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Abstract

Though much experimental research exists on both basic neural mecha-
nisms of hearing and the psychological organization of language perception,
there is a relative paucity of modelling work on these subjects. Here we
describe two modelling efforts.

One proposes a novel mechanism of frequency selectivity improvement
that accounts for results of neurophysiological experiments investigating
manifestations of forward masking and above all auditory streaming in the
primary auditory cortex (A1). The mechanism works in a feed-forward
network with depressing thalamocortical synapses, but is further showed
to be robust to a realistic organization of the neural circuitry in A1, which
accounts for a wealth of neurophysiological data.

The other effort describes a candidate mechanism for explaining dif-
ferences in word/non-word perception between early and simultaneous
bilinguals found in psychophysical studies. By simulating lexical decision
and phoneme discrimination tasks in an attractor neural network model,
we strengthen the hypothesis that people often exposed to dialectal word
variations can store these in their lexicons, without altering their phoneme
representations.
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Resumen

Se ha investigado mucho tanto los mecanismos neuronales básicos de la
audición como la organización psicológica de la percepción del habla. Sin
embargo, en ambos temas hay una relativa escasez en cuanto a modelización.
Aquí describimos dos trabajos de modelización.

Uno propone un nuevo mecanismo de mejora de selectividad de frecuen-
cias que explica resultados de experimentos neurofisiológicos investigando
manifestaciones de forward masking y sobre todo auditory streaming en
la corteza auditiva principal (A1). El mecanismo funciona en una red
feed-forward con depresión sináptica entre el tálamo y la corteza, pero
mostramos que es robusto a la introducción de una organización realista
del circuito de A1, que a su vez explica cantidad de datos neurofisiológicos.

El otro trabajo describe un mecanismo candidato de explicar el hallazgo
en estudios psicofísicos de diferencias en la percepción de palabras entre
bilinguës tempranos y simultáneos. Simulando tareas de decisión léxica
y discriminación de fonemas, fortalecemos la hipótesis de que personas
expuestas a menudo a variaciones dialectales de palabras pueden guardar
éstas en su léxico, sin alterar representaciones fonémicas.
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1 Introduction

In spite of many decades of research into the function and structure
of the primary auditory cortex (henceforth, A1), the intracortical connec-
tivity that is responsible for a considerable part of observed experimental
responses is still unknown. In a recent review, this issue was highlighted
(Oswald, Schiff & Reyes 2006), and it has been studied both experimen-
tally (Wehr & Zador 2003, Wehr & Zador 2005, Liu, Wu, Arbuckle, Tao
& Zhang 2007, Wu, Arbuckle, Liu, Tao & Zhang 2008, Sadagopan &
Wang 2010) and using models (Loebel, Nelken & Tsodyks 2007, de la
Rocha, Marchetti, Schiff & Reyes 2008). In the present work we intend
to shed light on this issue, and we do so by modelling in detail the (pu-
tative) neuronal correlates, at the level of the A1 circuit, of a well-known
phenomenon in psychology called auditory stream segregation (a.k.a. audi-
tory streaming, AS). Our motivation for taking this approach was twofold.
Firstly, of the different experiments in the literature on A1 yet to explain,
work on AS stands out for the availability of both psychophysical studies
and neurophysiological ones, which gives us both a wealth of neuronal
data with which to constrain our models and a bridge (albeit tenuous) to
perception from our low-level modelling. Secondly, being a phenomenon
studied across the dimension of time at multiple scales, AS allows us to
encompass in our study not only neuronal processing at the millisecond
scale, but also slower mechanisms requiring from tens of milliseconds to
over a second to have an effect. In short, we can incorporate great detail
while not losing track of the big picture, something very important in any
venture exploring the brain.

To investigate the AS phenomenon in psychophysical experiments, a
common stimulus used is a sequence of instances of alternating tones of
two different frequencies, henceforth denoted A tones and B tones, respec-
tively. Some studies use ABAB... sequences, while others use so-called
triplets, with a silent space in between, i.e., ABA_ABA_.... Such experi-
ments have shown (reviewed in, e.g., Bregman 1990, Moore & Gockel 2002)
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2 CHAPTER 1. INTRODUCTION

that there are two parameters in particular that have a strong influ-
ence on auditory perception: the difference in frequency between the
two tones of the sequence (∆f) and the rate at which the tones are pre-
sented (Presentation Rate, PR ). Two different percepts are possible. For
large ∆f values and high PR values, the stimulus is perceived as two
different streams of sounds, one of A tones, one of B tones (segregated
percept). In contrast, small ∆f values tend to evoke a percept consist-
ing of a single stream of alternating frequency tones (integrated percept)
(van Noorden 1975, Bregman 1978, Moore & Gockel 2002). For the seg-
regated percept to occur, some time needs to pass after the stimulus
onset, referred to as the build up of streaming, (up to a few seconds;
see Bregman 1978). After an initial time with the integrated percept,
listeners report the emergence of the segregated percept. A recent study
provided evidence of correlates of this build-up process in A1 (Micheyl,
Tian, Carlyon & Rauschecker 2005). Along with earlier studies of neu-
rophysiological correlates of streaming, specifically those discussing the
spectral filtering phenomenon called differential suppression (DS) (Fishman,
Reser & Steinschneider 2001, Fishman, Arezzo & Steinschneider 2004),
Micheyl et al. (2005) provide motivation for elucidating the mechanisms
in A1, which generate responses in that brain area to this kind of stim-
ulus (however, for a different take on the relative importance of spectral
filtering, as a correlate of streaming, see Elhilali, Ma, Micheyl, Oxenham
& Shamma 2009).

While there exist some models addressing auditory streaming A1 cor-
relates as manifested by the DS phenomenon (see section 1.3; Kanwal,
Medvedev & Micheyl 2003, Denham & Winkler 2006), these fail to fully
replicate experimental results and interpret DS as evidence of physiological
forward masking produced by either inhibition (Kanwal et al. 2003) or
synaptic depression (Denham & Winkler 2006) mechanisms. Crucially, like
others before them (Fishman et al. 2001, Fishman et al. 2004), they thus
considered that the neural response to the present tone (of a sequence)
is solely affected by the response to the previous tone. In so doing, they
neglected the rest of the stimulus history, an aspect of the problem which
we shall show is key to its satisfactory solution.

So, to take on the task of modelling the neural manifestations of AS
at the A1 level, we have constructed a model representing a portion of
the primary auditory cortex (A1) spanning between zero (‘local’ model)
and six octaves of the tonotopic axis. We employ two different established
neural models, representing neural activity of a population of neurons or at
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the single neuron level, respectively. The population model is a rate model,
describing the average firing rate of a population of neurons (Wilson &
Cowan 1972), whereas for the single neuron model we opted for a modified
version of the Hodgkin and Huxley equations (Hodgkin & Huxley 1952, Soto,
Kopell & Sen 2006, Pospischil, Toledo-Rodriguez, Monier, Piwkowska, Bal,
Frégnac, Markram & Destexhe 2008). The motivation for the latter choice
was that it enabled a detailed look at the magnitude and time course
of synaptic conductances, voltages and currents in response to different
stimuli, necessary in our view for full comparability between model re-
sults and detailed neurophysiological data. The rate model, in contrast,
allowed us to quickly get our bearings in the sometimes daunting parameter
space explored, guiding the more detailed simulations and providing food
for thought as to what mechanisms were involved in generating the AS
data. We stress here, however, that while the dominating goal during
the work was to explain how the neural correlates of auditory streaming
seen in neurophysiological experiments (Fishman et al. 2001, Fishman
et al. 2004, Micheyl et al. 2005) arise at the A1 circuit level, during the
literature search we came across other important results which needed
to be accounted for by the same circuit. These included approximate
co-tuning of excitation and inhibition in A1 (Wehr & Zador 2003, Tan,
Zhang, Merzenich & Schreiner 2004, Wu et al. 2008, Tan & Wehr 2009)
and forward masking at the same level (Calford & Semple 1995, Brosch &
Schreiner 1997, Wehr & Zador 2005), but also both thalamocortical inter-
face properties (Chung, Li & Nelson 2002, Rose & Metherate 2005, Bruno
& Sakmann 2006, Wang, Spencer, Fellous & Sejnowski 2010) as well as in-
tracortical connectivity characteristics (Kaur, Lazar & Metherate 2004, Liu
et al. 2007, Wu et al. 2008, Sadagopan & Wang 2010), which were imple-
mented as close to those seen in experiments as possible.

Taking the approach outlined above, we have managed to model an
important body of research on the neurophysiology of A1, laying the ground-
work for an integrated thalamocortical and intracortical network view of
processing in the primary auditory cortex. We will explain in detail the
results of this effort in chapters 2 and 3. Specifically, chapter 2 describes a
novel mechanism that explains the DS phenomenon, which we refer to as
dynamic frequency selectivity, and then goes on to show how three different
neural models can reproduce the most important data of the literature
on this phenomenon. Thereafter, chapter 3 tests the robustness of the
mechanism to the introduction of an intracortical connectivity, rigourously
fit to relevant neurophysiological data. The state of the art of the literature
on this main part of the thesis is reviewed in the following (sections 1.1,
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1.2 and 1.3).

Furthermore, in an independent part of the thesis, we address a research
question of a more cognitive nature, within the field of psycholinguistics.
Specifically, we develop a different model able to explain some results re-
garding the nature of phoneme and word perception in different categories
of bilinguals, obtained by Sebastián-Gallés, Echeverría & Bosch (2005).
This work is explained in detail in chapter 4, including the necessary back-
ground and an introduction to the relevant literature.

1.1. Psychophysics and perception: What is
auditory stream segregation?

Surely the reader has heard of the problem of auditory stream seg-
regation, or perhaps the colloquial term cocktail party problem or even
the technical term source separation problem is more familiar. Be that
as it may, these terms essentially all concern the same problem — how
is a listener able to distinguish between different auditory sources in an
environment? This phenomenon occurs frequently, sometimes without us
even consciously thinking about it; we listen to a friend speaking in a noisy
environment (such as the proverbial cocktail party); we focus on a solo
instrument in orchestral music; we find ourselves seated just in between two
conversational groups at a dinner party, and both conversations interest us
— we switch back and forth trying to pick up a maximum of information.
In these examples we employ attention to pick out the auditory ‘stream’
(typically emanating from the same source; also called auditory ‘object’,
despite its temporal dimension) that interests us, but there is an additional
phenomenon of interest related to auditory stream segregation (for short:
auditory streaming), namely inadvertent switching between streams. A
slightly different version of the last example above serves as an illustration
— you pick one of the conversations and you’re trying to listen to it only,
but somehow every once in a while you involuntarily find yourself predom-
inantly hearing the other conversation, missing parts of the one of your
choosing. Annoying as it may be in this case, switching could be of more
use in a hostile environment where an animal needs to monitor all sounds
in order to detect predators and/or conspecifics. In fact, switching can
also occur between hearing both sound sources as separate (and mostly
being able to switch between them using attentional control) and hearing
them as one, integrated, percept (bad in the case of conversations).
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The scientific study of the perception of sequences of alternating audi-
tory stimuli has a long tradition. Already more than half a century ago,
researchers started mapping the dependence of what humans perceive when
listening to such sequences on the basic experimental parameters of spectral
distance or frequency difference (∆f) between the two constituent tones
and the speed at which the sequence is presented, i.e., the presentation
rate, or PR (Miller & Heise 1950, Miller 1947). They showed that while for
low enough ∆f , subjects perceive the sequence as a stream of two tones
continuously alternating in pitch, there exist for each frequency f of the
lower tone a ∆f value above which the sequence is no longer heard as one
stream, but rather two streams of unrelated tones of different pitch. This
∆f value is in the study referred to as the trill threshold, and the value of
∆f
f is approximately constant across frequencies f of the lower tone, with
a value of 0.15, or between two and three semitones. The dependence on
PR was less explored, but experiments in Miller (1947) indicated that at
slow enough PR the perception is of a two-tone stream, whereas for fast
enough PR the listener perceives two streams.

This area of research has been active ever since these early beginnings.
Notably, van Noorden (1975) devoted his PhD thesis to this topic, extending
earlier studies by systematically varying the tempo of the sequences, i.e.,
their PR , and also examining the influence of subjects’ attention on what
they perceive. He introduced the concept of temporal coherence, i.e.
the phenomenon when a listener perceives a sequence of tones as being
connected, and a tone sequence evoking such coherence he refers to as a
string of tones (the latter concept has later come to be called a stream,
which is the term we will use in this work). One important finding of van
Noorden (1975) was that two perceptual boundaries could be defined in
the PR - ∆f space, namely the temporal coherence boundary (TCB) and
the Fission Boundary (FB), respectively. The latter is defined by the value
of ∆f (measured for all PR values) below which a subject’s perception
ineluctably becomes that of one stream of alternating tones, whereas the
former is defined by the values of ∆f (across PR values) above which said
perception always becomes that of two slower streams, each containing
tones of one single frequency. We reproduce here a figure from van Noorden
(1975) which illustrates this (figure 1.1). The reader will note that the
boundaries do not coincide anywhere in the parameter space, despite
their obviously complementary nature. This is because the intervening
region of parameter values corresponds to an ambiguous percept, the
subjects reporting either fission or temporal coherence, depending on their
attentional state. This is best explained in the words of van Noorden
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himself (pp. 82-83, van Noorden 1975):

It proved possible to determine a clearly defined boundary
between temporal coherence and fission by taking the observer’s
attentional set into account. When the observer’s attention is
directed towards hearing the string ABAB.., this boundary is
found at much larger tone intervals than when his attention is
directed towards hearing the string A A or B B.

Figure 1.1: Reproduction of figure 2.7 of van Noorden (1975), showing
the Temporal Coherence Boundary (TCB) and the Fission Boundary (FB)
for a range of values of ∆f (in semitones, ordinate) and PR (T = 1000

PR ms,
abscissa)

Additionally, van Noorden and others have found that, apart from
a mere difference in frequency, other differences in the characteristics
of the two distinct tones of a sequence could evoke stream segregation,



1.2. NEURAL BASIS/CORRELATES: WHERE MIGHT STREAMS
(PUTATIVELY BEGIN TO) SEGREGATE? 7

for instance intensity (van Noorden 1975) and fundamental frequency of
filtered harmonic complexes (Vliegen & Oxenham 1999). These and other
stimulus manipulations affecting streaming were reviewed by Moore &
Gockel (2002).

One phenomenon which we do not study in this thesis, but which
nevertheless is important to mention, is that of switching. As summarized
in Bregman (1990), switching is the voluntary or involuntary change of
perception from that of one stream to that of two streams, or vice versa,
even though there is no change in stimulus attributes. We will however
not cover this topic further.

1.2. Neural basis/correlates: Where might
streams (putatively begin to) segregate?

While the study of the auditory streaming phenomenon in humans has
a long tradition, as we have seen, researchers have only recently begun
to investigate the neural response to such tone sequences in neurophysi-
ological studies performed on non-human animals. About a decade ago,
Fishman et al. (2001) made extracellular recordings in the A1 of macaques
while presenting sequences of alternating-frequency tones via headphones.
The sequences’ tones were referred to as A tones (of recorded unit’s Best
Frequency, BF) and B tones (of a non-BF frequency), respectively. The
resulting measured spiking activity (Multi-Unit Activity, MUA, measured
extracellularly) was analyzed with respect to primarily the speed of pre-
sentation of the sequences, PR , which took the values of 5 Hz, 10 Hz, 20
Hz and 40 Hz. As for ∆f , it varied from 10% to 50% difference (of Hz),
respectively, but only one value was used for each recording site. For what
is to follow in the present work, it is important to note that the stimuli
were presented after a long period of silence, and recordings were made
from the onset of the very first tone and for a duration of approximately
half a second. However, the response to the first tone was discarded in
the analysis, and an average of responses to all the other tones (A or B
separately) was used when calculating B/A response ratios. The results of
Fishman et al. (2001) show that the responses to ABAB sequences have a
clear dependence on the experimental parameters, parallelling that found in
psychophysical studies such as those mentioned above. Particularly, what
they refer to as differential suppression (DS), i.e., the phenomenon where
responses to non-BF tones are more suppressed by increasing PR than
are responses to BF-tones, shows the same trend as when human subjects
in experimental studies tend to increasingly segregate sequences into two
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streams as PR increases. Finding support in the studies on forward mask-
ing by Calford & Semple (1995) and Brosch & Schreiner (1997) (see section
1.2.2.2, below), the authors argue that differential suppression is most likely
due to synaptic inhibitory processes being more powerful after a BF tone
than after a non-BF tone, thus differentially suppressing the response to
the subsequent tone in the two cases. They also mention afterhyperpolar-
ization as a possible suppressive mechanism. In their discussion, Fishman
et al. (2001) proffered a schematic model of how differential suppression
could work, making use of an illustration of hypothetical response profiles
across the tonotopic axis (reproduced here, see figure 1.2), evoked by Aand
B tones at different values of PR and ∆f . In short, the model proposes
that the net effect of DS is the segregation of A1 activity into isolated
‘islands’ of activity at different locations on the tonotopic axis, thereby
possibly facilitating the direction of attention to one or the other of these
loci (see caption of figure 1.2 for details).

In a subsequent study, Fishman et al. (2004) sought to remedy some
limitations of their first study by measuring only once the responses had
attained what amounted to a steady state, i.e., from the moment in which
there were no discernable differences in amplitude between subsequent
responses to tones of the same frequency (A or B tones, respectively).
Basing this point in time on results from psychophysics (showing a so-
called build-up time for stream segregation of several seconds; Bregman
1978, Anstis & Saida 1985), they let stimuli run for at least five seconds
before recording. Further improving upon the design of experiments in
Fishman et al. (2001), they independently varied, at each recording site,
not only PR and ∆f but also the tone duration, TD . This was made
in recognition of the psychophysical result by Bregman, Ahad, Crum &
O’Reilly (2000), showing that, apart from the influence of ∆f , the Inter-
Stimulus Interval (ISI = 1

PR−TD ) is, rather than only PR , the main factor
that controls stream segregation (see figure 1.4(c)). With this setup, the
authors get results similar to those of their previous study, demonstrating
increasing differential suppression of non-BF tones with increases in ∆f and
PR (see figures 1.3 and 1.4). They also show, however, that increasing
TD has a similiar effect to that obtained by increasing PR , since the ISI
diminishes in both cases. They conclude (p. 1665, Fishman et al. 2004):

The present findings suggest that stream segregation may
be due to enhancement of frequency selectivity of A1 sites
resulting from the effective sharpening of frequency tuning at
the BF tonotopic location at brief interstimulus intervals.
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Figure 1.2: Adapted from figure 11 of Fishman et al. (2001), this schematic
proposes a physiological model of streams segregation in A1. L.h.s and r.h.s.
curves in each graph represent evoked activity across the tonotopic (TT)
axis, by an A and a B tone, respectively. Bar plots represent hypothetical
response amplitudes to A (white) and B (black) tones at locations A, X
and B (see arrows above curves), respectively, at low (left) and high (right)
presentation rates. Top panels: ∆f < 10%; Middle panels: 10% < ∆f <
100%; Bottom panels: ∆f > 100%. Crucially, at intermediate ∆f (middle),
low PR values yield a relatively uniform distribution of activity across the
TT axis, whereas high ditto give responses to non-BF tones which are
strongly suppressed in comparison to BF tone responses. This yields a
segregation of activity into two ‘bumps’ at BF fA and BF fB sites (occurring
at half of PR ), to which attention then purportedly can be directed.
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However, Fishman et al. (2004) maintain their schematic model based
on forward suppression from one tone to the next, arguing that forward
masking and auditory streaming as manifested in neural data may have a
common cause (Calford & Semple 1995, Brosch & Schreiner 1997). As we
shall show in the present work, this is in fact not the case.

Figure 1.3: Adapted from figure 3 of Fishman et al. (2004). Here, we see
the MUA response during 300 ms at steady state, to sequences of (A and
B) tones of different PR and ∆f values. This data constitutes the main
result on auditory streaming neural correlates that we attempt to explain
in this thesis. Legend explanation: N is number of recording sites averaged
for each row; Aand B on top of peaks indicate which tone elicited the peak;
dashed frame indicates that that panel’s B response is attenuated by more
than 9 dB relative to its A response.

Later on, Micheyl et al. (2005) investigated also the so-called build-up
phase of auditory stream segregation. They measured from A1 neurons of



1.2. NEURAL BASIS/CORRELATES: WHERE MIGHT STREAMS
(PUTATIVELY BEGIN TO) SEGREGATE? 11

(d)

(c)

Figure 1.4: All panels adapted from Fishman et al. (2004) (subfigures
(a)-(c) from figures 6.a,b,c and subfigure (d) from figure 7.a). Subfigures
(a) and (b) show the average ratio of responses to B tones to those of
A tones, for 25 ms tones (the main data on streaming correlates we seek to
explain in this thesis). Subfigure (c) shows how, in Fishman et al. (2004),
the temporal parameter affecting streaming is found to be ISI, dependent
on both PR and TD (see main text). Finally, subfigure (d) superimposes
the data from (a)/(b) (except that for PR =40 Hz) on a graph delineating
the perceptual boundaries of stream segregation in humans (McAdams &
Bregman 1979, van Noorden 1975). As Fishman et al. (2004) point out, the
smallest response ratios are typically in the ‘segregated’ perceptual region,
whereas the largest ones tend to be situated in the ‘coherent’ perceptual
region.
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macaques while presenting sequences of alternating tones to the animals.
In parallel, they conducted studies with humans of the psychophysical
phenomenon of auditory streaming. Crucially, using a simple threshold
mechanism applied to the neural responses, the authors find a neural data
explanation to the psychophysical data based on human participants’ stated
percepts across time, showing a direct link between data from primary
auditory cortex and cognitive data.

Taken together, the above studies point to a prominent role for A1 in
physiological auditory stream segregation (but for a possible role of the
cochlear nucleus, see also Pressnitzer, Sayles, Micheyl & Winter 2008).

However, to really appreciate the importance of A1 in the processing
of repetitive sound stimuli, one needs to pay close attention to its input,
originating in the ventral medial geniculate body (MGBv) of the thalamus,
and how this input is transformed on its way to cortex. The next section
is dedicated to this topic.

1.2.1. Thalamocortical interface

Several studies in different preparations have shown that the response to
amplitude-modulated stimuli is different in thalamus and auditory cortex.
For example, both Creutzfeldt, Hellweg & Schreiner (1980) and Miller,
Escabí, Read & Schreiner (2002) found that thalamus can respond to
temporal modulation approximately twice as fast as that which elicits
reliable responses in cortex (the classical results of the former study show
that response falls off by half at rates of about 50 Hz in thalamus, but at
only 25 Hz in cortex).

The shape of this thalamocortical ‘filter’ can be either low-pass or
band-pass (Creutzfeldt et al. 1980, Kowalski, Depireux & Shamma 1996,
Eggermont 1999, Kilgard & Merzenich 1998b, Kilgard & Merzenich 1999,
Miller et al. 2002), differing across neurons and/or regions of the auditory
cortex. Illustrative of this is figure 1.5, which shows the mean temporal
modulation transfer function (tMTF) found in A1 by Kilgard & Merzenich
(1999) (upper panel), and its standard deviation (lower panel). While
the mean has a low-pass shape, the s.d. indicates a variety of individual
tMTF shapes across neurons. Here, A1 responsiveness falls off even faster
than in Creutzfeldt et al. (1980), but in general one may state that A1
responsiveness shows a marked decline in the range of 10 Hz to 25 Hz,
approximately.
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Figure 1.5: Illustration adapted from figure 5A and 5B in Kilgard &
Merzenich (1999). The upper panel shows the mean normalized temporal
modulation transfer function in A1, while the lower panel shows the
standard deviation. While the mean showed a low-pass shape, the s.d. in
the repetition rate range of about 4-12 Hz was always above 50% of the
mean, peaking at above 100%, indicating a diversity in ‘filter’ shapes.

The fact that there is such a marked difference between responses at
the thalamic and cortical levels renders responses in auditory cortex, and
specifically in A1, particularly important in the study of neurophysiological
correlates of tone sequence perception. In fact, this is easily realized
when one looks at results from relevant psychophysical studies, such as
figure 1.1 (van Noorden 1975), where the extremes of both the TCB
and FB boundaries are at repetition rates of about 7 Hz and 17 Hz,
respectively — the upper limit coincides approximately with the sharp
decline of responsiveness in A1 we just highlighted.

A further issue of importance regarding thalamocortical input is how
it is projected to the cortex. Addressing this, Miller, Escabí, Read &
Schreiner (2001) made extracellular recordings in A1 thalamorecipient
layers (LIIIb/LIV) and in the cat MGBv, with the objective of quantifying
connectivity between the subcortical nucleus and the cortical area measured.
When analysing convergence of thalamacortical projections, they found
that if a ThC pair of neurons differed by more than 0.25 octaves in their
BF, functional connections could not be observed. When instead looking
at the convergence from the far edge of the receptive fields of thalamic
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cells, they found very little functional connectivity for edges farther than
1/3 of an octave from the cortical cell’s BF (in our study, as we shall see,
we use this upper limit figure as the basis for our exploration of the effects
of thalamocortical axonal spread, denoting the same by ν).

Furthermore, Miller et al. (2001) assessed the strength of the correlations
(connections) using the measure of contribution, which is defined as the
fraction of cortical spikes immediately preceded by a thalamic spike (1-10
ms lag). Obtaining a mean correlation strength of 0.045, they conjectured
that about 20-25 thalamic inputs are required to fully activate a cortical
cell. This number is similar to that found by Wang et al. (2010), who
took a close look at thalamic drive of cortical responses (experiments
and simulations). They found that there are 20-60 simultaneously driven
thalamocortical synapses. The optimal corresponding theoretical range,
when the reliability per spike was most energetically efficient, was found to
be 20-40 ThC synapses active within a time window of 6-8 ms after stimulus
onset. Interestingly, Bruno & Sakmann (2006) reach similar results in the
somatosensory system. Seeing as there is some agreement on these numbers
in the literature, we shall base our detailed model’s thalamocortical input
on them (see chapter 3).

Returning to Miller et al. (2001), they also found that inhibitory features
of thalamic receptive fields are not transmitted with great fidelity, from
which they concluded that (p. 157 in the paper)

...inhibitory [receptive field] subregions...are constructed or
at least strengthened intracortically.

From their paper it is not clear, however, whether this is brought
about by inhibitory to excitatory connections only, or also benifits from an
excitatory to inhibitory connection boost of intracortical inhibition.

Finally, Miller et al. (2001), finding temporal modulation preferences in
the cortex quite distinct from those of the thalamus (results which were very
similar to those we summarized above), conclude (as have others) that it
seems a functional transform is taking place between these two processing
stations. One obvious candidate responsible for this transformation is
synaptic depression, as we shall explore in the present work and others have
before us (e.g., Denham 2001, Elhilali, Fritz, Klein, Simon & Shamma 2004,
de la Rocha & Parga 2005). In the following section, we will review evidence
showing that ThC synapses are depressing and that these therefore probably
are responsible for the transformation observed at the ThC interface.
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1.2.1.1. Experimental evidence for thalamocortical depression

Gil, Connors & Amitai (1999) found that ThC synapses are strongly
depressing (more so than IC synapses) and that they have more release
sites or functional contacts, on average, than IC synapses (7 vs ∼ 2).
Further, their findings supported a distribution in release probabilities
across synapses, demonstrated earlier by others (e.g., Huang & Stevens
1997).

Much more recently, Viaene, Petrof & Sherman (2011) performed an
in vitro study on mice, showing that the MGBv sends input to A1 via
depressing synapses in LIV. This is called driving input in the article. In
contrast, LII/III get so-called modulating input, but not direct, driving,
input. More specifically, in LII/III all kinds of responses were present,
but the denominated Class 2 response was dominant (20 of 26 responses -
39 cells displayed no response at all). This was found to be synonymous
with the aforementioned modulating response. These responses display
small initial EPSPs (1-1.5 mV), paired-pulse facilitation and a graded
activation profile. Of the remaining six responses, four were mixed (at
low intensities they display paired-pulse depression, at higher intensities
they display paired-pulse facilitation) and two were Class 1 (i.e., driving
input). In LIV, in contrast, there were only Class 1 responses, exhibit-
ing large initial EPSPs (∼ 7.5 mV (A1), ∼ 15 mV (S1)), paired-pulse
depression and all-or-none activation profile. Additionally, in LIV there
was only ionontropic glutamate receptor activation, whereas in LII/III
also metabotropic glutamate receptors were active. The EPSP size was
correlated with synaptic bouton sizes, i.e., in LII/III boutons were smaller
than in LIV.

Many more studies have shown that there is depression in thalamocor-
tical synapses (e.g., Thomson & Deuchars 1994, Rose & Metherate 2005).
Given all this data, in our search for a mechanism situated at the thalam-
ocortical interface, able to explain the auditory streaming correlate data
(chapter 2), we focussed increasingly on synaptic depression. Thus, we
came across two modelling studies addressing related issues using a leaky
Integrate-and-Fire model with stochastic synaptic depression, something
we had not contemplated up to that point. Specifically, de la Rocha &
Parga (2005) showed how, when a cortical neuron’s membrane potential is
situated below but sufficiently close to threshold (called the Fluctuation-
Driven Regime, FDR), the added variance in the thalamic input current
due to employing stochastic depression increases the output rate of that
neuron. This effect is enhanced by correlations across the neuron’s affer-
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ents, but only in a limited range of input rates, creating a non-monotonic
response in the neurons. Later on, de la Rocha & Parga (2008) used the
same kind of model in a study of somatosensory cortex neurons’ response
properties when presented sequences of identical stimuli as input, study
which inspired us to explore whether we could, adopting their settings
in our conductance-based model with a minimum of parameter changes,
reproduce their results and then expand upon them by simulating the
response to auditory streaming type sequences of non-identical stimuli
(tones). The results of this venture are detailed in chapter 2.

1.2.2. Neurophysiology of the primary auditory cortex
(A1)

As we indicated at the outset, one important goal of our modelling
has been to investigate the open question of what the connectivity of
the A1 circuit (particularly of layer IV) may be. Once we decided to go
about this by concentrating on the modelling of the differential suppression
phenomenon, we of course needed to base our models firmly on neuro-
physiological data which could elucidate the relative role of inhibition and
excitation in intracortical processing of tonal stimuli. This took on partic-
ular importance once we had found a minimal novel mechanism explaining
differential suppression (chapter 2), as we looked into the robustness of our
solution to the introduction of intracortical connectivity (chapter 3). We
here review the most important literature pertaining to this issue.

1.2.2.1. Inhibitory and excitatory response to brief stimuli

Wehr & Zador (2003) look at in vivo whole-cell responses of A1 cortical
neurons (anaesthetized rats) to the free-field presentation of pure tones
(typically 25 ms duration, with a 5 ms 10-90% cosine-squared ramp). The
question they address is which synaptic mechanisms are responsible for the
tuning of individual neurons to intensity and frequency of input sounds.
Specifically, they look at excitatory and inhibitory receptive fields and their
relationship and interactions.

Several studies predating this one (references 1-5 in their study) had
indicated, using extracellular methods, that excitation and inhibition were
organized in a so-called mexican hat fashion - excitation in the receptive
field centre and inhibition laterally. The results of Wehr & Zador (2003)
counter that result, showing that there exists a co-tuning of excitatory
and inhibitory conductances evoked in any one cell with changing stimulus
parameters (frequency, intensity). The ratio of inhibition to excitation
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tended to be fixed for a particular neuron (across the tonotopic axis),
but when averaged across cells it varied (0.74 ± 0.07). This ratio value
might in reality be a slight underestimation, since the authors state in their
supplementary material that cable attentuation effects cause misattribution
of a portion of the synaptic conductance to excitation.

As expected from the existence of a spiking threshold, the spiking had a
narrower tuning (onesided range slightly more than 2 octaves) than synap-
tic conductances (onesided range appr. 3 octaves). Typically, excitation
evoked a transient spiking response, which was quenched by inhibition
after a few milliseconds.

Whereas Wehr & Zador (2003) argue that the dependence of the neu-
rons’ response on frequency can be explained solely by the presence of
tuned excitation (added inhibition would simply lower the responses and
slightly sharpen the tuning), they recognize that the long time course
of two-tone (forward) suppression (Calford & Semple 1995, Brosch &
Schreiner 1997) can not be accounted for by their data (inhibition too
brief). They speculate that such suppressive effects might be inherited
from pre-synaptic neurons or be due to short-term plasticity, not specifying
which kind (thalamocortical or intracortical; later addressed by the same
authors in Wehr & Zador 2005).

Looking at intensity tuning, Wehr & Zador (2003) conclude that in-
hibition is also not needed to explain the non-monotonic dependence of
responses on increasing intensity, which is rather seen as inherited from
synaptic inputs. Thus concluding that inhibition is necessary for neither
frequency nor intensity tuning, they focus on its tendency to sharpen spike
responses by always following excitation after a brief delay. Analyzing this
delay, they arrive at an average of 2.4± 3.6 ms across stimulus conditions,
and a clustering of most values in the 1 to 4 ms range. Whereas this range
was quite stereotypical, the onset latency of the excitation varied, which
indicated that (p. 444 in paper) ”inhibition was locked to the onset of
excitation rather than to the stimulus itself”.

Interestingly, Wehr & Zador (2003) highlight the fact that the study
by Zhang, Tan, Schreiner & Merzenich (2003) proposes long and variable
delays between excitation and inhibition as a possible explanation of
frequency-modulated (FM) sweep selectivity in the auditory cortex. This
of course contrasts widely with the finding here of short stereotypical
delays, and they speculate that this could be due to the difference in
stimuli (pure tones versus FM sweeps). Finally, by simulating a simple
Integrate-and-Fire model the authors demonstrate that if excitatory and
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inhibitory conductances are balanced on average, this can indeed be a
possible explanation of the apparently random firing of cortical neurons
(the jitter in the output was larger than in the input), as proposed by
Shadlen & Newsome (1998). However, using the same model, they also
demonstrate that when imposing a balance such as that seen in their results,
with a representative delay of 2.5 ms, one gets a highly transient spiking
response where the input jitter is actually larger than that in the output.

In conclusion, they state that their data suggest that balanced inhibi-
tion can sharpen neural responses in time, thereby actually reducing the
randomness of cortical activity.

Notably, Tan et al. (2004) conducted a similar study, published shortly
after Wehr & Zador (2003), and while also demonstrating co-tuning of
excitation and inhibition with input frequency, they found that inhibition
had a much longer duration than excitation, in stark contrast with the
results described above. Tan et al. (2004) noted this discrepancy and
ascribed it to either age difference of the experimental animals in the two
studies (older in the later study) or the fact that Wehr & Zador (2003)
used ketamine anaesthesia, while Tan et al. (2004) employed pentobarbital,
known to act as an agonist on Gamma-AminoButyric Acid A (GABAA)
receptors (Nicoll, Eccles, Oshima & Rubia 1975), thus increasing the
duration of inhibition. In fact, this effect of pentobarbital is confirmed by
Wehr & Zador (2005) in their subsequent study on forward masking in rats
(they primarily use ketamine, but then demonstrate how the duration of
inhibition is prolonged by up to 643 % when using pentobarbital), casting
further doubt on these long-lasting inhibitory currents of Tan et al. (2004).

Higley & Contreras (2006) found co-adaptation of excitatory and in-
hibitory conductances in LIV in rat primary somatosensory cortex (in vivo,
anaesthetized). This was most probably caused by thalamocortical depres-
sion, which in that case was equally strong for both fast-spiking inhibitory
(FS) and regular-spiking excitatory (RS) cells. Inhibition measured in RS
cells was found to be 2.5-3 times as strong as excitation, interestingly a
number similar to that found in A1 by Wehr & Zador (2005).

Cruikshank, Lewis & Connors (2007) looked at the underlying synaptic
basis for feed-forward inhibition in LIV in primary somatosensory cortex
of mice (in vitro). They found that inhibitory interneurons respond more
strongly than excitatory cells to thalamic input. This was shown to be due
to differences in the cell types’ synaptic properties, rather than in their
intrinsic membrane properties. Specifically, although input resistance was
greater in FS cells than RS cells, this was more than compensated by much
stronger excitatory thalamic connections onto FS cells than onto RS cells
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(mean value more than seven times greater). Furthermore, FS cells have
greater innervation from thalamus than do RS cells, as well as slower decay
kinetics.

Liu et al. (2007) use a novel approach to selectively silence intra-
cortical currents while keeping thalamocortical currents intact. It has
been known for some time that the GABAA agonist muscimol can cause
presynaptic inhibition by activating GABAB receptors (Yamauchi, Hori &
Takahashi 2000), and specifically it was shown in somatosensory cortex of
mice that such receptors exist in the thalamocortical pathway (Porter &
Nieves 2004). However, Liu et al. (2007) argued, earlier silencing studies had
nevertheless employed muscimol to silence the cortex, thus inadvertently
adding a GABAB inhibitory component to the thalamocortical current.
To remedy this, the authors came up with a so-called pharmacological
cocktail, which combined muscimol with the specific GABAB antagonist
SCH50911 in order to counteract the mentioned effect of muscimol on
GABAB receptors. They were thus able to, more cleanly than ever be-
fore, separate thalamocortical from intracortical contributions to the input
evoked by tones in A1 of anaesthetized rats, as recorded in vivo. They
found that the former inputs determine the width of receptive fields in A1,
whereas the latter are almost solely responsible for the actual frequency
tuning along the tonotopic axis, shaping it with strong recurrent excitation.

