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Resumen 
 

A medida que la demanda energética mundial continúa en ascenso, se pronostica que la 

participación de la energía solar fotovoltaica en el marcado eléctrico continuará en ascenso, con 

las celdas solares de silicio cristalino (c-Si) como principal contribuidor dado su coste 

competitivo y su facilidad de escalamiento. Las celdas solares de c-Si pueden ser consideradas 

un producto maduro y altamente industrializado cuya tecnología de estado del arte –heterounión 

con capa delgada de silicio amorfo hidrogenado (HIT)– han alcanzado eficiencias de conversión 

record de 26.6%, muy cercanas al límite práctico de 29.4% (para una única unión p/n). En 

consecuencia, la investigación y desarrollo actuales están abordando las limitantes restantes en 

eficiencia y costes, incluyendo la reducción de (1) la recombinación de portadores en materiales 

altamente dopados, (2) la absorción parásita debido a energías de banda prohibida (Egap) 

insuficientes y (3) los procesos térmicos (un factor crítico para obleas delgadas de 100 micras o 

menos, altamente sensibles a la temperatura). 

 

En paralelo, tecnologías de capa delgada (e.g. orgánicos y perovskitas) han introducido un gran 

número de materiales selectivos a electrones o huecos, libres de dopantes y cuyas propiedades 

optoelectrónicas son comparables o superiores a las capas dopadas tipo-n o tipo-p usadas de 

manera estándar en c-Si. La naturaleza química de estos materiales, que abarcan polímeros 

orgánicos, compuestos alcalinos/alcalinotérreos y óxidos de metales de transición (TMOs), 

permiten su depósito mediante procesos a baja temperatura (100 ºC) y presión ambiente, 

permitiendo una posible reducción de costes y complejidad del proceso. Es así que esta tesis 

explora heterouniones novedosas entre c-Si y dichos materiales de contacto selectivos, poniendo 

especial énfasis en capas delgadas de TMOs cuya energía de band prohibida (>3 eV), pasivación 

superficial y alta función de trabajo (>5 eV) permiten su utilización como contactos frontales, 

transparentes, pasivantes y selectivos a huecos en celdas con substrato tipo-n (n-Si). 

 

La idea de dispositivos TMO/n-Si híbridos resultó de manera natural dada la experiencia previa 

de nuestro grupo de investigación en celdas solares tanto de c-Si como orgánicas, motivados 

además por el concepto más simple de celdas solar que involucra un material absorbedor (c-Si) y 

dos contactos adyacentes (tipo-n y tipo-p) para la separación y extracción selectiva de 

portadores. En este modelo simplificado, la separación de portadores mayoritarios y minoritarios 

ocurre mediante gradientes de conductividad localizados en cada uno de los contactos, de 

manera que la eficiencia final es completamente determinada por la resistencia de contacto de 
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mayoritarios (ρc) y la corriente de recombinación de minoritarios (J0), siempre y cuando el resto 

de las variables de diseño hayan sido optimizadas. 

 

Con este propósito, se realizó un estudio comparativo entre tres TMOs evaporados térmicamente 

(V2O5, MoO3 and WO3) que permitió correlacionar su composición química con la 

conductividad, transmitancia óptica, pasivación y resistencia de contacto de capas delgadas sobre 

sustratos de n-Si. La variabilidad de estas propiedades con el grosor de las capas, su exposición 

al aire o a recocidos de alta temperatura también fue estudiada. En general, V2Ox tuvo un mejor 

desempeño que el resto de los óxidos al obtener mayores pseudo-voltajes de circuito abierto (i.e. 

menores J0) y menores resistencias de contacto (ρc), traduciéndose en una mayor selectividad. 

Posibles mejoras mediante intra-capas delgadas pasivantes también fueron exploradas, 

incluyendo SiOx (crecido químicamente) y carburos de silicio amorfo hidrogenado a-SiCx:H 

(depósito químico en fase vapor asistido por plasma a 300 ºC). 

 

En seguida, un estudio detallado de la interface TMO/c-Si fue llevado a cabo mediante 

microscopia de electrones, espectrometría de masas de iones secundarios y espectroscopia 

fotoelectrónica de rayos-x, identificando dos contribuciones a la pasivación superficial: (1) un 

componente químico, demostrado por la presencia de una inter-capa de SiOx formada mediante 

reacción química durante el depósito del TMO; y (2) un componente de “efecto de campo”, que 

es resultado de la fuerte inversión de la superficie (p+/n-Si) inducida por la gran disparidad en 

funciones de trabajo entre ambos materiales. Bajo esta consideración, se propuso un diagrama de 

bandas para la heterounión TMO/SiOx/n-Si que refleja los posibles mecanismos de pasivación y 

transporte de cargas. 

 

Acto seguido, se implementaron dichas heterouniones como contactos tipo-p frontales en celdas 

solares finalizadas (tanto en substratos n-Si pulidos y texturizados), con la estructura Ag/ITO(80 

nm)/TMO (15 nm)/n-Si, donde el ITO –óxido de indio y estaño– sirve de capa antirreflejo 

conductora y la plata (rejilla metálica) como electrodo. Para el contacto tipo-n trasero, capas de 

a-SiCx:H dopado (20 nm) fueron utilizadas en dos configuraciones (dopado puntual por láser y 

contacto en área completa). El mejor desempeño se obtuvo para las celdas de V2Ox/n-Si, 

caracterizadas por voltajes de circuito abierto (VOC) cercanos a 660 mV y una eficiencia máxima 

de 16.5%, valores relativamente altos si se considera el bajo grosor de la capa de TMO y la 

simplicidad del proceso de depósito. La caracterización adicional de estos dispositivos reveló 

factores de idealidad cercanos a 1 y una barrera interna de potencial mayor a 700 mV, 
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comprobando la buena calidad de la unión p+/n-Si inducida. Además, ganancias en fotocorriente 

de ~1 mA/cm2 (para el rango de longitudes de onda de 300–550 nm) fueron directamente 

atribuidas a las diferencias en energías de banda prohibida entre el TMO (>2.5 eV) y la capa 

referencia de a-SiCx:H (~1.7 eV), confirmando el gran potencial de aplicación de este tipo de 

heterouniones. 

 

Bajo un enfoque secundario, contactos tipo-p basados en soluciones poliméricas de PEDOT:PSS 

fueron también caracterizados para sus propiedades optoelectrónicas y de pasivación en 

heterouniones con n-Si, comparando dos productos comerciales (HTL Solar y PH1000). Dados 

una mayor pasivación y menor resistencia de contacto para HTL Solar, se obtuvo la mejor 

eficiencia en solo 11.6%, sufriendo grandes pérdidas de VOC y factor de forma debido al 

recubrimiento no uniforme de la superficie texturizada. Sin embargo, estos dispositivos no 

utilizaron la capa de ITO, confirmando la viabilidad de nuevos conceptos que no utilizan este 

material escaso y costoso (indio). 

 

Finalmente, vale la pena enfatizar el alto grado de innovación en este proyecto de tesis, 

reportando por primera vez las propiedades de estos materiales de contacto alternativos en el 

contexto de la fotovoltaica de silicio cristalino, contribuyendo a una comprensión más 

generalizada del diseño y operación de celdas solares. 
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Summary 
 

As the global energy demand continues to grow, the share of solar photovoltaic (PV) energy in 

the electricity market is projected to rise steadily, with crystalline silicon (c-Si) solar cells as the 

largest contributor due to its competitive prices and scalability. C-Si solar cells can be 

considered a highly industrialized and mature product whose state-of-the-art technology, 

heterojunctions with intrinsic/doped thin films of hydrogenated amorphous silicon (HIT), have 

achieved a record conversion efficiency of 26.6% that is not far from the practical limit of 29.4% 

(for single p/n junction devices). Accordingly, current research and development are addressing 

some remaining efficiency and cost limitations, including the reduction of (1) carrier 

recombination in highly doped materials, (2) parasitic absorption by narrow band gap films and 

(3) high temperature energy-intensive processing (critical for wafer thicknesses below 100 µm). 

 

In parallel, thin-film PV (e.g. organics and perovskites) have introduced a large number of 

dopant-free, hole- or electron-selective materials with optoelectronic properties that are 

comparable or superior to standard p- and n-doped layers in c-Si. The chemical nature of these 

materials, comprising organic polymers, alkali/alkaline earth compounds and transition metal 

oxides (TMOs), also allows for low-temperature (100 ºC) vacuum-free deposition techniques 

that could potentially reduce costs and processing complexity. Consequently, this thesis work 

explores novel heterojunctions between c-Si and these carrier-selective contact materials, putting 

special emphasis on TMO thin films whose wide energy band gap (>3 eV), surface passivation 

and large work function (>5 eV) characteristics permit their utilization as 

transparent/passivating/hole-selective front contacts in n-type c-Si (n-Si) solar cells.  

 

The idea of a hybrid TMO/c-Si device came intuitively given our research group’s previous 

experience in c-Si and organic PV devices, motivated by the simplest solar cell concept that 

incorporates a photovoltaic absorber (c-Si) and two adjacent contacts (p- and n-type) for 

selective carrier separation and extraction. In this simplified model, majority/minority carrier 

separation occurs via conductivity gradients at each selective contact, in a way that the final 

conversion efficiency is completely determined by the majority carrier contact resistance (ρc) and 

the minority carrier recombination current (J0), with all other design parameters being at an 

optimal value. 

To this purpose, a comparative study among three thermally evaporated TMOs (V2O5, MoO3 and 

WO3) allowed correlating their chemical composition with thin film conductivity, optical 
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transmittance, passivation potential and contact resistance on n-Si substrates. The variation of 

these properties with film thickness, air exposure, temperature annealings and sputtered 

(damaging) overlayers was also studied. Overall, V2Ox outperformed the other oxides by 

obtaining a higher implied open-circuit voltage (i.e. a lower recombination current J0) and a 

lower contact resistance (ρc), translating into a higher selectivity. Performance improvements by 

additional passivation interlayers were also explored, namely SiOx ultra-thin films (deposited by 

low-temperature ambient-pressure chemically methods) and hydrogenated amorphous silicon 

carbide a-SiCx:H (deposited by plasma-enhanced chemical vapor deposition at 300 ºC).  

 

Next, a thorough study of the TMO/c-Si interface was performed by electron microscopy, 

secondary ion-mass spectrometry and x-ray photoelectron spectroscopy, identifying two separate 

contributions to the observed passivation: (1) a chemical component, as evidenced by a thin SiOx 

interlayer naturally-grown by chemical reaction during TMO evaporation; and (2) a “field-

effect” component, a result of a strong inversion (p+) of the n-Si surface, induced by the large 

work function difference between both materials. Considering all this, an energy band diagram 

for the TMO/SiOx/n-Si heterojunction was proposed, reflecting the possible physicochemical 

mechanisms behind c-Si passivation, heterojunction formation and carrier transport. 

 

Then, the characterized TMO/n-Si heterojunctions were implemented as front hole contacts in 

complete solar cell devices (planar and randomly-textured front surfaces), using thin TMO films 

(15 nm) contacted by an indium-tin oxide (ITO) anti-reflection/conductive electrode and a silver 

finger grid. As rear electron contacts, n-type a-SiCx:H thin films (20 nm) were used in localized 

(laser-doped) and full-area configurations, the former contacted by titanium/aluminum while the 

latter by ITO/silver electrodes. The best performance solar cells were obtained for V2Ox/n-Si 

heterojunctions, characterized by an open-circuit voltage (VOC) close to 660 mV and a maximum 

conversion efficiency of 16.5%, both rather high values considering the thinness of the TMO 

film and the simplicity of the deposition process. Additional characterization by Suns-VOC and 

impedance spectroscopy confirmed the good quality of the induced p+/n-Si junction, with 

ideality factors close to 1 and built-in potentials above 700 mV. Moreover, a photocurrent gain 

of ~1 mA/cm2 (300–550 nm wavelength range) was directly attributed to the difference in 

energy band gaps between TMOs (>2.5 eV) and the a-SiCx:H reference (~1.7 eV), corroborating 

the large application potential for this kind of heterojunctions. 
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On a sideline, hole-selective contacts based on PEDOT:PSS polymer solutions were also 

characterized for their optoelectronic and passivation properties in n-Si heterojunctions. Of the 

two commercial products studied (HTL Solar and PH1000), HTL Solar exhibited a larger 

passivation and a lower contact resistivity, resulting in a moderate conversion efficiency of 

11.6% that suffered from VOC and fill factor losses (most probably attributed to an uneven 

coverage of the randomly-textured surface during the spin-coating process). Yet, these devices 

were free of an ITO layer, pointing to future concepts that avoid the utilization of this expensive 

and limited element (indium). 

 

Finally, it is worth emphasizing the high degree of innovation in this thesis project, reporting for 

the first time the properties of these alternative contact materials in the context of c-Si 

photovoltaics and contributing to a more generic understanding of solar cell operation and 

design.   
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Abbreviations 
 

Chapter 1  

PV: photovoltaic c-Si: crystalline silicon 

CIGS: Copper-Indium-Gallium Selenide a-Si:H: hydrogenated amorphous silicon 

ARC: anti-reflection coating BSF: Back-surface field 

TCO: Transparent conductive oxide PBDT: Poly(benzodithiophene) 

P3HT: Poly(3-hexylthiophene-2,5-diyl) MAPbI3: Methylammonium lead iodide 

PCBM: Phenyl-C61-butyric acid methyl ester SHJ: silicon heterojunction 

PTAA: Polytriarylamine IBC: Interdigitated back-contact solar cell 

HIT: Heterojunction with intrinsic thin-film  Egap: Energy band gap (eV) 

EC: Conduction band energy (eV) EV: Valence band energy (eV) 

PERL/T: Passivated-emitter rear locally/totally-

diffused solar cell 

PEDOT:PSS:Poly(3,4-ethylenedioxythiophene)-

poly(styrenesulfonate) 

  

Chapter 2  

η: electrochemical potential (eV) µchem: the chemical potential (eV) 

φ: electric potential (eV) e / h: electron/hole 

γ: photon Ē: electric field (V/cm) 

q: carrier elementary charge (C) EF: Fermi energy level (eV) 

EF0: equilibrium Fermi energy level (eV) EFn / EFp: quasi-Fermi energy levels 

Φ: work function (eV) Ec / Ev: conduction/valence band (eV) 

Je / Jh: current density (A/cm2) V: voltage (V) 

∇: the gradient operator σe / σh: conductivity (S/cm, Ω-1cm-1) 

k: Boltzmann constant (eV/K) Jrec: recombination current (A/cm2) 

n: ideality factor kT/q: thermal voltage (V) 

φB: barrier height (eV) Jph: photocurrent (A/cm2) 

VOC: open-circuit voltage (V) JSC: short-circuit current (A/cm2) 

Vbi: built-in voltage (V) N: volume concentration (cm-3) 

n / p : electron/hole concentrations (cm-3) ni: intrinsic carrier concentration 

µ: carrier mobility (cm2/Vs) D: carrier diffusivity (cm2/s) 

MPP: maximum power point P: power  (W/cm2) 

FF: fill factor (%) PCE: power conversion efficiency (%) 

RS / RP: series/parallel resistance (ΩŊcm2) RC: contact resistance (Ω) 

Rsh: sheet resistance (Ω/�) λ: wavelength (nm) 

α: absorption coefficient (cm-1) n: refractive index 

W: absorber thickness (µm) A: absorptance (%) 
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Z: optical path enhancement factor SRH: Shockley-Read-Hall 

S: surface recombination velocity (cm/s) τeff : effective lifetime (µs) 

σCCS: electron/hole capture cross section  (~10-15 

cm2) 

NC / NV: effective density of states in the 

conduction/valence bands (cm-3) 

R0: cumulative recombination (cm-2 s-1) Dit: density of surface states (cm-2) 

vth: thermal velocity (~107 cm/s) φs: surface band bending (V) 

SΦ: index of interface behavior χ: electron affinity (eV) 

ΦB: metal-semiconductor barrier (V) Δd: interface dipole (V) 

I: ionization potential (eV) S10: logarithmic selectivity 

CA: Auger recombination rate constant (1.66 x10-

30 cm-6) 

JTE: thermionic emission current pre-factor 

(A/cm2) 

NC / NV: effective density of states in the 

conduction/valence bands (cm-3) 

J0: dark saturation/thermal generation current 

(A/cm2) 

JM: majority carrier current densities (A/cm2) Jm: minority carrier current densities (A/cm2) 

fc: contacted area fraction ρc: specific contact resistance (ΩŊcm2) 

  

Chapter 3  

RCA: wafer cleaning standard ITO: indium-tin oxide 

R: Reflectance (%) TMAH: tetramethyl ammonium hydroxide 

SEM: scanning electron microscopy r: laser crater radius 

RF: radio frequency DMSO: dimethyl-sulfoxide 
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1 Introduction 
 

On how the current global energy problem can be alleviated by solar photovoltaic 

technology: lowering its fabrication cost through innovative processes and novel 

carrier-selective materials it’s the motivation of this thesis.   

 

1.1  Context 
 

Ever since the first commercial oil field began exploitation in the late 1800s, a cheap and 

apparently unlimited source of energy made possible a second industrial revolution whose prime 

technological commodity, the internal combustion engine, led to modern electricity generation 

and land transportation. However, the extraction of millions of tons of hydrocarbons from the 

underground has had the expected consequence of perturbing the carbon cycle, releasing into 

other natural sinks (atmosphere, oceans) a carbon reservoir that was probably meant to stay 

untouched. Although accounting techniques for global carbon inventories are complex and 

widely spread, it has become clear that CO2 in the atmosphere is increasing as a consequence of 

anthropogenic green house emissions, which could lead to an average increase in global 

temperatures of 1–2 ºC by the year 2050 under current energy consumption scenarios [1]. Given 

that energy helps to satisfy basic needs (cooking, heating) and triggers productivity and 

socioeconomic growth, it is also clear that the global warming problem is being catalyzed by the 

exponential energy demand of an exponentially growing population (Fig. 1.1). 

 

 

 

 

 

 

 

 

Figure 1.1 Evolution of the global energy consumption (Gton oil-equivalents), CO2 emissions (Gton) and population 

during the last 50 years [2]. 
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In addition to the unsustainability aspect, this situation is exacerbated by the unequal access to 

energy sources, leading to large disparities in human development. A snapshot of the Human 

Development Index (HDI) versus energy consumption per capita (Fig. 1.2) poses the following 

questions. How to provide electricity to 1.2 billion people that has no access to it? How to 

increase the welfare of 2.7 billion people that still depend on biomass for heating and cooking 

[3]? What will be the environmental impact of India and China when they reach the living 

standard of European countries? Even though the strategy to overcome this problematic situation 

is multifaceted, the technological answer is one and only: renewable energies, which are non-

polluting, unlimited and widely accessible, will have to substitute fossil-based energy sources. 

  

 

 

 

 

 

 

 

 
Figure 1.2 Human Development Index (HDI) vs. energy consumption per capita (in ton of oil equivalents, toe) for the 

year 2010. Size of bubble represents country population. Adapted from [4]. 

 

Consequently, renewable energy installations have boomed in the past 15 years, globally 

accounting for 19.2% of the final energy needs and 23.7% of the electricity market [5]. 

Furthermore, the share of renewables in electricity generation is expected to increase to 60% by 

2040, with wind and solar comprising more than half of new installed capacity [6]. In particular, 

solar is the largest energy resource with 120×103 TWh reaching the Earth surface every hour, 

enough to satisfy the global energy needs during a whole year. 

 

1.1.1  Solar photovoltaic energy 

 

Solar energy can be harvested in two different ways: 1) via temperature gradients, storing heat in 

a fluid and later releasing it by mechanical (steam turbine) or thermal (hot-water irradiators) 

processes; and 2) via electrochemical gradients, transforming the energy of the solar spectrum 

directly into electricity, a process known as photovoltaic (PV) effect. Ever since the first PV 
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solar cell was invented in the 1950s, research has allowed going from a mere 6% conversion 

efficiency to a record 46%1 [7]. This has allowed solar cells to become a commercial product and 

cost-competitive technology, totaling an installed capacity of 227 GW 2 worldwide at the end of 

2015. During the same year, one third of new electrical capacity was photovoltaic, most of it in 

China and Japan [5]. The impulse behind this massive deployment is being driven by: 

 Minimum operational and maintenance costs along with a steady decrease in PV module ·

prices from 10 to 0.6 €/Wpeak in the past 25 years [8]. 

 High resource availability, making PV financially viable even in countries with low solar ·

irradiation (such a Germany, the leading country in PV installations).  

 Installation flexibility as centralized grid-connected plants (>100 MW) or decentralized ·

(and sometimes grid-independent) stations (<100 kW).  

 Local and country level regulations with renewable energy targets, along with financial ·

schemes that favor its installation (feed-in tariffs, net-metering, etc.). 

 The capability to power zero-emission technologies, such as electric vehicles. ·

In essence, a solar cell consists of a semiconductor material that absorbs photons from the 

electromagnetic spectrum and generates charge carriers of opposite polarity, negative (n) 

electrons and positive (p) holes, whose flow results in a photocurrent (Fig. 1.3). Carrier 

separation occurs due to electrochemical gradients established by hole- and electron-selective 

contacts adjacent to the absorber [9]. The purpose of such contacts, accomplished by selectively 

doping the absorber (homojunction) or another semiconductor (heterojunction), is to 

preferentially conduct one type of carrier while blocking the other. Therefore, each carrier is 

collected in opposite metal electrodes (anode and a cathode). Failure to collect carriers results in 

electron-hole recombination, measured as a reduction of the effective carrier lifetime. 

Recombination is primarily promoted by structural defects in the absorber, either on its bulk 

(grain boundaries, impurities) or its surface (dangling bonds), and it is the most important 

detrimental factor to solar cell performance.  

                                                
1 6% for silicon single junction device; 46% for III-V semiconductor four-junction device under light concentration. 
2 1 GW (giga-watt) = 1,000,000 kW (kilo-watt), average power consumption in 200,000 households. 
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Taking as an example a classic p-type c-Si solar cell [10], where the boron-doped wafer is the 

main absorber3, the front electron contact (emitter) is formed by thermally diffusing phosphorous 

from a gas source at a precise concentration profile, turning the surface into n-type. Similarly, 

the rear hole contact (i.e. the back-surface field, BSF) is formed by p+-doping with aluminum 

(Al) metal during a contact-firing step. Following photon absorption, photogenerated carriers are 

then collected by a pair of metal electrodes, a silver (Ag) front grid and the Al rear electrode. 

Additional layers that improve device performance inclide anti-reflection coatings (ARC) to 

maximize light absorption, passivation layers to decrease carrier recombination at the surfaces 

and transparent conductive oxides (TCO) for carrier collection. Under this simplified model, the 

basic structure of all PV technologies becomes evident in spite of the enormous differences in 

materials and architecture, as seen in Table 1.  

 

 

 

 
 

 

 
 

Figure 1.3 Elements of a solar cell 

 

Crystalline silicon (c-Si) is traditionally the semiconductor of choice in photovoltaic applications 

and accounts for 93% of the PV market, ¾ of which is multi-crystalline (Bridgman process) and 

the rest mono-crystalline (Czochralski process) [8]. The remaining 7% comprises thin-film 

semiconductor materials like cadmium telluride (CdTe), copper-indium-gallium diselenide 

(CuInGaSe2, or CIGS) and hydrogenated amorphous silicon (a-Si:H), materials whose higher 

absorption coefficient allows for thinner absorber layers compared to c-Si. As for PV 

technologies based on III-V elements, such as gallium arsenide (GaAs) and multi-junction 

devices, they are produced exclusively for high-end applications (light concentration, satellites), 

while organic PV devices are just in the initial commercialization phase [11].  

 

                                                
3 Although ∼35% of incident photons are absorbed in the first 0.3 µm (emitter region), the rest of the wafer is the main absorber.   
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Table 1.1 Material components of the main PV technologies under current development. 

Technology p-Contact Absorber n-Contact Electrodes 

c-Si Homojunction [10] Al doped (p+) B doped c-Si (p) P doped (n+) Al/Ag 

c-Si Heterojunction [12] B doped a-Si:H (p+) P doped c-Si (n) P doped a-Si:H (n+) TCO/Ag 

GaAs [13] Zn doped GaAs (p+) GaAs (p) Si doped GaAs (n+) Au-Be/Au-Ge 

a-Si:H [14] B doped a-Si:H (p+) a-Si:H (i) P doped a-Si:H (n+) TCO/Al 

CdTe [15] C:CuxTe (p+) CdTe (p) CdS (n) TCO/Ag 

CIGS [16] MoSe2 (p+) CuInGaSe2 (p) CdS (n) Mo/TCO 

Organic [17] PEDOT:PSS (p+) PBDT(p):PCBM(n) Mg (n+) Al 

Quantum Dots [18] PbS (p+) PbS (p) ZnO (n) TCO/Au 

Dye-sensitized [19] iodide/triiodide (p+) Ru organometallic (p) TiO2 (n) TCO/Pt 

Kesterite [20] Mo-ZnO (p+) Cu2ZnSnS4 (p) CdS:Zn (n) Mo/TCO 

Perovskite [21] PTAA (p+) MAPbI3 (p) TiO2 (n) TCO 

 

Since its conception in the 1950s, the development of thin-film PV has been oriented towards 

lowering fabrication (€/Wpeak) and produced energy costs (€/kWh). However, they offer 

additional advantages from a life-cycle4 perspective such as low environmental impact and short 

energy pay-back times, especially when energy-intensive process conditions such as vacuum and 

high temperatures are avoided (see appendix A for a further discussion of these assessment 

variables). This is as a direct result of a lower material utilization (<10 µm absorber) in 

comparison to c-Si (180 µm wafers), although real deployment costs are very similar for both 

technologies because of the higher industrial maturity of c-Si [8]. 

 

The most important and common parameter used to assess the viability of novel materials and 

new solar cell designs is the power conversion efficiency (PCE), defined as an output/input 

energy ratio (electric power/incident solar radiation). Every PV technology strives for high 

efficiencies even if it is not representative of their true potential, given that PCE is area-

dependent5 and not all cells are easily scalable into practical-size modules. Fig. 1.4 summarizes 

all PV technologies and their certified milestone conversion efficiencies. It is worth noting that 

c-Si efficiencies have been approximately steady since 1995 while new-coming perovskites have 

increased from 14% to 22% in only five years. 
                                                
4 Considering all the material/energy inputs and outputs that occur during fabrication, installation, operation and decommission. 
5 Organic PV demonstrations rarely exceed 1 cm2, while record efficiencies for c-Si have been achieved in 180 cm2. 
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Figure 1.4 Evolution of record conversion efficiencies by PV technologies [22]. 

 

1.1.2 Crystalline silicon solar cells 

 

For many years, the industrialization of c-Si PV has relied on Al BSF solar cells with p-type 

wafers that reach conversion efficiencies between 16% (multi c-Si) and 18% (mono c-Si) (Table 

1.2a). This design, although simple and economic, is severely limited by high recombination 

losses at the backend, where c-Si is in direct contact with Al [23]. These and other limitations 

were overcome in 1995 with the passivated-emitter rear locally-diffused (PERL) concept [24], 

with SiO2 passivating most of the wafer surface except for local openings where p+ (rear) and n+ 

(front) regions are in contact with the metal electrodes (Table 1.2b). Additionally, light 

absorption was maximized by an inverted pyramid patterning and a double ARC, resulting in a 

milestone conversion efficiency of 24% that remained, with minor differences, as the state-of-

the-art technology for 20 years.  

 

The next logical improvement in design was to maximize light absorption by eliminating the 

shadow losses from the front electrode grid and have both anode and cathode electrodes in the 

rear side of the device, known as interdigitated back-contact (IBC) solar cell (Table 1.2c). This 

concept, originally designed for light concentration applications in the 1970s [25], has 

demonstrated an efficiency of 25.2% and is currently being commercialized by SunPower [11]. 
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Table 1.2. Different c-Si solar cells architectures available on the market. 
 

 Architecture of c-Si solar cell  Characteristic improvement Record 
PCE/year 

 a) Al BSF 

Full-area rear p-contact. 

Screen-printed electrodes. 

Passivated front, local contacts. 

Contact-firing step. 

<19.5% / 

2016 

[23] 

 

 

b) PERL/PERT/PERC 

Passivated front/rear, local contacts. 

Double ARC/inverted pyramids. 

Screen-printed electrodes. 

Contact-firing step. 

25.0% / 

2015 

[11] 

 c) IBC 

Full area front/rear passivation. 

Rear local contacts.  

No front grid shadow losses. 

n-type wafer; no contact-firing. 

25.2% / 

2012 

[11] 

 

 

 

 

d) HIT 

Full area front/rear passivated 

contacts + TCO (ARC, electrode). 

a-Si:H deposition at T<250 ˚C. 

110 µm thick n-type wafer. 

24.7% / 

2014 

[12] 

 

 

 

 
From [26] 

e) HIT-IBC 

Full area front/rear passivation. 

Rear local contacts. 

No front grid shadow losses. 

a-Si:H deposition at T<250 ˚C. 

26.6% / 

2017 

 [27]  

 

 

For both IBC and PERL solar cells, up scaling to industry levels is complicated and expensive 

due to their multilayered structure and sub-millimeter intra-contact patterning. These 

shortcomings are resolved by silicon heterojunction technology, which utilizes a semi-insulating 

material to accomplish full-area passivation of the rear and front surfaces while permitting 

carrier transport. To achieve this, a thin bilayer (<20 nm) of intrinsic/doped a-Si:H is deposited 

on both sides of the c-Si wafer by plasma-enhanced chemical vapor deposition, using silane 

(SiH4) as gas precursor and boron/phosphorous sources as dopants. This results in a 

heterojunction with intrinsic thin-film (HIT) solar cell  (Table 1.2d), the state-of-the-art PV 

From [10] 

From [24] 

From [25] 

From [12] 
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technology currently commercialized by Panasonic with efficiencies above 24% [12]. Through 

the utilization of a thin-film material, the HIT design also benefits from a lower deposition 

temperature (T ~250 ˚C for a-Si:H) in comparison to standard thermal diffusion (T~900 ˚C). The 

most recent advance in SHJ technology combines the IBC and HIT concepts (Table 1.2d), 

profiting from no shadow losses and full-area passivation, recently attaining a record efficiency 

of 26.6% as disclosed by Kaneka Corporation [27]. 

 

Considering that state-of-the-art c-Si devices are not far from the practical efficiency limit of 

29.4% [28] 6, it could be said that the most serious technological challenges have been overcome. 

Yet, further improvements in efficiency will require a number of innovations for the near future, 

both in research and in industry [23,29,30]: 
 

 Given that c-Si wafers7 comprise 35–50% of the final module cost and 75% of the ·

manufacturing energy input [31], wafer thickness will continue to decrease below 180 

µm8. In this regard, kerf-less alternatives are being developed including direct casting 

[32], epitaxial growth [33] and film re-crystallization [34].  

 Materials with restrictive costs, such as screen-printing Ag pastes and indium-based ·

TCOs, could eventually be replaced by more Earth-abundant materials such as Cu plating 

[35] and Zn-based TCOs [36]. 

 Losses in photocurrent or photovoltage will be avoided as much as possible using the ·

following approaches: a) maximizing photon absorption through highly transparent front 

layers [37] coupled with advanced optics strategies such as nanotextured front [38] and 

rear surfaces [39]; b) minimizing recombination in the bulk and carrier-selective regions; 

c) minimizing contact resistivities in metal-semiconductor interfaces [40] and increasing 

TCO bulk conductivities [41] (although practical limits exist as every material has a finite 

conductivity). 

                                                
6 This practical limit is ~4% lower than the theoretical maximum of 33% (known as Shockley-Queisser limit) due to unavoidable 

Auger recombination losses and other technical limitations. 
7 Includes the production of metallurgical grade silicon (Siemens process), ingot formation and diamond-wire wafering. 
8 Considering that kerf losses during diamond-wire wafering account to ~100 µm for every cut wafer [23]. 
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 Since manufacturing simplicity favors higher throughputs, full-area depositions will be ·

preferred to localized or interdigitated designs [42], unless some of the patterning steps 

could be avoided or simplified.  

 N-type substrates will increase their market share due to higher effective lifetimes and ·

lack of light-induced degradation (caused by the formation of boron–oxygen complexes 

[23]). Nonetheless, no metallic element is capable of n+-doping an n-type wafer by 

simple contact-firing (as is the case of Al in p-type wafers), which means that most n-

type cells will continue to be fabricated with HIT/IBC architectures.  

 Finally, depending on the development of new deposition techniques, lower thermal ·

budgets will be preferred, mainly to increase compatibility with ultra-thin wafers but also 

to reduce energy consumption and cost [29,43]. This could be facilitated by novel 

heterojunctions between c-Si and other thin-film materials, in the same manner as a-

Si:H/c-Si heterojunctions led to the development of HIT technology. 

 

This latter point, the implementation of carrier-selective thin-film materials into c-Si 

heterojunction solar cells, constitutes the major motivation behind this thesis, as will be 

discussed next.  

 

 

1.2  Thesis motivation  
 

Revisiting the simplified solar cell model in Fig 1.3, it is clear that the p- and n-type layers used 

in c-Si absorbers act as ‘semi-permeable filters’ whose selectivity towards a particular charge 

carrier enables the separation of electrons from holes. However, the utilization of the carrier-

selective contact concept in c-Si PV is relatively new [9,44], even though it presents a more 

accurate interpretation of the underlying physics than the popular terminology emitter, base and 

back-surface field, adopted from the bipolar transistor field. For instance, no actual emission of 

carriers occurs during solar cell operation, whereas it has been shown that electric fields do not 

play a determining role under illumination conditions [9,44].   
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For the micro- and nano-technologies (MNT) group at UPC, these ideas came naturally as a 

result of our previous experience in organic PV and organic electronics9, two research fields 

where significant improvements in device performance can be attributed to the exploitation of 

selective contacts and their properties [45]. In this aspect, the experimental work performed in 

2013 during the master thesis [46] can be considered as a prelude to the present work, posing the 

following questions: Why not utilize dopant-free selective materials in c-Si heterojunctions? 

