

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los
derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como
a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It
can be used for reference or private study, as well as research and learning activities or materials in the
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and
previous authorization of the author is required for any other uses. In any case, when using its content, full
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit
use or public communication from outside TDX service is not allowed. Presentation of its content in a window
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis
and its abstracts and indexes.

Code Optimizations for Narrow

Bitwidth Architectures

Indu Bhagat

Departament d’Architectura de Computadors

Universitat Politècnica de Catalunya

Advisors :
Enric Gibert Codina, Intel Barcelona Research Center

Jesús Sánchez Navarro, Intel Barcelona Research Center

Antonio González Colás, Intel Barcelona Research Center & UPC

A thesis submitted for the degree of

Doctor of Philosophy / Doctor per la UPC

2011 December

ii

Code Optimizations for Narrow

Bitwidth Architectures

Indu Bhagat

Departament d’Architectura de Computadors

Universitat Politècnica de Catalunya

Advisors :

Enric Gibert Codina
Intel Barcelona Research Center

Intel Labs, Universitat Politècnica de Catalunya

Jesús Sánchez Navarro
Intel Barcelona Research Center & UPC

Intel Labs, Universitat Politècnica de Catalunya

Antonio González Colás
Intel Barcelona Research Center & UPC

Intel Labs, Universitat Politècnica de Catalunya

A thesis submitted for the degree of

Doctor of Philosophy / Doctor per la UPC

2011 December

Abstract

This thesis derives its motivation from an inherent computational inefficiency of

traditional computer systems. This inefficiency is primarily the result of the fact

that many of our contemporary applications (integer, network and multimedia pro-

cessing) do not need wide datapath in the hardware. However, the hardware, obliv-

ious to this, inadvertently utilizes its complete available datapath, resulting in the

problem of computational inefficiency – usage of more resources like power and

computational logic than necessary. In the past, many researchers have proposed

techniques to exploit traditional narrow computations (i.e., those computations that

do not require the complete available bitwidth of the processor’s datapath) towards

achieving multiple benefits ranging from achieving power reductions, reducing

hardware-complexity, and also to gain performance.

This thesis takes a hardware-software collaborative approach to tackle the prob-

lem of computational inefficiency in a holistic manner. The hardware is designed

for energy-efficiency by restraining the execution core to a strictly 16-bit datapath

(integer datapath only). This redesign is referred to as the Narrow Bitwidth Ar-

chitecture and its interface to the outside (software) world is termed as the Narrow

ISA. The gain here is that the hardware functions as an extremely simple, low-cost,

low-complexity execution core.

Narrow Bitwidth Architecture is unique in that although the datapath is squeezed

to 16-bits, it continues to support 32-bit / 64-bit computations (and hence, the

current software stack). This is made possible by a non-conventional memory

interface design which combines a 16-bit data interface with a 64-bit address in-

terface. Further, it is the software which is responsible for efficiently mapping

the current stack of 64-bit applications onto the 16-bit hardware. However, this

approach introduces the risk of losing out on performance because even when a

reasonably smart code-translator maps the 64-bit applications on to the 16-bit pro-

cessor, it has been observed that there is non-negligible penalty both in terms of

the dynamic code size (about 3.9x) and execution time in cycles (2.2x).

Thus kicks in the importance of the role of the compiler and harnessing the power

of compiler optimizations. The compiler needs to not only translate but also ag-

gressively optimize to reduce the negative impacts of the narrow ISA. Further, the

narrow ISA presents itself as a completely new play-doh for compiler optimiza-

tions – the narrow stream is inherently more parallel; it has more computations of

finer granularity. A hardware-based aggressive code optimizer will be limited in

scope and above all, hard to implement. It also defies the purpose of achieving a

simple execution core.

Hence, the goal of this thesis is to design a software layer that can assuage this per-

formance penalty while mapping 64-bit programs on to the 16-bit datapath based

hardware. More specifically, this thesis focuses on compiler optimizations target-

ing the problem of how to compile a 64-bit program to a 16-bit machine from

the perspective of Minimum Required Computations. Given a program, the notion

of Minimum Required Computations (henceforth, MRC) aims to infer how much

computation is really required to generate the same (correct) output as the original

program.

Approaching perfect MRC is an intrinsically ambitious goal in that it requires or-

acle predictions of program behavior. Towards this end, the thesis proposes and

evaluates three heuristic-based optimizations to closely infer the MRC. The op-

timizations are performed by the software in the form of a compiler / dynamic

optimizer. The perspective of minimum required computations unfolds into a def-

inition of Productiveness – if a computation does not alter the storage location, it

is non-productive and hence, not necessary to be performed. In this research, the

concept of MRC has been applied to different granularities of the data-flow as well

as control-flow of the programs.

Three profile-based code optimization techniques have been proposed :

1. Global Productiveness Propagation (GPP) applies the concept of produc-

tiveness at the granularity of a function.

2. Local Productiveness Pruning (LPP) applies the same concept but at a much

finer granularity of a single narrow computation.

3. Minimal Branch Computation (MBC) is a profile-based, code reordering op-

timization technique which applies the principles of MRC for conditional

branches.

The primary aim of all these techniques is to reduce the dynamic code footprint of
the narrow ISA programs. The first two optimizations, namely the Global Produc-
tiveness Propagation (GPP) and the Local Productiveness Pruning (LPP), perform
the task of code pruning. Both these techniques make use of profiles to specu-
latively prune the non-productive (useless) computations. Further, these two op-
timization techniques perform backward traversal of the optimization regions to
embed checks into the non-speculative slices, hence, making them self-sufficient
to detect a mis-speculation dynamically.

The Minimal Branch Computation (MBC) optimization is a use case of a broader
concept of reordering narrow backslices. The idea behind MBC is to reorder
the backslices containing narrow computations such that the minimal necessary
computations to generate the same (correct) output are performed in the most-
frequent case; the rest of the computations are performed only when necessary.

With the proposed optimizations, it can be concluded that there do exist ways to
smartly compile a 64-bit application to a 16-bit ISA such that the overheads are
considerably reduced. A combination of the foregoing optimizations together with
a classical code scheduling algorithm has the potential to reduce the dynamic code
size penalty from 3.9x to 2.68x and the performance penalty from 2.2x to 1.38x.

To my parents and my big joyful family, with love.

Acknowledgements

My first and most sincere acknowledgments go to my advisors – Enric Gibert,

Jesús Sánchez, and Antonio González, for giving me an opportunity to research

with the ARCO (Architecture and Compilers) Group at the Department of Com-

puter Architecture at the UPC. They have been great mentors throughout and have

greatly helped in shaping my professional and academic skills. The lessons I learnt

from them have brought about a great change in my outlook and will continue to

do so throughout my career. This thesis wouldn’t have been what it is without their

insights, feedback and guidance. Heartfelt thanks to Enric and Jesús with whom I

truly enjoyed working during all these years. I cannot imagine having worked on

a thesis without you two.

I also wish to thank my big joyful family. They have always been full of en-

couragement and have always extended their support at all times unconditionally.

Acknowledging their contribution to my thesis is the least I can do. My most warm

acknowledgments to my doting parents who have strengthened this thesis and my

life with their love, and encouragement to always strive for the best. I have learnt

much of my perseverance which was instrumental to the completion of this thesis

from them. The debts of gratitude are too numerous to particularize. My most

adorable nephew and nieces with their shining bright eyes and toothy smiles (with

an added or deleted tooth every now and then) have always kept me going.

I am also greatly thankful to my husband Anshuman for having reminded me

untiringly to be objective about both the technical and non-technical aspects of

my thesis. He has always been a reminder to not lose focus, even in the state of

crisis. Thanks to Anshuman also for painstakingly reviewing several drafts of my

submissions and the thesis document multiple times, for cooking several delicious

meals for me while I slept/worked and for being there always.

The stay at (DAC) UPC, Barcelona shall always remain the most memorable
one of my life. My colleagues at D6-113, with whom I shared my office as a
PhD student, all my friends, and my colleagues at UPC with whom I chatted over
several meals and coffees have also greatly added value to my thesis. Some of
the many joys of doing a PhD – sharing the classic PhD in-jokes, sharing woes of
graduate life and above all the ‘collaborative procrastination sessions’; all of those
would have been so incomplete without you all.

iv

Contents

List of Figures ix

List of Tables xiii

1 Introduction 1
1.1 Motivation . 1

1.2 The Thesis . 3

1.3 Contributions . 3

1.3.1 Global Productiveness Propagation (GPP) 4

1.3.2 Local Productiveness Pruning (LPP) 5

1.3.3 Minimal Branch Computation (MBC) 5

1.4 Related Work . 6

1.4.1 Hardware-Oriented Approaches . 6

1.4.2 Software-Oriented Approaches . 7

1.4.3 Hardware-Software Collaborative Approaches 8

1.4.4 In Perspective . 10

1.5 Organization of the Document . 11

2 Narrow Bitwidth Architecture:

A Hardware/Software Perspective 13
2.1 Micro-Architecture . 14

2.1.1 Processor Datapath . 14

2.1.2 Brief Comparison with 64-bit Wide Architecture 16

2.2 Narrow ISA . 18

2.2.1 An Absolute Narrow Paradigm . 19

2.2.2 Wide to Narrow Translation Scheme 20

v

CONTENTS

2.2.3 Preliminary Evaluations . 26
2.3 Role of the compiler . 29

2.3.1 Non-productiveness based Pruning Techniques 31
2.3.2 Reordering Narrow Backslices . 32
2.3.3 Additional Support for Optimizations 32

2.4 Productiveness : Definition and Preliminary Evaluations 34
2.4.1 Background Definitions . 34
2.4.2 Defining Productiveness . 35
2.4.3 Preliminary Evaluations . 36

2.4.3.1 Productiveness vs. Previous Approaches 36
2.4.3.2 Dynamic Non-productiveness : Instruction as Region 38
2.4.3.3 Dynamic Non-productiveness : Function as Region 40

3 Methodology 43
3.1 Experimental Framework . 43

3.1.1 Simulator Infrastructure . 43
3.1.1.1 CodeAnalyzer : The Optimization Framework 43
3.1.1.2 The Narrow Processor . 46

3.1.2 Benchmarks . 47
3.1.3 Metrics . 48
3.1.4 Hot Regions . 48

3.2 Baseline Ecosystem . 49
3.2.1 Overall Execution Model . 50

4 Global Productiveness Propagation 55
4.1 Definition . 56
4.2 Description . 57

4.2.1 Overview . 57
4.2.2 Initial Steps . 58
4.2.3 GPP Optimization . 60
4.2.4 Assertion Rules Generator (ARG) Pass 63
4.2.5 The Issue of Contradictory Profiles 67
4.2.6 Cost Analysis . 70

4.3 Example : Walk-through . 70
4.4 Evaluation . 72

4.4.1 Experimental Framework . 72
4.4.2 Productiveness of Last-writers . 73

vi

CONTENTS

4.4.3 GPP Evaluation . 75
4.4.4 Observed Roadblocks . 78

4.5 Conclusions . 82

5 Local Productiveness Pruning 83
5.1 Definition . 83
5.2 Description . 84

5.2.1 Overview . 84
5.2.2 Initial Steps . 85
5.2.3 LPP Optimization . 86

5.2.3.1 Step A : Determine Non-productive Computations 86
5.2.3.2 Step B : Generate Assertions (ARG Pass) 87
5.2.3.3 Step C : Classify Non-productive Computations 88
5.2.3.4 Step D : Reduce Assertion Overheads 92

5.2.4 Cost Analysis . 97
5.3 Example : Walk-through . 98
5.4 Evaluation . 99

5.4.1 Experimental Framework . 100
5.4.2 LPP as a Dynamic Optimization . 100
5.4.3 LPP as a Static Optimization . 104
5.4.4 Atomicity : Basic Block vs. SuperBlock 109
5.4.5 Effects on Instruction Scheduling . 111
5.4.6 Comparison with 64-bit In-Order Pipeline 112
5.4.7 Observed Roadblocks . 116

5.5 Conclusions . 117

6 Minimal Branch Computation 119
6.1 Introduction . 120
6.2 Definition . 124

6.2.1 Background Definitions . 124
6.2.2 Definition of MBC . 126

6.3 Description . 127
6.3.1 Overview . 127
6.3.2 Profiling for MBC . 128
6.3.3 MBC Optimization . 133

6.3.3.1 Step A : Demarcate Data-flow and Conditional Control-flow . 133
6.3.3.2 Step B : Infer Minimum Required Flag-generating Siblings . 133

vii

CONTENTS

6.3.3.3 Step C : Infer Default Flag-generating Backslice 135
6.3.3.4 Step D : Perform Cost-Benefit Analysis 136
6.3.3.5 Step E : Perform fgSlice Reordering 137

6.3.4 Cost Analysis . 139
6.4 Example : Walk-through . 139
6.5 Related Work . 142
6.6 Evaluation . 142

6.6.1 Experimental Framework . 143
6.6.2 Quantifying Conditional Control-flow 144
6.6.3 MBC Evaluation . 147
6.6.4 Observed Roadblocks . 151

6.7 Conclusions . 153

7 Conclusions and Future Work 155
7.1 Summary . 155
7.2 Future Work . 158

7.2.1 Optimizing the Memory Interface . 158
7.2.2 Memory Dependences and Data-flow analysis 161
7.2.3 Coverage and Regions . 161

Bibliography 163

viii

List of Figures

2.1 The hardware redesign opportunities using a MIPS-like datapath – 64-bit vs.
16-bit wide implementations . 15

2.2 Impact of the narrow ISA : The figure shows the dynamic code size (computa-
tions) and the execution time (cycles) impact by comparing narrow (16-bit) vs.
wide (64-bit) paradigm using the narrow translation scheme outlined in Section
2.2 . 27

2.3 Impact on the static code size . 28
2.4 Breakdown of the narrow and wide committed stream into operation classes . . 30
2.5 Overview of the two main compiler optimization philosophies adopted in the

thesis . 31
2.6 Comparing various proposals around the concept of narrowness. The figure

shows histogram distribution of the actual datapath required by 64-bit compu-
tations for different definitions . 37

2.7 Dynamic Productiveness with instruction as a region : best case and sensitivity
analysis . 39

2.8 Dynamic global productiveness with function as a region : A hundred samples
from the dynamic executions of a subset of functions each from SPECint 2000
benchmarks . 41

3.1 CodeAnalyzer : Basic workflow and components 44
3.2 Showcasing different execution flows through the developed infrastructure . . . 52

4.1 The rationale and mechanism of GPP on an abstract region 56
4.2 Global Productiveness Propagation : An overview with the component passes . 58
4.3 Step A – Classify last-writers . 62
4.4 Deriving rules for a simple region . 63
4.5 Backward propagation of assertions through an abstract computation C. This

is termed as merging assertions . 67

ix

LIST OF FIGURES

4.6 Possible types of flows – Single Producer Single Consumer (SPSC), Single
Producer Multiple Consumer (SPMC) and Multiple Producer Single Consumer
(MPSC) . 68

4.7 SPMC Classification . 68
4.8 MPSC Classification . 69
4.9 GPP at work – (left) Sample code, (right) Computations Removed vs. Asser-

tions Placed . 71
4.10 Distribution of productiveness of last-writers 74
4.11 Gains achieved by GPP – Reduction in the number of cycles achieved by

two configurations of GPP by varying the most-frequent value bias threshold :
threshold=90% and threshold=95% . 76

4.12 Benefits vs. Cost of GPP in terms of number of computations over baseline . . 77
4.13 Breakdown of the committed narrow operations stream 79
4.14 Pinning down the bottlenecks in GPP . 81

5.1 Local Productiveness Pruning : An overview with the component passes 84
5.2 Deriving rules for a simple region . 88
5.3 Categorizing the non-productive LPP computations into Group0, Group1, Group2

and Group3 to understand where the gains are coming from 93
5.4 Possible types of flows – SPSC and SPMC . 94
5.5 Size-sign encoding (3-bit encoding) . 95
5.6 LPP optimization on a sample code sequence from vpr 98
5.7 LPP in a dynamic optimizer model - Breakdown of the committed stream . . . 101
5.8 LPP in a dynamic optimizer model - Assertion failure rates 102
5.9 LPP in a dynamic optimizer model - (a) Reduction in committed stream (b)

Overheads as ratio of non-optimized stream 103
5.10 LPP in a dynamic optimizer model - Effect on number of cycles 104
5.11 LPP in a static optimizer model - Breakdown of the committed stream (achieved

coverage) . 105
5.12 LPP in a static optimizer model - Assertion failure rate 106
5.13 LPP in a static optimizer model - (a) Reduction in committed stream (b) Over-

heads as ratio of non-optimized stream . 107
5.14 LPP in a static optimizer model - Effect on number of cycles 108
5.15 Size of atomic regions . 109
5.16 Impact of the size of atomic regions - Reduction in computations comparing

basic block vs. superblock . 110
5.17 Incorporating code scheduling with LPP on a sample code sequence from vpr . 113

x

LIST OF FIGURES

5.18 Effect on number of cycles with LPP and code scheduling 114
5.19 LPP as a static optimization on basic blocks : Comparison with 64-bit execu-

tion (a) Cycles (b) Committed computations) 115

6.1 Semantics of selected flags - sign flag, carry flag, and overflow flag 122
6.2 Histogram distribution of dynamic condition codes for conditional branches . . 122
6.3 Background definitions and minimal branch computations conceptually 123
6.4 Minimal Branch Computation : An overview with the component passes 128
6.5 MBC reordered code . 138
6.6 MBC at work . 141
6.7 Conditional control-flow vs. rest of the program 145
6.8 Breakdown of dynamic conditional branches in terms of the size of the set of

flag-generating siblings . 146
6.9 Percentage of times MBC’s reordering strategy fails 147
6.10 Hot Regions in isolation – Reduction in narrow computations achieved by MBC 148
6.11 Hot Regions in isolation – Reduction in total number of cycles 149
6.12 Dynamic stream classification of the MBC+LPP optimized narrow computa-

tion stream . 150
6.13 Impact on the static code size - Before and after optimizations 151
6.14 Dynamic stop conditions . 152

7.1 Breakdown of committed stream : Before and after LPP 159
7.2 Silent memory operations in the narrow and wide paradigms 160

xi

LIST OF FIGURES

xii

List of Tables

2.1 Register file design evaluation : comparing 16-bit vs. 64-bit data cells 18

2.2 DCache design evaluation : comparing 16-bit vs. 64-bit data interface 19

2.3 Template based translation for arithmetic / logical operations. Op indicates the

operation. Opc indicates the narrow ISA opcode which performs the operation

and accumulates the associated flags . 22

2.4 A sample translation for the shift left operation. shlc indicates the narrow

ISA opcode which performs the shift operation and accumulates the associ-

ated flags. shlext indicates the narrow ISA opcode which shifts and buffers the

data . 23

2.5 Translation for a branch operation template. Branches are always 64-bit sized

operations . 24

2.6 Translation for a load operation template. Similar translations are generated

for store operations . 24

2.7 Narrow translator conversion ratios – Size of semantically equivalent sets of

different type of 64-bit opcodes . 26

3.1 Simulator configurations - Both for the wide (64-bit datapath) and the narrow

(16-bit datapath) processors . 46

3.2 Benchmarks – training and input data-sets, and command line arguments 47

3.3 Hot regions and expected code coverage (x86 instructions) 49

3.4 Dynamic vs. Static optimization model configurations 51

4.1 Non-exhaustive template-based assertion rules for opcodes – add, mov. Asser-

tion rules for sub operation are similar to add operation 65

4.2 Assertion rules table for memory operations – load, store 65

5.1 Instruction templates for Group0 instructions 89

xiii

LIST OF TABLES

5.2 Instruction templates for Group1 instructions. The required assertions for these
computations can be encoded by special operation-and-assert opcodes. ‘cf’
indicates carry flag and ‘of’ indicates the overflow flag 89

5.3 Instruction templates for Group2 instructions. Pruning each Group2 computa-
tion requires at least one explicit assertion operation 91

5.4 Instruction templates for Group3 (LPP memory operations) instructions. mf-
Value indicates the most-frequent profile-based value encoded as the immediate 92

5.5 Illustrating compression schemes with examples. regAx denotes the xth chunk
of regA being asserted for . 96

6.1 Sample code to illustrate non-reorderability of flag-generating siblings 125
6.2 Conditional branch JZ / JNZ, the associated status flags, and the profiling strategy129
6.3 Conditional branch JLE / JNLE, the associated status flags, and the profiling

strategy . 131
6.4 Conditional branch JBE / JNBE, the associated status flags, and the profiling

strategy . 132
6.5 Illustrating reorderability for MBC using the most-common cases 135

xiv

1

Introduction

1.1 Motivation

Processor architectures have evolved from 4-bit wide datapath to 64-bit datapath. Architec-

tures with 64-bit wide datapath can be seen not only in the general-purpose computing domain

(Intel’s Dual Core, AMD Turion 64) but also in the embedded domain (Toshiba TX4925, NEC

UPD301x, Intel Atom, AMD Geode and AMD Alchemy to name a few). This increase in

the bitwidth of the datapath offers many advantages. Firstly, wider datapath implies a larger

memory-addressing capability which is used by many of the state-of-the-art applications. Sec-

ondly, wider datapath increases the computational capabilities and enables higher precision

math. Further, these advantages benefit the integer as well as floating-point computations.

However, many of our contemporary applications (integer, network and multimedia pro-

cessing) do not need wide datapath in the hardware [4, 8, 17, 36, 47, 53]. These applications

tend to have a large percentage of subword computations in the form of narrow data-types

and masking operations. Such type of computations, which do not need the total available

datapath of the processor, have traditionally been identified as narrow computations. Even

for SPEC2000 integer suite of programs, which are the representative CPU-intensive general-

purpose applications, it has been accredited by previous research [17] that as high as 40%

produced results need only 16-bit datapath. The same has also been corroborated by our exper-

iments (results in Section 2.4.3.1).

The observation that a large percentage of computations do not need the available wide

datapath in the hardware has been well-acknowledged. It is one of the reasons why contempo-

rary ISAs like x86 / IA64 continue to support byte/word extensions. Another dimension that is

used to exploit narrow computations is that of the SIMD instructions (AMD’s 3DNow!, Intel’s

1

1. INTRODUCTION

MMX, SSE and SSE2) which already exist in many existing CPUs. SIMD instructions exploit

data-level parallelism, whereby multiple subword computations are packed together to execute

as one large quanta of work.

Note that, an increase in the datapath width entails structural changes in almost all the

‘processing’ elements – register files, pipeline datapath, ALUs, data bypass logic and interface

to memory (data and address buses) amongst others. All this additional processor real estate

has implications on the overall hardware complexity in terms of area, cycle-time and energy.

Oblivious to the actual bitwidth requirement of a computation, most of the contemporary

processor designs inadvertently exercise the complete datapath of the processor. Hence, as the

datapath width increases, we not only pay in terms of cost borne and power consumed by the

additional datapath, but above all, in terms of under-utilized hardware complexity.

Computational Inefficiency. This leads us to the issue of computational inefficiency – i.e.

usage of more resources like power and computational logic than necessary. Some of the

previous research has investigated on this issue of computational inefficiency and has exploited

the high prevalence of narrow computations for reducing hardware-complexity [5, 30, 37, 56],

designing for energy-efficiency [4, 8, 9, 47], and obtaining performance gains [4, 33, 36]. Some

of these approaches have been elaborated upon in the section on literature review (Section 1.4).

But in summary, these approaches vary mainly in the degree of innovations brought about in

hardware and/or software to achieve the goals.

The aim of this thesis, however, is to approach this problem of computational inefficiency,

which is inherent in our traditional computer systems, in a more holistic manner. Our approach

draws inspiration from the synergistic viewpoint of improving the processor architecture via

innovations in the hardware, and using the software to support these innovations. Towards this

end, in this thesis we propose to redesign the hardware for making the common case computa-

tionally efficient by reducing the bitwidth of the datapath and the processing elements to 16-bits

only. This architecture, as explained in detail later in Section 2.1, is referred to as the Narrow

Bitwidth Architecture. We believe that narrow bitwidth architectures offer a promising solution

for future low-power, low-cost design requirements; both of which are important design goals

not only in embedded but also in general-purpose computing domains. Narrow bitwidth archi-

tecture is unique in that although the datapath is squeezed to 16-bits, it continues to support

32-bit / 64-bit computations (and hence, the current software stack). This is made possible

by a non-conventional memory interface design which combines a 16-bit data interface with a

64-bit address interface.

The task of mapping the current software stack on to this narrow bitwidth architecture is

laid down on the software in the form of dynamic optimizer / compiler. The central issue in

2

1.2 The Thesis

mapping applications on to the narrow bitwidth architecture is the risk of losing out on perfor-

mance. This is because even when a reasonably smart code-translator maps 64-bit applications

to 16-bit processor, it has been observed that there is non-negligible penalty (more details in

Section 2.2.3) both in terms of the dynamic code size (about 3.9x) and execution time in cycles

(2.2x).

1.2 The Thesis

The focus of this thesis is to develop a hardware-software ecosystem which attacks this prob-

lem of computational inefficiency due to the bitwidth requirements of computations in a holis-

tic manner. This thesis lays down the proposition that the hardware can be redesigned to be

a strictly 16-bit datapath execution core (integer datapath only). This redesign transforms the

hardware to an extremely simple, low-cost, low-complexity execution core. The key to estab-

lish the viability of this redesigned hardware (the narrow bitwidth architecture) is to design an

effective software-based translation system.

Hence, the goal of this thesis is to develop an effective software layer that maps the 64-bit

applications on to the 16-bit datapath hardware. More specifically, the software layer must

efficiently :

• Translate : The generated code must be equivalent, both in semantics and behavior, to

the original 64-bit application code.

• Optimize : By harnessing the power of optimizations, the software layer must not only

translate but also aggressively optimize in order to reduce the negative impacts of the

narrow ISA.

1.3 Contributions

In this thesis, we focus on compiler optimization techniques to generate optimized narrow ISA

code from 64-bit ISA programs. The key to assuage the negative impacts of the narrow ISA is

to reduce the dynamic code size. This is because a 64-bit instruction is decomposed into a se-

mantically equivalent series of several narrow ISA computations to be executed on the narrow

bitwidth architecture (details later in Section 2.2.3). Hence, we approach this task of compil-

ing a 64-bit program to the narrow ISA program with the perspective of Minimum Required

Computations. Given a program, the notion of minimum required computations (henceforth,

3

1. INTRODUCTION

MRC) aims to infer the minimum necessary computations required to generate the same cor-
rect output as the original program. Clearly, inferring true MRC from a program requires
oracle-information and achieving perfect MRC is an intrinsically ambitious goal.

Towards this end, we have developed three code optimization techniques to approximate
the notion of MRC. Some of the proposed techniques are speculative and are used to prune
computations aggressively, while embedding checks into the non-speculative slices of nar-
row ISA computations making them self-sufficient to detect mis-speculation. The thesis also
explores another optimization technique which reorders narrow computations such that the
most-probable minimal necessary computations are executed first; rest are required only if the
former do not suffice. All the proposed techniques are profile-based and are aimed at reducing
the dynamic code size of the narrow ISA programs.

The following sections describe the main contributions of this thesis in deeper detail.

1.3.1 Global Productiveness Propagation (GPP)

Consider an abstract region of connected series of computations, which delivers outputs via
few register locations or state changes in memory. Given this region, the fundamental question
that Global Productiveness Propagation (henceforth, GPP) aims to resolve is – what is the
minimum number of computations required to generate the same (correct) set of outputs for
each dynamic execution of the region ? In other words, GPP capitalizes on the observation that
many of the outputs of the region remain the same as that at the input of the region.

GPP is a profile-guided, speculative optimization technique that infers the minimum re-
quired data-flow by pruning narrow computations that are most-probably useless (non-productive).
More precisely, GPP speculatively prunes the static backward slices of selected narrow compu-
tations: computations that result in the same value in their respective storage location as that at
the input of the region. As the pruning is speculative, there is need to devise means to detect the
unassumed cases causing mis-speculation. For this purpose, GPP relies on its Assertion Rules
Generator pass which essentially involves backward-traversal of pruned static backward slices.
It embeds checks into the static code stream, which enable the code to detect mis-speculations
dynamically.

Conceptually, GPP can be applied on any type of abstract region – superblock, loop, or a
function. In this thesis, we have applied GPP on the granularity of a function. In a relaxed,
perfect setup (details provided later in Section 2.4.3.3), applying the concept of productiveness
at the granularity of a function can potentially reduce the dynamic code size of the narrow
ISA programs by 25% on an average. In a realistic setup, however, the overall gains achieved
by GPP are up to 6.6% reduction in the committed stream and 4.5% reduction in the number

4

1.3 Contributions

of cycles for a 1-issue, in-order narrow processor, when an average of 60% of the code has

been optimized via GPP. The achieved gains of GPP are far from the upper bound and our

investigation has identified the key roadblocks.

1.3.2 Local Productiveness Pruning (LPP)

Local Productiveness Pruning (henceforth, LPP) applies similar principles as GPP, only at a

much finer granularity of single narrow computation. It is a profile-based, speculative opti-

mization technique that prunes individual narrow computations while merging the assertion-

requirements by following producer-consumer data-flow relationships across a defined region.

Similar to GPP, LPP also uses the Assertion Rules Generator to make the static code stream

self-sufficient to detect the mis-speculations.

The difference in approach of GPP and LPP, however, lies in demarcating the notion of

optimization regions vs. atomic regions. GPP assumes a whole function as both the optimiza-

tion region as well the atomic region. This allows GPP to prune comparatively large connected

chains of computations. LPP, on the other hand, assumes a single narrow computation as the

optimization region whereas a somewhat larger granularity of connected chain of computations

(basic block, or superblock) as the atomic region. Allowing atomic regions to be larger than

the optimization region is useful in lowering the overheads of the LPP optimization.

Assuming advance, perfect knowledge of output data values written by all narrow integer

computations, our experiments reveal that up to 48% of the dynamic computations (all integer

computations) are non-productive. Evaluating LPP as a static optimization reveals that LPP

can reduce the dynamic code stream by 20%, with around 15% reduction in number of cycles,

and an overall code coverage of about 60%. We believe that the achieved gains of LPP are

close to the upper bound of the disposable potential; nevertheless, the key roadblocks are duly

identified.

1.3.3 Minimal Branch Computation (MBC)

Minimal Branch Computation (MBC) optimization remains to be a use-case of a broader strat-

egy which applies the notion of a lazy computation model to reduce the dynamic code footprint

of the narrow ISA : the narrow chunks of data are generated only when required, deferred

otherwise. One possible way of achieving this (lazy) computational model is by reordering

the backslices containing narrow computations such that the minimal necessary computations

to generate the same (correct) output are performed in the most of the times; the rest of the

computations are performed only when necessary.

5

1. INTRODUCTION

Minimal Branch Computation optimization is a profile-based, code reordering optimization

which is based on the philosophy of reordering computations around conditional branches such

that those computations which are most-probably sufficient 1 to generate the correct value(s) of

the required condition codes are placed (and executed) first. The rest are executed only if the

former were insufficient.

Our evaluations suggest that narrow ISA programs typically spend 20% of the total num-

ber of computations in only determining the direction of conditional branches (average across

our choice of workloads in the narrow ISA). Further, another fundamental property of these

computations is that they collectively contribute to generate few bits of information (known

as flags); these bits represent properties of data values. Mode importantly, these properties of

data values can sometimes be inferred without the knowledge of the precise data value. This

forms the underlying motivation to redefine the notion of Minimum Required Computation for

conditional branches, and hence the optimization heuristic of Minimal Branch Computation.

MBC can prune an average of 3.12% of the dynamic narrow computations across the set of

workloads.

1.4 Related Work

As mentioned previously, narrow computations have been traditionally defined as those com-

putations that do not require the full data width of the processor. This section annotates the

previously studied approaches of exploiting narrow computations. These approaches have var-

ied primarily in the extent of exploiting the narrow computations by software or hardware.

1.4.1 Hardware-Oriented Approaches

First, we visit the hardware-only approaches in literature. These approaches devise changes in

the hardware structures to best exploit the narrow computations. Hence, the application-stack

remains oblivious to what the hardware performs underneath.

Narrow computation conscious pipeline design [8] reduces the register, logic and cache

activity in the processor by appending data, addresses and instructions by two or three extension

bits to indicate the significant byte position. By doing so, up to 30-40% reduction in the

dynamic activity can be achieved. Various configurations ranging from byte serial pipeline

to full-width pipeline stages with operand gating were studied; each provides benefits but at

the cost of an increased CPI.

1profile-based learning

6

1.4 Related Work

Packing variable-width operations to increase the effective issue width of the processor
has also been proposed [36]. The Multi-Bit-Width (MBW) Microarchitecture predicts the data
widths of simple single-cycle integer computations (those that can execute on ‘simple’ inte-
ger ALU) and shares the datapath amongst multiple narrow computations in a MIMD like
approach. The data width of an instruction is defined as the maximum of its input operand
widths and its output value width. The width of a data value is defined as the position of the
first zero bit such that all bits in more significant positions are also zero. It achieves an overall
speedup of 7% for SPECint2000 benchmarks over an out-of-order processor with no bitwidth
prediction and dynamic subword instruction packing mechanism as the baseline.

Brooks and Martonosi [4] propose hardware mechanisms that dynamically recognize and
capitalize on the narrow bitwidth instances. Two hardware-based optimizations are proposed,
both of which require little additional hardware, but neither of these requires compiler support.
The first optimization uses clock-gating to reduce power consumption by disabling certain
functional units. It has been observed that the power consumed by the integer execution unit
can be reduced by 54.1% for SPECint95 suite. The second proposed optimization improves
performance by dynamically recognizing, at issue time, opportunities for packing multiple
narrow operations into a single ALU. An average speedup of 4.3%-6.2% (depending on the
processor configuration) can be achieved using the second technique.

1.4.2 Software-Oriented Approaches

A fundamental limitation of the hardware-only approaches is that hardware allows a limited
visibility of the application’s behavior : only those computations currently being executed can
be exploited. A software-based approach soothes this limitation by allowing a more global and
larger vision of the program space. This is the prime motivation behind some of the previous
proposals (detailed next in the upcoming paragraphs) that harness static, compiler analysis to
best exploit the narrow computations.

A bitwidth aware register allocation algorithm [56] tackles the issue of the inefficient use of
wide register files. The proposed algorithm can reduce register requirements by 10% to 50%.
Explicit Bit-Section Instruction Extensions [22, 35] have also been exploited to pack multiple
subword variables into a single register. Some embedded processor ISAs already allow explicit
bit-section referencing. The reduction in instruction counts for the modified functions varies
between 4.26% and 27.27%. Similarly, the reduction in cycle counts for modified functions
varies between 0.66% and 27.27%.

Static analysis Bitwise [55] is an abstract interpretation that computes data ranges required
for both pointers and integers in a program. This is achieved by both forward and backward
propagation of static information in the program data-flow graph. The proposal is integrated

7

1. INTRODUCTION

with the DeepC Silicon Compiler. By taking advantage of bitwidth information during archi-

tectural synthesis, it reduces silicon real estate by 15% to 86%, improves clock speed by 3% to

249%, and reduces power by 46% - 73%.

Özer et al. [43, 44] propose a stochastic bitwidth estimation technique for compact and low-

power custom processors. By following a simulation-based probabilistic approach, a stochastic

bitwidth estimation technique has been introduced which estimates the bitwidths of integer

variables using extreme value theory. The estimation technique is also empirically compared to

two compile-time integer bitwidth analysis techniques. The experimental results show that the

stochastic bitwidth estimation technique dramatically reduces integer bitwidths and, therefore,

enables more compact and power-efficient custom hardware designs than the compile-time

integer bitwidth analysis techniques.

All the foregoing research stress on two main aspects. One, there exists significant amount

of narrow computations and future general-purpose and reconfigurable architectures should

strive to capture a portion of these gains. Second, a compiler can play a significant role in

detecting and exploiting narrow bitwidth computations.

1.4.3 Hardware-Software Collaborative Approaches

Hardware-software collaborative approaches combine the best of both worlds : hardware is

designed for efficiency and software ensures that the efficacy of the hardware is exploited to its

best potential.

Razdan and Smith [48, 49, 50] propose a static analysis to infer narrow data widths for use

with a tightly-coupled configurable functional unit. Their analysis is bit-wide abstract inter-

pretation over the bit positions of each variable in an internal representation of the program,

with forward and backward passes to characterize the generation and the use of bit positions.

Using the aforementioned bitwidth-specific optimization technique with other optimizations,

22% performance gain on the SPECint92 benchmark suite has been observed with a modest

hardware investment (a single combinational PFU).

Program In Chip Out, PICO [28] is a research effort by HP labs to design a system for

automatically generating customized hardware. PICO-NPA [51] is one offshoot of PICO, that

automatically generates non-programmable accelerators (NPAs) for a hot loop written in C.

The overall aim is also to synthesize cost-effective hardware systems. Towards this end, ex-

ploiting user-defined integer bitwidths is an important contributor [37]. Hence, the PICO-NPA

is a very specific design which exploits user-defined bitwidths to synthesize VHDL-code and

then it applies operation-scheduling in a width-conscious manner to achieve cost-effective,

application-specific, non-programmable accelerators.

8

1.4 Related Work

BitValue Inference algorithm [5] works intraprocedurally to figure out the ‘useful’ bits. It
is a data-flow analysis to discover bits which are independent of the program inputs (constant
bits) and bits which do not influence the program output (unused bits). For example, a bit which
is later masked with zero is unused and hence, not useful. Using forward and backward data-
flow analyses, BitValue Inference algorithm reveals that around 36% of the computed bytes are
thrown away. This algorithm achieves up to 20-fold reductions in the size of the synthesized
hardware, when integrated with a compiler for a reconfigurable hardware logic (which has the
advantage of supporting non-standard data widths).

Applying the same definition of ‘usefulness’ as done in the BitValue Inference algorithm
[5], but on a data-word granularity, Canal et al. [9] propose a static optimization technique
known as Useful Value Range Propagation (UVP). Using a backward and forward propagation
of ‘useful’ value ranges achieves more number of narrow operations than the ‘conventional’
value ranges. Conventional value ranges are determined solely on user-specified data-types and
variable instantiations. On the other hand, ‘useful’ value range additionally exploits masking
operations, shift operands, and other implicit value range specifications through static analysis
of the programs. Using this technique, the number of 64-bit instructions which are originally
51% of the total number of instructions are reduced to 42% for SPECInt95 programs. Also,
the overall energy savings in the processor which implements power-gating are close to 6%
(on an average) for the SpecInt95 suite (18% for the functional units, and around 15% for
instruction-queues, rename buffers, register file and the result buses).

Further, they also propose a profile-driven optimization technique known as Value Range
Specialization (VRS). VRS is similar in its approach to the UVP technique, except that the
former uses profiling techniques to determine the value ranges. The VRS technique specializes
hot code by using on these dynamic value range profiles. It involves a cost-benefit analysis
which prioritizes energy-savings expected from the specialization of a certain candidate. VRS
basically duplicates the regions of code that are affected by the specialization, and then inserts
tests to dynamically select the region that will be executed: either the specialized or the non-
specialized one. The proposed technique achieves an overall energy∗delay2 reduction of 14%
for the SpecInt95 set (the energy ∗ delay2 benefits are over 20% for data-intensive structures
like FUs). Note that, both UVP and VRS are software approaches, and operand-gating at
each pipeline stage is required from the hardware to collaboratively exploit narrow bitwidth
computations.

Lastly, speculative bitwidth management by the compiler has also been proposed [47].
The strategy is to exploit high bitwidth locality between individual instructions of a single
basic block to create narrow-width regions by a compiler. Hardware enhancements for mis-
speculation recovery management are exploited. The ISA is also enhanced with a hardware-
exposed datapath-width reconfiguration instruction. This instruction is embedded by the com-

9

1. INTRODUCTION

piler which provides a hint for the hardware to predict the execution width of the subsequent

regions. It achieves energy savings of 17% in the datapath’s dynamic energy and 22% in the

register files’ static energy by clock-gating and byte-slice register file. Byte-slice register file

organizes the register file data into multiple sets of 8-bit slices, some of which can be turned

off in a low-power mode [19]. Note that, creating narrow bitwidth regions has the advantage of

reducing the overhead of clock-gating on a cycle-by-cycle basis (the latter is assumed by Canal

et al. [8, 9]).

1.4.4 In Perspective

The first and foremost difference between all the above-mentioned work and this thesis is in

the fundamental approach. Given the high percentage of narrow computations, furthered by

our definition of productiveness, we envision a hardware/software collaborative approach to-

wards exploiting narrow computations. The hardware is designed for computational efficiency

for executing the most common case, i.e., the 16-bit datapath computations. This is called

the narrow bitwidth architecture, which essentially combines a 16-bit datapath with 64-bit ad-

dressing capability (explained in deeper detail in Chapter 2). The software is entrusted with the

task of efficiently mapping the 64-bit applications on to the narrow bitwidth architecture based

processor.

This thesis views the computations with a different standpoint – Everything is Narrow,

i.e., all computations can be decomposed into a set of 16-bit instructions which collaboratively

maintain the same semantic meaning as the 64-bit counterpart. This is unlike the traditional

definition of narrowness where narrow computations are defined as those computations that

do not need the available bitwidth the hardware. Henceforth, in this thesis, the term narrow

computations is used to unequivocally refer to the strictly 16-bit datapath computations.

This thesis proposes three optimizations (two of them being speculative, and the third non-

speculative) to generate optimized narrow ISA programs. Unlike the previous works [5, 37, 55],

which use conservative user-defined data widths, the proposed optimizations in this thesis use

value profiles (and hence, are more aggressive). The only exception is the work by Pokam et

al. [47]. However, speculative bitwidth management [47] uses the definition of sign-extension

to prune chunks of wide computations. In contrast, the optimizations proposed in this thesis

(Global Productiveness Propagation and Local Productiveness Pruning) exploit a new defini-

tion called productiveness).