As we shall see, the Liu et al. (2007) study led us to look into using
thalamocortical axonal spread (ν> 0) in our simulations, thereby flatten-
ing the receptive fields in A1 (in our feed-forward model of chapter 2)
and rendering intracortical recurrent excitation, and to a lesser extent,
intracortical inhibition (Wu et al. 2008), crucial in shaping those receptive
fields to re-establish the fit to streaming correlate data obtained when not
using ν> 0 (chapter 3). This issue was well illustrated by Wang (2007)
when reviewing the study by Liu et al. (2007) (see reproduced figure 1.6).

Later, Wu et al. (2008) showed that the purported balance between
inhibition and excitation in the cortex is at best approximate, in some
contrast with results in Wehr & Zador (2003). In particular, performing
in vivo whole-cell recordings in rat A1 to measure the response to 25 ms
pure tones, they found that the frequency tuning curve was broader for
inhibitory input than for excitatory input. This led to a sharpening of
membrane potential responses of cells at the preferred frequency, medidated
by the relatively stronger inhibition on the flanks of those cells’ receptive
fields. The results of that study, taken together with those of Liu et al.
(2007), constituted an important body of neurophysiological constraints in
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Figure 1.6: Adapted from figure in Wang (2007), this illustration shows
how having a broad spectral input to any one neuron in A1 could be
compatible with that same neuron displaying quite a narrow frequency
tuning in its responses, by way of a strong recurrent excitation generated
intracortically.

setting up our elaborate conductance-based model, contributing decisively
to us finding a plausible network solution able to reproduce a number
of results from experimental literature on A1 (see chapter 3). We will
therefore return in more detail to the results of these two studies in that
chapter, when describing how said network was set up.

Happel, Jeschke & Ohl (2010) address the issue of temporal and spatial
(columnar) organization of responses in A1 to thalamic input. They
qualitatively confirm the cortical boost (in amplitude and duration) seen
by Liu et al. (2007) and find that horizontal excitatory connections are
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both long-range (LII/III) and short-range (LIV). This latter result is of
importance, since it confirms the sensibility of setting our intracortical
excitatory spread (λE ) to a low value, in order to reproduce other results
from the literature, when we model the full tonotopic axis of A1’s LIV
(chapter 3).

Volkov & Galazjuk (1991) characterized responses of different cells in
A1. They found phasic responses primarily in cells situated in layers III and
IV. These cells also displayed a narrow frequency responsiveness, which the
authors found to be shaped both by feed-forward and recurrent inhibition.
Gittelman & Pollak (2011) show that the relative timing of inhibition and
excitation is not as important as other aspects of the EPSPs elicited by
sensory input, such as amplitude and EPSP shape, in determining the
direction selectivity of a cortical cell. While this result contrasts with those
of Wehr & Zador (2003), who argue for a stereotypical delay of 1-4 ms
before the appearence of inhibition, it agrees more with Tan & Wehr (2009),
whose values have a wider range and in some cases are even negative. In
light of this, we did not pursue a more exact fit of a stereotypical delay
when setting up our network (see chapter 3), but rather emphasized the
range and relative strength of excitation and inhibition.

Isaacson & Scanziani (2011) recently reviewed what is currently known
about inhibition in cortical circuits. Important issues they raise are, for
instance, that inhibitory (GABA-releasing) neurons comprise about 20
% of all cortical neurons. Inhibitory neurons inhibit principal cells and
are excited by the same, in a reciprocal connection pattern (feedback or
recurrent inhibition). Afferent fibers from other parts of cortex or from
subcortical nuclei, such as the thalamus, make excitatory connections onto
both principal cells and interneurons. Some authors argue that these
afferent connections are stronger onto interneurons than onto principal
cells, but they typically studied somatosensory cortex (Gabernet, Jaddhav,
Feldman, Carandini & Scanziani 2005, Cruikshank et al. 2007, Daw, Ashby
& Isaac 2007, Hull, Isaacson & Scanziani 2009) (but for similar results in
A1, see Levy & Reyes 2012, Schiff & Reyes 2012). As we shall see, this
issue is important when attempting to reproduce different results from the
neurophysiology literature on A1 in one and the same model (chapter 3).

Isaacson & Scanziani (2011) further point out that interneurons in
turn inhibit principal cells (feed-forward inhibition), and that GABAergic
interneurons inhibit each other, the latter connections being strongly re-
ciprocal. We specifically include these inhibitory-to-inhibitory connections
in our elaborate network model (chapter 3), and manage to reproduce
recent neurophysiological results with these present, in contrast with other
studies that do not include such connections (de la Rocha et al. 2008, Levy
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& Reyes 2011). Finally, the authors of the review of cortical inhibition
emphasize that the ‘balance’ between inhibition and excitation is only
approximate, and is useful as a guiding concept but is not to be taken
literally in terms of conductance shapes, for instance. This is in line with
our reasoning in chapter 3 on this very issue.

1.2.2.2. Neurophysiological two-tone/-click forward masking

Calford & Semple (1995), in an in vivo study of two-tone suppres-
sion carried out in A1 of anaesthetized cats, found that all neurons that
had a non-monotonic response-level function also had a non-monotonic
masking-level function, implying that masking inhibition is dependent on
the excitatory profile. Forward masking inhibition is probably generated at
a high level of the auditory pathway, possibly at the cortical level. For most
cells in the study, a 50 ms masker tone at CF elicited clear suppression
of the response to a subsequent probe tone at CF, at probe delays <=
140 ms. Notably, the time between each masker-probe stimulus pair is not
given in the study, which means one can not be sure whether recordings
of responses were made with neurons in their habituated or recuperated
state.

Brosch & Schreiner (1997) also studied forward masking in the primary
auditory cortex of cat, using pure tones as stimuli. They found that
the frequency range of inhibiting masker stimuli increased with masker
intensity, i.e., the so-called masker tuning curve was V-shaped, like most
receptive fields. The maximal duration of forward inhibition was in the
range of 53 - 430 ms, with an average of 143 ms and a standard deviation of
73 ms. Their results show that cortical cells’ excitatory response to stimuli
depends on the temporal context of those stimuli. The more successive
stimuli differ in spectral content, the higher the rate of repetition at which
the neurons respond.

This issue was further looked into by Wehr & Zador (2005), using noise
stimuli and recording in rat A1. They found that both spike responses and
synaptic inputs remain suppressed for hundreds of milliseconds (to a 2nd
click after 512 ms, neurons still only responded at 80% of their response
to the first click), and since inhibitory conductances in their study rarely
lasted longer than between 50 and 100 ms, the authors concluded that
forward suppression must involve other mechanisms than inhibition, such
as synaptic depression at either thalamocortical or intracortical synapses.
It was further found that for click intervals of less than 128 ms, the
response to the 2nd click was almost completely suppressed, on average.
Correspondingly, conductances (exc./inh.) were suppressed for the same
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intervals, further supporting an alternative mechanism to that of inhibition
as responsible for forward masking. The time course of recovery was
very similar for exc. and inh. conductances, on the one hand, and spiking
activity on the other, which possibly points to a thalamocortical mechanism.

Two issues make this study different from other forward masking studies:
they use clicks instead of tones and they present them at a higher intensity,
102 dB (other studies use about 60-70 dB). The fact that they use clicks is
important for two reasons (in comparison to pure tones):

Neighbouring A1 neurons get more input since a wider portion of
MGBv is activated. This can contribute to the response of the
measured neuron through intracortical connectivity, even without
ThC spread.

The measured A1 neuron gets more input from neighbouring MGBv
neurons, if there is ThC spread, which augments response.

The above observations are important in case ThC synaptic depression
is the main mechanism for forward masking, since both mechanisms of
increasing input will increase depression, both its speed and its amount.
This means one cannot compare directly to the other studies’ results.
Another complicating factor is that other studies used barbiturates instead
of ketamine, substantially increasing the duration of inhibitory currents
evoked by the tones. While this extra suppression might in fact make
the studies more comparable, it further muddles exactitude. Finally, it
is important to note that the time between click pairs is long enough for
neurons/synapses to recuperate completely, which contrasts with other
studies where responses are seen as habituated due to shorter inter-pair
intervals (e.g. Brosch & Schreiner 1997).
All these considerations in the end led us to focus on Wehr & Zador (2005)
in our efforts to reproduce and explain neurophysiological forward masking
data in chapter 3.

1.3. Previous relevant modelling studies

There are several modelling studies carried out by others, that are
relevant to this work. In the following, we will make a brief summary of the
most important ones. We first include a fundamental study on the nature
of synaptic depression (Abbott, Varela, Sen & Nelson 1997), because of its
high relevance to our work (although technically referring to intracortical
synapses, its results are equally valid for thalamocortical ones). Thereafter,
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we describe the main studies focussing on A1, in two subsections.

In a combined experimental and modelling study, Abbott et al. (1997)
investigated the effect of depression in afferent synapses on the response of
a neuron. For a constant input rate, r, they found that the steady-state
amplitude of the neuron’s response was approximately proportional to
1/r, for large r. With the added assumption of synapses adding linearly,
this yielded that at steady-state, the total synaptic response of the neu-
ron becomes independent of the constant input rate. However, similar
to the psychophysical phenomenon described by the Weber-Fechner law
(Fechner 1880), they found that the neuron maintained its sensitivity to
sudden changes in the input rate, a change ∆r evoking a response propor-
tional to ∆r/r. In other words, it produced a transient synaptic response
proportional to the change in percent of the input rate.

Abbott et al. (1997) further showed that with depression, a 50% sinu-
soidal modulation of the input rate in half of a neuron’s afferents (the other
half’s input being constant and of a markedly different rate) is reflected in
its response, regardless of the absolute rate of the input in question. In
contrast, without depression, small absolute modulations (e.g., 50% of 10
Hz, i.e., 5 Hz) presented simultaneously with a high constant rate in the
other half of the afferents, are not reflected in the output.

Finally, Abbott et al. (1997) demonstrated that the tuning of a neuron’s
response to an arbitrary sensory attribute (x; such as frequency in A1) is
degraded but not eliminated by adding depression to its afferents. Simul-
taneously, though, another effect of depression is to increase sensitivity to
sudden changes in x. This, the authors explain, is because synapses that
previously received low input rates and are relatively undepressed, can
respond more vigorously to a transient change in input rate. In addition,
they found that with depression, synchronous uncorrelated rate changes
across many afferents produced a change in synaptic conductance that was
independent of the number of afferents, n. In contrast, the same synaptic
response falls off as 1/

√
n without depression.

1.3.1. Existing models of differential suppression in A1

Kanwal et al. (2003) conducted the first modelling study of this phe-
nomenon, combined with neurophysiological experiments, in bats. They
claimed that a model network incorporating lateral and especially recurrent
inhibition was sufficient to explain their own experimental results as well
as those of Fishman et al. (2001), and they described their mechanism
as a purely forward masking affair, similarly to the argument of Fishman
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et al. (2001) (at the BF fA site, A tones evoke more excitation, which
in turns evokes more recurrent inhibition, than do B tones — thus, the
masking of B responses by A responses is more marked than vice versa,
eventually suppressing responses to B tones at FA). However, we intend to
show in the present study that this is not the whole story, as using only
inhibition as a mechanism would fail to account for other results with the
same network (notably, the time course of recovery in physiological forward
masking; Wehr & Zador 2005). We note, however, the experimental result
of Kanwal et al. (2003) that the activity of a single neuron is not enough
to (re-)produce neural correlates of auditory streaming experimentally
(specifically, differential suppression), whereas summing the activity of on
the order of 10 neurons is sufficient.

Later on, Denham & Winkler (2006) proposed a neural model with
synaptic depression in its thalamocortical synapses (first proposed - see
next section - in Denham 2001), which addressed the neural correlates of
streaming as manifested in Fishman et al. (2004). While reproducing some
data from that experimental paper, their model neglects to exhaustively
explain the mechanism behind differential suppression. In particular, the
view of the authors is that differential suppression is evidence of physiolog-
ical forward masking (from one tone to the next), coinciding with the view
of both Fishman and coauthors and Kanwal et al. (2003). The novelty of
their study was to propose that this forward masking was produced by
thalamocortical depression, and while the study by Denham & Winkler
(2006) was therefore an important inspiration for us, we will go on to show
in our work that this view of differential suppression as a manifestation
of physiological forward masking is not an adequate explanation for the
phenomenon.

1.3.2. Existing models of other aspects of A1 response
properties

Notably, there exist modelling works looking into the issue of the
thalamocortical interface transformation using synaptic depression in the
thalamic afferents of A1. The first one of importance was Denham (2001),
which qualitatively reproduced the data on this found by both Creutzfeldt
et al. (1980) and Kilgard & Merzenich (1999). In that same study, Denham
(2001) demonstrated that synaptic depression can explain several other
phenomena found in both neurophysiological and psychophysical studies,
most notably results on forward masking (Brosch & Schreiner 1997, Kidd &
Feth 1982). In particular, it was shown that synaptic depression could ac-
count for the time course of forward masking and that the model’s depletion
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of thalamocortical synaptic resources during a tone explains the increased
masking caused by longer tones (found in psychophysical experiments by
Kidd & Feth 1982). Denham (2001) further hypothesizes that this same
depletion could explain masking seen even when the masker did not evoke
a spike response (Brosch & Schreiner 1997). An important motivation for
the Denham (2001) study was the so-called resolution-integration paradox,
and in the conclusions it is suggested that synaptic depression at the
thalamocortical interface is a suitable candidate mechanism for explaining
this, as it can maintain onset responses (resolution) while also providing
the long time-constants needed for integration across time. This issue was
again addressed in the study we turn to next.

In a combined experimental and simulation study, Elhilali et al. (2004)
sought an answer to the question how it is possible for the response of
auditory neurons to, on the one hand, follow very fast transients in the
input (up to 200 Hz), but on the other hand, be limited in its response
to slower modulations of about 20-30 Hz (i.e., the filtering mentioned
earlier). In their experiments, using a stimulus exhibiting fast oscillations
‘riding’ on top of slower ones, they first showed that more than 70% of neu-
rons (their response measured extracellularly) exhibited this phenomenon.
They then proceeded to show that a model of synaptic depression (with
a very fast time constant, τD= 65 ms) and/or a simple cortical network
of feed-forward thalamic excitation and intracortical inhibition can in
principle exhibit this dual behaviour. This model served as part of the
inspiration for using synaptic depression in modelling differential suppres-
sion in this work, although we of course emphasize more the aspect of
biophysical realism in our models, especially in the conductance-based ones.

Saeb, Gharibzadeh, Towhidkhah & Farajidavar (2007) employ a three-
layer feed-forward network of Integrate-and-Fire neurons to model changes
in responses of the primary auditory cortex to sequences of tones, as seen
in various experiments on auditory behavioural learning (Bao, Chang,
Woods & Merzenich 2004, Kilgard, Pandya, Vázquez, Gehi, Schreiner &
Merzenich 2001). The layers represent the subthalamic, thalamic and cor-
tical levels of processing, respectively, and are connected by simultaneously
depressing and facilitating synapses. The authors show that the cut-off
frequency of the cortical neuron’s frequency response can be moved up
and down by varying the parameters regulating the level of facilitation
in synapses of the two layer interfaces of the model. While this study is
interesting and related to what we study through the use of depression
and sequences of noise bursts as stimuli, it addresses a different issue,
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behavioural learning in animals, which occurs at longer time scales with
which we do not concern ourselves here.

In a different study, Loebel et al. (2007) apply a rate model to the study
of various phenomena seen in A1, in particular excitation and inhibition
co-tuning and two-tone forward masking. They make approximate fits of
these two phenomena using intracortical depression, but never attempt to
model differential suppression per se. We discuss their study further in
Discussions and Conclusions (chapter 5).

Furthermore, de la Rocha et al. (2008) look at the underlying network
architecture’s influence on response tuning in A1, performing neurophysio-
logical experiments and simulating a tonotopically organized rate model of
A1. The authors essentially show that depending on the model parameters,
particularly those governing the characteristics of the thalamic response
and the inhibitory and excitatory input it gives rise to in cortex (displaying
either co-tuning of excitation and inhibition or lateral inhibition, their
so-called CON and LIN network setups, respectively), one may get broader
(CON) or narrower (LIN) frequency tuning of responses, different temporal
response profiles and monotonic (CON) or non-monotonic (LIN) depen-
dence of spiking responses on input intensity. de la Rocha et al. (2008)
cover a lot of ground with which we do not concern ourselves here, such as
the intensity-tuning of cortical responses, which displays a variety of shapes
in the literature. However, they also address some things overlapping with
our study, notably the nature of exitatory and inhibitory responses in A1,
and we studied their work in some depth while developing our own.

Finally, very recently, a few other relevant studies came out (Levy &
Reyes 2011, Schiff & Reyes 2012), further studying the cortical microcircuit
of A1 with emphasis on LII/III. We will briefly discuss these in chapter 5
(Discussion and Conclusions).





2 Proposed mechanism for
explaining differential
suppression

Part of the work of this chapter was presented by the author of this
thesis at the Eighteenth Annual Computational Neuroscience Meeting, held
in Berlin, Germany in July 20091, and a paper is about to be submitted
for publication2.

2.1. Introduction

Neurons in the ventral medial geniculate body (MGBv) provide the
main input to the primary auditory cortex (A1), in particular to layer IV
(Viaene et al. 2011). While neurons in MGBv are able to sustain responses
to sounds repeated regularly at rates up to 100 Hz, A1 practically fails
to respond when the presentation rate (PR ) goes much beyond 20 Hz
(Creutzfeldt et al. 1980, Kilgard & Merzenich 1998a, Kilgard & Merzenich
1999, Eggermont 1999, Denham 2001, Eggermont 2002, Zhou & Merzenich
2008), corresponding to the perceptual boundary between rhythmic and
continuous sounds.

Furthermore, at presentation rates below 20 Hz and for sound se-
quences composed of two tones alternating in frequency (see figure 2.1),
the A1 neurons show a frequency-selective filtering known as differential
suppression (DS). This filtering produces a refinement of the A1 neu-
rons’ frequency receptive fields, in such a way that the neurons become
more selective to a tone’s frequency as the tone’s PR is increased (Fishman
et al. 2001, Kanwal et al. 2003, Fishman et al. 2004, Bee & Klump 2004, Bee
& Klump 2005, Micheyl et al. 2005). This phenomenon is believed to be a

1Abstract published: Montbrió, Larsson, Almeida & Deco (2009)
2Montbrió, Almeida, Larsson & Deco (2012)
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neural correlate of auditory stream segregation, the process by which sound
stimuli are organized into perceptual sound streams, reflecting individual
sound sources (Bregman & Campbell 1971, Bregman 1990).

DS is measured by recording the neural responses of an ensemble
of neurons of a particular best frequency (BF) in A1 to a sequence of
alternating BF and non-BF tones, and then calculating the ratio of the
non-BF tone response to the BF tone response. The neurophysiological
basis of the DS phenomenon is poorly understood, and it is the subject of
intense experimental investigations (Snyder & Alain 2007, Micheyl, Carlyon,
Gutschalk, Melcher, Oxenham, Rauschecker, Tian & Wilson 2007, Elhilali
et al. 2009, Bidet-Caulet & Bertrand 2009, Shamma & Micheyl 2010,
Shamma, Elhilali & Micheyl 2011). In contrast, computational models
of the DS phenomenon in A1 are scarce, and are either not consistent
with recent neurophysiological experiments (Kanwal et al. 2003), or fail
to explain the neuronal mechanisms responsible for the DS and to fully
replicate experimental results (Denham & Winkler 2006).

Specifically, the suppression of non-BF responses has been interpreted
in previous work as evidence of physiological forward masking, produced
either by inhibition (Fishman et al. 2001, Kanwal et al. 2003, Fishman
et al. 2004) or by synaptic depression (Denham & Winkler 2006). According
to this interpretation, during the presentation of the present tone in a
sequence, A1 neurons are suppressed differentially depending on whether
(only) the previous (‘masker’) tone in the sequence elicited strong (BF
tones) or weak (non-BF tones) spiking activity in their neighbouring cells
(indirectly related both to inhibition and depression level).

However, recent experimental results using the forward masking exper-
imental paradigm cast doubts on the role of inhibition, suggesting that
suppression cannot come solely from cortical cells. Firstly, although in-
hibition could in principle contribute to the suppression observed within
up to 100 ms after stimulus onset, since forward masking lasts more
than 500 ms it has to be largely attributed to other mechanisms, such
as synaptic depression (Wehr & Zador 2005). Secondly, inhibition mea-
sured in A1 intracellular recordings often lacks the necessary properties
to support strong lateral inhibition: neurons most often receive balanced
excitatory and inhibitory inputs activated by sensory stimulation (Wehr &
Zador 2003, Zhang et al. 2003, Tan et al. 2004, de la Rocha et al. 2008, Wu
et al. 2008, Tan & Wehr 2009). Thirdly, A1 LIV neurons are mainly
driven by strong thalamic excitatory input, which results in robust spike
responses (Liu et al. 2007, Wu et al. 2008, Viaene et al. 2011). This in
combination with evidence for thalamocortical depression (e.g., Thomson
& Deuchars 1994, Gil, Connors & Amitai 1997, Rose & Metherate 2005)
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points to a role for ThC depression (Denham & Winkler 2006).
Moreover, mechanistic explanations of the DS phenomenon based on

forward masking overlook a relevant part of the stimulus’ history, since they
consider the neural response to the incoming tone to be affected only by the
response to the preceding tone. Tones in the DS phenomenon are separated
by silent gaps of at most 200 ms, but it is known that auditory stimulus
history strongly contributes to shaping A1 neural responses over periods of
time up to seconds (Ulanovsky, Las, & Nelken 2003, Ulanovsky, Las, Farkas
& Nelken 2004, Wehr & Zador 2005, Asari & Zador 2009). Furthermore, DS
is observed in the steady-state of the neural responses evoked by continuous
tone sequences (Fishman et al. 2004). These conditions strongly differ
from those of the forward masking experimental paradigm, where masker
sounds are presented after long periods of silence.

Here we propose a feed-forward mechanism for DS in the primary
auditory cortex, based on thalamocortical synaptic depression and the
threshold-nonlinearity of the A1 neurons’ response. Thalamocortical synap-
tic depression is responsible for the suppression of neuronal responses at high
stimulation frequencies in the auditory (Eggermont 1999), and somatosen-
sory (Chung et al. 2002, Garabedian, Jones, Merzenich, Dale & Moore 2003)
cortices. These filtering properties have been the focus of analysis of a
number of computational studies (Eggermont 1999, Denham 2001, Loebel
& Tsodyks 2002, Elhilali et al. 2004, de la Rocha & Parga 2008). Addition-
ally, there exist theoretical works on forward masking in A1 based both
on intracortical (Loebel et al. 2007) and thalamocortical (Denham 2001)
synaptic depression. However, which are the synaptic, neuronal and net-
work mechanisms shaping the neurons’ frequency receptive fields during
repetitive auditory stimulation using two tones of different frequencies?
This is a very relevant auditory system research question, which is at the
basis of the auditory stream segregation problem.

To address this issue, we chose to focus on the few essential ingredients
sufficient for a model to be capable of reproducing the experimental data. In
order to do that, we necessarily relaxed the demands on neurophysiological
accuracy of the model, both in terms of its constituent parts and, to some
extent, regarding the values of parameters that we did include in the model.
Doing this required a process of trial and error, the result of which was a
feed-forward model of an isofrequency patch of A1 consisting exclusively of
excitatory neurons, leaving out inhibitory neurons, the tonotopic extension
of cortex and intracortical connections. We find that with the joint effect of
the spiking threshold of neurons (providing non-linearity of responses), the
thalamocortical depression (establishing the steady state), the tonotopic
organization of the thalamic response (making response in the modelled
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patch of A1 tonotopic as well, via ThC connectivity), and a gradual increase
or decrease of model response with experimental parameters (either by fiat
or through crossneuronal variability in responses, depending on the level
of modelling detail), we are able to reproduce the data of Fishman et al.
(2004) for short tones. Specifically, the threshold explains the decline of
response ratio with presentation rate; the depression explains the decline
in absolute response to any tone with increasing presentation rate; the
tonotopic organization of thalamic response explains the decline of response
ratio with increasing frequency difference between a sequence’s tones; finally,
the gradual change of model response with experimental parameters was
decisive in reproducing a smooth decline in both absolute responses and
response ratios with increasing presentation rate and frequency difference.
In the rate model this is simply imposed by design, through the use of a
linear f-I characteristic (or transfer function; see equation (A.2) in appendix
A) for the A1 population. However, when we simulate a whole population
of conductance-based neurons of Hodgkin-Huxley type (see appendix B),
this can not be imposed but relies instead upon a certain level of variability
across neurons (whether intrinsically through varying neurons’ resting
potential, or through a spread in the values of thalamocortical synapses’
parameters (e.g., U , τD, gCTh), which shape the effect of external inputs
impinging on neurons). We thus demonstrate that variability in the intrinsic
qualities of single neurons and synapses substantially contributes to the
solution.

In short, in this chapter we not only reproduce the data found by
Fishman et al. (2004), but analyse the underlying possible causes of the
DS phenomenon at the circuit level (something not attempted in, e.g.,
Denham & Winkler 2006) and arrive at a simple yet powerful mechanism
that explains how stream segregation correlates arise at the level of the
primary auditory cortex. We further confirm that our mechanism works as
claimed in three different models, one rate model and two conductance-
based models, without the need for intracortical connections. Finally,
we discuss possible shortcomings of these models when introducing more
realistic thalamocortical connectivity, laying the groundwork for addressing
these issues in chapter 3.

2.2. Methods

We now proceed to describe the methods employed in this chapter.
After first clarifying the most important nomenclature, we go on to present
the three different models employed, one a rate model and two based on the



2.2. METHODS 33

MGBv

A1 A

A

ThC synapses of
strength W(F,fA)

A A

B B

... ...B

B BA A

F=fA F=fB

F
iri

ng
 R

at
e,

 r

Tonotopic location, F

Time, t

F
iri

ng
 r

at
e 

at
F

=
f A

 in
 M

G
B

v

MGBv activity
profile, r(F,f)

Time, t

T
on

e 
fr

eq
ue

nc
y,

 f

TD

SOA=1/PR

Δf

TD

c

a b
SOA=1/PR

r(F,fA) r(F,fB)

fA

fB

Δf

Figure 2.1: Description of the model. a: Schematic representation of
the stimuli used to study auditory streaming, consisting of sequences of
alternating A and B pure tones of frequency f = fA,B, duration TD and
presentation rate PR . b: The temporal dynamics of the firing rate at any
particular location F of the thalamus (in this case F = fA) is modelled
as series of short (about 20ms) excitatory pulses of magnitude r(F, f). c:
Thalamic (MBGv) neurons connect to A1 neurons via thalamocortical
(ThC) depressing synapses. A certain tone of frequency f elicits a response
across MBGv modelled by the function r(F, f).

Hodgkin and Huxley (HH) single-cell model (Hodgkin & Huxley 1952). We
further describe how, in our modelling context, we choose to represent the
tone sequence stimuli typical of auditory streaming experiments. Finally,
we include a section on data analysis.

We emphasize already here that while we employ different models with
different specifics as to parameter values and level of modelling detail, as
described in the following, the schematic describing our model setup (see
figure 2.1) is equally valid for both the rate model and the HH models. In
addition, in appendix B the figures B.2 and B.3 illustrate specifics of the



34
CHAPTER 2. PROPOSED MECHANISM FOR EXPLAINING

DIFFERENTIAL SUPPRESSION

tonotopically organized HH model, but it is not employed until chapter 3.

2.2.1. Nomenclature

Throughout our modelling study of A1, we will deal with frequency
space at different ‘levels’ of description. First of all, there is the physical
world, in which complex tones, or more generally, sounds, are made up
of many frequency components. One such frequency component can be
considered a sinusoid oscillating at a single frequency. We will refer to
such a sinusoid, when presented in isolation, as a pure tone of frequency f .
Secondly, the (complex) sounds of the physical world are decomposed into
their underlying frequency components in the auditory system, starting
already at the level of the basilar membrane of the cochlea in the inner
ear. This decomposition is subsequently maintained at each level of neural
processing of the auditory system, including the MGBv and A1. This
phenomenon is referred to as tonotopy, being as it were a topographical
representation of the tonal (i.e., auditory) world in neuronal space. We
consider that the MGBv has such a tonotopic axis, a point on which is
represented by the symbol F . For instance, the tone f = fA evokes activity
in the thalamus which is centered at F = fA (its neuronal response is not
modelled explicitly, but represented by a rate function). Finally, at the
level of A1 there is also a tonotopic axis, along which locations are denoted
by ϕ. Maintaining these clear distinctions is important for formulating the
model with exactitude (see appendices A and B).

Using the above nomenclature, we will proceed to name some important
concepts. In the experimental study of the auditory streaming phenomenon
using series of alternating pure tones, one of the most important parameters
is the tones’ frequency difference, which we define as

∆f ≡ fA − fB. (2.1)

In our study we will keep fA, the frequency of the A tone, fixed, and vary
fB. It is important to note that equation (2.1) denotes an experimental
parameter, and not a distance on either of the two tonotopic axes we
consider in our model, at the thalamic and cortical levels of description.
Such distances are described in terms of F and ϕ , respectively. Again,
although these different quantities (f , F , ϕ) are obviously related, we
make these distinctions for reasons of exactitude of discourse.

We further define the tone presentation rate, PR , as the inverse of the
time elapsing between the onsets of subsequent tones in the sequence (the
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stimulus onset asynchrony, SOA, here given in seconds). Thus,

PR ≡ 1

SOA
. (2.2)

While PR strictly speaking has units of tones/s, we consider our sequences
to be (albeit finite) periodic functions and thus employ units of Hertz (Hz),
for simplicity.

Finally, although we use the term ‘tone’ to refer to external stimuli
presented to our models of A1, we never use actual tones to generate our
thalamic response rate, but consistently make use of Poisson processes
for this purpose. Essentially, we do this since the peripheral auditory
system has several processing centers below the thalamus which we do
not model either (a black box made up of black boxes, as it were), and
thus it was deemed easier to base the rate of response at the thalamic
level on data from literature and thereafter artificially generate that rate.
At an early stage of modelling, we did feed computer-generated sinusoids
(pure tones) into DSAM (Development System for Auditory Modelling;
see http://dsam.org.uk and O’Mard & Meddis 1997) and that software
subsequently generated auditory nerve spike trains, which we then fed
directly to our cortical model. However, since we also in that case skipped
many levels of processing in the ascending auditory system (notably the
cochlear nucleus and the superior colliculus), and seeing as results did not
differ noticeably when we used Poisson rates instead (data not shown),
we thenceforth decided to exclusively use the (more) artifically generated
Poissonian input.

2.2.2. Rate model

We implemented a rate model in the programming language C (based on
Wilson & Cowan 1972). All the details of this model, including analytical
results on synaptic depression (valid for any neural model we use), can be
found in appendix A. Here, we include a brief description.

We consider a model of a set of excitatory neurons in the primary
auditory cortex (A1). The model describes the mean firing rate of this
population of neurons and has a threshold-linear saturating input-output
function. The neurons have a certain best frequency f = fA (see gen-
eral model schematic in figure 2.1.a), and receive feed-forward exitatory
input from the ventral Medial Geniculate Body (MGBv), via a set of
thalamocortical (ThC) synapses that are considered to be depressing.

The auditory stimulus consists of a sequence of short tones alternating
in frequency, as depicted in figures 2.1.a and 2.1.b (see appendix A for a de-
tailed description and justification of the model). The sequence is presented

http://dsam.org.uk
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with presentation rate PR and frequency difference ∆f , corresponding to
the auditory streaming paradigm.

We further consider that the auditory stimuli alternately excite two
different regions of the MBGv. In particular, A tones excite a region
centered around F = fA in MBGv (red curve in figure 2.1.c), whereas
B tones excite a region centered around F = fB. These regions are highly
overlapping, since the streaming stimuli have small frequency differences
∆f ∼ [0, 1] octaves (McAdams & Bregman 1979), and the MBGv frequency
receptive fields span approximately 2-3 octaves at the sound intensities
typically used in the streaming experiments (∼ 60 dB) (see, e.g., Liu
et al. 2007).

2.2.3. Hodgkin and Huxley model

This model is described in detail in appendix B. Briefly, we made
our own implementation of conductance-based Hodgkin and Huxley type
neurons in the programming languages C and C++. We used kinetic
equations from the literature (Soto et al. 2006, Pospischil et al. 2008)
to define both regular-spiking (RS), excitatory, neurons and fast-spiking
(FS), inhibitory, neurons, all based on the Hodgkin and Huxley (HH)
formalism (Hodgkin & Huxley 1952). We used a population of RS and
FS neurons to represent an arbitrary point along the tonotopic axis of
A1 (Sally & Kelly 1988), representing a certain characteristic frequency
(CF; the frequency of an external stimulus which elicits a response at the
lowest intensity) and a certain best frequency (BF; the external stimulus
frequency which elicits the strongest response). The two quantities BF and
CF may sometimes differ for one and the same neuron, but throughout
this study we shall make the simplifying assumption that they coincide
and consequently use them interchangeably. Although we later concern
ourselves with modelling the extent of the tonotopic axis using an array
of populations, or ‘columns’ (see chapter 3), we here model one such
population (N = 1), responding maximally to the A tone (i.e., with BF/CF
fA). Furthermore, in this chapter our inhibitory neurons are ‘dormant’,
i.e., we do not activate them here (but see chapter 3), since we focus on the
role of depression in shaping the response of a strictly excitatory neural
population to sequences of tones.

We further implemented an elaborate input scheme, whereby we could
periodically present tones (represented by a non-zero thalamic firing rate
function, rather than the firing of explicitly simulated thalamic neurons) at
a particular rate of presentation (Presentation Rate, PR ). The thalamic
firing rate function has both spatial and temporal modulation, is denoted
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by RTh(F, f, t) and is generated through an inhomogeneous Poisson process
(see equation (B.41), found in section B.3, which thoroughly explains the
input to the model). Resulting presynaptic spikes are then processed
by thalamocortical synapses which display synaptic depression of either
a stochastic or a deterministic nature (see section B.1.1), giving rise to
currents entering our cell models, where they are converted into membrane
voltages and subsequently action potentials (spikes). The presence of
synaptic depression at thalamocortical synapses has been shown in several
studies (notably Thomson & Deuchars 1994, Gil et al. 1999, Rose &
Metherate 2005).

We simulated this model using two different approaches. The first uses
a model where the necessary variability is achieved using a population
of neurons, with intrinsic and/or synaptic properties (parameter values)
differing across neurons. This model uses the deterministic, average, de-
pression model, which consequently doesn’t add any randomness to the
outcome of a simulation. For all matters concerning how we set up the
basic network for this approach (of one or more ‘columns’), we refer the
reader to section 3.3.1 of chapter 3, which contains details on how we at
all times tried to be consistent with known literature when setting our
parameter values.

Contrasting with the above, the second approach uses a smaller popu-
lation of neurons (strictly used for averaging purposes, emulating different
trials of the experiment by using different neurons in the model), each of
which employs the stochastic depression model and consequently displays
randomness in its responses due to this choice of synapses. In this second
approach, we used the studies by de la Rocha & Parga (2005) and de
la Rocha & Parga (2008) to setup the network, and then proceeded to
expand on the results of those authors by studying sequences of sensory
stimuli differing in their sensory attributes — while de la Rocha & Parga
(2008) applied their model to the somatosensory modality and the study
of same-attribute sequences, we of course study the auditory modality and
auditory streaming stimuli, whose constituent tones differ in frequency. As
we have seen in chapter 1, neither the underlying neurophysiology of the
primary areas of these two modalities, nor the nature of their thalamocor-
tical input, is all that different from each other, which warrants the use of
this model for our purposes. In fact, the basic setup of our first approach
is qualitatively similar to the second approach, which in turn strived to
change as little as possible the parameters used by de la Rocha & Parga
(2008).

There were however some additional features that needed to be im-
plemented in order for us to be able to simulate the second approach.
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Specifically, we introduced stochastic synapses (see section B.1.2), includ-
ing a queue structure using pointers to handle the vesicle replenishment
process; we used time-varying stimuli and inhomogeneous Poisson processes
(acceptance-rejection method) to handle them; much work also went into
habilitating the network and the data file handling for using Dirac delta-
type inputs instead of continuously varying gating variables; finally, we
implemented thalamic and cortical background input. Once implementa-
tion issues were resolved, our strategy for reproducing the data was to first
identify the parameter values needed to place us in the fluctuation-driven
regime (essentially reproducing figure 3A-D in de la Rocha & Parga 2005),
for both deterministic and stochastic synapses. Thereafter, we focussed our
efforts on fitting the results of the first part of de la Rocha & Parga (2008),
which deals with repetitive pulse stimulation (i.e., ∆f = 0 in our case).
Once that was achieved, we made minimal adjustments to the parameters
in order to reproduce the streaming data (with a mere lowering of qCTh , it
was enough, as we shall see).

Whenever we make use of cortical background input, we always employ
the parameter values of de la Rocha & Parga (2008): Poisson processes
generate excitatory and inhibitory pre-synaptic spikes at rates rBG,E = 5000
Hz and rBG,I = 1000 Hz, respectively. When one of these excitatory or
inhibitory spikes arrives at a neuron (a ‘synapse’ for this particular purpose),
it causes the release of a vesicle at any one of Ms,E = 3 and Ms,I = 6
functional contacts, respectively, with probabilities UBG,E = UBG,I = 0.4.
Thalamic background input, when we use it, is set at 5 Hz, following the
same paper. It of course enters through the same thalamocortical synapses
as external input.

