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Abstract

In this thesis we address several analytical and numericdilgms related with
the study of general relativistic black holes and bosorsstar

The task of solving numerically the Einstein equatiots,( = «T,;) has
turned out to be a very complex problem. Various reductianfirst-order-in-
time hyperbolic systems appear in the literature, but treene general recipe that
prescribes the optimal technique for any given situationictvleads to a variety
of formulations.

In the first part of this thesis, we present an analytical amderical compar-
ison between three different formulations of the Einstelnations. A detailed
analysis of these systems is performed, marking the weakgand proposing
improvements, in the form of constraint adjustments andgilagnterms.

Black holes are considered to be some of the most intereasirgphysical
compact objects. They are vacuum solutions of the Einstpiiations. The chal-
lenge of dealing with black hole (BH) simulations comes frtiva fact that they
hide a space-time singularity, a point where the attradiiecomes so intense that
an observer would get trapped and absorbed into it. As a quesee, one of
the main problems that needed to be overcome were the stagigmiis appearing
around the BH apparent horizon, marking the region betwkertter nearly in-
ertial wave zone and the highly accelerated behavior ofrtheriplunging zone.
To this purpose, we developed a new centered finite volum&)Gtethod based
on the flux splitting approach. This algorithm is the first anghe class of fi-
nite volume methods which allows third order accuracy by qi¢ce-wise linear
reconstruction.

The finite volume methods are commonly used in the numertodlysof rel-
ativistic astrophysical systems which contain matter aesirin order to deal with
shocks or any other type of discontinuities. However, inthtases one does not
require the use of limiters and the CFV method can be effigiersied in the form
of an adaptive dissipation algorithm, in order to deal witl steep gradients. We
present a comparison between our CFV method and the stafiniéecdifference
plus dissipation techniques, and show that our method allowger and more
accurate BH evolutions, even at low resolutions.

In this thesis, we discuss the techniques for dealing wighsthgularity, steep
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viii Abstract

gradients and apparent horizon location, in the contextshgle Schwarzschild
BH, in both spherically symmetric and full 3D simulationsurQreatment of the
singularity involves scalar field stuffing, which consistsnatching a scalar field in
the inner region of the BH, such that the metric becomes aggnside the horizon.
Additionally, for comparison, we appeal to the puncturédteque, which reduces
the singularity to a point, while the interior BH region is imained sufficiently

regular for numerical purposes. Even though the singylato longer a problem
in the initial data, it can become a problem in a finite amodriinoe, if one does

not choose suitable coordinate conditions.

We perform BH evolutions using the '1+log’ singularity aslivig slicing,
which ensures that the coordinate time rate is slowing dowtheé strongly col-
lapsing regions, but it keeps flowing at the same rate as ptope in the wave
zone. In this context, we develop a geometrical picture @flitings approaching
the stationary state, for situations where the treatmettiesingularity involves
both scalar field stuffing and the puncture technique. Our @Derical results
show the first long term simulation of a Schwarzschild BH immal coordinates,
without the need to excise the singularity from the comporal domain.

The family of singularity avoiding slicing conditions whi@re currently used
in BH evolutions, have been shown to produce gauge ingiabiliWe extend this
study and show that, contrary to previous claims, thesaliigtes are not generic
for evolved gauge conditions. We follow the behavior of theirgy in evolutions
of Schwarzschild spacetime and perform a detailed studyeopathologies which
can arise from two models: perturbing the initial slice armdtyrbing the initial
lapse. A comparison with the results available in the liteaallows us to identify
most instabilities and propose a cure.

Regarding the choice of space coordinate conditions, weldeed an alterna-
tive to the current prescriptions, based on a generalizedoal Killing Equation
(AKE). This condition is expected to adapt the coordinatethé symmetry of the
problem under study. The 3-covariant AKE shift can be usembmbination with
any slicing, without loosing its quasi-stationary propest Our numerical tests
address harmonic and black hole spacetimes.

Our research work extends also to the study of regular spaetwith mat-
ter. We explore boson star configurations as dark matter Imai® focus on
Mixed State Boson Stars (MSBS) configurations constructethé context of
General Relativity. Contrary to previous studies, whersdos populate only the
ground state, in our case different excited states are sti@xisimultaneously. We
performed the first general relativistic study of MSBS comfaiions, using the
Einstein-Klein-Gordon system in spherical symmetry. wlhg the evolution of
MSBS under massless scalar field perturbations, we idetméyunstable models
and find a criteria of separation between stable and unstalolggurations. Our
conclusions regarding the long term stability of MSBS camfagions, suggest that
they can be suitable candidates for dark matter models.



Contents

Introduction 1

Overview 3

1.1 ThesisOrganization . . . . . . .. .. .. ... .. .. ...,
1.2 Conventions . . . . . . . . ..

General Concepts in Relativity 13

2.1 GeometricalConcepts. . . . . . .. .. ...
2.1.1 Notions of Local Differential Geometry . . . .. ... ..
2.1.2 Spacetime Geometry . . . . .. ... .. .. ...
2.1.3 TheFieldEquations . .. .................
2.1.4 Elements of 3+1 Decomposition . . . . ... .. .. ...

2.2 The 3+1 Form of the Einstein Equations . . . . . ... ... ...
2.2.1 Basic Geometrical Objects . . . . ... ... .......
2.2.2 Evolution Equations . . . . .. ... ...
2.2.3 Constraint Equations . . . . ... ... ... ... ...,
2.2.4 Gauge Degrees of Freedom . ... ... ... ......

2.3 Well-Posed Evolution Problems . . . . . ... ... ... ....
2.3.1 Well-Posed Systems . . . . ... ... .. ........
2.3.2 Strongly Hyperbolic Systems . . . . ... ... .. ...
2.3.3 Boundary Conditions . . . . .. ... ... ........

Formulations of the Einstein Equations 33

Einstein Evolution Systems 35

3.1 The 3+1 Metricbased Systems . . . . ... ... ... ......
3.1.1 TheZSystems ... ... ... ... ... ... ...
3.1.2 TheBSSNSystem .. ...................

3.2 The3+lTetradbasedSystems . .. .. ... ...........
3.2.1 Notions of Frame Formalism . . . . . .. ... ... ...

iX



CONTENTS

X
3.22 TheFNSystem . . ... ... ... ... . ........ 48
3.3 DISCUSSION . . . . . . 50
4 Standard Testbeds for Numerical Relativity 53
4.1 Overviewof Numerical Tests . . . . . .. ... ... ... . ... 53
4.2 ImplementationandResults . . .. ... ... .. ........ 54
4.2.1 ThelinearWaveTestbed. . . ... ... ... ...... 55
422 The GaugeWave Testbed . . . . ... ... ... ..... 58
4.2.3 The Shifted Gauge Wave Testbed . . .. ... ... ... 62
424 OtherTests . ... .. . .. . . ... ... .. ... 65
4.3 Discussion . . . . . . .. e 66
[l Numerical Methods and Applications 69
5 Numerical Aspects 71
5.1 Standard Numerical Recipes . . . . .. .. .. .. ... ..... 71
5.1.1 Space discretization and Time integration . . . . .. .. 71
5.1.2 Convergence and Stability . . . ... ... ........ 73
5.2 Centered Finite Volume Methods . . . . . .. ... ... ..... 74
5.21 FluxFormulae .. .. ... ... ... ... ....... 75
5.2.2 Flux Splitting Approach . . . . . .. ... ... ..... 79
5.2.3 Adaptive Dissipation . . . . .. ... ... .. ...... 82
5.2.4 Stability and Monotonicity . . . .. ... ... L. 83
5.3 Discussion . . . . .. .. .. 84
6 Black Hole Simulations 87
6.1 Black Hole in Spherical Symmetry . . . . . .. ... ... .... 88
6.1.1 Puncture InitialData . . . . ... ... ... ... ... 88
6.1.2 Numerical Specifications and Gauge Choice . . . . . . .. 91
6.1.3 Numerical Results and Comparison . . . .. .. ..... 92
6.1.4 ConvergenceandError . . . ... ... .. ... ..... 95
6.1.5 Discussion . .. ... ... . .. ... e 98
6.2 BlackHolein3D . ... ... ... ... .. ... ... ... . 99
6.2.1 Scalar Field Stuffing . . . . ... ... ... ... ..., 99
6.2.2 BlackHoleEvolution. . . . . ... ... ......... 104
6.2.3 Discussion . ... ... 109
7 Boson Stars 111
7.1 Theoretical Aspects . . . . . .. ... 112

7.1.1 The Einstein-Klein-Gordon System . . . . .. ... ... 113



CONTENTS

Xi

7.2

7.3

7.1.2 Boson Initial Data

Numerical Results . . . . . . . . . . .. .. ... ... ....

7.2.1 Single State of Ground Configuration
7.2.2 Mixed States of Ground and Excited Configurations

Discussion . . . . . . . .

IV Gauge Conditions

8 The behavior of the Lapse Function

8.1
8.2

8.3

8.4

8.5

Singularity Avoiding Slicing Conditions

Numerical Study of Gauge Instabilities . . . . . ... ... ..

8.2.1 Gauge Initial Data

8.22 FlatSpace. .. .. .. .. ... .. .. .. .0

Gauge Choice and Gauge Pathologies
8.3.1 Gauge Instabilities

Numerical Results . . . . . . . . . . . . . .. ... ... ...

8.4.1 Unperturbed Initial Data

8.4.2 Perturbing the Initial Lapse . . . . . .. .. ... ..

8.4.3 Perturbing the Initial Slice

8.4.4 Comparison between the 1D and the 3D cases . . .
Discussion . . . . . . . .

9 Symmetry Seeking Shift Conditions

9.1

9.2

9.3 Discussion

The Almost-Killing Equation
9.1.1 Harmonic Almost-Killing Equations
9.1.2 Almost-Killing Shift
9.1.3 Gauge Evolution Equations
Numerical Analysis
9.2.1 Harmonic Spacetimes

9.2.2 Black Hole Spacetimes

Concluding Remarks

Appendix: Numerical Methods

9.4 Time Integration Methods

9.5 Spatial Discretization

9.4.1 Crank Nicholson
9.4.2 Runge Kutta

9.5.1 Finite Differencing



Xi CONTENTS
9.5.2 Kreiss-Oliger Dissipation. . . . . .. ... ... ..... 172
953 FinteVolumes . . . ... ... ... ... L. 172
Appendix: Einstein Systems 175
9.6 TheZ3system. . .. .. .. .. . . . ... 175
9.6.1 The Z3 system in spherical symmetry and normal coordi-
Nates . . . . . . 175
9.6.2 The Z3 system in spherical symmetry, normal coordmat
andregularization . . . . ... ... ... .. .. ... 176
9.6.3 ThefullZ3system .. .. .. ... ............ 178
9.7 TheZAsystem. . .. .. . . . . . i 179
9.8 The Friedrich-Nagy system . . . . . . ... .. ... ....... 180
Bibliography 187
List of Figures 195

Curriculum Vitae i



Part |

Introduction






Chapter 1

Overview

The theory of General Relativity describes gravity as a ggdmproperty of the
spacetime. It had a very important impact in modern physie#, changed our un-
derstanding of the notion of time, the geometry of spacentbgon of bodies and
the propagation of light. Its predictions are fully consigtwith the current obser-
vations and experiments. Some of the most important reatdtthe prediction of
black holes and gravitational waves.

General Relativity is based on the Einstein field equatievigch relate the
curvature of spacetime with the matter content. In practioe theory has proven
to be very complex, as it relies on a system of ten coupledjmear, partial differ-
ential equations in four dimensions. Exact solutions a@amnonly in cases with
high symmetry in space (spherical or axial symmetry) ornmeti(static or station-
ary solutions). The study of astrophysical relevant systdmas led to the field of
Numerical Relativity, which deals with solving the Einsteiquations numerically.

Even though Numerical Relativity appeared as an indepétiiddéthof research
in the 1960’s, only recently the computational power hasnadd extensive numer-
ical studies. A better understanding of the theoreticaldssand the development
of numerical methods, allowed the study of complex probleinmsn single stars
and black holes, to collisions of compact objects, grawaitedl collapse and singu-
larity structure.

One of the most important results in the field, has been thityalm pre-
dict gravitational radiation signals from binary black é@nd neutron star simu-
lations. This progress provides significant support forrteée generation of grav-
itational wave detectors, as accurate gravitational wameftemplates for astro-
physical sources are crucial in the search strategy. Hytbrigblates are now con-
structed from analytical post-Newtonian approximationd aumerical solutions
of the Einstein field equations. Detection of gravitatioreiation is expected to
soon open a new window to the universe.
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4 Overview

Theoretical framework

General Relativity’s basic principles imply that Einstsifield equations should
ensure causal propagation of the gravitational field. Adiogy to the causality
principle, two events causally correlated can not happethaisame time, but
the cause must precede the effect. Correspondingly, wecekipat the partial

differential equations which propagate initial data of thestein equations, or
any other relativistic field theory, exclude instantanepuspagation of physical
degrees of freedom, in other words, that they are hyperhola suitable sense.
Because of the covariant form of the Einstein equationshtimerbolicity is not

manifested in an immediate sense.

The Einstein field equationsg=(, = x7T,;) can be written as a second order
guasi-linear system of partial differential equationsotder to perform numerical
time evolutions, the evolution equations are often writhsna first-order-in-time
system. An important aspect of the work in the field of Numarielativity is
finding hyperbolic reduction techniques which lead to thestrswitable Einstein
system. The main idea is to convert the initial value prob{&vi®) for Einstein’s
equations into an IVP for a hyperbolic system of partialaetiéitial equations, for
which the IVP is well-posed. Various hyperbolic reducti@mpear in the litera-
ture, but there is no general recipe that prescribes thenaptechnique for any
given situation, which leads to a variety of formulations.

In Numerical Relativity, one commonly uses the 3+1 decontiposof the
Einstein system, which leads to evolution and constraiot#gns, elliptic equa-
tions that can be interpreted as first integrals of the basitugon system. The
initial data is specified at some hypersurface of constamé¢ tand then evolved
into the future by equations of hyperbolic character. Wheecgying the initial
data, the solution is subjected to constraints, which arsquved by the continuum
evolution equations, but not by the discretized evolutipstem.

The usualfree evolutionapproach consists in using the constraints just for
monitoring the quality of the simulation, with no mechanifon moderating the
growth of the constraint violation modes. This approachasproper, as unsta-
ble constraint violation modes can arise due to the noratim®urce terms. In
order to obtain accurate long term numerical simulations cvuld take into ac-
count adjustments to the formulations of the field equationthe form of suitable
damping terms [1, 2].

The Einstein theory leaves four degrees of freedom undetedncorrespond-
ing to the choice of the coordinate system. In order to cotapitee evolution sys-
tem, one needs to specify both the slicing condition, naraalgquation for the
lapse which provides the foliation of the spacetime in sgé&eehypersurfaces,
and an equation for the shift, which dictates how the spatiardinates are car-
ried from one slice to the other. An essential problem in thenerical treatment
of black hole systems has been finding the most suitable ganrgitions.



Black holes

An important break-through in the field of Numerical Relayivhas been solving
the binary black hole problem. This success relies on twmfdations of the Ein-
stein equations: the generalized harmonic [3—6] and theé\BS§Stem [7,8]. Their
approach towards the treatment of the black hole (BH) sarguylis different, due
to the analytical structure of these systems and the retstede choice.

The problem of finding a suitable gauge conditions has pravée one of the
main challenges faced by the numerical relativity comnunfthe harmonic im-
plementations usually require the excision techniquedeioto remove the BH in-
terior from the computational domain, as their slicing dtind is only marginally
singularity avoiding (the singularity is reached in a firgi@ount of time). The
control of dynamical excision involves serious technigalpbems, as the collapse
region grows and moves across the computational grid, soeeds to repopulate
the grid points in a consistent way [6]. An alternative toiskm is thestuffedBH
approach, where the interior region black hole region isoed by a scalar field
that eventually collapses [9].

The codes based on the BSSN system use the 'moving puncppedach,
where the interior BH region is maintained sufficiently riegudor numerical pur-
poses. They employ a strong singularity avoiding slicingdition, which ensures
that the coordinate time rate is slowing down in the strorgiifapsing regions,
but it keeps flowing at the same rate as proper time in the wawe.zZven in sce-
narios in which a physical singularity is formed in a finite@mt of proper time,
one never sees it happen in coordinate (computer) time. f€haisire is crucial
for the puncture technique, as otherwise they could growcbyeging neighboring
time lines [10]. A key ingredient in the BSSN simulationshe tGamma driver’
shift, a gauge condition that dynamically adapts the timedito the symmetry of
the problem, such that the evolution reaches a stationatg.sthe moving punc-
ture technique can be viewed asextision by under-resolutigras in the limit of
infinite resolution the data never becomes stationary [11].