The definition of value range [5, 9] to uncover narrow computations is also more aggressive

than the conventional user-defined bitwidths. Two of the proposed optimizations in this thesis

(LPP and GPP) optimize a region using the definition of productiveness. We show in Section

10

1.5 Organization of the Document

4.4.2 and Section 2.4.3 that the definition of productiveness is more aggressive than that of
value range, and hence, the former provides more opportunities.

Further, in many of the previous proposals, the hardware remains wide [4, 9, 36, 47]. In
one of the works, a special instruction is used to enable clock-gating speculatively for a narrow
bitwide region [47]. Other proposals reduce the dynamic activity in the processor by making
use of hardware-based operand-gating. Hence, in contrast to [9, 47], our work does not require
hardware enhancements like clock-gating.

Finally, some more related work which is very specific to the respective discussion in each
chapter is embedded at the relevant points throughout the thesis.

1.5 Organization of the Document

The thesis document is organized as follows.
First, Chapter 2 provides an overview of the narrow bitwidth architecture from both the

hardware and software perspectives. The chapter describes how the micro-architecture of the
narrow bitwidth architecture looks like. Then the narrow ISA, which forms the software inter-
face of the narrow bitwidth architecture to the outside world, is described. Also described is
the Narrow Translation Scheme, which is used to map the 64-bit operations to the equivalent
set of 16-bit narrow ISA computations. Chapter 2 also motivates the role of the compiler in
this thesis and proposes the overall perspective taken in this thesis to reduce the dynamic code
footprint of the narrow ISA.

Chapter 3 describes the simulation infrastructure with detailed configurations. It also de-
scribes the workloads and the metrics used to evaluate the proposed optimizations.

The three proposed optimizations are organized as Chapter 4 (Global Productiveness Prop-
agation), Chapter 5 (Local Productiveness Pruning) and Chapter 6 (Minimal Branch Computa-
tion). All proposed optimizations are described in detail with selected algorithms and perfor-
mance evaluations. For each optimization, the thesis tries to present a clear idea on not only the
best achievable potential, but also what is eventually achieved and the observed roadblocks, if
any.

Finally, Chapter 7 provides a summary of the thesis and some interesting future directions
related to this work.

11

1. INTRODUCTION

12

2

Narrow Bitwidth Architecture:

A Hardware/Software Perspective

This chapter describes the design of the narrow bitwidth architecture and also its software in-

terface to the outside world (the Narrow ISA). The fundamental design goal for the narrow

bitwidth architecture (Section 2.1) is to provide a low-cost, low hardware-complexity, simple

execution core. It is a strictly 16-bit integer datapath, in-order processor which is best at exe-

cuting the common case, i.e., the narrow computations (16-bit computations) efficiently. The

narrow bitwidth architecture is unique in that although the datapath is squeezed to 16-bits, it

continues to support 32-bit / 64-bit computations (and hence, the current software stack). This

is made possible by a non-conventional memory interface design which combines a 16-bit data

interface with a 64-bit address interface.

In this chapter, we evaluate the narrow bitwidth architecture briefly and suggest that it has

the potential to offer significant hardware and power savings. Next, the narrow ISA, which is

a RISC-like ISA for performing integer computations on the narrow bitwidth architecture, is

outlined in Section 2.2. The chapter then evaluates the behavior of the narrow ISA, specifically

the increased dynamic code footprint that is characteristic of the narrow ISA programs, when

compared against the 64-bit wide ISA programs.

As the dynamic code footprint increases significantly, the central issue is how to alleviate

the negative performance impact. This chapter introduces and emphasizes the importance of

a compiler in such an ecosystem. Section 2.3 outlines some key opportunities that have been

identified in this direction. In this thesis, the task of reducing the negative performance impact

of the narrow ISA is assigned to the software in the form of dynamic optimizer / compiler. The

13

2. NARROW BITWIDTH ARCHITECTURE:
A HARDWARE/SOFTWARE PERSPECTIVE

chapter is concluded with some preliminary evaluations of the identified opportunities which

form the basis of the proposed optimizations.

2.1 Micro-Architecture

In the proposed narrow bitwidth architecture, all ‘processing’ elements, viz., the execution

units, the data bypass logic, the register file and the data interface to memory are squeezed

down to a data width of 16-bits. This redesign of the hardware furnishes significant area and

power savings and hence, an increase in the computational efficiency. It also exposes the

opportunity to scale frequency further as the execution core is extremely simple.

2.1.1 Processor Datapath

Figure 2.1 shows the implementation of a MIPS-like data path [23] of a simple five-stage

pipeline. The use of a five-stage pipeline in this section is for illustration purposes only. The

specific micro-architecture design and configuration used in this thesis for evaluating the pro-

posed code optimizations is detailed in Chapter 3. More importantly, in Figure 2.1, those

datapath signals that may remain 64-bits are shown in black, while those that are scaled down

to 16-bits are shown with gray dotted lines.

Processing Elements. With regard to the register file, the narrow bitwidth architecture in-

corporates a design which is a naive extension of a 64-bit register file. In other words, the

register file simply has the data interface reduced to 16-bit and the number of register names

are effectively 4 times that in the 64-bit design.

Although each 16-bit wide register is an independent register and it is treated as such, there

is a strong conceptual binding between a 64-bit ISA register and the corresponding four 16-bit

narrow ISA registers. Thus, we often use the term ‘ith chunk’ of a 64-bit ISA register to refer

to the appropriate 16-bit register that holds the particular 16-bit portion of the 64-bit value.

This design implies that all reads/writes to the register file are 16-bit wide only. For example,

we often use the naming convention of 16-bit register names as rax0, rax1, rax2 and rax3 to

describe the 4 registers used to map the value of the 64-bit register rax.

Bypass logic is reduced by a factor of 4 because instead of forwarding 64-bit values, only

16-bit values need to be forwarded. Similar reduction can be seen in other computational

resources like integer ALU’s. The internal registers (A, B, Imm, IR, L, ALU output) are also

reduced to 16-bit data width.

14

2.1 Micro-Architecture

M
u
x

CondZero?64

64

64

in
ri

p
.x

64

O
u
tp

u
t

A
L

UA
L

U

M
u
x

M
u
x

64

16

16

16

16

M
u
x

64

reg.x

IR

A

In
st

ru
ct

io
n

M
em

o
ry

B

Imm

NPC

P
C

Execute /Instruction fetch Instruction decode/
Register Fetch Address Calculation

8

A
d
d

inaddr.x

1

16

Write backMemory Access

D
A
T
A

C
A
C
H
E

L

Four 16−bit internal registers used to provide

64−bit address interface to memory
16−bit wide datapath

R
E
G
I
S
T
E
R

F
I
L
E

Figure 2.1: The hardware redesign opportunities using a MIPS-like datapath – 64-bit vs. 16-bit

wide implementations

Memory Interface. Many 16-bit data commercial microprocessor designs have been used
widely in the embedded domain. The narrow bitwidth architecture advocated in this thesis,
however, differs from the existing (e.g. Intel 8086) or proposed 16-bit datapath designs with
respect to an important design point : the memory interface. As previously mentioned, the
narrow bitwidth architecture combines a 16-bit integer datapath in an in-order pipeline with a
64-bit wide address path (see Figure 2.1). This is done to support large memory addressing
capabilities which are required by many current execution environments.

Figure 2.1 shows the two supplementary registers added to the narrow bitwidth architec-
ture for enabling the 64-bit memory interface – (i) inaddr, which is a 64-bit internal register
used to enable 64-bit data interface to memory, and (ii) inrip, which is another 64-bit internal
instruction pointer register used to enable the 64-bit address interface to memory for instruc-
tion accesses. For each access to the instruction or data memory (64-bit address), additional
instructions generated by the software flow through the pipeline to update the four individual
16-bit chunks of these registers incrementally to reconstruct the 64-bit values. More details on
the same are discussed in the upcoming Section 2.2.2.

As stated previously, Figure 2.1 only shows key pipeline structures to illustrate what a 16-

15

2. NARROW BITWIDTH ARCHITECTURE:
A HARDWARE/SOFTWARE PERSPECTIVE

bit pipeline has to offer as compared to its 64-bit counterpart. Although not shown, hardware
structures for effective branch prediction (branch predictor, branch target buffer, and the RAS)
do form an integral part of the instruction fetch stage. Branch resolution takes place at the
execute stage of the pipeline, following which a mis-prediction, if any, can be handled.

Considering the scalar pipeline of Figure 2.1, every cycle a new narrow ISA instruction is
fetched using the predicted / correct 64-bit PC value. The instruction bytes hence loaded into
the IR register are then decoded. Next, 16-bit register values are read from the register file per
instruction and a 16-bit ALU operates on these input operands to generate 16-bit output data
value. The computed result is available via the bypass network, and is eventually written back
to the register file in the next stage of the pipeline.

A processor based on the narrow bitwidth architecture described above is referred to as the
narrow processor in this thesis. Section 2.2 explains how 64-bit computations are mapped
on to the narrow ISA so that they can be executed on the narrow processor. In the narrow
processor, interrupts may be masked until the four individual chunks of a 64-bit register are
updated. Hence, exceptions (interrupts or traps) can be allowed only at the boundary of a
bundle of narrow ISA computations corresponding to the same 64-bit wide instruction. This
approach is similar to how contemporary Intel processors mask interrupts at the x86 macro-
op boundary. Although they crack CISC instructions into simpler micro-operations that more
closely resemble RISC instructions (using the hardware decoder), exceptions and interrupts are
managed at the user instruction boundaries.

2.1.2 Brief Comparison with 64-bit Wide Architecture

A comparison of the area and power benefits of a 16-bit datapath processor versus a 64-bit
datapath processor is not the focus of this thesis. Nevertheless, we derive some trends based on
previous research work to highlight how important the area and power benefits of the narrow
bitwidth architecture can be.

Area. An interesting analysis of potential savings in a 16-bit data/instruction microproces-
sor was performed in previous research [59]. Compared to its 32-bit counterpart (ARM7), the
16-bit THUMB instruction set microprocessor requires only 40% gate count, 51% power con-
sumption and can be clocked at 160% clock frequency. The proposal also reduces the register
file size by 21% in the 16-bit implementation. It affirms the benefits of a 16-bit design over
a 32-bit. More importantly, these findings, when extrapolated, also indicate that the hardware
and power savings with respect to a 64-bit counterpart will only be proportionally higher.

16

2.1 Micro-Architecture

ALUs and Data-Bypass. The logic complexity of the data bypass logic has been previously
shown to be proportional to the square of the issue width and linear to the number of pipeline
stages after the first result-producing stage [1, 45]. The logic complexity of the data bypass
circuit is also expected to be linear function of n – Θ(n), where n is the bitwidth of the data
being transferred. Hence, if the rest of the pipeline structures are the same, the hardware cost
of bypassing 16-bit data values must be 1/4 of that of bypassing 64-bit values.

With regard to the FUs, let us unrealistically assume that all the logical and arithmetic
operations (addition, subtraction, and other harder operations like shift, multiplication etc.) can
be implemented with the same logic complexity as a CSCSA adder circuit - i.e., Θ(nlogn) [12].
Since a realistic implementation of complex FUs like shifter, rotate etc. will only be harder
than an adder, the area occupied by the 16-bit ALUs must be at least 1/6 (16log16 / 64log64)
of the area occupied by 64-bit ALUs. On an in-order chip like Intel Atom, this implies∼ 5-7%
area reductions, as ALUs occupy a relatively small space on the chip [58].

Memory Array Structures. In the narrow bitwidth architecture, the bitwidth of the accessed
values from the memory structures close to the processor (register file and L1 Data cache) is
limited to 16-bits. This allows the data-arrays in these structures to be banked and/or sub-
banked as only 16-bits are accessed per request.

Some previous researchers have studied the opportunities of register file redesign by ex-
ploiting narrow computations. bit-partitioned register file (BPRF) [30] and byte-slice register
files [47] demonstrate that a finer granularity (the split data-storage) allows a more efficient use
of the register file. Multi-banking has also been exploited to reduce the dynamic activity in the
register files using extension bits in Very low power pipelines design [8]. When the register
file is accessed, first the low order data bytes and the extension bits are read. Depending on
the values of the extension bits, additional register bytes may be read during subsequent clock
cycle(s). Though we do not exploit these narrow register file array structures in the narrow
bitwidth architecture, note that all of these aforementioned techniques (BPRF, sliced register
file, multi-banked register file) fit gracefully to our proposed narrow bitwidth architecture.

We present preliminary analytical comparisons to compare simple non-banked 64-bit and
16-bit register file designs using CACTI 6.5 [42]. The results and the studied configurations
are illustrated in Table 2.1. The number of registers in 64-bit register file suitable for an in-
order pipeline are assumed to be 32 (each of 64-bit size). Similarly, the number of registers in
the 16-bit register file suitable for an in-order pipeline in the narrow bitwidth architecture are
assumed to be 128 (each of 16-bit size).

It has been observed that a 16-bit register file is a better design than a 64-bit register file
when both the designs have the same number of read / write ports. This holds true especially for
the metrics of area and energy per access for various design objectives – delay, dynamic power,

17

2. NARROW BITWIDTH ARCHITECTURE:
A HARDWARE/SOFTWARE PERSPECTIVE

Table 2.1: Register file design evaluation : comparing 16-bit vs. 64-bit data cells

[16-bit RF Configuration] : RF Size = 128 (32∗4) entries of 2B each, 8 read/4 write ports, 1-bank, 7 tagbits,

Technology = 32nm, Read out bits = 16-bits

[64-bit RF Configuration] : RF Size = 32 entries of 8B each, 8 read/4 write ports, 1-bank, 5 tagbits, Technology =

32nm, Read out bits = 64-bits

Design Ob-

jective

Access-time (ns) Cycle-time (ns) Area (mm2) Energy Per Access (nJ)

Out_W 16-bits 64-bits 16-bits 64-bits 16-bits 64-bits 16-bits 64-bits

Delay 0.166 0.165 0.133 0.133 0.027 0.048 0.001 0.002

Dynamic

Power

0.225 0.188 0.185 0.185 0.035 0.078 0.001 0.002

Area 0.195 0.165 0.138 0.133 0.025 0.048 0.001 0.002

ED2 0.167 0.167 0.136 0.136 0.027 0.048 0.001 0.002

area and energy delay square product (ED2). As shown in Table 2.1, when the register file
designs are optimized for ED2, a 16-bit design achieves 42% reduction in energy per access,
and occupies 43% less area together with no impact on cycle-time / access-time.

In the data caches, a brief evaluation using CACTI 6.5 [42] reveals that sub-banking at
16-bit granularity of a 32KB, 4-way associative L1 data cache is effective (refer to Table 2.2).
Different cache design objectives have been studied – delay, dynamic power, area and energy
delay square product (ED2). As shown in Table 2.2, when the cache is optimized for energy
delay square product, sub-banking at 16-bit granularity achieves 50% reduction in energy per
access. Such a cache design also occupies 27% less area with negligible effect on cycle-time /
access-time.

2.2 Narrow ISA

This section describes the interface of the narrow bitwidth architecture to the software stack,
also referred to as the narrow ISA. The narrow ISA is a RISC-like ISA and highlights the
different standpoint of viewing computations that this thesis adopts – Everything is Narrow :
all 64-bit computations can be decomposed into a set of 16-bit computations which perform
the semantically equivalent operation as the former. The upcoming sections describe how the
narrow ISA unfolds both opportunities and challenges.

The design of the narrow ISA is highly influenced by the x86 / IA64 [25, 26, 27] ISAs.
This will be apparent in the rest of the thesis as it uses the same register names, absolute branch

18

2.2 Narrow ISA

Table 2.2: DCache design evaluation : comparing 16-bit vs. 64-bit data interface

[16-bit DCache Configuration] : Cache Size = 32KB, Banks = 4, line size = 64 B, associativity = 4, Read/Write

Ports = 2, Technology = 32nm, Sub-banking at 16-bit granularity

[64-bit DCache Configuration] : Cache Size = 32KB, Banks = 4, line size = 64 B, associativity = 4, Read/Write

Ports = 2, Technology = 32nm

Design Ob-

jective

Access-time (ns) Cycle-time (ns) Area (mm2) Energy Per Access (nJ)

Out_W 16-bits 64-bits 16-bits 64-bits 16-bits 64-bits 16-bits 64-bits

Delay 0.263 0.268 0.198 0.198 0.216 0.291 0.007 0.015

Dynamic

Power

0.354 0.268 0.341 0.198 0.184 0.249 0.007 0.014

Area 0.351 0.338 0.278 0.262 0.176 0.246 0.008 0.015

ED2 0.263 0.268 0.198 0.198 0.182 0.249 0.007 0.014

addressing, conditional branch opcodes, and status flag bits amongst others. Further, the RISC-
like operations composing the narrow ISA are semantically very close to the micro-operations
implemented in the open-source simulator and virtual machine for x86 / x86-64 ISAs [62].

2.2.1 An Absolute Narrow Paradigm

Previous proposals [4, 5, 8, 9, 36, 47] have identified narrow (bitwidth) computations as those
operations whose bitwidth precision requirements are less than the width of the available dat-
apath. For example, an add rax = rbx, 0x4 is a narrow computation needing only 16-bit wide
path if both rax and rbx hold the value of a variable declared short int. Moreover, throughout
the thesis document, we use the notation – opcode dest = src1, src2 to denote an operation.

Theoretically, each wide (64-bit) computation can be broken down into an equivalent set
of narrow computations, in which the 64-bit value is computed as four independent 16-bit
chunks. For example, consider a 64-bit wide add operation – add rbp = rsp,176, which adds a
constant to register rsp and writes the result into rbp. This can be decomposed into a sequence
of semantically equivalent narrow 16-bit RISC operations as –

add rbp0 = rsp0, 176;
addc rbp1 = rsp1, 0;
addc rbp2 = rsp2, 0;
addc rbp3 = rsp3, 0;

where register name Ri refers to the ith chunk (16-bit data) of the equivalent 64-bit register
register R as commented before. addc has the same semantics as an add operation, except

19

2. NARROW BITWIDTH ARCHITECTURE:
A HARDWARE/SOFTWARE PERSPECTIVE

that it consumes the carry flag of the previous operation and adds it to the result. Moving

forward, the entity that performs the task of decomposing each 64-bit computation into a set of

equivalent 16-bit narrow computations is referred to as the Narrow Translator in the rest of the

thesis document.

Definition 2.1 (Chunk). A chunk is a 16-bit data location. This is the output unit of a narrow

computation in the narrow ISA. Chunk0 refers to the least significant chunk, i.e., data value

from bit 0 to 15. Chunk1 refers to the next chunk in order, i.e., data value from bit 16 to 31.

Chunk2 refers to next chunk in order, i.e., data value from bit 32 to 47. Chunk3 refers to the

most significant chunk, i.e., data value from bit 48 to 63.

2.2.2 Wide to Narrow Translation Scheme

Intuitively, all integer operations OPint can be decomposed into a semantically equivalent set of

narrow operations : OPN0
int , OPN1

int , OPN2
int and OPN3

int , each representing the set of operations

needed to generate the respective 16-bit chunk (N0, N1, N2 and N3). Each of these RISC-like

computations that write a 16-bit data (with flags if applicable) constitute the narrow ISA. The

number of operations in this semantically equivalent set of narrow operations may vary from

four (e.g. for add/sub and logic operations on 64-bit operands) to tens of narrow operations

(e.g. in case of integer shift/rotate operations on 64-bit operands).

Narrow ISA Flags Semantics. The design of the narrow ISA is highly influenced by the x86

/ IA64 [25, 26, 27] ISAs. This is because the baseline ISA in our simulation infrastructure is

x86-64 based. With respect to flags, many x86 arithmetic instructions modify some or all of

the status flag bits. Hence, it is important for the narrow translator to generate semantically

equivalent code not only with respect to data values generated but also flag values. The nar-

row translator ensures correct state generation with respect to the five flags relevant to normal

execution : Zero, Parity, Sign, Overflow and Carry.

The foregoing flags can be cumulatively calculated by the set of narrow computations. For

example, zero flag (ZF) can be calculated as the logical or of the zero flags for the composite

narrow chunks. Carry flag (CF) can be calculated by propagating the carry flag of each lower

significant chunk forward to the next more significant chunk. Sign flag (SF) is updated correctly

by the most significant chunk, if the carry flag has been propagated correctly. Parity flag can

also be calculated by accumulating the parity of each chunk corresponding to the same wide

64-bit operation.

20

2.2 Narrow ISA

This accumulation of flags to generate the final x86 equivalent flag values is performed
by special opcodes like addc (add and carry), subc (subtract and borrow), shlc, shrc etc. The
opcode names are terminated by a c only to ensure a uniformity in the opcode names; each
of these opcodes combines all the relevant flags from the previous computation. The flag
dependences between narrow ISA computations can be managed explicitly by exploiting the
well-known ZAPS rule [62] : any instruction that updates any of the Z/P/S flags updates all
three flags, so in reality only three flag entities need to be tracked: ZPS, O, C.

Hence, selected arithmetic / logical narrow ISA computations generate a 16-bit data value
together with the requisite flag values.

x86 Merging Rules and the narrow ISA. In the x86 ISA, the size of an operation (hence-
forth, referred to as opsize) is normally indicated by its register operands. For example, the use
of RAX, EAX and AX/AL/AH indicate a 64-bit, 32-bit and 8/16-bit computation respectively.
Our implementation of narrow translator abides by the x86 sizes and generates less than the
worst-case translation whilst following the x86 merging rules1 according to the opsize.

Definition 2.2 (x86 Merging Rules). x86 compatible ALUs implement operations on 1, 2, 4,

or 8 byte quantities. Given the operation size, an operation Op rd = ra, rb computes the result

as follows :

• 8-bit : Low byte of rd is set to the 8-bit result; higher 7 bytes of rd are set the same as the

corresponding bytes of ra.

• 16-bit : Lower 2 bytes of rd are set to the 16-bit result; higher 6 bytes of rd are set the

same as the corresponding bytes of ra.

• 32-bit : Lower 4 bytes of rd are set to the 32-bit result; higher 4 bytes of rd are cleared

to zero.

• 64-bit : All 8 bytes of rd are set to the 64-bit result.

The upcoming paragraphs provide more details of the narrow translations generated for the
most common operation classes. Relevant details on how the x86 merging rules are applied
are also given. For the rest of this thesis, we use the following terminology : register name
Ri refers to the ith chunk (16-bit data) of the equivalent 64-bit register register R. R0 holds
the least significant chunk. Similarly, immediate name Immi refers to the ith chunk of the
equivalent 64-bit immediate, Imm0 specifies the least significant chunk.

1briefly mentioned in [62]

21

2. NARROW BITWIDTH ARCHITECTURE:
A HARDWARE/SOFTWARE PERSPECTIVE

Table 2.3: Template based translation for arithmetic / logical operations. Op indicates the oper-

ation. Opc indicates the narrow ISA opcode which performs the operation and accumulates the

associated flags

Wide Operation (64-bit) Equivalent set of Narrow Operations

opsize = 8/16-bit opsize = 32-bit opsize = 64-bit

Template I : destination register same as input register

Op regD = regD Imm

Op regD0 = regD0 Imm0 Op regD0 = regD0 Imm0 Op regD0 = regD0 Imm0

Opc regD1 = regD1 Imm1 Opc regD1 = regD1 Imm1

Opc regD2 = regD2 Imm2

Opc regD3 = regD3 Imm3

Template II : destination register different from the input register(s)

Op regD = regA regB

Op regD0 = regA0 regB0 Op regD0 = regA0 regB0 Op regD0 = regA0 regB0

mov regD1 = regA1 Opc regD1 = regA1 regB1 Opc regD1 = regA1 regB1

mov regD2 = regA2 mov regD2 = zero Opc regD2 = regA2 regB2

mov regD2 = regA3 mov regD2 = zero Opc regD3 = regA3 regB3

Arithmetic / Logical Operations. Two selected templates for the arithmetic / logical oper-
ations are shown in Table 2.3. The first sample shows a template where both the source and
destination operands are the same. Op indicates the operation. Opc indicates the narrow ISA
opcode which performs the operation and accumulates the associated flags. Following the x86
merging rules, such an operation may be translated into 1, 2, or 4 narrow operations if the 64-bit
operation size is specified to be 16-bit, 32-bit or 64-bit respectively. In each case, the appropri-
ate register and immediate chunk data are specified, and flags are accumulated accordingly by
the use of the aforementioned opcodes.

The second sample shows a template where the source and destination operands are differ-
ent from each other. Following the x86 merging rules, such an operation is always translated
into 4 narrow operations irrespective of whether the operation size is specified to be 16-bit,
32-bit or 64-bit.

Shift Operations. The shift operations are one of the most costly in terms of number of
generated narrow operations. This operation class includes the opcodes like shift left (shl),
shift right (shr), rotate right (ror), rotate left (rol) etc. Two examples of shl operation are shown
in Table 2.4. Translations for other opcodes like shr, ror, rol can be derived from the same.

The shift operations lead to a high number of narrow operations. This is because the
computed values always overflow the 16-bit register data boundaries (chunks) and need to
be buffered before the higher / lower chunks are updated. The buffering of the (extra) over-
flown bits from previous chunk in case of shl and shr is performed by few additional opcodes

22

2.2 Narrow ISA

Table 2.4: A sample translation for the shift left operation. shlc indicates the narrow ISA opcode

which performs the shift operation and accumulates the associated flags. shlext indicates the narrow

ISA opcode which shifts and buffers the data

Wide Operation (64-bit) Equivalent set of Narrow Operations

opsize = 8/16-bit opsize = 32-bit opsize = 64-bit

Template I : destination register same as input register

shl regD = regD Imm

shl regD0 = regD0 Imm0 shlext tempD1 = regD0 Imm0 shlext tempD1 = regD0 Imm0

shl regD0 = regD0 Imm0 shl regD0 = regD0 Imm0

shl regD1 = regD1 Imm0 shlext tempD2 = regD1 Imm0

or regD1 = regD1 tempD1 shl regD1 = regD1 Imm0

or regD1 = regD1 tempD1

shlext tempD3 = regD2 Imm0

shl regD2 = regD2 Imm0

or regD2 = regD2 tempD3

shl regD3 = regD3 tempD1

or regD3 = regD3 tempD3

Template II : destination register different from the input register

shl regD = regA Imm

shl regD0 = regA0 Imm0 shlext tempD1 = regA0 Imm0 shlext tempD1 = regA0 Imm0

mov regD1 = regA1 shl regD0 = regA0 Imm0 shl regD0 = regA0 Imm0

mov regD2 = regA2 shl regD1 = regA1 Imm0 shlext tempD2 = regA1 Imm0

mov regD3 = regA3 or regD1 = regA1 tempD1 shl regD1 = regA1 Imm0

mov regD2 = regA2 or regD1 = regA1 tempD1

mov regD3 = regA3 shlext tempD3 = regA2 Imm0

shl regD2 = regA2 Imm0

or regD2 = regA2 tempD3

shl regD3 = regA3 tempD1

or regD3 = regA3 tempD3

called shlext and shrext respectively. For example, as shown in Table 2.4, to generate regD1,

first shlext shifts regD0 and buffers up the overflowing bits beyond the default lower 16-bits

in tempD1. The final value of the output register regD1 is calculated as the logical or of the

buffered bits in tempD1 together with the regD1 shifted left.

Branches. The datapath to update the PC also remains 16-bit wide. A 64-bit conditional

branch operation which probes a condition code (cond) and updates the instruction-pointer

register (rip) depending on the outcome – br rip = cond, Imm (where Imm is the absolute target

address), is translated to five narrow operations. Table 2.5 shows the equivalent set of narrow

computations that include four mov operations to update an internal register inrip, followed

23

2. NARROW BITWIDTH ARCHITECTURE:
A HARDWARE/SOFTWARE PERSPECTIVE

by a branch operation. The 64-bit value co-operatively held by the four 16-bit inrip.x registers
describes the taken branch address.

Table 2.5: Translation for a branch operation template. Branches are always 64-bit sized operations

Wide Operation (64-bit) Equivalent set of Narrow Operations

br rip = cond, Imm

mov inrip0 = Imm0

mov inrip1 = Imm1

mov inrip2 = Imm2

mov inrip3 = Imm3

br rip = cond, inrip

For indirect branches, in which the taken address is not expressed by an immediate, but by
a register (as it needs to be loaded from memory most of the times), the four mov operations
will copy a register value instead.

Memory Operations. As mentioned previously, the data interface to memory is squeezed to
be 16-bit wide, while the address interface remains 64-bit wide.

Hence, a load or store operation may be translated into eight narrow ISA instructions, as
shown in Table 2.6. Each of the first four of these instructions (addition operations) compute a
chunk of the address, hence updating an internal register inaddr that provides the 64-bit address
interface to the memory hierarchy, while the other four are the individual 16-bit loads/stores.
Note that, if a following ld/st uses the same address, it would be translated into just the 4 latter
instructions, since the address would still be in the internal register inaddr.

Table 2.6: Translation for a load operation template. Similar translations are generated for store

operations

Wide Operation (64-bit) Equivalent set of Narrow Operations

opsize = 8/16-bit opsize = 32-bit opsize = 64-bit

ld rax = Mem[rbx,Imm]

add inaddr0 = rbx0, Imm0 add inaddr0 = rbx0, Imm0 add inaddr0 = rbx0, Imm0

addc inaddr1 = rbx1, Imm1 addc inaddr1 = rbx1, Imm1 addc inaddr1 = rbx1, Imm1

addc inaddr2 = rbx2, Imm2 addc inaddr2 = rbx2, Imm2 addc inaddr2 = rbx2, Imm2

addc inaddr3 = rbx3, Imm3 addc inaddr3 = rbx3, Imm3 addc inaddr3 = rbx3, Imm3

ld rax0 = Mem[inaddr] ld rax0 = Mem[inaddr] ld rax0 = Mem[inaddr]

ld rax1 = Mem [inaddr+0x2] ld rax1 = Mem [inaddr+0x2]

mov rax2 = zero ld rax2 = Mem [inaddr+0x4]

mov rax3 = zero ld rax3 = Mem [inaddr+0x6]

24

2.2 Narrow ISA

Mul/Div Operations. Multiply and Divide operations are assumed to be handled by special

FUs (and hence, are not translated into narrow computations). It has been observed that on an

average, Mul/Div operations remain less than 0.21% of the committed 64-bit instructions in

our workloads (with an exception of parser with 1%).

Floating-point Operations. A semantically equivalent set of narrow computations can also

be constructed for floating-point (fp) computations, but the size of this set may be huge. For

example, a simple double-precision (IEEE 754 standard) fp add operation involves : extraction

of exponents (11 bits each) and significands (52 bits each), aligning the significands based on

exponents, and lastly an addition of the significands and exponents. This makes the number of

operations shoot up to 25 odd operations (without including the cost of rounding/normalizing

the result if needed).

Such a huge amount of code explosion suggests that, although there may be a potential for

realizing narrow computations for fp code as well, the current definition of doing computations

at a 16-bit boundary does not perpetuate gracefully for the fp operations. Hence, this thesis

concentrates only on the integer operations. For fp computations, we assume traditional 64-bit

wide execution units and datapath.

Conclusions. In this section, we have outlined the narrow translation scheme with several

examples of each operation class of a typical RISC-like ISA. Table 2.7 summarises the size

of the semantically equivalent set of narrow computations for the selected 64-bit operation

classes.

Overall, the narrow ISA mostly consists of the traditional RISC-like 16-bit operations with

few additional opcodes e.g., shlc, shrc (as shown in the Additional Related Opcodes column in

Table 2.7). Many ISAs are already equipped with byte and word size operations like load byte,

add halfword etc in x86. As another example, ADC (Add with Carry) opcode already exists in

the x86 ISA.

The translation scheme (to map 64-bit programs to the narrow ISA programs) implemented

in this thesis applies several simple heuristics to avoid the generation of the worst-case transla-

tions. Our implementation of narrow translator abides by the x86 operation sizes (opsize) and

generates less than the worst-case translation (e.g. see shr/shl; and also compare rows 1 and 2

with row 3 of Table 2.7) whilst following the x86 merging rules1 according to the opsize.

1briefly mentioned in [62]

25

2. NARROW BITWIDTH ARCHITECTURE:
A HARDWARE/SOFTWARE PERSPECTIVE

Table 2.7: Narrow translator conversion ratios – Size of semantically equivalent sets of different

type of 64-bit opcodes

Wide Operation (64-bit) Number of (16-bit) Narrow Operations in the Seman-

tically Equivalent set for a specified size of a wide x86

(64-bit) operation (size)

Additional Re-

lated Opcodes

opsize = 8/16-bit opsize = 32-bit opsize = 64-bit

add / sub

when source register is dif-

ferent from destination regis-

ter

4 4 4 addc/subc

mask / xor / and 4 4 4 maskc

add / sub / logical

when source register is same

as destination register

1 2 4

br 5 5 5

ld 8 or 4a 8 or 4a 8 or 4a

st 5 or 1a 6 or 2a 8 or 4a

shr / shl 4 6 11 shrc, shlc,

shrext, shlext

div / mul / fp / sseb 1 1 1

a depending on whether address needs to be generated or not.
b we assume these operations go to special FUs like vector units etc (non narrow datapath).

2.2.3 Preliminary Evaluations

Impact of the narrow ISA. A realistic code-translator (the narrow translator) for the narrow

bitwidth architecture as outlined in Section 2.2, that decomposes 64-bit instructions into an

equivalent set of 16-bit computations, results in ∼3.9x increase in the number of computations

dynamically executed (see Figure 2.2). The execution time in cycles increases by a magnitude

of ∼2.2x in an in-order, 16-bit wide datapath, 4-issue width processor with respect to its 64-bit

counterpart1. The precise simulator configurations used for wide and narrow processors are

detailed later in Section 3.1.

1Although 16-bit design can potentially operate at a higher frequency, we have conservatively assumed the

same frequency for both

26

2.2 Narrow ISA

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

bzip2

crafty

eon
gap

gcc
gzip

m
cf

parser

perlbm
k

vpr
Avg

R
a
ti
o
 o

v
e
r

 W
id

e
 P

a
ra

d
ig

m

Cycles Computations

Figure 2.2: Impact of the narrow ISA : The figure shows the dynamic code size (computations)

and the execution time (cycles) impact by comparing narrow (16-bit) vs. wide (64-bit) paradigm

using the narrow translation scheme outlined in Section 2.2

Impact on the Static Code Size. A realistic estimate of static code size of the narrow ISA
programs requires precise specification of the encoding of the narrow ISA instructions. Certain
classes (like arithmetic, logical operations) of narrow ISA computations can potentially be
encoded in lesser bits than their 64-bit counterpart because the size of the immediate field
is reduced to 16-bits rather than 64-bits. However, a narrow ISA instruction will need an
additional two bits (per register name) for specifying each register name, as the number of
registers in the narrow ISA are 4x that of its 64-bit counterpart.

However, an insight into the overall impact on the static code size of the narrow ISA pro-
grams may be important, especially in embedded systems’ domain. In absence of precise
instruction encodings, Figure 2.3 presents the first approximation of the impact of the narrow
ISA on the static code size. For each program, it shows the ratio of the absolute number of
static narrow ISA instructions to the absolute number of static 64-bit computations. On an av-
erage, the static narrow ISA programs lay out about 3.9 times more instructions than the static
64-bit programs. Further evaluations of the impact on the static code size due to the proposed
optimizations in this thesis are provided in Chapter 6.

Dynamic Opcodes Distribution. For each benchmark, Figure 2.4 illustrates the breakdown
of the different categories of the committed operations in the 64-bit program (shown in the
BENCHMARK-wide bar) and the narrow ISA program (shown in the BENCHMARK-narrow
bar), both for the same 200 million x86 user instruction commits. The classification includes

27

2. NARROW BITWIDTH ARCHITECTURE:
A HARDWARE/SOFTWARE PERSPECTIVE

 0

 1

 2

 3

 4

 5

bzip2
crafty

eon
gap

gcc
gzip

m
cf

parser

perlbm
k

vpr
Avg

R
at

io
 o

f n
um

be
r

of
 s

ta
tic

 n
ar

ro
w

 c

om
pu

ta
tio

ns
 o

ve
r

64
-b

it
ve

rs
io

n
Static Code Size Ratio

Figure 2.3: Impact on the static code size

– (i) logic operations : logical operations and move operations, (ii) addsub operations : addi-
tion operations and subtract operations, (iii) addr-gen operations : add / sub operations which
update the inaddr register (refer to Table 2.6), (iv) branch operations : conditional and uncon-
ditional branch operations, (v) memory operations : load and store operations, (vi) br-addr-gen
operations : mov operations to update the inrip register (refer to Table 2.5 for translation of
branch opcodes), (vii) shift operations, (viii) fp-n-mul operations : floating-point and multiply
operations, and (ix) others : rest of the infrequent operations like bitscan, sel etc.

The following can be observed from Figure 2.4 :

• The average (dynamic) code size ratios for addsub operations, and memory operations
are 2.84, and 2.81 respectively. This shows that the narrow translator does not always
generate the worst-case translation of four operations. It abides by the x86 sizes if appli-
cable and generates the minimal required operations per 64-bit operation.

• The average code size ratio for shift operations is 5.12. The shift class of operations
include simple shift by small offset, complex shift, rotate left and rotate right operations.
Shift operations introduce more overhead in the narrow ISA as they require more narrow
operations per wide operation than any other opcode. However, the dynamic weight of
shift operations is comparatively lower.

• Narrow ISA has more addr-gen (address generation) operations. The addr-gen opera-
tions generate an address which is eventually used by a memory operation. Such opera-
tions may exist at the x86 ISA level (like updates to stack pointer or memory operations

28

2.3 Role of the compiler

from absolute addresses) or originate from some specific memory operations : those
memory operations where the immediate offset to the memory address cannot be en-
coded in 16-bits (refer to Table 2.6 for more details). On an average, the 16-bit version
of the program has about 4.9x addr-gen operations than the 64-bit version.

• Lastly, Figure 2.4 also shows the dynamic weight of the br-addr-gen (branch address
generation) operations. Note that these operations do not exist in the 64-bit counterpart.
These operations exist only in the narrow ISA. These operations are of the type – mov
inripx = Immx (as shown in Section 2.2.2 for translation of branch opcodes) and are
responsible for updating the taken branch address in an internal 64-bit instruction-pointer
register (namely, inrip).

Conclusions. The implemented narrow translator scheme uses several heuristics to ensure
that the narrow code-translations offer a reasonable baseline for further analysis and proposals.
The negative impact of the narrow ISA remains large and calls for investigation for further
techniques to assuage it.

2.3 Role of the compiler

The analysis presented in Section 2.1.2 suggests that the area and power savings of the narrow
bitwidth architecture can be significant. Further, on the software front, the narrow ISA not only
provides an ideal platform to implicitly support short-precision computations, but also main-
tains compatibility with wide computations. These benefits, of course, do not come without a
price since this approach introduces the risk of losing out on performance. Using the transla-
tion scheme outlined in Section 2.2.2, it has been observed that there is large penalty both in
terms of the dynamic code size (about 3.9x) and execution time in cycles (2.2x) when mapping
64-bit applications to the narrow processor.

One could possibly envisage a hardware-based aggressive code optimizer to address this
issue of performance degradation. However, it will be limited in scope and, above all, hard
to implement, as it may require non-trivial data-flow analyses and book-keeping to improve
performance. Hence, it defies the focus of this thesis which is to achieve a simple hardware
execution core.

On the other hand, a software-based solution may allow harnessing the power of compiler
optimizations. The compiler can not only translate but also aggressively optimize to reduce the
negative impacts of the narrow ISA. Moreover, the narrow ISA presents itself as a completely
new play-doh for compiler optimizations – the narrow ISA computation stream is inherently

29

2. NARROW BITWIDTH ARCHITECTURE:
A HARDWARE/SOFTWARE PERSPECTIVE

 0

 2
e

+
0

8

 4
e

+
0

8

 6
e

+
0

8

 8
e

+
0

8

 1
e

+
0

9

 1
.2

e
+

0
9

 1
.4

e
+

0
9

bzip2-wide

bzip2-narrow

crafty-wide

crafty-narrow

eon-wide

eon-narrow

gap-wide

gap-narrow

gcc-wide

gcc-narrow

gzip-wide

gzip-narrow

parser-wide

parser-narrow

perlbmk-wide

perlbmk-narrow

mcf-wide

mcf-narrow

vpr-wide

vpr-narrow

Absolute number of computations
 committed in wide and narrow

 configurations

B
re

a
k
d

o
w

n
 o

f
C

o
m

m
it
te

d
 S

tr
e

a
m

 (
6

4
-b

it
 v

s
.

1
6

-b
it
)

lo
g

ic
a

d
d

s
u

b
a

d
d

r-
g

e
n

b
ra

n
c
h

e
s

m
e

m
o

ry
b

r-
a

d
d

r-
g

e
n

s
h

if
t

fp
-n

-m
u

l
o

th
e

rs

Figure 2.4: Breakdown of the narrow and wide committed stream into operation classes -

The distribution of all the committed computations into operation classes to provide more details

on the behavior of the implemented narrow translator Scheme

30

2.3 Role of the compiler

Generate Chunk_0;

Generate Chunk_1;

Generate Chunk_2;

Generate Chunk_3;

Assert Assumptions;

Generate Chunk_0;

ORIGINAL NARROW CODE (A) NON−PRODUCTIVENESS

BASED PRUNING

(B) REORDERING NARROW BACKSLICES

SEQUENCE

Generate Chunk_0;
if (required_more)

Generate Chunk_1;

Generate Chunk_2;

Generate Chunk_3;

endif

Figure 2.5: Overview of the two main compiler optimization philosophies adopted in the thesis

more parallel; it has more computations of finer granularity. Lastly, a compiler can apply
optimizations across a larger scope of instructions.

