Processes affecting the efficiency of limestone, aragonite and dolostone in passive treatments for AMD

Author

Offeddu, Francesco G.

Director

Cama i Robert, Jordi

Date of defense

2015-10-30

Pages

140 p.



Department/Institute

Universitat Politècnica de Catalunya. Departament d'Enginyeria del Terreny, Cartogràfica i Geofísica

Abstract

Waters from mines (acid mine drainage-AMD), contain elevated concentrations of SO-24, Fe and other contaminant metals, which can persist in the environment during centuries. The purpose of AMD treatments is to retain metals and to neutralize the acidity. One of the employed treatment systems is the anoxic limestone drainage (ALD), characterized by low maintenance and cost. The efficiency of the ALD is however limited by secondary mineral precipitation (ppt) causing the passivation (pass) of the limestone grains and the pores clogging. The presence of aqueous sulfate leads to gypsum (gyp) ppt, which contributes to pass and affects the ALD¿s efficiency. This PhD study is focused on the loss of reactivity of calcite (cal), aragonite (ar) and dolomite (dol) due to grain coating or clogging of porosity. To this end, three types of experiments were conducted: column, batch and in-situ AFM experiments. Columns experiments were carried out injecting synthetic acidic solutions (sulfate with Fe(III) or Al pH 2-3, H2SO4) at constant flow (6x10-4 and 1x10-3 L m-2 s-1) in the columns packed with cal, ar or dol grains. The columns worked efficiently removing aqueous metals as long as cal dissolved and buffered the solution pH. However, Ca released from dissolving cal and the sulfate in solution, promoted gyp ppt on the cal surfaces preventing his dissolution (diss). This pass process limited the efficiency of the columns. Larger input sulfate concentrations or higher pH led to shorter pass times. Observations with X-ray microtomography and X-ray microdiffraction showed the coating of gyp on the cal and secondary oxyhydroxides between the grains. This favored the formation of preferential flow paths, isolating regions of non-reacted grains. An improved experimental design (mixing limestone grains and glass beads) minimized the formation of these preferential flow paths. Experimental results have been modeled with the CrunchFlow reactive transport code. Fitting of the results required a decrease in the reactive surface area of cal, which is consistent with the pass process. Batch experiments (pH 2 H2SO4 solution equilibrated with respect to CaSO4¿2H2O) were performed to study the coupled reactions of diss of cal, ar and dol and ppt of gyp. The three carbonate minerals acted as carbonate substrates on which gyp grew. Along the experiments three stages were distinguished: gyp ppt induction time, diss of the carbonate substrate coupled with gyp ppt, and achievement of equilibrium with respect to the carbonate mineral. The induction time was similar during diss of cal and ar (same diss rate). During diss of the carbonate minerals the pH raised from 2 to ~7, decreasing the carbonate mineral diss rate and stopping the gyp ppt as equilibrium with respect to CaCO3 was approached. The gyp ppt rates were similar when cal and ar dissolved, regardless the morphology of substrate. In-situ atomic force microscopy (AFM) experiments were performed to study the cal and dol diss and gyp ppt in Na2SO4 and CaSO4 solutions (pH 2-6). The carbonate diss took place at the (104) cleavage surfaces in sulfate-rich solutions undersaturated with respect to gyp, by the formation of characteristic rhombohedral-shaped etch pits. Rounding of the etch pit corners was observed as solutions approached close-to-equilibrium conditions with respect to cal. The calculated diss rates of cal at pH 4.8 and 5.6 agreed with the values reported in the literature. When using solutions previously equilibrated with respect to gyp, gyp ppt coupled with cal diss showed short gyp nucleation induction times. The gyp precipitate quickly coated the cal surface, forming arrow-like forms parallel to the crystallographic orientations of the cal etch pits. Gyp ppt coupled with dol diss was slower than that of cal, indicating the diss rate to be the rate-controlling step. The resulting gyp coating partially covered the surface during the experimental duration of a few hours.


