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Ester (sin h, ya lo sé) aunque has sido la última en llegar a nuestro grupo,
me encanta ese toque de alegrı́a y energı́a positiva que transmites a todos los
que estamos a tu alrededor. Gracias por hacer que el trabajo experimental
me resulte atractivo aunque no hubiese tocado una pipeta en mi vida hasta
hace unos meses.

My dear colleagues and friends, Leszek and Alexandros, thanks for all the
time we have shared during our theses. Leszek, thanks for nice discussions,
all the scripts I borrowed (although I ended up re-writing many of them)
and, more important, for showing me it is possible to do a PhD without
sacrificing all the fun and a life outside of the lab. Alex, ¿qué tal tu español?
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Abstract

Phylogenomics is a biological discipline which can be understood as the in-
tersection of the fields of genomics and evolution. Its main focuses are the
analyses of genomes through the evolutionary lens and the understanding of
how different organisms relate to each other. Moreover, phylogenomics al-
lows to make accurate functional annotations of newly sequenced genomes.
This discipline has grown in response to the deluge of data coming from dif-
ferent genome projects. To achieve their objectives, phylogenomics heavily
depends on the accuracy of different methods to generate precise phyloge-
netic trees. Phylogenetic trees are the basic tool of this field and serve to
represent how sequences or species relate to each other through common
ancestry. During my thesis, I have centered my efforts in improving an au-
tomated pipeline to generate accurate phylogenetic trees and its posterior
publication through a public database. Among the efforts to improve the
pipeline, I have specially focused on the problem of multiple sequence align-
ment post-processing, which has been shown to be central to the reliability
of subsequent analyses. Subsequently I have applied this pipeline, and a
battery of other phylogenomics tools, to the study of the phylogenetic posi-
tion of Microsporidia, a group of fast-evolving intracellular parasites. Due
to their special genomic features, Microsporidia evolution constitutes one of
the classical examples of challenging problems for phylogenomics. Finally,
I have also used the pipeline as a part of a newly designed method for se-
lecting robust combinations of phylogenetic gene markers. I have used this
method for selecting optimal gene sets to assess the phylogenetic relation-
ships within fungi and cyanobacteria, showing that the potential of these
genes as phylogenetic markers goes well beyond the species used for their
selection.
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Resumen

Filogenómica es una disciplina biológica que puede ser entendida como la
intersección entre los campos de la genómica y la evolución. Su área de
estudio es el análisis evolutivo de los genomas y como se relacionan las
distintas especies entre sı́. Además, la filogenómica tiene como objetivo
anotar funcionalmente, con gran precisión, genomas recién secuenciados.
De hecho, esta disciplina ha crecido rápidamente en los últimos años
como respuesta a la avalancha de datos provenientes de distintos proyectos
genómicos. Para alcanzar sus objetivos, la filogenómica depende, en gran
medida, de los distintos métodos usados para generar árboles filogenéticos.
Los árboles filogenéticos son las herramientas básicas de la filogenómica y
sirven para representar como secuencias y especies se relacionan entre sı́ por
ascendencia. Durante el desarrollo de mi tesis, he centrado mis esfuerzos en
mejorar una pipeline (conjunto de programas ejecutados de forma controlada)
automática que permite generar árboles filogenéticos con gran precisión, y
como ofrecer estos datos a la comunidad cientı́fica a través de una base
de datos. Entre los esfuerzos realizados para mejorar la pipeline, me he
centrado especialmente en el post-procesamiento previo a cualquier análisis
de alineamientos múltiples de secuencias, ya que la calidad del alineamiento
determina la de los estudios posteriores. En un contexto más biológico, he
usado esta pipeline junto con otras herramientas filogenómicas en el estudio
de la posición filogenética de Microsporidia. Dadas sus caracterı́sticas
genómicas especiales, la evolución de Microsporidia constituye uno de los
problemas clásicos y difı́ciles de resolver en filogenómica. Finalmente,
he usado también la pipeline como parte de un nuevo método para
seleccionar combinaciones óptimas de genes con potencial como marcadores
filogenéticos. De hecho, he usado este método para identificar conjuntos
de marcadores filogenéticos que permiten reconstruir con alto grado de
precisión las relaciones evolutivas en Cyanobacterias y en Hongos. Lo más
interesante de este método es que evalúa la fiabilidad de los marcadores en
especies no usadas para su selección.
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1.1 Phylogenomics.

Phylogenomics (Eisen and Fraser, 2003) is a biological discipline that has
arisen during the last decade, as an increasing number of completely
sequenced genomes have become publicly available. This discipline can
be conceived as the intersection of the fields of genomics and evolution,
or in other words, as the study of how genomes evolve and how this
information can be used to understand to what degree different species
relate to each other. This latter point, the reconstruction of evolutionary
relationships across species, has attracted many efforts in the last 20 years,
and a number of approaches have been proposed that aim to exploit the
information provided by entirely sequenced genomes (Delsuc et al., 2005;
Whelan, 2011). Gaining insight into the evolutionary relationships of species
offers a unique opportunity to study diverse biological phenomena, ranging
from the dynamics of gain or loss of gene families (Eirı́n-López et al., 2010),
the horizontal transfer of genetic material among species (Gogarten and
Townsend, 2005), to the conservation of a limited number of genes across
all domains of life (Ciccarelli et al., 2006).

In addition, phylogenomics has been proven very useful for the prediction of
the function of uncharacterized genes at a large-scale (Eisen, 1998; Gabaldón,
2008a). This constitutes an alternative to other in-silico based methods
for the prediction of functional associations, an approach that is gaining
relevance, as experimental characterization cannot cope with the increasing
flow at which new genes are sequenced. The functional annotation of new
genes has traditionally been done based on the transfer of function from
the most similar hits in public databases. However, this approach has
been shown to often lead to wrong annotations and, what is even worse,
to the propagation of such errors across databases (Galperin and Koonin,
1998). Functional annotations based on orthology, rather than just homology,
have been shown to be more accurate than simple sequence similarity-based
approaches and thus can help to alleviate the above-mentioned problems
(Brown and Sjölander, 2006). Orthologous sequences, those derived from a
common ancestor by a speciation event, are generally less prone to functional
shifts and, therefore, to conserve a greater functional similarity than
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paralogous sequences, related by gene duplication events (Gabaldón, 2008b;
Altenhoff and Dessimoz, 2009). Hence, orthologs constitute nowadays
the most accurate source for functional annotation in newly-sequenced
genomes. Finally, it must be noted that in-silico functional annotation, even
when using phylogenomics, constitutes only a prediction and, thus, final
confirmation would always require experimental verification.

Figure 1.1: Tree of life reconstructed by Ciccarelli and colleagues using 31
proteins present in single copy across all domains of life. The tree includes 216
species, mostly prokaryotes. Image obtained from Ciccarelli et al. (2006).

Another field of research in which phylogenomics has been instrumental is
that of the reconstruction of species relationships. This has been a focus of
molecular phylogenetics since the times in which few molecular sequences
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were available (Zuckerkandl and Pauling, 1965). A common limitation in
classical phylogenetics, however, is the availability of few genes to resolve
species relationships, which can ultimately lead to wrong conclusions.
When a small number of positions is considered, random noise can affect
the inference of different parts of the tree, resulting in artifacts and poor
resolution (Delsuc et al., 2005). In this context, the advent of phylogenomics
promised to overcome these limitations, since it enabled the use of hundreds
of thousands or even millions of positions from several genes, thus resulting
in highly resolved phylogenetic trees (Delsuc et al., 2005).

However, despite the fact that an increase in the amount of data clearly re-
duces sampling biases, it also has the drawback of reducing the homogeneity
across sites, thus bringing the need for more complex models (Kumar et al.,
2011). Thus, now when phylogenomics has opened the possibility to resolve
long-standing questions about how species have evolved for large parts of
the tree of life, the field faces enormous challenges regarding the develop-
ment of new standards and methods that are able to deal with such amount
of heterogeneous data. Model violations occur when assumptions made by
the model are not met by the data. Under these circumstances, a phylo-
genetic inference can favor a wrong scenario with a strong support. Such
cases have populated the literature since the early days, and prominent ex-
amples include the positioning of the fungal group Microsporidia at the base
of eukaryotes (Corradi and Keeling, 2009) or the conflicting results regard-
ing the existence of Coelomata or Ecdysozoa, two alternative hypotheses on
how arthropods, nematodes, and chordates relate to each other (Holton and
Pisani, 2010).

With the availability of tens, even thousands of genes, these model violations
have become more evident leading to the realization that new methods
are needed. Different strategies have been explored, such as mining the
data to select the most-informative parts, or assessing the consistency of the
results when using different kinds of phylogenomics approaches (Wolf et al.,
2001). In addition, it would be desirable to have models that account for
the heterogeneous and noisy nature of data. However, considering that we
do not fully understand the data at hand, the design of new models is a
challenging task.
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Another area of intense development is the implementation of fully au-
tomated phylogenomic pipelines (Frickey and Lupas, 2004; Huerta-Cepas
et al., 2007; Vilella et al., 2009). A phylogenomic pipeline is a set of programs
working together with data flow monitorization and error control. In this
way, the same workflow to reconstruct a single gene phylogeny can be ex-
tended to thousands of genes without human intervention. In addition, the
deluge of data generated by these pipelines have lead to the development
of different strategies to store, track and made it publicly available (Huerta-
Cepas et al., 2011; Flicek et al., 2012).

Apart from the mentioned challenges derived from the need of developing
new approaches for different areas ranging from the reconstruction and
posterior refinement of Multiple Sequence Alignments, to the phylogenetic
inference, to the correct prediction of orthologous and paralogous sequences,
phylogenomics faces the additional problem of a lack of established
benchmarks, which makes difficult the validation and comparison of current
and newly developed methods. This has triggered different initiatives
that aim at establishing frameworks for comparisons of distinct methods
(Thompson et al., 2005; Gabaldón et al., 2009). In the absence of a method
that clearly outperforms others, a possible solution to assess the strength
of any result is to compare the level of agreement or disagreement when
different sources of data and/or different methodologies are used. Indeed,
it is expected that different approaches are affected by different artifacts,
although, there is still a common, strong and recognizable evolutionary
signal consistent among them.

Despite the fact that future progress in technologies may be needed to
solve some of the open questions, phylogenomics is already playing an
important role for society. Phylogenomics is not only enabling us to better
understand species evolution, which is fundamental in the context of the
global biodiversity crisis, but also some of its findings are being translated
into diverse areas of applied sciences, such as biotechnology or biomedicine,
which have the ultimate goal of improving our lifestyle.

In the following sections, I will review different methodological aspects
which are crucial to understand how large amounts of data are processed
in phylogenomics, and how these analyses can lead to the generation of new



Sequences and homology. 7

biological knowledge. In particular, I will not only briefly introduce key
concepts, but I will also highlight the main handicaps and benefits of the
different methodological alternatives. All these will draw the appropriate
context for a better understanding of the body of my own research, which
will be described in the next chapters.

1.2 Sequences and homology.

Biological sequences, ordered chains of nucleotides (in DNA or RNA)
or amino-acids (in proteins), constitute the central object of analysis in
phylogenomics. Since the first method to obtain the nucleotidic sequence
of a DNA molecule was introduced in the late seventies (Sanger et al., 1977),
several approaches have been developed to obtain DNA sequences faster,
cheaper and more accurately, leading us to the current high-throughput
sequencing techniques that have revolutionized many areas of biology
(Shendure and Ji, 2008).

Phylogenetics, and by extension also phylogenomics, refers to the evolu-
tionary analysis of sets of sequences that are related by common ancestry,
i.e. homologs (Eisen and Fraser, 2003). Thus a common initial step con-
sists of retrieving sequences which share a common evolutionary history, in
other words, a set of homologs. Since sequences related by common ances-
try, rather than emerged de novo (Durbin et al., 1998), are expected to bear
similarities, then it is possible to use different similarity-based tools such as
BLAST (Basic Local Alignment Search Tool) (Altschul et al., 1990) or HM-
MER (Eddy, 2011) to identify set of homologous sequences.

The general idea behind BLAST (Altschul et al., 1990) and similar platforms
is to find similar sequences to the one used as a query based on the number
and length of highly similar fragments rather than based on the global
similarity over the whole sequence. This strategy was chosen with the aim
to optimize speed over sensitivity in order to scan databases containing
a continuously growing number of sequences. To achieve an increase in
the accuracy of the predictions, posterior steps to ensure general similarity
can be performed. In contrast, alternative platforms, such as HMMER
(Eddy, 2011), implement Hidden Markov Models (HMMs) to search for
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similar sequences in databases. HMMs define highly sensitive models for
sequence conservation at residue level. This strategy offers an appropriate
probabilistic framework where sequences are found with higher precision
at the cost of larger computational requirements. The high computational
demands of this approach has traditionally limited its usage. However,
several optimizations have been introduced recently into HMMER (Eddy,
2011) that make it approximately as fast as BLAST with a higher accuracy in
homology detection.

Once a set of homologous sequences has been identified, it is a common
practice to describe in more detail, i.e at residue level, the homology
relationships among them. This is often achieved by reconstructing Multiple
Sequence alignments

1.3 Multiple sequence alignments.

In the context of evolutionary analyses, the aim of a Multiple Sequence
Alignment (MSA) is to represent sequences in a way in which homologous
residues are aligned on top of each other (Kemena and Notredame, 2009).
To achieve this, gaps are introduced in the alignment to represent the lack of
homology in residues that would result from the insertion or deletion events
in some of the aligned sequences. Since the real chain of past events, and
therefore the true homology relationships, is generally unknown, alignments
are reconstructed by exploring different homology scenarios and scoring
them according to the physico-chemical similarity of the different residues.
In the case of amino-acids, these similarity scores have been previously
derived using manually curated data and stored in different matrices. Such
matrices reflect how often one residue is found replacing another. In the case
of nucleotides, however, the matrices are not empirical and reflect simple
assumptions on nucleotide variation. Additionally, the introduction and
extension of gaps is penalized, using scores (or penalties) that are rather
arbitrary. Ideally, the perfect MSA is the one with the best final score among
all possible scenarios.

Despite the simplicity of the algorithm, exploring all possible alignments
of a relatively small set of sequences is an intractable problem, even for
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the most powerful computers. Indeed, this belongs to the Non-Polinomical
(NP) category of computational problems, which means that the time
required to get the solution grows faster with the number of sequences
than an exponential distribution (Wang and Jiang, 1994). To address
this challenge, different heuristic approaches have been proposed over
the last 30 years and more than 100 methods have been published since
then, including genetic algorithms (Notredame and Higgins, 1996), Hidden
Markov Modeling (Eddy, 1995) and the progressive alignment algorithm
(Hogeweg and Hesper, 1984).

Nowadays, the progressive alignment algorithm is implemented in almost
every MSA program. This algorithm is based on the general idea of aligning
the most similar sequences first, proceeding then to more distant ones,
while always performing pair-wise alignments. To make this possible, the
algorithm makes a comparison, in terms of sequence identity, of all possible
pair of sequences, and using that information constructs a raw binary tree,
known as the guide-tree. This tree is used to guide the alignment process, so
that sequences are aligned from the leaves to the root. A pervasive problem
in progressive approaches is that mistakes made at any stage are propagated
to subsequent steps. To solve this, most programs implement one or more
iterative phases to refine and correct, if possible, any mistake. Nevertheless,
even using this iterative phase, noise is still present in the final alignment,
specially at the most variable regions. More than decade ago, in an
attempt to improve this situation, the so-called consistency based algorithms
were introduced (Notredame et al., 1998), and are implemented in popular
programs such as T-Coffee (Notredame et al., 2000) or Probcons (Do et al.,
2005). The general idea behind this approach is to optimize different scoring
schemes for different parts of the sequences in order to reflect their diverse
nature. To achieve this, a primary library is built, prior to the multiple
alignment reconstruction, based on the local and global pairwise alignments
of all input sequences. This primary library is then used in conjugation
with the residue scoring matrices and the gap penalties to reconstruct the
final alignment. Although consistency-based algorithms have supposed an
important step ahead in terms of accuracy for all applications depending
on MSAs, there is still room for improvement. One of these additional
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improvements is based on an extension of the idea of consistency applied
to the case of several MSA programs. This approach, implemented in M-
Coffee (Wallace et al., 2006) exploits the fact that different programs may
align sequences following different strategies and, therefore, a strong signal
close to the real alignment may emerge from the combination of all of them.
In M-Coffee, the primary library is built using information from previously
generated alignments, and residue pairs are weighted according to how
often they appear in the individual alignments.

MSAs are often used to infer phylogenetic trees, however, during the
reconstruction process most of the heuristics tend to ignore the biological
meaning of gaps. Hence, although gaps are supposed to represent events of
insertion or deletion occurred in evolution, they are regularly introduced in
MSAs to maximize a scoring function. Recently, a new sort of algorithm
being aware of the phylogenetic placement of gaps has been proposed,
PRANK (Löytynoja and Goldman, 2008), where gaps are inserted aiming to
reflect these evolutionary events rather than to maximize any mathematical
function. However, the placement of these gaps are highly dependent on
the accuracy of the guide-tree, which is initially inferred from the pairwise
distances of the sequences involved and eventually refined at a later step.