Thus, this thesis focuses on compiler optimizations targeting the task of how to compile
a 64-bit program to a 16-bit machine in order to alleviate the negative performance impact.
More specifically, this thesis investigates on code optimization techniques with a perspective
of Minimum Required Computations. Given a program, the notion of minimum required com-
putations (henceforth, MRC) aims to infer the minimum set of narrow ISA computations which
are required to generate the same (correct) output as the original 64-bit wide program. Need-
less to say, achieving perfect MRC is an intrinsically ambitious goal in that it requires oracle
predictions of program behavior. This is because it may not be possible to know whether a
computation is required or not without actually performing the computation.

This thesis uses two main profile-guided heuristics to approximate the notion of MRC –
one of them prunes useless computations (Non-productiveness based Pruning in Section 2.3.1),
while the other reorders narrow computations (Reordering Narrow Backslices in Section 2.3.2).
Figure 2.5 shows a diagrammatic overview of these two main philosophies with dummy sample
code sequences. Both the set of heuristics are profile-based and are designed with a strong focus
to minimize the dynamic code footprint of the narrow ISA. However, they differ in the degree
of speculation.

2.3.1 Non-productiveness based Pruning Techniques

The heuristic of Non-productiveness is an approximation of the notion of MRC. Informally,
if a computation does not alter the destination storage location, it is non-productive (useless)
and therefore, not necessary to be performed. A formal definition of productiveness together
with some preliminary evaluations providing more insight into the motivation for the pruning
techniques is provided in the upcoming sections.

31

2. NARROW BITWIDTH ARCHITECTURE:
A HARDWARE/SOFTWARE PERSPECTIVE

In this thesis, we apply the concept of Non-productiveness as a learning-based inference
(and hence, it is speculative). The proposed Non-productiveness based pruning techniques
perform two main tasks – eliminate such non-productive narrow computations, and embed
the static productive slices with checks to make them self-sufficient to detect mis-speculation
dynamically. As shown in Figure 2.5, Non-productiveness based pruning techniques generate
atomic regions with speculatively pruned computations together with the required assertions-
like computations to ensure correctness.

The two main code optimizations based on these principles are Global Productiveness Prop-
agation (described in Chapter 4) and Local Productiveness Pruning (described in Chapter 5).
The pruning techniques work at different granularities of the data-flow of the programs. More
specifically, we have applied the definition of productiveness at the granularities of a single
instruction and functions, while varying the notion of atomic regions from a basic block, su-
perblock and a function.

2.3.2 Reordering Narrow Backslices

Code reordering has been proposed in traditional systems for achieving better resource-utilization,
hiding memory latencies, improved cache performance amongst others. The aim of the reorder-
ing technique proposed in this thesis, however, is to reduce the dynamic code size. The main
ideology is to apply the notion of a lazy computation model : the narrow chunks of data are
generated only when required, deferred otherwise. One possible way of achieving this (lazy)
computational model is by reordering the backslices containing narrow computations such that
the minimal necessary computations to generate the same (correct) output are performed in the
most-frequent case; the rest of the computations are performed only when necessary.

In this thesis, we propose and evaluate a particular use case of the broader concept of re-
ordering narrow backslices : the use case of reordering narrow backslices around conditional
branch computations. We call this transformation the Minimal Branch Computation optimiza-
tion and is described in Chapter 6. This technique is based on the philosophy of reordering
computations such that those computations which are most-probably sufficient1 to generate the
correct value(s) of the required flag(s) are placed (and executed) first. The rest are executed
only if the former were insufficient (refer to Figure 2.5).

2.3.3 Additional Support for Optimizations

As the proposed optimizations are speculative, it is necessary to devise means to detect mis-
speculation and a mechanism of recovery. The former is performed in software by means

1profile-based learning

32

2.3 Role of the compiler

of assertion-like instructions and the latter is performed by the hardware. Hence, following

additional hardware support is requisite for the optimizations proposed and evaluated in this

thesis :

• New Opcodes for Assertion : For the Non-productiveness based pruning techniques,

few additional assertion opcodes are exploited to detect mis-speculation in the dynamic

narrow code stream. The assertion opcodes are essentially compare operations which

trigger a pipeline fault if the comparison of the indicated entities fails. More specific

detail is provided in the respective chapters.

• Speculative Execution Support : On an event of misspeculation (i.e. failure of an

assertion), we rely on the hardware to ensure that the speculative state does not corrupt

the program state by providing some mechanisms to ensure separation of state. In some

cases, the speculative regions can be potentially big in size, e.g. a complete function

execution may need to be speculative. In these cases, the basic architectural mechanism

for speculative execution can be very similar to that of transactional memory [10, 14,

38, 52, 54]. For the rest of the optimizations, where the atomic regions are mainly

basic blocks or superblocks, the architectural mechanism for speculative execution can

be similar to that used by the Transmeta Crusoe / Efficeon Processors [16, 29]. The latter

mainly supports check-pointing the committed register state, and implementation of a

store buffer. After a rollback, safe, correct code (generated as explained in Section 2.2)

is executed.

The execution model in wake of speculatively optimized regions is as follows. At the

entry of a speculatively optimized region, the register state is checkpointed. Execution

continues whilst keeping the speculation contained using the above-mentioned hardware

support. On the event of a mis-speculation, a fault is triggered causing a pipeline flush

and a correct program state is recovered using the previously checkpointed state. The

execution then resumes from the beginning of the region using the correct, non-optimized

version of the code. More details on the execution flow are provided in Chapter 3.

The existence of speculatively optimized regions also impacts the notion of precise ex-

ceptions. An exception condition inside a speculative region is treated in a similar man-

ner as a mis-speculation. Hence, after a rollback, safe correct code is executed until the

excepting computation is reached.

33

2. NARROW BITWIDTH ARCHITECTURE:
A HARDWARE/SOFTWARE PERSPECTIVE

2.4 Productiveness : Definition and Preliminary Evaluations

We have motivated the case for investigating on compiler optimizations for the narrow bitwidth
architectures and have proposed two main compiler optimization philosophies. The rest of
the chapters in the thesis formally define, formulate and evaluate the optimization techniques
based on these philosophies. However, as the concept of productiveness is used for two main
optimization techniques, we define and investigate on specific key aspects of productiveness in
this chapter itself.

2.4.1 Background Definitions

This section describes the terminology used in this document.

Definition 2.3 (Optimization Region). An optimization region is the section of code on which

an optimization is applied. Practical examples of an optimization region include basic block,

superblock, function or any abstract region of code. Any reference to a region in the remainder

of this thesis will be to an optimization region in general.

Definition 2.4 (Storage Location). A storage location is a register or memory location used

to store data. Further, the value of a storage location is the content of the storage location, and

not its identifier. The identifier of a storage location of a computation i is denoted by Si.

Definition 2.5 (Last-writers). A computation is a last-writer to a storage location if it is the

last instruction that writes into a given storage location in a given control-flow path from entry

to exit of the region. Note that, there can be multiple last-writers to a given storage location, if

the region has multiple control-flow paths from entry to its exit(s).

Definition 2.6 (Dead Last-writers). A last-writer computation is a dead last-writer to a stor-

age location if (even though it is the last instruction that writes into a given storage location in

a given control-flow path from entry to exit of the region) there is always a writer after the exit

of the region that overwrites the storage location before it is consumed.

Definition 2.7 (Input State of a Region). The input state of a region is the set of values of

all the last-writers’ storage locations (all storage locations written to by the last-writers of the

region R) before entering the region.

34

2.4 Productiveness : Definition and Preliminary Evaluations

Definition 2.8 (Output State of a Region). The output state of a region is the set of values of

all the last-writers’ storage locations (all storage locations written to by the last-writers of the

region R) after the exit of the region. Both the input and the output state of the region must be

understood in context of a single dynamic instance of the region.

Definition 2.9 (Program Dependence Graph). It is a connected, directed graph containing

information of both data and control dependences of the computations of a region R [18]. Any

reference to a graph of a region in the remainder of this thesis will be to its program dependence

graph. It is often denoted as PDG(R).

Definition 2.10 (Backslice of a Computation). Backslice of a computation is the connected

chain of computations which consists of computations that potentially affect its output directly

or indirectly. This is computed by traversing the PDG(R) backwards from the computation of

interest until specific context-based conditions are not violated. For example, the backward

traversal of a computation may terminate only at the entry of the PDG(R) is reached, or may

terminate only when computations of specific properties are encountered. Both the control and

data dependences are traversed.

2.4.2 Defining Productiveness

Consider a region of one or more computations. The region communicates its output(s) via the
last-writer storage locations. On a related note, if the region consists of a single instruction, the
latter itself is the (only) last-writer.

Definition 2.11 (Dynamic Non-productive Last-writer). A dynamic instance of a last-writer

of a region, is called non-productive if the value of its storage location (Si) in the output state

of the region is the same as the value of Si in the input state of the region.

Definition 2.12 (Dynamic Productive Last-writer). A dynamic instance of a last-writer of

a region, is called productive if the value of its storage location (Si) in the output state of the

region is different from the value of Si in the input state of the region.

Definition 2.13 (Static Non-productive Last-writer). In the static representation of the re-

gion, a last-writer is non-productive if the value of Si at the beginning of the region is the

35

2. NARROW BITWIDTH ARCHITECTURE:
A HARDWARE/SOFTWARE PERSPECTIVE

same as the value of Si in the input state of the region most of the times. More precisely,

it is a profile-based inference based on a configurable threshold of the last-writer’s Dynamic

Non-productiveness, and hence, speculative.

Definition 2.14 (Static Productive Last-writer). In the static representation of the region, a

last-writer is productive if the value of Si at the beginning of the region is different from the

value of Si in the input state of the region most of the times. More precisely, it is a profile-based

inference based on a configurable threshold of the last-writer’s Dynamic Productiveness, and

hence, speculative.

In the rest of the thesis, unless otherwise stated, we use the word Non-productiveness to
directly refer to Static Non-productiveness; conversely, the word Productiveness is used to
directly refer to Static Productiveness.

2.4.3 Preliminary Evaluations

This section presents some experiments that evaluate the following aspects of the definition of
Productiveness :

1. How does the definition of Productiveness compare with the previously proposed meth-
ods of defining narrowness ?

2. What can the definition of Productiveness achieve in the best-case ? Here the intention
is to gain an understanding by allowing the system to have a perfect, advance knowledge
of how computations will contribute towards the output state of a region.

Together, these evaluations bring out the benefits and innovation in the definition of Produc-
tiveness. The upcoming results presented in this chapter underline the fact that the definition of
productiveness is more aggressive than any of the previously proposed strategies. Further, the
use of run-time knowledge of the observed values offers a notion of a bound on that achievable
by compile-time analyses in the best case.

2.4.3.1 Productiveness vs. Previous Approaches

The gamut of ways defining narrowness by previous research has been –

1. User-Specified Data Widths : derived from the data type of the variables in the high-level
program [35, 37, 56],

36

2.4 Productiveness : Definition and Preliminary Evaluations

 0

 0.2

 0.4

 0.6

 0.8

 1

bzip2-insn
bzip2-rd
bzip2-prod

crafty-insn
crafty-rd
crafty-prod

eon-insn
eon-rd
eon-prod

gap-insn
gap-rd
gap-prod

gcc-insn
gcc-rd
gcc-prod

gzip-insn
gzip-rd
gzip-prod

m
cf-insn

m
cf-rd

m
cf-prod

parser-insn
parser-rd
parser-prod

perlbm
k-insn

perlbm
k-rd

perlbm
k-prod

vpr-insn
vpr-rd
vpr-prod

Avg-insn
Avg-rd
Avg-prod

16-bit 32-bit 48-bit 64-bit

Figure 2.6: Comparing various proposals around the concept of narrowness. The figure shows his-

togram distribution of the actual datapath required by 64-bit computations for different definitions

2. Dynamic Data Widths : calculated as the maximum of the data width / sign-extension of
the dynamic operands of each instruction (hence, inferred from the values flowing in the
pipeline [4, 8, 36, 47]), and

3. Usefulness of data [5, 9, 55].

An interesting comparison of some of these definitions from the perspective of a compiler
has been performed previously [53] using a mix of kernels from the Raw benchmark suite and
Honeywell ACS suites [57] together with SPEC95 suite. The study compares the definitions
of sign-extension and the usefulness (together with some of its variations), with and without
backward propagation of the foregoing data properties. The study concludes that – (i) the
number of bits that can be saved apart from the high-order prefix ones (i.e. sign-extension) is
small, and (ii) back-propagation of operand use information (inferred with either sign-extension
or usefulness) is also of limited use. These inferences must be understood in the context of
compile-time analyses, instead of purely dynamic definitions like dynamic sign-extension [4,
8, 47].

Hence, it seems fair to compare the new proposed definition of Productiveness against Dy-
namic Sign-extension. Figure 2.6 compares the following three configurations by considering
a single 64-bit computation in isolation –

(i) BENCHMARK-insn : These bars show the dynamic data width of the instruction (maxi-
mum of the sign-extension data width of all input operands and the output value). This is
the same definition as exploited in previous literature [4, 8, 36, 47].

37

2. NARROW BITWIDTH ARCHITECTURE:
A HARDWARE/SOFTWARE PERSPECTIVE

(ii) BENCHMARK-rd : These bars show the dynamic data width of only the destination
register (more aggressive than BENCHMARK-insn).

(iii) BENCHMARK-prod : These bars show the dynamic productiveness (Definition 2.12)
which measures the change in each destination register.

Only integer instructions (both register and memory instructions) have been included for all
the three configurations for the first 200m x86 user commits of each workload (using ref input

data-set). Our findings corroborate with previous research [17, 53] and highlight the following
aspects –

1. The number of narrow computations uncovered by traditional definitions like sign-extension
is also significant even in contemporary general-purpose applications. Upto 22% compu-
tations need only 16-bits to compute the result (see Avg-insn bar), and a 32-bit datapath
suffices for yet another 38% of the computations.

2. Our definition of productiveness is more aggressive than previously exploited definitions
of narrow computations. Upto 62% of the computations need only 16-bit datapath to
compute the result, and a 32-bit datapath suffices for yet another 25% of the computations
(see Avg-prod bar).

3. This implies that 62% of 64-bit computations, some of which may have been writing
non-zero data in higher-significant bits (compare Avg-rd bar vs. Avg-prod bar), change

only 16-bits of the destination storage location.

2.4.3.2 Dynamic Non-productiveness : Instruction as Region

Having established that productiveness is a more aggressive definition than previously pro-
posed definitions, we now measure its two further aspects –

1. It is important to observe the effect of productiveness on the smallest possible unit of
optimization in our HW/SW ecosystem, i.e., a single narrow computation in isolation.
This is essentially similar to BENCHMARK-prod bars in Figure 2.6, but measured after
integrating the narrow translator (which decomposes 64-bit computations into a set of
equivalent 16-bit computations).

2. What is the temporal locality of an instruction’s productiveness ? The rationale is to
measure the run-time variance of the property of productiveness. The degree of variance
may affect how the property is to be exploited by compiler analyses.

38

2.4 Productiveness : Definition and Preliminary Evaluations

 0

 1

 2

 3

 4

 5

bzip2
crafty

eon
gap

gcc
gzip

mcf
parser

perlbmk

vpr
AvgRa

tio
 o

f n
um

be
r o

f c
om

m
ite

d
na

rro
w

 c
om

pu
ta

tio
ns

 o
ve

r 6
4-

bi
t v

er
sio

n
Narrow-Nonoptimized

DynamicProductive (nobias)
StaticProductive (95%bias)
StaticProductive (98%bias)

StaticProductive (100%bias)

Figure 2.7: Dynamic Productiveness with instruction as a region : best case and sensitivity analysis

Figure 2.7 illustrates how the definition of productiveness can impact the narrow computa-
tion stream, assuming advance, perfect knowledge of output data values written by all narrow
integer computations. All integer narrow computations are considered for the first 200m com-
mits of x86 user instructions. There are five different configurations shown in 2.7 :

1. Narrow-Nonoptimized indicates the ratio of narrow computations over the number of the
original 64-bit RISC like operations (same as that shown in Figure 2.2). For example,
gzip experiences 4 times more narrow computations than the number of original 64-bit
RISC-like operations.

2. DynamicProductive (nobias) accounts for all productive narrow computations.

3. StaticProductive (95%bias) accounts for the amount of dynamic narrow computations
that are productive at least 95% of the total number of times they were executed.

4. StaticProductive (98%bias) accounts for the amount of dynamic narrow computations
that are productive at least 98% of the total number of times they were executed.

5. Finally, StaticProductive (100%bias) accounts the amount of dynamic instructions that
are productive all the 100% of the total number of times they were executed.

Comparing different configurations in Figure 2.7, it can be observed that –

1. The dynamic overhead of the narrow ISA can be reduced by around 48% (from 3.9x to
2x as seen in DynamicNonProductive (nobias)) by applying the definition of Dynamic
Non-productiveness on an individual instruction.

39

2. NARROW BITWIDTH ARCHITECTURE:
A HARDWARE/SOFTWARE PERSPECTIVE

2. The dynamic overhead of the narrow ISA can be reduced by around 44% (from 3.9x
to 2.17x as seen in DynamicNonProductive (95%bias)) by applying the definition of
Dynamic Non-productiveness on an individual instruction.

3. The variance of the data-property of productiveness is admissible.

In Chapter 5, we propose Local Productiveness Pruning, which is an optimization technique
aiming to tap this disposable potential.

2.4.3.3 Dynamic Non-productiveness : Function as Region

Using a single instruction as a region (as done in the previous section) allows the compiler to
work on a region of very fine granularity. Programs, however, are generally modularized into
smaller tasks known as functions. Intermediate state generated by the functions (temporal state
in registers) is not available outside the function and is not required to be generated unless it
affects the output state of the function.

This forms the rationale of studying the heuristic of productiveness on a whole function
as region. Using a function as a region may facilitate a more global data-flow analysis. In-
formally, the application of the definition of productiveness on a function as a region attempts
to achieve the following : if the last-writer of a region is non-productive, those computations
contributing directly or indirectly are also non-productive by association, and hence, may be
considered useless too. The rest of the computations of the region will be referred to as the
Global Productive Computations for the upcoming experiment.

To get a notion of the available potential of using function as a region, Figure 2.8 shows the
experimental results for a subset of the hot functions 1 from selected benchmarks. Each point
on the line graph corresponds to a statistically sampled dynamic execution of the corresponding
function. A total sample of 100 dynamic executions of the selected functions is generated from
the first 200m user instructions commits of each benchmark. The different points in each line
graph indicate :

1. Narrow-Nonoptimized indicates the ratio of narrow computations (generated by the nar-
row translator) over the total number of the original 64-bit RISC-like operations. For
example, getRLEpair function in bzip2 experiences 3.7 times more narrow computations
than the number of original 64-bit RISC-like operations.

2. DynGlobalProductive indicates the ratio of the global productive narrow computations
over the number of the original 64-bit RISC like operations. The number of global pro-
ductive narrow computations is measured by accounting for all productive last-writers in

1hot functions are defined in detail in Chapter 3

40

2.4 Productiveness : Definition and Preliminary Evaluations

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80 90 100

R
a
ti
o
 o

f
n
u
m

b
e
r

o
f
c
o
m

m
it
te

d
 n

a
rr

o
w

 c

o
m

p
u
ta

ti
o
n
s
 o

v
e
r

6
4
-b

it
 v

e
rs

io
n

Number of samples of Function

Global Productiveness in (bzip2-getRLEpair) Samples

Narrow-Nonoptimized
DynGlobalProductive

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80 90 100

R
a
ti
o
 o

f
n
u
m

b
e
r

o
f
c
o
m

m
it
te

d
 n

a
rr

o
w

 c

o
m

p
u
ta

ti
o
n
s
 o

v
e
r

6
4
-b

it
 v

e
rs

io
n

Number of samples of Function

Global Productiveness in (crafty-Evaluate) Samples

Narrow-Nonoptimized
DynGlobalProductive

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80 90 100

R
a
ti
o
 o

f
n
u
m

b
e
r

o
f
c
o
m

m
it
te

d
 n

a
rr

o
w

 c

o
m

p
u
ta

ti
o
n
s
 o

v
e
r

6
4
-b

it
 v

e
rs

io
n

Number of samples of Function

Global Productiveness in (eon-_ZNK13mrSurfaceList10) Samples

Narrow-Nonoptimized
DynGlobalProductive

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80 90 100

R
a
ti
o
 o

f
n
u
m

b
e
r

o
f
c
o
m

m
it
te

d
 n

a
rr

o
w

 c

o
m

p
u
ta

ti
o
n
s
 o

v
e
r

6
4
-b

it
 v

e
rs

io
n

Number of samples of Function

Global Productiveness in (gzip-longest_match) Samples

Narrow-Nonoptimized
DynGlobalProductive

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80 90 100

R
a
ti
o
 o

f
n
u
m

b
e
r

o
f
c
o
m

m
it
te

d
 n

a
rr

o
w

 c

o
m

p
u
ta

ti
o
n
s
 o

v
e
r

6
4
-b

it
 v

e
rs

io
n

Number of samples of Function

Global Productiveness in (perlbmk-Perl_scan_str) Samples

Narrow-Nonoptimized
DynGlobalProductive

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80 90 100

R
a
ti
o
 o

f
n
u
m

b
e
r

o
f
c
o
m

m
it
te

d
 n

a
rr

o
w

 c

o
m

p
u
ta

ti
o
n
s
 o

v
e
r

6
4
-b

it
 v

e
rs

io
n

Number of samples of Function

Global Productiveness in (vpr-try_swap) Samples

Narrow-Nonoptimized
DynGlobalProductive

Figure 2.8: Dynamic global productiveness with function as a region : A hundred samples from

the dynamic executions of a subset of functions each from SPECint 2000 benchmarks

41

2. NARROW BITWIDTH ARCHITECTURE:
A HARDWARE/SOFTWARE PERSPECTIVE

the respective dynamic execution, together with their backslices. The rest of the compu-
tations, that is, the dynamic non-productive last-writers and those computations in their
backslices which are not already are a part of the global productive narrow computations
are deemed useless. All branches and their backslices are deemed useful.

Applying the concept of productiveness at the granularity of a function can potentially re-
duce the dynamic code size impact from 3.6x 1 to around 2.7x (25% reduction) on an average.
In Chapter 4, we propose Global Productiveness Propagation, which is one possible formula-
tion of an optimization technique capable of capturing this disposable potential.

1This average is for the hundred selected dynamic executions of few functions only, and hence, can be different

from the observed average of 3.9x in Section 2.2.3

42

3

Methodology

This chapter details the experimental framework and the evaluation methodology adopted in

this thesis. Section 3.1 elaborates on the overall experimental framework, the simulation in-

frastructure for optimizing and executing narrow ISA applications, and also the benchmarks

with their respective training and the input data-sets. The chapter concludes at Section 3.2 with

a description of the baseline ecosystem, against which the proposed optimization techniques

are compared throughout the rest of the thesis.

3.1 Experimental Framework

3.1.1 Simulator Infrastructure

There are two key components of the simulation infrastructure – the compiler/optimizer frame-

work (named, CodeAnalyzer, described in detail in the following section) and the narrow pro-

cessor simulator.

3.1.1.1 CodeAnalyzer : The Optimization Framework

The CodeAnalyzer is a tool written in C/C++ which performs the main role of a trace analyzer

and optimizer. Key functionalities of CodeAnalyzer include creating data-flow and control-

flow graphs, gathering statistics of program behavior, creating regions like superblocks if re-

quired, and profiling and maintaining other book-keeping required for optimizations. Figure

3.1 gives an overview of the important components of the CodeAnalyzer. A brief discussion of

some of the important components shown in the same follows next.

43

3. METHODOLOGY

Narrow Translator. The CodeAnalyzer supports the translation of a 64-bit RISC-like ISA
program into a semantically equivalent 16-bit narrow ISA program. The narrow translator is
written as a wrapper utility which uses the PTLsim’s parsing and code-cracking support for
mapping x86 to 64-bit RISC-like micro operations [62]. The implemented narrow translation
scheme to map these 64-bit RISC-like operations to the narrow computations has already been
outlined in Section 2.2.2.

64-bit Source Traces

Region Formation, DDG Creation

Narrow Translator

Narrow ISA Traces

Profiler

Optimizer

Code Scheduler

St
at

is
ti

cs
 G

en
er

at
o

r

Profiles

Figure 3.1: CodeAnalyzer : Basic workflow and components - CodeAnalyzer is a tool chain

written in C/C++ and performs the main task of profiling and optimization in our evaluation infras-

tructure

Region Formation. The proposed optimizations have been applied and evaluated on differ-
ent type of regions, ranging from a single instruction to basic block, superblock and a com-
plete procedure. For selected evaluations, superblocks [24] are built to investigate on how the
compiler may benefit from larger atomic regions. The generated superblocks are single-entry,
single-exit regions which are created by chaining hot basic blocks and converting the inter-
nal branches into asserts (similar to REPLAY [46]). To form a superblock, hot basic blocks
are continually added to a new superblock unless the overall commit probability of the region
falls below 90% or the next hot basic block to be added is already the start point of another
superblock.

44

3.1 Experimental Framework

Lastly, regarding procedures, we only evaluate non-recursive functions in this thesis (more
details in Section 3.1.4). It remains a caveat of our infrastructure and can be improved upon
in future work. Hence, all the proposed techniques can be extended to recursive functions as
well, given adequate support in the infrastructure.

Modeling Dependences. Register-based data dependences are computed by trace inspection
which accounts for control dependences as well. Memory dependences are equally crucial
for any data-flow analyses. Often an effective data-flow analysis requires a smart memory
dependence analysis using some form of static pointer/alias analysis [11, 32]. CodeAnalyzer,
however, models memory dependences conservatively. Both register-based and memory-based
true (RAW), anti (WAR) and output (WAW) dependences are modeled. Control dependences
are also duly modeled.

Profiler. All the optimization techniques proposed in this thesis are profile-guided. The spe-
cific profiles required for each optimization technique are described in the respective chapters.

Optimizer. The optimizer remains an integral part of the CodeAnalyzer. It can optimize both
off-line (static optimizer) and on the fly (dynamic optimizer). In case of dynamic optimizer, the
CodeAnalyzer’s Optimizer works in coalition with the simulator to optimize the applications.
In a static optimizer based model, on the other hand, CodeAnalyzer generates the optimized
narrow ISA programs off-line, much like a traditional compiler.

The optimizer takes as input the PDG(R) [18], i.e., the program dependence graph of the
region R to be optimized and the requisite profile information of the region R to generate the
optimized narrow ISA computations stream.

Scheduler. Instruction Scheduling is an important code optimization technique to obtain high
performance and better resource utilization on a parallel (pipelined or superscalar) in-order pro-
cessor. We implement a simple list-scheduling algorithm – Earliest-start Time Slack (abbre-
viated as ETS) based Scheduling. The ETS heuristic based scheduling focuses on two targets
– Stall time, and Critical path. The ETS Instruction Scheduling is based on a classical greedy
list-scheduling algorithm [21]. ETS scheduling is performed at the basic block level with the
target of reducing the overall execution time.

ETS scheduling is evaluated in Chapter 5 after code pruning optimization to illustrate that
some of the proposed optimizations not only reduce the dynamic code footprint, but also act as
enablers for obtaining further gains from classical compiler optimizations like code scheduling.
For this brief study, ETS scheduling is applied at the granularity of a basic block.

45

3. METHODOLOGY

Table 3.1: Simulator configurations - Both for the wide (64-bit datapath) and the narrow (16-bit

datapath) processors

Parameter In-Order 16-bit pipeline

L1 DCache 32KB (4-way), 64 Bytes line size, replacement pol-

icy : pseudo LRU

L1 ICache Perfect

L2 Cache 1024KB (16-way), 64 Bytes line size, 8 cycles, re-

placement policy : pseudo LRU

Memory Latency 250 cycles

Branch Predictor Combined predictor with Gshare semantics with

64K 2-bit counters, 16 bit global history, and a bi-

modal predictor of 64K entries with 2-bit counters.

Branch Target Buffer (1024 sets, 4-way). RAS of

1024 entries

Frontend, Dispatch, Writeback, Commit Width 4 instructions

Frontend Cycles 5 cycles

Issue Width 4

Functional Units 2 simple integer ALU, 1 complex integer ALU, 2

load/store units, other FP units

Start Point of Simulation Hand-picked to skip initialization phase

3.1.1.2 The Narrow Processor

For the evaluation of the optimizations, we model an in-order processor of an issue width of up

to four instructions per cycle and compare the performance of two versions of the programs in

narrow ISA : with and without the proposed optimizations. As the main focus of the optimiza-

tions is dynamic code footprint reduction, we believe that an out-of-order pipeline execution

model is not necessary as it may only provide more insight beyond the focus of the thesis.

The cycle-accurate timing model for executing the narrow ISA programs is based on PTL-

sim [62]. PTLsim is a cycle-accurate simulator for x86 / x86-64 ISA. Porting the simulator

for the narrow ISA allows fetching, decoding, renaming, executing and committing individual

narrow computations, when the narrow processor based on the narrow bitwidth architecture is

simulated.

Table 3.1 shows the values for the most important configuration parameters for all the

46

3.1 Experimental Framework

Table 3.2: Benchmarks – training and input data-sets, and command line arguments

Name of the

program from

SPEC2000 int

Training Data-Set (Profiling) Input Data-Set

bzip2 input.compressed 8 input.source 1

crafty < crafty.in > crafty.out < crafty.in > crafty.out

eon chair.control.kajiya chair.camera

chair.surfaces chair.kajiya.ppm ppm

pixels_out.kajiya

chair.control.kajiya chair.camera

chair.surfaces chair.kajiya.ppm ppm

pixels_out.kajiya

gap -q -m 128M -l data -q -m 192M -l data

gcc -quiet cp-decl.i -o cp-decl.S -quiet integrate.i -o integrate.S

gzip input.combined 32 input.source

mcf input/mcf.in ref/mcf.in

parser 2.1.dict -batch < ref.in 2.1.dict -batch < ref.in

perlbmk -I./lib perfect.pl b 3 m 4 -I./lib splitmail.pl 1 5 19 18 1500

vpr net.in arch.in placed.out routed.out -

nodisp -place_only -init_t 5 -exit_t

0.005 -alpha_t 0.9412 -inner_num 2

net.in arch.in placed.out routed.out -

nodisp -place_only -init_t 5 -exit_t

0.005 -alpha_t 0.9412 -inner_num 2

evaluations. For some experiments which required the evaluation of the narrow bitwidth ar-

chitecture against the wide bitwidth architecture (the 64-bit counterpart), same configurations

as mentioned in Table 3.1 were used for both. We believe this is justified and does not benefit

neither wide nor narrow processor in any configuration because both the simulated pipelines

exercise in-order execution.

Further, the latency of operations also remains the same in both the simulated wide and

narrow bitwidth architectures, in spite of the fact that frequency can be scaled in case of narrow

processor [59]. In other words, although 16-bit design can potentially operate at a higher

frequency, we have conservatively assumed the same frequency for both.

3.1.2 Benchmarks

The impact of this thesis remains mainly around integer computations. As previously com-

mented in Section 2.2.2, floating-point computations do not tend themselves gracefully to the

notion of a 16-bit datapath boundary. Hence, for all the experiments in this thesis, we use

47

3. METHODOLOGY

the integer programs from the SPEC2000 suite of benchmarks [15] as the workload. Table
3.2 lists the individual programs from the SPEC2000 integer suite of benchmarks used for
the evaluation of the proposed techniques in this thesis. It also shows the command-line ar-
guments together with the data-set used each in the profile-phase (training data-set) and the
cycle-accurate evaluation run (ref input data-set). The integer applications of the SPEC2000
suite are compiled with gcc -O3 (for a x86-64 machine with -mfpmath=sse).

The start point of each benchmark is determined by manual inspection of the respective
source code. These precise points of interest are communicated to the simulator using special
nop like instruction. More information on this is available online in the form of patches at
the PTLsim SPECcpu 2000 Benchmark webpage for perusal [20]. In general, they are placed
before the start of the main loop to allow the execution of the most representative parts of the
program.

3.1.3 Metrics

The two main metrics used for measuring the performance of the proposed optimizations are
– number of cycles and number of committed narrow computations. The number of cycles are
measured as the total number of cycles taken to commit 200m x86 user instructions (Table 3.4).
The number of committed narrow computations is measured as the absolute number of narrow
computations committed to complete 200m x86 user instructions.

As the optimizations are speculative, we also measure the failure-rate of speculative as-
sumptions. The failure-rate is measured as the ratio of the total number of failure events (hence,
requiring rollbacks) with the total number of committed atomic regions. Only one failure event
per dynamic atomic region is counted, as it is sufficient to trigger a recovery mechanism.

Lastly, a direct effect of having failures / rollbacks in a speculative execution environment
is squashing of useless work. At relevant points in the thesis, the distribution of the dynami-
cally committed stream split between successfully committed optimized regions, successfully
committed non-optimized regions and the work squashed due to failures is also appropriately
demonstrated.

3.1.4 Hot Regions

In order to bound the profiling and optimization overheads in the software layer, it is important
to detect representative portions of the programs. To detect hot regions, we measure the num-
ber of committed x86 instructions from each function in the profile-phase of the application.
Then, those functions that account for the maximum number of committed x86 instructions are
chosen. Table 3.3 lists the detected hot functions. Needless to say, the represented share of the

48

3.2 Baseline Ecosystem

Table 3.3: Hot regions and expected code coverage (x86 instructions)

Benchmark Representative Non-Recursive Functions Expected Cover-

age (x86 instrs)

bzip2 fullGtU, qSort3, simpleSort 29.0%

crafty Evaluate, EvaluatePassedPawns, MakeMove, Attacked,

UnMakeMove, NextMove, Swap

77.32%

eon _ZNK13mrSurfaceList10, _ZNK6mrGrid9shadowHit,

_ZNK6mrGrid10viewingHit,

_ZNK10mrMaterial9shadowHit,

_ZNK13mrSurfaceList9shadowHit,

_ZN10ggSpectrum3SetEf,

_Z25ggRayXZRectangleIntersect,

_ZNK19mrCookPixelRenderer

90.28%

gap strcmp, NewBag, FindIdent, __memchr, Resize 38.35%

gcc note_stores, propagate_block, memset, memcpy 30.2%

gzip longest_match, send_bits, ct_tally, updcrc, com-

press_block

63.12%

mcf refresh_potential, primal_bea_mpp 99.60%

parser xalloc, match, power_prune, form_match_list, xfree 41.1%

perlbmk _IO_getc, Perl_scan_str, Perl_sv_gets, Perl_my_bcopy,

_int_malloc, tokeq

85.50%

vpr try_swap, update_bb, my_irand 99.1%

Avg Avg Percentage Optimized 65.35%

chosen functions will reflect a different share in the committed stream in the cycle-accurate run
of the programs, which is shown as the expected coverage in Table 3.3.

Lastly, it is important to note that due to a limitation of our optimizer, we exclude the
recursive functions. This impacts the overall coverage achieved by the optimizations evaluated
throughout the thesis.

3.2 Baseline Ecosystem

The baseline ecosystem, against which all the proposed optimizations have been evaluated,
consists of a narrow processor with a software layer that can map the 64-bit applications to
the narrow ISA. This mapping is performed by the narrow translator which implements the

49

3. METHODOLOGY

translation scheme outlined in Section 2.2.2. The dynamic code footprint of the narrow ISA is
3.9 times more than that of the wide 64-bit ISA programs. The narrow processor implements an
in-order 16-bit datapath pipeline and fetches, decodes narrow ISA computations, and executes
and writes-back 16-bit data.

The baseline narrow processor also implements hardware support for speculative execu-
tion. Although the mis-speculation detection is performed using assertion-like opcodes, the
mis-speculation recovery is handled via means of hardware. The complexity of the additional
hardware support for speculation recovery is related to the size of the speculative regions.
When the size of the speculative regions can be potentially big (such as in the Global Produc-
tiveness Propagation technique which assumes a whole function execution to be speculative),
hardware support similar to that of transactional memory [10, 14, 38, 52, 54] may be required.
For the rest of the optimizations (viz. Local Productiveness Propagation and Minimal Branch
Computation in Chapter 5 and Chapter 6 respectively), where the atomic regions are mainly ba-
sic blocks or superblocks, the architectural mechanism for speculative execution can be similar
to that used by the Transmeta Crusoe / Efficeon Processors [16, 29].

In practice, the implemented baseline narrow processor allows a sufficiently large capacity
(up to 4096 stores) in the commit record in order to accommodate the different type of atomic
regions used for evaluating different optimizations. Subsequent stored values to the same ad-
dresses in a speculative atomic region are merged into the same commit record. Hence, except
mcf, most of the benchmarks do not require such a large capacity in a commit record.

3.2.1 Overall Execution Model

Broadly, this thesis evaluates the proposed profile-guided optimization techniques in two differ-
ent models – static or dynamic optimization model. One of the well understood key distinctions
between the static and dynamic optimization models is the overhead of profiling and optimiza-
tion on the application’s run-time. The edge of dynamic optimization techniques, however, lies
in the accuracy and reach of its predictions of the run-time behavior.

The proposed optimizations have been evaluated as static and / or dynamic optimizations,
wherever applicable :

1. Global Productiveness Propagation (Chapter 4) as a dynamic optimization,

2. Local Productiveness Pruning (Chapter 5) as both dynamic and static optimization,

3. Minimal Branch Computation (Chapter 6) as a dynamic optimization.

We comment on why a specific model has been chosen for an optimization in the upcoming
respective chapters.

50

3.2 Baseline Ecosystem

Table 3.4: Dynamic vs. Static optimization model configurations

Parameter Configuration Value

Static Optimizer

Committed User Instructions (Profile-phase to per-

form value profiling with training data-set)

200m

Committed User Instructions

(Cycle-accurate phase with ref input data-set)

200m

Dynamic Optimizer

Committed User Instructions (Profile-phase to per-

form value profiling with ref input data-set)

200m

Committed User Instructions

(Cycle-accurate phase with ref input data-set)

200m

In a profile-guided static (or the dynamic) optimizer model, the compiler (or the optimizer)
detects, profiles and finally optimizes only the hot code of programs. The rest of the program
is executed as non-optimized narrow stream, the overheads of which are undoubtedly reflected
in the final results illustrated in all the chapters. Profiling and optimizing only the most rep-
resentative regions of a program is important to reduce the compilation time (or optimization
overheads in case of a dynamic optimizer). The lengths of the profile phase and the cycle-
accurate phase for evaluation purposes are shown in Table 3.4.

Dynamic Optimizer Model. The basic workflow to evaluate a dynamic optimization is illus-
trated in Figure 3.2. The execution begins with hot region detection followed by value profiling
[6] until the first 200m (after skipping the program initialization phase) with ref input data-sets.
Next, the optimization is triggered to generate code for the narrow processor.

The advantage of a dynamic optimizer model is that the program is optimized on the fly,
hence, the profile-based learning is more precise (as its on the same input as the current run).
However, such a model entails higher costs because the run-time of the application must bear
the time and space overheads of profiling and optimization. Global Productiveness Propagation
being sensitive to the profile information, has been evaluated only as a dynamic optimization.

Static Optimizer Model. The basic workflow to evaluate a static optimization is illustrated
in Figure 3.2. First, requisite profiles are gathered by running the programs for the first 200m
(after skipping the program initialization phase) with ‘training’ data-sets. Next, the compiler
optimizes and generates code for the narrow architecture.

51

3. METHODOLOGY
C

O
M

P
IL

E
TI

M
E

CODE ANALYZER

Benchmark
(C/C++)

gcc/g++

Narrow Translator

NON-
OPTIMIZED

PTLSIM BASED
NARROW PROCESSOR

PTLSIM Based
Narrow Processor

Hot Regions Profiler

Narrow Translator

PDG(R) Creator

Profiler

Optimizer

OPTIMIZED

NON-
OPTIMIZED

PTLSIM Based
Narrow Processor

R
U

N
 T

IM
E

P
R

O
FI

LE
 P

H
A

SE
O

P
TI

M
IZ

E
EX

EC
U

TE

C
O

M
P

IL
E

TI
M

E
R

U
N

 T
IM

E

D
Y
N
A
M
I
C

O
P
T
I

M
I
Z
E
R

E
X
E
C
U
T
I
O
N

F
L
O
W

S
T
A
T
I
C

O
P
T
I

M
I
Z
E
R

E
X
E
C
U
T
I
O
N

F
L
O
W

PROFILES

Figure 3.2: Showcasing different execution flows through the developed infrastructure - On

the left is the Dynamic Optimizer Execution Flow where the run-time bears the overheads of pro-

filing and optimization. On the right hand side is the Static Optimizer Execution Flow where the

compile-time is used for profiling and optimization.

52

3.2 Baseline Ecosystem

Mis-speculation Recovery. The cycle-accurate model, executes the optimized regions, wher-
ever applicable, and is run for 200m user instruction commits. The rest of the program is
executed as non-optimized stream of computations. In case of assertion failures, the instruc-
tions committed from the atomic region are squashed, and the hardware support (as outlined
previously) restores correct program state. Subsequently, the execution continues from the be-
ginning of the optimized region with translated, safe, and correct code (non-optimized narrow
ISA stream).

In a dynamic optimizer model, non-optimized narrow computation stream may be available
via a callback to the dynamic optimizer. However, for evaluation purposes, this thesis assumes
that the non-optimized narrow computation stream is included in the binary in both the static
and the dynamic optimizer model.

53

3. METHODOLOGY

54

4

Global Productiveness Propagation

The two broad techniques proposed in this thesis are – non-productiveness based code pruning

and reordering narrow backslices (introduced in Section 2.3). This chapter describes the first

optimization technique known as Global Productiveness Propagation (henceforth, GPP). GPP

is a specific technique that exploits the non-productiveness based code pruning strategy to

reduce the dynamic code footprint of the narrow ISA programs. It provides the means to

apply the principles of minimum required computations on a code region potentially containing

complex control-flows.