The challenge of dealing with BH simulations comes from thet that they
hide a space-time singularity, a point where the attradiiecomes so intense that
an observer would get trapped and absorbed into it. As a quaesee, one of
the main problems that needed to be overcome were the staeiemis appearing
around the BH apparent horizon, marking the region betwkermtter nearly in-
ertial wave zone and the highly accelerated behavior ofritheriplunging zone
[12]. This behavior can be dealt with by advanced numericathwds, or by
adding more resolution in the affected areas, employingd-br Adaptive Mesh
Refinement. These techniques produce higher resolutiagrigigtin the dynami-
cal region, while keeping a computationally affordablelggsolution in the outer
regions [13-15].

Binary black hole systems are now a major area of researchrrerical rel-
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ativity, as they are considered one of the most promisingcgsuof gravitational
waves. In the last years, important progress has been madi@giwith the first
simulation done by Pretorius [9], followed by the Brownkvand Goddard numer-
ical relativity groups which marked the moving puncturesatthrough [16—19].
The availability of gravitational waves templates operedway to fruitful collab-
orations with the data analysis community.

However, this impressive progress marks only a stage ofnibatno the oth-
erwise young research field of Numerical Relativity. Themgetric picture of
the 'moving punctures’ evolutions has been only recentlgenstood [11], in the
context of a time independent representation of a Schwhitdsalack hole using
maximal slices. The result was extended to the hyperbatmglconditions com-
monly used in numerical relativity. There are further gaisgeies that need to be
clarified, related with the behavior of these singularitgiding slicing conditions
and related instabilities. Alternatives to the 'Gammaaeirighift condition are still
explored for different 3+1 formulations of the Einstein atjans [20], including
generalized harmonic formulations [21]. We are still in ched robust numerical
codes for non-stationary scenarios, which allow variousiags of gauge condi-
tions.

Matter spacetimes

The numerical simulation of black hole spacetimes invohe Yacuum Einstein
equations. However, most relativistic astrophysicalesyst contain matter sources
and require in addition the theory of fluid dynamics. The dation of matter
spacetimes require special numerical methods, due to thdimearities in the
Euler equations which give rise to propagating discontiesiiarising even from
smooth initial data. These discontinuities take the fornsteep gradients in the
variables.

A particularly useful approach to solving non-linear syssef evolution equa-
tions is the method of lines (MoL), which decouples the treait of space and
time. Itis based on the idea of discretizing first the spaliaensions, while leav-
ing the time dimension continuous, leading to a semi-discsgstem. Then one
can solve the resulting system of coupled ordinary diffeaérequations using a
time integration method. The standard spatial discrétizanethods rely on fi-
nite difference (FD) algorithms or finite volumes (FV), whieduce to FD plus a
special form of numerical dissipation. The developmentighliesolution shock
capturing algorithms which require only the characterispeeds [22, 23], has sig-
nificantly increased the efficiency of the codes. The adaptivmerical viscosity
terms are also very efficient in dealing with steep gradigrasappear in the black
hole simulations [24].

Considerable progress has been achieved in the last twe yeaxtracting
gravitational wave signals from binary neutron star syst¢®3—27]. Systematic
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studies present the dynamics of the inspiral and mergereghaghile last phase
reveals a black hole surrounded by a torus [28]. Howeverstiures related, for
example, with the mechanism responsible for gamma ray fuesjuire further
investigation. Furthermore, the numerical modeling ofatysical processes
involving highly dynamical magnetic fields, for which resis effects play an
important role, can not be dealt with by ideal magneto-hydimamic (MHD)
formulation. The development of numerical techniques #ilatwv a solution to
the relativistic resistive MHD equations, opens new paobi$#s of investigation
[29, 30].

An interesting topic in General Relativity is the study ofldanatter, which
lies at the interface between the fields of observationaibplysics, cosmology
and numerical relativity. Scalar field dark matter modelsyhich the dark matter
particle is a spin-0 boson, are becoming a serious candiddue boson particles
can collapse into the same quantum state of the gravitatgmiantial to form a
Bose Einstein condensate. One of these Bose Einstein cestdeis a compact
gravitating object, named boson star.

Boson stars are self-gravitating scalar field objects, foictv the gravity at-
traction balances the dispersive character of the scaldr Tibeir numerical mod-
eling is more straightforward than for fluid stars, as thdwian of smooth initial
data for a scalar field tends to stay smooth, in contrast witliddynamical fluid
evolutions.

Previous relativistic studies regarding the stability ofbn stars, showed that
the only stable configurations are made of ground state rsfialds [31]. The
associated mass density profiles decay exponentially-asxo, making it difficult
to fit the flat rotational curves of most galaxies. Howevereaagalization of boson
stars configurations has been proposed [32], which corssaleystem of bosons
formed by particles coexisting in ground and excited stafesese Mixed State
Boson Star can be seen as a collection of complex scalar,f@idgor each state,
coupled only through gravity. The different compositiongsbund and excited
states could explain why the galaxy halos have so differexsses and sizes, and
could allow a more accurate fit of the rotational curves ofstaes in galaxies [33].

Some of the major topics in the field of Numerical Relativite ghe devel-
opment and improvement of numerical methods, boundaryitonsl and gauge
choices that allow long and accurate numerical evolutidih& current studies are
modeling real astrophysical situations and allow extoactf gravitational wave
templates.

1.1 Thesis Organization

This thesis is organized in six parts: introduction in thédfigf Numerical Rela-
tivity, an analytical and numerical comparison to 3+1 folations of the Einstein
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equations, the development of numerical methods employealativistic simula-
tions and their application in the numerical study of blackels and boson stars,
the choice of gauge conditions for black hole evolutiongcbading remarks and
an appendix. The description of the subsequent chaptecegule as follows:

The first chapter offers a brief overview on some currentd®i the field of
Numerical Relativity and sets the conventions that will Bedithroughout
the thesis.

The second chapter contains general notions of diffedeggiametry, with
the purpose of setting the notation and conventions for #secbhmathemat-
ical objects that are used in this thesis. The basic steps3efladecom-
position of Einstein’s field equations and the main ideashef theory of
well-posed evolution systems are briefly pointed out.

The third chapter deals with 3+1 formulations of the Einstguations. We
present three systems based on the metric (Z3, Z4 and BS$N\jremon
the tetrad formalism (Friedrich-Nagy), followed by a brimmparison of
the systems at an analytical level.

The fourth chapter is based on the Apples with Apples All@igéwA)
tests, the first community effort to produce cross-valwatin Numerical
Relativity. We are focusing on numerical results obtaineth whe Kranc
implementations of the Z4, BSSN and FN systems. A detailedyais of
the behavior of these systems is performed, marking the yweaks and
proposing improvements.

The fifth chapter concerns new techniques currently usedimétical Rel-
ativity in order to solve the discretized Einstein equatiofe present a new
centered finite volume algorithm based on the flux splittipgraach. This
algorithm is the first one in the class of finite volume methatigch allows
third order accuracy by only piece-wise linear reconstonct In the vari-
ant without limiters, the centered finite volume method tetdan adaptive
dissipation algorithm, which can be used in combinatiorhwlie standard
finite difference methods.

The sixth chapter presents numerical evolutions of bladk Bpacetimes.
The techniques for dealing with the singularity, steep gratd and appar-
ent horizon locations are discussed in the context of aei8ghwarzschild
black hole, in both spherically symmetric and full 3D sintidas. We
present a comparison between our centered finite volumeoahethd the
standard finite difference plus dissipation techniqueserwtealing with
steep gradients in normal coordinates. We perform evaistiasing the
"1+log’ slicing and develop a geometrical picture of the mggeh to the
stationary state, for both scalar field stuffing and punctec@niques. Our
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3D numerical results based on the Z4 system, show the firgtteom simu-
lation of a Schwarzschild black hole in normal coordinatébeut excision.

e The seventh chapter is focused on boson stars, as modelarfontter.
We present evolutions performed with the Einstein-Kleiord®n system,
using as initial data several complex scalar fields, follmyvthe classical
approximation. The study is focused on two models. In the dine, we
add a massless scalar field perturbation to a model of groomfigcrration
and follow the evolution in order to see the effect of the pdyation on
the stability of the configuration. In the second one, we grenfthe first
general relativistic study of Mixed State Boson Stars eiamhs. Using per-
turbations, we identify the unstable models and find a caitef separation
between stable and unstable configurations.

e The eighth chapter refers to time coordinate (lapse) camditand related
instabilities. Our investigation is focused on a singjadvoiding slicing
condition currently used in binary black hole evolutionamely the '1+log’
slicing. We follow the behavior of the slicing in evolutioasSchwarzschild
spacetime and perform a detailed study of the pathologieshwdan arise
from two models: perturbing the initial slice and pertugpthe initial lapse.
A comparison with the results available in the literatuteva$ us to identify
most instabilities and propose a cure.

e The ninth chapter concentrates on the choice of space cabedcondi-
tions (shift) well suited for black hole evolutions. We deyea generalized
Almost Killing Equation (AKE), based on considerations ppeoximative
symmetries in the spacetime. We show that the 3-covariari slft equa-
tion can be used in combination with any slicing conditiothaut loosing
its quasi-stationary properties. Our numerical tests egfdharmonic and
black hole spacetimes.

e The tenth chapter contains concluding remarks.

The Appendix presents a summary of numerical methods arekfiieit form
of Einstein evolution systems employed in this thesis.

1.2 Conventions

Throughout this thesis, we are using the systegeaimetric unitswhere the speed
of light ¢ and Newton’s gravitational consta@tare set equal to one, so they will
be omitted from the formulas. All quantities will be giveniangnsion of a power
of length. In order to recover the standard Sl units, onedasutiply the quantity
with the corresponding powers ofandG. The conversion factor for a quantity
with dimension of time is: (e.g.t — ct), while for a quantity with dimension of
mass isG'/c?.
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All physical quantities will be measured in meters, for epéera meter of time
being equal to the time it takes light to travel one meteryads x 10~ meters).
A meter of mass is defined as the mass of a point particle thdéwion’s theory
has an escape velocity equal to the speed of light at a destafrtovo meters.

Our unit of length will be the mass of the system. For example black hole
simulation, the time and distance will be measured in uritd/¢ whereM is the
mass of the black hole.

The covariant derivative of a quantity is noted as:V,Q and the partial
derivate:0Q /0z* = 0,Q.

The following conventions are considered throughout tlesith

e Lorentzian signature of space-time:

(_7 +7 +7 +)7

Definition of the Riemann tensor:

(VoVy — VVo)ue = Rapevg;

The 3D Ricci tensor:

Rij = Ok — 0;T%p; + TR, T — TR T

The commutator:

1
V(avb) = i(VbVa + VaVy);

The anti-commutator:

1
ViaVs = 5(VoVa = VaV);

1
V[av|b|vc] = §(chbva - Vavbvc);

lull =[S
m

e four dimensional indices (Greek alphabet):

The Ly-norm:

Indices notation:

W Vs Ty Ps - 20717273;
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e three dimensional indices (Latin alphabet):

a,b,e,d,...=1,2,3;
e three dimensional indices:

a,b,d..=0,1,2;
e two dimensional indices:

/B N/
a’ bt =1,2;

Einstein’s summation rule applies, namely repeated irsdéice summed over
all their possible values.






Chapter 2

General Concepts in
Relativity

In this chapter, we briefly present the basic mathematigaictdthat occur in the
geometrical constructions of the theory of General Ratgtifust for fixing the
notation and nomenclature).

2.1 Geometrical Concepts

In General Relativity the space of physical events is desdrby a real smooth D-
dimensional manifold//p with local coordinates:*, provided with smooth vector
fields and linear forms in the local coordinate system, at agsbther geometrical
objects such as tensors and a connection.

2.1.1 Notions of Local Differential Geometry

Differential geometry is based on the notion of a differahthanifold, a contin-
uous and smooth space ofdimensions. Amanifold M is a space that can be
covered by a collection of charts (one-to-one mappings fiShto M).

The curvez® = z®(\) in terms of a set of coordinates®, is defined as a
function from a segment of the real line into the manifoléctorsare derivative
operators along a given curve. At each point, D linearly pedalent vectors form a
linear space, called thangent spacef M. One usually chooses asaordinate
basisthose vectors that are tangent to the coordinate lines.

A one-formis a linear, real-valued function of one vector. Also caledec-
tors, they form a vector space of the same dimension as the manifamed the
dual tangent spaceOne can introduce two independent fundamental structural
objects on a manifold.

13
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The distancels between two infinitesimally close points @iy, correspond-
ing to the temporal and spatial distances, is calculatet fite themetric tensor
Guv as:

ds® = Guvdxtdz” .

The metric, also known as the first fundamental form, is a sgirimtensor field
Y = J(u) With D(D + 1)/2 components, called Riemannian if its eigenvalues
are positive (negative) definite, and Lorentzian if its sigme is+(D — 2).

I will consider in the following space-times of dimensiéh= 4, with symmet-
ric and Lorentzian metric (signaturgg(g) = 2). The metric is non-degenerate,
namely its components form an invertible matit¥ g, = 6.

The metric tensor defines the scalar product between twongeas

and a one-to-one mapping between vectors and one-forms:
Uy = G’

Two vectors are orthogonal if their scalar product vanishes
Considering a timelike unit vectat, the projection operator onto a local tan-
gent space orthogonal fbis defined as

P, =46," +n,n”.

ThelLie derivative

Lyu = [V, ],
with [0, 4" = v’O,ut — u’0,ut, can be interpreted as a way to write partial
derivatives along the direction of a given vector field, in aywhat is indepen-
dent of the coordinates. If a manifold has a specific symm#étgn the metric is

invariant under Lie dragging with respect to a vector fiéldalledKiIIing field,
Egg =0.

The second structure that can be introduced is the lineanextion, a de-
vice for establishing a comparison of vectors in differeoings of the manifold.
This covariant derivativeoperatorV must be linear, obey the Leibnitz rule for
the derivative of a product and it must reduce to the stanpartial derivative for
scalar functions. A manifold with only one linear connentis called affine space.
A manifold carrying both metric and connection is called niceaffine space. A
connection for which the metricity condition holds, namt#ig scalar product of
two vectors is preserved under parallel transport

vpguu =0,
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is called metric-compatible.

The Riemannian geometry is a subclass with vanishing torsfoa metric-
affine geometry with metric-compatible connection [34].r oy vector fields
XH, Y", the torsion tensor can be defined as

TP, XPYY = XIV, Y — YIV,XP — [X,Y]P. (2.1)

2.1.2 Spacetime Geometry

In the following, | will only consider the case of Riemannigeometry, for which

one has two main conditions: the torsion-freendsy,, = 0, and the condition

for the connection to be metric compatibk,g,,, = 0. Then the connection is
uniquely defined and it is called the Levi Civita connection,

Vugup = augz/p - Fa/wgap - Faupgl/a =0,
wherel'*,,, is calledChristoffel symbolThis symbol is symmetric in the last two
indices )
rty,, = §g“T(0pgw + 0v9rp — OrGup)-
The torsion-free condition can be written in terms of thei§ibffel symbols as
T,,=1", —TI",,=0. (2.2)

The Riemann curvature tensarises because the covariant derivative is not
commutative, which can be interpreted as the failure of a@ajlootion of paral-
lelism in curved space. This tensor is defined through itemaain an arbitrary
covectory,,:

(VuVy =V Vv, = Ry vr.

The relation leads to the following symmetsy,,,” = —R,,,". Applying this
definition to the metric tensor

0= (VMVV - vl/vu)gpr = Ruupaga’r + R;u/ragpoz = Rm/p’r + R/u/r/n

one notes another symmetRy,,,r = —R,.7).
Arelation between the Riemann tensor and the connectiobederived using
the torsion-free condition Eq. (2.2),

R'uzsz = 8pFHTV - 87—Fupy + Fuparaﬂ/ - F“Tarapu' (23)
Writing the definition of the Riemann tensor in three cases
(VuV, =V, Vv, = Ry, vs,
(V,Vu—=V,. Vv, = Ry vr,
(VZ,VP - vay)vu - Ryp,uT'UTa
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one obtains )
ViuVovy = _§R[Wp]T”T7

which leads toR,,,,” = 0. From this relation and the two symmetries of the
Riemann tensor, it follows that the tensor also satisfiesstimmetry property

Rywpr = Rpryw-
Considering the definitions for the Riemann tensor written a

VLV V" = —Ru, Vv + Rua V07,
2V VoVt = Rija) "V 0®

and comparing with
2V, VLV vT = vV Ry + Rypa” Vv,
2V VUVt = Vi Ry v + Riygla)" V0%,

we obtainV, R, ;,"v* = 0. This relation is known as thgianchi identity

VuRypTa + VuRpuTa + VpR,um—oz =0. (24)

Contracting it withg“™ g?* and using the metricity condition, we arrive at
1
VER,, — §V1,R =0, (2.5)

where theRicci curvature tensois defined as trace of the Riemann tensor over the
second and the forth (or equivalently, the first and the JhivdicesR,,, = R,,,.”.
The trace of the Ricci tensdt = R, g"" is theRicci scalar curvature

2.1.3 The Field Equations
Defining theEinstein tensols
Guw = R — %ng, (2.6)
the contracted Bianchi identity leads to
V,.G* =0. (2.7

This is a convenient form of writing the field equations in wai.
In cases where matter is considered, one needs to includerniservation laws
of energy and momentum in differential form

v, T =0, (2.8)
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whereT),, is the energy-momenturtensor, with the following componentg;°
energy density7"% momentum densityl"”/ stress tensor.