Could a semi-insulating metal oxide with n-type conductivity substitute phosphorous doping? 

Furthermore, could a semi-transparent conductive polymer work as front collecting electrode? 

What are the energetic and cost benefits of depositing selective contacts by low-

temperature/vacuum-free processes? 

 

In order to justify the selection of a particular carrier-selective material, it is useful to address the 

disadvantages attributed to boron- and phosphorous-doped layers. In this sense, the material of 

choice must have a few basic characteristics: 

Dopant-free: thermal diffusion at high doping concentrations increases carrier 

recombination and band gap narrowing [47]. Similarly, doped a-Si:H is highly 

recombinative and forcefully requires a buffer intrinsic layer [48]. Ideally, a dopant-free 

contact could avoid these undesirable effects while maintaining its selectivity. 

Passivating: insulator materials (SiNx, SiO2, Al2O3) are commonly used as surface 

passivants, but their insulating nature prevents carrier conduction. By using a 

semiconducting material with passivation properties (analog to a-Si:H), carriers can be 

extracted while keeping recombination and resistive losses to a minimum, yielding a 

passivating/selective contact [40,49]. 

Highly transparent: even though intrinsic/doped a-Si:H layers in HIT devices are no 

thicker than 20 nm, their optical transparency is far from optimal (energy band gap Egap 

~1.7 eV) resulting in parasitic absorption losses at the front of the device. Wider band 

gap (Egap >3eV) materials would be more transparent to the incident light and therefore 

more appropriate as selective contacts. 

                                                
9 Including Organic Light Emitting Diodes (OLEDs) and Organic Thin-Film Transistors (OTFTs). 
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Low-temperature deposited: as c-Si substrates become thinner, the probability of wafer 

warping and thermal strain between dissimilar materials increases [50]. In this sense, a 

multitude of carrier-selective materials can be deposited at ambient temperature and/or 

ambient pressure conditions, including solution-based processes [51]. This in turn 

reduces the cost and energy input of fabrication. 

Non-toxic/non-flammable: the dopant-carrying compounds used in homojunctions 

(POCl3/BBr3 from liquids) and heterojunctions (PH3/B2H6 in SiH4 gas mixtures) are 

usually toxic and/or flammable, making redundant safety measures mandatory10. The 

utilization of non-toxic/non-flammable dopant-free materials would greatly reduce 

process complexity and occupational safety considerations.  

Mechanically/chemically stable: the most important feature of c-Si solar cells is their 

stability (25 or more years expected lifetime). Any novel material must have good 

adherence/stability properties with c-Si and its contact electrodes, both during the 

fabrication and long-term operation of the device. 

 

Taking into account the evolution of c-Si technology up to date, and given the large variety of 

carrier-selective contacts complying with the above characteristics (Table 1.1), three types of 

materials will be considered as alternative contacts in this doctoral work: 
 

1) Transition metal oxides (inorganic), wide band gap semiconductors with marked p- or 

n-type characteristics and a broad range of work functions [52].  

2) Conductive polymers (organic) deposited by solution casting, of which PEDOT:PSS11 

is the hole-selective material ‘par excellence’ [53]. 

3) Alkali/alkaline earth compounds (inorganic), electric insulators which facilitate 

electron transport when used as thin layers in the semiconductor/metal interface [54]. 

 

                                                
10 Historical data (1994-2004) shows that 28% of incidents/injuries in PV industry are due to HF handling, 8% (including 4 

fatalities) due to precursor gases (SiHCl3, SiH4) and only 1% due to doping compounds [77]. 
11 Abbreviation for poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) 
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Fig. 1.5 shows the energy band diagram of the carrier-selective materials that will be studied in 

the course of this thesis, referenced to the valence (EV) and conduction (EC) band of c-Si. Also 

shown is the approximate work function Φ (Fermi level) of these materials, which dictates how 

they interact with either p- or n-type c-Si in order to form hole-selective (V2O5, MoO3, WO3, 

ReO3, NiO and PEDOT:PSS) or electron-selective (LiF,TiO2
12) contacts. In this sense, it is worth 

noting the relative abundance of hole-selective materials in the literature whereas electron-

selective materials are scarcer [52]. 

 

 

 

 

 

 

 
 
 

 
Figure. 1.5 Energy band diagram of c-Si and selected carrier-selective materials, showing their work function Φ (eV). 

 
1.2.1 State-of-the-art  

  

Given our group’s trajectory on HIT and IBC solar cell fabrication, the implementation of a 

dopant-free selective contact into a c-Si device was relatively straightforward. In a first proof-of-

concept at the end of 2013, MoO3 thin films (a frequently used hole-selective contact in organic 

PV) were thermally evaporated as a front contact in a full-area configuration followed by an ITO 

capping layer (similar to the HIT cell architecture), leading to a conversion efficiency of 12.5% 

[55]. Before this demonstration, only a few reports existed regarding TMO/c-Si hybrid devices, 

namely TiO2 [56] as an electron contact and none for TMO-based hole-contacts (except for 

TCO/n-Si devices [57]). In early 2014, Battaglia et al. published another proof-of-concept solar 

cell with MoO3-based hole-selective contacts, reaching a conversion efficiency of 14.3% [58]. 

                                                
12 TiO2 contacts deposited by atomic layer deposition (ALD) were developed in parallel to this thesis by other members of the 

MNT group, resulting in one publication (see Appendix C). 
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This initiated a trend in the development of TMO/c-Si devices, with MoO3 as a hallmark study 

case [59–61] but also including WO3 [62], V2O5 [63] and NiO [64], demonstrating a record 

efficiency of 22.5% for a MoO3 device using an a-Si:H passivating interlayer in a HIT-like 

configuration [65]. Most recent advances include IBC-like architectures [66,67] (19%  

conversion efficiency) and TMO deposition by solution-based processes [68,69]. 

 

For the case of hybrid polymer/c-Si devices, several precedents existed including poly(3-

hexylthiophene) (P3HT) [70] and PEDOT:PSS [71,72] as hole-selective contacts, of which an 

outstanding 20.6% conversion efficiency has been recently reported [73]. Heterojunctions with 

electron-selective contacts based on alkali/alkaline earth materials such as LiF [74] have been 

scarcer but with promising results approaching 20% conversion efficiency [75]. Most of the 

above reports have focused on n-type c-Si substrates, with all of them substituting only one type 

of carrier-contact (i.e. MoO3 instead of p-type a-Si:H) while using standard doping for the other 

(n-type a-Si:H).  However, showcase examples that substitute both carrier-contacts by dopant-

free materials have also been reported [66–68], attaining a record conversion efficiency of 19.4% 

in a MoO3/n-type c-Si/LiF device with a-Si:H and TiO2 passivating interlayers [76].  

 

 

1.3  Objective and thesis structure 
 

The main objective of this thesis is the implementation of dopant-free carrier-selective materials 

into c-Si solar cells as an alternative to boron/phosphorous doped layers, developing novel proof-

of-concept solar cell architectures that could potentially reduce the fabrication cost by simple 

low-temperature/vacuum-free processes while maintaining competitive conversion efficiencies.  

 

More specifically, this thesis project was undertaken in three parallel stages: 

I. Material characterization, focusing on the optoelectronic properties of TMOs and (in a 

minor degree) of PEDOT:PSS and LiF, with emphasis on the chemical nature of the 

heterojunction interface;  

II. Elucidation of the physics behind the passivation of the c-Si surface, the energy band 

structure and the carrier transport processes across the heterojunction; 
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III. Fabrication and characterization of finished solar cell devices, with attention to all 

relevant design variables.  

Accordingly, this thesis is divided in the following chapters: 

 

Chapter 2: Theoretical background 

A review on the solar cell operation principles 

is given, putting emphasis on electrochemical 

potentials as the driving force for current flow. 

The main performance parameters are defined, 

while the requirements for recombination, 

selectivity and contact resistivity justify the 

need for passivating-selective contacts. 

 

 

 

Chapter 3: Experimental methods 

This chapter describes the experimental 

methods for solar cell fabrication and 

characterization, including the techniques used 

for determining the optoelectronic, structural 

and compositional properties of the carrier-

selective materials under study. 

 

 

 

Chapter 4: Material characterization  

A thorough characterization of the structural 

and optoelectronic properties of transition 

metal oxides (TMOs) and PEDOT:PSS is 

presented, with emphasis on their applicability 

as hole-selective contacts in crystalline silicon 

solar cells. 

 

 

 

(1
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Chapter 5: Solar cell results  

The main performance parameters of solar cell 

devices are presented and correlated to the 

material optoelectronic properties, also 

determining the carrier transport mechanisms, 

thermal stability and built-in potential of the 

heterojunction. After the optimization of the 

rear contact, a 16.5% efficiency is obtained. 

 

 

 

Chapter 6: Conclusions 

This final chapter summarizes the main 

findings of this thesis work, resulting in an 

overall understanding of the properties and 

working principles of TMO/n-Si hetero- 

junctions and their application into novel solar 

cell devices.  
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2 Theoretical background  
 

A review on the solar cell operation principles is given, putting emphasis on 

electrochemical potentials as the driving force for current flow. The main 

performance parameters are defined, while the requirements for recombination, 

selectivity and contact resistivity justify the need for passivating-selective contacts. 

 

 

2.1 Solar cell operation principles 
 

The semiconductor physics that describe solar cell operation, as first established by W. Shockley 

in the 1950s, are based on the static and dynamic carrier balance across a p-n junction under 

excitation by an applied voltage and/or under illumination. Here, the general concepts and 

equations will be given with special emphasis on solar cell design, whereas further details can be 

found in the references [1,2].  

   

2.1.1 Electrochemical potentials as a driving force 

 

The driving forces behind electron (e) and hole (h) transport can be described by a simple system 

comprising a semiconductor material (e.g. n-type) sandwiched between two metal contacts 

labeled source (S) and drain (D), as depicted in the energy band diagram in Fig. 2.1, where the y-

axis is the system energy (in eV) [3]. Both contacts act as carrier reservoirs, while the n-type 

semiconductor is merely a supplier of conduction states determined by an effective volumetric 

density. By definition, the semiconductor and contacts have a finite electrochemical potential η : 

𝜂 = 𝜇!!!" + 𝑞𝜑  (2.1) 

where µchem is the chemical potential (a function of electron concentration), φ the electric 

potential (a function of the electric field Ē) and q is the carrier elementary charge (negative for e, 

positive for h). In semiconductor physics, electrochemical potentials are equivalent to Fermi 

energies (EF) and to work functions (Φ), both referenced to the energy level of a free stationary 

electron under vacuum (Evac = 0 eV). If a positive step voltage qV = ηS – ηD is applied, the 

electrochemical potential at D will displace towards lower energies with respect to S, causing a 
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“downward” electron flow into the available states of the semiconductor conduction band EC
1. 

As electrons flow into D, its electrochemical potential will increase until a complete charge 

transfer has occurred, reaching the condition of equilibrium (η = ηS = ηD). 

 

 

 

 

 

 
 

Figure 2.1 Energy (eV) band diagram of a contact/n-type semiconductor/contact structure (a) under an applied 

voltage and (b) in equilibrium. 

 

In this sense, a change in the local electrochemical potential of electrons (ηn = EFn) and holes (ηp 

= EFp) is the driving force behind the current densities Je and Jh, as defined by [2]: 

𝐽! =
𝜎!
𝑞  ∇𝐸!" 

𝐽! =  
𝜎!
𝑞  ∇𝐸!" 

(2.2) 

where ∇ is the gradient operator 2. The carrier conductivity σ (in Ω-1⋅cm-1), a measure of carrier 

selectivity, is the material property that determines how carriers react to the driving forces [4].  

 

2.1.2 The diode model 

 

In its most simple conception, the operation of a solar cell is usually described by its energy band 

diagram, as shown in Fig. 2.2 for a metal/p-contact/absorber/n-contact/metal structure where p 

and n are the hole- and electron-selective contacts. In this example, the absorber is undoped (i.e. 

intrinsic), in contrast with the solar cells architectures discussed in Table 1.1. However, a solar 

cell with an undoped absorber is viable as long as each carrier-selective contact is able to collect 

                                                
1 Conversely, after a positive voltage is applied to a p-type semiconductor, the electrochemical potential at D will displace 

towards higher energies with respect to S, causing an “upward” hole flow into the valence band states EV. 
2 ∇ = ∂/∂x + ∂/∂y + ∂/∂z. 

(a)                                                                     (b) 
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(a)                                        (b)                                                (c) 

electrons and holes efficiently [4]. As a first approach, the electrochemical potential of all cell 

elements is constant (ηmetal =  ηp,n contact = ηAbs) when the solar cell is in the dark and under 

thermal equilibrium (Fig. 2.2a), i.e. there is a balance3 between the radiative recombination rate 

and thermal generation rate of electron-hole pairs [5]. These rates can be expressed as equal but 

opposite current fows –J0 = Jrec. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Descriptive solar cell energy band diagram in the dark (a) under thermal equilibrium, (b) when a forward 

bias is applied, (c) when a reverse bias is applied. 

 

Whenever the equilibrium is disturbed by applying a positive voltage (forward bias), the 

electrochemical potentials of the metal contacts will displace each other by a magnitude qV, 

lowering the energy barrier between the metal electrodes and the conduction/valence bands so 

that electrons/holes can flow (Fig. 2.2b). Carriers surpassing the barrier will recombine within 

the absorber as a recombination current whose dependence with voltage is exponential4 , 

namely 𝐽!"#(𝑉) = 𝐽! exp 𝑞𝑉 𝑛𝑘𝑇 . Then, by adding both current contributions 𝐽 𝑉 =  𝐽!"# −

 𝐽! = 𝐽! exp 𝑞𝑉 𝑛𝑘𝑇 − 1  the Schottky diode equation is obtained, where kT/q is the thermal 

voltage (25.9 mV at 25 ºC) and n is a factor that accounts for deviations from ideality [2]. When 

a negative voltage (reverse bias) is applied (Fig. 2.2c), the metal electrodes displace each other 

by –qV and the energy barriers increase, making carrier transport null. Then, J(–V) saturates at a 

value J0 (usually referred as the dark saturation current). 

 

Further deviations from equilibrium are caused by illuminating the absorber, resulting in the 

generation of excess electron-hole pairs that can be extracted as a photocurrent –Jph. This 

photocurrent is opposite to Jrec and accounts for the transfer of excess electrons and holes into 

their respective conduction and valence bands. Moreover, a difference in the Fermi levels of free 
                                                
3 In other words, a balance between absorption and emission of blackbody radiation (γ ⟷ e + h) at a finite temperature T > 0 K. 
4 For an energized particle, the probability of crossing a potential barrier φB varies as exp(-φB/kT) [2]. 
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(a)                                                                   (b) 

electrons (EFn) and holes (EFp) inside the absorber is established, yielding a photovoltage of 

magnitude EFn – EFp [2]. The maximum photocurrent can be measured with an ammeter at short-

circuit conditions when J(0.V) = JSC, while the maximum photovoltage can be measured with a 

voltmeter at open-circuit conditions when J(VOC) = 0 A/cm2, as depicted in Fig. 2.3a,b.  

 

 

 

 
 

 

 

 

Figure 2.3 Descriptive solar cell energy band diagram under illumination (a) in short-circuit conditions (V=0), and (b) 

in open-circuit conditions (J=0). 

 

Overall, the current-voltage behavior can be described by: 

𝐽 =  −𝐽!! +  𝐽! exp
𝑞𝑉
𝑛𝑘𝑇 − 1  (2.3) 

Eq. 2.3 shows that J0 is a background generation-recombination pre-factor that invariably limits 

Jph, despite being ~1013 orders of magnitude smaller (in the case of c-Si). Moreover, it is worth 

mentioning that the Fermi level of the electrodes should have no influence in the VOC of the 

device5 (i.e. they act only as carrier sinks) provided an efficient e and h collection takes places at 

each selective contact (Eq. 2.2).  

 

2.1.3 The p/n junction in c-Si 

 

Practically ideal electron- and hole-selective contacts can be achieved via p/n junctions, the most 

studied selective contacts and the strategy of choice for c-Si solar cells, by introducing electron 

donor (D) and acceptor (A) dopant impurities at a specific concentration N. In a typical n/p 

junction, the electron-contact is n-type doped (ND ~1018 cm-3) and the hole-contact is p-type 

doped (NA ~1016 cm-3). In the vicinity of the junction, a depletion region forms due to the 

                                                
5 Unless the metal electrode is itself a carrier-selective contact, as in a Schottky (metal/semiconductor) junction. 
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opposing polarity of ionized impurities, inducing a built-in voltage 𝑉!" ≈ (𝑘𝑇 𝑞) ln (𝑁!𝑁! 𝑛!!) 

that works as a potential barrier for carriers [2]. Under thermal equilibrium in the dark (Fig 2.4a), 

the Fermi levels of electrons and holes are equal to an equilibrium value EF0 = EFn = EFp, while 

their equilibrium concentrations are defined as n0 and p0 (related by n0p0 = ni
2, where ni is the 

intrinsic carrier concentration ~8.6×109 cm-3 at 25 ºC). 

 

 

 

 

 

 

 
Figure 2.4 Energy band diagram of a c-Si p/n junction (a) in the dark and thermal equilibrium, and (b) under 

illumination.at open-circuit conditions. 

 

When photons γ are absorbed (Fig. 2.4b), excess electrons and holes (Δn ≈ Δp) are 

photogenerated and the equilibrium F0 splits into two distinct quasi-Fermi levels EFn and EFp. 

These quasi-energies define the total carrier population (n, p) within the semiconductor via 

Fermi-Dirac statistics in non-equilibrium conditions [6]: 

𝑛 =  𝑛! + ∆𝑛 =  𝑁! exp
𝐸!" − 𝐸!
𝑘𝑇  

𝑝 =  𝑝! + ∆𝑝 =  𝑁! exp
𝐸! − 𝐸!"
𝑘𝑇  

(2.4) 

where NC and NV are the effective density of states in the conduction and valence bands. On each 

junction side, the equilibrium concentration of majority carriers is equivalent to the doping 

concentration (e.g. p0 = NA ~1016 cm-3 in the p-region), whereas the concentration of minority 

carriers is approximately 12 orders of magnitude smaller (n0 = ni
2/p0 ~104 cm-3). Similarly, the 

difference EFn – EFp fixes the maximum photovoltage achievable by the device [6]: 

𝑉!"# =  
𝐸!" − 𝐸!"

𝑞 =  
𝑘𝑇
𝑞 ln

𝑛𝑝
𝑛!!

  (2.5) 

(a)                                                                              (b) 
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After photogeneration takes place, the built-in potential barrier6 facilitates electron/hole transport 

into the respective conduction/valence bands, aided by the preferential conductivities within each 

doped region. The total current is then comprised by the sum of the carrier currents (Je + Jp), 

which can be rewritten in terms of the physical properties of c-Si as [2]: 

𝐽! = 𝑞𝐷!∇n+ 𝑞𝜇!𝑛𝐸 
 

𝐽! = 𝑞𝐷!∇p+ 𝑞𝜇!𝑝𝐸 
(2.6) 

where µ and D are the mobility and diffusivity of carriers in the semiconductor bulk (correlated 

by Einstein’s relation D = µkT/q). The first term in Eq. 2.6 (diffusion current) is the main carrier 

transport mechanism in c-Si under low injection levels (Δn << p0 for the p-type absorber), while 

the second term (drift current) becomes relevant only at high injection conditions (Δn ≥ p0), 

which is the operation regime for highly efficient devices even at low bias voltages.  

An important characteristic of p/n junctions is that Je and Jh are determined by the injection of 

minority carriers, whose concentration changes many orders of magnitude from (n0,p0) ~104 cm-3 

to (Δn, Δp) ~1015 cm-3 (at 1 sun illumination). This change is reflected in the drastic change of 

quasi-Fermi levels EFp and EFn nearby the contacts (see Fig. 2.4b). In terms of the applied 

voltage, the individual electron and hole currents (under low injection) are [2]: 

𝐽! = 𝑞𝐷!∇ ∆𝑝! =  
𝑞𝐷!𝑛!!

𝐿!𝑁!
exp

𝑞𝑉
𝑘𝑇 − 1  

 

𝐽! = 𝑞𝐷!∇(∆𝑛!) =  
𝑞𝐷!𝑛!!

𝐿!𝑁!
exp

𝑞𝑉
𝑘𝑇 − 1  

(2.7) 

where Δpn and Δnp are the excess minority carrier concentrations (holes on the n-side and 

electrons on the p-side) while L is the diffusion length or average distance over which carriers 

can diffuse before recombining. By analogy with Eq. 2.3, J0 can also be modeled in terms of the 

bulk properties of silicon considering the long base approximation (L≪W) where the surfaces 

have no effect on J0 [2]:  

𝐽! = 𝐽!,! + 𝐽!,! = 𝑞𝑛!!  
𝐷!
𝐿!𝑁!

+
𝐷!
𝐿!𝑁!

 (2.8) 

                                                
6 Characterized by a small gradient in EFn and EFp, almost unnoticeable in Fig. 2.4b. 
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                                          (a)                                                              (b) 
Figure 2.5. (a) Typical solar cell current-voltage and power-voltage response, along with the main performance 

parameters. (b) Resistance losses in a solar cell. 

2.1.4 Design parameters 

 

As introduced in the previous section, the maximum current and voltage achievable by a solar 

cell are delimited by the open-circuit voltage VOC and the short circuit current JSC respectively. 

When connected to a resistive load RL = VMPP/JMPP, solar cells operate midway between the VOC 

and JSC conditions at a maximum power point (MPP) in order to provide voltage and current 

simultaneously, achieving a maximum power output at Pout = JMPPVMPP. Then, the ratio: 

𝐹𝐹 =
𝐽!"" 𝑉!""
𝐽!"  𝑉!"

  (2.9) 

is the fill factor FF, a measure of how the JMPPVMPP product approaches JSCVOC (see Fig. 2.5a). 

In an ideal c-Si solar cell without resistive losses, the maximum theoretical FF is limited by 

recombination losses to ~89% [7], while record HIT-IBC devices have a FF close to ~83% [8]. 

In practice, fill factor values are hindered by the series and parallel resistances RS and RP (Fig. 

2.5b). The series resistance comprises all ohmic losses, including the metal/semiconductor 

contacts (RC), the carrier-collector7 sheet resistance (Rsh) and the metallic grid electrode (Rgrid). 

Parallel resistance losses account for current leakage across non-resistive paths (shunts). A 

design rule of thumb establishes tolerable values for RS < RL/100 and RP > 100RL in order to 

consent to a maximum power loss of 1% [9]. This yields limit values of RS <0.2 Ω⋅cm2 and RP 

>1.6 kΩ⋅cm2 for a state-of-the-art device [8]. 

 

 

 

 

 
 

 

 

 

 

                                                
7 Either a highly-doped layer in a homojunction or a TCO in a heterojunction. 



2 Theoretical background 

 

27 

 

By considering the above performance parameters, the power conversion efficiency (PCE) is the 

ratio between the output power (at MPP) and the illumination power of the sun Psun: 

𝑃𝐶𝐸 =  
𝑃!"#
𝑃!"#

= 𝐹𝐹 
𝐽!"  𝑉!"
𝑃!"#   (2.10) 

For normalization purposes, Psun has a magnitude of 1,000 W/m2 under the AM1.5g8 standard 

[10]. Photocurrent generation in a photovoltaic absorber is a wavelength-dependent (λ) 

parameter, i.e. it is a function of how closely its absorption coefficient α matches the solar 

photon flux spectrum Φsun, as depicted in Fig. 2.6. Then, the theoretical short-circuit current is 

equal to the photocurrent generated inside the absorber by the absorption of incoming photons 

with energy E(λ) ≥ Egap.c-Si : 

𝐽!" = 𝐽!"# =  Φ!"#(𝜆)  ∙ 1− exp −𝛼 𝜆 ∙𝑊
!(!!"#)

!!
 (2.11) 

where W is the absorber thickness and λ(Egap) ~1,100 nm. For a 100% photon absorption (e.g. 

with a substrate thickness of 1 cm), JSC matches the theoretical photocurrent Jph ~46.5 mA/cm2 

[9], although in practice this value is hard to achieve due to optical and recombination losses. 

 

 

 

 
 

 

 

 
 

Figure 2.6 Absorption coefficient of c-Si (left axis) and AM1.5g sun spectrum (right axis) as a function of wavelength. 

 

Optical losses are caused by reflection, transmission or parasitic absorption. Transmission losses 

across the silicon bulk can easily be avoided by a metal back-reflector, usually the rear electrode 
                                                
8 Defined by the optical path of global (direct + scattered) irradiation at 48.2º zenith angle, normalized to the atmosphere 

thickness. 
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(Fig. 2.7). Parasitic absorption is particularly important in heterojunction devices where the 

selective contacts (a-Si:H) and TCOs do not contribute to photogeneration, justifying the need 

for optically transparent window layers. Regarding reflection losses, they can be considerably 

reduced through anisotropic texturing of the front surface and by semi-transparent anti-reflection 

coatings with refractive index values n = 1.7 – 2.1 [9]. Moreover, photon absorption can also be 

increased by texturing the rear surface, scattering light into multiple angles until a total internal 

reflection (light-trapping) is achieved. Theoretically, the effective optical path9 can be increased 

up to a factor 4𝑛!"#!
  (known as Lambertian limit [11]), collecting most of Jph even at wafer 

thicknesses below 10 µm.  

 

 

 

 

 

 

 

 
Figure 2.7 Minimization of reflection losses by (a) antireflection coatings and (b) surface texturing. Increase of the 

effective optical path by metallic (c) flat and (d) scattering back-reflectors. 

 

Electron-hole recombination is also a source of photocurrent loss, especially for the ultraviolet 

and near-infrared photons that are absorbed at the front and rear surfaces respectively. However, 

recombination effects are more critical to the open-circuit voltage, as seen from Eq. 2.3 with J(V) 

= 0, which yields the maximum VOC of an ideal solar cell: 

𝑉!" =   
𝑘𝑇
𝑞 ln

𝐽!"
𝐽!
+ 1   (2.12) 

showing how the minimization of J0 is one of the most important tasks in solar cell design. 

Finally, the strong temperature dependence of the intrinsic carrier concentration10 results in 

higher recombination losses that drop the VOC by about –2.3 mV/ºC, an unavoidable loss when 

solar cells operate at 20–40 ºC above ambient temperatures [1]. 

                                                
9  The increase in photon absorption is given by 𝐴 = 1 − exp −𝛼 𝜆 ∙𝑊 ∙ 𝑍 , where Z is the optical path enhancement factor. 
10 Defined by 𝑛! =  𝑁!𝑁!  ∙ 𝑒!!!"#/!"#, where the effective density of conduction and valence states (NC and NV) are ∝  𝑇!/!. 
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2.2 Recombination 
 

In section 2.1.2, J0 was equated to the thermal generation-recombination current Jrec considering 

only radiative recombination, a process where conduction band electrons recombine with 

valence band holes (band-to-band transition) emitting a photon with an energy equal to Egap. 

Nonetheless, other non-radiative recombination processes are also present in a c-Si absorber, 

each contributing to the total J0 value. In Auger recombination, the energy of the band-to-band 

transition is transferred to a third carrier, while in Shockley-Read-Hall (SRH) recombination the 

transition takes place in traps located within Egap. These traps arise from crystallographic defects 

(as in multi-crystalline c-Si) and/or atomic impurities (Fe, O) in the bulk [2]. The total 

recombination current is then the sum of all contributions, i.e. J0 = J0 Rad + J0 Auger + J0 SRH. Just as 

shown in Eq. 2.5, where Vmax is a function of the product of electron and hole concentrations 

(np), the recombination rate for each of these mechanisms is also proportional (with variations) 

to np, asserting the competing nature between photovoltage generation and recombination [12]. 

 

Of the three recombination mechanisms (all of which occur in the volume bulk), Auger and 

radiative are intrinsic to the material and cannot be avoided, while SRH can be minimized in 

high quality c-Si wafers with mono-crystalline structure. However, state-of-the-art technologies 

are limited by SRH recombination occurring at the surfaces, where the silicon atomic lattice is 

interrupted. The very high density of surface dangling bonds act as trap states where electron and 

holes recombine at a surface recombination velocity 𝑆 = 𝐽!/(𝑞∆𝑛) [13]. Parting from the 

equivalence 𝐽! = 𝑞𝑅! ≈  𝑞 ∆𝑛𝑊 𝜏!"", where R0 (cm-2 s-1) is the cumulative recombination rate 

of minority carriers Δn within a p-type absorber of thickness W, each recombination mechanism 

can be expressed as a function of the minority carrier lifetime τj, which quantifies the average 

time a carrier can diffuse before recombining. Then, it is possible to group all different 

recombination processes in a single term known as effective lifetime τeff [13]: 

1
𝜏!""

=   
1
𝜏!
=

1
𝜏!"#

+
1

𝜏!"#$%
+  

1
𝜏!"# !"#$

+
𝑆!"#$%
𝑊 +

𝑆!"#!
𝑊  (2.13) 

where Sfront and Srear are the front and rear surface recombination velocities and the terms in 

parenthesis can be grouped as an effective bulk lifetime 1/τbulk. The contribution of each 

recombination process is depicted in Fig. 2.8 for a high efficiency solar cell where τbulk >15 ms 

(at low injection), so that 1/τeff ≈ 1/τSRH Surface. It is interesting to note that τSRH increases with 
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injection level while τAuger and τRad decrease, ultimately limiting the effective lifetime and the 

maximum achievable efficiency of a c-Si solar cell.  To put these numbers in perspective, world 

record HIT-IBC devices with a-Si:H passivated surfaces exhibit τeff, J0 and Seff values of 8.8 ms, 

3.0 fA/cm2 and <2 cm/s respectively [14]. 

 

 

 

 

 

 

 

 

 

 
Fig. 2.8 Effective lifetime and its individual contributions. Plotted with models [15–17] using PV-Lighthouse 

recombination calculator [18] (n-type c-Si, 2.5 Ω.cm resistivity, surface SRH model with Etrap = Ei and τmin = 500 µs). 

 

At this point, it is useful to define a minimum lifetime condition τmin [9]:  

𝜏!"# ≥ 9 𝛼!
𝐷 (2.14) 

which correlates the optical and electronic properties of the c-Si absorber by defining a) the 

minimum absorber thickness required to absorb at least 95% of incident light (dabs ≥ 3α-1); and b) 

the minimum diffusion length required to collect the photogenerated carriers at their respective 

selective contacts (𝐿!"# = 𝑑!"# ≥ 𝐷 𝜏!"#). For c-Si the minimum lifetime condition is τmin ≈ 

100 µs, which can then be equated to the surface SRH mechanism as:  

𝜏!"# !"#$,!!
!"# =

𝑊
2 𝜎!"" 𝑣!! 𝐷!"

 (2.15a) 

where σccs is the carrier capture cross section (cm2), vth the thermal velocity and Dit the density of 

interface traps (cm-2). For a wafer thickness of 200 µm, τmin sets the maximum allowed density of 

interface traps at ~1010 cm-2, a considerably low value considering the density of dangling bonds 

in an unpassivated c-Si surface is Dit ~1014 cm-2. In practice, Dit values below 1010 cm-2 can 
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be.achieved by high quality chemical (a-Si:H, SiO2) or charge-assisted 11  (Al2O3, SiNx) 

passivation layers, lowering significantly the SRH contribution to the effective lifetime, as 

depicted in Fig. 2.9. 

 

 

 

 

 

Fig. 2.9 Dielectric/semiconductor materials used for c-Si passivation, either by low density of interface traps Dit 

(chemical) of by fixed charges Qf (charge-assisted). Adapted from [19].  

Similarly, carrier-selective contacts based on highly-doped layers are limited by Auger 

recombination even at low injection conditions [7], defining τmin as:  

𝜏!"#$%,!"!"# =
1

𝐶! 𝑁! (2.15b) 

where CA is the Auger recombination rate constant. Then, the maximum allowable doping is N 

~5×1016 cm-3, far lower than the routine doping concentrations >1018 cm-3 used for p+ or n+ 

regions. Furthermore, highly doped regions induce a band gap narrowing effect (ΔEgap) that not 

only reduces photon absorption but also increases the effective intrinsic carrier concentration by 

𝑛!,!"" =  𝑛! exp(∆𝐸!/2𝑘𝑇), with ΔEgap values of ~30 and ~60 meV for 1018 and 1019 cm-3 

dopant concentrations respectively [20]. These two efficiency limitations, imposed by surface 

defects and high doping concentrations, open a window of opportunity for alternative dopant-

free surface-passivating selective contacts, as stated in the objective of this thesis. 

 

 

                                                
11 Usually known as ‘field-effect’ passivation, it makes use of fixed charges Qf in an insulator to induce attracting (accumulation) 

or repelling (inversion) forces on the c-Si surface.  
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2.3 Contacts 
 

By revisiting the simplified solar cell structure in Fig. 1.3, two kinds of contacts are needed to 

extract the photo-carriers generated in the c-Si absorber: a) selective contacts, which transport 

carriers towards their respective electrodes, and b) ohmic contacts, which extract carriers into 

metal electrodes with minimum resistance losses. 

 

2.3.1 Selective contact strategies 

  

As discussed in section 2.1.3, the p- and n-sides of a p/n homojunction act as carrier-selective 

contacts. However, high-efficiency c-Si solar cells have required more advanced strategies to 

increase contact selectivity, such as the n+/p-Si/p+ homojunction solar cell. Then, a selective 

contact can be defined as all the layers lying between the absorber bulk (p-Si) and the metal 

electrode [21] (i.e. the p+ and n+ doped layers).  