Programs of utility typically consist of possibly interdependent chains of computations

which generate one or more outputs (writes to register or memory storage locations). These

computations that write the outputs have been referred to as the last-writers in this thesis (Def-

inition 2.5). Ideally speaking, only those computations that are producers of values consumed

by the last-writers directly or indirectly are useful. Thinking further along the lines of the min-

imum required computations, a consequent question to ask is – how many of these last-writers

are themselves non-productive ? In other words, how many of these last-writers are updating

the storage locations to the same value as known at the beginning of the region ? If indeed they

are non-productive, neither the last-writers nor their backslices are required for generating the

same (correct) output.

Now having stated the rationale behind GPP, our experiments suggest that there does exist

a non-negligible number of the last-writers which remain non-productive (detailed evaluations

are provided in Section 4.4). On an average, about 33% of the 64-bit last-writers have non-

productiveness1 in the narrow dimension, i.e. at least one chunk of the generated value remains

the same as the input location.

1Static Non-productiveness

55

4. GLOBAL PRODUCTIVENESS PROPAGATION

Hence, the motivation behind GPP is to provide the means to exploit this non-productiveness
in a code region potentially containing complex control-flows. This chapter begins by estab-
lishing a formal definition of GPP. Next, it describes the overall flow of the optimizer, followed
by the design of the optimization (Section 4.2). GPP is then evaluated as a dynamic optimiza-
tion technique (Section 4.4). Finally, the observed roadblocks preventing GPP to achieve its
full potential are evaluated.

4.1 Definition

Informally, GPP is a profile-based optimization technique that speculatively prunes the static
backslices of selected narrow computations : computations that result in the same value (in
their respective storage location) as that at the input of the region.

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

assert r2 = Val2

assert r1 = Val1

GPP

Assertion Computation

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

�
�
�
�
�
�
�

�
�
�
�
�
�
�

r3

r4

Value of r2 in Output State of Region = Val2

Value of r2 in Input State of Region = Val2

Value of r1 in Input State of Region = Val1

Productive
Region Boundary

Value of r1 in Output State of Region = Val1

Last−Writer

Narrow Computation Non−Productive Narrow Computation

Non−Productive Last−Writer

r3

r4

r2

r1

Figure 4.1: The rationale and mechanism of GPP on an abstract region - GPP prunes non-

productive last-writers and their backslices and places assertion-like instructions either at the be-

ginning of the region or at the boundary with the productive region to dynamically contain its

speculation

Figure 4.1 diagrammatically shows the overall mechanism of GPP in an abstract region.
The last-writers of the region are shown in solid black circles. Further assume that the last-
writers to storage locations r1 and r2 are non-productive and that values in the storage locations
remain Val1 and Val2 respectively. Hence, the GPP transformation prunes these non-productive

56

4.2 Description

last-writers and their backslices (excluding those computations which are already in the back-
slice of some other productive last-writer). The pruned computations (non-productive) are
shown with concentric circles.

Non-productiveness is a profile-based inference, and hence, such a pruning remains spec-
ulative. To manage this speculation, GPP reverse-engineers these pruned backslices placing
assertion-like instructions in the rest of the code. GPP always generates self-sufficient code
which can detect unassumed cases by itself. In the event of a successful pruning, the asser-
tion instructions are placed either at the beginning of the region or at the boundary with the
productive region. Refer to Figure 4.1 for the assertion instructions marked in gray.

Hence, GPP can be formally defined as follows.

Definition 4.1 (Global Productiveness Propagation). Global Productiveness Propagation on

a region is an optimization technique that marks for inclusion :

• productive last-writers of the region, and

• the backslices of all productive last-writers of the region.

The backslice (Definition 2.10) comprises of all the narrow computations by following both

the control and data dependences. Henceforth, the above-mentioned set of computations will

be referred to as the GPP set of productive computations. On a parallel note, GPP marks for

exclusion :

• the non-productive last-writers of the region, and

• those computations (in the backslice of the non-productive last-writers) which are not

included in the GPP set of productive computations.

4.2 Description

4.2.1 Overview

Figure 4.2 gives an overview of the overall workflow of the GPP optimization with its compo-
nent passes. As with any profile-guided optimization, there are two main steps – profiling and
optimization.

In the first step of the optimization process, representative regions are detected. Next, the
optimizer creates its auxiliary structures like data dependence graph and control dependence
graphs of these representative narrow ISA program regions. Then, the profiler kicks in and

57

4. GLOBAL PRODUCTIVENESS PROPAGATION

DETECT A
HOT REGION

CONSTRUCT
REGION

VALUE PROFILE
UNTIL N

INSTRUCTIONS

OPTIMIZE
WITH GPP

Initial Steps (Step 1 – Step 3)

TRIGGER
OPTIMIZATION

Create PDG(R) with :
1. Register and Memory
 Dependences
2. Control Dependences

Optimize the region
1. STEP A : Classify Last-Writers
2. STEP B : (For each P last-writer)
 Compute Productive Work
3. STEP C : Rename Registers
4. STEP D : Assertion Rules Generator

 (ARG) Pass
5. STEP E : Post-GPP pass and Code

 Generation

Figure 4.2: Global Productiveness Propagation : An overview with the component passes

collects statistics on the application behavior in context of GPP. This concludes the profiling
phase after which the optimization is triggered. Finally, the optimized narrow ISA regions are
created and buffered for future execution.

4.2.2 Initial Steps

As the first step of the optimization process, hot regions are detected. Hot regions are those
regions of code that contribute the maximum number of committed user instructions in the
commit trace of a program. The selected routines and their coverage have been outlined in
Section 3.1.4.

Next, the Program Dependence Graph [18] (Definition 2.9) of the region is created (hence-
forth, denoted by PDG(R)). GPP requires cognizance of both register dependences (computed
statically) and memory dependences (modeled conservatively). Control dependences are also
duly modeled in the program dependence graph of the region. More details of graph creation
and modeling data dependences can be revisited in the description of CodeAnalyzer in Section
3.1.1.1.

Subsequently, the profiler kicks in and collects statistics on the application behavior in
context of GPP. This profile phase is performed until a configurable number1 of instructions
are committed. GPP relies on two different profiles : (i) Productiveness Profiles, and (ii) Value
Profiles.

1this number is 200m x86 user instructions in our evaluations and is the length of the profile-phase

58

4.2 Description

Productiveness Profiles. To perform GPP on a region, a productiveness profile is required

for each last-writer operation of the region. For each (static) last-writer instruction, the produc-

tiveness profile indicates how many times the instruction is dynamically productive (Definition

2.12) together with the total execution count of the instruction.

Recall that, a dynamic instance of a last-writer computation is dynamically productive if

it drives a change to the value of its associated output storage location (Definition 2.11) in the

output state of the region (as compared to the input state of the region). Thus, to perform pro-

ductiveness profiling for the last-writers to register storage locations of a region, the associated

values in the registers are buffered at the entry of the region. At the exit of the region, the

value in the last-writer’s register locations is compared to that at the entry of the region. Using

these two set of values, the productiveness profile record (for each static last-writer) counts the

following two properties :

(i) the number of times the last-writer is dynamic productive, and

(ii) the total execution count of the last-writer.

Indeed, the cost of productiveness profiles is directly proportional to the dynamic number

of executions of the region being profiled and also the static number of narrow last-writer

computations in the respective region.

Value Profiles. The concept of value profiling has been introduced and exploited in previous

research [6, 7]. GPP requires value profiles of the component edges of the PDG(R). Hence,

value profiling for data dependence edges, as used in this thesis, can be understood as an

extension of value profiling for instructions as proposed in aforementioned previous research.

The component edges in PDG(R) reflect the data-flow relationships between the narrow

computations while accounting for the complex control-flows that may arise in the region being

optimized. In other words, a data-flow edge between two computations reflects a dynamic flow

of value from the producer to the consumer. An edge is uniquely represented for the purpose

of profiling by hashing a tuple of three different values : producer computation PC (program

counter), consumer computation PC, and the register name. Value profiling keeps the top ten

most-used values for each edge. More precisely, GPP relies on most-frequent value profiles of

the data-flow edges. In our model, we keep :

(i) the ten most-frequently occurring values of each edge, and

(ii) the total execution count of each edge.

59

4. GLOBAL PRODUCTIVENESS PROPAGATION

If, for any edge, an overflow case is seen, the least-frequent value is removed in order
to profile for the frequency of the new value. This approach may introduce imprecise value
profiles for those edges which experience highly fluctuating data values in bursts (each new
value may kick out the previous least-frequent value which can otherwise be the most-frequent
value). Hence, the cognizance of the total execution count of the edge is useful in determining
the overall execution-count-bias of the most-frequently occurring value.

Although, we profile all the edges, the overhead of most-frequent value profiling can be
greatly reduced by eliminating some candidate edges, e.g., flag edges, and edges which are
exclusively in the address-generating backslice etc.

At the end of the profile phase (of say N instructions), the final step of the overall flow, i.e.
‘GPP Optimization’, is performed. The next section describes the GPP optimization (Figure
4.2) in more detail.

4.2.3 GPP Optimization

The overall steps of the GPP optimization are presented in Algorithm 1. The pre-requisite
for GPP is that the hot regions(s) to be optimized be represented in the form of a program
dependence graph (PDG(R), containing both the control and data dependences). The PDG(R)
can then be used to infer the region’s last-writers.

The first step for the GPP optimization is to infer productive vs. non-productive last-writers
(Step A in line 1). Then, the algorithm marks all the productive last-writers and their back-
slices as productive (Step B in lines 2-4). The main task now for GPP is to safely prune the
non-productive last-writers and their backslices. Hence, Step D forms the critical part of the
optimization as reflected in lines 6-23 of Algorithm 1. GPP generates self-sufficient code by
embedding assertion-like instructions to detect the mis-speculations dynamically. An assertion
is of the form – assert(storage location == value). The assertion opcodes are essentially com-
pare operations which are used to detect mis-speculation in the dynamic narrow code stream.
This task of embedding assertions in the program dependence graph is performed by the As-
sertion Rules Generator Pass (detailed in Section 4.2.4).

Next, a post-GPP pass (detailed in Section 4.2.5) is performed which carries out a simple
cost-benefit analysis. It also checks for the corner cases, if any, encountered in the Step D of the
optimization. Finally, optimized code with embedded asserts is generated. Next, we elaborate
upon these aforementioned steps of the GPP optimization.

Step A : Classify last-writers. As the first step of the optimization, we infer the productive
and non-productive last-writers of PDG(R). Recall that although the last-writers can be deter-
mined statically, the notion of productiveness of a last-writer is profile-based. In the current

60

4.2 Description

context, productiveness refers to static productiveness (Definition 2.14) and is inferred using
the productiveness profile of the last-writer. In other words, a last-writer which does not change
the value of the storage location (as compared to its value in the input state of the region) most
of the times is termed as non-productive.

ALGORITHM 1: GPP_Optimize_Region

// Step A : Classify last-writers

Get productive and non productive last writers of the region;1

// Step B : Compute productive work

for each productive last writer do2

mark backslice productive;3

end4

// Step C : Rename Registers

Rename selected registers;5

// Step D : Assertion Rules Generator Pass. Bottom-up ARG

for each nonproductive last writer do6

// Some nplws may be in the backslice of prod lw

if last writer is not productive then7

if last writer is dead then8

// No Assertion Required

Propagate Void Assertion Up;9

else10

Get MostFreq Output Value from ValueProfile for the last writer;11

if mostfreq output value of last-writer is biased then12

// Initialize assertion to propagate up

assertionA1← assert(destination register == mostfreq output value);13

if last-writer is not a store operation then14

// Assert for mostfreq output value at entry

insert assertionA1 at the beginning of the region;15

end16

Propagate assertions up until either beginning of region or prod region boundary is17

reached;
else18

mark backslice productive;19

end20

end21

end22

end23

// Step E : Post-GPP pass and Code Generation

PostProcess Contradictions;24

Generate Optimized Code;25

At this juncture, it is beneficial to identify the dead last-writers as well. Recall that dead
last-writers (Definition 2.6) are those last-writers which are always followed by a write to the
storage location after the exit of the region (before a read if any). Thus by definition, dead last-
writers, either productive or non-productive, do not impact the final program state. With regard

61

4. GLOBAL PRODUCTIVENESS PROPAGATION

to GPP, identifying dead last-writers allows simpler handling if they are non-productive (lines
8-10 of Algorithm 1). Note that, detecting dead last-writers is not required for correctness of
the algorithm. Figure 4.3 shows the overall classification of the last-writers performed for GPP.

Last
Writer

alive

Productive Non−Productive

alive deaddead

Figure 4.3: Step A – Classify last-writers - First, the last-writers are classified into productive or

non-productive based on productiveness profiles. Next, they are classified as dead or alive

Step B : Compute Productive Work. After annotating the PDG(R) with productive and non-
productive last-writers, the next step of computing the productive work is performed. This step
marks the following as productive computations –

(i) backslices of productive last-writers, and

(ii) complete control-flow 1 (and fp arithmetic with their backslices) in the PDG(R).

Step C : Rename Registers. To ensure correctness, some registers may need to be renamed.
This pass renames those intermediate writes in the productive backslices of the region, which
write to the same storage location as a pruned non-productive last-writer. In other words, the
issue here is that when a non-productive last-writer (and its backslice) is pruned by GPP, no
intermediate computation must update the storage location with the same name, since they are
not the last-writers.

Step D : Assertion Rules Generator (ARG) Pass. This is the final and critical step of GPP
that reverse-engineers the pruned backslices and inserts the assertions. This pass is integral to
the correctness of GPP because it enables the code to detect, by itself, the assumption failures at

1This set of instructions can be reduced by performing a more accurate analysis and adding control-flow needed

just for the productive last-writer slices. This refinement is postponed for future work.

62

4.2 Description

A1 : Assert(regD == V)

Most−Frequent Value of RegD
at exit is V

A2 : Assert(regS == [V−0x2])

ADD

regD

regS

0x2

Figure 4.4: Deriving rules for a simple region

run-time. In the ARG pass, the PDG(R) is traversed in a bottom-up manner to derive inferences

based on opcodes of computations. The next section gives further details of this pass.

Step E : Post-GPP pass and Code Generation. One of the key aspects of the bottom-up

ARG pass is the process of merging assertions by exploiting producer-consumer relationships.

This allows GPP to prune more computations than embed assertions in most of the cases. To

ensure the cost-effectiveness of GPP further, the algorithm includes a post-processing pass as

well. This post-processing pass mainly performs a cost-benefit analysis to improve the efficacy

of the GPP optimization. For sake of brevity, we only comment on it briefly :

• Redundant Assertions have been observed in some cases. This is especially true when

the bottom-up propagation places assertions on the live-in edges of the region, which

are often repetitive. We perform a dominator and post-dominator analysis to remove

redundancy in these cases.

• Assertion Cost in our model is not only the number of times it executes, but also the

amount of work lost when it fails. Placing assertions while keeping the cost-benefit trade-

offs in mind is beyond the scope of this work. However, we do implement some simple

heuristics, like, not placing asserts at the beginning of region for those non-productive

last-writers which are low on execution count bias with respect to the region (in other

words, the unlikely exits of the region).

4.2.4 Assertion Rules Generator (ARG) Pass

The Assertion Rules Generator (ARG) Pass is used to make the GPP set of productive compu-

tations self-sufficient to detect the assumption failures. Before elaborating on the step-by-step

working of the ARG pass, we first present some basic principles that it applies.

63

4. GLOBAL PRODUCTIVENESS PROPAGATION

Reverse-Engineering One Computation. Consider the region shown in Figure 4.4 consist-

ing of a lone operation: add regD = regS, 0x2 (note that the destination register is different from

the source register). As the region consists of only one computation, the add operation itself is

the last-writer to regD. Let’s assume that this computation generates a value of V in most of its

dynamic instances. If this computation is non-productive (hence, can be removed speculatively

from the region), all dynamic instances must satisfy the following conditions:

• Firstly, value of storage location regD in the input state of the region (Definition 2.7)

must be V (as shown by assertion A1 in Figure 4.4). This assertion must be placed at the

beginning of the region when the last-writer is removed.

• Secondly, value of storage location regS before the computation executes must be (V -

0x2) (as represented by assertion A2 in Figure 4.4).

Note that, assertion A2 is derived as assert(regS == [V-0x2]) because the operation being

pruned is an addition operation. Also note how assertions A1 and A2 are related to each other

: assertion A2 on the input storage location regS is what is required to be true for the output

storage location to satisfy the assertion A1. As far as both assertion A1 and A2 are satisfied

for each dynamic instance of the computation, the speculative removal of the computation is

safe and correct. This process of reverse-engineering each computation is achieved by back-

propagating the assertion requirements through the associated computation.

Table 4.1 specifies non-exhaustively the associated assertion A1 and assertions A2 for se-

lected templates of addition and mov narrow computations. The template associated with the

computation shown in Figure 4.4 is template 2 in Table 4.1. Note that, back-propagation

through some operations (e.g. template 3, template 4, template 5 etc.) does not need the

most-frequent value profile of the input operands 1; it is needed only in case of add template 6.

Similarly, one can derive rules for other arithmetic operations. For the sake of brevity, we

specify (non-exhaustively) the rules for only add, mov and memory operations in Table 4.1

and Table 4.2 respectively. To conclude, reverse-engineering one computation forms the basis

for generating asserts. Evidently, removing one instruction by placing two or three assertion

instructions is not efficient. The following sections explain the techniques we have used to

further propagate and collapse assertions.

1nevertheless, we profile the input operands and do perform a sanity check with the most-frequent value profile

in these cases

64

4.2 Description

Table 4.1: Non-exhaustive template-based assertion rules for opcodes – add, mov. Assertion rules

for sub operation are similar to add operation

Id Instruction Template Assertion A1 Assertions A2

1. add Ra0 = Rb0, [Imm0 = 0x0] assert (Ra0 == V) assert(Rb0 == V)

2. add Ra0 = Rb0, [Imm0 = 0xc] assert (Ra0 == V) assert(Rb0 == [V - 0xc])

3. addc Rai = Rai, [Immi = 0x0] assert (Rai == V) assert (cfin == CV)

4. addc Rai = Rbi, [Immi = 0x0] assert (Rai == V) assert(Rbi == [V - CV]),

assert(cfin == CV)

5. addc Rai = Rbi, [Immi = 0xc] assert (Rai == V) assert(Rbi == [V - 0xc - CV]),

assert(cfin == CV)

6. addc Rai = Rbi, Rci assert (Rai == V) assert (Rbi == XX1),

assert (Rci == XX2),

assert(cfin == CV)

7. mov Rai = Rbi assert (Rai == V) assert(Rbi == V)

CV is the carry flag value. cfin indicates the carry-flag input to the computation.

XX1, XX2 are the profile-based most-frequent values of the respective storage location before the exe-

cution of the operation. A sanity check (that the profile based asserted values satisfy the operation) is

performed for arithmetic operations.

Table 4.2: Assertion rules table for memory operations – load, store

Instructions Assertion A1 Assertions A2

ld Rai = Mem[inaddr] assert (Rai == V) assert ([ld Mem[inaddr]] == V),

assert (Rai eq V)

st Mem[inaddr] = Rai assert (Mem[inaddr] == V) assert ([ld Mem[inaddr]] == V)⊗,

assert (Rai == V)

[⊗] If WAR dependence chain is found, the load based assertion can be removed.

65

4. GLOBAL PRODUCTIVENESS PROPAGATION

Bottom-Up ARG Pass. The bottom-up ARG pass (lines 6-23 in Algorithm 1) essentially
applies the notion of reverse-engineering computations to each non-productive computation in
the backslice of the non-productive last-writer in a cohesive manner.

Recall that a non-productive last-writer does not alter the value of its storage location Si

: the value of Si remains the same1 in the output state of the region as well as the input state
of the region. Hence, to remove the non-productive last-writer from the region, the bottom-up
ARG pass essentially performs three basic steps:

1. Initializes assertion A1 for the non-productive last-writer to assert(Si eq V).

2. Places assertion A1 for non-store based last-writers at the beginning of the region (simi-
lar to Assertion A1 in Figure 4.4). This is essentially placing the first test to see whether
our profile-based assumption (that the computation is a non-productive last-writer) will
be true or not (lines 14-16 of Algorithm 1). Stores are excluded because the storage loca-
tion is memory-based and the exact location is known only after executing the address-
generating backslice.

3. For each non-productive computation C in the backslice of the non-productive last-
writer, do the following :

(i) Perform set union of all the assertions on the successor edges of the computation
C. This action, if successful, must always culminate in a single assertion. It is
termed as merging assertions in the rest of the thesis. For example, in the case of
the abstract computation C in Figure 4.5, a set union of assertion A1, assertion A2
is successful if (Val == X). Let’s call the merged assertion as A3. In the contrary
case of (Val != X), a contradiction is signaled and merging assertion fails (handling
of which is explained in the upcoming section).

(ii) Propagates backward the merged assertion A3 by reverse-engineering the com-
putation C according to the rule-book partially specified in Table 4.1, and Table
4.2. Hence, for this purpose, now assertion A3 is synonymous to assertion A1
for the task of lookup from the rule-book (column 2). This is because assertion
A3 represents the condition to be satisfied for computation C to be non-productive
dynamically.

(iii) Perform the foregoing two steps continually for each non-productive narrow com-
putation in the backslice of the non-productive last-writer until one of the following
events is seen :

1most of the times

66

4.2 Description

• Entry of the region is reached. At this point, the assertion is embedded on the
live-in edge (symbolic edge connecting the computation C with the entry node
of the region).

• A productive region boundary is reached. At this point, the assertion is em-
bedded on the edge connecting the computation C with the parent productive
computation.

Comp

C

edge3

edge2
edge1

A2 : Assert (regD == X)

A3 : Assert (regD == Val)

if Val == X

Merging Successful

A1 : Assert (regD == Val)

Figure 4.5: Backward propagation of assertions through an abstract computation C. This is termed

as merging assertions

4.2.5 The Issue of Contradictory Profiles

This section highlights some of the core issues of the bottom-up Assertion Rules Generator and
explains how each of them is handled. First, Figure 4.6 shows the three theoretical degenerate
possibilities of a producer-consumer relationship graph –

1. Single Producer Single Consumer (SPSC)

2. Single Producer Multiple Consumers (SPMC)

3. Multiple Producers Single Consumer (MPSC).

Lastly, Multiple Producers Multiple Consumers (MPMC) is a combination of the above
three. Next, we define the notion of contradictory requirements. Two assertions for a storage
location are defined as contradictory when their asserted values are not equal to each other.
Note that, in presence of control-flow, existence of such tuples is possible (as we detail next).
Such tuples, if left undetected, may lead to a non-zero probability of the two assertions getting
executed together, and hence, all their combined executions will always fail.

67

4. GLOBAL PRODUCTIVENESS PROPAGATION

P

C
Merging Profiles at P

SPSC SPMC MPSC
P

C1 C2

P2

C
Diverging Profiles from C

P1

Figure 4.6: Possible types of flows – Single Producer Single Consumer (SPSC), Single Producer

Multiple Consumer (SPMC) and Multiple Producer Single Consumer (MPSC)

Single Producer Single Consumer (SPSC). Clearly, SPSC is the simplest case for a bottom-
up analysis. As there is a unique path from producer to consumer, we will never have any issue
of contradictory value profiles.

Single Producer Multiple Consumers (SPMC). SPMC presents points of merging of value
profiles in context of the ARG bottom-up traversal. The issue with merging profiles at the
producer P is that if the most-frequent value of edges P-C1 and P-C2 are contradictory, propa-
gating two different assertions up is seemingly difficult. Further dissecting SPMC as shown in
Figure 4.7, the following types of data-flows between producer and consumer are possible :

• Type I : Two consumers of a producer lie on mutually exclusive paths such that none of
the consumers is a post-dominator.

• Type II : Only one of the consumer is a post-dominator.

• Type III : Both the consumers are post-dominators.

P

C1

C2

P

C1

C2

P

C1 C2

SPMC Type I SPMC Type II SPMC Type III

Contradictions not
possibleRequirement

Data−flow edge

Control−flow edge
Assertion

Figure 4.7: SPMC Classification

Both SPMC Type I and SPMC Type II may lead to failure in merging assertions, if con-
tradictory profiles are seen. In these scenarios, the ARG pass handles the points of contra-
dictory profiles conservatively by marking the point of contradiction as useful (marking P and

68

4.2 Description

its backslice productive) and embedding the assertions above the consumers. More aggressive

techniques like duplication of data-flow are indeed possible, but have not been explored in this

thesis. Lastly, in the SPMC Type III data-flow, contradictions are not possible, because both

the consumers C1 and C2 are post-dominators of producer P, and hence will consume the same

value always.

Axioms. Following must be true in the context of the ARG pass and the existence of SPMC

type data-flows. Ensuring these below-mentioned axioms in the functional implementation

(implemented in line 17 and 24 of the Algorithm 1) of the ARG pass ensures its correctness.

• Amongst the possible SPMC flows, only SPMC Type I and SPMC Type II data-flows

may have contradictory profile requirements. If no events of these types are seen, we

must never encounter any contradictory profiles when merging assertions at any point.

• Two consumer edges in SPMC Type III data-flow must never have contradictory profile

requirements at P. This is because both C1 and C2 will always execute if producer P

executes. Hence, the most-frequent value profile of the edges P-C1 and P-C2 must be

the same.

Multiple Producers Single Consumer (MPSC). Finally, MPSC presents points of diverging

of value profiles in context of the ARG bottom-up traversal. An easy bottom-up propagation

of assertion required to prune the consumer C in presence of diverging profiles from different

sources is also difficult. To elaborate further, MPSC scenario may further be dissected into

different types shown diagrammatically in Figure 4.8 :

• Type I : Consumer Node is a One-Input-Register-Operands Operation

• Type II : Consumer Node is a Two-Input-Register-Operands Operation

P1’’

P1
P1’

[r1 != r2]r1 r2

C

P2’
P2

P2’’

MPSC Type I MPSC Type II

C

r1

P1
P1’

P1’’

Figure 4.8: MPSC Classification

69

4. GLOBAL PRODUCTIVENESS PROPAGATION

Note that, the different data-flow edges P1-C, P ′1-C, P ′′1 -C may arise (see Figure 4.8 –
MPSC Type I) if the consumer C is reachable from different control-flow paths. If the most-
frequent profiles for the same input register, e.g., register r1 (in MPSC Type I) has three differ-
ent profiles on the different paths – P1-C, P ′1-C, P ′′1 -C, the profiles are termed as diverging in
nature. In case of MPSC Type I, this is not an issue, and the ARG pass can safely continue in
a bottom-up manner.

Similarly, due to the presence of complex control-flow in regions, there may exist scenarios
like MPSC Type II shown in Figure 4.8. If the profiles of register r1 and r2 are diverging in
nature, pruning consumer C is difficult without adding support to assert for combination of
values : any combination of the control-flows P-Q, where P ∈ [P1, P ′1, P ′′1] and Q ∈ [Q2, Q′2,
Q′′2] may occur at run-time. The ARG pass handles this scenario conservatively by marking
this point of bifurcation (which is consumer C) as useful (hence, marking all its predecessors
and their backslices productive) and embedding the required assertion below the consumer C.

4.2.6 Cost Analysis

Optimizing a region by GPP involves the sequential steps as shown in Figure 4.2 previously.
The cost of optimizing code regions by GPP is the sum total of the cost of applying each of
these individual steps. The cost of classifying last-writers (Step A) is proportional to the static
number of last-writers of the region to be optimized. Computing productive work (Step B), in
limit, is bounded only by the total number static computations in the region to be optimized
(same as the total number of nodes in the PDG(R) denoted by ‘n’). Next, the cost of the ARG
pass (Step D) is expected to be proportional to nplw * (nnp + enp), where ‘nplw’ denotes the
static number of non-productive last-writer computations, and ‘nnp’ denote the total number
of nodes not marked productive by Step B and ‘enp’ denotes the number of edges in the same
portion of the PDG(R). Hence, as the ARG pass is the most expensive, the cost of performing
GPP is expected to be bounded by n * (n + e) in the worst case.

4.3 Example : Walk-through

To put the overall optimization in context, let us walk through a small region consisting of
a load-compute-store chain as shown in Figure 4.9. The only last-writers of the region are
marked with concentric circles (the stores). Notice that in this region the writes to the higher
three chunks store the same value to memory as that at the beginning of the region, when
there is no carry generated from Chunk0 to Chunk1 (between the add operations). Hence,
as Step A, we detect the productive last-writers (mem.0) and the non-productive last-writers
(mem.3, mem.2, mem.1) based on the profile. Clearly, the productive work is the backslice of

70

4.3 Example : Walk-through

mem.0 (Step B). Step C of renaming is not required as the non-productive last-writers update
a memory-based storage location.

However, for some dynamic instances, we may need to store the higher chunk(s) as well.
To be able to detect those cases at run-time, we perform Step D (the ARG pass) to insert
appropriate assertions. Hence, beginning the bottom-up pass from a non-productive last-writer
(e.g., mem.1), Table 4.1 gives the requisite two assertions – (a) load from memory and assert
that value is V : A1 = assert ([ld inaddr 0x2] == V), and (b) assert that the value being stored
to memory is V : A2 = assert (rax1 == V). Assertion A1 propagates further up to encounter
a WAR dependence with the ld operation and hence is nullified. A2, when propagated up,
encounters the addc operation, which is again non-productive. This addc operation can be
removed, and to ensure that A2 is satisfied, an assert on the previous operation (i.e. add) that
there is no carry flag (refer to add template 3 in Table 4.1) is embedded.

inc rax

st rcx = rax

ld rax = rcx

ADDC ADDC

rax.2

mem.1

rax.1

cf

mem.0

imm=0x22

ADD

STSTSTST

LD LD LD

rax.1

rax.2

rax.0

Backward Propagation
of value = V

ADD

mem.0

rax.0

rax.0

rcx
imm=0x0

imm=0x22

cf

ST

LD

Addr

ASSERT
CF == 0

mem.2mem.3

ADDC

LD

rax.3

rax.0

imm=0x0 imm=0x0 imm=0x0

NO−CHECK

cfcf

rax.3

inaddrinaddr+0x2inaddr+0x4inaddr+0x6

inaddr+0x6 inaddr+0x4 inaddr+0x2 inaddr C
o

m
p

u
ta

ti
o

n
s

R
e
m

o
v

e
d

 =
 9

A
ss

e
rt

io
n

s
A

d
d

e
d

 =
 1

(c
f

 =
=

 0
)

Figure 4.9: GPP at work – (left) Sample code, (right) Computations Removed vs. Assertions

Placed

Note that to prune the backslices, cognizance of a WAR memory dependence is exploited.
However, this aliasing information may sometimes be easily deduced at the compiler level
(especially stack based communication, spill code, callee save and restore memory operations,
and absolute address based memory operations).

Hence, in this example, GPP removes 9 operations and inserts 1 assertion, assert (cf ==
0) after the add operation. Most importantly, we can observe that the computations which are
removed by GPP cannot be removed by significance compression [4], UVP or VRS techniques
[9] proposed previously. This is because the value of rax may as well be 64-bit significant([4,
8]) or useful ([5, 9]).

71

4. GLOBAL PRODUCTIVENESS PROPAGATION

Discussion. GPP optimization technique, in the current form, has limited mechanism for cap-
turing dynamic non-productiveness in a region (multiple specialized versions of the region may
allow to tap dynamic non-productiveness in the true sense). Further, conceptually a region can
be any piece of program code; and the notion of productiveness can be applied at other granu-
larities too. However, in this thesis, we evaluate GPP considering functions as regions. Further,
we consider only non-recursive functions (with their child functions inlined). Functions are a
logical choice given the two-fold goals of achieving larger size of backslices and also minimal
number of productive last-writers. Lastly, the dependence chain in Figure 4.9 has been chosen
for sake of understanding. One of the realistic examples exploiting the data-property of pro-

ductiveness is a chain of stack-address-increment and stack-address-decrement operations (as
the higher chunks of the address will be significant and useful but not productive).

4.4 Evaluation

In this section, the performance of the proposed optimization is evaluated. First, we briefly
revisit the experimental framework (already described in Chapter 3) in the context of GPP to
aid the understanding of the upcoming evaluations. The performance of GPP is compared
against the baseline narrow processor, which is an in-order 16-bit integer datapath processor
combined with a realistic narrow translator.

Different aspects of GPP have been highlighted – reduction in computations, reduction in
the number of cycles consumed to accomplish the same amount of work, assertion failure statis-
tics and finally, classification of the dynamically committed narrow stream to understand the
code coverage of the optimized regions. Lastly, in Section 4.4.4 we compare GPP’s achieved
performance against the disposable potential projected in a perfect environment. This study
helps identifying the observed roadblocks, which moving forward, can aid in making GPP
more effective.

4.4.1 Experimental Framework

GPP has been evaluated as a dynamic optimization, because preliminary evaluations indicate
that it is sensitive to noise in profiles. Hence, the baseline assumed for these evaluations is a
narrow processor with support for dynamic optimizations. Simplistically speaking, the evalu-
ation of GPP does not account for the overheads of profiling and optimization of the narrow
code stream.

Table 3.1 shows the simulation configurations for evaluating GPP on a narrow processor.
We model an in-order processor of an issue width of up to four instructions per cycle and

72

4.4 Evaluation

compare the performance of a ‘narrow processor with the GPP optimized code’ against that of
a ‘narrow processor without such an optimization’.

The execution model profiles for first 200m x86 user instructions (after skipping the pro-
gram initialization phase) and then triggers the GPP optimization. Table 3.3 shows the percent-
age of the committed stream which is optimized (Expected Coverage) by GPP. Regions have
been evaluated with a most-frequent profile bias threshold of 90% and 95% (line 12 of Algo-
rithm 1). This means that computations that are not biased 90% and 95% of their executions to
a single value in their profile are considered productive.

The optimized regions are then used in the cycle-accurate processor model for the next
200m x86 user instructions. At the beginning of the execution of the optimized region, the
system state is checkpointed. In case of an event of assertion failure in the optimized region,
hardware support restores correct program state by copying the checkpointed system state. The
execution then resumes with re-translated, safe, correct code (non-optimized stream of narrow
ISA computations) of the region (i.e., function in this evaluation).

4.4.2 Productiveness of Last-writers

As previously mentioned in Section 1.4, another profile-based speculative optimization tech-
nique proposed in previous literature which is somewhat related to GPP is Value Range Specu-
lation (VRS [9]). VRS is related to GPP as both the techniques aim to exploit narrow computa-
tions for reducing dynamic code footprint. The VRS technique specializes hot code by using on
the dynamic value range profiles. It involves a cost-benefit analysis which prioritizes energy-
savings expected from the specialization of a certain candidate. VRS basically duplicates the
regions of code that are affected by the specialization, and then inserts tests to dynamically
select the region that will be executed: either the specialized or the non-specialized one.

Overall, the optimization methods of VRS and GPP are very distinct from each other.
Hence, we only compare how the trigger points of the two vary.

Figure 4.10 shows a study of productiveness of the dynamic 64-bit last-writer computations
and provides a breakdown of the percentage of 64-bit last-writers which have only ‘n’ lower
chunks productive, where n ranges from 0 to 3. ‘all-chunks’ indicates those operations which
need to generate all the required chunks. Recall that the number of required chunks may not
necessarily be four in number because the narrow translator does not always generate compu-
tations for all 4 chunks as outlined in Table 2.7 due to x86 opsize specification. It can be seen
that –

• About 7% last-writers have all chunks as non-productive (see 0-chunk in Figure 4.10).

• 60% have all chunks as productive.

73

4. GLOBAL PRODUCTIVENESS PROPAGATION

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

bzip2-getRLEpair
bzip2-spec_getc
bzip2-fullGtU
bzip2-qSort3
bzip2-spec_ungetc
bzip2-simpleSort

crafty-Evaluate
crafty-EvaluateXPawns
crafty-MakeMove
crafty-Attacked
crafty-UnMakeMove
crafty-NextMove
crafty-Swap

eon-_ZNK13mrXList10
eon-_ZNK6mrXHit
eon-_ZNK6mrGridXHit
eon-_ZNK10mrXHit
eon-_ZNK13mrXHit
eon-_ZN10ggXEf
eon-_Z25ggRayX
eon-_ZNK19mrX

gzip-X_match
gzip-send_bits
gzip-ct_tally
gzip-updcrc
gzip-X_block

mcf-refresh_potential
mcf-primal_bea_mpp

parser-xalloc
parser-match
parser-X_prune
parser-X_list
parser-xfree

perlbmk-_IO_getc
perlbmk-X_str
perlbmk-X_gets
perlbmk-X_bcopy
perlbmk-X_malloc
perlbmk-tokeq

vpr-try_swap
vpr-update_bb
vpr-my_irand

Avg

VRS-Avg

D
is

tr
ib

ut
io

n
of

 L
as

t-
W

rit
er

 N
ar

ro
w

 O
pe

ra
tio

ns
 w

rt
 th

ei
r

W
id

e
C

ou
nt

er
pa

rt
s

0-
ch

un
k

1-
ch

un
ks

2-
ch

un
ks

3-
ch

un
ks

al
l-c

hu
nk

s

Figure 4.10: Distribution of productiveness of last-writers - Histogram distribution of all dy-

namic instances of last-writer 64-bit computations to compare GPP trigger points vs. the Value

Range Speculation technique’s trigger points

74

4.4 Evaluation

• The rest of the last-writers (sum of 1-chunk, 2-chunks and 3-chunks in the histogram),

i.e., about 33% have non-productiveness in the narrow dimension.

The number of chunks required by VRS to optimize a trigger point A is calculated as the

maximum of the number of chunks required to represent the range of values at A, i.e, sign-

extended MinValue and MaxValue of A. As the right-most bar in Figure 4.10 illustrates, GPP’s

definition of productiveness is more aggressive and invades farther in the narrow dimension of

the last-writers, and hence offers 2x more trigger points than the VRS.

4.4.3 GPP Evaluation

As stated previously, this section compares the performance of a ‘narrow processor with the

GPP optimized code’ against that of a ‘narrow processor without such an optimization’. The

performance metrics for GPP include – number of cycles , assertion failure statistics, and num-

ber of computations. Recall that one of the configuration parameters of GPP is – most-frequent

value bias threshold (refer to line 12 of Algorithm 1). We evaluate two potential candidate

values for the same – threshold=90% and threshold=95% to furnish some insights on the sen-

sitivity of GPP to the most-frequent value bias threshold.

Reduction in Number of Cycles. Figure 4.11 shows the overall gains achieved by GPP in

terms of reduction in the execution time in cycles, as measured for two different thresholds of

90% and 95%. Further, three different narrow processor configurations with respect to issue

width are analyzed : issue widths of 1, 2, and 4. Both the experiments with the thresholds

of 90% and 95% account for overheads of assertion failures : on account of an assertion fail-

ure, speculatively committed narrow computations are squashed, and correct program state is

restored.

On an average, up to 4.5% reduction in the number of cycles for a 1-issue, in-order narrow

processor can be achieved. A reduction of 2.7% and 2.1% in the number of cycles can be

achieved in a 2-issue, and 4-issue configuration respectively. Mcf stands out with the lowest

penalty in execution time in the narrow paradigm (refer to Figure 2.2), and low overall gains

because it is mainly memory-bound. Vpr, as one of the model programs, achieves up to 9%

reduction in the number of cycles.

Assertion Failures and Variation with different Thresholds. Non-negligible assertion fail-

ures exist only for crafty, parser and perlbmk (Figure 4.11). The primary causes of high failure

rates in crafty for a threshold of 90% are :

75

4. GLOBAL PRODUCTIVENESS PROPAGATION

 0 2 4 6 8

 1
0

 1
2

 1
4

 1
6

bz
ip
2cr

af
tyeo

ngz
ip

m
cf

pa
rs

erpe
rlb

m
k

vp
r

A
vg

 0 2 4 6 8 1
0

 1
2

 1
4

 1
6

Percent Reduction in Execution Time
 over N

Assertion Failure Rate in percentage

th
re

s
h
o
ld

=
9
0
%

1
 i
s
s
u
e
 w

id
th

2
 i
s
s
u
e
 w

id
th

4
 i
s
s
u
e
 w

id
th

a
s
s
e
rt

-f
a
il
-r

a
te

 0 2 4 6 8

 1
0

 1
2

 1
4

 1
6

bz
ip
2cr

af
tyeo

ngz
ip

m
cf

pa
rs

erpe
rlb

m
k

vp
r

A
vg

 0 2 4 6 8 1
0

 1
2

 1
4

 1
6

th
re

s
h
o
ld

=
9
0
%

th
re

s
h
o
ld

=
9
5
%

Figure 4.11: Gains achieved by GPP – Reduction in the number of cycles achieved by two con-

figurations of GPP by varying the most-frequent value bias threshold : threshold=90% and thresh-

old=95%

76

4.4 Evaluation

(i) Value profile phase change : GPP has been evaluated as dynamic optimization. This im-

plies that the input data-set is the same for the profile-phase as well as the cycle-accurate

phase. However, crafty experiences a phase change with respect to the value profiles.

This accounts for some of the failures in the cycle-accurate phase.

(ii) Low most-frequent value bias threshold : A most-frequent value bias threshold of 90% is

more speculative than a threshold of 95%.

Low assertion failure rates for bzip2, mcf, gzip, eon etc. indicate that the value profiles ex-

ploited to prune computations by GPP and to embed value-based assertions are very pre-

dictable. Hence, a most-frequent value bias threshold of 90% suffices. As can be seen, the

assertion failure rates for crafty reduce greatly with threshold=95%, and hence, higher benefits

are achieved both with respect to the number of cycles and the dynamic number of narrow

computations (Figure 4.12).