The Einstein equations which govern General Relativitpress the relation
between the spacetime geometry and the matter content

G = KTy, (2.9)

where the factor = 8 is derived from the Newtonian gravitational limit, calcu-
lated in geometric units.

One can picture the Einstein equations as a set of diffeleatjuations that
one must solve for the spacetime metric, once the energgicbot the spacetime
is known. Then the resulting deformed geometry will deterthe movement of
the energy content. In this view, Eq. (2.9) can be equivblemtitten as

1
Ry =8m(T) — iTpng).
Allowing for Eg. (2.3), we can express the relation in ternigh® connection

coefficients
Oy = Oy 4 T T e~ T = 87(Thy — ST ). (2.10)
The Bianchi identity Eq. (2.5) can also be written as
Vo(G% — 87T + Vi (GFF — 8xT*H) = 0,
where the four Einstein equations
G = 8n T,

are first integrals of the system, so they get preserved dongrovided that the
other 6 equations hold true everywhere. This means that®afithe 10 Einstein
equations are independent, and one can not determine afliatric coefficients.
The 4 missing equations correspond to a choice of the caatedsystem and they
are provided by thgauge conditions This freedom corresponds to the fact that
the equations are invariant under general coordinateftnanations, namely their
physical meaning does not change when we adopt differemtlicade systems.

The Einstein equations take only an apparently simple fasrhey are a sys-
tem of coupled non-linear second order partial differérgguations, with thou-
sands of terms when expanded in an arbitrary coordinaterasysthey describe
the evolution of the spacetime geometry and the matter noninstein’s theory
describes the way in which the gravitational field propagatespace. Assuming
that perturbations propagate as a wave, it predicts théeexis of gravitational
waves which travel at the speed of light.
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2.1.4 Elements of 3+1 Decomposition

The Einstein equations presented in the previous sectide ma distinction be-
tween space and time, as they are written in a 4-covariamt. for order to obtain a
more intuitive picture, one can write them as the evolutibthe gravitational field
in time, starting from a specific initial data. There are savapproaches in this
direction, namely the 3+1 formulations (which include tlz@rhonic systems), the
characteristic and conformal formalisms. | will presenthi following the 3+1
approach, which is most commonly used in numerical relstivi

The 3+1 approach consists in foliating the space-time intmeparameter
family of space-like hypersurfaces. The successive hypases, on which one
gives the geometry, are most conveniently described byessoe values of a time
parametet. This decomposition is convenient for the systems that cmetsvto
evolve numerically, as the analysis of the dynamics alomge¥olution can be
done directly on the system variables, which have physiemmng.

We choose coordinates adapted to the 3+1 split, that demeiewer (earlier)
hypersurface oft = constant} and the upper (later) hypersurface{of+ dt =
constant}. The data set necessary for this construction is:

e the metric of the 3-geometry on the lower hypersurface
hij(t, x, vy, z)dwida:j,

that measures the distance between two points in that hyecs;
e the metric on the upper hypersurface

hij(t + dt,z,y, 2)dx'da?

e the lapse of proper time between the lower and the upper bygaces mea-
sured by the observers moving along the normal directiomechiypersur-
faces

dr = a(t, z,y, z)dt;

e a formula that connects an event on the upper hypersurfateitaicorre-
sponding event on the lower hypersurface

xim’ﬂ‘ = x%ower - ﬁi(t> z,Y, Z)dt,
whereq is the lapse function and’ denotes the shift vector.

The lapse and shift account for the gauge conditions. Thegetrunique and must
be specified in a numerical evolution, afixes the foliation of the spacetime, and
(' the way in which spatial coordinate system propagates froenhypersurface
to the next.
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The proper distance betweet = (¢, 2%) andz* + dz* = (t + dt, z* + dz*)
is given by 4 4 _ '
ds? = —(adt)? + h;j(dx’ + B'dt)(dx? + B dt).

More explicitly, writing the general formula for the 4-mietes
ds® = Guvdxtdz,

one obtains the following components:

goo = (B;# — a?), g% =—-1/a?,
90i = Bi, g% =B /o,
gijo = B, g° =p'/a?,
9ij = hij, g =n"—pp [,

whereg,,,g"" = 6,".

One can consider a time-like unit vectey normal to the 3-hypersurfaces of
{t = constant} in the 4-geometry. Performing the decomposition with respe
this vector is convenient, as one can introduce the 3+1 gigsnin a way that is
independent of the coordinate system. The vector is nozeths/n, = —1.

The hypersurfaces dft = constant} can be locally described by a one-form

Q, =V,
normalized as

1

oL, = ——
g 2 O[2

Then the unit normal to the hypersurface can be written
n, = af), = aV,t.

One can consider a future pointing vector figld that is not tangent to the
spatial hypersurfaces, namely satisfies the condition

V=1,

This represents the flow of time through spacetime, as itagdhgent vector to
the time lines (lines of constant spatial coordinates). dbgmosing it into parts
normal and tangential to the 3-hypersurfaces, one findghbdapse function, the
shift vector and the unit normal can be written in terms oftthee flow as

a = EPn,=—(nV,t)71
Bu = huugya
1

n/»‘ = _a(gﬂ_ﬂﬂ)7
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whereh,,,, is the spatial metric.

The lapse, shift and 3-metric determine the componentseofitlit normal in
covariantn,, = («,0,0,0) and contravariant form# = (—1/a, 3'/a).

A useful relation is writing the acceleration in terms of thpse function as

a, = D,lna. (2.11)
This equality is proved in the following
ay, = nV,n, =aQ’V,(aQ,) = aQ’(V,a)Q, + a*V LV ,V 1)
= aQ’(V,a)Q, + %()z?Vu(thth) = a0’ (V,0)Q, +a 'V,a
and
D,Ina=h",V,Ina = (6, +n’n,)(a 'V,a) = a 'V,a + aQ(V,a)Q,.

One has now all the ingredients for performing a 3+1 decoitiposf various
space-time tensors into "spatial” and "temporal” parts.tHa following, | will
present a summary of the main geometrical objects and thetiegs used in the
3+1 numerical evolutions of the Einstein equations.

2.2 The 3+1 Form of the Einstein Equations

2.2.1 Basic Geometrical Objects

We consider a 4-dimensional Lorentzian manifold (M, g) atide-like unit vec-
tor field n,, (with n*n, = —1), in respect to which the reduction will be done.
Any vector.S from the tangential space can be decomposed in parts pécpkamnd
and parallel ton as follows

SH = GF — s,

where byS* we denote the spatial part of the vector, wﬁhnu = 0, and by
S = Skn, the temporal part. We will refer to the vectors as “spatiathey are
orthogonal, or “temporal” if they are parallel in respectito

The decomposition of the 4-metric gives rise to a spatiatimeéf,, ,

Juv = huu — NyNy,

[L 1]

where the " sign follows from the signaturé—, +, +, +) on the spacetime. For
simplicity reasons, we will restrict the following calctitans to normal coordi-
nates §o; = 0) and consider. to be hypersurface orthogonal.
The spatial part of the tensors can be obtained by applymgthce projector
hy"h? = h,’,
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to every free tensor index. By construction we ha¥é,,” = 0.
The decomposition of the derivative of the unit normal diésct by

Vyn, = Dyn, —n,Dn,,

defines two derivative operators, that were denotedgs= h,”V, and D =
n”V,. One can write the natural derivative operator for spagiatbrs as

R ohPsDyhyy = Dyhas = WY oh?shT N2 (gu, + numn,) =
= W' hPsh" (N, Ven, +n,Ven,) =
= hahPs(nyKu,+n,Ku) =0,

whereD,, is compatible with the spatial metric, so it is the uniquei\agive oper-
ator associated with,,,,.
The hypersurface orthogonal part defines the 4-accelaratio

a, = Dn,,

while the hypersurface tangential part defines the extriosrvature of the 3-
geometry .
K,, = Dyn,, (2.12)

which accounts for the change of the normal vecipwhen it is parallel trans-
ported from one point of the hypersurface to the other. Theept of extrinsic
curvature exists in the context of a 3-geometry embeddedveslalefined slice
in a well-defined spacetime and measures the curvature afitgerelative to the
enveloping 4-geometry.

The extrinsic curvature, also called the second fundarhfarta, is a symmet-
ric tensor. This can be proved starting from Frobenius’sté@ which states that
the necessary and sufficient condition fgr to be hypersurface orthogonal is

nuVng =0,

that projected witth#*h"® leads to

h“ah”‘snpvuny — h“ah”‘snpvl,nu = 0,
hV(SKOcV o huaK(SM _ O,
Ka6 — K&a.

2.2.2 Evolution Equations

Considering the definition of the extrinsic curvature Eq122, the spatial compo-
nents of the identity
Lﬁg,uy = Vunu + Vun,m
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allow us to write the second fundamental form as the Lie dévig of the metric
in the direction of the unit normal

1
Kij = iﬁaﬁhw
ThenK;; can be interpreted as the variation of the induced métrin the space-
time manifold. This provides an evolution equation for tpatgal metric
Z?th,-j = _2aKij- (213)

An evolution equation for the extrinsic curvature can beaot#d from the
following projections of the Riemann tensor

hs"n"haP Ry e = 0 hst b [(V V), — V, V)0,
where the first term in the right side of the equality is coneguas
n"hstha [V, Vin,| =
= h5uhv)\vu[hkpnyvunp] - héuhv/\[vunp] [Vu(n”hy?)] =
= héuh’y)\vuak - hé“hv)\[vvnp] [PV un” = n"V (nan”)] =
= Dsa, — K3 Ko,
and the second term leads to
n"hs"hy [V, Vn,| =
= n"heXh AV, (I P haPY i) — 0 hsXh MV i) [V (Ry P haP)] =
= n’hg¥h AV, Ko\ — 0V hsXhy MV un, [y H VL (nan?) + haPV, (nynt)] =
= n"hsXh, "V, Ko\ + aas.
From the above relations symmetrized, one obtains
heXh "V, K\ + Dsay, + Ks®Koy = hs"n”hyP Ry, nr.
Using the Eq. (2.11) in order to replace the acceleration,foms
0iKsy = —DsDyo 4 a( =K ps K\ 4 hst'n"h P Ry, 0y ). (2.14)

2.2.3 Constraint Equations

The intrinsic curvature of the hypersurfaces, given by fhetial Riemann tensor
R, describes the internal geometry and depends on the 3eméonsider-

ing the 4-dimensional Riemann curvature tensor definedigirats action on an
arbitrary spatial vectos§,

(V,.V, = V,V,)8, = R,y Sy,
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the intrinsic curvature of the three-dimensional hypdesies can be defined as
(DD, — D,D,)S, =Ry Sr.
One can calculate the following projection of the 4-Riemann
hot'he” haP Ry Sr = hot'he” b/ (V NV, — V1,V ) S,,
where the first term in the right side of the equality can bdtamias
ho''he hyPN NV ,S, =
= ho!he’ 'V u(hs"ha?VS,) = hothe’ha N (V. S,) [V (s ha?)] =
= Do DeSy — hothe’ by N(V,8,) [ha PV i (ngn”) + hs”V u(nan?)] =
= DQDSSA/ — Kafh/\/pDSp + KangpSp,
and a similar calculation for the second term leads to
ho!'he” hyPN LV S, =
= hﬁyhaéhw)\vu(héuhxpvusp) - hfyhaéh'y/\(vusp)[Vv(h5“h/\p)] =
= DeDoSy — he o1 (V,uS,) [haP Vo (ngn') + hV, (nan?)] =
= l)gl)aS-y - Kgah-prSp + KgnyapSp.
So one obtains a first projection of the Riemann tensor
ho'he” hyPhs™ Ruvpr = Ragys + KayKes — Key Kos. (2.15)

The evolution equation of the extrinsic curvature Eq. (2.tdn be rewritten
using the equation above as

0 Kij = —DiDja+ o(Rij + KK;; — 2K, K;P). (2.16)
One can consider as a second projection, the equation
hot'hs"haP Ry nr = hot'hs” by (V, NV, — V.,V )0,
where the first term can written as
hot'hs” hyPN N yn, =
= hocuhcsghvpvu(hiuvvnp) - hauhéghvp(vunp)(vuhiu) =
= Do K5y — ha'hs*ha (V) [V u(ngn”)] =
= D, K5, — K50,
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and a similar calculation for the second term leads to
hot'hs” hyPN LV yny, =
= hahs"hyPV, (he"V in,) — hoths”haP (Vi) (V het') =
= D5Kor — hahs"ho?(V in,p) [V, (nent)] =
= Ds Koy — Ksaa,.
A second projection for the Riemann tensor is
ha'hs" ho? Ry ™y = Do Ksy — DsK . (2.17)

The Egs. (2.15) and (2.17) are known as the Gauss-Codazatieas. We will
use them in the following, in order to compute the constgint

Starting from the Einstein vacuum field equations Eq. (28% can derive the
Hamiltonian constraint as

Gupnt'n? = 8nT),,n'n’,
1
n*nP (R, — §9M)R) = 8,
R,,(n"n? + b)) = 16mT,
Ruvm(hw _ n”nT)(n”np + hup) = 1677,
PR TRy pr = 1677

Calculating double trace of the Gauss equation Eq. (2.1&pbtain
R+ K? — K%K, = 1677. (2.18)

The Momentum constraint can be derived from Eq. (2.9) as

hs"Gupn” = hs"T,,n”,
1
hst'nP (R, — §9upR) = 87Ss,
h(;“npRup = 871‘55,
hs"*h""n’Ry,rp = 8mSs.

Calculating the trace of the Codazzi equation Eq. (2.17)phtain
DKo, — DsK = 87S5. (2.19)

The decomposition of the matter terms as a result of sglitte stress energy
tensor7),, into longitudinal and transversal parts, led to the follogvprojections:
the energy density,

T = Tnt'n, (2.20)
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the momentum density
S, =1T",n,h",, (2.21)

and the stress energy tensor,
Syr = T h" ,h" ;. (2.22)

The Hamiltonian and Momentum constraints, Egs. (2.18) artBj with the
matter terms included

R+ K? - KP,K9,— 16117 = 0, (2.23)
Dp(KZ‘p - 5ZPK) - 87TSZ = 0, (224)

are constraint equations which must be satisfied by the fuedtal variables
hi;, K;; at all times (on all the slices) [35].

In numerical evolutions, one typically uses only the evolutequationsf(tee
evolutionapproach), and the constraints are monitored to assessc¢beay of
the numerical solution. The constraints however, play & iraportant role in the
construction of the initial data, as one can not freely dpeai the components
of the spatial metric and extrinsic curvature as initial ditions. The data must
satisfy the constraints, initially and at later times, otfise one is not solving
the Einstein equations. The constraints are also impoitatiite construction of
well-posed systems of evolution equations, as describ&gation 2.3.

2.2.4 Gauge Degrees of Freedom

The Einstein theory leaves four degrees of freedom undétedncorresponding
to the choice of the coordinate system. In order to obtainlaWolution system,
one needs to complete it with equations for the lapse functiand the shift vec-
tor 5. Ideally one should choose gauge conditions which simpiiéyevolution
equations, or make the solution better behaved. There iseao grescription for
the appropriate gauge in general situations, so the choigauge will depend on
the physical problem under study.

As the Chapters 8,9 are dedicated to various gauge choiceekated prob-
lems, | will mention here briefly the most common prescripsio

The most simple gauge choice is knowngeodesicor Gauss coordinates
which translate intax = 1, 8¢ = 0. It consists in choosing the time coordinate to
coincide with the proper time of the Eulerian observers, wilbhave zero accel-
eration according to Eq. (2.11) and will follow timelike gisics. This foliation
proves to be unpractical in numerical simulations, as inreunaform gravitational
field such observers will end up colliding, which amountd®¢oordinate system
becoming singular (one point has more than one set of ccatetinassociated to

it).
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The second natural choice would be to choose a slicing swathtib volume
elements associated with the Eulerian observers remastaian

OVh =0,
which according to Eqg. (2.13) can be equivalently written as
K=0K=0.
Then the lapse must satisfy an elliptic equation of the type
D,DPa = a[K,KP? + 47 (p + trS)],

called maximal slicing This gauge has two important advantages: singularity
avoidance, as it does not allow the spatial hypersurfacesrtte arbitrarily close
to the singularity, and the fact that Eulerian observers maot focus. The big
disadvantage of this slicing is that one has to solve antiellgquation in 3D,
which is a very slow computational process. The best optiothe moment seem
to be the hyperbolic slicing conditions.

