Strategies for pushing nonlinear microscopy towards its performance limits

Autor/a

Aviles-Espinosa, Rodrigo

Director/a

Loza Álvarez, Pablo

Fecha de defensa

2013-03-27

Depósito Legal

B. 20533-2013

Páginas

139 p.



Departamento/Instituto

Universitat Politècnica de Catalunya. Institut de Ciències Fotòniques

Resumen

The requirement for imaging living structures with higher contrast and resolution has been covered by the inherent advantages offered by nonlinear microscopy (NLM). However, to achieve its full potential there are still several issues that must be addressed. To do so, it is very important to identify and adapt the key elements in a NLM for achieving an optimized interaction among them. These are 1) the laser source 2) the optics and 3) the sample properties for contrast generation. In this thesis, three strategies have been developed for pushing NLM towards its limits based on the light sample interaction optimization. In the first strategy it is experimentally demonstrated how to take advantage of the sample optical properties to generate label-free contrast, eliminating the requirement of modifying the sample either chemically or genetically. This is carried out by implementing third harmonic generation (THG) microscopy. Here, it is shown how the selection of the ultra-short pulsed laser (USPL) operating wavelength (1550 nm) is crucial for generating a signal that matches the peak sensitivity of most commercial detectors. This enables reducing up to seven times the light dose applied to a sample while generating an efficient signal without the requirement of amplification schemes and specialized optics (such as the need of ultraviolet grade). To show the applicability of the technique, a full developmental study of in vivo Caenorhabditis elegans embryos is presented together with the observation of wavelength induced effects. The obtained results demonstrate the potential of the technique at the employed particular wavelength to be used to follow morphogenesis processes in vivo. In the second strategy the limits of NLM are pushed by using a compact, affordable and maintenance free USPL sources. Such device was designed especially for two-photon excited fluorescence (TPEF) imaging of one the most widely used fluorescent markers in bio-imaging research: the green fluorescent protein. The system operating parameters and its emission wavelength enables to demonstrate how matching the employed fluorescent marker two-photon action cross-section is crucial for efficient TPEF signal production at very low powers. This enables relaxing the peak power conditions (40 W) to excite the sample. The enhanced versatility of this strategy is demonstrated by imaging both fixed and in vivo samples containing different dyes. More over the use of this laser is employed to produce second harmonic generation images of different samples. Several applications that can benefit by using such device are outlined. Then a comparison of the employed USPL source is performed versus the Titanium sapphire laser (the most used excitation source in research laboratories). The final goal of this strategy is to continue introducing novel laser devices for future portable NLM applications. In this case, the use of chip-sized semiconductor USPL sources for TPEF imaging is demonstrated. This will allow taking NLM technology towards the sample and make it available for any user. In the last strategy, the light interaction with the optical elements of a NLM workstation and the sample were optimized. The first enhancement was carried out in the laser-microscope optical path using an adaptive element to spatially shape the properties of the incoming beam wavefront. For an efficient light-sample interaction, aberrations caused by the index mismatch between the objective, immersion fluid, cover-glass and the sample were measured. To do so the nonlinear guide-star concept, developed in this thesis, was employed for such task. The correction of optical aberrations in all the NLM workstation enable in some cases to have an improvement of more than one order of magnitude in the total collected signal intensity. The obtained results demonstrate how adapting the interaction among the key elements of a NLM workstation enables pushing it towards its performance limits.


La creciente necesidad de observar estructuras complicadas cada vez con mayor contraste y resolución han sido cubiertas por las ventajas inherentes que ofrece la microscopia nolineal. Sin embargo, aun hay ciertos aspectos que deben ser ajustados para obtener su máximo desempeño. Para ello es importante identificar y adaptar los elementos clave que forman un microscopio optimizar la interacción entre estos. Dichos elementos son: 1) el laser, 2) la óptica y 3) las propiedades de la muestra. En esta tesis, se realizan tres estrategias para llevar la eficiencia de la microscopia nolineal hacia sus límites. En la primera estrategia se demuestra de forma experimental como obtener ventaja de las propiedades ópticas de la muestra para generar contraste sin el uso de marcadores mediante la generación de tercer harmónico. Aquí se muestra como la selección de la longitud de onda del láser de pulsos ultracortos es crucial para que la señal obtenida concuerde con la máxima sensibilidad del detector utilizado. Esto permite una reducción de la dosis de luz con la que se expone la muestra, elimina intrínsecamente el requerimiento de esquemas de amplificación de señal y de óptica de tipo ultravioleta (generalmente empleada en este tipo de microscopios). Mediante un estudio comparativo con un sistema convencional se demuestra que los niveles de potencia óptica pueden ser reducidos hasta siete veces. Para demostrar las ventajas de dicha técnica se realiza un estudio completo sobre el desarrollo embrionario de Caenorhabditis elegans y los efectos causados por la exposición de la muestra a dicha longitud de onda. Los resultados demuestran el potencial de la técnica para dar seguimiento a procesos morfogénicos en muestras vivas a la longitud de onda utilizada. En la segunda estrategia se diseñó una fuente de pulsos ultracortos que es compacta, de costo reducido y libre de mantenimiento para excitar mediante la absorción de dos fotones uno de los marcadores más utilizados en el entorno biológico, la proteína verde fluorescente. Los parámetros de operación en conjunto con la longitud de onda emitida por el sistema proporcionan la máxima eficiencia permitiendo el uso de potencias pico muy bajas (40 W), ideales para relajar la exposición de la muestra. La versatilidad de esta estrategia se demuestra empleando muestras fijas y vivas con diferentes marcadores fluorescentes. Este láser también es empleado para la obtención de señal de segundo harmónico en diferentes muestras. Adicionalmente, se llevó a cabo un estudio comparativo entre la fuente desarrollada y un sistema Titanio zafiro (uno de los láseres más utilizados en laboratorios de investigación). El objetivo final de esta estrategia es introducir fuentes novedosas para aplicaciones portátiles basadas en procesos nolineales. En base a esto se demuestra el uso de dispositivos construidos sobre un microchip para generar imágenes de fluorescencia de dos fotones. Esto permitirá llevar la tecnología hacia la muestra biológica y hacerla disponible para cualquier usuario. En la última estrategia se optimiza de la interacción de la luz con los elementos ópticos del microscopio y la muestra. La primera optimización se lleva a cabo en la trayectoria óptica que lleva el láser hacia el microscopio empleando un elemento adaptable que modifica las propiedades espaciales de la luz. Para mejorar la interacción de la luz y la muestra se miden las aberraciones causadas por la diferencia de índices refractivos entre el objetivo, el medio de inmersión y la muestra. Esto se realizo empleando el concepto de la “estrella guía nolineal” desarrollado en esta tesis. Mediante la corrección de las aberraciones en el sistema de microscopia nolineal se obtiene una mejora, en algunos casos de un orden de magnitud, en la intensidad total medida. Los resultados obtenidos en esta tesis demuestran como el adaptar la interacción entre los elementos clave en un microscopio nolineal permiten llevar su desempeño hacia los límites.

Materias

535 - Óptica; 621.3 - Ingeniería eléctrica. Electrotecnia. Telecomunicaciones

Documentos

TRAE1de1.pdf

5.662Mb

 

Derechos

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/3.0/es/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/3.0/es/

Este ítem aparece en la(s) siguiente(s) colección(ones)