 

Selective contacts can be understood as filters or membranes that conduct one type of charge 

carrier while blocking the other. Ideally, they must fulfill the following requirements [5]: 

1) Carrier separation: the direction of carrier flow must be towards lower electrochemical 

potentials (see Eq. 2.2) with electrons following a “downward” gradient (∇EFn) and 

holes an “upward” gradient (∇EFp).   

2) Carrier selectivity: dissimilar conductivities between electrons and holes, i.e. σe ≠ σh, 

facilitate the transport and collection of majority carriers while restricting the flow of 

minority carriers (σmaj >> σmin).   

3) Reduced recombination: selectivity also ensures that the concentration of minority 

carriers nmin (i.e. electrons in a p-contact) is reduced, resulting in a lower recombination 

current at the metal interface J0 = q nmin S . In turn, the concentration of majority carriers 

pmaj is high enough for an efficient hole extraction towards the metal electrode12. 

                                                
12 This occurs via recombination with the multiple defect states located at the metal/c-Si interface, at a maximum recombination 

velocity of S ~107 cm/s. 
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Different strategies can be applied to form carrier-selective contacts, all of which involve the 

modification of the semiconductor surface before contacting with the metal [22], as depicted in 

Fig. 2.10 for a hole-contact in p-Si. Heavy doping of the silicon substrate is the industrial 

approach to form a p+ doped layer (Fig. 2.10a). Alternatively, hole accumulation13 can be 

induced by external materials (Fig. 2.10b), either by dielectrics with a fixed charge –Qf or by 

metals with a large work function (Φm < EF.pSi). A third possibility is the formation of energy 

barriers through heterojunctions with wide band gap materials (Fig. 2.10c), where the magnitude 

of the conduction band offset ΔEC must be greater than qkT (the thermal energy of free carriers). 

 

 

 

 

 

 
 

 

Fig. 2.10 Band diagram of a p-type absorber with different hole-selective contact strategies at open-circuit conditions, 

including (a) p+ doping, (b) induced band bending (accumulation) and (c) band offset (ΔEC). For these cases, the 

metal electrode does not form part of the selective contact. 

 

From the above discussion, several remarks can be done. First, selective contacts are confined 

within the region where quasi-EF levels make a transition from full splitting in the absorber to 

null splitting in the metal electrode [21]. Second, all strategies have in common the formation of 

a barrier that reduces the concentration of minority carriers at the interface (electrons, in this 

example), therefore decreasing J0 [22]. Third, an efficient hole extraction takes place despite the 

large EFn gradient observed by electrons (much larger than the EFp gradient observed by holes). 

However, the preferential hole conductivity σh >> σe in the contact region contributes more to 

hole selectivity [4]. Finally, the same selectivity strategies can be applied to the formation of 

electron-selective contacts in either p- or n-type silicon (i.e. n+/p-Si or n+/n-Si contacts). For 

example, a p+
IL inversion layer could be induced on the n-Si surface by a large work function 

metal (Φm > EF nSi), forming a so-called induced junction [23].  
                                                
13 See §2.3.2 for the formation principles of accumulation or inversion conditions in metal/semiconductor contacts. 

          p+/p-Si                                (–)Δd/p-Si                           (p) a-Si:H/p-Si                  

(a)                                      (b)                                        (c) 
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Since decreasing minority carrier recombination is usually insufficient, mixed passivation 

strategies are needed to offset the high density of surfaces defects. One example is wide band 

gap insulating dielectrics such as SiO2, Al2O3 and SiNx (see Fig. 2.9), which provide both 

chemical and charge-assisted passivation by blocking both electrons and holes indistinctively, a 

result of the large band offsets ΔEC and ΔEV and a layer thickness that is larger than the tunneling 

length (> 2 nm) (Fig. 2.11a) [24]. With other wide band gap semiconductors like a-Si:H, 

dangling bonds are effectively passivated while a high density of mid-gap states (Dmid-gap) 

permits carrier transport through defect-assisted tunneling (hopping) (Fig. 2.11b) [9]. In order to 

achieve passivation and selectivity, these two kinds of wide band gap materials can be combined 

with any of the carrier-selective arrangements from Fig. 2.10, either in full area configurations 

(a-Si:H in HIT concept) or as localized contacts (SiO2 in PERL concept).  

 

One example of a mixed passivation/selective strategy is the utilization of intrinsic/doped a-Si:H 

stacks (Fig. 2.11c) where the alignment between the valence bands of a-Si:H and p-Si (i.e. EV,a-Si 

~ EFp)  reduce the barrier for majority carriers, while minority carriers are repelled away from 

the contact [22]. Another example is the top-con (tunnel-oxide passivated contacts) approach 

that uses tunneling SiO2 layers <2 nm and doped poly-silicon stacks, delivering a remarkable 

passivation (Seff <1 cm/s) while permitting carrier transport through tunneling [25]. These two 

examples, showing the combination of both passivation and selective carrier transport, endorse 

the definition of passivating/selective contacts, which are the topic of this thesis.  

 

 

 

 

 

 

 

 

 
Fig. 2.11 Band diagram of a p-type absorber with wide bandgap (a) dielectrics and (b) defect-rich semiconductors at 

open-circuit conditions. (c) shows a p-doped/intrinsic a-Si:H passivating/hole-selective contact. 

 

 

     SiO2/p-Si                                (i)a-Si:H/p-Si                            (i/p)a-Si:H/p-Si                  

  (a)                                           (b)                                               (c) 
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2.3.2 Ohmic contacts 
 

Ohmic contacts are the connecting interface between the solar cell and the external load, 

extracting majority carriers with negligible voltage drops. They are typically realized by metal 

electrodes, which are not carrier-selective and therefore cannot support Fermi level splitting. In 

an ideal ohmic contact, the Fermi energy (or work function) of the metal electrode EFm is 

perfectly aligned with the quasi-EF levels of c-Si (EFn or EFp), resulting in the extraction of 

majority carriers by recombination (S ~107 cm/s) in a non-resistive manner. Since this condition 

of ideal EF alignment is seldom met, a potential barrier ΦB is usually present at the interface, 

with its magnitude being determined by the difference between the metal work function and the 

electron affinity of the semiconductor (ΦBn = Φm – χcSi for electrons), or alternatively, its 

ionization potential (ΦBp = IcSi – Φm for holes, where I = χ + Egap). Depending on the silicon 

doping type and the value of Φm, majority carrier extraction can be affected by 

accumulation/inversion conditions at the metal/c-Si interface (Fig. 2.12), causing an 

upward/downward band bending φs of the energy bands [2]:  

𝑞𝜑! = 𝛷!" − (𝐸! − 𝐸!!) (2.16) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.12 Band diagram of possible accumulation (a,c) and inversion (b, d) conditions for metal/n-Si and metal/p-Si. 

 

Φm < EF nSi                                         Φm > EF nSi   (a)                                                            (b) 

 

 

 

 

 

 

  (c)                                                             (d) Φm > EF pSi      Φm < EF pSi 
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From the ohmic contact perspective, inversion conditions are detrimental since majority carriers 

need to surpass a larger φs barrier in order to reach the metal electrode, forming a Schottky 

contact (Fig. 2.12b,d). Alternatively, accumulation conditions favor ohmic transport via negative 

φs barriers, a condition met when Φm ~ χn-Si or when Φm ~ IpSi (Fig. 2.12a,c) 

 

In practice, the metal/c-Si interface is far from perfect due to residual contamination or atom 

interdiffusion across the interface, giving rise to interlayers several Å thick that modify ΦB 

through interface defect states[9]. These states can have a certain donor/acceptor quality that, 

depending on their level of occupancy, can produce negative of positive electric dipoles Δd that 

shift the electrostatic balance as [26]: 

𝛷!" =  𝛷! − 𝜒!"# + 𝛥! (2.17) 

In occasions, Dit is high enough (~1013 cm-2) to immobilize the Fermi level of the semiconductor 

at a fixed energy with respect to EC or EV, so that φs becomes independent of the applied voltage 

or the metal work function. This situation is known as Fermi level pinning and can be quantified 

by the index of interface behavior SΦ = ∂ΦB/∂Φm, with values ranging from S = 1 for no pinning 

(Mott-Schottky rule) to S = 0 for complete pinning. When EF is partially pinned to the surface, a 

change in Φm will be accommodated by the surface dipole according to [26]: 

𝑆! =  
1

1+ 𝑞!𝛿 ∙ 𝐷!"(𝐸!)/𝜀!𝜀!
 (2.18) 

where δ is the thickness of the dipole (in the order on Å), εiε0 the dipole permittivity and Dit(EF) 

is the interfacial density of states that varies with the position of the Fermi level. Note that the 

presence of dipoles must be represented with a corresponding shift in the vacuum level. 

 

For moderate doping levels, the transport of majority carriers across the barrier ΦB occurs by 

thermionic emission (TE), yielding a barrier height-dependent current density 

𝐽 𝑉 =  𝐽!" exp 𝑞𝑉 𝑛𝑘𝑇 − 1  with 𝐽!"  ∝  exp 𝑞Φ! 𝑘𝑇 . By defining the specific contact 

resistance ρc as the instantaneous reciprocal derivate of current with respect to voltage 

𝑑𝐽/𝑑𝑉 !
!!, ρc is also a function of exp 𝑞Φ! 𝑘𝑇 . The inherent presence of barriers makes 

really difficult to achieve true ohmic contacts in c-Si [2,27]. Therefore, heavily doped layers (N+ 

>1019 cm-3) and small barriers (ΦB <0.3 eV) are needed to decrease the thickness of the depletion 
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width below 2 nm, enabling majority carrier transport through tunneling14 [9]. Then, the specific 

contact resistance can be decreased exponentially with doping, enabling close to ideal ohmic 

connections (at the cost of increased Auger recombination): 

𝜌! ∝ exp
𝑞𝛷!
𝑁!

 (2.19) 

The specific contact resistance is an important figure of merit for metal/c-Si contacts since it 

determines the rate at which majority carriers can be extracted. Tolerable ρc values are in the 

order of ~10-3 Ω⋅cm2 for standard Al-BSF devices, even though the overall series resistance RS is 

primarily dominated by the front metal grid [28]. However, as the contacted area fraction is 

reduced to reduce the passivation losses, ρc must be further reduced to values <10-4 Ω⋅cm2 in 

order to meet the requirements of high efficiency devices. 

 

2.3.3 Definition of selectivity  

 

In essence, the main reason for improving an ohmic contact by means of doping or carrier 

accumulation is the enhancement of majority carrier selectivity.  Therefore, it is also possible to 

exploit surface inversion conditions for minority carrier selectivity, forming induced junctions 

like p+/n-Si (Fig. 2.12b) or n+/p-Si (Fig. 2.12d). In both cases, the band bending φs repels the 

majority carries towards the opposite contact, favoring the accumulation of minority carriers at 

the metal/silicon interface for their extraction. Whenever this interface is passivated by ultra-thin 

(<3 nm) oxides, a metal-insulator-semiconductor (MIS) structure is formed. This is the operation 

principle in so-called MIS solar cells, where photogenerated minority carriers are able to tunnel 

through the oxide while majority carriers are depleted by a strong inversion layer at the 

semiconductor surface [2,29].  

 

In this thesis, the behavior of selective contacts in c-Si heterojunctions will be described by the 

induced junction model, where work function differences (Φsel.cont. – ΦcSi) will induce either 

accumulation or inversion layers on the c-Si surface. Therefore, the metal/contact/c-Si 

heterojunction will be characterized by a specific contact resistance for majority carrier 

extraction, while recombination losses will be determined by the residual concentration of 

                                                
14 In reality, heavy doping densities push EF beyond the EC or EV bands, bringing the semiconductor into degeneracy.  
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minority carriers in the vicinity of the contact. This kind of tradeoff between recombination 

losses (J0) and contact resistance (ρc) will always be present and should be optimized while 

designing a selective contact. 

 

By generalizing the previous discussion on metal/c-Si contacts to any other kind of 

semiconductor/c-Si junction, carrier selectivity could also be achieved by any of the strategies 

proposed in Fig. 2.10a-c (doping, induced accumulation/inversion or barrier formation). To 

begin with, Eq. 2.16 can be reformulated in terms of the selective contact Φsel.cont. and c-Si 

absorber Φc-Si work functions, obtaining an expression for the induced band bending [23,26]:  

𝛷!"#.!"#$. − 𝛷!-!". = 𝜑! ≈ 𝑉!"             (for SΦ = 1) (2.20) 

where φs is equivalent to the built-in potential Vbi of the junction. Taking the n-Si bulk as an 

example (Φn-Si ~4.2 eV), a heavily doped p+ contact (Φp+ ~5.1 eV) will produce the same built-in 

potential as a p+ induced junction caused by a large work function TMO (ΦTMO ≥5.1 eV), i.e. ΔΦ 

= Vbi ≈ 0.9 V. In both cases, Vbi serves as a potential barrier for electrons (minority) while the 

high concentration of holes (majority) increases σh. In this sense, only by controlling the work 

function difference ΔΦ and irrespectively of the nature of the junction, it is possible to achieve 

selectivity by providing a preferential conductivity for majority carriers while imposing an 

energy barrier for minority carriers.  

 

Based on these assumptions, Figure 2.13 illustrates a simulation study by Bivour et al. [23] on 

how contact selectivity affects the external VOC of an ideal c-Si solar cell with perfect chemical 

passivation15 (S = 1 cm/s) and no Fermi level pinning effects (SΦ = 1). Each simulated selective 

region, e.g. the hole contact in n-Si, assumes the opposite contact is ideal. Then, a lossless 

voltage extraction (i-VOC = VOC) would occur for hole contact work functions lying close to the 

valence band (Φh ≈ EV). As Φh decreases, VOC losses augment until no useful voltage can be 

extracted from the device in the vicinity of the conduction band (Φh ≈ EC). The same trend is 

followed by the electron contact in n-Si with an ideal hole extraction, reaching a maximum VOC 

when Φe ≈ EC. When chemical passivation is not ideal, a lower i-VOC limit is established and the 

same trend is followed. In parallel, the fill factor follows a similar dependence on ΔΦ, reaching 

maximum values when Φh ≈ EV (hole contact) and Φe ≈ EC (electron contact). 

                                                
15 And maximum quasi-Fermi level separation (EFn – EFp)/q ≈ 760 mV 
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Fig. 2.13 Influence of the selective-contact work functions on the external VOC for a perfectly passivated surface (S = 

1 cm/s) and without Fermi level pinning effects (SΦ = 1). The c-Si work functions are specified for a doping density of 

1 Ω⋅cm resistivity. For the hole-contact case (right panel), the electron contact is ideal; for the electron-contact case 

(left panel), the hole contact is ideal. Adapted from [23]. 

 

In this idealized example, the slope of the VOC trend is 1 eV/eV due to the ΔΦ = φs premise, a 

direct consequence of a pinning-free interfaces (SΦ = 1). However, interfaces with bare c-Si are 

usually abundant in interfacial states (Dit ~1013 cm-2) that can accommodate a large amount of 

charge without any variation of the Fermi level, as indicated by experimental SΦ values of ~0.05 

for metal/c-Si interfaces [2]. Whenever the surface is passivated by a-Si:H (Dit ~109 cm-2), SΦ 

can improve to ~0.25 for metal/a-Si:H/c-Si interfaces [23], whereas TMO/c-Si interfaces can 

have higher pinning factors of 0.25–0.6 [30], still behind the ideal SΦ = 1 case. In theory, ideal 

selectivity could be reached only by operating the contact under low injection conditions at all 

times, a difficult premise considering the high concentration of excess minority carriers (>1016 

cm-3). In practice, this can be met if very large built-in potentials are established, so that Vbi ≈ 

Φsel.cont – Φc-Si ≥ i-VOC [23]. Moreover, parasitic junctions between the selective contacts and the 

overlying electrode also influence the induced band bending in c-Si [31], affecting even more the 

VOC dependence on Φsel.cont – Φc-Si. 

 

In summary, non-ideal selectivity decreases the external open-circuit voltage according to: 

𝑞𝑉!" ≈  𝑞 𝑖-𝑉!" −  𝛷! − 𝛷!"#      (with an ideal electron contact) 

𝑞𝑉!" ≈  𝑞 𝑖-𝑉!" −  𝛷! − 𝛷!"#           (with an ideal hole contact) 

(2.20a) 

(2.20b) 
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Notice how contact work functions exceeding these requirements (Φh ≥ 5.17 and Φe ≤ 4.05 eV) 

should maintain VOC unchanged, i.e. the EF alignment between TMO and c-Si stays constant 

with further increases/decreases of ΦTMO. A similar ‘pinning’ behavior has been amply 

documented in organic electronics for weakly interacting TMO/organic interfaces, where 

potential barriers are linearly dependent on the electrode’s work function [32]. In this sense, the 

VOC of an organic solar cell will be maximized only when the selective contacts surpass the 

organic’s highest occupied molecular orbital (Φh > HOMO) and lowest unoccupied molecular 

orbital (Φe < LUMO) levels.  

 

After this qualitative definition of carrier selectivity, we now define it in a quantitative manner as 

proposed by Brendel et al. [33]. Parting from the definition of the minority (Jm) and majority 

(JM) carrier current densities in terms of the recombination current and the specific contact 

resistance (assuming a linear current-voltage response for JM): 

𝐽! = 𝐽!  exp
𝑞𝑉
𝑘𝑇 − 1  

(2.19a) 

 

𝐽! =
V
𝜌!

 (2.19b) 

Also, we define the contact selectivity S as the ratio of minority carrier to majority carrier 

resistances ρm/ρM, using the general resistance definition 𝜌 =  𝑑𝐽/𝑑𝑉 !!!
!! evaluated at an 

arbitrary voltage V = 0. In order to avoid handling large numbers, a logarithmic selectivity S10 = 

log(S) can be used [33]: 

𝑆!" = log 
𝜌!
𝜌!

= log 
𝑘𝑇
𝐽!𝜌!

 (2.20) 

obtaining a parameter that is exclusively a function of J0 and ρc, independently of contact 

geometry. Note that recombination and contact resistance are a function of the contacted area 

fraction fc (where 1 – fc is the passivated area with negligible J0 values), thus reducing 

recombination by a factor fc · J0 at the expense of a higher contact resistance ρc / fc. Fig 2.14 

depicts an example simulation of the optimal contact fraction for multiple ρc -J0 combinations as 

well as the resulting power conversion efficiency, with all other solar cell parameters being close 

to their idealized values (see Ref. [34] for simulation details). The iso-selectivity lines (S10) 

calculated as per Eq. 2.20 are also plotted, which show that similar efficiencies can be achieved 
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by either low ρc-high J0 or high ρc-low J0 parameter pairings. Under this approach, we see how 

selectivity is a sole function of the majority carrier contact resistance and the minority carrier 

recombination current, emphasizing its importance when designing a solar cell. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.14 Representative simulation of the conversion efficiency as a function of recombination current (J0) and 

specific contact resistance (ρc) for p+ contacts, also showing the optimum contact fraction (fc) for different (J0, ρc) 

combinations. Data obtained from the original source [34], with iso-selectivity lines (S10) calculated as per Eq. 2.20. 
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3 Experimental methods 
 

This chapter describes the experimental methods for solar cell fabrication and 

characterization, including the techniques used for determining the optoelectronic, 

structural and compositional properties of the carrier-selective materials under study. 

 

 

All the experimental work on this thesis was performed in two different facilities: (1) a 100 m2 

clean room (class 100–1000) used for most of the solar cell fabrication sequence and 

characterization, located in the electronic engineering department at UPC; (2) the Center for 

Research in Nano-Engineering (CRNE), a research center associated to UPC where deposition of 

TMOs and PEDOT:PSS films was carried out as well as some material characterization 

techniques (XPS, SEM, FIB, UV-visible-NIR spectrophotometry). Other material 

characterization services were provided by the Scientific and Technological Centers of the 

University of Barcelona (HR-TEM) and the IBEC Nanotechnology Platform (ToF-SIMS). 

 

 

3.1 Solar cell fabrication  
 

As mentioned before, the main focus of this thesis is the development of dopant-free carrier-

selective contacts for n-type c-Si (n-Si) heterojunction solar cells. Accordingly, transition metal 

oxides (TMOs) and PEDOT:PSS were explored as hole-selective contacts in a front-side full-

area configuration, similar to a HIT solar cell architecture, as shown in the solar cell structures in 

Fig. 3.1. For the TMO/n-Si devices, an indium-tin oxide (ITO) layer was employed both as front 

transparent conductive electrode (TCO) and anti-reflection coating (ARC), while the 

PEDOT:PSS/n-Si devices spared the use of an ITO layer thanks to the good 

conducting/transparency properties of the polymer. Regarding the rear electron-selective contact, 

two a-Si:H contacting approaches were explored: (1) localized laser-doping (Fig. 3.1a,c) and (2) 

full-area heterojunction with ITO (Fig 3.1b). The characterization of these structures comprises 

the majority of the results described in Chapters 4 and 5, while other materials (NiO, LiF, etc.) 

are briefly discussed in Appendix B.  
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Figure 3.1 Schematic of the fabricated HIT-type heterojunction solar cells. (a) TMO/n-Si with rear laser-doping, (b) 

PEDOT:PSS/n-Si with rear laser-doping and (c) TMO/n-Si with rear ITO. 

 

 

3.1.1 Cleaning and texturing 

 

The first step in solar cell fabrication is the removal of surface contaminants like micron-sized 

particles (dust) and residual chemical elements (ions and metals), which can lead to thin film 

imperfections, shunts or highly active recombination centers. For this reason, bare wafers are 

cleaned following the standard RCA procedure [1] that consists in two oxidizing steps with a 

H2O2 solution at 70 ºC, the first one with NH3 (alkaline) for removing organics and metals (Au, 

Ag, Ni, Cu), and a second one with HCl (acidic) for removing alkali ions and other metals. In-

between both steps a dilute solution of HF (1%) is used to etch the ultra-thin SiO2 layer (<1 nm) 

that grows during the oxidative processes, leaving behind an H-terminated surface where 

hydrogen atoms passivate the silicon dangling bonds [2], a configuration that is stable only for a 

few hours after air exposure. During this and subsequent processes, deionized water (18 MΩ·cm 

resistivity) must be used at all times in order to avoid unnecessary contamination. 

 

Following substrate cleaning, a flat wafer with (100) crystal orientation is textured to effectively 

reduce reflection losses (R) from 30% to below 10%, increasing photon absorption. Random 

pyramidal texturing is usually achieved by chemical anisotropic etching along the (111) crystal 

planes using a tetramethyl ammonium hydroxide (TMAH) and isopropyl alcohol solution at 80 

ºC [3]. Figure 3.2 shows a scanning electron microscope (SEM) image of the resulting textured 

surface, which is restricted only to the front side of the wafer by protecting the rear side with a 

thermally-grown SiO2 layer (~100 nm) that is removed afterwards. One disadvantage of textured 

                     (a)                                            (b)                                              (c) 
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surfaces is a lower effective passivation in comparison to planar ones, a result of a larger surface 

area (which increases by a factor of ~1.7) with higher dangling bond densities. 
 

 

 

 
 

 
 

 
Figure 3.2 SEM image displaying (a) lateral and (b) top views of random pyramidal texturing. 

 

3.1.2 a-SiCx:H electron-selective contact 

 

Plasma-enhanced chemical vapor deposition (PECVD) is the preferred method for depositing a-

Si:H thin films, parting from the decomposition of silane gas (SiH4) into a plasma of free ions 

and radicals, as generated by radio-frequency (RF) voltage discharges between two parallel 

plates [4]. Fig. 3.3 depicts a schematic of the RF-PECVD system (Elettrorava S. p. A, Italy) used 

in this work, whose main components are (1) a loading pre-chamber, (2) a deposition chamber 

with the plate electrodes and substrate heater, (3) a mechanic/turbo-molecular pumping system, 

(4) a gas delivery system with mass flow controllers, (5) an RF (13.56 MHz) power supply and 

(6) a gas exhaust system. Both chambers are separated by transfer gate valve, keeping the 

reaction chamber at a base pressure of  ~10-6 mbar permanently.  

 

 

 

 

 
Figure 3.3 Schematic of the PECVD deposition system used for deposition of a-SiCx:H thin films. 

 

    (a)                                                   (b) 

(1)      (2)      

(3)      
(4)      

(5)      

(6)      

5 µm 5 µm 
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The growth of a-Si:H films is a complex process determined by the plasma properties and the 

gas/solid reaction kinetics [5]. For this thesis, the deposition process was previously optimized in 

the MNT group for hydrogenated amorphous silicon carbide (a-SiCx:H, x~0.2), an alternative 

passivating wide band gap semiconductor with demonstrated surface recombination velocities 

Seff < 50 cm/s [6]. For the deposition process, mixtures of SiH4, CH4 and PH3 precursor gases are 

used to deposit an intrinsic/n+ layer stack, yielding a thin film of approximately 20 nm (Table 

3.1). An advantage of a-SiCx:H is that its conductivity and refractive index can be tuned by 

varying the carbon content, allowing the deposition of a dielectric back-reflector (a-SiCx:H, x~1) 

during the same vacuum stage, improving photon collection at the rear side.  

 
Table 3.1 Deposition parameters for the (i/n+) a-SiCx:H electron-selective contact deposited by the PECVD process. 

 

Film Precursors 
Flow 

(sccm) 
T 

(ºC) 
P 

(mbar) 
Power 

(W) 
Time 
(min) 

Thickness 
(nm) 

intrinsic  a-SiCx:H  
(x~0.2) 

SiH4/CH4 36/12 
300 0.5 6 

0.5 ~4 

n+ SiH4/PH3 36/4 2 ~15 

intrinsic  
a-SiCx:H  
(x~1)* 

SiH4/CH4 1.2/60 300 1 18 18 ~80 

                     *Used as rear reflector (insulating), given its refractive index nSiC ~2. 

 

This back-reflector layer, 80 nm thick and fully insulating, is then punctured1 by laser-firing with 

an infrared nanosecond laser (Starmark SMP100 II, Rofin-Baasel GmBh, Germany) forming 

point contacts equally separated by a separation p (pitch), a procedure also optimized in the 

MNT group [7] (Fig. 3.4a). The dissipation of energy locally diffuses the n+ material inside the 

substrate and forms a crater whose effective radius r accounts for the contacted area fraction fc = 

π (r/p)2 (Fig. 3.4b). By adjusting parameters such as laser power, pulse duration and pitch, a 

compromise value between contact resistance and surface passivation can be obtained for a fc 

~2.4% (p = 400 µm) with contact resistance values as low as ρc < 5 mΩ⋅cm2. After laser-firing, 

the electron-selective contact is contacted to a Ti/Al electrode stack (Fig. 1.3a,c). 

 

As an alternative to laser-doped contacts, a full area hetero-contact is also explored (Fig. 1.3c), 

directly contacting the (i/n+) a-SiCx:H layer with the ITO electrode, avoiding the passivation 

damage of the laser process. Since ITO’s refractive index is ~2, it also works as a conductive 

back-reflector in direct contact with a Ag electrode. 
                                                
1 In a preliminary test, the heat of the laser strike was able to trespass the whole width of the wafer and damage the front TMO 

layer; consequently, it was decided that the laser-doping step had to be done before the TMO deposition. 
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Figure 3.4 Microscope images of laser-doped contacts showing (a) dot pattern with a pitch p of 300 µm, and (b) 

contact crater with a radius (r) of ~40 µm.  

 

3.1.3 Carrier-selective contacts 

 

In contrast to the chemical nature of the PECVD process, TMOs are deposited by vacuum 

thermal evaporation using a resistive element as a heat source (Joule effect). This process is 

carried out inside an evaporation chamber whose main components are (1) a material 

evaporation source, (2) a quartz crystal sensor, (3) a rotatory substrate holder, (4) an adjustable 

high DC current supply, (5) a deposition controller (SQC-310, Inficon, Switzerland) and (6) 

mechanic/turbo-molecular pumps (Fig. 3.5a). The chamber is located inside a N2 atmosphere 

glovebox (MB200B, MBraun, Germany), avoiding sample degradation by air and humidity. 

 

 

 

 

 

 

 

 

 
 

Figure 3.5 (a) Schematic of the vacuum thermal evaporation chamber. (b) Inert atmosphere glovebox. 

 

For the TMO thermal evaporation, powdered material (99.99%, Sigma Aldrich) is placed in a 

refractory tantalum boat. After a vacuum of ≤10-6 mbar is reached, power is supplied until the 

(a)                                                                     (b) 

(a)                                                          (b) 

       1000 µm 
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       50 µm 
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(2)      

(3)      
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vapor pressure of the solid (sublimation) or liquid (evaporation) is overcome and molecules are 

ejected ballistically towards the substrate surface. Table 3.2 lists some material properties that 

are relevant during thermal evaporation. The deposition rate (kept at 0.1 nm/s or less) is 

monitored by a quartz crystal microbalance whose resonance frequency is proportional to the 

added mass. These microbalance thickness readings need to be calibrated against other 

techniques like contact profilometry or TEM imaging. An appropriate vacuum is critical to 

ensure the mean-free path of the molecules is larger than the source–substrate distance. 

Moreover, the substrate stays close to ambient temperature provided that the material 

evaporation temperature is below 1,000 ºC.   

 
Table 3.2 Material properties relevant for vacuum thermal evaporation. 

 

Material 
Melting point 

ºC 

Density 

g/cm3 

Sublimes (S)/ 

Decomposes (D) 

MoO3 795 4.69 S 

WO3 1,473 7.16 S 

V2O5 690 3.36 D 

ReO3 400 6.92 D 

NiO 1,984 6.67 - 

LiF 845 1.74 - 

 

 

3.1.4 PEDOT:PSS hole-selective contact/transparent conductive electrode 

 

PEDOT:PSS is a water-soluble polymer electrolyte consisting of positively charged PEDOT and 

negatively charged PSS monomers [8]. It can be deposited by a variety of solution-processing 

techniques, of which spin-coating is the laboratory standard (Fig 3.6a). For this work, two 

different polymer solutions are investigated (HTL Solar and PH1000, Heraeus, USA[9]), pre-

conditioned with 5%v/v DMSO (Sigma Aldrich) to increase the conductivity and 0.1%v/v 

fluorosurfactant (Capstone FS-31, Dupont, USA) to improve the wettability of the surface [10]. 

The latter is particularly important and was carefully optimized by measuring the contact angle 

between the PEDOT:PSS solution and the highly-hydrophobic c-Si surface, showing a decrease 

of the contact angle (improved wettability) for the surfactant-treated solutions (Fig. 3.6b). The 

solution is spin-coated at 1,000 rpm during 60 s, followed by a thermal anneal (30 min) at 130 ºC 

in a N2 atmosphere, eliminating all remnant moisture and yielding a uniform film. 
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Figure 3.6 (a) Schematic of the spin-coating process. (b) Contact angle of untreated and surfactant-treated HTL Solar 

PEDOT:PSS solution on hydrophobic c-Si. 

 
3.1.5 ITO transparent conductive electrode 

 

Given that the lateral conductivity of TMOs is relatively low, a transparent conductive oxide 

must be deposited on top with the purpose of collecting carriers for their extraction through the 

metal grid. Then, the ITO sheet resistance Rsh (in Ω/�), defined by the film resistivity ρ to 

thickness d ratio, becomes an important contributor to the series resistance of the device. In 

optical terms, the refractive index of ITO is already very close to the optimal2 value nopt ~2, with 

an optimal coating thickness t = λ/4n = 70–100 nm [11]. Considering that TMOs also have an n 

~2, the thicknesses of the TMO and ITO layers need to be optimized according to their refractive 

index values, ultimately lowering reflection losses below 1% for the wavelengths where the 

photon flux is maximum (600–700 nm). 

 

The deposition of ITO is carried out in a RF-assisted sputtering system (Fig. 3.7), where highly-

energized argon ions collide with an ITO target (1) and eject the material towards a rotating 

substrate (2). Magnetron-induced electric fields are used to confine the charged plasma near the 

vicinity of the target, avoiding re-sputtering of the already deposited material. An adequate 

baseline vacuum (10-6 mbar), a mild argon pressure (~1.3×10-3 mbar) and moderate power 

densities (2.5 W/cm2) are needed to obtain both transparent and conductive (Rsh ~ 100 Ω/�) 

films at reasonable deposition rates (2 nm/min) [12]. 

 

                                                
2 Defined by the geometric mean of the air and c-Si refractive indexes 𝑛!"# = 𝑛!"#𝑛!"#. 

            (a)                                                           (b) 
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Figure 3.7 Schematic of the sputtering process. 

 

3.1.6 Active area definition 

 

Delimiting the active area of a solar cell is very important, not only for an accurate efficiency 

calculation (J is measured in A/cm2) but also to avoid edge effects like current leakage or shunts. 

For this purpose, photolithography is used to imprint squared patterns on a positive-photoresist 

(SUSS MicroTec, Germany), previously spin-coated on the front face of the substrate. After 

removing the UV-exposed resin with a developer solution, both the ITO and TMO layers are 

wet-etched in a HF (1%), delimiting the active area of the cells to 1×1 cm2 and 2×2 cm2 sizes.  

 

3.1.7 Front/rear electrodes 

 

Metallic front and rear electrodes are needed to extract current with a minimal RS. For the case of 

the front electrode, a carefully designed grid is mandatory in order to balance maximum current 

collection with minimum shadow losses. Figure 3.8 shows the grid design used for the solar 

cells, including a variable-width central bus bar connected to 30 µm fingers. The Ag grid is 

deposited by thermal evaporation through a shadow mask, obtaining a 3 µm thick grid with a 

total shadow loss of 4.2%. For the full area rear electrodes, a Ti/Al (15 nm/1 µm) stack is 

deposited by vacuum electron-beam3 (e-beam) evaporation on the laser-doped devices, while a 

Ag (3 µm) layer is deposited by thermal evaporation on the rear-ITO cells. 

