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Resum

En aquesta tesi es proposa un formalisme per analitzar conjunts de dades
d’esdeveniments relacionats amb les fallades que es produeixen en les xarxes
de distribució elèctrica, i explotar automàticament seqüències d’esdeveniments
registrats pels monitors de qualitat d’ona instal ·lats en subestacions. Aquest
formalisme permet cercar dependències o relacions entre esdeveniments per
trobar patrons significatius. Quan els patrons es troben, es poden utilitzar
per descriure millor les situacions de fallada i la seva evolució. Els patrons
també poden ser útils per a predir fallades futures mitjançant el reconeixe-
ment dels successos que coincideixin amb les primeres etapes d’un patrò.

Un conjunt d’esdeveniments datats i registrats en un sol punt de la xarxa
durant un peŕıode de temps espećıfic es pot considerar com una seqüència
d’esdeveniments. Aquesta pot contenir diversos esdeveniments, però només
són d’interès alguns dels subconjunts que apareixen formant estructures
locals al llarg de la seqüència. Aquests subconjunts d’esdeveniments sig-
nificatius en una seqüència s’anomenen episodis i s’espera que descriguin
alguns patrons. L’existència d’aquests patrons s’explota en base al criteri
d’episodis freqüents, aprofitant algorismes de descobriment de patrons.

Diversos algorismes han estat proposats en la literatura per fer front a
les particularitats de diferents dominis d’aplicació, com ara l’anàlisi de
seqüències d’alarmes en xarxes de telecomunicacions, el descobriment de
patrons en accessos web, el pronòstic de fallades sobre la base dels registres
de les plantes de fabricació o seguiment de patrons en esdeveniments reg-
istrats a les noticies. Els resultats del procés de mineria de dades poden
variar entre els diferents algorismes, però el recompte o reducció del nom-
bre de casos dels patrons són problemes comuns en aquests mètodes. Per
tant, en aquesta tesi es proposa un mètode alternatiu per resoldre algunes
limitacions dels algorismes existents.

La freqüència és el criteri comú que es fa servir per discriminar la im-
portància d’un episodi en una seqüència d’esdeveniments. No obstant això,



aquest criteri no és suficient per avaluar la força de l’associació entre els es-
deveniments d’un episodi. La tesi descriu els ı́ndexs i mètodes més comuns
per avaluar la qualitat dels episodis. Es proposen nous ı́ndexs i estratègies,
derivats de la informació dels episodis, s’aprofiten els coneixements sobre
esdeveniments prioritaris en la seqüència i la seva aplicació s’il·lustra amb
exemples.

Aquests mètodes i estratègies proposats per descobrir patrons significatius
freqüents estan adaptats per fer mineria a seqüències d’esdeveniments reg-
istrats en les xarxes de distribució elèctrica. Els tipus d’esdeveniments són
bàsicament els sots de tensió (disminució en el voltatge RMS registrat pels
monitors de qualitat d’ona) i els incidents recollits per l’operador de la xarxa
elèctrica. Els algorismes proposats permeten descobrir relacions significa-
tives en ambdós conjunts de dades i se’n dicuteix el significat f́ısic. La tesi
mostra que és possible trobar regularitats en aquests conjunts de dades que
permeten comprendre millor l’aparició de fallades i avaries en les xarxes de
distribució elèctrica.

Paraules clau: seqüències d’esdeveniments, diagnòstic de fallades, pronòstic
de fallades, mineria de dades, fallades del sistema de potència, episodis,
mineria de patrons.



Abstract

This thesis proposes a formalism to analyse and automatically exploit se-
quences of events, which are related with faults occurred in power distribu-
tion networks and are recorded by power quality monitors at substations.
This formalism allows to find dependencies or relationships among events,
looking for meaningful patterns. Once those patterns are found, they can
be used to better describe fault situations and their temporal evolution or
can be also useful to predict future failures by recognising the events that
match the early stages of a pattern.

A set of dated events recorded at a single point of the network during a spe-
cific period of time can be considered as a sequence of events. It can contain
several events, but only some subsets of them, which appear together form-
ing local structures along the sequence, are of interest. These subsets of
significant events in a sequence are called episodes and are expected to de-
scribe some patterns. The existence of those patterns is exploited based
on the criterion of frequent episodes, taking advantage of pattern discovery
algorithms.

Different algorithms have been proposed in the literature to cope with the
particularities of different application domains such as analysis of alarm se-
quences in telecommunication networks, web access pattern discovery, fault
prognosis based on logs of manufacturing plants or event tracking problems
for news stories. Results of the mining process can vary among these dif-
ferent algorithms, but over-count or missed of occurrences of patterns are
common problems in these methods. So, an alternative method that solves
some weakness of existing algorithms is proposed in this work.

Frequency is the common criterion used to discriminate importance of an
episode with respect to others. However, this criterion is not enough to as-
sess the strength of the associations between events in an episode. The thesis
describes indexes and methods for assessing the quality of the episodes and
new indexes and strategies, derived from information of the episodes and



taking advantage of the knowledge about priority events in the sequence,
are proposed and illustrated with application examples.

These methods and strategies proposed for discovering significant frequent
patterns are adapted for mining event sequences related to the occurrence
of faults in power networks. Basically, this events are voltage dips (decrease
in RMS voltage recorded by power quality monitors) and incidents collected
by the network operator. Meaningful relationships are discovered in these
data sets through the proposed algorithms and their physical meaning is
discussed. The thesis shows that it is possible to find regularities in these
data sets of events that allow to better understand the occurrence of faults
in power distribution networks.

Keywords: event sequences, fault diagnosis, fault prognosis, data mining,
power system faults, episodes, pattern mining.
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Introduction

Power networks are submitted to continuous changes during their operation (load and

capacitors commutation, activation of protections during faults, transformer regula-

tions, etc.) that provoke the apparition of disturbances, or events, that flow through

the networks affecting quality of supply. Power quality monitoring is the discipline that

deals with those disturbances to better know how the network is performing and provid-

ing inputs to maintenance and planning departments. However, the increase of high

performance equipment (PQ –Power Quality monitors– and/or PMUs –Phasor Meas-

suring units–) being installed in substations and consumers provokes the necessity of

new methods to process these registers and sets of them automatically with monitoring

and diagnosis purposes. The application of Data Mining and Knowledge Discovery ap-

proaches to model network behaviours and the exploitation of these models for different

power quality purposes is usually known as Intelligent Power Quality Monitoring.

This thesis focus on proposing and using sequence pattern discovery algorithm to identify

and learn network behaviours from sequences of events collected in substations. Special

emphasis is put on voltage dips generated during faults and in analysing episodes of

them previous the occurrence of failures.

This chapter introduces motivation, objectives and background of the work.

1.1 Motivation of the work

The huge number and variety of components in power networks (overhead lines, ca-

bles, circuit breakers, transformers, fuses, insulators, relays, etc.) that can be affected
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1. INTRODUCTION

by failures makes impossible to deploy condition monitoring strategies to individually

supervise all of these elements. Consequently, new paradigms to assist maintenance

policies are needed. These paradigms should be oriented to extract, model and ex-

ploit useful information from historical data (call centers, event repositories and power

quality data bases, control center data bases,etc.) and on-line events generated during

both, normal and abnormal conditions (Meléndez et al., 2012).

The monitoring of power distribution networks takes place mainly in the distribution

substations where the distribution lines, feeders or loads are derived. Events, caused

by faults or normal/abnormal operation of equipment, devices and customer loads are

recorded by sensing instruments such as digital relays or power quality monitors and re-

ported to control rooms by supervisory control and data acquisition (SCADA) systems

or directly stored in data bases for further exploitation. This information is recorded

to support the network management and it is useful for several purposes such as: to

assess the levels of power quality, to know the network behaviour or to assist main-

tenance. However, current systems do not provide the tools to automatically analise

dependencies or relationships among events, and set of them, when these links really

exists. The systematic analysis and characterization of these events, and sequences of

them, is a challenging task and many research works have addressed it (Anis Ibrahim

and Morcos, 2002; Cai et al., 2010; Khosravi et al., 2009). An accurate analysis of fault

events can provide useful information to better understand how protective system per-

forms, to carry out cause-effect analysis, to anticipate outages or to improve predictive

maintenance policies.

Consider as example the events recorded in a power distribution substation plotted

in Fig. 1.1 according to their time stamp. The figure represents the elapsed time

between events plotted in a logarithmic scale and the time stamp with respect to

their occurring order. An accurate analysis of such sequence reveals that those events

occurring in short periods of time follows a pattern (linked by square marks in Fig. 1.1).

A possible interpretation is that they are caused by permanent faults. The actuation

of protective systems (automatic reclosing) provokes the apparition of such consecutive

events with the same elapsed time between them.

The tendency is to increase observability of the power distribution networks, increas-

ing also the collection of large data bases of power quality events, in part motivated

by the necessity to adapt their management towards the Smart Grid concept which
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Figure 1.1: Patterns observed on the elapsed time between events.

involves aspects such as distributed generation, electric vehicle and flexible networks.

So, adoption of strategies to deal with those event data bases and tools to automati-

cally extract useful information are required. The use of data mining and knowledge

discovery techniques can contribute to these challenging goals.

1.2 Objectives

The final objective is to recognise the existence of faulty behaviours in a power net-

work from the automatic analysis of sequences of events collected in the system. These

sequences could be for example power quality registers (voltage dips) or incidents col-

lected in the network operation center. This general objective is supported by the

following assumptions:

• Faults at nearby points of the network can induce failures of aged elements located

in the path of the overcurrent between the transformer and the affected point.

• A permanent fault, caused for example by component failure, can cause multiples
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events on the network. This behaviour is due to the actuation of the power system

protections. Actuation of protective systems can produce sequences of events at

time intervals defined by predefined acting conditions. Duration of events is also

related with the response time of these protective relays.

• Faults usually are reflected as voltage dip events whose magnitude is related with

the fault location in the network. Voltage dips with similarities in magnitude and

duration occur in a nearby region of the network.

• Transient faults are reflected as single voltage dip on the network. Usually these

events do not have similarities with other unrelated events occurred in their tem-

poral neighborhood. For example, several transient faults caused by lightnings

can occur during a storm in a short period of time, but their pinpoint location

on the network is different.

In order to achieve this goal a data mining approach and knowledge discovery is

proposed. So, the selection of features to describe events and the use of appropriate

pattern discovery algorithms is the backbone of this thesis. The following subgoals have

been fixed:

• To adapt existing formalisms to describe sequences of events occurring in power

systems.

• To analyse existing frequent pattern discovery algorithms and propose improve-

ments to focus on power events.

• To propose new strategies to discriminate significant episodes that are consistent

with faulty behaviours in the power system.

• To validate the proposed algorithms and strategies with real data from power

distribution networks.

For this purpose power quality events (mainly voltage dips) recorded in power distri-

bution substations and incidents collected in operation control centers are considered.

4



1.3 Faults and events in power distribution networks

1.3 Faults and events in power distribution networks

While faults usually are short circuits caused by dielectric breakdown of the insulation

system, failures are the termination of the ability of the components to perform their

required functions. A fault is often the result of a failure of a component, but it

may exist without prior failure (IEC60050-161, 1990). A direct effect of faults is the

apparition of sudden disturbances (voltage dips) that flow along the network affecting

the quality of supply. These disturbances and others (swells, interruptions, etc) that

are generated during the operation of the network are known as events and can usually

affect both currents and voltages. Each fault, failure or other misbehaviour of the

network have associated root causes which can be internal or external to the network,

and it is reflected as one or several events that affect the power quality.

The faults are reflected as temporary electromagnetic disturbances in the voltage

and/or current in a monitored point. They can be monitored as long interruptions,

short interruptions, dips and swells, outages or overcurrents. Deviations in voltages or

currents in the power system such as imbalances, voltage fluctuations, harmonics or

flikers are due to other factors such as load variations or nonlinear loads.

Voltage dips are the main event associated with faults (short-circuits) occurring in

the power network, but they also are related with other causes resulting in overcurrent

due to normal network operations such as motor starting, transformer energising or

load commutation (Olguin, 2005).

Voltage dips are defined as a sudden reduction of the voltage at a point in the

electrical system, followed by a voltage recovery after a short period of time, from half

a cycle to a few seconds (IEC61000-2-1, 1990) or a reduction in the rms voltage at

the power frequency for durations of 0.5 cycle to 1 minute, which is named as voltage

sag in (IEEE-Std-1346, 1998) (voltage sag is an alternative name for the phenomenon

voltage dip). Swells are a temporary increase in the rms voltage. Outages occur when

permanent faults take place in the direct path feeding the monitoring point. Short

interruptions (with a duration ranging from few tenths of seconds up to 3 minutes

(UNE-EN50160, 2011)) are usually the result of temporary faults cleared by the suc-

cessful operation of breakers or reclosers. Voltage dips and swells occur during faults

on the system that does not interrupt the supply of the monitoring point and can be
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observed upstream of the fault, in consumers fed by the same transformer and also in

other substations (fed by the same transmission network).

Other types of disturbances as partial discharges or arcing components usually occur

in previous stages of faults. They are incipient faults due to degradation of material

and can be detected using high frequency methods and specific software.

1.4 Power quality monitoring in power distribution net-

works

Power quality monitoring is concerned with measurement, analysis and treatment of

electromagnetic compatibility problems induced by deviations of voltage and/or current

from the ideal. The ideal voltage and/or current is a single-frequency sine wave of

constant frequency and constant magnitude. An additional requirement for the ideal

current is that its sine wave is in phase with the supply voltage (Bollen, 1999).

Development of automatic strategies for dealing with power quality monitoring

problems in power distribution systems include topics such as: disturbance recognition

and classification, failure analysis and forecasting, and fault location. In this field there

are two main work approaches. The first one includes the design of strategies in order

to understand the behavior of faults and the power network under faults from a power

quality point of view. The second one brings together the designed strategies to avoid

the occurrence of future faults and support the maintenance of the power network.

1.4.1 Modeling of the network performance in terms of power quality

Considering that the majority of faults occurring in power distribution systems are re-

flected in the system as voltage dips, several approaches have been developed for power

quality monitoring in terms of voltage dips activity, to evaluate the compatibility of

customer equipment as well as predict the severity of future faults under a probabilis-

tic point of view. Power quality surveys, for example, are summaries of large power

quality campaigns (one year or more) that represent voltage dips collected in an area.

They use depth-duration cumulative tables to establish comparative studies in terms

of number and severity of dips. The accuracy of the results depends on the duration

of the monitoring campaign. Extrapolation of results it is not always convenient since

the network topology and load profiles varies with time (Bollen, 1999; Olguin, 2005).
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Another alternative for estimating the behavior of voltage dips in the network is

using stochastic prediction methods (Gopi et al., 2009; Khanh et al., 2008; Milanovic

et al., 2005; Olguin, 2005). A complete estimation of the number of voltage dips and

their magnitude and duration can be obtained for the different regions of a network.

The evaluation can be made even if the power system does not exist yet because only

a network model is required.

The approaches described before are designed to know the effects of the faults on

the network. That knowledge is useful for designing mitigation strategies to reduce

the impact of faults on customers. In these approaches the voltage dip events are

treated as independent, i.e, occurring at a random process. However, other studies

show that this independence is not always true. This is for example the case of failure

components caused by natural degradation (Kim et al., 2004) or the effect of aging due

to cumulative stress (Zhang and Gockenbach, 2007). Multiple types of faults related

to the gradual degradation of different components of lines collected using advanced

equipment monitoring and data logging, are documented in (Benner and Russell, 2004,

2009; Bowers et al., 2008; EPRI, 2001).

1.4.2 Strategies to support the power network maintenance through

the prognosis of future faults

Incipient fault detection and analysis of failures is a topic of great interest for the de-

velopment of predictive maintenance policies of the electrical system. For example, the

continuous monitoring of high frequency signatures, that are characteristic of specific

types of failures, is proposed in (EPRI, 2001). A solution, described in (Faisal and Mo-

hamed, 2009), consists in analysing the presence of partial discharge currents caused by

insulation degradation before the failure occurs. Other works propose to analyse the

trend of significant parameters extracted from events occurred at a monitored point to

identify fault-pattern behaviours (Kim et al., 2004; Moghe and Mousavi, 2009). One

of the most used indices for determining that statistical trend is the occurrence time of

events. The Laplace test statistic (LTS) is used to identify the trend of incipient failures

in the system based on learned patterns from precursor events as voltage and current

disturbances in a feeder. When the LTS value reaches a certain threshold, normally

a percentage of the maximum LTS value, an alarm is activated to forecast a possible

failure with a given level of confidence. This method is used in (Kim et al., 2004)
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using high-frequency components to deal with incipient faults. It links the presence

and evolution of high frequency components with the existence of incipient faults and,

consequently, the prediction of possible failures. However, these methods require hard-

ware capable of capturing high frequency components and, if it is necessary to locate

the fault, multiple monitors –at the substation and several locations on the feeders–

must be installed as proposed in (Bowers et al., 2008). An artificial intelligence method

to predict and detect faults at an early stage in power systems components was used

in (Wong et al., 1996). ANNs are employed to monitor the states of some components

in power networks, such as switchgears and transformers with the aim of detecting and

alerting the operator before a catastrophic fault occurs.

An interesting approach is to consider the analysis and classification of faults as

sequences of events. Patterns built by a sequence of events can be exploited for predic-

tive purposes. The analysis of sequences of events is a novel approach for the diagnosis

and detection of faults in complex systems. However, few applications have been doc-

umented in the area of power networks. For example, in (Liao et al., 2003) faulty

components of a high-voltage transmission line are identified based on real-time alarms

provided during accidents. The idea is to build a set of patterns based on sequences

of alarms fixed during representative incidents and failures. Then, when a new fault

occurs, the sequence of alarms is compared with the set of patterns. A cost function is

used to find the most similar pattern. This allows identifying the source of the prob-

lem. At a different time scale, consequences of the propagation of outages in cascading

failures are studied in (Ren and Dobson, 2008). The paper focuses on 220 kV and 500

kV lines and it establishes a method to predict the probability distribution of the size

of cascading outages given an initial distribution. A branching process is used in the

search and only independent outages (not associated with the same fault) are consid-

ered. The previous scenario is different from what is considered in this thesis, since we

focus on distribution power systems and sequences of events generated by faults and

reclosing actions.

A major effort should be made to infer complete prognosis from single monitoring

points and take advantage of standard equipment already installed in many substations.

This implies the extraction and selection of adequate features from existing recorders

and the use of appropriate data mining and processing techniques capable of identifying

useful features.

8



1.5 Fault classification and episodes

1.5 Fault classification and episodes

Faults occurring in power networks can be classified according to different criteria as

duration, roots causes, number of affected phases, impedance, etc. For example, if

the duration is considered, then faults will be classified as permanent, temporary or

self-clearing (Olguin, 2005), while when root causes are considered then they can be

classified as internal or external (Barrera, 2012). Permanent faults are short circuits

that will persist until they are repaired by human intervention. Temporary faults are

those that will clear after the faulted component (typically an overhead line) is de-

energized and reenergized, and self-clearing faults are short circuits extinguished them-

selves without any external intervention. External faults are those caused by factors

do not own the network such as environment (animal, tree contacts, vehicle accidents,

etc.) and weather (wind, snow, lightnings, etc.), while internal faults are those derived

from factors related to the proper condition of the network or its components such as

components breakdown by degradation, network normal operations (starting motors,

energising transformers) or components malfunction. Fig. 1.2 shows fault classification

based on the most common criteria. Nevertheless, in the literature other attributes,

groups and subgroups can be found. For example, in (IDC-Technologies, 2000) faults

are classified into two main areas: active and passive. The active fault is when fault cur-

rent flows from one phase conductor to another (phase-to-phase) or alternatively from

one phase conductor to earth (phase-to-earth). This type of fault can also be further

classified into two groups, namely the solid fault and the incipient fault. The solid fault

occurs as a result of an immediate complete breakdown of insulation as would happen

if, say, a pick struck an underground cable, bridging conductors etc. or the cable was

dug up by a bulldozer. In these circumstances the fault current would be very high,

resulting in an electrical explosion. Incipient faults are those that start from very small

beginnings, from say some partial discharge (excessive electronic activity often referred

to as Corona) in a void in the insulation, increasing and developing over an extended

period, until such time as it burns away adjacent insulation, eventually running away

and developing into a solid fault. Passive faults are conditions that are stressing the

system beyond its design capacity, so that ultimately active faults will occur. Typical

examples are: overloading –leading to overheating of insulation (deteriorating quality,

9



1. INTRODUCTION

reduced life and ultimate failure). Overvoltage –stressing the insulation beyond its lim-

its. Under frequency –causing plant to behave incorrectly. Power swings –generators

going out-of-step or synchronism with each other.

Figure 1.2: Classification of fault occurring in power networks.

Some type of faults can generate more than a single event. For example the ac-

tivation of protective systems in presence a short circuit can generate several events

as consequence of the automatic reclosing actions. These sequences of ordered events

that have special sense all together are known as episodes. Automatic discovery of

episodes that frequently occur in sequences of events recorded in distribution networks

is the main objective of this work. In the following subsections these type of faults are

analysed from the perspective of the episodes they can generate.

1.5.1 According to their root cause

Refers to the factors, actions or conditions that give rise to the faults. Two main

groups can be distinguished: external factors due to the environment where the net-

work is located and internal factors due to the network operation and operation of its

components.
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1.5.1.1 Externals causes

These are all factors do not own the network, capable of causing faults. Environment

and weather are the main external causes of faults in power networks.

• Trees and animals: Animal contacts or tree contacts usually cause short circuits

especially in overhead lines. While animal contacts take place during daytime and

usually imply the apparition of events with significant arc voltage, tree contact

events take place at the end of the year (fall) and have low zero sequence voltage

values (Barrera, 2012).

• Weather and earth activities: Voltage events resulting from external causes

are highly influenced by weather conditions. It includes fault caused by agents

such as wind, snow, storms or lightning, but also others factors as landslides,

floods, fire or earthquakes. Lightning induced events occur mainly during night

as well as in the first two-thirds of the year (Barrera, 2012).

• Human activities: Excavations, vandalism and other activities of individuals

are also important causes of faults in power distribution networks.

1.5.1.2 Internals causes

Includes all factors related to the proper condition of the network or its components

that can cause faults.

• Component aging: These faults are caused by the degradation of materials

and/or components, that under certain environmental conditions produce partial

discharges (Zhang and Gockenbach, 2007). This type of fault evolves and develops

over an extended period of time (days or months), and the rate of occurrence

increases due to the acceleration of the degradation process (Kim et al., 2004;

Moghe and Mousavi, 2009). When these phenomena happen, the disturbances

generated are usually not detected by the protective systems, and specific devices

such as power quality monitors, must be installed to capture such events (Bowers

et al., 2008). Their evolution is expected to end as a permanent failure; so

the recognition and monitoring of these events can prevent the occurrence of

permanent faults.
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• Cumulative stress on electrical components: Failures in electrical compo-

nents may occur from electrical and mechanical stress (Zhang and Gockenbach,

2007). This stress may be originated during the occurrence of previous faults at

other points of the network or by an intensive use of the infrastructure during

long periods of time. In the first case, a sequence of events produced by subse-

quent faults in a feeder can be considered as a predictive episode that alerts of

possible failures in components located in the path between the transformer and

the location of previous faults associated with the events in the episode.

• Normal operation of important loads: Several events are caused by the oper-

ation of the equipment itself or significant loads connected to the network, mainly

when connecting and disconnecting manoeuvres are performed. The switching of

large loads can be viewed as voltage or current events. The regular occurrence

of similar events may be indicative of this type of situation and their appearance

probably follows patterns associated with the operation of those loads, so their

characterisation could be used as a filtering method to separate them from events

due to fault situations.

• Abnormal operation of devices or equipment on the network: Equipment

connected to the network inappropriately can cause intermittent variations in

current or voltage during short periods of time and even activate the protective

system. For example, the incorrect connection of capacitor banks can produce

transient overvoltage during the energising process that are reproduced every time

a new energising is done. The identification and characterisation of this events

would allow them to be filtered from the ones due to fault conditions.

1.5.2 According to their duration

The duration of faults is related with extent of damage on the network or its components

and the time required to restore normal conditions of power supply.

1.5.2.1 Permanent faults

These faults are usually associated with short circuits or a breakdown of insulation

between two or more conductors that cause the actuation of protective systems to

isolate, locate and restore the fault. Permanent fault are short circuits that will persist
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until they are repaired by human intervention. As a consequence of these faults, several

voltage dips similar in shape and duration are generated at time intervals that depend

on the settings of protective systems, fault location and restoration strategies (Quiroga

et al., 2010b). Examples of permanent faults include insulators damaged by flashover,

underground cable breakdown and surge arrester damage.

1.5.2.2 Temporary faults

These are short circuits that will clear after the faulted component (typically an over-

head line) is de-energized and reenergized. In this category low impedance faults pro-

duced by the interaction of external agents with the network (lightning strikes, wind,

transient tree contacts, etc.) during a short period of time are included. They activate

protective systems, allowing the circuit to be re-energised (fault clearing) after a reclos-

ing operation. Although they are not associated with fault components of the power

system, they can affect their performance. Moreover, the events generated by this type

of fault are expected to be independent of each other.

1.5.2.3 Self-clearing faults

These are short circuits extinguished themselves without any external intervention.

This type of faults can occur for example in the degradation process of cables due to

insulation breakdown from water penetrating into splices (Stringer and Kojovic, 2001).

When water accumulates in a cable splice, it leads to an insulation breakdown followed

by an arc. Arcing causes rapid water evaporation and develops high pressures inside the

splice which extinguishes the arc and interrupts the current. Because the fault current

is interrupted by water vapor pressure developed from fault current, these types of

faults are called self-clearing. Their frequency of occurrence increases over time. At

first, they occur infrequently, once a month, then several times a week, then several

times a day, and finally several times an hour until the splice fails, damaging the cable.

1.5.3 According to their impedance

The magnitude of faults is usually related with the severity of the short circuit and the

current values during their occurrence. Bolted or solid faults cause more severe faults

than impedance faults.
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1.5.3.1 Low impedance faults

These are fault conditions in which the fault current magnitude is enough to be detected

by conventional overcurrent relays or fuses, so they activate the protective system of

the networks.

1.5.3.2 High impedance faults

These are fault conditions in which the fault current magnitude is not high enough

to be detected by conventional overcurrent relays or fuses, so they do not activate

any protection. A high impedance fault results when an energised primary conductor

comes in contact with a quasi-insulating object, for example a tree, a structure or

equipment, or falls to the ground. Often this leaves an energised conductor on the

ground posing a danger to the public as well as a risk of arcing ignition of fires. The

diagnosis of such faults is based on the detection of some abnormal features (harmonics,

arcing, etc.) that can be extracted from the current and/or voltage but requires the

installation of specific devices to be detected (Vico et al., 2010). They are associated

with unpredictable phenomena, so it is very difficult to forecast them and only detection

can be addressed.