Historically, the first prescriptions used were the harrnauordinates

Oz" = g"'V,V,2" =0,

which allow the Einstein equations to be written as wave ggus for the metric
components. This idea stands at the foundation of harmonmfations of the
field equations. Translated in adapted coordinates, thditimm reads

7 =g"T7,, =0. (2.25)
In 3+1 language, the = 0 component leads tof@armonic slicing
(0 — Lg)a = —a*K, (2.26)
while theT = ¢ component provides a prescription for tiermonic shift
(0 — Lp)B" = —a®(h'PdpIna + hPIT7,,). (2.27)

TheBona-Massdamily of slicing conditions can be viewed as a generalirati
of the harmonic slicing, for which the lapse has to satisfy

(0 — Lg)a = —a*f(a)K, (2.28)

with f(«) positive. The casg¢ = 1 corresponds to the harmonic slicing, and
f = 2/« is called '1+log’ slicing. This foliation is the most commahoice in
current numerical relativity simulations, as it ensuregyslarity avoidance and it
has been found to be very robust in black hole simulations.
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The most simple choice for the shift vector are tioemal coordinatesnamely
B =0. (2.29)

Even though taking the shift equal to zero works well in maages, there are
prescriptions for how to choose a more convenient shiftoreict specific situa-
tions. For example, evolving black hole spacetimes withislang shift causes
the black hole horizon to grow rapidly in coordinate spacehghat soon all the
computational domain will be inside the black hole. For Idegn evolutions, it
is convenient to have an outward pointing shift vector, thiitprevent the time
lines from falling into the black hole. Also for systems wihgular momentum
(rotating neutron stars or black holes), the dragging ati@drames can be severe
and one needs a shift in order to avoid large shears in thbpegtric.

One of the first proposals, by Smar and York, has beemihenal strainshift
condition. This gauge minimizes a global measure of the ghan the volume
elements associated with the time lines. An even betteogiemed to be using
the shift in order to minimize only the changes in the shapghef/olume elements,
independently of their size, which led to th&nimal distortionshift condition.
However, as these conditions lead to three coupled ellggications, they have
not been extensively used in numerical simulations.

The minimal distortion equation can also be written as

0;(0:h) =0,
whereh;; is the conformal metric. Then the condition is equivalent to
oI =0,

wherel = —9;h% are the conformal connection functions. This choice isecall
Gamma freezingas it freezes three of the independent degrees of freeddm. T
above condition is not 3-covariant, as starting from theesg@ometry but with
different spatial coordinates (for example spherical dowtes), one will get a
different evolution of the shift vector.

In practice, one prefers to evolve hyperbolic equationse Ghmma drivelis
a hyperbolic version of the Gamma freezing shift [36, 37],

BBt = Fopl, (2.30)

wheredy = (9; — L). Itis used in combination with a damping teramdy5* in
order to avoid strong oscillations in the shift. This gaugeice, with " = %, has
been found extremely robust and well-behaved in binarykblaate simulations
with puncture initial data performed with the BSSN formidat of the Einstein
equations, as it controls both the slice stretching andhkearsdue to the rotation
of the hole [11, 38].
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2.3 Well-Posed Evolution Problems

2.3.1 Well-Posed Systems

Einstein’s equation&’,,, = 8771}, contain second derivatives of the metric and are
classified in the category of quasilinear hyperbolic phaditierential equations.
They can be written in the form

A" 9,0,w = S(w, ow).

A reduction to a hyperbolic system of first order differehéguations can be ob-
tained by extending the set of evolution variables, suchitlacludes first deriva-
tivesu = {w, d,w}. Then the system takes the form

/i“(‘)uu = S(u),

whereA# = A#(w) and$ does not depend on derivativesuof
In Numerical Relativity one formulates the evolution of aypical system

O = A'du + S(u),

as an initial value problem (IVP), also called Cauchy probleThis means that
given proper initial and boundary condition$t = 0, z), the equations must pre-
dict the future evolution of the systeatt, x).

As presented in the previous subsections, one writes thatdtinequations as
a Cauchy problem by splitting the roles of space and times Tdads to a non-
unique system of evolution equations, as one can arbjtradt them multiples
of the constraints. It changes the nature of the free ewarlutroblem, but the
physical solutions (the ones satisfying the constrairs)ain the same.

In the physical theory of relativity, changing the initiadraditions should only
change the outcome by an amount that can be controlled byngnéh@ change in
the initial conditions smaller. This crucial property, whiensures that the formu-
lation is well behaved in numerical simulations, dependthenwell-posednessf
its system of partial differential equations.

The definition of well-posedness for a system requires trsailation exists,
is unique and it depends continuously on the initial datathdf ratio between a
chosen discrete norm at tinh@nd its initial value

”u(t7 x)” S Keozt
[u(0, z)||

is bounded by some constantsand i, which are independent of the initial data,
then the system is well-posed in respect to that norm [39t.fiFxi order hyper-
bolic systems thd.,-norm is usually used [40].
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2.3.2 Strongly Hyperbolic Systems

An important property of the hyperbolic systems of evolnteguations used in
Numerical Relativity, is the fact that they have a finite pdminain of dependence
(finite propagation speed of the signals) in agreement \witcausality principle.

A hyperbolic system can be shown to be well-posed under vengiial con-
ditions. Is has been proven that a system with source t&$ linear in the
variablesu is well-posed, if the system without the sources is wellgabg89]. In
the case of the Einstein equations, the sources contairs tehich are quadratic
in the variables, so the hyperbolicity of the principal para necessary, but not
sufficient condition for well-posedness.

Applying a reduction to first order, the field evolution eqoas can be brought
in the form

O+ A'du + S(u) = 0.

The system is said to b&trongly hyperbolidf the matrix M = A'n; is diago-
nalizable, namely it has a complete set of linearly indepah@igenvectors, and
real eigenvalues for each directiah For this class of systems, one can construct
energy estimates that bound the solution at later times, that the growth of the
errors can not be more than linear.

If all the eigenvalues are real but the matrix does not havenaptete set of
eigenvectors, the system is calle@akly hyperbolic These systems allow expo-
nentially growing modes and are not well suited for numegaaulations.

Analyzing the matrixM, one can find a positive Hermitiat (n) such that

H(n)M —MH(n) =0,

for k=1I < H(n) < kI (k constant),(V)n; with |n;| = 1. H(n) is called sym-
metrizer. If the operatoH does not depend on the directiag, then the system
is calledsymmetric hyperbolicThe condition reduces then M being symmetric
for any direction, s’ is symmetric with respect tBl. Energy estimates can be
used to prove well-posedness of the initial boundary vatablpm (IBVP) for this
type of systems.

First order systems of equations can be conveniently writtex Flux Conser-
vative form. This means that th@incipal part, the terms containing the highest
order derivatives, can be arranged as

o + OZF’ = ...

where the flux term#" = A’y depend only on the fields and the source terms on
the right-hand-side do not contain derivatives. The systenthis form are also
calledbalance lawsas the change of the fields in a volume element can be viewed
as a balance between the fluxes entering or leaving throwgélément boundary
and the sources.
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The Einstein equations, written as a system of balance learsbe viewed
like a standard system in Fluid Dynamics, with the principaft terms describ-
ing transport and the remaining ones acting as sources. @&ldeeffjuations can
be physically interpreted as follows: the stress-energgdedescribes sources of
non-gravitational nature and the quadratic metric ternseidee the action of the
gravitational field itself, acting as its own source. Oneha iain advantages of
using a first order flux conservative formulation of the fietphations is the fact
that one can apply the numerical algorithms developed irfigh@ of Computa-
tional Fluid Dynamics.

2.3.3 Boundary Conditions

The problem of choosing proper boundary conditions extérey®nd Numerical
Relativity. At an analytical level, the IBVP is not well undéod for General
Relativity. Given Cauchy data on a spacelike hypersurfand,boundary data on
a timelike hypersurface, the problem is to determine thet®wl in the appropriate
domain of dependence.

In Numerical Relativity, due to limited computational pawartificial time-
like boundaries are used for restricting the calculatianBnite grids. The proce-
dure can be described as cutting the piece of space-timetigatvants to study
and evolve it as a separate system, complemented by initithbaundary condi-
tions in order for a solution to exist and be unique [40]. Aostly hyperbolic
evolution system is a necessary and sufficient conditiortferCauchy problem
to be well-posed, while a symmetric hyperbolic system adl@me to formulate a
well-posed IBVP.

In the 3+1 formalism, the well-posed Cauchy problem for ty&temm of evo-
lution equations can become ill-posed if the boundary damth (IBVP) are not
properly chosen [3,41]. The boundary is not intrinsicaltypbsed by the nature
of the geometry, but it is 'put in by hand’. The main condigatihat the bound-
aries have to satisfy, are that the full IBVP remains weblqmy the boundaries
are consistent with the constraints and with the physidatmation flux (e.g. no
incoming radiation).

The current development of mesh refinement techniques silketting the
boundaries sufficiently far away, so they remain for a whikcadnnected from
the inner dynamical region. This approach however, is caatjmnally expensive.
A similar effect can be obtained by choosing coordinatesctvliansform a finite
grid distance into an arbitrarily large spatial distanitgh¢eyetechnique) [42, 43].
As long as one is not using elliptic equations, for examglptal gauge conditions
or constrained evolution, the boundary effects can notamate at infinite speed
and affect all the computational domain. So one can ignoeedtbsipative (or
other type of unphysical) effects that the boundary mightipce. In general, this
is not a safe procedure, as the waves traveling outwardsrimtass resolved in
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the computational grid, so they can get backscattered andrcauce instabilities
and unphysical solutions.

Some of the most common types of boundary conditions aratreeli maxi-
mally dissipative and constraint preserving. Thdiative boundariescommonly
used for the BSSN variables, are based on the assumptianthé¢hspacetime is
asymptotically flat, the source of gravitational field isdbzed in a small region,
such that there is a spherical front of gravitational wawdb@boundary, and the
shift is small, such that its effect on the characteristieespcan be ignored [36].

Maximally dissipativeboundary conditions require the characteristic decom-
position of the system, as they are applied on the incomimycargoing modes
(eigenvectors) [44]. This method has been extended to thinear IBVP with
boundaries containing characteristics, such as occugsnmetric hyperbolic for-
mulations of General Relativity [45, 46]. Friedrich and Neaapplied the max-
imally dissipative boundaries in order to develop the firstop of a well-posed
IBVP for Einstein’s equations [47]. Their formulation ofétield equations is
quite different from the ADM based systems implemented & ¢hrrent codes,
and it is not apparent how to extend this work to other foremai. The general
principles can be carried over, provided that formulat®wiitten in a symmetric
hyperbolic form. Recently it has been applied to the IBVP baemonic formula-
tion in order to show that it is well-posed [48].

Constraint preservindgooundaries seem to be the most accurate choice. They
impose conditions on the eigenfields and the subsidiaryesystThere are very
few codes which have these boundaries implemented [49sDyariants are still
under development.
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Chapter 3

Einstein Evolution Systems

This chapter concerns formulations of the Einstein eqoatimased on the 3+1 de-
composition. These formulations take advantage of theiatthe constraints are
first integrals of the system and allow foifree evolutionapproach. This means
that if one enforces the constraints on the initial data aitthi boundary data,

then the constraints are guaranteed to be preserved dbhergytlution (at a con-

tinuum level). In numerical simulations however, as they ot enforced by the

evolution algorithm, the constraints are not preservedtdwdiscretization errors

and limited resolution. This 'unconstrained’ evolutioroduces a discrimination

in the formalism, that breaks the general covariance of thet&n equations.

In the 3+1 formulations, the field equations of General Rétgtare written
as a Cauchy problem (Section 2.2). The form of the 3+1 ewmiutiquations, as
presented in the previous chapter, is not unique. One cathadd constraints in
order to obtain various forms of the evolution system. Trseiltang formulations
have the same physical solutions, but they can have ditfemrathematical proper-
ties. This freedom of modifying the 3+1 evolution equatitetsto a large number
of alternative systems. The only ones suited, from the nigalebehavior point,
are the well-posed strongly hyperbolic or symmetric hyptcbformulations, as
they ensure numerical stability (Section 2.3).

In the following, we will present three systems based on tle¢rin(Z3, Z4
and BSSN) and one on the tetrad formalism (Friedrich-Nagkis brief overview
offers a comparison of the systems at an analytical levelclwis necessary in
order to understand the different behavior of the systemmnvgubjected even to
simple numerical tests, like the standard Numerical Retattestbeds presented
in Chapter 4.

35
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3.1 The 3+1 Metric based Systems

The ADM based systems use the 3+1 decomposition and corkielenetric and
extrinsic curvature as basic evolution variables. Theyvdefrom the standard
ADM (Arnowitt, Deser, Misner) [51] equations rewritten byk.

The ADM system contains evolution equations for the basitadyical fields:
the spatial metric;; Eq. (2.13) and the extrinsic curvaturg; Eq. (2.16),

(at - Lﬁ)hw == _2aKij>
(8t — Lﬁ)Ki' = —VZ‘V]'O[ + Q[Rij — KZZJ + KKZ‘]' +

hi;
+8m(—Si; + %(trs - 7)),
plus the momentum and energy constraints Eqs. (2.24) aR8)(2.

Vp(Kip—(sipK)—SWSi = 0,
R+ K? —tr(K?) — 1677 = 0.

An important concept used by York when rewriting the ADM syst is the well-

posedness of the evolution system of the constraints, wuelantees that if the
constraints are satisfied initially, they will remain stiéid during the evolution.
Despite this feature, the resulting main evolution systdniiastein equations
written in ADM form is weakly hyperbolic (even though all tieégenvalues are
real, there is not a complete set of eigenvectors), so it oabaused to construct
robust numerical evolutions.

3.1.1 The Z Systems
3.1.1.a The Z4 system

The Z systems, developed by Bona et al. [52], use the fulltEimsequations,
by inclosing the constraints into the dynamical system irowadant way. The
constraints become evolution equations for some extralias.

The Z4 system is based on an extension of the solution spate afriginal
Einstein field equations by introducing an extra vedqr

1
Ry +VuZ, +V, 7, =8n(T, — §Tg””)’ (3.1)
so the new set of basic fields (.., Z,). The solutions of the original Einstein
equations can be recovered whgpis a Killing vector. In the generic case, the

Killing equation has only the trivial solution

Z,=0. (3.2)
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The Z variables can be interpreted as a measure of the constialation in nu-
merical simulations.

The divergence of Eqg. (3.1), the conservation laws of thetgin tensor Eq.
(2.7) and stress energy tensor Eq. (2.8), lead to an equatiohe Z,, vector

07, + R Z" = 0. (3.3)

This relation represents the subsidiary system, namelgubkition system of the

constraints. In order to preserve it during the evolutiome meeds to impose at
the initial slice both the vanishing &f,, and its first time derivative. This implies
that the set of initial data for the true Einstein equationsstisatisfy the energy
and momentum constraints, and additionally a zero initidie for the four-vector

Zy.
The full system can be obtained from Eq. (3.1), written in $sin:

(E?t — Lﬁ)Kij = —VZ‘VJ'O[ + Oé[Rij + VZ‘Z]' + VjZZ' — QKZ-ZJ- +

+(K — QQ)KZ']‘ + 87T(—Sij + %(fﬂ“s — T))], (34)

O — L) = %[R OV ZE 4 (K — 20)K — tr(K?) —
—2Zk% —1677], (3.5)
_ i_si j Via
(E?t—Lg)Z,- = Oé[Vj(Ki —(52' K)+8i0—2K,- Zj —0 o —
—87Sj], (3.6)

wheref is the projection ofZ,, along the unit normal (defined in Section 2.1.4),
0=n,2Z"= YA

The Z4 system consists of 10 evolution equations (3.4) ) (&6 only constraints
being Eq. (3.2), so the whole set of field equations is usethg@volution.

The standard 3+1 decomposition leads to a system of mixest,aad it con-
tains both first and second order space derivatives. Wernpedaeduction to first
order in space, by defining the derivative of the lapse, shift metric as indepen-
dent evolution variables,

A = Lo, (3.7)
«
B/ = o, (3.8)

1
Dij. = §8Z-hjk. (3.9)
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The resulting first order in space system will describe tlmeesphysical dynamics
as the second order one.

The system is completed by suitable evolution equationthflapse and shift.
At this point we prefer to keep the gauge choice open and d#famevolution of
the metric components in a general way,

dha = —a?Q, (3.10)
o = —aQ', (3.11)
athij = —QOéQij, (312)

where @ and Q? can be a combination of other dynamical fields, or evolution
variables themselves, and

1 1
Qij = Kij — %(Bz’j + Bji) — aﬂprij,
is just a shorthand for the right hand side of Eq. (2.13).

3.1.1.b The Z3 system

The Z3 system can be obtained from the Z4 by a mechanism csienetry
breaking One considers the following recombination

f(ij — Kij + gehij’

which leads to a similar system, but expressed in a diffebasts of dynamical
fields. Then enforcing the algebraic constraint 0 and suppressing as a dy-
namical quantity, one obtains a one-parameter family ofequivalent extended
systems, that will contain only the three componeiitsf the 4-vectorZ,, as sup-
plementary quantities.