Las aguas que proceden de minas (en ingles acid mine drainage-AMD) contienen altas concentraciones de SO4 y metales contaminantes que pueden perdurar siglos en el medio ambiente. El objetivo de los tratamientos de AMD es retener los metales y neutralizar la acidez de las AMD. Uno de los sistemas de tratamiento usado, es el drenaje anóxico a través de caliza (clz) (en inglés anoxic limestone drainage, ALD) que necesita escaso mantenimiento y bajo presupuesto. La eficiencia de los ALD está limitada por la precipitación (ppt) de minerales secundarios (yeso e Me-hydroxidos) que causa el recubrimiento de los granos de clz (pasivación, pass) y la colmatación de los poros reduciendo la reactividad de la clz y su poder tampón. Esta tesis esta enfocada en los procesos que afectan a los minerales carbonatos usados en el ALD y en la pérdida de reactividad de la calcita (cal), aragonita (arag) y dolomita (dol) debido a la pass. Con este fin se llevaron a cabo tres tipos de experimentos (25 °C, 1 atm): de columna, batch e in situ con microscopio de fuerza atómica (AFM). Experimentos de columnas: Se inyectaron soluciones ácidas sintéticas (pH2) ricas en Fe (III) o Al con flujo constante de 6x10-4 o 1x10-3 L m-2 s-1 en columnas rellenadas con granos de cal, arag o dol. Las columnas han retenido los metales durante la disolución (diss) de los carbonatos, aumentado el pH e promoviendo la ppt (ppt) de oxihidróxidos de los metales. El Ca liberado durante la diss, junto con el sulfato, ha precipitado como yeso causando el recubrimiento de la superficie de los granos. El recubrimiento impide la diss de los carbonatos y limita la eficiencia de las columnas. Altas concentraciones de sulfato y pH más ácidos produjeron tiempos de pass más rápidos. Mediante micro-tomografía de rayos X (mCT) y micro-difracción de rayos X (mXRD), se mostró que el recubrimiento de los granos de carbonatos se debe a la ppt de yeso y que los oxihidróxidos precipitan entre los granos, la cual cosa favoreció la formación de flujos preferenciales, aislando regiones donde no se producen reacciones entre solución circulante y granos. El flujo preferencial se ha visto reducido cuando se han mezclado los carbonatos con esferas de vidrio. Los resultados experimentales se han modelado con el código CrunchFlow ajustando el valor de del área reactiva de la cal en el modelo con los datos experimentales, corroborando el proceso de pass en los experimentos. Se realizaron experimentos de tipo batch para estudiar la diss de cal, dol y arag (granulometria: 100-300 mm;1-2 mm, y 1.5 x 1.2 x 0.5 cm) y la ppt de yeso sobre la superficie de los carbonatos y a pH 2 (solución de H2SO4 equilibrada respecto al CaSO4¿2H2O). A lo largo de los experimentos se han distinguido tres fases: tiempo de inducción para la nucleación del yeso; fase de diss de los carbonatos con la simultánea ppt de yeso; equilibrio alcanzado entre la solución y el mineral carbonatado. Durante la diss de carbonatos, el pH subió de 2 a ~7, ralentizando la cinética de diss y la velocidad de ppt de yeso hasta llegar a cero una vez alcanzado el equilibrio con CaCO3. Además resultó que independientemente del sustrato la velocidad de ppt del yeso fue similar. Los experimentos in situ AFM se realizaron con soluciones de Na2SO4 y CaSO4 y pH entre 2-6 para estudiar el proceso acoplado de la diss de cal o dol con la ppt de yeso. La diss de los carbonatos tuvo lugar en las superficies de exfoliación (104). Se han observado distintas formas de diss (etch pits), con estructura típica romboédrica y el redondeo de los bordes de los etch pits conforme se aproximaban a condiciones de equilibrio con respecto a la cal. El yeso precipitado recubrió rápidamente la superficie de la cal, con morfología de flecha y ejes paralelos a las orientaciones cristalográficas de los etch pits de la cal. La ppt del yeso en el caso de la diss de dol fue más lento y parcial, lo que indica que la velocidad de diss controla la velocidad de las reacciones.