1.5.3.3 Incipient faults

Misbehaviours in the power system typically associated with leakage current in elec-

trical components. They are an intermittent and transient phenomena that only take

place under specific conditions, usually related with symptoms of component failures.

Despite not producing energy variations capable of activating protections, they generate

disturbances of low magnitude that propagate across the network.

1.5.4 According to the number of affected phases

Given that distribution systems are three-phase systems, a fault can involve one or sev-

eral phases of the systems. Two main groups can be distinguished: symmetrical and

unsymmetrical faults. The fault impedance are related with the number of phases af-

fected by the fault. This attribute is useful to estimate the magnitude and the pinpoint

location of the fault.
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1.5.4.1 Symmetrical faults

It refers to faults that affect simultaneously the three phases. Three-phase faults are

more severe than unsymmetrical faults, but the latter are much more frequent.

1.5.4.2 Unsymmetrical faults

It refers to faults where not all phases of the power system are involved.

• Single-phase-to-ground faults: These are the more frequent faults, they rep-

resent more than 80% of the total faults in the system.

• Phase-to-phase faults: Two phases of the system are involved but they are

isolated with respect to ground.

• Phase-to-phase-to-ground faults: A two-phase-to-ground fault is similar to

a phase-to-phase fault, but current flows from phase to ground during the fault.

In general, the distribution probability of faults is around 80%, 10%, 5% and 5% for

single-phase-to-ground, two-phase-to-ground, phase-to-phase and three-phase faults,

respectively (Olguin, 2005).

1.5.5 According to their relative location

It refers to the fault source relative location from a monitored point in the network.

Usually power quality monitors are installed at the bus bar of the distribution sub-

station. So, they can distinguish between fault occurred in distribution system or

downstream and transmission system or upstream.

1.5.6 Evolution of failures and faults

If we consider the analysis of a set of faults monitored in an individual point of the

distribution network such as feeder head, probable dependency relationships among

some of the fault situations described previously would be found. For example, an

insulator under successive overvoltages caused by faults in the network may fail due

to the accumulated stress, then successive transient o permanent faults may cause a

new fault by cumulative stress in other point of the network. Possible influences are

summarised in the schema of Fig. 1.3. Blocks are used to indicate faulty states, arrows
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causal dependencies among faulty states and circles represent the combination of effects.

Thus, arrows indicate possible transitions between faulty states.

Figure 1.3: Links between different fault situations.

According to Fig. 1.3, the operation of loads or devices in the network, can lead

to the emergence of permanent or transient faults, is the case for example of motor

starting, transformer energization, capacitor banks operation, etc. In turn, the effects

generated by these faults cause stress on other components such as switches, cables and

insulators. This stress is manifested in the form of incipient faults which subsequently

evolve into states of permanent faults. Likewise, the external factors influence the

emergence of permanent faults, transient faults, incipient faults or by cumulative stress.

Each of these types of faults can evolve to other states in the same or other network

components. In summary, due of the physical connection and interaction between the

different components of the power network, the condition of each component, is linked

–to a greater or lesser extent– to the state of other components.

Notice that the events generated by those faults can present different shapes depend-

ing on factors such as the phases affected, including the number of phases or imbalance,

the load (presence of laterals, affected load, etc.), fault impedance (high/low, resistive

or none), type of affected line (aerial, cable or combination of the both), etc. The study

of significant features for each type of fault and the episode associated with them offers

possible ways of automatically discriminating according to fault causes or using them

as prediction tools (Barrera et al., 2010).
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1.6 Main contributions of this work

This thesis manuscript reports the research work developed by the author about the

automatic discovery of meaningful patterns in sequences of events recorded in power

distribution systems. Chapter 1 contains a basic review of the approaches related to

treatment of events recorded in power distribution networks useful for power quality

monitoring and assessment. Likewise, this chapter contains aspects related with the

origin and nature of faults and other misbehaviours of the power distribution networks,

their classification and relationships between events due to faults.

This thesis proposes the use of sequence pattern discovery algorithms to find relevant

patterns in data bases of historical events recorded in power distribution networks. The

main contributions of the work are summarised as follows:

1. Representation of power quality events as attribute-value tuples and sequences

of them generated by faults and failures as episodes. Adaptation of pattern

sequence discovery problem to deal with sequences of power events and its general

formulation. This topics are presented in Chapters 1 and 2 of this thesis and they

were partially published in (Meléndez et al., 2012).

2. A new algorithm for frequent episode discovery is proposed. A comprehensive

review of existing algorithms was made. The proposed algorithm avoids over-

count and missing of occurrences, which are common problems in other pattern

sequence discovery algorithms. Chapter 2 contains the proposed algorithm and

their main principles were published in (Quiroga et al., 2012a).

3. A strategy to guide the search of episodes related/unrelated with events prede-

fined by the user is proposed. This strategy allows the extraction of significant

episodes from the point of view of the priority events in the mining process. A

particular case is given when the analysis focuses on episodes containing specific

events, exploration of other unrelated episodes is avoided. This contribution is

presented in Chapter 3 and also was published in (Quiroga et al., 2012b).

4. Two new indexes for assessing the causality of frequent episodes are proposed.

They are suggested as complementary criteria to the confidence of the episode

rule. The first one, named cohesion of the episode, is based on the comparison
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of the number of serial and parallel occurrences, whereas the second, named

backward-confidence of the episode, is analogous to the confidence of an episode

rule but it focuses on the beginning of the episode instead of the end. The cited

indexes are presented in Chapter 3 and they were published in (Quiroga et al.,

2011b, 2012a).

5. Application of proposed methods (frequent episode discovery and significant episodes

recognition) with voltage dips and incident data bases to discover relevant pat-

terns. Episodes related with permanent and transient faults, as well as other

interesting patterns from causes point of view, are found using the algorithms.

The analysis of these data sets was part of the research projects ‘Monitorización

Inteligente de la Calidad de la Enerǵıa Eléctrica’ (DPI2009-07891) and “EN-

ERGOS, CEN20091048: Tecnoloǵıas para la gestión automatizada e inteligente

de las redes de distribución energética del futuro” (PROGRAMA CENIT-2009).

Chapters 4 and 5 are focused in the analysis of the cited data sets and results

have been also reported in (Meléndez et al., 2012; Quiroga et al., 2010a, 2011b,

2012b, 2010b).

The manuscript is self contained and provides references that supported the contents

of this research.

1.7 List of publications

This thesis is partially based on the work reported in the following publications.

• Journals

1. O. Quiroga, J. Meléndez, S. Herraiz. Pattern discovery in sequences of incidents
collected in power distribution systems, Engineering Applications of Artificial Intel-
ligence.Submitted on July 31, 2012 .

2. J. Meléndez, O. Quiroga, S. Herraiz, Analysis of sequences of events for the char-
acterisation of faults in power systems, Electric Power Systems Research (EPSR),
DOI: 10.1016/j.epsr.2012.01.010, vol. 87, pp. 22 - 30, 2012, (Meléndez et al., 2012).

• Conferences
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1. O. Quiroga, J. Meléndez and S. Herraiz, Frequent and significant episodes in se-
quences of events: Computation of a new frequency measure based on individual
occurrences of the events, 4th International Conference on Knowledge Discovery
and Information Retrieval KDIR 2012. Barcelona, Spain, 4-7 Oct. 2012, (Quiroga
et al., 2012a).

2. O. Quiroga, J. Meléndez, S. Herraiz, Á. Ferreira, A. Muñoz. Analysis of frequent
episodes in sequences of incidents collected in power distribution systems, 2nd. IEEE
PES European Conference and Exhibition on Innovative Smart Grid Technologies
(ISGT-EUROPE 2011). Manchester, UK, 5-7 Dec. 2011, (Quiroga et al., 2011b).

3. O. Quiroga, J. Meléndez, S. Herraiz. Fault Causes Analysis in Feeders of Power
Distribution Networks, International Conference in Renewables Energies and Qual-
ity Power ICREP’11. Las Palmas de Gran Canaria, Spain, 13 -15 Apr. 2011,
(Quiroga et al., 2011a).

4. O. Quiroga, J. Meléndez and S. Herraiz. Fault-Pattern Discovery in Sequences
of Voltage Sag Events, in 14th IEEE International Conference on Harmonics and
Quality of Power (ICHQP), Bergamo, Italy., 26-29 Sept. 2010, (Quiroga et al.,
2010a).

5. O. Quiroga, J. Meléndez and S. Herraiz. Sequence Pattern Discovery of Events
Caused by Ground Fault Trips in Power Distribution Systems, 18th Mediterranean
Conference on Control and Automation, MED’10. Marrakech, Morocco, June 23-
25, 2010, (Quiroga et al., 2010b).

6. O. Quiroga, J. Meléndez, S. Herraiz, J. Sánchez. Analysis of Event sequences in
Power Distribution Systems, International Conference in Renewables Energies and
Quality Power ICREP’10. Granada, Spain, 23 - 25 Mar. 2010, (Quiroga et al.,
2010c).

1.8 Outline of the thesis

The thesis is organised in six chapters. Chapter 1 introduces the general background

of the work, motivation and objectives. The rest of the thesis document is organised

as follows.

• Chapter 2 – Mining sequences of events: This chapter presents the prin-

ciples used for frequent pattern discovery in sequences of events. The main pro-

cedure used in the search for episodes and several algorithms to compute their

frequency are described. A new algorithm to improve results of the mining process

is proposed and validated using synthetic data sets.
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• Chapter 3 – Significant episodes in sequences of events: This chapter

presents different approaches for recognising significant events and meaningful

patterns once the discovery algorithms have identified frequent patterns. Methods

used to assess the quality of episodes are described and two new indexes for

assessing the causality and the strength of the order relation expressed by frequent

episodes are proposed and tested using synthetic data sets.

• Chapter 4 – Mining voltage dip sequences recorded in power distribu-

tion substations: This chapter adopts strategies proposed in previous chapters

for discovering significant frequent patterns from data bases of events collected

by power quality monitors installed in the secondary of distribution substations

in a real network. A dataset of voltage dip events recorded in a power distribu-

tion network is analysed and different types of associations between events are

discovered and their physical meaning is discussed.

• Chapter 5 – Pattern discovery in sequences of incidents collected in

power distribution networks: This chapter presents the analysis of a dataset

of incidents –faults or situations that affect the continuity of supply – collected in

a power distribution network. Order relations between main causes of incidents

on the network are discovered and their physical meaning is discussed.

• Chapter 6 – Conclusions and future work: Main conclusions and contri-

butions of this thesis are emphasized in this chapter. Some research issues are

identified and proposed for future work.

Finally, references and an appendix are included. The appendix presents a method

for identification of transient faults events in sequences of voltage dips from their sim-

ilarities in magnitude and duration, results are presented and discussed.
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Mining sequences of events

This chapter presents the frequent pattern discovery fundamentals used for mining

event sequences. General background, formal definitions and related concepts and pro-

cedures for mining sequences of events are introduced in the chapter. The majority of

these algorithms are based on proposing candidates and finding the most frequent, in

terms of number of counted occurrences, in a given sequence following an iterative pro-

cedure. Different methods proposed in the literature for the computation of frequency

of episodes are presented and discussed. Besides, a new algorithm to extract frequent

episodes is proposed. Improvements of this new method are includes the ability to deal

with serial and parallel episodes and allowing different restrictions among events in the

episode. Performance of the method is evaluated with synthetic data to quantify the

benefits.

2.1 Introduction

Given the advances in monitoring systems and data storage, a new approach has become

important for the prediction of failures in complex systems. This new approach includes

the analysis of large blocks of information, which is known as data mining.

Data mining is the process of automatic or semiautomatic exploration and analysis

of large amounts of stored data to discover useful structures hidden in the data such

as regularities or correlations. In general, models or patterns are the two types of

structures that can be found by data mining algorithms.
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A model can be defined as a global summary of the data, which is often obtained in

the form of some functional relationship among the variables (or attributes) in the data.

The idea here is to understand the underlying data generation process. In contrast to

a model, a pattern is a local structure or regularity in the data. The role of patterns

in data mining would be to bring to the attention of some interesting structures in

the data rather than provide summary information about the whole data generation

process (Murthy, 2007).

Multivariate statistical techniques are widely used to model multi attributes data

sets. These techniques can be classified into two main groups depending on the nature

of the monitored variables: dependence methods and interdependence methods. De-

pendence methods are applied when the variables in the dataset are divided into two

groups: dependent and independent. The objective is to discover the relationships be-

tween the sets of independent and dependent variables. This group includes techniques

such as multi linear regression (MLR), multivariate analysis of variance (MANOVA),

discriminant analysis (DA). Interdependence methods are applied when dependent and

independent set of variables are not distinguished in the data set. The aim is to identify

which variables are linked together and interpret how this relationship is established.

Techniques such as principal component analysis (PCA), Cluster analysis (CA) or fac-

tor analysis (FA) are part of this group. Following this paradigm, other methods and

algorithms coming from the Artificial Intelligence community have been proposed for

learning such relationships using data sets. Examples of them are the artificial neural

networks, Bayesian networks, decision trees, support vector machines and so on.

Patterns is the type of structures searched in many application domains such as clin-

ical monitoring, alarm management systems, customer transactions, query databases.

When this data has a time dimension or sequential order then they must be treated

differently in order to recognize the existence of such temporary or causal structures.

This research field is known as sequential data mining and/or temporal data mining

(Roddick and Spiliopoulou, 2002). Depending on the nature of the data, there are two

main approaches to automatically discover patterns in sequences using different order

criteria between the elements of the sequence: sequential pattern mining (Agrawal and

Srikant, 1995) and frequent episode discovery (Mannila et al., 1997). Both approaches

are oriented to the analysis of sets of discrete events with time dependencies (Laxman

and Sastry, 2006). The fundamentals of each one are described below.
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2.1.1 Sequential pattern mining

This approach is applied when a dataset consists of a collection of sequences. Each

sequence is an ordered list of itemsets and each itemset is a set of items. A frequent

sequential pattern is defined as a sequence of itemsets, which is contained in sufficiently

many sequences of the database. A sequence 〈a1, a2, ..., an〉 is contained in another

sequence 〈b1, b2, ..., bm〉 if there exist integers 1 ≤ i1 ≤ i2 < ... < in ≤ m such the

itemset a1 ⊆ bi1 , a2 ⊆ bi2 , ..., an ⊆ bin (Agrawal and Srikant, 1995).

As a simple example, consider the purchases by five customers in a period of one

month which are summarised in the list of 10 transactions of Table 2.1.

Table 2.1: Example of a set of customer transactions

Date Id customer Items

jun-10 2 a, b

jun-12 5 h

jun-15 2 c

jun-20 2 d,f,g

jun-25 1 c

jun-25 3 c,e,g

jun-25 4 c

jun-30 1 h

jun-30 4 d,g

jul-8 4 h

A transaction corresponds to an itemset. Each customer has a sequence of itemsets,

which is obtained by ordering the set of transactions by id customer and by date. Table

2.2 shows the sequences corresponding to the set of transactions shown in Table 2.1.

Table 2.2: Sequences of customer transactions

Id customer Sequence

1 〈(c)(h)〉
2 〈(a, b)(c)(d, f, g)〉
3 〈(c, e, g)〉
4 〈(c)(d, g)(h)〉
5 〈(h)〉

The objective is to discover subsequences of ordered itemsets that appear simulta-

neously in several of these sequences. For example, consider the subsequences of itemset
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that appear in at least two sequences in Table 2.2, then the results are: 〈(c)(h)〉 and

〈(c)(d, g)〉. They constitute the sequential patterns of this dataset.

Several algorithms such as SPADE (Zaki, 2001), PrefixSpan (Prefix-projected Se-

quential pattern mining) (Pei et al., 2001), SaM (Split and Merge Algorithm) (Borgelt,

2010), Relim (Recursive Elimination Algorithm) (Borgelt, 2005), LCM (Linear Closet

Item set Miner) (Uno et al., 2004), have been developed for the discovery of sequential

patterns. This is an issue in continuous development that is part of the frequent item-

set mining in transaction databases, research field that covered other topics such as

structured pattern mining, correlation mining, associative classification, and frequent

pattern-based clustering, as well as their broad applications (Han et al., 2007).

2.1.2 Frequent episode discovery

The starting point are data sets organised as a single long sequence of events where

each event is described by its type and its time of occurrence.

Definition 2.1. Event. An event is defined by the pair (e,t) where t denotes the
occurrence time (time stamp) and e represent the event attributes (one or several) that
contain the information useful to characterise the event. Event attributes can be a
single label or a vector of continuous/discrete attribute-value pairs defined in a given
range or set of predefined values (Mannila et al., 1997).

Definition 2.2. Sequence of events. A sequence of events S is an ordered list
of events or a n-tuple S = 〈(e1, t1), (e2, t2), ..., (en, tn)〉 where ti ≤ ti+1 for all i ∈
{1, 2, ..., n− 1}. The length of S, |S|, is n. In single sequence mining, the events are
represented categorically from a finite set A of event types where ei ∈ A (Mannila et al.,
1997).

The following is an example of a sequence of events.

S1 = 〈(a, 5), (d, 10), (a, 20), (b, 25), (c, 30), (b, 36), (a, 40), (d, 51), (a, 55), (b, 60), (c, 68)〉
(2.1)

In this example, the length of the sequence is 11, and A is a set of 4 different types

of events, A = {a, b, c, d}. The sequence can be represented graphically as shown in Fig

2.1. In the basic framework, the events are essentially instantaneous; this means that

events occur at a given instant and have not a duration associated.

24



2.1 Introduction

Figure 2.1: Graphic representation of an event sequence.

The mining objective is to find collections of partially ordered events occurring

together within the sequence. This collection of events are called episodes.

Definition 2.3. Episode. An episode α is an ordered list formed by event types in
A (set of event types) of the form α = 〈a1, a2, ..., am〉 with aj ∈ A for all j = 1, ...,m.
The size of α is the number of elements in α that is |α| = m.

For example, in the sequence of Fig. 2.1 the events a, b and c can conform

and episode, α = 〈a, b, c〉, which have at least two occurrences along the sequences:

〈(a, 20), (b, 25), (c, 30)〉 and 〈(a, 55), (b, 60), (c, 68)〉. The frequency or support of an

episode is equal to its number of occurrences and a minimum frequency threshold must

be specified to consider an episode as frequent.

Definition 2.4. Occurrence of an episode. An episode α = 〈a1, a2, ..., am〉 occurs
in a sequence of events S = 〈(e1, t1), (e2, t2), ..., (en, tn)〉 if there is at least one ordered
sequence of events S′ = 〈(ei1 , ti1), (ei2 , ti2), ..., (eim , tim)〉 such that S′ ⊆ S and aj = eij
for all j = 1, 2, ...,m. Usually an occurrence is denoted as o = 〈i1, i2, ..., im〉 where
o [j] = ij and j = 1, 2, ...,m.

Definition 2.5. Frequency or support of an episode. It is the number of oc-
currences of an episode over a sequence of events. The frequency of an episode α is
abbreviated as fr(α).

Definition 2.6. Frequent episode. An episode α is frequent if its number of oc-
currences fr(α) is equal or greater than a threshold (min fr), i.e., α is frequent if
fr(α) ≥ min fr.
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2.2 Analysis of sequences of events registered in power

distribution systems

The previous definitions have been adapted to deal with disturbances, i.e. power or

electrical events, collected by power quality monitors installed in substations and/or

consumers. A set of timestamped events recorded at a single point of the network

during a power quality monitoring campaign is considered as a sequence of events.

Definition 2.7. Electrical event. An electrical event, ei(ti), is a dated record of
an electric variable, typically currents and voltages, that suffers a sudden variation in
its value. It is defined by an (m+1)-tuple, (a1, . . . , am, ti), where ti is the event time
stamp (usually, the starting time) and aj (with j = 1, . . . ,m) represents the value of
each attribute, Aj , defined in its respective domain, aj ∈ Dom(Aj). Event attributes
can be continuous (duration, magnitude, maximum peak, frequency content, etc.) or
symbolic (type of incident, causes, affected phases, etc.). The attributes are selected
according to their relevance with respect to the proposed goal.

A sequence of events can contain several events, but only some subsets of them

are of interest, either because they present similar features (shape, duration, etc.) or

because there is some relationship that allows them to be considered together (timing,

periodicity, etc.), as for example, when they are originated by the same cause in an

evolving fault. According to the nomenclature introduced in Section 2.1.2, these subsets

of significant events in a sequence are called episodes and are expected to describe some

patterns. The existence of those patterns is exploited, taking advantage of mining

algorithms to automatically obtain those patterns from an existing sequence of events

based on the criterion of frequent episodes. Once those patterns are known, they can

be used to better describe fault situations and their evolution. They can also be used

to predict future failures by recognising the events that match the early stages of a

pattern.

In the remainder of this chapter, common terminology, fundamentals and main

methods used in single sequence mining are presented. Likewise, a new algorithm to

improve results of the mining process is proposed.
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2.3 Background on event sequences mining

Frequent episodes mining in sequences of events has been applied in many application

domains: analysing alarm sequences in telecommunication networks (Mannila et al.,

1997), web access pattern discovery and family protein analysis (Casas-Garriga, 2003),

fault prognosis based on logs of manufacturing plants (Laxman et al., 2007), study of

multi-neuronal spike train recordings (Patnaik, 2006) or event tracking problems for

news stories (Iwanuma et al., 2005).

Typically, methods for mining frequent episodes in a sequence follow an iterative

procedure that starts searching for frequent events (single event episodes). The can-

didate episodes are generated by aggregating frequent events. Occurrence of these

candidate episodes is evaluated to check if their frequency is over a minimum threshold

to be considered a frequent pattern. This basic procedure shown in Algorithm 1, is

based on the same general idea as the Apriori algorithm (Agrawal and Srikant, 1995).

Algorithm 1 General method for frequent episode discovery
Input: A sequence of events S, the set of event types or categories (E), and the minimum frequency

threshold min fr.

Output: Frequent episodes of length L, FL.

Procedure:

1: Initialise a counter associated with the length of episodes (L = 1).

2: Generate the first set of candidate episodes CL (L = 1) from the frequent events in E.

3: while CL 6= {} do

4: Compute the frequency (fr) of the candidate episodes of length L.

5: Extract and store frequent episodes (fr ≥ min fr) as FL.

6: Increase the counter in 1: L← L+ 1.

7: Generate candidate episodes of length L, CL, from the frequent episodes in FL−1.

The first set of candidate episodes C1 (length L = 1) is generated by using the set

of event types E that appears in the sequence (line 2). In the main function (line 4),

the number of occurrences fr of each candidate episode is computed and those with fr

over the threshold are classified as frequent episodes and stored as FL (line 5). From

frequent episodes in FL, a new set of candidate episodes, CL, of length L = L + 1,

is build (line 7). The process continues iteratively until no candidate episodes are

found (CL = {}) (line 3). In the literature, frequent episode discovery algorithms differ

mainly in the way of searching and computing the frequency of the candidate episodes

(line 4).

27



2. MINING SEQUENCES OF EVENTS

2.3.1 Main characteristics of frequent episodes

There are three important factors that guide the search of frequent episodes. The

first is related with the constraints among events in the episode that can be defined

by relationships among attributes (similarity, duration, elapsed time between events,

etc.). The second is the relationship between a pattern episode an the sub-episodes

it contains. Monotonic (or anti-monotonic) property is expected in the indices used

to guide the search. In that sense frequency is a good index because it presents and

anti-monotonic behaviour (frequency of an episode can not be greater than frequency

of their sub-episodes) and special care has to be done when defining it to preserve this

property. The third factor aims to find all or at least the largest number of occurrences

–maximum frequency– of an episode, without violating the two previous principles.

2.3.1.1 Partial order

An episode α = 〈a1, a2, ..., am〉 imposes a constraint on relative order of its occurrences

aj . According with this order, there are three types of episodes: serial episodes, parallel

and hybrid episodes (Mannila et al., 1997).

Definition 2.8. Serial episode. It is an episode 〈a1, a2, ..., am〉 where the event aj

occurs before event aj+1 for all j = 1, ...,m− 1.

Definition 2.9. Parallel episode. It is an episode 〈a1, a2, ..., am〉 where the event aj

can occurs before or after of the event aj+1 for all j = 1, ...,m− 1. In this document a
parallel episode is represented as 〈a1 · a2 · ... · am〉.

Definition 2.10. Hybrid episode. It is a combination of serial and parallel episodes.

Fig. 2.2 shows a schematic of each type of episodes according to their partial order.

Serial episode 〈a, b, c〉 in Fig. 2.2a indicates that event a occurs before event b, and

b before event c. In contrast, parallel episode 〈a · b〉 in Fig. 2.2b indicates that events a

and b occur together but it does not distinguish which one comes first. Finally, hybrid

episode in Fig. 2.2c shows a combination between the parallel episode 〈a · b〉 and the

event c. It indicates that episode 〈a · b〉 occurs before the event c.
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(a) Serial episode

(b) Parallel episode (c) Hybrid episode

Figure 2.2: Types of episodes according to their partial order

2.3.1.2 Duration of an episode

Since a sequence of events can last for long periods, it is necessary to bound proximity

between both, consecutive events in an episode and delay between the first and the last

event within the episode. An episode usually occurs in shorter and realistic periods

of time over a sequence. There are two basic strategies to define the duration of the

episodes: the first one is using an observation window of fixed width also called expiry-

time constraint and the second one is defining a gap between consecutive events also

named inter-event time constraint.

Definition 2.11. Expiry-time constraint. It is the maximal elapsed time allowable
between the first and the last event of and episode which is abbreviated as tx. In
the literature, an observation window of fixed width win is also used to define the
expiry-time of an episode, i.e, tx and win are equivalent terms.

Definition 2.12. Inter-event time constraint. It is the maximum elapsed time
allowable (maximal gap) between two consecutive events of an episode which can be a
fixed value tmax also abbreviated as max gap or an interval (tmin, tmax].

Consider as example the serial episode α = 〈a, b, c〉. If a expiry-time constraint tx is

used, then for each occurrence of α the elapsed time between the occurrence of a and the

occurrence of c must be less than or equal to tx. If the inter-event time constraint tmax is

used, for each occurrence of α the elapsed time between the corresponding occurrences

of a, b and b, c must be less than or equal to tmax. If an interval (tmin, tmax] is used,

then the elapsed time between the corresponding occurrences of a, b and b, c must be

located within the defined interval.