 

 

                                                
3 Similar to thermal evaporation, where the heat source is an electron beam accelerated towards the high melting point material. 

One drawback of this technique is the emission of x-rays that could lead to passivation damage. 

RF 

(1)      

(2)      
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Figure 3.8 Sketch of front finger grid, with an estimated 4.2% shadow loss. 

 
3.2 Solar cell characterization  
 

3.2.1 Carrier lifetime  

 

Measurement of the effective carrier lifetime τeff by contactless photoconductance allows 

evaluating the passivation properties of device precursors at different fabrication stages (Fig. 

3.9a). Originally developed by R.A. Sinton and A. Cuevas [13], this technique correlates current 

photogeneration Jph (measured with a calibrated sensor) with photoconductance transients ΔG 

inside the sample (measured by inductive coupling). Since all photogenerated carriers recombine 

inside the c-Si substrate, it can be assumed that 𝐽!! = 𝐽!"# =  𝑞 ∆𝑛!"#𝑊 𝜏!"", where Δnavg is the 

average excess carrier concentration inside the wafer bulk (extracted from the photoconductance 

transients by 𝛥𝐺 = 𝛥(𝑊𝜎) =𝑊 ∙ 𝑞(𝜇! + 𝜇!)∆𝑛!"# ). As a result, the following explicit 

expression for τeff is obtained: 

   𝜏!"" =
∆(𝑊𝜎)

𝐽!!(𝜇! + 𝜇!)
 (3.1) 

which yields the standard τeff (Δn) curves described in §2.2. In the measurement equipment used 

in this work (WCT-120, Sinton Consulting, USA), two illumination regimes are possible [14]: 

(1) quasi-steady state (QSS-PC), with a monotonic intensity decay of ~2.3 ms, instantly 

evaluating τeff at different injection levels; (2) transitory state (PCD), with a short illumination 

flash of ~15 µs, evaluating τeff independently of Jph. The PCD regime is used to assess the 

effective absorption inside the wafer, which could be smaller than the reference sensor due to 

optical effects (texturization, ARC layer, etc.).  
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Figure 3.9 (a) Schematic of the contactless photoconductance technique and (b) representative time dependence of 

the light intensity (suns) and photoconductance transients (Ω-1). 

 

A common experimental approach in lifetime measurements is the deposition of the material of 

interest on both sides of the wafer (e.g. a TMO/c-Si/TMO). If the intrinsic bulk lifetime (τbulk) is 

large enough, the effective lifetime of this symmetric sample is only limited by the front and rear 

surfaces, simplifying Eq. 2.13 to:  

1
𝜏!""

 −  
1

𝜏!"#$
≈
2𝑆!""
𝑊 ≈

2𝐽! ∆𝑛
𝑞𝑛!!𝑊

 (3.2) 

Eq. 3.2 also implies that a plot of (1/τeff – 1/τbulk) vs. Δn will yield a linear response with a slope 

proportional to J0. Consequently, lifetime measurements contain implicit information about the 

VOC of the device, the so-called implied-VOC [13]: 

𝑖-𝑉!" =
𝑘𝑇
𝑞 𝑙𝑛

∆𝑛(𝑁 + ∆𝑝)
𝑛!!

+ 1  (3.3) 

Finally, since the front and rear surfaces usually limit the lifetime of the device, J0 can also be 

approximated as the sum J0.front + J0.rear, each term determined independently from lifetime 

measurements.  

 

3.2.2 Current-Voltage 

 

The current density-voltage J(V) response of a solar cell is essential to evaluate its performance. 

It is measured at a controlled ambient temperature (25 ºC) in the dark and under standard 

   (a)                                                                  (b) 

Cell precursor      

Flash      

Coil      

Reference      

Oscilloscope      
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AM1.5g illumination, as provided by a solar simulator equipped with a xenon lamp (450 W, 

ABB-class, Oriel 94041A, Newport, USA). Measurements are performed with a source/meter 

(2601B, Keithley, USA) in a four-point configuration (two on each electrode) so as to minimize 

the resistance contribution from the measurement cables, which can be as high as 2 Ω. The data 

is then collected by an in-house Matlab routine.  

 

Typically, the J(V) response of a c-Si solar cell is far from the ideal model described by Eq. 2.3, 

where the effect of the series and parallel resistances RS and RP are not included. Moreover, 

although 80–90% of the photocurrent is generated in the bulk of the absorber and is limited by 

diffusion of minority carriers, the rest is generated in the space-charge region and is limited by 

SRH recombination [15]. These two transport regimes determine the value of the ideality factor, 

varying between n = 1 for the diffusion current (forward bias 0.3 – 0.6 V) and n = 2 for the 

recombination current (small forward bias 0.1 – 0.3 V). The inclusion of these parameters leads 

to a modified diode-model [4]: 

𝐽(𝑉) =  −𝐽!! +  𝐽!" exp
!"!!!!
!"

− 1  + 𝐽!" exp
!"!!!!
!!"

− 1 +  !!!!!
!!

 (3.4) 

where J01 and J02 are the saturation current densities for the diffusion- and recombination-limited 

diodes respectively, each with its characteristic ideality factor. Note that a large series resistance 

will cause a voltage drop (ohmic loss) whereas a small parallel resistance will cause current 

losses through low resistive paths.  

 

Fig. 3.10a shows the typical dark J(V) response of a c-Si solar cell fitted to Eq. 3.4, clearly 

distinguishing the two diodes J01 and J02, RS at high injection levels and of RP near the origin. 

Depending on the quality of the device, the contribution of RP could be difficult to observe, 

while highly recombinative devices could show a single J0 with an n value between 1 and 2. Fig. 

3.10b depicts the resulting equivalent circuit with its two diodes, two resistive elements and a 

current source Jph. Due to different current flow dynamics, the value of RS determined from the 

dark J(V) response is usually underestimated in comparison to the real RS under illumination 

[16]. Therefore, a more accurate procedure consists in measuring J(V) at different illumination 

intensities and calculating RS by the ratio ΔV/ΔJSC (Fig 3.11). Alternatively, the Suns-VOC 

methodology (see §3.2.4) can estimate RS unambiguously from resistance-free J(V) 

measurements, while RP can be calculated from the δV/δJ derivative near V = 0. 
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Figure 3.10 (a) Representative J(V) response of a c-Si solar cell, showing its two diode components (J01 and J02) and 

the effect of RS and RP. (b) Equivalent circuit of a solar cell. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.11 Estimation of RS and RP from the J(V) solar cell characteristic. 

 

3.2.3 Quantum efficiency 

 

The external quantum efficiency EQE, defined as the fraction of collected electron-hole pairs per 

incident photon,  is  measured  as  a  function  of  wavelength  at  short-circuit  conditions with a 

commercial equipment (QEX10, PVmeasurements, USA). Its operation is based on a white light 

source dispersed into monochromatic light of adjustable bandwidth. The generated current is 

(a)                                                         (b) 
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measured with a lock-in amplifier and compared to the incident power, calculating JSC from the 

integral of the EQE times the solar photon flux Φsun: 

𝐽!" =  𝑞 𝛷!"#(𝜆) EQE(𝜆)𝑑𝜆
!

!!
 (3.5) 

where the upper bound for λ ~ 1100 nm is determined by the Egap of c-Si.  

 

Fig. 3.12 shows a representative EQE curve for a c-Si solar cell whose inspection can readily 

reveal possible current loss mechanisms. For example, a reduced EQE for the ultraviolet (λUV 

<450 nm) and near-infrared (λNIR >1000 nm) wavelengths can be ascribed to absorption (A) 

and/or recombination (S) losses at the front and rear surfaces respectively. Short diffusion 

lengths (Ldiff) will also reduce the EQE in the near-infrared (NIR), while front reflection losses 

(R) will mostly manifest in the mid-range λ. If no optical or recombination losses were present, 

EQE would be 1. Finally, if the front reflection of the solar cell is available from 

spectrophotometry measurements (see §3.3.3), it is useful to calculate the internal quantum 

efficiency (IQE):  

IQE(𝜆) =  
EQE(𝜆)
1− 𝑅(𝜆) 

(3.6) 

which represents the fraction of collected electron-hole pairs per absorbed photon. 

 

 

 

 
 

 

Figure 3.12 EQE losses and their possible causes. The dashed line represents an EQE of 100%. 
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3.2.4 Suns-VOC 

 

The Suns-VOC technique, conceived to characterize both precursor and finished devices, 

measures the VOC in quasi-steady equilibrium in response to a slowly-varying illumination in 

sun-equivalents (Isun) [17]. Since the device is measured in open-circuit conditions and no 

current flows through the device, the obtained data (similar to Fig. 3.9a) has no RS contributions 

from the substrate, selective contacts, TCO or metal electrodes, allowing to calculate a pseudo-

J(V) curve that represents the intrinsic quality of the materials (absorber and selective contacts). 

The simple in-house experimental setup consists of a stroboscopic flash lamp, a calibrated 

reference cell to measure the light intensity and an oscilloscope that measures VOC and Isun. 

 

Suns-VOC measurements are also useful to measure the effective lifetime τeff of a finished 

(front/rear metallized) device, an unviable task in the QSS-PC method which easily saturates for 

metal layers thicker than 50 nm. Following the methodology described in [18], the Suns-VOC 

data must be processed in order to obtain the basic expression τeff = Δp/G (with G being the 

generation rate in cm-3 s-1). First, Δp can be determined from the relation between the minority 

carrier product np and the measured VOC:  

𝑛𝑝 ≈  𝑁! + ∆𝑝 ∆𝑝 =  𝑛!!𝑒 !!!" !"  (3.7) 

and solving for the excess minority carrier concentration Δp:  

∆𝑝 =  
𝑁!! + 4𝑛!! exp 𝑞𝑉!" 𝑘𝑇 − 𝑁!

2  
(3.8) 

As for the generation rate, it can be approximated by the illumination intensity Isun corrected for 

the cell short-circuit current at 1 sun illumination (1.5AMg standard):  

𝐺 ≈  𝐼!"#!
𝐽!" ! sun

𝑞 𝑊  (3.9) 

By comparing the τeff values of cell precursors (before contacts) and finished devices, it is 

possible to quantify the lifetime degradation occurring after contact formation.   
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3.3 Other characterization techniques 
 

3.3.1 Contact resistance  

 

In this work, the specific contact resistance ρc is an area-independent quantity that includes the 

metal/selective-contact and the selective-contact/c-Si interfaces, as well as the regions in close 

proximity [19]. For a specific contact area Ac, the contact resistance Rc = ρc/Ac can be obtained 

from the linear R = V/I response4 measured between two electrodes. Depending on the polarity 

of the selective contact (electron or hole extraction) and the c-Si substrate (p-Si or n-Si), two 

types of structures can be fabricated using the same deposition methods previously described 

along with shadow masks with different electrode patterns (~50 nm thick Au films), as shown in 

Fig. 3.13. 

 

 

 
 

 

 

 

 
Figure 3.13 (a) Fabricated structures and (b) evaporation masks used for ρc measurements. 

 

For majority carrier contacts (e.g. hole-selective TMO/p-Si), a two-contact vertical structure is 

used, where the total measured resistance R is defined as [20]:  

𝑅 =  
𝜌!
𝜋𝑟! + 𝑅!"# +𝑅!   (3.10) 

where r is the radius of the top circular contact, Rspr the spreading resistance 5 and R0 other minor 

resistive elements such as the metal electrode resistance (negligible), the probe resistance 

                                                
4 The response need not be necessarily linear, as long as the ohmic voltage drop is negligible [19]. 
5 Rspr accounts for the spread-out current pattern from a small to a large contact area. 

  (a)                               (b) 
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(minimized by 4-point probing) and the full-area back contact resistance. For accurate 

measurements, a small contact r should be used so that Rspr≪Rc [19]. 

 

For minority carrier extraction (e.g. hole-selective TMO/n-Si), a multiple-contact horizontal 

structure is used, where the total measured resistance R is defined as [19]:  

𝑅 =  
𝜌!
𝐿!𝑍

+
𝑅!!𝑑
𝑍 +𝑅!   (3.11) 

where Z is the contact width, d is distance between contacts, LT the effective transfer length 

(smaller than the true contact length) and Rsh is the sheet resistance of the c-Si substrate or the 

accumulation/inversion layer (if present). This technique is known as the transfer length method 

(TLM), needing small d values so that Rsh≪Rc. 

 

3.3.2 Impedance spectroscopy  

 

The impedance spectroscopy (IS) technique measures the current î passing through a solar cell 

when an small-signal AC voltage û is applied (usually 10 mV), obtaining a frequency-dependent 

impedance Z(ω) = û(ω)/î(ω). Depending on the equivalent circuit model and on the ω 

magnitude, Z(ω) can be directly correlated to different electronic processes in a solar cell such as 

internal capacitances, recombination and series resistances [21]. For instance, the most simple IS 

model (dotted lines in Fig. 3.14a) measures the capacitance 𝐶(𝜔) =  1/(𝑖𝜔𝑍(𝜔)) (in F/cm2) at a 

fixed frequency for different dc bias V. By plotting 1/C2 (V) the so-called Mott-Schottky plot is 

obtained (Fig. 13.14b), showing two distinctive elements, the junction capacitance Cj at negative 

bias and the diffusion (chemical) capacitance Cd at positive bias. Moreover, by assuming the 

one-sided abrupt junction approximation, a linear fitting using the relation:  

1
𝐶!!

=  
2

𝑞 𝜀!"# 𝑁
𝑉!" − 𝑉 −

2𝑘𝑇
𝑞   (3.12) 

allows to determine the built-in voltage Vbi from the x-axis intercept and the substrate doping 

density N from the slope (with εcSi as the permittivity of c-Si). Further information can be 

obtained by plotting the real vs. imaginary Z(ω) components in a Nyquist plot, which allows to 

differentiate between the series resistance (due to ohmic losses) and the recombination resistance 
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Rrec (related to Seff). Since each capacitive element has a characteristic response time τ = RrecCd, 

it is possible to calculate the effective lifetime from τ = τe + τh [22]. 

 

 

 

 

 
 

 

 
 

Fig 3.14 (a) Equivalent circuit model for a solar cell, showing capacitive elements (junction Cj and diffusion Cd) as well 

as resistive elements (series Rs, bulk recombination Rrec, electron/hole diffusion Rd and surface recombination at the 

selective-contacts ZS). Adapted from [21].  (b) 1/C2(V) plot showing Cj and Cd. 

 

3.3.3 Spectrophotometry  

 

A commercial UV-visible-NIR spectrophotometer (Shimadzu 3600, Japan) is used to quantify 

the parasitic absorption and reflection losses occurring in a solar cell as a function of 

wavelength. Fig. 13.15 depicts the main components of an spectrophotometer where a white 

light source is dispersed into its constituting wavelengths by a monochromator, which are then 

isolated into narrow bandwidth (1–10 nm) beams by a mechanical slit. The monochromatic beam 

is then directed towards the sample, after which a photodetector measures the fraction of 

transmitted (or reflected) radiant energy. For the materials used as selective contacts or TCO 

electrodes, the total transmittance T is measured across thin layers deposited on borosilicate glass 

slides.  

 

By subtracting the reflection/absorption contribution from the glass substrate, the internal 

transmittance due to film absorption can be calculated. For the front reflection losses of a solar 

cell, the total reflectance R is measured in a finished device without the Ag grid. For this 

measurement, the sample is placed in a integrating sphere that concentrates the reflected light 

and compares it to a white background. 

 

                       (a)                                                                     (b) 
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Fig. 13.15 Main components of a UV-visible-NIR spectrophotometer. 

 

3.3.4 X-ray photoelectron spectroscopy (XPS) 

 

XPS is a surface sensitive technique that probes the sample’s outer surface (≲10 nm) by X-ray 

photons and measures the characteristic kinetic energy (EKE) of the emitted photoelectrons. 

Photoemission is directly related to the distinctive binding energies (EBE) of core level electrons 

in a chemical element with a particular oxidation state. Therefore, XPS can determine the 

material composition as well as chemical shifts due to redox reactions [23]. An energy balance 

of the photoemission process allows determining EBE by: 

𝐸!" = 𝐸!!!"# − 𝐸!" −  𝛷 (3.13) 

where Φ is the material work function and Ex-ray ~1,486 eV is the energy of the non-

monochromatic Al-Kα source from the equipment used (SPECS, Germany). A typical XPS 

survey spectrum is shown in Fig. 13.16, with each peak representing a particular orbital of a 

particular element in the sample. Since the area under each peak is proportional to the atomic 

concentration of each chemical species, a quantitative analysis of the film composition (in 

atomic %) can be done by data processing software (CasaXPS). Special care must be taken to 

reduce surface contamination by carbon-based compounds that instantly adsorb at the sample 

surface. In addition to core level electrons, XPS is capable of detecting the valence band states 

located at binding energies <10 eV (with the Fermi level located at 0 eV), although a UV 

radiation source (UPS) is needed for an accurate probing of the valence band states [24]6. 

 

                                                
6 Similarly, inverse photoelectron spectroscopy (IPES) is needed to probe the density of empty states at the conduction band. 
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Figure 13.16 XPS survey spectrum of a WO3 thin film. A binding energy of 0 eV is equivalent to the EF level. 

 

3.3.5 Electron microscopy 

 

Detailed imaging of surface topography and layer interfaces can be obtained by scanning (SEM) 

and transmission (TEM) electron microscopy, where an electron beam is accelerated by a 

voltage source (10 – 200 kV) and then focused by electromagnetic lenses, illuminating the 

sample with a resolution proportional to the electron wavelength (λ ~10-3 nm) [23]. SEM 

imaging (NEON40, Carl Zeiss, Germany) is based on the detection of emitted secondary 

electrons from a bulk surface, revealing details in the µm range as shown in Fig. 3.2 for a 

texturized c-Si wafer.  

 

 

 

 

 

 

 

 
 

 
Figure 3.17 (a) Milled lamella welded to a TEM holder (b) electron diffraction pattern. 

 

(a)                                                                       (b) 
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Alternatively, TEM (2010F, JEOL, Japan) is based on the detection of transmitted electrons 

through an ultra-thin sample cross-section known as lamella, revealing sub-nm details such as 

atomic lattices. Lamella preparation is carried out by focused ion beam (FIB) milling with Ga+ 

ions, removing bulk material until an electron-transparent (<50 nm) cross-section is obtained 

(Fig. 3.17a). Then, the lamella is extracted by a micro-manipulator needle and welded to a TEM 

holder. TEM is also capable of obtaining electron diffraction patterns used to determine the 

crystalline structure of solids, as shown in Fig. 3.17b for the c-Si substrate. 

 

3.3.6 Time-of-flight secondary ion mass spectrometry (ToF-SIMS) 

 

The ToF-SIMS technique determines the chemical composition of thin-films as a function of 

depth, sputtering the surface with a primary ion beam and analyzing the ejected secondary ions 

with depth resolution of 1 nm and large sensitivities (parts per trillion) [23]. A depth-profile of 

the fabricated solar cells is performed by sputtering with Cs+ ions under high vacuum (10-8 

mbar) followed by the identification of the ion masses from their different velocities (i.e. 

different travel times from the sample to the detector) at a fixed kinetic energy of 25 keV (ION-

TOF IV, Ion-tof, Germany). Mass is detected in atomic mass units (amu) with a resolution of 

10-3 amu, recording the complete mass spectrum for every sputtering pulse of 200 ps duration. 
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4 Materials characterization  
 

A thorough characterization of the structural and optoelectronic properties of 

transition metal oxides and PEDOT:PSS is presented, with emphasis on their 

applicability as hole-selective contacts in c-Si solar cells.  
 

 

Understanding the multiple correlations between a material’s chemistry (internal structure, 

composition, reactivity) and its optoelectronic properties is critical for a successful 

implementation into c-Si solar cells. Table 4.1 lists several selective contact properties that are 

relevant for solar cell operation. For instance, a wide energy band gap (Egap >3eV) is a trademark 

characteristic of transition metal oxides (TMOs), making them suitable as front window layers in 

HIT-type solar cell architectures. Another important property is conductivity, with TMOs 

exhibiting negligible values (σ ~10-7 Ω-1cm-1) that prevent their use as front collector electrodes, 

also limiting film thicknesses to a few tenths of nanometers so that resistive losses are not 

excessive. Accordingly, the solar cell structures presented in Fig. 3.1a and 3.1c display very thin 

TMO layers (20 nm) capped by a TCO layer. In contrast, PEDOT:PSS has a moderate Egap (~1.6 

eV) and a higher σ (~101 Ω-1cm-1), facilitating both carrier collection and hole-selectivity as in 

the ITO-free solar cell structure shown in Fig. 3.1b.  

 
Table 4.1 Material properties reported in literature. The film deposition methods are thermal evaporation (e), in-situ 

oxidation (ox), sputtering (sp) and solution spin-coating (s). 
 

Material Egap 
eV 

σ 
Ω-1cm-1 

Φ (1) 
eV Type 

Selectivity 
 with c-Si 

Ref. 

(e) MoO3 3.0 – 3.2 

10-7 – 10-5 

5.1 – 6.9 n hole [1–3] 

(e) WO3 3.1 – 3.3 6.0 – 6.7 n hole [1,4,5] 

(e) V2O5 2.1 – 2.8 5.3 – 7.0 n hole [1,6,7] 

(e) ReO3 2.5 – 3.4 6.0 – 6.9 n hole [8–10] 

(ox/sp) NiO 3.1 – 4.0 10-2 – 102 5.2 – 6.8 p hole [11–13] 

(e) LiF (2) ~13.6 Insulator 2.8 – 3.0 n electron [14–16] 

(s) PEDOT:PSS ~1.6 101 – 102 4.7 – 5.2 p hole [17–19] 
           (1) The lowest values correspond to oxygen-deficient structures, usually after air exposure. 
           (2) The n-type character and Φ value are not inherent to LiF, but associated to a Φ reduction of a metal like Al [15]. 
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Table 4.1 also lists the carrier selectivity of these materials with c-Si (electron or hole contacts), 

a property that does not depend necessarily on their inherent semiconductivity (i.e. p- or n-type) 

but on how their work functions (Φ) align with the Fermi levels of c-Si (see §2.3.2 and §2.3.3). 

For example, n-type MoO3 (Φ >5.1 eV) cannot perform as an efficient electron contact due to 

misalignment with the electron quasi-Fermi level (EFn ~4.2 eV). Yet, it aligns favorably with the 

hole quasi-Fermi level (EFp ~5.0 eV), facilitating the extraction of holes1.   

 

Depending on the doping character of the c-Si substrate (n- or p-type), large work function 

TMOs will form a hole-selective contact via two pathways [20,21]: (1) inducing an accumulation 

layer on the p-Si surface, equivalent to a p+/p contact; (2) inducing an inversion layer on the n-Si 

surface, equivalent to a p+/n junction. Considering that TMOs will provide a certain degree of 

surface passivation, these type of heterojunctions can be described as genuine passivating 

induced junctions. Figure 4.1 illustrates the energy band diagram after Fermi level alignment, 

with the built-in potential Vbi being equal to the work function difference ΦTMO – Φc-Si.  

 

 

 

 

 

 
 

 
 

 

 

Figure 4.1 Expected energy band alignment (under equilibrium in the dark) between high work function TMOs (ΦTMO 

>5.1 eV) and (a) p-Si or (b) n-Si. 

 

Two more TMOs, NiO and ReO3, were also tested for hole selectivity. However, the quick 

degradation of ReO3 films (even under N2) and the high evaporation temperatures of NiO (~1950 

ºC) prevented their implementation into finished devices. Likewise, LiF was also tested for 

electron selectivity, but the negligible passivation properties of LiF/n-Si heterojunctions resulted 

in very poor solar cell performance. Consequently, the characterization details for these three 

materials will be treated separately in Appendix B. 

                                                
1 As for the mechanisms involved in hole conduction and extraction across the TMO/n-Si interface, see §4.3.2. 

                 (a)                                                                  (b) 
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4.1 Transition metal oxides 
 

Transition metal oxides are characterized by an electronic configuration2 with one or more d-

orbital electrons in their outer electron shell whose degree of occupancy largely determines the 

electronic behavior [5,22]. Fig. 4.2 depicts representative energy band diagrams for different 

TMOs, with a valence band mostly composed by O 2p states and a conduction band by metal d-

states whose occupancy is determined by the oxide stoichiometry. Accordingly, two TMO 

categories can be distinguished [5]: 
 

(1) As the lowest d-band becomes filled (d1), TMOs transition from stoichiometric 

insulators to metallic-like conductors, e.g. MoO3 and MoO2 respectively. In between 

this transition, n-type semiconductivity is observed for oxygen-deficient materials 

(MoO3-x) due to occupied defect states within Egap 1, very close to the conduction band.  

 

(2) Once the d1-band is full, the above d2-band becomes filled and TMOs transition from 

insulators3 to semiconductors, e.g. NiO and Ni1-xO respectively. For the latter, p-type 

semiconductivity is observed due to cation-deficiency and unoccupied defect states 

lying within the next-highest Egap 2, very close to the d2 valence band. 
 

 

 

 

 
 

 
 

Figure 4.2 Electronic band structure for some TMO semiconductors, reflecting d-band occupancy. Adapted from [5]. 

 

In summary, deviations from stoichiometry in TMOs lead to oxygen vacancies (excess electrons) 

or cation vacancies (excess holes) that position the Fermi level in the vicinity of the conduction 

or valence bands respectively.  

                                                
2 Of the form [inert gas](n – 1)s1:2dm, where n is the electron shell and m the occupancy (1–10).  
3 Known as Mott-Hubbard or charge-transfer insulators, with an energy gap U between d1 and d2. 
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This thesis is focused on oxygen-deficient n-type semiconductors MoO3-x, WO3-x and V2O5-x, 

obtained from stoichiometric materials that tend to lose oxygen during the deposition process by 

vacuum thermal evaporation. Since oxide stoichiometry largely determines the electrochemical 

potential [5], it is no surprise the large Φ variation reported in the literature, where many diverse 

deposition methods (in-situ oxidation, thermal evaporation, solution processes) and 

environments (vacuum, N2, air) are used. Additional factors like impurities, surface dipoles and 

TMO/substrate chemical reactions also impede the fine-tuning strategy and reproducibility of 

TMO’s selectivity. 

 

Fig. 4.3a summarizes the general trend in Φ and σ variation with TMO stoichiometry, where a 

high oxygen deficiency results in lower work functions but increased conductivity values [5]. As 

an example, MoO3 has a Φ ~6.8 eV and a coplanar σ ~10-7 Ω-1cm-1 when fully oxidized 

(insulating), transitioning to ~5.9 eV and ~10-5 Ω-1cm-1 as it reduces to MoO2 [5,23]. Similarly, 

oxygen loss results in a stronger optical absorption, with an Egap transition from ~3 to ~0 eV for 

MoO3 and MoO2 respectively [23]. This compromise between Φ, σ and Egap must then be taken 

into account during selective-contact selection4. Furthermore, TMO properties vary also with 

thickness due to composition changes near adjacent materials, i.e. the first TMO monolayers are 

oxygen-poor and evolve towards stoichiometry as the film thickens (Fig 4.3b). This 

TMO/substrate interaction, which can be justified by thermodynamic and/or charge-transfer 

considerations [2], will be used to describe the TMO/c-Si interface in §4.2.3.  

 

 

 

 

 

 

 

 

 

 

                                                
4 However, it is possible that oxygen-deficiency control may not be too critical for solar cell performance, as manifested by 

relatively constant contact resistivities (§4.2.1) and unvarying implied-VOC values (§4.2.2).  

       (a)        (b) 
Figure 4.3 Illustrative dependence of TMO properties with (a) stoichiometry and (b) film thickness. Adapted from [5]. 
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TMO properties are also sensitive to redox environments and deposition conditions. Reducing 

N2 atmospheres under moderate temperatures can increase oxygen vacancies in MoO3 

considerably (up to the point of MoO2 formation), whereas oxidative O2 treatments can reverse 

these composition changes [24]. Similarly, amorphous to crystalline transitions occur at 

substrates temperatures T >300 ºC, increasing the conductivity up to 103 Ω-1cm-1 at the expense 

of Egap reduction (color centers) [25]. Moreover, humidity and airborne contaminants can easily 

adsorb to the TMO surface lowering its work function by several eV, as is the case with air-

exposed MoO3 (Φ ~5.3 eV) [2]. Finally, TMO properties can also vary with the deposition rate 

and oxygen partial pressure [26,27], even though this was not thoroughly explored in this thesis. 

 

4.1.1 Electronic structure 

 

The presence of atomic vacancies, indicative of metal cation redox transitions (M+n ⟷ M–n), 

were investigated from the x-ray photoelectron spectroscopy (XPS) spectra of TMO thin films 

(~15 nm), after fitting by Gaussian-Lorentzian curves and performing a multi-peak 

deconvolution by use of the binding energies referenced in the literature [28]. The integration of 

the peak areas allowed quantifying the relative content of each oxidation state and the oxygen to 

metal (O/M) ratios. Given that samples were briefly exposed to air (~1 min), adventitious 

(adsorbed) contamination in the form of C–OH compounds was subtracted from the overall 

oxygen content. Fig. 4.4 shows the core level spectra for the oxides under study while Table 4.2 

summarizes their peak binding energies and relative composition.  

  
Figure 4.4. XPS spectra of the core levels in (a) V2O5, (b) MoO3 and (c) WO3, showing the multi-peak deconvolution 

for different oxidation states Mn. 

 

          (a)                                               (b)                                               (c) 
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Cation species with reduced valence states were identified for the V 2p (Fig. 4.4a) and Mo 3d 

(Fig. 4.4b) doublet peaks, indicative of the V+5 → V+4 and Mo+6 → Mo+5 reduction transitions 

[7,29]. As a result, the oxygen content for V2Ox and MoOx was estimated at x ~4.6 and x ~2.5 

respectively, confirming the semiconductive nature of the deposited films. Conversely, no 

reduced valence states were identified for the W 4f peaks (Fig. 4.4c), indicating the absence of 

W+6 → W+5 transitions [4]. This is further supported by the oxygen content of the WOx films 

with x ~3.2, confirming that oxygen vacancies are absent and that the deposited film is not of 

semiconductive nature. An over-oxidized WO3.2 film could be the result of high oxygen partial 

pressures, requiring an ultra-high vacuum environment (<<10-6 mbar) to generate vacancies [30].  

 
Table 4.2 Binding energy (eV) of V, Mo and W core levels (reflecting M+n ⟷ M–n transitions), as fitted from the XPS 

spectra. The relative content of M and O 1s components yield the film stoichiometry (O/M ratio). 

 

TMO Core level peaks (eV) Content (%) Stoichiometry 

 Transition (1):   M+n  	⟷ M–n    M+n    ⟷ M–n O 1s O/M ratio O content  

V2Ox  
V 2p3/2 518.1 516.6 

27.3 3.1 69.6 2.3 x~4.6 
V 2p1/2 525.7 524.2 

MoOx  
Mo 3d5/2 233.4 231.8 

28.1 0.5 71.4 2.5 x~2.5 
Mo 3d3/2 236.5 234.9 

WOx  
W 4f7/2 36.8 34.8 

23.6 <0.1 76.4 3.2 x~3.2 
W 4f5/2 38.9 37.0 

(1) V+5 → V+4; Mo+6 → Mo+5; W+6 → W+5 

 

Moreover, measuring the emission of photoelectrons with the lowest binding energies (<10 eV) 

allows probing the valence band and near Fermi level (EF = 0 eV) states. Fig. 4.5 shows the 

presence of defect states at ~1 eV lying between the valence band maximum (VBM) and EF (i.e. 

within the Egap), as expected for oxygen-deficient TMOs. These mid-gap states originate from 

the reduced cation species (V+4, Mo+5, W+5) whose excess electrons displace EF towards the 

conduction band, providing an n-type character [1,5]. However, the defect state density is 

relatively small and there is no consensus in the literature whether it plays a significant role in 

carrier conduction or not [1]. The intensities of the measured defect peaks were stronger for 

V2Ox and MoOx, in accordance with their larger oxygen deficiencies, while the defect peak in 

over-stoichiometric WOx was almost unnoticeable. In the following sections, the obtained TMO 

stoichiometries will be useful to explain the passivation properties of TMO/c-Si heterojunctions 

and the performance of solar cell devices. 
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Figure 4.5. XPS spectra of the valence band region, showing mid-gap defect states between the valence band 

maximum (VBM) and the Fermi level (EF = 0 eV). 

 
4.1.2 Optical properties 

 

As mentioned above, one of TMOs advantages over a-Si:H-based selective contacts is a wider 

energy band gap, resulting in fewer parasitic absorption losses when used as front window layers 

in HIT architectures [16,31,32]. In order to compare the optical attributes among different 

TMOs, the optical transmittance (T) of 25 nm thick films is shown in Fig. 4.6a, as measured by 

spectrophotometry and after subtraction of the glass substrate contribution. Of the three oxides, 

MoO3 exhibits the highest transmittance in the whole wavelength range and has the largest cutoff 

beyond 400 nm, while V2O5 drops at around 420 nm. The above observations are in agreement 

with experimental Egap values obtained from the inverse square proportionality between the 

absorption coefficient α and the photon energy hν (Tauc’s law), characteristic of indirect band 

gap transitions [33]: 

𝛼(ℎ𝜈)!/! ∝  ℎ𝜈 − 𝐸!"# (4.2) 

where h is Plank’s constant (eV⋅s), ν the frequency (s-1) and α is calculated from the relationship 

α = – ln(T)/d with d as the film thickness. Fig. 4.6b shows Tauc’s plot, where the extrapolation 

to the hν (energy) axis yields Egap values of 3.0, 2.9 and 2.5 eV for MoO3, WO3 and V2O5 

respectively. These Egap values are in accordance with those reported in Table 4.1, although finer 

measurements of the absorption coefficient by more sensitive techniques (e.g. photothermal 

deflection spectroscopy - PDS) could help quantify sub-bandgap absorption [25]. 
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Figure 4.6 (a) Transmittance measurements for different TMOs, including a p-type a-Si:H and ITO references 

(calculated). (b) Tauc’s plot indicating the Egap values at the intersection with the energy axis. 