 0

 2

 4

 6

 8

 10

 12

 14

bzip2
crafty

eon
gzip

m
cf

parser

perlbm
k

vpr
Avg

P
er

ce
nt

 o
f C

om
pu

ta
tio

ns
 o

ve
r

N
on

O
pt

reduction-GPP-90%
reduction-GPP-95%

assert-ovhd-GPP-90%
assert-ovhd-GPP-95%

Figure 4.12: Benefits vs. Cost of GPP in terms of number of computations over baseline

Overall Gains : Computations Reduced vs. Overheads. Figure 4.12 shows the overall

performance of GPP for both the most-frequent value bias thresholds of 90% and 95%. Two

set of bars are shown for each program :

77

4. GLOBAL PRODUCTIVENESS PROPAGATION

(i) reduction-GPP : Percentage of dynamic narrow computations removed by GPP with re-
spect to the non-optimized dynamic narrow stream of computations.

(ii) assert-ovhd-GPP : Percentage of dynamic assertion computations added by GPP with
respect to the non-optimized dynamic narrow stream of computations.

The assertions embedded by the ARG pass have very low run-time overhead : an average
of less than 1% (they are non-zero in all the programs). Overall, 6.6% of the committed stream
is reduced by GPP (after accounting for the assertion overheads). Benchmarks with relatively
higher coverage (refer to Table 3.3) yield better results (vpr, gzip, crafty) than those with low
coverage (bzip2, parser). Although about 90% stream is optimized in eon, it does not perform
so well, as it has many fp ops embedded in the regions. It is interesting to note that vpr (with an
overall coverage of∼99%) achieves 12% reduction in the operation stream and∼9% reduction
in the number of cycles consumed in the configuration with an issue width of 1.

Dynamic Stream Classification. A deeper insight on code coverage achieved with GPP
(with most-frequent value bias threshold of 95%) can be gained from Figure 4.13, which shows
the breakdown of the committed narrow stream in the following categories –

1. commit-success shows the narrow operations from the optimized region when the regions
commit successfully,

2. squashed shows the narrow operations lost due to assertion failures, including the asser-
tions themselves, and

3. non-optimized shows the narrow operations committed from the non-optimized regions.
This may be either due to originally untouched regions (as GPP selectively optimizes
hot regions only) or due to an assertion failure in an optimized region causing a roll-back
followed by execution and commit from safe, non-optimized version of the code.

Note that, overall 60% of the committed stream is optimized across benchmarks. Further,
work squashed due to assertion failures is also minimal, indicating that assertion failures mostly
occur close to the beginning of the region.

4.4.4 Observed Roadblocks

As previously discussed in Section 2.4.3.3, the disposable potential of GPP in an unrestricted,
perfect scenario has been observed to be around 25% in terms of reduction in the number of
committed narrow computations. However, the achieved reduction in computations is around

78

4.4 Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

bzip2
crafty

eon
gzip

m
cf

parser

perlbm
k

vpr
Avg

Breakdown of Committed Narrow Operations Stream

non-optimized
squashed

commit-success

Figure 4.13: Breakdown of the committed narrow operations stream

6.6%. In this section, we analytically examine the pathologies leading to this difference be-

tween the expected vs. the achieved gains. Figure 4.14 shows various configurations simulated

for the same subset of selected functions as those for the experiments to measure the disposable

potential of a more Global Productiveness Analysis (results shown in Figure 2.8 in Section

2.4.3.3). For each function –

1. PerfMem bar shows the percentage reduction in the dynamic narrow computations with

respect to the dynamic non-optimized narrow computations for the 100 statistically sam-

pled dynamic executions of the respective function. For each dynamic instance of a

function, oracle dependences (both register and memory) are assumed, and the dynamic

non-productive last-writers and their backslices are pruned assuming no restrictions or

overheads of any kind. Oracle data dependences are those register and data dependences

which are observed only in that particular dynamic instance of the function; memory de-

pendences are assumed to be perfectly disambiguated for each dynamic instance. Hence,

PerfMem bars show the dynamic potential of GPP, if possibly 100 different dynamic ver-

sions of the code were to be considered (one for each of the 100 samples).

2. RealMem-Expected bar shows the percentage reduction in the dynamic narrow computa-

tions with respect to the dynamic non-optimized narrow computations when all the static

79

4. GLOBAL PRODUCTIVENESS PROPAGATION

non-productive last-writers of the respective function and their backslices are pruned as-
suming no restrictions or overheads of any kind. However, memory dependences are
now modeled conservatively. Hence, RealMem-Expected shows a more realistic poten-
tial of GPP, if a single static version of the GPP code (in wake of conservative memory
dependences but assuming no overheads) were to be considered.

3. RealMem-Achieved bar shows the percentage reduction in the dynamic narrow computa-
tions with respect to the dynamic non-optimized narrow computations when all the static
non-productive last-writers of the respective function and their backslices are pruned
with realistic dependence modeling and with other restrictions induced due to the GPP
optimization like most-frequent value bias threshold and contradiction handling (Section
4.2.5). However, no assertion overheads are modeled yet.

All the individual bars show the average ratios as measured for the first 200m x86 user
instruction commits. Following insights can be gained from these evaluations :

1. The gap between PerfMem and RealMem-Expected holds because of two main reasons :

• Memory dependences were modeled conservatively in the latter. This makes pro-
ductive and non-productive backslices share more computations and hence, less
computations are pruned by GPP.

• Not all dynamic non-productive last-writers (trigger points of PerfMem) are static
non-productive last-writers (trigger points of RealMem-Expected).

2. The gap between RealMem-Expected and RealMem-Achieved is negligible. This sug-
gests that the computations lost due to other features of GPP like contradiction han-
dling, and unbiased non-productive last-writers handling (use of most-frequent profile
bias threshold as shown in line 12 of Algorithm 1) are limited.

3. The code-coverage in all three configurations – PerfMem, RealMem-Expected, and RealMem-
Achieved is 100% as only particular functions are considered. The code coverage of GPP
in the case of the final evaluations depicted in Figure 4.11 and Figure 4.12 is around 60%
as only hot regions are optimized by GPP.

This study also reflects the importance of a robust memory dependence modeling strategy
and inclusion of code duplication. Both these strategies can be effectively used to ensure that
the non-productive and productive backslices are as segregated as possible. Lastly, code cov-
erage also has an important role to play in further reducing the dynamic code footprint of the
narrow ISA via GPP.

80

4.4 Evaluation

 5

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

 5
5

getRLEpair

spec_getc

fullGtU

Evaluate

EvaluateXPawns

MakeMove

_ZNK13mrXList10

_ZNK6mrX9XHit

_ZNK6mrX10XHit

longest_match

send_bits

ct_tally

_IO_getc

Perl_scan_str

Perl_sv_gets

try_swap

update_bb

my_irand

Avg
Percentage Reduction in Number

 of Committed Narrow Computations
 over Nonopt Stream

P
e
rf

M
e
m

R
e
a
lM

e
m

-E
x
p
e
c
te

d
R

e
a
lM

e
m

-A
c
h
ie

v
e
d

Figure 4.14: Pinning down the bottlenecks in GPP - A subset of selected functions have been

evaluated with three different configurations

81

4. GLOBAL PRODUCTIVENESS PROPAGATION

4.5 Conclusions

In this chapter, we have proposed the first productiveness-based compilation technique to re-
duce the dynamic code footprint of the narrow ISA. The technique incorporates a profile-based,
speculative, aggressive code pruning strategy.

Given a code region, Global Productiveness Pruning distinguishes between useful (produc-
tive) and useless (non-productive) narrow ISA computations based on profile data. In order to
prune the latter group of instructions, asserts are properly placed to redirect the execution to a
safer version of the code when the assumed conditions do not hold at run-time. Overall gains
by GPP are up to 6.6% reduction in the committed stream and 4.5% reduction in the number of
cycles for a 1-issue, in-order narrow processor, when an average of 60% of the code has been
optimized via GPP.

It has been observed that one of the main potential stumbling roadblocks is a conserva-
tive memory dependence analysis assumed by GPP. Other robust and aggressive schemes for
memory dependence modeling must be studied to unleash the full potential of GPP. As GPP is
already speculative in nature, we believe that further speculation on even memory dependences
may also be easily accommodated. Conservatively modeled memory dependences cause large
fan-out in a bottom-up data-flow analysis and hence, a reason for further conservative actions
for code pruning techniques. In this regard, not only an aggressive memory dependence mod-
eling but code duplication may also be useful. Lastly, strategies to enhance coverage of the
optimization may also fetch significant benefits.

82

5

Local Productiveness Pruning

In this chapter, we formalize and describe the second optimization technique under the broader

technique of non-productiveness based pruning. The optimization is called Local Productive-

ness Pruning and aims to reduce the dynamic code footprint of the narrow ISA. It applies the

heuristic of productiveness to the smallest possible region, i.e. single narrow computation, in

isolation. As evaluated in Section 2.4.3.2, assuming a perfect, advance knowledge of the data

values generated by each narrow computation, a pruning strategy at such a fine grain granularity

has shown a potential reduction of about 48% in the number of dynamic narrow computations.

This chapter begins by establishing a formal definition of Local Productiveness Pruning.

Next, it describes the overall flow of the optimizer, followed by the design and implementation

of the optimization. Local Productiveness Pruning is a profile-based, speculative code pruning

strategy and shares some of its aspects with the previously discussed optimization technique

(GPP). Both the similarities and differences with GPP are highlighted in appropriate sections

throughout the chapter. Local Productiveness Pruning is then evaluated in both static as well as

dynamic optimizer model. Finally, the observed roadblocks preventing Local Productiveness

Pruning to achieve its full potential are highlighted.

5.1 Definition

Local Productiveness Pruning (henceforth, LPP) is a speculative, profile-guided code opti-

mization technique that prunes out individual non-productive narrow ISA computations based

on their productiveness bias, when viewed in isolation. More precisely, LPP can be formally

defined as follows :

83

5. LOCAL PRODUCTIVENESS PRUNING

 1. Find Hot Regions
 2. Construct Dependence Graph
 3. Value Profile until N instructions

USE PROFILE TO OPTIMIZE

PROFILE

 4. LPP Optimize

STEP A : Determine Non-productive Computations
 STEP B : Generate Assertions (ARG Pass)

STEP C : Classify Non-productive Computations
Group 0 No Assertion Required
Group 1 Encode Assertion
Group 2 Embed Assertion

 STEP D : Reduce Assertion Overheads

OPTIMIZE

Remove
Non-productive
Computation

Figure 5.1: Local Productiveness Pruning : An overview with the component passes

Definition 5.1 (Local Productiveness Pruning). Local Productiveness Pruning on a region is

a speculative optimization technique that marks for inclusion an individual productive narrow

computation. Conversely, LPP marks for exclusion the non-productive narrow computations.

Recall that, unless otherwise stated, the notion of productiveness relates to static produc-
tiveness (Definition 2.14). Further, static non-productiveness is a profile-based inference drawn
from the dynamic non-productiveness (Definition 2.11) of the individual computation. Finally,
in the context of LPP, an optimization region consists of a single narrow computation. Hence,
all computations are last-writers by definition. All the foregoing inferences are the direct out-
come of the previously mentioned background definitions in Section 2.4.1 and more advanced
definitions in Section 2.4.2.

5.2 Description

5.2.1 Overview

The overall workflow of the LPP optimization is depicted in Figure 5.1. As LPP is a profile-
guided optimization, there are two main components of the optimization process – profile-
generation phase, and profile-use and optimization phase.

The profile-generation phase for LPP collects both productiveness profiles and values pro-
files for the hot regions of a program. Unlike GPP, the optimization region (Definition 2.3) for

84

5.2 Description

LPP is a single narrow computation. As productiveness is a profile-based inference, we need
to devise ways to detect the unassumed cases (i.e. those dynamic instances when the pruned
computation turns out to be productive) to ensure correctness of the optimization. LPP opti-
mization algorithm achieves this via a software-based approach : it reverse-engineers each non-
productive computation and embeds sufficient checks (auxiliary assertion-like instructions) in-
side the region to enable it to detect the unassumed cases. This is achieved by a backward-
traversal of connected computations in a region at hand to infer the dynamic assertion-based
checks via an adapted version of the Assertion Rules Generator (ARG has been previously
introduced in Section 4.2.4).

Comparison with GPP. Compared to GPP, LPP adopts a similar overall approach towards
code pruning – first, learning productiveness based on profiles, followed by pruning compu-
tations, and finally generating assertions to make the code self-sufficient. The essence of the
LPP optimization, however, lies in viewing each individual narrow computation in isolation,
much unlike GPP which views a chain of computations as a potential single-unit for prun-
ing. The advantage of working on individual narrow computations in isolation is that it allows
more fine-grained maneuvering as compared to slice-based pruning adopted in GPP. Further
differences between the approach of LPP vs. GPP are described over the course of this chapter.

5.2.2 Initial Steps

The initial steps to obtain profiles before optimizing the narrow code stream are similar to those
required for GPP (Section 4.2.2). Nonetheless, in this section we briefly outline the main steps
again for sake of clarity.

As the first step of the profile-generation process, hot regions are detected. These are those
regions of code that contribute the maximum number of user instructions in the committed
trace of a program. Next, a control and data dependence graph[18] of the region, denoted
by PDG(R), is created with all register and memory dependences. Memory dependences are
handled conservatively.

The profiling required for LPP is similar in concept to that required for GPP (a detailed
overview has already been provided in Section 4.2.2). In summary, the two profiles required
are :

• Productiveness Profiles : For each static narrow computation, the productiveness profile
indicates how many times the computation has been dynamic productive and the total
execution count of the instruction in the profile-phase. Recall that, a dynamic instance
of a computation is (dynamic) productive if it drives a change in the associated output
storage location (Definition 2.12).

85

5. LOCAL PRODUCTIVENESS PRUNING

In case of LPP, as the optimization region is a single narrow computation, the values of
the storage location before and after the computation are observed to infer its produc-
tiveness. This is unlike GPP, where the value of the storage location in the entry and exit
of the region are monitored. Hence, productiveness profiling for LPP requires relatively
less book-keeping as compared to GPP. LPP requires productiveness profiles for almost
all static narrow computations, as against GPP which requires productiveness profiles for
only the non-productive last-writer computations.

• Value Profiles : LPP also requires value profiles [6, 7] of the component edges of the
PDG(R) of the region being optimized. A detailed overview of value profiling for GPP
has already been provided in Section 4.2.2. In summary, value profiling for LPP requires
the most-frequent value profiles of the edges. In our model, we keep :

1. the ten most-frequently occurring values of each edge, and

2. the total execution count of each edge.

The component edges in PDG(R) reflect the data-flow relationships between the narrow
computations while accounting for control-flow, if any. In other words, a data-flow edge
between two computations reflects a dynamic flow of value from the producer to the
consumer. Hence, the number of component edges in the PDG(R) of the region to be
optimized is a function of how complex the internal control-flow of the region is. As a
logical extension, the cost of value profiling for LPP is expected to be lower than that for
GPP, as the optimization region for GPP can potentially contain more complex control-
flow.

At the end of the profile phase (of say N instructions1), the generated profiles are ready to
be used to carry out the profile-guided optimization, and ‘LPP Optimization’ is performed.

5.2.3 LPP Optimization

This section describes the overall workflow of the LPP optimization (Figure 5.1) in more detail.

5.2.3.1 Step A : Determine Non-productive Computations

For each narrow computation, the first step is to measure its profile-based bias towards being
non-productive. This is achieved by calculating the Non-productiveness Ratio (NPR) defined
as follows :

1N is 200m x86 user instructions in our evaluations

86

5.2 Description

Definition 5.2 (Non-productiveness Ratio (NPR)). Non-productiveness Ratio (NPR) of a

computation c is calculated as ratio of the number of times a dynamic instance of a narrow

computation is non-productive to the total number of times the computation is profiled. Math-

ematically, it is evaluated as :

NPRc =

[
Number of T imes Computation c is Dynamic Nonproductive

Total Number of T imes Computation c is Profiled

]
∗ 100

(5.1)

Further, a configurable threshold called the NPR_Threshold (typically in the range of 90-
100%) is used to filter those computations that will most-probably be non-productive. Such
computations whose NPR is higher than NPR_Threshold are marked as non-productive com-
putations. Once the non-productive computations are inferred based on the profile, the algo-
rithm prunes them and embeds assertions for ensuring correctness, using the Assertion Rules
Generator Pass (henceforth, ARG pass).

5.2.3.2 Step B : Generate Assertions (ARG Pass)

The fundamental strategy of the ARG pass for LPP is adapted from that explained in Section
4.2.4. For sake of clarity, we first revisit it to show how LPP derives the rules required for non-
productiveness of a narrow computation. The ARG pass eventually applies this basic logic
recursively on all non-productive computations.

Recall the scenario where the single computation in the region (Figure 5.2) : add regD =

regS,0x2 is non-productive (and hence can be removed speculatively from the region). In order
to ensure that this pruning is safe for all future executions, all dynamic instances must satisfy
the following conditions:

• Firstly, value of storage location regD before the computation is V (as shown by assertion
A1 in Figure 5.2). This assertion is placed before the computation.

• Secondly, value of storage location regS before the non-productive computation executes
must be (V - 0x2) (as represented by assertion A2 in Figure 5.2).

Hence, in this example, the analysis potentially removes one computation and places two
assertions. Placing multiple assertions per single pruned computation is clearly not a cost-
effective approach. However, there are two facets of this issue :

87

5. LOCAL PRODUCTIVENESS PRUNING

A1 : Assert(regD == V)

Most−Frequent Value of RegD
at exit is V

A2 : Assert(regS == [V−0x2])

ADD

regD

regS

0x2

Figure 5.2: Deriving rules for a simple region

1. As shown later, pruning some computations correctly does not need multiple (or even
single) assertions. This is exploited in the Step C of the LPP optimization pass by clas-
sifying computations into groups.

2. The ARG pass merges the assertions based on basic producer-consumer relationships,
and hence reduces redundancy of assertions. This is exploited in the Step D of the LPP
optimization pass.

3. The ARG pass may also compress the assertions by exploiting a 3-bit encoding scheme
for register values. This too is exploited in the Step D of the LPP optimization pass.

5.2.3.3 Step C : Classify Non-productive Computations

In this section, we introduce the classification of the narrow computations – Group0, Group1,
Group2, Group3 in the increasing order of the required complexity to exploit their non-productiveness.
This section also reflects upon the data property which is responsible for the high number of
non-productive computations across programs.

Group0 : Statically Determinable Non-productive Computations. These are those com-
putations whose outcome can be determined statically by analyzing the computation by itself
and without any propagation of data values or other statically available information across
instructions. For example, the outcome of the instruction – mov inaddr3 = 0x2aab, can be
inferred statically. Specific examples of Group0 type of computations are given in Table 5.1.

The relevance of identifying Group0 computations in the current context is that they do
not need any assertions at run-time to ensure their non-productiveness. For example, the mov
inripi = Immi operations are generated to update the internal register inaddr with the target

88

5.2 Description

Table 5.1: Instruction templates for Group0 instructions

Id Group0 Instruction Templates ; No Asserts are Required for pruning them

1. mov inripi = Immi

Taken Addr Generation Ops for Branch Operations. Mov Taken IP addr for a

Branch; inrip is an additional internal register used for branching.

2. mov inaddri = Immi

Selected Addr Generation Ops for Memory Operations. For example, the abso-

lute address of the mem ops that access global variables is often known statically.

Recall that inaddri is a chunk of the internal register for memory accesses.

3. xor raxi = raxi, [Immi = 0x0]

maskc raxi = raxi, [Immi = 0xff]

Logical Operations where the mask makes the operation an identity operation.

address of conditional and unconditional branches. In case of indirect jumps the target address

is first loaded from the memory. Note that, a simple static analysis of the control-flow of the

program is sufficient to determine the non-productiveness of such operations.

Hence, it must be emphasized that Group0 computations can also be eliminated by the

narrow translator by incorporating an additional minimal data-flow analysis in itself. For sake

of simplicity, however, the inference of Group0 non-productive computations remains profile-

guided.

Table 5.2: Instruction templates for Group1 instructions. The required assertions for these compu-

tations can be encoded by special operation-and-assert opcodes. ‘cf’ indicates carry flag and ‘of’

indicates the overflow flag

Id Instruction Templates (Group1) Required Assertion (Requires Modi-

fied Opcode Add/Sub-n-Assert)

1. subc rspi = rspi, [Immi = 0x0] subc(!of) rspi−1 = rspi−1, Immi−1

Decrement Index / Pointer

2. addc raxi = raxi, [Immi = 0x0] addc(!cf) raxi−1 = raxi−1, Immi−1

Increment Index / Pointer

89

5. LOCAL PRODUCTIVENESS PRUNING

Group1 : Flag-Dependent Identity Operations. These are those addition / subtraction op-

erations that have the following two characteristics :

(i) same source and the destination register storage locations, and

(ii) a small-immediate to increment and decrement the value held in the register storage lo-

cation (refer to Table 5.2).

For example, addc rax1 = rax1, 0x0 is the narrow add operation that updates the chunk1

of the 64-bit rax register and is generated as part of the translation of the 64-bit add operation

: add rax = rax, 176. As the source and the destination registers are the same, in order to

assert the dynamic non-productivity of this operation, it is sufficient to assert that the carry

bit generated by add rax0 = rax0, 0x176 is zero. Table 5.2 shows two generic templates of

Group1 computations.

The relevance of identifying Group1 computations in the current context is that they can be

effectively pruned by using auxiliary opcodes : additional opcodes which perform two func-

tions in conjunction – Add/Sub and Assert no ConditionCode.

This group also underlines a fundamental difference of strategy between LPP and the re-

lated previous work of Value Range Speculation (VRS) [9] which can uncover narrow bitwidth

computations. Recall that VRS is a code optimization technique whereby code regions are

optimized for value ranges. Compared to VRS, LPP allows safe pruning of even those compu-

tations which VRS deems useful (and hence, cannot be removed by VRS); because the value

range may be wide, but the change in value may still be narrow. For instance, an add rax0 =

rax0, 0x1 operation, in an infinite loop, will generate a carry only once in 216 executions and

can be inferred as non-productive. It cannot be removed by VRS, however.

Group2 : Complex LPP Operations. Group2 set of computations are essentially all non-

memory (and non-Group0, non-Group1) computations which when non-productive, require at

least one added assertion for their safe removal.

Some templates of Group2 computations are given in Table 5.3. For example, an addc rax1
= rdx1, rcx1 operation, if non-productive, will require assertions on both input and output

storage locations. Hence, to remove this narrow computation, the following assertions are

required : assert (rdx1 == Val1), assert (rcx1 == Val2), and assert (rax1 == Val3), where

Val1, Val2, and Val3 are the most-frequent profile values satisfying the equation that Val3 =

Val1+Val2.

90

5.2 Description

Table 5.3: Instruction templates for Group2 instructions. Pruning each Group2 computation re-

quires at least one explicit assertion operation

Id Instruction Templates (Group2) Required Assertion(s)

Single Assertion (Low Overhead)

x86 merging rules for a 32-bit operation forces the higher chunks to zero.

1. (a) mov rax2 = zero

(b) mov rax3 = zero

(a) assert (rax2 == zero)

(b) assert (rax3 == zero)

Initialize with zero operations.

2. (a) xor raxi = zero, zero

(b) xor raxi = rbxi rbxi

(a) assert (raxi == zero)

(b) assert (raxi == zero)

Multiple Assertions (High Overhead)

Addition ops with either (a) rd 6= ra, or (b) ra 6= rb

3. addc raxi = rdxi, rcxi

addc raxi = rdii, Imm

asserts on all input and output storage loca-

tions with most-frequent values

Logical ops with either (a) rd 6= ra, or (b) ra 6= rb

4. and/andc rdxi = rdxi, rcxi

andc raxi = rdii, Imm

-Same as above-

Group3 : Memory Operations. This last group consists of memory operations (templates

provided in Table 5.4). These operations are the most costly in terms of assertion overheads

as compared to the previous groups of computations (Group0, Group1, and Group2). This is

because removing a LPP non-productive memory operations requires not only a register based

assertion but also a load-assert (effectively a load from memory and assert on value) operation.

Due to this complexity, these operations are excluded from the current LPP analysis. Exploiting

memory-based LPP operations may require extra support from the memory hierarchy, e.g., in

the form of additional bit-encoding support, to reduce their assertion overhead costs.

We have investigated on some possible ways of extending LPP to memory operations via

Memory Productiveness Pruning (MPP [3]). The techniques, as they are, incur overheads in

the form of additional non-negligible hardware support and more research is required to exploit

non-productiveness of memory operations. More research on the same is deferred for future

work. An overview of MPP is provided in Chapter 7.

91

5. LOCAL PRODUCTIVENESS PRUNING

Table 5.4: Instruction templates for Group3 (LPP memory operations) instructions. mfValue indi-

cates the most-frequent profile-based value encoded as the immediate

Id Instruction Templates Required Assertions

1. ld rcxi = Mem[inaddr] load-assert Mem[inaddr] == mfValue;

assert (rcxi == mfValue)

2. st Mem[inaddr] = raxi load-assert Mem[inaddr] == mfValue;

assert (raxi == mfValue)

Discussion. Figure 5.3 provides quantitative insights into the classification of the non-productive
narrow operations into the above-mentioned groups for the profile-phase of the applications
(first 200m committed user instructions) 1 assuming perfect profile, i.e. assuming that we
know whether the computation is productive or not before it executes. Note that, on an aver-
age, Group0, Group1, and Group2 account for more than 80% of all the non-productive narrow
computations. These are also the groups of our focus in this chapter. Finally, Group3 accounts
for about 20% of the non-productive computations.

5.2.3.4 Step D : Reduce Assertion Overheads

Our experiments reveal that around 40% of the LPP non-productive computations belong to
Group2 (Figure 5.3), which require additional (and at times, multiple) assertion instructions to
affirm their non-productiveness at run-time. The dynamic weight of Group2 computations sug-
gests that a naive approach of introducing assertion checks individually for each computation
will unequivocally lead to large assertion overhead costs. To mitigate this problem, the ARG
pass additionally exploits the following two data properties :

• Simple producer-consumer relationships between computations to remove redundancy
of assertions between chains of computations.

• Encodability of asserted values to combine multiple assertions into a single instruction.

To understand how producer-consumer relationships can be exploited to merge assertions,
the distinction between the notion of an optimization region vs. atomic region must be made.
Optimization Region is defined as the code region which is the candidate for optimization.
Clearly, the optimization region for LPP is a single narrow computation. To reduce the large

1this experiment uses the ref input data-set

92

5.2 Description

 0

 20

 40

 60

 80

 100

bzip2

crafty

eon
gap

gcc
gzip

m
cf

parser

perlbm
k

vpr
Avg

%
 N

o
n
-P

ro
d
u
c
ti
v
e

 N
a
rr

o
w

 C
o
m

p
u
ta

ti
o
n
s

Group0 Group1 Group2 Group3

Figure 5.3: Categorizing the non-productive LPP computations into Group0, Group1, Group2 and

Group3 to understand where the gains are coming from

assertion overhead costs, however, the strategy of LPP is to inflate the size of the atomic regions
(from the default of a single narrow computation to say, a basic block or superblock).

In this thesis, atomic regions can be formalized as follows :

Definition 5.3 (Atomic Region). An atomic region is a section of code which is guaranteed to

be executed and committed as a single-unit. Such a region has only a single flow of control.

Only the start and the end of the atomic region represent the points of precise state. Atomic

regions are executed speculatively and as such, they may commit or squash.

Hence, an atomic region can be used to contain multiple speculations : by traversing
producer-consumer relationships in an atomic region, assertions can be merged.

Merging Value-Assertion Requirements. Figure 5.4 shows the two theoretical degenerate
possibilities of a producer-consumer relationship graph witnessed in a basic block. The clas-

93

5. LOCAL PRODUCTIVENESS PRUNING

P

C

P

C1 C2

Merging Profiles at P

SPSC SPMC

Figure 5.4: Possible types of flows – SPSC and SPMC

sification is valid even for a superblock as its an atomic region with only a single control-

flow. Hence, although the upcoming discussion cites basic block explicitly, it holds true for

superblock as well. As shown in Figure 5.4, the two types of possible data-flows are –

(i) Single Producer Single Consumer (SPSC)

(ii) Single Producer Multiple Consumers (SPMC)

Note that, Multiple Producers Single Consumer (MPSC) scenario does not arise in a basic

block as there is a single control-flow.

In context of the ARG bottom-up traversal, SPMC presents the point of merging of value

profiles. Such a merge of profiles is hassle-free : at the producer P (see SPMC), we need to

propagate only a single assertion upwards, as the most-frequent values (or asserted values) of

edges P-C1 and P-C2 must be equal.

Note that in case of SPSC and SPMC, if P itself is non-productive, then we effectively

merge the assertion requirements of the consumers (on the RAW edges P-C, P-C1 and P-

C2 respectively into P), and place assertions only to ascertain the non-productiveness of P. If

on the other hand, P is productive, and if the non-productive consumers C, C1 or C2 have

assertion requirements (to be fulfilled by their producer P), an assertion is left embedded after

the computation P. In summary, the ARG pass re-engineers each computation recursively while

merging the requirements bottom-up, until either the beginning of the region is encountered (we

process computations in post-order) or the boundary with a productive computation is reached.

Assertion Compression. Many previous proposals have exploited the disposition of data

values to have all their higher bits as 0’s or 1’s, and hence, using sign-extension or zero com-

pression [4, 8, 36, 47] to uncover traditional narrow computations and enhance pipeline-gating,

or reduce dynamic activity. In our model, the above-mentioned propensity of data values is ex-

ploited to compress assertions.

94

5.2 Description

bit 0bit 2 bit 1

2−bits (0,1,2,or 3)

1−bit (+, or −)

Figure 5.5: Size-sign encoding (3-bit encoding)

We exploit a 3-bit encoding known as the Size-Sign encoding whereby the two lower bits
indicate that highest chunk position (0th, 1st, 2nd or 3rd) beyond which all higher significant
chunks are either all zeros(+) or ones(-) as shown in Figure 5.5. For example, if rax3 = 0x000,
rax2 = 0x0000, rax1 = 0xfde1, rax0 = 0x2312, the 3-bit encoding associated with the 64-bit
logical register rax is 1+; while if the chunks contained rax3 = 0x0000, rax2 = 0xffff, rax1 =
0x0000, rax0 = 0x2e2e, the 3-bit encoding would be 2+. Note that, the encoding values are
associated with 64-bit data values for the purpose of compression.

We exploit a new narrow ISA opcode, assert-enc, having semantics as follows :

assert-enc [reg_id] [3_bit_encoding]

where [reg_id] is a immediate field which indicates which of the 64-bit registers is being
asserted for. Further, [3_bit_encoding] is an immediate field that stores the 3-bit encoding that
the register must adhere to. The 3-bit encoding is incorporated only for register-based storage
locations and not in the memory hierarchy. Each logical 64-bit register is enhanced with a 3-bit
encoding. Updates to the encoding are carried out on the event of writeback of narrow data
chunks to the register file by additional hardware logic incorporated in the register file.

Compression Scheme (SR-CS). We use a Single-Register based assertion Compression
Scheme (henceforth SR-CS), whereby contiguous narrow assertion computations in the static
stream are merged into a single assert-enc assertion. The following conditions must be satisfied
for SR-CS compression :

1. All narrow asserts must affirm different consecutive chunks of the same 64-bit register.

2. There does not exist any intermittent non-assert based computation between the asserts.
Note that, this is a conservative way to ensure in between the assertion computations
being combined, there is no update to the chunks of the 64-bit register being asserted for.

3. The asserted values of the chunks must allow size-sign encodability as outlined previ-
ously in Figure 5.5.

95

5. LOCAL PRODUCTIVENESS PRUNING

Table 5.5: Illustrating compression schemes with examples. regAx denotes the xth chunk of regA

being asserted for

Id Input Assertions Output Compressed Assert

SR-CS Single-Register Based Compression Scheme

1. assert (regA1 == zero);

assert (regA2 == zero);

assert (regA3 == zero);

assert-enc (regA == [0+])

2. assert (regA1 == Val);

assert (regA2 == zero);

assert (regA3 == zero);

assert (regA1 == Val); // Non-compressed Assert

assert-enc (regA == [1+]);

Dual-Register Based Compression Scheme

3. assert-enc (regA == 1+)

assert-enc (regB == 1-)

assert-enc (regA,regB, 1+,1-)

// assert regA is 1+ and regB is 1-

Those assert computations which are not size-sign encodable cannot be compressed (tem-

plate 2 in the Table 5.5). Hence, those asserts that are not encodable remain embedded in the

static stream as they are.

Finally, just like SR-CS generates single wide-register based asserts, other schemes which

generate dual (template 3 in the Table 5.5) and quad-register compressed asserts are also pos-

sible. However, we observed a negligible reduction (a further reduction of 0.7% only) in total

number of dynamic assertions when upgrading from single-register to dual-register compres-

sion scheme. Hence, we believe that SR-CS represents a good design point.

Conclusions. Algorithm 2 summarizes the workflow of the LPP optimization. The com-

putations of the optimization region are processed in post-order (line 1). For each narrow

computation, the Non-productiveness Ratio (NPR) is determined using profiles. If the NPR

is higher than a threshold, the node is considered non-productive (line 3). The optimizer then

proceeds to prune the node (narrow computation). First, it obtains the most-frequent value of

the destination register of the node. The assertion generated using this value is designated as

assertionA1. Next, this assertion is merged (merging assertions has been previously illustrated

in Figure 4.5) and sanity checks are performed to ascertain that there are no contradictions.

Finally, the optimizer proceeds according to the groupID to prune the computation (lines 8

through 23)

96

5.2 Description

Assertion compression is performed at the final stage after all the computations of the

region have been processed (line 27 of Algorithm 2).
ALGORITHM 2: LPP_Optimize_Region

// Post Order traversal of the optimization region

for each node in post order travesal do1

Get Non Productive Ratio (NPR) for the node;2

if node is non productive then3

Get MostFreq Output Value from ValueProfile for the node;4

assertionA1← assert(destination register == mostfreq output value);5

mergedAssertionA1← Sanity Check for node with assertionA1;6

groupID← classify node into groups;7

switch groupID do8

case Group39

// LPP Group3 are not included in the optimization

break;10

end11

case Group212

Process group 2 node for mergedAssertionA1;13

break;14

end15

case Group116

Process group 1 node for mergedAssertionA1;17

break;18

end19

case Group020

// LPP Group0 do not need any assertions

mark node NonProductive;21

break;22

end23

end24

end25

end26

// Reduce Assertion Overheads by Compression

PostProcess Region;27

5.2.4 Cost Analysis

The cost of optimizing an atomic region by LPP is expected to be proportional to (n + e),

where ‘n’ and ‘e’ denote the total number of nodes and the total number of edges respectively

in the PDG(R) of the atomic region to be optimized. This is because each node in the PDG(R)

of the atomic region must be visited at least (and at most) once. Further for each node, all the

successor data dependence edges and the predecessor data dependence edges must be analyzed.

As a data-flow dependence edge is shared between a producer and a consumer, some edges may

be visited at most twice.

97

5. LOCAL PRODUCTIVENESS PRUNING

5.3 Example : Walk-through

Now we illustrate the LPP optimization by using an example (refer to Figure 5.6). The exam-

ple is based on a small piece of code from a hot basic block of the benchmark vpr (function

– try_swap). The original code sequence consists of four dependent add operations, of which

only the second add operation is a 32-bit add operation (rest are 64-bit add operations). Hence,

according to x86 semantics, higher two chunks of rax generated by the narrow ISA computa-

tions corresponding to the second add operation are mov operations that restore the destination

register location to zeros (nodes 7 and 8 in Figure 5.6 (A)).

Assert no−carry with the op

LPP Non−Productive computations

Dependent Slice of Narrow computations

Carry Flag Dependence

Added Assertions

Addc
6

Add
5

r13.2
rax.2 rax.1

r13.0
rax.0

Addc
11

Addc
15

Addc
14

Add
13

rcx.3 rcx.2 rcx.1 rcx.0

Add
1

rax.3 rax.2 rax.1 rax.0

Addc
6

Add
5

rax.1
r13.0

rax.0

Addc
10

Add
13

rcx.1 rcx.0

r13.1

rax.1 rax.0

!cf

Add
2

Addc

r13.3

9

tr8.1 tr8.0

rax.3
r13.3

Mov
8

Mov
7

Addc
16

Addc
12

4
Addc

!cf

r13.1

3
Addc

2
Addc

9

tr8.1 tr8.0

!cf

!cf

Addc
11

rcx.3 rcx.2

Addc
10

rcx.1

Add

rcx.0

Addc
14

Add

rcx.1 rcx.0

(A) Non Optimized Code Sequence (B) LPP Optimized Code with Added Asserts

Assert

Critical Path Length = 7

Critical Path Length = 5

Assert
rax
1+

Assert
rcx.3
Val

Assert
r13.3
Val2

1

Val
reg

Figure 5.6: LPP optimization on a sample code sequence from vpr - Comparing Non-optimized

and LPP Optimized Code sequence

Let’s walk through the example depicted in Figure 5.6. Only RAW dependences between

computations are depicted. First, the non-productive computations are marked using profiles

(step A in Section 5.2.3.1); these computations are marked in Figure 5.6. Next, the ARG

98

5.4 Evaluation

pass begins processing the narrow computations in post-order (reverse program order). Hence,
node 16 is processed : as it is non-productive (Group1), pruning this computation requires an
assertion on the carry-flag edge (henceforth, denoted as Assert(!cf)) as shown in Table 5.2.

The next non-productive computation in post-order, node 15, merges the Assert(!cf) with
its own requirements of non-productiveness, which then generates a similar assert as it is also
of category Group1. As node 14 represents the boundary of the productive region, node 14’s
opcode is modified to addc(!cf) i.e. add operands with the carry flag of the predecessor (node
13) and assert that the computation does not generate any carry flag. Node 14 and 13 are
skipped as they are productive.

Next, node 12 is a non-productive node belonging to Group2. Hence, pruning it requires
the following asserts – (1) assertion that rcx.3 before computation is Val, (2) assertion on the
carry-flag edge, (3) assertion of most-frequent value of r13.3, and (4) assertion of most-frequent
value of rax.3. Note that assertions 2, 3 and 4 must always be in sync. Also note that assertion
(4) on the value of rax.3 will be further merged with the predecessor nodes. The rest of the
nodes are processed in a similar way.

The data-flow graph represented in Figure 5.6 has some producer-consumer chains (RAW
dependences), and hence at the end of the ARG pass, three additional single-latency asserts are
added (we assume for the sake of this example that the higher chunks of rax being asserted for
are size-sign encodable) and 7 narrow computations can be removed.

5.4 Evaluation

In this section, the performance evaluation of the LPP optimization is presented. First, we
briefly revisit the experimental framework (already described in Chapter 3) in the context of
LPP to aid the understanding of the upcoming evaluations. The performance of LPP is com-
pared against the baseline narrow processor (described in Section 3.2), which is an in-order
16-bit integer datapath processor combined with a realistic narrow translator (outlined in Sec-
tion 2.2.2).

Some aspects of the design space of the LPP optimization have been evaluated. Section
5.4.2 and Section 5.4.3 provide insights on the benefits of the optimization in a static and dy-
namic optimizer model respectively. In both the optimization models, the overall gains of LPP
have been quantified in terms of reduction in narrow computations, reduction in the number
of cycles consumed to accomplish the same amount of work, assertion failure statistics and
eventually the code coverage of the optimized regions. Further, Section 5.4.4 investigates on
how the overall optimization is affected by the changing the notion of an atomic region from a
basic block to a superblock.

99

5. LOCAL PRODUCTIVENESS PRUNING

Lastly, in Section 5.4.7, we comment on LPP’s achieved performance against the dispos-
able potential projected in a perfect environment.

5.4.1 Experimental Framework

Local Productiveness Pruning (LPP) has been evaluated as both static and dynamic optimiza-
tion. In the case of dynamic optimization, it is assumed that the baseline ecosystem comprises
of a narrow processor with support for dynamic optimizations. The evaluation of LPP in both
static and dynamic optimization models, does not account for the overheads of profiling and
optimization of the narrow code stream.

Table 3.1 shows the simulation configurations for evaluating LPP on a narrow processor.
We model an in-order processor of an issue width of up to four instructions per cycle and
compare the performance of a ‘narrow processor with the LPP optimized code’ against that of
a ‘narrow processor without such an optimization’.

The execution model profiles for first 200m (after skipping the program initialization phase)
and then triggers the LPP optimization. Table 3.3 shows the percentage of the committed
stream which is optimized (Expected Coverage) by LPP. The profile-phase of the application
uses the ref or training input data-set in dynamic and static optimizer models respectively.

The optimized regions are then used in the cycle-accurate phase for 200m x86 user instruc-
tions. At the beginning of the execution of an optimized region, the system state is check-
pointed. In case of assertion failure event in the optimized region, hardware support restores
correct program state by using the checkpointed system state. The execution then resumes with
re-translated, safe, correct code (non-optimized stream of narrow computations) of the region
(i.e., basic block in this evaluation).

5.4.2 LPP as a Dynamic Optimization

The basic workflow to evaluate LPP in a dynamic optimizer model has been illustrated in Figure
3.2. The advantage of a dynamic optimizer model is that the program is optimized on the fly,
hence, the profile-based learning is more precise (as its on the same input as the current run).
However, such a model entails higher costs than a static optimizer model because the run-time
of the application must bear the time and space overheads of profiling and optimization.

Dynamic Stream Classification. Table 3.3 states that the average percentage of the commit-
ted stream (x86 instructions) that is expected to come from the optimized regions is around
65%. However, the assertion failures may impact the ratio of optimized stream to the non-
optimized one (recall that in event of assertion failure, the speculatively committed narrow

100

5.4 Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

bzip2
crafty

eon
gap

gcc
gzip

parser

perlbm
k

m
cf

vpr
Avg

Breakdown of Committed Narrow Operations Stream

Non-Optimized
AssertFail-Squash

Optimized

Figure 5.7: LPP in a dynamic optimizer model - Breakdown of the committed stream

operations are squashed, and non-optimized code is executed). Cycle-accurate run of the pro-
grams reveals that (see figure 5.7) an average of 59% of narrow operations are committed from
the optimized regions. Work lost due to assertion failures is negligible because of many reasons
– (i) assertion failure rates are low (Figure 5.8), (ii) basic blocks are small regions to be consid-
ered for an atomic commit, and finally (iii), sometimes assertions are placed at the beginning
of the basic block itself, hence the work lost due to failure is minimal.