An alternative strategy is to establish a variable expiry-time in function of the

episode size. Using the previous nomenclature, a possible definition of this variable
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expiry-time tx of an episode α can be tx = (|α| − 1) × tmax. In this case, for episodes

of size greater than two, the elapsed time between successive events is not constrained

(Casas-Garriga, 2003).

2.3.1.3 Derivations or extensions of an episode

Sub-episodes and super-episodes are the most common derivations and extensions of

an episode, respectively.

Definition 2.13. Sub-episode, super episode. An episode β = 〈b1, b2, ..., bm〉 is a
sub-episode of another episode α = 〈a1, a2, ..., an〉 if m < n and there exist 1 ≤ i1 <

i2 < ... < im ≤ n such that bj = aij for all j = 1, 2, . . . ,m. In this case, α is a super
episode of β.

In turn, the episode α in Definition 2.13 can be classified within three types of

super episodes of β, depending of the location of β within α: forward-extension super

episode, backward-extension super episode and middle-extension super episode (Zhou

et al., 2010).

Definition 2.14. Forward-extension super episode. The episode α in Defini-
tion 2.13 is called the forward-extension super episode of β if there exist i1 = 1, i2 =
2, · · · , im = m.

Definition 2.15. Backward-extension super episode. The episode α in Definition
2.13 is called the backward-extension super episode of β if there exist i1 = n−m+1, i2 =
n−m+ 2, · · · , im = n.

Definition 2.16. Middle-extension super episode. The episode α in Definition
2.13 is called the middle-extension super episode of β if α is neither a forward-extension
nor backward-extension super episode of β.

2.3.1.4 Parts of an episode

The parts of an episode are related with the relative location of the event within it.

Suffix and prefix are the most important parts.

Definition 2.17. Suffix of an episode. The suffix of an episode α is defined as the
last event in the episode and it is abbreviated suffix(α), i.e., if α = 〈a1, a2, ..., am〉,
then suffix(α) = 〈am〉,
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Definition 2.18. Prefix of an episode. The prefix of α is the episode composed
by all elements in α without the last one. It is abbreviated as prefix(α). I.e., if
α = 〈a1, a2, ..., am〉, then prefix(α) = 〈a1, a2, ..., am−1〉.

Definition 2.19. Large suffix of an episode. The large suffix of an episode is defined
in this work as the episode composed by the elements in α without the first one and it
is abbreviates as lsuffix(α). If α = 〈a1, a2, ..., am〉, then lsuffix(α) = 〈a2, ..., am〉.

2.3.1.5 Types of occurrences

After defining the limits of duration of episodes (Definitions 2.11 or 2.12), the oc-

currences of an episode refer to parts of the sequence containing the episode. Such

occurrences can be normal occurrences as shown in Definition 2.4 or minimal occur-

rences.

Definition 2.20. Minimal occurrence. An occurrence of α, o = 〈i1, i2, ..., im〉, is
minimal if no other occurrence o′ = 〈i′1, i′2, ..., i′m〉 exists in a sequence of events S,
between the intervals [i1, im) or (i1, im] with [i′1, i

′
m] ⊂ [i1, im]. A minimal occurrence

of an episode α is denoted as mo(α).

In turn, a set of occurrences, or minimal occurrences, of an episode can be classified

as redundant or non-redundant, if different occurrences have or do not have elements

in common, respectively.

Definition 2.21. Redundant occurrences, non-redundant occurrences. A set
of occurrences of an episode α is called non-redundant if for any two occurrences o =
〈i1, i2, ..., im〉 and o′ = 〈i′1, i′2, ..., i′m〉 no event occurs simultaneously in both, i. e.,
eij 6= ei′j for all j ∈ {1, 2, ...,m}. Otherwise, this set of occurrences is redundant.

Likewise, a set of occurrences can be overlapped or non-overlapped depending of

the location of these occurrences over a sequence.

Definition 2.22. Overlapped occurrences, non-overlapped occurrences. Two
occurrences of an episode α in a sequence of events S, o = 〈i1, i2, ..., im〉 and o′ =
〈i′1, i′2, ..., i′m〉, are non-overlapped if o[1] > o′[m] or o′[1] > o[m], where m = |α|.
Otherwise, these two occurrences are overlapped.
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2.3.1.6 Anti-monotonicity property

Anti-monotonicity property is a common principle that frequency measure methods

should obey in frequent pattern mining.

Definition 2.23. Anti-monotonicity of an episode. An episode is anti-monotonic
if its frequency is no greater than the frequency of its sub-episodes i.e., any two episodes
α and β, α ⊇ β follow the principle of anti-monotonicity if fr(α) ≤ fr(β).

The anti-monotonicity property guarantees that a candidate episode can be pruned

safely if any of its sub-episodes is infrequent, and any infrequent episode need to be

extended. However, when the strategy of inter-event time constraint (Definition 2.12)

is used for the duration of the episodes, the anti-monotonicity property of an episode

can not be applied based on the frequency of all its sub-episodes. Only the frequency

of its non-overlapped sub-episodes must be considered (Casas-Garriga, 2003). For ex-

ample, given the serial episode 〈a, b, c〉, and its sub-episode 〈a, c〉. The two episodes are

extracted using a maximal gap between events tmax. While in 〈a, b, c〉, events a and c

can be separated for 2× tmax time units, in its sub-episode 〈a, c〉 the events have only

a maximum gap of tmax time units. Since the gap between events is different in both

episodes, the sub-episode 〈a, c〉 may be less frequent than the episode 〈a, b, c〉.

2.3.1.7 Maximum frequency of an episode

Maximum frequency refers to the fact of finding all the occurrences of an episode under

a strategy of duration constraint and an anti-monotonic measure.

Definition 2.24. Maximum frequency. Given a sequence of events S, a strategy
of duration constraint (Section 2.3.1.2) and an anti-monotonic measure, then the fre-
quency (Definition 2.5) fr ∀ α and ∀ S, ¬∃ fr∗ such that fr∗(α) > fr(α). It
ensures that no proper occurrences are missed in the computation of the frequency of
and episode (Gan and Dai, 2010).

2.3.2 Frequency measure methods

How occurrences of a candidate episode α are counted varies among the different al-

gorithms. Results depend on the duration constraint (Section 2.3.1.2) used to obtain

the episodes and the occurrences selected (Section 2.3.1.5). Beyond the duration, dif-

ferent methods have been proposed to cope with particularities of the occurrences of
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an episode. The occurrences within an observation window (Definition 2.11), to count

only the minimal occurrences (Definition 2.20), to consider only non-overlapped occur-

rences (Definition 2.22), etc., are strategies implemented to select the most properly

occurrences of an episode. According to the types of occurrences selected, there are

two main groups of methods to compute the frequency of an episode: methods based

on occurrences and methods based on minimal occurrences. Next, a short description

of the most common algorithms is presented.

2.3.2.1 Methods based on occurrences

The most used strategy to compute the frequency of an episode consists in counting

the number of occurrences. However, once the duration of a candidate episode α has

been defined, there are different ways to count the associated occurrences:

• Fixed-width window frequency measure: This method, exposed in (Mannila

et al., 1997), uses a sliding window w of fixed width tx predefined by the user.

The original sequence S is transformed in a set of overlapped fixed-width windows

and the fraction of windows that contain the episode corresponds to its frequency.

fr(α,S, tx) =
|{w ∈W (S, tx) such that α occurs in w}|

|W (S, tx)|
(2.2)

where W (S, tx) is the set of all windows w on S.

With this method some occurrences of the episodes could be over-counted because

several windows could contain the same occurrence. The method is limited to

discover episodes with duration no greater than the window width.

• Total frequency measure: This method, described in (Iwanuma et al., 2005),

also uses a sliding window of fixed width to search the episodes, but only windows

headed by the first event of the candidate episode are taken into account for the

frequency measure. This constraint aims to avoid over-counting occurrences of

episodes. The anti-monotonic property is assured by defining the frequency of an

episode as the lower frequency of its sub-episodes.

This method can be summarised as follows: given a sequence of events S =

〈(e1, t1) , (e2, t2) , ..., (en, tn)〉 and the length of the window win, the frequency of
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each candidate episode α = 〈a1, ..., am〉 is evaluated in two steps. First, the Head

frequency (H–freq) is computed as:

H-freq(S, α, win) =
n∑

i=1

δ(S(ti, tj)), α) (2.3)

where S(ti, tj) = 〈(ei, ti), ..., (ej , tj)〉 and tj−ti ≤ win. The function δ of Equation

2.3 is defined as:

δ(〈(ei, ti), ..., (ej , tj)〉 , 〈a1, ..., am〉) ={
1 if a1 ⊆ ei and 〈a2, ..., am〉 ⊆ 〈ei+1, ..., ej〉,
0 otherwise.

(2.4)

The measure H–freq(S, α, win) counts the number of occurrences for the first

element a1 of α in S, whereas, for the second and later elements a2, ..., am,

H–freq(S, α, win) just checks whether each of a2, ..., am occurs in S or not. Then,

frequency of α may be greater than the frequency of some of its sub-episodes.

To ensure the anti-monotonicity of an episode, the Total frequency (T–freq) is

calculated in the next step considering also the Head frequency of their corre-

sponding sub-episodes, as:

T–freq(S, α, win) = min {H–freq(S, β, win)} (2.5)

where β ⊆ α.

The algorithm in (Iwanuma et al., 2005) was formulated only for serial episodes.

We propose an adaptation for this method, to count parallel occurrences.

Given a sequence of events S = 〈(e1, t1), (e2, t2), ..., (en, tn)〉 and the length of

the window win, the Head parallel frequency (H-pfreq) of each candidate episode

α = 〈a1 · ... · am〉 can be evaluated as:

H-pfreq(S, α, win) =
n∑

i=1

δp(S(ti, tj)), α) (2.6)

where S(ti, tj) = 〈(ei, ti), ..., (ej , tj)〉 and tj − ti ≤ win. The function δp of Equa-

tion 2.6 is defined as:
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δp(〈(ei, ti), ..., (ej , tj)〉 , 〈a1 · ... · am〉) ={
1 if ei ⊆ 〈a1 · ... · am〉 and 〈a1 · ... · am〉 ⊆ 〈ei, ..., ej〉,
0 otherwise.

(2.7)

Finally, the total parallel frequency measure (T-pfreq) is obtained from the head

parallel frequency as:

T-pfreq(S, α, win) = min {H-pfreq(S, β, win)} (2.8)

where β ⊆ α.

Redefining the function δp in Equation 2.7, the adaptation of the method to count

parallel occurrences is performed. Equations 2.6 and 2.8 are similar to Equations

2.3 and 2.5, respectively.

• Bounded list of occurrences: This algorithm, proposed by Huang and Chang

(Huang and Chang, 2008), also uses a sliding window of fixed-width. They define

the support of an episode as the number of windows that start with the first

element of the episode. When windows are overlapped this support can be anti-

monotonic, then they define an episode as frequent if and only if the supports of

the episode and its sub-episodes are at least greater than threshold specified by

the user.

• Variable-width window: In this method, exposed in (Casas-Garriga, 2003),

the search of an occurrence is constrained to a maximal gap (max gap) between

consecutive events in the episode. This maximal gap is a parameters specified

by the user. Then, the frequency is calculated following the same procedure

introduced for the fixed-width window method but in this case the width of

the window is updated according to the length of the candidate episode |α| as:

win = (|α| − 1)×max gap. The frequency of α in S is defined as:

fr(α,S,max gap) =
|{w such that w ∈W (S,win) ∧ α occurs in w}|

|W (S, win)|
(2.9)

whereW (S, win) is the set of all windows w in S with width win and |W (S, win)| =
|S| − 1 + win− 1.
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• Frequency based on maximal non-redundant sets of occurrences: This

method uses as constraint the maximal gap between events (Gan and Dai, 2010).

The occurrences of a candidate episode are constructed recursively appending to

the occurrence of its prefix the leftmost occurrence of its suffix considering the

maximal gap constraint.

2.3.2.2 Methods based on minimal occurrences

The other methodology used to compute the frequency of an episode is by its minimal

occurrences. Each minimal occurrence must follow the duration constraint. There are

several ways to group these minimal occurrences:

• Minimal occurrences within a fixed window width: This method, also

introduced by Mannila et al. (Mannila et al., 1997), considers only the minimal

occurrences of an episode. Given an episode α and an event sequence S, they

say that the interval [ts, te) is a minimal occurrence of α in S, if α occurs in

the window w = (w, ts, te), and if α does not occur in any proper subwindow

on w. For each frequent episode, information about the location of its minimal

occurrences is stored, then the locations of minimal occurrences of a candidate

episode α, are computed as a temporal join of the minimal occurrences of two

sub-episodes of α. The first sub-episode is the prefix of α, prefix(α) and the

second one is the large suffix of α, lsuffix(α). This method avoids counting

non-minimal occurrences.

• Minimal occurrences with maximal gap: This method forces two constraints

during the search (Méger and Rigotti, 2004): a maximal window width and a

maximal gap between events. The frequency of an episode is calculated as the

sum of all minimum occurrences between a variant window width whose value

increase between one and the maximal window width. With this method non-

minimal occurrences are not counted and the bound of window restricts the width

of occurrences.

• Non-overlapped frequency measure: This method defines the frequency of

an episode as the maximal cardinality of the sets of the non-overlapped occur-

rences (Laxman et al., 2007). Non-overlapped occurrences means that an occur-

rence must be finished before starting a new one (Definition 2.22).
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2.3.3 Discussion about the frequency measure methods

Frequency measure methods aims to find all the occurrences of candidate episodes.

However, the episodes extracted for all of them have dissimilar characteristics in dura-

tion and in the number of occurrences extracted. Some occurrences can be over-counted

or omitted under the described methods. Given a candidate episode and a duration

constraint, to find its maximal number of non-redundant occurrences implies to con-

sider not only its minimal occurrences but also, their overlapped and non-minimal

occurrences.

Methods based on minimal occurrences are useful to plot the occurrences of an

episode. They locate each occurrence in the process of computing frequency. Methods

that use observation windows only show the index of the windows where are located the

occurrences. Some methods find the occurrences of the episodes from the sub-episodes

locations (indexes). Such algorithms are faster, but can propagate errors due to the

improper selection of the sub-episode occurrences. Consequently, proper occurrences

of an episode would be ignored (missed).

Table 2.3 summarise the main characteristics of the methods described in Section

2.3.2. A list of five features for the episodes is shown. Partial order is abbreviated as (S)

or (P) for serial and parallel episodes, respectively. Duration is abbreviated as (1), (2)

or (3) for expiry-time constraint, inter-event time constraint or combination of both,

respectively. Likewise, four aspects about the occurrences is indicated: (R) over-count

occurrences , (M) missed or omit occurrences, (L) index or locate the occurrences and

(B) if the algorithm use the indexes of sub-episodes.

According with Table 2.3, methods of total frequency measure, maximal non-

redundant set of occurrences, minimal occurrences within a fixed-width window and

minimal occurrences with a maximal gap, are not defined for parallel occurrences.

However, for the total frequency measure method an adaptation to count parallel oc-

currences is proposed in Section 2.3.2.1 of this thesis.

Likewise, all review methods (except the method of non-overlapped occurrences)

are defined for episodes with expiry-time constraint or inter-event time constraint and

all of them over-count or missed occurrences. Moreover, occurrences can be located by

methods based on minimal occurrences and by the method of maximal non-redundant
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Table 2.3: Characteristics of the episodes according with the method used in the discovery
process.

Frequency measure method

Episode characteristics Occurrences

Order Duration extraction

S P 1 2 3 R M L B

Methods based on occurrences:

–Fixed window width frequency measure (Mannila

et al., 1997)

3 3 3 3

–Variable-width window (Casas-Garriga, 2003) 3 3 3 3

–Total frequency measure (Iwanuma et al., 2005) 3 3 3

–Bound list of occurrences (Huang and Chang, 2008) 3 3 3 3

–Maximal non-redundant sets of occurrences (Gan and

Dai, 2010)

3 3 3 3 3

–Fminevent1 (Quiroga et al., 2012a) 3 3 3 3 3 3

Methods based on minimal occurrences:

–Within a fixed window width (Mannila et al., 1997) 3 3 3 3 3

–With maximal gap (Méger and Rigotti, 2004) 3 3 3 3

–Non-overlapped occurrences (Laxman et al., 2007) 3 3 3 3 3 3 3

–Episode characteristics: (S) serial episodes, (P) parallel episodes, (1) expiry-time constraint, (2) inter-event

time constraint , (3) combination of the two time constraint.

–Occurrences extraction: (R) over-count occurrences , (M) missed occurrences, (L) locate or index the

occurrences, (B) require sub-episodes indexes.

1 This algorithm has been proposed in this thesis and it is described in Section 2.4.

set of occurrences, while the method of minimal occurrences within a fixed-width win-

dow and maximal non-redundant set of occurrences require sub-episodes indexes in the

search process.

Table 2.3 also includes a new method proposed in this thesis for the analysis of

event sequences related with faults collected in power distribution systems, and it

is described in Section 2.4. Fminevent is the short name of the proposed method,

which uses the occurrences of the individual event types to search the occurrences of a

candidate episode of any size, i.e., the occurrences of the sub-episodes are not required.

As show in Table 2.3, this method avoids counting redundant occurrences and allows

the existence of overlapped episodes. Inter-event time constraint is used to control

the duration of the episodes but the method is flexible to constrain also the expiry

time of the episodes, or both expiry time and inter-event time. Additional benefit is

that the method also allows dealing with parallel occurrences and facilitates graphical

38



2.4 New frequency measure based on individual occurrences of the events
(Fminevent)

representation because episodes are perfectly indexed.

2.4 New frequency measure based on individual occur-

rences of the events (Fminevent)

Novelty of this method is on the process of selection of the occurrences of a candidate

episode. This follows an iterative procedure and it is made by combining occurrences

of their event types instead of adding them to discovered sub-episodes. Serial and

parallel occurrences are found using a similar strategy. The cardinality of these sets of

occurrences constitutes the frequency of the episodes.

2.4.1 Serial occurrences with inter-event time constraint

Given a sequence of events S = 〈(e1, t1), (e2, t2), ..., (en, tn)〉, a candidate episode α =

〈a1, a2, ..., am〉 and a maximal gap between events max gap = k, Algorithm 2 re-

turns the set of maximal non-redundant occurrences, maxnO. First, for m = 1,

the occurrences of the episode are the same minimal occurrences of the event a1,

maxnO(S, α, k) = mo(a1). Then, for m > 1, maxnO(S, α, k) is obtained by joining

each occurrence of a1 with occurrences of a2, ..., am located between the corresponding

t1 to t1 + (m− 1)k.

For simplicity let each ti in S take values from j = 1, 2, ..., and ti = j means the i -th

data element occurs at the j -th tiemestamp. The algorithm has a two-phase structure.

In the first phase (lines 4-9), a list for each occurrence of a1, mo(a1)(i), is created

containing the occurrences of the other events (aj) within the constraint max gap,

where list.a1 = mo(a1)(i) and list.aj = mo(aj) such that list.aj−1(1) < mo(aj) ≤
list.aj−1(end) + k for j = 2, ...,m.

In the second phase (lines 11-17), the most proper serial occurrence sO is selected

from the list. The most proper occurrence is composed by the most left occurrence

of each event found in list.aj that meets the restrictions of max gap between events.

This is done starting with the first occurrence of the last event from the list, that is

list.am(1) (line 12) and in an iterative procedure the most left occurrence of the other

events within k are located (lines 13-17). Each serial occurrence sO is added to maxnO

(line 18) and constitutes the output of the algorithm.
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Algorithm 2 Fminevent: Serial occurrences with inter-event time constraint
Input: An event sequence S, a candidate episode α = 〈a1, a2, ..., am〉, the maximal gap k, occurrences

of the events in α i.e, mo(a1), ...,mo(am).

Output: The maximal non-redundant occurrences of α, maxnO(S, α, k).

Procedure:

1: Initialise maxnO(S, α, k)← {}
2: for i = 1 to |mo(a1)| do

3: //From each mo(a1) create a list of candidate occurrences.

4: if mo(a1)(i) /∈ maxnO(S, α, k) then

5: list.a1 ← mo(a1)(i)

6: for j = 2 to |α| do

7: oc ← mo(aj) such that list.aj−1(1) < mo(aj) ≤ list.aj−1(end) + k and mo(aj) /∈
maxnO(S, α, k)

8: if oc 6= {} then

9: list.aj ← mo(aj)(oc)

10: //From list select the most proper occurrence.

11: if size(list) = |α| then

12: sO ← list.am(1)

13: for j = m− 1 to 1 do

14: for kk = 1 to |list.aj | do

15: if sO(1)− list.aj(kk) ≤ k then

16: sO ← [list.aj(kk) sO]

17: break

18: Add sO to maxnO(S, α, k)

Note that to search the occurrences of an episode (any size), the method requires

only the single event occurrences without using their sub-episodes.

Consider as example the sequence S2 = 〈(a, 1), (b, 2), (b, 3), (c, 4), (c, 5), (a, 6), (d, 7),

(d, 8)〉. We are interested in the occurrences of the serial episode α = 〈a, b, c, d〉, as-

suming the maximal gap between events k = 2. The search can be oriented as follows:

1. From the occurrences of the individual events mo(a) = {1, 6}, mo(b) = {2, 3},
mo(c) = {4, 5} and mo(d) = {7, 8}, build a list for the first occurrence of

mo(a)(1) = 1 as: list.a = {1}, list.b = {2, 3}, list.c = {4, 5} and list.d = {7}.

2. Select from the list the most proper serial episode starting with the last event

from the list (list.d) and add it to sO, that is sO = 〈7〉.

3. Complete sO searching the occurrence kk of the other events aj within k in list,

adding each one to sO as sO = [list.aj(kk) sO]. Then, for j = 3: sO = 〈5, 7〉,
for j = 2: sO = 〈3, 5, 7〉 and finally, for j = 1: sO = 〈1, 3, 5, 7〉.
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4. For the other occurrence of a, mo(a)(2) = {6} a new list can not be completed,

whereby the process ends.

The output of the algorithm is the set of serial occurrences of α, maxnO(S2, α, 2) =

{〈1, 3, 5, 7〉}. The frequency of α in S2 is fr(α) = |maxnO(S2, α, 2)| = 1.

Fig. 2.3 shows the search process of the occurrences of α in S2. In the first phase

of the process, from a, 1 the occurrences of b, c and d are located recursively, taking

into account the maximal gap between events k = 2 as shown the black arrows in the

figure. Such occurrences are located between 1 (t1) and 7 (t1 + (|α| − 1)k) time units.

In the second phase, the best occurrence of α is selected from d, 7, choosing iteratively

the more left occurrences of c, b and a as shown with the green arrows in the figure.

Figure 2.3: Search process of the occurrences of 〈a, b, c, d〉 in S2.

Algorithm 2 shows the extraction of serial occurrences of an episode using a inter-

event time constraint (tmax) or maximal gap (max gap) for the duration of the episodes.

However, this algorithm can also be used for episodes with a expiry-time constraint,

tx or observation window, win, for episodes with inter-event time constraint defined as

an interval (tmin, tmax], and for episodes which duration is a combination of both.

2.4.1.1 Serial occurrences with expiry-time constraint

Occurrences of episodes which duration is defined by the maximal elapsed time allow-

able between the first and the last event, can be extracted of a sequence using the

Algorithm 2 with the following adaptations:
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1. Include in the input the expiry-time constraint, tx or win defined by the user and

set as maximal gap between events k = tx or k = win.

2. Add the instruction mo(aj)− list.a1(1) ≤ k at line 7 of Algorithm 2 as:

7: oc ← mo(aj) such that list.aj−1(1) < mo(aj) ≤ list.aj−1(end) + k and mo(aj) − list.a1(1) ≤ k

and mo(aj) /∈ maxnO(S, α, k)

3. Add the instruction sO(end)− list.aj(kk) ≤ k at line 15 of the Algorithm 2 as:

15: if sO(1)− list.aj(kk) ≤ k and sO(end)− list.aj(kk) ≤ k then

With these adaptations, the output of the algorithm is the set of serial occurrences of

α with a maximal fixed duration without inter-event time constraint.

2.4.1.2 Serial occurrences with inter-event time constraint defined as an
interval

Occurrences of episodes which elapsed time between two consecutive events is defined

by an interval (tmin, tmax], can be extracted of a sequence using the Algorithm 2 with

the following adaptations:

1. In the input of the algorithm, set as maximal gap between events k = [tmin tmax].

2. Replace the instruction list.aj−1(1) < mo(aj) ≤ list.aj−1(end)+k with list.aj−1(1)

< mo(aj)− k(1) ≤ list.aj−1(end) + k(2) at line 7 of Algorithm 2 as:

7: oc ← mo(aj) such that list.aj−1(1) < mo(aj) − k(1) ≤ list.aj−1(end) + k(2) and mo(aj) /∈
maxnO(S, α, k)

3. Replace the instruction sO(1)− list.aj(kk) ≤ k with k(1) < sO(1)− list.aj(kk) ≤
k(2) at line 15 of the Algorithm 2 as:

15: if k(1) < sO(1)− list.aj(kk) ≤ k(2) then

With these adaptations, the output of the algorithm is the set of serial occurrences

of α with inter-event time constraint defined as an interval without maximal duration

constraint.
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2.4.1.3 Serial occurrences with inter-event time constraint and expiry-time
constraint

Occurrences of serial episode which duration is a combination of both, inter-event

time constraint tmax, or an interval, (tmin, tmax] and expiry-time constraint tx, where

tmax ≤ tx, can be extracted of a sequence using the Algorithm 2 with the following

adaptations:

1. In the input of the algorithm, set as maximal gap between events k = [tmin tmax]

and set as expiry-time constraint win = tx. If the maximal gap between events

is not an interval then tmin = 0.

2. Replace the instruction list.aj−1(1) < mo(aj) ≤ list.aj−1(end)+k with list.aj−1(1)

< mo(aj)− k(1) ≤ list.aj−1(end) + k(2) and mo(aj)− list.a1(1) ≤ win at line 7

of Algorithm 2 as:

7: oc← mo(aj) such that list.aj−1(1) < mo(aj)− k(1) ≤ list.aj−1(end) + k(2) mo(aj)− list.a1(1) ≤
win and mo(aj) /∈ maxnO(S, α, k, win) and mo(aj) /∈ maxnO(S, α, k)

3. Replace the instruction sO(1)− list.aj(kk) ≤ k with k(1) < sO(1)− list.aj(kk) ≤
k(2) and sO(end)− list.aj(kk) ≤ win at line 15 of the Algorithm 2 as:

15: if k(1) < sO(1)− list.aj(kk) ≤ k(2) and sO(end)− list.aj(kk) ≤ win then

With these adaptations, the output of the algorithm is the set of serial occur-

rences of α in S with both inter-event time constraint and expiry-time constraint

maxnO(S, α, k, win), where k = (tmin, tmax] and win = tx.

