Thermo-hydro-mechanical impacts of carbon dioxide (CO2) injection in deep saline aquifers.

Author

Vilarrasa Riaño, Víctor

Date of defense

2012-07-20

Legal Deposit

B. 34494-2012

Pages

198 p.



Department/Institute

Universitat Politècnica de Catalunya. Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports de Barcelona

Abstract

Los procesos termo-hidro-mecánicos relacionados con el almacenamiento geológico de carbono deben ser entendidos y cuantificados para demostrar a la opinión pública de que la inyección de dióxido de carbono (CO2) es segura. Esta Tesis tiene como objetivo mejorar dicho conocimiento mediante el desarrollo de métodos para: (1) evaluar la evolución tanto de la geometría de la pluma de CO2 como de la presión de los fluidos; (2) definir un ensayo de campo que permita caracterizar la presión de inyección máxima sostenible y los parámetros hidromecánicos de las rocas sello y almacén; y (3) proponer un nuevo concepto de inyección que es energéticamente eficiente y que mejora la estabilidad de la roca sello en la mayoría de escenarios geológicos debido a efectos termo-mecánicos. modelo viscoplástico. Las simulaciones ilustran que, dependiendo de las condiciones de contorno, el momento más desfavorable ocurre al inicio de la inyección. Sin embargo, si los contornos son poco permeables, la presión de fluido continúa aumentando en todo el acuífero, lo que podría llegar a comprometer la estabilidad de la roca sello a largo plazo. Para evaluar dichos problemas, proponemos un ensayo de caracterización hidromecánica a escala de campo para estimar las propiedades hidromecánicas de las rocas sello y almacén. Obtenemos curvas para la sobrepresión y el desplazamiento vertical en función del término de la deformación volumétrica obtenido del análisis adimensional de las ecuaciones hidromecánicas. Ajustando las medidas de campo a estas curvas se pueden estimar los valores del módulo de Young y el coeficiente de Poisson del acuífero y del sello. Los resultados indican que la microsismicidad inducida tiene más probabilidades de ocurrir en el acuífero que en el sello. El inicio de la microsismicidad en el sello marca la presión de inyección máxima sostenible para asegurar un almacenamiento permanente de CO2 seguro. Finalmente, analizamos la evolución termodinámica del CO2 y la respuesta termohidro- mecánica de las rocas sello y almacén a la inyección de CO2 líquido (frío). Encontramos que inyectar CO2 en estado líquido es energéticamente más eficiente porque al ser más denso que el CO2 supercrítico, requiere menor presión en cabeza de pozo para una presión dad en el acuífero. De hecho, esta presión también es menor en el almacén porque se desplaza un volumen menor de fluido. La disminución de temperatura en el entorno del pozo induce una reducción de tensiones debido a la contracción térmica del medio. Esto puede producir deslizamiento de fracturas existentes en acuíferos formados por rocas rígidas bajo contrastes de temperatura grandes, lo que podría incrementar la inyectividad de la roca almacén. Por otro lado, la estabilidad mecánica de la roca sello mejora cuando la tensión principal máxima es la vertical. Primero, investigamos numérica y analíticamente los efectos de la variabilidad de la densidad y viscosidad del CO2 en la posición de la interfaz entre la fase rica en CO2 y la salmuera de la formación. Introducimos una corrección para tener en cuenta dicha variabilidad en las soluciones analíticas actuales. Encontramos que el error producido en la posición de la interfaz al despreciar la compresibilidad del CO2 es relativamente pequeño cuando dominan las fuerzas viscosas. Sin embargo, puede ser significativo cuando dominan las fuerzas de gravedad, lo que ocurre para tiempos y/o distancias largas de inyección. Segundo, desarrollamos una solución semianalítica para la evolución de la geometría de la pluma de CO2 y la presión de fluido, teniendo en cuenta tanto la compresibilidad del CO2 como los efectos de flotación dentro del pozo. Formulamos el problema en términos de un potencial de CO2 que facilita la solución en capas horizontales, en las que hemos discretizado el acuífero. El CO2 avanza inicialmente por la porción superior del acuífero. Pero a medida que aumenta la presión de CO2, la pluma crece no solo lateralmente, sino también hacia abajo, aunque no tiene porqué llegar a ocupar todo el espesor del acuífero. Tanto la interfaz CO2-salmuera como la presión de fluido muestran una buena comparación con las simulaciones numéricas. En tercer lugar, estudiamos posibles mecanismos de rotura, que podrían llegar a producir fugas de CO2, en un sistema acuífero-sello con simetría radial, utilizando un