Assertion Failure Statistics. There are two type of assertions that LPP embeds in the code
stream – (a) type AssertOp : additional computations of type assert, and (b) type AssertNoC-

CFlag : enhanced addsub opcodes (e.g. addc(!cf)) which trigger an event of failure at execu-
tion if the assertion on the condition code flag is false. Figure 5.8 shows the ratio of such failure
events to the total number of dynamic basic blocks committed (although low, all the programs
have non-zero failure rates). As can be seen, the average failure rate is 2.3%. gcc has high as-
sertion failure rate (14%), most of which are of AssertNoCCFlag type. Further, the failures in
gcc are mainly due to a single static instance of an increment stack-pointer instruction, which
due to profile-phase change, increments a higher value of stack where the change overflows
beyond the expected lowest chunk.

LPP with Compression Schemes. Figure 5.9 (a) shows the reduction in number of narrow
operations achieved with LPP. We compare the number of committed narrow operations in the
two scenarios – LPP with no compression for assertions (LPP-NoCompression), and LPP with

101

5. LOCAL PRODUCTIVENESS PRUNING

 0

 5

 10

 15

 20

bzip2
crafty

eon
gap

gcc
gzip

parser

perlbm
k

m
cf

vpr
Avg

A
ss

er
tio

n
F

ai
lu

re
 R

at
es

Assertion failure rate

Figure 5.8: LPP in a dynamic optimizer model - Assertion failure rates

Single-Register based Compression Scheme (LPP-SR-CS). Both the configurations account for

the cost of assertion failures. In other words, assertion computations are also accounted for in

the committed stream and further, on the event of a failure, all computations committed (and

hence, accounted for) since the beginning of the basic block are squashed, and the execution

begins afresh from the beginning of the basic block. As the assertion failure events remain the

same in both the configurations of LPP-NoCompression and LPP-SR-CS (in number and type),

an average difference of 2.3% in the number of committed narrow operations is mainly due to

the efficacy of the SR-CS. Figure 5.9 (b) shows the total number of committed assertions only

as ratio of the total number of committed narrow operations in the non-optimized stream. SR-

CS is able to reduce the number of assertions by about 33%. Overall, LPP with SR-CS reduces

the committed stream by about 20%.

Effect on Number of Cycles. Figure 5.10 shows the number of cycles taken by each bench-

mark to complete the cycle-accurate phase (the next 200m x86 user instructions after the

profile-phase). An average performance improvement of 18% is observed across benchmarks.

One of the key factors influencing the gains obtained by LPP is the coverage of the optimized

code. Some benchmarks suffer with low code coverage e.g., bzip2, gcc, and gap. Although

low code-coverage remains to be a caveat of our infrastructure – we profile for hot functions

(barring recursive ones) and then choose the basic blocks, nothing prevents the optimization

of all the code. vpr achieves a code coverage of about 99%, and reduces the number of cycles

by a significant amount of 40%. mcf fetches low gains with LPP as it has high percentage of

102

5.4 Evaluation

 0

 10

 20

 30

 40

 50

bzip2
crafty

eon
gap

gcc
gzip

parser

perlbm
k

m
cf

vpr
Avg

P
er

ce
nt

 R
ed

uc
tio

n
in

 C
om

m
itt

ed
 N

ar
ro

w

 O
pe

ra
tio

ns
 o

ve
r

N
on

O
pt

im
iz

ed
 S

tr
ea

m

 (
In

cl
ud

in
g

A
ss

er
t O

ve
rh

ea
ds

)
LPP-NoCompression LPP-SR-CS

 0

 2

 4

 6

 8

 10

 12

 14

 16

bzip2
crafty

eon
gap

gcc
gzip

parser

perlbm
k

m
cf

vpr
Avg

P
er

ce
nt

 C
om

m
itt

ed
 A

ss
er

tio
ns

 a
s

ra
tio

 o
f

 N
on

O
pt

im
iz

ed
 S

tr
ea

m

LPP-NoCompression LPP-SR-CS

Figure 5.9: LPP in a dynamic optimizer model - (a) Reduction in committed stream (b) Overheads

as ratio of non-optimized stream

103

5. LOCAL PRODUCTIVENESS PRUNING

 0

 10

 20

 30

 40

 50

bzip2
crafty

eon
gap

gcc
gzip

parser

perlbm
k

m
cf

vpr
Avg

P
er

ce
nt

 R
ed

uc
tio

n
in

 E
xe

cu
tio

n
T

im
e

 o
ve

r
N

on
O

pt
im

iz
ed

 S
tr

ea
m

LPP-Non-Compressed LPP-SR-CS

Figure 5.10: LPP in a dynamic optimizer model - Effect on number of cycles

memory instructions (Group3), which LPP does not optimize.

Conclusion. A dynamic optimizer, with more accurate profile data, obtains a performance

improvement of 18% with LPP with a single-register compression scheme (LPP-SR-CS), about

20% reduction in number of computations, and an assertion failure rate of 2.3%. An average

of 60% of the dynamic narrow stream is successfully optimized. All these gains surely involve

an additional overhead (of profiling and optimization at run-time) that are not measured in this

thesis.

5.4.3 LPP as a Static Optimization

The basic workflow to evaluate a static optimization is illustrated in Figure 3.2. As against

the previous evaluation, profiling is performed using the training data-set of each benchmark.

As the data-set used for learning is different from the actual input data-set, the effect of this

somewhat imprecise1 learning can be seen in different aspects including the achieved code

coverage of the LPP optimization, reduction in number of computations and number of cycles,

1in the loose sense of the word

104

5.4 Evaluation

and also assertion failure rates. The upcoming paragraphs provide quantitative details on these

aspects of LPP as a static optimization.

 0

 0.2

 0.4

 0.6

 0.8

 1

bzip2
crafty

eon
gap

gcc
gzip

mcf
parser

perlbmk

vpr
Avg

Breakdown of Committed Narrow Operations Stream

Non-Optimized
AssertFail-Squash

Optimized

Figure 5.11: LPP in a static optimizer model - Breakdown of the committed stream (achieved

coverage)

Dynamic Stream Classification. As stated previously, the average percentage of the com-

mitted stream (x86 instructions) that is expected to come from the optimized regions is around

60%. However, the assertion failures may impact the ratio of optimized stream to the non-

optimized one (recall that in event of assertion failure, the speculatively committed narrow

operations are squashed, and non-optimized non-scheduled code is executed). Cycle-accurate

run of the programs reveals that (see Figure 5.11) an average of 57.18% of narrow operations

are committed from the optimized regions. Work lost due to assertion failures is negligible

again (for the same reasons as previously mentioned in the dynamic optimization evaluations)

Assertion Failure Statistics. Figure 5.12 shows the assertion failure rate of each benchmark

in a static optimizer model (although low, all the programs have non-zero failure rates). As can

be seen, the average failure rate is 2.52%. perlbmk has high assertion failure rate (14%), most of

which are of AssertNoCCFlag type. Again, the failures in perlbmk are mainly due countable

number of static instances of increment stack-pointer / decrement stack-pointer instructions,

which owing to a different input set, increment / decrement a different value of stack where the

change overflows beyond the expected lowest chunk.

105

5. LOCAL PRODUCTIVENESS PRUNING

 0

 5

 10

 15

 20

bzip2
crafty

eon
gap

gcc
gzip

m
cf

parser

perlbm
k

vpr
Avg

A
ss

er
tio

n
F

ai
lu

re
 R

at
es

Assertion failure rate

Figure 5.12: LPP in a static optimizer model - Assertion failure rate

LPP with Compression Schemes. Figure 5.13 (a) shows the reduction in number of nar-

row operations achieved with LPP in a static optimizer model. We compare the number of

committed narrow operations in the two scenarios – LPP with no compression for assertions

(LPP-NoCompression), and LPP with Single-Register based Compression Scheme (LPP-SR-

CS). The assertion computations are accounted for in both the configurations. Further, on the

event of an assertion failure, all computations committed (and hence, accounted for) since the

beginning of the basic block are squashed, correct state is restored and the execution begins

afresh from the beginning of the basic block. As the assertion failure events remain the same

in the both the configurations of LPP-NoCompression and LPP-SR-CS (in number and type),

an average difference of 2.7% in the number of committed narrow operations is mainly due to

the efficacy of the SR-CS. Figure 5.13 (b) shows the total number of committed assertions as

ratio of the total number of committed narrow operations in the non-optimized stream. SR-CS

is able to reduce the number of assertions by about 39%. Overall, LPP with SR-CS reduces the

committed stream by 20%.

Effect on Number of Cycles. Figure 5.14 shows the number of cycles taken by each bench-

mark to complete the cycle-accurate phase (the first 200m x86 user instructions using the ref

input data-set). LPP with SR-CS achieves a reduction of 15.54%. One of the key factors in-

fluencing the gains obtained by LPP is the coverage of the optimized code. Some benchmarks

suffer with low code coverage e.g., gap, gcc, and perlbmk. Although low code-coverage re-

mains to be a caveat of our infrastructure – we profile for hot functions (barring recursive ones)

106

5.4 Evaluation

 0

 10

 20

 30

 40

 50

bzip2
crafty

eon
gap

gcc
gzip

m
cf

parser

perlbm
k

vpr
Avg

P
er

ce
nt

 R
ed

uc
tio

n
in

 C
om

m
itt

ed
 N

ar
ro

w

 O
pe

ra
tio

ns
 o

ve
r

N
on

O
pt

im
iz

ed
 S

tr
ea

m

 (
In

cl
ud

in
g

A
ss

er
t O

ve
rh

ea
ds

)
LPP-NoCompression LPP-SR-CS

 0

 2

 4

 6

 8

 10

 12

 14

 16

bzip2
crafty

eon
gap

gcc
gzip

m
cf

parser

perlbm
k

vpr
Avg

P
er

ce
nt

 C
om

m
itt

ed
 A

ss
er

tio
ns

 a
s

ra
tio

 o
f

 N
on

O
pt

im
iz

ed
 S

tr
ea

m

LPP-NoCompression LPP-SR-CS

Figure 5.13: LPP in a static optimizer model - (a) Reduction in committed stream (b) Overheads

as ratio of non-optimized stream

107

5. LOCAL PRODUCTIVENESS PRUNING

and then choose the basic blocks, nothing prevents the optimization of all the code. vpr and

bzip2, the model benchmarks with an average code coverage of > 95%, achieve significant

reduction in the total number of cycles – an average of 32%. Lastly, mcf (in spite of high

coverage) fetches low gains with LPP because it has high percentage of memory instructions

(Group3), which LPP does not optimize.

 0

 10

 20

 30

 40

 50

bzip2
crafty

eon
gap

gcc
gzip

m
cf

parser

perlbm
k

vpr
Avg

P
er

ce
nt

 R
ed

uc
tio

n
in

 E
xe

cu
tio

n
T

im
e

 o
ve

r
N

on
O

pt
im

iz
ed

 S
tr

ea
m

LPP-Non-Compressed LPP-SR-CS

Figure 5.14: LPP in a static optimizer model - Effect on number of cycles

Conclusion. LPP optimization with single-register based compression scheme (LPP-SR-CS)

in a static optimizer model achieves a performance improvement of 15.54% over non-optimized

stream of narrow computations. Further, about 20% reduction in the number of committed

narrow computations is achieved. On an average, higher assertion failure rate (than dynamic

optimizer model) of 2.52% is observed. Finally a lower coverage (than dynamic optimizer

model) of about 60% is seen. In perspective, the evaluations indicate that LPP in as a static

optimization offers a good design point as the loss of performance when compared to a dy-

namic optimizer model is acceptable. The advantage of the static optimizer model is that the

applications do not need to bear the run-time overheads of profiling and optimization.

108

5.4 Evaluation

5.4.4 Atomicity : Basic Block vs. SuperBlock

Another design decision that may impact the overall performance of LPP is the size of atomic
regions. As introduced in Section 5.2.3.4, the assertions are merged inside the region via
following producer-consumer relationships 1. Conceptually, (in the context of LPP) the larger
the atomic region, the more the opportunities to merge assertions and hence, to reduce the
assertion overheads.

The evaluations presented in previous sections have been performed on basic blocks as
atomic regions. In order to explore the design space with regard to the size of atomic region, we
now evaluate superblocks. More details on the definition and configurations of the superblocks
have been mentioned in Section 3.1.1.1. As superblock generation is profile-based, we evaluate
the sensitivity of LPP with respect to size of atomic region in a dynamic optimizer model.

 0

 50

 100

 150

 200

bzip2
crafty

eon
gap

gcc
gzip

m
cf

parser

perlbm
k

vpr
Avg

A
bs

ol
ut

e
N

um
be

r
of

 N
ar

ro
w

 O
pe

ra
tio

ns

Nonopt-Basicblock NonOpt-Superblock

Figure 5.15: Size of atomic regions

Size of Atomic Regions. Foremost, we quantify the increase in the size of regions by con-
sidering superblocks. Figure 5.15 shows the average dynamic size of both the non-optimized
basic blocks and the non-optimized superblocks for each application. The size is measured in
terms of the absolute number of narrow operations and represent the weighted average across

1Hence, it is necessary for correctness that the atomicity of the region be ensured

109

5. LOCAL PRODUCTIVENESS PRUNING

all the dynamically committed regions in the profile-phase of the applications. On an average,
the size of a superblock is about 2.2x of that of the size of a basic block.

 0

 10

 20

 30

 40

 50

bzip2

crafty

eon
gap

gcc
gzip

parser

perlbm
k

m
cf

vpr
Avg

P
e
rc

e
n
t
R

e
d
u
c
ti
o
n
 i
n
 C

o
m

m
it
te

d
 N

a
rr

o
w

 O

p
e
ra

ti
o
n
s
 o

v
e
r

N
o
n
O

p
ti
m

iz
e
d
 S

tr
e
a
m

 (

In
c
lu

d
in

g
 A

s
s
e
rt

 O
v
e
rh

e
a
d

s
)

LPP-SR-CS-Basicblock LPP-SR-CS-Superblock

Figure 5.16: Impact of the size of atomic regions - Reduction in computations comparing basic

block vs. superblock

Overall Reduction in Computations. Figure 5.16 shows the overall reduction in the number
of narrow computations committed in the cycle-accurate phase of the applications (with ref
input data-sets as the evaluations are in a dynamic optimizer model). Seven (bzip2, eon, gap,
gzip, parser, mcf, and vpr) of ten benchmarks show improvements when the atomic region size
is increased to a superblock. However, gcc and perlbmk show marked degradation even though
the static number of computations in an optimized superblock has been observed to be less than
the static number of computation in an optimized basic block (evaluations avoided for sake of
brevity). This degradation is due two reasons :

(i) The superblocks are treated as single-entry, single-exit regions, and on an event of early
exit, the speculative region is squashed and non-optimized version of the region is exe-
cuted. Hence, this leads to additional failures apart from the assertion failures.

(ii) Further, it is also possible to have more assertion failures in case of speculative su-
perblocks, when compared to speculative basic blocks.

110

5.4 Evaluation

Both these factors lead to a overall decrease in the achieved coverage of LPP (ratio of commit-
ted computations from the optimized regions over the total committed computations) in case
of gcc and perlbmk (8% and 23% respectively). On an average, LPP on superblocks furnishes
1.25% more reduction in the committed narrow operations.

Conclusions. Evaluations suggest that on an average, LPP when applied on superblocks as
atomic regions furnishes similar gains as when applied on basic blocks. Superblocks deteriorate
the performance in two of ten benchmarks. In general, a basic block ensures sufficient balance
between the opportunities to merge assertions, and the implicated costs due to assertion failures
(we squash the complete region on assertion failure). Given the simplicity of basic blocks, we
believe LPP on basic blocks presents a good design point.

5.4.5 Effects on Instruction Scheduling

Instruction scheduling is an important code optimization technique to obtain high performance
and better resource utilization on a parallel (pipelined or superscalar) processor. Since nar-
row stream has more tasks of finer granularity, it furnishes more opportunities for scheduling
techniques to achieve better resource utilization and performance improvement.

We evaluate the code scheduling opportunities with the help of a simple list-scheduling al-
gorithm – Earliest-start Time Slack (abbreviated as ETS) based scheduling. The ETS heuristic
based scheduling focuses on two targets – stall time, and critical path. The ETS instruction
scheduling is based on the classical greedy list-scheduling algorithm [21].

ETS scheduling is performed at the basic block level with the target of reducing the overall
execution time. Each basic block is represented using its data dependence graph DDG(R).
Next, static priorities to each node in the DDG(R) are assigned. These static priorities are
essentially a set of two scores : Earliest-start Time and Slack. The candidate list [21] is a sorted
list of eligible instructions for scheduling : Earliest-start time as the first sort key, followed by
slack.

Slack of a node is defined as the difference between the latest-start time and the earliest-
start time of the node. This is a greedy algorithm towards instruction scheduling whereby the
overall execution time is reduced (by sorting nodes in increasing order of their earliest-start
time), while prioritizing the instructions in the critical path of the DAG as the second priority
(by sorting those nodes that have the same earliest-start time in increasing order of their slack)
1.

Figure 5.17 shows how ETS scheduling can impact the overall execution time using the
same example seen previously in this chapter. It is important to note how LPP not only removes

1Branch instruction remains the last instruction always

111

5. LOCAL PRODUCTIVENESS PRUNING

computations, but also decreases the critical path of narrow computations. The critical path
length of the DDG in (B) is 7, whereas that of DDG in (C) is 5.

Renaming of Flags. Considering false data dependences for flags can be overly restraining
for instruction scheduling. For example, recall that a 64-bit wide add operation is broken
down into a flag-dependent chain of narrow add/addc operations (Section 2.2.2) where each
narrow computation generates the carry flag for the next. To avoid limiting the opportunities
for instruction scheduling in wake of such flag dependences, we assume a flag management
scheme similar to [62], together with explicit referencing of flags in instructions which can be
managed with a 3 source-operands encoding semantics of the proposed narrow ISA.

Discussion. With the help of the ETS scheduling scheme, we only intend to affirm our propo-
sition that the narrow stream of computations offers significant opportunities for code schedul-
ing as it has more tasks of finer granularity. Instruction scheduling also furthers the benefits
provided by LPP because LPP may as well prune computations on the critical path; which al-
lows the child narrow computations to be scheduled freely. This is substantiated by the results
as shown in Figure 5.18 which clearly show that code scheduling provides more performance
improvement (∼ 26%) when realized over LPP optimized code than when applied on the non-
optimized narrow stream of computations (∼ 19%).

Evaluation : ETS scheduling with LPP. Figure 5.18 illustrates how ETS scheduling inter-
acts with the stream of narrow computations. Simply applying ETS code scheduling on the
non-optimized narrow stream (see Nonopt-Scheduling) achieves an average speedup of about
19% (with as high as up to 40 % for bzip2). This result underlines our hypothesis that narrow
stream offers more freedom to schedule operations. Recall that code scheduling is done at a
basic block level. Further, LPP with SR-CS achieves a reduction of 15.54% by itself, and when
combined with code scheduling, cumulative reductions of about 26% in the number of cycles
can be achieved.

5.4.6 Comparison with 64-bit In-Order Pipeline

To put things in perspective, Figure 5.19 (a) illustrates the overall performance of the narrow
processor as compared to a 64-bit wide processor. The first two bars (16bit-HotCode-NonOpt
and 16bit-HotCode-LPP+Sched) show the relevant data for the hot regions in exclusion. Next,
the latter two bars (16bit-Program-NonOpt and 16bit-Program-LPP+Sched) show the behavior
of the complete program (200m user commits) where only a part of the program (hot-code) is
optimized. More specifically –

112

5.4 Evaluation

A
ss

er
t

n
o
−

ca
rr

y
 w

it
h
 t

h
e

o
p

L
P

P
 N

o
n
−

P
ro

d
u
ct

iv
e

co
m

p
u
ta

ti
o
n
s

D
ep

en
d
en

t
S

li
ce

 o
f

N
ar

ro
w

 c
o
m

p
u
ta

ti
o
n
s

C
ar

ry
 F

la
g
 D

ep
en

d
en

ce

A
d
d
ed

 A
ss

er
ti

o
n
s

rc
x
.1

rc
x
.0

ra
x
.0

A
d
d
c

6
A

d
d

5

r1
3
.2

ra
x
.2

ra
x
.1

r1
3
.0

ra
x
.0

A
d
d
c

1
1

A
d
d
c

1
5

A
d
d
c

1
4

A
d
d

1
3

rc
x
.3

rc
x
.2

rc
x
.1

rc
x
.0

A
d
d

1

ra
x
.3

ra
x
.2

ra
x
.1

ra
x
.0

6A
d
d
c

A
d
d
c

6
A

d
d

5

ra
x
.1

r1
3
.0

ra
x
.0

A
d
d
c

1
0

A
d
d

1
3

rc
x
.1

rc
x
.0

r1
3
.1

A
d
d

1

ra
x
.1

ra
x
.0

!c
f

2A
d
d
c

rc
x
.2

!c
f

!c
f

1
4

A
d
d
c

1
1

A
d
d
c

1
0

A
d
d
c

A
d
d

95A
d
d

2A
d
d
c

1A
d
d

C
ri

ti
ca

l
P

at
h
 L

en
g
th

 =
 5

r1
3
.3

1
3

A
d
dtr
8
.0

tr
8
.1

9

tr
8
.1

tr
8
.0

ra
x
.3

r1
3
.3

M
o
v

8
M

o
v

7

A
d
d
c

1
6

A
d
d
c

1
2

4A
d
d
c

!c
f

!c
f

r1
3
.1

r1
3
.1

r1
3
.0

3A
d
d
c

2A
d
d
c

rc
x
.0

ra
x
.0

ra
x
.1

ra
x
.1

rc
x
.1

9

tr
8
.1

tr
8
.0

!c
f

!c
f

A
d
d
c

1
1

rc
x
.3

rc
x
.2

A
d
d
c

1
0

rc
x
.1

A
d
d

rc
x
.0

A
d
d
c

1
4

A
d
d

rc
x
.1

rc
x
.0

(A
)

N
o
n
 O

p
ti

m
iz

ed
 C

o
d
e

S
eq

u
en

ce
(B

)
L

P
P

 O
p
ti

m
iz

ed
 C

o
d
e

w
it

h
 A

d
d
ed

 A
ss

er
ts

(C
)

L
P

P
−

O
p
ti

m
iz

ed
 C

o
d
e

W
it

h
 S

ch
ed

u
li

n
g

A
ss

er
t

re
g

V
al

A
ss

er
t

r1
3
.3

V
al

2

A
ss

er
t

A
ss

er
t

C
ri

ti
ca

l
P

at
h
 L

en
g
th

 =
 7

A
ss

er
t

rc
x
.3

V
al

A
ss

er
t

1
+

ra
x

r1
3
.3

V
al

2
V

al
rc

x
.3

1
+

ra
x

A
ss

er
t

Figure 5.17: Incorporating code scheduling with LPP on a sample code sequence from vpr

113

5. LOCAL PRODUCTIVENESS PRUNING

 0

 10

 20

 30

 40

 50

 60

bzip2

crafty

eon
gap

gcc
gzip

m
cf

parser

perlbm
k

vpr
Avg

P
e
rc

e
n
t
R

e
d

u
c
ti
o

n
 i
n

 E
x
e
c
u
ti
o
n
 T

im
e

 o
v
e
r

N
o
n
O

p
ti
m

iz
e
d

 S
tr

e
a
m

Nonopt-Scheduling
LPP-Non-Compressed

LPP-SR-CS
LPP-SR-CS-Scheduling

Figure 5.18: Effect on number of cycles with LPP and code scheduling

(i) 16bit-HotCode-NonOpt shows the ratio of the number of cycles for the execution of the
non-optimized narrow stream over 64-bit version for the hot regions in exclusion.

(ii) 16bit-HotCode-LPP+Sched shows the ratio of the number of cycles for the execution of
the LPP-SR-CS optimized and ETS scheduled narrow stream of computations over 64-bit
version for the hot regions in exclusion.

(iii) 16bit-Program-NonOpt shows the ratio of the number of cycles for the execution of the
non-optimized narrow stream over 64-bit version for the the complete program (200m
user commits).

(iv) 16bit-Program-LPP+Sched shows the ratio of the number of cycles for the execution of
the LPP-SR-CS optimized and ETS scheduled narrow stream of computations over 64-bit
version for the complete program (200m user commits) where only a part of the program
(hot-code) is optimized.

The results indicate that using the two optimizations (LPP and ETS scheduling), the perfor-
mance penalty of the narrow ISA can be potentially reduced from 2.3x to 1.38x, considering hot
regions in exclusion. Further, the latter two bars (16bit-Program-NonOpt and 16bit-Program-
LPP+Sched) show the behavior of the complete program (200m user commits) where only a

114

5.4 Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

bzip2
crafty

eon
gap

gcc
gzip

m
cf

parser

perlbm
k

vpr
Avg

R
at

io
 o

f n
um

be
r

of
 c

yc
le

s
 o

ve
r

64
-b

it
ve

rs
io

n
16bit-HotCode-Nonopt

16bit-HotCode-LPP+Sched
16bit-Program-Nonopt

16bit-Program-LPP+Sched

 0

 1

 2

 3

 4

 5

bzip2
crafty

eon
gap

gcc
gzip

m
cf

parser

perlbm
k

vpr
Avg

R
at

io
 o

f n
um

be
r

of
 c

om
pu

ta
tio

ns

 o
ve

r
64

-b
it

ve
rs

io
n

16bit-HotCode-Nonopt
16bit-HotCode-LPP+Sched

16bit-Program-NonoptOpt
16bit-Program-LPP-Sched

Figure 5.19: LPP as a static optimization on basic blocks : Comparison with 64-bit execution (a)

Cycles (b) Committed computations)

115

5. LOCAL PRODUCTIVENESS PRUNING

part of the program (hot-code) is optimized. As can be seen, LPP and code scheduling can
reduce the penalty of the narrow ISA from 2.3x to 1.65x (with a code coverage of about 57%).

Similarly, Figure 5.19 (b) illustrates the dynamic code footprint of the narrow ISA pro-
grams as compared to a 64-bit wide programs. Similar to Figure 5.19 (a), the different bars
show the behavior for both hot regions in exclusion and for the complete program (200m user
commits) where only a part of the program (hot-code) is optimized. It can be seen by com-
paring the 16bit-HotCode-LPP+Sched configuration against the 16bit-HotCode-NonOpt con-
figuration that LPP can potentially reduce the dynamic code size from 3.9x to 2.68x (32 %
reduction).

5.4.7 Observed Roadblocks

The disposable potential for LPP assuming perfect, advance knowledge of data values and as-
suming that no assertion-like instructions are required, has been shown to be around 44% when
NPR_Threshold is assumed to be 95% (evaluations have been provided in Section 2.4.3.2).
These computations include all type of narrow computations – Group0, Group1, Group2 and
also Group3. As LPP is applied on the complete dynamic stream of computations, the coverage
of the LPP in this experiment is 100%.

The achieved reduction in narrow computations by LPP in a static optimizer model, with
basic block as atomic region, has been shown to be around 20% with an achieved code coverage
of around 60%. The following have been observed to be the reasons why LPP in practice
achieves less benefits :

(i) LPP does not optimize memory operations. As illustrated in Figure 5.3, Group3 account
for 20% of the dynamically non-productive computations.

(ii) LPP has been performed on basic blocks of hot functions only. This is mainly a caveat of
our infrastructure and nothing prohibits from extending LPP to further hot basic blocks.
An achieved coverage of 60% has been observed. On the other hand, the experiments to
evaluate the disposable potential analyze all the code, and hence a 100% code coverage.
Further, as we illustrate in the evaluations in Section 5.4.6, isolating the benefits of LPP
on hot functions only reveals that LPP reduces the narrow code stream by 31.28% 1.

(iii) The disposable potential study reflects a no-overhead, best-case potential. LPP does in-
cur not only assertion overheads (an average of 4% additional computations), but also
assertion failure overheads in the form of region squash and execution of non-optimized
code.

1useful evaluation to correlate with 100% coverage of LPP

116

5.5 Conclusions

We believe that taking the aforementioned issues into account, the performance of LPP is
close to its disposable potential.

5.5 Conclusions

This chapter proposes and evaluates Local Productiveness Pruning (LPP). LPP is a profile-
based, aggressive, speculative optimization technique, which prunes narrow computations based
on their productiveness index, when viewed in isolation. It also embedded checks in the code
stream to detect any unassumed case of dynamic productiveness.

Additional hardware is required to implement LPP apart from the baseline narrow proces-
sor with support for speculation recovery. This includes additional assertion-like opcodes and
support for 3-bit encoding for each 64-bit register.

Compared to GPP, the rationale for LPP is to study whether productiveness on a finer
granularity of individual computation is more powerful. The atomic region, however, cannot
be a single computation; atomic regions are assumed to be basic blocks to reduce the assertion
overheads of LPP. In this chapter, we explored the design space of the LPP optimization by
evaluating static vs. dynamic optimization models. Further, altering the size of atomic regions
has also been investigated. Based on the evaluations, we believe LPP in a static optimizer
model with basic block as atomic regions presents a good design point.

LPP can reduce the dynamic code footprint of the narrow ISA by 20%, with around 15%
reduction in number of cycles, and an overall coverage of about 60%. Assertion overheads are
admissible : 4% additional narrow computations using single-register compression scheme.
Lastly, assertion failure rates are as low as 2.52% on an average.

Unlike GPP, LPP shows that the heuristic of productiveness can be effective in reducing
the dynamic code footprint of the narrow ISA. Given the low gains of GPP, together with other
conceptual differences (like size of atomic regions) between GPP and LPP, we do not combine
the two techniques together.

117

5. LOCAL PRODUCTIVENESS PRUNING

118

6

Minimal Branch Computation

The optimizations proposed until now (Global Productiveness Propagation and Local Produc-

tiveness Pruning) are heuristic-based optimizations aimed towards generating the minimum

required computations (MRC) of a region via data-flow analyses and code pruning. In this

chapter, we extend the notion of MRC further and introduce a different approach to reduce the

dynamic code footprint of the narrow ISA.

Code reordering is a well-established technique and is used in traditional systems for

achieving better resource-utilization, hiding memory latencies, improved cache performance

and throughput. In this chapter, we introduce the concept of reordering narrow backslices so

as to reduce the dynamic code footprint of the narrow ISA applications. The idea is to reorder

the backslices containing narrow computations such that the minimal necessary computations

to generate the same (correct) output are performed in the most-frequent case; the rest of the

computations are performed only when necessary.

In this chapter, we propose and evaluate a particular use case of the broader concept of

reordering narrow backslices : the use case of reordering narrow backslices around conditional

branch computations. This is because it has been observed that conditional branches and their

backslices have specific properties that can be leveraged easily for this strategy. Conceptually

though, the strategy of reordering narrow backslices is broader in its impact than that explored

in this chapter and can as well be applied to computations apart from conditional branches.

The code optimization technique that reorders backslices containing narrow ISA computa-

tions around conditional branch computations is termed as the Minimal Branch Computation

(henceforth, MBC) optimization. The MBC optimization technique is very specific to the

narrow stream of computations; it truly exploits the fact that narrow ISA decomposes the tradi-

tional quanta of work (32-bit / 64-bit computations) into tasks of finer granularity in the form

119

6. MINIMAL BRANCH COMPUTATION

of narrow ISA computations. Hence, MBC in its current form may not be applicable to wide

64-bit computations.

This chapter is organized as follows. First, it introduces the concept of the MBC optimiza-

tion and presents the basic know-how for understanding the strategy of the optimization. After

discussing the background definitions used in the rest of the chapter, the MBC optimization

is formally defined. The proposed optimization is then described in detail with the individ-

ual passes composing the optimization technique. To the best of our knowledge, the proposal

in this chapter is the first to exploit narrow computations for reducing the cost of resolving a

conditional branch. Nevertheless, Section 6.5 highlights some previous research performed for

reducing the overheads of branches. Finally, the chapter is concluded with the performance

evaluation of the proposed optimization technique.

6.1 Introduction

The underlying motivation for the MBC optimization is to exploit the fundamental distinction

between a flag 1 and a data value : flag reflects a property of the data value in a storage location.

Succinctly speaking, flags have two useful attributes :

(i) A flag is a 1-bit status bit which may be computed without the knowledge of the precise

and complete value of the corresponding multiple-bit length data value, and

(ii) Computing a flag can be done in more than one ways. This is because for computing the

value of a flag, the correct and complete data value is not always necessary; sometimes a

subset of the data value is sufficient.

For example, consider a 64-bit logical and operation : and tr0 = rax, rbx, which performs a

logical and operation of two 64-bit values, rax=0x2aab|7b00|1000 and rbx=0x1111|0000|0001

to check if specific bits of rax are set or not, and updates the ZF accordingly. For dynamic in-

stance of the computation, it is sufficient to perform the logical and operation on only Chunk2
2

(0x2aab with 0x1111) to generate the correct value of ZF (instead of performing logical and

on all four chunks – Chunk0, Chunk1, Chunk2, and Chunk3). Hence, in the narrow ISA

programs, there exists an opportunity to compute the flag bits minimally. Exploiting these

properties, the key responsibility of MBC is to infer how to generate the flag values with the

minimal required computations. More formally,

1also known as condition code value or status-bit in some ISAs
2Chunk2 is the 16bit data from bit positions 32 to 47

120

6.1 Introduction

Given a series of computations responsible for generating only the flags which are eventually

consumed by a conditional branch to determine the direction of program execution, what is

the minimal necessary subset of these computations which can generate the same correct

value of the required flags.

Next, we describe the basic know-how required to understand the MBC optimization. Al-

though MBC is independent of the baseline ISA, this thesis assumes x86 / IA64 [26] based

semantics with respect to flags / condition codes. A brief overview of the narrow ISA flag

semantics has been previously provided in Section 2.2.2. The two aspects of narrow ISA that

are relevant in the context of this chapter are further explained next – the EFLAGS register, and

the condition codes.

EFLAGS Register. The x86 / IA64 ISAs have a 32-bit EFLAGS Register [25] which consists

of a group of status flags, a control flag, and a group of system flags. This MBC optimization

(and hence, this chapter) concerns only the status flags. There are six status flags in the x86 /

IA64 ISA, namely : Carry Flag (CF), Parity Flag (PF), Adjust Flag (AF), Zero Flag (ZF), Sign

Flag (SF), and Overflow Flag (OF).

Of these aforementioned flags, only the CF, ZF, OF and SF are most-commonly used. This

is corroborated by our preliminary evaluations performed to refine the design space of the MBC

optimization (presented later in Figure 6.2). Hence, the MBC optimization is built around only

these four status flags (illustrated in Figure 6.1) :

(i) Zero Flag indicates whether the result generated by the computation is zero or not. ZF=1

indicates that the result is zero and ZF=0 indicates that the result is non-zero.

(ii) Sign Flag is the most significant bit of the result. This is the sign bit of a signed integer.

SF=0 indicates positive value and SF=1 indicates a negative value.

(iii) Carry Flag is the bit that flows out of the sign bit (carry out of the sign bit).

(iv) Overflow Flag indicates whether a computation produces a result which is out of bounds

for the corresponding data-type. The overflow flag is usually computed as the xor of the

carry into the sign bit and the carry out of the sign bit. In other words, exclusive-ORing

the carry flag and the bit carried into the sign bit (last bit of the destination operand)

generates the Overflow Flag.

121

6. MINIMAL BRANCH COMPUTATION

0

SF

^
OF

CF

m
sb

m
sb
−
1

m
sb
−
2

Figure 6.1: Semantics of selected flags - sign flag, carry flag, and overflow flag

Condition Codes. The narrow ISA implements Jcc – ‘Jump if Condition is Met’ operations.
Much of the narrow ISA Jcc operations remain the same as that for x86 / IA64 [25]. A con-
dition code is associated with each of these instructions to indicate the condition code being
tested for. Few examples of condition codes are E/NE (equal or not equal), Z/NZ (zero or non
zero), LE/NLE (less than equal or not less than equal), BE/NBE (below or equal, or not be-
low or equal), L/NL (less than or not less than) etc. As both E/NE, and Z/NZ condition codes
check the same flag bit (i.e., zero flag ZF), for the rest of the chapter the two are often used
interchangeably.

 0

 20

 40

 60

 80

 100

bzip2
crafty

eon
gap

gcc
gzip

m
cf

parser

perlbm
k

vpr
Avg

Breakdown of Dynamic Condition Codes

c
nc
e

ne

l
nl

be
nbe

s
ns
le

nle

others

Figure 6.2: Histogram distribution of dynamic condition codes for conditional branches

122

6.1 Introduction

zf

br
1

zf

br
1

zf

zf

zf

9
ld

and
5

zf

zf

tr0.0

and
5

andcandcandc

ld ld
8
ld

9
ld

2 3 4

6 7

zf

8
ldldld

andc andc andc
2 3 4

6 7

(C) Minimal Branch Computation via

Reordering Narrow Backslices

L
es

s−
F

re
q
u
en

t
C

as
e

tr0.1tr0.2tr0.3

tr0.1tr0.2tr0.3

Default fgSlice with Default Branch

MBC fgSlice with MBC Branch

br
1M

o
st

−
F

re
q
u
en

t
C

as
e

tr0.0

Flag−Generating Siblings

Flag−Generating Backslices (fgSlices)

fg
S

li
ce

 2

fg
S

li
ce

 3

fg
S

li
ce

 1

fg
S

li
ce

 0

(A) Non Optimized 64−bit Computations

(B) Non Optimized Code Dependence Graph

ld tr0 = rbx, 0x4

andc tr3 = tr0, 0x1011

br.z T

Figure 6.3: Background definitions and minimal branch computations conceptually

Dynamic Condition Codes Distribution. Figure 6.2 shows the histogram distribution of the

dynamically seen condition codes for all committed conditional branches for the profile-phase

(200m committed user instructions using the ref input data-set) of the respective applications.

As the graph illustrates, about 62.28% of the conditional branches are associated with e/ne

(evaluated based on value of ZF), another 15.46% with le/nle (evaluated based on the values of

ZF and OF), and 6.48% with be/nbe (evaluated based on the values of ZF and CF). Together,

these six condition codes can provide acceptable coverage for MBC : a total of 84.22%.

Hence, MBC optimization, in its current form, optimizes only the six foregoing condition

codes. This is done to merely balance the trade-off between the implementation effort required

vs. the harvested gains; nothing prevents from adding the rest of the condition codes to achieve

100% coverage across the complete set of condition codes of the narrow ISA.

123

6. MINIMAL BRANCH COMPUTATION

6.2 Definition

Informally, MBC is a profile-based technique that reorders narrow computations around con-
ditional branches so that the condition code required for the conditional branch be computed
using the minimal necessary computations.

Figure 6.3 diagrammatically shows the overall mechanism of MBC using a sample code
from a basic block. Only those instructions that are used to generate the value of the condition
code are shown in Figure 6.3 (A). In nutshell, the branch is taken if the value loaded from
memory (location rbx+0x4) has three specific bits set to zero. Figure 6.3 (B) shows the data
dependence graph of the narrow ISA operations. Finally, Figure 6.3 (C) shows what MBC
can potentially achieve. MBC uses a profile-based learning approach to infer which set of
computations is sufficient most of the times to generate the correct value of the flag (ZF in this
case). It reorders code in order to exploit this property to reduce the overall dynamic code
footprint of sample piece of code.

Apart from the previously described background definitions and terminologies used in this
thesis (Section 2.4.1), next section lays downs some more definitions which are used to for-
mally define and describe the Minimal Branch Computation optimization.

6.2.1 Background Definitions

Refer to Figure 6.3 for a diagrammatic view of the following definitions.

Definition 6.1 (Flag-generating Siblings). Those narrow computations which are decom-

posed from the same RISC-like, wide 64-bit computation are called Flag-generating Siblings

when they co-operatively compute the flags consumed by an impending conditional branch in

the static stream of narrow computations.

Hence, each of the flag-generating siblings has a data dependence due to the flag regis-
ter with its predecessor flag-generating sibling in program order (except that sibling which
generates chunk zero). Consider the code sequence shown diagrammatically in Figure 6.3 :
computations 2, 3, 4, and 5 are flag-generating siblings. Following the x86 semantics, the OF
and CF flags are cleared for a narrow and / andc operation; the SF, ZF, and PF flags are set
according to the result. Hence, note that there is a flag dependence (zero flag) that flows in the
same order.

Definition 6.2 (Data-flow Computations). Given a code region R and its data dependence

graph DDG(R), those computations which are the live-outs of R, and their backslices are de-

124

6.2 Definition

fined as Data-flow Computations of the region R. The live-out analysis is performed for all nar-

row architectural registers except instruction-pointers (rip.0, rip.1, rip.2, and rip.3) and flags.

In the context of the MBC optimization, the code region R is also the optimization region
(Definition 2.3). In this thesis, MBC has been evaluated on a basic block, although other
granularities like a superblock can be explored too.

Definition 6.3 (Conditional Control-flow Computations). Given a conditional branch, Con-

ditional Control-flow Computations is the group of computations consisting of all the flag-

generating siblings and their backslices such that the backslices contribute to generating the

flag values only (and do not contribute towards the generation of a live-out data value).

Definition 6.4 (Reorderability of Flag-generating Siblings). The flag-generating siblings are

said to be Reorderable if altering the order of these instructions never impacts the outcome (the

evaluated flag). The flag-generating siblings 2, 3, 4 and 5 in Figure 6.3 are Reorderable.