2.4.2 Time complexity of the Algorithm 2

To determine the time complexity of the proposed Algorithm 2, note that it enters the

main loop |mo(a1)| times, once for each occurrence of the event a1 in the input sequence.

To count each occurrence of α, the creation and evaluation of list is required which in

the worst-case have a time complexity of O(m + m2). Then, the time complexity

of the algorithm 2 can be expressed as O(|mo(a1)|m(1 + m)) or more simplified as

O(|mo(a1)|m2)). In the worst-case |mo(a1)| can be expressed as n
m , hence, the time
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complexity of Algorithm 2 is O(nm)), where n is the length of the sequence and m is

the size of α. This expression is similar to the worst-time complexity of the methods

based on fixed-width window obtained in (Mannila et al., 1997) and non-overlapped

frequency obtained in (Laxman et al., 2005). The main difference being that, in our

case, the main loop is not directly conditioned by n but the number of occurrences of

the event a1 which is usually far less than n.

Other methods such as the algorithm based on maximal non-redundant sets of oc-

currences in (Gan and Dai, 2010) or the method based on minimal occurrences in (Man-

nila et al., 1997) take only O(n) time to count the frequency of an episode alpha. These

methods are time-wise efficient, due that they use the occurrences of sub-episodes.

2.4.3 Frequency of the episodes with the proposed algorithm

The main advantage of the proposed method is that all the occurrences of an episode

can be counted and indexed, however the selection of a serial occurrence is limited by

the location of its suffix. To ensure the anti-monotonicity property the frequency of an

episode is calculated as:

fr(α) = min(|maxnO(S, α, k)| , |maxnO(S, prefix(α, k))|) (2.10)

where |maxnO(S, α, k)| and |maxnO(S, prefix(α, k))| represent the number of occur-

rences of α and its prefix, respectively.

2.4.4 Considerations for candidate episodes generation

Candidate episodes are episodes for which occurrences must be found in order to estab-

lish if they are frequent or not. They are a combination of shorter frequent episodes.

According to the nomenclature used in the Algorithm 1 of Section 2.3, the candidate

episodes of length L, CL are generated from the set of frequent episodes FL−1 of size

L− 1. Each candidate in CL is generated by combining two suitable frequent episodes

in FL−1. The main steps in the candidate generation process are the following:

1. Selection suitable pairs of episodes from FL−1.

2. Combining each such pair to generate new episodes of size L that are potential

candidates.

44



2.4 New frequency measure based on individual occurrences of the events
(Fminevent)

3. Pruning the potential candidates to retain only those whose sub-episodes are

frequent. They are the candidate episode CL.

The candidate generation step is the main filter to guaranty the anti-monotonicity of

the frequent episodes. The pruning step is key to ensuring the validity of the candidate

episodes and to increase the mining process efficiency.

Using the algorithm for frequency measure proposed in Section 2.4, the candidate

generation strategy to complete the mining process of serial episodes, is describe below.

For all pairs of frequent episodes αi, αj ∈ FL−1, i, j = 1, ...,
∣∣FL−1

∣∣ a candidate

episode αc is generated as:

αc = {join(αi, suffix(αj)) | |αi| = 1 ∨ lsuffix(αi) ⊆ prefix(αj)} (2.11)

The join function adds suffix(αj) to αi as the last one element of αc. The pruning

step is included in the selection of the suitable pair of episodes. Finally, CL is composed

for all αc generated iteratively.

2.4.5 Parallel occurrences with inter-event time constraint

In a parallel episode there are no constraints about the partial order of the events.

Formally, a parallel episode corresponds to the set of all permutations of event types

of the episode, and its frequency is always equal or greater than the corresponding

frequency of any serial episode composed by the same event types.

Given a sequence of events S, a candidate parallel episode α = 〈a1 · a2 · ... · am〉
and a maximal gap between events max gap = k, the Algorithm 3 returns the set

of maximal non-redundant occurrences maxnO. For m = 1, the occurrences of the

episode are the same minimal occurrences of the event a1, maxnO(S, α, k) = mo(a1).

For m > 1, the occurrences of all events in α are sorted in a structure vm where

vm.o = unique(mo(a1), ...,mo(am)) contains the occurrences and vm.e contains the

corresponding event types, then the set maxnO(S, α, k) is obtained from it. For each

occurrence vm.o(i) the corresponding set of events located between tm(i) and tm(i +

(m− 1)k) are evaluated to search the more proper occurrence.

The structure of the algorithm is as follows (Algorithm 3). Each parallel occurrence

of an episode is selected in three phases. In the first phase (line 6), for each occurrence in
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Algorithm 3 Fminevent: Parallel occurrences with inter-event time constraint
Input: An event sequence S, a candidate episode α = 〈a1 · a2 · ... · am〉, the maximal gap k, occurrences

of the events in α i.e, mo(a1), ...,mo(am).

Output: The maximal non-redundant occurrences of α, maxnO(S, α, k).

Procedure:

1: Initialise maxnO(S, α, k)← {}
2: vm← unique(mo(a1), ...,mo(am))

3: for i = 1 to |vm| do

4: if vm(i) /∈ maxnO(S, α, k) then

5: //Create a list of likely occurrences

6: list← vm(i) to vm(i+ (m− 1)k) for all vm.o /∈ maxnO(S, α, k)

7: //Sort the most probable serial episode

8: αs ← unique(list.e)

9: for j = 1 to |α| do

10: Oaux.αj ← list.o such that list.e = αj

11: //Find the most properly occurrence

12: if α ⊂ αs then

13: pO ← serialMethod(list, αs, Oaux, k)

14: if pO = {} then

15: for j = 2 to |α| − 1 do

16: αs ← reorder(αs)

17: pO ← serialMethod(list, αs, Oaux, k)

18: if pO 6= {} then

19: break

20: if pO 6= {} then

21: Add pO to maxnO(S, α, k)

vm.o(i) that has not been considered in previous occurrences, a list with the occurrences

between vm.o(i) to vm.o(i+ (m− 1)k) is created.

In the second phase (lines 8-10), the occurrences of each event are saved in an

auxiliary list Oaux. The most probable serial episode αs is extracted (line 8) from

list.e using the function unique. This function selects the first event of each type in α

that appears in list.e.

Finally, the most proper occurrence pO is extracted (lines 13-21) using the method

for serial episodes with αs, list, Oaux and k as inputs. Each parallel occurrence pO is

added to maxnO (line 21) and constitutes the output of the algorithm.

As example, consider the sequence S3 = 〈(a, 1), (b, 2), (b, 3), (a, 4), (c, 5), (c, 6)〉. We

are interested on the occurrences of the parallel episode α = 〈a · b · c〉, assuming the

maximal gap between events k = 2. The search can be oriented as follows:
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1. From the occurrences of the individual events mo(a) = {1, 4}, mo(b) = {2, 3},
mo(c) = {5, 6}, build a single vector to guide the search, vm=((a,1), (b,2),

(b,3),(a,4),(c,5),(c,6)).

2. For each occurrence in vm, build the temporal list of possible locations. For the

first occurrence, i = 1, list = ((a, 1), (b, 2), (b, 3), (a, 4), (c, 5)).

3. Select from the list the serial episode that would be more likely (based on the

first occurrence of each event). In this case is 〈a, b, c〉.

4. From list search the most proper occurrence of 〈a, b, c〉 using the serial method:

{1, 3, 5}. Thus, maxnO(S3, α, 2) = {1, 3, 5}.

5. Return to step 2, and build the possible location, for the second occurrence,

list = ((b, 2), (a, 4), (c, 6)).

6. Select from the list the serial episode that would be more likely (based on the

first occurrence of each event). In this case, the only option is 〈b, a, c〉.

7. From list, search the more properly occurrence of 〈b, a, c〉 using the serial method,

{2, 4, 6}, then maxnO(S3, α, 2) = {〈1, 3, 5〉 , 〈2, 4, 6〉}.

The set of parallel occurrences of α given by the algorithm as output is maxnO(S3, α, 2)

= {〈1, 3, 5〉 , 〈2, 4, 6〉} and the parallel frequency of α in S3 is fr(α) = |maxnO(S3, α, 2)| =
2.

Algorithm 3 shows the extraction of parallel occurrences of an episode using a

inter-event time constraint (tmax) or maximal gap (max gap) for the duration of the

episodes. However, similarly to Algorithm 2, this algorithm can also be used for parallel

occurrences with a expiry-time constraint, tx or observation window, win for parallel

occurrences with inter-event time constraint defined as an interval (tmin, tmax], and for

parallel occurrences which duration is a combination of both, inter-event time constraint

and expiry-time constraint.

2.4.5.1 Parallel occurrences with expiry-time constraint

Parallel occurrences of episodes which duration is defined by the maximal elapsed time

allowable between the first and the last event, can be extracted of a sequence using the

Algorithm 3 with the following adaptations:
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1. Include in the input the expiry-time constraint, tx or win defined by the user and

set as maximal gap between events k = tx or k = win.

2. Replace the instruction list ← vm(i) to vm(i + (m − 1)k) with list ← vm(i) to

vm(i+ k) at line 6 of Algorithm 3.

3. Replace the function serialMethod(list, αs, Oaux, k) with a function using the

method of serial occurrences with expiry-time constraint of Section 2.4.1.1 at

lines 13 and 17 of the Algorithm 3.

With these adaptations, the output of the algorithm is the set of parallel occurrences

of α with a maximal fixed duration without inter-event time constraint.

2.4.5.2 Parallel occurrences with inter-event time constraint defined as an
interval

Parallel occurrences of episodes which elapsed time between two consecutive events is

defined by an interval (tmin, tmax], can be extracted of a sequence using the Algorithm

3 with the following adaptations:

1. In the input of the algorithm, set as maximal gap between events k = [tmin tmax].

Then, k(1) = tmin and k(2) = tmax

2. Replace the instruction list ← vm(i) to vm(i + (m − 1)k) with list ← vm(i) to

vm(i+ (m− 1)k(2)) at line 6 of Algorithm 3.

3. Replace the function serialMethod(list, αs, Oaux, k) with a function using the

method of serial occurrences with inter-event time constraint defined as an interval

of Section 2.4.1.2 at lines 13 and 17 of the Algorithm 3.

With these adaptations, the output of the algorithm is the set of parallel occurrences

of α with inter-event time constraint defined as an interval without maximal duration

constraint.
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2.4.5.3 Parallel occurrences with inter-event time constraint and expiry-
time constraint

Parallel occurrences of episodes which duration is a combination of both, inter-event

time constraint tmax or an interval (tmin, tmax] and expiry-time constraint tx, where

tmax ≤ tx, can be extracted of a sequence using the Algorithm 2 with the following

adaptations:

1. In the input of the algorithm, set as maximal gap between events k = [tmin tmax]

and set as expiry-time constraint win = tx. If the maximal gap between events

is not an interval then tmin = 0.

2. Replace the instruction list ← vm(i) to vm(i + (m − 1)k) with list ← vm(i) to

vm(i+ k) at line 6 of Algorithm 3.

3. Replace the function serialMethod(list, αs, Oaux, k) with a function using the

method of serial occurrences with inter-event time constraint and expiry-time

constraint of Section 2.4.1.3 at lines 13 and 17 of the Algorithm 3.

With these adaptations, the output of the algorithm is the set of parallel occur-

rences of α in S with both inter-event time constraint and expiry-time constraint

maxnO(S, α, k, win), where k = (tmin, tmax], win = tx and tmax ≤ tx.

2.4.6 Time complexity of the Algorithm 3

To count the parallel occurrences of an episode α, the proposed Algorithm 3 enters the

main loop |vm| times, once for each occurrence of the events a1 to am in the input

sequence. To count each parallel occurrence of α, the creation and evaluation of Oaux

is required which in the worst-case have a time complexity of O(2m). Then, the time

complexity of the algorithm 3 can be expressed as O(2m |vm|). In the worst-case |vm|
can be expressed as n, hence, the time complexity of Algorithm 3 is O(2mn), where n

is the length of the sequence and m is the size of the episode α.

2.4.7 Evaluation of the proposed algorithm

Given a candidate episode, the proposed method is useful to extract and to count both

serial and parallel occurrences. All occurrences are indexed adding information useful
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for post-processing analysis, for example the occurrences can be plotted to look the

distribution along the sequences.

The results of the mining process using the proposed algorithm are compared with

those obtained by the method based on maximal non-redundant sets of occurrences

described in Section 2.3.2.1. This algorithm proposed by Gan and Dai (Gan and Dai,

2010) gave the best mining results in a comparison against the others described in

Section 2.3.

A synthetic sequence is used for testing and demonstrative purposes. It was gener-

ated by embedding two frequent episodes α = 〈L,M,N〉 and β = 〈E,F,G,H〉 into a

random stream of events using an alphabet of 14 event types. The total sequence time

is 5 s and 0.01 s is the average time between events. The detail of the sequence genera-

tor can be consulted in (Patnaik, 2006)1. For data generation, the simulator maintain

a counter for the current time. Whenever an event is generated, it is timestamped with

the current time and the counter is incremented by a small random integer. Each time,

with probability ρ, the next event is generated randomly with a uniform distribution

over all event types; with the remaining probability (1 − ρ), it is determined by the

patterns to be embedded. Whenever the next event is to be from one of the patterns to

be embedded, simulator randomly decide between continuing with a pattern partially

embedded or starting a new occurrence of a pattern. Thus, the synthetic data is like

arbitrarily interleaving outputs of many Hidden Markov Models and an independent

and identically distributed (iid) noise source (Laxman et al., 2005).

The resulting distribution of the events of the sequence generated with ρ = 0.01, is

shown in Fig. 2.4.

From this sequence, the number, frequency and occurrences of frequent episodes

extracted using both methods are compared. Shortening the proposed method as Me1

and the method based on maximal non-redundant sets of occurrences as Me2, the

comparison is done using the following indicators which were also used in (Gan and

Dai, 2010):

1. Missed frequent episodes (M): episodes missed by Me2 but found by Me1.

2. False frequent episodes (F): episodes found by Me2 but no found by Me1.

1Software is available at address http://minchu.ee.iisc.ernet.in/new/people/faculty/pss/TDMiner.html

or https://code.google.com/p/tdminer/

50



2.4 New frequency measure based on individual occurrences of the events
(Fminevent)

Figure 2.4: Distribution of the events of the synthetic sequence.

3. Positive Inaccurate frequency (PI): episodes found by the two methods with more

occurrences by Me1.

4. Negative Inaccurate frequency (NI): episodes found by the two methods with

more occurrences by Me2.

The corresponding ratios are calculated as follow:

RM =
M
|Me1|

(2.12)

RF =
F
|Me1|

(2.13)

RPI =
|{α such that α ∈Me1 ∩Me2, fr(α) ∈Me1 > fr(α) ∈Me2}|

|Me1 ∩Me2|
(2.14)

RNI =
|{α such that α ∈Me1 ∩Me2, fr(α) ∈Me2 > fr(α) ∈Me1}|

|Me1 ∩Me2|
(2.15)

Frequent episodes were found using as minimum thresholdmin fr = 20 occurrences

(2% of the total length of the sequence)and several maximal gaps max gap between

events. Table 2.4 summarises the results according to the previous indices.
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Table 2.4: Evaluation of results in the synthetic sequence.

max gap in s |Me1| |Me2| |Me1 ∩Me2| M F PI NI RM RPI

0.01 28 28 28 0 0 0 0 0.00 0.00

0.02 132 119 119 13 0 22 0 0.10 0.18

0.03 389 330 330 59 0 119 0 0.15 0.36

0.04 1149 775 775 374 0 437 0 0.33 0.56

0.05 4354 2074 2074 2280 0 1424 0 0.52 0.69

According to column F in Table 2.4, all episodes found by the method Me2 based on

maximal non-redundant sets of occurrences are also found by the proposed algorithm

Me1 while, according to column M (k ≥ 0.02s), the proposed method found additional

frequent episodes not discovered by Me2. Columns PI and NI show that the number

of occurrences found by the proposed method are not lower than those found by Me2.

In summary, columns RM and RPI shows that the total number of frequent episodes

and their number of occurrences found by the proposed method Me1 are not lower than

those found by the method Me2, becoming the differences larger as the value of max gap

increases (increasing the overlap of the occurrences).

The frequent episodes are only constrained by a minimum threshold and a maximal

inter-event time, and a large number of them is discovered in the sequence by the two

methods. However, only two episodes are embedded in the sequence. This means that

the majority of frequent episodes are random connections between events. Then, a post

processing of frequent episodes is required to recognize the most significant frequent

episodes. This step of the mining process will be explained in Chapter 3.

Next, some simulation results are presented to show the behaviour of the two anal-

ysed methods in the extraction of the patterns embedded in the sequence with different

level of noise. The two patterns embedded were: α = 〈L,M,N〉 and β = 〈E,F,G,H〉.

Data sequences were generated for different values of ρ. The respective number of

occurrences discovered for each method is shown in Table 2.5. According to this ta-

ble, Fminevent is as effective as the method based on maximal non-redundant sets of

occurrences in discovering hidden temporal patterns.
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Table 2.5: Frequency of the patterns α and β obtained by the two methods using a
max gap=0.03 s.

ρ
Me1 Me2

α β α β

0.01 36 39 36 39

0.2 16 19 16 17

0.3 14 12 14 12

0.4 9 5 9 5

0.5 8 < 5 7 <5

2.5 Conclusions

The main techniques to discovery patterns in data set of events are described. Exten-

sions to deal with time constraints among events have been motivated by the definition

of power events. Frequent episodes can be extracted of these data sets if they are or-

ganised as sequences of events. Frequent episodes are ordered set of events that reveal

the existence of regularities in the data as well as causal relations between events.

For different application domains, there exist several methods to find and to count

the occurrences of an episode. Serial episodes are the most used because they allow

representing causal and order relationships between elements in the episode. Strategies

used to select the occurrences and the constraints applied for their duration, charac-

terise the episodes. For the reviewed algorithms the characteristics of the episodes

obtained are different for each one. However, over-counted or missed of occurrences

are common weaknesses of them. While methods based on minimal occurrences tend

to miss occurrences, methods based on occurrences tend to over-count occurrences

when they are based on fixed-width windows or to miss occurrences otherwise. A new

method to deal with sequences of events registered in power distribution networks is

proposed. The method is able to extract both serial and parallel occurrences. The

occurrences extracted with this method have an inter-event time constraint and they

can be overlapped and non-minimal.

Under the point of view of number of non-redundant occurrences found and flexible

duration of the episodes, the proposed algorithm has better performance than other

methods reviewed in this research. A possible weakness of the method is that the

running time would be greater than methods using sub-episodes occurrences.
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3

Significant episodes in sequences

of events

In the previous chapter, frequency of occurrences has been considered a discriminant

criterion to select relevant episodes from a sequence of events. However, this criterion

is independent of the source where these events have been generated and consequently

does not not take into consideration possible requirements, derived form the context,

related with the order or position of events in an episode in order to be considered

significant. For example, events generated in an industrial context, as is the case of

power networks, are constrained to physical laws that define the process dynamics and

consequently some order relations, as causality or cause-effect relations, exist. From

that perspective, frequency can not be the only criterion to discover significant episodes

and other order relations as precedence, causality or existence in an episode have to be

considered during the discovery process.

In this chapter, we explore how these constraints can be incorporated in the pattern

discovery procedure to find frequent and significant episodes. Descriptive indices and

methods used to assess the quality of the episodes in terms of their significance are

revised and two new indices, based on the analysis of serial and parallel frequency of

episodes, are proposed and illustrated with application examples.
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3.1 Introduction

In this thesis, sequence pattern discovery approach through frequent episodes is divided

in two main steps. Frequent episode discovery discussed in Chapter 2 is the first one

and the second one is the identification of significant episodes which is presented in this

chapter.

A general schema for sequence pattern discovery approach including the main el-

ements involved in it, is shown in Fig. 3.1. The sequence of events and the pattern

specifications, defined by the user according to the problem, are the inputs of the prob-

lem. The outputs are the frequent episodes as first step. Then, in a second step, only

the significant ones are selected as possible patterns.

Figure 3.1: General schematic of the pattern discovery approach through frequent
episodes.

Frequent episodes are those that have a number of occurrences greater than a fixed

threshold (min fr), predefined by the user; but only some of them are really signif-

icant for knowledge discovery purposes. Other relevant criteria consist in exploring

connections between events inside those frequent episodes that are consistent with the

physical constraints of the event source. According to these relations different type of

rules can be used to infer knowledge from the exploitation of episodes. These rules de-

scribe connections between events more clearly than frequent episodes alone (Agrawal

and Srikant, 1994; Mannila et al., 1997).

A rule assesses the link among the prefix and the suffix of an episode as the fraction

between the frequency of the episode and the frequency of its prefix. From the property

of anti-monotonicity, this value is equal or less than one, and it is named as confidence

of the episode (see Definition 3.4). The idea is that episodes with high confidence are

significant.
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Consider as example the frequent episodes obtained from the synthetic sequence

in Section 2.4.7 using the method Fminevent (described in Section 2.4), which are

summarised in Table 3.1. Cumulated distribution of these episodes according with

their confidence is shown in Fig. 3.2. According with this figure, for max gap of 0.02s

and 0.03 s, about 40% of the episodes have a confidence greather than 0.5 and about

25% have a confidence greather than 0.8. For max gap of 0.04s and 0.05 s confidence

and number of episodes increase, about 25% of then have a confidence greater than 0.9.

Table 3.1: Number of frequent episodes found in the synthetic sequence by the method
Fminevent (Algorithm 2).

max gap= 0.02 s max gap = 0.03 s max gap =0.04 s max gap= 0.05 s

132 389 1149 4354

Figure 3.2: Cumulated distribution of frequent episodes in Table 3.1 according with their
confidence values.

Results show that with a simple search usually a huge number of frequent episodes

and rules are found. Therefore, to extract more relevant information, formulation of

auxiliary criteria is required.
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3.2 Significant episodes in event sequences

Significant episodes are those that address meaningful relationships between events and

are not formed simply because the events inside the episode are the most frequent.

Definition 3.1. Significant episode. An episode α is significant if it reveals informa-
tion of probable associations between its events, which are not product of randomness.

Two main strategies have been proposed to recognise the significant episodes in

an event sequence. The first one is based on the statistical behavior of length and

frequency of frequent episodes (Gwadera et al., 2003; Laxman et al., 2005; Tatti, 2009),

and the second one aims to avoid redundant information (Gan and Dai, 2011; Zhou

et al., 2010).

The main weakness of these two strategies is that they do not take advantage of

the general knowledge that can exist about the system where the sequence has been

generated and its operation. As a contribution of this research, we propose a new

approach based on an event directed search over frequent episodes. This strategy

consists in filtering frequent episodes to select only those that include sets of events

that follow meaningful order relations.

3.2.1 Statistical methods for significant episodes recognition

These strategies take advantage of the central limit theorem to bound the probability

that the frequency of an episode is above or below some threshold given a generative

model for the data.

According to (Tatti, 2009) an episode is significant if the average length of its min-

imal window deviates greatly when compared to the expected length obtained when

independence model. Given a sequence of events, they first split the sequence in two

parts. The first sequence is used for discovering the episodes with a large number of

minimal windows (candidate episodes) and to compute the distribution of the mini-

mal windows and the probabilities of occurrence of each event type in the sequence.

From the second sequence, the expected length of a minimal window against the av-

erage length of the observed minimal windows are compared using a Z-test. A Z-test

is any statistical test for which the distribution of the test statistic under the null
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hypothesis can be approximated by a normal distribution. Episodes that obey the in-

dependence model (normally distributed) are pruned and consequently the number of

output episodes is reduced. In summary, given a sequence and a candidate episode they

first discover the set of all minimal windows in which the given episode occurs. Then,

the length of these minimal windows is analysed. If their distribution is abnormal, the

episode is considered as significant episode.

Gwadera et al., considers significant an episode when it occurs too often or not often

enough in a fixed window (Gwadera et al., 2003, 2005). The problem is formulated to

answer the following question: When the frequency of occurrences of a certain type of

episodes is indicative of suspicious activity? The solution simply consists in fixing a

threshold based on the quantitative analysis to deal with the trade off between false

alarms and missed detections. The method assumes that the sequences are generated

by a memoryless source such as a Bernoulli or a Markov model. Thus, given a candi-

date episode, the first step is finding the number of windows containing at least one

occurrence of the candidate episode. This number constitutes the observed value of the

frequency of the episode. Next, a probabilistic model is created taking into account

attributes as the length of the sequence, the size of the episode and the cardinality

of the set of event types. Finally, a threshold is fixed based on the expected value

and the variance of the probabilistic model. Observed frequency is compared with this

threshold to decide whether a suspicious activity took place or not.

Laxman et al., uses the connection between non-overlapped episodes and Hidden

Markov Models (HMM) to assess the significance of the episodes without using training

data to estimate a model for the data generation process (Laxman et al., 2005). They

test the null hypothesis that the data is generated by an independent and identically

distributed (iid) model against the alternative hypothesis that the data comes from

an HMM model. According to this framework, a good frequency threshold for non-

overlapped episodes can be formulated as a function of the length of the sequence, the

size of the episode and the size of the set of events type as follows:

Γ =
T

M
+

√
T

M

(
1− 1

M

)
Φ−1 (1− ε) (3.1)

where ε is the probability of false rejection of the null hypothesis, T is the length of

the event sequence, M is the cardinality of the symbol set (event types) and Φ is the
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3. SIGNIFICANT EPISODES IN SEQUENCES OF EVENTS

distribution function of a standard normal random variable. Given an episode α, the

null hypothesis is rejected if:

Nfr(α) > Γ (3.2)

where N is the size of α, N = |α|, and fr(α) is its number of non-overlapped occur-

rences. From Equation 3.1, since T is usually much larger than M , T
M is the dominant

factor in the value of Γ. Then, from Equation 3.2, T
NM is the significant initial frequency

threshold for the episodes.

3.2.2 Avoiding redundant episodes

These strategies seek to compress the information provided by all frequent episodes,

delivering only the most representative episodes.

Zhou et al. (2010) proposes mining closed episodes because they provide the lossless

compression of frequent episodes and consequently improve efficiency during the mining

process.

Definition 3.2. Closed episodes. Given an event sequence S, an episode α is closed
if α is frequent and there not exist a super episode β such that β ⊃ α with the same
frequency.