The Z3 family of systems can be written as:

(Z?t — Lﬁ)hij = _2aKij7
(0 — L@)Kij = —V;Va+ Oé[Rij +ViZ; +V;Z; — 2Ki2j + KK;; +

hyj
+8m(=S + L (trS — 7))] — Tahy[R + 2V, 2* +

+ K% —tr(K?) — o7k VR _ 1677],
«

(O —Lp)Z; = V(K —6K)— 2K Z; — 8n5;].

The symmetry of the Z4 system is broken in this transitionthasequivalent
of the energy constrairtt, is no longer part of the evolution system. Different



3.1 The 3+1 Metric based Systems 39

values of then parameter will lead to different systems from the family feé 3
evolution systems [53].

In order to complete the system, one has to specify gaugeitmored We
keep the gauge choice open for now, as it is not the main fottisisochapter,
mentioning that the Egs. (3.10) - (3.12) can be used in coatioim with any of
the Z systems.

3.1.1.c Ordering Constraints

In order to bring the Z systems into a fully first order form, wéroduced as
additional evolution variables the spatial derivativeshef lapse, shift and metric,
Egs. (3.7) - (3.9). We provide evolution equations, by apgj\a time derivative
to their definitions and then commuting the space and timgataes,

Z?tAi + 8p[5i”aQ] = O, (313)
KB+ 0pl0Pa@’] =0, (3.14)
OtDyi; + 0pl0rPaQi;] = 0. (3.15)

The original definitions become now a set of first order caists,

A, = A;—0;Ina=0, (3.16)
B = B -09;4 =0, (3.17)
1

The ordering of the second derivatives introduces an aufditiset of constraints,

Cij = aiAj - ain = 82‘Aj — 8jAz' =0, (3.19)
Cij* = aB* - 9;8" =a,B* — ;B =0, (3.20)
Cijti = 0iDjp — 0jDipy = 0;Djiy — 0; Dy = 0. (3.21)

One can notice that in the Eqgs. (3.13) - (3.15), the tranale&@mponents
of the first order derivative variables have zero charastierspeeds, namely their
characteristic lines will be the time lines. This can lead ttegeneracy problem in
black hole evolutions, as the system becomes weakly hyfieridne characteris-
tic cone of the second order system is the light cone, with,(+ «) characteristic
speed, and the time lines can cross the light cone. In ordavdial this, one can
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use the ordering constraints Eqg. (3.20) and rewrite thetemsas
OA; + Op[—PPA; + 0 (aQ + B1A,)] =

= Bj?A,—trBA;, (3.22)
B + 3p[_5pBZ_j + 52_17(0@3' + 5quj)] =
= BP’B, —trBB/, (3.23)
O Dyij + Op[—B"Dyij + 6" (aQij + B9Dyi5)] =
= ByPDyij — trBDy;. (3.24)

The characteristic lines of the transversal derivative ponents are now the
normal lines, with {5™) characteristic speed, so the characteristic crossing is
avoided. This ordering adjustment, currently used also sy firder harmonic
formulations, turned out to be very important in long ternmgiations with dy-
namical shift (Chapter 9).

3.1.1.d Damping terms

The use of constraint-violation damping terms is anothgrartant ingredient for
long term black hole simulations. In hyperbolic formulatso the error associated
with constraint violation grows at a bounded rate. Howethag, can still be very
fast in numerical simulations and these growing modes cadyae instabilities.
Recent studies [1] show that by adding suitable lower-orelens to the Z4 formu-
lation, all constraint violation modes except for constaratdes, can be damped.
The same prescription can be applied to the harmonic foitroakof the Einstein
equations, as their constraint evolution system is similar

The energy and momentum constraint violations can be damgied terms
described in [1]. For the first order constraints, we carouhiice in Egs. (3.22) -
(3.24) damping terms of the type

—naA; evolution of A, (3.25)
—npBy evolution of B, (3.26)
~npDrij evolution of D. (3.27)

The n damping parameter can be chosen in the radnhgen << ﬁ in order to
ensure numerical stability, as larger values would leaddtiffasystem.

The use of this type of damping terms is justified by an anslgéithe sub-
sidiary system. Considering the time derivative of Eg. §3.1aking into account
the definition Eq. (3.22) and the constraints Egs. (3.170.93 we obtain the
propagation of the first order constraint_f,

Op A — ﬁp(apAk: - 8kv4p) = kaAp - BppAk'
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The normal and transverse components of the system abovespect to any
spatial directiom can be written as

atAn + ﬁL(anAJ_) = 07

AL — " (O AL) = 0.
The eigenvalues ar@, —3™), which means that the system is weakly hyperbolic
for any space direction orthogonal to the shift vector. Thisuld not affect the
stability of the system, but it may lead to linearly growingsfiorder constraint
violations which affect the accuracy of long term simulato

These considerations justify the use of the damping tern2b)3 (3.27),
which will have an exponential damping effect in the sulasigisystem.

3.1.1.e Ordering ambiguities

The shift ordering constraint Eq. (3.20) can be used forsitjg the first-order
evolution equation of the&; vector,

VZ'Oé
(0}

(O —Lp)Zi = V(K —6/K)+ 0,0 —2K'Z; — 0 — 8718;] —

—u(i?pBip - ainp).

The ordering constraints Eq. (3.21) appear in the two forinthe three-
dimensional Ricci tensor, namely the standard Ricci de@sitipn,

Rij = 0I5 — OilPpj + TPpgl'ij — TPy,
and the DeDonder decomposition,
Rij = —(9pr¢]' + 8(Z-Pj)pp — 2Dpquqij + 4quiquj — Fiququ — Fpijl“pqq.

Any combination of the two definitions can be used in the ppalcpart of the
evolution equation for the extrinsic curvature Eq. (2.M% introduce an ordering
parameteg, where¢ = 1 corresponds to the Ricci decomposition gne —1 to
the DeDonder one.

The values of andy are free for the Z4 system, as they do not affect the prin-
cipal part of the system, or the form of the subsidiary systdimere are though
some special choices, like= 0 which ensures that the first order version of the
system contains only symmetric combinations of second/al@res of the space
metric. It is also worth mentioning that the choige= 1/2, £ = —1 allows an
equivalence between the first order version of the genedalermonic formula-
tion and the Z4 system [1].

The numerical simulations presented in this thesis, wer®eed using the
values¢ = —1 andp = 1 for the Z4 system, even though we tested also other
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combinations that lead to long-term stability. The choi¢ghe p parameter is
fixed in the case of the Z3 system,;as= 1 is the only value which ensures strong
hyperbolicity.

3.1.2 The BSSN System

The BSSN (Baumgarte, Shapiro, Shibata, Nakamura) systé@higcurrently one
of the most popular formulations of the Einstein equatiaisgd in numerical sim-
ulations both with and without matter. Also called the 'aarmhal I' formulation’,
the BSSN is based on the ADM equations in 3+1 form. The pdatiities of this
system are the fact that it introduces a new evolved fielddtimtracted Christof-
fel symbolsI), a conformal decomposition and adds constraints to thieigso
equations.
The BSSN considers a conformal rescaling of the metric

hij =~ haj,

where is the conformal factor, chosen is such a way that the cordbmetric
has unit determinanteth = 1. Then the evolution equation for the determinant of
the metric leads to an evolution equation for the conforraatdr, taken that the
relationy* = h'/3 remains satisfied during the evolution.

One evolves in practice the logarithm of the conformal facto

¢ =1Inyp =1Inh/12.
Then the conformal metric can be written as
hij = e *hyj,

and the evolution equation for the natural logarithm of theformal factor takes
the form

1
Op = —E(Oé K —0,6") + BP0p¢.
The extrinsic curvature is split into trace and trace-fragp
1
Ay = Kij — ghii K,
and one applies a conformal rescaling to the traceless part
Aij == 6_4¢Aij.

Due to numerical stability reasons, the constraind = 0 is directly imposed
during the evolution.
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The Christoffel symbols of the conformal metric
I% = T, = —8,h™, (3.28)

are introduced as auxiliary variables. Their evolution bt&nderived from the
definition above and the evolution equation for the metric as

(0 — LT = hP19,0,6" + éﬁipapaqﬁq — 2(ad, A" + AP9,a).  (3.29)

However, this form is known to lead to unstable evolutionae@xes the problem
by using the momentum constraint

- U . 9. -
OpA® = Ty AP — 6 AP0 + THPO I + 875",

in order to replace the divergence 4% in the Eq. (3.29).
The system of evolution equations can be obtained from thiMAdQuations
applying the modifications mentioned above, hamely

(at — ﬁg)ilij = —20[/Lj,
1
(at—ﬁ,@)(b = _éa K7
(at — Eﬁ)leij = 6_4¢{—DiDjOé + O/RZ’J’ + 47ra[h,-j(tr5 — p) — QSU]}TF +
+OZ(K/LJ' — 2/~1ipf~1pj),
I |
(0 —Lg)K = —DpDPa+ a(A;j; AV + §K2) +dra(p + trS),
. . .. .
0= LT = FP10,0,5' + Shi70,0,8 — 247Dy +

. . 9. -
+20(I g AP + 6AP Dy — SHPO,K — 8mS"),

whereT F' denotes the trace-free part of the expression.

This form of the system is successfully used in numericau&tions. One
of the key ingredients of BSSN is the use of the momentum cainstto modify
the dynamical system. Some additional modifications, edlatith the way the
constraints are treated during the numerical evolutiopeapin different imple-
mentations and consist in:

e ensuring that the conformal metric has unit determinant

) »
hii g
i deth/3
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e ensuring that the trace-free part of the extrinsic cureatemains trace-free
Ay Ayj— LA, 000
i T g T g AVl

e dividing 4;; by the same factor used to remove theh,;

~ A
A;; W
77 dethl/3

Another modification adopted by some groups consists iracapy 9, with

the correspondind™, only if the expression appears under a derivative. These
specific choices lead to a family of BSSN formulations, wiilfiedent 'flavors’ of

the numerical implementation.

3.2 The 3+1 Tetrad based Systems

There are also alternative formulations of the Einsteinaéigns, which are not
based on the ADM system. | will present in this section a paldir system based
on the frame formalism, in which the 3+1 decomposition iggrened with respect
to the components of an orthonormal tetrad. The basic agalvariables are the
tetrad componentg:;)*, the four dimensional connection coefficients, and the
electric ;; and magnetid3;; components of the Weyl tensor.

3.2.1 Notions of Frame Formalism
3.2.1.a The Tetrad

The metric tensog,, may be defined indirectly, through D vectors forming an
orthonormal D-leg?”),,. Then the spacetime metric can be written using the one-
formsb” = (b”),dz" as

G = Mpr (07) (7).

The frame indices, counting the number of "legs” spannirgadbtangent space at
each point, are moved with the Minkowski metric.

In the case of tetrad-theorie® (= 4) described by the concept of fiber bundle,
the (v”), are considered to be the basic geometrical variables ysatisthe field
equations (not the metric). The fiber at each point of the folhicontains all
orthonormal tetrads related to each other by transformsitid the Lorentz group.

The basis is defined &g,)*(b"), = ¢6,” and(e,)"(b”), = h*,. Then the
4-metric can be represented in terms of the frame* as follows

g =0 (ep)"(er)",
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g(ey,en) = nu = diag(—1,1,1,1).
The functiong(e, )" = e,(x#) are the coefficients of the frame in a chosen coordi-
nate system.
The 4-dimensional connection-coefficients in this fraype. are defined as
1r’e = (B°)u(er)*Vulee)”.

The fact that the connection is metri¢' (g,, = 0) is expressed through the anti-
symmetry of the connection-coefficients in their last twdices.
The torsion-free condition translated into
(07)u(ep)Oulea)” = (b7)u(€a)"Oulen)” + Yoo = vap” =0,
provides a constraint equation for the spatial vectors etdérad
(0)e(ej)°0s(eq)* — (0F)¢(ei)*Ds(e;)* —Tij* + T = 0.
The projections of the 4-dimensional connection-coeffitieare calculated as
ol = 70j0 = (bj)u(eo)pvp(eo)u>
Xi =90 = (V) ()" V p(e0),
Ny =707 = (1) u(e0) YV, (e)",
Lo =i = (V) u(er) V(e
where bothA’; andT',7; are spatial and antisymmetric in their last two indices.
The components af’ (3), x;? (9), A7; (3) andI';7; (9), account for the 24 con-

nection coefficients of the four-dimensional connecfioim respect to the chosen
tetrad.

The Einstein vacuum field equations imply the equality betwie Riemann
and the Weyl tensor

R;u/pr = Cul/p’r-
The Weyl tensor can be decomposed

Cuvpr = —(e0)uleo)rEup + (€0)v(€0)r Epp + (€0)ul€o)pEuvr — (€0)v(€0)pEpr
- EHV5E£665PT - (eo)uBugeﬁm + (eo),,B,ﬁe&pT + ew,fng(eO)T -
— e’ Ber(eo)p,

in terms of its electric part

E,= Cul/p’r(eO)'u(eO)pa

and magnetic part
1 T
5 Cpr(€0)”€” ac(€0)*.

Both £, andB,,, are symmetric and trace-free.

Bo =



46 Einstein Evolution Systems

3.2.1.b Gauge choice

We present in the following a particular way of adapting tbead to the geom-
etry and a gauge prescription that can be used in order toliintipe system.
These gauge choices are just an example, that we adopt hemgeinto make the
comparison with the 3+1 metric formalism more intuitive.

One can consider the standard 3+1 decomposition present&aaipter 2 and
choose(ep)* to be the equivalent of*, namely the unit vector field orthogo-
nal to the spatial hypersurfaces. Then one extend® an orthonormal basis
{(e0)*, (e;)"}, with (e;)*(eo), = 0 and the 'spatial’ components of the tetrad can
not have components in the 'zero’ direction

(62‘)0 = 0.

They;; connection coefficient becomes a symmetric two tensor,dhevalent of
the extrinsic curvaturés;; in the metric formalism.

Assuming that the frame is Fermi propagated in the direatibey, one can
write the law of transport for a non-rotating tetrad of bagstors(e,,) carried by
an accelerated observer as

Veg(ei)” = ((e0)“a” — (e0)Pa®)(€i)yp-

This leads to the simplificatioh’; = 0. Furthermore one can choose a time slicing
determined by a wave equation

Ot a") = =V, Vit
Then the evolution equation for the lapse takes the form

O = ﬁk(ek)papoz + Kppoz2 — %3,

3.2.1.c Evolution and Constraints for the Connection Coefénts

One can replace the connection coefficient wittd; = «aa;. Then using the
definition of the acceleration in respect to the lapse famctive find the following
constraint

(ei)papoz — AZ' = 0,

and evolution equation
0A; = () ()P0 f* + (a®)(en)Ip K" + 8" (ex)POpA; + 2K Pad; —
=3f%a*)A; — A, K;P + o® KT 7 — o KT P4

The standard evolutions and constraints of the metric fosmafind corre-
spondent in to the following projections of the Riemann tens
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o h\"ho"he? Ry, (e0)r — the Momentum constraint,
(ej)papKik — (6k)p8pKij + B,-f”epjk—i-
+Eppl'ji? + Kpil'jil? — Kp Ui — Kpil'g# = 0;

e (eg)'he”ha”Ru," (e0)r — the evolution equation for the extrinsic curva-
ture,

0iKi; = B"(er)P0pKij + (1/2)(e)POpAi + (1/2)(er)PDpA; —
—akbij — aKp KP4+ (1/2)ApT'ii” + (1/2) AL
° hA“hg’thRWpT(bi)T — the Hamiltonian constraint,

(el)P(‘)kaj" - (ek)papl“lji + KJlKkZ - Kijli—l-
'+El26jk - Ekléjl - Ejl(gkl + Ejk§l’—
—ij’FklP — ijf’TlpZ + Pkp’Fljp + ijlflkp =0;

e (e9)"he"h:PR,,," (), — the evolution equation for the connection coef-
ficients,
E?tfjki = 5l(el)p8pF]~ki - OéijPpki + Aink - AkKji — OéBpjekpi.

The evolution of the spatial vectors of the frame can be &rmitis a Lie deriva-
tive in the direction of the time-flow acting an, which translates into

Or(ej)" = —(ex) ()P 0pB" — (er)* BT g™ + (e)"BITjq" — atler) K"

3.2.1.d Evolution and Constraints for the Weyl tensor
The contracted Bianchi identity
VEC wpr = 0.

provides evolution and constraint equations foand B applying the following
procedure:

e Projecting with(eg)”h”;h”; and the symmetrizing in th, j) indices —
evolution equation for,

ik = (/2)€" j1(er)P0p By + (o/2)€" % (ex)" D, Byj +
+0%(ex )P, Eij — 2K ,PaE;j — APBjlepyi — AP Bilepyj +
+(3/2)0Ey KiP + (3/2)aEy KP — aE, K5, +
+(a/2)Bpjeqi TP + (a/2) Bpieq; TP +
+(/2) Bpgeri T + (a/2) BpgeriT" ;%
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e Multiplying with €**"h" ;h,; and symmetrizing in thei, j) indices— evo-
lution equation forB,

0By = (a/2)e"j(er)" B + (a)2)e" giler)P OBy +
+6%(ex)POpBij — 2K,PaBi; + APElepy + APE ey, +
+(3/2)aBP Ky + (3/2)aBi’ Ky — aB, K6 +
H(0)2) EP €T i + (00 2) EPleguil” s +
+(a/2)EjPeqril"p? + () 2) EiPeqr I p%

e Contracting with(eg)" (eg)”h*; — constraint equation faF;,

(ex)POE*; + EpTlP + EpT%P — Byley,; KP" = 0;

e Contracting with(eg)”¢™ — constraint equation foB,

(ex)P9,B* — BAT?,' + B, TP + F, " K, = 0.