Els processos termo-hidro-mecànics relacionats amb l’emmagatzematge geològic de carboni han de ser entesos i quantificats per tal de demostrar a l’opinió pública de que la injecció de diòxid de carboni (CO2) és segura. Aquesta Tesi té com a objectiu millorar aquest coneixement mitjançant el desenvolupament de mètodes per a: (1) avaluar l'evolució tant de la geometria del plomall de CO2 com de la pressió dels fluids; (2) definir un assaig de camp que permeti caracteritzar la pressió d'injecció màxima sostenible i els paràmetres hidromecànics de les roques segell i magatzem; i (3) proposar un nou concepte d'injecció que és energèticament eficient i que millora l'estabilitat de la roca segell en la majoria d’escenaris geològics a causa d'efectes termo-mecànics. Primer, investiguem numèricament i analítica els efectes de la variabilitat de la densitat i viscositat del CO2 en la posició de la interfície entre la fase rica en CO2 i la salmorra de la formació. Introduïm una correcció per tal de tenir en compte aquesta variabilitat en les solucions analítiques actuals. Trobem que l'error produït en la posició de la interfície en menysprear la compressibilitat del CO2 és relativament petit quan dominen les forces viscoses. Malgrat això, l’error pot ser significatiu quan dominen les forces de gravetat, la qual cosa té lloc per a temps i/o distàncies llargues d'injecció. Segon, desenvolupem una solució semianalítica per a l'evolució de la geometria del plomall de CO2 i la pressió de fluid, tenint en compte tant la compressibilitat del CO2 com els efectes de flotació dins del pou. Formulem el problema en termes d'un potencial de CO2 que facilita la solució en capes horitzontals, en les quals hem discretitzat l'aqüífer. El CO2 avança inicialment per la porció superior de l'aqüífer. Però a mesura que augmenta la pressió de CO2, el plomall de CO2 no només creix lateralment, sinó que també ho fa cap avall, encara que no té perquè arribar a ocupar tot el gruix de l'aqüífer. Tant la interfície CO2-salmorra com la pressió de fluid mostren una bona comparació amb les simulacions numèriques. En tercer lloc, estudiem possibles mecanismes de trencament, que podrien arribar a produir fugues de CO2, en un sistema aqüífer-segell amb simetria radial, utilitzant un model viscoplàstic. Les simulacions il·lustren que, depenent de les condicions de contorn, el moment més desfavorable té lloc a l'inici de la injecció. Tot i això, si els contorns són poc permeables, la pressió de fluid continua augmentant en tot l'aqüífer, la qual cosa podria arribar a comprometre l'estabilitat de la roca segell a llarg termini. Per a avaluar aquests problemes, proposem un assaig de caracterització hidromecànica a escala de camp per a estimar les propietats hidromecàniques de les roques segell i magatzem. Obtenim corbes per a la sobrepressió i el desplaçament vertical en funció del terme de la deformació volumètrica obtingut de l'anàlisi adimensional de les equacions hidromecàniques. Ajustant les mesures de camp a aquestes corbes es poden estimar els valors del mòdul de Young i el coeficient de Poisson de l'aqüífer i del segell. Els resultats indiquen que la microsismicitat induïda té més probabilitats d'ocórrer en l'aqüífer que en el segell. L'inici de la microsismicitat en el segell marca la pressió d'injecció màxima sostenible per tal d’assegurar un emmagatzematge permanent de CO2 segur. Finalment, analitzem l'evolució termodinàmica del CO2 i la resposta termo-hidromecànica de les roques segell i magatzem a la injecció de CO2 líquid (fred). Trobem que injectar CO2 en estat líquid és energèticament més eficient perquè al ser més dens que el CO2 supercrític, requereix una pressió menor al cap de pou per a una pressió donada a l’aqüífer. De fet, aquesta pressió també és menor a l’aqüífer perquè es desplaça un volum menor de fluid. La disminució de temperatura a l'entorn del pou indueix una reducció de tensions a causa de la contracció tèrmica del medi. Això pot produir lliscament de fractures existents en aqüífers formats per roques rígides sota contrastos de temperatura grans, la qual cosa podria incrementar la injectivitat de la roca magatzem. D’altra banda, l'estabilitat mecànica de la roca segell millora quan la tensió principal màxima és la vertical.