The mining process follows a breadth-first search strategy, i.e., the candidate episodes

of length k+1 are generated from frequent episodes of length k adding one event. The

minimal occurrence of this new episode is computed from the minimal occurrence of

its sub-episode.

Gan and Dai (2011) use the maximal frequent episodes as basis to obtain the rep-

resentative patterns in a sequence.

Definition 3.3. Maximal frequent episode. An episode α is a maximal frequent
episode with respect tomin fr in a sequence S if there not exists any episode β in S such
that α is a sub-episode of β and β is frequent in S. I.e., for any β ⊇ α, fr(β) < min fr

Doucet and Ahonen-Myka (2006).

These strategies are useful to compress the number of frequent episodes obtained

in the mining process. The idea is to retain only super episodes since they store

information of their sub-episodes. Through the maximal frequent episodes a greatest
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3.2 Significant episodes in event sequences

compression of the data is obtained but information about the frequency of sub-episodes

is missed, while with the closed episodes, this information is retained. However, using

these strategies, the quality of the relationships between events in frequent episodes

can not be evaluated.

3.2.3 Directed search of episodes

In the process of significant episode discovery, usually there exists a domain knowledge

that can be exploited during the analysis of event sequences. This includes aspects

such as common behaviours that generate large number of events, or knowledge about

abnormal situations that can evolve to failures and the identification of specific symp-

toms can alert them. Usually these interesting situations are reflected in the sequence

with the presence of specific events, or ordered sets of them.

In this thesis, we propose a simple strategy to guide the search of episodes focus-

ing on events predefined by the user. A heuristic search, based on the principle of

existence of events in the episode, is proposed to avoid the exhaustive exploration any

combination of events.

With this aim, three especial cases are addressed in this section: filtering events,

forward-association of an event and backward-association of an event. The first case,

filtering events, prevents that certain types of events (usually very frequent events)

could mask significant episodes. The second case, forward-association of an event, aims

finding the existence of episodes triggered by a specific event whereas the third case,

backward-association of an event, focuses on discovering antecedents of the specific

event. These approaches are of interest for finding cause-effect relationships among

events, for prognosis and diagnosis purposes, respectively.

3.2.3.1 Filtering events

The problem consists in finding all the frequent episodes in a sequence, regardless some

types of unwanted events. The general method exposed in Section 2.3 can be adapted

for this problem, adding a constraint on the generation of the first set of candidate

episodes (Algorithm 1, line 2), as follows. If A is the set of event types in the sequence

and Au is the set of unwanted events, then:

C1 = {all ai ∈ A such that ai /∈ Au} (3.3)
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This simple adaptation on the step of candidate generation, allows all frequent

episodes found not include unwanted events, preventing episodes of interest to be hid-

den.

3.2.3.2 Forward associations of an event

Given a specific event type ax, we fix the objective of finding events aj that frequently

occur after the occurrence of ax. So, the frequent pattern discovery problem is con-

strained to episodes that always start with the predefined event. This set of episodes

with the forward associations (FA) of an event can be extracted from the frequent

episodes in a post processing step as:

FA(ax) = { all α ∈ F such that a1 ⊆ ax } (3.4)

where F is the set of frequent episodes (output of the Algorithm 1) and a1 is the first

event of α.

The strategy proposed in Equation 3.4 is a post-processing step of frequent episodes.

It can be applied regardless of the algorithm for frequent episode discovery.

The candidate generation procedure presented in Section 2.4.4 can be adapted to

focus search on a specific type of event, improving the general performance of the

method without violating the principle of anti-monotonicity.

Given the specific event ax defined by the user and the set of frequent episodes of

size (L = 1), F 1, the generation of the candidate episodes of size L+ 1, CL+1 is shown

in Algorithm 4.

The candidate episodes of size L + 1 are generated from the frequent episodes of

size L, FL, and the frequent events F 1 which include the event ax. If L = 1, CL+1

is constructed adding ax to the each frequent event in F 1 (line 4). If L > 1, each

episode in CL+1 is constructed joining frequent episodes with frequent events (line 11).

The anti-monotonicity of the episodes is preserved since the frequency of episodes is

regulated by their prefix when the proposed algorithm (Section 2.4) is used for frequent

episode discovery.
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3.2 Significant episodes in event sequences

Algorithm 4 Candidate episode generation focused on the forward associations of an
event
Input: The set of frequent events F 1, the set of frequent episodes FL, the event ax to focus the search.

Output: The set of candidate episode of size L+ 1, CL+1 with the forward associations of ax.

Procedure:

1: Initialize CL+1 as null

2: if L = 1 then

3: for k = 1 to
∣∣F 1

∣∣ do

4: CL+1.k ←
[
ax F 1.k

]
5: else

6: j ← 1

7: for k = 1 to
∣∣FL

∣∣ do

8: for m = 1 to
∣∣F 1

∣∣ do

9: CL+1.j ←
[
FL.k F 1.m

]
10: j ← j + 1

3.2.3.3 Backward associations of an event

It consists in searching episodes containing ax as the last element. That is, the an-

tecedents of event ax are contained in frequent episodes. In other words, the set of

episodes that contains the backward association of a specific event ax.

The set of episodes that contain the backward associations (BA) of an event ax can

be expressed as:

BA(ax) = { all α ∈ F such that ax ⊆ am } (3.5)

where F is the set of frequent episodes of a sequence (output of the Algorithm 1) and

am is the last event of α.

This information can be extracted in a post processing step from the frequent

episodes as shown in Equation 3.5 or directing the search for episodes through can-

didates generation step, as long as it meets the principle of anti-monotonicity. The

results could be useful in diagnosis and prognosis tasks, since the events that usually

precede an event of interest can be identified.

As with the forward association of an event, using the proposed mining algorithm,

the procedure for the candidate episodes generation is simply the concatenation of

frequent events with frequent episodes as shows the Algorithm 5.

The candidate episodes of size L + 1 are generated from the frequent episodes of

size L and the frequent events (episodes of size 1, F 1). The set of frequent episodes
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3. SIGNIFICANT EPISODES IN SEQUENCES OF EVENTS

Algorithm 5 Candidate episode generation focused on the backward associations of
an event
Input: The set of frequent episodes FL, the set of frequent episodes F 1, the event Ei to focus the

search.

Output: The set of candidate episode of size L+ 1, CL+1.

Procedure:

1: Initialize CL+1 as null

2: if L = 1 then

3: for k = 1 to
∣∣F 1

∣∣ do

4: CL+1.k ←
[
F 1.k Ei

]
5: else

6: j ← 1

7: for k = 1 to
∣∣FL

∣∣ do

8: for m = 1 to
∣∣F 1

∣∣ do

9: CL+1.j ←
[
F 1.m FL.k

]
10: j ← j + 1

are frequent events, including the event ax. If L = 1, CL+1 is constructed joining ax as

the first event to each frequent episode in F 1 (line 4). If L > 1, each episode in CL+1

is constructed joining frequent episodes with frequent events (line 11) using a similar

concept as used for the forward associations.

3.3 Meaningful patterns from frequent episodes

Association rules describing relationships between events are commonly used to as-

sess the patterns obtained through frequent episodes. Such associations describe the

strength of the link, sometimes causal, between events or sets of events, contained in

the episode.

Consider the episode α, described by the pattern p, as a sequence of two episodes

α1 and α2 (α = 〈α1, α2〉) associated also with respective patterns p1 and p2 and with

known supports s, s1 and s2, respectively. It can be interpreted as an association rule

of the form p1 → p2 or the equivalent in term of episodes α1 → α2, where p1 is the

antecedent and p2 is the consequent of the rule. The support of the rule coincides

with the support of p and its confidence is given by the relation c(p1 → p2) = s(p1 →

p2)/s(p1) = s/s1, and can be seen as an estimator of the conditional probability of

P (α2|α1) useful for reasoning and on-line inference tasks.
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3.3 Meaningful patterns from frequent episodes

Two new indexes to assess the significance of frequent episodes are suggested in this

thesis. They are proposed as complementary criteria to the confidence of the episode

rules. The first one, named cohesion of the episode, is based on the comparison of

the number of serial and parallel occurrences, whereas the second, named backward-

confidence of the episode, is analogous to the confidence of an episode rule but it focuses

on the beginning of the episode instead of the end (Quiroga et al., 2012a).

3.3.1 Confidence of an episode

It is a common criterion used to evaluate the association between an episode and its

extensions.

Definition 3.4. Confidence of an episode. The confidence of an episode α, conf(α),
is the fraction between the frequency of the episode and the frequency of its prefix
(Mannila et al., 1997).

conf(α) =
fr(α)

fr(prefix(α))
(3.6)

The episodes whose confidence is greater than a threshold, min conf , are called

episode rules and can be considered relevant for reasoning tasks. These rules can be

interpreted as the probability of occurrence of a new episode once its prefix has occurred.

3.3.2 Cohesion of an episode

This index measures the strength of order relation expressed by the serial episode with

respect to other episodes in the sequence containing the same events in different order

(parallel episodes).

Definition 3.5. Cohesion of an episode. The cohesion of an episode α, coh(α), is
defined as the fraction between the number of occurrences of a serial episode, α, an the
number of occurrences of a parallel episode, αp, containing the same events as α which
are abbreviated in Equation 3.7 as fr and frp , respectively.

coh(α) =
fr(α)
fr(αp)

=
fr

frp
(3.7)

The cohesion can be useful to discover significance of order of events in an episode.

Events that mainly appear in a given order (serial episode) can help to explain causal

relationships.
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3.3.3 Backward-confidence of an episode

Backward-confidence concept is analogous to the confidence (Definition 3.4) but focused

on triggering events. It evaluates the importance of the first event, with respect to the

episode allowing to discover possible triggering events. The concept is based on the fact

that an episode is the backward-extension super episode of its large suffix (Definition

2.15).

Definition 3.6. Backward-confidence of an episode. The backward-confidence of
an episode α, confB(α), is the fraction between the frequency of the episode, fr(α),
and the frequency of its large suffix, fr(lsuffix(α)) as shown in Equation 3.8.

confB(α) =
fr(α)

fr(lsuffix(α))
(3.8)

This index measures the probability of occurrence of an episode given the frequency

of its large suffix. It reveals information about the origin of the episode.

3.3.4 Evaluation of frequent episodes

The significance of frequent episodes can be evaluated from their corresponding levels

of confidence, cohesion and backward-confidence as a quality factor Qf defined as:

Qf (α) = f (conf(α), coh(α), confB(α)) (3.9)

Restrictions of this quality factor will be set by the user according to discovery goals.

The criterion can include one or several indexes combined in different ways. As example,

a possible index could be defined by Qf min ⇔ {conf ≥ min conf} or Qf min ⇔
{conf ≥ min conf ∧ coh ≥ min coh ∧ confB ≥ min confB}.

Frequent episodes (fE) that meet the minimum quality requirement are classified

as significant frequent episodes, sfE.

sfE = {α | Qf (α) ≥ Qf min ∀ α ∈ fE} (3.10)

Finally, to avoid redundant information, significant patterns are obtained compress-

ing the significant episode information through strategy or maximal or closed episodes
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(Definitions 3.3 and 3.2, respectively), i.e., meaninful patterns are the set of significant

maximal or closed frequent episodes sMfE, classified according to the Equation 3.11.

sMfE = {α | ¬∃β 6= α such that β ⊇ α ∀ α, β ∈ sfE} (3.11)

The process of extraction of significant episodes and meaningful patterns can be

summarised by Algorithm 6.

Algorithm 6 Evaluation of frequent episodes
Input: The set of frequent episodes fE, the minimum quality factor Qf min.

Output: The set of significant maximal frequent episodes sMfE.

Procedure:

1: Initialize sfE and sMfE as null

2: for all α ∈ fE such that |α| > 1 do

3: Qf (α)← f((conf(α), coh(α), confB(α))

4: if Qf (α)⇔ Qf min then

5: Add α to sfE

6: for all α ∈ sfE do

7: if ¬∃β 6= α such that β ⊇ α then

8: Add α to sMfE

The minimum quality factor Qf min for the meaningful patterns defined by the user

and all frequent episodes fE found in the sequence, where each frequent episode must

contain information related with the serial and parallel frequency, are the inputs. The

algorithm has two main phases. In the first phase (lines 2-5), the quality factor Qf of

each frequent episode is found (line 3) and the episodes with minimum quality are stored

in a set of significant episodes sfE (lines 4-5). In the second phase (lines 6-8), only the

closed or maximal episodes found in sfE are retained as patterns. This set is called

sMfE and constitutes the output of the algorithm. Through the maximal frequent

episodes a greatest compression of the significant episode information is obtained but

information about the frequency of sub-episodes is missed.

3.4 Experimental evaluation of the proposed strategies

In this section, frequent episodes discovered by the method Fminevent (Algorithm 2 and

3) are evaluated. The same synthetic sequence described in Chapter 2, Section 2.4.7

and generated with ρ = 0.01 is used. The frequent serial episodes are evaluated by
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the proposed criteria of cohesion, backward-confidence and confidence looking for the

two episodes 〈L,M,N〉 and 〈E,F,G,H〉 embedded in the random sequence. Although

these two episodes have a serial order, both serial and parallel frequencies are required

to measure the strength of their order relation, according with the indexes presented

in Section 3.3.

According to the results reported in Section 2.4.7 a huge number of frequent episodes

are obtained, then to select the significant ones it is necessary the implementation of the

second step of the sequent pattern discovery approach, i.e., the assessment of episodes

(Fig. 3.1). In this sequence, compression of the frequent episodes information retaining

only the maximal episodes, is not sufficient to properly reduce the search space of the

most significant episodes as it is shown in Table 3.2.

Table 3.2: Number of frequent and maximal episodes found in the synthetic sequence for
several values of maximal gap.

Description
Maximal gap values in seconds

0.02 0.03 0.04 0.05

Frequent episodes 132 389 1149 4354

Maximal frequent episodes 35 103 252 902

Following, as part of the process for the assessment of episodes, the behavior of

the episodes according to their values of cohesion, confidence and backward-confidence

indexes is analyzed, and then a quality factor is defined to extract the most relevant

episodes.

Fig. 3.3 shows the cumulated distribution of the frequent episodes according to

its values of conf, coh and confB for values of maximal gap of 0.02 s, 0.03 s 0.04

s and 0.05 s. This figure indicates that the larger the value of max gap, the lower

cohesion of the episodes is, while the higher confidence or backward-confidence is. For

example, for max gap=0.02 s around 80% of frequent episodes have a cohesion lower

than 0.8, while for max gap=0.05 s this percentage increases above the 95%. In turn,

for max gap=0.02 s, around 75% of frequent episodes have a confidence lower than 0.8,

while for max gap=0.05 s this percentage decreases to 60%. A similar trend is observed

for the backward-confidence.

Fig. 3.4, Fig. 3.5 and Fig. 3.6 show the dependencies between conf versus coh, conf

versus confB and coh versus confB, respectively. These dispersion diagrams indicate
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Figure 3.3: Cumulated distribution of frequent episodes in Table 3.1 according with their
values of conf , coh and confB .

that the indexes are independent. This means that if an episode reaches the minimum

confidence requirement does not imply that also reach the minimum requirements of

cohesion and/or backward-confidence. As the constraint of maximal gap (max gap)

increases, figures show that most episodes tend to have low values of coh and high

values of conf and confB.

By the Algorithm 6 in Section 3.3.4, the most significant episodes are identified.

According with this algorithm a minimum quality factor Qfmin must be specified by

the user. We have fixed several Qfmin combining the criteria of conf , coh and confB

as follows:

Qf min ⇔ {conf ≥ min conf}

⇔ {confB ≥ min confB}

⇔ {coh ≥ min coh}

⇔ {conf ≥ min conf ∧ confB ≥ min confB}

⇔ {conf ≥ min conf ∧ coh ≥ min coh}

⇔ {conf ≥ min conf ∧ coh ≥ min coh ∧ confB ≥ min confB}

(3.12)

where min conf , min coh and min confB are the minimum required values for the
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Figure 3.4: conf vs coh for different values of max gap.

Figure 3.5: conf vs confB for different values of max gap.

recognition of the two embedding patterns, which are min conf = 0.8, min coh = 0.8

and min confB = 0.5.

Table 3.3 shows the number of significant episodes identified from the different min-
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Figure 3.6: coh vs confB for different values of max gap.

imum quality factor Qfmin used. These significant episodes are the maximal frequent

episodes that reach the minimum quality factor.

Table 3.3: Number of frequent and maximal episodes and patterns found in the synthetic
sequence for several values of maximal gap.

Description
Maximal gap values in seconds

0.02 0.03 0.04 0.05

Frequent episodes 132 389 1149 4354

Maximal frequent episodes 35 103 252 902

Patterns:

Qf ⇔ {conf ≥ 0.8} 12 32 89 456

Qf ⇔ {confB ≥ 0.5} 16 67 208 824

Qf ⇔ {coh ≥ 0.8} 9 17 24 46

Qf ⇔ {conf ≥ 0.8 ∧ confB ≥ 0.5} 5 20 77 413

Qf ⇔ {coh ≥ 0.8 ∧ confB ≥ 0.5} 4 6 13 32

Qf ⇔ {conf ≥ 0.8 ∧ coh ≥ 0.8} 4 5 6 14

Qf ⇔ {conf ≥ 0.8 ∧ coh ≥ 0.8 ∧ confB ≥ 0.5} 3 4 5 11

The first row of Table 3.3 shows the total number of frequent episodes for differ-

ent values of maximal gap. It is observed that their number increases rapidly as the

maximal gap is relaxed. The corresponding number of maximal episodes is show in the
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second row of the table. Their number is still significantly high, since the number of

embedded episodes is only two.

From row three, the number of meaningful patterns extracted using one or several

of the proposed criteria are shown. For max gap not equal to 0.01 s the number of

patterns using the criteria of min coh is smaller than those extracted using criteria of

min conf or min confB, respectively. With combination of two criteria, the best result

(smaller number of patterns) is obtained using min conf and min coh. However, the

combination of the three criteria delivers much better results.

Table 3.4: Patterns extracted using Qf ⇔ {conf ≥ 0.8 ∧ coh ≥ 0.8 ∧ confB ≥ 0.5} as
selection criteria.

Maximal Episode fr frp coh confB conf

max gap=0.02s

〈L,M,N〉 36 38 0.95 0.59 0.88

〈G,H,G,H〉 23 26 0.88 0.77 0.88

〈E,F,G,H〉 37 45 0.82 0.51 0.88

max gap=0.03s

〈L,M,N〉 36 39 0.92 0.59 0.88

〈G,H,G,H〉 32 34 0.94 0.76 0.89

〈F,G, F,G〉 27 29 0.93 0.77 0.90

〈E,F,G,H〉 39 48 0.81 0.53 0.91

max gap=0.04s

〈L,M,N〉 37 39 0.95 0.60 0.90

〈M,N,M,N〉 20 24 0.83 0.65 0.91

〈E,F,G,H〉 43 48 0.90 0.57 0.96

〈E,F,G, F,G〉 22 27 0.81 0.76 0.85

〈G,H,G,H,G,H〉 19 20 0.95 0.95 0.95

max gap=0.05s

〈N,N,G〉 34 40 0.85 0.59 0.89

〈L,M,N〉 37 41 0.90 0.60 0.90

〈M,N,M,G〉 22 27 0.81 0.71 0.92

〈M,N,M,N〉 21 25 0.84 0.66 0.88

〈F,G, F,H〉 34 41 0.83 0.58 0.92

〈F, F, F,H〉 19 23 0.83 0.56 1.00

〈E,F,H,G,H〉 32 39 0.82 0.80 0.89

〈F,G,H,G, F,G〉 21 26 0.81 0.84 0.84

〈G,H,G,H, F,G,H〉 23 27 0.85 0.88 1.00

〈F,G,H,N, F,G, F 〉 19 21 0.90 0.95 0.83

〈E,F,G,G,H, F,G〉 19 23 0.83 0.90 0.86
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3.5 Conclusions

Table 3.4 shows the meaningful patterns extracted with the combination of the three

criteria (conf ∧ coh ∧ confB) for max gap=0.02 s to max gap=0.05 s. The two patterns

〈L,M,N〉 and 〈E,F,G,H〉 embedded in the sequence were extracted satisfactorily. As

the constrain of maximal gap is relaxed (max gap increases), other frequent episodes

involving mainly the frequent events F, G, and H begins to be significant.

This example shows that the proposed indexes of cohesion (coh) and backward-

confidence (confB) may be helpful in the selection of the most significant patterns,

improving the results obtained by the simple extraction of maximal episodes or episode

rules.

3.5 Conclusions

In this Chapter a new strategy to recognize significant episodes in event sequences is

proposed. The idea is to take advantage of the domain knowledge that can exist about

interesting events in the sequence. This strategy can be implemented as a post process-

ing step of the frequent episodes or directly by modifying the candidate generation step

in the mining process. Three cases were addressed: filtering events, forward-association

of an event and backward-association of an event. The first case, filtering events pre-

vents that certain types of events (usually very frequent events) could mask significant

episodes. The second case, forward-association of an event, aims finding the existence

of episodes triggered by a specific event whereas the third case, backward-association

of an event, focuses on discovering antecedents of the specific event.

The analysis of the frequent episodes concludes with the evaluation of strength of

associations described by them. The usually criteria is the use of the confidence of

the episode that describe the causal relation between its prefix and suffix. This simple

criteria is insufficient to reduce the search space of the most relevant patterns. In

this order, two new auxiliary criteria called cohesion and backward-confidence of the

episodes are proposed. The proposed criteria are also based on frequencies. While the

cohesion measures the strength of order relation expressed by the serial episode with

respect to other episodes in the sequence containing the same events in different order,

the backward-confidence evaluates the importance of the first event, with respect to

the episode allowing to discover possible triggering events.
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The useful of the findings described in the present chapter were shown by experi-

mental results. They were developed for the analysis of frequent episodes discovered in

event sequences recorded in power distribution networks but they are also applicable

to other application domains.
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4

Mining voltage dip sequences

recorded in power distribution

substations

This chapter adapts previous strategies for discovering significant frequent patterns to

deal with sequences of events collected in distribution networks. A dataset of voltage

dip events recorded in power distribution networks is analysed. From this data set, two

different types of associations between events are discovered using the mining algorithm

proposed in Section 2.4. The first association describes regularities in the elapsed times

between successive voltage dips, while the second one is associated with possible regu-

larities in the network locations where the events occur. Finally, the most significant

relationships are obtained and analysed using the indexes developed in Chapter 3 and

their physical meaning are discussed.

4.1 Introduction

As it was explained in Chapter 1, voltage dips are the most frequent events in power

distribution networks. They are the main type of event associated with faults (short-

circuits) occurring in the power network, and they also are related with others sudden

increases of current due to operations of the network such as motor starting, transformer

energising or load commutation.

Usually, the occurrence of a fault in an electrical network over time is considered
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an isolated and independent phenomenon and their apparition is modeled in terms of

probabilities. Such approach is useful to model the network performance from the power

quality point of view. However, the independence assumption is not always true and

sets of events appear following specific order relations describing patterns. Automatic

discovering of such episodes is the challenging task addressed in this chapter. A tool

to discover the existence of such patterns can be exploited for predicting faults and

to assist maintenance and operation task contributing to reduce the time response to

failures and consequently resulting in better power quality indices.

Relations between events in a sequence can be constructed through the study of

frequent episodes. These dependencies are causal relationships between events. Con-

sider as an example the sequence shown in Fig. 4.1, where the algorithm of fixed-width

window (Section 2.3.2.1) is used to illustrate the search for frequent episodes. In the

example, the sliding window has a width of 4 units and moves along the sequence

linking the events in a total of six windows.

Figure 4.1: Construction of dependencies between events in a sequence using fixed-width
windows.

The following sets of events can be found in the sequence of Fig. 4.1 using the

sliding window paradigm:

• Set of windows containing episode 〈a〉, M = {w1, w2, w3, w4, w5}.

• Set of windows containing episode 〈b〉, N = {w2, w3, w4, w5, w6}.

• Set of windows containing serial episodes 〈a, b〉, O = {w2, w3, w4, w5}.

• Set of windows containing serial episodes 〈b, a〉, P = {w3, w4}.
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• Set of windows containing parallel episodes 〈a · b〉, Q = {w2, w3, w4, w5}. This set

can be derived as Q = M ∩N = O ∪ P .

• Set of windows containing episodes both serial episodes 〈a, b〉 and 〈b, a〉, R =

{w3, w4}. This set can be derived as R = O ∩ P .

The cardinality –the number of elements– of each set equals to the frequency (sup-

port) of the episodes classified by each set.

• Frequency of the episode 〈a〉, fr(〈a〉) = |M | = 5

• Frequency of the episode 〈b〉, fr(〈b〉) = |N | = 5

• Frequency of the serial episode 〈a, b〉, fr(〈a, b〉) = |O| = 4

• Frequency of the serial episode 〈b, a〉, fr(〈b, a〉) = |P | = 2

• Frequency of the parallel episode 〈a ·b〉, fr(〈a ·b〉) = |Q| = |O|+ |P |−|O ∩ P | = 4

• The cardinality of R can be obtained from the frequency of the serial and parallel

episodes, |R| = |O ∩ P | = |O|+ |P | − |Q| = 2

Likewise, if the total number of windows is considered, the frequency of each episode

can be interpreted in terms of probabilities as shown in Fig. 4.2.

Through the conditional probability –although causal or temporal relationships are

notions that do not belong to the realm of probability– an interpretation of the link

between an episode and their sub-episodes can be established.

As example, consider that we are interested in the link between the episode 〈a, b〉
and its sub-episode 〈a〉. Through the conditional probability, this link can be expressed

as p(〈a, b〉|〈a〉). Then, by the relations mentioned above:

p(〈a, b〉|〈a〉) =
p(O ∩M)
p(M)

=
p(O)
p(M)

= 0.8 (4.1)

This relation between an episode and its sub-episode –as shown in Section 3.3– is

called an association rule and it expresses the level of confidence that an episode occurs

because the causal sub-episode occurred.

The objectives elucidated in Section 1.2 suggested at least two cases where frequent

episodes can be extracted from data sets of voltage dip collected in power networks.
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Figure 4.2: Representation of the relation between the six sets of windows

The first case mentioned that permanent faults usually cause multiples events on the

network due to the actuation of the protective systems. The elapsed times between

these events correspond to the reclosing settings of the protection relays. If multiples

permanent faults occur in the network, then frequent episodes related with the settings

of the protective system should appear in a sequence of voltage dips. The second

case refers to the fact that voltage dips that occurred in nearby region of the network

probably have similarities in magnitude and duration. If there exist recurrent problems

in the network linked to the same or different regions of it, then these problems should

appear as frequent episodes of voltages dips which are characterized by their magnitudes

and durations.

