Sea surface salinity retrieval error budget within the esa soil moisture and ocean salinity mission

Author

Sabia, Roberto

Director

Camps Carmona, Adriano José

Date of defense

2008-10-13

ISBN

9788469448274

Legal Deposit

B. 25775-2011

Pages

185 p.



Department/Institute

Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions

Abstract

L’oceanografia per satèl•lit ha esdevingut una integració consolidada de les tècniques convencionals de monitorització in situ dels oceans. Un coneixement precís dels processos oceanogràfics i de la seva interacció és fonamental per tal d’entendre el sistema climàtic. En aquest context, els camps de salinitat mesurats regularment constituiran directament una ajuda per a la caracterització de les variacions de la circulació oceànica global. La salinitat s’utilitza en models oceanogràfics predictius, pero a hores d’ara no és possible mesurar-la directament i de forma global. La missió Soil Moisture and Ocean Salinity (SMOS) (en català, humitat del sòl i salinitat de l’oceà) de l’Agència Espacial Europea pretén omplir aquest buit mitjançant la implementació d’un satèl•lit capaç de proveir aquesta informació sinòpticament i regular. Un nou instrument, el Microwave Imaging Radiometer by Aperture Synthesis (MIRAS) (en català, radiòmetre d’observació per microones per síntesi d’obertura), ha estat desenvolupat per tal d’observar la salinitat de la superfície del mar (SSS) als oceans a través de l’adquisició d’imatges de la radiació de microones emesa al voltant de la freqüència de 1.4 GHz (banda L). SMOS portarà el primer radiòmetre orbital, d’òrbita polar, interferomètric 2D i es llençarà a principis de 2009. Així com a qualsevol altra estimació de paràmetres geofísics per teledetecció, la recuperació de la salinitat és un problema invers que implica la minimització d’una funció de cost. Per tal d’assegurar una estimació fiable d’aquesta variable, la resta de paràmetres que afecten a la temperatura de brillantor mesurada s’ha de tenir en compte, filtrar o quantificar. El producte recuperat seran doncs els mapes de salinitat per a cada passada del satèl•lit sobre la Terra. El requeriment de precisió proposat per a la missió és de 0.1 ‰ després de fer el promig en finestres espaciotemporals de 10 dies i de 20x20. En aquesta tesi de doctorat, diversos estudis s’han dut a terme per a la determinació del balanç d’error de la salinitat de l’oceà en el marc de la missió SMOS. Les motivacions de la missió, les condicions de mesura i els conceptes bàsics de radiometria per microones es descriuen conjuntament amb les principals característiques de la recuperació de la salinitat. Els aspectes de la recuperació de la salinitat que tenen una influència crítica en el procés d’inversió són: • El biaix depenent de l’escena en les mesures simulades, • La sensibilitat radiomètrica (soroll termal) i la precisió radiomètrica, • La definició de la modelització directa banda L • Dades auxiliars, temperatura de la superfície del mar (SST) i velocitat del vent, incerteses, • Restriccions en la funció de cost, particularment en el terme de salinitat, i • Promig espacio-temporal adequat. Un concepte emergeix directament de l’enunciat del problema de recuperació de la salinitat: diferents ajustos de l’algoritme de minimització donen resultats diferents i això s’ha de tenir en compte. Basant-se en aquesta consideració, la determinació del balanç d’error s’ha aproximat progressivament tot avaluant l’extensió de l’impacte de les diferents variables, així com la parametrització en termes d’error de salinitat. S’ha estudiat l’impacte de diverses dades auxiliars provinents de fonts diferents sobre l’error SSS final. Això permet tenir una primera impressió de l’error quantitatiu que pot esperar-se en les mesures reals futures, mentre que, en un altre estudi, s’ha investigat la possibilitat d’utilitzar senyals derivats de la reflectometria per tal de corregir les incerteses de l’estat del mar en el context SMOS. El nucli d’aquest treball el constitueix el Balanç d’Error SSS total. S’han identificat de forma consistent les fonts d’error i s’han analitzat els efectes corresponents en termes de l’error SSS mig en diferents configuracions d’algoritmes. Per una altra banda, es mostren els resultats d’un estudi de la variabilitat horitzontal de la salinitat, dut a terme utilitzant dades d’entrada amb una resolució espacial variable creixent. Això hauria de permetre confirmar la capacitat de la SSS recuperada per tal reproduir característiques oceanogràfiques mesoscàliques. Els principals resultats i consideracions derivats d’aquest estudi contribuiran a la definició de les bases de l’algoritme de recuperació de la salinitat.