 

Fig. 4.6a also shows the optical transmittance of a reference p-type a-Si:H (20 nm) and ITO 

layers (80 nm) calculated from absorption coefficient data [34]. By comparison, all three TMOs 

exhibit higher transmittance in the near UV–visible range due to a larger cutoff than a-Si:H 

(~590 nm), confirming the potential of TMOs for reduced absorption losses in solar cell devices.  
 

In the proposed HIT-type structures (Fig. 3.1a,c), the front window layer consists of a ITO/TMO 

stack that works as a double anti-reflection coating (ARC), needed to minimize reflection loses 

and maximize absorption in c-Si. For this purpose, the refractive indexes n of the studied TMOs5 

and of ITO (nITO ~2.1) are conveniently very close to the optimal index nopt ~2. Before the 

fabrication of the devices, an optimization procedure was carried out by ray-tracing modeling 

with the online tool Wafer Ray Tracer [35]. This tool calculates the total reflectance, 

transmittance and absorptance across a multi-layer structure, each with a particular refractive 

index and absorption coefficient, yielding the theoretical photocurrent density (Jph) under a 

1.5AMg illumination spectrum. Fig. 4.7 shows the simulated Jph for a planar (un-texturized) 

solar cell as a function of MoO3 and ITO thickness. Since the ITO sheet resistance obtained by 

the sputtering equipment is limited to Rsh ~110 Ω/☐ , a minimum ITO thickness of 70–80 nm 

was established in order to minimize resistive losses6. Then, a maximum photocurrent of ~35.7 

mA/cm2 can be expected for a TMO thickness of 15–20 nm.  

                                                
5 nMoO3 ~2.2, nWO3 ~2.1 and nV2O5 ~2.1 (at 600 nm). 
6 Fixing in 1% the maximum power loss attributed to Rsh, under the current front grid design. 

    (a)                                                                          (b) 
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Figure 4.7 Ray-tracing simulation of the theoretical photocurrent density (Jph) in a MoO3/n-Si planar solar cell, 

showing an approximate photogeneration of ~35.7 mA/cm2 for the 70–80 nm ITO/15–20 nm MoO3 ranges. 

 

Finally, photocurrent differences between a-Si:H (Egap ~1.7 eV) and TMO (Egap >2.5 eV) hole 

contacts were also calculated by ray-tracing modeling for a front-textured substrate (Fig. 4.8a), 

showing a large reduction in the front absorption losses equivalent to ~1.6 mA/cm2, in 

accordance with other reports in the literature [31,32]. Similarly, Fig. 4.8b shows the c-Si 

absorptance profile as a function of wavelength (equivalent to a recombination-free EQE curve), 

demonstrating the Jph gain is indeed delimited to the 400–600 nm range where TMOs exhibit 

lower parasitic absorption. Regarding the front reflection and rear absorption losses, similar 

values were obtained for both hole contact materials, proving the feasibility of double ARC 

strategies based on ITO/TMO stacks.  

 

 

                                  (a)                                                                       (b) 
 

Figure 4.8 (a) Optical losses and photocurrent comparison between 15 nm thick MoO3 and a-Si:H hole contacts 

(75 nm ITO) for a front-textured solar cell. (b) c-Si absorptance and total reflectance profiles. 
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4.2 TMO/n-Si characterization 
 

4.2.1 Electric properties 

 

Even if stoichiometry variations allow for enhancements in conductivity, transition metal oxides 

are in general poor conductors when compared to doped silicon or TCOs. In order to pin down 

the conductivity of our thermally evaporated TMOs, 50 nm thick films were deposited on glass 

and measured7 by the transfer length methodology (TLM) with Au electrodes, obtaining an 

ohmic response for each contact spacing d, as shown in Fig 4.9a for the MoOx sample but 

equally obtained for V2Ox and WOx. A linear fit of the total resistance R as a function of d (as 

per Eq. 3.11 and plotted in Fig. 4.9b) yielded sheet resistance values Rsh of 109–1011 Ω/� that 

translate into coplanar conductivities of 8.6×10-5 and 6.1×10-5 Ω-1cm-1 for V2Ox and MoOx 

respectively. For the case of WOx, σ was two orders of magnitude smaller, most probably related 

to the absence of oxygen vacancies determined by XPS. Note that measurements were performed 

under mild vacuum (1 mbar) in order to get a low-noise repeatable response, an indication of 

TMO’s high sensibility to air. Despite the low measured conductivities, they are similar to p-type 

a-Si:H (10-5 Ω-1cm-1)[36] and should not cause excessive resistive losses if very thin layers 

(<100 nm) are used. 

 
Figure 4.9 TLM measurements for 50 nm thick TMOs deposited on glass. (a) Example ohmic current-voltage 

response (dark) and (b) linear fit for different electrode intervals. 
 

                                                
7 Measurements were also performed with four-point probing, giving an infinite (unmeasurable) Rsh value. 

      (a)                                                                          (b) 
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Next, TLM measurements were repeated for 20 nm thick TMO films deposited on n-Si wafers 

(1.2 Ω⋅cm wafer resistivity) under dark and vacuum conditions. As in the glass substrate 

samples, an ohmic response was obtained for each contact spacing and for each oxide sample 

except this time much lower sheet resistances were obtained, namely ~10.7, ~18.8 and ~1,600 

kΩ/� for V2Ox, MoOx and WOx respectively (Fig. 4.10). When compared to the Rsh of bare n-Si 

(~40 Ω/�), it is clear that carrier conduction is restricted to a conduction channel between the 

TMO and the n-Si wafer. This is the first indication of the presence of an inversion layer (IL) 

induced upon the n-Si surface, as predicted by the energy band diagram in Fig 4.1b after Fermi 

level alignment has taken place. As it will be later discussed in §4.2.4, this hole-rich surface 

layer is most probably responsible for hole selectivity in n-Si. The obtained inversion layer Rsh IL 

values are in accordance with the literature [20,37] and show a slight decrease upon illumination 

due to coupling between IL and the n-type base [37]. Considering an average inversion layer 

thickness of 1.5 nm [38] with a hole mobility µIL ~200 cm2/V⋅s [39], it is possible to estimate an 

equivalent inversion layer conductivity σIL ~102 Ω-1cm-1 as well as a hole surface concentration 

pIL ~1019 cm-3, similar to the conductivity and dopant concentrations achieved by standard 

phosphorous doping [40].  

 
 

Figure 4.10 TLM measurements for 20 nm thick TMOs deposited on n-Si. (a) Example ohmic current-voltage 

response and (b) linear fit for different electrode intervals (under dark and light). Error bars (5%) account for current 

leakage outside the channel. Regression coefficients were R2 >0.99. 

 

The specific contact resistance ρc can also be extracted from TLM measurements (see Eq. 3.11), 

accounting for the transversal current flow across the Au/TMO and TMO/IL interfaces as well as 

          (a)                                                                      (b) 
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the TMO bulk. The obtained ρc values were ~110, ~370 and ~670 mΩ⋅cm2 for V2Ox, MoOx and 

WOx respectively, in the same order of magnitude as other passivated/carrier-selective contacts 

[16,20,41] but much higher than industrial aluminum-fired or poly-Si/SiO2 hole contacts (ρc ~10 

mΩ⋅cm2) [42,43]. Given the high bulk resistivity of TMOs, an increase in ρc could be expected 

for thicker films; yet, resistive losses are relatively constant [20] or tend to decrease [44] with 

film thickness (10–60 nm range). Nonetheless, TMO/n-Si heterojunctions are greatly influenced 

by the overlying contact metal, affecting not only ρc but also the inversion/accumulation 

characteristics. This could be related to work function misalignments or to chemical reaction in 

the metal/TMO interface [2,45]. In this sense, the electric properties measured here for Au/TMO 

contacts might vary when implemented into a solar cell (ITO/TMO). 

 

Even though most of the work in this thesis is focused on hole-selective TMOs for n-Si devices, 

contact resistance measurements were also performed for Au/TMO (20 nm)/p-Si samples 

following the methodology in §3.3.1. Fig. 4.11 shows the representative ohmic response and the 

total resistance R as a function of contact radius r, extracting very similar ρc values for all three 

oxides (37–45 mΩ⋅cm2) but slightly larger than those reported for Pd/MoOx/p-Si contacts (ρc ~1 

mΩ⋅cm2) [20]. Similar to the n-Si case, hole selectivity in p-Si is promoted by an induced 

accumulation layer formed during Fermi level alignment (Fig 4.1a). Given that ρc values are 

smaller than those measured for n-Si, it could be said that hole extraction through carrier 

accumulation is more favorable than hole extraction through surface inversion [20,46].  

 
Figure 4.11 Contact resistance measurements for 20 nm thick TMOs deposited on p-Si. (a) Example ohmic current-

voltage response and (b) resistance values for three electrode diameters. 

 

       (a)                                                                          (b) 
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Table 4.3 summarizes the sheet resistance, conductivity and specific contact resistance values 

measured for the TMOs under study. Overall, V2Ox outperformed MoOx by exhibiting a less 

resistive bulk, inversion layer and contact with n-Si, whereas WOx contacts were consistently the 

most resistive. This trend might be explained by the previously obtained film stoichiometry, 

where oxygen vacancies were highest for V2Ox. Regarding the ρc contribution to the total series 

resistance RS of a device, it will depend on the contacted area fraction (ρc ⋅ fc). Taking a HIT-type 

V2Ox/n-Si solar cell with a ρc value of ~100 mΩ⋅cm2 and a full8 contacted area fraction fc = 1, the 

contribution to RS can be as low as ~0.1 Ω⋅cm2. This is about half the maximum permitted RS 

≤0.2 Ω⋅cm2 defined in §2.1.4, confirming the viability of TMO/n-Si heterostructures as 

alternative hole-selective contacts. 
 

Table 4.3 Summary of the electric properties for the TMOs under study. All measurements were performed in the 

dark unless noted otherwise. 
 

Substrate Glass  n-Si  p-Si 

TMO 
Rsh 

GΩ/� 

σ 

Ω-1cm-1 

 Rsh IL 
(1)(2)

 

kΩ/�  

σIL (3) 

Ω-1cm-1 

ρc 

mΩ⋅cm2 

Rsh IL light 
(1)

 

kΩ/� 

 ρc 

mΩ⋅cm2 

V2Ox 2.3 8.6×10-5  10.7 3.5×102 110 9.4  39 

MoOx 3.3 6.1×10-5  18.8 6.2×102 370 15.6  37 

WOx 390 5.1×10-7  1,600 4.2 670 NA  45 
   (1) Values for the induced inversion layer IL. 

   (2) Compare to the Rsh ~40 Ω/� of bare silicon (1.2 Ω⋅cm resistivity). 
   (3) Assuming an inversion layer width of 1.5 nm. 

 

Regarding the temperature stability of TMO’s electric properties, temperature annealings in a N2 

atmosphere were performed for the MoOx/n-Si TLM structures in order to evaluate their 

compatibility with industrial post-processing, e.g. silver paste drying. Fig 4.12 shows a 70–150% 

increase in both Rsh and ρc for a 160 ºC anneal, while a 250 ºC anneal completely degraded the 

ohmic character of the contacts (Rsh >106 Ω/�). A similar deterioration in the conductivity of 

V2Ox/n-Si contacts was also observed for T >160 ºC [44], which is close to the transition 

temperature from amorphous to crystalline. These temperature instabilities have already been 

correlated to fill factor losses in finished devices (see ref. [47] and solar cell results in Chapter 

5), occurring at temperatures as low as 130 ºC and imposing a severe limit on the post-

processing of the device. 

 
                                                
8 As an example, V2Ox/n-Si solar cells with fc <1 (IBC structure) are presented in a co-authored paper [44]. 
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Figure 4.12 TLM measurements of MoOx/n-Si structures after temperature annealings of 160 and 250 ºC. 

 

4.2.2 Passivation properties 

 

The surface passivation quality TMO/n-Si heterojunctions was studied by depositing 20 nm thick 

films on both sides of planar n-Si wafers (1.2 Ω⋅cm resistivity) and measuring the 

photoconductance in the quasi-steady state regime (QSSPC). Fig. 4.13a shows the effective 

lifetime τeff of photogenerated carriers as a function of carrier density Δn, while Fig. 4.13b shows 

the implied open-circuit voltage9 i-VOC as a function of the illumination level in sun-equivalents. 

The i-VOC can be interpreted as a measure of the maximum theoretical VOC for the TMO/n-Si 

heterojunction (the quasi-Fermi level separation qEFn – qEFp) for an illumination of 1 sun. The 

highest passivation is achieved by V2Ox with a τeff (i-VOC) of 240 µs (671 mV) followed by 

MoOx with 142 µs (655 mV). This level of passivation is far below state-of-the-art a-Si:H 

technology (i-VOC >740 mV), yet, it is remarkably high considering that it arises from a simple 

oxide/n-Si junction with no additional passivation interlayers. Also shown in Fig. 4.13 are the 

passivation characteristics for the two (i/n+) a-SiCx:H electron contact strategies, with measured 

τeff (i-VOC) of 70 µs (631 mV) for the laser-doped and 1,150 µs (730 mV) for ITO-contacted. 

 

Up to now, most research efforts on TMO/c-Si heterojunctions have boosted surface passivation 

to τeff >2 ms by including a thin (5–10 nm) intrinsic a-Si:H interlayer, reaching i-VOC >700 mV 

[16,32,47]. Naturally, this strategy was tested in this work by intercalating a 4 nm intrinsic a-

SiCx:H layer deposited by PECVD. However, the reported increase in passivation could not be 

replicated, obtaining similar VOC values for TMO/a-SiCx:H/n-Si and TMO/n-Si finished devices 
                                                
9 Corrected by a factor kT ln(2) ≈17.8 mV, due to the sample’s symmetric structure. 
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(see Appendix B), suggesting that our a-SiCx:H films were either too thin or chemically 

incompatible with thermally evaporated TMOs.  

 

 

 

 

 

 

 

 

 

 

 
Figure 4.13 (a) Effective carrier lifetime for TMO/n-Si/TMO structures. (b) Implied-VOC as a function of illumination 

(sun equivalents). The (i/n+) a-SiCx:H electron contact strategies (laser-doped and ITO-contacted) are also shown. 

 

Concerning WOx, no substantial passivation was obtained (τeff <10 µs) resulting in negligible i-

VOC values that contrast with the results reported by Bivour et al. where WOx/n-Si 

heterojunctions exhibited some degree of passivation (VOC >620 mV for finished devices) [31]. 

As mentioned in the previous sections, failure to passivate could be related to over-stoichiometry 

in the evaporated films (WO3.2), suggesting that oxygen deficiency plays a role in the effective 

passivation of the c-Si surface. Another cause could be the difficult processing of evaporated 

WO3 powders (higher melting point). 

 

Figure 4.14a shows a plot of (1/τeff –1/τbulk) as a function of carrier density, whose linear fit (Eq. 

3.2) yields the recombination currents J0 V2Ox ~130 and J0 MoOx ~230 fA/cm2, the latter in 

accordance with the values reported by Bullock et al. [20]. Moreover, this kind of symmetric 

structures allow a straightforward extraction of the effective surface recombination velocity Seff :  

𝑆!"" ≲
𝑊

2𝜏!""
 (4.1) 

with Seff V2Ox ~60 and Seff MoOx ~100 cm/s. Putting these numbers in perspective, reported J0 values 

for industrial aluminum-fired hole-contacts are ~550 fA/cm2 [42], making TMO hole contacts a 

feasible option for industrial application. Table 4.4 summarizes the obtained passivation 

    (a)                                                                          (b) 
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parameters for TMO/n-Si heterojunctions, along with the (i/n+) a-SiCx:H electron contact 

strategies. An rough estimation of the attainable VOC in the final device can be made by summing 

the J0 contributions for both selective contacts, J0 TMO + J0 (i/n+)a-SiCx:H, and evaluating Eq. 2.12. As 

an example, a V2Ox/n-Si/(i/n+)a-SiCx:H heterojunction could reach a maximum VOC of  

approximately 640 and 680 mV for the laser-doped and rear-ITO structures respectively, without 

considering the effects of the front ITO layer and front/rear metallization. 

 
Figure 4.14 (a) Auger-corrected inverse effective lifetime for symmetric TMO/n-Si/TMO structures, whose linear fit 

yields the recombination current (2J0). (b) Implied-VOC dependence on TMO thickness. 

 
Table 4.4 Summary of the TMO passivation properties extracted from QSSPC measurements in symmetric TMO/n-

Si/TMO structures. The (i/n+) a-SiCx:H electron contact strategies are also shown. 
 

TMO 
τeff 

µs 

i-VOC 
(1) 

mV 

J0 

fA/cm2 

Seff 

cm/s 

V2Ox 240 671 ~130 ~60 

MoOx 142 655 ~230 ~100 

WOx <10 553 ~3,630 ~410 

(i/n+) a-SiCx:H 
    

Laser-doped 70 631 ~510 ~200 

ITO-contacted 1,150 730 ~12 ~10 
               (1) At 1 sun illumination intensity. 

 

The dependence of passivation on increasing TMO thickness was also investigated (Fig. 4.14b), 

showing a minor improvement (V2Ox) and no variation (MoOx) in the 25–80 nm thickness range, 

as reported in [20]. However, very thin films <10 nm should be avoided due to: (1) possible non-

uniform coverage, especially in textured surfaces with increased roughness; (2) a more 

    (a)                                                                          (b) 
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pronounced passivation damage induced by ITO sputtering (see next section); and (3) a greater 

chemical influence from the c-Si substrate (see §4.3.1) Also, as suggested above, film 

stoichiometry and crystallinity could be important variables to consider, but so far no 

comprehensive study has been performed relating these variables to the passivation quality10. 

 

4.2.2.1 Passivation stability 

 

Due to TMO’s sensitivity to redox environments and airborne adsorbents, the passivation 

stability after air exposure was studied (Fig. 4.15a). While MoOx showed a relatively stable 

passivation, a strong degradation was seen for V2Ox with an i-VOC decrease from 671 to 617 in 

just 24 hours. This is in accordance with the general instabilities shown by amorphous V2O5 

films deposited at ambient temperature, which readily react with humid air and are easily 

scratched [48]. Film degradation can be avoided by ~5 nm capping layers (deposited without 

interrupting the vacuum), as confirmed by stable i-VOC values up to 40 days after fabrication 

[44]. However, since the devices presented here are intended as front window layers, metal 

capping is only useful in rear-contacted structures [44], where a high work function metal (e.g. 

niquel, ΦNi ~5.6 eV) could also favor a better ohmic contact than ITO (ΦITO ~4.8 eV). 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
10 See reference [27], where lower surface potentials (band bending) were correlated to increased WOx oxygen vacancies. 

         (a)                                                                         (b) 

Figure 4.15 (a) TMO passivation stability after air exposure. (b) Passivation damage induced during ITO 

sputtering for different ITO resistivities and TMO thicknesses 

 

Rsh ~110 Ω/�       Rsh ~300 Ω/� 
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The passivation stability with temperature has been recently reported for V2O5/n-Si by subjecting 

the samples to cumulative annealings in the 160–400 ºC range under a H2/N2 atmosphere [44]. 

Contrary to the rapid degradation of the electric properties, i-VOC values remained relatively 

stable up to 300 ºC, after which a rapid decrease was noticed. Finally, passivation damage was 

also noticed as a consequence of the ITO sputtering process, a well-documented disadvantage in 

a-Si:H/c-Si heterojunctions and attributed to UV-luminescence and (in a lesser degree) to ion 

bombardment [49]. In the V2Ox/n-Si case, a stronger damage was seen for either very thin TMO 

films <10 nm or for highly-conductive ITO films with Rsh ~110 Ω/� (Fig. 4.15b). This means 

that the sputtering damage can be partially subdued by keeping TMO thicknesses >15 nm or by 

using thinner films (<10 nm) with less conductive ITO (Rsh ~300 Ω/� ). Still, further studies are 

needed to establish the damage mechanism and how it could be avoided/recovered. 

 

 

4.3 Origin of passivation in TMO/n-Si heterojunctions 
 

After determining the passivation potential in TMO/c-Si heterojunctions, a detailed 

characterization of the interface was carried out. A few questions that came to mind were: was 

the induced band bending the only passivation component (i.e. “field-effect”)? Or was there a 

chemical contribution through dangling bond passivation? 

 

4.3.1 The SiOx interlayer 

 

As a first characterization approach, a lattice resolution cross-section image of ITO/TMO/n-Si 

structures was obtained by HR-TEM, revealing the presence of an unexpected interfacial layer 

between the TMO and the n-Si surface. As shown in Fig. 4.16, this interlayer was clearly 

discerned at the lowest magnifications because of its high contrast to the adjacent materials, 

exhibiting an abrupt interface with the HF-cleaned (and therefore SiO2 free) c-Si surface but a 

slightly diffused boundary with the oxide. Its thickness varied at 2.0, 2.3 and 2.5 ±0.1 nm for the 

V2Ox, MoOx and WOx samples respectively, but it was quite uniform and without any apparent 

pinholes. In comparison with the clearly defined crystal planes of c-Si, this interlayer was 

amorphous in nature and showed no signs of epitaxial growth. Likewise, TMOs were also 

amorphous as previously reported for thermally evaporated films [24].  
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Figure 4.16 HR-TEM cross-section image of ITO/TMO/n-Si heterojunctions, showing an interlayer between n-Si and 

(a,b) MoOx, (c) WOx and (d) V2Ox. 

 

4.3.1.1 ToF-SIMS 

 

Next, the composition of the identified interlayer was qualitatively determined by ToF-SIMS in 

dynamic operation mode. Figure 4.17a-c shows the depth profile of the ITO/TMO/n-Si samples 

as a function of sputtering time, where the three distinct layers were clearly differentiated by 

their respective InO2
–/SnO2

–, TMO– and Si– ions. For all three TMO samples, a peak signal with 

59.97 atomic mass units (amu) corresponding to SiO2
– ions was detected in the TMO/n-Si 

interface at an intensity of ~3x104 counts, suggesting that the previously observed interlayer is 

composed of silicon oxide (SiO2) or silicon sub-oxide (SiOx) species. Since the HF-etched 

silicon surface was practically free of any native oxide (as it will be confirmed by XPS), it can 

be inferred that such SiOx interlayer is formed during the TMO evaporation process, chemically 

passivating the c-Si dangling bonds. Likewise, the presence of reduced TMO species (MoO–, 

WO2
–, VO2

–) can be related to oxidation by-products, e.g. Si + MoO3 → SiO2 + MoO. 

Composite SiO2-TMO signals were also detected at <102 counts, two orders of magnitude lower 

than SiO2
– and following the same trend, meaning that MxSiyOz silicates could also be present at 

very low concentrations [50]. Finally, SiOH– ion signals were also detected, following the same 

trend as SiO2
– but 10 times weaker. 

  (a)                                                        (b) 

 

 

 

 

 
  (c)                                                         (d) 
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Figure 4.17 ToF-SIMS depth profile (dynamic mode) of ITO/TMO/n-Si structures for (a) MoOx, (c) WOx and (c) V2Ox, 

showing a SiO2
– signal at the TMO/n-Si interface. (d) shows extraneous C– and F– signals at the V2Ox/n-Si interface. 

 

Given that the SiO2
– peak intensities were about the same order of magnitude as their respective 

TMO signals (3–6×104 counts), it can be concluded that the surface was completely and 

uniformly oxidized, in agreement with the TEM images. For the V2O5 case, where a much 

thinner layer was deposited on purpose, the reduction reaction extended across several 

nanometers so that VO2
– and VO3

– species surpass V2O5
– in intensity (as later confirmed by 

XPS). The detection of HF remnants from the F– signal (Fig. 4.17d) within the same time 

window confirms that SiO2
– is restricted to the TMO/n-Si interface. However, the relatively high 

F– concentration (1×104 counts) suggests that residual fluorine could also be chemically bonded 

to Si [51]. In order to confirm this, a separate V2O5 sample was washed with abundant deionized 

water after the HF dip. While ToF-SIMS showed a decrease in F– intensity by a factor of 2, both 

the SiO2
– signal and the effective lifetime (not shown) remained unchanged, discarding that F– 

provides additional dangling bond passivation. Then, it is probable that F– species are only 

physisorbed, since Si–F terminations are not kinetically viable during HF etching [52]. Finally, 

Fig. 4.17d also shows the presence of carbon contamination during air exposure.  

 

A detailed composition of the SiOx interlayer was obtained by performing the ToF-SIMS 

analysis in static operation mode. For this purpose, a sufficiently low ion current (1–10 nA/cm2) 

  (a)                                                        (b) 

 

 

 

 

 
  (c)                                                         (d) 
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was used so that secondary ions can reveal details of the very first monolayers, such as chemical 

structure and adsorbed species. Figure 4.18 shows the SIMS spectra of the V2Ox/SiOx/n-Si 

structure, analyzed at sputtering time intervals of t = 4 s. Beginning with the topmost spectra (t = 

0 s), the surface is rich in reduced V+4 and V+2 species whereas stoichiometric V+5 species are 

already quite low. At t = 4 s, SiO2 and other related bonding structures like Si–OH and Si–(O3H) 

are detected, reaching a maximum concentration at t = 8 s. Around the same time frame, the 

elemental Si peak is detected and rapidly becomes saturated, corroborating that the interlayer 

thickness is in the order of few nm. It is worth noting the high spectral sensitivity offered by this 

technique, being able to separately identify the Si (27.97 amu) and Si–H (28.98 amu) signals as 

well as elemental H. In this respect, the presence of hydrogen-bound species like –H and –OH is 

a clear indication that the c-Si surface has been chemically passivated.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 ToF-SIMS depth profile (static mode) of the V2Ox/n-Si interface, showing the SiO2
– signal as well as 

hydrogen-bound Si–H and Si–OH species. 

 

The oxidation of highly reactive H-terminated c-Si surfaces [52] by dielectric (Al2O3, HfO2, 

Ta2O5, SrTiO3) [50] and conductive (ITO) [53] oxides is amply documented, forming interlayers 

with varying stoichiometries (SiOx, Hf1-xSixO2) and film thicknesses (0.7–9 nm). For the case of 

TMOs, a chemical reaction with c-Si can be expected purely from thermodynamic 

considerations [2]. Parting from the oxidation of Si and V by molecular O2, the reaction 

feasibility is given by the Gibbs formation energy (ΔG) of the reaction: 
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5/2Si + 5/2 O2  →  5/2SiO2      ΔGSi+O2   = –858 kJ/mol (4.1) 

2V + 5/2 O2  →  V2O5                  ΔGV+O2   = –573 kJ/mol (4.2) 

where negative ΔG values indicate the reaction is spontaneous. By subtracting Eq. 4.2 from Eq. 

4.1, the Si oxidation reaction by V2O5 is also spontaneous:  

5/2Si + V2O5  →  5/2SiO2 + 2V      ΔGSi+V2O5 =  –285 kJ/mol (4.3) 

The same condition is met for the rest of the TMOs under study, with ΔGSi-WO3 = –348 kJ/mol 

and ΔGSi-MoO3 = –406 kJ/mol. Hence, the oxidation of c-Si by the thermally evaporated TMOs 

under study is thermodynamically feasible11. An exception to this rule is observed for HfO2 and 

Al2O3 (positive ΔG), indicating that reaction spontaneity is not the only factor to consider but 

also metastable equilibrium conditions, kinetic rates and surface reactivity. In this sense, SiOx 

formation could be occurring via two different mechanisms [2]: (1) TMO reduction driven by the 

reactivity of c-Si substrate, and (2) electron transfer from Si to the TMO12, i.e. Si0 – 2e → Si+2. 

Regarding the relative ΔG magnitudes (V2O5 > WO3 > MoO3), no evident correlation was found 

with interlayer thickness (Fig. 4.16) nor with the TMO work function (Table 4.1). However, 

given the large dispersion in reported ΦTMO values, a correlation cannot be completely dismissed. 

 

These thermodynamic considerations are also applicable to O vacancy formation. For example, 

the chemical equation for oxygen vacancy formation in V2O5 is [2]:  

OO
x + 2V+5  →  υO

•• + 2V+4 + ½O2(g)           ΔGV-O ≈  +68 kJ/mol (4.4) 

where OO
x and M+6 represent an oxygen and metal cation on its neutral lattice position, whereas 

υO
•• and Mo+5 represent an oxygen vacancy (with a +2 charge relative to the neutral lattice) and a 

reduced metal cation in the non-stoichiometric lattice. Eq. 4.4 shows that each oxygen vacancy 

produces two reduced V+5 cations. As for the Gibbs energy change, it can be approximated by 

the inverse ΔG value of VO2 oxidation (4VO2 + O2 → 2V2O5), in which case it yields a non-

spontaneous (positive) reaction that becomes viable for the overall Si + V2O5 system. 

 

                                                
11 Using standard Gibbs formation energies at 300 K [82]. 
12 Note that this charge transfer mechanism is equivalent to electron transfer from the Si Fermi level to the TMO conduction 

band during Fermi level alignment, as explained in §4.3.2. 
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4.3.1.2 XPS 
 

As implied from the presence of reduced oxide species in the ToF-SIMS spectra, the completion 

degree of TMO + Si reactions (Eq. 4.3) is probably less than unity, so that a mixture of sub-

stoichiometric SiOx and TMOx species can coexist in the interlayer. Therefore, the detailed 

chemical composition of the TMO/n-Si interface was also acquired from the XPS analysis of 

V2O5 films deposited at incremental thicknesses (1–10 nm), monitoring film growth and the 

chemical/electronic changes taking place at the interface. Fig. 4.19a shows the Si 2p3/2 core level 

spectra as a function of binding energy (BE). For the reference case (0 nm V2Ox), only the 

characteristic peak of the Si0 substrate was observed at a BE of 99.4 eV [54]. Subsequent V2O5 

films of 1 nm and above exhibited an additional peak with a chemical shift ΔBE of ~2.5 eV 

referenced to Si0 (see Fig. 4.19a inset for clarity), characteristic of a Si+3 oxidation state [54]13. 

These sub-stoichiometric SiOx~1.5 species can then be identified as one of the components of the 

interlayer previously identified by HR-TEM and ToF-SIMS. The sub-stoichiometry of this 

interlayer was evident when compared to a reference SiO2 oxide grown by HNO3 oxidation 

(ΔBE ~3.9 eV for Si+4 [54]). Furthermore, the atomic concentration of Si3+ species (as obtained 

from the peak areas) was 0.9–2.0% and relatively constant for every sample, suggesting that 

SiOx growth takes place during the first deposition stages until it saturates at a fixed thickness. 

 

 

                                                
13 But also related to silicates (Si–M bonds) in the 101.6–103.8 eV range, making it impossible to separate its contribution. 

However, the low Si–M signal in the ToF-SIMS analysis indicates that SiOx species are much more abundant. 

            (a)                                                                       (b) 
Figure 4.19 XPS analysis of the V2Ox/n-Si interface for various V2Ox thicknesses (1–10 nm). (a) Si 2p3/2 core level 

showing a sub-stoichiometric SiOx~1.5 peak. (b) Evolution of the V+4 and V+5 species. Inset shows the V 2p3/2 core 

for two different layer thicknesses. 
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Oxygen deficient V2Ox was also detected as a by-product of the partial Si oxidation reaction. 

Fig. 4.19b shows the relative abundance of V+5 and V+4 cation species as a function of film 

thickness, as obtained from the deconvoluted V 2p3/2 spectra (Fig. 4.19b inset). The observed 

trend was the following: V+4 species were primarily found in the vicinity of the SiOx interlayer 

and declined as the V2Ox film thickened. Inversely, the concentration of V+5 species was low 

near the interface and increased until reaching a steady concentration in the bulk, away from the 

interface and its influence. The results are in accordance with the ToF-SIMS depth profiles 

where VO2
– ions were detected adjacent to the SiOx interlayer, following similar trends as those 

reported for MoO3/metal [2] systems. Therefore, although no detailed XPS analyses were 

performed for the MoOx/c-Si and WOx/c-Si interfaces, the similarity between the ToF-

SIMS/HR-TEM results indicate that analogue interlayers with SiOx<2 composition and reduced 

cation transitions (Mo+6 → Mo+5, W+6 → W+5) can be expected as well [55,56]. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.20 (a) O 1s spectra of the V2Ox(6 nm)/n-Si region, showing two peak contributions. Inset shows the C 1s 

spectra. (b) Evolution of O/V ratios (left axis) and normalized area of the Si 2p3/2 peak (right axis) with film thickness. 

Two growth regimes (A and B) are observed. 

 

Regarding the specific distribution of oxygen species in the SiOx and V2Ox layers, the O 1s 

spectra of the V2O5/SiOx/n-Si region was deconvoluted into two different components (Fig. 

