Spain is the fifth-largest producer of melon (Cucumis melo L.) and the second exporter in the world. To a national level, Castilla-La Mancha emphasize and, specifically, Ciudad Real, where is cultivated 27% of national area dedicated to this crop and 30% of melon national production. Melon crop is cultivating majority in Ciudad Real and it is mainly located in the Alto Guadiana, where the major aquifers of the region are located, the aquifer 23 or Mancha Occidental and the aquifer 24 or Campo de Montiel, both declared overexploited and vulnerable zones to nitrate pollution from agricultural sources. The problem is exacerbated because in this area, groundwater is the basic resource of supply to populations, and even often the only one. Given the importance of melon in the area, recent research has focused on the irrigation of melon crop. Unfortunately, scant information has been forthcoming on the effect of N fertilizer on melon piel de sapo crop, so it is very important to tackle in a serious study that lead to know the N requirements on the melon crop melon by reducing the risks of contamination by nitrate leaching without affecting productivity and crop quality. In fact, the recommended dose is often subjective and practice is a N overdose. In this situation, the taking of urgent measures to optimize the use of N fertilization is required. To do it, the effect of N in a melon crop, fertirrigated and on plastic mulch, was studied. The treatments consisted in different rates of N supply, considering N fertilizer and N content in irrigation water, so the treatment applied were: 30 (N30), 85 (N85), 112 (N112) and 139 (N139) Kg N ha-1 in 2005; 93 (N93), 243 (N243) and 393 (N393) kg ha-1 in 2006; and 11 (N11), 61 (N61), 95 (N95) and 148 (N148) kg ha-1 in 2007. A randomized complete-block design was used and each treatment was replicated four times. The results showed a significant effect of N on dry biomass and two patterns of growth were observed. On the one hand, a gradual increase in vegetative biomass of the plant, leaves and stem, with increasing N, and on the other hand, an increase of fruit biomass also with increasing N up to a maximum of biomass corresponding to the optimal dose determined in 90 kg ha-1 of N applied, corresponding to 160 kg ha-1 of N available for melon crop, since this optimum dose, the fruit biomass suffers a decline. A significant effect was observed in concentration and N uptake in leaf, steam, fruit and whole plant, increasing in all of them with increasing of N doses. Fast N uptake occurred from 30-35 to 70-80 days after transplanting, coinciding with the fruit development. The N had a clear influence on the melon yield, its components, skin thickness and flesh ratio. The melon yield increased, as the mean fruit weight and number of fruits per m2 with increasing N until achieve an above 95% of the maximum yield when the N applied is 90 kg ha-1 or 160 kg ha-1 of N available. When N exceeds the optimal amount, there is a decline in yield, reducing the mean fruit weight and number of fruits per square meter, and was also observed a decrease in fruit quality by increasing the skin thickness and decrease the flesh ratio, which means an increase in fruit hollowed with excessive N doses. There was a trend for all indexes of N use efficiency (NUE) to decline with increasing N rate. We observed two different behaviours in the calculation result of the NUE; on the one hand, all the efficiency indexes calculated with N applied and N available had an exponential trend, and on the other hand, all the efficiency indexes calculated with N uptake has a linear trend. The linear regression cuts the exponential curve, delimiting a range within which lies the optimum quantity of N. The N leaching as nitrates increased exponentially with the amount of N. The increase of N doses was affected on the N mineralization. There was a negative exponential effect of N available on the mineralization of this element that occurs in the soil during the growing season, calculated from the balances of this element. The study of N leaching for each N rate used, allowed to us to establish several environmental indices related to environmental risk that causes the use of such doses, a simple way for them to be included in the code of Best Management Practices.