In this chapter, two types of frequent episodes (different characteristics) are found

using the mining algorithm proposed in Section 2.4, taking advantage of its flexibility:

1. Frequent episodes that describe regularities in the time intervals of the voltage

dips occurrences. Given that the maximal duration of these episodes should not

be limited, a maximal gap or inter-event time constraint is used in the search.

2. Frequent episodes associated with possible regularities between points of occur-

rence of events in the network. In this case the episodes should be limited in both

inter-event and maximal duration.
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For each case, frequent episodes are evaluated using the criteria of cohesion, backward-

confidence and confidence, and concepts of directed search of episodes proposed in

Chapter 3. The most relevant patterns are analysed and discussed.

4.1.1 Dataset description

The dataset of events that have been used for the analysis consists in voltage dips

produced by single-phase-to-ground faults, which were recorded over several years in

a power distribution network by the utility1. They were collected by power quality

monitors (PQM) located in the secondary of power distribution transformers (25kV)

as shown in Fig. 4.3.

Figure 4.3: Schematic for the registration of voltage dip events.

Each logged voltage dip in the database has three main attributes: the time stamp

of the event, the duration, in milliseconds, is the time for which the rms voltage stays

below of 0.9 in p.u., and the magnitude, in percentage, is the value of the residual

1ENDESA DISTRIBUCION.
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voltage during the event. Table 4.1 exemplifies the representation of successive events

recorded in the database for a measurement point.

Table 4.1: Set of events registered in a measurement point

time stamp duration(ms) magnitude (%)

07-09-22 12:28:11.145 1081 38

07-09-22 12:31:57.231 501 39

07-09-22 14:30:02.287 1001 43

07-10-21 06:07:36.491 881 30

07-10-22 14:57:10.262 760 25

07-12-25 21:44:24.553 862 39

08-01-20 18:05:02.142 1100 36

A sequence of events consists of registers of voltage dips, monitored at the same

point of the distribution network, during a period of time and sorted by their dates of

occurrence. The sequences of voltage dips collected in five monitored points are selected

as case study. Information related to the origin, cause and actuation of protective

systems for most of the events has been provided by the utility and used for validation.

Table 4.2 summarises for each substation the number of feeders, the number and

types of faults (transient, permanent and undocumented), the number of voltage dips

that constitutes the sequence of events and the monitoring period for each sequence.

Table 4.2: Description of the sequences of the case study.

Description
Substation

S1 S2 S3 S4 S5

Number of feeders 4 8 12 10 6

Permanent faults (*) 6(6) 6(4) 18(17) 15(14) 19(14)

Transient faults 22 33 78 52 15

Permanent fault events 29 33 96 97 80

Transient fault events 22 39 79 59 18

No documented events 0 18 33 21 9

Total number of events 51 90 208 177 107

Monitoring period (years) 1.02 2.36 4.80 4.78 4.66

(*) In brackets: number of permanent faults causing three or more voltage dips.

For example, distribution substation S1 feeds four lines. A total number of 51
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voltage dips were recorded over a period of 1.02 years by the monitor installed in this

substation. These voltage dips reflect the occurrences of six and 22 permanent and

transient faults, respectively. The six permanent faults are reflected in 29 events, each

one of them with more than three events associated while only one event was recorded

by each transient fault.

As example, Table 4.3 shows in detail the information related with the faults (per-

manent/transient, causes and affected line) associated with the voltage dips in the

sequence S1. The nomenclature 〈ei, ..., ei+k〉 is used to represent a set of consecutive

k + 1 events (episode) associated with a single permanent fault.

Table 4.3: Faulty situations and events related for each line in the S1 sequence.

Transient faults1 Permanent faults

L1: e1, e2, e4, e7, e8, e9, e42, e50 L22: 〈e14, .., e20〉, 〈e38, .., e41〉, 〈e44, .., e48〉
L2: e3, e5, e6, e10, e11, e12, e26, e34 L23: 〈e22, .., e24〉
L3: e13, e21, e25, e51 L24: 〈e27, .., e33〉
L4: e43, e49 L35: 〈e35, .., e37〉

1Events occurred by unknown causes.
2Cable degradation.
3Contact between cable and overhead structure due to wind.
4Degradation of insulators in an overhead line.
5Accidental cable break.

4.2 Analysis of the elapsed times between successive events

Elapsed times between successive events can give information about permanent faults

episodes occurred in the power network. Such elapsed times between successive events

are related with settings of protective system if they are caused by the same fault situa-

tion. Table 4.4 shows the settings of the protective system when the data were recorded.

They show typical time intervals between protection tripping and re-energisation of

faulted feeders. The first two steps correspond to automatic reclosings. If they fail

–i.e., the supply can not be restored– and no breakdown has been located then manual

steps are executed to locate the fault and restore the service. The times in Table 4.4

are the reference values for the settings of the main protection of the lines (feeders),

but the exact times may vary from one feeder to another.
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Table 4.4: Typical reclosing settings of the protective system in distribution networks.

Step Time settings

1. Automatic reclosing 0.5s - 1s

2. Slow automatic reclosing 40s or 60s

3. Manual reclosing 1min or 3min

4. Maneuver by telecontrol 8min

5. Maneuver on-site 25min

Each event ei(ti) of the sequence of voltage dips S is described by their magnitude

Mi and duration ∆ti. Elapsed times between successive events are calculated in order

to create a new sequence S’ consisting of the elapsed times between successive events.

Likewise, each ti in S is replaced by values j = 1, 2, ...n− 1 in S’. Then, ti = j means

that the i -th data element occurs at the j -th timestamp.

S’ = 〈(t2 − t1 −∆t1)(1), (t3 − t2 −∆t2)(2), ..., (tn − tn−1 −∆tn−1)(n− 1)〉 (4.2)

where n is the length of S.

Next, the values of the sequence of elapsed times between events are discretized

to form a sequence of labeled categories. Then, frequent episodes describing sets of

intervals within events that usually occur, are obtained by the mining algorithm.

Ten intervals are used to discretize the elapsed times between events, based on

settings of the protective system (Table 4.4) and other relevant time intervals where

high occurrence of events were observed. Table 4.5 shows the intervals used, where A,

B, E, F and G correspond to the different reclosing steps of the protective system.

Distribution of the elapsed times between events for all sequences in accordance with

the assigned categories is shown in Table 4.6. According to this table, for sequences

S1’ and S2’, about 40% of elapsed times between events are under 30 min (within the

settings of the protective system mentioned in Table 4.4), while for the other sequences

this percentage is about 50%.

Fig. 4.4 shows the global distribution of the elapsed times between events according

to the information in Table 4.4. For the intervals under 30 min, A, C and E are the

most frequent categories. The first two intervals (A and C ) include automated reclosing

settings and the third (E ) includes manual reclosing settings. For the intervals above
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Table 4.5: Intervals for characterization of elapsed times between events.

Interval Description

A t ≤ 3 s

B 3 s<t≤20 s

C 20 s < t ≤ 2 min

D 2 min< t ≤5 min

E 5 min< t ≤ 30 min

F 30 min< t ≤2 h

G 2 h< t ≤1 day

H 1 day< t ≤ 7 day

I 7 day < t ≤ 30 day

J t >30 day

Table 4.6: Distribution of the intervals for the sequences of the case study.

Event type
S1’ S2’ S3’ S4’ S5’

Number % Number % Number % Number % Number %

A 6 12.0 13 14.6 22 10.6 29 16.5 13 12.3

B 0 0.0 1 1.1 8 3.9 2 1.1 3 2.8

C 7 14.0 10 11.2 31 15.0 33 18.8 24 22.6

D 3 6.0 3 3.4 11 5.3 9 5.1 9 8.5

E 4 8.0 11 12.4 32 15.5 15 8.5 13 12.3

F 6 12.0 10 11.2 26 12.6 16 9.1 12 11.3

G 4 8.0 14 15.7 16 7.7 12 6.8 9 8.5

H 6 12.0 8 9.0 14 6.8 19 10.8 4 3.8

I 12 24.0 12 13.5 30 14.5 22 12.5 4 3.8

J 2 4.0 7 7.9 17 8.2 19 10.8 15 14.2

30 min, F and I are the most frequent categories. While F would be related with

maneuvers to locate a permanent fault in the process of service restoration, I involves

two different faults.

4.2.1 Extraction of regularities in the elapsed time between events

For each sequence of discretized elapsed times between events, regularities are extracted

through frequent episodes. According with the reclosing settings, in permanent fault

situations such regularities can associate two or more successive events, then maximum

duration of the episodes should not be limited. With this purpose, episodes with inter-
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Figure 4.4: Histogram of elapsed time between consecutive events.

event time constraint (Definition 2.12) are extracted using the algorithm proposed in

Section 2.4.

Given that each element in the sequence S’ was obtained from timestamps of consec-

utive events, a maximal gap of 1 and 2 elements is used in the search. Likewise, several

minimum frequency (min fr) values were tested. Episodes related with settings of the

protective system were obtained using min fr values no greater than 4, 5, 10, 9 and 7

for the sequences S1’ to S5’, respectively. The frequency of relevant intervals of each

sequence (see Table 4.6) can be used as a guide for setting the threshold frequency of

frequent episodes. So, for example in the sequence S1’, interval A or C have frequen-

cies of 6 and 7 occurrences, respectively, then episodes –with length greater than one

event– that involve any of these two intervals must have min fr values less than 6 or

7, respectively.

Table 4.7 shows the frequent episodes (length greater than 1) for each sequence and

the two values of maximal gap (1 and 2 elements) are used. In this table, it can be

observed that episode 〈A,C〉 is frequent in all sequences analysed. This episode involves

the two intervals containing the automatic reclosing settings of the protective system.

Its frequency is about the number of permanent faults (permanent faults causing three

or more voltage dips) when a maximal gap of two elements is used.

Using maximal gap of two elements, episodes 〈A,C,C〉 for sequence S4’, 〈A,C, F 〉
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Table 4.7: Frequent episodes and number of occurrences in the sequences for two values
of maximal gap.

Episode
Maximal gap=1 Maximal gap=2

S1’ S2’ S3’ S4’ S5’ S1’ S2’ S3’ S4’ S5’

〈A,C〉 5 7 14 15 9 5 8 15 18 18

〈C,C〉 10 10

〈C,E〉 5 10

〈C,F 〉 15 9 9

〈C,G〉 5

〈E,E〉 10

〈E, I〉 10

〈E, J〉 7

〈F,E〉 11

〈F,G〉 5

〈G,A〉 6

〈H, I〉 4 5

〈I, A〉 5 5 10 10 10

〈I, I〉 4

〈J,A〉 10 9 9

〈J,C〉 9

〈A,C,C〉 9

〈A,C,E〉 5

〈A,C, F 〉 10

〈J,A,C〉 7

for sequences S3’ and 〈A,C,E〉 for sequence S2’, are frequents. These episodes include

manual reclosing times and suggest that correspond to permanent faults causing at

least four voltages dips. Episodes such as 〈C,F 〉, 〈C,G〉, 〈E,E〉, 〈E, I〉 and 〈E, J〉,
include manual reclosing times and suggest that these manoeuvres are frequent in these

substations but with different operating times. Episodes such as 〈I, A〉 are frequent in

sequences S2’ to S5’ or 〈J,A〉 are frequent in sequences S3’ to S5’, which show that after

several days (more than 30 days) of the occurrence of an event, new faults (causing

at least two voltage dips) usually occur. Episode 〈J,A,C〉 frequent in S5’ shows that

after several days without events (more than 30 days), new faults causing at least three

voltage dips usually occur. Finally, episodes such as 〈H, I〉 or 〈I, I〉 which are frequent

in sequence S4’, show the occurrences of several successive events associated to different

fault situations.
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4.2.2 Significant regularities in the elapsed time between events

Frequent episodes found in the previous section (Table 4.7) are evaluated using def-

initions and indexes described in Section 3.3. So, the strength of the link between

the different elapsed times contained in each episode is evaluated from their cohesion,

confidence and backward-confidence values, and the most significant associations are

identified.

Using a maximal gap of two elements, Table 4.8 contains for each episode, the

corresponding serial and parallel frequencies and the values of cohesion, confidence and

backward-confidence indexes.

According to Table 4.8 all frequent episode have a cohesion greater than 0.7, i.e.,

the order relation expressed by the serial episodes is strong. Episode 〈A,C〉 occurs with

a confidence greater than 0.6 in all sequences. This episode shows that if two successive

voltage dips have a elapsed time less than 3 s, one may expect with a confidence greater

than 0.6 (0.83, 0.62, 0.68, 0.62 and 0.77 for S1’ to S5’, respectively) that there will be

a third event within 20 s to 120 s of the second one.

Episodes 〈A,C,C〉 (for S4’), 〈A,C,E〉 (for S2’) and 〈A,C, F 〉 (for S3’), which are

forward-extensions (see Section 2.3.1.3) of the episode 〈A,C〉, have confidences greater

than 0.5. These episodes show that at least half of the occurrences of an episode 〈A,C〉
(described above) are followed by a fourth event within 20 s to 120 s and 5 min to 30

min of the third one, respectively.

Finally, episodes 〈A,C〉 for S1’, 〈A,C,E〉 for S2’, 〈A,C, F 〉 for S3’, 〈A,C,C〉 for S4’

and 〈J,A,C〉 for S5’, are the maximal episodes with higher values (> 0.5) of cohesion,

confidence and backward-confidence. They are the most relevant pattern in these se-

quences. However, the pattern 〈A,C〉 have significant vales of cohesion and confidence

in all sequences analysed. This pattern involves the two intervals containing the auto-

matic reclosing settings of the protective system, therefore it may identified permanent

faults that cause at least three successive voltage dips.

Figures 4.5 to 4.9 show for each sequence, the episodes selected as patterns. They

are marked by a dashed line between circular marks (green circular marks for episode

〈A,C〉 and red circular marks for their extensions). At the top of the figures, the

sequences of elapsed times between events and the corresponding patterns are shown,

while in the bottom of the figures, it adds information about the events in the sequence.
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Table 4.8: Frequent episodes and their corresponding values of of cohesion (coh), confi-
dence (conf) and backward-confidence (confB).

Sequence Episode fr(α) fr(αp) coh confB conf

S1’

〈A,C〉 5 5 1.00 0.71 0.83

〈H, I〉 4 4 1.00 0.33 0.67

〈I, I〉 4 4 1.00 0.33 0.33

S2’

〈A,C〉 8 8 1.00 0.80 0.62

〈C,E〉 5 6 0.83 0.45 0.50

〈C,G〉 5 5 1.00 0.36 0.50

〈F,G〉 5 5 1.00 0.36 0.50

〈G,A〉 6 6 1.00 0.46 0.43

〈H, I〉 5 6 0.83 0.42 0.63

〈I, A〉 5 7 0.71 0.38 0.42

〈A,C,E〉 5 6 0.83 1.00 0.63

S3’

〈A,C〉 15 15 1.00 0.48 0.68

〈C,E〉 10 12 0.83 0.31 0.32

〈C,F 〉 15 17 0.88 0.58 0.48

〈E,E〉 10 10 1.00 0.31 0.31

〈E, I〉 10 13 0.77 0.33 0.31

〈F,E〉 11 14 0.79 0.34 0.42

〈I, A〉 10 12 0.83 0.45 0.33

〈J,A〉 10 10 1.00 0.45 0.59

〈A,C, F 〉 10 11 0.91 0.67 0.67

S4’

〈A,C〉 18 19 0.95 0.55 0.62

〈C,C〉 10 10 1.00 0.30 0.30

〈C,F 〉 9 9 1.00 0.56 0.27

〈I, A〉 10 11 0.91 0.34 0.45

〈J,A〉 9 10 0.90 0.31 0.47

〈A,C,C〉 9 11 0.82 0.90 0.50

S5’

〈A,C〉 10 10 1.00 0.42 0.77

〈C,F 〉 9 11 0.82 0.75 0.38

〈E, J〉 7 8 0.88 0.47 0.54

〈J,A〉 9 9 1.00 0.69 0.60

〈J,C〉 9 10 0.90 0.38 0.60

〈J,A,C〉 7 7 1.00 0.70 0.78

This information indicates which events are caused by permanent or transient faults

and which of them are no documented events.

A comparison of the results in Fig. 4.5 with the information in Table 4.3 confirms

that acting times during manual operation are not performed strictly in this sequence.
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Figure 4.5: Sequence S1’ and occurrences of the episode 〈A,C〉.

This is probably because manual actuations are related to fault location strategies

followed in each situation. Moreover, there is a permanent fault (〈e22, e23, e24〉) that

does not follow the pattern. A possible interpretation is the involvement of secondary

protections such as fuses, or that the fault was caused by another abnormal situation,

not considered in the studied pattern.

Finally, in order to assess the identification of permanent fault situations by the

episode 〈A,C〉 shown in Figures 4.5 to 4.9 the following parameters are used: number

of permanent faults correctly identified or true detection (TD), permanent faults not

detected or missed by detection (MD) and, number of non permanent faults identified

as permanent or false alarms (FA). The corresponding ratios also included in Table

4.9 are useful to evaluate the accuracy of the search: true detection rate (TDR =

TD/(TD+MD)), missed detection rate (MDR = MD/(TD+MD)) and false alarm rate

(FAR = FA/(TD+FA)). The results are summarised in Table 4.9.

For sequences S1’ to S5’, TDR values indicate that 83%, 100%, 76%, 86% and 80%

of permanent faults with more than three events follow the automatic reclosing pattern

of the protective system, respectively. However, the pattern can not be found in some

situations, for example, when a single event is enough to detect or locate the failure or

when a secondary protection acts. An accurate analysis discovered that the high value
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Figure 4.6: Sequence S2’ and occurrences of episodes 〈A,C〉 and 〈A,C,E〉.

Figure 4.7: Sequence S3’ and occurrences of episodes 〈A,C〉 and 〈A,C, F 〉.

of FAR in S2’, S3’ and S5 was due to the fact that the episode 〈A,C〉 was detected in

no documented events. Also, the high value MDR in S3’ and S4’ was due to the fact

that the first automatic reclosing was not recorded for several permanent faults.
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Figure 4.8: Sequence S4’ and occurrences of episodes 〈A,C〉 and 〈A,C,C〉.

Figure 4.9: Sequence S5’ and occurrences of episodes 〈A,C〉 and 〈J,A,C〉.
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4.3 Analysis of the magnitude and duration of voltage dips in a sequence
of events

Table 4.9: Results of the identification of permanent fault situations by the episode
〈A,C〉.

Sequence
Parameters

TD MD FA TDR MDR FAR

S1’ 5 1 0 0.83 0.17 0.00

S2’ 4 0 4 1.00 0.00 0.50

S3’ 13 4 2 0.76 0.24 0.13

S4’ 12 2 1 0.86 0.14 0.08

S5’ 8 1 2 0.89 0.11 0.20

4.3 Analysis of the magnitude and duration of voltage

dips in a sequence of events

In distribution radial networks, voltage dips are related with fault locations. Similar

voltage dips in magnitude and duration probably occur in nearby locations or at similar

distances from the distribution substation on the network (Bollen, 1999). As it shows

in Fig. 4.10, faults occurred within a specific area of the network, enclosed by a dotted

line in the figure, probably cause voltage dips of similar magnitudes. Faults located in

areas near to the main bus cause more severe voltage dips (low magnitude) than those

located in more distant areas of the network.

Figure 4.10: Magnitude of voltage dips in a radial network according to fault locations.

In this section, the mining goal is to discover possible regularities between point lo-

cations of events in the network, in terms of frequent episodes. These frequent episodes
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can show relationships between a fault and other faults occurred at the same or an-

other location on the network. Two different interpretations can be derived from such

episodes:

1. Frequent episodes composed by multiple and similar (magnitude an duration)

events will represent areas of the network susceptible to the occurrence of succes-

sive faults.

2. Frequent episodes composed by events of different magnitudes could show inter-

actions between faults located in different regions of the network.

4.3.1 Dataset description

A set of voltage dips caused by single-phase faults are analysed. Events, recorded as

shown in Section 4.1.1, correspond to a substation with a high rate of events.

Voltage dip density tables is a common method for presenting large repositories (or

surveys) of dips gathered during long periods of time (more than one year). There are

several proposed tables (Yuan et al., 2009). We use the table recommended by the

standard IEC61000-2-8 (2002). In this table, magnitude of dips is split in 9 categories

defined by the following intervals: 80%–90%, 70%–80%, 60%–70%, 50%–60%, 40%–

50%, 30%–40%, 20%–30%, 10%–20% and <10%. For the dips duration, 8 intervals are

used: <0.1s, 0.1s–0.25s, 0.25s–0.5s, 0.5s–1s, 1s–3s, 3s–20s, 20s–60s and 60s–180s.

The analyzed data set is represented in Table 4.10. It contains a total of 527 voltage

dips recorded during a monitored period of three years.

Duration intervals are represented by a 8-letter alphabet (A to F), while numbers

1 to 9 are used to represent the magnitude intervals. Each voltage dip in the sequence

is represented by their corresponding identifier of row and column in Table 4.10. For

example, the voltage dip type B6 represents dips with duration between 0.1s to 0.25s

and magnitude between 50% to 60% while the voltage dip type D3 represents dips with

duration between 0.5s to 1s and magnitude between 20% to 30%. So, the sequence can

have 72 different types of events. Likewise, H1 will be the most severe voltage dips,

while A9 will be the less severe.

Fig. 4.11 shows the distribution of the cumulated number of voltage dips according

with the classification of Table 4.10. This figure shows that the sequence has only 36

of 72 possible voltage dip types. B6 with around of 10% of the events is the most
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Table 4.10: Cumulative voltage dip table.

Magnitude

Duration

A B C D E F G H

<0.1 s 0.1–0.25 s 0.25–0.5 s 0.5–1 s 1–3 s 3–20 s 20–60 s 60–180 s

9 80%–90% 4 3 1 2 4 0 0 0

8 70%–80% 4 6 11 2 4 0 0 0

7 60%–70% 1 42 28 4 15 1 0 0

6 50%–60% 0 55 39 8 9 0 0 0

5 40%–50% 0 28 13 10 17 0 0 0

4 30%–40% 1 21 20 32 25 4 0 0

3 20%–30% 0 5 5 39 13 0 0 0

2 10%–20% 0 0 38 14 0 0 0 0

1 <10% 0 0 0 0 0 0 0 0

frequent voltage dip type in the sequence, followed by B7 with around of 8% of the

events. Likewise, C2, C6 and D3, each one with around of 7% of the events, have

similar frequencies in the sequence.

Figure 4.11: Distribution of the voltage dips according to magnitude and duration.
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4.3.2 Frequent regularities between points of occurrence of events in

the network

As it was introduced in this section, the main interest for the extraction of frequent

episodes in sequences of voltage dips is to find relations between fault location areas.

So, in the mining process, it is only necessary to consider one voltage dip for each

fault occurred in the network. However, as shown in Section 4.2 several events close in

time can be generated for the same fault. This problem can be partially solved using

temporal aggregation (Bollen, 1999). If several voltage dips occur within a time interval

less than a predefined time of aggregation, then the aggregated event could be defined

by one of the following options:

1. The time between the start of the first event and the end of the last event, and

the residual voltage of the first event.

2. The sum of the individual durations and the minimal residual voltage of the

events.

3. The duration and the residual voltage of the first event.

4. The maximal duration and the minimal residual voltage of the events.

Option 3 is the most appropriate to include the behavior of all events in the analysis

of the sequence without changing the information contained in the event. Likewise,

considering observations in Section 4.2, 2 hours can be used as time of aggregation.

Algorithm Fminevent proposed in Section 2.4 is used for the search of frequent

episodes. With this algorithm, temporal aggregation can be included by using a time

interval, (tmin tmax] for the inter-event time constraint between events of the episodes as

shown in Section 2.4.1.2. For a candidate episode, successive events with elapsed times

less than tmin, are not considered for their occurrences. So, tmin serves as aggregation

time, reducing the effects of multiples events of the same fault.

Fig 4.12 shows the number of frequent episodes discovered in the sequence for several

values of minimum frequency threshold (min fr) and for several values of maximal gap

between events (tmax). This results are obtained using a tmin value of 2 hours.

Fig. 4.12a shows wide differences between the number of episodes obtained with

min fr = 4 (occurrences) and min fr = 6 (occurrences) for the same value of tmax.
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(a) Several values of min fr (occurrences)

(b) Several values of tmax (days)

Figure 4.12: Number of frequent episodes for several values of min fr and maximal gap
between events (tmax)
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For example, for tmax = 8 days, the number of frequent episodes is reduced from 100

to 30 for min fr = 4 and min fr = 6, respectively. For min fr values greater than 6

occurrences, there are minor differences in the number of frequent episodes. Likewise,

for different values of tmax, Fig. 4.12b show that few frequent episodes are obtained

for min fr values greater than 8 occurrences.

Fig. 4.13 shows a schema of frequent episodes with min fr = 6 occurrences and

tmax = 8 days. Two-event and three-event episodes are linked by thin and thick arrows,

respectively. For this sequence, these frequent episodes suggest the presence of regular-

ities between events of the same region (episodes with two or more events of the same

type) and between events of different regions (episodes with events of different types).

Most of them are episodes of two-event length and only 4 episodes have three-event

length. They are: 〈B4, B4, D3〉, 〈B5, B4, D3〉, 〈B4, C4, D3〉 and 〈C2, C2, C2〉 which

are highlighted in the figure. Several episodes are composed of events C6 and D3

(linked by a thin orange and black arrow in the figure, respectively)and many of them

end with event D3. In these episodes, the most severe voltage dips (lowest magnitude)

correspond to events C2 and D3 while the less severe are B7 and C7.

Figure 4.13: Representation of frequent episodes with min fr = 6 occurrences and tmax

= 8 days.

Most frequent episodes in Fig. 4.13, show that the first event is greater in magnitude

than later events or they are associated to voltage dips similar in magnitude. Table
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4.11 contain the list of frequent episodes grouped by their frequency which are between

6 to 13 occurrences.

Table 4.11: List of frequent episodes with min fr = 6 (occurrences) and tmax = 8 (days).