Using the projection and orthogonality rules in respeeytand the definitions
for the connection-coefficients, one obtains a system ofv@88igon equations in
component form, for the lapse (1), spatial derivative ofldpse (3), spatial vec-
tors of the tetrad (9), extrinsic curvature (6), connectioefficients (9), the elec-
tric (5) and magnetic (5) components of the Weyl tensor, atated constraints.
The system above, although it has a very simple algebraictate compared to
that of many other reduced systems in tetrad formalism rofd the informa-
tion about the four-dimensional metric given in terms offtla@ne coefficients, the
four-dimensional connection, the Weyl tensor, the geoynatthe slices and their
embedding.

3.2.2 The FN System

The Friedrich-Nagy system is a frame based first order foatiar of the Einstein
equations, that has been shown to yield a well-posed imitahdary value prob-
lem. The system is based on the 3+1 tetrad decompositiorrgwinetime-like unit
vector fieldeg, in respect to which the decomposition is performed, isredee to
an orthonormal frameg(eg)", (e;)*). The metricg,,, and all the other fields are
represented in terms of the frarag

The FN formulation is based on the Einstein vacuum equafitossslated into:
the curvature of the connection is the Weyl curvature), trgracted Bianchi iden-
tity and the torsion-free condition for the connection. fBening a hyperbolic re-
duction, similar to the one presented in Section 3.2.1, tn&itms a representation
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of the Einstein equations in the form of a symmetric hypecbsystem of evolu-
tion equations. Moreover one choosesaglapted gaugemotivated by the choice
of maximally dissipative boundary conditions.

One assumes a boundary {at = constant} and foliates the interior do-
main by time-like hypersurfaces, given by {z = constant}. The tetrad will
be adapted to this foliation such thatis orthogonal tdl., which implies

(ei’)g =0,

andes® > 0. Ases is chosen to be the unit normal, the extrinsic curvamr%j/
onT, has to be a symmetric tensor

FiHSj” — Pj//gi// = ()7
Agj// — Xj"3 = 0

The mean extrinsic curvature @t is prescribed as a function of the coordinates
and used to eliminate the connection coefficig, from the equations

a® =T1% + T8 + f.

The variation ofey within 7. is prescribed by the functiong”’, according to
Deye0 = Fi" e, This fixes the connection coefficients” o as

/!
a =F".

The condition for the frame vectoes: to be Fermi transported with respect to the
induced connection offi, translates intey” ;» = 0, namely

A =0.
The tetrad vectog, represents the time-flow
(e0)" = eq(a") = 00"
The resulting system (see Appendix 9.8 for the full systeakgs the form
A%9u+ A'9;u+B(u, F) =0,

whereF = (f, F4, ouf, 8MFA) represents the gauge source functions and their
derivatives. The matriced’, A’ are symmetric and depend on the coordinate
components of the frame.

As shown by Friedrich and Nagy [47], the FN evolution equaidorm a
symmetric hyperbolic system, with derivatives transvetsahe boundary con-
tained only in the Weyl subsystem, to which we can impose maby dissipative
boundary conditions. The IBVP for the evolution system idlypesed, which
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means that if one chooses initial data on the hypersurfatieaBsatisfies the con-
straints, and solves the symmetric hyperbolic system diiéen equations, with
maximally dissipative boundary conditions, one obtainsiguwe solution of the
Einstein equation that depends continuously on the init&th. Moreover, the
symmetric hyperbolic subsidiary system leads to a uniqligtisn, therefore the
constraints will be satisfied at all times if they are satésfrgtially.

3.3 Discussion

We presented an overview of various formulations of the téinsequations used
in Numerical Relativity. Our choice of systems includessthmetric based for-
mulations: the Z3, the Z4 (first order in space) and the BS&osd order in
space), and a tetrad based formulation, the FN (first ordepate). The ap-
parently small differences in their analytical structusd] translate into obvious
differences when subjected to numerical tests, as we weilirsthe following chap-
ters.

We found that the Z3 system provides an approach that is iedlyewell
suited for numerical evolutions in spherical symmetrytaiows stable long term
black hole evolutions in normal coordinates (Chapter 6k $ystem can be easily
brought into a spherically symmetric form, without the cdications present in
the BSSN, as it does not use a conformal decomposition.

An equivalence between the BSSN and the Z3 system with4/3), can be
obtained if one considers the following transformation

T; = —hiy0,hP1 + 227,

which is consistent with the definition @f Eq. (3.28) for the physical solutions
(Z; =0).

The BSSN is currently the most used formulation in binarycklaole evolu-
tions. Despite this success, questions regarding the grepand behavior of this
formulations are raised by the poor results obtained irdstahnumerical relativity
tests (Chapter 4).

Even though the Z3 represents an improvement over the sthAdaM sys-
tem, as it introduces the momentum constraint as extra digadrneld into the
evolution formalism, general covariance is still brokem flois system. In this
respect, the Z4 is superior, as it incorporates also theggreanstraint in the evo-
lution system, through a covariant four-vectdy. The 'zero’ vectorZ, should
vanish for the true Einstein solutions, the only constsamnte algebraic, and the
full set of field equations is used during the evolution.

However, monitoring theZ,, vector in numerical evolutions, we noticed that it
deviates from the initial zero value. Due to truncation esrthe resulting numer-
ical code will actually deal with the extended set of Einstedlutions. This the
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price one generally has to pay for performing an unconstthevolution. But the
advantage that the Z systems offer, over other 3+1 metriemsslike the BSSN,
is controlling the growth of these constraint violation$eTZ4 proved to be very
robust for long term 3D black hole simulations in normal aioates (Chapter 6).

A different style of 3+1 formulation is the FN system, a fireder in space and
time tetrad based formalism. However, there are some conpwiois between the
FN and the ADM based metric systems, as the structure of thariphies a free
evolution approach and it uses the technique of adding @ntt to evolution
equations in order to obtain a symmetric hyperbolic fortiata The main ad-
vantage of the FN system relies in the fact that the IBVP ferdtolution system
has been proven to be well-posed. Even though it performkinvéte standard
numerical tests (Chapter 4), this system is not currentgdus production runs.
One of the reasons could be the fact that this formulatiomlisl wnly the vacuum
case, where?,,,, = C,,r. Extensions of the FN system which include matter
terms have not yet been explored.






Chapter 4

Standard Testbeds for
Numerical Relativity

The Apples with Apples Alliance (AwA) has been the first commity effort to
produce a project for cross-validation of Numerical Relgticodes. The results,
published in 2003 and 2008, follow two projects of code comnspa, realized
with a broad participation of the community. The data wabeetd and organized
in a CVS repository for checking in test results and via thé \wages of AWA
(http://www.ApplesWithApples.org).

This pioneering work had a double success. First, it offaredbjective view
over the status of the formulations and implementationsl iséNumerical Rel-
ativity, impulsing improvements on an analytical levekeliconstraint damping
algorithms, and the development of numerical methods. 1&kcib opened the
way for new large scale collaborations, like the current parison projects for
gravitational wave templates.

In this chapter, we present a review of the AwWA tests and thia nesults that
followed. We focus on numerical simulations performed wtike formulations
presented in Chapter 3, namely the Kranc implementatiomeoz4, BSSN and
FN systems [54], [55], [56].

4.1 Overview of Numerical Tests

As presented in Chapter 3, the decomposition of the Einglgirations does not
lead to a unique formulation of the evolution system. Mostrfalisms currently
used in Numerical Relativity (NR) simulations are based lo free evolution
approach.

The problem of choosing the best suited formalism for nucagérevolutions
proved to be a complicated task. A fair comparison betwe#ardnt formula-
tions, had to concentrate on the behavior of the systemsattitean equations in

53
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an identical numerical set-up, in order to minimize theat#ince coming from
various choices of gauge, boundaries and numerical methods

The first effort of providing a practical collection of stand tests for NR was
proposed in [57]. After analyzing the results of these testsecond round of
comparison has been proposed in [55], using the originsbeds with revised
specifications and an additional test.

The purpose of the AWA tests was to give a comparison betwagaus for-
mulations in a standard setting. In order to make the testgpatationally afford-
able to all the NR groups, they were limited to vacuum spatetiand periodic
boundaries.

The criteria proposed for code comparison were:

o Stabilityimplies that the growth of the errors should be less than eipiial;

e Accuracywhich depends on the analytic formulation, for example an th
treatment of the constraints;

e Robustnessequires that a code should behave well in a variety of space-
times, using different gauges;

o Efficiencyis related to the computational costs of a specific impleatent;

e Degree of mathematical understandiognsists in the possibility to mathe-
matically prove certain features of the evolution systdiks well-posedness.

The standard tests proposed by the AwA community focus mainl stability,
accuracy and robustness.

The tests address a broad range of formulations. The ougjpiaioles are cho-
sen such that they offer inside about the characteristi@beh of the specific
system and allow a comparison with other codes solving theegaroblem. The
time a code runs before crash is not an accepted criteriassiitlis accompanied
by an indication of how accurate the code still reproducedritended physics.

4.2 Implementation and Results

The four tests chosen for code comparison in the initial dowere: the Robust
Stability, the Gauge Wave, the Linearized Wave and the Gowaye.

The Robust Stability test uses random constraint violaitmigal data in the
linearized regime, which simulates machine error. Theen@sadded as pertur-
bations around Minkowski space and it proved to be very efficin revealing
unstable modes.

The Gauge Wave testbed is based on an exact wave-like splatiastructed
as a nonlinear gauge transformation of the Minkowski spaeet Nonlinear ef-
fects and nontrivial geometry can trigger continuum iniitéds in the equations.
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The Linearized Wave test proposes as initial data a solutigdhe linearized
Einstein equations. It has physical importance, as it candesl to check the
amplitude and phase errors of a gravitational wave as itggaiges on the 3-torus.

The Polarized Gowdy testbeds are non-linear wave testsl @msexact so-
lutions describing an expanding universe containing phalarized gravitational
waves. The test is carried both in the expanding and coligpgine directions.

In the second round of tests, an additional shifted versicheoGauge Wave
test has been included, in which a non-vanishing shift isl ticeomplete the four
original tests with periodic boundary conditions.

The initial data is specified by providing the 4-metric of #ace-time, or
the Cauchy data (3-metric and extrinsic curvature) and ltoéce of gauge. The
physical domain is a cube and the evolution is performed ipezific direction
(x, y, z) or diagonal, so the 3D simulations reduce to 1D or BBsr All tests
use periodic boundary conditions, equivalent to an evafutin a compact spatial
manifold with the topology of a 3-torus in the absence of luaures.

The time evolution algorithms are a third order Runge Kutt&dgrator or a
second order iterative Crank-Nicholson method. The Spdisaretization is per-
formed using finite difference algorithms plus Kreiss Ofigessipation. The sim-
ulation domain is a cube of sidé equal to one wavelength, set up to extend an
equal distance in the positive and negative directions cifi @xis. The resolution
along a given direction igx = d/n, wheren is the number of points. For the tests
with one-dimensional features, one considers a minimumbauraf points in the
trivial directions. The size of the time step is given in terai the grid size, such
that the Courant limit is satisfied. A final time for the test€hosen ag = 1000
crossing times (CT), i.& x 10°p time steps, wherg = 1 is the lowest resolution
andp = 4 the highest. The standard output is set to every 10 CT andutpeito
guantities have physical or numerical motivations.

One considers for the gauge evolution a harmonic slicing(E&6) and nor-
mal coordinates Eq. (2.29), in all the tests beside the &hiiauge Wave, where
the evolution of the shift is given by the harmonic conditieq. (2.27).

4.2.1 The Linear Wave Testbed

In the Linear Wave Test specifications, the initial spatietnic and extrinsic cur-
vature are given by a transverse, trace-free perturbatitnoemponents

ds® = —dt* + dz® + (1 + H) dy? + (1 — H) d2?, (4.1)
where
H = Asin (Lfﬂd— t)> . (4.2)

It describes a linearized plane wave traveling in:thairection.
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Figure 4.1 lllustration of theg,, variable on the x-axis, in a 1D Linear Wave test with
amplitudeA = 0.1 and resolutionp = 4, attime = 1000 CT when the simulation was
stopped. Upper panel: Performance of the codes using 2ied finéte differencing. The plots
correspond to the analytic solution (black continuous), (B&irk-grey long-dashed), BSSN
(medium-grey medium-dashed), Z4 (light-grey short-ddsh&ower panel: Performance of
the Z4 code using 4th order finite differencing plus 3rd odissipation. The plots correspond
to the analytic solution (black continuous) and Z4 (greyhea.
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Figure 4.2. lllustration of the error ing,, variable on the x-axis, in a 1D Linear Wave test
with amplitudeA = 0.1 and resolutiorp = 4, attime = 1000 CT, when the simulation
was stopped. Upper panel: Performance of the codes usingréedfinite differencing. The
plots correspond to the FN (light-grey long-dashed), BSBNdium-grey medium-dashed),
Z4 (black short-dashed). Lower panel: Performance of the@de using 4th order finite
differencing plus 3rd order dissipation.
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The nontrivial components of extrinsic curvature are
1 1
Ky, = —gatH, K., = gatH. (4.3)

The test is performed with amplitudé = 108, so that quadratic terms are of the
order of numerical round-off.

The Linearized Wave test checks the ability of a code to yafea linearized
gravitational wave, which is a necessary attribute foaldé wave extraction. One
is interested in the accuracy of the code when propagatmgrtiplitude and phase
of the wave.

4.2.1.a Numerical Results and Comparison

The harmonic codesApigeLharm and HarmNaivg show the best behavior in
wave tests [55]. They provide a benchmark for the accuraatydan be obtained
with a specific resolution. An interesting result is that aidg hyperbolic imple-
mentation of the generalized harmonic systétarfmNaivg, does not introduce
large errors in this test. This illustrates that linearizests are not efficient in
pointing instabilities related with weakly hyperbolic s, as the polynomial
modes grow only secularly in time. The Linear Wave Test sthdnel viewed as a
double check for stability, as it can reveal whether exgesdissipation was used
in the Robust Stability Test in order to obtain long term parfance.

In Fig. (4.1) one can see a comparison of the 1D wave profiles 4000
CT, plotted with the exact wave for reference. The numeriesiilts show a good
match in the amplitude, but they all suffer a phase delays kimd of error, spe-
cific to the simulations using a 2nd order in space algorittam, be decreased by
employing higher order finite differencing, as exemplifiad-ig. (4.2) for the Z4
system.

The Z4, BSSN and FN systems show a good accuracy for the achpldf the
wave, but the FN shows much larger errors for the phase. Tdrereo signs of
rapidly growing Hamiltonian constraint violations, whigidicate that the imple-
mentations are stable.

4.2.2 The Gauge Wave Testbed

The Gauge Wave test is based on the 4-metric

ds®> = (1 — H)(—dt* + dz?) + dy® + d2?, (4.4)
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whereH is given by Eq. (4.2), obtained from the Minkowski mei€ = —dt>+
di? + dj?® + dz? by a nonlinear gauge transformation of the type

= t— 49 cos (7%(2—@) ,
= z+ 49 cos (LT(:;_”) ,

= Y
= Z.

IS (SN

ISTIN Y

This describes a sinusoidal gauge wave of amplitddlgoropagating along the
z-axis. The extrinsic curvature, calculated/eig = —5-L,h;; is given by

o _ an _ = cos("FY)
Tx QM d \/1 _ Asin (27r(:c—t)> 5

K;; = 0 otherwise. (4.5)

The original test specified the amplitudds= 0.01 and A = 0.1. Later, a higher
amplitudeA = 0.5 was proposed in order to test the non-linear regime. The time
coordinatet in the metric is harmonic and the gauge speed is the speeghof li

The test contains several sources of growing errors conmang fhe solutions
of the continuum problem [2]. One complication comes fromrédated flat metric

ds? = (1 — H)(—dt* + dz?) + dy? + d2?,

which obeys the harmonic coordinate conditions for anyeven though the ini-
tial data for the Gauge Wave test implids= 0, the numerical errors excite this
instability and lead to an exponential growth in the amplgwf the wave. So
H — ¢MH represents a harmonic gauge instability of the Minkowskicepwith
periodic boundary conditions. Other instabilities dependhe particular formu-
lation. The discretization schemes can also introduceliilgies in the form of
high frequency modes, which in the case of well-posed sysiem be cured by
artificial dissipation.