1.4 Post-processing of multiple sequence alignments.

Multiple sequence alignments are central to many applications in Bioinfor-
matics, and downstream analyses are highly dependant on their accuracy.
As mentioned before, given the huge space of possible solutions to be ex-
plored, even the most sophisticated programs can fail aligning part of the
sequences. Often, these misaligned regions correspond to the most variable
parts of the sequences. The impact of misaligned regions in posterior anal-
yses, mainly in phylogenetic inference, was noticed for the first time in the
nineties by Lake (Lake, 1991). Since then, different approaches have been
proposed to alleviate this situation. Apart from improving heuristics and in-
troducing new ways to reconstruct more accurate alignments, several strate-
gies have been proposed to tackle this problem. The simplest alternative
has been the manual removal of these conflicting regions by researches. Al-
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though possible in a context of alignments of few sequences, this approach
faces the important problem of lack of reproducibility (Castresana, 2000).

Alternatively, two automated strategies have emerged during the last decade
that involve a certain post-processing of an initially reconstructed alignment:
i) refinement of the conflicting parts and ii) removal of misaligned positions.
While the former is in itself another iteration of the alignment process
applied only to certain parts, the later directly discards regions that are
thought to contribute more noise than signal. Removal of misaligned
positions, also known as alignment trimming, has received more attention
and it has been the subject of more developments. Both approaches have
in common the challenge of correctly identifying misaligned positions in
the alignment. This can be done based on several criteria and at different
levels of complexity. The simplest one, and certainly the most widely used,
is based on the fraction of gaps present in the alignment column, since it
is expected that many gaps are introduced to optimize scoring functions
instead of representing true biological events and, therefore, many aligned
residues in gappy regions may be wrong. A straightforward procedure,
when alignments involve very closely related sequences and have few gaps,
is to remove all columns with gaps. However, it is often the case that
this strategy ends up being too aggressive, not leaving enough information.
Thus other restrictions that may also involve considering the proximity of
the columns with gaps (i.e. blocks longer or shorter than a given size) are
generally introduced.

Another criterion to identify misaligned positions is based on the physico-
chemical similarity of the aligned residues, because less conserved parts of
the sequences are known to be more prone to misalignment. These low
conserved regions can be identified using either similarity scores derived
from substitution matrices or more complex methods based on the detection
of entropy levels. Instead of considering just one criterion, some methods
can identified potential misaligned columns based on a combination of
different criteria such as the ones mentioned above, and also adjusting the
parameters to certain characteristics of the alignment such as the fraction of
gaps, physico-chemical similarities, number of sequences and/or alignment
size. Finally, it is possible to identify potential misaligned regions through



12 Introduction

the level of consistency of residues pairs aligned across different programs
and/or settings such as gap penalties, substitution matrices, etc. The
rationale behind this approach is that robust residue pairs that are consistent
across alignment strategies are not method-dependent and thus less-likely
to be the result of a misalignment.

Figure 1.2: Partial alignment of the FOXP2 Human protein and its homologs in
the context of vertebrate species. Bars below the alignment indicate whether the
column is conserved, dark grey, for downstream analyses or not, light grey (just
column 56), as well as different scores, in this case, the proportion of gaps and
the consistency of residues in each column across several alignments. Image
generated by trimAl v1.4 Capella-Gutiérrez et al. (2009).

Once potential problematic blocks have been identified in the alignment,
one possible strategy to alleviate the situation is to realign again these
blocks in an attempt to reduce their level of disagreement. The major
drawback of this approach is that it uses similar optimizing functions as in
the previous alignment phase and some misaligned regions may still remain
after the optimization. Thus, when the inclusion of a region is more likely
to mislead downstream analyses than providing true information it may
still be necessary to remove it. It has been shown (Lake, 1991; Talavera
and Castresana, 2007; Capella-Gutiérrez et al., 2009; Criscuolo and Gribaldo,
2010; Kück et al., 2010) that removing highly variable positions contribute
significantly to improve phylogenetic reconstruction since the overall noise
is minimized. Moreover, in some types of analyses when sequences are
highly divergent, it is convenient to remove even some well-aligned regions
to alleviate mutational saturation effect.
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When applied in a phylogenomics context, these methods face the additional
problem of the difficulty of dynamically adjusting the parameters in order
to process a large number of alignments with a very heterogeneous range
of sequence numbers, lengths and level of similarity. The appropriate
selection of parameters is crucial to correctly identify those potential blocks
of misaligned residues and maximizing the signal to noise ratio in the
processed alignment.

Program Approach Reference

GBlocks Trimming Castresana (2000)
SOAP Trimming Löytynoja and Milinkovitch (2001)
Rascal Refinement Thompson (2003)

RF Refinement Wallace et al. (2005)
REFINER Refinement Chakrabarti et al. (2006)

Noisy Trimming Dress et al. (2008)
trimAl Trimming Capella-Gutiérrez et al. (2009)

GUIDANCE Trimming Penn et al. (2010)
BMGE Trimming Criscuolo and Gribaldo (2010)

ALISCORE Trimming Kück et al. (2010)
ZORRO Trimming Wu et al. (2012)
SeqFIRE Trimming Ajawatanawong et al. (2012)

Table 1.1: A survey of published programs to accurately identify and refine or
remove conflicting regions in multiple sequence alignments

Several studies have shown the importance of removing conflicting regions
in phylogenetics (Lake, 1991; Talavera and Castresana, 2007; Capella-
Gutiérrez et al., 2009; Criscuolo and Gribaldo, 2010; Kück et al., 2010), and
at least 10 different programs (see table 1.1 above) have been implemented
to identify, and, subsequently, remove or refine poorly aligned regions. In
contrast, some recent analyses have claimed that gaps carry phylogenetic
signal that is systematically ignored (Dessimoz and Gil, 2010). This
apparently conflicting results highlight the need of finding a proper balance
between the removal of noise and true signal. In addition, it brings about
the problem of identifying the phylogenetic signal carried by gaps and
disentangling the effect that guide trees have in the placement of gaps. This
is precisely the topic of the research presented in chapter 5.
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1.5 Phylogenetic trees.

Tree structures have been used since the nineteenth century (Darwin,
1859) to represent relationships among kingdoms, species, morphological
characters, and, in the last 50 years, sequences. It was in 1965 when
Zuckerkandl and Pauling (Zuckerkandl and Pauling, 1965) proposed that
either DNA, RNA or proteins can be used to establish evolutionary
relationships among homologous sequences. To make such phylogenetic
inference, it was clear from the beginning that homologous residues should
be aligned on top of each other prior to any analysis. So, once an alignment
is available, the next step is to represent the evolution of these homologous
sequences, providing information of which of them diverged earlier or
later. Because the origin of sequences through divergence from a common
ancestor is a branching process, bifurcating trees provide an intuitive way of
representing the evolution of a set of sequences, or taxa.

Figure 1.3: First use of a tree structure to explain the evolutionary relationships
among species (as abstract entities) by Darwin in 1859 in his famous book ”On
the origin of species”.

Nowadays, we count with different approximations to infer phylogenetic
trees. Similarly to the reconstruction of multiple sequence alignments, the
process of inferring such trees belongs to the category of Non-polynomial
computational problems. In practice, this means that more or less sophis-
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ticated heuristics have to be used to explore the space of tree solutions, to
find the one that is optimal according to certain criteria. Based on the na-
ture of the criteria used, the methods for phylogenetic inference are gener-
ally divided into three major categories: i) parsimony, ii) distance-based and
iii) probability-based approaches, being the later the most popular in recent
years.

1.5.1 Parsimony-based approaches.

Parsimony trees are reconstructed under the assumption that the real
scenario is that which implies least changes along its branches. Thus,
the closer the sequences, or the taxa, the more shared derived characters
(synapomorphies) are expected, and this should lead to closer positions of
these sequences in the tree. The aim of the process is to find the most
parsimonious tree, in other words, the tree with the smallest number of
changes among characters to explain the hierarchical relationships among
them. The major drawback of this approach is the existence of multiple
substitutions, since one observed change may actually involve many
different past substitutions. This problem is particularly important when
large evolutionary distances are considered. In addition the presence of
unequal evolutionary rates may mislead parsimony. Indeed, sequences
with faster evolutionary rates than others or long periods of divergence
time can accumulate many changes and appear equally dissimilar to all the
others. In such scenarios, parsimony will place divergence sequences next to
each other, an artifact known as Long Branch Attraction (LBA) (Felsenstein,
1978) which especially affects this approach, albeit not exclusively. Given
these drawbacks and the development of more suitable approaches, the
usage of parsimony methods have decreased with time, and now are mostly
restricted to the analysis of closely related sets of sequences, where the
assumptions of the method are usually met.

1.5.2 Distance-based approaches.

In an attempt to avoid the use of heuristics for exploring the set of possible
solutions, distance-based methods were introduced in the late eighties.
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This category comprises methods such as neighbor-joining (NJ) (Saitou and
Nei, 1987) or unweighted-pair-group (UPGMA) (Sokal and Michener, 1958;
Murtagh, 1984). Trees are inferred based on pairwise distance comparisons
among aligned sequences. Distances among all sequences are computed
and stored as scores into matrices for its posterior usage. Scores do not
only capture shared derived characters but also shared ancestral characters
(symplesiomorphies) and unique derived ones (autapomorphies). The
construction of such matrices leads to the direct inference of just one tree,
thus these methods can easily deal with tens, hundreds or even thousands
of sequences. However, they have the drawback of being very sensitive to
the nature of the data. In other words, data assumptions should be fulfilled
in order to get informative results. Methods such as UPGMA require the
same divergence rates across all lineages in the tree to produce accurate
phylogenies. Sampling is an important factor to have equal divergent rates
across all sequences since slow or fast evolving sequences can be wrongly
placed together even if they are distantly related. NJ can deal better with
different evolutionary rates at different part of the tree, but the method can
have problems to infer the expected phylogeny when different patterns of
multiple residue substitutions are present in different parts of the alignment.
Finally, but not less important, these methods are even more dependent
than others on the alignment accuracy, since only accurate alignments would
allow to compute precise distance scores.

1.5.3 Probabilistic-based approaches.

Probability-based reconstruction methods are those designed to find the
best ranked phylogenetic tree according to its likelihood, as in Maximum
Likelihood (ML) methods, or to its posterior probability, as in Bayesian
approaches (Durbin et al., 1998). The general idea behind any probabilistic
based method is to find the tree that better explains the observed data given
an explicit model. The initial set of parameters depends on the selected
approach but an input alignment and a predefined evolutionary model are
at least necessary.

Evolutionary models describe the expected frequencies of residues and
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probability that a residue changes into another. In the context of DNA,
evolutionary models vary from the simplest one considering all possible
substitutions equally probable (Jukes and Cantor model) (Jukes and Cantor,
1969) to more complex ones, which weigh differently distinct substitution
patterns (Hasegawa, Kishino and Yano model) (Hasegawa et al., 1985). In
contrast to mechanistic approaches used to construct DNA models, amino-
acids ones are empirical, based on manually curated alignments that reflect
different substitution patterns among amino-acids. The first model was
introduced by Dayhoff and co-workers in the seventies (Dayhoff et al.,
1978) and new ones are constantly being developed to be more general, for
instance LG (Le and Gascuel, 2008), or more specific, e.g. MtArt (Abascal
et al., 2007) or MOLLI60 (Lemaitre et al., 2011). An important step prior
to any Maximum Likelihood or Bayesian inference is the selection of the
appropriate evolutionary model. Depending on the nature of the data,
the selection of evolutionary model that best fits the data varies slightly.
On the case of DNA, trees are reconstructed using different models and
then compared taking into account how many parameters (degrees of
freedom) shows each model. On the case of proteins, trees are reconstructed
under different evolutionary models, and scores are directly compared since
models are empirically derived. In any case, given an equal amount of free
parameters, it is assumed that the model with best score is the one which best
explain the input data. Different approaches exist to select the best fitting
method and properly penalizing for the complexity of the model (Posada,
2003).

Under a ML framework, tree inference starts by computing the likelihood
of an initial tree, which may be a random topology. After this initial
step, the algorithms explore the tree solution space making changes in
the tree topology and recomputing its likelihood again until no further
improvement is reached. Then, the tree with the best likelihood is returned
as the one that best fits the input data under a predefined evolutionary
model. Giving the statistical nature of the process, it is possible to compare
different tree topologies, in term of their likelihoods, to see whether there
are statistically significant differences among them. In this way, tests
allow to discriminate among alternative scenarios, discarding those that
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are not statistically significant. The usage of these tests are especially
useful in complex scenarios such as when dealing with sequences with
great evolutionary distances, alternative tree topologies with likelihood very
similar, etc.

Although ML methods are a very powerful tool to infer phylogenetic
trees under very complex scenarios, their accuracy can be compromised
when i) data is too simple so that an overfitting effect can lead to infer
wrong results because the different variables taken into account by the
methods can measure minor fluctuations (random noise) rather than the
real signal carried by the data, and ii) model assumptions are violated by
the heterogeneous nature of the data such as different evolutionary rates,
with huge differences, for different subsets of sequences with the effect of
placing artificially sequences to the root. Recently, different strategies have
been proposed to tackle the second condition such as developing models
to account for different evolutionary rates at different part of the tree, the
so-called co-varion model, or the usage of reduced alphabets in order to
capture important changes, i.e. from hydrophobic to hydrophilic amino-
acids, and reduce data complexity. However, there is still room to further
improvement since these approaches are quite new and they have not been
widely tested/used.

Rather than exploring the tree space while optimizing just one tree, bayesian
inference samples several points of the tree space using a Markov chain
Monte Carlo (MCMC) algorithm. Often more than one chain is used to reach
the equilibrium state after sampling several times possibles phylogenetic
trees inferred from the input alignment and the selected evolutionary
model. The correctness of the phylogenetic tree is highly dependent on
the convergence of the process. If convergence has been reached, then the
phylogenetic tree reflects the most sampled topology in the tree distribution.
If convergence is not achieved, less or nothing could be drawn from the
phylogenetic tree obtained. Bayesian inference is one of the most accurate
tool to reconstruct a phylogenetic tree but setting the convergence criteria
and the enormous computational time needed to achieve convergence
constitute its major drawbacks. Another drawback of Bayesian methods
is the need to set the priors, that is the expectations, of observing certain
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values of any given parameter before seeing the data. To avoid biases,
uninformative priors, such as flat distributions, are usually chosen.

1.6 Single gene trees workflows.

Nowadays, the reconstruction of phylogenetic trees representing the evolu-
tion of gene families comprise three main steps which have been already
described in this chapter: i) detection of homologous sequences, ii) recon-
struction of the multiple sequence alignment, and iii) inference of the phy-
logenetic tree. Table 1.2 shows a survey of popular programs used at each
of the different steps. The list includes two optional but important tasks: i)
improvement of the alignment either optimizing again the conflicting parts
or removing them, and ii) the model selection prior to infer a phylogenetic
tree using any probabilistic based method.

Program Step Reference

Blast Homology Search Altschul et al. (1990)
Blat Homology Search Kent (2002)

HMMER Homology Search Eddy (2011)
ClustalW2 MSA:Progressive Larkin et al. (2007)

Muscle MSA:Iterative Edgar (2004)
Mafft MSA:Iterative/Consistency

based
Katoh and Toh (2008)

T-Coffee MSA:Consistency Based Notredame et al. (2000)
M-Coffee MSA:Meta-Aligner Wallace et al. (2006)

Prank MSA:Gaps aware placement Löytynoja and Goldman (2008)
Gblocks MSA:Trimming Castresana (2000)
ProtTest Phylogenetic trees: Model

selection for proteins
(Abascal et al., 2005)

PhyML Phylogenetic trees:ML (Guindon et al., 2010)
RaxML Phylogenetic trees:ML (Stamatakis, 2006)

MrBayes Phylogenetic trees:Bayesian (Ronquist and Huelsenbeck, 2003)
PhyloBayes Phylogenetic trees:Bayesian (Lartillot et al., 2009)

Table 1.2: Popular programs used in the different steps needed to reconstruct a
phylogenetic tree.

Once the phylogenetic tree is ready, depending on the biological question,
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it can be used directly to make any inference or it can be the starting point
for posterior analyses. Among possible analyses on a phylogenetic tree, I
would highlight here the detection of speciation (orthology) and duplication
(paralogy) events, the usage of sequences related by speciation events to
make functional annotation of newly sequenced genes, the study of gene
expansions in certain species, the detection of horizontal gene transfer cases,
etc. All these analyses have been used during the present thesis.