2.2.4. Representation of auditory streaming stimuli

As already mentioned, for the HH models, equation (B.41) is used
to model the input of a stimulus. Specifically, the function RTh(F, f, t)
describes the spread of response in the ventral Medial Geniculate Body
of the thalamus (MGBv; whose neurons, we emphasize, are not explicitly
simulated) to an input from lower auditory centers, centered at the site
F = f . To model the alternating tone sequences of Fishman et al. (2004),
we start by denoting the two distinct tones A and B tones, of frequencies fA
Hz and fB Hz, respectively. We then fix the A tone at position FA ≡ F0 (the
centre of the tonotopic axis), and let the position of the B tone, FB, vary
with the value of the experimental parameter ∆f . In our study, FB > FA,
but results are equally valid for the case FB < FA, due to symmetry
(in agreement with results in Fishman et al. 2004). For modelling the
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short tones used in Fishman et al. (2004), we employ three different tone
(stimulus) durations (TD values). When we use temporal modulation of
the rate, we employ the function defined in equation (B.40) in some cases
(TD = 80 ms, but most input discharged in the first 25 ms) and use a tone
of TD = 25 ms with cosine-squared up and down ramps of 5 ms each in
other cases (see results). When we have no temporal modulation (constant
rate, used for easier comparison with analytical results), we take TD = 20
ms. The value of the integral across either stimulus is approximately equal,
i.e., the same amount of input is apported by each type of stimulus, only
slightly differently distributed in time. Note that the rate model is always
simulated with a constant rate input representing each tone, as explained
in detail in appendix A.

2.2.5. Data analysis

Both in the case of a local feed-forward network and in that of an ex-
tended recurrent network (chapter 3), we measure the activity in response
to A or B tones in the population which represents cells with CF fA, i.e.,
placed at position ϕA in the case of the extended network. Specifically,
spikes are summed from the onset of a tone to the instant before the onset
of the next tone, i.e., during periods of duration SOA, until the end of the
simulation is encountered. We use a time bin size of 2.5 ms, unless stated
otherwise. For presentability of summed activity we sometimes smooth
the activity with a Gaussian filter having width σG the same as the bin
size. For calculating the ratio of responses to B tones at ϕA to responses
to A tones at ϕA , we sum the total activity in each SOA time slot, and
average all responses to A tones and all responses to B tones across a period
of time where steady-state depression has been reached. The response ratio
(RR ) is then equal to the B average divided by the A average. The data
analysis for the rate model follows the same principles just outlined.

When reproducing data from de la Rocha & Parga (2005) and de la
Rocha & Parga (2008), and subsequently applying that modelling approach
to looking at streaming stimuli, we use the following quantities to discuss
our results (de la Rocha & Parga 2005, de la Rocha & Parga 2008).
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Pt(t) =

∑K
i=1

nrel,i
MS

K
(at instant t) (2.3)

Pt =
1

T2 − T1

∫ T2

T1

Pt(t)dt (2.4)

µI =
1

T2 − T1

∫ T2

T1

ICTh(ϕA, t)dt (2.5)

σI =
1

T2 − T1

∫ T2

T1

I2
CTh(ϕA, t)dt (2.6)

CSR =
1

T2 − T1

∫ T2

T1

δ(t− tk)dt, (2.7)

where t = T1 and t = T2 are the starting point and the end point of
the interval of analysis, respectively (values given in results), and nrel,i
is the total number of vesicles released by synapse i at instant t. Pt(t) is
the instantaneous value of the probability of transmission, averaged over
each neuron’s synapses. All quantities are specific to one neuron — we
then average these across the neurons of our population to emulate several
trials.

2.3. Results

2.3.1. Understanding the role of depression

We have carried out an analytical study of the equations governing
depression (see appendix A, section A.2). This analysis yielded exact
solutions which give the value of our depression variable, d, at steady state,
at four different (time) points in the sequence. We put ‘time’ in parenthesis,
because once in the steady state our solutions are independent of absolute
time since the sequence started. Rather, the four points are defined at
four relative time points, defined within the span of two subsequent SOA
periods comprising an A tone and a B tone, namely before and after the
two tones (exactly defined in section A.2). We specifically make extensive
use of the value of d before the A tone and the B tone, called d0 and d2

(equations (A.25) and (A.27)), respectively, in order to save simulation
time and to quickly get a feeling for how depression controls the response of
our model to the input. In order to use this tool, one needs to make some
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assumptions regarding the input — it must be constant in time during
each tone (the input rate may not be time-varying); the sequence must be
uninterrupted (no silent periods interlaced) and use a fixed tone duration
and presentation rate; and finally, thalamocortical input has no axonal
spread (ν ≡ 0) but projects to cortical neurons with the same BF/CF as
that of the sending thalamic ‘neuron’. These restrictions on the input need
to be respected in full simulations aimed at a direct comparison with the
analytical values, or else one must assess the difference in response due to
any discrepancies in input characteristics.

We take four complementary approaches when using these steady-state
values. The first makes use of analytics on its own to calculate a surrogate
solution for the response ratio curves seen in Fishman et al. (2004), as we
shall detail below. The second sets depression values to d0 or d2 (depending
on the first tone presented) before starting a simulation, which may be very
short (a single tone) or run for a while to acquire averages of responses to
tones. The third approach is similar to the second, but instead of using
the steady state values in the simulations, we set the start value of d to a
value of our choosing at command-line3. Then, after running simulations
for covering the range of possible values of d, we instead use d0 and d2

when analysing the data from those simulations, essentially ‘reading out’
the response of the network to a certain tone at any d value. Specifically,
by computing d0 and d2 values for chosen values of the parameters of
the solutions (A.25) and (A.27), respectively (PR , ∆f , Rmax

Th , TD , U and
τD), we obtain the model response at each of them and can therewith
calculate RR (PR ,∆f). Finally, in our fourth approach we make a fixed-
point analysis of the response of our rate model to sequences of tones,
simplifying further by showing that using an average value of the steady
state depression is sufficient to approximate RR .

The results of our four approaches are described in the following section.

2.3.2. Assessing response through analytics and minimal
simulations

The first approach using our analytical results to assess response at
steady state is also the most straightforward one. Simply using the param-
eter values of interest, we calculate the steady state values of d0 and d2 for
a range of ∆f and PR (figure 2.2).

3We implemented an approximate solution for doing this also for stochastic synapses,
by setting the right fraction of vesicles as released, properly distributed across all synapses
of each neuron (with the downside of them never recovering, since their release time is
unknown).
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Figure 2.2: Making of ABAB... sequence ‘tuning curve’ - d2 level multiplied
by RTh yields an approximation of the input evoked by a B tone at each
∆f and PR , whereas d0 level multiplied by Rmax

Th yields an approximation
of the input evoked by an A tone. Left panel: d0 and d2 values’ dependence
on PR and ∆f . Right panel: Input approximation as described above.
Parameters: U = 0.4, τD = 0.5 s, TD = 20 ms, µ= 0.4 oct.

Then, by approximating the thalamocortical current at a synapse (equa-
tion (B.26)) with the product of the depression values and the input rate,
RTh, directly (instead of going via the synaptic gating variable of equation
(B.30)) and making a crude threshold-linear ‘neuron’ by deducting from
that current a threshold value (Θ, here in Hz), we arrive at an approxi-
mation of the response ratio RR which, depending on the value of Θ, can
already show the rudiments of the data found by Fishman et al. (2004)
(figure 2.3). It is of special interest to note the decisive role of the threshold
in generating differential suppression. Thus, if we calculate RR without
using a threshold (or, equivalently, using Θ = 0 Hz), we get curves that
closely follow each other across ∆f with only slight differences in value
(figure 2.3(a)). In contrast, once the threshold is ‘activated’, we see the
clear tendency of differential suppression in the RR curves (figure 2.3(b);
cf. figure 3 in Fishman et al. (2004), reproduced in our figure 1.4(b); Θ =
5 Hz).

In the second and third approaches, as it will turn out, the response of
the neuronal population to increasing rates of input has a decisive impact
on the ability of the population to model accurately the auditory streaming
correlates. Specifically, the frequency of cortical response, averaged across
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(a) With Θ = 0, the shape of RR curves found by Fishman et al. (2004) is not discernable.
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(b) With Θ = 5 Hz, we already get RR curves reminiscent of those found in Fishman
et al. (2004) (cf. figure 1.4.b).

Figure 2.3: Assessment of response ratio, RR , using steady state d values,
input rate and an artificial threshold, Θ. Depicted is d2(∆f) RThC(∆f)−Θ

d0(∆f) RThC(0)−Θ

(using curves seen in figure 2.2) plotted against ∆f(PR varies across lines).
The importance of the excitability threshold for differential suppression is
clearly illustrated: in (a), Θ = 0 Hz and the RR values differ little across
PR , whereas in (b), a small Θ of 5 Hz yields RR curves very similar to
experimental results (Fishman et al. 2004). Other parameters as in figure
2.2.
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the population, needs to be a monotonically increasing function of the
input, without input intervals where the derivative of the function is zero.
This is because synaptic depression, indirectly related to the experimental
parameters ∆f and PR , essentially ‘moves’ the response down the slope
of the curve and such iso-response ‘patches’ can cause an equal response
of the network to different values of those same parameters, something
not seen (on average) in the data of Fishman et al. (2004). In the rate
model, this constitutes no problem, as this ‘transfer function’ is imposed by
the modeller (e.g., linear; cf. left panel of figure 2.8), but when modelling
conductance-based neurons, one requires a variability of response across
neurons in order to get such smoothness in this characteristic. We will
now illustrate the problem and discuss necessary adjustments to parameter
values to remedy it. Using the surfaces in figure 2.4, one can calculate
the corresponding RR in two different ways, the first more approximate
than the second. The fastest (approximate) way is to generate only the
surface in figure 2.4(b), and make use of the fact that it contains the
response to all possible input rates. Since different B tones are represented
by different input rates, one simply picks out the response to B tones by
reading out its value at that rate level. This is approximate since B tones
are presented when depression is at d2 level, not d0, but as we shall see
below, the difference is small. The second way requires both surfaces and
picks the more realistic B response from the B surface of figure 2.4(a). The
result of these two procedures, for the surfaces of figure 2.4, are displayed
in figure 2.5(a) and figure 2.5(b), respectively. As can be seen in the figure,
these two approaches lead to marginally different response ratios. However,
they are obviously far from a fit of Fishman et al. (2004) data. If we now
wanted to explore different parameter values to see if the fit improves, we
would have to run another batch of numerous simulations to generate a new
surface, which constitutes a limitation of this method. Another limitation
is that for ν> 0, the approximation of a B response by the response to
A at the rate of B worsens. These limitations bring us to the advantages
of our third approach, where we simply set d to a start value and simulate
the response to a B tone. Systematically covering the range of possible
d values, we thus create a surface such as that seen in figures 2.6(a) and
2.6(b). Both figures show the same surface, only the dots superimposed on
the surface differ (for shape and colour coding, see caption). In (b), the
responses to an A tone (i.e., B tone with ∆f = 0%) at different PR and
∆f are shown, whereas in (a) the dots represent the responses to a B tone
at those same experimental parameter values. The finesse here is that,
while these dots are in part generated based on the data underlying the
surface, we can make different projections of such dots onto the surface
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(a) B tone presented with depression set to d2 values.
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(b) A tone presented with depression set to d0 values.

Figure 2.4: The ‘transfer functions’ in response to a B tone (a) and an
A tone (b) of a population of M = 100 cortical neurons, each having
K = 100 synapses, here with depression (U = 0.4, τD = 0.25 s). The figure
shows how the response of the network changes with the main experimental
parameters, PR and ∆f , as RTh varies. Note that the inital value of
depression is set to its respective steady-state values (cf. figure 2.2 and see
subcaptions). Other parameters: gCTh = 0.02 ± 0.004 mS/cm2, TD = 20
ms.
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(a) Response ratios calculated based on A responses from figure 2.4(b).
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(b) Response ratios calculated based on responses to both A and B (figures 2.4(b) and
2.4(a)).

Figure 2.5: Response ratios calculated based on surfaces in figure 2.4 (see
text and subcaptions).
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by changing U and τD in an analytical calculation yielding d0(PR,∆f) and
d2(PR,∆f), respectively, thus rendering unnecessary further simulations
in order to test other synaptic depression parameters. Specifically, the
different d0 and d2 values thus obtained are used to place the different dots
at the surface points correponding to the particular d, PR and ∆f values
(only limited by data mesh resolution). For the A tone, instead of placing
all the dots at ∆f = 0, we place them at the PR and ∆f values used in
the analytical calculation, for visibility reasons (but at the response rate
of A ; hence, the dots can ‘hover’ above the surface). The only downside
to this methodology is that it neglects the difference between the effect
that the U value of the simulation (here: 0.4) de facto had during the
presentation of the tone, and the effect that the U value of the analytics
would have (τD has much less effect during a short tone than U). For
instance, to generate the dots of figure 2.6 and subsequently calculate
the response ratios of figure 2.7, we used U = 0.4 but changed τD from
250 ms (simulation) to 500 ms (analytics), which probably creates a very
small error in comparison with using a surface generated with τD= 500
ms. We were prompted to experiment with these values by the rather
poor fit when the analytical and simulation depression parameters were
identical (data not shown). Finally, if introducing thalamocortical axonal
spread (ν > 0), one would simply have to run a new simulation of a network
with this feature, keeping in mind subsequently that analytical solutions
for synaptic depression steady state values do not take into account such
spread, increasing potential errors of this method.

Finally, in our fourth approach we formally propose a novel neuronal
mechanism that produces differential suppression, based on the behavior
of the synaptic depression variable that we have previously described, and
then proceed to explain how this can easily be understood in the context
of our rate model. So, in order to understand the differential suppression
phenomenon it is useful to consider the problem as static. Indeed, it is
possible to obtain a good estimation of the model’s response to the time
dependent input, ITh(t) of equation (A.3), considering only the synaptic
depression variable once it has attained its steady state.

This can be understood by analyzing the simple equations governing
the rate model (appendix A). The input function ITh(t) depends on time
through the rates R(F, t), and also via the synaptic depression function d(t)
(see equation A.3). Here however, instead of studying the effect of a time
varying input (A.3) on the dynamics of the rate model (A.1), we solely
consider the responses of a population of BF fA to the constant inputs rA
and rB.
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(a) Response to a B tone at different ∆f and PR values.

0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

50
0

50

100

150

200

250

300

d∆f

R
e

s
p

o
n

s
e

 (
s

p
ik

e
s

/s
)

(b) Responses to an A tone at different ∆f and PR values (projected to ∆f of B tone).

Figure 2.6: Shown in both (a) and (b) is the surface which we get by
simulating the response of a network to a B tone of different ∆f values,
with dstart covering the range of possible d values (B tone of ∆f = 0% is
of course an A tone). In the simulation, U = 0.4 and τD = 0.25 s, while in
the analytics we used the same U but set τD to 0.5 s. Circles, stars, squares
and diamonds represent PR = 5, 10, 20 and 40 Hz, respectively, while blue,
green, red, cyan, magenta and yellow markers stand for ∆f = 0, 5, 10, 20,
30, 40 %, respectively.
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Figure 2.7: This plot shows the B/A response ratios obtained using
the dots of figure 2.6(a) as B responses and the dots of figure 2.6(b) as
A responses, respectively. By doubling τD from the value of the simulation
data, we obtained a much better fit than when using τD= 250 ms, as in
the simulation.

As already mentioned, we first assume that the synaptic depression
variable is in the steady-state regime. This function decays with fast
kinetics during the input presentation (illustrated in figure A.2 of appendix
A). However, we will assume that the value of the synaptic depression
variable d is constant during the presentation of a tone. Moreover, for the
inputs used in this study, we show in appendix A that we can approximate
dA ≈ dB, and consider a single mean value, d̄ ≡ dA+dB

2 , of the synaptic
depression variable, independently of the tone which is being presented.

Therefore, we are interested in studying the fixed points of the rate
model (A.1)

mSS
A,B(PR,∆f) = [IA,B(PR,∆f)− θ]+. (2.8)

for the two types of inputs

IA(PR,∆f) = W0 d̄(PR,∆f) rA, (2.9)

IB(PR,∆f) = W0 d̄(PR,∆f) rB, (2.10)

where we consider the limit of infinitely narrow thalamocortical projec-
tions, reducing equation (A.4) to W0δ(ϕ − F ) (using limλ→0 e

−|x|/λ/λ =
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Figure 2.8: Scheme describing the proposed mechanism that produces
differential suppression of best frequency (BF) and non-BF tones. Left
Panel: Transfer function (dashed line) of a population of BF fA as a
function of the thalamic input ITh. The circles represent the fixed points
of the population’s rate equation (A.1). When a tone A is presented with
slow PR (fixed point As), the population’s response is maximal. A non-
BF tone B at low PR (fixed point Bs) elicits less response, that depends
on the absolute value of the tones’ frequency difference ∆f . Increasing
PR produces a decrease of ITh, due to synaptic depression, that reduces
both A and B population responses (fixed points Af and Bf , respectively).
The excitability threshold of the ϕA population, θ, produces the total
suppression of the B responses at fast enough PR . Right Panel: Schematic
representation of the response ratio (2.11) as a function of the frequency of
the B tone. At low PR the response ratio is broad. Increasing PR produces
the narrowing of the population’s receptive fields (see text).
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2δ(x)), i.e., a synaptic input strength of W0 at ϕA (through integration in
equation (A.3)). It is important to stress that, in general, the fixed points
of the rate equation (A.1) with fast-varying inputs (compared with the
time scale τ of the rate equation) will not provide valuable information
about the actual system’s dynamics. However, in our case the study of
the fixed points (2.8) provides important information that permits us to
understand the mechanism producing differential suppression.

Figure 2.8 represents schematically the transfer function of a neural
population with best frequency fA , and four fixed points. Two of them
represent BF-tones, that are being presented either in a slow sequence
(fixed point As) or in a fast sequence (fixed point Af ). The tones presented
at low presentation rates (PR ) produce less thalamocortical synaptic de-
pression (i.e., higher values of d̄), and therefore the response of the neuronal
population at ϕAwill be high. Increasing PR will result in a reduction
of the population’s response due to the decrease of the mean synaptic
depression function, d̄ (see figure A.3).

The other two fixed points correspond to non-BF tones. Indeed, at slow
presentation rates (fixed point Bs), the response is lower than that elicited
by an A tone, due to the frequency difference |∆f |. Eventually, at fast
enough PR , the input evoked by non-BF tones will not be strong enough
to reach the excitability threshold of the population of neurons with best
frequency fA, causing the response to the B tones to be suppressed (fixed
point Bf ).

Therefore, it is possible to have a suppressive effect on responses to
non-BF tones at fast presentation rates, due to the depressing nature of
the thalamocortical synapses and the thresholding property of A1 neurons.
As we discussed previously, Fishman et al. (2004) used the response ratio
of the A and B responses in order to measure the differential suppression.
In our case, the relative response of the B tones with respect to the best
frequency tones (i.e. the A tones) can be simply obtained by calculating
the quotient of the fixed points (2.8) as

RR(PR,∆f) ≡
mSS
B

mSS
A

=
[W0 d̄ rB − θ]+
[W0 d̄ rA − θ]+

(2.11)

This expression confirms the sensibility of our approach when making
an approximation of this ratio using only depression level and input rate
(figures 2.2 and 2.3).
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2.3.2.1. The importance of the synaptic depression
parameters U and τD

As it was obvious from our preliminary simulations that the values
of the parameters U and τD have a direct impact on the ability of our
models to reproduce the neurophysiological data, we decided to perform
an analysis with the objective of better guidance when setting those values.
The initial idea was that one could be oriented by a crucial characteristic of
the data, such as the ∆f value at which the suprathreshold response to a B
tone at ϕA first becomes (practically) zero, for PR = 40 Hz (between ∆f =
10% and 20%). Since for a certain network setup one reaches this point
for a specific steady-state value of d, one could thus extract that d2 (for
B tones) value from a simulation with the setup of interest and then study
which values of U and τD would result in that d2 value, using our analytical
solutions (appendix A). For instance, to generate figure 2.9(a), which shows
an iso-d2-value line (black; for d2 = 0.15) superimposed on a surface of
steady-state d2 values as a function of τD and U , we first deduced that at
d2 = 0.15 we just about get a spike response for PR = 40 Hz and ∆f =
10% in a feed-forward network simulation using TD = 20 ms, U = 0.4, τD =
0.3 s. Then, we used the expression (A.27) to calculate the surface of the
figure. Crucially, any point on the iso-line (re-plotted for better visibility
in figure 2.9(b)) would yield d2 = 0.15, which means there is a relative
freedom in the choice of U and τD values, as long as their interrelationship
(as defined by the line; in figure 2.9(b) U and τD are almost mirrored on
the diagonal, for example) is respected. This affords us the possibility
of picking U and τD from along such an isoline. However, this analysis is
only valid for the steady-state, since the dynamical trajectory of the d
variable varies with U and τD, but for our purposes in modelling streaming
correlates it is useful.

We emphasize here the importance of this result, as it provides a
tentative explanation for two things; firstly, it might explain why the
rather widely distributed values (see Introduction) of these quantities, i.e.,
utilization of synaptic resources and their rate of recuperation, respectively,
when measured in the literature, should constitute no ‘problem’ per se for
neural processing outcome; secondly, it explains why we find streaming
correlate solutions with different neural network models (e.g., rate model
and HH model), that differ in the values of these two parameters — the
specifics of each model as to input and processing can condition the ideal
choice of those values (present chapter and chapter 3).
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Figure 2.9: Figure (a) shows an iso-d2-value line (black; for d2 = 0.15)
superimposed on a surface of steady-state d2 values as a function of τD and
U , while figure (b) shows that same iso-d2-value plotted in 2D. Crucially,
any point on this line would yield d2 = 0.15, which means there is a relative
freedom in the choice of U and τD values, as long as their interrelationship
(as defined by the line) is respected. This affords us the possibility of
picking a d2 value for which the response to a B tone at ϕA should be
zero (for, say, ∆f = 20 %, PR = 40 Hz) and then performing this analysis
in order to set U and τD, picked from along such an isoline. Note how
U and τD values are almost interchangeable (isoline almost symmetric with
respect to diagonal).
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2.3.3. The role of the input function

It is important to realize that, when modelling the response to tones,
the spectral shape we choose for our input function is of the utmost
importance. As this is something others have noted (see, e.g., de la Rocha
et al. 2008), it is no surprise to us to find that the same is true in our case.
Specifically, when modelling AS, we experimented with a certain spread in
thalamocortical projections, our parameter ν. We found that when we had
ν= 0, modelling the effect of RR falling off with ∆f was easier than when
using ν> 0. This was especially true at ∆f ≤ 10 %. To illustrate the
problem, we have prepared figure 2.10, which shows normalized input in
four different cases, along with the approximated percentages of maximum
input arriving at ϕA in cortex (centered on ∆F= 0), integrated across
sending axons. Above left we have the simplest case, the exponential input
function with µ= 0.4 oct. Above right, we have the same input function,
but here the percentages have changed according to our implementation of
thalamocortical spread (ν= 0.33 oct.). The latter illustrate the problem
clearly, as the difference in total input to ϕA diminishes when ν is nonzero.
While this is normal and expected, in terms of our modelling objectives
it created the need to be explain how, e.g., Fishman et al. (2004) could
show differences in response at such small ∆f . While this could be due
to averaging enough trials (they use 75, we typically less), we decided to
also explore other explanations. The first was to include a modulation of
gCTh with ∆F . The lower right and lower left panels of figure 2.10 show
the case of exponential and Gaussian modulation, respectively (width ν);
clearly, as the corresponding percentages show, this remedies somewhat
the problem, but for ∆f = 5 %, we are still very close to the input at
∆f = 0, especially for Gaussian modulation. To give an idea of how
the input changes with the modulation, we have plotted the modulation
function (pink line) and the result of its convolution with the original input
function for each ∆f (other colours - this is purely illustrative, as rate and
conductance are never actually directly multiplied). We will discuss other
approaches to solving this dilemma in chapter 3, notably using intracortical
recurrent excitation.

2.3.4. Rate model results

2.3.4.1. Model’s response to sequences of a single tone

Figures 2.11a and 2.11b show the firing rate of an A1 model neuron
(with best frequency fA), elicited by a sequence of pure tones of a single
best frequency (BF) (panel a) and a single non-BF (panel b), respectively.
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Figure 2.10: The figure shows normalized input (for a ∆f of 0, 5, 10, 20, 30
and 40 %, respectively) in four different cases, along with the approximated
percentages of maximum input arriving at ϕA in cortex (centered on ∆F=
0), integrated across sending axons. Above Left: the exp. input function
with µ= 0.4 oct, ν= 0.0 oct. Above Right: the exp. input function
with µ= 0.4 oct, ν= 0.33 oct. Lower Left: as in Upper Right, but with
exponential modulation of gCTh across tonotopic space (width ν= 0.33
oct.). Lower Right: as in Upper Right, but with Gaussian modulation of
gCTh across tonotopic space (width ν= 0.33 oct.). To give an idea of how
the input changes with the modulation, we have plotted the modulation
function (pink line) and the result of its convolution with the original
input function for each ∆f (purely illustrative, as rate and conductance
are never actually directly multiplied). Note how, when ν> 0 (Upper
Right), percentages change, diminishing differences in total input across
∆f values). We can remedy this in part by also modulating gCTh across the
TT axis, but for ∆f = 5 %, we are still very close to the input at ∆f = 0,
which means the cortex probably ‘solves’ this problem using intracortical
mechanisms such as recurrent excitation.
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Additionally, the same panels show the instantaneous fraction of available
neurotransmitters (synaptic depression variable d), averaged across the
ThC synapses at F = fA.

The A1 neuron stimulated at its BF recieves strong excitatory input
and thus the ThC synapses at F = fA become strongly depressed. In
contrast, non-BF tones produce less synaptic depression at this location.
The total excitatory input to the A1 neuron is proportional to d (see
equation (A.3)) and thus the presence of synaptic depression degrades the
neuron’s frequency selectivity (Abbott et al. 1997). Indeed, figure 2.12a
shows the broadening of the frequency tuning curve of the A1 neuron when
ThC synaptic depression is included in the model.

Additionally, note that in the presence of synaptic depression the
tuning curves become sensitive to the presentation rate, since the higher
the presentation rate, the more ThC synapses are depressed. Specifically,
figure 2.12a also shows how tuning curves broaden around its maximum as
PR is increased, reducing the frequency selectivity of the neuron.

2.3.4.2. The streaming paradigm: Differential suppression

Figure 2.11c shows the response of the model neuron to a series of tones
alternating in frequency, the auditory streaming stimulus. The sequence
is composed of a BF tone (f = fA), and a non-BF tone B (of the same
frequency as the B tone of figure 2.11b). The presentation rate is PR = 20
Hz, as in figures (2.11a,b). Note that in the present case there is a strong
improvement of the neuron’s frequency selectivity, if the neuron’s responses
to A and B tones (mA and mB) are compared within the sequence.

In contrast with figures 2.11a and 2.11b, now the neuron’s response to
the A tones increases, whereas the response to B tones (non-BF) is strongly
suppressed.

Additionally, as we discussed previously, an increase of PR produces a
decrease of the amount of neurotransmitters in the synapse F = fA, and
thus a reduction of the neuron’s response to both BF and non-BF tones.
Eventually, at some PR , the excitatory input produced by non-BF tones
is not strong enough to reach the neuron’s excitability threshold. Panel
2.11d shows that the neuron’s response to the B tones has been totally
suppressed at PR = 30 Hz, and thus the neuron becomes only selective to
A tones.

The response ratio
RR = mB/mA (2.12)

is considered to be a neural correlate of streaming (Fishman et al. 2001, Fish-
man et al. 2004, Micheyl et al. 2005). Figure 2.12b shows the quantity
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Figure 2.11: Time series of rate model’s response to sequences of single (a
and b) or alternating (c and d) tones. PR and ∆f (octaves) given in figure,
U = 0.5, τD = 800 ms, rest of parameters standard. Note that 0.5 octaves
corresponds approximately to 40% with respect to a tone’s frequency in
Hz.

(2.12) versus ∆f . This can be interpreted as a generalized neuron’s tuning
curve for the streaming stimuli. The different curves correspond to the
response ratios at different PR values. The curves clearly show an improve-
ment of frequency selectivity as the stimulus is presented faster, in very
good agreement with the experimental results of Fishman et al. (2004).

This mechanism of frequency selectivity is entirely due to the dynamic
nature of synaptic transmission (henceforth, dynamic frequency selectivity),
and requires PR to be fast compared with the characteristic recovery time
constant of synaptic depression. Note that the streaming stimulus has

1
PR ∼ [25, 200] ms, and synaptic depression has recovery time scales of
hundreds of milliseconds (here we considered τD = 800 ms) (Tsodyks,
Pawelzik & Markram 1998, Abbott et al. 1997, Tsodyks & Markram 1997).
Under these conditions, the amount of available neurotransmitter vesicles
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Figure 2.12: Synaptic depression degrades frequency tuning (see panel a)
but improves dynamic frequency tuning (a.k.a. differential suppression; see
panel b). In panel c, we see the response ratios plotted versus PR , with
∆f changing across lines. Finally, panel d shows a contour plot of RR as a
function of PR and ∆f . Parameters as in figure 2.11.

when a BF tone is presented is similar to the amount available for non-BF
tones. Therefore, in this case the presence of synaptic depression does
not degrade the frequency tuning of A1 neurons, as occurs with stimuli
composed of tones of only one frequency (figure 2.12a).

2.3.4.3. Model’s transitory regime: Physiological forward
masking and build-up of streaming

So far we have studied the model in its steady state. However, this
steady state takes (with our parameters) some hundreds of milliseconds
to be reached, as can be appreciated in figure 2.11c (notice time scale;
the transient part of the underlying synaptic depression is illustrated in
figure A.2 of appendix A). Once the steady state has been established, the
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system shows the differential suppression phenomenon we have previously
described. However, during the transitory regime the system shows a
different phenomenology.

Specifically, considering only the two initial tones, the forward masking
paradigm is recovered (Calford & Semple 1995, Brosch & Schreiner 1997,
Wehr & Zador 2005). In this experimental paradigm a ‘masker’ tone of
various frequencies and intensities is presented. After a certain time, the
neuron’s response to a BF tone (called the ‘probe’ tone) is measured.

However, as pointed out by Fishman et al. (2004), there are important
differences between the stimulus conditions of the physiological forward
masking studies and those focussing on auditory streaming. Indeed, the
auditory streaming stimuli produce a transient response of the A1 neurons
that, after at most a few seconds, is followed by a steady state regime, in
which the time series of the neural activity is almost periodic. In contrast,
in the forward masking paradigm tone pairs are presented in isolation after
long periods of silence.

Figure 2.13 shows the recovery time of the response of a neural popula-
tion with BF fP to a probe tone of that same frequency, after the presenta-
tion of a masker tone of frequency fM , as a function of ∆f = fP − fM (fM
varies). The shape and the time scale of the recovery time curves resemble
the classical forward masking results found by Calford & Semple (1995)
and Brosch & Schreiner (1997), indicating that thalamocortical synaptic
depression may play an important role in explaining that data too (as
found earlier by Denham 2001).

In the streaming paradigm, at the beginning of the stimulus, the
sequence is generally perceived as an integrated percept. However, after
up to a few seconds, this ‘splits’ into the two streams percept (Bregman
1978). This effect is known as the ‘build-up’ of auditory streaming, and
its neurophysiological basis was recently studied by comparing the time
evolution of the neural responses in A1 of monkeys with the reports of
humans using the same stimuli (Micheyl et al. 2005). The study showed a
similar trend of the A1 neural responses, on the one hand, and the build-up
of streaming in human subjects, on the other.

2.3.4.4. Effects of context and memory

The fact that the streaming percept takes several seconds to build up
suggests that this phenomenon is associated with a slow integration process.
Therefore, auditory streaming is affected by the preceding context, so that
the auditory events prior to the repeating AB sequence might influence
the likelihood of perceiving streaming.
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f

Figure 2.13: Time needed for the probe tone response to recover 20, 40, 60
and 80% of its maximum level (after being masked by a tone of frequency
fM ), as a function of the frequency difference ∆f between the masker and
the probe tones (only the masker frequency fM is varied). The curves
have been obtained using equation (A.16). The region between the arrows
indicate the values of ∆f for which the neural model responds to the Masker
tone. Note that there exists masking even if there is no response to the
masker tone, i.e. when |∆f | > 0.2 oct. Parameters: dstart = 1.0, U = 0.2,
τD = 800 ms, TD = 20 ms, µ = 0.5 oct., W0 = 0.35, θ = 0.2.

In particular, Cusack, Deeks, Aikman & Carlyon (2004) studied the
effect of introducing a silent gap of various durations (1, 2, 5 and 10 s)
in the middle of a streaming sequence that was perceived as segregated,
in order to study the time needed to reset the streaming percept. Their
psychophysical results showed that the one second silent gap resets the
streaming percept, and mainly the integrated percept is heard. This trend
did not show any significant difference for larger durations of the silent
gap (2, 5 or 10 s) (Cusack et al. 2004).

The lower panel of figure 2.14 shows the model’s response to the A and
B tones as a function of time. At the beginning of the sequence, the system
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has a transient regime of about one second, that strongly resembles the
data found by Micheyl and collaborators (Micheyl et al. 2005, Micheyl
et al. 2007). The upper panel shows the response ratios B/A, as a function
of time.

Once the steady state regime has been reached, silent gaps of various
durations are introduced. Note that the model is very sensitive to the
temporal characteristics of the stimulus due to the slow time scales of the
thalamocortical synaptic depression. This provides a simple mechanism
of short memory (1-2 seconds), which is stored in the synaptic depression
field (illustrated in figure 3.18, chapter 3) and which makes the current
responses depend on the previous sound pattern, i.e., on the sound context.

After the silent gaps the sequence is presented again. The upper panel
in figure 2.14 shows the progressive increase of the RR magnitude, that
is correlated with the perception of streaming. Therefore, the model
predicts a progressive reset of the streaming percept, that corresponds to
low RR values. A complete reset of the percept occurs after 1-2 seconds
of silence, in correspondence with the psychophysical data presented by
Cusack et al. (2004). For a further illustration of this, we refer the reader
to our scientific movies, based on simulations with our tonotopic HH model
introduced in the next chapter (URL and description in section 3.3.4.2).

2.3.5. Hodgkin and Huxley model, approach one:
Deterministic depression

The basic settings of parameter values for this network was described
in section 2.2.3. For details, we refer to appendix B.
As explained earlier, in the feed-forward network there is no intracortical
connectivity and no (active) inhibitory neurons. Given the lack of inhibition,
the mechanism that can achieve the overall reduction of response in Fishman
et al. (2004), as PR increases, is the synaptic depression. The left panel of
figure 2.2 depicts the steady-state values of the synaptic depression variable,
d(t) as a function of both ∆f and PR . The steady-state values of d(t)
can be used as initial values to save computing time for the feed-forward
network, as also explained earlier.

2.3.5.1. The streaming paradigm: Differential suppression

In figure 2.15, we see the response of our feed-forward network once
it has reached the steady-state (to save simulation time, the synaptic
depression variables, d(t), of the network were initialized at time t = 0 ms
with the d0 values of figure 2.2). Comparing with figure 3 in Fishman et al.
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Figure 2.14: Initial transient and the effect of resets on the response ratios
(parameters: PR = 20 Hz, ∆f = 0.4 oct., U = 0.2, θ = 0.2, µ= 0.5 oct.,
W0 = 3.1, τ = 5 ms).

(2004) (reproduced in our figure 1.3), it is clear that the degree of accuracy
achieved with a feed-forward network is impressive.
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Figure 2.15: Figure shows a 1 ms bin histogram of average #spikes per
neuron in response to an AB tone sequence (smoothed by a Gaussian
filter) for different combinations of the two main parameters, ∆f (ordinate)
and PR (abscissa). Results without intracortical connectivity already show
a good fit with experimental data (cf. fig. 3 in Fishman et al. (2004),
reproduced in our figure 1.3). Here, N = 1, M = 100, K = 100, gCTh =
0.02, σgCTh = 0.004, µ= 0.4 oct., U = 0.4 and τD = 0.5 s (notably the same
value we found in our analysis explained in figures 2.6 and 2.7).
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Figure 2.16 depicts the B/A response ratios, as calculated using re-
sponses at the site ϕA (please see figure caption for comments).
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Figure 2.16: Figure depicts average B/A response ratios for the feed-
forward network, as a function of PR (abscissa). ∆f varies across plotted
lines. Results without recurrent connectivity already show a good fit
with experimental data (cf. left column of fig. 6(a) in Fishman et al.
(2004), reproduced in our figure 1.4(b)). Parameter values as in figure 2.15.
Average calculated over results of simulations with nine different random
seeds. Error bars show standard deviation.

In figure 2.17, we may observe how the so-called build-up phase gives
way to the steady state, during a total of 1.5 seconds of tone sequence
presentation. The figure depicts 1 ms bin histograms, as in figure 2.15
(parameter values also as in that figure; histogram not smoothened by
Gaussian filter). In fact, figure 2.15 essentially shows the last part of figure
2.17, in a blow-up.