Episodes Frequency

〈B4, B4, D3〉; 〈B4, C4, D3〉, 〈B5, B4〉, 〈B5, B4, D3〉, 〈B5, B5〉, 〈B5, C7〉, 〈B7, E5〉,
〈C2, C2, C2〉, 〈C5, D3〉, 〈C6, B4〉, 〈C6, D4〉, 〈D3, B4〉, 〈D3, B7〉, 〈D4, C7〉, 〈D4, D3〉,
〈E3, C6〉, 〈E5, B6〉

6

〈B4, B4〉, 〈B5, C5〉, 〈B5, C6〉, 〈B5, D3〉, 〈B6, B7〉, 〈B6, E5〉, 〈B7, C6〉, 〈C2, D4〉,
〈C6, C2〉, 〈D3, D3〉, 〈D4, C2〉, 〈D4, D4〉, 〈E4, B4〉

7

〈B4, C4〉, 〈C2, D3〉, 〈C4, D3〉, 〈C6, B6〉, 〈D3, C4〉 8

〈B4, D3〉, 〈B7, B7〉, 〈C6, C6〉, 〈D3, C6〉 9

〈B6, B6〉, 〈B6, C6〉, 〈C6, D3〉 10

〈B7, B6〉, 〈D3, D4〉 11

〈C2, C2〉 13

〈C2, C2〉 is the most frequent event with 13 occurrences while the 4 episodes with

three-event length have 6 occurrences.

4.3.3 Significant regularities between points of occurrence of events

in the network

Frequent episodes in Table 4.11 are evaluated starting from their corresponding values

of cohesion, confidence and backward-confidence. For these indexes, Fig. 4.14 shows

the distribution of the number of frequent episodes. Only two episodes have cohesion

values lower than 0.5, i.e, most of them follow a serial order in the sequence. In contrast,

for confidence and backward-confidence, only 7 and 5 episodes have values grater than

0.4, respectively. Then, only few episodes have relevant probabilities of apparition in

the sequence.

Table 4.12 shows frequent episodes which values of cohesion (coh), confidence (conf)

and backward-confidence (confB) are greater than 0.4.

Episode 〈B4, B4, D3〉 shown in Table 4.12, relates two type of events. B4 represents

voltage dips with magnitude of 30%–40% and 0.1–0.25 s of duration, and D3 represents

voltage dips with 20%–30% in magnitude and 0.5–1 s of duration. According to their
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Figure 4.14: Number of frequent episodes according to their values of cohesion (coh),
confidence (conf) and backward-confidence (confB).

Table 4.12: Significant episodes and their corresponding values of of cohesion (coh),
confidence (conf) and backward-confidence (confB).

Episode fr(α) fr(αp) coh confB conf

〈B4, B4, D3〉 6 6 1.00 0.67 0.86

〈B4, C4, D3〉 6 8 0.75 0.75 0.75

〈B5, B4, D3〉 6 7 0.86 0.67 1.00

〈C2, C2, C2〉 6 6 1.00 0.46 0.46

magnitudes, D3 is more severe than B4, which suggests that D3 represents voltage

dips located closer to the main bus of the distribution network (substation), than those

represented by B4. Fig. 4.15 shows occurences of episode 〈B4, B4, D3〉 along the

sequence, marked by a dashed line between red circular marks. Occurrences of their

prefix (episode 〈B4, B4〉) are also highlighted in the figure by blue circular marks.

According to this figure, 6 of 7 occurrences of 〈B4, B4〉 also comprise occurrences of

〈B4, B4, D3〉. Two of these occurrences appear at the beginning of the sequence, two

at the center and two at the end.

Episode 〈B4, C4, D3〉 shown in Table 4.12, combines three type of events. B4 rep-
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Figure 4.15: Sequence of voltage dips and occurrences of episodes 〈B4, B4〉 and
〈B4, B4, D3〉.

resents voltage dips with magnitude of 30%–40% and 0.1–0.25 s of duration, C4 are

voltage dips with same magnitude of B4 and 0.25–0.5 s of duration and D3 represents

voltage dips with 20%–30% in magnitude and 0.5–1 s of duration. According to their

magnitudes and durations, D3 is more severe than C4 and C4 is more severe than B4,

which suggest that D3 represent voltage dips located closer to the main bus of the

distribution substation, than those represented by C4, while B4 represent voltage dips

located in similar areas than C4. Occurences of this episode along the sequence are

shown in Fig. 4.16, marked by a dashed line between red circular marks. Figure also

shows occurrences of their prefix (episode 〈B4, C4〉) by blue circular marks. Accord-

ing to this figure, occurrences of 〈B4, C4, D3〉 are derived from 6 of 8 occurrences of

〈B4, C4〉. Two of these occurrences appear at the beginning of the sequence, one at

the center and three at the end. Occurrences of B4 and D3 of this episode are also

involved in episode 〈B4, B4, D3〉 shown in Fig. 4.15.

Episode 〈B5, B4, D3〉 shown in Table 4.12, combines three type of events. B5

represents voltage dips with magnitude of 40%–50% and 0.1–0.25 s of duration, B4

are voltage dips with 30%–40% of magnitude and the same duration as B5, and D3

represents voltage dips with 20%–30% in magnitude and 0.5–1 s of duration. According
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Figure 4.16: Sequence of voltage dips and occurrences of episodes 〈B4, C4〉 and
〈B4, C4, D3〉.

to their magnitudes and durations, D3 is more severe than B4 and B4 is more severe

than B5, which suggests that D3 represents voltage dips located closer to the main bus

of the distribution network, than those represented by B4, while B5 represents voltage

dips located further than the B4. Occurences of this episode along the sequence are

shown in Fig. 4.17, marked by a dashed line between red circular marks. Figure also

shows occurrences of their prefix (episode 〈B5, B4〉) by blue circular marks. According

to this figure, occurrences of 〈B5, B4, D3〉 are derived from the same occurrences of

〈B5, B4〉. Three of these occurrences appear at the beginning of the sequence, and the

remaining three at the end. Occurrences of B4 and D3 of this episode are also involved

in episodes 〈B4, B4, D3〉 (Fig. 4.15) and 〈B4, C4, D3〉 (Fig. 4.16).

Episode 〈C2, C2, C2〉 relates voltage dips with 10%–20% in magnitude and duration

of 0.25–0.5 s. This episode suggests the recurrence of fault close in time, located on

the same network zone. Occurences of this episode along the sequence are shown in

Fig. 4.18, marked by a dashed line between red circular marks. Figure also shows

occurrences of their prefix (episode 〈C2, C2〉) by blue circular marks. occurrences of

〈C2, C2, C2〉 appear only at the beginning of the sequence.
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Figure 4.17: Sequence of voltage dips and occurrences of episodes 〈B5, B4〉 and
〈B5, B4, D3〉.

Figure 4.18: Sequence of voltage dips and occurrences of episodes 〈C2, C2〉 and
〈C2, C2, C2〉.
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4.4 Conclusions

Sequences of voltage dips recorded in a power distribution network were analysed in

order to find causal associations between events. Two types of regularities were dis-

covered in this sequences. The first one involves the elapsed time between voltage dip

events, while the second associates voltage dips starting from their magnitudes and

durations.

Elapsed times between voltage dip events can show reclosing settings of the protec-

tive system. In power distribution networks, protective system usually have scheduled

two automatic reclosing for clearing a fault. For the sequences studied in this work, re-

sults show that over 60% of the occurrences of the first automatic reclosing are followed

by a second automatic attemp. Likewise, for over 80% of permanent faults (single-phase

faults), the two automatic reclosing attempts are performed.

Magnitude and duration of voltage dips reflect the fault location in the network.

Network areas prone to fault occurrences can be found from frequent episodes composed

by similar voltage dips closed in time. Also, possible causal interactions between faults

of the network could be found from frequent episodes composed by several events.

These two situations were observed in the analysed sequence. Most frequent episodes

found are associated to voltage dips similar in magnitude or they indicate that early

events are larger in magnitude than subsequent events. These frequent episodes may

show that early events influence the occurrences of subsequent events.

The mining algorithm –Fminevent– developed in Section 2.4, is suitable for the

analysis of these sequences of voltage dips. It is able to determine the frequency of

episodes without missing or over-counting occurrences. According to the criteria de-

veloped in the Section 3.3, serial and parallel frequency values of an episode are key

to assess its significance. Nevertheless, each sequence must be analyzed individually

to establish the most appropriate parameters related to the threshold frequency and

duration of episodes.
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5

Pattern discovery in sequences of

incidents collected in power

distribution networks

Incidents registered in power distribution networks are analysed in this chapter. Util-

ities use the term incident to indicate the existence of faults or situations that affect

the continuity of supply. They are recorded from customer service centers or incidents

management systems. Each incident is documented with different attributes such as the

occurring date, its cause and its duration. Mining algorithm proposed in Section 2.4

is adapted for the discovery of order relations between main causes of incidents on the

network. Methods developed in Chapter 3 are used to identify significant associations

between these incidents cause and their physical meaning is discussed.

5.1 Introduction

Environmental conditions, external agents (animals, vegetation, vehicles, etc.) or aging

of components are factors that affect the frequency of occurrence of faults and failures in

the network. Moreover, depending on the severity of faults, protective systems are auto-

matically fired, affecting continuity and quality of supply in different manner. Utilities

usually use the term incident to indicate the existence of such misbehaviours (faults and

failures) that affect the continuity of supply and are systematically reported together

with the activity performed to restore the normal operation of the system (reparation,

103



5. PATTERN DISCOVERY IN SEQUENCES OF INCIDENTS
COLLECTED IN POWER DISTRIBUTION NETWORKS

material substitution, fuse replacement, etc.) (ECO/797/2002, 2002). Examples of

incidents are failures in cables produced by moisture or aging and its corresponding

reparation, the actuation of protective system in the head of a feeder in presence of

lightning followed by a restoration sequence or the automatic reclosing after a branch

tree contact in a windy day.

If incidents recorded in a feeder or sector of the distribution network are sorted as

a sequence of incidents then the existence of order relations between them can be dis-

covered. The analysis involves the application of frequent episode discovery algorithms

as well as the evaluation of the relevance of episodes found. We focus the search on

short-term episodes that is set of incidents occurring with a time difference less than a

fixed expiry-time, while their inter-event time is not constrained. Episodes that contain

representative types of incidents can be identified and the analysis of the occurrence

causes can be performed.

5.2 Dataset description

The dataset of incidents available in this research were collected over three years in a

real power system by the utility from customer service centers or incidents manage-

ment systems. Each incident was documented with the occurring date, the main cause

(storm, tree, component failure, etc.) and the voltage level where it was originated

(medium voltage MV, low voltage LV, etc). Table 5.1 shows a short description of each

cause and an alphabet of 15 letters is used to typify each one of them.

Five feeders with large number of incidents were selected for the case study. The

incidents occurred in each one of the feeders were analyzed as single sequences and

each incident is represented with two attributes: its cause and its corresponding time

of occurrence. In case of an incident does not correspond to an interruption of the

supply, the corresponding lowercase letter is used. The distribution of the incidents in

the five feeders is shown in Table 5.2.

Table 5.2 shows that more than 50% of incidents were caused by unknown causes

(f) and they did not originate interruptions in the power supply. For the feeder 1,

vandalism (Q) was the second most common cause of fault. In feeder 2 and feeder

5 around 1% of the incidents correspond to component breakdown (H) while in the

other feeders, this incident type represents more than 5% of the incidents. Also, feeder
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Table 5.1: Types of causes and short description.

Type Description Type Description

A animals J cable falls to ground

B trees K fuse

C storm/lightning L live-line work

D wind M contractor personnel

E rain N individuals

F unknown O excavations

G overload P vehicles

H component breakdown Q vandalism

I handling to restore supply R private facilities

T customer connection

Lowercase letters are used when the incident did not cause interruptions (punishable) of supply.

2 and feeder 5 are the most afected by incidents originated in private facilities (R)

and incidents with unkown cause (f and F ). Feeder 1, feeder 3 and feeder 5 are the

most afected by incidents related with supply restoration (i), while feeder 4 is the most

afected by melted fuse (K).

5.3 Order relations between main causes of network inci-

dents

For each sequence described in Table 5.2 the frequent episodes are extracted. We focus

the search on short-term episodes that are composed by incidents that occurred with a

time difference less than the expiry-time, then their inter-event time is not constrained.

Frequent episodes are obtained using the mining algorithm Fminevent proposed in

Sections 2.4 and 2.4.1.1.

Fig. 5.1 shows for each feeder the number of frequent episodes for several values of

expiry-time Tx (between 1 and 20 days) using a min fr = 4 occurrences. An inter-event

time constraint equal to the expiry-time Tmax = Tx is used for each case.

According to these results, although the sequences of the case study are short se-

quences, a huge number of frequent episodes are found. This number increases as the

time-expiry constraint increases. The number of frequent episodes in feeder 1 and feeder

2 show a similar trend until Tx = 15 days, and then both grow exponentially. Feeder

3, 4 and 5 show a similar linear trend for all Tx.
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Table 5.2: Types and number of incidents for each feeder in the case study.

Type
Feeder 1 Feeder 2 Feeder 3 Feeder 4 Feeder 5

Number % Number % Number % Number % Number %

A 3 1.36 1 0.52

B 1 0.36 1 0.36

C 3 1.09 2 0.90 3 1.55 3 1.59

c 1 0.36 3 1.09 1 0.45 2 1.03 1 0.53

D 1 0.45 2 1.03 1 0.53

d 1 0.36 1 0.45 3 1.55 3 1.59

E 2 0.73 2 0.90

e 2 0.90

F 12 4.35 28 10.22 11 4.98 12 6.19 4 2.12

f 150 54.35 198 72.26 155 70.14 117 60.31 151 79.89

g 1 0.36

H 14 5.07 3 1.09 16 7.24 11 5.67 2 1.06

h 5 1.81 2 0.90 1 0.52

I 5 1.81 3 1.09 6 2.71 3 1.55 1 0.53

i 24 8.70 3 1.09 9 4.07 4 2.06 8 4.23

J 1 0.45

K 3 1.09 1 0.45 10 5.15 3 1.59

k 1 0.36 1 0.52

L 4 2.06

l 3 1.09 6 3.09

M 2 0.72

N 1 0.36

n 1 0.36

P 1 0.36 3 1.55 1 0.53

Q 49 17.75 1 0.36

q 6 2.17

R 2 0.72 19 6.93 8 3.62 8 4.12 11 5.82

r 2 0.73 2 1.03

t 1 0.36 1 0.52

Total 276 274 221 194 189

λ1 0.25 0.25 0.20 0.18 0.17

1 Average rate of incidents per day.

Likewise, Fig. 5.2 shows the number of frequent episodes varying the minimum

frequency threshold for a fixed time-expiry of 15 days. Selection of this time-expiry is

reinforced by the behaviours of feeders 1 and 2 observed in Fig. 5.1. The exponential

grow in the number of frequent episodes seems to be given by the random combination
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Figure 5.1: Number of frequent episodes found in each feeder for several values of expiry-
time, min fr = 4 occurrences.

of independent and frequent causes of incidents. The objective is to identify frequent

episodes that are not given by random combination of frequent causes of incidents, but

specific situations linked to the ordered occurrence of the incidents in the episode. Fig.

5.2 shows, for each feeder, that the number of frequent episodes decreases exponentially

as the threshold (min fr) increases. The plot suggests a threshold for feeder 1 and 2

around min fr = 4 while for feeder 3, 4 and 5 is around min fr = 3. From these values

further, the number of frequent episodes that are found stabilizes with independence

of the threshold.

As it occurs with the time-expiry constraint, the maximal gap between events (inter-

event time constraint) influences on the number of occurrences found for each episode

and also on the total number of frequent episodes. So, if the maximal gap between

incidents increases also the number of frequent episodes increases. Table 5.3 shows

the total number of frequent episodes discovered in the sequences for several values of

maximal gap using a time-expiry constraint of 15 days. In the table these maximal

gaps are expressed as fractions of time-expiry, 0.2, 0.4, 0.6, 0.8 and 1, which are equals

to 3, 6, 9, 12 and 15 days, respectively. According to the observations in Fig. 5.2, two

minimum threshold were used: min fr = 4 for feeder 1 and 2 and min fr = 3 for

feeder 3, 4 and 5.
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Figure 5.2: Number of frequent episodes found in each feeder for several values of min fr
and Tx = 15 days.

Table 5.3: Number of frequent episodes found in the sequences for several values of
maximal gap.

Sequence
Maximal gap as fraction of the expiry-time Tx = 15 days

0.2 0.4 0.6 0.8 1

Feeder1 1 60 143 209 235 260

Feeder2 1 67 151 201 212 217

Feeder3 2 34 116 138 152 152

Feeder4 2 30 53 61 70 73

Feeder5 2 27 34 66 75 79

1 With 4 occurrences as minimum threshold.

2 With 3 occurrences as minimum threshold.

5.4 Significant order relations between main causes of net-

work incidents

According to the distribution of the incidents in the different feeders shown in Table 5.2,

the most frequent incidents are associated to unknown causes (type f), which means

that the majority of frequent episodes that are mined probably involve this type of
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incident. However, this is an incident type that has not significant information. This

fact can mask other relevant episodes, less frequent but related with known causes. So,

excluding the incident type f in the candidate generation step (see Section 3.2.3.1) and

using min fr = 4 for feeder 1 and 2 and min fr = 3 for feeder 3, 4 and 5, the number

of frequent episodes (last column of Table 5.3) are reduced to 31, 6, 10, 13 and 7 for

each feeder, respectively. This number represent less than 10% of the total frequent

episodes found when the incident f was included in the search. Table 5.4 shows the

maximal frequent episodes (Definition 3.3) for each feeder avoiding the influence of the

incident type f .

Table 5.4 contains for each episode the corresponding values of cohesion, confidence

and backward-confidence indexes, which are calculated from the definitions in Chapter

3. If the episodes with higher value indexes (> 0.5) in this cited parameters are con-

sidered as patterns, then only the episodes 〈i,H, i〉 for feeder 1 and 〈F, F, F 〉 for feeder

2 could be extracted. The pattern 〈i,H, i〉 shows that handling to restore the supply

i usually involves the breakdown of components H. The pattern 〈F, F, F 〉 shows that

successive incidents of unknown cause F (interruption of the supply of unknown cause)

are frequent. The plot of the occurrences of these patterns for each sequence is shown

in Fig. 5.3 and Fig. 5.4.

Likewise, it can be observed that in three feeders (1, 3 and 4) where incidents caused

by components breakdown H were frequent, the episode 〈F,H〉 also was frequent. This

relation shows that incidents caused by component breakdown usually are preceded by

an interruption of the supply of unknown cause.

5.5 Relative location of the incidents within the frequent

episodes

An analysis of the relative location of the incidents within the frequent episodes is

presented in this section as a validation of the patterns found. The aim is to know if a

preferred location of certain types of incidents within the episodes exists. For example,

if the component breakdown usually is the final event of an episode or if unknown

incidents are the start events of the episodes. This analysis could help to establish

the most probably association that can perform an incident, i.e., if an incident has a
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Table 5.4: Maximal frequent episodes (excluding the incident type f) and their corre-
sponding values of of cohesion (coh), confidence (conf) and backward-confidence (confB).

Feeder Episode fr frp coh confB conf

1

〈i, I〉 4 4 1.00 0.80 0.17

〈i, F 〉 5 5 1.00 0.42 0.21

〈H, I〉 4 5 0.80 0.80 0.29

〈H,Q〉 6 9 0.67 0.12 0.43

〈h, i〉 4 5 0.80 0.17 0.80

〈Q,H〉 7 9 0.78 0.50 0.14

〈Q,F 〉 6 10 0.60 0.50 0.12

〈Q, q〉 4 5 0.80 0.67 0.08

〈F,H〉 4 4 1.00 0.29 0.33

〈F,Q〉 7 10 0.70 0.14 0.58

〈i, i, i〉 4 4 1.00 0.40 0.40

〈i, i,H〉 4 7 0.57 0.67 0.40

〈i, i, Q〉 5 8 0.63 0.45 0.50

〈i,H, i〉 4 7 0.57 0.80 0.67

〈i, Q, i〉 4 8 0.50 0.31 0.36

〈Q, i, i〉 5 8 0.63 0.50 0.38

〈Q,Q, i〉 4 7 0.57 0.31 0.24

〈Q,Q,Q〉 8 8 1.00 0.47 0.47

2

〈F,R〉 8 12 0.67 0.42 0.29

〈R,F 〉 6 12 0.50 0.21 0.32

〈F, F, F 〉 6 6 1.00 0.60 0.60

3

〈H, i〉 6 6 1.00 0.67 0.38

〈H,H〉 5 5 1.00 0.31 0.31

〈H, I〉 5 5 1.00 0.83 0.31

〈F,H〉 3 4 0.75 0.19 0.27

4
〈K,K〉 3 3 1.00 0.30 0.30

〈F,H〉 3 3 1.00 0.27 0.25

5 〈R,R〉 3 3 1.00 0.27 0.27

forward or backward association with other frequent incidents in a sequence as it was

discussed in Section 3.2.3.

Whit this aim, for each incident type, the corresponding number of occurrences and

location within the episodes are counted and classified. Two main categories are used

to classify the location of each incident type: start or final event, percentage of total

occurrences where the incident is located at the beginning or end of the episodes and
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Figure 5.3: Sequence of incidents of feeder 1 and occurrences of pattern 〈i,H, i〉 .

Figure 5.4: Sequence of incidents of feeder 2 and occurrences of pattern 〈F, F, F 〉 .

intermediate event, percentage of occurrences where the incident is located only in the

middle of the episode. Table 5.5 shows the evaluation of the relative position of the

incidents between the maximal frequent episodes, shown in Table 5.4. For example,

the incident by vandalism (Q) in the feeder 1, have 56 serial occurrences considering

the 10 maximal episodes where it appears. 92.9% of this ocurrences have Q as the first
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or the final event, being the 60.7% the number of occurrences where it appears as the

first event, 7.1% of the occurrences it has a intermediate location, while 46.4% times

the incident appear as the last event of maximal episodes. The result would show that

incidents by vandalism Q could mainly trigger new incidents (the same or different

type).

In contrast, the incident type F (interruption of the supply of unknown cause) is

located at the beginning or at the end of the occurrences in similar proportion (50%).

Then, a role of this incident in the beginning or conclusion of episodes can not be

identified.

Table 5.5: Relative location of the incidents within the maximal frequent episodes.

Feeder Frequent

incidents

Maximal

Occurrences

Start or Final

event %

Start

event %

Final

event %

Only

intermediate

event %

1

Q 56 92.9 60.7 46.4 7.1

i 43 100.0 69.8 58.1 0.0

h 4 100.0 100.0 0.0 0.0

H 29 86.2 34.5 51.7 13.8

F 22 100.0 50.0 50.0 0.0

I 8 100.0 0.0 100.0 0.0

q 4 100.0 0.0 100.0 0.0

2
F 20 100.0 70.0 60.0 0.0

R 14 100.0 42.9 57.1 0.0

3

F 3 100.0 100.0 0.0 0.0

H 19 100.0 84.2 42.1 0.0

i 6 100.0 0.0 100.0 0.0

I 5 100.0 0.0 100.0 0.0

4

K 3 100.0 100.0 100.0 0.0

F 3 100.0 100.0 0.0 0.0

H 3 100.0 0.0 100.0 0.0

5 R 3 100.0 100.0 100.0 0.0

The main results of the role of the incidents in the episodes, according to the Table

5.5 are: for feeder 1, the incidents types Q (vandalism) and h (component breakdown

without interruption of the supply) are related with the beginning of episodes, while

incidents type H (component breakdown), I (handling to restore the supply) and q

(vandalism without interruption of the supply) are related with the termination or
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completion of episodes. For feeder 2, none of the two types of incidents show a pre-

ferred location within the maximal serial episodes. For feeder 3, F (unknown) and H

(component breakdown) are related with the start of episodes while i and I (handling

to restore the supply) are related with the termination of episodes. For feeder 4, F

(unknown) is probably related with the beginning of episodes, while H (component

breakdown) show the termination of episodes. Finally, for feeder 5, only a maximal

serial episode with two incidents of the same type was found and conclusions about its

preferred location can not be extracted.

5.5.1 Backward association of the incident by component breakdown

The incident type component breakdown (H) is a frequent cause of incidents in feeders

1, 3 and 4 while in feeders 2 and 5 is infrequent. The results of Table 5.4 and according

to Table 5.5, show that this incident type usually is located as final event of frequent

episodes. Then, a search for incidents that usually precede the occurrence of a com-

ponent breakdown can be performed in feeders 1, 3 and 4, in order to diagnose the

probable causes of their occurrence.

Table 5.6 contains the set of episodes with the backward associations (BA) of H, ob-

tained from the frequent episodes as exposed in Section 3.2.3.3. Each frequent episode

contains the information about their serial and parallel frequency, and their correspond-

ing cohesion (coh), confidence (conf) and backward-confidence (confB).

Table 5.6: Frequent episodes that end in component breakdown (H) for the Feeders 1, 3
and 4.

Feeder Episode fr frp coh confB conf

1

〈H〉 14

〈i,H〉 6 7 0.86 0.43 0.25

〈Q,H〉 7 9 0.78 0.50 0.14

〈F,H〉 4 4 1.00 0.29 0.33

〈i, i,H〉 4 7 0.57 0.67 0.40

3

〈H〉 16

〈H,H〉 5 5 1.00 0.31 0.31

〈F,H〉 3 4 0.75 0.19 0.27

4
〈H〉 11

〈F,H〉 3 3 1.00 0.27 0.25
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For feeder 1, only three types of incidents i (handling to restore the supply), Q

(vandalism) and F (unknown cause) precedes the apparition of component breakdown

H. The value of confB of the episode 〈Q,H〉 indicates that H is preceded by a Q the

50% of the time (confB = 0.5). The 43% of the time H is preceded by i and only the

29% ot the time it is preceded by F .

For the other feeders 3 and 4 again the incident type F (unknown cause) precedes the

apparition of component breakdown H, in both cases with low backward-confidence,

0.19 and 0.27 for each feeder, respectively.

This information can be useful to support diagnostic decisions because once an in-

cident has occurred then the previous incidents occurred can be estimated and verified.

5.6 Frequent episodes obtained by the algorithm of total

frequency measure

Frequent episodes were also obtained using the total frequency measure described in

Section 2.3.2.1 (Iwanuma et al., 2005). However, the number of parallel occurrences of

each episode is required in order to calculate its cohesion (Equation 3.7). Since, the

cited algorithm was formulated only for serial episodes, the adaptation proposed in this

thesis (see Section 2.3.2.1) to count parallel occurrences, is used.

Analogously to the experimentation with the method based on individual occur-

rences of the events (Fminevent), results were obtained for several values of window

length win (between 1 and 20 days) with a fixed minimum threshold (min fr = 4

occurrences) and for several values of the min fr (2 to 10 occurrences) and a fixed

window length (win = 15 days) as shown in Fig. 5.5 and Fig. 5.6, respectively.