1.7 Phylomes and their automated reconstruction.

A phylome has been defined as the complete set of phylogenetic trees
for all proteins encoded in a genome (Sicheritz-Pontén and Andersson,
2001). Traditionally, homologous sequences from complete and incomplete
sequenced organisms have been used to reconstruct these evolutionary
relationships. However, it was realized that to fully understand the
evolution of protein families, it is best to use only completely sequenced
proteomes. Only complete genomes may reveal the complete dynamic
history, i.e. gains and losses, for proteins in the considered species. A
process similar to that used to reconstruct a single phylogenetic tree is
used iteratively to reconstruct a phylome. In contrast to single gene tree
workflows where the process can be done manually, for the reconstruction
of this set of trees, the use of pipelines is needed. A pipeline, automated
or not, is a system of computing programs that control, with minimal
human intervention, the correct and ordered execution of the mentioned
steps. Popular automated pipeline used in several projects comprises
PhyloGenie (Frickey and Lupas, 2004), PhyOP (Goodstadt and Ponting,
2006) or EnsemblCompara GeneTrees (Vilella et al., 2009). Among the main
differences between the use of a pipeline and the reconstruction of a single
gene tree are i) the speed, necessarily a more important limiting factor in
pipelines, and ii) the selection of parameters, since the pipeline should adjust
automatically the parameters to accommodate the heterogeneity in the data.
The first generation of automated pipelines tended to use default parameters
for all trees resulting in generally poor performance. As a result, human
intervention was needed to fix errors. With time the pipelines became
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more sophisticated and incorporated programs that automatically adjust
parameters (Huerta-Cepas et al., 2011) and/or directly used different sets
of programs depending on the nature of the data (Vilella et al., 2009).

1.8 Downstream analyses: Inferring Species trees.

One of the major goals in Biology is to understand how species have
evolved and how they related to each other. The first species tree based on
sequence information was published in 1967 by Fitch and Margoliash (Fitch
and Margoliash, 1967) in an attempt to relate animals and fungi using the
mitochondrial protein cytochrome C. Although, the authors were successful
on finding a common origin between these two groups, the major drawback
of the approach was that cytochrome C was not present in all species. Ten
years later, in 1977, Woese and Fox (Woese and Fox, 1977) published the
first tree of life for the major living groups. They used ribosomal RNA,
specifically the small subunit, since it was ubiquitous, showed high level
of conservation and, what is even more important, it was already possible
at the time to sequence it from diverse organisms. The most important
finding of this first tree was the realization of the existence of a third
domain of life: archaebacteria, lately renamed as archaea. Until then,
only two major groups were accepted: eukaryotes and bacteria. With the
time, ribosomal RNAs have become the classical markers in phylogeny to
reconstruct species trees, especially in Bacteria where the transfer of genetic
material is common, which leads to loss of phylogenetic signal. Ribosomal
RNA has been proved to be useful to classify newly sequenced organisms
and to establish relationships among different groups. However, its high
level of conservation limits its power to accurately resolve deep phylogenies.
This was noticed when trees drawn from newly sequenced individual genes
were in conflict with the species tree inferred from ribosomal RNAs. It
was in 2006, by Ciccarelli and colleagues (Ciccarelli et al., 2006), when a
new attempt to draw a Tree of Life took place. In this case, widespread
orthologous sequences from completely sequenced organisms were used.
The general idea behind this approach was to use as much information as
possible, taking advantage of the sequenced genomes at that moment.
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Currently, there are different genome-wide approaches to infer species trees:
i) alignment-free genome trees, ii) gene content trees, iii) gene order trees, iv)
genome trees based on average sequence similarity, and v) phylogenomic
trees (Snel et al., 2005). I will focus, therefore, on the phylogenomics
approaches used to infer these species trees. Methods in phylogenomics
for inferring species trees can be grouped into two categories (Figure 1.4): i)
consensus trees from sets of single gene trees, and ii) concatenated alignment
species trees. Both approaches make usage of genes rather than complete
genomes. A genome is a much richer and complex source of evolutionary
information than single genes and, therefore, a more difficult to align, a
prior step before making any evolutionary inference, task. Any method
for reconstructing species tree in a phylogenomics framework tries to use
as much information as possible in order to infer real evolutionary events
at species level. The idea behind a consensus tree is to find the tree
that better explains the evolutionary history of the species considering the
patterns observed in single gene trees. Most popular methods include the
reconstruction of a consensus tree, which is the most compatible in terms
of tree partitions with the total number of trees, e.g. CLANN (Creevey
and McInerney, 2005), or finding the topology that is most parsimonious
in terms of one or various events such as gene duplication, gene loss, or
deep coalescence, GeneTree (Page, 1998) or iGTP (Chaudhary et al., 2010). In
contrast, species trees based on concatenated alignments, also known as the
super-matrix approach, are reconstructed after putting together alignments
for single copy genes that are widespread in the species considered.
Although there is much less data, it is expected a more consistent and
recognizable phylogenetic signal since genes in this dataset are not under
any evolutionary event such as gene duplications or losses that can affect
the evolutionary signal. Accurately identification of genes belonging to
this set is a crucial step to secure any phylogenetic inference. Counting as
many genes as possible allow to minimize variation on phylogenetic signal
due to methodological errors or different evolutionary rates and, therefore,
increase the support for the species tree inferred. Another advantage of the
concatenation approach is that it uses directly the information contained in
the sequences rather than indirectly.
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Figure 1.4: Different phylogenomics approaches for inferring species trees.
Both methods try to use as much information as possible in two different
ways: Consensus trees are reconstructed using all single gene trees available
while trees inferred from concatenated alignments use direct information from
widespread single copy gene among considered species. Image obtained from
Snel et al. (2005)

1.9 Downstream analyses: Orthology and paralogy
prediction.

In 1970, Walter Fitch coined the concepts of orthology and paralogy
to distinguish two types of homology relationships among biological
sequences (Fitch, 1970). Orthologous sequences are those derived from
a speciation event while paralogous sequences are those that can be
traced back to a duplication event. These two well defined concepts are
sometimes misinterpreted by researchers because of the existence of complex
scenarios of multiple duplications, speciations and gene losses or because
of inaccurate methods. The accurate prediction of orthologs is important
for many posterior analyses such as i) the inference of species trees based
on concatenated alignment of undisputed orthologs (see above) or ii) the
functional annotation of newly sequenced genes. In these two analyses, it
is very important the correct identification of one-to-one orthologs since it
is generally accepted than orthologs sequences conserved along evolution
tend to have a great degree of conservation, making easier their recognition
and posterior alignment, and, moreover, these genes tend to keep the same
function making them the perfect candidates to annotate newly sequenced
genes/genomes until further validations confirm such predictions.
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Figure 1.5: It shows how orthologs and paralogs, for gene p53, relate to each
other by different evolutionary events. As it can be appreciated in the figure,
making precise predictions can be a very difficult task highly dependant on the
methods used to reconstruct the tree. In the picture, two consecutive ancestral
duplications lead to the emergence of three gene families in Vertebrate that are
orthologs, all of them, to the two copies in urochordates. Image obtained from
Gabaldón (2008b)

1.10 Final remarks.

Phylogenomics offers us, for the first time, the opportunity to face,
understand, and, in many cases, answer long-standing questions regarding
the evolution of organisms. This opportunity implies many challenges about
the suitability of current methods or/and the need of developing new ones
in order to be able to use, learn and extract the most from an ever-growing
amount of sequenced data.
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• Optimize an automated phylogenomics pipeline for the reconstruction
of phylomes under the premises of high accuracy and speed.

• Implement several improvements on a public database to store and
browse precomputed phylogenetic trees, alignments and homology
relationships.

• Propose and implement different strategies to post-process multiple
sequence alignments in the context of large-scale phylogenetics.

• Disentangle the phylogenetic signal carried by gaps in a multiple
sequence alignment from other sources of signal such as guide trees.

• Use several phylogenomics approximations to answer the long-
standing question of the phylogenetic position of Microsporidia.

• Propose and test a new methodology to identify optimal sets of phylo-
genetic marker genes that uses information from existing genome se-
quences.
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The present thesis addresses the dual objective of how to improve phyloge-
nomic methods and how to use them efficiently to shed light onto diverse
biological questions. The work is divided into different chapters, which I
briefly introduce here.

In Chapter 4, an automated pipeline to reconstruct large collection of
phylogenetic trees (i.e phylomes) is introduced. This pipeline had been
initially developed in 2006, but from 2008 I was in charge of investigating
ways for further optimizing it, particularly in the steps of alignment
reconstruction, trimming, and evolutionary model selection. As a result,
an improved pipeline was developed, which is used in current phylome
reconstructions and constitutes one of the tools that I used in the following
chapter. This chapter also describes a new release of phylomeDB, a public
repository of phylogenetic trees, alignments and orthology and paralogy
predictions. My main contribution to this team effort particularly consisted
of the design and implementation of the database. Furthermore, I have been
involved in the development of an Application Programming Interface (API)
that enables programmatic access to phylomeDB, and in the incorporation of
several quality controls to ensure the data integrity.

Chapter 5 focuses on multiple sequence alignment reconstruction, post-
processing, and its impact in phylogenetic downstream analyses. On the one
hand, I investigate the use of different alignment trimming strategies (gaps,
similarity, consistency), specially focusing on finding heuristics that enable
automated parameter selection in the context of large-scale phylogenetic
pipelines. This work lead to the development of trimAl, an alignment
trimming software that is central to the pipeline described in Chapter 2
and widely used by other groups (over 80 citations). On the other hand,
I focus on the significance of gaps in the context of alignments used for
phylogenetic reconstruction. For this, I develop a novel framework to
disentangle the genuine phylogenetic signal carried by gaps from other
sources of information such as that brought in by the guide tree.

In Chapter 6, I apply a battery of phylogenomic methods, including those
developed in this thesis, to address a long-standing question in phylogeny:
the position of microsporidia. Resolving the position of microsporidia
has been described as one of the hardest tests for phylogeny, due to the
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incredibly high rates of sequence evolution and the strong effect of biases
such as long branch attraction. Using a taxon sampling of more than 100
completely sequenced fungi, and methods ranging from synteny analysis to
selection of informative sites for statistical testing of tree topology, I could
resolve the position of this elusive taxon as the most basal group within
fungi.

Chapter 7 also deals with the use of complete genomes to resolve species
phylogenies, but as a general case. In particular I propose a new
methodology to prioritize sets of phylogenetically informative gene markers
to resolve species trees at desired levels (e.g. genus or phylum). Contrary to
existing approaches, our method explores the phylogenetic informativeness
of genes using cross-validation, to ensure that markers are stable outside the
set of species used for their selection. To demonstrate the validity of the
method, we applied it to the reconstruction of species trees for a bacterial
(Cyanobacteria) and a eukaryotic (Fungi) phylum. The Cyanobacterial
marker set is currently being used in a collaborative project to elucidate the
Cyanobacterial tree of life.

Chapter 8, I present a final discussion, summarizing the main implications
of my research to current debates, and considering possible future directions
in these topics.

Finally, the Appendix section compiles a series of studies in which I have
contributed by applying the methods described here. These collaborations
have not only provided me access to new and interesting data, but have also
served to inspire new developments tailored to specific challenges. These
studies include collaboration in the phylogenomic analyses of two newly
sequenced genomes (the Melon and the red algae Chondrus), the study of
the phylogenetic origin of peroxisomes, and the implementation of trimAl
within the Phylemon phylogenetic webserver.
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Improving an automated phylogenetic pipeline.

4.1.1 Abstract

The use of phylogenetic trees to describe the evolution of biological
molecules was established in the 1960s and remains a fundamental approach
to understand the evolution of genes and species. Performing phylogenetic
studies at genomic levels, phylogenomics, offers nowadays a unique
opportunity to address a huge range of biological questions. However,
large-scale studies present many conceptual and methodological challenges.
For instance, the automation of the whole process of tree reconstruction
often involves the use of standard parameters and conditions for all protein
families, inevitably resulting in poor or incorrect phylogenies in many
cases. Here we present the different improvements done over an existent
phylogenetic pipeline. To achieve this objective, we have centered our
efforts in two steps of the pipeline: 1) the Multiple Sequence Alignment
generation and 2) the phylogenetic tree reconstruction. In the Multiple
Sequence Alignment phase, we have developed a novel program, trimAl, to
remove those ambiguous regions from the alignment in an automated way.
On this step, we have also discarded any possible bias to a certain method
using several programs and sequences orientations (forward and reverse
orientation) in order to keep only those columns that are less sensitive
to the alignment process. In the phylogenetic tree reconstruction phase,
we have been concentrated on the evolutionary model selection because
it is the main bottleneck of our pipeline. In this point, we have worked
to know whether an evolutionary model selection over Neighbour-Joining
trees predicts the same model that the one predicted by the Maximum
Likelihood trees. Addressing this question implies a substantial time-
consumption optimization over the current pipeline.

4.1.2 Introduction

The use of phylogenetic trees to describe the evolution of biological
molecules was established in the 1960s and remains a fundamental approach
to understand the evolution of genes and species. Performing phylogenetic
studies at genomic levels, phylogenomics, offers nowadays a unique opportu-
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nity to address a huge range of biological questions (Eisen and Fraser, 2003).
However, large-scale studies present many conceptual and methodological
challenges. For instance, the automation of the whole process of tree recon-
struction often involves the use of standard parameters and conditions for
all protein families, inevitably resulting in poor or incorrect phylogenies in
many cases. Moreover, interpreting such type of complex data poses many
difficulties and does require the development of novel algorithms, tools,
forms of representing the data and even new semantics and concepts (Ga-
baldón et al., 2008).

Many phylogenomic studies involve the reconstruction of large sets of
phylogenetic trees, for which automated pipelines should be implemented.
Even though there are several phylogenetic routines, most of them share
three well defined stages: homology search, multiple sequence alignment
generation and phylogenetic tree reconstruction. Homology search is the
initial step and consists of a search for putative homologous sequences,
inferred from their level of sequence similarity. This search can be
performed by using local-alignment algorithms such as Smith-Waterman or
BLAST (Altschul et al., 1990) to search in public or local databases. Sets
of homologous sequences are subsequently aligned. Multiple sequence
alignments are a central part of all phylogenomic pipelines, since the
reliability and accuracy of subsequent analyses critically depend on their
quality. Once the sequences are aligned, a phylogenetic tree can be
reconstructed from the positional homology information contained in the
alignment. There are three major approaches for phylogenetic estimation,
namely distance methods, parsimony and statistical approaches such as
Maximum Likelihood (ML) and Bayesian inference (BI) (Baldauf, 2003). In
this context, our group has developed a pipeline to reconstruct phylomes,
(i.e. the complete collection of phylogenies of encoded genes in a given
genome). One of the first phylomes reconstructed with such pipeline was
the human phylome in the context of 39 eukaryotic species (Huerta-Cepas
et al., 2007). Since then, a similar pipeline has been applied to the generation
of more than 25 phylomes, including those of yeast, pea aphid, E. coli and
others that are deposited in PhylomeDB (www.phylomedb.org) (Huerta-
Cepas et al., 2008).

www.phylomedb.org
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In brief, this pipeline proceeds as follows: for every seed protein, homologs
are searched against a database encompassing proteomes from the desired
taxonomic scope. Subsequently, search hits are filtered based on criteria such
as e-value, alignment coverage between the query and the hit proteins, and
an upper limit in the number of sequences. Afterwards, significantly similar
groups of proteins are aligned using the MUSCLE program (Edgar, 2004).
Alignments are automatically trimmed to remove gap-rich regions and,
finally, a phylogenetic reconstruction phase combines neighbour-joining (NJ)
and maximum likelihood (ML) tree reconstruction approaches. Firstly, an NJ
tree is reconstructed using BioNJ (Gascuel, 1997). Secondly, the precomputed
NJ tree is used as a seed to search up to 4 different ML trees, based on
different evolutionary models. Once the ML trees have been generated,
the Akaike Information Criterion (AIC) (Akaike, 1974) is used to select the
evolutionary model that best fits the data.

The main difference between our pipeline and similar routines such as
PhyOP (Goodstadt and Ponting, 2006) or Emsembl Compara GeneTrees
(Vilella et al., 2009), lies on the fact that ours reconstructs a phylogeny for
each protein of a given genome, while others rely on an initial clustering step
and then a single phylogeny is built for every cluster. Thus, our pipeline
resembles more closely what a phylogeneticist will do when interested
in the evolution of a given protein (i.e. genome-wide clustering, which
is parameter-dependant and prone to other type of errors is not used
in classical phylogenetic analyses). Other differences regard alternative
taxonomic scopes or methodological details.

In the described implementation of the pipeline we relied on a single
MSA program, namely MUSCLE. The choice of this program was based
on its speed and the fact that it includes a final iterative phase that allows
solving obvious mistakes generated during the progressive alignment phase.
However, as it has been shown in previous studies (Golubchik et al., 2007;
Landan and Graur, 2007), a particular method can be biased due to heuristic
decisions taken during the program execution.

An important limiting factor in our pipeline is the phylogenetic tree
reconstruction phase. More specifically, the selection of the best model
in Maximum Likelihood (ML) analyses uses a considerable amount of
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time. As explained, in our previous implementation, different ML trees
are reconstructed using different evolutionary models. Subsequently the
best fitting model is chosen based on a likelihood ranking. The high time-
consumption of the ML computation limits the number of models that can be
tested. In our previous pipeline this limit was set to 4 different evolutionary
models.

