Generative manifold learning for the exploration of partially labeled data

Autor/a

Cruz Barbosa, Raúl

Director/a

Vellido, Alfredo

Fecha de defensa

2009-10-01

Depósito Legal

B. 15947-2012

Páginas

148 p.



Departamento/Instituto

Universitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics

Resumen

In many real-world application problems, the availability of data labels for supervised learning is rather limited. Incompletely labeled datasets are common in many of the databases generated in some of the currently most active areas of research. It is often the case that a limited number of labeled cases is accompanied by a larger number of unlabeled ones. This is the setting for semi-supervised learning, in which unsupervised approaches assist the supervised problem and vice versa. A manifold learning model, namely Generative Topographic Mapping (GTM), is the basis of the methods developed in this thesis. The non-linearity of the mapping that GTM generates makes it prone to trustworthiness and continuity errors that would reduce the faithfulness of the data representation, especially for datasets of convoluted geometry. In this thesis, a variant of GTM that uses a graph approximation to the geodesic metric is first defined. This model is capable of representing data of convoluted geometries. The standard GTM is here modified to prioritize neighbourhood relationships along the generated manifold. This is accomplished by penalizing the possible divergences between the Euclidean distances from the data points to the model prototypes and the corresponding geodesic distances along the manifold. The resulting Geodesic GTM (Geo-GTM) model is shown to improve the continuity and trustworthiness of the representation generated by the model, as well as to behave robustly in the presence of noise. The thesis then leads towards the definition and development of semi-supervised versions of GTM for partially-labeled data exploration. As a first step in this direction, a two-stage clustering procedure that uses class information is presented. A class information-enriched variant of GTM, namely class-GTM, yields a first cluster description of the data. The number of clusters defined by GTM is usually large for visualization purposes and does not necessarily correspond to the overall class structure. Consequently, in a second stage, clusters are agglomerated using the K-means algorithm with different novel initialization strategies that benefit from the probabilistic definition of GTM. We evaluate if the use of class information influences cluster-wise class separability. A robust variant of GTM that detects outliers while effectively minimizing their negative impact in the clustering process is also assessed in this context. We then proceed to the definition of a novel semi-supervised model, SS-Geo-GTM, that extends Geo-GTM to deal with semi-supervised problems. In SS-Geo-GTM, the model prototypes are linked by the nearest neighbour to the data manifold constructed by Geo-GTM. The resulting proximity graph is used as the basis for a class label propagation algorithm. The performance of SS-Geo-GTM is experimentally assessed, comparing positively with that of an Euclidean distance-based counterpart and that of the alternative Laplacian Eigenmaps method. Finally, the developed models (the two-stage clustering procedure and the semi-supervised models) are applied to the analysis of a human brain tumour dataset (obtained by Nuclear Magnetic Resonance Spectroscopy), where the tasks are, in turn, data clustering and survival prognostic modeling.


Resum de la tesi (màxim 4000 caràcters. Si se supera aquest límit, el resum es tallarà automàticament al caràcter 4000) En muchos problemas de aplicación del mundo real, la disponibilidad de etiquetas de datos para aprendizaje supervisado es bastante limitada. La existencia de conjuntos de datos etiquetados de manera incompleta es común en muchas de las bases de datos generadas en algunas de las áreas de investigación actualmente más activas. Es frecuente que un número limitado de casos etiquetados venga acompañado de un número mucho mayor de datos no etiquetados. Éste es el contexto en el que opera el aprendizaje semi-supervisado, en el cual enfoques no-supervisados prestan ayuda a problemas supervisados y vice versa. Un modelo de aprendizaje de variaciones (manifold learning, en inglés), llamado Mapeo Topográfico Generativo (GTM, en acrónimo de su nombre en inglés), es la base de los métodos desarrollados en esta tesis. La no-linealidad del mapeo que GTM genera hace que éste sea propenso a errores de fiabilidad y continuidad, los cuales pueden reducir la fidelidad de la representación de los datos, especialmente para conjuntos de datos de geometría intrincada. En esta tesis, una extensión de GTM que utiliza una aproximación vía grafos a la métrica geodésica es definida en primer lugar. Este modelo es capaz de representar datos con geometrías intrincadas. En él, el GTM estándar es modificado para priorizar relaciones de vecindad a lo largo de la variación generada. Esto se logra penalizando las divergencias existentes entre las distancias Euclideanas de los datos a los prototipos del modelo y las correspondientes distancias geodésicas a lo largo de la variación. Se muestra que el modelo Geo-GTM resultante mejora la continuidad y fiabilidad de la representación generada y que se comporta de manera robusta en presencia de ruido. Más adelante, la tesis nos lleva a la definición y desarrollo de versiones semi-supervisadas de GTM para la exploración de conjuntos de datos parcialmente etiquetados. Como un primer paso en esta dirección, se presenta un procedimiento de agrupamiento en dos etapas que utiliza información de pertenencia a clase. Una extensión de GTM enriquecida con información de pertenencia a clase, llamada class-GTM, produce una primera descripción de grupos de los datos. El número de grupos definidos por GTM es normalmente grande para propósitos de visualización y no corresponde necesariamente con la estructura de clases global. Por ello, en una segunda etapa, los grupos son aglomerados usando el algoritmo K-means con diferentes estrategias de inicialización novedosas las cuales se benefician de la definición probabilística de GTM. Evaluamos si el uso de información de clase influye en la separabilidad de clase por grupos. Una extensión robusta de GTM que detecta datos atípicos a un tiempo que minimiza de forma efectiva su impacto negativo en el proceso de agrupamiento es evaluada también en este contexto. Se procede después a la definición de un nuevo modelo semi-supervisado, SS-Geo-GTM, que extiende Geo-GTM para ocuparse de problemas semi-supervisados. En SS-Geo-GTM, los prototipos del modelo son vinculados al vecino más cercano a la variación construída por Geo-GTM. El grafo de proximidad resultante es utilizado como base para un algoritmo de propagación de etiquetas de clase. El rendimiento de SS-Geo-GTM es valorado experimentalmente, comparando positivamente tanto con la contraparte de este modelo basada en la distancia Euclideana como con el método alternativo Laplacian Eigenmaps. Finalmente, los modelos desarrollados (el procedimiento de agrupamiento en dos etapas y los modelos semi-supervisados) son aplicados al análisis de un conjunto de datos de tumores cerebrales humanos (obtenidos mediante Espectroscopia de Resonancia Magnética Nuclear), donde las tareas a realizar son el agrupamiento de datos y el modelado de pronóstico de supervivencia.

Palabras clave

Semi-supervised learning; Generative topographic mapping; Geodesic distance; Manifold learning; Clustering; Visualitzation; Classification

Materias

004 - Informática

Documentos

TRCB1de1.pdf

1.986Mb

 

Derechos

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

Este ítem aparece en la(s) siguiente(s) colección(ones)