We will now briefly discuss the effect of changes in parameters on
our RR fit (both based on thought experiments and simulations; data not
shown). First of all, increasing depression (higher U) lowers responses
to A and B tones almost equally, but the response to B tones is lowered
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Figure 2.17: Figure shows a 1 ms bin histogram of average #spikes per
neuron (normalized) in response to an AB tone sequence, for different
combinations of the two main parameters, ∆f (ordinate) and PR (abscissa).
The build-up phase is included to illustrate how the steady-state is formed,
both for neural activity and for the underlying synaptic resources (d) (thin
red lines). Parameter values as in figure 2.15.

slightly less since the higher rate of the A tone has a greater impact on
the value of d. Hence, RR is raised slightly by increasing U . Secondly,
narrower input (lower µ) would cause B tone rates to decrease faster with
∆f , which lowers RR . An added effect of depression is that lower B rates
lead to less depression occurring during B tones, which in turn leads to
d(t) being higher right before an A tone and average steady-state d value
being higher. This in turn lowers RR more. Thus, a narrower input yields
a double lowering effect on RR . Finally, adding intracortical excitatory to
excitatory connections would amplify differences in B and A tone responses,
thus lowering RR . To counter this, one may add intracortical inhibitory
to excitatory connections (as is in fact done in chapter 3, in the course of
our fitting of neurophysiological data on conductances in response to short
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tones).
In closing, we see that using a population of a hundred excitatory

neurons with a certain variability in their intrinsic and synaptic parameter
values (here only synaptic strength, as we use deterministic depression with
U and τD values the same across synapses), we have no problem reproducing
the data on the DS phenomenon shown by Fishman et al. (2004). Now
we move on to approach two of our HH modelling, where we will see that
the added variability of using stochastic synapses makes it possible to use
a smaller number of neurons in the population (albeit averaging over a
longer time interval when calculating the response ratio).

2.3.6. Hodgkin and Huxley model, approach two:
Stochastic depression

2.3.6.1. Setting up the network

As mentioned in section 2.2.3, we first set out to find the parameter
values we needed in our HH model in order to reproduce data in de la Rocha
& Parga (2005), specifically those authors‘ comparison of the effects of
stochastic and deterministic depression on response to a continuous input.
To this end, we need to clarify some concepts. What is referred to by de
la Rocha & Parga (2005) as the number of neurons of the pre-synaptic
population, in our case translates to the number of thalamocortical synapses,
K. Further, they state the strength of synapses in terms of mV (their
J/Cm), whereas we give stochastic synaptic strengths in nC/cm2 (Q =
U × C = (J/Cm) × cm, i.e., [mV]×[µF/cm2]). Thus, integrated over
time, the charges apported from each functional contact become currents.
To distinguish this synaptic strength quantity from that when we use
conductances, we will refer to it as qCTh.

The procedure we followed to arrive at the final parameter values
suitable for our model can be summarized thus:

The first qCTh values were 0.25 and 1.25 nC/cm2 , based on values
for simulations underlying figure 3 in de la Rocha & Parga (2005).

We then increased those values by the factor 1.613 ≈ 1.6, which was
the quotient between our intrinsic threshold value and their Θ (we
measured -55 - (-70) = 15 mV, whereas they used 9.3 mV). This
yielded the values 0.4 and 2.0 nC/cm2, respectively.

Finally, we decreased the deterministic value to 1.5, because we found
that with 2.0 we exceeded threshold too often, whereas with 1.25 we
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were too far into the Fluctuation-Driven Regime (FDR), so that the
standard deviation of the current didn‘t cause enough spikes.

All other parameters were also set to their values in de la Rocha &
Parga (2005), but their values did not need to be changed.

Thus, we set up a network with the parameters shown in table 2.1.

Name Value
Rmax

Th 2-100 Hz
U 0.75
τD 600 ms
qCTh 1.5/0.4 nC/cm2 (D/S)
σqCTh 0.4qCTh nC/cm2

K 400
M 5
N 1
Ms 5 (S)

Table 2.1: Values of biophysical parameters for HH model, approach two:
figure 2.18(b).

After this minor tweaking of parameters, we could reproduce figure 3
from de la Rocha & Parga (2005). Figure 2.18 shows the original (a) and
the fit using our HH implementation (b) with the parameters of table 2.1.

While it is not surprising that we could reproduce the data of de la
Rocha & Parga (2005) (apart from being more elaborate, the HH model
should react similarly to similar input as the leaky Integrate-and-Fire
model does, except exhibiting a higher ISI CV, in the absence of inhibition
(Brown, Feng & Feerick 1999)), this step gave us the necessary groundwork
needed to explore the response of such a network to sequences of tones of
a single frequency (reproducing results of de la Rocha & Parga (2008), but
in an auditory context) and, ultimately, the response to sequences of tones
with two alternating frequencies. We worked with the hypothesis that with
a minimum change of parameter values, not only should our HH model be
able to reproduce the results mentioned, but it should be possible to get
the approximate RR curves of Fishman et al. (2004), by simply changing
the input stimulus to sequences of tones of alternating frequency.
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Figure 2.18: Original figure (adapted from de la Rocha & Parga 2005)
in (a), our fit in (b). Both figures’ panels show (from above to below):
Transmission probability, current mean (µI) and s.d. (σI), Cortical Spike
Rate (CSR) - equations (2.3) - (2.7), averaged across neurons (‘trials’
in data of (b)). Line with squares: stochastic depr. Line with circles:
deterministic depr. Note how the greater current s.d. yields a higher CSR
with stochastic depr., whereas both drop off towards zero with increasing
input rates with deterministic depr. T1=0 s, T2=2 s, other parameters as
in table 2.1.

2.3.6.2. Model’s response to sequences of a single tone

We thus set out to simulate the response of our model to sequences
of tones of one single frequency, mimicking the settings of the study by
de la Rocha & Parga (2008) (see table 2.2). Also here, we only changed
the value of qCTh and left all other parameter values untouched, and even
so we were able to obtain the results found using the Integrate-and-Fire
model in de la Rocha & Parga (2008).

Particularly, we wanted to make sure that we could obtain a similar
dependency on PR of the key observables Pt, µI , σI and CSR (equations
2.4 - 2.7). The results of this fit can be appreciated by comparing the
subfigures (a) (original) and (b) (our fit) of figure 2.19.
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(a) Figure 3 from de la Rocha & Parga (2008).
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(b) B only tone sequence. Transmission probability, current mean (µI) and s.d. (σI),
Cortical Spike Rate (CSR) - equations (2.3) - (2.7), averaged across neurons (our ‘trials’).
All parameters as in table 2.2 (qCTh value marked by ∗1), except cortical and thalamic
background activity, which was set as in section 2.2.3.

Figure 2.19: The response of various observables to sequences of identical
stimuli, in (a) somatosensory ones (de la Rocha & Parga 2008), in (b) our
auditory B only tone sequence. Details in subfigures. By comparing the
four subplots of our fit to the original figure’s panels (a)-(d), we see that
we reproduce the trend in the data. VS (Vector Strength) was also a fit
(not shown).
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Name Value
Rmax

Th 100 Hz (varies)
U 0.8
τD 300 ms
qCTh 0.35∗1/0.5/1.05∗2 nC/cm2

σqCTh 0.25qCTh nC/cm2

K 85
M 5
N 1
Ms 7
µ 0.5 oct.

Table 2.2: Values of biophysical parameters for HH model, approach two:
figures 2.19(b) (∗1deviant value), 2.22 (∗2 deviant value), 2.23 and 2.24.

Having done that, we knew we had a functioning network and could
concentrate on the issue at hand. First of all, we wanted to confirm
what we had found already using the rate model, namely that when
presenting only B tones we get a degradation of frequency tuning due to
synaptic depression. First we corroborated this by using the same analytic
methodology as when we analysed sequences of alternating tones in section
2.3.2. This yielded figures 2.20 and 2.21, clearly illustrating the effect (note
that we don’t use any threshold, Θ, here).

Finally, we simulated the responses to such a sequence of B tones in
our second approach HH network. Figure 2.22 illustrates how the result
is very similar to both that of the rate model (figure 2.12a) and of the
analysis 2.21 (we raised qCTh for this simulation).

2.3.6.3. The streaming paradigm: Differential suppression

Having thus reproduced the behaviour of the model of de la Rocha
& Parga (2008) when stimulated with sequences of non-differing pulses,
we finally had the opportunity to test our hypothesis that this very same
network could be used to model auditory streaming correlates, with a
minimum change in parameter values. First, we set about this using the
same parameter values as for figure 2.22, but the result was discouraging
(RR values far too high). Figuring the strength of the input had brought
us out of FDR, we lowered the value of qCTh successively until arriving at
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Figure 2.21: BBBB... sequence ‘tuning curve’ based on quotients calculated
from curves in the right panel of figure 2.20 (for each curve, values at ∆f > 0
divided by value at ∆f = 0). Parameters as in figure 2.20.
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Figure 2.22: BBBB... sequence ‘tuning curve’. Notice how the frequency
resolution diminishes as PR increases. All parameters as in table 2.2
(qCTh value marked by ∗2)

qCTh = 0.5 nC/cm2, value for which we obtained the curves shown in figure
2.23. This figure depicts how the results improve with a narrowing of the
input (lower µ). Errorbars are omitted, since in spite of averaging over
100 seconds of simulation time, the coefficient of variation was consistently
high (>1 at ∆f = 0 %, gradually increasing with increasing ∆f ; data
not shown). This was indicative of the important role of averaging for
getting the results seen in Fishman et al. (2004), who in fact used averages
across 75 stimulus presentations for their data, for each recording site, then
further averaging across recording sites (cf. N of their figure 3, our figure
1.3). If we use a shorter data analysis interval, T2 − T1, we do not obtain
the nice curves of figure 2.23.

We then proceeded to test the robustness of our result to the introduc-
tion of non-zero thalamocortical axonal spread, setting ν= 0.33 octaves.
As can be seen in figure 2.24, this dilutes what we refer to as the dynamic
frequency selectivity substantially, for both values used for µ. This issue
is a manifestation of a known dilemma of A1 (Wang 2007), namely that
of a neuron maintaining frequency tuning while having a broad spectral
perspective.

We shall return to a possible solution for this dilemma using intracortical
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Figure 2.23: ABAB... sequence response ratio curves. Already with µ=
0.5 oct. (dashed lines) we get a good fit of Fishman et al. (2004) data,
which improves further when narrowing the thalamic response profile by
setting µ= 0.4 oct. (solid lines). We simulated 200 s.; T1 = 100 s., T2 =
200 s. qCTh = 0.5 nC/cm2 , σqCTh = 0.125 nC/cm2, ν= 0.0 oct. All other
parameters as in table 2.2.

recurrent excitation in chapter 3, inspired by data in Liu et al. (2007) that
show that such excitation can act as a sharpening influence on the rather
flat response to thalamic input seen when intracortical excitation is silenced.

2.4. Discussion

Several important aspects of the auditory stream segregation phe-
nomenon, as manifested at the level of the primary auditory cortex
(Fishman et al. 2004, Micheyl et al. 2005), are studied using a simple
stimulus consisting of a sequence of pure tones that alternate between two
frequencies (Bregman & Campbell 1971).

Although synaptic depression has been shown to degrade tuning, espe-
cially at high firing rates (Abbott et al. 1997), here we demonstrate that it
still is able to produce an improvement of the neurons’ frequency tuning
via a synaptic mechanism that we designate dynamic frequency selectivity.
This mechanism is implemented in three different neuronal models, all of
which produce results having a good agreement with experimental data.
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Figure 2.24: ABAB... sequence response ratio curves. When adding
thalamocortical axonal spread (ν= 0.33 oct.), the dynamic frequency
tuning is obviously weakened by the integration of neighbouring inputs at
ϕA (cf. figure 2.23). We simulated 200 s.; T1 = 100 s., T2 = 200 s. qCTh =
0.5 nC/cm2 , σqCTh = 0.125 nC/cm2. Solid lines: µ= 0.4 oct. Dashed lines:
µ= 0.5 oct. All other parameters as in table 2.2.

We also show that the differential suppression phenomenon corresponds to
the steady state, whereas the forward masking phenomenon (Calford &
Semple 1995, Brosch & Schreiner 1997, Wehr & Zador 2005) is associated
with the model’s transient regime, a very important distinction considering
it was earlier thought that these two phenomena shared the same mecha-
nism (Fishman et al. 2001, Kanwal et al. 2003, Fishman et al. 2004, Denham
& Winkler 2006).

Here, we’ve focussed on the few essential ingredients sufficient for our
different models to be capable of reproducing the experimental data, re-
laxing the demands on neurophysiological accuracy of the models, both
in terms of their constituent parts and of their parameter values. This
required a process of trial and error, resulting in a feed-forward model
design, representing an isofrequency patch of A1. This design included
only excitatory neurons and thalamocortical synaptic depression, leaving
out inhibitory neurons, the tonotopic extension of cortex and intracortical
connections. The simplicity of design was a direct consequence of our
findings during the work, namely that with the joint effect of the spiking
threshold of neurons (providing non-linearity of responses), the thalamo-
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cortical depression (establishing the steady state over time), the tonotopic
organization of the thalamic response (making response in the modelled
patch of A1 tonotopic as well, via thalamocortical connectivity), and a
gradual increase or decrease of model response with experimental parame-
ters (either by fiat or through cross-neuronal and/or cross-trial variability
in responses, depending on the level of modelling detail), we are able to
reproduce the data of Fishman et al. (2004) for short tones, as well as the
dependence on time of the appearance of stream segregation (correlates)
at the neural level (Micheyl et al. 2005) (for the latter issue, we also refer
the reader to our scientific movies made with an intracortically connected
conductance-based model network, detailed in chapter 3, including a link
to the movies).

More specifically, the threshold explains the decline of response ratio
with presentation rate; the depression explains the decline in absolute
response to any tone with increasing presentation rate; the tonotopic
organization of thalamic response explains the decline of response ratio
with increasing frequency difference between a sequence’s tones; finally,
the gradual change of model response with experimental parameters was
decisive in reproducing a smooth decline in both absolute responses and
response ratios with increasing presentation rate and frequency difference.
In the rate model this is simply imposed by design, through the use of a
linear f-I characteristic (or transfer function; see equation (A.2) in appendix
A) for the A1 population. However, when we simulate a whole population
of conductance-based neurons of Hodgkin-Huxley type (see appendix B),
this can not be imposed but relies instead upon a certain level of variability
of neuronal responses, both across individual neurons and across trials.
Such variability may be induced intrinsically through varying the neurons’
resting potential, or through a spread in the values of thalamocortical
synapses’ parameters (e.g., U , τD, gCTh) and/or making stochastic that
very synaptic transmission, all of which can shape the effect of external
inputs impinging on neurons. Applying various of the mentioned methods,
we demonstrate that variability in the intrinsic qualities of single neurons
and synapses is necessary for our solution to yield good averaged data fits
in all models.

One caveat of our network is that when one takes into account the
thalamocortical input spread seen in the literature (appr. 1/3 octave; see
Miller et al. 2001), the difference of responses with frequency difference
gets flattened (compare figure 2.23 to figure 2.24). In order to address this
weakness, in chapter 3 we explore a tonotopically organized ‘network of
networks’ (N >1) of neurons not only in terms of its response properties in
the auditory streaming paradigm, but also regarding how its structure can
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be constrained using results in neurophysiological studies of responses to
single tones (e.g., Wehr & Zador 2003, Liu et al. 2007, Wu et al. 2008) and
two-tone forward masking stimuli (primarily based on a study using clicks;
Wehr & Zador 2005). Regarding the dilution of frequency resolution with
the spread in thalamocortical input mentioned here, we find that one needs
the addition of intracortical recurrent excitation to the network in order
to reasonably maintain the fit of the data found in the present chapter
without such a spread.

In short, in this chapter we not only reproduced the data found by
Fishman et al. (2004), but analysed the underlying possible causes of the
differential suppression phenomenon at the circuit level and arrived at
a simple yet powerful mechanism that explains how stream segregation
correlates arise at the level of the primary auditory cortex. Our exhaustive
analysis of the role of depression in our DS mechanism, both analytically
and with minimal preliminary simulations, yielded many useful tools for
assessing our model’s response to sequences of tones, which will come in
handy in future expansions of the work at hand. We further confirmed that
our mechanism works as claimed in three different models, one rate model
and two conductance-based models, without the need for intracortical
connections. This already in and of itself is a considerable achievement
in terms of robustness, made more remarkable by the fact that one of
the conductance-based models (our second approach) was adopted with
minimal parameter changes from an earlier modelling study (de la Rocha
& Parga 2008) of sequences of sensory stimuli with identical attributes in
a haptic context! Nevertheless, we further look into robustness in the next
chapter, as already outlined above.



3 Mechanism robustness and
beyond: tonotopic
conductance-based model

The author of this thesis presented part of the work of this chapter
at the Twentieth Annual Computational Neuroscience Meeting, held in
Stockholm, Sweden in July 20111

3.1. Introduction

In this chapter, we will complement our theory and model of differ-
ential suppression (possible correlate of the so-called primitive auditory
stream segregation phenomenon; Bregman 1990) presented in chapter 2.
Specifically, we further expand our neurophysiologically detailed modelling
study using neurons of Hodgkin and Huxley type, by now coupling them
via intracortical synapses, in order to form a network. Furthermore, we
now add a physical extension to our network by representing up to six
octaves of the tonotopic axis of the cortex, employing one such coupled
network of neurons to represent each discrete point (or ‘column’) of the
axis that we model (these columns are in turn mutually connected; see
appendix B for details). Finally, we ‘activate’ our ‘dormant’ inhibitory
neurons in order to explore the role of inhibition in the phenomena that
interest us. Throughout this study we use an equal number of excitatory
RS and inhibitory FS neurons, in order to limit the considerable complex-
ity involved in our task. We discuss the repercussions of this and other
limitations in chapter 5 (Discussion and Conclusions).

All this enables us to study in more detail which biophysical parameters
are the most important in reproducing experimental results, both those
parameters intrinsic to neurons and the ones pertaining to the synaptic

1Abstract published: Larsson, Montbrió & Deco (2011)
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coupling of the network. We present here further results on both streaming
correlates and responses to other stimuli, all of which nicely complement
the previous chapter. We also identify a specific plausible intracortical
connectivity architecture for layer IV of A1, the addition of which to our
previous network does not perturb earlier results but rather improves upon
them (see below).

Specifically, our model accounts for forward masking seen using noise
stimuli (Wehr & Zador 2005), while showing approximately balanced excita-
tion and inhibition (Wehr & Zador 2003, Wu et al. 2008, Tan & Wehr 2009)
and specifically the sideband dominance of inhibition over excitation found
by Wu et al. (2008). Regarding two-tone suppression (neurophysiological
forward masking using pure tones), for a long time, studies argued for
inhibition as the main mechanism responsible for seen in primary auditory
cortex (A1) neurons (Calford & Semple 1995, Brosch & Schreiner 1997).
However, both computational (Denham 2001) and experimental (Rose &
Metherate 2005) studies afford a significant role to thalamocortical (ThC)
synaptic depression in shaping the temporal response properties of A1.
Also, the duration of inhibitory currents in A1 has been an issue of con-
tention (Wehr & Zador 2003, Tan et al. 2004). The study by Wehr & Zador
(2005) used noise click stimuli to show that while responses to the probe
were not fully recovered even 512 ms after presentation of the masker,
inhibitory currents evoked by the masker lasted at most 100 ms, coincid-
ing in duration with the complete suppression of probe responses. The
authors proposed that a longer-lasting mechanism such as ThC or intracor-
tical (IC) synaptic depression could complement inhibition by accounting
for the lingering effect seen. They also demonstrated that pentobarbital
anesthesia significantly prolongs inhibition, thus calling into question ear-
lier results (Calford & Semple 1995, Brosch & Schreiner 1997). All this
led us to conclude that, using a version of our model with ThC depres-
sion and intracortical connectivity, we should be able to reproduce results
by Wehr & Zador (2005) in considerable detail, which we do in this chapter.

In summary, we develop a tonotopically organized network model of
layer IV of the primary auditory cortex (A1), capable of reproducing the
main characteristics of important recent neurophysiological experimental
results (mainly Fishman et al. 2004, Wehr & Zador 2005, Liu et al. 2007, Wu
et al. 2008). We chose to focus on layer IV for simplicity, as it is the main
thalamorecipient layer of A1, its pyramidal cells receiving afferent axons
from the ventral Medial Geniculate Body (MGBv; Smith & Populin 2001,
Winer & Lee 2007, Viaene et al. 2011). Inspired by Liu et al. (2007),
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we here propose a plausible IC connectivity for layer IV of A1, which
selectively amplifies the broad input from the thalamus to yield the sharp
frequency tuning seen in many studies of A1 (e.g., Liu et al. 2007, Fishman
& Steinschneider 2009). This amplification furthermore contributes to
improving the frequency resolution of our model when we consider a non-
zero spread of thalamocortical afferents, thus resolving the dilemma this
provoked in chapter 2. We conclude that a combination of IC currents
and ThC synaptic depression is imperative in any attempt to account for
the wealth of data seen in the neurophysiological literature, including the
phenomena we studied here.

3.2. Methods

When setting up this more elaborate model, neurophysiological con-
straints were of the essence in order for complexity not to run amok. In this
sense, we took into consideration several important results from recent lit-
erature, for instance that about 60% of excitatory inputs to A1 neurons are
thalamocortical in origin (Liu et al. 2007). In addition, the fact that Bruno
& Sakmann (2006) found that somatosensory cortex LIV neurons receive a
barrage of synchronous sensory-driven thalamic inputs strong enough to
evoke cortical spikes, in conjunction with Wang et al. (2010) inferring that
input synchrony is typically in the range of 20-60 synchronously active
synapses, led us to strenghten our working hypothesis that thalamocor-
tical synaptic depression likely contributes to, e.g., the forward masking
phenomenon and, of course, differential suppression in A1. Moreover, Liu
et al. (2007) showed a boost in excitatory currents of approximately 67%
and subthreshold and spiking activity bandwidths (measured at zero %
amplitude) of approximately 4 and 2 octaves, respectively. Later, Wu
et al. (2008) showed that while ThC input is equally broad to excitatory
and inhibitory cells in A1, the latter have broader spiking response than
excitatory cells (77% vs. 54% of subthreshold response width, respectively).
Also, in excitatory neurons, inhibitory current input range is 7.5 % narrower
than excitatory ditto. These data led us to the conclusion that inhibitory
cells are synaptically or intrinsically more excitable than excitatory cells.
We further inferred an approximate spread of intracortical inhibition of
λI = 0.4± 0.1 oct. (when data was combined with Liu et al. (2007) results).
Moreover, we take into consideration the result of Miller et al. (2001) that
ThC projections are focal with a radius of at most 1/3 of an octave. Finally,
we introduce a baseline variability in cortical neurons’ resting potential
and their synaptic strengths, which in turn provides variability in cortical
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responses across neurons in a population (Rose & Metherate 2005).
In this chapter we model three situations, namely the presentation

of a single pure tone (25 ms duration, cos2(t) up- and down-ramps of
5 ms duration), the presentation of two noise clicks in succession and
the presentation of sequences of pure tones (of the same frequency or
of different frequencies, depending on parameter ∆f ). The first case
is used when investigating which basic network setup is able to explain
most of the available neurophysiological data (see sections 3.2.1 and 3.3).
We present the tone at the center of the TT axis, i.e., at F0. At the
level of the cortex, the corresponding point is called ϕA, as in streaming
simulations (since A tones are always presented at center). In the case of
the noise clicks, used to model forward masking experiments (see section
3.3.3), we first present a masker and then a probe, with stimulus onset
asynchrony SOA (= 1/(Presentation Rate), 1/PR). We consider the values
SOA= 32, 64, 128, 256 and 512 ms. For technical reasons we approximated
these SOA values with 1/PR, PR ∈ {32, 16, 8, 4, 2}, with no important
effects on results (data not shown). As for the sequences of pure tones,
they are used for modelling the neural correlates of auditory streaming
with this recurrent network, in section 3.3.4.

3.2.1. The model: neurons, network and canonical
settings

The primary auditory cortex, A1, is tonotopically organized according
to the characteristic frequency (CF), i.e., that frequency which can evoke a
spiking response at the lowest stimulus intensity. The tuning properties of
the neurons are inherited from the ventral division of the Medial Geniculate
Body (MGBv) of the thalamus, but are further refined in A1 (Escabí & Read
2005). Thalamic efferents terminate on excitatory and inhibitory neurons
in A1 (primarily in layers II/III and IV; Cruikshank, Rose & Metherate
2002, Rose & Metherate 2005, Viaene et al. 2011), which constitute a subset
of an extensive network of neurons. In consequence, the firing properties
of neurons in A1 are determined by synaptic inputs from both the MGBv
and the local cortical network of excitatory and inhibitory neurons. Based
on recent experimental data from neurophysiological studies, a detailed
neural model of layer IV in A1 has been developed (where the main, so-
called driving thalamocortical input arrives; Viaene et al. 2011). The
model consists of two types of neurons, regular-spiking (RS) excitatory
neurons and fast-spiking (FS) inhibitory neurons, all arranged along an
axis representing the tonotopic organization of the auditory cortex, and
highly interconnected (see figures B.2 and B.3). This is the main difference
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with the HH type models used in chapter 2 – here, we model the extension
of A1 by setting N >1. N takes on different values depending on how many
octaves we model, but in general we use a density of ‘columns’ per octave
of ρ = 16. Additionally, all neurons in the model receive feed-forward
excitatory inputs via thalamocortical synapses, as before, but in this model
we look more closely at the effects of setting ν> 0, hinted at in chapter 2.
As described in appendix B, we implemented this structurally rather than
with a simple modulation of weights – a certain number Kn of axons is
sent from each zone of the thalamus (not explicitly modelled) to all of the
A1 ‘columns’ within its reach. The advantage of this approach is that it
renders each synapse exclusive to input originating at one particular point
in the thalamus, as most probably occurs in the brain. In contrast, in our
HH models of chapter 2, A and B tone input share synapses, something
which mixes the effect of the different tones on a particular synapse. While
this is not important when one looks at averages of network response,
the realism introduced here is preferable and has the added advantage
of enabling us to look at data from individual synapses, should the need
occur. The details of all this, as well as all other aspects of the model may,
as before, be found in appendix B. All implementations necessary to model
the full extension of A1 were added to the earlier program written in C
and C++.

To establish suitable canonical parameter values, we took the paper by
Rose & Metherate (2005) as a starting point. In it, the authors experimen-
tally establish values for a number of important biophysical parameters,
including the standard deviations of the same. Fitting our network settings
based on those values, helped with the task of constraining the model
and lowering the number of free parameters. In the following, we describe
the fitting procedure. Please note that we regard the fit values only as
approximate, for the following reasons (amongst others):

the Rose & Metherate (2005) paper is based on slice work

data of other papers we attempt to reproduce sometimes use different
species

in general, experimental methods and setups may vary across studies

3.2.2. Data analysis

Although at first we only made an approximate fit of our network’s
response to single tones, using only feed-forward inhibition and recurrent
excitation (sections 3.3.2.1 - 3.3.2.4), we found this to reproduce the
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data insufficiently well. Thus, in order to fit as well as possible as much
as possible of the neurophysiological data on the A1 microcircuit, we
constructed a goal function to which we applied the minimum least squares
method. Specifically, we focused on

1. the bandwidths (BWs) of spike responses of E and I neurons

2. the ratio of the BW of spike response to the BW of membrane
potential response, for both E and I neurons (%),

3. the level of membrane potential at which an E neuron spikes (% of
maximum), and

4. the average difference (in %) between inhibitory and excitatory con-
ductance response BWs, at five different amplitude levels (0, 20, 40,
60, 80 % of maximum).

The goal function thus had ten constituents, which were weighted as
follows (enumeration as above):

1. 15% each

2. 20% each

3. 10%

4. 4% for each level

The goal values we used were (see section 3.3.2 for reasoning, references
and results of this fitting procedure)

1. 2.17 oct. (E), 3.09 oct. (I),

2. 54.3% (E), 77.3% (I),

3. 59.6%,

4. -7.8, -3.3, 15.0, 27.5 and 32.5 % difference, respectively.

The goal function value (to be minimized) will be referred to as GFval
in the following. The results of this more elaborate fitting procedure is
presented in section 3.3.2.5.

Regarding the calculation of RR for streaming simulations, the tono-
topic extension of our model adds another aspect which warrants comment.



3.3. RESULTS 83

Fishman et al. (2004) measure so called Multi-Unit Activity (MUA) extra-
cellularly, comprising spikes from a sphere of about 100 µm diameter, which
for us raises the issue of whether we should sum activity from ‘columns’
neighbouring the BF region or not. Basing our judgment on data saying an
iso-frequency column has a diameter of 50-100 µm (Pickles 2008), we chose
to only measure in the BF column at all times, as outlined in chapter 2.

3.3. Results

3.3.1. Setting up a canonical network

3.3.1.1. Resting potential variability

Rose & Metherate (2005) report a slight spread in values of measured
membrane potentials in regular-spiking (RS) and fast-spiking (FS) neurons.
As the membrane potential of a neuron will relax to its leak current resting
potential, VL, in the absence of any input, we decided to introduce a
spread in VL across neurons. We based our fit on the values in table 1
of the experimental paper, specifically fitting the resulting coefficient of
variation, since we used the same VL mean value in all our model neurons,
inhibitory and excitatory alike. We arrived at σVL,E = 1.12 mV (1.6 %)
and σVL,I = 1.89 mV (2.7 %), based on VL = −70 mV, which we use
throughout this work.

3.3.1.2. Spike Frequency Adaptation (SFA)

We performed a fit of SFA (see appendix B and specifically figure B.1).
However, this is not further employed in the thesis, as results were not
deemed to be negatively affected by its exclusion.

3.3.1.3. Spike response, FS and RS cells

In figure 1 in Rose & Metherate (2005), examples are given of RS and
FS neuron traces in response to a minimal stimulating current. We have
performed simulations to check what response we get to minimal stimulation
with different parameter settings. First of all, we identified the (constant)
current level at which both our RS and FS neurons showed a sustained
response to a long-lasting input (900 ms in the experimental paper, we use
1000 ms). This level was identified as ICTh = 1.66 µA/cm2. We proceeded
to identify which value of gCTh was needed to get the same level of ICTh with
Poisson input. The result was a value of gCTh = 0.1 mS/cm2 (with K = 1)
or gCTh = 0.001 mS/cm2 (with K = 100, yielding more evenly spread out
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response). In figures 3.1 and 3.2, we show the spike responses obtained
with these settings, for the duration of the input and during the first 100
ms, respectively (for the conductance input simulations, we used K = 100).
Subfigure (a) shows the regular-spiking cell response, whereas subfigure
(b) shows the fast-spiking cell response.
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(a) RS Excitatory cell
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(b) FS Inhibitory cell

Figure 3.1: An excitatory (a) and an inhibitory (b) model neuron’s response
to minimal stimulation, delivered both as a constant current (black lines,
ICTh = 1.66µA/cm2) and using a Poisson process to generate conductance-
based input (blue lines, gCTh = 0.001mS/cm2, K = 100 and RTh = 100
Hz). TD = 1000 ms.
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(b) FS Inhibitory cell

Figure 3.2: Detailed view showing the first 100 ms of the responses shown
in figure 3.1.
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Figure 3.3: The RS and FS neurons’ firing rate, smoothed with a Gaussian
of width 5 ms, calculated from data shown in figure 3.1. Excitatory
neuron’s responses in green, inhibitory neuron’s responses in red. Solid
lines show responses to Poisson input, whereas dashed lines show responses
to constant input. Average rates (ISI−1) with constant current input: 32.7
Hz (RS), 70.2 Hz (FS); with Poisson input: 33.0 Hz (RS), 71.8 Hz (FS).
Note how fluctuations in the Poisson input can affect response this close
to the threshold of activation. Here, ISI means Inter-Spike Interval.

Figure 3.3 shows average rates for RS (green) and FS (red) neurons
over 1000 ms, for both constant (dashed) and Poisson (solid) input. It is
important to observe how fluctuations in the input makes transmission
unreliable this close to the minimal stimulation needed to obtain a response.
However, if we had situated the constant input just one hundredth of a
µA/cm2 lower, we would get no response at all in the RS neuron, while
the fluctuations of a Poissonian input would then increase transmission
probability when comparing to the response to constant input. This is
important in obtaining responses when in a fluctuation-driven regime,
whether it be set deliberately (de la Rocha & Parga 2005) or obtained due
to continued stimulation causing a steady state (de la Rocha & Parga 2008),
as we saw in our study of streaming correlates using our approach two HH
model in chapter 2.
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3.3.1.4. EPSP size, shape and variability

Using data from figure 2 and table 2 in Rose & Metherate (2005), we
were able to preliminarily set values for gCTh and σgCTh . Specifically, based
on amplitude numbers in that paper, we aimed at an average EPSP value of
about 1.5 mV (with depression, as fit in the next section). The value of 1.45
mV is the average of RS and FS means in the paper, and we use this since
no statistically significant difference between their means was found. The
standard deviation across trials for the amplitude was 0.3 mV, so we set
σgCTh with this value in mind. In particular, we set the values gCTh = 0.02
mS/cm2 and σgCTh = 0.004 mS/cm2 , respectively. We ran simulations with
60 different seeds with these values. The results without (blue curve) and
with (green curve) depression may be seen in figure 3.4. Dashed curves
mark standard deviations for each mean (solid) curve.
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Figure 3.4: With gCTh = 0.02 mS/cm2 and σgCTh = 0.004 mS/cm2 , we ran
simulations with 60 different seeds. Shown are mean (solid) and standard
deviations (dashed) without (blue) and with (green) ThC depression (U =
0.4). Peak values: 2.39 ± 0.50 mVand 1.46 ± 0.31 mV , respectively.

Finally, with regard to EPSP shape, we chose to model rise time as
instantaneous for both RS and FS cells, for simplicity. While rise times
found by Rose & Metherate (2005) were in fact different, in absolute terms
they were negligable, in particular when compared with the remarkable
difference in EPSP width between the two cell types. The primary param-
eter controlling the width is the decay time constant, τAMPA. However,
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in our simulations we use the value of τAMPA = 3.0 ms for both synaptic
connections, in order to keep the complexity of our model manageable. For
completeness, it would be desirable to introduce two separate decay terms,
τAMPA,E and τAMPA,I, and look at how setting the latter higher than the
former influences results, but we leave this for future work.

3.3.1.5. Fitting depression parameters to EPSPs in response
to a 40 Hz tetanus

Based on the data in figure 3C of Rose & Metherate (2005), we made
an orientative fit of the the values of U and τD. The word orientative
is appropriate in this context, since depression has been shown to vary
widely in strength and duration across studies (Thomson & Deuchars 1994,
Abbott et al. 1997, Gil et al. 1999, Carandini, Heeger & Senn 2002, Chung
et al. 2002). We simulated the EPSP responses to a single presynaptic
spike presented at 40 Hz, using gCTh = 0.017 mS/cm2 . Using least-squares
fitting, we found that the values of U = 0.4 and τD = 250 ms yielded the
best fit to the data of Rose & Metherate (2005) (see figure 3.5). As can be
appreciated in the figure, these values are not set in stone - particularly,
the time constant may be allowed to vary and we still get a good fit.
Nevertheless, these values helped us decide on suitable ranges for these
parameters in our simulations.

3.3.1.6. EPSP statistics and input fan-out

As for the number of presynaptic spikes, we deal with two cases - with
and without fan-out of ThC connections (regulated by value of ν). Thus,
with gCTh = 0.01 mS/cm2 and RTh = 100 Hz I get the following results.
With ν= 0 and K = 100 or with ν= 1/3 oct. and Kn = 10 (which yields
a total K value of about 110 = Kn×(∼ 5 columns each side of tone’s
frequency + center column)), we get 150-180 presynaptic spikes during
a 25 ms cos2(t)-ramped tone, which yields a value of 30-36 presynaptic
spikes in a 5 ms period. This value is in the range of 20-60 events per 5 ms
of synchronous input, which was found by Wang et al. (2010). It is evident
from looking at figure 3.6 that using fan-out makes the number of events
at different points in the network more equal, as we foresaw in our input
analysis in chapter 2.

3.3.2. Network response to short tones

In order to fix the network settings, with regard to ThC and IC con-
nectivity, we used primarily two recent experimental papers to guide us,
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Figure 3.5: RR of successive EPSPs to first EPSP, evoked by a 40 Hz
tetanus stimulus. Each EPSP is evoked by a single presynaptic spike
presented every 25 ms. gCTh = 0.017 mS/cm2 . Black curve: data from
Rose & Metherate (2005), extracted from their figure 3C. U = 0.4. τD values
given in legends. While the best fit is achieved with τD = 250 ms, good
fits are achieved with that value set slightly differently.

namely Liu et al. (2007) and Wu et al. (2008). In summary, we tried to set
the network up so that the following constraints, taken from those papers,
were fulfilled as far as possible (BWX-Y means bandwidth at X dB and Y
% amplitude):

Liu et al. (2007)

1. Average frequency range of spike response of RS cells, relative
to membrane potential response, was 54 ± 7 %.

2. RS cells show an approximate membrane potential BW60-0 of
5 octaves.

3. About 61 ± 11 % of tone-evoked (TD=25ms) exc. input is ThC,
39 ± 11 % is IC.

4. BW60-50 of ThC-only resp. is 25 % wider than ThC+IC resp.

Wu et al. (2008)
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Figure 3.6: Spike rasters in response to input without and with depression
(columns) and without and with fan-out of ThC input (rows), respectively.
Parameters: U = 0.0; 0.4 (left to right), ν = 0; 0.33 octaves (above to below).
Red: inhibitory; blue: excitatory.

1. Average frequency range of spike response of RS cells, relative
to membrane potential response, was 54.3 ± 7.6 % (confirming
results of Liu et al. (2007)).