In order to increase the accuracy and efficiency of our pipeline, we undertook
an analysis of the current settings of our pipeline in order to identify possible
areas of improvement. Here we present the results of such analysis, which
led to the redesign of different parts of the pipeline. In particular we have
focused on three important aspects of our pipeline: 1) alignment trimming,
2) alignment reconstruction, and 3) evolutionary model selection. To decide
among alternative designs we have used different benchmarks trying to find
an optimal balance between accuracy and speed. Based on these results,
we propose a novel implementation of the pipeline which, as compared to
our previous design, achieves higher accuracies, while reducing the overall
computing time. Furthermore, this work has led us to the development of
new software: trimAl (Capella-Gutiérrez et al., 2009), a tool for automated
alignment trimming.

4.1.3 Methods

Multiple Sequence Alignment.

To reverse biological sequences and convert between different alignment
formats readAl 1.2, included in the trimAl package (trimal.cgenomics.org),
was used. Forward and Reverse sequence sets were aligned with different
MSA programs. In particular we tested MUSCLE v3.7 (Edgar, 2004), MAFFT
v6.712b (Katoh and Toh, 2008), KALIGN v2.03 (Lassmann et al., 2009),
DIALIGN-TX (Subramanian et al., 2008), PROBCONS (Do et al., 2005) and
T-COFFEE v8.06 (Notredame et al., 2000).

All programs were used with default parameters except for MAFFT, in
which we set the -auto parameter to allow the program select the best
algorithm depending on the input sequences features.

trimal.cgenomics.org
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Multiple Sequence Meta-Alignment.

Selected combinations of MSA (always including forward and reverse
replicates) were integrated to produce a consensus alignment with M-
COFFEE (Wallace et al., 2006), implemented in the T-Coffee package.

Multiple Sequence Alignment trimming.

To remove ambiguous columns in the consensus alignment we used trimAl.
trimAl is a tool for automated alignment trimming, which is especially
suited for large-scale phylogenetic analyses. It was developed within the
frame of this project. trimAl now incorporates many options, most of them
are discussed in our publication (Capella-Gutiérrez et al., 2009).

In this project, we have implemented in trimAl a method to compute
the column consistency score (Sc) for each column from the consensus
alignment generated by M-COFFEE. Equivalent to the sum-of-pairs score
(SPS) (Thompson et al., 1999), the consistency score measures the proportion
of residue pairs that are paired identically in two alignments. In this case,
we compared the consensus alignment with the rest of the alignments used
to generate it. Then, those columns that do not achieve a certain consistency
score are removed from the final alignment by trimAl.

Phylogenetic tree reconstruction.

Neighbour-Joining and Maximum Likelihood trees were reconstructed using
phyml v3.0 (Guindon et al., 2010). Seven different evolutionary models
were evaluated: JTT, LG, WAG, Blosum62, VT, MtREV and Dayhoff. In all
cases, a discrete gamma-distribution model with four rate categories plus
invariant positions was used, estimating the gamma parameters and the
fraction of invariants sites from the data. In the case of the NJ computation,
the branch length was optimized under the different evolutionary models
to get likelihood values. The ranking of the likelihood values as well as the
comparisons were generated using ad-hoc python scripts.

Phylogenetic tree accuracy benchmark I.

A benchmark composed by three different datasets has been used to test the
general applicability of trimAl.
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The first dataset has been used previously (Talavera and Castresana, 2007)
to test the improvement in phylogenetic performance after an alignment
trimming phase. This set comprises simulated sequences of various lengths
(400 to 3200 positions). Simulations were performed with ROSE v1.3 (Stoye
et al., 1998) along a phylogenetic tree with 16 tips. These trees have three
different topologies varying in their level of symmetry, and whose branch
lengths were multiplied by 0.5, 1.0 and 2.0.

Two additional sets of sequences were generated to expand the original
dataset to the case of 32 and 64 tree tips, which we consider to be more
realistic in phylogenomic analyses. In order to generate these additional
sets we first took the reference trees, one tree per topology, and then twelve
new reference trees were generated by using ETE (Huerta-Cepas et al., 2010).
These new trees had the same level of symmetry as those in (Talavera and
Castresana, 2007) study. Six of these twelve trees had 32 tips while the six
left had 64 tips. The lengths of their branches were also multiplied to obtain
the same three levels of divergence (0.5, 1.0 and 2.0, respectively) as in the
previous study.

These reference trees were used to generate the sets of sequences as indicated
in Talavera and Castresana (2007). For this purpose, the program ROSE
was used with the same seed protein and parameters described in Talavera
and Castresana (2007) to generate their benchmark sets. The simulations
included insertions and deletions with a probability of 0.03. The other
parameters for the simulation were the ones described in the original study.
The same strategy was used to infer the patterns of rate heterogeneity of the
seed protein. Finally, the sets generated by ROSE contain, similarly to the set
of 16 sequences, simulated protein sequences of various lengths (400 to 3200
residues) and different topologies.

Phylogenetic tree accuracy benchmark II.

A partial dataset, composed by the hardest cases from the above benchmark
has been used to measure the average time-consumption for each examined
MSA program, as well as to quantify the general improvement achieved for
the different combinations of programs. This dataset is composed by 300
sets of 64 sequences each generated along an asymmetric tree shape. It is



4.1 Improving an automated phylogenomics pipeline 43

divided in three groups, 100 sets each, which vary on the level of sequence
divergence.

A human phylome based on 12 model organisms benchmark.

A new human phylome (Huerta-Cepas et al., 2007) has been reconstructed in
the context of 12 model organisms: Arabidopsis thaliana, Caenorhabditis elegans,
Danio rerio, Dictyostelium discoideum, Drosophila melanogaster, Escherichia
coli, Gallus gallus, Mus musculus, Rattus norvegicus, Saccharomyces cerevisiae,
Schizosaccharomyces pombe and Homo sapiens. Homology searches were
performed using an e-value cutoff of 1e-3, a minimum coverage of 50%
over the query sequence and an upper limit of 150 sequences. Groups
of homologous sequences were aligned using MUSCLE and trimmed with
trimAl gappyout method. Finally, 7 different evolutionary models were
tested using the Neighbour-Joining and Maximum Likelihood approaches
as implemented in PhyML, in all cases rate variation across sites was
approximated with a four rates gamma categories distribution, the gamma
shape parameter and the proportion of invariable sites were estimated from
the data.

20,624 different proteins were used and approximately 290,000 phylogenetic
trees were reconstructed.

4.1.4 Results.

Multiple Sequence Alignment trimming.

Multiple sequence alignments (MSA) are central to many areas of bioinfor-
matics, including phylogenetics, homology modeling, database searches and
motif finding. Recently, such MSA-based techniques have been incorpo-
rated in high-throughput pipelines such as genome annotation and phyloge-
nomics analyses. Accuracies of 80-90% have been reported for the best algo-
rithms, but even the best scoring alignment algorithms may fail with certain
protein families or at specific regions in the alignment. The situation wors-
ens in large-scale analyses, where faster but less reliable algorithms and large
numbers of automatically selected sequences are used. It is therefore gener-
ally assumed that trimming the alignment, so that poorly aligned regions are
eliminated, increases the accuracy of the resulting MSA-based applications
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(Talavera and Castresana, 2007).

Some programs such as GBlocks (Castresana, 2000) have been developed to
assist in the MSA trimming phase by selecting blocks of conserved regions.
They have become very popular and are extensively used, with good
performance, in small-to-medium scale datasets, where several parameters
can be tested manually (Talavera and Castresana, 2007). However, their
use over larger datasets is hampered by the need of defining, prior to the
analysis, the set of parameters that will be used for all sequences families.
In particular, our own experience in phylomeDB was that any settings
of GBlocks will produce a significant number of alignments in which the
number of columns removed was either excessive or too reduced producing
largely unexpected tree topologies. In the previous implementation of
our pipeline a python script was being used in which the threshold of
gaps allowed in a column could be set. This limited our possibilities to
implement alternative trimming strategies. Thus, driven by our own needs
we developed trimAl, a tool for automated alignment trimming. The speed
of trimAl, and the possibility for automatically adjusting the parameters to
improve the phylogenetic signal-to-noise ratio for a given alignment, makes
trimAl especially suited for large-scale phylogenomic analyses, involving
thousands of large alignments.

trimAl reads and renders protein or nucleotide alignments in several
standard formats. trimAl starts by reading all columns in an alignment and
computes a score (Sx) for each of them. This score can be either a gap score
(Sg), a similarity score (Ss) or/and a consistency score (Sc). The gap score
(Sg) for a column is the fraction of sequences without a gap in that position.
The residue similarity score (Ss) consists of mean distance (MD) scores as
described in Thompson et al. (1999). This score uses the MD between pairs
of residues, as defined by a given scoring matrix. Finally, the consistency
score (Sc), can only be computed when more than one alignment for the
same set of sequences is provided. Details on how these scores are computed
are provided in the Supplementary Material of our publication available at
trimal.cgenomics.org.

Alternatively, if the automatic selection of parameters options is selected,
trimAl will compute specific score thresholds depending on the inherent

trimal.cgenomics.org
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characteristics of each alignment. So far, trimAl incorporates three modes
for the automated selection of parameters, namely, gappyout, strict and
strictplus, which are based on the different use of gap and similarity
scores. Moreover, the option -automated1 implements a heuristic to decide
the most appropriate mode depending on the alignment characteristics.
The heuristics to define such parameters have been designed based on the
results of a benchmark. Details on the heuristics and the benchmark can be
found in the on-line documentation of the program. In brief, the automatic
selection of parameters approximate optimal cut-offs by plotting, internally,
the cumulative graphs of gap and similarity scores of the columns in the
alignment (see trimal.cgenomics.org).

The whole dataset from the phylogenetic accuracy benchmark I (see
methods) has been used to measure the improvement achieved using
trimAl over other alternatives. This dataset simulates several evolutionary
scenarios varying in the number and length of the sequences, the topology
of the underlying tree and the level of sequence divergence considered.
We compared the results obtained from MUSCLE alignments before and
after trimming with trimAl using automated selection of parameters. The
accuracy of the resulting trees was measured by comparing them with
the original trees used to generate the sequence sets, and measuring the
Robinson and Foulds distance (Robinson and Foulds, 1981). We observed
an overall improvement of the phylogenetic accuracy after trimming. Using
-automated1 option of trimAl, the trimmed alignment always produced
Maximum Likelihood trees that were of equal (36%) or significantly better
(64%) quality as compared with the tree derived from the complete
alignment. For Neighbor Joining reconstruction the -strictplus option of
trimAl worked best, improving the phylogenetic accuracy in 89% of the
scenarios. In most scenarios (90%), trimAl outperformed Gblocks v0.91b
with default parameters. Most importantly, the use of Gblocks default
parameters diminished the accuracy of the subsequent tree reconstruction
in half of the scenarios considered. In contrast, the use of trimAl automated
methods rarely (1.5%) undermined the topological accuracy of the resulting
phylogenetic tree (see Supplementary Material for more details in trimal.
cgenomics.org). An example figure of a particular benchmark is presented

trimal.cgenomics.org
trimal.cgenomics.org
trimal.cgenomics.org
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in Figure 4.1.

Figure 4.1: Benchmark results for phylogenetic tree accuracy. Y-axis represents
the Robinson and Foulds (RF) distance to the real tree for the different
alternatives (lines) having into account the effect of the sequences length. The
lower RF values, the more accurate. 100 sets of sequences were considered for
each possible sequence length.

Multiple Sequence Alignment.

As mentioned above, Multiple Sequence Alignment (MSA) constitutes the
basis of our pipeline and subsequent analyses depend on their accuracy.
A plethora of computer programs and algorithms for MSA are currently
available (Notredame, 2007), which implement different heuristics to find
mathematically optimal solutions to the MSA problem. In the context of
large-scale studies, we have relied on a single MSA program (MUSCLE)
chosen for its speed and the final MSA iterative refinement. However,
since different studies (Golubchik et al., 2007; Landan and Graur, 2007)
have shown that a given program can be biased by heuristic decisions
taken during the program execution, we wanted to test the possibility of
combining different methods rather than relying on a single one. Moreover,
the HoT method has been shown to effectively detect those columns that are
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more variable to heuristic decisions.

We wanted to evaluate an alternative design that could use the information
on the variability of 1) the specific alignment method used and 2) the specific
orientation of the input sequences. Since time-consumption imposes a strong
limitation to our pipeline, we decided to first benchmark the speed of the
different methods Table 4.1. The phylogenetic accuracy benchmark II (see
methods) has been used to carry out that time evaluation.

Programs divergence x 0.5 divergence x 1.0 divergence x 2.0

KALIGN2 00.04 min 00.05 min 00.06 min
MUSCLE 00.50 min 00.59 min 00.68 min
MAFFT 02.66 min 03.36 min 07.54 min

DIALIGN-TX 06.62 min 06.59 min 07.01 min
T-COFFEE 28.51 min 31.08 min 34.65 min

PROBCONS 64.33 min 57.63 min 63.63 min

M-COFFEE 01.27 min 00.77 min 00.74 min

Table 4.1: Benchmark results of time-consumption for the different programs.
These average execution times have been computed over 100 alignments. As
expected, the more divergence between the sequences, the more time is needed
to generate the MSA.

Considering these results, we selected two alternative combinations of
methods that tried to 1) diversify the alignment approaches and 2) maximize
the total speed. The 2 chosen combinations are KMM combination,
comprising by KALIGN2, MUSCLE and MAFFT programs, and DMM
combination, composed by DIALIGN-TX, MAFFT and MUSCLE programs.
The selected methods were used to align the forward and reverse sequences
and the resulting 6 MSAs were combined with M-COFFEE. The combined
MSA was then trimmed based on the level of consistency, using a threshold
of 0.1667, and the level of gaps, with a threshold of 0.1.

The improvement in the accuracy of both combinations was benchmarked
and compared with previous results from the phylogenetic accuracy bench-
mark II. The sequences were aligned using the above described methods as
well as using either just MUSCLE, or MUSCLE with an automated trimming
phase (trimAl -gappyout). The maximum likelihood trees for all MSAs were
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reconstructed using PhyML. The topological differences, namely the Robin-
son and Foulds distance, were calculated for each reconstructed tree against
the tree used during the simulations. A summary can be found in Figure 4.2.

These results show a clear improvement in accuracy over the previous
implementation (MUSCLE + trimAl -gappyout). This is specially true for the
most divergent dataset. Considering these results, we decided to implement
the DMM implementation, despite a somewhat higher time-consumption,
since it produced a desirable increase in accuracy.

Figure 4.2: Benchmark results for phylogenetic accuracy. Y-axis represents the
Robinson and Foulds (RF) distance to the real tree for the different alternatives
(x-axis). The lower RF values, the more accurate.

Evolutionary Model Selection.

An important parameter for the Maximum Likelihood (ML) approach is the
evolutionary model used to produce the tree. It has been shown that model
misspecification can lead to wrong topologies with high support (Bruno and
Halpern, 1999). In our previous implementation of the pipeline different ML
trees were reconstructed with different evolutionary model, to subsequently
select the best tree based on the Akaike Information Criterion (AIC). Since
the ML approach requires large amounts of time, the model selection step
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should be applied to a limited number of models.

In our current implementation, up to 4 different evolutionary models are
tested, and this step constituted the most important bottleneck in our
pipeline. It would be desirable to test more than 4 evolutionary models
to avoid selecting a sub-optimal model. Considering that, we decided to
investigate whether a tree topology obtained by the NJ method would serve
to predict the best-fitting model for an ML analyses. This reasoning is
based in that NJ topologies are largely similar to those obtained by ML. To
investigate these points, we have used a new version of the Human Phylome
(see methods). 7 evolutionary models: JTT, LG, WAG, Blosum62, MtREV,
Dayhoff and VT, were used during this test in the Neighbour-Joining (NJ)
and Maximum Likelihood (ML) tree reconstruction. Once all the trees were
generated, we computed how many times the best evolutionary model for
the ML trees was among the i best models for NJ (Figure 4.3).

Figure 4.3: Benchmark results for the evolutionary model selection benchmark.
Y-axis represents the proportion of how many times the best evolutionary model
for the ML tree is in the best ith model for the NJ trees.

These results clearly show that model-assessment on the NJ topology could
be used to accurately predict the best model in an ML reconstruction.
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Since this approach is significantly faster than the original one, we decided
to implement it in the new implementation of the pipeline. With that
implementation, we are able to test more evolutionary models without
increasing the pipeline time-consumption. In fact, we are speeding-up the
whole process because we would reconstruct one or two ML trees instead of
the four ML trees in the previous pipeline.

4.1.5 Discussion.

Since phylogenomics studies offer a unique opportunity to address a huge
range of biological questions, it is important to have tools to give an as
accurate as possible answer to those questions. In the curse of this project,
we have been focused on different aspects of our previous pipeline in order
to improve its accuracy as well as to increase its speed.