Table 6.1: Sample code to illustrate non-reorderability of flag-generating siblings

Sample Translation for a Conditional Branch

Wide Operation (64-bit) Equivalent set of Narrow Operations

sub tr0 rax = rax.0 imm.0

sub tr0.0 = rax.0 imm.0

subc tr0.1 = rax.1 imm.1

subc tr0.2 = rax.2 imm.2

subc tr0.3 = rax.3 imm.3

mov inrip.0 = riptaken.0

mov inrip.1 = riptaken.1

mov inrip.2 = riptaken.2

mov inrip.3 = riptaken.3

br rip = cf, riptaken br rip = cf, inrip;

Register name Ri refers to the ith chunk (16-bit data) of the equivalent 64-bit

register register R, R0 holds the least significant chunk.

Immediate name Immi refers to the ith chunk of the equivalent 64-bit immediate,

Imm0 specifies the least significant chunk. inrip is an additional 64-bit internal

register used for redirection of control-flow due to branches.

On the other hand, consider the code sequence shown in Table 6.1. The flag-generating
siblings are the four subtract operations. These computations are Non-reorderable as subc

125

6. MINIMAL BRANCH COMPUTATION

semantics require that the value of carry flag from the dependence is used as input to generate
the current updated value of the flag (CF).

Definition 6.5 (Flag-generating Backslice of a Sibling (fgSlice)). Backslice of a Flag-generating

Sibling (fgSlice) is the static backslice (computed by a backward-traversal) of the flag-generating

sibling such that :

• it does not contain any data-flow computation, and

• flag dependences between the flag-generating siblings are followed only when they are

non-reorderable.

Hence, an fgSlice gives those narrow computations which are responsible for generating
the flags only (directly or indirectly).

6.2.2 Definition of MBC

Definition 6.6 (Minimal Branch Computation). Minimal Branch Computation is a profile-

based code reordering technique which places those flag-generating backslice(s) first which

is(are) most-probably sufficient to generate the outcome of the condition code which is eventu-

ally consumed by the impending conditional branch computation.

Further, following must be asserted in the context of MBC :

1. Scope : MBC assumes that all branches – conditional and unconditional are always
necessary. It does not ‘optimize the control-flow’ as done by some previous research
[31, 60]; it only reduces the control-flow backslices of conditional branches.

2. Effect : To reduce the control-flow backslice, MBC does not change a flag-generating
computation by a computation of lesser strength. MBC simply reorders the original
narrow ISA computations around conditional branches.

3. Program equivalence with respect to flags : MBC optimization may forsake the strict
guarantee of program equivalence with respect to flags selectively. Recall that the nar-
row ISA operations may update multiple flags as their side-effect of execution (similar
to x86)1. This redundancy can limit the applicability of the MBC optimization. Fur-
ther, given the redundancy, it has been observed that most of the generated flags are

1Assuming similar flag semantics for narrow operations as x86 allows simple semantic specification of the

narrow ISA

126

6.3 Description

dead (written before use) or are not used at all. Hence, the MBC optimization does not

guarantee precise state of dead flags.

Hardware Support. Unlike the previously studied non-productiveness based pruning tech-
niques (GPP and LPP) in this thesis, MBC optimization technique does not require any addi-
tional hardware support. However, in logical progression of the thesis, we propose and evaluate
MBC on an LPP-optimized narrow computation stream. Hence, the hardware support required
for MBC is at least the same as that required for LPP. Recall that this mainly implies hardware-
based speculation rollback and recovery methods (discussed previously in Section 3.2).

Comparison with Non-productiveness based Pruning Techniques. In perspective with the
non-productiveness based pruning techniques previously studied in the thesis, the MBC opti-
mization technique is profile-guided too. The difference, however, is in the how self-sufficient
the generated code is. The code generated after non-productiveness based pruning techniques
is speculative and in wake of assumption failure, hardware mechanisms are required to perform
a rollback and recovery action. The MBC generated code, on the other hand, is self-sufficient
to generate the correct state without the need of a rollback. MBC reordering embeds a sort
of compensation code (known as the default backslice) which in the event of mis-speculation,
if any, can overwrite the previous partial (and probably incorrect) state and can generate the
correct state of the required flags always.

6.3 Description

6.3.1 Overview

MBC is a profile-based code reordering technique. Figure 6.4 depicts the overall flow of the
proposed optimization. As the first step of the profile-generation process, hot regions are de-
tected. Next, all conditional branches and the corresponding flag-generating siblings are in-
ferred. The flag-generating siblings are then profiled. The profiling strategy of MBC is more
elaborate than that required for the non-productiveness based pruning techniques described
in previous chapters. At the same time, MBC profiles only the flag-generating siblings, and
hence, the overhead of profiling for MBC as compared to the previously studied code pruning
techniques is much lower. MBC requires profiles for certain sufficiency rules for each dynamic
instance of a condition code. The sufficiency rules are highly specific to the associated con-
dition code. Details on profiling required for MBC and the sufficiency rules for each selected
condition code are provided in Section 6.3.2.

127

6. MINIMAL BRANCH COMPUTATION

 1. Find Hot Regions
 2. Pick Flag-generating Siblings
 3. Profile Sufficiency Rules until N instructions

PROFILE

 4. MBC Optimize

STEP A : Demarcate Data-flow and Conditional Control-flow
STEP B : Infer Minimum Required Flag-generating Siblings
STEP C : Infer Default Flag-generating Backslice
STEP D : Perform Cost-Benefit Analysis

 STEP E : Perform fgSlice Reordering

OPTIMIZE

USE PROFILE TO OPTIMIZE

Figure 6.4: Minimal Branch Computation : An overview with the component passes

After the profile phase (of say N instructions), the MBC optimization is triggered using the

collected profiles. The individual component passes of the optimization are described in the

next section.

6.3.2 Profiling for MBC

The profiling strategy for MBC aims to infer which of the flag-generating sibling(s) is(are)

most-probably sufficient to generate the correct value of the required flag. Table 6.2, Table 6.3

and Table 6.4 list the most common opcodes (JZ/JNZ, JLE/JNLE, and JBE/JNBE respectively)

for conditional branches and their associated condition codes. Individual profiling strategy for

each of the condition codes is described in the following paragraphs.

In summary, the two main types of profiles required for MBC optimization across the

specified condition codes are –

(i) Outcome Profile, which measures how many times the condition code is evaluated as true

vs. false, and

(ii) Property Profile, which measures specific properties of the data values involved in the

computation of the corresponding flag.

128

6.3 Description

Table 6.2: Conditional branch JZ / JNZ, the associated status flags, and the profiling strategy

Conditional Branch Op-

code

Status Flags Required Most-Common Flag-generating

Opcodes

JZ / JNZ ZF / !ZF and(c), add(c), sub(c)

Profiling Strategy

1. Outcome Profile : Taken %, Not-Taken %.

2. Property Profile : Zero-Profile or Nonzero-Profile is gathered,

if ZF = 0, Nonzero-Profile is gathered ≡ profile for which chunk is nonzero,

if ZF = 1, Zero-Profile is gathered ≡ profile for size-sign encoding of src1 and src2.

Profiling for JZ / JNZ. The two most commonly used conditional branches are JZ, i.e., Jump
if Zero (ZF=1), and JNZ, i.e., Jump if Not Zero (ZF=0). The most-common flag-generating
opcodes used for JZ / JNZ conditional branches are and, add, and sub (in decreasing order of
their use in the workloads evaluated in this thesis). Table 6.2 shows the profiling strategy for JZ
/ JNZ. Two main profiles are required to learn that operating on which chunk may be sufficient
to infer the correct value of the ZF :

(i) Outcome Profile : For each static branch computation, this profile counts the direction, i.e.
taken (TRUE) vs. not-taken (FALSE) for all its dynamic executions. This is later used to
infer the bias of a particular branch towards being taken / not-taken. The Outcome Profile
is also used to keep track of the execution count of the respective conditional branch, also
referred to as the ExecCntBranch hereafter.

(ii) Property Profile : The Property Profiler applies a split strategy. For each static branch
computation, if the ZF is evaluated to zero (which implies that at least one of the flag-
generating siblings generated a non-zero data value in their respective destination reg-
isters), the Nonzero-Profile is performed. Nonzero-Profile counts which of the 16-bit
chunks generated by the flag-generating siblings is non-zero, and hence, sufficient for the
inference of ZF being zero.

If the ZF is evaluated to one (which implies that the all flag-generating siblings generated
a zero data value in the destination register), the Zero-Profile is performed. Zero-Profile
counts the bias of the involved 64-bit operand values of the flag-generating operation
(src1 and src2 operands) towards a particular size-sign encoding. The size-sign encoding
is the same as shown previously in Figure 5.5 (Chapter 5).

129

6. MINIMAL BRANCH COMPUTATION

Following is the rationale for the profiling scheme chosen for JZ / JNZ (summarized in
Table 6.2). If the ZF is evaluated to zero (i.e., the data value result is not numerically zero), it is
sufficient to operate on the non-zero chunk only. For example, in case of logical and operation
on two 64-bit values : src1=0x2aab|7b00|1000 and src2=0x1111|0000|0001, it is sufficient
to perform logical and operation only on the Chunk2 (0x2aab with 0x1111) to generate the
correct value of ZF (ZF = 0 in this example). Note how, even though the profiling is performed
on the narrow computation stream, the profiler creates a sense of the semantic 64-bit values for
input and output data values by combining the profiles of all the flag-generating siblings.

Similarly, the rationale for Zero-Profile is intuitive. If the ZF is evaluated to one, (i.e.,
the data value of the result generated by the flag-generating siblings is numerically zero), it
may be sufficient to assert on the size-sign encoding of the 64-bit values of src1 and src2
(by combining all the input data chunks of the flag-generating siblings), and operate on the
minimum necessary chunks only. The notion of extending the 16-bit register file in a narrow
bitwidth architecture with a 3-bit size-sign encoding per 64-bit data value have been previously
discussed in Figure 5.5 (Chapter 5). For example, in case of logical and operation on two 64-
bit values : src1=0x1000 (encoding 0+) and src2=0x0001 (encoding 0+), it is sufficient to : (i)
assert dynamically that size-sign encoding of src1 and src2 is 0+ each, and (ii) perform logical
and operation on Chunk0

1 of both src1 and src2 only.

Profiling for JLE / JNLE. The second most-commonly used conditional branches are JLE
i.e., Jump if less or equal (ZF=1 or SF6=OF), and JNLE i.e., Jump if not less or equal (ZF=0
and SF=OF). The most-common flag-generating opcodes used for JLE / JNLE conditional
branches are subtraction based opcodes (sub and subc). Table 6.3 shows the profiling strategy
for JLE / JNLE. Two main profiles are required to learn that operating until which chunk may
be sufficient to infer the correct value of the LE condition code :

(i) Outcome Profile : Same as that explained for the case of profiling for JZ / JNZ previously.

(ii) Property Profile : Similar to the JZ / JNZ conditional branch, the Property Profiler for
JLE / JNLE conditional branch applies a split strategy. For each static JLE / JNLE branch
computation, if the LE (less than or equal) is evaluated to one, the LE-Profile is gathered.
Further, LE-Profile is essentially a placeholder name for two set of profiles, and a value
of one for the LE condition code implies that either of these two conditions must be true :

(i) src1 equal to src2, in which case the profiler saves the size-sign encoding of the
operands src1 and src2. This is known as the Equals-Profile.

1Chunk0 is the least significant 16-bit chunk of bits 0 to 15

130

6.3 Description

Table 6.3: Conditional branch JLE / JNLE, the associated status flags, and the profiling strategy

Conditional Branch Op-

code

Status Flags Required Most-Common Flag-generating

Opcodes

JLE ZF | (SF6=OF) sub(c)

JNLE !ZF & (SF=OF) sub(c)

Profiling Strategy

1. Outcome Profile : Taken %, Not-Taken %.

2. Property Profile : LE-Profile or Greater-Profile is gathered,

if LE is True, LE-Profile is gathered :

> if ZF = 1, Equals-Profile is gathered ≡ profile for size-sign encoding of src1 and

src2,

> else Less-Profile is gathered ≡ profile for which chunk of src1 is < respective

chunk of src2,

if LE is False, Greater-Profile is gathered ≡ profile for which chunk of src1 is >

respective chunk of src2.

(ii) src1 < src2, in which case the profiler updates the Less-Profile. Even though the pro-

filing is performed on the narrow computation stream, the profiler creates a sense

of the semantic 64-bit values for input and output data values. By scanning incre-

mentally from the most significant chunk to the least significant chunks, the profiler

saves that chunkID of src1 and src2 using which it is sufficient to draw the same log-

ically correct inference (src1 < src2). For example, to infer whether the 64-bit value

of src1=0x2aab|6b00|1000 is less than the 64-bit value of src2=0x2aab|7b00|1000,

it is sufficient to compare only Chunk3 (0x0000 and 0x0000), Chunk2 (0x2aab and

0x2aab) and Chunk1 (0x6b00 and 0x7b00). Hence, the profiler will save chunkID

of one for this dynamic instance.

A zero value of LE implies that src1 must have been greater than src2. Hence, in this case,

the profiler updates the Greater-Profile. By scanning incrementally from the most signifi-

cant chunk to the lower significant chunks, the profiler saves that chunkID of src1 and src2

using which it is sufficient to draw the same logically correct inference (src1 > src2). For

example, to infer that 64-bit value of src1=0x2ccc|7b00|1000 is greater than the 64-bit

131

6. MINIMAL BRANCH COMPUTATION

value of src2=0x2aab|6b00|1000, it is sufficient to compare only Chunk3 (0x0000 and

0x0000) and Chunk2 (0x2ccc and 0x2aab). Hence, the profiler will increment chunkID

of two for this dynamic instance.

Table 6.4: Conditional branch JBE / JNBE, the associated status flags, and the profiling strategy

Conditional Branch Op-

code

Status Flags Required Most-Common Flag-generating

Opcodes

JBE CF | ZF sub(c)

JNBE !CF & !ZF sub(c)

Profiling Strategy

1. Outcome Profile : Taken %, Not-Taken %.

2. Property Profile : BE-Profile or Greater-Profile is gathered,

if BE is True, BE-Profile is gathered

> if ZF = 1, Equals-Profile is gathered ≡ profile for size-sign encoding of src1 and

src2,

> else Below-Profile is gathered ≡ profile for which chunk of src1 is < respective

chunk of src2,

if BE is False, Greater-Profile is gathered ≡ profile for which chunk of src1 is >

respective chunk of src2.

Profiling for JBE / JNBE. The next most-commonly used conditional branches are JBE i.e.,

Jump if below or equal (CF=1 or ZF=1), and JNBE i.e., Jump if not below or equal (CF=0 and

ZF=0). For the JBE / JNBE conditional branches, the most-common flag-generating opcodes

observed via profiling are subtraction based opcodes (sub and subc).

JBE / JNBE is analogous to the previously discussed JLE / JNLE. The only difference is

that JLE / JNLE account for signed arithmetic. Similar to the x86 / IA64 semantics, the terms

less and greater are used for comparisons of signed integers and the terms above and below

are used for unsigned integers. Table 6.4 shows the profiling strategy for JBE / JNBE (which

remains very similar to JLE / JNLE shown in Table 6.3).

132

6.3 Description

Finally, after the profile phase, the MBC optimization is triggered which eventually applies

a cost-benefit analysis based on the profiles to reorder the flag-generating siblings and their

backslices.

6.3.3 MBC Optimization

6.3.3.1 Step A : Demarcate Data-flow and Conditional Control-flow

The first step for MBC optimization is to demarcate the data-flow computations (Definition 6.2)

and the conditional control-flow computations (Definition 6.3) in the region to be optimized.

It is important to separate the two so that the MBC optimizer can freely reorder the back-

slices in the conditional control-flow of the optimization region, without forsaking correctness.

The data-flow computations are required outside the region and must always be generated.

Note that the set of conditional control-flow computations of an optimization region may be

empty even in presence of a conditional branch.

6.3.3.2 Step B : Infer Minimum Required Flag-generating Siblings

Given a conditional branch and its flag-generating siblings, in this pass the algorithm infers

the minimum sufficient flag-generating siblings (using the profiles). The inference of the mini-

mum sufficient flag-generating siblings is different for each condition code, much like how the

profiling strategy varies with each condition code.

For sake of brevity, this section only discusses how to infer the minimum required flag-

generating siblings for the JZ conditional branches (Jump if zero). Algorithm 3 shows the

pseudo code for the same. The logical similarity between the profiling strategy (Table 6.2) and

the means of inferring the minimum sufficient flag-generating siblings for the JZ conditional

branch (Algorithm 3) is apparent.

If the bias of the particular JZ conditional branch is towards not-taken (lines 1 and 2 of

Algorithm 3), this implies that the ZF had been set to zero most of the times. This, in turn,

means that the Nonzero-Profiles of this conditional branch can be used to learn which of the

flag-generating siblings had been generating a non-zero value most of the times.

On the other hand, if the bias of the JZ conditional branch is towards taken, this implies

that the ZF had been set to 1 most of the times.

133

6. MINIMAL BRANCH COMPUTATION

ALGORITHM 3: listFGS← Infer_Minimum_FlagGenerating_Siblings_Z (brNode)

NotTakenbias← outcomeProfile.get(brNode).notTaken >1

outcomeProfile.get(brNode).taken;
if NotTakenbias ≥ 1 then2

// Use NonZero Profile if ZF is 0 most of the times

nzprof← get NonZeroProfile for brNode;3

// Which one is sufficient most of the times?

minimum_required_chunk← chunk ID of max(nzprof.Chunk0, nzprof.Chunk1,4

nzprof.Chunk2, nzprof.Chunk3);
listFGS.add(minimum_required_chunk);5

Update ExecCntSufficient to frequency of minimum_required_chunk;6

else7

// Use Zero Profile if ZF is 1 most of the times

zeroProf← ZeroProfile for brNode;8

// Do at least the max of src1 encoding and src2 encoding

minimum_required_chunk← max(zeroProf.max_ra_encoding,9

zeroProf.max_src2_encoding);
for chunk from Chunk0 to Chunkminimum_required_chunk do10

listFGS.add(chunk);11

end12

Update ExecCntSufficient to frequency of minimum_required_chunk;13

end14

return listFGS;15

As the flag-generating siblings generated a value of Zero most of the times, the profiler

infers the most-frequent size-sign encodings of the input values of operands src1 and src2 (line

7 Algorithm 3). The size of the listFGS may vary from 1 to a maximum of 4. Also note that

the algorithm updates the ExecCntSufficient, which denotes the execution count of the number

of times the listFGS is sufficient to correctly compute the flag. ExecCntSufficient is inferred

from the profiles and is later used to perform a cost-benefit analysis.

The minimum required flag-generating siblings, hence inferred (listFGS in Algorithm 3)

form the basis of the MBC Flag-generating Backslice, which is formally defined as follows :

Definition 6.7 (MBC Flag-generating Backslice). The MBC Flag-generating Backslice for a

conditional branch consists of the minimum required flag-generating siblings and their back-

slices within the conditional control-flow of the optimization region. The inference of the

minimum required flag-generating siblings is profile-based. Hereafter, it is also referred to as

‘mbc-controlflow’.

134

6.3 Description

6.3.3.3 Step C : Infer Default Flag-generating Backslice

The next step is to infer the Default Flag-generating Backslice. In the event that the MBC flag-
generating backslice is not sufficient, the control-flow needs to default to a non-speculative
static narrow ISA code stream which is always sufficient for computing the correct value of
flag. This piece of code is referred to as the Default flag-generating backslice and is defined as
follows :

Definition 6.8 (Default Flag-generating Backslice). The Default Flag-generating Backslice

for a conditional branch consists of those computations in the conditional control-flow, which

are always sufficient to generate the correct value of the flag for the respective conditional

branch. Hereafter, it is also referred to as ‘default-backslice’.

Table 6.5: Illustrating reorderability for MBC using the most-common cases

Id Wide Opcode (64-bit) Required

Condition Code

Category Comments

1. sub, add, and, or E Reorderable Reorderable because the final value of

the zero flag is the logical or of the zero

flag of the individual chunks

2. sub, add C Non-reorderable Non-reorderable because CF flows

from the least significant chunk to the

most significant one

3. sub, add LE / BE Reorderable If the condition being evaluated is LE /

BE, an implicit order is already in place

4. shr, shl E Non-reorderable Occurs infrequently. Non-reorderable

because a chunk may have non-zero

bits shifted into it from its neighboring

chunk

The notion of reorderability of flag-generating siblings is exploited to infer the Default
flag-generating backslices. Table 6.5 showcases the most-common cases to further illustrate
the concept of reorderability. If the required condition code is E/NE and is generated by any
opcodes like sub, add, logical and / or, the default flag-generating backslice simply needs to
operate on the left over chunks. This is because the final value of the zero flag is the logi-
cal or of the zero flag of the individual chunks. Similarly, if the required condition code is
LE/BE/NLE/NBE, the default flag-generating backslice can simply take over from the chunk

135

6. MINIMAL BRANCH COMPUTATION

left over by the MBC backslice. For example, if both Chunk3 and Chunk2 are indecisive
to generate the correct value of the condition code LE, it is sufficient to check the rest of the
chunks Chunk1 and Chunk0.

Non-reorderability in the current context implies that the state of the flags generated by
the MBC flag-generating backslices cannot be considered as a correct partial state, and all the
computations must be redone to generate the correct value of the flag, should the MBC flag-
generating backslice not suffice. For example, as a specific example of case 2 in Table 6.5, if
Chunk3 on subtraction does not generate a carry, all four chunks must be subtracted in order
(from least significant chunk to the most significant chunk) to generate the correct value of the
CF.

Hence, reorderability allows the flag-generating siblings to reuse each other’s generated
flag values irrespective of their order of execution. As shown in Algorithm 4, when the flag-
generating siblings are reorderable (Definition 6.4), the default flag-generating backslice is
computed as the set difference of Set(lppopt-controlflow) and Set(mbc-controlflow) (line 3 of
Algorithm 4). A set difference of two sets B and A is denoted as B / A where B / A = {
x∈ B | x /∈ A } (same as [B - (B ∩ A)]). On the other hand, if the flag-generating siblings
are non-reorderable, all the computations in the conditional control-flow (lppopt-controlflow in
this case as the control-flow is already reduced by LPP) of the branch need to be done again.

ALGORITHM 4: default-backslice← Infer_Default_FG_Backslice (brNode)
reorderable← is_reorderable(brNode, fgSiblings);1

if reorderable then2

// Set difference denoted by B / A

default-backslice← Set(lppopt-controlflow) / Set(mbc-controlflow);3

else4

// Use Zero Profile if ZF is 1 most of the times

default-backslice← Set(lppopt-controlflow);5

end6

return default-backslice;7

6.3.3.4 Step D : Perform Cost-Benefit Analysis

This section outlines a simple cost-benefit analysis used to evaluate the efficacy of MBC-based
narrow backslice reordering. Costs and benefits are estimated in terms of the dynamic number
of narrow ISA computations using collected information from the profiles because the goal
of the MBC optimization is to reduce the dynamic code footprint of the narrow ISA. Specific
execution frequencies of the different optimization scenarios are available via the collected
profiles.

136

6.3 Description

Cost of conditional Branch before MBC optimization can be calculated as :

Costbefore =

[∑
0≤i≤msc

|fgSlicei|+ |Branch|
]
∗ ExecCntBranch (6.1)

where, fgSlicei denotes the ith flag-generating sibling and its backslice. The number of
fgSlices is correlated with the value of msc (most significant chunk). The value of msc may
range from 0 to 3 because it depends on the operation size of the original flag-generating 64-bit
computation. For example, if the x86 operation size of the wide flag-generating operation is
32-bit, the value of msc will remain 1 (signifying the Chunk1). | X | denotes the cardinality
of the set X. For example, the cardinality of the set containing the conditional branch is 1.
ExecCntBranch is inferred from the Outcome Profile of the static conditional branch and
denotes the dynamic execution count of the conditional branch.

Next, the cost of conditional branch after MBC optimization can be calculated as:

Costafter =

[∑
i

|MBCfgSlicei|+ |MBCBranch|
]
∗ ExecCntBranch

+

[
|DefaultfgSlice|+ |DefaultBranch|

]
∗ (ExecCntBranch− ExecCntSufficient)

(6.2)

where, MBCfgSlicei denotes the ith MBC flag-generating sibling and its backslice. Note
that, more than one MBC flag-generating sibling may be required to compute the flags mini-
mally. ExecCntSufficient is inferred from the profiles and denotes the dynamic execution
count of the number of times the set of MBC flag-generating backslices were sufficient to
compute the flags correctly. | DefaultfgSlice | denotes the number of narrow computations
in the Default flag-generating backslice, which is required to be executed whenever the MBC
flag-generating siblings are not sufficient.

Hence, the reordering of backslices via MBC is beneficial if the cost of the branch after
optimization is less than the cost of the branch before such an optimization. Clearly, the cost-
benefit analysis does not necessarily guarantee that the reordering will be beneficial because
the actual behavior of a conditional branch may differ from what witnessed in the profile phase.

6.3.3.5 Step E : Perform fgSlice Reordering

Finally, if the cost-benefit analysis indicates that the reordering may be beneficial, fgSlice
reordering is performed. A conceptual layout of the reordering has been provided in Figure
6.5. Finally, the pseudo code provided in Algorithm 5 summarises the work flow of the MBC
optimization.

137

6. MINIMAL BRANCH COMPUTATION

...

...

T :

NT :

MBC Slice;

Br.cc T, NT’

Default Slice;

Br.cc T, NT

NT’ :

...

MBC REORDERED
SEQUENCE

fg−Slice 0;

fg−Slice 1;

fg−Slice 2;

fg−Slice 3;

Br.cc T, NT

...

...

T :

NT :

...

ORIGINAL
SEQUENCE

Figure 6.5: MBC reordered code

ALGORITHM 5: MBC_Optimize_Region
brNode← Infer Conditional Branch from Region;1

if brNode then2

lppopt-controlflow← Get_LPPOptimized_ControlFlow_Backslices(brNode);3

// Infer Min Required flag-generating sibling(s) from Profiles

switch conditionCode do4

case JZ / JNZ5

mbc-siblings← Infer_Minimum_FlagGenerating_Siblings_ZNZ(brNode);6

mbc-controlflow← Get_Backslices(mbc_siblings);7

break;8

end9

case JLE / JNLE10

mbc-siblings← Infer_Minimum_FlagGenerating_Siblings_LENLE(brNode);11

mbc-controlflow← Get_Backslices(mbc_siblings);12

break;13

end14

case JL / JNL15

mbc-siblings← Infer_Minimum_FlagGenerating_Siblings_LNL(brNode);16

mbc-controlflow← Get_Backslices(mbc_siblings);17

break;18

end19

end20

if sizeof(lppopt-controlflow) > sizeof(mbc-controlflow) then21

default-backslice← Infer_Default_FG_Backslice(brNode);22

costEffective← Perform_Cost_Benefit_Analysis(brNode, mbc-controlflow,23

default-backslice);
if costEffective then24

Reorder_fgSlices(brNode, mbc-controlflow);25

end26

end27

end28

138

6.4 Example : Walk-through

Issues with Reordering Backslices. In the context of MBC, there is a fundamental limitation
in reordering narrow backslices around conditional branches : a live-in variable of the Default
fgSlice cannot be a live-out of the MBC fgSlice. This is because a live-in of the Default fgSlice
is meant to consume the same value of the variable that is present before the MBC fgSlice
executes. The current implementation of MBC handles them by renaming such references with
no additional overheads (assuming free register names are available at all times). The dynamic
weight of these cases remains extremely low (as the conditional control-flow slices are small
in general).

6.3.4 Cost Analysis

Optimizing a region by MBC involves applying the sequential steps as shown in Figure 6.4
previously. The cost of optimizing code regions by MBC is the sum total of the cost of ap-
plying each of these individual steps. The cost of categorising data-flow computations from
conditional control-flow is proportional to the static number of computations in the region to
be optimized. Next, the cost of Step B and Step C each is proportional to the static number of
computations comprising the conditional control-flow of the programs. This is because the in-
ference of both the MBC flag-generating backslice and the default flag-generating backslice, in
the worst case, is bounded by the static number of computations in the conditional control-flow
of the region to be optimized.

6.4 Example : Walk-through

Now we illustrate the MBC optimization by using an example (refer to Figure 6.6). The ex-
ample is based on a small piece of code from a hot basic block of the benchmark vpr (function
try_swap).

For sake of clarity, Figure 6.6(A) shows only the non data-flow computations of the basic
block. Each node shows the respective opcode together with the post-order numeric underneath
the opcode. The add(c), ld, and sub(c) operations are the conditional control-flow computa-
tions. The graph also shows the four mov to the inrip register operations1 – nodes 2, 3, 4, and
5, which update the inrip register with the taken address of the conditional branch.

Before MBC is applied, the optimizer prunes the code with LPP. First, profile-based LPP
non-productive computations are inferred. Next the optimizer prunes them and places the re-
quired asserts appropriately. Nodes 2, 3, 4, and 5 are Group0 computations and do not require
any assertions to prune them. Nodes 14, 15, 16, and 17 are Group2 computations (notice that

1By definition, these four mov operations are not conditional control-flow computations

139

6. MINIMAL BRANCH COMPUTATION

although destination is inaddr.x, the source register is r13.x). Pruning node 16 requires a value

based assertion, whereas the assertion requirements of node 14, 15 can be combined into a

single assertion using size-sign encoding. Hence, two asserts are embedded in lieu of nodes

14, 15 and 16.

Nodes 6, 7, 8, and 9 are the flag-generating siblings. Also shown in Figure 6.6(B) are

the flag-generating backslices of each of these siblings. The next step is to infer which of the

flag-generating siblings are minimally required most of the times (Step 7 of Algorithm 5). As

the conditional branch was not-taken most of the times, the associated Nonzero-Profile of the

conditional branch (node 1) is consulted (Step 3 of Algorithm 3). In this example, profiles

indicated that the least significant flag-generating sibling (node 9) is sufficient 92% of the total

number of profiled executions.

Next, the optimizer needs to infer the Default backslice for MBC. Notice, the carry flag

dependence (cf) between the flag-generating siblings (node 6, 7, 8, and 9). The presence of

such dependences makes these flag-generating siblings non-reorderable. However, a simple

data-flow analysis reveals that the carry flag generated by node 9 is never consumed (dead flag-

writer). Hence, removing the carry-flag dependences between nodes 6, 7, 8 and 9 is safe and

hence, they can be made reorderable.

Hence, the default backslice is calculated as the set difference of the LPP-optimized con-

ditional control-flow (nodes 6 through 13, node 17 and the two asserts) and the flag-generating

backslice of the profile-based minimum required sibling : zeroth sibling (nodes 9 and 13).

Hence the default backslice consists of nodes 6, 7, 8, 10, 11, 12 (shown in Figure 6.6(C)).

Before finally carrying out the reordering, the optimizer computes whether the reordering

is expected to be beneficial, based on the profiles. Hence, it computes cost of the conditional

branch (before reordering) according to Equation 6.1 by substituting |fgSlicei| by 2, |Branch|
by 1, and ExecCntBranch by 100 :

Costbefore =

[∑
0≤i≤3

2 + 1

]
∗ 100 = 900 (6.3)

Similarly, the cost of the conditional branch (after reordering) is calculated using Equation 6.2

by substituting |MBCfgSlice_i| by 2, m by 0, |MBCBranch| by 1, and ExecCntSufficient by

92 :

Costafter =

[∑
i=0

2 + 1

]
∗ 100 +

[
6 + 1

]
∗ (100− 92)

= 356

(6.4)

140

6.4 Example : Walk-through

L
P

P
 N

o
n
−

P
ro

d
u
ct

iv
e

co
m

p
u
ta

ti
o
n
s

D
at

a
D

ep
en

d
en

ce

C
ar

ry
 F

la
g
 D

ep
en

d
en

ce

A
ss

er
t

n
o
−

ca
rr

y
 w

it
h
 t

h
e

o
p

F
la

g
−

g
en

er
at

in
g
 B

ac
k
sl

ic
es

A
d
d
ed

 A
ss

er
ti

o
n
s

ra
x
.3

ra
x
.2

r1
3
.0

r1
3
.2

ra
x
.1

tr
0
.0

tr
0
.1

tr
0
.2

tr
0
.3

r1
3
.0

tr
0
.0

tr
0
.1

tr
0
.2

tr
0
.3

r1
3
.0

tr
0
.0

tr
0
.1

tr
0
.2

tr
0
.3

MOST FREQUENT CASE

!c
f

(A
)

N
o
n
 O

p
ti

m
iz

ed
 C

o
d
e

S
eq

u
en

ce
(B

)
L

P
P

 O
p
ti

m
iz

ed
 C

o
d
e

w
it

h
 A

d
d
ed

 A
ss

er
ts

!c
f

in
ri

p
 r

eg
is

te
r

in
ad

d
r

re
g
is

te
r

in
ri

p
 r

eg
is

te
r

in
ad

d
r

re
g
is

te
r

!c
f

in
ri

p
 r

eg
is

te
r

in
ad

d
r

re
g
is

te
r

LESS FREQUENT CASE

(C
)

A
p
p
ly

in
g
 M

B
C

 R
eo

rd
er

in
g
 o

n
 L

P
P

 O
p
t

C
o
d
e

1
+

r1
3

A
ss

er
t

0
x
6
b

r1
3

A
ss

er
t

1
+

r1
3

A
ss

er
t

0
x
6
b

r1
3

A
ss

er
t

A
ss

er
t

V
al

re
g

su
b
c

6
su

b
c

7
su

b
c

8
9su

b

1b
r

1
0ld

1
1ld

1
2ld

1
3ld

m
o
v

2

m
o
v

3
m

o
v

4
m

o
v

5

in
ri

p
.0

in
ri

p
.1

in
ri

p
.2

in
ri

p
.3

ad
d
c

1
4

ad
d
c

1
5

ad
d
c

1
6

1
7

ad
d in

ad
d
r.

0
in

ad
d
r.

1
in

ad
d
r.

2
in

ad
d
r.

3

r1
3
.1

rd
x
.3

rd
x
.2

rd
x
.1

rd
x
.0

r8
.0

r8
.1

r8
.2

r8
.3

9su
b

1
3ld

m
o
v

5

in
ri

p
.0

1
7

ad
d rd

x
.0

r8
.0

ra
x
.0

rd
x
.2

su
b
c

6
su

b
c

7
su

b
c

8

1
0ld

1
1ld

1
2ld

rd
x
.3

rd
x
.1

r8
.2

r8
.3

1b
rin

ad
d
r.

0

su
b
c

6
su

b
c

7
su

b
c

8
9su

b

1
0ld

1
1ld

1
2ld

1
3ld

m
o
v

5

in
ri

p
.0

1
7

ad
d in

ad
d
r.

0

zf

rd
x
.3

rd
x
.2

rd
x
.1

rd
x
.0

r8
.0

r8
.1

r8
.2

r8
.3

ra
x
.0

zf
zf

zf
zf

zf
zf

zf
zf

1b
r

ra
x
.0

r1
3
.3

r8
.1

zf

zf

b
r

1
8

zf

Figure 6.6: MBC at work

141

6. MINIMAL BRANCH COMPUTATION

Hence, as profiles suggest that the reordering can be potentially beneficial, MBC reordering
is carried out (Step 26 of Algorithm 5). The final reordered code sequence is shown in Figure
6.6(C).

6.5 Related Work

Conditional branches have been viewed as expensive operations. This is because it may take
multiple computations to determine the outcome and may cause pipeline flushes when mis-
predicted. The cost of a mis-prediction increases with deeper pipelines and the degree of su-
perscalar execution. Reducing the number of conditional branches can be done in various ways
(code reordering, speculation, loop transformations etc.) and there exists extensive research
in this regard. Recall that the MBC optimization does not ‘optimize the control-flow’ as done
by some previous research [31, 60]; it only reduces the control-flow backslices of conditional
branches. Hence, in this section, we only compare two of the most relevant previous works in
the context of the MBC optimization.

One of the previous works [61] proposes to reduce the cost of conditional branches by
reordering them, such that lesser number of conditional branches are executed and hence, in-
creasing performance. The proposed technique is also profile-based and may also result in
insertion of additional branches. The results of applying this transformation are an average re-
duction of 8% fewer instructions executed, reduction of 13% in branches executed, and lastly,
about 4% decrease in execution time. The reorderable sequences typically consist of branches
comparing the same variable or expression to constants.

Another work proposes to perform conditional branch elimination by condition merging
[31]. This is also a profile-based technique which replaces multiple conditional branches with
a single branch on a conventional scalar processor. For instance, the test if (p1 != 0 && p2
!= 0), which is testing for NULL pointers, can be replaced with if (p1 & p2 != 0). Overall,
15.8% of branches were eliminated, leading to an average reduction of 5.74% in the number of
instructions executed.

It can be clearly seen that the MBC optimization in a hardware/software ecosystem around
the narrow bitwidth architecture is different from the previous approaches. In fact, MBC can
be combined with the foregoing techniques to fetch gains of multiple code pruning techniques.

6.6 Evaluation

In this section, the performance evaluation of the MBC optimization is presented. First, we
briefly revisit the experimental framework (already described in Chapter 3) in the context of

142

6.6 Evaluation

MBC in order to aid the understanding of the upcoming evaluations.

The optimization region for consideration is a basic block. The performance of MBC has
been evaluated using two different configurations –

(i) MBC-On-NonOpt, where the MBC is applied on the non-optimized stream of narrow
computations, and

(ii) MBC-On-LPPopt, where the compiler first prunes the narrow code stream using Local
Productiveness Pruning (LPP) and then applies the MBC optimization.

6.6.1 Experimental Framework

The MBC optimization has been evaluated in a dynamic optimizer model. However, it must be
noted that the evaluation of MBC does not account for the overheads of profiling and optimiza-

tion of the narrow code stream. The overheads of profiling for MBC are expected to be much
lower than previously proposed optimizations in this thesis. This is because as compared to the
code pruning techniques, only a small number of dynamic instances are profiled (only dynamic
instances of flag-generating siblings for conditional branches).

Table 3.1 (in Chapter 3) shows the simulation configurations of the narrow processor used
for evaluating MBC on a narrow processor. We model an in-order processor of an issue width
of four instructions per cycle and compare the performance of a ‘MBC optimized code on a nar-
row processor’ against that of a ‘Narrow computations stream without the MBC optimization
on a narrow processor’.

The execution model first profiles for profile-phase of 200m user instructions (after skip-
ping the program initialization phase) using the ref input data-set and then the MBC opti-
mization is triggered. For the MBC-On-LPPopt configuration, the optimizer prunes the narrow
stream of computations via the LPP optimization and then triggers the MBC optimization. For
the MBC-On-Nonopt configuration, the optimizer prunes the non-optimized narrow stream of
computations via the MBC optimization only. Table 3.3 shows the percentage of the commit-
ted stream represented by the optimized regions in the profile-phase of the applications; this
remains the same as observed for the LPP optimization as both the optimizations are applied
on hot regions only.

The optimized regions are then used in the cycle-accurate model for the cycle-accurate
phase (the next 200m user instructions) using the same input data-set as the foregoing profile-
phase for each application. At the beginning of the execution of an optimized region, the
system state is checkpointed (recall that the regions are speculative as LPP is applied on them).
In case of assertion failure event in the optimized region, hardware support restores correct

143

6. MINIMAL BRANCH COMPUTATION

program state by using the checkpointed system state. The execution then resumes with re-
translated, safe, correct code (non-optimized stream) of the region (i.e., function in this evalu-
ation). For the MBC-On-NonOpt configuration, however, no checkpointing / rollback recovery
mechanisms are required because MBC as a standalone optimization generates completely self-
sufficient code and both there is no requirement for initiating a rollback recovery mechanism.

Handling the Branch Predictor. A primary side-effect of the MBC optimization is that the
number of both static and dynamic conditional branches increases : An MBC optimized code
region may execute twice the number of conditional branches in the worst case1. Although the
impact on the dynamic code footprint of the application due to additional conditional branches
may be negligible, the additional branches may have an impact on behavior of the Branch
Predictor. In some cases, the MBC optimized narrow stream of computations experiences a
small dip in the accuracy of the branch predictor. The effects, if any, on the performance are
duly accounted for in the upcoming evaluations.

6.6.2 Quantifying Conditional Control-flow

Figure 6.7 quantifies the percentage of narrow computations which constitute the conditional
control-flow backslices (Definition 6.3). It shows the split of the dynamic narrow computations
in the non-optimized hot regions of the applications between –

(i) Branches : all the conditional and unconditional branch operations illustrated by Dyn-
Cond-Br and Dyn-Uncond-Br respectively,

(ii) Conditional control-flow backslices : all flag-generating siblings and their backslices
which contribute to the generation of flag value only, illustrated by the Cond-Control-
flow, and

(iii) Rest of the computations : rest of the program consisting of the data-flow, illustrated by
the Rest.

For this experiment and further evaluations of MBC, the data-flow (Definition 6.2) and the
conditional control-flow backslices of a region are inferred on a basic block as the optimization
region. As shown in Figure 6.7, on an average, about 20% of the narrow computations commit-
ted from the hot regions (in the profile-phase) are flag-generating siblings and their backslices.
These are those computations which are responsible for the generation of flag values only (di-
rectly or indirectly). Further, these are the only computations that MBC can potentially reorder

1If the MBC-Opt branch fails, the Default fgSlices and finally the Default branch will be executed

144

6.6 Evaluation

 0

 20

 40

 60

 80

 100

bzip2

crafty

eon
gap

gcc
gzip

m
cf

parser

perlbm
k

vpr
Avg

Breakdown of Dynamic Narrow Stream (Hot Regions Only)

Dyn-Uncond-Br
Dyn-Cond-Br

Rest
Cond-Control-flow

Figure 6.7: Conditional control-flow vs. rest of the program

to reduce their dynamic code footprint. It must be noted that the distribution as shown in Fig-

ure 6.7 is of the narrow computations in the non-optimized hot regions only. LPP affects the

overall scope and benefits of MBC (as suggested by the upcoming evaluation results).

