Advancing induced pluripotent stem cell (iPSC) technology by assessing genetic instability and immune response

Author

Requena Osete, Jordi

Director

Edel, Michael John

Tutor

Canals i Coll, Josep M.

Date of defense

2017-09-08

Pages

227 p.



Department/Institute

Universitat de Barcelona. Facultat de Farmàcia i Ciències de l'Alimentació

Abstract

Induced pluripotent stem cells (iPSC) can be made from adult somatic cells by reprogramming them with Oct4, Sox2, Klf4 and c-Myc. IPSC have given rise to a new technology to study and treat human disease (Takahashi et al., 2007). However, before iPSC clinical application, we need to step back and address two main challenges: (i) Genetic stability of iPSC. (ii) Immune response of iPSC-derived cells. To address these key issues, the overall mission of this PhD thesis is to advance iPSC technology by addressing two objectives. First, is to replace c-Myc with Cyclin D1 in the reprogramming cocktail (Oct4, Sox2, Klf4 and c-Myc or Cyclin D1) and second, to study the immune response of iPSC-derived cells. The quality of the starting iPSC determines the quality of the differentiated cells to be transplanted for clinical applications. In terms of genetic stability, aberrant cell reprogramming leads to genetic and epigenetic modifications that are the most significant barriers to clinical applications of patient iPSC derivatives (Gore et al., 2011). Such aberrations can result from the cellular stress that accompanies reprogramming or from the reprogramming factors themselves (Lee et al., 2012a). IPSC made with c-Myc are neoplastic in mouse models and have a higher tumorigenic potential than embryonic stem cells, prompting a search for new pluripotency factors that can replace the oncogenic factors Klf4 and c-Myc (Huangfu et al., 2008; Miura et al., 2009; Okita et al., 2007). We chose Cyclin D1 to replace c-Myc because of previous observation it can be used to reprogram cells to iPSC (Edel et al., 2010) and because of its DNA repair function (Chalermrujinanant et al., 2016). In this thesis we adopt a synthetic mRNA method to demonstrate that Cyclin D1 and c-Myc made iPSC have equal pluripotency using standard methods of characterisation. Moreover, no significant changes in copy number variation were found between starting skin cells and iPSC highlighting it is the method of choice for generating high quality iPSC. Further in- depth analysis revealed that Cyclin D1 made iPSC have reduced genetic instability assessed by: (i) reduced DNA double strand breaks (DSB), (ii) higher nuclear amount of the homologous recombination key protein Rad51, (iii) reduced multitelomeric signals (MTS) and (iv) reduced teratoma growth kinetics in vivo, compared to c-Myc made iPSC. Moreover, we demonstrate that Cyclin D1 iPSC derived neural stem cells engraft successfully, survive long term and differentiate into mature neuron cell types with high efficiency, with no evidence of pathology in a spinal cord injury rat model. As we move towards the clinic with iPSC-derived cells for cell transplantation, the immunogenic response is thought to be one of the main advantages of iPSC technology for clinical application, because of its perceived lack of immune rejection of autologous cell therapy. We hypothesize that iPSC derived cells are unlikely to provoke an immune response. Here we have performed an analysis of the innate and adaptive immune response of human skin cells (termed F1) reprogramed to iPSC and then compared to iPSC-derived cells (termed F2) using proteomic and methylome arrays. We found little differences between MHCI expression and function; however, we discovered a short isoform of the Toll-like receptor 3 (TLR3), essential for viral dsRNA innate immune recognition, which is predominantly upregulated in all iPSC derived cells analysed and not seen in normal endogenous cells. High levels of the TLR3 isoform is associated with unresponsiveness to viral stimulation measured by lack of IL6 secretion in iPSC derived neural stem cells. We propose a new model that TLR3 short isoform competes with the full length wild type isoform destabilizing the essentially required TLR3 dimerization process. These differences could result in supressed inflammatory effects for transplanted human iPSC-derived cells in response to viral or bacterial insult. Further work to determine the in vivo effects is warranted and calls for screening of iPSC lines for TLR3 isoform expression levels before clinical use. In conclusion, this thesis has advanced iPSC technology by defining a new method that is a significant advance with novel insights that has immediate impact on current methods to generate iPSC for clinical application and more accurate disease modelling.


Les cèl·lules mare pluripotents induïdes (iPSC) es poden derivar de cèl·lules somàtiques adultes mitjançant la reprogramació amb Oct4, Sox2, Klf4 i c-Myc. Les iPSC han donat lloc a una nova tecnologia per estudiar i tractar malalties humanes (Takahashi et al., 2007). No obstant, abans de la aplicació clínica de les iPSC, dos problemes principals han de ser adreçats: (i) Estabilitat genètica de les iPSC. (ii) Resposta immune de les cèl·lules derivades de iPSC. Per adreçar aquests dos qüestions cabdals, la missió principal d’aquest doctorat és avançar la tecnologia de les iPSC adreçant dos objectius. El primer, és la substitució de c-Myc per Ciclina D1 al còctel de reprogramació (Oct4, Sox2, Klf4 and c-Myc o Ciclina D1) i segon, estudiar la resposta immune de les cèl·lules derivades de iPSC. Hem escollit Ciclina D1 per substituir c-Myc atès a observacions prèvies que pot ser emprat per reprogramar (Edel et al., 2010) i donada la seva funció en reparació de l’ADN (Chalermrujinanant et al., 2016). Les iPSC reprogramades amb Ciclina D1 presenten una pluripotència similar a les reprogramades amb c-Myc, l’anàlisi en profunditat mostra però, que les iPSC reprogramades amb Cyclin D1 tenen una reduïda inestabilitat genètica adreçada per: (i) reducció en ruptures de doble cadena de DNA, (ii) major quantitat nuclear de la proteïna clau en la recombinació homòloga Rad51, (iii) reducció en senyals multitelomèriques (MTS) i (iv) reducció en la cinètica de creixement de teratomes in vivo, en comparació amb iPSC reprogramades amb c-Myc. A més a més, demostrem que les cèl·lules mare neuronals derivades d’aquestes iPSC son capaces de implantar-se exitosament, sobreviure a llarg termini i diferenciar a neurones madures sense evidències de patologia en un model de dany medul·lar. També hem realitzat un anàlisi del sistema immune innat i adaptatiu de cèl·lules humanes de la pell (nomenades F1) reprogramades a iPSC i comparades amb cèl·lules derivades de iPSC (nomenades F2). Hem descobert una isoforma curta del Toll-Like Receptor 3 (TLR3), essencial en el reconeixement de RNA de doble cadena d’origen víric, que està predominantment sobreexpresada en totes les cèl·lules derivades de iPSC analitzades i no trobat en cèl·lules endògenes. Nosaltres proposem un nou model per el qual la isoforma curta del TLR3 competeix amb la isoforma llarga wild type desestabilitzant el procés essencial de dimerització del TLR3.

Keywords

Cèl·lules mare; Células madre; Stem cells; Ciències de la salut; Ciencias biomédicas; Medical sciences; Genètica humana; Genética humana; Human genetics; Resposta immunitària; Respuesta inmune; Immune response

Subjects

577 - Material bases of life. Biochemistry. Molecular biology. Biophysics

Knowledge Area

Ciències de la Salut

Documents

JRO_PhD_THESIS.pdf

5.316Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc/4.0/

This item appears in the following Collection(s)