4.20a): a primary peak centered at 530.9 eV and attributed to O in vanadium oxide [57], and a 

secondary peak centered at 532.3 eV, comprising ~25% of the total O 1s area. This secondary-O 

has itself two contributions: (1) surface hydroxides (–OH) and carbon (C–O) physisorbed during 

            (a)                                                                     (b) 
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exposure to humid air [2]14; and (2) Si–O bonds from the SiOx interlayer, which lie very close to 

the SiO2 reference (532.8 eV). After subtraction of these secondary-O contributions, oxygen to 

metal (O/V) ratios as a function of V2Ox thickness were calculated, as shown in Fig. 4.20b left 

axis. Even though under-stoichiometric V2Ox films were expected across the whole thickness 

range (see Fig. 4.19b), this does not occur for the thinnest films which appear to be over-

stoichiometric (V2Ox~6.3). This apparent contradiction could be explained by the presence of 

uncoordinated (dangling) oxygen atoms, an inherent characteristic of TMOs with large 

stoichiometries and multi-layered bulk structures [58,59]. It is worth noting the continuous 

presence of adsorbed carbon species any time the samples are exposed to air (e.g. after the HF 

dip). Fig. 4.20a inset shows the C 1s core level deconvoluted into its C–C (284.7 eV) and C–O 

(286.3 eV) bond contributions. Since all samples had a relatively high C concentration of 9 

±3.1%, it is possible that C–O bonds could be contributing to the SiOx interlayer formation [60].  

 

Finally, a qualitative description of TMO growth dynamics was obtained from the reduction of 

the Si 2p3/2 peak area as the substrate is buried under the V2Ox films (Fig. 4.20b right axis), 

noticing two growth regimes [26]. In the first regime (labeled A), a rapid linear decrease is 

observed for the first nanometers where film growth is limited by the reaction rate between Si 

and the metal oxide, forming a uniform SiOx interlayer as a result. Then, V2Ox begins to grow by 

island (Volmer–Weber) nucleation until saturation at ~3 nm. In the second growth regime 

(labeled B), a less steep and monotonic decrease in intensity is caused by uniform V2Ox growth 

on a layer-by-layer basis until the film achieves a bulk-like quality (>10 nm), where oxygen 

vacancies may still be present in the TMO bulk independently of the substrate influence. 

 

4.3.2 The inversion layer  

 

In the last section, chemical passivation of surface dangling bonds by SiOx was identified as one 

component of the observed passivation in TMO/c-Si heterojunctions. Nevertheless, the SiOx 

interlayer effectiveness could be insufficient given its non-stoichiometry, leaving some dangling 

sites unpassivated. Another concern comes from oxygen deficiency in the atomic matrix and the 

possibility of highly recombinative metal–Si bonds, as inferred from the low concentration of 

silicates detected by ToF-SIMS. 

                                                
14 Described in the literature as a defective oxide, inherent to many other TMOs [57]. 
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An additional passivation component, the so-called “field-effect” passivation, can be expected 

on the basis of Fermi level alignment and charge transfer across the TMO/n-Si interface [21]. As 

mentioned in the introduction to this chapter, the large work function difference between n-Si 

(EF nSi ~4.2 eV) and TMOs (EF TMO > 5.1 eV) is expected to induce an up-bending of silicon’s 

energy bands during EF equilibration. As EF nSi approaches the silicon valence band EV, a 

transition from n-type in the bulk to p-type character near the surface takes place, forming a p+/n-

Si junction with a characteristic built-in potential. Sheet resistance measurements in §4.2.1 

confirmed the presence of the p+ inversion layer through which hole conduction takes place, thus 

establishing hole selectivity by driving photogenerated electrons away from the anode interface.  
  
Clear indications of band bending in the vicinity of the TMO/c-Si interface were deduced from 

chemical shifts in the XPS spectra for incremental V2Ox thickness. For n-Si, the Si0 peak shifted 

to lower binding energies meaning an increase in the energy difference Si0
 – Si0

V2Ox [61] (Fig. 

4.21a). This shift is proportional to an up-bending of the Si bands, reaching a maximum value of 

0.3 eV for the 2 nm film. As for V2Ox (after subtraction of the Si substrate spectra), the valence 

band maximum VBMV2Ox shifted to lower binding energies meaning a decrease in the energy 

difference VBMV2Ox  – VBM nSi [62] (Fig. 4.21b). This shift is proportional to a down-bending of 

the V2O5 bands, reaching a maximum value of –0.4 eV for the 8 nm film. Note that the largest 

VBMV2Ox values may also include the larger VBM corresponding to the SiOx interlayer. 

 

                             (a)                             (b)                                                  (c) 
Figure 4.21 XPS chemical shifts in a V2Ox/n-Si heterojunction for incremental film thicknesses. (a) Si 2p3/2 core 

level shift to lower binding energies, approaching the valence band EV (equivalent to Si up-bending, BBSi). (b) 

V2Ox valence band maximum (VBM) shift to lower binding energies, approaching silicon’s VMB (equivalent to 

V2Ox down-bending, BBV2Ox). (c) Relative position of the XPS shifts in the energy band diagram. All energies were 

referenced to the C 1s signal (285 eV). 
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The valence band offset (VBO) between the EV V2Ox and EV nSi was also be calculated from the 

difference VBO = VBMV2Ox – VBMSi [62], which decreased from 1.9 to 1.3 eV as the film 

thickened, indicating that flat-band conditions are eventually reached (see Fig. 4.21c). Note that 

the VBO encloses the overall band bendings that occur on the TMO and c-Si sides. These 

chemical shifts are close to those reported in the literature [46,63], yet, they are only 

approximate considering that the photoelectron sampling depth (<10 nm) is much smaller than 

the Si space-charge region (>100 nm)15. 

 

Based on the above observations, an energy band diagram between n-Si and V2Ox (or similar 

high work function TMOs) can be proposed. Before both materials are contacted (Fig. 4.22a), a 

large electrochemical potential difference exists between them, as defined by the work function 

difference ΔΦ = ΦV2Ox – ΦnSi ≈ 5.3– 4.2 eV (taking the air-exposed ΦV2Ox value [7]). This energy 

mismatch is the driving force behind EF equilibration, which begins by an electron transfer from 

silicon’s valence band (EVnSi ~5.2 eV) into the mid-gap (defect) states of the TMO [21]. As 

electrons leave the Si surface, EVnSi approaches EF and a p+ inversion layer with a characteristic 

band up-bending is induced. Correspondingly, holes leaves the TMO surface while its 

conduction band EC_TMO approaches EF, inducing an n+ region with a characteristic band down-

bending of lower magnitude. Simultaneously, an energetically favorable chemical reaction takes 

place and forms a SiOx interlayer that chemically passivates the Si surface (Fig. 4.22b). 

 

 

 

 

 

 

 

 

 

 
 

 

                                                
15 The calculated uncertainty was ±0.05 eV, not including x-ray photogeneration [61] or charge accumulation [62] effects. 

                 (a)                                                         (b) 
Figure 4.22 Proposed energy band diagram for TMO/n-Si heterojunctions, (a) before and (b) after contact, under 

forward bias and illumination.  
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Given that the TMO thickness is much smaller than the depletion width in c-Si, and that oxygen 

vacancies in TMOs behave as fixed negative charges, it can be assumed that most of the 

potential difference across the heterojunction is distributed on the n-Si side (one-sided junction 

approximation). Furthermore, the surface potential φs at the inversion layer edge is limited by the 

strong inversion condition φs ≈ 2(EFnSi – EFi), which limits the maximum built-in voltage (and the 

band bending thereof) to Vbi ~0.7 V [39]16. Consequently, the large work function difference ΔΦ 

≳1.1 eV can only be partially allocated by the Vbi, suggesting the presence of a large interfacial 

negative dipole Δd (–), so that equilibrium conditions can me met:  

ΔΦ = qVbi – Δd (4.5) 

delivering a dipole magnitude of  –0.4 eV or above, depending on the ΦTMO value. 

 

The presence of interfacial dipoles in MoO3/n-Si heterojunctions has been recently verified by 

photoemission spectroscopy studies and explained on the basis of charge transfer processes [46], 

along the same line as other reports on TMO/organic semiconductor systems [1,3,29,64]. 

Regarding the specific location of the dipole in the TMO/SiOx/n-Si interface, different 

possibilities exist.  First, as mentioned already, the six fold (MO6) octahedral coordination in 

TMOs is rich in dangling oxygen atoms that induce internal dipoles at exposed surfaces, as 

established by theory and experiment [58,59]. Second, the dipole could be originated from 

negative charge (excess O–) migration across the SiOx/n-Si interface (see Fig. 4.20b), driven by 

differences in oxygen density [65]. 

 

Returning to the SiOx interlayer identified by HR-TEM, ToF-SIMS and XPS, it is important to 

hypothesize about its electrical properties and carrier conduction mechanisms. With an average 

thickness of 2.2 ±0.1 nm, this interlayer is thicker than the reported tunneling limit of 2 nm 

determined from MIS device theory [66] for SiO2-based insulators, while even thicker SiOx films 

(~3.5 nm) have been recently reported for V2Ox/n-Si solar cells without considerable series 

resistance losses [44]. Therefore, it seems that the sub-stoichiometry of the SiOx interlayer plays 

an important role in carrier conduction, where trap-assisted tunneling like hopping conduction or 

Frenkel-Poole emission might be taking place [50,53,67]. In fact, mid-gap states generated by 

oxygen vacancies in SiO2 lie ~1 eV below the valence band of c-Si, facilitating hole conduction 

                                                
16 A Vbi ~0.71 V was confirmed experimentally by capacitance-voltage measurements of finished solar cells (see §5.1.3). 
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between the TMO and the n-Si substrate [68]. Similarly, MIS solar cells with surface state 

densities of Dit ~1013 cm-2 or lower should not degrade the electronic properties across the 

junction, provided that a sufficiently large ΔΦ exists [67]. 

 

As for TMO materials, conduction through oxygen-deficient structures is generally explained in 

terms of small polaron hopping between defects states, specifically between low-valence M-n and 

high-valence M+n cations (Mott’s theory). In this sense, TMO conductivity is directly 

proportional to the concentration C of Mo+5, V+4 and W+5 species and follows an Arrhenius-like 

thermal activation behavior, i.e. σ ∝ C(1–C) ⋅e–E/kT [22]. By considering the reduced valence   

(M-n) cation concentrations reported in Table 4.2, a doping level of Nd ~1018–1020 cm-3 can be 

assumed, in agreement to reported values [48,69]17. Note that such high doping puts the TMO 

into the highly doped (n+) threshold, suggesting the one-sided junction approximation is correct 

(despite the negative band bending of the TMO bands observed by XPS). 

 

Lastly, the fact that an n-type material can be used to extract holes may be found paradoxical, 

yet, it is useful to think of it as an extension of the overlying n-type ITO layer, which acts as a 

hole collecting electrode just like ITO/(p) a-Si:H contacts in HIT solar cells. In the TMO/n-Si 

structures under study, hole extraction can be understood by considering the (n+)TMO/p+ 

junction as a sort of recombination contact (tunnel diode), frequently used in multi-junction solar 

cells to interconnect subcells of opposite polarity. In this sense, the very narrow space-charge 

region of the inversion layer provides a low resistance connection for photogenerated holes, 

which are extracted via recombination with the electrons ‘returning’ from the outer circuit.  

 

 

4.4 Alternative SiOx interlayers  
 

Based on the passivation characteristics obtained for TMO/n-Si heterojunctions, it appears that 

the i-VOC is being limited by the highly defective interface and not by insufficient built-in 

potentials, given that the ΦTMO values reported in the literature are sufficiently larger than EV 

(see Fig. 2.13). Hence, additional passivation interlayers must be implemented to fully profit 

from work function differences in induced p+/n-Si junctions.  

                                                
17 Considering Nd = C ⋅ R-3, where R is the average intra-cation distance of a few Å. 
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As mentioned before, intrinsic a-Si:H interlayers have been successfully applied to TMO/a-

Si:H/c-Si heterojunctions by several groups, obtaining excellent VOC values >710 mV [16,32,47]. 

However, these demonstrations utilize two different technologies, PECVD for a-Si:H and 

thermal evaporation18  for TMO. Though perfectly compatible with industry, this two-step 

sequence increases the fabrication complexity and costs, going against the premise of achieving 

passivation and selectivity in a single processing step. Therefore, this thesis also studied the 

viability of alternative passivating SiOx interlayers grown by very simple low-temperature and 

ambient-pressure processes: (1) dry oxidation with ultra-violet ozone (UVO) treatments (1 min); 

(2) wet oxidation with a H2O2:HCl:H2O 1:1:6 solution at 70 ºC (10 min), corresponding to the 

second step of the standard RCA cleaning procedure; (3) wet oxidation with a 67% HNO3 

solution at 110 ºC (30 min). A fourth HF-treated substrate was used as a reference sample. 

 

Fig. 4.23 shows the passivation quality of V2O5 (15 nm)/SiOx/n-Si stacks as determined from 

lifetime measurements in non-symmetric samples (rear i/n+ a-SiCx:H stack, Srear ~10 cm/s).The 

HNO3 and UVO samples showed very poor passivation (τeff < 30 µs) whereas RCA2 showed a 

moderate lifetime (~180 µs) equivalent to an i-VOC of 630 mV (at 1 sun illumination). Contrary 

to expectations, the reference V2O5/SiOx stack (with the ‘naturally-grown’ SiOx interlayer) had 

the highest lifetime (~540 µs) with the characteristically high i-VOC ~675 mV, outperforming the 

chemically-grown oxides. 

 

 

 

 

 

 

 

 
 

Figure 4.23 Lifetime measurements of V2O5/SiOx/n-Si structures with SiOx interlayers grown by different methods. 

 

                                                
18 Ultimately to be replaced by a large-scale industrially feasible technique, such as ALD or sputtering. However, preliminary 

studies show that sputtered/ALD TMOs do not perform as well as thermally evaporated films [83,84]. 
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Next, the SiOx films were analyzed by XPS before and after the deposition of a ~5 nm V2O5 

film, in search of possible explanations for the differences in passivation. The XPS spectra of the 

Si 2p3
/2 core level (Fig 4.24a) exhibited the characteristic Si0 substrate peak along with 

secondary peaks in the 102–103 eV binding energy range. By use of the Si0–SiOx peaks 

chemical shift, the oxygen content ‘x’ was estimated using reported ΔBE values of Si+1 = 0.95, 

Si+2 = 1.75, Si+3 = 2.5 and Si+4 = 3.9 eV [54]. An approximate stoichiometry x ~1.5, 1.7 and 2 

was estimated for the RCA2, UVO and HNO3 oxides respectively, indicating that HNO3 is the 

most stoichiometric while RCA2 the least. This indicates that oxygen-deficient sub-oxides could 

offer better surface passivation than fully stoichiometric ones, in contrast to recent reports [70]. 

This observation should not apply to thermally grown vitreous SiO2, whose far superior 

passivation is attributed to a radically different bond configuration, also evident from a larger 

ΔBE = 4.4 eV [60]).  

 

Figure 4.24 (a) XPS spectra of Si 2p3/2 core level showing the SiOx peak (102–103 eV) for each oxidation method. (b) 

Deconvolution of the V 2p3/2 core level for the HNO3 and naturally-grown SiOx layers. 

 

Another probable cause for deficient passivation could be an inadequate coverage of the c-Si 

surface by too thin oxides. The approximate oxide thickness tox was estimated from the 

attenuation length of Si 2p3/2 photoelectrons in the SiOx overlayers and the calculated peak area 

ratio SiOx/Si0 [71]. The obtained oxide thicknesses were tox ~0.33 nm for RCA219 (moderate τeff ) 

and tox ~0.92 nm for HNO3 (low τeff ), obtaining no correlation between insufficient oxide 

thickness and passivation. Moreover, V+4/V+5 ratios were also calculated from the deconvoluted 

                                                
19 Thinner than reported values of ~0.8 nm [60], indicating accuracy limitations for this methodology. 

                 (a)                                                                        (b) 
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V 2p3/2 core level, showing that the V2Ox layer in the reference sample is richer in V+4 species 

(higher oxygen deficiency) than the other chemical oxides. This might offer a good explanation 

for the low i-VOC values, where the presence of a pre-grown oxide hinders charge transfer 

between TMOs and c-Si and minor/null inversion conditions are achieved. This observation 

reinforces the role of the inversion layer and the ‘field-effect’ component on the overall 

passivation of these structures. Table 4.5 compiles the obtained results for the different 

V2O5/SiOx stacks, concluding that the SiOx interlayer grown by direct oxidation of the Si 

substrate by the thermally evaporated TMO is the most effective one in terms of passivation. 

 
Table 4.5. Passivation and compositional properties of the V2O5/SiOx stacks. 

Sample 
i-VOC (a)  

mV 
ΔBE 
eV 

x 
in SiOx 

tox (b) 
±0.1 nm 

V+4/V+5 

ratio (d) 

As-deposited 675 2.6 ~1.4 2.1 (c) 1.15 

RCA2 630 2.8 ~1.5 ~0.33 0.11 

UVO 547 3.2 ~1.7 ~0.25 0.11 

HNO3 523 3.8 ~2 ~0.92 0.07 

              (a) With rear (i/n+) a-SiCx:H rear;     (b) Calculated from SiOx/Si0 ratios;  
              (c) From HR-TEM; (d) Calculated from XPS 

 
Similar SiOx interlayers grown by UVO and HNO3 oxidation have been reported in the context 

of tunnel-oxide passivated contacts (top-con) with doped poly-silicon overlayers, obtaining i-VOC 

values of ~610 mV for as deposited poly-Si/SiOx stacks [72], comparable to the RCA2 and UVO 

samples. Additionally, a boost in i-VOC to ~660–720 mV was also reported after a thermal 

activation step at 600–850 ºC followed by forming gas (H2) anneal at 400 ºC [43]. This indicates 

that dangling bonds in freshly-grown SiOx interlayers are higher than expected and must be 

passivated by a high temperature hydrogen source before effectively passivating the c-Si surface. 

Unfortunately, thermal steps are incompatible with temperature-sensitive TMOs, although they 

could be applied to the SiOx layers before TMO deposition. In this matter, interface defect states 

Dit as low as  ~1011 cm-2 have been reported for chemical oxides grown by HCl (no H2 anneal) 

and HNO3 (after H2 anneal) [70], a promising strategy for improving passivation in 

TMO/SiOx/c-Si heterojunctions. 
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4.5 PEDOT:PSS 
 

Finally, a brief summary of the structural, optoelectronic and passivation properties of 

PEDOT:PSS solutions with n-type c-Si is given next. Figure 4.25a shows the chemical structure 

of conjugated polymer PEDOT:PSS with its two elemental monomers, positively charged 

PEDOT (poly-3,4-ethylenedioxythiophene) and negatively charged PSS (poly-styrenesulfonate), 

the latter acting as a surfactant that helps to disperse PEDOT in aqueous solutions. Figure 4.25b 

depicts the energy diagram with the corresponding HOMO/LUMO levels20 originated from the 

hybridization of s and p orbitals, where π–π* bond transitions define an Egap ~1.6 eV. The Fermi 

level is located near the HOMO edge at Φ ~5.0 eV, giving PEDOT:PSS its characteristic p-type 

(hole) semiconductivity. For this thesis, two commercial PEDOT:PSS solutions amply used in 

organic PV were characterized [73]: (1) HTL-Solar, a hole-transport material, and (2) PH1000, 

specifically designed as an ITO replacement. 

 
 

 

 
 

 

 

 

 

 

 

Figure 4.25 (a) Chemical structure (adopted from [18]) and (b) representative energy diagram for PEDOT:PSS. 

 

4.5.1 Solution pre-conditioning 

 

Commercial PEDOT:PSS solutions (1–1.3% concentration) are intrinsically not very conductive 

(<1 Ω-1cm-1) given the insulating nature of PSS [18], needing pre-conditioning treatments before 

the spin-coating process. In particular, dimethyl sulfoxide (DMSO) is frequently used as a co-

solvent to increase σ >101 Ω-1cm-1 by reducing the PSS content and realigning the PEDOT 

domains into long stretched networks [74]. Figure 4.26a shows the XPS spectra of the (sulfur) S 

                                                
20 Highest occupied molecular orbital/lowest unoccupied molecular orbital. 

                       (a)                                                                        (b) 
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2p core level for both solutions under study after 5%v/v DMSO addition, deconvoluted into the 

characteristic doublet peaks for PEDOT (164.2 eV) and PSS (168.5 eV) [19]. From the 

integrated peak areas, the calculated PSS/PEDOT ratios for the HTL Solar and PH1000 solutions 

were 2.4 and 1.9 respectively, indicating that a lower PSS content should result in higher 

conductivities for the PH1000 films (as later confirmed by conductivity measurements).  

 

 

 
Figure 4.26 (a) XPS spectra of the S 2p levels for the PEDOT:PSS solutions. (b) Contact angle for the PEDOT:PSS 

solutions with planar c-Si (after surfactant addition). 

 

Another problem with water-based solutions is the high hydrophobicity of HF-treated c-Si, 

which can be reduced by adding small surfactant concentrations before the spin-coating process 

(see Fig. 3.6). An optimum surfactant concentration of 0.1% v/v was determined after achieving 

highly uniform layers over planar c-Si (as observed by optical microscopy), whereas the 

spinning rate was fixed at 1,000 rpm for a film thickness of ~70 nm. A comparison between 

contact angle (θ) measurements after surfactant addition showed that HTL Solar (θ ~26.3º) had a 

better surface wettability than PH1000 (θ ~33.5º). This improvement allows for more uniform 

layers with less surface defects such as micro-holes and pinholes, which tend to form during the 

spin coating process [75]. Consequently, an improved contact quality and better surface 

passivation can be expected for HTL Solar. 

 

In spite of the excellent layer uniformity obtained for planar c-Si substrates, several issues arose 

when spin-coating the PEDOT:PSS solutions unto texturized surfaces, as shown in the SEM 

images in Fig. 4.27. First, the film appeared highly uniform across the pyramid faces but showed 

an excessive accumulation at the base of the pyramids, an issue related to low spinning rates 

                       (a)                                                                (b) 
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[17]. The presence of voids in these accumulation areas was also apparent from a side view of 

the pyramids, a serious defect that could lead to current crowding. A higher magnification view 

also revealed a thickness variation of 20–70 nm from the top to the bottom of the pyramids. 

Given these observations, the solution spinning rate was increased to 4,000 rpm in order to 

increase film uniformity and avoid current losses [17]. As for the comparison between HTL 

Solar and PH1000 solutions, no major differences were observed.  
 

 
 

 

 

 

 

 

 

 

 

Figure 4.27 SEM images of PEDOT:PSS films spin-coated on textured c-Si substrates. 

 

4.5.2 Optoelectronic properties 

 

The suitability of HTL Solar and PH1000 PEDOT:PSS solutions as hole-conducting/transparent 

electrodes was determined by a thorough study of their optoelectronic properties. Fig. 4.28a 

shows the optical transmittance of ~70 nm thick PEDOT:PSS films deposited on glass. Overall, 

both solutions exhibit a maximum T ~90% at 550 nm that gradually decreases to ~65% at 1,100 

nm wavelength. In this regard, a PEDOT:PSS front electrode would entail higher parasitic 

absorption losses in a c-Si solar cell, specially when compared to ITO films (T  >95%). Notice 

the transmission spectrum of HTL Solar is slightly above PH1000, attributed to differences in 

the solid content [73]. Another important factor to consider is the anti-reflection qualities 

provided by PEDOT:PSS, whose refractive index n ~1.5 [76] yields an optimal film thickness 

(tPEDOT = λ/4n) of ~90 nm for minimal reflectance losses at 550 nm wavelength. When applied 

unto texturized substrates, reflection losses were further decreased below 7% in the 400–1,000 

nm range, as shown in Fig. 4.28b. Consequently, PEDOT:PSS solutions deposited on textured c-

Si will provide reasonable anti-reflection at the expense of reduced photocurrent generation. 
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Figure 4.28 (a) Transmittance (on glass) and (b) reflectance (on textured c-Si) of PEDOT:PSS solutions, including 

ITO as a reference (simulated). 

 

Next, the sheet resistance and specific contact resistivity were determined from TLM 

measurements of PEDOT:PSS films spin-coated on glass (50 nm Ag contacts). Fig. 4.29a shows 

the current-voltage response for both solutions (all ohmic) while Fig. 4.29b shows the 

characteristic linear fit between the total resistance and the contact spacing. The extracted Rsh 

were ~190 and ~120 Ω/� for HTL Solar and PH1000 respectively, which translate into coplanar 

conductivities of ~750 and ~1,170 Ω-1cm-1. These results are in accordance with the 

PSS/PEDOT ratios determined by XPS, where a lower content of insulating PSS was measured 

for PH1000, making it a more appropriate replacement for ITO electrodes. By taking an average 

PEDOT:PSS mobility µ ~1 cm2/V⋅s [18], a hole concentration p in the order of 1021 cm-3 was 

obtained.  

 

Even though no TLM measurements were performed on Ag/PEDOT:PSS/n-Si structures, the 

magnitude of the Rsh values indicates that current flow would be confined to the PEDOT:PSS 

films and not to the hypothetical inversion layer induced by the work function difference ΦPEDOT  

– ΦnSi [77]. In a worst case scenario, the inversion layer would increase the contact resistance 

between PEDOT:PSS and n-Si (estimated at ~200 mΩ·cm2 [76]), a major component of the 

device’s total RS considering it is a full area contact. Regarding the ρc values estimated from the 

glass TLM measurements, they were very dissimilar with ~30 and ~790 mΩ·cm2 for HTL Solar 

and PH1000 respectively. However, since they only account for the Ag/PEDOT:PSS interface 

resistance, they can be considered minor contributors to RS (<5 % area fraction contacted by the 

finger grid). Table 4.6 summarizes the electrical properties of both PEDOT:PSS films. 

                     (a)                                                                 (b) 
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Figure 4.29 TLM measurements for 70 nm thick PEDOT:PSS films on glass. (a) Example ohmic current-voltage 

response (dark) and (b) linear fit for different electrode intervals. 

 

Table 4.6 Summary of the electric properties for PEDOT:PSS solutions contacted by Ag electrodes. All 

measurements were performed in the dark. 
 

Substrate Glass 

PEDOT:PSS 
Rsh 

Ω/� 

σ 

Ω-1cm-1 

ρc 

mΩ⋅cm2 

p (1)  

cm-3 

HTL Solar 190 750 ~30 ~4.3×1021 

PH1000 120 1,170 ~790 ~2.7×1021 

      (1) For an average mobility µ ~1 cm2/V⋅s 

 

4.5.3 Passivation 

 

In addition to adequate optical and electrical properties, PEDOT:PSS films must also passivate 

the silicon surface and minimize surface recombination. The measured effective lifetime τeff of 

symmetric PEDOT:PSS/n-Si/PEDOT:PSS structures was 205 µs for HTL Solar and 82 µs for 

PH1000 (at 1 sun illumination), corresponding to i-VOC values21 of ~660 mV and ~630 mV 

respectively. These implied voltages are considerably lower than state-of-the-art values (~690 

mV [76]), yet, they are remarkable given the following factors: (1) the apparent difference in the 

inorganic vs. organic nature of Si and PEDOT:PSS, which is not an impediment for the chemical 

passivation of silicon surfaces via Si–C and Si–O bonds [78]; (2) The simplicity of the 

passivation process, i.e. a liquid in direct contact with a solid, contrasting with more elaborate 

                                                
21 Corrected by a factor kT ln(2) ≈17.8 mV, due to the sample’s symmetric structure. 

                    (a)                                                                     (b) 
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passivation schemes involving surface modification reactions and slow kinetics [79]. In this 

sense, the improved surface passivation obtained by HTL Solar could be attributed to a higher 

degree of chemical bonding with the Si dangling bonds, also related to a better deposition quality 

(lower contact angle) during the spin-coating process. 

 
Figure 4.30 (a) Effective carrier lifetime for symmetric PEDOT/n-Si/PEDOT (b) Implied-VOC as a function of 

illumination (sun equivalents). The (n) a-SiCx:H electron contact strategy (ITO-contacted) is also shown. 

 

Finally, some general comments can be made in analogy to TMO/n-Si heterojunctions. First, a 

very similar energy band diagram as the one presented in Fig. 4.22 can be expected but with 

three modifications: (1) the absence of an interfacial dipole, given the shorter ΦPEDOT – ΦnSi 

difference; (2) a more pronounced band bending on the PEDOT:PSS side, given the higher 

density of mobile carriers in PEDOT:PSS [77]; and (3) hole transport taking place in the bulk of 

the hole-selective PEDOT:PSS material, given its marked p-type conductivity. As for the 

presence of an interfacial layer, no thorough studies have been made except for HR-TEM 

imaging that shows either no layer [80] or a ~0.7 nm thick SiOx interlayer [77]. Based on 

thermodynamic arguments, the oxidation of silicon by PEDOT:PSS can be described by [81]22:  

Si + PEDOT:PSS(ox)  →  SiO2 + PEDOT:PSS(red)     ΔGSi+PEDOT ≈ –0.9 kJ/mol (4.6) 

obtaining a barely negative Gibbs free energy of reaction. Consequently, it is important to study 

in more detail the bonding structure between PEDOT:PSS and c-Si, as well as possible 

additional passivation interlayers. 

                                                
22 Considering electrode potentials (referenced to the standard electrode E0

H2 = 0 V) of E0
PEDOT = –0.15 V and E0

Si = –0.14 V. 

                   (a)                                                                     (b) 
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5 Solar cell results  
 

The main performance parameters of solar cell devices are presented and correlated 

to the material optoelectronic properties, also determining the carrier transport 

mechanisms, temperature stability and built-in potential of the heterojunction. After 

the optimization of the rear contact, a maximum 16.5% efficiency is obtained. 

 

 

5.1 TMO/n-Si solar cells  
 

5.1.1 Current-voltage characteristics 

 

Given the increased surface area of randomly-textured silicon, solar cell devices were fabricated 

both on planar (polished) and textured wafers in order to investigate probable differences in 

surface passivation. Fig. 5.1 shows the current density-voltage J(V) response of both planar and 

textured devices, with the optically optimized ITO(80 nm)/TMO(15 nm) front stack1 and the 

(i/n+) a-SiCx:H laser-fired rear stack. All measurements were performed in dark and standard 

illumination conditions (AM1.5g solar spectrum, 1,000 W/m2, 25 °C).  

 

 

                                                
1 Considering a ~1.7 times lower deposition rate for the textured wafers, due to the enhanced surface area. 

                              (a)                                                                       (b) 
Figure 5.1 Current density-voltage response of (a) planar and (b) textured TMO/n-Si solar cells under 

standard illumination (highest efficiency devices). 
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Table 5.1 Performance parameters for TMO/n-Si solar cells on planar and textured substrates (4 device average).  

 
 VOC 

mV 

JSC 

mA/cm2 

FF 

% 

PCE 

% 

 VOC 

mV 

JSC 

mA/cm2 

FF 

% 

PCE 

% 

V2Ox 

DD 

591  
±3  

29.8  
±0.7 

70.7  
±1.6 

12.5  
±0.6 

T
ex

tu
re

d 

602  
±4 

33.9  
±0.8 

73.6  
±2.5 

15.0  
±0.8 

MoOx 
577  
±4  

28.3  
±1.5 

73.6  
±1.1 

12.0  
±0.6 

567  
±12 

33.3  
±0.5 

68.7  
±2.2 

13.0  
±0.6 

WOx 
566  
±17  

29.3  
±0.4 

73.6  
±1.0 

12.2  
±0.5 

554  
±22  

33.9  
±0.8 

65.0  
±2.7 

12.2  
±0.3 

a-Si:H(1) 616 30.3 75.5 14.1 645 34.7 72.8 16.3 

           (1) Reference (i/n+) a-SiCx:H/p-Si device, same wafer resistivity.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.2 Performance parameters for TMO/n-Si solar cells on planar and textured substrates (4 device average). 

 

Beginning with the open-circuit voltage, the observed trend was V2Ox > MoOx > WOx, in 

agreement with the implied-VOC measurements (§4.2.2) and with the literature [1,2]. The 

maximum and minimum VOC values were 606 mV (V2Ox) and 544 mV (WOx), with planar 

substrates having a slightly higher VOC than textured ones, except for the V2Ox case. Also, WOx 

devices had a much larger variance, with one value as low as 410 mV (excluded from the 

statistics). It is worth noting these VOC s are remarkable for such simplified structures, 

considering the thinness of the oxide film and the absence of additional passivation interlayers. 

For comparison, a reference (i/n+) a-SiCx:H/p-Si/(i)a-SiCx:H/Allaser-fired heterojunction [3] (same 

wafer resistivity but better front [3]) reached a VOC of 616 and 645 mV for the planar and 

textured devices respectively. 

Pl
an

ar
 



5.1 TMO/n-Si solar cells 

 

 110 

Focusing on the short-circuit current densities, differences between TMO’s were less evident 

than with the VOC s, obtaining an average JSC of ~29 and ~33 mA/cm2 for the planar and textured 

devices respectively. Such increment in photogeneration can be ascribed completely to the 

reduced reflection losses. A maximum JSC of 34.4 mV was obtained for V2Ox, despite its lower 

energy band gap. In general, the JSC values of the textured devices may seem low when 

compared to the literature average (~39 mA/cm2); yet, the difference can be attributed to poor 

rear absorption and low diffusion lengths, as it will be later shown in the analysis of the external 

quantum efficiencies (§5.1.4). Despite this shortcoming, JSC s were sufficiently high and not far 

from the reference a-Si:H device, a proof of consistency during the fabrication process. 

 

Next, the inspection of fill factor values reveals no clear trend among TMOs; flat substrates 

showed on average higher FFs (70–73%) than textured ones (65–73%), except for textured V2Ox  

with a maximum FF of 75.3%. Although these values are below the 80–82% trademark, they are 

modest considering the contact resistivities previously estimated in planar substrates (§4.2.1). In 

this sense, final ρc values could be higher for textured surfaces, explaining the low FFs of MoOx 

and WOx. It is also worth noting the absence of S-shaped curves, a clear evidence of hole 

injection barriers at the TMO/n-Si interface (as has been reported for sputtered and ALD TMO 

layers [4,5]). Also, it means that the induced p+
IL/n-Si junctions are capable of sustaining carrier 

extraction, not only at maximum power point but also across the whole voltage range. 