2. Average frequency range of spike response of FS cells, relative
to membrane potential response, was 77.3 ± 8.5 %.

3. Both FS and RS cells’ membrane potential responses show an
approximate BW60-0 of 4 octaves.

The three points of Wu et al. (2008) allow us to calculate the avg.
BW60-0 of spike responses, namely 2.17 octaves for RS cells and 3.09
octaves for FS cells, respectively. Since the BW60-0 of membrane potential
responses are equal, this implies one of three things (or a combination of
the three): 1. FS cells are intrinsically more excitable than RS cells. 2.
λIE is wider than λEE . 3. gCTh is stronger at FS cells’ ThC synapses than
at RS cells ditto. Alternative one is something we have included in our
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model from the outset (see appendix B). Alternative two, while possible,
is not contemplated in this study, for simplicity. While the data from Rose
& Metherate (2005) refutes alternative three in saying that there was no
statistically significant difference in mEPSP amplitudes between the two cell
types, more recent results in other modalities (e.g., in somatosensory cortex,
see Gabernet et al. 2005, Cruikshank et al. 2007, Daw et al. 2007, Hull
et al. 2009) and even in A1 (Levy & Reyes 2012, Schiff & Reyes 2012),
claim that minimal stimulation EPSPs are bigger in inhibitory neurons
and attribute this to stronger synapses. This leaves also alternative three
a possibility, i.e., a candidate solution mechanism. Our first priority in
fitting this data was to be as faithful to the literature as possible. However,
in the process of trying to satisfy all constraints, we found that compromise
was necessary. Thus, in the end we opted for approximately fitting the
frequency range of spike responses as found in both experimental papers,
as well as fitting the BW60-0 of input conductances to between 4 and 5
octaves. By fitting the ranges we implicitly fit the spike response widths
as well. Another important constraint we considered was the proportion
of IC input of the total, which we fit to approximatly 40%. Fitting this
with all IC currents active (voltage-clamp only blocks inhibitory currents
in the measured neuron, not in the rest of the neurons in the network,
which consequently integrate all their inputs to produces spikes that shape
the afferent exc. currents throughout the network), we were able to also
look at the relationship between the ThC-only and the ThC+IC responses.
We found that also fitting the narrowing of the BW60-50 by IC input was
impossible without negatively affecting the rest of the fit, including the IC
portion of input and the spike response widths. Therefore, we compromised
on this point, simply trying to ensure that the BW60-50 was maintained,
i.e., at least not widened, when IC input was present (there is of course a
sharpening of frequency tuning anyway, although closer to BF).

Below, we proceed as follows. First, we show the results of our initial
approximate fit of the data outlined above, using only feed-forward inhibi-
tion and recurrent excitation, as mentioned in section 3.2.2 (sections 3.3.2.1
- 3.3.2.4). While those results were quite satisfactory, they did not meet
our criteria and the fit was not sufficiently quantified, for which reason
we employed a more exact methodology of minimizing error, explained
in detail in that same section (3.2.2). The results of this second fit are
explained in section 3.3.2.5.
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Figure 3.7: Setting ν> 0 smoothes the conductance response evoked in
cortical neurons across the TT axis by a single tone, as compared with
when ν= 0. The effect is robust when synaptic depression is activated
(U = 0.4, τD = 250 ms). Legend pairs lines with parameter values. gkj = 0,
∀k, j ∈ {E, I} (no intracortical connections active).

3.3.2.1. ThC input spread smoothes A1 conductance response
profile

Figure 3.7 illustrates how the inclusion of a non-zero thalamocortical
input spread smoothes the resulting conductance response profile evoked
in the cortical neurons across the TT axis (cyan lines: conductances with
ν= 0.33, green lines with ν= 0.0). Furthermore, dashed lines show the
effect of depression in the two cases (U = 0.4, τD = 250 ms). Here, gkj = 0,
∀k, j ∈ {E, I}. This result (with ν= 0.33) is in accordance with the fairly
flat thalamocortical input profile across the tonotopic axis with intracortical
connections silenced (Liu et al. 2007). A similar smoothing or flattening
effect of a non-zero ν can be discerned in the contrasting rasters of figure
3.6.

3.3.2.2. IC excitation boosts excitatory conductance response
by two-thirds

By setting gEE = 3.9 mS/cm2 , we got a boost in evoked exc. conduc-
tance by 67% (i.e., it adds 40% on top of ThC input), the figure found by
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Figure 3.8: Locally (at ϕ0) fitting data by Liu et al. (2007), we get a boost
in cond. by 2/3 (i.e., it adds 40% on top of ThC input). Dashed line: no
IC currents; solid line: gEE = 3.9 mS/cm2 , gIE = gEI = gII = 0.0 mS/cm2.

Liu et al. (2007). This is illustrated in figure 3.8, which shows an example
trace in response to a single pure tone, with and without intracortical
recurrent excitation. However, we later realized we should aim at fitting
the IC boost value found by Liu et al. (2007) globally, i.e., calculated across
the tonotopic axis. We elaborate on this in section 3.3.2.5.

3.3.2.3. Average excitatory and inhibitory conductance
responses at ϕ0 site and across A1

We set gEI with the gI/gE relation found in Wehr & Zador (2003) in
mind. The value gEI = 0.8 mS/cm2 yielded gI/gE ≈ 0.72 across 10 seeds
(cells), at ϕ0 (figure 3.9(a)). Across A1, we see how inhibition gradually
dominates excitation, as in Wu et al. (2008) (figure 3.9(b)). Subthreshold
response width is 4 octaves, within the interval of 4-5 octaves obtained if
one combines data found by Liu et al. (2007) and Wu et al. (2008).

3.3.2.4. IC excitation boosts spike response amplitude and IC
inhibition narrows its width

We examined the effect of the conductance boost on the spike response
of our network. We find that IC excitation slightly boosted response
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(b) Parameters as in (a). Across A1, we see how inhibition gradually dominates excitation
toward the flanks, as in Wu et al. (2008). Subthreshold response width is 4 octaves,
within the interval of 4-5 octaves obtained if one combines data found by Liu et al. (2007)
and Wu et al. (2008). Above each subplot is shown the mean delay (D) and quotient (q)
of inhibition relative to excitation at that point of the TT axis.

Figure 3.9: Conductance (red: inhibition; green: excitation) response at
ϕ0 (a) and across TT axis (b). Details in subcaptions.
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Figure 3.10: The figure shows the change in the spiking profile (histogram
smoothened by Gaussian with σG = 2.5 ms) when contrasting gEE =
gEI = 0.0 (dashed) with gEE = 3.9 and gEI = 0.8 (solid; units: mS/cm2). IC
excitation slightly boosted response amplitude, while IC inhibition narrowed
the response profile width to two octaves, approximately corresponding to
the data found by Liu et al. (2007).

amplitude, while IC inhibition narrowed the response profile width to two
octaves (figure 3.10), as seen in Liu et al. (2007). Dashed bold line shows
response with no IC currents, solid bold line shows response with gEE = 3.9
mS/cm2 , gEI = 0.8 mS/cm2 (gIE = gII = 0.0 mS/cm2 ).

3.3.2.5. Elaborately reproducing data with full network setup

So, having achieved the approximate fits described up until now, al-
though acceptable, we felt the lack of realism in not exploring what role
gIE and gII conductances play in the intracortical response warranted a
more rigourous approach to the issue of setting the connectivity. Therefore,
we elaborated the goal function described in section 3.2.2 and proceeded to
try to minimize its value, GFval, while keeping an eye on individual values
that were being fit in order to prioritize the most important characteristics
(more than the goal function already does). While this was an arduous
trial-and-error process, we will proceed directly to describe the similar fits
of three different parameter setups. The different setups are defined in
table 3.1, and the fits are described in detail with respect to important
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characteristics of sub- and suprathreshold responses in tables 3.2 and 3.3.

Setup µ λE λI gEE gEI gIE gII gIEratio
CTh

1 0.4 0.03 0.3 6.0 1.6 3.1 0.6 1.0
2 0.4 0.03 0.3 6.0 1.6 3.1 1.2 1.5
3 0.4 0.03 0.3 6.0 1.6 3.1 1.3 1.5

Table 3.1: The different parameter settings investigated. From one setup
to the next, changing parameter values are in bold.

Setup
100×gIC

E

(
E
)

g
ThC+IC
E

(
E
) (%)

BW50

gThC
E

(
E
)

BW50

g
ThC+IC
E

(
E
)

1 40.99 ± 1.50 0.85 ± 0.10
2 40.89 ± 1.70 0.93 ± 0.08
3 42.16 ± 1.67 0.92 ± 0.08

Table 3.2: IC portion of input (%) and ratio of BW of ThC to total
(IC+ThC) input, for the different parameter settings.

Setup BW 0
R

(
E
)

BW 0
R

(
I
)

BW 0
Vm

(
E
)

BW 0
Vm

(
I
)

GFval

1 2.23 ± 0.05 2.29 ± 0.15 4.61 ± 0.21 4.35 ± 0.33 310.60
2 2.11 ± 0.20 2.84 ± 0.15 4.97 ± 0.19 4.99 ± 0.18 288.98
3 2.11 ± 0.21 2.82 ± 0.15 4.97 ± 0.19 4.99 ± 0.18 283.96

Table 3.3: Bandwidth statistics for spike and membrane voltage responses
for the different parameter settings.

As can be seen in the tables, the GFval quantities are similar. In fact, most
of the data we include in the statistics tables is similar, the only significant
difference being that setup 1 has approximately equal bandwidths for
suprathreshold responses for excitatory and inhibitory neurons, whereas
for setups 2 and 3 these bandwidths differ substantially, as seen in Wu
et al. (2008). However, in order to get that result, we needed to introduce
gIEratio
CTh > 1.0, i.e., set gCTh for inhibitory neurons stronger by that relative
factor (in this case, 1.5). This is in accordance with recent results in
A1 (Levy & Reyes 2012, Schiff & Reyes 2012), as well as studies in the
somatosensory cortex (Gabernet et al. 2005, Cruikshank et al. 2007, Daw
et al. 2007, Hull et al. 2009) (though not in agreement, however, with
results of Rose & Metherate 2005). Both setup 2 and setup 3 feature this
stronger input to inhibitory neurons, but in the end we chose setup 3 as our
best fit, due to its lower GFval value. As so often in neuronal modelling,



3.3. RESULTS 97

∆ F (octaves)

g
E
 (

m
S

/c
m

2
)

IC exc. input: 42.16 ± 1.67 % of total; 1/2 ampl. BWs: 1.09 ± 0.08 (ThC), 1.18 ± 0.05 (total) −> ratio=0.92 ± 0.08

−3 −2 −1 0 1 2 3

0

0.1

0.2

0.3

0.4

0.5

(a) Excitatory conductance change in an RS exc. neuron when adding IC currents (cyan:
gEE = gEI = gIE = gII = 0.0 mS/cm2 ; green: IC conn:s as in setup 3 of table 3.1).
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(b) All conductances (green: exc.; red: inh.) of RS exc. (solid) and FS inh. (dashed)
neurons, respectively. IC conn:s as in setup 3 of table 3.1.

Figure 3.11: This figure shows the conductance response to a 25 ms tone.
In (b), all conductances are shown (green: excitatory; red: inhibitory;
dashed: of FS neuron; solid: of RS neuron), whereas in (a), we see how
adding intracortical activity boosts RS neuron excitatory conductance
response by approximately 2/3 (title shows IC portion of input is about 40
% of total), and bandwidth is slightly broadened at 50% amplitude (title
data), but clearly narrowed if measured at lower amplitude levels.



98
CHAPTER 3. MECHANISM ROBUSTNESS AND BEYOND:

TONOTOPIC CONDUCTANCE-BASED MODEL

this result is not to be seen as a unique solution, but rather one which fits
neurophysiological data to a high degree and is chosen rigourously, lending
it credibility and plausibility. We now illustrate the characteristics of the
response to a single tone (using setup 3 for parameter values) in a series of
figures. Please note that thinner lines tracing the thick, principal lines of
the figures, always designate the standard deviation.
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(a) Spiking response to 25 ms tone with cos2(t) ramps. Here, σG = 1.0 ms.
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(b) Spiking response to 25 ms tone with cos2(t) ramps. Here, σG = 2.5 ms.

Figure 3.12: The figure shows the change in the exc. neuron spik-
ing histogram profile when contrasting gEE = gEI = gIE = gII = 0.0
mS/cm2 (dashed) with gEE = 6.0, gEI = 1.6, gIE = 3.1, gII = 1.3 (solid;
units: mS/cm2), for two different σG values: 1.0 ms (a) and 2.5 ms (b).
As in figure 3.10, IC excitation slightly boosted response amplitude, while
IC inhibition narrowed the response profile width to slightly less than
two octaves, approximately corresponding to the data found by Liu et al.
(2007).
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Figure 3.11 is included to show how adding intracortical activity boosts
excitatory response by about two thirds, as seen in Liu et al. (2007), this
time across the tonotopic axis (in contrast with figure 3.8, only fit locally).
Individual strengths and widths of evoked conductances in both neuron
types are shown in subfigure (b), whereas in subfigure (a) the RS neuron
excitatory conductance evoked using setup 3 (green line) is contrasted with
the same response in the complete absence of intracortical currents (cyan
line).

Figure 3.12 goes on to show how the spike response of excitatory neurons
in the network is affected by adding intracortical connections (the two
subfigures show the same data for two different widths of the Gaussian
filter used on the histograms of spikes). We see how there is a slight boost
also in suprathrehold response in the center of the TT axis, while on the
flanks there is narrowing of the spiking profile due to lateral inhibition
(especially clear in subfigure 3.12(b)).

Furthermore, in figure 3.13 we may observe the spiking response and
the underlying membrane potential response (action potentials blocked) of
both excitatory RS neurons and of inhibitory FS neurons. The stronger
input to inhibitory neurons (gIEratio

CTh = 1.5) causes a stronger subthreshold
response (subfigure 3.13(b)), and a slightly wider suprathreshold response
(subfigure 3.13(a)), in those neurons.

To illustrate the fit of a part of our goal function (section 3.2.2) not
included in the statistics of tables 3.2 and 3.3, namely the relationship of
inhibition and excitation across the tonotopic axis, we made figure 3.14,
which shows our fit in (b) and the original data of Wu et al. (2008) in
(a). As commented on in the subcaptions, we manage to fit two important
characteristics of the data, namely the domination of inhibition on the
flanks of BF, and inhibition being narrower than excitation, on average, at
the base of the responses (at 0% amplitude).
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(a) Spiking response in the form of smoothed histograms (σG=1.0 ms; solid: RS exc.;
dashed: FS inh.). BW at base is wider for inhibitory neurons, as seen in neurophysiological
data (Liu et al. 2007, Wu et al. 2008).
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(b) Membrane potential response (spikes blocked) in inhibitory neuron (red) and excita-
tory neuron (green). Note the stronger response in inhibitory neurons.

Figure 3.13: In (a), we show the spike response of excitatory (solid)
and inhibitory (dashed) neurons to a single 25 ms tone, whereas in (b),
we show the membrane potential underlying this spike response (spikes
blocked for this figure). We observe how the stronger input to inhibitory
neurons renders their subthreshold response stronger, in (b), and their
suprathreshold response slightly wider, in (a).
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(a) The original data (adapted from figure 3A in Wu et al. (2008)) shows how inhibition
is wider than excitation around BF, but actually narrower at 0-20% amplitude (average
over 11 cells).
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(b) Our fit displays the trend of the original data, showing inh. narrower than exc. at
the base and increasingly wider the closer to BF one measures (average over nine seeds).

Figure 3.14: Average percentage bandwidth difference ((BWI -
BWE)/BWI), at different amplitude levels, between excitatory and in-
hibitory response in exc. (RS) neuron. In (a), we reproduce the original
data (Wu et al. 2008), in (b) we show our fit, using setup 3 of table 3.1.
Comments in subcaptions.
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3.3.3. Simulating neurophysiological forward masking

We now proceed to attempt to reproduce the results by Wehr & Zador
(2005), who investigated intracellularly the response of neurons in anaes-
thetized (ketamine) rat A1 to pairs of noise clicks with different SOA values
(see Introduction). The clicks had an intensity of 102 dB, and for that
reason and due to the stimulus being noise we increase the input by a
factor of 2.4 (explained in appendix B).

(a) Original data, adapted from figure 1A of Wehr & Zador (2005).
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(b) Our fit.

Figure 3.15: This figure shows the example raster and histogram from
Wehr & Zador (2005) (a), and our fit (b).

For these simulations we used gEE = 3.9 mS/cm2 and gEI = 1.6
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mS/cm2 (inhibition double that of our approximate fit of before), whereas
gIE = 0.0 mS/cm2 and gII = 0.0 mS/cm2. Depression parameters were
U = 0.6 and τD = 500 ms, also adjusted upwards from before. We obtain
the results of Wehr & Zador (2005) as regards time course of recuperation
from a masker tone. To illustrate this fact, we have prepared figures
3.15 and 3.16. Figure 3.15 shows (both original data in (a) and our fit
in (b)) a sample raster plot and an averaged histogram of the responses
to both masker and probe, for all SOA values explored. From comparing
the subfigures it is clear that we reproduce the general trend in the data,
although we have a bit more response for SOA= 64 ms than did Wehr
& Zador (2005). However, this anomaly was within the error margin of
their data, which we can appreciate when scrutinizing the average response
ratios (Probe/Masker) depicted in figure 3.16.

Finally, we show evoked excitatory and inhibitory conductances in fig-
ure 3.17, where we can appreciate that both conductance types recuperate
at about the same rate, as seen in Wehr & Zador (2005).

These results were obtained with slightly raised parameter values as
compared to our first fitting of neurophysiological results with pure tones
(section 3.3.2), as regards inhibition and depression. The need for this
could be due to different preparations, different anaesthesia or other factors,
and will need more work to be clarified. Furthermore, gI /gE ratios are
not a perfect fit to the data, which potentially raises issues (also, the
suppression of the conductances is stronger for low SOA values in the
neurophysiological data of subfigure 3.17(a), but we emphasize that this
is data from an example cell). Finally, we would ideally like to reproduce
the data using our full network fit as presented in this chapter, but it will
have to be deferred to future work for lack of time. Nevertheless, we find
that showing the gist of the data on time course of recuperation of both
activity and conductances with a tonotopic network model is already a
considerable achievement.

3.3.4. Auditory streaming correlates revisited

In chapter 2, we reproduced the main data of Fishman et al. (2004) using
three different models. In particular, we showed that the same underlying
mechanism to explain differential suppression worked in all three of them.
There are however some shortcomings to the local approach we employed
there (i.e., representing only a population of neurons with BF fA). First of
all, that solution only partly honours the fact that, as in every subcortical
station of the auditory pathway, A1 displays a tonotopic organization.
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(a) Original data, adapted from figure 1B of Wehr & Zador (2005).
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(b) Our fit.

Figure 3.16: This figure shows average P2/P1 ratio found by Wehr &
Zador (2005) (blue line in (a)) and our fit of the same (b). Our average is
taken only over two different seeds, hence the small s.d.
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(a) Original, adapted from figure 2C of Wehr & Zador (2005).
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(b) Our data, plotted vertically for better comparability across time and SOA.

Figure 3.17: The figures show the time course of excitatory and inhibitory
conductances for all SOA values. (a): original. (b): our data

Secondly, we did not explore the role of introcortical connections (i.e.,
currents) in shaping the response to auditory streaming stimuli at this
level.

Both these issues are addressed here, employing the full network setup
(parameter setup 3) from above.

Figure 3.18 shows the so-called depression field to illustrate what was
neglected in our local network. Particularly, the different level of depression
across the TT axis means the response off-BF can be considerable and can
have an influence on response at BF, especially when we set ν> 0.
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(a) (b)

Figure 3.18: Analytically and numerically obtained so-called synaptic
depression fields (d0, i.e., the steady state value of d(t) right before an A
tone is about to be presented, across the tonotopic axis). PR = 5, 10, 20
and 40 Hz are represented by solid, dashed, dotted and dotted-dashed lines,
respectively, whereas ∆F = 5, 10, 20, 30, and 40 % are represented by red,
blue, magenta, cyan and black lines, respectively. The green vertical lines
mark the corresponding FB locations on the tonotopic axis. (a) Curves
obtained using analytical results of appendix A. (b) The steady-state
values of d(t) (after a 1200 ms AB tone sequence), averaged over K = 100
synapses at one neuron, for all positions in an N = 73 column network.
For both figures, U = 0.4 and τD = 250 ms.
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3.3.4.1. Full tonotopic axis of neural populations, with
intracortical connections: Recurrent network

As mentioned before, excitation was taken to be very narrow, whereas
inhibition is quite a bit broader (here by a factor of ten), as is derivable
from data found by Liu et al. (2007) and Wu et al. (2008). With these
settings (all parameter values in table 3.4), we got a good fit in the mean of
the B/A response ratios seen in the study by Fishman et al. (2004). Figure
3.19 depicts the response ratios for 64 ∆f /PR parameter combinations.
Due to the introduced variability, calculating an average is necessary
(reflecting biological reality, where noise is ever-present; e.g., Shadlen &
Newsome 1998). Here we used ten different seeds for each data point shown,
meaning we ran a total of 640 simulations to get the data of figure 3.19.

Name Value
RThmax 100 Hz
µ 0.4 octaves
ν 0.33 octaves
U 0.4

τD 500 ms
gCTh 0.02± 0.004 mS/cm2

Kn(K) 10(110)

M 15

N 97

gEE 6.0 mS/cm2

gIE 3.1 mS/cm2

αE 2.0 ms−1

βE 0.5 ms−1

λE 0.03 octaves
gEI 1.6 mS/cm2

gII 1.3 mS/cm2

αI 0.5 ms−1

βI 0.3 ms−1

λI 0.3 octaves

Table 3.4: Values of biophysical parameters for recurrent network

In figure 3.20, we show the same data as in figure 3.19, but superimposed
on a so-called van Noorden diagram (cf. figure 1.4(d), reproducing figure
7(a) of Fishman et al. 2004). As can be appreciated, the trend in the model
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Figure 3.19: B/A response ratios plotted as a function of PR , for 8
different ∆f values. Shown are the average values (error bars are stan-
dard deviations) across 10 different simulations, varying the random seed.
Parameters as in table 3.4.

data compares well to that of the neurophysiological data obtained in
Fishman et al. (2004). Most importantly, we used thalamocortical axonal
spread in these simulation (ν= 0.33 octaves) and managed to get the
data fit as found again, in stark contrast with what we found with the
feed-forward network (compare, respectively, figure 3.19 to figure 1.4(a),
and figure 2.24 of chapter 2 to figure 1.4(b)).

3.3.4.2. Illustrating the build-up of streaming dynamically:
Scientific movies

In order to further illustrate the results of our modelling of the under-
lying neural correlates of the auditory streaming phenomenon, we have
prepared scientific movies of the evolution of neural activity over time. In
the web page http://cns.upf.edu/johan/EmCAP/Movies/MoviePage.html
we show a well-chosen sample of these. In particular, we chose five illus-

http://cns.upf.edu/johan/EmCAP/Movies/MoviePage.html
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Figure 3.20: Plot showing average B/A response ratios (over 10 model
‘trials’; same parameter values as in figure 3.19) superimposed on a van
Noorden diagram (cf. figure 1.4(d), reproducing figure 7(a) of Fishman
et al. 2004). The dotted line is the temporal coherence boundary (TCB),
as defined in (McAdams & Bregman 1979, Fishman et al. 2004). Setting a
suitable threshold value, based on the quotients’ values close to the TCB,
one can make a putative interpretation of whether the stimulus stream
would yield a segregated or an ambiguous ‘percept’. Quotation marks are
to indicate the speculative nature of any interpretation of results as directly
pertaining to actual perception.

trative points in the PR -∆f parameter space, three of which purportedly
show the evolution of neural activity to a segregated ‘percept’ and two
which show the same process for a so-called ambiguous ‘percept’ (the
quotes merely illustrate the speculative nature of discussing percepts in
a neural modelling context). All of these points are shown below (figure
3.21) in a diagram similar to the one by van Noorden (1975) (reproduced
in our figure 1.1). The line is the temporal coherence boundary found by
van Noorden. The fifth point (PR = 40, ∆f = 20%) is outside of the
range of the boundary, but is nevertheless added as a clear illustration
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of how a segregated ‘percept’ is formed in the A1 model. In all movies,
first 1.25 seconds of the AB tone sequence is presented, followed by 0.8
seconds of silence, which in turn is followed by a further 0.45 seconds of
AB tone sequence. During the first 1.25 seconds, one may observe the
so-called build-up of the respective ‘percepts’. After that, the silent gap
is inserted to illustrate how the ‘percept’ arrived at can change as the
network ’recuperates’. Then, when the sequence is turned on a second
time, we show how the ‘percept’ reapproaches the state it was in before
the silent gap. This is especially clear in the case of points 2 and 3, which
illustrate segregation.

In the web page, there are links to two movies for each of the five points
chosen. For the benifit of the reader, here we will reproduce snapshots
of the final frames of the movies corresponding to points 3, 4 and 5 of
figure 3.21, although we recommend a visit to the movie page for the
added illustrative power of dynamics. We also reproduce here the relevant
part of the explicative text which can be found by clicking on any ’Back’
link on the movie page, or alternatively going directly to its mother page,
http://emcap.iua.upf.edu/Emergent Cognition.html.

The tone duration used was 20 milliseconds (ms). A tones were
presented at the center of the tonotopic axis (at frequency FA ),
whereas B tones were presented ∆f octaves above the A tone (at FB )
The value of ∆f and PR are given by the respective points in the
van Noorden diagram. In both movies, quantities associated with
A tones are marked in blue and those associated with B tones are
marked in red.

The first movie shows the so-called raster diagrams evolving over
time, with the lower panel giving an overview of the whole 2.5 seconds,
and the upper giving a 250 ms blow-up of the evolving activity. Each
green dot represents one excitatory neuron emitting a spike.

The second movie displays three things simultaneously, the main
plot and two inset plots. The main plot shows how the the activity
evolves over time, with the x-axis representing the tonotopic axis.
The y-axis shows response in spikes per neuron each ms. During each
tone presented, a vertical line with the tone colour (A : blue; B : red)
is displayed at the tone’s corresponding point on the tonotopic axis.
The profile of the response to every tone is ‘frozen’ at its maximum,
until the next tone with the same frequency is presented. When a
tone is presented, the outline of the previous one becomes dashed.
As for the insets,

http://emcap.iua.upf.edu/Emergent Cognition.html
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Figure 3.21: The diagram shows which five parame-
ter settings were used for the movies in the web page
http://cns.upf.edu/johan/EmCAP/Movies/MoviePage.html. For il-
lustrative purposes, we include a reproduction of the temporal coherence
boundary from McAdams & Bregman (1979), and the terms ”Ambigu-
ous” and ”Segregated” in their corresponding parameter space, as per
psychophysical results described in the Introduction (fission boundary not
shown).

http://cns.upf.edu/johan/EmCAP/Movies/MoviePage.html
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• the right inset plots how the time-averaged response to A and
B tones at the A1 site with Best Frequency (BF) fA (i.e., the
center of the tonotopic axis) evolves over time.

• The left inset plots how the quotient of the response to a B tone
to that of the preceding A tone (B response divided by A
response, measured at ϕA ) evolves over time. The horizontal
dotted line is an estimated threshold value for determining
whether the ‘percept’ is segregated or ambiguous (not for point
5).

In figures 3.22, 3.23 and 3.24 we show snapshots of the last frame of
the movies corresponding to points 3, 4 and 5 in the diagram of figure 3.21,
respectively.

3.3.5. Robustness tests

3.3.5.1. Making inhibitory currents last longer has a transient
effect

Looking at responses to long tones (figures 3.25(a) and 3.25(b)), one
sees that the stronger the inhibition (increasing from top to bottom), the
more response narrows as input progresses (top panel: RS inh. neurons;
middle panel: FS inh. neurons, αI = 2.0 ms−1, βI = 0.5 ms−1; bottom
panel: FS inh. neurons, αI = 1.0 ms−1, βI = 0.1 ms−1). However, most
of the narrowing takes place during the first 20-30 milliseconds, which
means using solely inhibition as a mechanism for differential suppression
is unfeasible, contrary to claims in Kanwal et al. (2003), at least without
some additional inhibitory or otherwise suppressing mechanism added to
the network setup used to make these figures. This result of course speaks
in favour of our use of synaptic depression in thalamocortical synapses as
such an additional or even alternative (as shown in chapter 2) mechanism.

3.3.5.2. Modulating input with steady-state depression values
can replace depression

Interestingly, one sees that making this change has a very small effect
on responses of the network to sequences of tones. This shows that the term
‘differential suppression’ is possibly ill-chosen, since we could get that same
effect by replacing specific depression field values just before Aand B tones
with their average, and using this average to down-modulate input rates
while shutting down depression, before running the simulation. This lends
further strength to our hypothesis that the key to getting these responses is
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Figure 3.22: Illustration of point 3 in figure 3.21 (state of network after
full simulation - for dynamics, see movie page). Insets in (b): Responses
to A (blue) and B (red) tones at BF=FA site (right) and the ratio of those
responses (left). Scheme: 1250 ms sequence - 800 ms silence - 250 ms
sequence.

http://cns.upf.edu/johan/EmCAP/Movies/MoviePage.html
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Figure 3.23: Illustration of point 4 in figure 3.21 (state of network after
full simulation - for dynamics, see movie page). Insets in (b): Responses
to A (blue) and B (red) tones at BF=FA site (right) and the ratio of those
responses (left). Scheme: 1250 ms sequence - 800 ms silence - 250 ms
sequence.

http://cns.upf.edu/johan/EmCAP/Movies/MoviePage.html
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Figure 3.24: Illustration of point 5 in figure 3.21 (state of network after
full simulation - for dynamics, see movie page). Insets in (b): Responses
to A (blue) and B (red) tones at BF=FA site (right) and the ratio of those
responses (left). Scheme: 1250 ms sequence - 800 ms silence - 250 ms
sequence.

http://cns.upf.edu/johan/EmCAP/Movies/MoviePage.html
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Figure 3.25: Contour plots of responses to tone of TD = 500 ms (first 50
ms shown in (a), full duration in (b)). Colour code: red=0.25, green=0.15
and blue=0.05 spikes/[neuron × ms]. Here, N = 33, covering 2 oct.,
U = 0.0 (no depression), and inhibition is changed via αI , βI and type of
neuron (subplot titles). All other parameters standard. Response narrows
as inhibition is increased, but effect is concentrated to initial part of the
stimulus (subfigure (a)) and is greatest for longer-lasting currents (βI =
0.1 ms−1).
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in the response threshold of cortical neurons and synaptic depression, which
is the only mechanism that can reduce the initial response of 4-6 spikes
per neuron to only 0-1 spikes per neuron over a time-scale approximately
corresponding to the build-up of auditory stream segregation (Bregman
1978, Anstis & Saida 1985, Cusack et al. 2004, Micheyl et al. 2005).
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3.4. Discussion

In this chapter we find that a mexican-hat type IC connectivity can be
used to explain approximate co-tuning of inhibition and excitation as well
as flank dominance of inhibition over excitation (Wehr & Zador 2003, Wu
et al. 2008). Furthermore, across the tonotopic axis we get a 67% boost of
excitatory conductances (equivalent to currents), and also reproduce the
spread of sub- and suprathreshold activity, as seen in data found by Liu
et al. (2007). All this was achieved by a meticulous process of constraining
our network setup bottom-up (section 3.3.1) and then examining in detail
which network ingredients were necessary and/or sufficient to reproduce
the response of A1 to the presentation of a single short (25 ms) tone
(section 3.3.2). In the latter section we first found a basic fit using only
feed-forward inhibition and recurrent excitation, and then proceeded to
make a rigourous fit with all possible intracortical connections active, using
for our guidance a goal function and a least-squares procedure (as defined
in section 3.2.2).

Moreover, with some minor tweaking of parameters, we were then able to
use the network fit to neurophysiologal parameters and results attained with
a pure tone stimulus, to also simulate physiological forward masking with
noise stimuli, following experiments by Wehr & Zador (2005). Specifically,
parting from our basic network fit, by raising synaptic depression vesicle
depletion rate and setting the recovery time constant to a higher value,
as well as raising inhibition, we approximately reproduce results seen
in that paper (section 3.3.3). Our interpretation of the role of various
network ingredients is the following. ThC synaptic depression explains the
overall time course of activity (quotient) recovery as SOA increases. Also,
intracortical synapses contribute decisively; excitation gives the necessary
boost to ThC-evoked activity for exc. neurons to spike before they are
silenced by a combination of synaptic depression and IC inhibition; without
inhibition the results can not be attained, if contraints are to be respected.

However, more work needs to be done to clarify why we need higher
U and τD values to get results as in Wehr & Zador (2005), compared to the
values fit to Rose & Metherate (2005); which exact mechanism is responsible
for the two to three times higher inhibitory conductances seen in response
to clicks as opposed to tones (seen in example traces in Wehr & Zador 2003,
Wehr & Zador 2005); and finally, if we need to include currently left-out
ingredients in the model (gIE and/or gII nonzero, IC depression, independent
λkj , GABAB currents, N-Methyl-D-Aspartate (NMDA) currents, etc.). For
starters, we would like to explore how our rigourous network fit of chapter
3 would ‘perform’ in simulations of neurophysiological forward masking



120
CHAPTER 3. MECHANISM ROBUSTNESS AND BEYOND:

TONOTOPIC CONDUCTANCE-BASED MODEL

(not included here for lack of time).
Furthermore, some parameter value choices need to be motivated. For

instance, the issue of the width of the intracortical excitatory to excitatory
connection profile (λEE in this work) is under debate. We set it to be
quite narrow in our efforts to base our model as much as possible on
the most recent (at the time) neurophysiological results, especially the
studies by Liu et al. (2007) and Wu et al. (2008). There are however
conflicting results which advocate a wider such connection profile, which
would bring excitation to those parts of the tonotopic axis not receiving
thalamic input (specifically, Kaur et al. 2004). Since Liu et al. (2007)
showed that thalamocortical input is wide (but see Bartlett, Sadagopan
& Wang 2010), we found that in order to get a stable system that fit
as much of the data as possible, we needed to use a more narrow profile
(something also supported by data in Liu et al. 2007). We stress however
that this concerns horizontal connections in layer IV. We are fully aware
that in other cortical layers, such as layer II/III, there exist (found in V1
by Holmgren, Harkany, Svennenfors & Zilberter 2003) or are postulated (as
a possible explanation of de-/hypersensitation of auditory cortex neurons,
see Noreña, Gourévitch, Aizawa & Eggermont 2006) long-range horizontal
connections between pyramidal cells.

In this chapter we also sought to test the robustness of our mechanism
for the differential suppression phenomenon seen in neurophysiological
correlates of auditory streaming (see chapter 2), making even more realistic
our model of A1 with Hodgkin and Huxley conductance-based neurons by
representing the tonotopic axis explicitly as well as incorporating intracor-
tical connectivity and thalamocortical axonal spread. Here, we have shown
that our mechanism indeed not only holds in a more complex network setup,
but is improved in the sense that the inclusion of intracortical currents
(especially recurrent excitation) again sharpens the frequency tuning which
is diluted by adding thalamocortical input spread to a mere feed-forward
network, as seen in chapter 2.

As for the saturation of the transfer function used for the rate model
(see equation A.2), we did not find that to be a necessary feature of the
corresponding function for a HH network. While possible to attain (by
driving the neurons so hard that they all respond at their maximum rate,
as determined by their refractory periods), it yields unnaturally high firing
rates in response to inputs which are supposed to represent perfectly normal
auditory stimuli (data not shown).

An issue worth exploring would be how our network responds to longer
stimuli, and how this response relates to the results using 50 ms and 100
ms tone durations in Fishman et al. (2004). Particularly the highly marked
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differential suppression of responses to B tones at the A site, when the
sequence is presented at the maximum possible rate (i.e., 20 Hz and 10
Hz, respectively), would be challenging to explain (see figures 4 and 5 in
Fishman et al. 2004).

As to a possible change of results with NMDA receptors at the thalam-
ocortical interface (possibly present in adults - see discussion in chapter
5), we have carried out some control simulations in order to look at that
issue (data not shown). Since NMDA creates a slow current in response
to each tone, which needs about 100-150 ms to reach zero, then if PR ≥
10 Hz the current will consequently not have reached zero when the next
tone arrives, which leads to a gradual increase in this component of the
input current as the sequence progresses. If no inhibition is present (as in
the feed-forward model of chapter 2), this creates a tonic response which
is never zero between tones, but might be stronger at onset and weaker at
the end of an SOA period. If inhibition is present in the form of GABAA
receptors, even using slow decay times and fast-spiking inhibitory neurons,
we see a domination of the NMDA currents over both AMPA and GABA.

Thus, the difference in amplitude of response to A and B tones ‘rides’
on top of a tonic firing caused by NMDA. This effectively raises responses
to all tones, including to those which without NMDA elicited no response
(B tones at high PR and ∆f values). The RR values are consequently
all raised, because the same absolute value is added to nominator and
denominator alike. If instead we were to use a difference measure, it would
not be affected, but responses would of course not correspond to those seen
in Fishman et al. (2004). To deal with this excess in excitation, there are
two alternatives:

1. lowering input (Rmax
Th , K or gCTh ). It might also be necessary to

lower the proportion of NMDA to AMPA in order for the former not
to drown out the latter (in our simulations we used approximately
three times stronger input to AMPA than to NMDA).

2. increasing inhibition by either increasing inh. neurons’ thalamocorti-
cal conductance values (here, gIEratio

CTh was unity) or adding a form of
GABAB receptor or some sort of extra-synaptic GABAA inhibition
(see Belelli, Harrison, Maguire, Macdonald, Walker & Cope 2009).

We recognize that this issue needs more work in the future, especially if it
were to be shown that NMDA inequivocally plays an important role in the
experiments we attempt to reproduce.

Finally, while we set our parameters in a rigourous exercise following
the literature at that particular moment in time, we are aware of recent
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experimental results which are quite different in some respects (Schiff &
Reyes 2012, Levy & Reyes 2012). There also exist other modelling studies
using different settings (de la Rocha et al. 2008, Levy & Reyes 2011). These
discrepancies should be addressed in a future continuation of the present
work. It is however notable that Viaene et al. (2011) found that only LIV
gets direct driving input from the MGBv, something which could be used
to make a distinction between our study and that of Levy & Reyes (2011),
especially as regards the detailed connection data used by those authors to
model LII/III. Since we model LIV, our focus on other experimental papers
when making the network setup is therefore not necessarily an issue.