4.2.2.a Numerical Results and Comparison

As in the case of the Linear Wave test, the harmonic codes shevbest be-
havior. The reason could be the analytical structure ofettsystems, which use
the harmonic coordinates to transform the Hamiltonian tairg into an evolution
equation. A comparison between the flux conservative (RGigeLharm) and the
non-FC HarmNaivg forms of the harmonic system, leads to the conclusion that
the exponential modes of the fore' H are suppressed in the FC implementation
[55]. The main source of errors is the phase error, which emas to zero.
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Figure 4.3. lllustration of the Z4g.. variable on the x-axis, in a 1D Gauge Wave test with
amplitudesA = 0.1 (upper panel) andl = 0.5 (lower panel), for resolutiop = 4. The
continuous plot corresponds to the analytic solution, tiwtsdashed plot to 2nd order finite
differencing and the long-dashed plot to 4th order finitéedéncing plus 3rd order dissipation,
attime = 1000 CT when the simulation was stopped.
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Figure 4.4. lllustration of the KrancBSSN..., variable on the x-axis, in a 1D Gauge Wave
test with amplituded = 0.1 and resolutiorp = 4. The continuous plot corresponds to the
analytic solution, the dashed one to 2nd order finite diffeireg attime = 20 CT (left panel)
and 4th order finite differencing plus 3rd order dissipat@iiime = 80 CT (right panel).

The Gauge Wave results of the Z4 system are as remarkable BEthersion
of the generalized harmonic codesbfgail_harm). The left panel in Fig. (4.3)
shows the case of medium amplitude= 0.1. One can notice the significant
dissipation and dispersion errors when using a second dirder differencing
method. The problems diminish when passing to a third ordethad, which gets
rid of the dispersion error and only a very small amount of atioal dissipation is
visible. The right panel in Fig. (4.3) shows the large anopli cased = 0.5, well
inside the non-linear regime. The only errors that we coultice, were a small
amplitude damping in the wave profile and a small decreadecimtean value of
the lapse.

The Z4 exhibits the best behavior when compared with othstesys in the
same class, like versions of the BSSN, NOR [58], or KST [5%fems. Recent
KST results with the Gauge Wave initial data= 0.5, show a phase shift due
to cumulative dispersion errors after 500 crossing timed,agrowing amplitude
mode [60], comparable with the one reported for harmonitesys which do not
have a flux conservative form.

The KrancBSSN implementation shows a rapid growth of the iHanman
constraint violation. One can observe in Fig. (4.4) the bignaf the wave profile
for the g, component of the metric. The runs were performed with 2nd4thd
order finite difference methods, plus KO dissipation in ortedamp the high
frequency modes. The use of higher order discretizatioeraels led to longer
evolutions, but it could not prevent the crash.

Actually none of the BSSN implementations showed satisfgdbehavior in
this test. Analyzing results obtained with other BSSN impdatations, one can
conclude that this test is a clear example of a case whereénginfio0 crossing
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Figure 4.5. lllustration of the FNg., variable on the x-axis, in a 1D Gauge Wave test with
amplitudeA = 0.1, resolutionp = 4. The continuous plot corresponds to the analytic solution
and the dashed one to 2nd order finite differencingjnate = 1000 CT when the simulation
was stopped.

times, with an apparent stable evolution, does not mearthiaimplementation
actually passed the test. The results should be accomplayi@domparison with
the exact solution, or plots of the error in the wave form, essented in [55].
The problem with the BSSN in this test seems to be mainlyethél instability,
related with the choice of harmonic gauge, and the failuoturol the growth of
the constraint violations in the BSSN formulation.

Besides the generalized harmonic and the Z4 flux conseevatiplementa-
tions, the FN was the only other code that was able to run theekt up to 1000
crossing times, with the medium = 0.1 amplitude. However, one can notice
in Fig. (4.5) the long-wavelength growth due to #?H instability of the wave
amplitude.

4.2.3 The Shifted Gauge Wave Testbed

The shifted gauge wave can be obtained from the Minkowskiioét? = —dt> +
di? + djj* 4+ d2? using a harmonic coordinate transformation of the type

> Ad 2m(z—t)

t = t— v COS (T) N
A Ad 2m(z—t)

X Xr — I COS (T) s
y = v,

zZ = z
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This leads to the following Kerr-Schild metric

ds* = —(1 — H)dt* + (1 + H)dz* — 2H dx dt + dy® + dz?,

where3 = —;, o = ﬁ and H is given by Eq. (4.2). The extrinsic
curvature is calculated as
Ko = 0
2V/1+H’
K;; = 0 otherwise. (4.6)

This metric describes a shifted gauge wave propagatingydl@i:-axis. The test
is run in a harmonic gauge with amplitude= 0.1 in 1D form.

The Shifted Gauge Wave test identifies two types of instasli One is similar
to the gauge wave case and arises fromparameter family of vacuum metrics,
which reduces to the shifted gauge wave Xo« 0,

dé’g\ = EAt(—dtQ + d$2) + dy2 + dzz + Hkakﬁdxadmﬁ>

wherek, = Jdo(xr —t) = (—1,1,0,0). This metric has a harmonic driving term
I'* = —\HEk“. A gauge satisfying this condition is expected to excit¢ab#ities.

Another type of instability is specific to implementatiorssbd on a standard
reduction of the Einstein equations to harmonic form, whkeemetric

ds3 = —dt® + da® + dy* + d2* + <H —1+ eA£> kokgdr®da”, (4.7

satisfies tAhe reduced harmonic equations, but violatesaitradnic constraints, as
I'* = \eMkH. Ref. [2] offers a detailed discussion of these instabsitand a way
of constructing constraint adjustments for harmonic fdations. These damping
terms proved to be very efficient when tested with Atfegail_harmimplementa-
tion, as the growing modes were suppressed in long term tewadu

In the standard harmonic formulations, the Einstein equatare satisfied only
indirectly, through the harmonic conditioi¥’ = 0. Errors inT'*, of the form
described above, are expected to excite instabilitiess Bhalso the case for the
Z4 formalism, as the equivalence with the harmonic systeande translated into
ZW = —TH/2.

4.2.3.a Numerical Results and Comparison

As in the Gauge Wave test, the KrancBSSN results are nofegtisy. One can
see in Fig. (4.6) results of the Hamiltonian constraint atimn for an amplitude
A = 0.1. The code shows second order convergence only for a fewilegoss
times. An instability develops that crashes the code ratjuéckly. The other
BSSN implementations show similar problems.
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Figure 4.6. lllustration of the BSSN performance in a 1D Shifted Gaugev&\iest with
amplitudeA = 0.1 and 2nd order finite differencing plus 3rd order dissipatibeft Panel:
The Ls-norm of the Hamiltonian constraint on a logarithmic scdtgtpd as a function of time,
for resolutionsp = 1 (light-grey short-dashed), = 2 (dark-grey long-dashedp, = 4 (black
continuous). Right Panel: Convergence test in fhenorm of the Hamiltonian constraint
plotted as a function of time for resolutiops= 1, 2, 4. Second order convergence is lost after
a few crossing times.

The Z4 results are good, but not so satisfactory as for they&#lvave Test.

We were able to pass the test performing runs uritil0 crossing times, in the
case of medium amplitudd = 0.1, high resolutionp = 4 and fourth order finite
differencing, plus third order dissipation. One can seeign {.7) the behavior of
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Figure 4.7. lllustration of the Z4g... variable on the x-axis, in a 1D Shifted Gauge Wave
test with amplitudeA = 0.1, resolutionp = 4. The continuous plot corresponds to the
analytic solution and the dashed one to 4th order finite @iffeing plus 3rd order dissipation,
attime = 1000 CT when the simulation was stopped.
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the wave profile for the,.., component of the metric, which has a higher dispersion
error than in similar runs with the Gauge Waves test.

In the cased = 0.5, one can notice the presence of strong violations in the
momentum and energy constraing (¢ variables) and instabilities similar to the
ones reported by the harmonic systems. The time at whichoitie crashes grows
with resolution and the implementation exhibits a convetdgehavior.

4.2.4 Other Tests

The Robust Stability (RS) test was designed to detect ules@amlution algo-
rithms. It was a crucial test in the first AWA paper, in a cohtekere the theory
of well-posedness existed only for fully first order systenifie development of
a well-posedness theory for first order in time, second drdspace formulations
of the Einstein equations, offers now solid ground for nuoatrstability criteria.
As the test involves just the principal part of the evolutsystem, it can be used
to detect weakly hyperbolic systems. In the case of weledaontinuum formu-
lations, the RS test can give a 'pass’ or 'fail’ result for themerical algorithm.

In practice, one tests the numerical stability in the lineamstant coefficient
regime. Perturbations around Minkowski space are gerkrith random num-
bers applied at each grid point, to every variable. The iddéra the RS testis: ifa
code that can not stably evolve such random noise, at maphagesion ¢10~19),
will not be able to evolve smooth initial data. All three ysis considered here
for comparison passed this test.

The Gowdy Wave test uses as initial data an exact solutioarfaxpanding
vacuum universe containing a polarized gravitational wanapagating around a
3-torusT. The metric has the form

ds? = t712M2 (—dt? + d2?) + t(ePda? + e Pdy?), (4.8)

where P(t, z) and \(t, z) depend periodically or and the time coordinatein-
creases as the universe expands, with a cosmological tygelarity att = 0.
Detailed specifications can be found in the second AwA paret,were designed
so that neither very large nor very small numbers enter innitiel data.

The Gowdy test is run in both future and past time directi@ssanalytical
studies [61] and numerical experiments [62] indicate thatgign of the extrinsic
curvature may have important consequences for constrafdtion. The sub-
sidiary system governing constraint propagation can leadeparture from the
constraint hypersurface. A negative valugo{the expanding case) tends to damp
constraint violation whereas a positive value (the collagpsase) can trigger con-
straint violating instabilities.

A comparison of the specific three systems considered abamat possible for
this test. The results obtained with the KrancBSSN code siownsatisfactory
performance, while for the FN system are completely missasgt is non-trivial
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to specify the initial data in terms of the tetrad. One can[S&¢the for results
obtained with other systems.

4.3 Discussion

In a time when the binary black hole problem is solved in NuoaRelativity and
the community supplies waveforms for gravitational waveed®rs, one can ask
what is point of this code comparison and if one can stillattuseful information
out of it. The first round of AwWA tests were designed to exhdntle instability
and inaccuracy. Even though there are codes which can ebwisey black holes
without signs of instabilities, the same implementatioasehdifficulties or even
fail with some of the testbeds presented above. The theatetnderstanding of
what works in numerical relativity is still an open problem.

The continuous development of numerical methods in panaite formula-
tions of the continuum problem, the construction of phylsrazlevant initial data
and the analysis of the physics behind the results, arerdumeestigation tasks.
The lack of comparison with the experiment, make the problemen more diffi-
cult.

This first round of tests was a good start for establishindou of code verifi-
cation. The tests were conceived such that they provideilesed relevant results,
but they are in the same time easy to implement and cheapnirs tler compu-
tational time and resources. The analysis of the outputdezhtimprovement of
the tests and to a better understanding of the systems. Nehivarks have been
established for the performance of the codes in the wave. tBsficiencies were
revealed for various implementations.

The Robust Stability test is a pass/fail test, which wasezhby all three well-
posed implementations considered above. The Linear Wav@tevided a good
comparison of the amplitude and phase errors in the wavelggofAll the for-
mulations showed a satisfactory behavior, which could sthéw improved by
employing higher order numerical methods. The Gauge Watewvas a check for
the capacity of the formulations to suppress the long waggtenonlinear insta-
bilities arising from the analytical problem and the Shif@auge wave provides a
full comparison of formulations, when shift is involved.

The BSSN implementations showed unsatisfactory resuithédast two tests.
This problem is most likely related with the fail to contrblet Hamiltonian con-
straint violation and maybe to the fact that system is nattemiis flux conservative
form.

The Z4 formalism shows good results, comparable with thegdized har-
monic formulations. This success could be explained by tiadytical form of the
Z4 system, which transforms the constraints into evoluéquoations for the extra
Z variables, allowing for a mechanism to control the errdiise equivalence with
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the harmonic systemg* = —I'**/2 suggests that similar constraint adjustments
could be used to improve performance in the Shifted Gauges\Wegh amplitude
case. The use of a flux conservative version of the systemsseeime another
important ingredient for long term stable evolutions.

The analytical structure of the subsidiary system in the éihilation allows
the preservation of the constraints in long term simulatiofMhis explains the
positive results obtained in the wave tests. However, omencdice the long-
wavelength growth due to an instability in the wave ampktudhich is typically
excited by non-flux conservative formulations.

These results have already led to code improvements, stiimglthe develop-
ment of numerical methods and the use of higher order finfferdnce schemes.
The wave tests show that a numerical algorithm with minimbirdtorder accu-
racy should be used, in order to avoid large phase errors.xAflnservative form
of the system proved to be an important ingredient, espgcratases where the
shift is evolved. The need to carry out these tests with atyanf formulations
has led to the development of symbolic code generation @jé®, 64]).

The next generation of code comparison already addresaek hble prob-
lems. Even though there are only two formalisms (BSSN anctmgdimed har-
monic) currently used in order to numerically generate wiavens, a comparison
in the performance of different implementations is stilliaieresting subject. The
guidelines of the future Numerical Relativity effort fora®comparison and im-
provement started with the Samurai project [65], focusecd@mparing binary-
black-hole waveforms, and continued with the NINJA (Nuroarinjection Anal-
ysis) project [18]. Produced in collaboration with the datelysis community,
NINJA is the first study of the sensitivity of existing graatibnal wave search al-
gorithms, using gravitational waveforms from binary bldcke coalescence pro-
duced by ten numerical relativity groups. This work progide foundation for
future analysis and extended projects.






Part Il

Numerical Methods and
Applications

69






Chapter 5

Numerical Aspects

Fundamental field theories are most commonly formulatedgugnsor fields.
Mathematically, the fields are continuous functions of spand time and their
dynamics is studied using partial differential equatioRBIE). An exact solution
to these PDE’s is known only for some idealized cases, so ncah@pproxima-
tions are required in order to solve the equations in gernasegs.

In this chapter, we present the basic ideas behind the ncaheéechniques
used in Numerical Relativity, focusing on the CenteredtEikblume method de-
veloped in the Palma Relativity group [23].

5.1 Standard Numerical Recipes

From all the currently known methods for spatial discrditma the Numerical
Relativity community focuses on the use of finite differenci(FD), finite vol-
umes (FV) and spectral methods. Spectral methods expasoliiteon as a linear
combination of some base functions and then solve for th&icieats of this ex-
pansion. FD and FV methods are based on the idea of disogetize spacetime
using different strategies, as the FV replaces the comtinwith a set of discrete
points which form a grid, while the FV split the domain of dagence of the
functions into elementary cells.

5.1.1 Space discretization and Time integration

The most popular approach to solving non-linear systemsadfidon equations is
the method of lines (MoL), which decouples the treatmenpatce and time. It is
based on the idea of discretizing first the spatial dimerssiahile leaving the time
dimension continuous, leading to a semi-discrete systdmnDne can solve the
resulting system of coupled ordinary differential equasiasing a time integration
method. Some of the most common choices are the iterativekaholson
(ICN) and the third and fourth order Runge Kutta (RK) meth(aspendix 9.4).

71
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Spatial discretization methods rely on finite differenagoakthms or finite vol-
umes, which reduce to FD plus some type of numerical digsipal he even order
methods (2nd, 4th, 6th order finite differencing) show mamfispersion effects,
while the odd order methods (1st, 3rd, 5th order dissipagigorithms) have as
dominant error dissipative effects [39].

The FD numerical methods may become unstable when applisdlting
steep profiles, for example a step function. This translats high frequency
oscillations. As these modes are already unresolved atfiefunore accumulate
truncation error, they can eventually lead to code crashordier to solve this
problem, one adds numerical dissipative terms to the finfferdnce operators,
which act as filters, by damping the modes with wavelengthlainand higher
than the grid spacing. The standard way of adding dissipagithe Kreiss Oliger
(KO) dissipation algorithm (Appendix 9.5.2).

A special form of numerical dissipation is the numericatesity used to deal
with steep profiles in hydrodynamical simulations. The tioearities in the Eu-
ler equations give rise to propagating discontinuitieg #rse even from smooth
initial data, for example shocks, which are associated With crossing of the
characteristic lines. These discontinuities take the fofrateep gradients in the
variables. The dissipation will smooth out the shock intew §rid cells, so that
it can be solved numerically.

The standard KO dissipation is not the best suited choicenvdealing with
steep gradients, which sometimes occur even in vacuumvislat cases, as a
dissipation method with constant coefficients will affelaé thumerical solution
everywhere. One needs an adaptive viscosity term, thaniestarger in regions
with steep profiles and minimal in the other regions. Sped@drithms have been
developed to deal with these problems.

High resolution shock capturing (HRSC) algorithms are a<laf numerical
methods specifically constructed to deal with discontisuseolutions in fluid dy-
namics. High order FV schemes of this type are designed tcehmidcewise
continuous solutions, which can contain shock waves or #&mgrdind of discon-
tinuity that can be dynamically generated by the nonlirieeriof the principal part
of the equations.

