UserŠs Manual, 2009.

[66] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair queuing memory

systems. In MICRO, USA, 2006.

[67] R. Obermaisser, C. El-Salloum, B. Huber, and H. Kopetz. From a federated to

an integrated automotive architecture. In IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 2009.

[68] Y. Oh and S. H. Son. Tight performance bounds of heuristics for a real-time

scheduling problem. Technical report, Charlottesville, VA, USA, 1993.

[69] Y. Oh and S. H. Son. Allocating fixed-priority periodic tasks on multiprocessor

systems. Real-Time Syst., 9(3):207–239, 1995.

165

Bibliography

[70] M. Paolieri, E. Quinones, F. J. Cazorla, G. Bernat, and M. Valero. Hardware

support for WCET analysis of hard real-time multicore systems. In ISCA, 2009.

[71] M. Paolieri, E. Quinones, F. J. Cazorla, and M. Valero. An analyzable memory

controller for hard real-time CMPs. In Embedded System Letter, 2009.

[72] R. Pellizzoni and M. Caccamo. Toward the predictable integration of real-time

COTS based systems. In RTSS ’07: Proceedings of the 28th IEEE Interna-

tional Real-Time Systems Symposium, pages 73–82, Washington, DC, USA,

2007. IEEE Computer Society.

[73] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele. Worst

case delay analysis for memory interference in multicore systems. In DATE,

2010.

[74] C. Pitter. Time predictable cpu and dma shared memory access. In In Inter-

national Conference on Field-Programmable Logic and its Applications (FPL

2007, 2007.

[75] C. Pitter and M. Schoeberl. Towards a java multiprocessor. In Proceedings of

the 5th international workshop on Java technologies for real-time and embedded

systems, JTRES ’07, pages 144–151, New York, NY, USA, 2007. ACM.

[76] C. Pitter and M. Schoeberl. A real-time java chip-multiprocessor. ACM Trans.

Embed. Comput. Syst., 10:9:1–9:34, August 2010.

[77] J. Poovey. Characterization of the EEMBC Benchmark Suite. North Carolina

State University, 2007.

[78] I. Puaut and C. Pais. Scratchpad memories vs locked caches in hard real-time

systems: a qualitative and quantitative comparison. Technical report, IRISA,

Paris, France, October 2006.

[79] S. Rixner. Memory controller optimizations for web servers. In MICRO, 2004.

166

Bibliography

[80] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory

access scheduling. In ISCA, 2000.

[81] C. Rochange, A. Bonenfant, P. Sainrat, M. Gerdes, J. Wolf, T. Ungerer, Z. Petrov,

and F. Mikulu. WCET Analysis of a Parallel 3D Multigrid Solver Executed on

the MERASA Multi-Core. In B. Lisper, editor, 10th International Workshop

on Worst-Case Execution Time Analysis (WCET 2010), volume 15 of OpenAc-

cess Series in Informatics (OASIcs), pages 90–100, Dagstuhl, Germany, 2010.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. The printed version of

the WCET’10 proceedings are published by OCG (www.ocg.at) - ISBN 978-

3-85403-268-7.

[82] C. Rochange, A. Bonenfant, P. Sainrat, M. Gerdes, J. Wolf, T. Ungerer, Z. Petrov,

and F. Mikulu. Wcet analysis of a parallel 3d multigrid solver executed on

the merasa multi-core. In Workshop on Worst-Case Execution-Time Analysis in

conjunction with ECRTS, 2010.

[83] J. Rosen, A. Andrei, P. Eles, and Z. Peng. Bus access optimization for pre-

dictable implementation of real-time applications on multiprocessor systems-

on-chip. In RTSS, 2007.

[84] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling analysis of real-time sys-

tems with precise modeling of cache related preemption delay. In ECRTS, pages

41–48, 2005.

[85] Tasking. Tricore v2.2 C Compiler, Assembler, Linker Reference Manual, 2005.

[86] L. Thiele and R. Wilhelm. Design for time-predictability. In Design of Systems

with Predictable Behaviour, 2004.

[87] S. Uhrig, S. Maier, and T. Ungerer. Toward a processor core for real-time capable

autonomic systems. In Proc. Fifth IEEE International Symposium on Signal

Processing and Information Technology, pages 19–22, 2005.

167

Bibliography

[88] B. Verghese, A. Gupta, and M. Rosenblum. Performance isolation: sharing and

isolation in shared-memory multiprocessors. In ASPLOS, New York, NY, USA,

1998.

[89] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and B. Jacob. Dram-

sim: a memory system simulator. SIGARCH Comput. Archit. News, 2005.

[90] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B. Whalley,

G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. P.

Puschner, J. Staschulat, and P. Stenström. The worst-case execution-time prob-

lem - overview of methods and survey of tools. ACM Trans. Embedded Comput.

Syst., 7(3), 2008.

[91] J. Wolf, M. Gerdes, F. Kluge, S. Uhrig, J. Mische, S. Metzlaff, C. Rochange,

H. Cassé, P. Sainrat, and T. Ungerer. RTOS Support for Parallel Execution of

Hard Real-Time Applications on the MERASA Multi-Core Processor. In Pro-

ceedings of the 13th IEEE ISORC 2010, pages 193–201. IEEE Computer Soci-

ety, May 2010.

[92] W. Wolf. High-Performance Embedded Computing. Morgan Kaufmann, 2007.