Coupled thermo-hydro-mechanical (THM) effects related to geologic carbon storage should be understood and quantified in order to convince the public that carbon dioxide (CO2) injection is safe. This Thesis aims to improve such understanding by developing methods to: evaluate the CO2 plume geometry and fluid pressure evolution; define a field test to characterize the maximum sustainable injection pressure and the hydromechanical (HM) properties of the aquifer and the caprock; and propose an energy efficient injection concept that improves the caprock mechanical stability in most geological settings due to thermo-mechanical effects. First, we investigate numerically and analytically the effect of CO2 density and viscosity variability on the position of the interface between the CO2-rich phase and the formation brine. We introduce a correction to account for this variability in current analytical solutions. We find that the error in the interface position caused by neglecting CO2 compressibility is relatively small when viscous forces dominate. However, it can become significant when gravity forces dominate, which is likely to occur at late times and/or far from the injection well. Second, we develop a semianalytical solution for the CO2 plume geometry and fluid pressure evolution, accounting for CO2 compressibility and buoyancy effects in the injection well. We formulate the problem in terms of a CO2 potential that facilitates solution in horizontal layers, in which we discretize the aquifer. We find that when a prescribed CO2 mass flow rate is injected, CO2 advances initially through the top portion of the aquifer. As CO2 pressure builds up, CO2 advances not only laterally, but also vertically downwards. However, the CO2 plume does not necessarily occupy the whole thickness of the aquifer. Both CO2 plume position and fluid pressure compare well with numerical simulations. Third, we study potential failure mechanisms, which could lead to CO2 leakage, in an axysimmetric horizontal aquifercaprock system, using a viscoplastic approach. Simulations illustrate that, depending on boundary conditions, the least favorable situation may occur at the beginning of injection. However, in the presence of low-permeability boundaries, fluid pressure continues to rise in the whole aquifer, which may compromise the caprock integrity in the long-term. Next, we propose a HM characterization test to estimate the HM properties of the aquifer and caprock at the field scale. We obtain curves for overpressure and vertical displacement as a function of the volumetric strain term obtained from a dimensional analysis of the HM equations. We can then estimate the values of the Young¿s modulus and the Poisson ratio of the aquifer and the caprock by introducing field measurements in these plots. Results indicate that induced microseismicity is more likely to occur in the aquifer than in the caprock. The onset of microseismicity in the caprock can be used to define the maximum sustainable injection pressure to ensure a safe permanent CO2 storage. Finally, we analyze the thermodynamic evolution of CO2 and the THM response of the formation and the caprock to liquid (cold) CO2 injection. We find that injecting CO2 in liquid state is energetically more efficient than in supercritical state because liquid CO2 is denser than supercritical CO2. Thus, the pressure required at the wellhead is much lower for liquid than for gas or supercritical injection. In fact, the overpressure required at the aquifer is also smaller because a smaller fluid volume is displaced. The temperature decrease close to the injection well induces a stress reduction due to thermal contraction of the media. This can lead to shear slip of pre-existing fractures in the aquifer for large temperature contrasts in stiff rocks, which could enhance injectivity. In contrast, the mechanical stability of the caprock is improved in stress regimes where the maximum principal stress is the vertical.

Subjects

624 - Civil and structural engineering in general

Documents

TVVR1de1.pdf

5.243Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/

This item appears in the following Collection(s)