On an average, the conditional control per branch is 7.31 narrow computations in non-

optimized workloads (an average of 20.56% conditional control-flow computations across an

average of 2.81% of dynamic conditional branches as seen in Figure 6.7).

Marginal increase in the control-flow slices is observed if superblocks are used as the op-

timization region. An increase is explicable because a live-out of a basic block may be so

because it is consumed by the conditional control-flow computation of the subsequent basic

block. When a superblock is created however, such computations on the most-frequent paths

can be detected as conditional control-flow of the respective branch in a superblock. For this

reason, we choose to evaluate the MBC optimization on basic block as the optimization region.

Further, another dimension that impacts the overall scope of the MBC optimization is the

number of flag-generating siblings per conditional branch. Recall that if the operation size

of the wide flag-generating instruction specified at the x86 ISA level is 16-bit, only one flag-

generating sibling is generated by the narrow translation scheme; an operation size of 32-bit

145

6. MINIMAL BRANCH COMPUTATION

 0

 0.2

 0.4

 0.6

 0.8

 1

bzip2
crafty

eon
gap

gcc
gzip

m
cf

parser

perlbm
k

vpr
Avg

Categorising the sets of flag-generating siblings
 for conditional branches

1-sibling
2-siblings

3-siblings
4-siblings

Figure 6.8: Breakdown of dynamic conditional branches in terms of the size of the set of flag-

generating siblings

implies a set of two flag-generating siblings1. A set of three flag-generating siblings is not

seen because x86 does not allow an operation size of 48-bit. Lastly, an operation size of 64-bit

implies that the narrow translator generates four flag-generating siblings.

Figure 6.8 shows the distribution of these dynamic sets. Around 50% of the conditional

branches have only two flag-generating siblings; MBC can potentially reduce the cost of the

conditional branch (by reordering them) only by around a half. Hence, the distribution shown

in Figure 6.8 suggests that bzip2, eon and vpr are expected to offer less gains by the MBC

optimization. Around 18% of the conditional branches have only one flag-generating sibling

and hence, out of scope for any benefits by MBC. Around 31% of the conditional branches have

four flag-generating siblings, providing MBC more opportunity to reorder the siblings and their

backslices. It must be underlined here, that the presence of four flag-generating siblings is not

a necessary condition for high gains by MBC, as we will see later for the benchmark mcf.

1There may be mov operations to push zero into the higher 32-bits of the destination, but these do not offer

much potential for MBC because such mov operations do not have any backslices.

146

6.6 Evaluation

6.6.3 MBC Evaluation

As stated previously, this section compares the performance of a ‘narrow processor with the

MBC optimized code’ against that of a ‘narrow processor1 without such an optimization’.

The performance metrics for MBC include – the default rate of MBC optimized conditional

branches, the number of cycles taken for execution, and the number of committed computa-

tions. MBC has been applied on individual basic blocks as optimization regions.

MBC is evaluated in a dynamic optimizer model. The cycle-accurate phase of each ap-

plication lasts for 200m x86 user instructions. It must be noted, however, that the upcoming

evaluations are reported only for the hot regions in isolation.

 0

 1

 2

 3

 4

 5

 6

 7

 8

bzip2
crafty

eon
gap

gcc
gzip

m
cf

parser

perlbm
k

vpr
Avg

P
er

ce
nt

ag
e

of
 M

B
C

 B
ra

nc
h

M
is

pr
ed

ic
tio

n

MBC-Default-Rate

Figure 6.9: Percentage of times MBC’s reordering strategy fails

Default Rate of MBC. The Default Rate of MBC is defined as the rate at which the MBC

flag-generating backslice fail to be sufficient. Mathematically, it is evaluated as :

DefaultRate =

[
Number of T imes MBC Default Slice Required

Total number of MBC optimized Conditional Branches

]
∗ 100

(6.5)

1two different configurations are evaluated – with and without LPP

147

6. MINIMAL BRANCH COMPUTATION

 0

 2

 4

 6

 8

 10

bzip2
crafty

eon
gap

gcc
gzip

m
cf

parser

perlbm
k

vpr
Avg

P
er

ce
nt

 R
ed

uc
tio

n
in

 C
om

m
itt

ed
 N

ar
ro

w

 O
pe

ra
tio

ns
 o

ve
r

N
on

O
pt

im
iz

ed
 S

tr
ea

m

 (
In

cl
ud

in
g

A
ss

er
t O

ve
rh

ea
ds

)

MBC-On-NonOpt MBC-On-LPPOpt

Figure 6.10: Hot Regions in isolation – Reduction in narrow computations achieved by MBC

Figure 6.9 shows the default rate of each application. The average default rate is 2.1%.
gcc has a high rate of defaulting to the Default flag-generating backslices for flag computation
(around 6%).

Reduction in Narrow Computations. Figure 6.10 shows the percentage reduction in the dy-
namically committed narrow computations in two different configurations. MBC-On-NonOpt
shows the percentage reduction in the committed stream by applying MBC on the non-optimized
narrow computation stream. MBC-On-LPPOpt shows the percentage reduction in the commit-
ted stream by applying MBC on an already LPP optimized narrow computation stream.

The benchmarks eon and gzip have low gains because of a rather small set of conditional
control-flow computations (average 10% as shown in Figure 6.7). The three benchmarks bzip2,
crafty and perlbmk exhibit a relatively higher percentage of conditional control-flow (an aver-
age of more than 25%). However, of these, bzip2 and crafty suffer low gains by MBC due to
relatively higher default rate of around 4%. Similar reason holds for gap and gcc.

On an average, about 3.12% of the dynamic stream is reduced when MBC is applied on
non-optimized regions. When MBC is applied on an LPP optimized stream, only 0.74% of the
dynamic stream is further reduced1. This indicates that most of the conditional control-flow

1if LPP reduces x% on an average, LPP+MBC reduces (x+0.74)% computations

148

6.6 Evaluation

 0

 2

 4

 6

 8

 10

bzip2
crafty

eon
gap

gcc
gzip

m
cf

parser

perlbm
k

vpr
Avg

P
er

ce
nt

 R
ed

uc
tio

n
in

 E
xe

cu
tio

n
T

im
e

 o
ve

r
N

on
O

pt
im

iz
ed

 S
tr

ea
m

MBC-On-NonOpt MBC-On-LPPOpt

Figure 6.11: Hot Regions in isolation – Reduction in total number of cycles

slices are already sufficiently pruned by LPP.

Reduction in Cycles. Figure 6.11 shows the percentage reduction in the total number of

cycles spent by each program in the hot regions only. Both the configurations – MBC-On-

NonOpt and MBC-On-LPPOpt have been shown.

On an average, compared to the non-optimized narrow computation stream, MBC achieves

a 5.52% reduction in the total number of cycles. When MBC is applied on an LPP optimized

stream, only a further reduction of 0.42% in the total number of cycles1 is seen. This, once

again, is due to the fact that most of the conditional control-flow slices are already sufficiently

pruned by LPP.

Dynamic Stream Classification. Figure 6.12 shows the histogram distribution of the com-

mitted stream of the LPP + MBC Optimized code stream. The code coverage of MBC is very

similar to that observed by LPP, when the latter was evaluated in a dynamic optimizer model.

The only anomaly is in the case of gcc, where the use MBC causes a drop in the achieved code

coverage. This is due to the high default rate that has been observed in gcc.

1if LPP reduces x% on an average, LPP+MBC reduces (x+0.42)%

149

6. MINIMAL BRANCH COMPUTATION

 0

 0.2

 0.4

 0.6

 0.8

 1

bzip2
crafty

eon
gap

gcc
gzip

m
cf

parser

perlbm
k

vpr
Avg

Breakdown of Committed Narrow Operations Stream

Non-Optimized
AssertFail-Squash

Optimized

Figure 6.12: Dynamic stream classification of the MBC+LPP optimized narrow computation

stream

On an average, 56% of the complete program is executed from the optimized regions
(LPP+MBC). The amount of the committed stream which shows the narrow operations lost
due to assertion failures, including the assertions themselves (in assert-fail) remains similar
to what has been observed for LPP (Figure 5.7). This is expected as the number of assertion
failures are not impacted much by MBC, although MBC does introduce a small number of
additional assertions.

Impact on the Static Code Size (After Optimizations). It has already been shown in Figure
2.3 (Chapter 2) that on an average, a non-optimized narrow ISA program needs about 3.9 times
more static instructions than its equivalent 64-bit program. With respect to the optimized code,
however, recall that when applying the code pruning techniques (GPP and LPP), the compiler
needs to generate not only the optimized but also the non-optimized versions of the narrow ISA
programs. The MBC optimization differs from both GPP and LPP in that it does not require
the non-optimized code. The generated (reordered) code by MBC is self-sufficient and the
execution model does not require a rollback to safe, non-optimized code.

Figure 6.13 shows the average static code size explosion due to the two optimization tech-
niques when applied incrementally – LPP and MBC. Note that on an average, the LPP op-

150

6.6 Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

bzip2

crafty

eon
gap

gcc
gzip

m
cf

parser

perlbm
k

vpr
Avg

R
a
ti
o
 o

f
n

u
m

b
e
r

o
f

s
ta

ti
c
 n

a
rr

o
w

 c

o
m

p
u
ta

ti
o
n
s
 o

v
e
r

6
4
-b

it
 v

e
rs

io
n

Nonopt Narrow
LPPOpt Narrow

MBC-on-LPPOpt Narrow
LPP-opt-regions-only

Figure 6.13: Impact on the static code size - Before and after optimizations

timized narrow ISA programs have about 6.3x more static instructions than their equivalent
64-bit versions (refer to LPPOpt Narrow bar plot in Figure 6.13). Further, applying MBC and
LPP together, the optimized narrow ISA programs are observed to have about 6.4x more static
instructions than their equivalent 64-bit versions (refer to MBC-on-LPPOpt Narrow bar plot in
Figure 6.13).

It must be underlined here that LPP reduces the static code size of the optimized regions
from 3.9x to 2.4x (line plotted as LPP-opt-regions-only in Figure 6.13). Secondly, in case
of LPP, the execution rarely goes to the non-optimized code regions (recall that the assertion
failure rates of LPP are very low). The latter can be useful in code layout optimizations of the
speculatively optimized narrow ISA programs.

6.6.4 Observed Roadblocks

Figure 6.14 shows the dynamic stop conditions encountered by MBC, weighted by the associ-
ated control-flow of each conditional branch. The histogram distribution shows a split amongst
the following categories :

(i) Optimized shows the percentage of the conditional control-flow which is successfully
optimized.

151

6. MINIMAL BRANCH COMPUTATION

 0

 20

 40

 60

 80

 100

bzip2
crafty

eon
gap

gcc
gzip

m
cf

parser

perlbm
k

vpr

Breakdown of Stop Conditions for MBC
 while Optimizing the Six Condition codes

Optimized
mbc-same-as-lpp

mbc-not-cost-effective
lpp-contradicts-mbc

Figure 6.14: Dynamic stop conditions

(ii) mbc-same-as-lpp shows the percentage of conditional control-flow where MBC has no

further scope of reducing the flag-generating backslices by reordering. The redundant

computations targeted by MBC is already pruned by LPP.

(iii) mbc-not-cost-effective shows the percentage of conditional control-flow where applying

MBC may potentially be unfavorable and hence, MBC is not performed.

(iv) lpp-contradicts-mbc shows the percentage of conditional control-flow where the MBC

flag-generating backslice is already pruned by LPP. Hence, what remains behind after

code pruning by LPP is a sub-optimal way of generating the flags.

Hence, we can conclude that MBC performs close to its expected potential. However the

way MBC defines the conditional control-flow of an optimizable region is expected to impact

the overall performance of MBC and is one of the areas of improvement. On an average,

the conditional control per branch is 7.31 narrow computations in non-optimized workloads

(an average of 20.56% conditional control-flow computations across an average of 2.81% of

dynamic conditional branches as seen in Figure 6.7).

152

6.7 Conclusions

6.7 Conclusions

This chapter proposes and evaluates the Minimal Branch Computation optimization. This op-
timization presents itself as a use-case of the broader concept of reordering narrow backslices
for reducing the dynamic code footprint of the narrow ISA. Minimal Branch Computation is a
profile-based code reordering technique, which rearranges narrow computations around condi-
tional branches based on certain opcode specific sufficiency rules.

Evaluating MBC as a dynamic code optimization reveals that it can reduce an average of
3.12% of the non-optimized narrow ISA code stream. With respect to the number of cycles,
it achieves an average reduction of 5.52% over non-optimized narrow stream of computations.
However, applying MBC on an already LPP optimized code stream fetches minimal reductions.
This is because LPP is already effective in pruning even the conditional control-flow backslices
of the optimizable conditional branches.

153

6. MINIMAL BRANCH COMPUTATION

154

7

Conclusions and Future Work

7.1 Summary

Motivated by the propensity of narrow computations, this thesis evaluates a hardware-software

collaborative approach to exploit them. The approach involves a redesign of the hardware to a

narrow bitwidth architecture which is essentially a 16-bit datapath architecture combined with

a 64-bit address interface. Such a redesign attempts to attack the problem of computational

inefficiency which is inherent in our traditional computing systems with wider datapaths. The

narrow bitwidth architecture strongly aims to keep the hardware very simple (narrow, in-order)

and low power, while garnering the advantages of a 64-bit system (larger address space, support

for current software and compilers, etc.). Software, in the form of a compiler accomplishes the

key task of translating and optimizing the 64-bit applications on to the 16-bit hardware.

The Narrow Instruction Set Architecture (Narrow ISA) provides the software interface of

the narrow bitwidth architecture to the outside world. In this thesis, we have developed and

evaluated a realistic code translator which cracks the 64-bit RISC-like computations to the

narrow ISA computations. Narrow ISA presents opportunities : there are more tasks of finer

granularity. It also presents challenges : even using a realistic narrow translator induces a sig-

nificant performance penalty. Compared to 64-bit programs, the dynamic code size of narrow

ISA programs increases to 3.9x and the number of cycles taken increases to 2.2x.

This is a significant performance penalty and it is important to reduce it to make the narrow

bitwidth architectures viable. This thesis entrusts the central responsibility of alleviating the

negative performance penalty of the narrow ISA on the compiler. The thesis explores code opti-

mization techniques woven around the perspective of Minimum Required Computations. Given

a program, the notion of minimum required computations (MRC) aims to infer the minimum

155

7. CONCLUSIONS AND FUTURE WORK

set of computations which are required to generate the same (correct) output as the original

program.

This thesis uses two main profile-guided heuristics to approximate the notion of MRC :

(i) Non-productiveness based code pruning to prune narrow computations, and

(ii) Reordering narrow backslices to reorder narrow computations.

Both the set of heuristics are profile-based and are designed with a strong focus to minimize the

dynamic code footprint of the narrow ISA. The code pruning techniques are speculative and

generate code that is self-sufficient to detect mis-speculations. This is achieved by embedding

assertion computations at appropriate locations. As the optimized code contains speculation,

hardware support is exploited to contain the speculation until it is safe to commit the atomic

speculatively optimized region. On the other hand, although the technique of reordering narrow

backslices also uses profile-based learning approach, the generated code can always calculate

the correct state without the need for any hardware support for rollback or recovery.

Global Productiveness Pruning (Chapter 4) and Local Productiveness Pruning (Chapter 5)

are the two code optimization techniques that investigate the design space of non-productiveness

based pruning strategies to reduce the dynamic footprint of the narrow ISA. The main differ-

ence between the two techniques is the size of the optimization region. GPP aims to optimize

large regions, and hence choses to work on the whole function as a region. LPP on the other

hand investigates the behavior of the definition of productiveness on the smallest possible op-

timization region of a single narrow computation.

Global Productiveness Propagation (GPP). This optimization, given a code region, distin-

guishes between useful (productive) and useless (non-productive) 16-bit computations based

on profile data. In order to prune the useless instructions, asserts are properly placed to redirect

the execution to a safer version of the code when the assumed conditions do not hold at run-

time. Overall gains by GPP are up to 6.6% reduction of the committed narrow computation

stream and 4.5% reduction in the number of cycles for a 1-issue, in-order narrow processor,

when an average of 60% of the code has been optimized via GPP.

Overall, the number of instructions reduced by GPP is not very high and there exists a

significant gap in the expected gains in a perfect setup vs. the achieved gains. One of the key

roadblock identified in this regard is the memory dependence modeling. Other schemes for

memory dependence modeling may augment the efficacy of GPP and can be easily accom-

modated as GPP is already speculative in nature. Further, our evaluations suggest that future

work, if any, must focus on investigating upon some conservative heuristics followed by GPP,

156

7.1 Summary

viz., marking all control-flow as productive, contradiction-handling (marking complete back-
slice as productive), no code duplication, and no code scheduling. Lastly, strategies to enhance
coverage of the optimization will prove to be important too.

Local Productiveness Pruning (LPP). This is a speculative, profile-guided code optimiza-
tion technique that prunes out individual non-productive computations based on their produc-
tiveness bias when viewed in isolation. Evaluations suggest that applying the definition of Pro-
ductiveness on a finer granularity is more effective. LPP reduces the dynamic stream of narrow
computations by ∼20%, and achieves around 15.54% reduction in cycles over non-optimized
narrow stream. The average code-coverage achieved is ∼ 57% and the assertion-failure rates
of this speculative technique also remain low (∼ 2.5%).

Overall, the number of instructions reduced by LPP falls in close proximity to the measured
disposable potential. This is after taking into account that LPP excludes memory operations
completely and optimizes an average of 57% of the dynamically committed narrow computa-
tion stream. Given the fundamental difference of the size of the atomic region in GPP and LPP,
and the low overall gains achieved by GPP, we do not combine the two code pruning strategies
in the thesis.

Apart from reducing the narrow computation stream effectively, there is another dimension
in which LPP acts as an enabler for further code optimizations. A brief study of a well-
understood greedy scheduling algorithm (ETS scheduling) reveals that simply applying ETS
code scheduling on the non-optimized narrow stream achieves an average speedup of about
19%. Further, compared to the non-optimized narrow stream of computations, LPP with SR-
CS achieves a reduction of 15.54% in the number of cycles by itself. When LPP with SR-CS is
combined with code scheduling, a cumulative reduction of about 26% in the number of cycles
can be achieved.

Minimal Branch Computation (MBC). This is a profile-based code reordering technique
which places those flag-generating backslice(s) first which are most-probably sufficient to gen-
erate the outcome of the condition code eventually consumed by the impending conditional
branch computation. Optimizing a set of six condition codes (E/NE, L/NL, LE/NLE), MBC
reduces an average of 3.12% of the non-optimized code stream, and reduces an average of
5.52% of the total cycles required by the optimized regions. Applying MBC on an already LPP
optimized code stream fetches minimal reductions, as LPP is already effective in pruning even
the conditional control-flow backslices of the optimizable conditional branches.

Hence, MBC explores the concept of reordering narrow backslices such that the minimal
necessary computations are performed in the best case; the rest of the computations are per-
formed only when necessary. Although MBC remains a specific use-case, we believe that this

157

7. CONCLUSIONS AND FUTURE WORK

approach of a lazy computation model can be extended to data-flow computations as well,
whereby data chunks are generated on a need basis : a particular chunk is generated only if
required.

To conclude, in this thesis we have proposed three code optimization techniques specific
to the narrow ISA. Combining LPP together ETS code scheduling, a cumulative reduction of
around 31% in the number of computations (from 3.9x to 2.68x) and an overall reduction of
37% in the number of cycles (from 2.2x to 1.38x) can be achieved.

7.2 Future Work

The proposed hardware/software collaborative approach towards the narrow computations opens
up opportunities for further research in this paradigm, which is corroborated by the code opti-
mization techniques proposed in this thesis. With each optimization, we have duly identified
the key roadblocks limiting the efficacy of the optimizations in a realistic scenario.

We believe that further aggressive compiler optimizations can promote the narrow bitwidth
architecture as an interesting design point for future low-power, low-cost execution cores. In
the following sections, we have identified key areas to further focus on strategies to achieve
competency with a wide (64-bit) in-order architecture in future.

7.2.1 Optimizing the Memory Interface

The proposed optimizations, especially Local Productiveness Pruning (Chapter 5), have been
effective in reducing the dynamic code size of the narrow stream of computations. However,
memory operations have been excluded as of yet. This is because applying a straightforward
extension of LPP to memory operations could have led to non-trivial hardware changes, thereby
defying the focus of the thesis.

Memory operations, however, remain an important class of operations in the context of
this thesis. Figure 7.1 shows the histogram distribution of the different class of opcodes in
two configurations – non-optimized narrow computation stream and LPP optimized stream of
hot regions only in the cycle-accurate phase (second 200m x86 user instructions using the ref
input data-set) of each application. As can be seen, LPP is effective for almost all type of
operation classes. Also, to reduce the dynamic code footprint of the applications further, the
next operation class that can be seen as the most prominent (hence, the most unoptimized) is
the class of memory operations.

Not only that, attacking memory operations is also important for the following reasons :

158

7.2 Future Work

 0

 2
e

+
0

8

 4
e

+
0

8

 6
e

+
0

8

 8
e

+
0

8

 1
e

+
0

9

 1
.2

e
+

0
9

bzip2-nonopt

bzip2-lpp

crafty-nonopt

crafty-lpp

eon-nonopt

eon-lpp

gap-nonopt

gap-lpp

gcc-nonopt

gcc-lpp

gzip-nonopt

gzip-lpp

parser-nonopt

parser-lpp

perlbmk-nonopt

perlbmk-lpp

mcf-nonopt

mcf-lpp

vpr-nonopt

vpr-lpp
B

re
a

k
d

o
w

n
 o

f
C

o
m

m
it
te

d
 S

tr
e

a
m

 (

c
y
c
le

-a
c
c
u

ra
te

 r
u

n
 2

0
0

m
,

h
o

t
re

g
io

n
s
 o

n
ly

)

lo
g

ic
a

d
d

s
u

b
a

d
d

r-
g

e
n

b
ra

n
c
h

e
s

m
e

m
o

ry
b

r-
a

d
d

r-
g

e
n

s
h

if
t

fp
-n

-m
u

l
a

s
s
e

rt
s

o
th

e
rs

Figure 7.1: Breakdown of committed stream : Before and after LPP

159

7. CONCLUSIONS AND FUTURE WORK

1. Memory operations form the interface to the outside world in the context of a Von-
neumann computation model. Hence, useless activity when detected at this interface can
be used to further remove dependent operations (like addsub or logic class of operations),
by explicit propagation of this inference.

2. Memory operations still remain to be one of the most costly operations (branches being
the others). Memory pipelines are more expensive than execution units. They are critical
not only for performance but also to reduce activity in the memory hierarchy – caching,
buffering, and contention for memory bandwidth.

3. We have observed that pruning optimizations on ALU operations can be applied easily
(Chapter 5), leaving memory operations as one of the least efficiently translated opera-
tions (from 64-bit to 16-bit).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

bzip2
crafty

eon
gap

gcc
gzip

m
cf

parser

perlbm
k

vpr
Avg

P
er

ce
nt

 o
f S

ile
nt

 O
pe

ra
tio

ns

 in
 w

id
e

an
d

na
rr

ow
 p

ar
ad

ig
m

s

%wide-silent-loads
%wide-silent-stores

%narrow-silent-loads
%narrow-silent-stores

Figure 7.2: Silent memory operations in the narrow and wide paradigms

Further, Figure 7.2 illustrates the importance of following the definition of productiveness
for narrow memory operations as compared to wide memory operations (measured for profile-
phase1 of each program). As can be seen, an average of 34% of all 64-bit wide stores are
non-productive, and 13% of all wide 64-bit loads are non-productive. On the other hand, the

1first 200m x86 user instructions using the ref input data-set

160

7.2 Future Work

narrow paradigm uncovers much more non-productive activity – about 67% of all 16-bit stores
are non-productive and yet another 47% of all 16-bit loads are non-productive. Thus, the non-
productive memory loads and stores together represent a significant 53% of the total narrow
memory computations. On a parallel note, the notion of non-productive stores is the same as
silent stores [2, 34].

Memory Productiveness Pruning. The foregoing evaluations also underline our hypothesis
that narrow paradigm uncovers more opportunities to remove useless work. We have briefly
investigated on the opportunity of pruning memory operations in this thesis. A naive extension
of the Local Productiveness Pruning to memory operations has been proposed and evaluated as
Memory Productiveness Pruning (MPP [3]). MPP exploits dual forms of speculation – apart
from productiveness of memory operations, it also speculates on memory dependences and
their predictability. Memory Dependence Speculation [13, 39, 40, 41] has been studied by
previous researchers. MPP exploits this behavior of the predictability of memory dependences
to remove memory-based asserts using a small additional hardware.

Evaluation of this optimization as a dynamic optimization reveals that it reduces the com-
mitted narrow memory computation stream by about 22% , while the optimal reduction possi-
ble is 28%. As compared to the non-optimized narrow stream, MPP achieves average reduc-
tions of 2.3% reduction in the number of cycles and 4.75% reduction in the overall number of
narrow computations over the non-optimized stream.

Our evaluations suggest that MPP is effective in pruning the memory operations. But the
hardware support required by MPP in its current form remains non-trivial and does not befit
the overall goal of this thesis. More research is required in order to include memory operations
via an affordable scheme.

7.2.2 Memory Dependences and Data-flow analysis

Memory Dependences in this thesis have been modeled conservatively. This has also been
identified as a key roadblock in the Global Productiveness Propagation optimization. We be-
lieve more research and development in the regard of modeling memory dependences may
prove useful. On an orthogonal note, even speculative memory dependence modeling tech-
niques (like our attempt with MPP [3]) can also be easily accommodated as the code pruning
optimizations are speculative anyway.

7.2.3 Coverage and Regions

The optimization region for GPP is chosen to be a complete function, whereas LPP works
on individual basic blocks as atomic sections of code. The chosen basic blocks for LPP are

161

7. CONCLUSIONS AND FUTURE WORK

essentially the component basic blocks of the hot functions used for the GPP optimization.
The expected code coverage of these hot functions still remains around 60%. It remains a
caveat of our infrastructure that recursive functions could not be analyzed. Having said that,
improving the code coverage remains one of the simplest ways of augmenting the efficacy of
the optimizations.

Further, with respect to the notion of optimization region / atomic regions for the non-
productiveness based pruning techniques, other granularities like loops may also be explored.
More opportunities with respect to code pruning and reordering may arise in case of loops.
Specifically, we have observed that there exists further opportunity to perform Loop-invariant
narrow code motion. Loop-invariant narrow code motion can hoist narrow computations out-
side the body of a loop without affecting the semantics of the program. As a 64-bit computation
has been broken down into smaller tasks of finer granularity, loop-invariant code motion has
been observed to be potentially more efficacious on the narrow stream of computations than its
wide counterpart.

162

Bibliography

[1] Pritpal S. Ahuja, Douglas W. Clark, and Anne Rogers. The performance impact of incom-

plete bypassing in processor pipelines. In Proceedings of the 28th Annual International

Symposium on Microarchitecture, MICRO 28, pages 36–45, Los Alamitos, CA, USA,

1995. IEEE Computer Society Press. ISBN 0-8186-7349-4.

[2] Gordon B. Bell, Kevin M. Lepak, and Mikko H. Lipasti. Characterization of silent stores.

In Proceedings of the 2000 International Conference on Parallel Architectures and Com-

pilation Techniques, PACT ’00, pages 133–, Washington, DC, USA, 2000. IEEE Com-

puter Society. ISBN 0-7695-0622-4.

[3] Indu Bhagat, Enric Gibert, Jesús Sánchez, and Antonio González. Eliminating non-

productive memory operations in narrow-bitwidth architectures. In Proceedings of the

9th Workshop on Optimizations for DSP and Embedded Systems (ODES-9), ODES 9,

2011.

[4] David Brooks and Margaret Martonosi. Dynamically exploiting narrow width operands to

improve processor power and performance. In High-Performance Computer Architecture,

1999. Proceedings. Fifth International Symposium On, pages 13 –22. IEEE, jan 1999.

[5] Mihai Budiu, Majd Sakr, Kip Walker, and Seth Copen Goldstein. Bitvalue inference: De-

tecting and exploiting narrow bitwidth computations. In Euro-Par Conference on Parallel

Processing, Proceedings from the 6th International, pages 969–979, 2000.

[6] B. Calder, P. Feller, and A. Eustace. Value profiling. In Proceedings of the 30th an-

nual ACM/IEEE international symposium on Microarchitecture, pages 259–269. IEEE

Computer Society, 1997.

[7] Brad Calder, Peter Feller, and Alan Eustace. Value profiling and optimization. Journal of

Instruction Level Parallelism, 1, 1999.

163

BIBLIOGRAPHY

[8] R. Canal, A. González, and J.E. Smith. Very low power pipelines using significance
compression. In Proceedings of the 33rd annual ACM/IEEE international symposium on
Microarchitecture, pages 181–190. ACM, 2000.

[9] R. Canal, A. González, and J.E. Smith. Software-controlled operand-gating. In Proceed-
ings of the international symposium on Code generation and optimization: feedback-
directed and runtime optimization, page 125. IEEE Computer Society, 2004.

[10] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk disambiguation of speculative threads
in multiprocessors. In Proceedings of the 33rd annual international symposium on Com-
puter Architecture, pages 227–238. IEEE Computer Society, 2006.

[11] Ben-Chung Cheng and Wen-Mei W. Hwu. Modular interprocedural pointer analysis us-
ing access paths: design, implementation, and evaluation. In Proceedings of the ACM
SIGPLAN 2000 conference on Programming language design and implementation, PLDI
’00, pages 57–69, 2000. ISBN 1-58113-199-2.

[12] F.C. Cheng, S.H. Unger, and M. Theobald. Self-timed carry-lookahead adders. Comput-
ers, IEEE Transactions on, 49(7):659–672, 2000.

[13] George Z. Chrysos and Joel S. Emer. Memory dependence prediction using store sets.
In Proceedings of the 25th annual international symposium on Computer architecture,
ISCA ’98, pages 142–153, 1998. ISBN 0-8186-8491-7.

[14] Marcelo Cintra, José F. Martínez, and Josep Torrellas. Architectural support for scal-
able speculative parallelization in shared-memory multiprocessors. In Proceedings of the
27th annual international symposium on Computer architecture, ISCA ’00, pages 13–24,
2000. ISBN 1-58113-232-8.

[15] The Standard Performance Evaluation Corporation. Spec cpu2000 benchmarks. 2000.

[16] James C. Dehnert, Brian K. Grant, John P. Banning, Richard Johnson, Thomas Kistler,
Alexander Klaiber, and Jim Mattson. The transmeta code morphing software: Using
speculation, recovery, and adaptive retranslation to address real-life challenges. Code
Generation and Optimization, IEEE/ACM International Symposium on, 0:15, 2003.

[17] Oguz Ergin, Deniz Balkan, Kanad Ghose, and Dmitry Ponomarev. Register packing:
Exploiting narrow-width operands for reducing register file pressure. In Proceedings of
the 37th annual IEEE/ACM International Symposium on Microarchitecture, MICRO 37,
pages 304–315, 2004. ISBN 0-7695-2126-6.

164

BIBLIOGRAPHY

[18] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph
and its use in optimization. ACM Trans. Program. Lang. Syst., 9:319–349, July 1987.
ISSN 0164-0925.

[19] Krisztián Flautner, Nam Sung Kim, Steve Martin, David Blaauw, and Trevor Mudge.
Drowsy caches: simple techniques for reducing leakage power. In Proceedings of the
29th annual international symposium on Computer architecture, ISCA ’02, pages 148–
157, 2002. ISBN 0-7695-1605-X.

[20] PTLsim SPEC 2000 Benchmark Suite Steps for building and using the benchmarks. Ptl-
sim, http://www.ptlsim.org. 2006.

[21] Philip B. Gibbons and Steven S. Muchnick. Efficient instruction scheduling for a
pipelined architecture. In Proceedings of the 1986 SIGPLAN symposium on Compiler
construction, SIGPLAN ’86, pages 11–16, 1986. ISBN 0-89791-197-0.

[22] Rajiv Gupta, Eduard Mehofer, and Youtao Zhang. A representation for bit section based
analysis and optimization. In Proceedings of the 11th International Conference on Com-
piler Construction, CC ’02, pages 62–77, London, UK, 2002. Springer-Verlag. ISBN
3-540-43369-4.

[23] J.L. Hennessy, D.A. Patterson, and D. Goldberg. Computer architecture: a quantitative
approach. Morgan Kaufmann, 2006.

[24] Wen Mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang, Nancy J. Warter,
Roger A. Bringmann, Roland G. Ouellette, Richard E. Hank, Tokuzo Kiyohara, Grant E.
Haab, John G. Holm, and Daniel M. Lavery. The superblock: An effective technique
for vliw and superscalar compilation. The Journal of Supercomputing, 7:229–248. ISSN
0920-8542.

[25] Intel. Intel R©64 and ia-32 architectures software developer manuals, volume 1 : Basic
architecture. 2007.

[26] Intel. Intel R©64 and ia-32 architectures software developer manuals, volume 2a : Instruc-
tion set reference, a-m. 2007.

[27] Intel. Intel R©64 and ia-32 architectures software developer manuals, volume 2b : Instruc-
tion set reference, a-m. 2007.

[28] V. Kathail, S. Aditya, R. Schreiber, B. Ramakrishna Rau, D.C. Cronquist, and M. Sivara-
man. Pico: automatically designing custom computers. Computer, 35(9):39 – 47, sep
2002. ISSN 0018-9162. doi: 10.1109/MC.2002.1033026.

165

BIBLIOGRAPHY

[29] Alexander Klaiber. The technology behind crusoeTMprocessors, low-power x86-
compatible processors implemented with code morphingTMsoftware. White paper, 2000.

[30] Masaaki Kondo and Hiroshi Nakamura. A small, fast and low-power register file by bit-
partitioning. High-Performance Computer Architecture, International Symposium on, 0:
40–49, 2005. ISSN 1530-0897.

[31] William C. Kreahling, David Whalley, Mark W. Bailey, Xin Yuan, Gang-Ryung Uh, and
Robert van Engelen. Branch elimination by condition merging. Softw. Pract. Exper., 35:
51–74, January 2005. ISSN 0038-0644.

[32] William Landi and Barbara G. Ryder. A safe approximate algorithm for interprocedural
pointer aliasing. SIGPLAN Not., 39:473–489, April 2004. ISSN 0362-1340.

[33] Samuel Larsen and Saman Amarasinghe. Exploiting superword level parallelism with
multimedia instruction sets. In Proceedings of the ACM SIGPLAN 2000 conference on
Programming language design and implementation, PLDI ’00, pages 145–156, 2000.
ISBN 1-58113-199-2.

[34] Kevin M. Lepak and Mikko H. Lipasti. Silent stores for free. In Proceedings of the 33rd
annual ACM/IEEE international symposium on Microarchitecture, MICRO 33, pages 22–
31, New York, NY, USA, 2000. ACM. ISBN 1-58113-196-8.

[35] Bengu Li and Rajiv Gupta. Bit section instruction set extension of arm for embedded
applications. In Proceedings of the 2002 international conference on Compilers, archi-
tecture, and synthesis for embedded systems, CASES ’02, pages 69–78, New York, NY,
USA, 2002. ACM.

[36] Gabriel H. Loh. Exploiting data-width locality to increase superscalar execution band-
width. In Proceedings of the 35th annual ACM/IEEE international symposium on Mi-
croarchitecture, MICRO 35, pages 395–405, 2002. ISBN 0-7695-1859-1.

[37] S. Mahlke, R. Ravindran, M. Schlansker, R. Schreiber, and T. Sherwood. Bitwidth cog-
nizant architecture synthesis of custom hardware accelerators. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, 20(11):1355–1371, 2001.

[38] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A.
Wood. Logtm: log-based transactional memory. In 12th International Symposium on
High-Performance Computer Architecture, HPCA-12 2006, Austin, Texas, February 11-
15, 2006, HPCA, pages 254–265. IEEE Computer Society, 2006.

166

BIBLIOGRAPHY

[39] A. Moshovos and G.S. Sohi. Speculative memory cloaking and bypassing. International

Journal of Parallel Programming, 27(6):427–456, 1999.

[40] A.I. Moshovos. Memory dependence prediction. PhD thesis, Citeseer, 1998.

[41] Andreas Moshovos and Gurindar S. Sohi. Read-after-read memory dependence predic-
tion. In Proceedings of the 32nd annual ACM/IEEE international symposium on Microar-

chitecture, MICRO 32, pages 177–185, 1999. ISBN 0-7695-0437-X.

[42] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P. Jouppi. Cacti 6.5.
2009.

[43] Emre Özer, Andy P. Nisbet, and David Gregg. Stochastic bit-width approximation us-
ing extreme value theory for customizable processors. In Proceedings of the 13th Inter-

national Conference on Compiler Construction, CC ’04, London, UK, 2004. Springer-
Verlag.

[44] Emre Özer, Andy P. Nisbet, and David Gregg. A stochastic bitwidth estimation technique
for compact and low-power custom processors. ACM Trans. Embed. Comput. Syst., 7:
34:1–34:30, May 2008. ISSN 1539-9087.

[45] Subbarao Palacharla, Norman P. Jouppi, and J. E. Smith. Complexity-effective super-
scalar processors. SIGARCH Comput. Archit. News, 25:206–218, May 1997. ISSN 0163-
5964.

[46] S.J. Patel and S.S. Lumetta. replay: A hardware framework for dynamic optimization.
Computers, IEEE Transactions on, 50(6):590 –608, jun 2001.

[47] Gilles Pokam, Olivier Rochecouste, André Seznec, and François Bodin. Speculative soft-
ware management of datapath-width for energy optimization. In Proceedings of the 2004

ACM SIGPLAN/SIGBED conference on Languages, compilers, and tools for embedded

systems, LCTES ’04, pages 78–87, 2004. ISBN 1-58113-806-7.

[48] Rahul Razdan. PRISC: programmable reduced instruction set computers. PhD thesis,
Cambridge, MA, USA, 1994. UMI Order No. GAX95-00124.

[49] Rahul Razdan and Michael D. Smith. A high-performance microarchitecture with
hardware-programmable functional units. In Proceedings of the 27th annual international

symposium on Microarchitecture, MICRO 27, pages 172–180, 1994. ISBN 0-89791-707-
3.

167

BIBLIOGRAPHY

[50] Rahul Razdan, Karl S. Brace, and Michael D. Smith. Prisc software acceleration tech-
niques. In Proceedings of the1994 IEEE International Conference on Computer Design:
VLSI in Computer & Processors, ICCS ’94, pages 145–149, 1994. ISBN 0-8186-6565-3.

[51] Robert Schreiber, Shail Aditya, Scott A. Mahlke, Vinod Kathail, B. Ramakrishna Rau,
Darren C. Cronquist, and Mukund Sivaraman. Pico-npa: High-level synthesis of nonpro-
grammable hardware accelerators. VLSI Signal Processing, 31(2):127–142, 2002.

[52] Arrvindh Shriraman, Sandhya Dwarkadas, and Michael L. Scott. Flexible decoupled
transactional memory support. In Proceedings of the 35th Annual International Sympo-
sium on Computer Architecture, ISCA ’08, pages 139–150, 2008. ISBN 978-0-7695-
3174-8.

[53] Darko Stefanovic and Margaret Martonosi. On availability of bit-narrow operations in
general-purpose applications. In Proceedings of the Roadmap to Reconfigurable Comput-
ing, 10th International Workshop on Field-Programmable Logic and Applications, FPL
’00, pages 412–421, 2000. ISBN 3-540-67899-9.

[54] J. Greggory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C. Mowry. A scal-
able approach to thread-level speculation. In Proceedings of the 27th annual international
symposium on Computer architecture, ISCA ’00, pages 1–12, 2000. ISBN 1-58113-232-
8.

[55] Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. Bidwidth analysis with
application to silicon compilation. In Proceedings of the ACM SIGPLAN 2000 conference
on Programming language design and implementation, PLDI ’00, pages 108–120, 2000.
ISBN 1-58113-199-2.

[56] Sriraman Tallam and Rajiv Gupta. Bitwidth aware global register allocation. In Pro-
ceedings of the 30th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’03, pages 85–96, 2003. ISBN 1-58113-628-5.

[57] Benchmarking tools and assessment environment for configurable computing: benchmark
specification documentversatility stressmark. Submitted by honeywell technology center
to usa intelligence center and fort huachuca under contract no. dabt63-96-c-0085. 1999.

[58] Perry H. Wang, Jamison D. Collins, Christopher T. Weaver, Blliappa Kuttanna, Shahram
Salamian, Gautham N. Chinya, Ethan Schuchman, Oliver Schilling, Thorsten Doil, Se-
bastian Steibl, and Hong Wang. Intel R©atomTMprocessor core made fpga-synthesizable.
In Proceeding of the ACM/SIGDA international symposium on Field programmable gate
arrays, FPGA ’09, pages 209–218, 2009. ISBN 978-1-60558-410-2.

168

BIBLIOGRAPHY

[59] Fu-Ching Yang and Ing-Jer Huang. An embedded low power/cost 16-bit data/instruction
microprocessor compatible with arm7 software tools. In Design Automation Conference,
2007. ASP-DAC ’07. Asia and South Pacific, pages 902–907, 2007.

[60] Minghui Yang, Gang-Ryung Uh, and David B. Whalley. Improving performance by
branch reordering. In Proceedings of the ACM SIGPLAN 1998 conference on Program-
ming language design and implementation, PLDI ’98, pages 130–141, 1998. ISBN 0-
89791-987-4.

[61] Minghui Yang, Gang-Ryung Uh, and David B. Whalley. Efficient and effective branch
reordering using profile data. ACM Trans. Program. Lang. Syst., 24:667–697, November
2002. ISSN 0164-0925.

[62] M.T. Yourst. Ptlsim: A cycle accurate full system x86-64 microarchitectural simulator.
In Performance Analysis of Systems & Software, 2007. ISPASS 2007. IEEE International
Symposium on, pages 23–34. IEEE, 2007.

169