In both cases Fig. 5.1 vs. Fig. 5.5 and Fig. 5.2 vs. Fig. 5.6, the number of

frequent episodes obtained by the method of total frequency measure is greater than

those obtained by the proposed method Fminevent. This is due to the fact that the

method of total frequency measure counts redundant occurrences. However, the general

trend in the number of frequent episodes found is similar for both algorithms.

Frequent episodes with min fr = 4 for feeder 1 and 2 and min fr = 3 for feeder

3, 4 and 5, within a observation window of 15 days, are evaluated. The parameter

values of min fr and observation window length are the same used in Section 5.4. So,

excluding the incident type f in the candidate generation step (see Section 3.2.3.1) and
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Figure 5.5: Number of frequent episodes found in each feeder for several values of the
window length and a fixed min fr = 4 occurrences.

Figure 5.6: Number of frequent episodes found in each feeder for several values of the
min fr and a fixed window length win = 15 days.

using the cited parameters, the number of frequent episode are reduced to 52, 10, 14,

15 and 7 for each feeder, respectively. This number of frequent episodes is similar to

that found in Section 5.4 except for feeder 1 where 31 frequent episodes were found

using the method of Fminevent.

Table 5.7 shows the maximal frequent episodes (Definition 3.3) for each feeder
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excluding the incident type f . Likewise, for each episode, the corresponding values of

cohesion, confidence and backward-confidence are shown.

Table 5.7: Maximal frequent episodes found excluding the incident type f .

Feeder Episode fr frp coh confB conf

1

〈F,Q〉 8 12 0.67 0.16 0.67

〈i, i, Q〉 5 15 0.33 0.33 0.33

〈i, i, F 〉 4 8 0.50 0.44 0.27

〈i,H, I〉 4 5 0.80 1.00 0.40

〈i,H,Q〉 4 14 0.29 0.67 0.40

〈i, h, i〉 4 5 0.80 0.80 1.00

〈i, Q, i〉 8 15 0.53 0.50 0.53

〈h, i, i〉 4 5 0.80 0.27 0.80

〈h,Q, i〉 5 5 1.00 0.31 1.00

〈Q, i,Q〉 6 12 0.50 0.40 0.38

〈Q,Q, i〉 7 12 0.58 0.44 0.28

〈i,H, i, i〉 4 6 0.67 1.00 0.80

〈Q, i, i,H〉 4 12 0.33 0.80 0.50

〈Q, i, F,H〉 4 5 0.80 1.00 0.80

〈Q,Q,Q,H〉 5 6 0.83 0.71 0.50

〈Q,Q,Q, q〉 5 6 0.83 0.83 0.50

2

〈F, F, F 〉 8 8 1.00 0.47 0.47

〈F, F,R〉 5 11 0.45 0.45 0.29

〈F,R, F 〉 6 11 0.55 0.60 0.55

〈R,R, F 〉 4 5 0.80 0.40 0.80

3

〈H, I〉 6 6 1.00 1.00 0.38

〈H,H, i〉 3 5 0.60 0.38 0.50

〈F,H, i〉 3 3 1.00 0.38 0.75

〈F,H,H〉 4 4 1.00 0.67 1.00

4

〈K,K〉 3 3 1.00 0.30 0.30

〈K,R〉 3 3 1.00 0.38 0.30

〈F,H〉 3 3 1.00 0.27 0.25

〈L,L〉 3 3 1.00 0.50 0.50

5 〈R,R〉 3 3 1.00 0.27 0.27

For feeders 1, 2, 3 and 4, Table 5.7 shows several maximal frequent episodes that

are different from those shown in Table 5.4. These additional episodes result from over-

counting occurrences with the total frequency method, when windows with the same

occurrence are overlapped. Also, this over-count of both series and parallel occurrences,
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affects the values of cohesion, confidence an backward-confidence of the episodes, which

are used to evaluate its significance. For episodes which occurrences are within non-

overlapped windows, the same result of Table 5.4 is obtained, for example, episodes

〈R,R〉 (incidents caused by private facilites) of feeder 5 or 〈F,H〉 of feeder 4 (incidents

by unknown causes precedes the apparition of components breakdown).

If the episodes of Table 5.7 with higher values (> 0.5) in their parameters of co-

hesion, confidence and backward-confidence are considered as patterns, then the fol-

lowing episodes could be extracted as the most relevant pattern: 〈i, h, i〉, 〈i,H, i, i〉
and 〈Q, i, F,H〉 for feeder 1, 〈F,R, F 〉 for feeder 2, and 〈F,H,H〉 for feeder 3. Results

differ from those obtained in Section 5.4 due to the overestimation in the frequency of

episodes.

5.7 Conclusions

Sequences of incidents registered in five feeders of a power distribution network were

analysed and order relations between their causes were discovered. More of > 50% of

the incidents reported are of unknown cause without long supply interruptions, which

adds difficulty to the sequence analysis because the majority of frequent episodes that

are mined involve this type of incident. Then relevant episodes, less frequent but related

with known causes are masked. Therefore, the influence in the mining process of this

type of incident was avoided by applying the concepts of directed search of episodes

developed in Section 3.2.3.1.

Episodes involving breakdown of components were frequent in three of the five

feeders analysed. These incidents caused by breakdown of components usually occur

after long supply interruptions of unknown cause.

About the role of each type of incident in the episodes, it was found that incidents

involving component breakdown and handling to restore the supply are related with

the termination or completion of episodes, while incidents caused by unknown cause

(interruptions of unknown cause) and vandalism are related with the start of episodes.

The algorithm for frequent episode discovery proposed in Section 2.4 was used in the

mining process, but using a maximal expiry-time constraint to adjust the duration of

the episodes, instead of the maximal gap between events or inter-event time constraint

usual. Results were compared with those obtained by the method of total frequency
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measure which also uses a maximal expiry-time in the episodes search. Occurrences of

the episodes under the proposed method are not over-counted, then a lower number of

frequent episodes is obtained and the results are more accurate.
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6

Conclusions and future work

This chapter summarises the conclusions obtained as a result of this research. The

relevant conclusions are highlighted and discussed, as well as several ideas for future

work are proposed.

6.1 Conclusions

The recognising of the existence of faulty behaviours in a power network from the

automatic analysis of sequences of events collected in the system is the main objective

of this thesis. A data mining approach and knowledge discovery was followed and

four subgoals were established to achieve the proposed objective. An analysis of these

objectives and the work developed for each of them is presented in this section, as well

as the conclusion that can be derived.

The adaptation of existing formalisms to describe sequences of events occurring in

power system was the first subgoal. Section 1.5.6 proposes that the condition of each

component in a power distribution network is linked –to a greater or lower extent– to

the state of other components. This suggested, for example, the use of elapsed time

between events as an attribute to describe power events. Then, relationships among

faults or events would be found from the analysis of the set of faults monitored in an

individual point of the power network. This implies the extraction and selection of

adequate features from existing recorders and the use of appropriate mining algorithms

and processing techniques capable of identifying useful patterns. The conclusion is

that faulty behaviours of a power distribution system can be described from subsets of
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events that appear as regularities in a sequence of events and can be discovered by the

approach of frequent episodes.

The second subgoal was to analyse existing frequent pattern discovery algorithms

and propose improvements to focus in power events. In Chapter 2, several methods for

frequent episode discovery were reviewed and were classified into two groups: methods

based on occurrences and methods based on minimal occurrences. While methods based

on minimal occurrences tend to miss occurrences, methods based on occurrences tend to

over-count occurrences if they are based on fixed-width windows or to miss occurrences

otherwise. In this order, a new algorithm named Fminevent to deal with sequences of

events recorded in power distribution networks was proposed. This algorithm prevents

missed or over-counted occurrences and the anti-monotonicity property of the episodes

is fulfilled. Likewise, the method is able to locate and to extract both serial and parallel

occurrences with several options to constrain their duration such as inter-event time

constraint, expiry-time constraint or a combination of both. The occurrence of faults

in a power distribution network has high randomness therefore, flexible algorithms

to explore episodes with different characteristics are required in order to find useful

patterns.

The third subgoal was to propose new strategies to discriminate significant episodes

that are consistent with faulty behaviours in the power system. Frequent sequence

pattern discovery approach has been extended towards significant pattern discovery in

Chapter 3 from the perspective that frequency can not be the only criterion to discover

significant episodes and other order relations among events, as for example precedence,

causality or location in an episode have to be considered during the discovery process. In

Section 3.2.3, three especial cases were addressed to search episodes focused on specific

events: filtering events, forward-association of an event and backward-association of an

event. These are useful strategies when dealing with specific objectives mining problems

as it happens in power monitoring systems. The first case, filtering events prevents that

certain types of events (usually very frequent events) could mask significant episodes.

The second case, forward-association of an event, aims finding the existence of episodes

triggered by a specific event whereas the third case, backward-association of an event,

focuses on discovering antecedents of the specific event. These approaches are of interest

for considering the existence of cause-effect relationships among events in an episode.
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Likewise, two new indexes named cohesion and backward-confidence to facilitate

the evaluation of significant episodes were proposed (Section 3.3). From these two

proposed indexes and the confidence of the episodes, a quality factor to assess the

significance of frequent episodes was defined in Section 3.2.3. While confidence assess

the probability of occurrence of a new episode once its prefix has occurred, the cohesion

measures the strength of order relation expressed by the serial episode with respect to

other episodes in the sequence containing the same events in different order. Finally,

backward-confidence concept is analogous to the confidence but focused on triggering

events. It evaluates the importance of the first event with respect to the episode,

allowing to discover possible triggering events. Once defined the minimum quality

factor that significant episodes must reach, the most important patterns are obtained

compressing the significant episode information through strategy of maximal or closed

episodes.

Aforementioned contributions have been motivated by the problem of mining se-

quences of voltage dips and incidents reported by utilities, but they are also applicable

to other application domains. So, voltage dips associated to single-phase faults and

incidents associated with abnormal operating conditions and collected in different sub-

stations and feeders of real power system were used to validate the consistency and

benefits of the proposed algorithms and strategies, which was the fourth subgoal of the

thesis.

In Chapter 4, from the data set of voltage dips, two types of regularities were

discovered. The first one involves the elapsed time between voltage dip events, and

the second one associates voltage dips from its magnitude and duration. Elapsed time

between voltage dip events reflects reclosing settings of the protective system. In power

distribution networks, protective system usually have scheduled two automatic reclosing

for clearing the fault. For the sequences studied in this chapter, results show that

usually when a first automatic reclosing occurs, a second automatic attempt is also fired.

Likewise, during most of permanent faults (single-phase faults), the two automatic

reclosing attempts are performed. Moreover, since magnitude and duration of voltage

dips reflect the fault location on the network, network areas prone to fault can be

found from frequent episodes composed by similar voltage dips closed in time. Also,

possible causal interactions between faults located in different regions of the network

could be found from frequent episodes composed by events with different magnitude
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and duration. These two situations were observed in the analysed sequence. Most

frequent episodes found are associated to voltage dips similar in magnitude or they

show that early events in the episode are less severe than subsequent events. These last

episodes may show that early events influence the occurrences of subsequent events.

Likewise, datasets of incidents collected in power distribution networks are analysed

and order relations between main causes of incidents in the network were discovered

in Chapter 5. Incidents are also a type of dataset usually collected in power distribu-

tion networks. The term incident is used to indicate the existence of situations that

affect the continuity of supply. Such abnormal situations are registered from customer

service centers or incidents management systems. They are documented with different

attributes such as the occurring date, its probable cause and its duration. For the anal-

ysed sequences, most of incidents reported are of “unknown cause” without long supply

interruptions, which adds difficulty to the mining process because the majority of fre-

quent episodes that are mined involve this type of incident and relevant episodes, less

frequent but related with known causes, are masked. Filtering this type of incident by

applying the directed search of episodes developed in Section 3.2.3, episodes involving

“breakdown of components” were discovered. These episodes show that “breakdown of

components” usually occur after long supply interruptions of “unknown cause”, i.e, usu-

ally firstly an interruption of “unknown cause” is reported and shortly after (few days)

another incident by “component failure” is reported. Moreover, the role of each type of

incident in the episodes was analised. Incidents involving “component breakdown” and

“handling to restore the supply” were related with the termination or completion of

episodes, while incidents caused by “unknown cause” (interruptions of unknown cause)

and “vandalism” were related with the start of episodes.

The performed study shows that useful patterns that reveal cause-effect relation-

ships in faulty behaviours can be discovered from sequences of events recorded in power

networks. Such knowledge can be exploited to support the power network maintenance

through the diagnosis and prognosis of faults, which has benefits to the distribution

companies (utilities).
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6.2 Future work

Although the initial objectives of these thesis have been accomplished, from the achieved

results new research challenges are elucidated in various directions. This section shows

several topics that could be extended.

Future research will address the problem of fault prediction using longer sequences

of events, developing suitable strategies to define and discover patterns for other faulty

situations described in the thesis, such as faults caused by cumulative stress on compo-

nents or by abnormal operation of equipment. These new strategies will consider, for

example, the extraction of patterns from events defined by continuous attributes, such

as overvoltage values, overcurrent values, duration or phase angle. Likewise, for imple-

menting the formalism presented in this thesis as part of the tools for event analysis in

power distribution networks, strategies are required to properly define the thresholds

for both frequent episodes discovery and meaningful patterns recognition.

Moreover, frequent episode discovery constitutes only a small part in the field of

mining sequences. Then, sequences of events registered in power distribution networks

can be analysed under other topics of the mining sequences such as sequential patterns

or correlation mining.

Another challenge arises from the streaming nature of the datasets recorded in

power distribution networks, since knowledge discovery techniques described in this

thesis assume that the input data are available at invocation. However, in a streaming

environment, inputs arrive periodically continuously and newer events may change

the results based on older events substantially (Gaber et al., 2010; Gama and Gaber,

2007). Hence, frequent episode discovery algorithms able to work with data streams

are required, which must be efficient in space and execution time.
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N. Méger and C. Rigotti. Constraint-based mining of episode rules and optimal window sizes.
In Jean-Franois Boulicaut, Floriana Esposito, Fosca Giannotti, and Dino Pedreschi, editors,
Knowledge Discovery in Databases: PKDD 2004, volume 3202 of Lecture Notes in Computer
Science, pages 313–324. Springer Berlin / Heidelberg, 2004. 36, 38

J. Meléndez, O. A. Quiroga, and S. Herraiz. Analysis of sequences of events for the character-
isation of faults in power systems. Electric Power Systems Research, 87:22–30, 2012. 2, 17,
18

J.V. Milanovic, Myo Thu Aung, and C.P. Gupta. The influence of fault distribution on stochas-
tic prediction of voltage sags. IEEE Transactions on Power Delivery, 20(1):278–285, Jan.
2005. 7

R. Moghe and M.J. Mousavi. Trend analysis techniques for incipient fault prediction. In IEEE
Power Energy Society General Meeting, 2009., PES’09, pages 1–8, 26–30 Jul. 2009. 7, 11

128



REFERENCES

A. Murthy. Study of utility of frequent patterns to characterize sequential and spatial datasets.
Master’s thesis, Department of Electrical Engineering Indian Institute of Science, Bangalore,
2007. 22

G. Olguin. Voltage dip (sag) estimation in power systems based on stochastic assessment and
optimal monitoring. PhD thesis, Dept. Energy Environ., Div. Electr. Power Eng., Chalmers
Univ. Technol., Goteborg, Sweden, 2005. 5, 6, 7, 9, 15

D. Patnaik. Application of frequent episode framework in microelectrode array data analysis.
Master’s thesis, Dept. Electrical Engineering, Indian Institute of Science, Bangalore, June
2006. 27, 50

J. Pei, J. Han, B.M. Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu. Prefixspan: mining
sequential patterns efficiently by prefix-projected pattern growth. In International Conference
on Data Engineering, ICDE’01, pages 215–226, 2001. 24

O. A. Quiroga, J. Meléndez, and S. Herraiz. Fault-pattern discovery in sequences of voltage
sag events. In 14th International Conference on Harmonics and Quality of Power, ICHQP
2010, Bergamo, Italy, 26–29 Sept. 2010a. 18, 19

O. A. Quiroga, J. Meléndez, and S. Herraiz. Fault causes analysis in feeders of power distribution
networks. In International Conference in Renewables Energies and Quality Power, ICREP’11,
Las Palmas de Gran Canaria, Spain, 13-15 Apr. 2011a. 19

O. A. Quiroga, J. Meléndez, S. Herraiz, A. Ferreira, and A. Muñoz. Analysis of frequent
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Appendix A

Identification of transient faults

in sequences of voltage dips

Identification of a particular type of disturbance in the network via a relay or other

monitoring equipment, is mainly based on a predefined pattern. Evaluation of a set of

samples of voltage and/or current taken at a certain sampling rate allows to deduce

the existence of a particular disturbance. At a different time scale, as was mentioned

in Section 1.4.2, known patterns can be used to identify faulty components in high-

voltage transmission lines, based on real-time alarms provided during accidents (Liao

et al., 2003). The idea is to build a set of patterns based on sequences of alarms

fixed during representative incidents and failures. Then, when a new fault occurs, the

sequence of alarms generated during the fault is compared with the set of patterns to

identify the probable source of the problem.

A similar case is formulated in this appendix to distinguish transient faults from

the characteristics of various individual events monitored in the network. As it was

introduced in Section 1.5.2, transient faults (temporary and self-clearing faults) can be

considered as faults occurred due to independent causes or distinct phenomena, so two

or more events (voltage dips) recorded in a short period of time are expected to be

different one from each other if they are caused by transient faults.

Given a sequence of voltage dips events S = 〈(e1, t1), (e2, t2), ..., (en, tn)〉, the search

strategy proposed for identification of transient fault events consists of comparing each

event (ei, ti) of the sequence S with other events (ej , tj) within a observation window

to verify if similarities with a minimum quantity of them exist or not. So, given an
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event ei and an observation window W , the procedure for identification of transient

fault events have two main steps:

1. In the first step, the number of similar events of ei, Nsim within W is found:

Nsim(ei,W, tmax) =
i+k∑

j=i−k

δ(dist((ei, ti), (ej , tj))) (A.1)

where k is half the width of the observation window (in number of events) which

is centered in the event ei as W (ti−k, ti+k) with i − k ≥ 0 and i + k ≤ n, and

tmax is a restriction on the maximal elapsed time between ei and ej as shown in

Equation A.2. The auxiliary function δ in Equation A.1 is defined as:

δ(dist((ei, ti), (ej , tj))) ={
1 if dist((ei, ti), (ej , tj)) ≤ Th ∧ |ti − tj | ≤ tmax,

0 otherwise.
(A.2)

where Th is the minimum similarity threshold.

Function dist() in Equation A.2 assess the similarity among two events (ei, ti) and

(ej , tj) from their attributes. Usually, each voltage dip event (ei, ti) is described

by its magnitude Mi and duration ∆ti. From these two attributes, a Manhattan

distance is proposed as similarity measure as it is stated in Equation A.3.

dist(ei(ti), ej(tj)) =
(|Mi −Mj |+ |∆ti −∆tj |/max(∆ti,∆tj))

2
(A.3)

where dist(ei(ti), ej(tj)) = 0 indicates that these two events have the same mag-

nitude and duration that is, the maximum similarity, and dist(ei(ti), ej(tj)) = 1

represent the maximum dissimilarity.

2. In the second step, from result of Equation A.1, the event ei is labeled as transient

fault event ETrans, according to Equation A.4:

ei → ETrans ↔ Nsim(ei,W ) ≤ Nmax (A.4)

where Nmax is the maximum number of similar events for a transient fault within

W . For example, if Nmax = 0 means that (ei, ti) is a transient fault event if and
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only if does not exist any similar event within the observation window W , while if

Nmax = 1, (ei, ti) it is labeled as transient fault event, even if other similar event

is found within W .

A.1 Experimental results

The data set of voltage dip events described in Table 4.2 of Section 4.1.1 is analysed

as case study. The number of transient and permanent fault events for each sequence,

is summarised in Table A.1.

Table A.1: Number and types of events in the sequences of the case study.

Description
Substation

S1 S2 S3 S4 S5

Permanent fault events 29 33 96 97 80

Transient fault events 22 39 79 59 18

No documented events 0 18 33 21 9

Total number of events 51 90 208 177 107

For each sequence, the strategy proposed above is used for the identification of

transient fault events and results are evaluated by the following parameters: number

of transient fault events correctly identified or true detection (TD), transient fault

events not detected or missed by detection (MD) and, number of non transient fault

events identified as transient or false alarms (FA). The corresponding ratios also com-

puted: true detection rate (TDR = TD/(TD+MD)), missed detection rate (MDR =

MD/(TD+MD)) and false alarm rate (FAR = FA/(TD+FA)). This ratios are use-

ful to evaluate the accuracy of the identification. Likewise, several values for the in-

put parameters are tested: Nmax = 0, 1, 2, 3; k = 1, 2, ..., 4; Th = 0, 0.05, ..., 1 and

tmax = 0.01, 0.06, ..., 1.01 (days).

Table A.2 summarises results obtained for sequence S1. According to this table,

using as input parameters Nmax = 1, k = 1, Th between 0.2 to 0.5 and tmax between

0.16 to 1 days, all transient fault events are identified (TDR=1) but this involves a

high rate of false alarms (FAR=0.35). Identification results improve if the following

parameters are used: Nmax equal to 0 or 1, k between 1 to 4, Th between 0.2 to

0.25 and tmax between 0.16 to 1 days. In this case, 95.5% of transient event are
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Table A.2: Results of the detection of transient faults for sequence S1

Nmax k Th tmax TD MD FA TDR MDR FAR

1 1 0.2 to 0.25 0.16 to 1 22 0 12 1.00 0.00 0.353

0 1

0.2 to 0.25 0.16 to 1 21 1 1 0.955 0.045 0.045

1

2

3

4

1

2

0.35 to 1 0.06

20 2 3 0.909 0.091 0.13

3 0.06

4

2
3

0.4 to 1 0.16 to 1
4

correctly identified, only one transient fault event is missed and only one event is

wrongly identified as transient.

The best results retrieved for sequence S1 are shown in Fig. A.1. Magnitude and

duration of each event is plotted in the top of this figure, and transient fault events are

marked with a circle. Information about the type of fault associated with each event

is added in the bottom of the figure. It can be observed that events associated with

multiple reclosing actions and subsequent manual actuations (permanent faults) have

been skipped. Only the event, e38, have been wrongly marked as transient fault event

because it is different in duration from their neighbours, while only one transient fault

event, e26, was not detected because it is very similar to their neighbours events.

Identification results for sequence S2 are summarised in Table A.3. According to

this table, using a similarity threshold of 0.3, 0.15 and 0.1, 79%, 87% and 92% of the

transient fault events can be correctly identified with a false alarm rate of 16%, 22.7%

and 23%, respectively. A MDR of 0% involves a FAR of 45%.

For sequence S3, identification results of transient fault events are summarised in

Table A.4. According to this table, a complete identification of transient events, implies

a false alarm rate of 48%. However, this false alarm rate can decrease under 30% with

a correct identification of 77% of transient fault events.

Table A.5 summarises the identification results for sequence S4. According to this

table, a complete identification of transient events implies a false alarm rate of 30%.

136



A.1 Experimental results

Figure A.1: Transient fault events in the sequence S1.

Table A.3: Results of the detection of transient faults for sequence S2

Nmax k Th tmax TD MD FA TDR MDR FAR

0 1 to 2
0

0 to 1 39 0 33 1.000 0.000 0.458
1 1 to 4

2
1 0 to 1

2 to 4 0

1 4 0.1 0.26 to 0.71 36 3 11 0.923 0.077 0.234

1 4 0.15 0.26 to 0.71 34 5 10 0.872 0.128 0.227

2 4 0.3 0.41 to 0.71 31 8 6 0.795 0.205 0.162

However, this false alarm rate can decrease under 12% with a correct identification over

84% of transient fault events.

Finally, Table A.6 summarises the identification results for sequence S5. The ma-

jority of events in this sequence are due to permanent faults. According to this table,

14 of 18 transient fault events (78%) can be correctly identified but this implies that

17 events are are wrongly identified (FAR=0.55) as transient. These false alarm rate

(FAR) can be reduced under 20% with a TDR over 50%.

For all sequences the best identification results are obtained using a similarity

threshold between 0.2 to 0.35. The high values of TDR in S1 to S4 show that most
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Table A.4: Results of the detection of transient faults for sequence S3

Nmax k Th tmax TD MD FA TDR MDR FAR

2 2 0.05 0.11 79 0 73 1 0 0.480

2 4 0.05 0.11 78 1 59 0.987 0.013 0.431

1 4 0.05 0.11 74 5 48 0.937 0.063 0.393

1 3 0.1 0.11 71 8 39 0.899 0.101 0.355

1 4 0.1 0.11 70 9 36 0.89 0.11 0.34

1 2 0.25 0.11 61 18 24 0.77 0.23 0.28

1 3 0.25 0.06
58 21 24 0.73 0.27 0.29

2 3 0.3 0.16 to 0.46

1 3 0.25 0.11 57 22 21 0.72 0.28 0.27

Table A.5: Results of the detection of transient faults for sequence S4

Nmax k Th tmax TD MD FA TDR MDR FAR

2

4

0.2
0.06

59 0 26 1 0 0.306

1 0.15 56 3 21 0.949 0.051 0.273

2

0.2

0.31 to 0.46

55 4 16 0.932 0.068 0.225

0.3 53 6 9 0.898 0.102 0.145

0.35 52 7 7 0.881 0.119 0.119

3 to 4 0.4 50 9 2 0.847 0.153 0.038

Table A.6: Results of the detection of transient faults for sequence S5

Nmax k Th tmax TD MD FA TDR MDR FAR

1 2 to 4 0 0.06 to 1 18 0 77 1.00 0.00 0.81

2 2 0.35 0.61 to 1 16 2 38 0.89 0.11 0.70

0

1 to 4 0.3 to 0.35 0.01 14 4 17 0.78 0.22 0.55

2 0.05 0.76 to 1
10 8 12 0.556 0.444 0.545

4 0.05 0.36 to 0.56

1
0.3 0.46 to 1

9 9 2 0.50 0.50 0.18
0.35 0.46 to 0.56

of the transient faults are identified. The identification strategy fails (MD) especially

when similar events appear in a short period of time (for example when several tran-

sient faults occur during storms). On the other hand, small values of FAR (for example

in S1, S2 and S4) show that identification strategy does discriminate well between the
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events associated with transient and permanent faults. False alarms can occur, espe-

cially when the events of a permanent fault do not have similarities in their attributes.

This occurs, for example, when fault impedance values change during the fault as in

the case of tree contacts.
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