In the multiple sequence alignment phase, we have developed a novel
program, trimAl, to maximize the signal-to-noise ratio removing the
ambiguous regions in the alignment. Since its publication, we have
continued its development based on the feedback of trimAl’s users. The
improvements include the incorporation of new methods to improve the
alignment, not only removing columns but also removing sequences. In
this stage of the pipeline, the use of different alignment programs and
orientations in the sequences has allowed us to discard possible biases
towards a specific approximation, increasing at the same time the accuracy
of the generated alignment. Thanks to Dr. Cedric Notredame’s feedback,
we have decided to use instead of a combination of 3 different programs,
the 4 fastest programs used during our benchmarks (MUSCLE, MAFFT,
KALIGN2, DIALIGN-TX). The use of these 4 programs does not represent
a significant increase of the time-consumption while the number of samples
is increased in order to identify those columns less sensitive to the way that
we align our homologous sequences.

All the improvements achieved in the multiple sequence alignment phase
have been tested over an extensive but simulated dataset. For this reason,
we are interested in testing our methods either with real or new simulated
data. The underlying problem is how to obtain a dataset to benchmark our
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methods now that a recent study (Edgar, 2010) has shown the ambiguities in
one of the most popular databases, BALiBASE (Thompson et al., 2005), for
real data. Additionally, simulated data is not able to capture the complexity
of the real world and can therefore not be fully trusted. A new study
(Dessimoz and Gil, 2010) tries to offer a new approach to evaluate the
accuracy of the different alternatives based on how many times the correct
tree topology is reconstructed from the alignments generated by the different
alternatives. While their conclusions can only be based on limited data, we
incorporated this kind of test in our benchmarks to evaluate the accuracy of
the different alternatives as well as to measure the improvement achieved
when the ambiguous regions are deleted using trimAl.

Since the evolutionary model selection step in the phylogenetic tree recon-
struction phase constitutes the main bottleneck of our pipeline, we are inter-
ested in optimizing this process. After addressing that we are able to perform
the model selection over Neighbour-Joining trees instead of Maximum Like-
lihood trees, we would like to find the automated way to decide how many
evolutionary models should be considered during the Maximum Likelihood
reconstruction. Actually, this automated way would avoid us to take arbi-
trary decisions about the number of evolutionary models to be considered,
even when we have clear results that support these arbitrary decisions. To
test this point, we would like to evaluate the performance of CONSEL (Shi-
modaira and Hasegawa, 2001), which incorporates different statistical tests
that allow us to decide how many evolutionary models should be consid-
ered. One important point to investigate here is which test will be used to
take these automated decisions. On the other hand, we are following the
latest QUDA developments in the phylogenetic field in order to incorporate
this technology as soon as possible.
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trimAl 1.4: Recent developments in automated mul-
tiple sequence alignment post-processing in large-
scale phylogenetic analyses.

5.2.1 Introduction.

Since its first implementation and publication in 2009 (Capella-Gutiérrez
et al., 2009), trimAl has gained broad recognition and is now extensively
used by several labs around the world. trimAl publication has so far been
cited in over 70 publications, and we constantly receive requests from users
and suggestions on further developments. As a result, trimAl has evolved
to incorporate new methods to accommodate our own needs and those from
other users. Here I briefly list the main novel implementations that are part
of the current version of trimAl (v1.4).

5.2.2 New implementations.

Newly supported formats.

New multiple sequence alignments formats have been included, leading to
a total of 12 different supported formats. Special attention has been put
in developing specific formats for popular programs such as PAML (Yang,
2007) or those part of the popular phylogenetic package PHYLIP.

Alignment editing functionality.

Using the trimAl package, specifically the readAl program, it is now possible
to edit input multiple sequence alignments in order to get the reverse
alignment, that means, the first column is now the last one, the second one
is the second last one and so on. This method enables using the Head or
Tails (HoT) approach for assessing alignment variability and consistency
(Landan and Graur, 2007). Moreover, it is possible to reshuffle randomly
the input sequences as an alternative way to assess alignment variability
and consistency. Additionally, it is now straightforward to get the unaligned
sequences from the input alignment as well as an HTML file colouring the
input alignment with standard colour schemes.
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Back-translating protein MSA into its corresponding codons MSA.

In the current version, it is possible to back-translate an input protein
sequence alignment into its corresponding nucleotide codons, just providing
to trimAl the unaligned nucleotide sequences. Moreover, the program can
apply any trimming strategy to the input alignment and then give back
only those codons corresponding to the untrimmed columns in the protein
alignment. trimAl checks input coding sequences to look for universal stop
codons, and there is an option to split sequences just by stop codons, in order
to check for correspondence, in terms of length, between proteins and coding
DNA sequences. Furthermore, trimAl can complete missing residues using
N symbols. These procedures have been implemented to accommodate
the needs from studies relying on incomplete genome assemblies, and
transcriptomic data such as those from RNAseq or Expressed Sequence Tag
(EST) experiments.

Improved HTML summary output.

The HTML-based summary output has been redesigned and improved. On
this new implementation, columns are colored according to its nature: DNA,
RNA or proteins, following the colour scheme used by Clustal, Jalview and
the PFAM-Squared Server (see web). Additionally, there is a bar to indicate
which columns are kept, dark grey, or removed, light grey. Moreover, there
as many bars as scores used to trim the alignment with the different scores
for each columns. In these cases, bars contains a gradient of 12 different
colours covering scores from 0, the lightest colour, to 1, the darkest one.

Manual selection of sequences to be removed.

The functionality for removing user-defined columns has been comple-
mented with the possibility of removing specific sequences from the input
alignment.

Refining existing trimming methods: asking for a minimum block size.

In order to avoid using single (or very small blocks of) columns, it is possible
to ask the program to keep only those blocks of a minimum size predefined
by the user. This option is very useful when input alignment is large enough

http://ekhidna.biocenter.helsinki.fi/pfam2/clustal_colours
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so that independently of the used method, large continuous portions of the
alignment are still recognizable.

Figure 5.1: An example of an HTML-based summary output from trimAl.
Different filters applied by trimAl to remove columns in the input alignment
are shown. Dark grey colour indicates which columns have been kept in the
final alignment and light grey which ones have been removed. Additional bars
show the score values used to trim the alignment.

Refining existing trimming methods: keeping the alignment core.

The most variable parts in multiple sequence alignments are often at the
beginning and at the end. In order to get rid of these regions, it is possible
to apply any trimming method only to these parts after identifying the
boundaries between the core alignment and the outside regions. Boundaries
are defined as the first and the last column composed only by any kind of
residue, figure 2 shows an example of such definition, highlighting these
boundaries with red lines.

Figure 5.2: Example about the identification of alignment boundaries to
differentiate the core alignment from outside regions. Once boundaries are
defined, any trimmed method can be applied to outter columns.
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Refining existing trimming methods: Selecting the alignment to be
trimmed using other alignments as reference.

One of the most useful methods to detect the potential misaligned columns
in an alignment is based on the comparison of residue consistency across
several alignments. In the published version, given a set of alignment,
the program selects the one which is more consistent among all of them
and proceeds to trim it according to the selected method/s. In the new
version, it is possible also to select which alignment is used to compute the
consistency scores for each column. Using this approximation, it is possible
to use the same set-up in a context with several sets of sequences, where
consistency across set of programs/configurations can experience a great
variation leading to select, for individual cases, alignments produced by
different strategies.

New trimming methods: Removing automatically sequence
redundancy in the input alignment.

In a context where thousands of sequences are generated everyday, it is
possible to face the situation of alignments with high sequence redundancy.
In order to accurately identify and remove such redundancy, two new
methods have been implemented. In the first one, sequences with identity
levels lower than a threshold set by the user are kept for the final alignment.
That implies sequences are collapsed into clusters according to their identity
values. Subsequently, the longest sequence, in terms of number of residues,
of each group is kept as a representative for the cluster. In the second case,
the user selects the number of final sequences for the alignment. trimAl
iteratively finds the optimal identity cut-off to get such number of clusters.

Extending benchmarks: Using real data.

In order to measure the performance of the different trimming methods
implemented in trimAl, three new datasets containing real cases have
been added to the sets of benchmarks. One of the dataset comprises
the original data from Dessimoz and Gil (2010), which was used to
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show phylogenetic information in gaps, was accessed from their website
(cbrg.ethz.ch/research/msa/). This dataset contains groups of orthologous
proteins for three different taxonomic clades eukaryotes (609 orthologous
groups), fungi (844), and bacteria (1,999). The second dataset corresponds
to 1,502 single copy proteins detected in 7 yeast genomes by Wong et al.
(2008). In addition, we downloaded the original data from (Marcet-Houben
and Gabaldón, 2009), accessed through the public database phylomedb.
org (Huerta-Cepas et al., 2011). This dataset (phylome ID = 7) contains
trees for all Saccharomyces cerevisiae proteins across a phylogeny of 12
Saccharomycotina species. The data was filtered out to keep only 857 sets
of 1-to-1 orthologous proteins.

Designing new benchmarks: Measuring accuracy of gap insertion.

Using simulated data (Capella-Gutiérrez et al., 2009) as well as real data
coming from BAliBASE v3.0 (Thompson et al., 2005), where gaps placements
are manually curated, we have measured how precise are gaps inserted by
different programs and how precise the remaining ones are placed after
applying different trimming strategies.

cbrg.ethz.ch/research/msa/
phylomedb.org
phylomedb.org
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Are gaps phylogenetically informative?: disentan-
gling the signal carried by alignment gaps and guide
trees.

5.3.1 Abstract.

Motivation: Multiple sequence alignments are generally reconstructed
using a progressive approach that follows a guidetree. During this process
gaps are introduced at a cost to maximize residue pairing, but it is unclear
whether they reflect actual past events of sequence insertions or deletions.
It has been found that patterns of gaps in alignments can be used to
reconstruct the true phylogeny, but it is as yet unknow whether gaps are
simply reflecting information that was already present in the guide-tree.

Results: We here develop a framework to disentangle the phylogenetic
signal carried by gaps from that which is already present in the guide-
tree. Our results indicate that most gaps are incorrectly inserted in patterns
that, nevertheless, follow the guidetree. Thus, most gap patterns in current
alignments are not informative per se. This affects different programs to
various degrees, being PRANK the most sensitive to the guide-tree.

5.3.2 Introduction.

Multiple sequence alignments (MSA) play a central role in modern molecu-
lar biology, and are used in a broad set of applications, ranging from phylo-
genetic analyses to the identification of functional motifs (Notredame, 2007).
Since the quality of an alignment will inevitably affect the quality of down-
stream analyses, different strategies have been proposed to improve the
quality of MSA. In the context of the reconstruction of phylogenetic trees to
establish the evolutionary relationship among a given set of sequences, a ma-
jor problem is the interpretation of gaps. Theoretically, gaps in an alignment
may serve to represent past events of sequence insertions or deletions. In
practice, however, they are generally introduced to maximize residue pairing
scores. Most alignment reconstruction programs use a progressive approach
in which most similar sequences are aligned first, following a guide-tree.
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During the alignment reconstruction, optimization is based on two main
components: residue pairing and gap penalties. In contrast to residue pair-
ings, where empirical models exist, gap penalties are rather arbitrary. As a
result highly gapped regions are generally considered unreliable (Golubchik
et al., 2007), and it is common practice to ignore them prior to phylogenetic
analyses (Talavera and Castresana, 2007; Capella-Gutiérrez et al., 2009).

A recent study has reported an unexpected accuracy of maximum parsi-
mony trees reconstructed solely from the information contained in pres-
ence/absence patterns of gaps in protein alignments (Dessimoz and Gil,
2010). This result has been attributed to phylogenetic information contained
directly in gaps introduced by alignment programs, and would imply that
current phylogenetic methods could be improved by exploiting such infor-
mation. However, for this to be true, gaps should carry independent phylo-
genetic information, truly reflecting past evolutionary events such as inser-
tions and deletions. Alternatively, due to the progressive nature of the align-
ment reconstruction, gap patterns may simply reflect information already
present in the guide-tree, which is usually reconstructed from pair-wise se-
quence distance information. If this would be the case, usage of the gap
patterns in phylogenetic reconstruction would be biased towards the guide-
tree, which is prone to contain errors. Disentangling the two scenarios is of
central importance in order to design proper strategies to exploit the poten-
tial information contained in gaps. At the same time, this task is challenging,
given the lack of a proper framework to measure the effect that guide-trees
have in the introduction of gaps. Here we develop a novel approach to assess
whether the information contained in gap patterns reflect true evolutionary
events, and whether this is different from the phylogenetic signal already
present in the guide-tree. We apply such framework to several synthetic and
real datasets and using five different alignment strategies that represent the
main alignment approaches (Notredame, 2007). Our results show that most
gaps are incorrectly inserted in patterns that, nevertheless, tend to follow the
guide-tree. Hence, gaps carry little additional information, distinct from that
already present in the guide-tree. Although, the impact of this effect varies
across datasets, some alignment algorithms are consistently more affected
than others.
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5.3.3 Methods.

Simulated and benchmark sequence datasets.

As a synthetic scenario in which the real history of insertion and deletion
events is known, we worked with one of the simulated dataset previously
used for the benchmarking of trimming methods (Capella-Gutiérrez et al.,
2009). This consists of 600 sets of 32 simulated protein sequences each
divided into 2 categories, asymmetric and symmetric, depending on the
original tree topology used to simulate the alignments. In addition,
we worked with a commonly used alignment benchmark dataset from
BAliBASE v3.0 (Thompson et al., 2005). This consists of 386 set of protein
sequences divided into 6 major datasets that are subdivided into 2 categories:
Complete, containing all residues for all sequences, and Core regions,
containing only manually curated homologous regions for all sequences.

Real sequence datasets.

We used two different sets of real sequences. First, the original data from
Dessimoz and Gil (2010), which was used to show phylogenetic information
in gaps, was accessed from their website cbrg.ethz.ch/research/msa. This
dataset contains groups of orthologous proteins for three different taxonomic
clades eukaryotes (609 orthologous groups), fungi (844), and bacteria (1,999).
In addition, we dowloaded the original data from Marcet-Houben and
Gabaldón (2009), accessed through the public database phylomedb.org
(Huerta-Cepas et al., 2011). This dataset (phylome ID = 7), which we will
refer to as yeast, contains trees for all Saccharomyces cerevisiae proteins across
a phylogeny of 12 Saccharomycotina species. The data was filtered out to
keep only 857 sets of 1-to-1 orthologous proteins.

Alignment programs.

We reconstruct MSAs using 5 different approaches, which could be classified
depending on the scoring strategies into scoring-matrix-based Mafft FFT-NS-
2 v6.712b (Katoh and Toh, 2008) and ClustalW v2.0.12 (Larkin et al., 2007),
consistency-based Mafft L-INS-i v6.712b and TCoffee v9.01 (Notredame
et al., 2000); and tree-aware-gap-placing Prank v.100701 (Löytynoja and

cbrg.ethz.ch/research/msa
phylomedb.org
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Goldman, 2008). All programs were used with default parameters. Addi-
tionally, SATé II (Liu et al., 2012), a program which combines the estimation
of the MSA and the Maximum Likelihood phylogenetic tree, was used to
evaluate its performance as an alternative to the rest of aligners used in this
work.

Accuracy and precision of gap placement.

Using the true alignments from the simulated datasets and the reference
alignments in BAliBase, we compared the opening positions of gaps in
reconstructed alignments. Gap positions were recoded using the corre-
sponding surrounding residues in reference and reconstructed alignments
(see supplementary figure S1). Gaps opened between the same residues
in the reference and the test alignment were considered true positives (TP),
whereas those present only in the reference or in the test alignment were con-
sidered as false negatives (FN), and false positives (FP), respectively. Finally,
true negative (TN) represent residues well-placed regarding to the number
of gap-blocks opened prior to each residue. Precision was computed as
P(aligner) = TP/(TP + FP) and accuracy was computed as A(aligner) = (TP +
TN) / (TP + FP + TN + FN).

Tree discordance tests.

Reconstructed trees were compared in terms of their normalized split
distance (Robinson and Foulds, 1981) with a canonical or a wrong tree. The
canonical tree was the real tree in the simulated dataset and the canonical
species tree for the Dessimoz and Marcet-Houben datasets (these trees are
represented in supplementary figure S2). The ”wrong tree” is an alternative
topology, which has the highest distance in terms of wrong splits (100%)
to the canonical species tree. Since there are many possible wrong trees
with the maximal distance to the canonical tree, for one of the datasets:
simulated data - symmetric topology, we repeated the same procedure
using 100 alternative possible wrong trees, the results obtained were similar
(see supplementary figure 3), and thus a single wrong tree was used in
subsequent analyses. The wrong trees used for the different datasets are
provided in Supplementary figure S4). The ETE package (Huerta-Cepas
et al., 2010) was used to perform all operations related to phylogenetic trees.
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Gap parsimony reconstruction.

To assess the amount of phylogenetic information contained in gap patterns,
we used the procedure proposed by Dessimoz and Gil (2010). That
is, alignments are re-coded in presence/absence patterns of gaps (2-state
character: for a given alignment, each column containing at least one gap
was considered a character and the presence/absence of a gap its state);
Subsequently, a maximum parsimony tree is reconstructed using the gap
patterns from the recoded alignment (GP), using Wagner parsimony as
implemented in Darwin v2.0 (Gonnet et al., 2000), and as described in
Dessimoz and Gil (2010).