Les aigües que procedeixen de l'activitat minera, conegudes com aigües àcides de mina (en anglès acid mine drainage, AMD) contenen normalment altes concentracions de sulfat, ferro i altres metalls contaminants associats. Aquests contaminants poden perdurar en el medi ambient fins a segles després del cessament de l'activitat minera. Els principals objectius dels tractaments AMD són la retenció de metalls (precipitació dels metalls contaminants) i la neutralització de l'acidesa de les aigües. Un dels possibles sistemes de tractament passiu, i dels més utilitzats, és el drenatge anòxic amb calcària (en anglès, anoxic limestone drainage, ALD), o sistemes derivats (per exemple, la reducció i els sistemes de producció d'alcalinitat), que es caracteritzen pel poc manteniment requerit i el baix cost. No obstant, l'eficiència dels sistemes d'ALD està limitada per la precipitació de minerals secundaris que causa la passivació (recobriment) dels grans de calcària i l'obstrucció dels porus entre ells, reduint així la reactivitat de la calcària i, per tant, el poder tampó. La presència de sulfat aquós indueix la precipitació de guix, que contribueix en gran mesura a la passivació de la calcària i afecta l'eficiència dels sistemes de tractament. Aquesta Tesi té com a objectiu principal millorar els nostres coneixements sobre el funcionament de minerals carbonats utilitzats en ALD i la pèrdua de la reactivitat de la calcita, aragonita i dolomita a causa del recobriment dels grans o l'obstrucció dels porus entre grans. Amb aquesta finalitat, es s’han dut a terme tres tipus d'experiments: (1) experiments de columna, (2) de tipus batch i (3) experiments in situ amb AFM. (1) Els experiments de columnes emplenades amb grans de calcita, aragonita o dolomita (de diàmetre 1-2 mm) es van realitzar per estudiar el comportament dels sistemes de tractament passiu emprats en el drenatge àcid de mines (AMD). Es van injectar solucions àcides sintètiques (principalment a pH2, H2SO4) rica en ferro (Fe (III)) o alumini. Durant els experiments, el flux de la solució d'entrada es va mantenir constant a la velocitat de Darcy de 6x10-4 a 1x10-3 L m-2 s-1. Les columnes han eliminat eficientment el ferro i l’alumini aquosos mentre que la dissolució dels carbonats ha tamponat el pH de la solució (augment del pH i inducció de la precipitació d’oxihidróxids de Fe (III) - o d'Al). No obstant, el Ca alliberat en solució pels minerals carbonats, juntament amb el sulfat aquós, va induir la precipitació de guix, que és la principal causa de recobriment (passivació) a les superfícies dels grans. Aquest recobriment ha impedit conseqüentment la dissolució de calcita limitant l'eficiència de les columnes. Concentracions més altes del sulfat d'entrada i pH més àcids van originar temps de passivació més ràpids. La caracterització de l'estructura dels porus i de la composició química dels sòlids mitjanament la per micro-tomografia de raigs X (MCT) i micro-difracció de raigs X (mXRD), va mostrar que el recobriment dels grans de carbonats és degut a la precipitació de guix i que els oxihidróxids secundaris tendeixen a precipitar entre els grans. La precipitació de minerals secundaris va afavorir la formació de fluxos preferents, aïllant regions on no es produeixen reaccions entre la solució circulant i els grans. L'efecte de la formació del flux preferent s'ha reduït utilitzant un disseny diferent a les columnes (barrejant els grans de carbonats amb esferes de vidre inerts). Els resultats experimentals s'han modelitzat amb el codi de transport reactiu CrunchFlow. Per tal que les dades experimentals i les del model coincidissin s'ha ajustat al valor de l'àrea reactiva de la calcita en el model, consistentment amb el procés de passivació en els experiments. (2) Es van dur a terme experiments de tipus batch a 25 ° C, pressió atmosfèrica i pH 2 (solució de H2SO4 equilibrada respecte al CaSO4 • 2H2O) per estudiar les reaccions de dissolució de la calcita i aragonita acoblades a la precipitació de guix. Es van utilitzar tres tipus de mostra sòlida (pols (100-300 μm), grans (1-2 mm) i fragments (1.5 x 1.2 x 0.5 cm)) que van actuar com a substrats de mineral carbonat en què va créixer el guix. Al llarg dels experiments s'han distingit tres fases: temps d'inducció de la precipitació del guix, dissolució del substrat de mineral carbonat, juntament amb la precipitació de guix, i l'assoliment de l'equilibri de la solució respecte el mineral carbonat. El temps d'inducció va ser similar durant la dissolució de calcita i aragonita, ja que tots dos minerals dissolen amb la mateixa velocitat de dissolució. Durant la dissolució de minerals carbonats, el pH va pujar de 2 a aproximadament 7, alentint tant la velocitat de dissolució dels carbonats com la taxa de precipitació de guix per arribar a zero un cop assolit l'equilibri amb CaCO3 (calcita o aragonita) va ser aconseguit. La velocitat de precipitació del guix va ser similar independentment del substrat (calcita o aragonita), tot i la morfologia del mateix substrat. 3) Es van realitzar experiments in-situ amb el microscopi de força atòmica (AFM) per estudiar el procés global de la dissolució de calcita i dolomita i la precipitació de guix en solucions Na2SO4 i CaSO4 amb valors de pH entre 2 i 6 i temperatura ambient (23 ± 1 ° C). La dissolució dels minerals carbonats va tenir lloc a les superfícies de clivatge (104) usant solucions riques en sulfat i subsaturades respecte al guix. Es va observar la formació de forats de dissolució (etch pits) amb les típiques formes romboèdriques. També s’observa l'arrodoniment de les vores dels etch pits quan les solucions s’acostaven a a les vores l'equilibri respecte de la calcita. Les velocitats de dissolució de la calcita calculades a pH 4.8 i 5.6 va coincidir amb els valors de la literatura. En solucions prèviament equilibrades amb el guix, la precipitació de guix acoblada a la dissolució de calcita s’aconseguí amb temps d'inducció més curts. El guix precipitat va recobrir ràpidament la superfície de la calcita, amb morfologia de fletxa i eixos paral·lels a les orientacions cristal·logràfiques dels etch pits de la calcita. La precipitació de guix, juntament amb la dissolució de dolomita, va ser més lenta que la de calcita, la qual cosa indica que la velocitat de dissolució va ser el procés que controla la velocitat. El revestiment de guix ha cobert parcialment la superfície de la calcita durant l’experiment.

Subjects

54 - Chemistry. Crystallography. Mineralogy; 548/549 - Mineralogical sciences. Crystallography. Mineralogy ; 55 - Earth Sciences. Geological sciences

Documents

TFGO1de1.pdf

11.41Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc/3.0/es/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc/3.0/es/