Analysis and architectural support for parallel stateful packet processing

Author

Verdú Mulà, Javier

Director

Nemirovsky, Mario

Codirector

Valero Cortés, Mateo

Date of defense

2008-07-09

ISBN

9788469404386

Legal Deposit

B.11728-2011



Department/Institute

Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors

Abstract

The evolution of network services is closely related to the network technology trend. Originally network nodes forwarded packets from a source to a destination in the network by executing lightweight packet processing, or even negligible workloads. As links provide more complex services, packet processing demands the execution of more computational intensive applications. Complex network applications deal with both packet header and payload (i.e. packet contents) to provide upper layer network services, such as enhanced security, system utilization policies, and video on demand management.<br/>Applications that provide complex network services arise two key capabilities that differ from the low layer network applications: a) deep packet inspection examines the packet payload tipically searching for a matching string or regular expression, and b) stateful processing keeps track information of previous packet processing, unlike other applications that don't keep any data about other packet processing. In most cases, deep packet inspection also integrates stateful processing.<br/>Computer architecture researches aim to maximize the system throughput to sustain the required network processing performance as well as other demands, such as memory and I/O bandwidth. In fact, there are different processor architectures depending on the sharing degree of hardware resources among streams (i.e. hardware context). Multicore architectures present multiple processing engines within a single chip that share cache levels of memory hierarchy and interconnection network. Multithreaded architectures integrates multiple streams in a single processing engine sharing functional units, register file, fecth unit, and inner levels of cache hierarchy. Scalable multicore multithreaded architectures emerge as a solution to overcome the requirements of high throughput systems. We call massively multithreaded architectures to the architectures that comprise tens to hundreds of streams distributed across multiple cores on a chip. Nevertheless, the efficient utilization of these architectures depends on the application characteristics. On one hand, emerging network applications show large computational workloads with significant variations in the packet processing behavior. Then, it is important to analyze the behavior of each packet processing to optimally assign packets to threads (i.e. software context) for reducing any negative interaction among them. On the other hand, network applications present Packet Level Parallelism (PLP) in which several packets can be processed in parallel. As in other paradigms, dependencies among packets limit the amount of PLP. Lower network layer applications show negligible packet dependencies. In contrast, complex upper network applications show dependencies among packets leading to reduce the amount of PLP.<br/>In this thesis, we address the limitations of parallelism in stateful network applications to maximize the throughput of advanced network devices. This dissertation comprises three complementary sets of contributions focused on: network analysis, workload characterization and architectural proposal.<br/>The network analysis evaluates the impact of network traffic on stateful network applications. We specially study the impact of network traffic aggregation on memory hierarchy performance. We categorize and characterize network applications according to their data management. The results point out that stateful processing presents reduced instruction level parallelism and high rate of long latency memory accesses. Our analysis reveal that stateful applications expose a variety of levels of parallelism related to stateful data categories. Thus, we propose the MultiLayer Processing (MLP) as an execution model to exploit multiple levels of parallelism. The MLP is a thread migration based mechanism that increases the sinergy among streams in the memory hierarchy and alleviates the contention in critical sections of parallel stateful workloads.

Keywords

network processing; massively multithreaded architectures; network processors; stateful; packet processing; deep packet inspection

Subjects

004 - Computer science and technology. Computing. Data processing

Documents

TJVM1de1.pdf

1.246Mb

 

Rights

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)