 

Altogether, the highest conversion efficiency was achieved for textured V2Ox with 15.7%, 

followed by MoOx (13.5%) and WOx (12.5%), whose reduced efficiencies are a result of lower 

VOC and FF values. When compared to the a-SiCx:H reference device (16.3%), the obtained 

efficiencies can be considered moderately good, although still bellow the standard. As it will be 

explained in later sections, an improvement of the overall VOC by using the ITO-rear contact will 

boost PCE values even higher. Regarding the underperformance of WOx, it is tempting to 

explain it by the absence of oxygen vacancies in the characterized films (WO3.2). Yet, highly 

stoichiometric TMOs have a large work function that maximizes carrier selectivity, whereas 

oxygen-deficient TMOs tend to induce smaller band bendings as a consequence of low work 

function [6]. That leaves the SiOx interlayer (or its properties) as the only explanation, although 

more analyses are needed to confirm this. Finally, the results for the TMO/n-Si heterojunction 

devices passivated with a thin intrinsic a-SiCx:H interlayer (as well as a brief discussion of the 

probable reasons for their lower performance) are presented in Appendix B. 



5 Solar cell results 

 

111 

 

5.1.2 Diode analysis 

 

In order to elucidate the carrier transport mechanisms in TMO/n-Si heterojunctions, the J(V)dark 

response was measured and fitted to the double diode model (Eq. 3.4), extracting the diffusion 

and recombination diodes (J01 and J02) with their respective ideality factors n1 = 1 and n2 = 2 

(Fig. 5.3a). Table 5.2 summarizes the fitting results with J01 values of 856, 5,200 and 17,000 

fA/cm2 for the V2Ox, MoOx and WOx textured devices respectively, following the same expected 

trend as the VOC values. In some cases, fitting the diode to an exact n value was not possible, 

meaning that several (J0, n) combinations are possible and that this model is only approximated.  

The same fitting procedure was applied to the J(V)dark measurements in the 300–370 K 

temperature range (Fig. 5.2a inset), plotting each J0 as a function of 1/kT in Fig. 5.3b. The 

observed Arrhenius-like behavior can be modeled by: 

𝐽! ≈ 𝐽!! exp 
−𝐸!
𝑛𝑘𝑇  (5.1) 

where J00 is the saturation current pre-factor and Ea the activation energies of the diffusion (Ea1 ≈ 

Egap) and recombination (Ea2 ≈ ½Egap) processes, as expected from semiconductor theory2 [7]. 

This is an important finding since it suggests that TMO/n-Si heterojunctions (or rather induced 

p+
IL/n-Si junctions) do behave like classic p/n junctions, where diffusion of minority carriers is 

the dominant transport mechanism for large forward bias >0.4 V while carrier recombination in 

the space charge region (or near the TMO/n-Si interface) is dominant for small forward bias <0.4 

V. Note that as temperature increases, J02 is masked by J01 and the fitting becomes less accurate.  

 

Despite the above observation, the energy band diagram in Fig. 4.22 suggests that other transport 

mechanisms could be present, such as [8]: (1) emission/tunneling of carriers above/across the 

induced barrier ΦB towards the TMO conduction band; and (2) multi-tunneling within the SiOx 

or TMO gap states followed by capture/emission of carriers (known as  the MTCE model). Both 

mechanisms are indistinguishable from the recombination (J02) diode at the temperature range 

under study, yet, recent measurements at T = 220 K reveal an additional J0 component with n = 

3–4 and an activation energy Ea ~0.3 eV [9], which has been previously ascribed to tunneling 

transport in a-Si:H/c-Si heterojunctions. However, this tunneling component is restricted to 

                                                
2 Actually, the global temperature dependence is ∝  𝑇!/! ∙ 𝑒!!!"#/!"#, although the exponential term dominates. 
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forward bias voltages <0.4 V (lower than the usual operation point for solar cells) and can be 

considered as a minor contribution to the diffusion-dominated J0.  

 

 

 

 
 

 

 

 

 

 

 

 

Figure 5.3 (a) Dark current-voltage response showing an example fit for the diffusion (J01) and recombination (J02) 

saturation currents. Inset shows J(V)dark at different temperatures. (b) Arrhenius plot for both J0 components, where 

the exponential fit is proportional to Egap. 

 

Table 5.2 Diode fitting parameters extracted from J(V)dark response of textured devices. 

 
J01 

fA/cm2 

n1 

 

J02 

nA/cm2 

n2 

 

RS 

ΩŊcm2 

RP 

kΩŊcm2 

Ea1 

eV 

Ea2 

eV 

V2Ox 856 

~1  

129 

~2  

0.69 45 

~1.14 ~0.57 MoOx 5,200 36.5 0.73 80 

WOx 17,000 61.4 1.38 110 

   

As for the series and parallel resistances extracted from the diode fittings, values of RP >45 

kΩ⋅cm2 and RS ~0.69, 0.73 and 1.38 Ω⋅cm2 were obtained for V2Ox, MoOx and WOx 

respectively. As expected, these RS values are the main contributing factor to the FF of the solar 

cell, with the RP influence being insignificant (all devices are greater than the minimum design 

RP >1.6 kΩ⋅cm2). Given that the front grid and rear contact resistances are equal for the three cell 

structures, the observed variation in RS (and in FF) can be specifically attributed to the different 

contact resistance values previously determined in §4.2.1 (ρc: V2Ox < MoOx < WOx). However, a 

theoretical calculation of the total RS and the resulting FF suggests the ITO/TMO/n-Si contact 

(and perhaps the laser-fired contact as well) could have a 10 times larger contact resistance, in 

order to account for the low FF values observed (<70%)3.  

                                                
3 Also, the RS values extracted from the dark diode curve are underestimated, being larger upon illumination.  

      (a)                                                                          (b) 
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Finished devices were also characterized by the Suns-VOC technique, which allows determining a 

pseudo-J(V) without the effect of the series resistance. Fig. 5.4a shows the measured VOC as a 

function of illumination intensity in sun equivalents (right axis), which can be translated into a 

pseudo-J(V)dark curve (left axis). When compared to the standard electrical measurement, the 

absence of RS in the pseudo-curve allows extracting the diode parameters over a wider voltage 

range (> 0.6 V), resulting in J01 ~7,600 fA/cm2 and n1 ~1.07 for the V2Ox textured device, several 

times larger than the J(V)dark fittings in Table 5.2. Likewise, the fitting of the secondary 

(recombination) diode yields J02 ~3.5 nA/cm2 and n2 ~1.87.  

 

A pseudo-J(V)light curve was also obtained parting from the assumption that J(V) = J(V)dark – JSC 

(superposition principle), as plotted in Fig. 5.4b. From this curve, at pseudo-fill factor of ~81.1% 

was obtained, confirming the excellent diode quality achieved by TMO/n-Si heterojunctions 

once the effect of the series resistance is removed. A second estimation of RS following [10]: 

𝑅! = pseudo-𝐹𝐹 − 𝐹𝐹
𝑉!"  𝐽!"
𝐽!""!   (5.2) 

yields an RS ~1.1 Ω⋅cm2 for the V2Ox textured device, almost twice as high as the series 

resistance value extracted from the J(V)dark fitting (Table 5.2). This was already expected, given 

that carrier concentration increases several orders of magnitude upon illumination. In this sense, 

it can be concluded that the Suns-VOC methodology provides more suitable diode parameters. 

 
Figure 5.4 (a) Dark current density (left axis) and illumination intensity (right axis) for the V2Ox textured device as a 

function of open-circuit voltage, as measured by Suns-VOC. (b) Pseudo current-voltage response under illumination.  

 

      (a)                                                                           (b) 
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In addition to the diode characteristics, Suns-VOC measurements were also used to determine the 

effective lifetime τeff of finished devices following the procedure in §3.2.4. Fig. 5.5 shows τeff for 

the V2Ox textured device, where lifetime is slightly reduced in comparison to the device 

precursor measured by QSS-PC (ITO/V2Ox/n-Si/a-SiCx:Hlaser). Therefore, it can be concluded 

that metallization barely influences the lifetime of the finished devices, although higher lifetime 

samples (i.e. with the rear-ITO contact) did show a larger degradation (see §5.1.7). 

 

 

 

 

 

 

 

 

 

 
Figure 5.5 (a) Effective lifetime extracted from Suns-VOC measurements for the V2Ox textured device. The 

overestimated τeff at low injection is explained by differences in the assumed net generation rate [11].  

 

Lastly, another interesting property of TMO-induced p+
IL/n-Si junctions is their breakdown 

characteristic under very large reverse bias, determined by a sudden current runoff at a specific 

breakdown voltage VBD. Fig. 5.6a shows the current-voltage response with VBD values of ~95, 84 

and 75 V for V2Ox, MoOx and WOx respectively, lower than the VBD of ~150 V of a one-sided 

abrupt p+/n junction (same base doping [7]) but still quite high, considering the thicknesses of 

the TMO (20 nm) and inversion (<3 nm) layers. Given these large VBD values, the most probable 

mechanism by which breakdown is initiated is avalanche multiplication, which is known to 

damage the diode response permanently as shown in Fig. 5.6b, where a lower VBD onset and a 

gradual current increase take place after the first breakdown. 

 

5.1.3 Impedance spectroscopy (IS) 

 

Impedance spectroscopy measurements were carried out in collaboration with Almora et al. [12] 

in order to determine the built-in potential (Vbi) of the heterojunction from capacitance - voltage  
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Figure 5.6 Current-voltage response under very large reverse bias until junction breakdown, shown for (a) each TMO, 

and (b) before and after a first breakdown (WOx case). 

 

measurements (10 mV AC perturbation, 1 kHz) under ambient temperature in the dark. Fig. 5.7 

shows the characteristic 1/C2(V) plot with a clear linear behavior at reverse bias. By fitting to Eq. 

3.12, the extrapolation into the x-axis yielded Vbi values of 617, 600 and 510 mV for the V2Ox, 

MoOx and WOx textured devices. Similarly, the slope of the linear fit is equal to the Si substrate 

doping Nd, with values varying from 2–7×1015 cm-3. The departure from the real doping 

(2.3×1015 cm-3 for a 2.5 wafer resistivity) is an indication of effective area variations and/or 

frequency-dependent responses (the latter a sign of trap states within Egap [7]). Despite these 

variations, a constant slope value means that the donor density profile is also constant, 

translating into a quadratic potential distribution4 and a quadratic band bending. Moreover, the 

depletion layer width of the junction Wj was also calculated from the 1/C2 (V) by use of: 

𝑊! =
2𝜀!"
𝑞𝑁!

 𝑉!" − 𝑉 −  
2𝑘𝑇
𝑞  (5.3) 

yielding Wj values in the order of 300–600 nm (at 0 V bias). Since these values are much larger 

than the TMO thickness (20 nm), the previously assumed one-sided junction approximation 

seems correct. Thus, by assigning most of Vbi to the n-Si side, it becomes evident that the n-Si 

surface is weakly inverted even under thermal equilibrium, i.e. Vbi > (½ Egap – EFn). 

                                                
4 From Poisson’s equation, − 𝑑!𝑉 𝑑𝑥! ≈ 𝑞𝑁! 𝜀!" [7]. 

      (a)                                                                          (b) 
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Figure 5.7 Inverse squared capacitance as a function of DC voltage. Inset shows the built-in voltage, extracted from 

the x-axis extrapolation of the reverse-bias data. 

 

A more thorough IS study was also carried out by varying the device temperature and operating 

point (VOC), leading to the following conclusions [12]: (1) the temperature dependence (210–300 

K) of the recombination resistance Rrec yielded effective barrier values ΦB	≲ 50 meV, another 

indication of carrier tunneling across the TMO/n-Si interface; (2) the individual electron and 

hole lifetimes τe and τh were calculated from their capacitive response times (τ = RrecCd), 

resulting in an effective lifetime τeff ~70 µs (V2Ox) and ~50 µs (MoOx) for the textured devices 

(in accordance with the Suns-VOC measurements); and (3) effective electron and hole diffusion 

lengths Le ~101 µs and Lh ~102 µs were calculated from the Cd (VOC) dependence, as expected 

from diffusion-dominated hole transport in a n-type base.   

 

5.1.4 External quantum efficiency 

 

Quantum efficiency measurements were carried out in order to identify carrier collection losses 

into specific sections of the device (i.e. front/rear contacts, absorber), affecting not only the JSC 

but also the VOC. Fig. 5.8a shows the EQE response in the 300–1,200 nm wavelength range for 

the three TMO/n-Si textured devices, measured under a bias light of 0.1 suns and matched to the 

JSC value obtained from the solar simulator (4.3% grid shadow included). At a first glance, MoOx 

and WOx have a similar response, while V2Ox shows slight differences at 400 nm (lower EQE) 

and at 600–1,000 nm (higher EQE). This could be explained by V2Ox’s lower Egap but higher 

passivation quality, resulting in very similar JSC values for the three TMOs as reported in Table 

5.1. Irrespective of these minor differences, all three oxides exhibit a substantial EQE 
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improvement in the 300–550 nm range when compared to the reference a-SiCx:H stack (20 nm). 

Through the integration of the spectral photocurrent (EQE ⋅ Φsun), a photocurrent gain of ~1.2 

mA/cm2 was calculated, directly attributed to the optical band gap difference between these 

TMOs and a-SiCx:H. In this sense, similar gains can be expected for passivated heterocontacts 

with the structure TMO (5–15 nm)/a-Si:H (5–10 nm) when compared to reference (p+/i) a-Si:H 

stacks, as has been recently reported [13–15]. Despite these gains, the a-SiCx:H reference stacks 

showed a higher response above 600 nm due to sub-band gap absorption of the TMO layers (see 

Fig. 4.6a), resulting in similar JSC values for the TMOs and a-SiCx:H reference. The origin of 

TMO sub-band gap absorption lies on film coloration by reduced cation states (Mo+5, W+5, V+4), 

generated by the sputtering damage and partially recoverable by CO2-plasma oxidation [13,16].  

 
Figure 5.8 (a) External quantum efficiency and total reflectance for the TMO/n-Si devices, showing a JSC gain of ~1.2 

mA/cm2 in comparison to a-SiCx:H. (b) Comparison between the theoretical (simulated) and actual EQE response 

(textured MoOx/n-Si).  
 

In terms of total reflectance (Fig. 5.8a), TMO devices displayed slightly higher losses (R ~10% 

at 500 nm) due to the ITO layer being thicker than the optimal value of ~65 nm. This is made 

clear by comparing the theoretical (simulated) and measured EQE curves for the MoOx/n-Si 

textured device (Fig. 5.8b), where a JSC mismatch of ~7 mA/cm2 can be attributed to several 

factors: (1) front absorption losses (λ <600 nm) due to the non-optimal ITO (80 nm)/MoOx (20 

nm) stack, which was necessary to ensure a uniform TMO layer over the textured surface as well 

as a decent ITO sheet resistance; (2) rear absorption losses (λ >900 nm), due to parasitic 

absorption at the a-SiCx:H/Ti/Al rear contact; and (3) carrier recombination both at the front and 

rear surfaces, which result in short diffusion lengths and low effective lifetimes. 

      (a)                                                                             (b) 
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5.1.5 Temperature annealing effects 

 

Even if low temperature processing is one of the cost reduction targets, modern c-Si technology 

largely depends on several moderate temperatures steps (200–500ºC) such as N2/H2 annealings 

to enhance passivation (or restore it from sputtering damage [17]) and contact-firing/drying of 

Ag pastes for electrode formation. To this purpose, a set of planar devices was characterized 

before and after a mild annealing step at 160 ºC during 15 min in a N2/H2 atmosphere.  

 

A summary of the measured parameters is shown in Fig. 5.9, highlighting the following 

observations: (1) a VOC / JSC improvement of 15–20 mV / 0.9–1.1 mA/cm2 for V2Ox and WOx, in 

contrast to a ~20 mV / 2 mA/cm2 loss for MoOx; (2) a minor FF improvement for WOx (1.1% 

abs.) and a minor loss for MoOx (–1.7% abs.), whereas the FF of V2Ox was completely 

downgraded to ~50% values, as also reported by [2] and probably related to amorphous-to-

crystalline phase transitions [18]. FF losses where distinguished by the appearance of an S-shape 

curve, in agreement with recent reports where a hole-blocking interlayer is formed at the 

ITO/MoOx interface at annealing temperatures of 130 ºC and above [13]. Consequently, 

conversion efficiencies did not benefit from the mild thermal annealing (except for WOx, with a 

0.8% absolute increase), imposing a harsh temperature limitation to TMO/n-Si processing.  

 

 

 

 

 

 

 

 

 
 
 

 
Figure 5.9 Effect of temperature annealing (160ºC, N2/H2, 15 min) on the performance parameters of planar TMO/n-

Si devices. An example current-voltage response is also shown. 
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Regarding the unsuccessful TMO/a-SiCx:H/n-Si devices, an equivalent annealing step was 

attempted in order to increase their low efficiencies; however, no significant improvements to  

VOC nor JSC were obtained, while S-shaped curves with FF <50% indicated the presence of hole-

blocking barriers at the TMO/a-SiCx:H interface (see Appendix B). 

 

5.1.6 Laser damage 

 

Even though a systematic optimization of the rear contact laser-doping process was carried out5, 

a relatively narrow optimization window (1< fc <10%) prevented the device from achieving the 

high passivation levels previously determined from lifetime measurements (e.g. ~670 mV for 

V2Ox). This is shown in the Fig. 5.10a where the open-circuit voltage and rear series resistance 

(RSrear) are simulated6 as a function of fc, obtaining an optimum VOC ~620 mV and RSrear ~0.5 

Ω⋅cm2 for a 2.4% contacted fraction. In order to increase VOC, a fc <2.4% could be used at the 

expense of higher resistance and conversion efficiency losses. Therefore, it can be concluded 

that this solar cell design is intrinsically limited by the laser-fired contact structure (as already 

inferred from the lifetime measurements of laser-doped structures in section 4.2.2), which leads 

to the J0rear contribution being greater than J0front (Fig. 5.10b).  

 
  Figure 5.10 Laser simulation, showing the limitation by the rear contact. 

 

                                                
5 This included determining the optimum laser fluencies for the following structures: (1) Al-fired p+/p-Si contacts; (2) laser-

doped n+/p-Si diodes; (3) laser-doped n+/n-Si contacts, resulting in ρc values <5 mΩ⋅cm2. 
6 Considering a V2Ox front contact, a (i/n+) a-SiCx:H passivated rear fraction (Spass ~10 cm/s, 1–fc) and (i/n+) a-SiCx:H/Ti/Al 

laser-doped rear fraction (Smet ~105 cm/s, fc ). 

      (a)                                                                             (b) 
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In addition to the passivation/resistance shortcomings, the thin titanium layer (used as a high 

work function intermediate before Al contacting) was optically poor given its high absorption. 

Optical simulations showed that rear absorption losses were ~2.8 mA/cm2 for the Ti/Al, in 

comparison to ~0.6 mA/cm2 for an Al-only back reflector (with reflection losses being very 

similar at ~2.2 mA/cm2). Such losses were already apparent from the steep EQE decline >1,000 

nm, an indication of excessive surface recombination and short diffusion lengths. Therefore, an 

alternative rear contact strategy consisting of (i/n+) a-SiCx:H/ITO/Ag contacts (Fig. 3.1c) was 

implemented trying to overcome these limitations, as described in the following section. 

 

5.1.7 Rear contact optimization 

 

Fig. 5.11 shows the current-voltage response of a new set of V2Ox solar cells (planar substrates) 

comparing the laser-doped and rear-ITO (80 nm) rearcontact strategies, also using a thinner (10 

nm) front V2Ox film in an attempt to increase JSC values. For the (i/n+) a-SiCx:H/ITO contact, a 

160 ºC N2 anneal was performed before the thermal evaporation of the Ag electrode, in order to 

recover from a possible passivation damage. By comparing the measured VOC values, it is 

evident that the rear-ITO strategy boosted voltage extraction by almost 60 mV, very close to the 

limit imposed by the V2Ox (~670 mV) and in agreement with similar reported devices [2]. 

Likewise, JSC values increased by ~2.3 mA/cm2 due to the thinner V2Ox layer and the improved 

rear passivation. Despite the FF being lower than the previous experimental runs (attributed to 

Rsh ~300 Ω/� ITO films and to control issues with the sputtering equipment), an excellent 

conversion efficiency of 15.2% is obtained (see Table 5.3). 

 

 

 

 

 

 

 

 

 

 

 
 Figure 5.11 Current density-voltage response of planar V2Ox (10 nm)/n-Si devices with laser-doped and ITO 

rear contacts (highest efficiency devices). 
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Table 5.3 Performance parameters for planar V2Ox (10 nm)/n-Si devices with laser-doped and ITO rear contacts (4 

device average).  
 

V2Ox/n-Si 
VOC 

mV 

JSC 

mA/cm2 

FF 

% 

PCE 

% 

Laser-doped 
606  
±7  

31.2  
±0.7 

70.6  
±0.4 

13.3  
±0.3 

Rear-ITO 
661  
±4  

32.1  
±0.5 

70.0  
±0.6 

14.9  
±0.3 

 

The reason for the VOC and JSC improvement can be deduced from the analysis of the total 

reflectance and the internal quantum efficiency of the laser-doped and rear-ITO devices (Fig. 

5.12a). As it is observed, the origin of the improvement in carrier collection is not due to changes 

in the R(λ) response (practically the same for both rear structures). Hence, a lower recombination 

velocity and a lower parasitic absorption at the rear contact are responsible for the enhanced 

passivation and current collection. This is further clarified by calculating the effective diffusion 

length Leff from the relationship between 1/IQE and the absorption coefficient 1/α [19]:  

1
IQE = 1+  

cos 𝜃
𝐿!""

 
1
𝛼 (5.4) 

where θ = 0º is the light refraction angle at the front planar surface. The data fitting is shown in 

Fig. 5.12b, obtaining Leff values of ~2,600 and 900 µm for the rear-ITO and laser-doped contacts 

respectively, confirming the superiority of the rear-ITO strategy.  

 

 

           (a)                                                                            (b) 
Figure 5.12 (a) Internal quantum efficiency (IQE) and total reflectance for the two rear contact strategies. (b) Inverse 

IQE as a function of the inverse absorption coefficient, showing the effective diffusion length extracted from the fit. 
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The full passivation potential of this optimized structure was made clear by measuring its 

1/C2(V) characteristics (Fig. 5.13) and extracting a Vbi ~712 mV [12], slightly larger than the 

surface potential under strong inversion conditions φs ≈ Vbi  > 2(½ Egap – EFn).This result confirms 

the large potential of induced p+
IL/n-Si junctions for achieving VOC s >700 mV, provided a good 

surface passivation is present. 

 

 

 

 

 

 

 

 

 

 
Figure 5.13 Inverse squared capacitance as a function of DC voltage for a V2Ox(10 nm)/n-Si planar solar cell with 

rear ITO/Ag contact, showing the built-in voltage extracted from the x-axis extrapolation of the reverse-bias data. 

 

Finally, the rear-ITO/Ag contact was implemented into a textured V2Ox(10 nm)/n-Si device, 

obtaining a VOC = 640 ±3 mV, JSC = 37.6 ±0.1 mA/cm2 and FF = 68.2 ±0.5% (Fig. 5.14a). The 

maximum conversion efficiency of such device was 16.5%, a record efficiency value for the 

induced-junction solar cells presented in this thesis. One of the loss factors identified was a low 

FF <70%, attributed to either poor ideality factors (n1 >1) or to a large series resistance. By 

means of the Suns-VOC procedure, a pseudo-J(V)dark was obtained and fitted to the two-diode 

model, revealing a dark saturation current J01 ~4,900 fA/cm2 with an ideality factor n1 ~1.1  as 

well as a RS ~2.1 Ω⋅cm2 (Fig. 5.14b), confirming that the poor FF is a result of series resistance 

losses at the front or rear contacts. Since ITO/Ag contacts have a minimum contact resistance 

~10-3 Ω⋅cm2 [3], the high RS can then be specifically attributed to the front contact, either to the 

ITO/V2Ox/n-Si contact or (as is usually the case) to an insufficient ITO sheet resistance. It could 

also be argued that the SiOx interlayer is limiting current transport, yet, reported FF values close 

to 80% indicate otherwise [2,14]. Then, considering a pseudo-FF of 78.1%, the theoretical 

efficiency of this structure is boosted to 18.8%. 
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Another source of loss comes from the VOC, which is lower than the ~660 mV mark obtained in 

planar substrates. This is primarily due to higher recombination at the front textured surface, 

caused either by increased roughness (in comparison to the planar surface) or by the previously 

identified sputtering damage, in which case V2Ox films thicker than 10 nm might be preferable. 

Moreover, the τeff of the finished device (as calculated from Suns-VOC data) was decreased after 

the metallization step in comparison to precursor (ITO/V2Ox/n-Si/a-SiCx:H/ITO) QSS-PC 

measurements (Fig. 5.15a). In brief, solving the above issues and approaching the limit VOC ~660 

mV would allow for a maximum conversion efficiency of 19.4% for this type of structure. 

 
 

Figure 5.14 (a) Current density-voltage response of our V2Ox (10 nm)/n-Si champion solar cell with rear ITO/Ag 

contact. (b) Dark current density (left axis) and illumination intensity (right axis) as measured by Suns-VOC. 

 

 

      (a)                                                                     (b) 

         (a)                                                                            (b) 
Figure 5.15 (a) Effective lifetime for the V2Ox (10 nm) rear-ITO textured device after metallization; (b) External 

quantum efficiency and total reflectance. As a reference, a front (i/n+) a-SiCx:H (15 nm)/p-Si device with laser-fired 

Al2O3/ITO rear contact is also shown, with an estimated JSC gain (300–600 nm range) of ~1.0 mA/cm2. 
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In optical terms, JSC could be improved by decreasing the parasitic absorption of the ITO layer, 

either by lowering its thickness (while maintaining a reasonable Rsh) or by increasing its 

transparency, as has been reported for hydrogen-doped ITO [20] films. Regardless of this, the 

wider V2Ox Egap (in comparison to a reference a-SiCx:H contact)7 did increase photon absorption 

for the 300–600 nm wavelengths, resulting in JSC gains of ~1 mA/cm2, as shown in Fig. 5.15b.  

 

 

5.2 PEDOT:PSS/n-Si solar cells performance 
 

5.2.1 Current-voltage and quantum efficiency 

 

Following the electrical characterization of the two PEDOT:PSS solutions, PH1000 and HTL 

Solar, it was concluded that: (1) HTL Solar provided better passivation than PH1000, resulting in 

higher implied open-circuit voltages (i-VOC ~662 mV); (2) HTL Solar had a much lower contact 

resistance (ρc ~30 mΩ·cm2) than PH1000 (ρc ~790 mΩ·cm2); and (3) both had similar 

transmittance (T >80%) and sheet resistance values (Rsh ~101 Ω/�), sufficient to substitute the 

ITO layer. The solar cells were fabricated on front-textured substrates, with the PEDOT:PSS 

layer directly contacted by the Ag grid and a rear contact consisting of (i/n+) a-SiCx:H laser-

doped contacts8. The J(V)light characteristics are shown in Fig. 5.16a, achieving a maximum 

power conversion efficiency of 11.6% and 8.5% for HTL Solar and PH1000 respectively. 

Despite the promising i-VOC values, the measured VOC for HTL Solar was 569 mV, while 

PH1000 also exhibited a large reduction (545 mV). The reasons for such a drop on the 

passivation are three-fold: (1) a poor physical contact between PEDOT:PSS and the textured 

surface, having observed wettability issues over the random pyramids (see Fig. 4.27); (2) the 

highly-recombinative rear surface, damaged by the laser-doping process; and (3) physical 

degradation9 of the device effective lifetime after metallization.  

 

The better performance of the HTL Solar device is also evident from its lower saturation current 

(J0 ~1.4×10-7 mA/cm2) and diode ideality factor (n1 = 1.1) than PH1000 (J0 ~3.2×10-6 mA/cm2, 

n1 = 1.3), as extracted from J(V)dark fittings to the two-diode model (Fig. 5.15a inset). This might 
                                                
7 Using as reference a (i/n+) a-SiCx:H/p-Si/(p+)Al2O3 laser-fired/ITO heterojunction [3]. 
8 At a time when the intrinsic limitations of the laser-doped strategy had not been fully understood. 
9 Considering that PEDOT:PSS is relatively stable upon oxygen and humidity exposure [21]. 
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be explained by a lower-quality junction between PH1000 and n-Si, as suggested by its larger 

contact angle (see Fig. 4.26b). Regarding the device fill factors, FFs of 61.0% and 49.6% were 

measured for HTL Solar and PH1000, corresponding to J(V)dark series resistances of 3.4 and 6.8 

Ω·cm2 respectively. Such differences in RS and FF correlate to the large disparity in contact 

resistances, given that their sheet resistances were very similar.  

 
Figure 5.16 (a) Current density-voltage response of textured PEDOT:PSS/n-Si solar cells under dark (inset) and light 

conditions (highest efficiency devices). (b) External quantum efficiency and total reflectance. 
 

In terms of photocurrent generation, HTL Solar achieved a JSC of 33.5 mA/cm2, slightly larger 

than PH1000 (31.5 mA/cm2) and confirmed by the external quantum efficiency characteristics, 

which follow a similar response across the whole wavelength range but vertically-shifted (Fig. 

5.16b). This improvement can be partially explained by HTL Solar’s higher transparency (Fig. 

4.28a), although lower front recombination losses can also account for the observed vertical-

shift. Table 5.4 summarizes the measured PEDOT:PSS/n-Si solar cell performance parameters. 

 
Table 5.4 Performance parameters for PEDOT:PSS/n-Si devices on a textured substrate (4 device average).  

 

PEDOT:PSS/n-Si 
VOC 

mV 

JSC 

mA/cm2 

FF 

% 

PCE 

% 

J01 

mA/cm2 

n1 

 

RS 

Ω⋅cm2 

RP 

kΩ⋅cm2 

HTL Solar 
564  
±6  

33.3  
±0.1 

60.0  
±0.9 

11.3  
±0.3 

1.4×10-7 1.15 3.4 3.5 

PH1000 
541  
±5 

31.3  
±0.2 

48.2  
±1.4 

8.2  
±0.4 

3.2×10-6 1.3 6.8 15 

       (a)                                                                      (b) 
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6 Conclusions and future outlook 
 

This final chapter summarizes the main findings of this thesis work, resulting in an 

overall understanding of the properties and working principles of TMO/n-Si hetero- 

junctions and their application into novel solar cell devices. 
 
 

6.1 Conclusions  
 

At the beginning of this thesis work, the conception of the TMO/n-Si heterojunction idea was 

inspired by a simplified solar cell design that incorporates a photovoltaic absorber (c-Si) and two 

carrier-selective contacts for the collection and extraction of electrons and one for holes. In this 

simple model, electron/hole separation occurs via conductivity gradients at each selective 

contact. Then, if all other design parameters are optimal, conversion efficiencies are completely 

determined by the contact resistance (ρc) and the recombination current (J0). In light of this view, 

a new wave of novel passivating and/or carrier-selective materials has arisen in the past three 

years, achieving an equal or superior performance than their doped counterparts. These 

materials, which include transition metal oxides (TMOs), conductive polymers and alkaline-

earth salts, have addressed some of the limitations found in conventional c-Si technologies, 

including energy-intensive fabrication processes, Auger-limited recombination in highly doped 

layers and parasitic absorption by narrow Egap materials. In this thesis, these and other concerns 

were thoroughly investigated by use of dopant-free/wide band gap (Egap >3 eV) TMO thin films, 

whose passivating properties and large work function values (ΦTMO >5 eV) allow their use as 

passivating/hole-selective contacts in n-type c-Si solar cells. 

 

6.1.1 Material characterization 

 

First, the suitability of the three studied TMOs (V2O5, MoO3 and WO3) as hole-selective contacts 

was discussed in terms of their work function, conductivity and energy band gap. From XPS 

analyses of thermally evaporated TMOs thin films, oxygen deficient stoichiometries of VOx~2.3 

and MoOx~2.5 were determined along with moderate concentrations of reduced cation species 

(V+4, Mo+5), whereas WOx~3.2 was found to be over-stoichiometric. These oxygen vacancies, 

which provide the n-type semiconductive character to TMOs and may play an important role in 
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carrier conduction, were also inferred from the presence of mid-gap defect states located at 

photoelectron binding energies of ~1 eV. In parallel, optical transmittance measurements by UV-

VIS spectrophotometry showed an absorption onset at ~400 nm for the three oxides as well as 

Egap values of 2.5–3.1 eV, confirming that reduced absorption losses could be achieved in 

comparison to a-Si:H window layers (absorption onset ~600 nm, Egap ~1.7 eV). This could 

translate into short-circuit current gains of ~1.6 mA/cm2 in the 400–600 nm range, as determined 

from ray-tracing optical simulations. 

 

The electric characterization by TLM measurements of TMO thin films (50 nm) deposited on 

glass showed them to be quasi-insulating, with sheet resistance values Rsh ~1010 Ω/� . Yet, 20 

nm films deposited on n-Si exhibited an Rsh ~10, 20 and 1,600 kΩ/� for V2Ox, MoOx and WOx 

respectively. Given that the n-Si substrate (1.2 Ω⋅cm) had a characteristic Rsh ~40 Ω/� , it 

seemed clear that carrier transport was confined to an inversion layer induced at the n-Si surface, 

also inferred from the large work difference ΦTMO – Φn-Si and the resulting built-in voltage under 

equilibrium. This TMO-induced p+/n-Si junction can then explain the hole-selectivity in this type 

of heterojunctions. Likewise, the specific contact resistance ρc between Au/TMO/p+
IL was also 

obtained from the TLM data, yielding ~110, ~370 and ~670 mΩ⋅cm2 for V2Ox, MoOx and WOx 

respectively (similar to other passivating/selective contacts reported in the literature. Another 

important finding was the rapid degradation of the electric properties at temperatures ≥150 ºC, 

being incompatible with industrial annealing processes (T >400 ºC).  