4 An attractor network model
of bilingual language
perception data

The work presented in this chapter is published in the Journal of
Cognitive Neuroscience1. A follow-up study has also been published in
that same journal2.

4.1. Introduction

What is the architecture of the speech processing system? How do the
different types of lexical and sublexical information interact? For many
years it has been accepted that the way the speech perception system deals
with the problem of variability is that of ‘filtering it out’, thus representing
information (phonemes, syllables, words) in an abstract code. One problem
with such an approach is that of how the linguistic representations can
be modified once they are established. Indeed, everyday evidence shows
that, for instance, some time after having moved to a new region, where a
different dialect is spoken, human beings modify their language production
and their speech becomes accented with the new sounds. If the speech
perception system filters out all the variability not conforming to the stored
abstract representations, how can this occur?

Furthermore, in the last years a series of studies have shown that the way
speech information is stored in the brain is highly dynamic. In a seminal
paper, Norris, McQueen & Cutler (2003) showed that listeners can calibrate
their phoneme representations to the particular characteristics of the speech
they hear in a surprisingly short interval. In that study, participants were
exposed either to some properly pronounced words (containing either /s/

1Larsson, Vera-Constán, Sebastián-Gallés & Deco (2008)
2Sebastián-Gallés, Vera-Constán, Larsson, Costa & Deco (2009)
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or /S/) or to words with ambiguous sounds (half way between /s/ or
/S/). The results showed that listeners shifted their phonetic boundaries
to accommodate these ‘variations’. The results of that study have been
replicated several times in a number of studies. Interestingly, some of the
studies indicate that these changes are not transient in nature, but relatively
long-lasting. After 25 minute post-exposure periods, containing either
silence or different types of intervening auditory stimuli, Kraljic & Samuel
(2005) observed numerically larger shifts than those measured immediately
after the main stimuli were presented. Eisner & McQueen (2006) have
reported convergent results with 12 hour intervals (even after sleep). All
these results indicate that exposure to variability may induce changes in
the speech perception system that remain stable over time and despite
new exposures. The changes studied in these investigations have mostly
consisted of the modification of speech categories (phonemes) induced
by exposure to non-standard utterances. However, an open question is
to which extent the lexicon is modified and whether variation is also
represented at this level.

As suggested, one way of studying this issue is analyzing word recogni-
tion in listeners exposed to dialectal variation. Most dialects are charac-
terised by changes at the phonological (and, specifically, phonetic) level.
The literature about adaptation of the speech perception system to dialectal
variability has not been focused on how dialectal variability is encoded in
the lexicon, but mostly on more broad aspects of perception of accented
speech (see, for instance, Clopper & Pisoni 2005). Two studies are worth
mentioning here, both addressing the core issue of how different pronuncia-
tions of the same words are stored in the mental lexicon. In the first one,
Connine (2004) investigated the recognition of a frequently heard spoken
word form variant in American English (flapping). She presented words and
non-words including either the standard /t/ or the flap sound (e.g., /prIdI/
- /brIdI/ or /prItI/ - /brItI/). Participants were asked to identify the initial
segment (/b/ or /p/). The results showed better performance in identifying
the target sound when it occurred in the more frequently heard flap carrier.
The author considered that the results showed that listeners stored in their
mental lexicon the flap variant of the words together with the standard form.
The second study where evidence about the representation of dialectal
variation of spoken words was obtained was Sebastián-Gallés, Echeverría
& Bosch (2005) (later replicated in Sebastián-Gallés, Rodríguez-Fornells,
Diego-Balaguer & Diaz 2006). We will describe that work in some detail,
because it constitutes the basis of the present work. Before that, however,
a few words concerning the linguistic properties of Catalan and Spanish
and of the sociolinguistic situation of the participants of that study are in
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order.
Catalan and Spanish are two Romance languages, co-official in Catalo-

nia (north-east of Spain, Barcelona being the largest city). While both
languages are similar at different levels of linguistic description, critically
they differ at the level of the phoneme repertoire. For instance, while
Spanish has no voiced fricatives, Catalan does. Central to the present
study, Catalan has eight vowels, and Spanish only five. In particular,
Catalan has two mid-front vowels (/e/ and /E/) while Spanish has only
one, falling roughly midway between the two Catalan ones. This phoneme
distribution is very similar to the one of the English liquid contrast /r/-/l/
and the Japanese liquid /l/. Like Japanese natives learning English with
the /r/-/l/ contrast, Spanish natives have great difficulties in perceiving
(and producing) the Catalan-specific /e/-/E/ contrast.

Since Spanish and Catalan are co-official in Catalonia, they are both
widely used, in formal as well as informal contexts. According to official
statistics (www.idescat.net), about 95% of the population living in Cat-
alonia understand Catalan and about 75% declare they can speak it. In
the Barcelona area, more than 40% of the people declare that Catalan
is their ‘usual’ language of use (‘llengua habitual’). Illustratively, at the
University of Barcelona more than 60% of the courses are taught in Catalan
and students are free to use any of the languages to write their essays
and exams. In fact, students entering Catalan universities must show a
written and oral command of both Spanish and Catalan equivalent to
that which students elsewhere in Spain must show for Spanish. So, both
Catalan and Spanish are frequently used. Still, as a series of studies have
shown (Bosch, Costa & Sebastián-Gallés 2000, Pallier, Bosch & Sebastián-
Gallés 1997, Pallier, Colomé & Sebastián-Gallés 2001, Sebastián-Gallés &
Soto-Faraco 1999, Sebastián-Gallés et al. 2006), most individuals (even
those raised in Catalonia) born within monolingual Spanish families, fail
to perceive (and produce) many Catalan-specific sounds; in particular, the
Catalan /e/-/E/ contrast. Instead, they use the Spanish five-vowel system
when speaking in Catalan, thus producing Catalan with a Spanish accent.
Because of the bilingual nature of Catalan society, it is very common to
hear both native and accented Catalan. That way, listeners are frequently
exposed to different varieties of the same words. For instance, the Catalan
word GALLEDA (pronounced /gallEda/3) is pronounced with the Spanish
phonemes /galleda/. In the same way as American natives consider the
liquid sound produced by Japanese speakers as an /l/, Catalan natives

3To simplify the reading, only the phonetic symbols of the critical phonemes (/e/,/E/)
will be used when transcribing the pronunciation of words.
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assimilate the Spanish mid-front /e/ vowel to the Catalan /e/. Thus,
for words like ‘galleda’ they hear two different acoustic varieties, the one
produced by Catalan natives, including vowel /E/ and another produced
by Spanish natives, including vowel /e/. The exposure to different forms
does not occur for Catalan words containing vowel /e/, like FINESTRA
(pronounced /finestra/), since both Catalan and Spanish natives produce
words that to Catalan natives sound equivalent.

In the most relevant study preceding this work (Sebastián-Gallés
et al. 2005), Catalan participants were asked to do an auditory lexical
decision task. Pseudowords were created by changing one vowel of real
words. There were three types of pseudowords: Control pseudowords in-
volved a vowel change existing in Spanish (for instance, the Catalan word
CADIRA was transformed into CADURA, /i/-/u/ being a vowel contrast
common to both Spanish and Catalan). E-type pseudowords consisted of
pseudowords created from Catalan words including vowel /E/, which was
replaced by vowel /e/ (like the GALLEDA example just described). e-type
pseudowords were created from Catalan words including vowel /e/, being
replaced with vowel /E/ (like the FINESTRA example just described). As
can be seen, E-type pseudowords corresponded in fact to the way Spanish
natives mispronounce some Catalan words. The results of the experiment
showed that Catalan natives had great difficulties in rejecting the E-type
pseudowords as such (the percentage of correct responses in this category
were less than 60%, while for the other two pseudoword categories they
were close to 90%). Therefore, an asymmetry was observed in the per-
centage of correct rejections of both types of pseudowords. The authors
interpreted these results by postulating that the repeated exposure to
the dialect that Spanish natives use when speaking in Catalan created
multiple representations for E-type words, e.g., in the GALLEDA case,
they had stored in their lexicon both forms, /gallEda/ and /galleda/. Thus,
when confronted with the ‘pseudoword’ /galleda/ they often failed to reject
it as a pseudoword. However, this would not happen for e-type stimuli.
As we have stated, Spanish natives never mispronounce these items, for
which reason Catalan natives would never have stored /finEstra/ in their
lexicon. These results were considered to indicate that participants held
in their mental lexicon both the correct (native) pronunciation of words
and the incorrect (non-native accented) ones. The present work aims at
elucidating possible mechanisms for and consequences of the asymmetry
in the performance of Catalan natives, observed by Sebastián-Gallés et al.
(2005), exploring the implications of such mechanisms for the architecture
of models of spoken word recognition. To this end, a modelling approach
is proposed, using a biologically plausible mathematical formulation of
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Table 4.1: Different types of stimuli, native and dialectal pronunciations,
and percentage of correct responses to pseudoword stimuli used in Sebastián-
Gallés et al. (2005).

the functioning of single neurons as a foundation and then constructing a
network of these neurons, organized in functional pools, whose interactions
can account for the behaviour observed. Specifically, two competing net-
work architectures will be proposed, and consequently their behaviour will
be systematically explored using the analytical tool of mean-field analysis
as well as explicit simulations of the behaviour of the network of individual
neurons. The pools of the model are interconnected and each represents
one or more phonemes. Upon the presentation of a stimulus, the persistent
co-activation of pools, which together represent a full word, is taken to be
word recognition. The weights of the connections between pools are the
parameters of the model, whose specific values will determine the behaviour
of the network. A careful analysis of the network is performed to establish
the appropriate parameter values. One of the proposed models supposes
an interaction at the phonemic level as the main mechanism behind the
observed results, while the other model explores whether the context of
a complete word is necessary for the asymmetry to be accounted for, in
which case it would rather be a lexical effect. In both cases, a particular
parameter configuration of the networks will be considered to be the result
of plasticity in the brain, having occurred on the long term due to exposure
to ambient language. Such plasticity is commonly considered to be the
result of Hebbian learning, in which the connections between co-activated
neurons, such as those receiving the same stimulus, strengthen. Similarly,
lack of common input can lead to the weakening of connections between
neurons, so called anti-Hebbian learning. In a final modelling effort, we
explore the behaviour of the models in response to a single-phoneme input,
simulating a discrimination task, in order to further clarify which of the
proposed models is more appropriate.

It is stressed here that this approach makes explicit use of the neuro-
dynamics underlying any operation carried out by the human cortex, and
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the stochastic nature of the fluctuations inherent in the cortex as well as
in the model makes a decisive contribution to the solution of the problem.
Specifically, with a proper description of the non-stationary transients,
using a spiking neuron model and realistic synaptic dynamics, one can
account for response times in psychophysical experiments, as well as make
use of fluctuations to get a probabilistic response behaviour (basis for
decision making). As models of this kind have already been successfully
employed modelling working-memory (e.g., Brunel & Wang 2001) and its
role in the discrimination between two sequential sensory stimuli (Machens,
Romo & Brody 2005, Miller & Wang 2002, Deco & Rolls 2006) as well as in
other decision making tasks (Wang 2002, Wong & Wang 2006), we believe
they can make an important contribution to elucidating the workings of
language processing as well.

Although there exist models of phoneme perception, notably McClelland
& Elman (1986) and Norris, McQueen & Cutler (2000), to our knowledge
an approach with such a solid basis in neuroscience as ours (time course and
probabilistic behaviour) has not before been applied to this kind of problem.
While it is acknowledged that other approaches include input with a closer
correspondence to real sequential sound streams, this is not of crucial
importance, as we see this work as a proof-of-principle of the applicability
of such more neurodynamical modelling schemes to behavioural data from
psychology.

Additionally, with the aim of exploring the prediction of perfect phoneme
discrimination based on the model results, we design and conduct a psy-
chophysical experiment to investigate whether phoneme categories are
modified in the Catalan-dominant early bilinguals, or whether the effect is
purely lexical, as predicted if indeed phoneme discrimination is perfect in
these individuals.

4.2. Methods

We base our model on the single-neuron level of description, using
Integrate-and-Fire neurons (see next section and appendix C). This allows
for the use of realistic biophysical constants obtained in neurophysiological
studies, such as synaptic conductances and delays, which enables us to
study the time scales and neural firing rates involved in the evolution of the
neural activity underlying cognitive processes. The main benefits of using
such a detailed model are, as emphasized in the introduction, the possibility
that opens up for studying the time course of the neural activity, including
transient responses, as well as the inherent stochasticity in the model,
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which helps explain variability in the experimental data. Specifically, the
former can be used to obtain reaction times from the simulation data,
whereas the latter can be used to obtain bistable response patterns, e.g.,
corresponding to a certain distribution of responses in data from a binary
choice experimental task. Also, obtaining such elaborate model data
allows us to compare at a detailed level with data from neurophysiological
experiments, should it be available.

Using the above-mentioned model of single neurons as a building block,
we construct networks of neurons, organized in interconnected functional
pools. The neurons of such a pool share common input and are thus
co-activated. This is assumed to have set the internal connections of
that pool higher than network average through a Hebbian learning process
(Hebb 1949). In the framework of biased competition and cooperation (Rolls
& Deco 2002, Deco & Rolls 2004, Deco & Rolls 2005a, Deco & Rolls 2005b),
such a pool typically represents a certain aspect of the external input,
such as visual or auditory object identities. External input to a network
of such pools can bias the internal activity of the network through intra-
pool cooperation and inter-pool competition. With a sufficiently strong
synaptic connection binding two or more pools, one can also get cooperation
between pools. These connection strengths or weights describe relative
deviations of the synaptic conductances from their average value across the
network. Stronger intra-pool weights implement reverberation of a pool’s
neuronal activity, which can underlie the formation of working memory,
i.e., appearance of sustained high activity coding for a previously presented
stimulus, which is absent at present. This concept of an attractor in the
system’s dynamics is used to encode presented stimuli, which are then seen
as having been recognized by the system.

The modelling scheme using integrate-and-fire neurons grouped in
such functional pools, has the advantage that it can easily be analyzed
using the mean-field approach, which is a theoretical tool that uses the
pool organization of the network to calculate approximate solutions of
the stationary state of the dynamics. This will be elaborated on in the
Analysis section.

4.2.1. The Integrate-and-Fire Model

The model we use is based on non-linear leaky integrate-and-fire neu-
rons, which are coupled together to form a network of neurons. This neural
network basis is adapted from Brunel & Wang (2001) and we refer to that
paper for a more detailed description of the neurodynamical properties.
In appendix C, the mathematical model for a single neuron is defined.
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Essentially, it consists of an equation governing the evolution of the neu-
ron’s sub-threshold membrane potential. Via synapses, excitatory and
inhibitory input currents effect an increase or decrease of the membrane
potential, respectively. In the absence of such input, the membrane po-
tential decays exponentially over time. When the membrane potential
reaches the threshold potential, an action potential (a spike) is emitted.
Spikes in the membrane potential are in the model treated as unitary
events of equal magnitude and duration. An emitted spike propagates to
connected neurons via explicitly modelled synaptic mechanisms, namely
AMPA, NMDA and GABAA receptors on the postsynaptic neurons.

More specifically, the membrane potential of a single neuron is modelled
by an electrical circuit, which consists of a capacitor Cm connected in
parallel with a resistor Rm. This circuit describes how the membrane
potential V (t) evolves in time depending on external currents entering from
other neurons. When the threshold membrane potential Vthr is reached, an
action potential is emitted and propagates on to other neurons, while the
membrane potential of the neuron that spiked is set to the reset potential
Vreset, at which it is kept for a refractory period τref . Both excitatory and
inhibitory neurons have a resting potential VL = −70 mV, a firing threshold
Vthr = −50 mV and a reset potential Vreset = −55 mV. The membrane
parameters are different for excitatory and inhibitory neurons. The former
type of neuron is modelled with membrane capacitance Cm = 0.5nF , leak
conductance gm = 25 nS, membrane time constant τm = 20 ms, and
refractory period tref = 2 ms, whereas the inhibitory neurons have the
corresponding values Cm = 0.2nF , gm = 20 nS, τm = 10 ms, and tref = 1
ms. Values are taken from McCormick, Connors, Lighthall & Prince (1985).

The incoming synaptic influences are both excitatory and inhibitory.
The excitatory neurons transmit their action potentials via the glutamater-
gic receptors AMPA and NMDA, which are both modelled with exponential
terms. We neglect the rise time of the current mediated by the AMPA
channel, because it is typically very short (� 1 ms), and just model the
decay period with τAMPA = 2 ms (Hestrin, Sah & Nicoll 1990, Spruston,
Jonas & Sakmann 1995). The NMDA channel is modelled with a rise
term, τNMDA,rise = 2 ms, a decay term, τNMDA,decay = 100 ms (Hestrin
et al. 1990, Spruston et al. 1995), and an extra voltage dependence con-
trolled by the extracellular magnesium concentration, CMg2+ = 1mM (Jahr
& Stevens 1990). The inhibitory postsynaptic potential is mediated by
the GABAA receptor and is described by a decay term with time constant
τGABA = 10 ms (Salin & Prince 1996, Xiang, Huguenard & Prince 1998).
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4.2.2. Network setup and architecture

Our network contains a total of 2000 neurons, all connected to each
other. Of these, NE = 1600 are excitatory and NI = 400 are inhibitory .
This proportion of inhibitory to excitatory neurons is consistent with the
observed proportion of interneurons to pyramidal neurons in the cerebral
cortex (Braitenberg & Schütz 1991, Abeles 1991). These neurons are
subdivided into six pools of three types. Four of the pools are selective
pools, each consisting of 150 excitatory neurons. These pools are activated
in association with the input, in this case one or many phonemes. In
addition, there is a non-selective pool consisting of 1000 excitatory neurons,
which are not activated in association with the input. Finally, there is a
pool of 400 inhibitory neurons, which provide global inhibition, thereby
helping control network activity. Figure 4.1 schematically illustrates the
basic network structure. However, before creating this pool structure
by differentially setting connection strengths through the modification of
synaptic weights, all connections’ synaptic conductances are initially given
values, which ensure realistic spontaneous activity of 3Hz and 9Hz for
the excitatory and inhibitory neurons, respectively (for this procedure,
see Brunel & Wang 2001), values which approximately correspond to
those obtained in neurophysiological studies (Koch & Fuster 1989, Wilson,
Scalaidhe & Goldman-Rakic 1994).

Each selective population is then characterized by a higher internal
connection strength, designated by the weight w+. This is in accordance
with the assumption that shared input leads to correlated activity, which
in turn strengthens the connections between these neurons according to
the concept of Hebbian learning (Hebb 1949). Here, it is assumed that
weights have achieved the constant values they have in a certain simulation
through such a Hebbian learning process, possibly over a very large time
span as in long-term plasticity.

The connection strength between different selective populations, w−,
has a value of less than one and mediates synaptic depression, which
compensates for the effect of the high value of w+ on the network level. In
specific, the value of these connections is given by w− = 1−f(w+−1)/(1−f),
where f is the fraction of excitatory neurons present in each selective pool
(in relation to all excitatory neurons, i.e., f = 150/1600), which ensures
that the overall recurrent excitatory drive in the spontaneous state remains
constant even when w+ varies (Brunel & Wang 2001). This recurrent
excitation, mediated by the AMPA and NMDA receptors, is assumed to
be dominated by the NMDA current to provide a more robust behaviour
during the period after stimulus offset.
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Figure 4.1: Network architecture. The network has five pools of excitatory
neurons, four selective (S1-S4) pools and one nonselective pool, as well as
one pool of inhibitory neurons. Dashed lines indicate inhibitory synaptic
connections, solid lines indicate excitatory synaptic connections. For each
connection, the type of neurotransmitter(s) employed is (are) indicated.
See main text for explanation of synaptic weights w+, w−, and wnj .
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Connections from the inhibitory pool (GABA-ergic connections) to
all other pools, including itself, are set to 1. The connections from the
non-selective pool to itself are set to 1, since its neurons do not share
selectivity. The connections from the non-selective pool to the selective
pool j is given by wnj =

(1−
∑
∀i\n fwij)

fn
, where f is as before, fn is the

fraction of excitatory neurons in the non-selective pool, wij is the weight
value from pool i to pool j and the sum goes over all selective pools. This
setting of the weights ensures that the average input to each selective pool
is 1.

This brings us to the definition of the two specific architectures we have
considered (figures 4.2 and 4.3). In both models, there are two types of

Figure 4.2: Model 1. The figure shows the parameters which, apart
from w+, are varied in the search for specific phenomena in the network
behaviour. In the figure, connections with the value w− are omitted. This
model was designed to look for an explanation of the experimental data at
the phonemic level, represented by the interconnected Pools 2 and 4. The
four pools illustrated here correspond to the selective pools in Figure 4.1.

selective pools, phoneme pools and word context pools, which together can
represent a word. The phoneme pools simply code for a specific phoneme,
while the word context pools can be imagined as a conglomeration of single
phoneme pools which together create the context. Alternatively, one could
model each phoneme of the ones constituting the whole word by its own
selective pool, but this is not computationally feasible, for which reason
we have chosen the intermediate representation of a context pool, while
explicitly modelling the crucial critical contrast phonemes of the stimuli.

In model 1 (figure 4.2), parameters wpp1 and wpp2 interconnect the two
phoneme (p) pools, which opens for the possibility of a change having
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occurred in the representation of phoneme categories. The parameters
ww1 and ww2 each help define a complete word (w), by binding a context
pool with a phoneme pool to enable the representation and recognition of
a valid (see figure) word, as opposed to a non-word. Each of these two
parameters controls this interaction bidirectionally, the same value being
given to connections in both directions. Figure 4.3 is a schematic drawing

Figure 4.3: Model 2. The figure shows the parameters which, apart from
w+, are allowed to vary in the search for specific phenomena in the network
behaviour. In the figure, connections with the value w− are omitted. This
model was designed to look for an explanation of the experimental data at
the lexical level, interconnecting a context pool with a different phoneme
pool than its normalcritical phoneme constituent. The four pools illustrated
here correspond to the selective pools in Figure 4.1.

of model 2. Here, ww1 and ww2 have the same function as in model 1.
However, instead of parameters connecting the phoneme pools, we have the
bidirectional wpc1 and wpc2, which each interconnect a phoneme (p) pool
with a context (c) pool. These connections open for the possibility that a
new lexical representation may have evolved over time, thus enabling the
recognition of a non-word, such as /galleda/ (enabled by wpc1), as a word.

It is stressed here that, although the pools in figures 4.2 and 4.3 are
marked by the critical phonemes and their corresponding word contexts,
which together constitute the two stimuli which were used as representatives
in the discussion of the behavioural experiment we are modelling, they
might equally well have been assigned other names, because the results
obtained should be equally valid for other stimuli used in the underlying
experimental study. Henceforth, the selective pools will be referred to by
their respective numbers (see figures 4.2 and 4.3). The networks have no
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spatial structure or extension.
All neurons in the network are exposed to an external Poisson spike train

input through 800 excitatory connections, mediated by AMPA receptors
at a rate of νext = 3 Hz per synapse, corresponding to a typical value for
spontaneous activity in the cerebral cortex (Wilson et al. 1994, Rolls &
Treves 1998). This results in a total external input of 2.4 kHz to each
neuron in the network, representing noise input from surrounding areas in
the cortex not explicitly modelled.

The network is presented with a stimulus by increasing the external
input of the pools corresponding to the stimulus with λstim = 0.1 Hz,
yielding νstim = νext + λstim = 3.1 Hz. For example, to present the input
/galleda/, this higher external input is applied to pools 1 and 4, adding a
total of 80 Hz to the total external input to each neuron in those pools.
Input is always maintained for 500 ms, regardless of the stimulus presented,
a value which approximately corresponds to the durations of the four
three-syllable stimuli used as representatives in our discussion, the Catalan
words galleda and finestra and their corresponding non-words.

The stimulus input influences the inherent competition and cooperation
between areas in the network and has the capacity to drive the activity of
the pools given the input into an attractor. Specifically, the setting of the
inter-pool parameters of each model higher than the surrounding inter-pool
connections, combined with the higher value of w+ (creating so-called pool
cohesion), can give rise to a natural tendency to competition between
distinct groups of pools, which internally display cooperation between the
pools constituting such a group. In our case, an example of this would
be the tendency to co-activate in the group consisting of pools 3 and 4,
representing /finestra/, because of setting ww2 higher than w−.

4.2.3. Simulations and Analysis

We use spiking simulations to analyze the time course of network activity
and the influence of fluctuations. However, they are time consuming and
can therefore not be run for all parameter configurations of the network,
especially not with five free parameters as in our case. It is here that
the mean-field approximation is a highly useful tool for assessing network
behaviour. It assures that the dynamics of the network will converge to
a stationary attractor which is consistent with the asymptotic behaviour
of an asynchronous firing network of integrate-and-fire neurons (Brunel
& Wang 2001). In the standard mean-field approach, the network is
partitioned into populations of neurons which share the same statistical
properties of the afferent currents, and fire spikes independently at the
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same rate. The essence of the mean-field approximation is to simplify the
integrate-and-fire equations by replacing, in accordance with the diffusion
approximation (Tuckwell 1988), the sum of the synaptic currents by the
average direct current and a fluctuation term. The stationary dynamics of
each population can be described by the population transfer function, F (),
which provides the average population rate as a function of the average
input current. For further details, see appendix D.

We used mean-field simulations to calculate the attractor states of the
network in a large number of points in parameter space, thereby assessing
which points displayed the behaviour of interest. Once this was determined,
we ran spiking simulations, because although the mean-field attractor states
reflect the true behaviour of the network, the fluctuations and external
changes added in the spiking simulations can yield a significantly different
behaviour. Apart from this, we need the temporal dimension to compare
simulation results with experimental data, so spiking simulations are of
the essence.

At a first stage, we ran extensive mean-field scans for both models over
their respective five network parameters, i.e., the internal pool cohesion
parameter, w+, and the four inter-pool weights (lateral, word-cohesion
weights ww1 and ww2 for both models, plus wpp1 and wpp2 for model 1 or
wpc1 and wpc2 for model 2). In the mean-field scans we looked for parameter
space points in which the behaviour of the network be the following. Upon
the presentation of words, e.g., /gallEda/ and /finestra/, the average firing
rates of their corresponding pools should be above threshold, while the
other two pools of the network should display below-threshold activity in
the mean; upon presentation of unlikely non-words, e.g., /finEstra/, all
pools should show below-threshold firing-rates; however, upon presentation
of non-words more likely to occur, e.g., /galleda/, the pools receiving input
(pools 1 and 4) should show an above-threshold mean firing rate, indicating
that in this point we might find the bistable behaviour we are looking for
in the network’s response to this kind of stimulus. That is, we expected
this mean behaviour to fluctuate when adding the noise of the full spiking
simulations, yielding different results in different trials, which would reflect
the differing behaviour of subjects on the task using this kind of non-word
stimulus.

In specific, typical values for the mean-field scans of both models were:
w+ ∈ [1.9, 2.5], while ww1, ww2, wpc1, wpc2, wpp1 and wpp2 typically varied
between 1.0 and 1.2. Step sizes varied depending on the interval being
searched for each parameter, with the smallest used being 0.01 and the
largest 0.1. Very large scans can take a long time, although they save
immense amounts of time compared to spiking simulations, and they can
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also generate huge files which have to be stored and analyzed. Since
the step size and the interval determine file size and time consumption,
we used early results from course-grained scans to identify regions in
parameter space of particular interest, for which we could then run more
fine-grained mean-field scans, and eventually spiking trials, when the region
got small enough. One important constraint in finding interesting points
were the inter-relations between different weights. Specifically, the value
of w+ should always be greater than all other weights in the network, for
individual pool reverberatory activity to be maintained. This constraint
only aided in the initial choice of parameter intervals which were scanned
for the other parameters. Two further constraints were however used to
discard points which otherwise displayed wanted behaviour in the mean-
field simulations. One of them, ww1 < ww2 reflected the fact that the
frequency of occurrence of /gallEda/ is lower in the environment than ditto
for /finestra/, which through Hebbian learning should have led to the
connection binding the constituent pools for the latter word being stronger
than the one for the former word. The second additional constraint was
wpc1 > wpc2, which was added to increase the likelihood of bi-stability
in spiking trials following the presentation of /galleda/, while decreasing
the likelihood of /finEstra/ being recognized as a word. By varying these
weights, we predicted one could modify overall network behaviour in these
two crucial, non-word, cases.

We started the spiking simulations with a pre-stimulus period of 300 ms,
corresponding to the time during which the asterisk is shown to participants
in the LDT experiment in Sebastián-Gallés et al. (2005). We present the
stimulus for 500 ms to the corresponding context and phoneme pools,
together constituting the stimulus word or non-word, by increasing the
external input as described before. Afterwards, a period of another 1000
ms is simulated, a value corresponding approximately to a typical reaction
time in the LDT task. This yields a total of 1800 ms for each trial simulated.
In this context, a point in parameter space corresponds to an individual
participant and a trial corresponds to one trial for that participant. We
typically ran 100 trials per point. The analysis of the data thus obtained
(an 1800 ms time course of the firing rate of each pool, averaged over its
neurons and sampled every 20 ms) was analyzed in the following manner:
first, an average of the last 500 ms simulated was calculated for each trial
(leaving time for network activity to stabilize somewhat after stimulus
offset). Then, it was checked if this average firing rate exceeded a threshold
set to 10 Hz, and if so, this pool was taken to be in an attractor state,
meaning it had retained a representation of the stimulus it codes for. Thus,
we obtained either attractor states or spontaneous states for all the 100
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trials, for each pool in the network. This data is obtained for each stimulus
given to the network, for a total of four different such data sets to analyze
(one for each word and one for each non-word), for each point/individual
we chose to simulate.

For each point, once we had the outcome of the 100 trials with respect
to the threshold, for each of the four stimuli, we checked if the outcome
corresponded to a ‘yes’ or a ‘no’ response, i.e., if the stimulus was taken to
be a word or not. The definitions of these responses in terms of network
outcome pattern differed, according to which stimulus had been presented,
to be further illustrated in the next section. For each stimulus, thus,
using the 100 different trials we obtained a percentage of correct trials
using a binary test based on the particular definition of a ‘yes’ (or ‘no’)
response. Then we used this percentage in the comparison of model
data with experimental data, either directly or computing the A’ statistic
for comparison with the corresponding values in the experimental paper.
The A’ values were calculated using the following formula (Macmillan &
Creelman 1991):

A′ = 1/2 +
(Hit − FA) · (1 + Hit − FA)

4 ·Hit · (1− FA)
,Hit ≥ FA (4.1)

where FA is the fraction of false alarms, i.e., the response ‘yes’ to the
presentation of a non-word, and Hit is the fraction of correct responses,
i.e, the response ‘yes’ when the stimulus presented was indeed a word. For
the case when Hit < FA, Hit and FA change places in equation (4.1).

4.2.4. Experimental Methods

In the Sebastián-Gallés et al. (2005) study, participants were only tested
with a lexical decision task. In the present work, inspired by our modelling
results, the very same participants are tested in a discrimination task and
in a lexical decision task. The methods of the lexical decision task were
exactly the same as those employed in the study just mentioned.

4.2.4.1. Lexical Decision Task

For a full description of this experiment, see Sebastián-Gallés et al.
(2005). Thirty two native Catalan participants (8 male) took part in
this experiment (age average: 22.7 years, s.d. 9.4). They were students
from the University of Barcelona and they were born in Barcelona or its
metropolitan area. They participated in exchange for course credits. No
auditory or language learning problems were reported. Materials were
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exactly the same as in the Sebastián-Gallés et al. (2005) experiment. One
pair of stimuli was not included in the final analysis because it elicited a
very high error rate. As in the previous study, experimental stimuli were
words and non-words containing either vowel /e/ or vowel /E/. To create
non-words, both vowels were exchanged (see table 4.1). Participants were
seated in a sound-proof booth in front of a personal computer screen where
instructions were displayed. Instructions emphasized that pseudo-words
could be very similar to real words, and that the participants should pay
attention to vowels because pseudo-words had been created by replacing a
single vowel. It was stressed that in many cases the replacement involved
the exchange of vowels /E/ and /e/. Responses were made by pressing
one of two labeled buttons (‘yes’ for words, ‘no’ for non-words) with their
dominant hand. Participants were encouraged to keep their response
fingers over the response buttons to respond as quickly as possible. Stimuli
were presented in two lists. Each member of each word-pseudoword pair
appeared in only one list. Half of the participants were tested with one
list, and the other half with the other list. Presentation order was fully
randomized for each subject. Reaction times were measured from stimulus
onset. Total duration of this experiment was approximately 15 minutes.

4.2.4.2. Discrimination Task

Three different female Catalan native speakers recorded in a single
session several tokens of syllables /de/ and /dE/ in a soundproof room.
Individual files were created for each token using the Cool Edit c© software,
with the sampling rate set to 16000 Hz. To select stimuli, each speaker dis-
carded from their own utterances the ones they considered poor exemplars.
Then, these three speakers plus a fourth native Catalan speaker selected at
least three tokens as the most representative and prototypical from each
category. The final selection was done on those stimuli selected as the best
for at least two speakers. The average length for e-type stimuli was 390
ms (s.d. 49.3) and 412 ms for E-type stimuli (s.d. 38.5). There were no
statistical differences between the two types of stimuli. Amplitude was
controlled with Praat software (average e-type: 69.8 dB; E-type: 69.7 dB).

Participants were tested in individual sound proof booths, seated in
front of a personal computer screen where instructions were displayed.
Stimuli were delivered binaurally through Sennheiser HD 435 headphones.
Participants were asked to press a designated key whenever they detected a
change in category, not in voice. Stimuli were presented in a pseudorandom
order with at least three tokens of the same category and a maximum of
eight tokens before a change was produced. As there were two categories,
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two changes of direction were possible: from /dE/ to /de/ or vice versa
(E → e and e → E, respectively). There was a training phase in which
participants were asked to do the same task with the same procedure, but
only two tokens - one from each category- from one speaker were played. In
this phase, visual cues were used to indicate that there were two categories
(numbers 1 and 2). Also, when a change took place another cue appeared
indicating that they should press the key. These cues were not presented in
the experimental phase, during which only a fixed asterisk was shown as a
fixation point. The training phase consisted of 25 trials. The experimental
phase consisted of 400 trials, divided into two blocks. Subjects could rest
between these two blocks.

After extensive piloting, ISI was fixed to 800 ms. The experiment
lasted for about 15 minutes. Stimulus presentation was controlled by the
Presentation 0.60 software.

4.3. Results

The model results are presented in two stages. Firstly, we will focus on
the main modelling study, the lexical decision task (LDT) described in the
introduction. Secondly, we describe the discrimination task modelling and
the consequences its results had as to the interpretation of results obtained
in the LDT simulations, as well as regarding the implications for model
structure and the problem studied.

Looking for the desired behaviour of the network using mean field
scans (see methods), yielded many feasible points in model 2 in a fairly
contiguous parameter space, which were candidates for full spiking simula-
tions. However, in model 1 only a single parameter configuration was found
which displayed this behaviour in the mean-field simulations, after very
extensive scans, indicating the intractability of that model for explaining
the experiments, already at an early stage of simulations.