Maximum Likelihood phylogenetic reconstruction.

Maximum Likelihood (ML) phylogenetic trees were reconstructed using
PhyML v3.0 (Guindon et al., 2010) with a discrete gamma-distribution model
with four rate categories plus invariant positions, estimating the gamma
parameter and the fraction of invariant positions from the data. LG was
used as evolutionary model and branch and topology were optimized.

5.3.4 Results.

Most gaps in sequence alignments are incorrectly inserted.

Accuracy of sequence alignments is generally assessed on the basis of
residue pairings, but only recently developed distance measures that
also include similarities in terms of gap placement have been developed
(Blackburne and Whelan, 2012). However, these distances do include
information from residue pairing differences, making it difficult to assess
what is the relative distance in terms of gap positioning and residue pairings.
To assess to what degree gaps were inserted at correct positions we used
reference alignments in BAliBASE (Thompson et al., 2005) and one set of
simulated sequences (Capella-Gutiérrez et al., 2009). Sequences in these sets
were re-aligned and the positions of the newly inserted gaps were compared
with those in the reference alignments. Our results (Table 5.1 and Table 5.1)
show that, in any given alignment, a significant fraction of the inserted gaps
(30-90%) is placed at incorrect positions. This was true for all aligners,
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and for both simulated and benchmark datasets. Surprisingly, ClustalW, a
program that is usually outperformed by other aligners in terms of residue
pairing (Kemena and Notredame, 2009), showed the best performance in
terms of correctly placed gaps in the BAliBASE benchmark.

Program Dataset Precision std Accuracy std

ClustalW2 Asymmetric 0.5082 0.0472 0.2178 0.0619
Mafft FFT-NS-2 Asymmetric 0.5358 0.0923 0.3925 0.0941
Mafft L-INS-i Asymmetric 0.5895 0.0777 0.4288 0.1137

Prank+F Asymmetric 0.4593 0.0606 0.5390 0.0710
T-Coffee Asymmetric 0.5190 0.0433 0.5288 0.0388

ClustalW2 Symmetric 0.5083 0.0532 0.3604 0.0607
Mafft FFT-NS-2 Symmetric 0.6766 0.0548 0.6074 0.0726
Mafft L-INS-i Symmetric 0.6808 0.0505 0.6403 0.0690

Prank+F Symmetric 0.5898 0.0570 0.6781 0.0523
T-Coffee Symmetric 0.5408 0.0600 0.5746 0.0690

Table 5.1: Accuracy and precision, in terms of gap placements, for the different
strategies used to reconstruct MSAs divided according to the nature of the
simulated data

Program Dataset Precision std Accuracy std

ClustalW2 BAliBASE 0.2626 0.1308 0.2876 0.1299
Mafft FFT-NS-2 BAliBASE 0.1403 0.0838 0.2069 0.1024
Mafft L-INS-I BAliBASE 0.1704 0.0908 0.2384 0.1130

Prank+F BAliBASE 0.1128 0.0533 0.2028 0.0779
T-Coffee BAliBASE 0.1189 0.0801 0.2017 0.1047

Table 5.2: Accuracy and precision, in terms of gap placements, for all
alignments present in BaliBASE, a commonly used benchmark containing real
cases.

Gap patterns follow the guide-tree, and carry little additional
phylogenetic information.

If most gaps are incorrectly placed, how can gap-patterns carry phylogenetic
information as suggested by recent reports (Dessimoz and Gil, 2010)?
One possible explanation to this apparent conundrum is that gaps are
placed following a pattern that is consistent with the phylogeny. Multiple
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sequence aligners use evolutionary information that is provided by the
guide-tree, a cladogram that dictates in which order the sequences are
initially aligned to each other. This guide-tree is generally built from the
pairwise distances of the sequences involved, and thus inherently carries
phylogenetic information. In order to test the extent to which gap patterns
follow the guide-tree, we measured the effect of altering the guide-tree. We
tested this in the previously mentioned simulation dataset and in two real
datasets: that used in Dessimoz and Gil (2010), which comprises alignments
from bacteria, fungi, and vertebrate sequences, and one taken from Marcet-
Houben and Gabaldón (2009) comprising sequences from yeast species.
More specifically, we repeated each alignment in the previously mentioned
datasets by using i) the normal procedure -enabling the program to build its
own guide-tree-, ii) forcing the use of the correct tree (or a canonical species
tree) as a guide-tree, and iii) forcing the use as a guide-tree of a synthetic
”wrong” tree having the maximum split-distance to the correct tree.

If gap patterns are mostly dictated by the guide-tree, then the use of a very
distinct guide-tree should have a large impact on the ability of gap patterns
to reconstruct the correct tree. Indeed, under such conditions one would
expect that information contained in gaps is biased towards the guide-tree
to a degree that would reflect the strength of the guide-tree dependency
of the aligner. Maximum parsimony reconstruction from patterns of gap
presence/absence has been used to show that gaps contain unexploited
phylogenetic information (Dessimoz and Gil, 2010). We thus applied the
same approach using the three different strategies mentioned above. Since
our procedure requires the program to enable using a userdefined guide-tree
without altering it, we limited our analyses to ClustalW, T-Coffee, PRANK,
and MAFFT, using the latter in two different modes: the consistency
based L-INS-i and the progressive FFT-NS-2 (Larkin et al., 2007; Notredame
et al., 2000; Löytynoja and Goldman, 2008; Katoh and Toh, 2008). Thus,
although our choice of programs is limited, it covers a range of alignment
strategies from progressive to iterative, going through consistencybased and
phylogeny-aware strategies (Kemena and Notredame, 2009).

Figure 5.3 shows the distance to the correct tree, of Parsimony trees
reconstructed from gap patterns (Gap Parsimony) in alignments using the
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alternative three guide-trees mentioned above. In most cases, the use of the
wrong tree as a guide-tree destroyed most of the signal towards the true
tree, indicating that wrong guide-trees mislead gap placement. Conversely,
the use of the correct tree as a guide tends to improve the phylogenetic
information contained in gaps. These results indicate, as expected, that
guide-tree accuracy is an important factor determining the phylogenetic
information contained in gaps. However, this does not solve the issue
of whether gaps harbor additional information as compared to the guide-
tree. Some additional lines of evidence suggest that gaps mostly carry
information dictated by the guide-tree. Firstly, alignments reconstructed
from wrong guide-trees carry phylogenetic information pointing towards
that wrong topology (supplementary figure S5). Secondly, the guide-tree
reconstructed by the alignment program is generally a better estimator of the
true topology than the tree reconstructed from gap patterns (supplementary
figure S6), indicating that the use of gap parsimony actually erodes, rather
than increases, phylogenetic information contained in the guide-tree. Finally,
Gap Parsimony trees were reconstructed for the simulated alignments
without realigning them to evaluate whether these perfectly placed gaps
are able to resemble the trees used to generate them or not. As it can
be seen (Figure 5.3 yellow dashed lines) simulated gaps cannot properly
reconstruct the simulated phylogeny. Of note, the normal process of
alignment reconstruction (blue dots) significantly erases the signal in gaps,
and only in some cases, and always using the canonical tree as a guide (green
dots), the recovered signal is similar to the one present in real gaps.

A measure for guide-tree dependency.

We have shown that most gaps are inserted incorrectly, but following a
pattern mostly dictated by the guide-tree. These effects seem to be present
in all programs but to different degrees. A measure that would allow us to
comparatively assess the guide-tree dependency of the different aligners in
terms of their gap placement would be useful to make informed choices of
methodologies or parameters. We here propose the following methodology
to derive a simple measure that captures the effect of guide-tree: Given
a two-dimensional space where the coordinates are, respectively, the split
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distances to i) a canonical tree (the true tree) and to ii) a wrong tree with
maximum split-distance to the canonical tree, a given tree topology could
be represented by its respective coordinates. If two alternative trees, each
one derived from a different alignment using either the canonical tree or the
wrong tree as a guide, are projected into this space. Then, the euclidean
distance between these points will effectively measure the effect on the
topology of altering the guide-tree. Such a plot and the derived distance
is shown for the bacterial dataset and ClustalW2 (Figure 5.4). In this
framework a high level of guide-tree dependency will produce trees that
are close to the guide-tree thus maximizing the distance in the mentioned
space. We computed this value, which we will refer to as guidescore, for other
combinations of aligners and datasets (Figure 5.5). Our results indicate that
the phylogeny-aware method PRANK is generally the most dependent on
the guide-tree. This distance measure can be applied to assess the effects
of guide-trees on other reconstruction methods, and we here assessed the
impact of guide-tree on Maximum Likelihood reconstruction, using the same
framework (Figure 5.6). Our results indicate that guide-tree determination
affects ML phylogenetic reconstruction to a much lower degree than gap
parsimony, suggesting that gap patterns are more affected by guide-tree
determination than residue pairings.

Strategies to overcome guide-tree dependency of gap placements.

We finally set out to explore potential strategies that would serve to
overcome the shown effect of gap tree dependency on gap placement. In
particular we explored two possible strategies i) minimize the effect of guide
tree dependency and ii) select gaps that are more likely to contain true
phylogenetic information (use of consistency-based aligment trimming). We
want to note that our intention is not to explore the full range of possibilities
but rather to show that the observed effect can be tackled. Intuitively,
methods that iteratively reconstruct trees and alignments, such as that
implemented in SATé (Liu et al., 2012), should be less prone to the effect of an
initially-set guide tree. Similarly, averaging over different aligners by means
of consistency-based methods such as M-Coffee (Wallace et al., 2006), would
be expected to minimize the effect. Indeed, as shown in Supplementary
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figure S7, both strategies were found to be among the least affected by the
guidetree in most of the datasets. Finally, besides minimizing the effect,
one may wish to select those gaps that are less likely to be the result of
guide-tree guidance and thus expected to contain independent phylogenetic
signal. To do so, we investigated whether consistency-based trimming, as
the one implemented in trimAl v1.4 (Capella-Gutiérrez et al., 2009), served
to select gaps that are more likely to contain true phylogenetic information.
To do so we aligned each set of sequences in forward and reverse orientation
(i.e. Head or Tails approach (Landan and Graur, 2007)) and then trimmed
the alignment using trimAl with a cut-off of 0.05 consistency score. Our
results indicate that the precision of gaps present in trimmed alignments was
significantly higher than in nontrimmed ones (Supplementary tables 1 and
2).

5.3.5 Discussion.

Altogether our results indicate that most of the apparent phylogenetic signal
carried by gaps in this analysis is actually a result of the preferential inclusion
of shared gaps in sequences that are closer in the guide-tree. In other
words, under these circumstances, many gaps do not contain additional
phylogenetic information per se but rather reflect information already
present in the guide-tree. Several lines of evidence support this. First, the
initial guide-tree produced by the alignment program is highly similar to the
canonical tree (Supplementary Figure S6) indicating that it carries a strong
phylogenetic signal. Importantly, this guidetree is usually more similar to
the canonical tree than the parsimony tree, solely based on gap information,
indicating that the use of gaps in a parsimony framework actually erases part
of the signal contained in the guide-tree. Secondly, the use of a clearly wrong
guide-tree to guide the process erodes the phylogenetic signal contained
in gaps and biases it towards the wrong tree topology (Figure 5.5, and
Supplementary figure S5). Blackburne and Whelan (2012) already noted
that the different placement of gaps by different aligners rarely altered the
inferred evolutionary histories of insertions and deletions events, but failed
to propose a possible source for such apparent contradiction. Our results
provide an answer to this conundrum by showing that all aligners follow a
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similar guide-tree in different ways, thus resulting in disparate gap patterns
that are nevertheless compatible with the same guide-tree.

We consider that these results are not in contradiction with the idea that
insertions and deletions are rare evolutionary events that can be used for
phylogenetic reconstruction. Indeed we share the opinion of Dessimoz and
Gil (2010) and others that an effort should be made in finding new ways of
exploiting this information. We consider, however, that a necessary step is to
disentangle what fraction of the apparent signal results from the guide-tree,
and identify those informative gaps that are carrying truly new phylogenetic
signal in order to avoid biases. As we have shown, in current algorithms,
the guide-tree and arbitrary gap parameters seem to dominate the nature
and strength of the signal carried by gaps. This effect may be even stronger
in alignments with more sequences and higher divergence. Finally, we
have shown possible solutions to alleviate this effect, which include iterative
reconstruction and the use of consistency across different alignments.

5.3.6 Acknowledgements

The authors want to thank Cedric Notredame for discussions on this topic.

Funding: TG group research is funded in part by a grant from the Spanish
Ministry of Science and Innovation (BFU2009-09168).

5.3.7 Supplementary material

Supplementary material can be found online at: SupplementaryMaterial.Capella-
Gutierrez&Gabaldon.AreGapsInformative.pdf

https://docs.google.com/open?id=0BzgY0fDxSj-_VWY3UnJFM3RIeHM
https://docs.google.com/open?id=0BzgY0fDxSj-_VWY3UnJFM3RIeHM


88 Multiple sequence alignment trimming

Figure 5.3: Mean distance, in term of wrong splits, to the Canonical trees of
the different Gap parsimony trees reconstructed after allowing to the programs
to build its own guide-tree (blue dots) or forcing them to use either the
canonical tree (green dots) or an alternative topology (red dots), with maxium
splitdistance to the canonical tree. Wrong splits measure the number of
topological differences between two given trees. Yellow dashed lines in the
simulated datasets indicate the signal retrieved from the real gaps using the
same gap-parsimony approach.

Figure 5.4: Example showing how to compute the guidescore for two alternative
(sets of) trees computed using different approaches. In this case, the score
is computed considering the Gap parsimony trees inferred after a normal
execution of ClustalW2 and those after forcing to use an alternative topology
with the maximum split-distance to the canonical tree
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Figure 5.5: Guidescores computed for all available datasets, simulated data in
blue and real data in green, for all approaches mentioned in the study. Gap
parsimony trees for normal execution and forcing programs to use a maximum
split-distance tree to the Canonical tree were used to compute the score.

Figure 5.6: Guidescores for two datasets, one simulated (blue) and another
one real (green) using all available methods and considering in this case two
alternative approaches for reconstructing phylogenetic trees: Gap parsimony
(darker colors) and Maximum likelihood (lighter colors). Guide scores were
computed between trees inferred after forcing programs to use either the
canonical reference trees or trees with maximum split distance to the reference
one.
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A phylogenomics approach for selecting robust sets
of phylogenetic markers.

7.1.1 Abstract.

Reconstructing the evolutionary relationships of species is a major goal in
biology. Despite the increasing number of completely sequenced genomes,
a large number of phylogenetic projects rely on the targeted sequencing and
analysis of a relatively small sample of marker genes. The selection of these
phylogenetic markers should ideally be based on accurate predictions of
their combined, rather than individual, potential to accurately resolve the
phylogeny of interest. Here we present and validate a new phylogenomics
strategy to efficiently select a minimal set of stable markers able to accurately
reconstruct the underlying species phylogeny. In contrast to previous
approaches, our methodology does not only rely on the ability of individual
genes to reconstruct a known phylogeny, but it also explores the combined
power of sets of concatenated genes to accurately reconstruct trees of species
not previously analyzed. We applied our approach to two broad sets
of cyanobacterial and fungal species, and provide two minimal sets of
seven and four genes, respectively, necessary to fully resolve the target
phylogenies. This approach paves the way for the informed selection of
phylogenetic markers in the effort of reconstructing the Tree of Life.

7.1.2 Introduction.

Evolutionary relationships among species have been traditionally inferred
using ribosomal genes (Woese and Fox, 1977), especially 16S, given their
ubiquity and high degree of conservation. With the increasing availability
of completely sequenced genomes, however, we have now a whole range
of genes at our disposal. Several phylogenomics approaches aim at using
most of the information available on sets of complete genome sequences to
derive a species phylogeny (Delsuc et al., 2005), however there is still the
need to select phylogenetic marker genes to target unsequenced species.
This poses the important question of which combination of genes is the
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most informative to establish the phylogenetic relationships of a given
group of organisms. Earlier work has focused on ranking phylogenetically
informative genes based on their availability of reconstructing a known
species phylogeny (Aguileta et al., 2008; Walker et al., 2012). The assumption
is that genes which carry sufficient information to reconstruct the known
part of the phylogeny are expected to do similarly well in so far unsampled
regions of the tree. However, this assumption is usually not proven within
the framework of phylogenetic marker selection. Additional limitations of
current marker selection procedures is that individual genes, rather than
combinations of genes, are ranked. Ideally, an informative set of genes
should be present in the studied species and remain informative when more
taxa are added to the study. In addition, to limit costs of targeted sequencing,
this set should be of a minimal possible size, but of sufficient size to carry
enough information to reconstruct a phylogeny that goes beyond the one
used in the selection phase.