Satellite oceanography has become a consolidated integration of conventional in situ monitoring of the oceans. Accurate knowledge of the oceanographic processes and their interaction is crucial for the understanding of the climate system. In this framework, routinely-measured salinity fields will directly aid in characterizing the variations of the global ocean circulation. Salinity is used in predictive oceanographic models, but no capability exists to date to measure it directly and globally. The European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) mission aims at filling this gap through the implementation of a satellite that has the potential to provide synoptically and routinely this information. A novel instrument, the Microwave Imaging Radiometer by Aperture Synthesis, has been developed to observe the sea surface salinity (SSS) over the oceans by capturing images of the emitted microwave radiation around the frequency of 1.4 GHz (L-band). SMOS will carry the first-ever, polar-orbiting, space-borne, 2-D interferometric radiometer and will be launched in early 2009. Like whatsoever remotely-sensed geophysical parameter estimation, the retrieval of salinity is an inverse problem that involves the minimization of a cost function. In order to ensure a reliable estimation of this variable, all the other parameters affecting the measured brightness temperature will have to be taken into account, filtered or quantified. The overall retrieved product will thus be salinity maps in a single satellite overpass over the Earth. The proposed accuracy requirement for the mission is specified as 0.1 ‰ after averaging in a 10-day and 2ºx2º spatio-temporal boxes. In this Ph.D. Thesis several studies have been performed towards the determination of an ocean salinity error budget within the SMOS mission. The motivations of the mission, the rationale of the measurements and the basic concepts of microwave radiometry have been described along with the salinity retrieval main features. The salinity retrieval issues whose influence is critical in the inversion procedure are: • Scene-dependent bias in the simulated measurements, • Radiometric sensitivity (thermal noise) and radiometric accuracy, • L-band forward modeling definition, • Auxiliary data, sea surface temperature (SST) and wind speed, uncertainties, • Constraints in the cost function, especially on salinity term, and • Adequate spatio-temporal averaging. A straightforward concept stems from the statement of the salinity retrieval problem: different tuning and setting of the minimization algorithm lead to different results, and complete awareness of that should be assumed. Based on this consideration, the error budget determination has been progressively approached by evaluating the extent of the impact of different variables and parameterizations in terms of salinity error. The impact of several multi-sources auxiliary data on the final SSS error has been addressed. This gives a first feeling of the quantitative error that should be expected in real upcoming measurements, whilst, in another study, the potential use of reflectometry-derived signals to correct for sea state uncertainty in the SMOS context has been investigated. The core of the work concerned the overall SSS Error Budget. The error sources are consistently binned and the corresponding effects in terms of the averaged SSS error have been addressed in different algorithm configurations. Furthermore, the results of a salinity horizontal variability study, performed by using input data at increasingly variable spatial resolution, are shown. This should assess the capability of retrieved SSS to reproduce mesoscale oceanographic features. Main results and insights deriving from these studies will contribute to the definition of the salinity retrieval algorithm baseline.

Keywords

Remote sensing; Retrieval; Modelling; Ocean surface; Ocena salinity; Microwave radiometry; Climate studies

Subjects

621.3 Electrical engineering

Documents

TRS1de1.pdf

6.553Mb

 

Rights

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)