The single feasible parameter configuration found in mean-field simu-
lations for model 1, shown in table 4.2, was used in a spiking simulation
of 100 trials. These spiking simulations did not show satisfactory results.
Specifically, this network configuration showed a breakdown in identifying
/finEstra/ as a non-word, with an almost chance performance of 54% correct
trials. In figure 4.4, a spiking trial representative of the 46% erroneous trials
is shown, with activity high in pools 2 and 3, signaling word recognition.
This is not the data we wish to reproduce, the real Catalan-dominant
bilinguals having a far higher score on these stimuli. These results indi-
cated that model 1 was not feasible and all our analytical efforts thereafter
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Table 4.2: The only feasible parameter configuration, used in spiking trials
run for model 1.
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Figure 4.4: Model 1 spiking simulation for the input /finEstra/. The figure
shows the activity of the four pools, organized in relation to each other in
the same way as in the model architecture. As can be seen in this trial, the
pseudoword input drives the corresponding pools into an attractor and is
thus recognized as a word, something which only very rarely would happen
in reality. The horizontal line indicates the threshold; the two vertical lines
enclose the time interval used for averaging the signal to obtain a response.
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focused on model 2.
As concerns model 2, having decided on the points which should be

interesting behaviourally, we consequently ran full spiking simulations
with 100 trials per point, for 11 parameter configurations in total. These
configurations can be seen in table 4.3 (a point means a point in the 5-D
parameter space, i.e., a specific parameter configuration). The results

Table 4.3: Parameter configurations used in spiking trials run for model 2.

of the spiking simulations of model 2 looked very promising when going
through the pool activity time courses for each stimulus and point. As an
illustration, we here include a spiking simulation with the input /galleda/,
presented to pools 1 and 4, showing the sought behaviour, i.e. taking
the non-word stimulus to be a word (figure 4.5). However, as it is hard
to get an overview here of all the data obtained in these simulations by
presenting the exact time course, we had to find a good measure which, at
the same time as having a clear-cut correspondence in the experimental
data we model, was easily presentable in a written form. To this end
we calculated the percentages ‘yes’ and ‘no’ responses over trials to each
stimulus presentation (using the same response definitions as in the mean-
field scans recounted before) and thereafter calculated the A’ statistic for
each network configuration simulation, using the different outcomes of
the distinct trials to obtain the percentages. Using this approach, it was
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Figure 4.5: Model 2 spiking simulation for the input /galleda/. The figure
shows the activity of the four pools, organized in relation to each other in
the same way as in the model architecture. As can be seen in this trial,
the pseudoword input drives the corresponding pools into an attractor and
is thus recognized as a word, which also happens frequently in reality for
individuals showing the asymmetry in performance. The horizontal line
indicates the threshold; the two vertical lines enclose the time interval used
for averaging the signal to obtain a response.

found that the experimental data was readily reproduced in the mean,
with a variability of responses corresponding roughly to the distribution of
behaviour in the experimental paper (Sebastián-Gallés et al. 2005). In table
4.4, you can see the percentages correct responses (‘yes’ response to a word
presentation, ‘no’ response to a non-word presentation) to the presentation
of the four stimuli we have considered in our modelling, together with the
corresponding A’ scores. The average values are in the bottom of the table,
and correspond well to the average values obtained for Catalan-dominant
early bilinguals in the experimental study (see table 4.1). To facilitate
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Table 4.4: Individual and mean percent correct reponses and corresponding
A’ values for all stimuli, obtained in model 2 spiking simulations (W =
word; PW = pseudoword).

comparison of average values, we have generated figures. Shown in figure
4.6 is a comparative graph of average percentages correct responses, from
experiment and model. Furthermore, in figure 4.7 there is a comparative
graph of the corresponding average A’ values, from experiment and model.
Based on the results obtained in the modelling of the lexical decision task,
we predicted that in order for the effect to manifest itself in our simulations,
the connections between the two phoneme pools (pools 2 and 4) needed to
be ‘symmetric’, i.e., their weights’ values needed to be equal. In model 2,
whose strong results indicate its suitability for the LDT task modelling,
these weights are indeed equal, since they are both set to w−. In the only
point found in model 1, these weights (wpp1 and wpp2) were ‘asymmetric’,
i.e. differed in value. This led us to run further simulations, this time of a
‘discrimination task’, in which the network response must reflect a change
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Figure 4.6: Shown are the average percentages of correct responses obtained
in the experiment (left), for all four stimuli. The experimental values are
for Catalan-dominant early bilinguals, taken from Sebastián-Gallés et al.
(2005). Dark grey: /E/-type stimuli. Light gray: /e/-type stimuli. Error
bars represent standard deviations.

in phoneme stimuli. The motivation for this was our prediction that in a
discrimination task using the critical phonemes as stimuli, the Catalan-
dominant bilinguals should show equally perfect performance regardless of
the direction of the change in stimuli in a sequential presentation. That is,
we suspected they would not show the asymmetry displayed in the lexical
decision task, i.e., in this case they would not perform worse on /E/ stimuli
than on /e/ stimuli. Linguistically this would be due to the lexical context
not being present in such a task, in which case performance would not be
affected by long-term changes in the lexicon. What we hoped to show with
the modelling of this task, was that using the same points which showed
the asymmetry in the LDT, we would obtain equal or nearly equal, very
high A’ values on the discrimination task, but only if there was not a
significant asymmetry in weight values between the phoneme pools.

In this task, we simulated 100 trials for each of the 11 points already
run for the LDT task, but with a different stimulus setup and duration.
The initial period of zero input was maintained at 300 ms. Thereafter, the
stimulus /E/ or /e/ was presented to its corresponding pool, for a duration
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Figure 4.7: Shown are the average A’ values obtained in the LDT ex-
periment (left) and with model 2 (right). The experimental values are
for Catalan-dominant early bilinguals, taken from Sebastián-Gallés et al.
(2005). Dark grey: /E/-type stimuli. Light gray: /e/-type stimuli. Error
bars represent standard deviations.

of 400 ms in both stimulus cases. This was followed by an interstimulus
interval of 400 ms, whereafter either the same phoneme was presented
again, or the other phoneme was presented, representing a switch in stimuli.
Finally, the same period of 1000 ms as in the LDT task was simulated
after the last stimulus offset, for a total of 2500 ms simulation for the
discrimination task.

In all four cases (two switches and two non-switches of stimuli), if
activation showed that the last phoneme input was still retained by the
network, the corresponding trial was deemed a correct response. That is,
for the critical changes to be detected, the last stimulus presented to the
network in a ‘change’ trial had to be the winner in the competition induced
by the switch. Using this paradigm, we again calculated both percentages
and A’ values for all 11 parameter configurations, but not only for these
exact points. We also did the same for points in which an asymmetry in
the phoneme-to-phoneme weights, wpp1 and wpp2 (model 1 terminology),
was introduced, one of the weights set to a greater-than-w− value and
the other retained at w−. Specifically, the values were wpp1 = w− = 0.89
and wpp2 = 0.97, or vice versa, in order to investigate the effect of an
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asymmetry in both directions.
The results largely corroborated our prediction. In table 4.5, we show

the mean A’ values obtained from the spiking simulations for the non-
asymmetric case and for the two asymmetric cases, calculated from the
individual A’ values of all 11 points (data not shown). As can be seen in

Table 4.5: Mean A’ values obtained for the different spiking simulations of
the discrimination task.

table 4.5, in the symmetric weight case, A’ values differ by a mere 2.5 %,
while in the asymmetric cases, they differ by 14 % and 8 %, respectively,
in the order of presentation of the table. This indicates that there is a
sensitive balance to be maintained, in which these inter-phoneme pool
weights should be kept equal or may at least not differ by a significant
amount, for discrimination performance not to show asymmetry.

The results of our simulations of the discrimination task strenghtened
our prediction that plasticity at the lexical level does not alter phoneme
categories’ representations and that the performance on a phoneme catego-
rization task using the critical phonemes here discussed, should approach
perfect discrimination. Subsequently, as described in the Methods sec-
tion, we conducted behavioural experiments to investigate the prediction,
including a syllable discrimination task.

4.3.1. Experimental Results

4.3.1.1. Lexical Decision Task

As in Sebastián-Gallés et al. (2005), E-type pseudowords yielded high
error rates. The percentage of correct responses for each type of stimulus
is shown in table 4.6.
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Table 4.6: Percentage of correct responses and A’ scores for each condition
(Lexical Decision Task).

4.3.1.2. Discrimination Task

To obtain the A’ statistics4, the percentages of correct responses (Hits)
and false alarms (FAs) were calculated for each change of direction. Partic-
ipants could give their response whenever during the entire trial duration.
A trial in which the presented stimulus belonged to a different category
than the previous one, was considered a ‘change trial’. A Hit was scored
when the response was given during change trials. Any response given at
any other time was considered a false alarm. Participants showed very
high performance, independently of the direction of change (A′ε→e = 0.945;
A′e→ε = 0.936). In table 4.7, the percentages of Hits and FAs are given.

Table 4.7: Percentage of correct responses (Hits) and false alarms (FAs)
for each direction of change (Discrimination Task).

4The use of A’ statistics is due to the fact that this statistic was already employed
in the Sebastián-Gallés et al. (2005) study. We have run parallel analyses with the d’
statistic and the same pattern of results was obtained.
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4.3.2. Comparison of Results

As the modelling predicted, the Catalan-dominant early bilinguals in
the discrimination task indeed showed virtually equal performance on both
directions of change of critical vowel. In figure 8 we show the average A’
values attained by participants in the task, together with the average A’
values obtained in the simulation of a phoneme discrimination task using
the model. Like the results of the modelling (right part of figure 4.8), the
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Figure 4.8: Shown are the average A’ values obtained in the discrimination
experiment (left) and with the model (right). The experimental values are
for Catalan-dominant early bilinguals. Dark grey: /E/→/e/ change. Light
gray: /e/→/E/ change. Error bars represent standard deviations.

performance in the experiment (left part of figure 4.8) shows practically
equal values on both directions of change, indicating that the performance
is indeed equal at the phoneme level for the same kind of bilinguals who
displayed asymmetry across stimuli in the lexical decision task.

4.4. Discussion

We take the modelling results to suggest that model 2 (depicted in
figure 4.3) is the appropriate architecture for showing the asymmetry effect
found in Sebastián-Gallés et al. (2005). The failure of model 1 combined
with the results of our discrimination task simulations substantiate the
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appropriateness of model 2 by showing that as soon as an asymmetry
occurs, neither an LDT nor a discrimination task shows the appropriate
behaviour. Furthermore, the results of the discrimination task simulations
strengthens our belief that the asymmetry in the LDT task is a lexical
effect and thus does not reflect an alteration of representations at the
phoneme level, since such an alteration (weight asymmetry) deteriorated
performance in the simulation of the LDT.

Based on the results obtained in our simulations, we maintain that to
explain the effect observed in Sebastián-Gallés et al. (2005), the context of
the word is needed, i.e., it is not merely a modification of phoneme cate-
gories that underlies this behaviour (as indicated in Norris et al. (2003)),
but a specific modification in the connections between phoneme pools which
together represent a new word in the lexicon. Hence, the acceptance of the
mispronounced word as a word is a lexical level phenomenon. Furthermore,
based on our modelling of a discrimination task, we expected the perfor-
mance on a real discrimination task of subjects with the same background
as those showing the asymmetry in the LDT in Sebastián-Gallés et al.
(2005), to tend to be perfect for both directions of change.

In the subsequent psychophysical experiments, we showed that the
prediction from the modelling results is indeed reasonable, as the very
same kind of subjects as in Sebastián-Gallés et al. (2005) showed the
asymmetry found earlier in a lexical decision task, but practically equally
high performance on a syllable discrimination task involving the same
critical phonemes as in the lexical task. This indicated that a new word
form stored in the lexicon could account for the asymmetry in the results,
without the information having affected phoneme category representations,
since performance at the phonemic level was virtually equally high for both
categories.

In a recent experimental paper, we found evidence in this direction
(Connine 2004). The author of that work used a phoneme identification
experiment to examine the representation of phonological variants, in
specific the flap variant of spoken words which according to spelling are
pronounced with a /t/, such as /prIdI/ instead of /prItI/. She found that
her results provided ”strong evidence for the claim that representation
of auditory form includes explicit representations of the frequently heard
variant” (p. 1088). She claimed that ”words with highly frequent auditory
forms (e.g., containing a flap) that differ from their orthographic forms
may develop parallel representations in the auditory lexicon” (p. 1088) and
her results indicated that listeners did not recode the flap variant into an
underlying /t/ version, but rather recognized it via a pre-existing lexical
representation of the word containing this variant. Thus, those results
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are strongly supportive of our claim that the frequently heard variant
/galleda/ could have induced in the subjects an explicit new lexical entry
through long-term plasticity (Hebbian learning), rather than a change
in phoneme categories. Consistent with these results, Cutler, Weber &
Otake (2006) recently used an eye-tracking paradigm to demonstrate an
asymmetric mapping from phonetic to lexical representations in Japanese
listening to English (their L2). Specifically, the authors found that even
though such subjects fail to make a distinction between the isolated English
phonemes /r/ and /l/, they still have lexical entries for words containing
both phoneme categories. In the paper, the purported explanation for these
seemingly paradoxical results was that the lexical entries had been stored
through direct language instruction, although it was recognized that this
would not explain if similar phenomena were to be found in subjects who
had not acquired their L2 through explicit teaching. While the situation in
Cutler et al. (2006) is distinct from the one we have investigated, seeing as
we focus on L1 listening in bilinguals, it can nevertheless be argued that
the false-alarm recognition of, e.g., the non-word /galleda/ in our case has
similar root causes, namely two minimal-pair lexical entries /gallEda/ and
/galleda/ having been stored, although through environmental exposure
instead of explicit language instruction, especially in the case of /galleda/,
which is never taught as an actual word at school in Catalonia.

While we in this work have shown a ‘proof of principle’ of the feasibility
of using detailed neurodynamical modelling for higher cognitive phenomena,
such as language perception, a possible extension of this model would be
to incorporate lower-level auditory processing, thus connecting our more
representative firing rate input with the underlying stages, such as frequency
mapping and spectrotemporal response fields in auditory cortex (Kowalski
et al. 1996) or even models of the basilar membrane distributed frequency
mapping in the cochlea. One good model of peripheral auditory processing
is the Development System for Auditory Modelling (DSAM, O’Mard &
Meddis 1997), whose output is the actual spike trains of auditory nerve
fibers. This kind of lower-level processing output could then be fed to
higher-level networks, such as ours. One interesting possibility would be
to use the approach found in Drew & Abbott (2003), where the authors
also use an integrate-and-fire model and show that in order to get the
model to process more than two sequential (birdsong) syllables, all one
needs to do is to expand the number of pools in the network from the
original four by an additional two per syllable. This would be interesting to
explore in combination with a more realistic input, e.g., a filter bank or the
DSAM model, presented with the real sound files of three-syllable words,
which are then processed by a network able to handle three syllables. The
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principle on which the work by Drew & Abbott (2003) is based is a general
one, so although the spectral complexity of human language syllables is
higher than more harmonic birdsong syllables, this should be feasible. One
could also look at more technical or mathematical extensions of the model,
including explicit incorporation of plasticity in order to study how the
resultant changes we here hypothesize come about through experience.

For the representation of a single phoneme used in our model, we find
support in an interesting study by Houde & Jordan (1998), which looks at
adaptation in vowel production following a training phase with real-time
feedback of the subject’s own transformed speech. The transformation
corresponded to a shift in the vowel formant space, and the adaptation in
the production of test words went in the other direction, so as to counter
the transformation. The adaptation of the vowel /E/ generalized to different
word contexts than the ones presented during training, something taken
by the authors as evidence for a common representation of the production
of the vowel /E/ in the brain, shared by the production representations of
the training words. Although the Houde & Jordan (1998) study focused
on speech production, we argue that their results indicate that it is rea-
sonable to assume a representation of words composed of representations
of its constituent phonemes, also for speech perception. As for the neural
substrate of this representation, the results of a study by Obleser, Lahiri
& Eulitz (2004), using magnetoencephalography to measure the neural
activity evoked by tokens of German vowels, point to the auditory associa-
tion cortices, i.e., areas of the auditory cortex peripheral to the primary
auditory cortex, A1.

Concerning the discrimination experiment, it could be possible that
the lack of differences between the two directions of change be due to a
ceiling effect (although extensive piloting was done to avoid it). While this
explanation cannot be totally discarded, further experimental results, both
with behavioural and electrophysiological measurements, speak against
such a possibility. For instance, the results of Sebastián-Gallés et al. (2009),
measuring the MMN in an odd-ball paradigm, show no differences between
the two directions of change, thus confirming the present behavioural study
and supporting the modelling.



5 Discussion and Conclusions

5.1. Discussion

This thesis has a wide scope and its results therefore have wide-ranging
potential implications. The largest part of the thesis presented a novel
biophysically plausible mechanism of sensory attribute selectivity improve-
ment, here used to explain the phenomenon of differential suppression seen
in neurophysiological experiments exploring neural correlates of auditory
streaming (Fishman et al. 2001, Fishman et al. 2004). In chapter 2 we
explain this mechanism, dynamic frequency selectivity, Essentially, with
the three ingredients of the non-linearity of processing in neurons as mani-
fested by their threshold, the approximate linearity of their input-output
function (above threshold), and the existence of synaptic depression (in-
put causing the depletion of finite synaptic resources over time) at the
thalamocortical synapses, one can with a feed-forward model reproduce
differential suppression of non-BF tones in a sequence of alternating BF
and non-BF tones. We present three different implementations of such
a model, one being a rate model (Wilson & Cowan 1972) and the other
two being conductance-based (Hodgkin-Huxley, HH) models (Hodgkin &
Huxley 1952, Soto et al. 2006). The rate model and approach one to the
HH model both use deterministic synaptic depression (see sections A.1.2
and B.1.1; Tsodyks et al. 1998), whereas HH approach two uses stochastic
synaptic depression (section B.1.2), as employed in modelling studies of
the nature of synaptic transmission (de la Rocha & Parga 2005) and of
responses to sequences of (non-differing) haptic stimuli in the primary
somatosensory cortex (de la Rocha & Parga 2008).

In chapter 3 we then go on to find that a mexican-hat type IC con-
nectivity can be used to explain approximate co-tuning of inhibition and
excitation as well as flank dominance of inhibition over excitation (Wehr
& Zador 2003, Wu et al. 2008). Furthermore, across the tonotopic axis
we get a 67% boost of excitatory conductances (equivalent to currents),
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and also reproduce the spread of sub- and suprathreshold activity, as seen
in data found by Liu et al. (2007). We first found a basic fit using only
feed-forward inhibition and recurrent excitation, and then proceeded to
make a more rigourous fit with all possible intracortical connections active,
both described in the Results section of chapter 3. After that, using our
basic network fit, we were able to approximately reproduce results on
physiological forward masking seen in Wehr & Zador (2005) (section 3.3.3).
Finally, and importantly, we managed to use the rigourous network fit to
reproduce auditory streaming correlate data, this time with thalamocortical
axonal spread (something which diluted the feed-forward network fit due
to the absence of intracortical currents, particularly recurrent excitation).

We now go on to emphasize the main results found in this thesis.

1. We show that the underlying mechanisms responsible for neurophysi-
ological forward masking and auditory streaming data, while sharing
the ingredient of (thalamocortical) synaptic depression, are essen-
tially distinct, finding that the former corresponds to the transient
regime of the dynamics of synaptic depression, while the latter is read-
ily explained at steady-state (in contrast with earlier explanations;
Fishman et al. 2001, Fishman et al. 2004).

2. We find a plausible connectivity scheme for layer IV of the primary
auditory cortex, rigourously constrained by data as well as able to
explain several important results from the neurophysiology literature
(see, e.g., Wehr & Zador 2003, Wehr & Zador 2005, Liu et al. 2007, Wu
et al. 2008, Tan & Wehr 2009, Wang et al. 2010). Using the resulting
network setup, we then went on to show that intracortical currents
make a crucial contribution to fitting the DS of Fishman et al. (2004)
when thalamocortical afferent spread is non-zero (ν> 0).

3. We have to our knowledge constructed the first neurophysiologi-
cally well-founded model to explain the differential suppression phe-
nomenon exhaustively. We expect this model may serve as an input
layer for the presumably forthcoming more complicated models aim-
ing at explaining the complete phenomenon of auditory streaming,
including switching between ‘perceptual’ states.

4. Finally, we have proposed an attractor network model (model 2 of
chapter 4) which not only reproduced data from the lexical decision
task by Sebastián-Gallés et al. (2005), thus strengthening the hypoth-
esis that the acceptance of the mispronounced word as a word is a
lexical level phenomenon, but also made the prediction (modelling a
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phoneme discrimination task) that those same subjects displaying
the acceptance/asymmetry would perform near-perfectly on a real
syllable discrimination task. This was then experimentally confirmed
by our collaborators. We have published these and other results
(Larsson et al. 2008, Sebastián-Gallés et al. 2009).

Finally, while there is some overlap between the work in chapter 3
of this thesis and that by de la Rocha et al. (2008), we make a further
contribution by studying the tuning of inhibition and excitation using a
more detailed conductance-based model (as opposed to their rate model).
Above all though, our overarching goal was to explain auditory streaming
and forward masking correlates in the auditory cortex, and in so doing
we covered subjacent phenomena such as (approximate; Wu et al. 2008)
co-tuning of inhibition and excitation in order to have a firm foundation
for our model’s parameter values in the literature.

Some of the results we have obtained were also qualitatively found
by Loebel et al. (2007), using a model with intracortical depression in
excitatory A1 neurons. However, in their model inhibitory neurons have
no depression (or facilitation) in their incoming intracortical synapses and
thalamocortical depression is also absent. Most significantly, however, the
solution of Loebel et al. (2007) depends strongly on the specific imposed
tonotopic organization of the spontaneous activity of their network (we
have confirmed this in our own implementation (data not shown), and
it is also explained in the first study using this population spike model
— see Tsodyks, Uziel & Markram 2000). For these reasons we believe
that, while theirs is a legitimate alternative approach to modelling A1, our
model finds a more minimal mechanism for explaining neurophysiological
correlates not only of forward masking, but also of auditory streaming
(something not addressed by them). Further, we incorporate a greater
neurophysiological detail (mainly chapter 3), based on the recent literature
(e.g., Liu et al. 2007, Wu et al. 2008, Wang et al. 2010).

Bartlett et al. (2010), performing in vivo experiments on awake mar-
mosets, found a shape of responses in MGBv (exponential across the
tonotopic axis) very similar to those employed in our study. However, in a
majority of neurons they find the BW at half maximum amplitude to be
about 0.2 octaves, which is less than the width employed by us. We based
our values on the earlier study by Liu et al. (2007) and found no reason to
alter these once the new study came out, both because of our considerable
data fits using the bigger value and because, in any case, this issue still
seems to be contentious and assessments have varied over the years and
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species (e.g., see Aitkin 1973, Calford 1983, Ma & Suga 2009). Bartlett
et al. (2010) summarize this issue in table 1 of their paper.

As for the shape of the cortical response to tones, Fishman & Stein-
schneider (2009) lends further support to the exponential shape of responses
in A1, in particular their ‘on’ responses (10-30 ms after stimulus onset)
resemble both that seen by Liu et al. (2007) and consequently that which
we obtain in our simulation results. Also, Bartlett et al. (2010) show an
exponential shape of the response profile across A1, with about 25 % of
responses less than 0.2 octaves wide, the rest wider (we note that this
figure also is much lower than in Liu et al. (2007), which may be due to
species or methodology differences).

Regarding the broad inhibition seen in the study by Liu et al. (2007), re-
cently the same group of researchers have published another study showing
a very similar organization of inhibition, this time in the visual cortex of
mice (Liu, Li, Ma, Pan, Zhang & Tao 2011). However, in the latter study,
excitation in simple cells was also quite broad, unlike what we deduced
from the former study’s A1 data. In fact, cases where excitation is about
as broad as inhibition have also been found in A1 (very recently measured
in in vitro samples from mouse; Levy & Reyes 2012). This is definitely
something that might need a revision in our modelling of intracortical con-
nectivity, as presented in this thesis, although as we noted in the discussion
of chapter 3, Levy & Reyes (2012) focus on LII/III and we have modelled
layer IV.

5.1.1. Limitations

We have made several simplifications in the present work, for several
reasons. The foremost among them was to limit the number of free
parameters and thus simulation time. We have performed robustness
tests in those cases where we considered the simplifications to warrant it,
confirming that obtained results were reproducible in key cases with more
realistic settings (data only partially shown). That said, our conductance-
based models are very complex and we retained a considerable number of
degrees of freedom with the setup we used. The brain (and, for that matter,
any neuron or synapse) is very complex and all models are necessarily
simplifications of reality (Sejnowski, Koch & Churchland 1988, Abbott
2008). Our models are no exception to this rule. For completeness, however,
we will now proceed to listing some things that are candidates for inclusion
in a future, more complex model (all the while emphasizing that each
parameter’s inclusion would need to be very well motivated first). Thus,
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straightforward model ‘ingredients’ which may potentially have an impact
on our results, that we did not include, were

1. intracortical NMDA receptors,

2. thalamocortical NMDA receptors, and

3. GABAB receptors.

Regarding the absence of NMDA receptors, this was a conscious lim-
itation imposed on our model in order to keep complexity down. Their
presence in cortex is undisputed (e.g., Thomson & Deuchars 1994), and we
recognize that working out the implications of their inclusion in our model
is of the utmost importance for future work. However, whether NMDA
receptors are part of the thalamocortical interface of the auditory modality
is unclear, especially in the adult organism. While there have been studies
showing such receptors indeed participate in thalamocortical transmis-
sion to somatosensory (Gil & Amitai 1996, Armstrong-James, Welker &
Callahan 1993) and visual (Fox, Sato & Daw 1989, Miller, Chapman &
Stryker 1989, Krukowski & Miller 2001) cortices, we have only found two
studies directly addressing this issue in the auditory modality, in our view
inconclusively. While Cruikshank et al. (2002) showed NMDA receptors
were putatively present in P13-P19 mice (in vitro), researchers from the
same group later found that the signature long-lasting intracortical depo-
larization, taken in their previous study as an indication of thalamocortical
NMDA, was highly likely to be polysynaptic in nature. In fact, scrutinizing
the data of Cruikshank et al. (2002), one finds that also here the later
onset which signals polysynaptic inputs was present. We emphasize that
influential studies have concluded that the presence of NMDA is particular
to the developmental phase of the animal and its nervous system (Thomson
& Deuchars 1994, Crair & Malenka 1995), casting some doubt on its role
in the adult thalamocortical transmission mechanism. Certainly, this issue
will need to be followed closely in the years ahead.

The issue of GABAB receptors was briefly touched upon by Wehr &
Zador (2005), who found that the GABAB component constituted only 12%
of the total inhibitory conductance amplitude evoked by an isolated tone.
However, it was of a long duration (200-300 ms), rendering it possible that
it have an effect in spite of its low amplitude. Curiously, Wehr & Zador
(2005) found that blocking GABAB actually enhanced forward suppression
(masking), which further adds to the motivation of clarifying its role in
future work.
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Another thing we have not addressed in this work is using a certain
probability of connection between cortical neurons (e.g., probability of
monosynaptic connection between two neurons, less than 200 µm apart, was
found to be 0.1 by Markram, Lübke, Frotscher & Sakmann 1997). Instead,
we used all-to-all connectivity (with probability 1.0), but let conductance
strength of synaptic connections fall off with distance (see appendix B).
We have not investigated the difference between these two approaches and
such a comparison would be interesting to carry out, including looking at
its implications for our results. Here, we limit ourselves to commenting on
this. Briefly, considering that the tonotopic (anterior-posterior) extent in
A1 of rat was found to be 2 mm and that this represented approximately
6 octaves (1 to 60 kHz) (Kilgard & Merzenich 1999), we can deduce that
the probability of connection is 0.1 up to an interneuronal distance of 0.6
octaves in A1. If neurons further apart are not connected at all, that
would have little impact on our results beyond very slightly lowering lateral
inhibition (excitation too narrow to be affected). Taking the above data
as a starting point, what would need to be investigated in more detail
is what happens within the 0.6 octaves closest to a stimulated neuron in
either direction, i.e., the 1.2 octaves surrounding that neuron, something
very important for our robustness study of chapter 3. Interestingly, very
recently Levy & Reyes (2012) measured connection profiles in A1 of mice
and gave values of widths in µm. Combining their data with the result of
Stiebler, Neulist, Fichtel & Ehret (1997) that the mouse A1 covers about
six octaves per mm, one also arrives at values of about 0.6 octaves for the
intracortical connectivity widths of all types measured. However, their
values for probability of release in said connections were generally higher
than 0.1 (Levy & Reyes 2012).

Similarly, the fact that we used coupled intracortical connection profiles
(λI = λII = λEI and λE = λEE = λIE ) in this work, while aiding us in
limiting the complexity of the network, probably warrants a future scrutiny.
Particularly, by relaxing this constraint, the elaborate network fit found in
chapter 3 would probably have multiple companion solutions.

As for the heavy dependence of our work on the existence of thalamocor-
tical depression, as we already argued, there are several studies supporting
this (Abbott et al. 1997, Carandini et al. 2002, Chung et al. 2002, Elhilali
et al. 2004). However, e.g., Richardson, Blundon, Bayazitov & Zakharenko
(2009) point out that while thalamocortical synaptic transmission takes
place through stubby dendritic spines in primarily layer IV (Nahmani
& Erisir 2005), synaptic plasticity in pyramidal neurons has been shown
to take place on mushroom spines (found in hippocampus; see Matsuo,
Reijmers & Mayford 2008). In view of experiments demonstrating auditory
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cortex plasticity during learning (e.g., Kilgard & Merzenich 1998a, Kil-
gard & Merzenich 1998b, Fritz, Shamma, Elhilali & Klein 2003, Froemke,
Merzenich & Schreiner 2007), they speculate that this be a guarantor that
”plastic changes in the auditory cortex during learning [...] not compromise
the effectiveness of thalamocortical projections and consequently the relia-
bility of the delivery of acoustic information to the auditory cortex”. This
is a valid point (although the studies cited were not all in auditory cortex
or even cortex), but as we have seen and others (de la Rocha & Parga 2005)
have shown, with enough variability the transmission of information is not
disrupted by the presence of thalamocortical depression, even in the steady
state reached after much input has been processed, provided the network
is in the so-called fluctuation driven regime.

Finally, throughout this study we used an equal number of excitatory
and inhibitory neurons, in order to limit the already considerable complexity
involved in our task. Seeing as inhibitory neurons are typically considered
to constitute only 15-30% of all cortical neurons, the repercussions of this
simplification in our results would need to be elucidated in future work. In
principle, however, by changing the relative input strength to each kind of
neuron (nothing seems to be set in stone in neurophysiology), one could
find equally satisfactory alternative solutions to the problems we have
addressed.

5.2. Conclusions

5.2.1. Closing words

In summary, we have discovered a novel, biophysically plausible and
robust mechanism for explaining the neural correlates of auditory streaming
as measured in the primary auditory cortex in neurophysiological studies
(notably Fishman et al. 2001, Fishman et al. 2004, Micheyl et al. 2005).
The phenomenon we explain is called differential suppression, and we refer
to our mechanism as dynamic frequency selectivity. Crucially, while this
work has concentrated on the auditory modality, we see no reason why the
same mechanism could not be used to explain selectivity improvement over
time in any sensory modality.

Furthermore, we have proposed an organization of the intracortical con-
nectivity of A1 that is consistent with several recent results in the literature
(see, e.g., Wehr & Zador 2003, Wehr & Zador 2005, Liu et al. 2007, Wu
et al. 2008, Tan & Wehr 2009, Wang et al. 2010). This same circuit can be
used to sharpen responses of our feed-forward network with thalamocortical
fan-out, thus showing a crucial role for the recurrent excitation and, to a
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lesser extent, the (not exceedingly) lateral inhibition of our connectivity
in maintaining our dynamic frequency selectivity mechanism robust when
including this neuroanatomical constraint (shown by many authors, e.g.,
Miller et al. 2001)

Finally, we have proposed an attractor network model (model 2 of
chapter 4) which reproduces data from a lexical decision task (Sebastián-
Gallés et al. 2005), which predicted that Catalan-dominant bilinguals
do not alter their phoneme categories, although showing signs of having
stored a new word variation in the lexicon. This was then corroborated
by our collaborators in a phoneme discrimination study, where the same
subjects which displayed asymmetry in the LDT showed near-perfect
discrimination of those very phonemes which were contrasted in the non-
words of the LDT. These results, along with further follow-up experimental
work employing ERPs, has been published in two different papers (Larsson
et al. 2008, Sebastián-Gallés et al. 2009).

5.2.2. Future work

There are several interesting topics which have been touched upon
during the work on this thesis, but for spatiotemporal reasons were not
included. Here we mention a few.

First of all, while we found a very plausible and well-founded expla-
nation for the neurophysiological data from auditory streaming correlate
experiments using short tones (notably that by Fishman et al. 2004), we
never attempted to reproduce results with longer tones (TD of 50 or 100
ms), which show an abrupt decline in RR for low ∆f values when SOA
becomes zero (i.e., for PR = 20 and 10 Hz, respectively). With the feed-
forward solution of chapter 2 we are positive that this data can not be
reproduced, for various reasons. First of all, with our input function (µ=
0.4 oct.) the difference in input at ∆f = 5 % is at most around 10%, which
means that for the response to B tones to be almost zero that close to ϕA,
d2 for the PR values in question would have to be unrealistically low in
order to bring input below threshold (it would affect the rest of the fit
negatively). Therefore, we are convinced that the full tonotopic network,
possibly with some now left-out ingredient (see above) is needed in order
to account for that data. This is something we definitely would like to look
into in the immediate future.

Secondly, and possibly related to the previous point, it would be inter-
esting to further investigate the relationship between neurophysiological
results on forward masking and auditory streaming, as measured in A1.
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We have been able to explain a great deal, but using slightly different
parameter values for different phenomena. While we showed analytically
that there is a certain redundancy in depression parameter values (two
different sets of U and τD values can yield the same steady-state value
of depression), it would still be desirable to find one network setup to
explain ‘all’ relevant results. At the very least, we would like to employ
the rigourous fit of the tonotopic network chapter 3 to simulating also the
results by Wehr & Zador (2005), now only reproduced with the basic fit.

Thirdly, using the software we have developed, with slight changes, one
could easily investigate the response of the tonotopic axis of A1 to frequency-
modulated sweeps. During such a project, one could further elucidate the
relative contributions of candidate mechanisms for direction selectivity,
such as differential delays of excitatory inputs and spectral offset between
excitatory and inhibitory inputs (Ye, Poo, Dan & Zhang 2010, Gittelman
& Pollak 2011). As the authors of the cited studies point out, the spike
generation mechanism, whose role in the present work was prominent,
would also here play a role.

As the fourth point, we would like to emphasize the strong interest
we have in extending our model to also study and attempt to explain
mechanistically the full auditory streaming phenomenon, as manifested
in the brain. While possibly a daunting challenge using such detailed
models, a starting point could be to use our model as an input layer to a
hypothetical higher-level layer where ‘percepts’ are formed based on the
activity of the A1 layer.

Finally, we have some ideas for improvements for our model of a lexical
decision task and phoneme discrimination. For one thing, the approach
taken by Drew & Abbott (2003) in modelling birdsong syllables could
work in our case too (LDT task). This would entail having up to eight
pools for ’perceiving’ three-syllable words, as those in our example stimuli.
Another idea would be to have all pools represent syllables, which in our
case would mean having a total of eight pools, representing /ga/, /lle/,
/llE/, /da/, /fin/, /es/, /Es/, /tra/. However, seeing as there is still debate
about whether words are represented in the brain by syllables or phonemes,
or both (e.g., Siok, Jin, Fletcher & Tan 2003), one would have to design
such a study with care.





Appendices

163





A Rate model and analytics

A.1. Rate model of local A1 population

The equation used to describe the temporal evolution of the mean firing
rate m(t) of a population of neurons in A1 is the rate model (Wilson &
Cowan 1972)

τ
dm(t)

dt
= −m(t) + [ITh(t)− θ]+, (A.1)

where the time constant τ = 20 ms. The parameter θ represents the
threshold of the population’s transfer function

[x]+ =


0 x ≤ 0,
x x ∈ (0, θ),
100Hz otherwise.

(A.2)

The periodic function ITh(t) represents feed-forward sensory inputs (MGBv
efferents) that innervate the A1 population. The input function to the
population representing neurons at ϕA = fA in A1 is defined as

ITh(t) =

∫ Fhigh

Flow

W (ϕA, F ) R(F, t) d(F, t) dF, (A.3)

where the distribution of thalamocortical synaptic weights is taken as the
symmetric function

W (ϕ, F ) =
W0

2ν
e−
|ϕ−F |
ν . (A.4)

Equation (A.3) is a convolution across thalamic tonotopic space, from
Flow to Fhigh, which represent said space’s extremes. According to the
experimental results of Miller et al. (2001), thalamocortical projections
from MBGv to A1 are focal and have a spread of at most one third
of an octave. Hence, in our model we assume that the function W is
narrow (small ν). The spatial range µ of the tuning curve in MGBv has
been approximately adjusted using the data of Liu et al. (2007), where
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thalamocortical excitatory input is broad, spanning up to 4-5 octaves at 60
dB (the sound intensity used by Fishman et al. 2004). The resulting tuning
curve in the cortex is similar to the ’on’ tuning curves recently measured
in A1 (Fishman & Steinschneider 2009).

A.1.1. Thalamocortical input
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Figure A.1: Description of the model. a: Schematic representation of
the stimuli used to study auditory streaming, consisting of sequences of
alternating A and B pure tones of frequency f = fA,B and duration TD ,
presented at rate PR . b: The temporal dynamics of the firing rate at any
particular location F of the thalamus (in this case F = fA) is modelled as a
series of short (20 ms) excitatory pulses of magnitude r(F, f). c: Thalamic
(MGBv) neurons send thalamocortical (TC) axons to make depressing
synaptic connections with A1 neurons.

We consider that a pure tone of frequency f elicits an activity pattern
in the MGBv described by (see figure A.1 c)

r(F, f) =
r0

2µ
e
− |F−f |

µ , (A.5)

where variable F denotes the tonotopic location in the MGBv. Additionally,
µ represents the spatial extent of the activity (in octaves), and r0 = 100Hz.
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In the auditory streaming experimental paradigm, pure tones of two distinct
frequencies are presented alternately in time, with presentation rate PR (see
figure A.1 a).

Accordingly, the input function in the model is taken as

R(F, t) = r(F, fA)ψ(t) + r(F, fB)ψ(t− 1

PR
), (A.6)

where ψ(x) is the periodic function (with period 2/PR ) described as

ψ(x) =

{
1 x ∈ [0,TD ],
0 x ∈ (TD , 2/PR ),

(A.7)

with x mod(2/PR ). Note that the function ψ is simply a square function,
so that the temporal aspects of the thalamic response are not taken into
account. This approximation is justified by the fact that we deal with neural
responses to short pure tones (25 ms, see Fishman et al. 2001, Fishman
et al. 2004). Wallace, Anderson & Palmer (2007) showed that responses
in the ventral part of the medial geniculate body (MGBv), are mainly
represented by two types of cells: Onset cells, that respond transiently at
the tone’s onset, and on-sustained cells that show a sustained response
with a firing rate above the background firing rate. Thus, we consider
that the MGBv neural response simply consists of the transient part of
the response, which we model as the square function (A.6) (we will later
use time-varying stimuli when using a more detailed Hodgkin and Huxley
model; see appendix B).