To address these limitations, we here present a method to automatically
identify, from whole genome sequences, small subsets of widespread genes
that can accurately reconstruct the target phylogeny. In contrast to previous
methods our approach ranks combinations of genes, rather than individual
genes. In addition our approach uses a cross-validation technique to ensure
high accuracy when using sequences not previously seen in the marker
selection step, thus better reflecting real scenarios. To validate our method
we applied it to the selection of phylogenetic marker genes in a prokaryotic
group -cyanobacteria- and a eukaryotic group -fungi. Our results indicate
that small sets of 7 and 4 genes, respectively, are able to precisely recover the
target phylogenies, even when including species not used for the selection
of markers.

7.1.3 Material and Methods

Sequence data.

Proteins encoded in 63 and 83 completely sequenced genomes from
Cyanobacteria and Fungi, respectively were downloaded from different
sources.
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Phylogenetic tree reconstruction for individual genes.

Once sets of widespread single copy proteins were identified (see below),
the pipeline described in Huerta-Cepas et al. (2011) was used to infer
single gene tree phylogenies. In brief, sequences were aligned using three
different programs: MUSCLE v3.8 (Edgar, 2004), MAFFT v6.712b (Katoh
and Toh, 2008), and DiAlign-TX (Subramanian et al., 2008). Alignments
were performed in forward and reverse direction (i.e using the Head or Tail
approach (Landan and Graur, 2007)), and the six resulting alignments were
combined into a consensus alignment using M-Coffee (Wallace et al., 2006).
The resulting combined alignment was subsequently trimmed with trimAl
v1.4 (Capella-Gutiérrez et al., 2009), using a consistency score cutoff of 0.1667
and a gap score cutoff of 0.1, to remove poorly aligned regions. Then,
phylogenetic trees based on Maximum Likelihood (ML) approach were
inferred from these alignments. ML trees were reconstructed using the best-
fitting evolutionary model, which as selected as follows: A phylogenetic tree
was reconstructed using a Neighbour Joining (NJ) approach as implemented
in BioNJ (Gascuel, 1997); The likelihood of this topology was computed,
allowing branch-length optimisation, using seven different models (JTT, LG,
WAG, Blosum62, MtREV, VT and Dayhoff), as implemented in PhyML v3.0
(Guindon et al., 2010); The two evolutionary models best fitting the data
were determined by comparing the likelihood of the used models according
to the AIC criterion (Akaike, 1974). Then, ML trees were derived using these
two models, using the default tree topology search method NNI (Nearest
Neighbor Interchange), and the one with the best likelihood was used for
further analyses. A similar approach based on NJ topologies to select the
best-fitting model for a subsequent ML analysis has been previously shown
to be highly accurate (Huerta-Cepas et al. (2011)). Branch support was
computed using an aLRT (approximate likelihood ratio test) parametric
test based on a chi-square distribution, as implemented in PhyML. In all
cases, a discrete gamma-distribution with four rate categories plus invariant
positions was used, estimating the gamma parameter and the fraction of
invariant positions from the data.
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Reconstruction of reference species trees.

Alignments from selected sets were concatenated to reconstruct a single
reference tree using as evolutionary model the one which best fits the data
for most of the cases. Then, a ML tree was derived using as tree topology
search method SPR (Subtree Pruning and Regrafting), a discrete gamma-
distribution with four rate categories plus invariant positions and estimating
from the data the gamma parameter and the fraction of invariant positions.
Branch support was computed using an aLRT (approximate likelihood ratio
test) parametric test based on a chi-square distribution, as implemented in
PhyML v3.0 (Guindon et al., 2010).

Construction of training and testing sets for cross-validation.

Available genomes were split into two sets: i) the training set, accounting for
around 2/3 of the available genomes, which was used to identify potential
gene markers, and ii) the training dataset, comprising the remaining 1/3
of the genomes, which was used to evaluate whether marker genes were
widespread and phylogenetically informative when species not included in
the selection of markers are included. Composition of both sets are made
randomly but a manual inspection phase ensured that representatives for the
different taxonomic groups were present in both training and testing sets.

Ranking of individual phylogenetic marker genes.

A first step in the selection process identifies widespread proteins present in
single-copy in all genomes of the training set. This is done by performing
a BLAST (Altschul et al., 1990) search from a seed species into all other
genomes, and selecting those proteins with a single hit (e-value cut-off 10-
5 and coverage ¿50%) in every other genome. The cut-off in terms of number
of species in which the marker should be present could be relaxed if a very
limited number of genes fulfill this criterium. The selection of the seed
species is arbitrary and more than one seed can be used in order to increase
the number of detectable single-copy proteins. Here, we selected multiple
seed species, one from each of the four and five major phylogenetic groups
in Cyanobacteria and Fungi, respectively (species used as a seed are marked
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figures 2 and 3, respectively, with dark grey boxes). Each seed species
defines a set of widespread proteins, which may overlap significantly with
those obtained from the other species. The union of all sets is used as the
initial set of widespread groups of homologous proteins present in single
copy. Then, proteins in each homologous group is aligned and used to
reconstruct a gene tree (see above). In addition, a reference species tree is
reconstructed from the concatenation of all alignments. Then, each marker
is ranked according to its ability to reconstruct the reference phylogeny. For
this the distance of the reconstructed individual gene tree to the reference
phylogeny is measured using the Robinson and Foulds distance (Robinson
and Foulds, 1981).

Selection of combined minimal sets of phylogenetic marker genes.

In order to get a first estimation of how many phylogenetic markers
are needed to fully recover the reference species tree, a progressive
concatenation of individual gene sets is performed as follows: Sets of genes
are concatenated, progressively, according to its score against the reference
tree. That is the n top-scoring markers are concatenated and used to
reconstruct a species phylogeny (see below). This is repeated from n = 2
to n = m, being m the minimal number of concatenated marker genes that
reach a cut-off Robinson and Foulds distance to the reference tree (we here
used a distance cut-off of 0). This set of m marker genes is referred to as the
initial marker set. Then, another iterative phase is started to find subsets of
size smaller than m, which nevertheless reach the same cut-off distance. To
do so sets of size ranging from 2 to m-1 are formed by randomly subsampling
genes from the initial marker set. Each subset is scored according to the
Robinson and Fould distance to the reference tree. This iterative process
finishes when either i) all possible combinations have been explored, ii) at
least one smaller combination with distance lower than the cut-off has been
found, or iii) a number of predefined iterations has been reached (we here
explored a minimum of 100 combinations). When one smaller combination
is found, the iterative process can be re-started, setting that combination
as the initial marker set. On the case of exploring all possible combination
without finding a smaller sets of genes, the initial marker set is returned as
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the minimum possible concatenation of individual gene sets that recover the
reference tree.

Validation.

After the selection of one or more potential combinatorial sets of marker
genes, two different tests are carried out to verify the ability of these
sets to properly reconstruct the phylogeny when including species not
present in the selection phase. Firstly, for each genome in the testing
set, a new reference tree is reconstructed as described above that includes
all species in the training set plus the new species. Then, the ability
of the phylogenetic marker set to recover that topology is measured by
reconstructing a phylogeny of the same set of species using only the set of
phylogenetic marker genes. In a second test, only the new set of genomes
(the testing set) is used to derive the reference topology and the tree based
on the set of marker genes. Marker genes and the set of widespread genes
are found in the new genomes using BLAST (see above) searches from the
ones identified in the training phase. Then, both topologies are compared
in terms of the Robinson and Foulds distance to evaluate the ability of the
set of marker genes to recover the reference topology. Results on the cross
validation tests provide the means to choose among different marker gene
sets derived in the first phase, and to estimate the ability of the selected
markers to go beyond the species used in their selection.

7.1.4 Results.

From individual gene markers to combined sets.

The rationale behind the proposed methodology is that phylogenetic marker
genes are generally used in combination, rather than in isolation, and that
their performance to reconstruct accurate phylogenies should be evaluated
beyond the set of species used for their prioritization. Like other recently
developed genome-wide methods (Aguileta et al., 2008), our procedure
starts by evaluating the ability of single gene trees to recover a reference
species phylogeny. This produces a ranked list of marker genes. While
other procedures stop there, ours goes one step further and evaluates
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combinatorial subsets of marker genes. This is done using a multi-attribute
optimization of two conflicting criteria: a minimal gene size, and a maximal
information content. A final cross validation step evaluates the performance
of such selected gene marker subsets to reconstruct accurate phylogenies
including species not previously seen.

In brief, our proposed pipeline proceeds as follows (see figure 1), additional
details are provided in the material and methods section. The set of available
genomes for a given taxonomic phylum is divided into two sets. One set,
comprising two thirds of the available genomes, is used as the training
set to prioritize sets of phylogenetic markers. This is done by creating a
reference phylogeny using all available widespread, single-copy genes and
testing the ability of each individual gene marker to recover this phylogeny.
This produces a ranked list of phylogenetic gene markers. A first iteration
will define the minimal set of marker genes to be used in combination by
sequentially adding marker genes following their order in the ranked list,
until a phylogenetic analyses of the concatenated alignments of the marker
genes reaches a predefined distance to the reference tree. Here we used a
Robinson and Foulds (Robinson and Foulds, 1981) distance of 0 as a cut-
off, but other thresholds and distance measures could be used. The genes
included in this combination, referred to as initial marker set, constitute
the entry point for a second iteration aiming at finding smaller subsets of
marker genes, which nevertheless have the same potential to recover the
reference phylogeny. This second iteration finds one or several combinations
of phylogenetic markers that are evaluated for their potential to recover a
reference phylogeny that includes species not present in the training set. For
this the remaining one third of available genomes not used in the training set,
i.e. the testing set, are used in two different ways: 1) each one of the genomes
of the test set is added to the training set, and the selected sets of marker
genes are tested for their ability to correctly place the newly added species;
and 2) the selected sets of gene markers are tested using only the genomes
in the test set. Altogether, the results of the two iterations of phylogenetic
marker set selection and the validation analyses constitute a valuable source
of information on the ability of selected combinations of marker genes to
assess the phylogenetic relationships of species beyond those used in the
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marker prioritization. To assess the potential of this pipeline for the selection
of marker genes in real data, we chose one prokaryotic and one eukaryotic
phyla for which the reconstruction of the tree of life is an active field of
research: Cyanobacteria and Fungi.

Seven gene markers for cyanobacteria phylogeny.

Cyanobacteria are prokaryotes capable of oxygenic photosynthesis, and the
origin of the chloroplasts of today’s green plants. Being about 3.5 billion
years old (Schopf, 2002), they now inhabit all ecosystems and continents
on earth, including the Antarctic. Taxonomy and phylogeny were always
challenging in the cyanobacteria. For prokaryotes, they are comparatively
feature-rich in their morphology, but still the number of morphological traits
is insufficient to provide enough information for a phylogenetic analysis.
Already the first molecular analyses based on 16S rDNA only suggested
that the traditional classification of cyanobacteria is highly artificial. e.
g. Giovannoni et al. (1988). Although the 16S rDNA ist still the most
common phylogenetic marker in cyanobacteria, other genes have been used
to generate phylogenies at various taxonomic levels, e.g. gyrB, rpoC1, rpoD1
(Seo and Yokota, 2003), nifD (Henson et al., 2004), and others (see (Kauff and
Büdel, 2011) for an overview). However, the availability of specific single
locus data varies tremendously across taxa and species, and the number of
taxa for which sequence data is available decreases quickly as the number of
loci increases. As a result, data sets with larger numbers of loci often include
only few cyanobacterial taxa.

We applied our proposed method to identify reliable sets of markers genes
using 62 species with completely sequenced genomes. In the training phase,
a reference tree for 43 species was inferred using a concatenated alignment
of 287 single-copy genes present in all species (Figure 7.2 panel A). This
tree is fully congruent, for the shared species, with a recently phylogeny
based on 340 genes (Swingley et al., 2008), except for the relative positions of
Acaryochloris marina and Thermosynechococcus elongatus. Our pipeline defined
an initial marker set of 34 genes able to fully recover the reference phylogeny.
The iterative search for smaller sets with an equal potential yielded a subset



7.1 Robut sets of phylogenetic markers. 121

of seven genes (see table 1). Cross-validation tests on the remaining 19
genomes showed that in 17 (89%) of the cases the seven marker genes were
found and they were able, when used in combination, to correctly place
the test species. In the remaining two cases, only six of the seven marker
genes were found, which yielded a topology that correctly placed the test
species but which showed small differences with the reference trees (2.5%
of different splits). Finally, when the seven marker genes were used to
reconstruct the 63-species phylogeny including all genomes in the training
and testing sets, they resulted in a topology largely similar to the reference
tree (Figure 7.2 panel C) except for two conflicting nodes, of which one is
due to a change in the arrangement of some strains of the same species.

Four gene markers for the fungal tree of life.

With estimated 1.5 million species (Hawksworth, 2001), fungi constitute
one of the most diverse eukaryotic groups. In addition, their generally
unicellular organization and their broad phenotypic and metabolic plasticity
makes genetic approaches the best suited for establishing fungal diversity
and phylogenetic relationships. Previous studies to establish phylogenetic
relationships in fungi have used widespread gene markers such as subunits 1
and 2 of RNA polymerase II, elongation factor 1, -tubulin, and mitochondrial
ATP synthase (James et al., 2006; Walker et al., 2012). In addition, as a
result of the growing availability of fully-sequenced fungi, genome-wide
approaches are increasingly being used (Marcet-Houben and Gabaldón
(2009) and others). Despite large international initiatives to sequence
thousands of fungal genomes (e.g. http://1000.fungalgenomes.org), the
need for phylogenetic markers to target a broader diversity as well as
unculturable species will still exist for the coming years. We thus applied
our approach to select stable phylogenetic markers using 83 available fungal
genomes belonging to the Ascomycetes taxonomic group. A reference
phylogeny based on 169 widespread, single copy genes of the 55 species
in the training set is largely congruent (Figure 7.3 panel A), for the shared
species, with earlier reconstructed trees (Wang et al., 2009; Capella-Gutiérrez
et al., 2012). The sequential concatenation of markers in decreasing order
of their phylogenetic informativeness, defines an initial marker set of seven

http://1000.fungalgenomes.org
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genes to accurately recover the reference topology. The subsequent sampling
and testing of subsets reduces the number of necessary markers to only 4
genes (table 2). Of note this number is smaller than the six-gene marker
set used in previous large-scale phylogenetic surveys of fungi (James et al.,
2006; Schoch et al., 2009). A validation of this set of marker genes in the
testing set, comprising 28 species, showed that in most cases (25 genomes)
the four genes could be found in single copy, while in three genomes one
of the marker genes was missing or in multiple copies. In all cases the gene
marker set was able to reconstruct an expanded phylogeny with less than
6% of wrong-splits, being fully congruent in 12 (43%) of the species. In
the second test performed using only the genomes from the testing set, full
agreement was found between the trees derived using either the complete
sets of single-copy genes or just the set of marker genes (Figure 7.3 panel
B). Altogether our results show that the four selected gene markers, used
in combination, have a strong potential to reconstruct accurate phylogenies
of fungal species (Figure 7.3 panel C) and that they will be valuable in the
expansion of the fungal tree of life.

7.1.5 Concluding remarks.

Reconstructing the Tree of Life is a daunting task that will require the
combination of diverse efforts and methodologies. It is most likely that the
expansion and increase in resolution of the Tree of Life will proceed through
the agglutination of several studies. Some, based on complete genomes will
establish a backbone of the main lineages, while some more focused studies
will resolve internal diversity within a specific clade based on targeted
markers. In addition the expansion of the Tree of Life towards less explored
clades will likely proceed in a two steps manner. First, an overview of
phylogenetic relationships within the new clades will be sketched through
targeted amplification and analysis of selected phylogenetic markers. Then,
based on these results, several species will be selected to be completely
sequenced and thus provide a first backbone of the new clade, from which
to build on in order to increase resolution. In all these contexts, the informed
selection of phylogenetic marker genes constitute a necessary step. Here,
we have developed a new approach that is based on the selection of sets
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marker genes from completely-sequenced based on their combined power
to resolve a reference phylogeny. The assessment of combination of genes,
rather than in isolation, constitutes one of the major novelties of the proposed
approach. This, in our view better reflects current scenarios in which
several, rather than a single phylogenetic marker is obtained from a set of
selected species. In addition, as we have shown here for Cyanobacteria and
Fungi, the exploration of combinatorial effects of the combination of good
phylogenetic markers is able to reduce the number of selected markers while
keeping a similar potential for phylogenetic reconstruction. Furthermore,
our procedure comprises a cross validation test to assess the performance of
the selected markers outside the genomes used in the selection of marker
genes. This is, to the best of our knowledge, the first time that such a
validation is built-in in the marker selection pipeline. As shown here, the
validation test provides information on how the gene markers will behave
when used on additional species, as well as an indication of how the
resolving power may diminish when expanding the tree to include other
species within the clade. These are important considerations for the selection
of phylogenetic marker genes, and for which tools were so far lacking. Thus
our proposed approach fills in an important gap in the field of phylogenetic
marker selection. Additional criteria, such as the suitability of markers for
primer design and experimental amplification are not specifically tackled
here and should be considered in downstream analysis. Altogether our
results show that our approach is a valuable tool for the informed selection
of phylogenetic markers.
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Uniprot Id Length Evidence Description

B2IVU1 246 AA Inferred from
homology

Probable 2-phosphosulfolactate phos-
phatase.