168

APPENDIX A

Publications

A.1 Conferences

• Marco Paolieri, and Riccardo Mariani. Towards Functional-Safe Timing-Dependable

Real-Time Architectures. In Proceedings of the 17th IEEE International On-

Line Testing Symposium (IOLTS’11). Athens, Greece, July 13-15, 2011.

• Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, Robert I. Davis, and

Mateo Valero. IA3: An Interference Aware Allocation Algorithm for Multicore

Hard Real-Time Systems . In Proceedings of the 17th IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS ’11). Chicago,

IL, USA, April 12-14, 2011.

• Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, Julian Wolf, Theo

Ungerer, Sascha Uhrig, and Zlatko Petrov. A Software-Pipelined Approach

to Multicore Execution of Timing Predictable Multi-Threaded Hard Real-Time

Tasks . In Proceedings of the 14th IEEE International Symposium on Object/

169

Appendix A. Publications

Component/ Service-oriented Real-time Distributed Computing (ISORC ’11).

Newport Beach, CA, USA, March 28-31, 2011

• Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, Guillem Bernat, and

Mateo Valero. Hardware support for WCET analysis of hard real-time multi-

core systems. In Proceedings of the 36th annual International Symposium on

Computer Architecture (ISCA ’09). Austin, TX, USA, June 20-24, 2009

A.2 Journals

• Theo Ungerer, Francisco J. Cazorla, Pascal Sainrat, Guillem Bernat, Zlatko

Petrov, Hugues Casse, Christine Rochange, Eduardo Quiñones, Sascha Uhrig,

Mike Gerdes, Irakli Guliashvili, Michael Houston, Florian Kluge, Stefan Met-

zlaff, Jorg Mische, Marco Paolieri and Julian Wolf. MERASA: Multi-Core Ex-

ecution of Hard Real-Time Applications Supporting Analysability. In the IEEE

Micro 2010, Special Issue on European Multicore Processing Projects, Vol. 30,

No. 5, October 2010

• Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, and Mateo Valero.

An Analyzable Memory Controller for Hard Real-Time CMPs. In the IEEE

Embedded Systems Letter (ESL), Vol. 1, No. 4. December 2009.

A.3 Workshops

• Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, and Mateo Valero.

Effcient Execution of Mixed Application Workloads in a Hard Real-Time Mul-

ticore System. In Reconciling Predictability with Performance (RePP) Work-

shop, within the Embedded System Week (ESWeek ’09), October 11-16, 2009.

170

A.4. Posters

A.4 Posters

• Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, and Mateo Valero.

A Multi-core Architecture for Safety Critical Real-time Embedded Systems. In

PhD Forum at Design, Automation & Test in Europe (DATE), Grenoble, France.

March, 2011.

• Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, and Mateo Valero.

Multicore Architecture for Critical Real-Time Embedded Systems. In Hipeac

Innovation Event, Edinburgh, UK. May, 2010. [Best Poster Award]

• Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, and Mateo Valero.

Multicore Architecture for Hard Real-Time Systems. In Hipeac ACACES Sum-

mer School, Terrasa, Spain. July, 2009.

A.5 Submitted Papers

• Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, and Mateo Valero.

Timing Effects of the Memory System in Real-Time Multicore Architectures: Is-

sues and Solutions. Submitted to ACM Transactions on Embedded Computing

Systems (TECS).

• Marco Paolieri, Jörg Mische, Stefan Metzlaff, Mike Gerdes, Eduardo Quiñones,

Sascha Uhrig, Francisco J. Cazorla, Mateo Valero, and Theo Ungerer. A Hard

Real-Time Capable Multi-Core SMT Processor. Submitted to ACM Transac-

tions on Embedded Computing Systems (TECS).

171

Appendix A. Publications

172

APPENDIX B

Glossary

AC Address Computation Stage

ALU Arithmetic Logic Unit

AUTOSAR Automotive Open System Architecture

AXI Advanced eXtensible Interface

BI Block of Instructions

BRU Bank Remapping Unit

CA Collision Avoidance

DE Decode Stage

DDR Double-Data-Rate

DRAM Dynamic RAM

EDF Earliest Deadline First

173

Appendix B. Glossary

ESA European Space Agency

FE Fetch Stage

FPU Floating Point Unit

HRT Hard Real-time Task

IA3 Interference-Aware Allocation Algorithm

ICBA Intra-Core Bus Arbiter

ICU Interference Control Unit

IMA Integrated Modular Avionics

IP Intellectual Property

LID Longest Issue Delay

MCU Microcontroller Unit

MEM Memory Stage

MOET Maximum Observed Execution Time

NGMP Next Generation Multipurpose Microprocessor

NHRT Non Hard Real-time Task

OS Operating System

PD Pre-decode Stage

RAM Random Access Memory

RET Request Execution Time

RR-D Data Register Read Stage

RR-A Address Register Read Stage

174

RTCMC Real-Time Capable Memory Controller

RTL Register Transfer Level

SDRAM Synchronous Dynamic RAM

SMT Simultaneous Multithreading

SoC System-on-Chip

SRAM Static RAM

TaCMU Timing-aware Coverage Monitor Unit

TDM Time-Division Multiplexing

TLP Thread-Level Parallelism

UBD Upper Bound Delay

UAV Unmanned Aerial Vehicle

WB Write Back Stage

WCET Worst-Case Execution Time

XCBA Inter-Core Bus Arbiter

175