A.1.2. Synaptic depression model

This model is based on a model of synaptic depression in Tsodyks et al.
(1998), with equation (A.8) governing the evolution of the fraction, d(t), of
transmitter available for release into the synaptic cleft.

dd(t)

dt
=
dstart − d(t)

τD
− d(t) U δ(t− tpre)

dt
(A.8)

tpre designates the time of arrival of a presynaptic action potential, at which
time d(t) depresses by a fraction U , which is a parameter of the model.
The time constant in the model, τD , governs reactivation of used synaptic
vesicles. dstart is the value to which the release probability converges
exponentially in the absence of presynaptic input. Throughout this study
(except when explicitly using steady-state values calculated in section A.2
at the outset of simulations), dstart = 1 (valid for very low spontaneous
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rates in MGBv), whereas U and τD vary (in accordance with literature,
as explained in main text). The fraction d(t) is independent for each
thalamocortical synapse connecting onto a cortical neuron.

A.2. Analysis of synaptic depression dynamics

A.2.1. Synaptic depression variable: Transient behavior
and two-tone interactions (forward masking)

The differential equation for the synaptic depression variable (A.8) can
be written as

D

Dt
[d(t) eβt] =

1

τD
eβt (A.9)

where β ≡ 1/τD + UR(F, t). Considering the best frequency site ϕA, the
function R(F, t) (equation (A.6)) takes on the three constant values rA ≡
r(FA, fA), rB ≡ r(FA, fB) and 0 in a repetitive succession, rA, 0, rB, 0, ....
Therefore it is simple to integrate the equation (A.9) in these intervals,
starting with a certain initial value of the synaptic depression variable
d(t = 0) = dstart. We have enumerated the intervals using the parameter
n, starting with tone A. The equation (A.9) then has the solutions

dA,B;n =

(
dA,B;n−1 −

1

τD βA,B

)
e−βA,BTD +

1

τD βA,B
, n odd (A.10)

dA,B;n = (dA,B;n−1 − 1) e
TD − 1

PR
τD + 1, n even, (A.11)

where βA,B ≡ 1/τD + U rA,B . For large enough values of n, the steady
state is reached and the solutions (A.10) and (A.11) converge to the four
values d0 − d3 that are represented in figure A.2.

The lower panel of figure A.2 shows an enlarged view of the steady
state of the variable d. The quantities d0−3 are defined as the extremes of
the function d(FA, t) in the steady state (i.e., d0−3 are time-independent
quantities). Using these, it is useful to define the two quantities

dA,B ≡ d1,3 + (d0,2 − d1,3)/2, (A.12)

that represent an approximate measure of the mean synaptic depression
values during the presentation of an A or a B tone, respectively. Note
that these measures are only defined in the steady state regime, as are the
quantities d0−3.
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Figure A.2: Dynamics of the synaptic depression variable at the tonotopic
location F = FA. Upper panel: Transient behaviour before the steady
state regime of the synaptic depression variable is reached, for sequences of
inputs (applied in the time interval between the dotted lines) of the same
frequency (∆f = 0; green line), and for different A and B tones, ∆f = 0.5
(black) and ∆f = 2 (grey) octaves, respectively. Lower panel: Zoomed
view of the time course of the d variable (corresponding to ∆f = 0.5)
once the steady-state regime has been reached. Note that the different
inputs A and B (represented in different colors) produce different degrees
of depression, but the mean value of the depression variable in the steady
state regime satisfies dA ≈ dB (parameters: dstart = 1, U = 0.2, RTh = 100
Hz, τD = 0.8 s, PR = 5 Hz, TD = 20 ms, µ = 0.5 oct.).



170 APPENDIX A. RATE MODEL AND ANALYTICS

In figure (A.2) we have considered the synaptic depression variable
to be fully recovered before the presentation of the sequence of alternat-
ing inputs (i.e. d(t = 0) ≡ dstart = 1). Three different time series are
shown. One with ∆f = 0 (i.e. the sequence simply consists of a succession
of A tones repeated with PR = 5 Hz) another one with ∆f = 0.5 oct.
and a final one with ∆f = 2 oct. In this latter case the sequence consists
of a sequence of A tones with half of the presentation rate, i.e. PR = 2.5 Hz.

Analysing further the equations (A.10,A.11), it is possible to see that
the decay of the d(t) function follows a decreasing exponential function
with time constant

τt =
1

TD PR U(r0 + rB) + 2/τD
(A.13)

Thus, the decay rate is slower when TD is smaller than 1/PR, and increases
with increasing PR .

The left panel of figure A.3 shows the dependence of dA (see eq. (A.12))
on the PR for two values of ∆f . The function dA is a decreasing function of
PR , simply because increasing the presentation rate increases the amount
of synaptic transmission and thus, of synaptic depression. It is important
to note that dA ≈ dB , especially at high presentation rates and small values
of ∆f . This is shown in the inset of figure A.3 for the two corresponding
values of ∆f . In the main text, we make use of this property and employ
the notation d̄ ≡ dA+dB

2 to indicate that then we are considering a unique
value of the mean synaptic depression, independent of the presented tone.

A.2.1.1. Forward masking analysis

In the two tone paradigm used in forward masking experiments, a probe
tone of a certain frequency f = fP (at the BF of a neuron from which is
being measured) and intensity (here, rate) r = rP is presented some time S
after the presentation of a masker tone of frequency f = fM and intensity
(rate) r = rM (fM and rM may vary; Calford & Semple 1995, Brosch &
Schreiner 1997, Wehr & Zador 2005). In this case the solutions (A.10,A.11)
become

dM =
1

τD βM

[
1 + (τD βM dstart − 1)e−TD βM

]
(A.14)

dP = 1 + e
TD − 1

PR
τD

[
1

τD βM
(τD βM dstart − 1)e−TD βM − 1

]
(A.15)
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Figure A.3: Mean values of the synaptic depression quantity dA defined
in equation (A.12), as a function of PR for µ = 0.5 octaves, U = 0.2
and ∆f = 40 % (dashed curve), and ∆f = 5 % (solid curve). Inset:
Difference dA − dB, showing that dA ≈ dB for ∆f = 40 % (dashed curve)
and ∆f = 5 % (solid curve), particularly at fast PR . All the curves have
been analytically obtained solving the equations (A.10) and (A.11).

where βM ≡ 1/τd + UrM . The time needed for the synaptic depression
variable to recover to a certain value dc can then be calculated using
equation (A.15) and gives

trec(dc) = τD log

e−TD
(
−βM+ 1

τD

) (
eTD βM (1− βMτD ) + dstart βM τD − 1

)
βM τD (dc − 1)

 .

(A.16)
With this equation (and taking into account the thresholding effect of

the neural population) it is possible to calculate the recovery curves shown
in figure 2.13.

A.2.2. Synaptic depression variable: Steady state regime

Integration of equation (A.9) between two arbitrary intervals is straight-
forward, and therefore for simple enough R(F, t) functions it is possible
to obtain analytic expressions for d(t) and for the extremes d0−3 (see fig-
ure A.2). For such simple inputs, the equation (A.9) can be integrated in
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the steady state regime, and we obtain the four equations:

d et(1/τD +UrA)

∣∣∣∣d1,t1
d0,t0

=
et(1/τD +UrA)

1 + τD UrA

∣∣∣∣t1
t0

(A.17)

d et/τD
∣∣∣∣d2,t2
d1,t1

= et/τD
∣∣∣∣t2
t1

(A.18)

d et(1/τD +UrB)

∣∣∣∣d3,t3
d2,t2

=
et(1/τD +UrB)

1 + τD UrB

∣∣∣∣t3
t2

(A.19)

d et/τD
∣∣∣∣d0,t4
d3,t3

=
et/τD

1 + τD UrB

∣∣∣∣t4
t3

, (A.20)

where t0 = 0, t1 = TD , t2 = 1
PR , t3 = TD + 1

PR and t4 = 2
PR (relative

to any A tone’s onset, at steady state). This system can be solved for
the unknowns d0−3. In particular this permits us to obtain an analytical
expression for the mean quantities dA,B = dA,B(PR ,∆f), using the defini-
tion (A.12).

An alternative way of calculating d0−3, by way of their dynamic tra-
jectories, d0−3[m], m ∈ 1, 2, . . ., is to first formulate a system of difference
equations, parting from the expressions (A.10) and (A.11). We get a system
of four equations by writing down said expressions separately for rA and
rB, and setting d0[m] ≡ d[i], i = 4n, d1[m] ≡ d[i], i = 2n− 3, d2[m] ≡ d[i],
i = 4n−2, and d1[m] ≡ d[i], i = 4n−1, respectively (n ∈ N). The resulting
system is written

d0[m] = (d3[m− 1]− 1) e
TD − 1

PR
τD + 1 (A.21)

d1[m] =

(
d0[m]− 1

1 + ξA

)
e
−TD (1+ξA)

τD +
1

1 + ξA
(A.22)

d2[m] = (d1[m]− 1) e
TD − 1

PR
τD + 1 (A.23)

d3[m] =

(
d2[m]− 1

1 + ξB

)
e
−TD (1+ξB)

τD +
1

1 + ξB
, (A.24)

where ξA,B ≡ rA,B U τD , and d3[0] = dstart. Using the value dstart = 1.0, we
obtain solutions for the dynamic trajectories d0−3[m] (extensive equations,
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not shown due to spatial constraints). Then, by letting m→∞ in those
expressions, we obtain the steady state, or stationary, solutions:

d0 = − 1

(1 + ξA)(1 + ξB)

(
e

2+PRTD (ξA+ξB)

PR τD − 1

)

×
[
ξB

(
1 + (1 + ξA)

(
e

1+PRTD (1+ξA+ξB)

PR τD − e
1+PRTD ξA

PR τD

))

+ (1 + ξB)

(
ξAe

TD (1+ξA)

τD − (1 + ξA)e
2+PRTD (ξA+ξB)

PR τD

)
+ 1

]
,

(A.25)

d1 =
e
−TD
τD

(1 + ξA)(1 + ξB)

(
e

2+PRTD (ξA+ξB)

PR τD − 1

)

×
[
(1 + ξB)

(
e

2+PRTD (1+ξA+ξB)

PR τD + ξAe
2+PRTD ξB

PR τD

)

+ (1 + ξA)

(
ξBe

1
PR τD

(
1− e

TD (1+ξB)

τD

)
− (1 + ξB)e

TD
τD

)]
,

(A.26)

d2 =
1

(1 + ξA)(1 + ξB)

(
e

2+PRTD (ξA+ξB)

PR τD − 1

)

×

[
(1 + ξB)

(
(1 + ξA)e

2+PRTD (ξA+ξB)

PR τD

− 2ξA sinh

(
TD (1 + ξA)

2τD

)
e

2+PRTD (1+ξA+2ξB)
2PR τD

)

− (1 + ξA)(ξBe
TD(1+ξB)

τD + 1)

]
,

(A.27)
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and

d3 =
e
−TD(7+2ξA+3ξB)

τD

(1 + ξA)(1 + ξB)

(
e

2+PRTD (ξA+ξB)

PR τD − 1

)

×

[
(1 + ξA)e

2+3PRTD(2+ξA+ξB)

PR τD

(
e

TD(1+ξB)
τD + ξB

)

− (1 + ξB)

(
(1 + ξA)e

TD(7+2ξA+3ξB)

τD

+ ξAe
1+PRTD (6+2ξA+3ξB)

PR τD

(
e

TD(1+ξA)
τD − 1

))]
.

(A.28)

These solutions are identical to the ones that were obtained by integra-
tion.



B Hodgkin and Huxley Model

We developed a model of A1 using Hodgkin and Huxley type conductance-
based models of regular-spiking (RS), pyramidal, excitatory neurons (Soto
et al. 2006) and fast-spiking (FS) inhibitory interneurons (Pospischil
et al. 2008). The membrane potential dynamics of one RS or FS neu-
ron at point ϕX on the tonotopic axis of A1 follows

cm
dVm
dt

= −IL − IK − INa − ITh(ϕX , t)− IC,∗(ϕX , t), (B.1)

where IC,∗(ϕX , t) stands for IC,E(ϕX , t) in exc. neurons and IC,I(ϕX , t) in
inh. neurons, which represent the sum of cortical input (both exc. and
inh.) to the respective neuron types (completely defined in equations
(B.33) - (B.38)); cm = 1µF/cm2 is the membrane capacitance; ITh(ϕ, t)
is the thalamocortical input current (see equation (B.25)); IL is the leak
current, IK is the potassium current and INa is the sodium current. The
latter three are given by

IL = gL(Vm − VL), (B.2)

INa = gNam
3h(Vm − VNa), (B.3)

IK = gKn
4(Vm − VK). (B.4)

Please note that m of equation (B.3), governing the activation of sodium
ion channels, is entirely unrelated to the m of equation (A.1), describing
the population firing rate in our rate model. There is no risk of confusion
if this is kept in mind, as the latter m is the only one that appears in the
discourse of the main text.
The values of conductances and reversal potentials in equations (B.2)-(B.4)
are given in table B.1, and the gating variables h, m and n all satisfy the
generic differential equation

dw

dt
= αw(V )(1− w)− βw(V )w, (B.5)

175
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or, alternatively and equivalently,

dw

dt
=
w∞(V )− w
τw(V )

, (B.6)

where

w∞(V ) = (αw(V ))/(αw(V ) + βw(V )), (B.7)

τw(V ) = [αw(V ) + βw(V )]−1. (B.8)

For the regular-spiking pyramidal cell model, the specific αw(V ) and βw(V )
functions are defined as

αh(V ) = 0.128 exp(−(50 + V )/18), (B.9)

βh(V ) =
4

1 + exp(−(V + 27)/5)
, (B.10)

αn(V ) =
0.032(V + 52)

1− exp(−(V + 52)/5)
, (B.11)

βn(V ) = 0.5 exp(−(57 + V )/40), (B.12)

αm(V ) =
0.32(V + 50)

1− exp(−(V + 50)/4)
, (B.13)

βm(V ) =
0.28(V + 27)

exp((V + 27)/5)− 1
. (B.14)

In some simulations we also consider that the pyramidal cells have a
non-inactivating K+ current (Yamada, Koch & Adams 1989, Pospischil
et al. 2008), which implements spike frequency adaptation (SFA). It is
governed by

IM = gMn2(Vm − EK) (B.15)

dn2

dt
=
n2,∞(V )− n2

τn2(V )
, (B.16)

where

n2,∞(V ) =
1

1 + exp(−(V + 35)/10)
(B.17)

τn2(V ) =
τmax

3.3 exp((V + 35)/20) + exp(−(V + 35)/20)
, (B.18)
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with gM = 0.35 mS/cm2 and τmax = 4 s. The value of gM was set so that,
upon tonic stimulation, there is approximately a 35% reduction in firing
rate (figure B.1; cf. figure 8A in Destexhe & Paré 1999). When this SFA
current is in use, the term −IM is added to the r.h.s. of equation (B.1).

0 25 50 75 100 125 150 175 200 225 250
−100

−50

0

50

Time (mS)

V
m

 (
m

V
)

Figure B.1: Spike Frequency Adaptation (SFA) fit, based on Pospischil et al.
(2008) equations and Destexhe & Paré (1999) data. cTC = 3µA/cm2, gM =
0.35 mS/cm2. Solid line: response without SFA. Dotted line: response
with SFA.

As for the inhibitory cells, they are defined as follows. Pospischil
et al. (2008) fit four types of cells to experimental data, among them RS
excitatory and FS inhibitory cells. We make use of one of the FS cell fits
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(Pospischil et al. 2008), defined by

αh(V ) = 0.128 exp(−(V − VT − 17)/18) (B.19)

βh(V ) =
4

1 + exp(−(V − VT − 40)/5)
(B.20)

αn(V ) =
0.032(V − VT − 15)

1− exp(−(V − VT − 15)/5)
(B.21)

βn(V ) = 0.5 exp(−(V − VT − 10)/40) (B.22)

αm(V ) =
0.32(V − VT − 13)

1− exp(−(V − VT − 13)/4)
(B.23)

βm(V ) =
0.28(V − VT − 40)

exp((V − VT − 40)/5)− 1
, (B.24)

where VT = −57.9mV. This value is given in figure 4 of the paper (fitting
data from somatosensory cortex), along with the other parameters that
differ from the ones of the RS cell model we use. They are VNa = 58
mV, VK = −90 mV, gK = 3.9 mS/cm2 , gL = 0.038 mS/cm2 . Table B.1
gives an overview of the cellular biophysics parameter values that we fix
throughout the work (unless stated otherwise).

Cell model gL gNa gK VL VNa VK cm
RS 0.1 100 80 -70 50 -100 1
FS 0.038 58 3.9 -70 50 -90 1

Table B.1: Values of biophysical parameters, fixed throughout this work
(unless otherwise stated). Conductance values in mS/cm2, potentials in
mV and capacitance in µF/cm2.

Returning to equation (B.1), the thalamocortical input current therein
(at point ϕX of the cortical tonotopic axis and at instant t) is described by

ICTh(ϕX , t) =

∫ Fhigh

Flow

Kn∑
i=1

ITh,i(ϕX , F, t) dF, (B.25)

where the limits of the integral are defined as Flow = −L/2 and Fhigh =
L/2, L being the extension of the thalamic tonotopic axis, in octaves
(relative to center of the axis; see figure B.2), and the sum runs over all
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synapses originating at F on the aforementioned axis. ITh,i(ϕ, F, t) has two
definitions, one for deterministic (det.) synapses and one for stochastic
(stoch.) synapses (see section B.1):

ICTh,i(ϕ, F, t) =

{
gCTh(ϕ, F ) di(F, t) si(F, t) (Vm − VE), (det.)
qCTh(ϕ, F ) k, (stoch.),

(B.26)
where di(F, t) denotes the synaptic depression variable at a specific thalam-
ocortical (deterministic) synapse, whereas k is the total number of vesicles
released from the functional contacts of (stochastic) synapse i (concepts
defined in section B.1.2). The distributions of thalamocortical synaptic
strengths (conductances and charges, respectively) are defined as

gCTh(ϕ, F ) = gmax
CTh H(ϕ, F ) (B.27)

qCTh(ϕ, F ) = qmax
CTh H(ϕ, F ), (B.28)

withH(ϕ, F ) modulating the strength of thalamocortical axonal projections
across the cortical tonotopic axis. We consider three cases for this function,
namely

H(ϕ, F ) =


1 ∀ϕ, F
e−
|ϕ−F |
ν

e−
(ϕ−F )2

2ν2 ,

(B.29)

where ν is the fan-out or spread of axonal projections from thalamic ‘neu-
rons’. In the majority of simulations, we use H(ϕ, F ) ≡ 1, since the fan-out
or spread of thalamocortical axonal projections is already accounted for in
the following fashion in our model.

We implement the spread in axonal projections (its value ν = 0.33
octaves, based on data in Miller et al. 2001) in a quite concrete fashion,
by having each thalamic (virtual) ‘column’ make Kn synapses onto each
cortical ‘column’ within its reach, as per the value of ν . Thus, if we
call our density of ’columns’ per octave ρ (see values below), we get a
spread in ’columns’ of νC = bρ νc (integer value due to discreteness of
implementation). Consequently, each cortical site has a total of K =
Kn × (2 νC + 1) afferent thalamocortical synapses, with the exception
of those situated at a distance ≤ νC from the extremes of the tonotopic
axis, whose K value is less due to border effects. Naturally, each group of
Kn synapses receives presynaptic spikes at the rate of firing of the thalamic
‘neuron’ on whose ‘axon’ the synaptic terminal is situated. We consider that
each of the Kn synapses receives spikes at the same rate but at different
exact times, since two different ‘axons’ may well belong to two distinct
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thalamic ‘neurons’. To this end, we maintain an independent Poisson
process for each thalamocortical synapse.

About equations (B.25) and (B.26), furthermore, Vm is the membrane
potential of the receiving cell, and the excitatory reversal potential is
VE = 0 mV, as we consider all these synapses to have α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) type receptors. We approximate
AMPA’s fast rise time by an instantaneous rise of the synaptic gating
variable, while the decay time constant has a value of τAMPA = 3 ms,
yielding the gating variable equation (used in equation (B.26))

dsi(F, t)

dt
= −si(F, t)

τAMPA
+ δ(t− tpre,F,i), (B.30)

in which tpre,F,i designates the time of arrival at synapse i of a presynaptic
action potential via an efferent axon of site F of the MGBv.

We set the maximum thalamic input rate for pure tones to Rmax
Th = 100

spikes per second, in accordance with literature (Creutzfeldt et al. 1980,
Wallace et al. 2007). The synaptic conductance is set to gmax

CTh = 0.02 ± 0.004
mS/cm2, by fitting mean and s.d. of evoked mEPSPs (with depression) to
values in Rose & Metherate (2005) (see details in section 3.2.1). We set
σV L,E = 1.6 % and σV L,I = 2.7 %, also fit to that paper. The population,
representing L = 0/2/4/6 octaves, consists of N = 1/33/65/97 ‘columns’
(for N > 1, density ρ = 16/octave) containing ME = 100/40/20/15 exc.
and MI = 100/40/20/15 inh. neurons each. While MI should be only
about 15 - 25% (Meinecke & Peters 1987, Lampl & Okun 2009) of ME , for
simplicity we chose to give them the same value (we discuss the implications
of this in chapter 5). For all values of N , if ν = 0, each neuron receives input
via K = 100 thalamocortical synapses, whereas for ν > 0 this number
varies with ρ, as discussed earlier. Each synapse receives input as an
independent Poisson process of rate RTh(F, f, t), as defined in equation
B.41. The Poisson input and the non-zero σgCTh and σVL values all provide
noise in our system, which proves important for some of our modelling
solutions.
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Figure B.2: Our primary auditory cortex (A1) model network consists of
N ×M excitatory and an equal number of inhibitory Hodgkin-Huxley type
neurons, which form an array representing the tonotopic organization of
A1 (N cortical ‘columns’ with distinct Characteristic Frequencies (CFs),
each having M exc. and M inh. neurons). The array, of length L octaves,
represents ±L/2 octaves around a certain central frequency, f0, at x0.
Each column is located at a certain position x in the tonotopic array and
each of its constituent neurons has K thalamocortical synapses as well
as intracortical synapses (see main text). The thalamic (MGBv) inputs
are provided to each neuron by one independent Poisson spike train per
thalamocortical synapse.

B.1. Thalamocortical synaptic depression model

We have employed two different models, one deterministic and one
stochastic.

B.1.1. Deterministic depression model

We describe the mean thalamocortical synaptic depression value (frac-
tion of vesicles available) at synapse i on an efferent axon from the MGBv
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site F as
∂di(F, t)

∂t
=
dstart − di(F, t)

τD
− U RTh(F, f, t) di(F, t), (B.31)

where U represents the utilization of synaptic vesicles, τD is the time
constant of synapse recovery and dstart is the asymptotic value in the
absence of presynaptic input. In order to set a baseline value for these
parameters (as noted elsewhere, they vary greatly in the literature) we
fit results in Rose & Metherate (2005) (described in section 3.2.1), which
yielded U = 0.4 and τD = 250 ms. These values are used in all single pure
tone simulations, but are adjusted for simulating both forward masking
with noise clicks and auditory streaming correlates with tones.

We emphasize that this model is mechanistically the same as that
described in section A.1.2. Here however, our more detailed neuronal
model and extended network require that we write di(F, t) in equation
(B.31), thus highlighting that depression varies independently across the
tonotopic axis as well as across synapses at each tonotopic site.

B.1.2. Stochastic depression model

This model is implemented as in de la Rocha & Parga (2005), using
vesicle turnover. Specifically, this model considers branched axons forming
Ms so-called functional contacts (areas where exocytosis of synaptic vesicles
containing neurotransmitter occurs) with a postsynaptic cell. Each of these
contacts contains a releasable pool of Ns vesicles. Whenever a presynaptic
spike is sent down an axon, each of the its functional contacts releases a
synaptic vesicle with probability

p(n) = 1− (1− U)n, (B.32)

where n = 0, . . . ,Ns . As is readily seen, when a pool contains a single
vesicle (n = 1), this probability is U , a parameter of the model (on average,
equal to the utilization parameter of the deterministic model – for that
reason, and since the two different types of depression are never used
simultaneously, we use the same symbol). Unless otherwise indicated, we
use Ns= 1 and set Ms= 7, based on Gil et al. (1999) who find these
numbers for the synapses of excitatory thalamic neurons projecting to the
cortex. Again following de la Rocha & Parga (2005), we consider that,
once a vesicle is released, the time it takes to replenish the pool with a
vesicle be the first event from a Poisson process with homogeneous mean
recovery time τD. We will refer to the total number of vesicles released
across functional contacts, in response to a presynaptic spike, as nrel (at
instant t).
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B.2. Intracortical connections

The model includes intracortical connectivity, which enables the study
of the role of recurrent excitation and inhibition in shaping the cortical
responses recorded in A1. We consider that inhibitory cells inhibit postsy-
naptic cells via GABAA synaptic currents and that excitatory cells excite
postsynaptic cells via AMPA synaptic currents, only. The synaptic currents
are modelled by

IC,E(ϕX , t) = IC,EE(ϕX , t) + IC,EI(ϕX , t) (B.33)

IC,I(ϕX , t) = IC,II(ϕX , t) + IC,IE(ϕX , t) (B.34)

IC,kj(ϕX , t) =

∫ ϕhigh

ϕlow

Mj∑
i=1

gkj(ϕX , ϕ) skj,i(ϕ, t) (Vm,k − Vj) dϕ (B.35)

gkj(ϕX , ϕ) = gkj exp

(
−|ϕX − ϕ|

λkj

)
(B.36)

ds∗I,i(ϕ, t)

dt
= αI

(
1 + tanh

(
Vm,I

4

))
(1− s∗I,i(ϕ, t))− βI s∗I,i(ϕ, t)

(B.37)

ds∗E,i(ϕ, t)

dt
= αE

(
1 + tanh

(
Vm,E

4

))
(1− s∗E,i(ϕ, t))− βE s∗E,i(ϕ, t),

(B.38)

where k, j, ∗ ∈ {E, I}, with an index convention where EI means from
inhibitory neurons to excitatory neurons; ∆ϕ ≡ |ϕX − ϕ| is the cortical
tonotopic distance from the ’sending’ to the ’receiving’ neuron; VE = 0 mV
and VI = −80 mV. For simplicity, λE ≡ λEE = λIE and λI ≡ λII = λEI
(unless otherwise stated). Excitation was taken to be very narrow (λE =
0.03), as found by Liu et al. (2007) (but, for another possibility, see Kaur
et al. 2004), whereas inhibition is quite broad (λI = 0.4), as can be deduced
from data in Liu et al. (2007) and Wu et al. (2008) (for our reasoning on
this, see section 3.2.1). αE (αI) is the rise factor and βE (βI) is the decay
factor of excitatory (inhibitory) currents. We set αE = 2.0, βE = 0.5,
αI = 0.5 and βI = 0.3, to give inhibitory currents a slower rise time and
slower decay than excitatory currents. The conductance values gkj are
parameters of the model, whose values are given in the corresponding
results sections.
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Figure B.3: Intracortical connectivity sketch. The neurons are coupled
with synaptic strengths determined by equation (B.36), by setting the
parameters gkj and λkj . Note that, for clarity of presentation, on the left
side of the figure, only excitatory connections are illustrated, while on the
right only inhibitory connections are displayed. Omitted connections are
possible.

B.3. Input function

We consider that the presentation of a pure tone of frequency f evokes
an activity pattern in the ventral Medial Geniculate Body (MGBv) of
the thalamus. The activity is centered at position F = f of the thalamic
tonotopic axis and its spatial extent is described by

RTh(F, f) = Rmax
Th e

− |F−f |
µ , (B.39)

where Rmax
Th is a constant rate in units [1/time] and µ = 0.4 octaves sets the

(canonical) width of the pattern. We chose this width based on our fit of
sub- and suprathreshold response data found by Liu et al. (2007) and Wu
et al. (2008), primarily (see chapter 3). A recent study lends support to our
use of an exponential shape, even though in a majority of MGBv neurons,
it finds narrower widths than that we employ (see Bartlett et al. 2010).
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Figure B.4: Thalamic input rate RTh(∆F ), as a function of spectral
distance from stimulus frequency f , ∆F ≡ F − f , in octaves (equation
(B.39)). Here, µ= 0.4 oct.

We model both short tones (duration 25ms) and noise clicks (duration
5ms). Based on durations of responses to tones and clicks found in thalamus
(Wallace et al. 2007, Wehr & Zador 2005), we consider the time course of
both the noise click and the tone response to be governed by the function

ζ(t) =
γ

Σ
t e−t/Σ + 1, (B.40)

where Σ = 10 ms for both the 5 ms noise clicks and the 25 ms tones. For
noise, we use a modulation factor γ = 2.0× 1.2 = 2.4 (factor 2.0 reflects
the higher amplitude of responses to a click as compared to a tone, found
in Wallace et al. (2007), whereas the factor 1.2 reflects the difference in
intensity of stimuli in Wehr & Zador (2005) (102 dB) and e.g. Wehr &
Zador (2003) (60 dB)). For pure tones, γ = 1.0. The resulting product,

RTh(F, f, t) = RTh(F, f) ζ(t), (B.41)

is used as the rate in a non-homogenous Poisson process to generate spikes,
subsequently fed to the model neurons through thalamocortical synapses
(see equation (B.30)).

All differential equations were integrated numerically using the Heun
method with step size 0.01 ms. The SIMD-oriented Fast Mersenne Twister
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(SFMT) algorithm was used as random number generator for the external
Poisson spikes as well as for generating spread around a mean parame-
ter value. All (off-line) data analysis was carried out using MATLAB
(MathWorks Inc.). Figures were made using MATLAB and Inkscape.



C Integrate and Fire model:
Neural and synaptic
dynamics

In this work, we use the mathematical formulation of the non-linear
leaky integrate-and-fire neuron and its modelled synaptic input currents,
as described in Brunel & Wang (2001). What follows is a presentation of
the essentials in that formulation.

The evolution in time of the sub-threshold membrane potential V (t) of
a neuron is given by the equation:

Cm
dV (t)

dt
= −gm(V (t)− VL)− Isyn(t), (C.1)

where Cm is the membrane capacitance, set to 0.5 nF for excitatory neurons
and 0.2 nF for inhibitory neurons; gm is the membrane leak conductance,
with the values 25 nS for excitatory neurons and 20 nS for inhibitory
neurons; VL is the resting potential of -70 mV and Isyn the synaptic input
current. The firing threshold is Vthr = −50 mV and the reset potential
Vreset = −55 mV.

The synaptic current is the sum of recurrent excitatory currents (IAMPA,rec

and INMDA,rec), an external excitatory current(IAMPA,ext) & an inhibitory
current (IGABA):

Isyn(t) = IAMPA,ext(t) + IAMPA,rec(t) + INMDA,rec(t) + IGABA(t). (C.2)

The currents are defined by:
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IAMPA,ext(t) = gAMPA,ext(V (t)− VE)

Next∑
j=1

sAMPA,ext
j (t) (C.3)

IAMPA,rec(t) = gAMPA,rec(V (t)− VE)

NE∑
j=1

wAMPA
ji sAMPA,rec

j (t) (C.4)

INMDA,rec(t) =
gNMDA(V (t)− VE)

1 + [Mg++]exp(−0.062V (t))/3.57

×
NE∑
j=1

wNMDA
ji sNMDA

j (t)
(C.5)

IGABA(t) = gGABA(V (t)− VI)
NI∑
j=1

wGABAji sGABAj (t) (C.6)

where VE = 0 mV, VI = −70 mV, wj are the synaptic weights, sj are
the fractions of open channels for the different receptors and gX designates
the synaptic conductance for channel X. The NMDA synaptic current is
dependent on the potential and controlled by the extracellular concentration
of magnesium ([Mg2+] = 1 mM). The values for the synaptic conductances
for excitatory neurons are gAMPA,ext = 2.08 nS, gAMPA,rec = 0.052 nS,
gNMDA = 0.1635 nS and gGABA = 0.625 nS and for inhibitory neurons
gAMPA,ext = 1.62 nS, gAMPA,rec = 0.0405 nS, gNMDA = 0.129 nS and
gGABA = 0.4865 nS. These values are obtained from the ones used in
Brunel & Wang (2001) by correcting for the different number of neurons in
our model. In their work the conductances were calculated so that in an
unstructured network the excitatory neurons have a spontaneous spiking
rate of 3 Hz and the inhibitory neurons a spontaneous rate of 9 Hz. The
fractions of open channels are governed by:
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dsAMPA,ext
j (t)

dt
= −

sAMPA,ext
j (t)

τAMPA
+
∑
k

δ(t− tkj ) (C.7)

dsAMPA,rec
j (t)

dt
= −

sAMPA,rec
j (t)

τAMPA
+
∑
k

δ(t− tkj ) (C.8)

dsNMDA
j (t)

dt
= −

sNMDA
j (t)

τNMDA,decay
+ αxj(t)

(
1− sNMDA

j (t)
)

(C.9)

dxj(t)

dt
= − xj(t)

τNMDA,rise
+
∑
k

δ(t− tkj ) (C.10)

dsGABAj (t)

dt
= −

sGABAj (t)

τGABA
+
∑
k

δ(t− tkj ), (C.11)

where decay time constants are τNMDA,decay = 100 ms for NMDA
synapses, τAMPA = 2 ms for AMPA synapses and τGABA = 10 ms for
GABA synapses. τNMDA,rise = 2 ms is the rise time for NMDA synapses
(the rise times for AMPA and GABA are in reality very short and are
therefore neglected in the model) and α = 0.5 ms−1. Each sum over
k represents a sum over spikes in the form of δ-peaks δ(t), emitted by
presynaptic neuron j at time t = tkj .

The equations were in our implementation integrated numerically using
a second order Runge-Kutta method with step size 0.02 ms. The Mersenne
Twister algorithm was used as random number generator for the external
Poisson spike trains and each of the typically 100 different trials for one
specific parameter configuration differed in its random seed from the other
trials.





D The mean-field formulation

The mean-field approximation used in the present work was derived in
Brunel &Wang (2001). Its basic assumption is that the network of integrate-
and-fire neurons has reached a stationary state. In this formulation the
potential of a neuron is calculated as:

τx
dV (t)

dt
= −V (t) + µx + σx

√
τxη(t) (D.1)

where V (t) is the membrane potential, and x labels the different populations.
τx is the effective membrane time constant, µx is the mean value which the
membrane potential would have in the absence of spiking and fluctuations,
σx measures the magnitude of the fluctuations and η is a Gaussian process
with an exponentially decaying correlation function and the time constant
τAMPA. The quantities µx and σ2

x are given by:

µx =
(Textνext + TAMPAn

AMPA
x + ρ1n

NMDA
x )VE + ρ2n

NMDA
x 〈Vx〉+ TIn

GABA
x VI + VL

Sx
(D.2)

σ2
x =

g2
AMPA,ext(〈Vx〉 − VE)2Nextνextτ

2
AMPAτx

g2
mτ

2
m

. (D.3)

where νext = 3 Hz (+λstim), νI is the spiking rate of the inhibitory pool,
τm = Cm/gm with the values for the excitatory or inhibitory neurons
depending on the pool considered. The other quantities are given by:
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Sx = 1 + Textνext + TAMPAn
AMPA
x + (ρ1 + ρ2)nNMDA

x + TIn
GABA
x

(D.4)

τx =
Cm
gmSx

(D.5)

nAMPA
x =

p∑
j=1

fjw
AMPA
jx νj (D.6)

nNMDA
x =

p∑
j=1

fjw
NMDA
jx ψ(νj) (D.7)

nGABAx =

p∑
j=1

fjw
GABA
jx νj (D.8)

ψ(ν) =
ντNMDA

1 + ντNMDA

(
1 +

1

1 + ντNMDA

∞∑
n=1

(−ατNMDA,rise)
nTn(ν)

(n+ 1)!

)
(D.9)

Tn(ν) =
n∑
k=0

(−1)k
(
n

k

)
τNMDA,rise(1 + ντNMDA)

τNMDA,rise(1 + ντNMDA) + kτNMDA,decay

(D.10)

τNMDA = ατNMDA,riseτNMDA,decay (D.11)

Text =
gAMPA,extτAMPA

gm
(D.12)

TAMPA =
gAMPA,recNEτAMPA

gm
(D.13)

ρ1 =
gNMDANE

gmJ
(D.14)

ρ2 = β
gNMDANE(〈Vx〉 − VE)(J − 1)

gmJ2
(D.15)

J = 1 + γ exp(−β〈Vx〉) (D.16)

TI =
gGABANIτGABA

gm
(D.17)
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〈Vx〉 = µx − (Vthr − Vreset)νxτx, (D.18)

where p is the number of excitatory pools, fx the fraction of neurons in
the excitatory pool x, wj,x the weight of the connections from pool x to
pool j, νx the spiking rate of the excitatory pool x, γ = [Mg2+]/3.57 and
β = 0.062.

The spiking rate of a pool as a function of the defined quantities can
then be described by:

νx = φ(µx, σx), (D.19)

where

φ(µx, σx) =

(
τrp + τx

∫ α(µx,σx)

β(µx,σx)
du
√
π exp(u2)[1 + erf(u)]

)−1

(D.20)

α(µx, σx) =
(Vthr − µx)

σx

(
1 + 0.5

τAMPA

τx

)
+ 1.03

√
τAMPA

τx
− 0.5

τAMPA

τx
(D.21)

β(µx, σx) =
(Vreset − µx)

σx
(D.22)

erf(u) is the error function and τrp is the refractory period, which is
considered to be 2 ms for excitatory neurons and 1 ms for inhibitory
neurons. To solve the equations defined by (D.19) for all x, we numerically
integrate equation (D.18) and the differential equation below (D.23), whose
fixed point solutions correspond to solutions to the equations (D.19):

τx
dνx
dt

= −νx + φ(µx, σx). (D.23)

The equations were integrated using the Euler method with step size
0.2 and 4000 iterations, enough for sufficient convergence to be attained.
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