B2J427 979 AA Inferred from
homology

Glycine dehydrogenase [decarboxy-
lating].

B2IT89 480 AA Inferred from
homology

Trigger factor.

B2IW68 816 AA Inferred from
homology

Phenylalanyl-tRNA synthetase, beta
subunit.

B2J5B7 719 AA Predicted RNA binding S1 domain protein.
B2J6R0 312 AA Predicted Cytochrome oxidase assembly.
B2J980 1087 AA Inferred from

homology
Carbamoyl-phosphate synthase, large
subunit.

Table 7.1: List of selected phylogenetic marker genes in Cyanobacteria. Protein
information has been taken from Nostoc punctiforme.

Uniprot Id Length Evidence Description

YHR186C 1557 AA Evidence at
protein level

Target of rapamycin complex 1 sub-
unit KOG1

YMR012W 1277 AA Evidence at
protein level

Clustered mitochondria protein 1

YJL029C 822 AA Evidence at
protein level

Vacuolar protein sorting-associated
protein 53

YAR007C 621 AA Evidence at
protein level

Replication factor A protein 1

Table 7.2: List of selected phylogenetic marker genes in Fungi. Information
about protein is related to Saccharomyces cerevisiae.
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Figure 7.1: Schematic representation of the marker selection pipeline including
the training and the testing phases. The iterative process of searching potential
sets of marker genes finishes when either a group of genes, smaller than initial
marker set, is found or all possible combinations have been explored.
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Figure 7.2: Cyanobacterial phylogenetic trees comprising different sets of
species. A) Reference tree for the training phase, comprising 43 species, used
to look for potential groups of marker gene. Dark gray boxes indicate which
species were used as seed to perform the BLAST search. B) Tree derived from
the concatenation of the group of 7 gene markers. Species have been marked
with light gray boxes to highlight their positions in the bigger tree. C) Tree
inferred using the concatenation of the set of 7 gene markers for the 62 species
used in this study. Shadow boxes indicate conflicting nodes from this tree and
the previously ones reconstructed.
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Figure 7.3: Fungal reference trees for different set of species. A) Species tree
used as reference in the training phase. This tree has been inferred using the
concatenation of 169 single-copy proteins present in 55 species. Dark grey boxes
indicate which species have been used as seed to perform the BLAST search. B)
Phylogenetic tree inferred using the set of 4 marker genes for the 28 species
used in the testing phase. C) Phylogenetic tree inferred from the set of 4 marker
genes for all species in the study. Full agreement between this tree and the trees
inferred in the training and testing phase when species are superposed.
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During this thesis I have worked on different methodological aspects related
to phylogenomics. In addition, to evaluate the applicability of such work
to real data, I have used these methods to resolve long-standing biological
questions. Each chapter of this thesis has its specific discussion section. Here,
I will summarize the general implications of my research at the same time I
will offer my particular view about the future of phylogenomics.

8.1 Reconstructing genome-wide collections of phylogenetic
trees.

Since the first phylogenetic tree was constructed from molecular sequences
by Zuckerkandl and Pauling (Zuckerkandl and Pauling, 1965), many and
diverse methodological improvements have been achieved. Nowadays, we
are able to construct thousands and thousands of single gene trees in an
automated manner using powerful computers and sophisticated methods.
In this context, I have contributed to the development of a very efficient
pipeline that enables automated evolutionary analyses of newly-sequenced
genomes. Moreover, this pipeline constitutes the basis of the largest
repository of pre-computed phylogenies (phylomeDB). Although current
approaches can deal with the heterogeneous nature of the data, there is still
room for further improvements.

In a phylogenomics context, the first step for reconstructing phylogenetic
trees is the search of homologous sequences. It is a common practice to
use only the longest gene transcript in the process, since this is the one
carrying the most information. However, the use of the longest transcripts,
also known as isoforms, is not always the most appropriate strategy due to
extreme variations, in terms of sequence length. Such variations can make
difficult the reconstruction of alignments and, therefore, impact negatively
in the final results. It is expected that the situations get worse with the
deluge of data coming from different genome projects, especially those
generating transcriptomic data. So, a further improvement of our pipeline
would ideally consider more clever ways to select upon several alternative
transcripts.
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Selecting the most appropriate combination of transcripts is not a trivial task.
All possible combinations have to be evaluated and scored to select the one
which maximizes the information in terms of alignable residues. However,
the availability of different isoforms per gene offers a new opportunity
to evaluate the robustness of methods to infer phylogenetic trees. Using,
for instance, the best combination of isoforms, according to any scoring
system, and the longest isoforms it is possible to compare their agreement
in terms of the reconstructed trees. On a more biological ground, studying
the evolution of isoforms can offer a new opportunity to understand how
different mechanisms have evolved and whether different gene parts are
under different evolutionary constraints. For instance, the longest isoform
of gene p53 is involved in apoptosis, whereas a shorter variant is preventing
the occurrence of such mechanism of cellular death (Jänicke et al., 2008).

After identifying sets of homologs, multiple sequence alignments are
reconstructed prior to inferring phylogenetic trees. With the years, many
improvements and alternatives have been proposed to build alignments, so,
nowadays, in a context of a continuously growing number of sequences, the
challenge is how to align them. Independently of how complex the methods
are, the progressive nature of the alignment process makes it difficult to
escape from the effect of algorithmic decisions taken in earlier stages. Such
decisions are, to a more or lesser extent, propagated along the aligning
process so that the larger the number of sequences, the more likely it is to
have poor alignments. An alternative for constructing an accurate alignment
is the one explored, for instance, in Clustal Omega (Sievers et al., 2011).
In this case, sets of sequences are split into small clusters, then, clusters
are either split again or aligned depending on how many sequences they
contain. Once all clusters are aligned, they are merged to produce the final
alignment. Although it is not the perfect strategy to align homologous
residues on top of each other, it allows the reconstruction of alignments with
a minimal loss of information.

Once alignments are ready, it is possible to post-process them prior to any
analyses. During my thesis, I have deeply worked in different alternatives
to post-process alignments in order to increase the signal-to-noise ratio.
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I have paid special attention to the significance of gaps in alignments.
Ideally, gaps should represent only biological events of past insertions and
deletions. However, in practice, gaps are generally introduced to maximize
scoring functions during alignment reconstruction without a real biological
meaning. Such decisions lead to gappy regions where making any inference
is very difficult. It was in 1991 when Lake (Lake, 1991) realized, for the first
time, the impact of gaps in downstream phylogenetic analyses so, therefore,
a common practice is to remove gappy positions. Removing such positions
became a manual task that does not allow reproducibility and, what is even
worse, it is not feasible in a phylogenomics context (Castresana, 2000). As a
result different programs have been published during the last decade to deal
with this situation. It has been shown that the removal of gap-rich positions
contributes significantly to improvements in the accuracy of downstream
phylogenetic analyses (Talavera and Castresana, 2007; Capella-Gutiérrez
et al., 2009). The biggest challenge for all these methods is the accurate
identification of such noisy positions, since the removal of all positions
containing gaps is often too aggressive.

It is generally accepted that most conflicting positions are gap-rich but
it has recently been noticed that not only gaps are affecting downstream
analyses. Other biases in alignments such as the presence of heterogeneous
positions (Philippe and Roure, 2011) or the highly sensitivity of residues
to the way they are being aligned (Landan and Graur, 2007) can have a
strong impact in any posterior analysis, especially, in phylogenetic studies.
Again, methods should be able to identify accurately such regions and,
therefore, remove them before making any inference. In order to identify
heterogeneous regions programs such as BMGE (Criscuolo and Gribaldo,
2010) uses entropy values for their identification and posterior removal. To
identify residues pairs highly sensitive to the algorithm and/or parameters
used to make the alignment, it is necessary to use more than one alignment
in order to score each pair and remove those that are badly ranked (Capella-
Gutiérrez et al., 2009). In my thesis, one of the main lines has been the
development of methods able to automatically adjust trimming parameters
in a phylogenomics framework with thousands of alignments of diverse
nature, in terms of the number of sequences, number of residues and
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divergence rates.

Despite the publication, in recent years, of different programs designed to
accurately identify conflicting positions and their posterior removal. Further
work is still needed to create a golden benchmark datasets, similar to
BAliBASE (Thompson et al., 2005) or OXBENCH (Raghava et al., 2003)
for testing multiple sequence alignments, containing simulated and real
data. Such dataset would allow to settle the appropriate background for
comparing different approximations and effectively measure the impact
of individual trimming strategies in downstream analyses. The use of
simulated data has been questioned because they do not appropriately
reflect the complexity found in real situations. However, using them is the
only way to precisely control different parameters and, thus evaluate the
performance of diverse methods. The use of real data will allow to capture
all complexity of authentic sequences and, therefore, see whether proposed
methods are able to discriminate real signal from noise. Moreover, scoring
systems to evaluate gaps placements are needed, Blackburne and Whelan
(Blackburne and Whelan, 2012) have reviewed current scores for comparing
residues pairing and proposed a new measure for gaps placement but we
are far of explaining how well a gap is opened or kept in alignments.

In contrast to the efforts of identifying conflicting positions, specifically
the gappy ones, for their posterior removal, it has been proposed that
gaps carry phylogenetic information that is being systematically ignored
in downstream analyses (Dessimoz and Gil, 2010). Although the study
highlights that gaps should be consider as valid information, representing
biological events, and, thus, used in evolutionary inferences, there is not
a clear distinction between the signal carried by gaps due to true past
evolutionary events and the signal reflecting already inferred relationships
due the reconstruction of the guide tree. Without making such distinction
using gaps for posterior analyses should be taken with caution because it
is possible to erode the phylogenetic signal present in the residues just by
adding random noise derived from algorithmic decisions. Furthermore,
there is the real danger of biasing the results towards the error-prone guide-
tree.
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Regarding the phylogenetic inference, there are two main issues to deal
with. The first of them is the incredible amount of computational power
needed for phylogenetic inferences, especially, when more complex models
are considered. To tackle this problem, there are some initiatives in the
community aiming to implement phylogenetic methods in GPUs (Graphic
Processor Unit), since these processors can execute parallel computations
and, therefore, speed-up the general process. The main problem with
these re-implementations is the complexity of the current algorithms since
not all mathematical operations can be executed in such processors. The
second issue relates to the phylogenetic inference itself, methods assume that
residues evolved independently at the same rate but it has been shown that
this is not true. To deal with different evolutionary rates, programs can have
different categories but so far there are not general models which account for
the interdepency of residues. If one day such models are available, they will
surely need to take into account large computational requirements.

I have previously mentioned the need for having golden datasets for
benchmarking purposes regarding to the alignment trimming step. There
is an urgent need as well to design general benchmarks to evaluate different
phylogenomics pipelines. In this direction, the quest for orthologs project
(Gabaldón et al., 2009) looks like a reasonable strategy to evaluate the final
result of strategies that differ in their conception: the reconstruction of
phylogenetic trees for either all genes encoded by a genome, i.e. phylomes,
or just for gene families. Each strategy have their own advantages
and disadvantages. In similar terms, it would be desirable to account
with initiatives to design appropriate benchmarks for alignments, in an
evolutionary sense, since the correctness of alignments have a great impact
in the general performance of any approximation.

In an interconnected world, it is equally important to generate accurate data
as well as to have standards for sharing and tracking all the information.
Hence, public databases face the enormous challenge of making compatible
the results of sophisticate pipelines with other sources of information across
several databases and versions. In return to this effort, the availability
of a maximized amount of readily usable information will facilitate the
generation of new knowledge in a variety of biological fields.
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8.2 Applying phylogenomics methods to address relevant
biological questions.

Having an accurate phylogenomics pipeline is not a purpose per se, but
because it can be of great help for answering relevant biological questions.
Besides working on several methodological aspects in the first part of
my thesis, I applied this knowledge to the long-standing question of
the phylogenetic position of the fungal group Microsporidia. Resolving
this question poses many challenges, not only methodological but also
conceptual since it has been very difficult to demonstrate that their position,
the earlier branch in the fungal tree of life, is stable and not the result of
the long branch attraction artifact. Long branch attraction is one of the most
problematic biases in phylogenetics since it may create robust clustering of
highly diverging groups despite their real phylogenetic positions.

In order to prove that our results shows the real placement of this fungal
group, rather than being the product of an artifact, we have combined
several phylogenomics approximations to discriminate real phylogenetic
signal from noise. Although our result is strong enough and consistent
across the different used strategies, the discussion about the real placement
of this group will continue until more species around the base of fungi
will be available. New species will allow to shorter the branches in the
species tree, and, therefore, alleviate the possible long branch attraction
artifact. Moreover, these species will provide, presumably, better insights
about some intriguing microsporidian characteristics such as the lost of
eukaryotic organelles such as the mitochondria, the peroxisomes, or the
golgi apparatus. In a more biomedical aspect, elucidating the phylogenetic
position of microsporidia is a first step to understand their evolution and,
therefore, look for developing vaccines against these opportunistic human
pathogens which seriously compromise the health of immuno-compromised
patients (Keeling and Fast, 2002).

One of the biggest challenges in phylogenomics is the accurate reconstruc-
tion of trees establishing the evolutionary relationships among of a set of
species. Although current methods allow to infer precise phylogenies from
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a large enough sample of informative genes, the key issue is how to precisely
select this sample when whole-genome approaches are not applicable. I have
contributed to this problem by developing a new method for finding phylo-
genetically stable gene markers, which enables, for the first time, to exploit
available genomic information to design marker sets that would work be-
yond the set of species used for their design. In fact, we have predicted sets
of informative gene markers in order to elucidate the Cyanobacterial tree
of life. Such predictions are being validated in the frame of a collaboration
project with the molecular phylogenetics group in Kaiserslautern, Germany.
One of the biggest problems until now has been the lack of gene markers
that are sufficiently conserved across evolutionarily distant set of species for
being identified at the same time that such markers are sufficiently differ-
ent to accurately resolve deep phylogenies. Apart of identifying such genes,
our method offers the possibility of increasing rapidly the taxonomic sam-
pling of species tree using any of available sequencing technologies from the
traditional PCRs to the new NGS techniques.

In a more practical manner, we have used phylogenomics techniques for a
better understanding of different biological process. I have participated in
several plant genome projects: Chondrus crispus -a multicellular red algae-
, Cucumis melo -melon-, Beta vulgaris -sugar beet- and Phaseolus vulgaris -
common bean-, where we have elucidated different mechanisms such as
the evolution the resistance gene families, the transposon activity specific
for each species, the possibility of Whole Genome Duplications events or
how certain genes families -mitochondrial genes- can be traced to their
bacterial origin through symbiosis. Given the benefits of a comprehensive
evolutionary approach already on the annotation phase of a genome, I
think these approaches will be more and more common in future genomics
projects.

8.3 Final remarks.

To gain a full understanding of how species relate to each other and how
different mechanism have been gained or lost across the evolution of species,
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phylogenomics is highly depending on two complementary aspects. So, the
advance of phylogenomics as science depends upon a full interaction of the
development of methods for answering biological questions and the lessons
that can be learnt from such answers to improve current methods.

I foresee an exciting future where we will be able to understand known and
unknown mechanisms. Such understanding will ultimately lead us to a
significant improvement of our lives in two ways: increase our quality of
life per se and to a better preservation of our planet because as Theodosius
Dobzhansky stated in 1973 ”Nothing in Biology Makes Sense Except in the
Light of Evolution”.
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• A newer pipeline for automated phylome reconstruction has been
developed which improves in speed and accuracy over the preceding
one. As compared to existing pipelines, this one is able to test more
evolutionary models and efficiently exploit alignment variability to
better select informative residues.

• A new version of PhylomeDB has been implemented with an im-
proved database design that enables appropriate scaling without com-
promising performance. Currently, 11,5 million proteins of 870 species
and over 2,6 million trees and alignments are stored, being phylomeDB
the largest existing phylogenetic repository.

• Removing conflicting positions from multiple sequence alignments
leads to improved signal-to-noise ratios and more accurate down-
stream phylogenetic analyses.

• Dynamic selection of trimming parameters is crucial in the context of
large-scale phylogenetic analyses comprising large and heterogeneous
datasets of sequence alignments. Several automated procedures that
achieve efficient parameter selection have been implemented in trimAl.

• Gaps carry phylogenetic information, but current methods are unable
to distinguish the true phylogenetic signal inherent to gaps from that
inherited from the guide tree inferred to reconstruct the alignment.

• The use of consistent signals and diverse phylogenomics methods has
enabled to overcome Long Branch Attraction artifacts and resolve, with
strong support, the phylogenetic position of Microsporidia as the most
basal group among sequenced fungi.

• A new method is proposed for the selection of stable phylogenetic
markers that exploits information available in sequenced genomes.
This method has been successfully applied to the selection of markers
to chart the fungal and cyanobacterial trees of life.
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V, Hénaff E, Câmara F, Cozzuto L, Lowy E, Alioto T, Capella-Gutiérrez
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Lemaitre, C., Barré, A., Citti, C., Tardy, F., Thiaucourt, F., Sirand-Pugnet, P., and Thébault, P.
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