Brain mechanisms underlying the tracking and localization of dynamic cues

Author

López Pigozzi, Diego

Director

Sánchez-Vives, María Victoria

Date of defense

2013-04-02

Legal Deposit

B. 14074-2013

Pages

154 p.



Department/Institute

Universitat de Barcelona. Facultat de Medicina

Abstract

Since the discovery of the place cells in 1971 by John O’Keefe and colleagues an extensive work over the hippocampus has been developed as the mammal model of spatial navigation. Place cells are rodents’ hippocampal neurons whose firing is associated to certain locations of the environment. A majority of studies have focused on how the place fields (the area where the firing of a neuron is restricted) are generated in relation to the static cues of the environment (O'Keefe and Conway, 1978; Muller et al., 1987; Gothard et al., 1996). The present work assessed a similar question but regarding the dynamic cues surrounding the subject, and with the hypothesis that the hippocampus is also representing the position of other moving objects. In order to demonstrate if that was the case, we developed a behavioural protocol in which rats learnt to discriminate the movements of a robot in order to obtain reward, an Operant Position Discrimination Task (OPDT). Once the protocol was validated, the subjects were chronically implanted with tetrodes in the CA1 region of the hippocampus. In this way the activity of single hippocampal cells could be isolated off-line and the LFP of the area stored during the recordings. Using this method, the relationship between the firing of the cells and the field activity with the spatial parameters of the robot could be evaluated. The results showed a modulation by the dynamic cue of the theta oscillation. While the locomotor activity of the subjects is directly related to the power of theta in natural conditions (Vanderwolf, 1969), during the movement of the robot such relationship was disrupted and the band power between 4-12 Hz showed a trough at this time. The analysis of the single cells’ activity showed neurons locked to several spatial features of the dynamic cue. First, the position of the rat and the robot where analysed by information content parameters. Skaggs Index and Positional information (Markus et al., 1994; Olypher et al., 2003) showed neurons locked to the position of the subject as expected in CA1 and also other neurons locked to the positions of the robot. Second, moving from the spatial analysis to the temporal one, we found responses to the movement of the robot like OFF/ON variations of the basal activity of the neurons. Such changes in the firing patterns where quantified by the Mutual Information index (Nelken and Chechik, 2007) demonstrating that a large fraction of the neurons have a significant differential pattern of activity during the movement of the robot towards one side or the other. The use of the same index, MI, for the evaluation of the static or dynamic condition of the robot, also resulted in a set of neurons spiking with significant disparity during such epochs. In conclusion, the present work has demonstrated the existence of neural correlates locked to a dynamic cue in the hippocampus. Both the field activity at the theta range, LFP between 4 and 12 Hz, and the activity of the hippocampal neurons were found to reflect and/or encode the spatial features of a dynamic cue. The present work has in this way enlarged the limited evidence present in the prior literature about the role of the hippocampus in the tracking and localization of dynamic cues with the use of a behavioural protocol where both the spatial and temporal dynamics could be assessed.


La correcta localización y seguimiento de las pistas dinámicas que se encuentran en el ambiente es una tarea crucial para el individuo. Comportamientos fundamentales como la caza, el apareamiento o el escape necesitan una correcta identificación de la posición de presas, congéneres y depredadores para su correcta realización. El sistema cerebral encargado de localizar al propio sujeto en el ambiente se sabe que se encuentra en la formación hipocampal después de que diversos estudios hayan demostrado la necesidad del mismo para una correcta orientación (Morris et al., 1982) y, aún más importante, tras el descubrimiento en roedores de neuronas que disparan únicamente en espacios restringidos del entorno, las células de lugar (O'Keefe and Dostrovsky, 1971). Si bien se conoce que estos procesos están fundados en una correcta representación de la posición de las pistas estáticas del ambiente (O'Keefe and Conway, 1978; Muller et al., 1987; Gothard et al., 1996), que sirven de referencia para la propia localización, poco se sabe acerca de cómo se integra la información relativa a los objetos y/o sujetos móviles que se encuentran en el mismo ambiente. Este trabajo tiene como objetivo principal intentar responder a esta pregunta, es decir, ¿en qué modo el hipocampo procesa la información relativa a las pistas dinámicas? Para el desarrollo del estudio, primero, se diseñó una tarea comportamental que asegurara el hecho de que la pista dinámica resultase relevante para los sujetos de forma que los mismos prestaran atención a sus movimientos. Con este fin elegimos utilizar un robot cuyos desplazamientos pueden ser finamente controlados y asociar una recompensa a determinados patrones de navegación del robot. Después de probar con diferentes tareas de discriminación se llegó a una configuración (Operant Position Discrimination Task, OPDT) que permitía a los animales seguir los movimientos del robot desde un espacio separado en el cual recibían la recompensa en caso de discernir correctamente los desplazamientos de la pista. Una vez validada la tarea comportamental, a los sujetos que alcanzaron altas tasas de rendimiento se les implantaron tetrodos en la zona CA1 del hipocampo, lugar en el que se encuentran las células de lugar más estables. Una vez hecho el implante se procedió a registrar la actividad cerebral durante la ejecución de la tarea. Por una parte se aislaron los potenciales de acción pertenecientes a neuronas únicas y el potencial de campo de la zona, LFP. Respecto a la actividad de campo, LFP, se observó una disminución significativa de la potencia en la banda theta, 4-12 Hz, relacionada generalmente con la actividad locomotora del sujeto (Vanderwolf, 1969) durante el movimiento del robot. Durante el resto del registro la relación entre velocidad y potencia de theta se mantuvo y sólo en el periodo de discriminación del movimiento del robot esta relación se vio alterada con un mínimo de potencia observado en diferentes sujetos y registros. La actividad de las neuronas se analizó en función de los parámetros espaciales y dinámicos de la rata y el robot. Mirando la especificidad espacial del disparo de las neuronas a través de los parámetros Skaggs Index y Positional information (Markus et al., 1994; Olypher et al., 2003) se encontraron células significativamente ligadas en su actividad a la posición del sujeto o del robot. La actividad de las neuronas también se analizó de forma temporal, tomando como referencia el inicio de los estímulos, es decir el movimiento del robot hacia un lado u otro. Utilizando como índice la Mutual Information (Nelken and Chechik, 2007) se encontró que una larga proporción de las neuronas tienen respuestas diferenciales durante el movimiento del robot hacia uno de los lados. A su vez, el mismo análisis, pero en esta ocasión comparando los periodos en los que la pista se encuentra inmóvil con los que está en movimiento, determinó que otra fracción de las neuronas tiene patrones de disparo diferenciales según sea la condición dinámica de la pista. El conjunto de los resultados obtenidos indica claramente que el hipocampo se encuentra involucrado activamente en la localización y el seguimiento de las pistas dinámicas, siendo esto reflejado tanto en la actividad de sus neuronas como en la actividad de campo global. Los parámetros espaciales de la pista que resultaron modulados durante la tarea fueron su posición, la dirección de su movimiento y el hecho en sí de permanecer inmóvil o en desplazamiento.

Keywords

Comportament; Comportamiento; Behavior; Activitat neuronal; Actividad neuronal; Neuronal activity; Orientació; Orientación; Orientation; Hipocamp (Cervell); Hipocampo (Cerebro); Hippocampus (Brain)

Subjects

616.8 - Neurology. Neuropathology. Nervous system

Knowledge Area

Ciències de la Salut

Note

Tesi realitzada a l'Equip de Neurociència de Sistemes - IDIBAPS

Documents

DLP_PhD_THESIS.pdf

3.091Mb

 

Rights

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)