 

Next, the passivation properties of TMO thin films (20 nm) on n-Si were determined from quasi-

steady-state photoconductance measurements on symmetric TMO/n-Si/TMO structures (planar 

substrates), obtaining implied-VOC (J0) values of 671 (130), 655 (230) and 553 (3,600) mV 

(fA/cm2) for V2Ox, MoOx and WOx respectively. Even though these values were lower than 

reported passivated TMO/a-Si:H/n-Si contacts (i-VOC >700 mV), such level of passivation is 

moderately high considering the simplicity of the deposition process (thermal evaporation upon 

an ambient temperature substrate). Passivation was found to be independent of oxide thickness 

(5–80 nm range) but it showed a strong degradation under air exposure (V2Ox case). Passivation 

was also affected by UV-luminescence from the ITO sputtering process, where the strongest 

degradation occurred for the thinnest films (<10 nm) and/or the more conductive ITO layers (Rsh 

<110 Ω/�). Additional passivating interlayers including ~4 nm intrinsic a-SiCx:H (deposited by 

PECVD) and <2 nm SiOx (chemically grown by HNO3, UVO and RCA2 oxidation) were also 
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tested but not evident improvement in passivation was obtained. This might be due to low 

hydrogen content in our a-SiCx:H films (needing higher thicknesses, as with the rear 20 nm i/n+ 

a-SiCx:H contacts), or to the absence of reduced cation species generated by charge transfer upon 

heterojunction formation. 

 

In addition to transition metal oxides, two p-type polymer PEDOT:PSS solutions (HTL Solar 

and PH1000) were also characterized for determining their optoelectronic and passivation 

properties. After preconditioning treatments with surfactant and conductivity additives, TLM 

measurements of Ag/PEDOT:PSS on glass showed PH1000 (Rsh ~120 Ω/�) was slightly more 

conductive than HTL Solar (Rsh ~190 Ω/�), in accordance to the lower content of insulating PSS 

material (as determined from XPS analyses). Since both materials had a sheet resistance similar 

to ITO and a moderate transmittance (90% at 600 nm), they could be used as hole-selective 

transparent conductive electrodes in an ITO-free device. In terms of contact resistance and 

passivation, HTL Solar had a much lower contact resistance and a higher passivation quality (ρc 

~0.03 ΩŊcm2, i-VOC ~644 mV on planar substrates) than PH1000, probably related to a better 

wettability of the c-Si surface (as determined from contact angle measurements).  

 

6.1.2 Heterojunction physics 

 

From the above results, it was evident that V2Ox/n-Si contacts (followed by MoOx and WOx) 

showed superior electric and passivation properties. Whereas larger conductivity values can be 

explained by the higher oxygen deficiency (as determined by XPS), higher i-VOC values are a 

function of two separate contributions: (1) chemical passivation of surface dangling bonds, and 

(2) ‘field-effect’ passivation, characterized by large built-in potentials and highly inverted 

surfaces (both a function of the work function difference ΦTMO – ΦnSi and on the degree of Fermi 

level pinning). On the one hand, chemical passivation was inferred from HR-TEM imaging, 

which revealed the presence of a 1.9–2.6 nm layer in the TMO/n-Si interface, amorphous in 

nature and very uniform in thickness. A dynamic ToF-SIMS analysis of such interlayer showed a 

strong SiOx signal as well as reduced cation peaks (V+4, Mo+5, W+5), suggesting a chemical 

reaction had taken place between c-Si and the TMOs. This chemical reaction could be driven by 

thermodynamically favorable conditions (i.e. a negative Gibbs energy of reaction) in addition to 

electron transfer from c-Si to the TMO. Likewise, Si–H and Si–OH species were also identified 

from a static ToF-SIMS analysis, confirming that hydrogen species also passivate the c-Si 
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surface. The approximate stoichiometry of this interlayer was established at SiOx~1.5, as 

determined from the XPS binding energy of Si 2p3/2 peaks, whereas reduced cation species were 

more abundant near the reactive interface, gradually decreasing until reaching a steady bulk 

concentration. 

 

On the other hand, ‘field-effect’ passivation was also deduced from chemical shifts in the XPS 

data. Specifically, the Si0 peak shifted to lower binding energies, a clear indication of band 

bending and of charge transfer occurring across the interface. Given that the large work function 

difference ΦTMO – ΦnSi can only be partially allocated as ionized donor charges in the n-Si bulk 

(up to a Vbi ~0.7 V, limited by strong inversion conditions), the rest of the charge is most 

probably distributed in a negative interfacial dipole of magnitude Δd = qVbi – ΔΦ, as recently 

confirmed by other authors. In terms of carrier conduction across the SiOx interlayer, which is 

thicker than the tunneling limit of ~2 nm, it is possible that oxygen vacancies and mid-gap states 

facilitate carrier transport via hopping mechanisms. Similarly, carrier conduction in the n-type 

TMO bulk can also be explained by electron hopping between low- and high-valence cation 

species. Regarding the apparent paradox in hole extraction through an n-type TMO, it could be 

interpreted as an n+/p+ tunneling diode, frequently used in tandem solar cells. 

 

A compilation of the ρc and J0 parameters obtained for the hole-selective materials under study is 

presented in Fig. 6.1 (previously shown in Fig. 2.14), which shows the optimized contacted area 

fractions and the resulting theoretical conversion efficiency[1] for each experimental ρc-J0 pair 

(white diamonds), along with the corresponding selectivity S10 = kT/(ρc J0). As a reference, 

values reported in the literature are also shown (dark circles), including similar Pd/MoOx 

contacts[2] and industry-standard approaches like Al-fired BSF[3], PH3 diffusion[3] and (p) a-

Si:H[4]. First, we note that V2Ox had the highest selectivity (S10 = 12.3) compared to the other 

TMOs (S10 = 11.5–12.1 for MoOx, S10 = 10.0 for WOx). As a result, a V2Ox/n-Si device could 

reach a conversion efficiency of ~25.0% for a contacted area fraction fc ~0.4, a perfectly viable 

strategy with the current PERC/IBC technology. This is not the case for standard Al-fired BSF 

                                                
[1 ] Simulation data obtained from the original source: J. Bullock et al., Amorphous silicon enhanced metal-insulator-
semiconductor contacts for silicon solar cells, J. Appl. Phys. 116 (2014) 163706. 
[2] J. Bullock et al., Molybdenum oxide MoOx: a versatile hole contact for Si solar cells, Appl. Phys. Lett. 105 (2014) 232109.  
[3] R. Brendel, R. Peibst, Contact selectivity and efficiency in c-Si photovoltaics, IEEE J. Photovoltaics. 6 (2016) 1413–1420 
[4] K. Yoshikawa et al., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 
26%, Nat. Energy. 2 (2017) 17032. 
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contacts, which despite their larger selectivity (S10 = 13.0) they require a smaller contact fraction 

fc ~0.03 in order to achieve a similar efficiency. Also note that, until now, only a-Si:H 

technology is able to utilize full-area contacts and maintain a high efficiency (as in HIT solar 

cells), a consequence of its extremely low J0 <10 fA/cm2. It then follows that prospective 

TMO/n-Si devices with full-area contacts would require sufficiently lower J0 <30 fA/cm2 and ρc 

<0.1 Ω⋅cm2 values in order to surpass the 26% barrier. Regarding the HTL Solar PEDOT:PSS 

contact, a very good selectivity value (S10 = 12.6) was obtained, with a potential maximum 

efficiency of 25.1% for a contact fraction fc ~0.2, although recent demonstrations[5] on full-area 

rear contacted configurations have a similar efficiency potential. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.1 Summary of the recombination current (J0) and contact resistance (ρc) values obtained in this thesis for the 

different TMO (V, M, W) and PEDOT:PSS (PE) junctions (white diamonds), showing the optimized contacted area 

fraction fc, the resulting conversion efficiency and the iso-selectivity lines S10. As a reference (dark circles), reported 

values for MoOx, PEDOT:PSS and various standard contacts (Al BSF, PH3 diffusion and p a-Si:H) are also shown.  

 

6.1.3 c-Si heterojunction solar cells 

 

Finally, the characterized TMO/n-Si heterojunctions were implemented as hole-selective 

contacts in complete solar cell devices, using 15 nm TMO films contacted by 80 nm ITO 

transparent conductive electrodes and a Ag finger grid (4.3% shadow). As rear electron contacts, 

two different strategies were tested: (1) laser-doped (i/n+) a-SiCx:H point contacts (fc = 2.4%) 
                                                
[5] D. Zielke et al., Organic-silicon heterojunction solar cells on n-type silicon wafers: The BackPEDOT concept, Sol. Energy 
Mater. Sol. Cells. 131 (2014) 110–116. 
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with a-SiC:H back reflector and Ti/Al electrode; (2) full area (i/n+) a-SiCx:H contact, with ITO 

collector/back reflector and Ag electrode. To begin with, a comparative study was performed 

utilizing the laser-doped rear contact strategy, obtaining maximum conversion efficiencies of 

15.7% (V2Ox), 13.5% (MoOx) and 12.5% (WOx) for front-textured substrates. The main 

contributing factor to the measured efficiencies was the open-circuit voltage, with an average 

VOC of 602 (V2Ox), 567 (MoOx) and 554 (WOx) mV, in agreement with the implied-VOC values 

previously determined from lifetime measurements. Similarly, fill factor values were in 

agreement with the observed contact resistivity trend previously determined from TLM 

measurements, with average FFs of 73.6% (V2Ox), 68.7% (MoOx) and 65.0% (WOx). Suns-VOC 

measurements yielded pseudo-FF values as high as 81.1%, a proof of the excellent diode quality 

obtained by TMO-induced p+
IL/n-Si junctions. This is also confirmed by the large break-down 

voltages (down to –95 V) attained under large reverse bias, a rather high value considering the 

thinness of the p+ inversion layer (<3 nm).  

 

Regarding the short-circuit currents, average JSC values of 33.9 (V2Ox), 33.3 (MoOx) and 33.9 

(WOx) mA/cm2 were obtained. By comparing the external quantum efficiency response of each 

TMO/n-Si solar cell with a reference a-SiCx:H stack (20 nm), a JSC gain of ~1.2 mA/cm2 was 

calculated for the 300–550 nm wavelength range, directly attributed to the difference in optical 

band gaps (Egap ~1.7 and >2.5 eV for a-Si:H and TMOs respectively). Despite these gains, 

TMOs exhibited strong sub-band gap absorption at 600 nm and above, related to the appearance 

of color centers after ITO sputtering. A mild annealing treatment at T = 160 ºC showed a minor 

increase of the surface passivation (V2Ox and WOx cases) but a strong degradation of the FF by 

a marked S-shaped J(V)light curve, an indication of hole blocking behavior. 

 

An analysis of the diffusion and recombination saturation currents (J01 and J02), extracted from 

J(V)dark diode fittings in the 300–370 K range, revealed each had an activation energy Ea1 ≈ Egap 

and Ea2 ≈ ½Egap, confirming that p+
IL/n-Si induced junctions can be described by the classic p/n 

junction theory, where diffusion of minority carriers is the dominant transport mechanism at 

forward voltages >0.4 V. This is further supported by the capacitance-voltage 1/C2(V) 

characteristic (as measured by impedance spectroscopy), where the typical linear response for c-

Si is obtained, i.e. a slope proportional to the substrate doping and a x-axis intercept equal to the 

built-in voltage of the junction, with Vbi values of 617, 600 and 510 mV for the V2Ox, MoOx and 

WOx textured devices.   
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From the obtained solar cell results, it was found that the VOC (passivation) and JSC (current 

collection) were being limited by the laser-doped rear surface, which is heavily damaged during 

the laser process. Therefore, solar cell devices with the alternative (i/n+) a-SiCx:H/ITO/Ag rear 

contact were fabricated, resulting in an immediate boost of the VOC to 661 (planar) and 640 mV 

(textured substrate), attributed to a three-fold increase of the effective diffusion length. Likewise, 

JSC increased to 37.6 mA/cm2, mostly due to an improved EQE response at 800 nm and above. 

This led to a champion conversion efficiency of 16.5% and a pseudo-efficiency of 18.8% (from 

Suns-VOC measurements). A 1/C2(V) plot confirmed a built-in voltage of Vbi ~712 mV, slightly 

larger than the surface potential under strong inversion conditions φs ≈ Vbi  > 2(½ Egap – EFn). 

 

As for the PEDOT:PSS/n-Si devices, conversion efficiencies of 11.6% and 8.5% for were 

obtained for the HTL Solar and PH1000 solutions respectively. Despite the promising contact 

resistance and saturation current values previously obtained, the solar cells suffered from low 

VOC (569–545 mV) and FF (61–50%) values, explained by an uneven coverage of the random 

pyramids. Also, these devices were severely limited by rear laser-doped contact, whose 

substitution by the rear-ITO strategy should result in large efficiency improvements. 

 

 

6.2 Future work and scientific relevance 
 

It is worth mentioning some unexplored aspects that could be addressed in the near future. To 

begin with, an unambiguous determination of the effective TMO work function on the c-Si 

surface is of utmost importance, as well as understanding its dependence on surface reactivity, 

film composition and deposition methods (for example, via ultraviolet photoelectron 

spectroscopy [6] or Kelvin-probe microscopy). This could also help determining the magnitude of 

the interfacial dipole, if it is located in the TMO or in SiOx interlayer, and possible tuning 

strategies to maximize the built-in potential of the heterojunction. Also, more understanding is 

needed on the variability of the optoelectronic properties under redox environments, exploring 

feasible ways to control the concentration of oxygen vacancies.   

 

                                                
[6] T. Sun et al., Investigation of MoOx/n-Si strong inversion layer interfaces via dopant-free heterocontact, Phys. Status Solidi. 
(2017) 1700107. 
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Future work should also explore the possibility of tuning the SiOx interlayer properties, during or 

after its formation, increasing passivation to VOC >700 mV. Similarly, more work should be done 

on passivation interlayers other than (i) a-Si:H, focusing on ultrathin SiO2 films deposited by 

inexpensive ambient pressure procedures and the inclusion of atomic hydrogen by H2 plasma or 

forming gas annealings.  

 

A frequently expressed concern is the occurrence of electrochromism in the studied TMOs, an 

undesired effect if intended to be used as solar cell materials with stable optics. Even though 

electrochromism makes use of specific chemistries and device structures (see Appendix B), no 

studies exist reporting this effect on TMO/c-Si devices. Also, it would be worth studying the 

possibility of hydrogen- or lithium-doped TMOs in order to increase their conductivity or 

passivation, as long as coloration and electrochromic effects are minimum. Finally, one of the 

attractive features of TMO materials is their deposition by solution processes amply documented 

in organic photovoltaics but relatively new in c-Si solar cells[7]. Then, realistic energy and cost 

savings could be achieved by this kind of ambient-temperature and ambient-pressure processes. 

 

Finally, after having reviewed the main experimental results, it can be acknowledged that each of 

the thesis objectives stated in the introduction was successfully achieved, emphasizing four main 

contributions made to the photovoltaic research field: 

1) The determination of the optoelectronic properties of V2O5, MoO3 and WO3 in the 

context of c-Si photovoltaics (passivation and contact resistance). 

2) The elucidation of the physics behind the induced p+/n junction and its operation as a 

solar cell, supported by a thorough study of the TMO/c-Si interface.  

3) The demonstration of dopant-free passivating/hole-selective contacts in heterojunction 

solar cells, completely fabricated at temperatures below 300 ºC and with potential 

conversion efficiencies above 19%. 

4) The high level of novelty and innovation, contributing to one of the most relevant 

research topics in c-Si photovoltaics.  

                                                
[7] A.J. Tong et al., Solution-processed Molybdenum Oxide for Hole-selective Contacts on Crystalline Silicon Solar Cells, Appl. 
Surf. Sci. 423 (2017) 139-146. 
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Appendix  
 

 

A Cost and environmental assessment of c-Si solar cells  
 

 

Any time a PV technology improvement is reported, as in the case of TMO/c-Si and 

PEDOT:PSS/c-Si heterojunctions, most of the arguments in favor go along the lines of: (1) fewer 

materials consumption, not only of the absorber material (as in thin-films) but also of 

expensive/scarce consumables (e.g. silver pastes); (2) less energy-intensive processes, with low 

temperature (T<100 ºC) and vacuum-free steps; (3) lower environmental impact, a direct 

consequence of (2) but also related to toxic emissions and waste disposal; and (4) lower risk and 

improved safety, avoiding the use of flammable, toxic or corrosive materials. 

 

More than often, the ultimate justification for technology changes is economical (points 1 and 2), 

although some other factors like product differentiation, energy consumption and environmental 

impact also drive technology improvements. In order to quantify these factors in a consistent 

manner, the following measures can be used for PV assessment: 

• Production cost (€/Wpeak): reductions in cost are the fundamental motivation of thin-film 

PV, considering that c-Si wafer processing amounts for 35–50% of the final module cost 

[1,2] and 75% of the module production energy [3]. However, capital costs of utility 

scale plants are very similar for both technologies (~0.5 €/Wpeak) [4]. The Balance of 

System (BOS), which includes the inverter, mounting and cabling costs, can increase the 

installation cost from 0.6 to 1.2 €/Wpeak. 

• Levelized Cost of Energy (LCOE): used as a measure of unit cost of electricity (€/kWh), 

it accounts for the total unsubsidized costs incurred during the system lifetime (t) divided 

by the total energy output (Eout) under a particular solar irradiation:  

𝐿𝐶𝑂𝐸 =  !!!!"!!!!
(!!!)!

!

!!!
 !!"#

(!!!)!

!

!!!
 Eq. (A1) 



Appendix 

 

137 

 

Besides from the capital cost (I) and interest rates (r), PV has minimum 

operation/maintenance costs (OM) and zero fuel charges (F), leading to competitive 

energy prices of ~0.05 €/kWh against coal and gas (0.05–0.21 €/kWh). 

• Energy Pay-Back Time (EPBT): a measure of how many years it takes for a technology 

to overcome the energy consumed during its lifetime (Ein): 

𝐸𝑃𝐵𝑇 =  
𝐸!"

𝐸!"#/𝑦𝑒𝑎𝑟
 Eq. (A2) 

This analysis requires a systematic calculation of the embodied energy (or cumulative 

energy demand) for every step of the life-cycle, including raw materials, manufacturing, 

installation, operation and decommissioning. For c-Si, EPBT ranges from 1.2 (multi) to 

1.9 (mono) years, while for thin-film PV it ranges from 0.7 (CdTe) to 1.4 (a-Si:H) years, a 

consequence of lower material utilization [3].  

• Carbon footprint, a similar analysis to the EPBT but in terms of CO2 emissions or its 

equivalent. Reported carbon footprint are 50–80 g CO2-eq/kWh for c-Si and 15–45 g 

CO2-eq/kWh for thin films, both an order of magnitude lower than fossil fuel sources 

(640–1080 g CO2-eq/kWh) [3]. On the other hand, the toxicity of raw materials (Cd) or 

their scarcity on Earth (Ag, In) are also quantified by other environmental factors (eco-

toxicity, abiotic depletion), imposing severe limitations to mass development.  

• Finally, power conversion efficiencies (PCE) are of utmost importance since they 

determine the energy output used to evaluate the LCOE, EBPT and the carbon footprint.  

In general, for equal industrialization stages and similar efficiencies at the module level, thin-

film PV could have lower production and deployment costs than c-Si as a result of reduced raw 

materials utilization. Also, the environmental impact and EPBT are shorter for thin-film PV, 

especially when energy-intensive processes are avoided. However, the cumulative production of 

c-Si is currently 10 times larger than thin-film, resulting in very similar module prices for both 

technologies (see experience curve in Fig. A.1) [5]. In terms of LCOE prices, c-Si is slightly 

more competitive than thin-film only by a small margin (<10 ¢€/kWh) [4], while record auction 

prices of 0.03 €/kWh belong to c-Si (utility scale installations). With such low module and 

energy prices, it is no surprise that company profits (and consequently, the PV market as a 

whole) could become financially unsustainable [6,7]. 
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Figure A.1 Evolution of module price with global cumulative production (experience curve). Adopted from [5]. 

 

Regarding TMO/c-Si and PEDOT:PSS/c-Si heterojunctions, a reduction of the input energy 

during fabrication is possible if low-temperature and/or vacuum-free conditions are 

implemented. Although it was not possible to perform a detailed life-cycle analysis for these 

heterojunctions, a comparison with the thermal diffusion1 and PECVD2 standard processes can 

be done, considering an hypothetical TMO deposition processes by ALD3 at ambient conditions, 

i.e. T ~25 ºC and atmospheric pressure [8]. In this example, changes to the cumulative energy 

demand (CED, in Joules/cell) will be only defined by differences in the processing conditions of 

the selective contacts (excluding the rest of the solar cell processing steps, i.e. texturing, 

ARC/TCO layers and metallization). 
 

Table A.1 summarizes the expected contribution to the CED for each selective-contact process, 

as extracted/calculated from the life-cycle inventories reported in [9,10]. By looking at the 

energy intensity per cell (in mega-joules of primary energy MJp), a gradual reduction is observed 

as the temperature/vacuum requirements decrease. For the diffusion and PECVD processes, the 

change in CED is not as large as expected for such a large difference in operation temperatures, 

mainly because PECVD operation is quite energy-intensive (e.g. pre-heating, vacuum, purging 

and chamber cleaning, etc.). However, when the electricity consumption related to 

vacuum/heating is removed, the CED drops more than 85% for the ALD process.  

                                                
1 Includes: thermal phosphorous diffusion at T~900 ºC (front contact) plus contact firing at T~500 ºC (rear contact). 
2 Includes: PECVD deposition of intrinsic/doped a-Si:H stacks (front and rear). 
3 Includes: ALD deposition of the hole-contact (e.g. MoO3) and the electron-contact (e.g. TiO2). 

c-Si 

Thin-film 
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Table A.1 Contribution of the different selective-contact formation processes to the cumulative energy demand (CED) 

of a solar cell. Also included is the EBPT and carbon footprint at the module level.  

Values extracted/calculated from [9,10]. 
 

Process 
(e and h selective) 

Conditions CEDcontribution
(1) 

MJp/cell 
PCE 

% 
EPBT(2) 

years 
Cfootprint

(2) 
gCO2-eq/kWh 

Thermal diffusion 
P-doped (x1)/Al-fired (x1) 

T ~900/500 ºC 
P ~1 atm 2.5 20 1.4 31 

PECVD 
i/doped stacks (x2) 

T ~200 ºC 
Mid-vacuum 2.3 24 1.2 25 

ALD 
TMO (x2) 

T ~25 ºC 
P ~1 atm 0.3 20 1.4 29 

(1) At the solar cell level, in mega-joules of primary energy (before conversion). 
(2) At the module level, considering an irradiation of 1,700 kWh/m2⋅year and grid mix emissions of 530 gCO2-eq/kWh. 

 

This drastic decrease in CED values is not as important when the rest of the solar cell 

components are considered, namely texturing (0.7), TCO sputtering (2.5) and metallization (1.6 

MJp/cell). Furthermore, the overall analysis at the module level (including Si feedstock, 

wafering, cell processing, module processing and balance-of-system BOS) reduces the solar cell 

contribution below 9%, dwarfing the effect of processing conditions. This is manifested in the 

relative constant EPBT and carbon footprint values, which are more sensitive to module 

efficiencies and solar irradiation regardless of cell processing conditions (Fig. A.2a,b). The same 

observation applies for the fabrication costs (€/Wpeak), with Si feedstock comprising ~46% and 

29% of the cell and module costs respectively (Fig. A.2c). Therefore, any further reductions in c-

Si costs would have to come necessarily from the utilization of thinner and/or kerfless wafers. 

 

 

         (a)                                     (b)                                                     (c) 
Figure A.2 (a) Energy pay-back time and (b) carbon footprint for the described selective-contact formation 

processes (adapted from [9]). (c) Cost components at the module level for a standard solar cell with 180 and 60 

µm thick wafers (adapted from [2] for a cost of 0.5 US $/Wp). 
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B Other materials tested 

 
B.1 NiO and ReO3 

 

As mentioned in the main text, NiO and ReO3 were partially characterized but were eventually 

discarded for solar cell fabrication. Beginning with ReO3, two main issues were encountered: (1) 

the hygroscopic nature of Re oxides led to a fast and visible degradation of the thin deposited 

layer, even under a N2 atmosphere; (2) an unbalanced disproportionation into lower (Re+4) and 

higher (Re+7) valence oxides during thermal evaporation at ~400 ºC [11]. This was confirmed in 

the XPS spectra of the Re 4f core level (Fig. B.1), where only the more volatile species ReO3 and 

Re2O7 were detected (the melting point of ReO2 is >1,000 ºC). This confirms the absence of 

oxygen vacancies x in the source material ReO3-x, while no reports exist of R2O7-x as a 

semiconductor material. 

 

Regarding NiOx, its very high melting point 

(1,950 ºC) proved unreliable for film 

deposition by thermal evaporation (with 

other methods like sputtering and e-beam 

evaporation being the standard in the 

literature). Table B1 summarizes the cation 

transitions and oxygen to metal ratios as 

determined from the XPS spectra. 
 

 
                      Figure B.1 XPS spectra of ReOx 

 

Table B.1 Binding energy (eV) of Re core levels (reflecting the M+n ⟷ M–n transitions), as fitted from the XPS 

spectra. The relative content of M and O 1s components yield the film stoichiometry (O/M ratio). 

 

TMO Core level peaks (eV) Content (%) Stoichiometry 

 Transition:   M+n  	⟷ M–n    M+n    ⟷ M–n O 1s O/M ratio O content  

ReOx 
(1) 

Re 4f7/2 
Re 4f7/2 

44.3 (+6) 42.5 (+4) 0.23 0 
5.95 4.5 x>>3 

46.4 (+7) 44.3 (+6) 1.13 0.23 
(1) Re+6 → Re+4 and Re+6 → Re+7 
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B.2 LiF 

 

LiF and other similar alkali/alkaline earth compounds (MgF, KF, Cs2CO3) have recently 

attracted attention as electron-selective contacts for n-Si solar cells [12–15]. With an insulating 

nature and very large Egap values >10 eV, these materials act as work function modifiers of the 

overlying metal (e.g. Al/LiF contact), decreasing the metal work function through the formation 

of an interface dipole [16]4. As a result, the Schottky barrier between c-Si and the metal is 

eliminated or even turned negative (i.e. an n+ accumulation layer is formed), favoring electron 

tunneling with very low contact resistivities in the order of 101 mΩ⋅cm2. Similar contact qualities 

have also been reported for low work function alkali metals in direct contact with passivation 

layers, namely Mg/a-Si:H (ΦMg ~3.7 eV) [17] and Ca/TiO2 (ΦCa ~2.9 eV) [18], indicating a 

similar contact-formation mechanism. 

 

In this thesis, LiF/n-Si contacts were tested by fabricating Al/LiF/n-Si structures with variable 

LiF thicknesses and measuring the current-voltage response (using a laser-fired rear contact). As 

seen in Fig. B.2, a Schottky-like 

response was obtained for the clean 

Al/n-Si contact, whereas a LiF film of 

merely 0.5 nm drastically improved 

the ohmic character (ρc ~25 mΩ⋅cm2) 

until it becomes too thick for 

conduction at 3 nm or more. This is in 

accordance with the reported 

optimum thickness of 0.5–1.5 nm for 

this kind of materials [12,13].  
 

Figure B.2 Al/LiF/n-Si ohmic contacts for increasing LiF thickness. 

 

In comparison to TMOs and their passivation qualities on c-Si, alkali/alkaline earth compounds 

do not passivate c-Si dangling bonds (see Fig. B.3a), needing additional passivation interlayers 

like a-Si:H [12]. In this work, the same chemical SiOx layers described in §4.4 were tested as 

                                                
4 In other words, these materials eliminate Fermi level pinning form the metal/Si interface, driving the index of interface 

behavior towards SΦ ~1 (Schottky limit). 
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passivation interlayers in Al/LiF (1 nm)/SiOx/n-Si structures, obtaining poor passivation results 

for all cases except for the RCA2 oxide (i-VOC ~600 mV). Moreover, the ohmic character of 

these structures was not ideal (Fig. B.3b), given the different thicknesses and stoichiometries 

obtained for each SiOx oxide (note for example the HNO3-grown oxide, whose high 

stoichiometry acts as a barrier for electron transfer). 

 
Figure B.3 (a) Lifetime measurements and (b) current-voltage response for Al/LiF (1 nm)/SiOx contacts on n-Si. 

 

B.3 V2OxŊH2O (from solution), DBP, CuSCN and MoO3 (ALD) 

 

During the course of this thesis, additional materials and deposition processes were briefly tested 

as hole contacts for n-Si without significant success (based on their proven hole extraction 

capabilities in organic and perovskite solar cells). These materials include5: (1) V2O5⋅1/2H2O 

hydrate films deposited by spin-coating from a vanadate solution (HVO3) [19]; (2) 

bathocuproine (DBP) films deposited by thermal evaporation of a powder source [20]; CuSCN 

films deposited by spin-coating form a propylsulfide solution [21]; and (4) MoO3 thin films 

deposited by ALD from Mo(CO)6 and H2O/O3 precursors at 170 ºC [22]. Table B.2 summarizes 

the partial results obtained, where all the materials showed negligible passivation of the c-Si 

surface (low τeff) and/or poor film stability. For the case of ALD MoO3, finished devices were 

prepared with reasonable JSC (32.8 mA/cm2) and FF (67%) values but very low VOC (400 mV), 

in accordance with other MoO3/c-Si cells prepared by ALD [23]. 

                                                
5 Except for DBP, cited work makes reference to the research group that deposited such materials.  

(a)                                                                           (b) 
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Table B.2 Additional materials tested as hole-contacts for n-Si. τeff was measured in asymmetric samples with a rear 
(i/n+) a-SiCx:H stack. 

 

Material τeff 
µs 

Reason for failure 

V2O5⋅1/2H2O <5 Uneven deposition over Si surface with 0.1%v/v surfactant (pinholes) 
Low passivation 

DBP <5 Low passivation; Degradation at 85 ºC 

CuSCN ~40 Marked film degradation after ITO sputtering 

MoO3 (ALD) <5 Low passivation (low VOC); unstable under air. 

 
B.4 TMO/a-SiCx:H/n-Si contacts 

 

As mentioned in §4.2.2, thin (~4 nm) intrinsic a-SiCx:H interlayers were implemented in 

TMO/a-SiCx:H/n-Si heterojunctions in pursue of additional surface passivation. Nevertheless, 

the overall performance of complete solar cell devices (planar substrates and rear laser-doped 

contacts) was worse than their TMO/n-Si counterparts, as summarized in Fig. B.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.4 Performance parameters for TMO/n-Si solar cells with and without the 4 nm a-SiCx:H interlayer (planar 

substrates, 4 device average). 

 

Efficiency losses were mainly attributed to strong S-shaped J(V)light curves and lower FFs, 

indicating a hole-blocking behavior and possible Fermi level misalignment. Measured JSC s were 
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also slightly lower (due to parasitic absorption of the thin layer) while VOC s were almost 

unchanged (except for the WOx case), in agreement with lifetime measurements of device 

precursors. Given that (i/n+) a-SiCx:H stacks did provide good passivation, it is probable that the 

(i) layer alone was too thin and/or too deficient in hydrogen to effectively passivate the n-Si 

surface. With hopes for a VOC increase, a thermal annealing treatment (160 ºC, N2/H2, 15 min) 

was done but no notable 

improvements were obtained 

(Fig. B.5). In fact, the overall 

effect of the annealing 

treatment was exactly the 

same as the one reported for 

TMO/n-Si devices (see Fig. 

5.9), showing a substantial 

efficiency decrease except 

for the WOx/a-SiCx:H 

samples. From these 

preliminary results, no 

further optimization of the a-

SiCx:H interlayer was carried 

out, but passivation 

improvements cannot be 

fully discarded. 

 

B.5 Electrochromism in TMO materials 

 

An important concern (frequently asked during conference presentations) has to do with 

electrochromism (EC) in transition metal oxides, an undesired phenomenon if intended to be 

used as window-layer materials in solar cells. EC exploits electron and ion mobility within MO6 

crystal structures to modulate the optical properties upon the application of minor voltages (~1 

V), finding numerous applications in smart windows and electrochromic displays, of which WO3 

is a trademark example [24].  

 

Figure B.5 Effect of temperature annealing (160ºC, N2/H2, 15 min) on the 

performance parameters of TMO/a-SiCx:H/n-Si planar devices. 
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To address potential electrochromism in thin TMO films, we must revise a few of its working 

principles [24]. First, even though color and conductivity changes are already noticeable in 

oxygen-deficient oxides (WO3-x), an efficient coloration control requires the intercalation of 

hydrogen or alkali ions (Li, Na, K), forming metal oxide bronzes of the form LixWO3-x. For the 

TMOs under study, absorption bands at 950 (WOx), 820 (MoOx) and 1,120 nm (V2Ox) can be 

expected. Second, noticeable transmittance changes with relevant technological applications 

occur only for film thicknesses above 200-400 nm. Then, thin TMO films (<20 nm) would 

require a radical change in structure (ion intercalation, large oxygen deficiency) to actually affect 

solar cell performance. Finally, and probably the most important point, is the large 

differentiation between EC systems and solar cells, the former involving conductive electrolytes 

and ion reservoirs [24]. Therefore, it can be concluded that electrochromism is not a concern in 

TMO/c-Si devices, at least not as important as other factors (e.g. long-term operational stability 

in outdoor environments). 
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