We will consider in the following analysis strongly hypeliocsystems of the
type

o+ O;F" =0,

where the flux takes the forfi* = F'(u). The success of Shock-Capturing meth-
ods for these systems can be granted in the 1D case, if foptee slirectiom;

one can write .
; OF"
’I’LiAZ =N;—

ou’
and the characteristic matrM = A’n; has real eigenvalues and a complete set of
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eigenvectors. This argument is not true in the multidimemel case, where every
axis has its own characteristic matrix. As these matricesadl@ommute, there is
no common base of eigenvectors that can be used. Stratkgtdsytto mimic the
1D case are currently used in relativistic hydrodynamicesod

5.1.2 Convergence and Stability

An important concept when dealing with approximate sohdigs convergence.
A numerical solution is only an approximation to the reaugioh. One needs to
have an estimate of the error in the numerical calculatiorgrder to know how
close the result is to the correct solution.

The error can be computed through a convergence test. Th&st® in per-
forming the calculation for three resolutionéc(, dzo = 2dxy, dzy = 4dx,) and
computing the relative errors between the solutions. Thbaillconvergence fac-
tor as a function of time, can be computed using thenorms of the difference
between the solutions as

)_M

c(t) = .
( ”ud:m - ud:m”

A local convergence factor can also be obtained by the saoweguare, using the
difference between the solutions (without taking the norm). One expects a
factor of 2" for an ordern convergent scheme. Once the convergence factor is
determined, one can perform a Richardson extrapolatiomdardo improve the
rate of convergence [66].

Another important concept is stability, which implies tlia¢ solution should
remain bounded after a finite time. Stability is the discketesion of the definition
of well-posedness. As presented in Chapter 2, stronglyrbglie systems are a
subclass of hyperbolic systems for which the initial-vajueblem is well-posed
in the L, norm, defined as

whereAx is the space discretization ste, is the variable at time, grid pointk,
andm is total number of points. A system of discretized equatisrstable, if the
norm of the numerical solution at a finite time is bounded kyribrm at = 0.

A property of finite difference schemes is the Lax equivadeti@orem, which
states that given a well-posed initial value problem andresistent FD approxi-
mation, convergence to the exact solution is ensured bylistafi he stability of
the FD scheme can be checked by performing a Von Newman &)alfsch ver-
ifies that no spatial Fourier components in the system aneiggoexponentially
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with respect to time. One finds a condition which states thatntumerical do-
main of dependence must be larger than the physical domaiepgindence. This
translates into the Courant-Friedrich-Lewy condition (EF

maz|\|At < Az, (5.1)

where) is the maximum eigenvalue of the characteristic matrix.

5.2 Centered Finite Volume Methods

The numerical study of the evolution of relativistic flowsaigopic of great inter-
est in Astrophysics and Numerical Relativity (NR). The fiefd\NR has recently
undergone an extraordinary progress after the developafeabust codes able to
simulate real astrophysical scenarios, like stellar cotlagse, collision of com-
pact objects and accretion onto compact objects.

The traditional approach in the numerical simulation of pter classical
flows are the HRSC. They are based on solutions of the locah&ie problem
(initial value problem with discontinuous initial data) R$C have a reputation of
being computationally expensive, as they make explicitafsine characteristic
decomposition of the set of dynamical fields. They are comynased only in the
evolution of matter fields in order to deal with shocks.

In the last years, simpler numerical schemes have been ggdpdased on
centered finite volume (CFV) methods. These offer a mordipedchoice, as they
require only the values of the propagation speeds. Somela@tipns still arise
if one tries to obtain more than second order space accuaadiie reconstruction
process becomes computationally expensive.

These advanced methods have been developed for the fieldhgb@ational
Fluid Dynamics, but they can be adapted also to vacuum NRIaiions when
dealing with steep gradients that mimic discontinuitieg] [6Einstein’s vacuum
equations are quasilinear; it means that discontinuitesnot spontaneously gen-
erate from smooth initial data. But this does not hold at ardig level. If one
deals with steep gradient solutions, the jump between beighoints can mimic
a discontinuous solution, leading to spurious oscillaitimat can crash the code.

We focused on developing a finite volume method that can beesstully
applied to both vacuum and matter general relativistic &atmans, with limited
computational resources. Our CFV algorithm deals with ga@se continuous
solutions, arising in fluid dynamics, and with steep gratdieim black holes evo-
lutions. The method allows for third order space accuracydigg just piecewise
linear reconstruction. The proposed FV scheme come as ematitve to the fi-
nite differencing plus dissipation methods and can be pnéted as amdaptive
viscositygeneralization of the FD algorithms.
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5.2.1 Flux Formulae

The Einstein field equations can be expressed as a systertantbdaws,
o+ O;F' = 8.

This flux conservative form is well suited for FV discretiost The FV differs
from the FD approach, through the fact that one evolves tieeage of the dy-
namical fields in some elementary cells, instead of evolyuisg point values. For
simplicity reasons, the one-dimensional case will be preeskin the following.

Time: n+1

N

Fiie Fii12
Fi Fi Fi
Time: n
Uis i-1/2 U i+1/2 Ui+

Figure 5.1. Schematic representation of a grid structure with elenmgmiglls. The fluxZ; in
each grid point is computed from the variables. The flux F;  ; /; at an interfacéi + 1/2)
can be calculated using the fluxgs F;1. Then the value of a variabte in the next time step
will be computed from the values of the flux€s_, ,,, I, ,, at the neighboring interfaces.

Considering a regular finite difference grid, the elemegntail can be chosen
as the intervalz,;_1,z,, 1) centered in the grid point;. The dynamical fields
can be modeled as piecewise linear functions in every elemecell, so that the
average values in the cells coincide with the value in the goint enclosed in the
corresponding cell. The first order accurate FV discratimatan be written as

At
n+l _ . n T x .

whereu are the fields at time, in the grid point;, andF* are the corresponding
fluxes in the x direction, calculated at the interfaces ofdlécentered in the grid
pointi, Fig. (5.1).
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One can recover the standard second order FD method fromlgfasthm, by
choosing a simple average for the flux

1
Fi1= §(Fi+Fi+1)- (5.3)

These FD methods can not deal with steep gradients and imajel@¥elop high-
frequency noise that leads to instabilities. For that nreas® is used in com-
bination with numerical dissipation, that suppresses pwigus high frequency
modes. The standard dissipation algorithms are not suitedifaling with discon-
tinuities.

An alternative to the FD approximation of hyperbolic conséion laws de-
signed to deal with discontinuous solutions, is based oridba of solving the
Riemann problem at each cell interface. One example is treu@y method,
a linear monotonicity preserving FV approximation whictoidy first order ac-
curate. In order to obtain higher order schemes, one hadristrtwt non-linear
numerical methods, based on the concepts of slopes anddanit

Fi+‘l/2

I
: f\

I
: IUr, Fr
I
! UL, FL?\
:Ui/ O i+q :
I | I

| I

i+3/2

i-1/2 ui i+1/2 Uis1

Figure 5.2. Schematic representation of the information computed ant@nface. The left
predictionu,, of a variableu at the interfacds + 1/2), can be calculated using the variable
u; in the grid pointi and its sloper; in the elementary celli — 1/2,7 + 1/2). The right
predictionur, of a variableu at the interfacdi + 1/2), can be calculated using the variable
u;11 in the grid point(z + 1) and its sloper;;1 in the elementary celli — 1/2,7 + 1/2).
The left F, and rightF'r fluxes at the interface are computed from the corresponding: r
variables. Then the final flux;, ; /» at the interface is obtained froff., Fr.

Instead of using Eqg. (5.3), one can find a more general pptggrifor the
flux, of the form

Fi—i—% = f(u[nuR)v (54)
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whereu; andug are the left, respectively right, predictions of the dyneahfield
at the chosen interface Fig. (5.2),

1
u; = ui—i-iaiAm, (55)
1
up = ui+1—50i+1A9€- (5.6)

They are calculated in respect to the slepef the chosen field in the correspond-
ing cell Fig. (5.3). Following this idea, simple alterna&s/to HRSC schemes have
been proposed, for example the HLLE method, which requstthe characteris-
tic speeds, not the full characteristic decomposition.

= F Fio
I I
I o I
I | —
] I
I I
(o 1 OR
I \:\
I I
I I
% . . \%
Uis i-1/2 Ui i+1/2 Uis1

Figure 5.3. Schematic representation of the slopes. The stopef a variable or flux in an
elementary cel(: — 1/2,7 4+ 1/2), can be calculated using the corresponding deftand
right oz slopes. The 1, or can be computed from the values of the variables or fluxesein th
neighboring grid points.

An overview of flux formulas [22] can be enclosed in the follogs general
form:

Flub uly = S(+ TOFY + (1= POFR 4 (@Mt~ QMal),  (57)

whereFL-E are the fluxes evaluated at the staté<® and! is the unit matrix. The
terms@Q’* are referred in the literature asimerical viscosity matrix
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The matriced“# andQ~* can be expressed as

fL,R _ Zb ILR LR

LR _ L,R.L,R
Q o ZCPIID r:n )
p=1

wherel, andr, are the left, respectively right eigenvectors, @rid the dimension
of the problem. For different flux formulae, the coefficiehtsandc, depend on
the eigenvalues,, as follows:

b, Cp

Yy + - 1
HLLE : 5y — ),
b — 9o 3 =)
Roe : 0, | Ap(w) |,
Marquina : Bps ap(l — 5;2;)7
MarquinaF'F : 0, ap,

where) . andA_ are the minimum and the maximum &f and

7/)+ = mGZE(O,/\f,Ai),
Yo = min(0, B, \E),
Qp = maw(’ )‘5 ‘7’ )‘;}3 ‘)’

By = 5(sar), Sg))

The HLLE algorithm is the most simple case, as the coeffisignandc, are
independent op. Then taking into account the orthonormality relationsateatn
the right and the left eigenvectors

Z _

the matriced “% andQ~-% are just the unit matrix multiplied by the corresponding
factors. The HLLE flux formula requires only the values of thaximum and
minimum propagation speeds, while the Roe and Marquinarittigtzs need the
full decomposition, namely the left and the right eigenoex{22].
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Even simpler alternatives has been proposed, like the loagiFriedrichs
(LLF) flux formula

1
flur,up) = 5lFL + Fr+clur —up)], (5.8)
where ¢ depends on the characteristic speeds at the irgerfac
¢ =max(Ap, AR),

and )\ is the absolute value of the highest characteristic speed.

A comparison with the centered FD methods leads to the csiotithat the
supplementary terms play the role of a numerical dissipatild is worth notic-
ing that the values of the dissipation coefficients are pitesd by the numerical
algorithms, in contrast with the FD case where they areraryijpparameters.

5.2.2 Flux Splitting Approach

Friz Fivi2
/0 \ Vol AN
FuiFe Fui Fr

: g - o+ :
1 1
1 1
: F- Ft I
! “F !
i-1/2 U i+172

Figure 5.4. Schematic representation of the flux splitting approacte flix in a grid point
F; is split in two componentsF+ andF'~. The F~ leads to a flux predictioi'r, at the right
side of the interfacéi — 1/2), using its sloper_ in the elementary celli — 1/2,i + 1/2).
The F'* leads to a flux predictiod;,, at the left side of the interfadeé + 1/2), using its slope
o4+ inthe elementary celli — 1/2,¢ + 1/2). Then the left and right predictions of the fluxes
Fr, Fr allow the calculation of the fluxeB;_, 2, ;1,2 at each interface.

In the flux formula Eq. (5.4) the information from the two sd#f the interface
is combined in order to obtain a prediction of the flux at eviegrface. We
consider a different approach, in which the information asnputed at the grid
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nodes, by selecting the components of the flux that will pgapain each direction.
This method is known as tHkux splitting approach

In view of this method, one can write the flux at a grid point\ae simple
components

2

where \; is the maximum eigenvalue computed in thgrid point. Then one
can reconstruct the flux at each neighbor interface by camdpithe one-sided
predictions

1
FZ-_’_%:i(FL—i-FR). (5.11)

This method can be expressed as a modification of the LLF flariq. (5.8),
where the predictions from a grid poihtowards the left, respectively right inter-
faces are given by

1
flup,ug) = §[FL +Fg+ Apup — Agug), (5.12)

and the left and the right fluxes can be written according . E55) - (5.6) as

1
F, = F/+ iajAw, (5.13)
_ 1 _
Frp = F, - §Uz‘+1Ax' (5.14)

The main difference is that in the flux splitting approachréhis a clear separation
of the information coming from the left or right side of thegrface. The informa-
tion for theF;r propagates forward, as the one for thig ; backwards in respect
to the (i + %) interface, Fig. (5.4). This offers a clear vision of the imf@tion
flux in the numerical algorithm.

There is still the problem of computing the slopes for theorestruction of
each flux component. A linear piecewise reconstructionltegenerically into a
second order accurate algorithm [68], as given by the ceditdbpe

1

C

= —— (Ui — Ui—1). 5.15
o 22%( +1 1) ( )

A more general second order algorithm can be obtained by @sig average of
the left and right slopes

g = (ui — ui_l)/Ax,

o = (ui+1 —ul)/Al’
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For some applications, second order accuracy is not enaglhe leading
third order error is of dispersion type, affecting the nuicedrpropagation speeds.
As we saw in Chapter 4, the results of the standard numegst are significantly
improved when passing from second order FD to fourth ordealgbrithms, com-
bined with third order accurate dissipation, where theltesa third order accu-
rate algorithm. In the standard FV approach, third-ordeueacy can be obtained
by replacing the piecewise linear reconstruction with a@idgse parabolic one
(PPM). This increases the complexity of the algorithm arddbmputational cost
of the resulting implementation.

We use a simpler alternative, which takes advantage of thesfilitting ap-
proach Egs. (5.9) - (5.10), and consider the resulting corepsF ™ andF— as
independent dynamical fields, each one with its own slopmeha

of = (Ff-FF))/Ax, (5.16)
off = (Ff,—F7)/Ax. (5.17)
One can recover the second order accuracy by a combination
1 1
+ L R
= Zol4 o 5.18
O-’L 20-Z + 20-Z Y ( )
_ I
- = —ogl4 o 5.19
0, 20z + 202 ) ( )
but the surprising result is the slope choice
1 2
of = goi+3oi (5.20)
_ 2 , 1,
- = Zgf+ —of 5.21
0-2 30-2 + 30-2 Y ( )

that leads to a third order accurate algorithm (see the Aglipeh5.3 for detailed
calculations). The choice of the coefficients is unique,@hgr combination leads
to second order accuracy.

Inserting the choice of slopes Egs. (5.18) - (5.19) or Eqs20(6- (5.21),
into the general slopes Eqgs. (5.16) - (5.17), one can caéctitee left and right
prediction Egs. (5.13) - (5.14) and eventually the flux atitierface Eq. (5.11).
We can obtain this way third order accuracy by a piecewissalimeconstruction.
This result is a particularity of the flux splitting approachhe piecewise prefix
comes from the slope limiters that can be incorporated ierdi@deal with shocks
or other discontinuities.

This CFV algorithm [23] written in a simple form Eqg. (5.2),rcée easily
extended to the 3D case:

At At
n+l n_ T R n % o Y _ Y _
Y = e e
At

_A_z[ z—i—%_ z_%]—FSijkAt.
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One can view the 3D structure as a superposition of the 1Didigoalong every
space direction. The stability and monotonicity analysespnted in the following
subsection can also be generalized for the 3D case.

5.2.3 Adaptive Dissipation

One can notice that setting to zero théerms in Egs. (5.9), (5.10), and using the
choice of slopes Egs. (5.20), (5.21), the resulting alporits the standard fourth
order accurate FD method. The exftderms downgrade the space accuracy to
third order, the same effect that Kreiss Oliger dissipatenms have on the FD
scheme. These terms would be the correspondent ofiimerical viscosity matrix
from the HLLE formula Eq. (5.7).

The CFV derivative operator for the choice of slopes Eq20.(5.21) can
be written in this simple form:

D, (F;) = m[—FHz +8F;y1 —8F;_1 + F;_3] + Dis(F;),
where the first part of the formula is just the centered foorther FD algorithm.
The second part is a new dissipation term [24],
1
T 12Ax
which can be viewed as a generalization of the third ordeissr@liger dissipation
algorithm.

The standard second order FD algorithm can be recoveredttoygst zero
both the slopes and theterms in Egs. (5.9), (5.10), and it would be equivalent to
Eq. (5.3). The choice of slopes Egs. (5.18), (5.19) leadsderaative operator
equivalent to the standard second order FD, plus a dissip&irm of the type
mentioned above.

This dissipation algorithm can be extended to the 3D case:

1
DZSx(Fz,j,k) = 12Az [)‘i+2,j,k Uit+2,5,k 4)‘i+1,j,k Uitljkt

Dis, (F;) Nivotiro — ANir1uir1 + 6\u; — 4N_1ui—1 + Ni—2u;_a),

x €T xT xT €T €T
+ 6>\27j7k ul7]7k B 4A7/_17]7k ul_lv]vk + AZ_27]7]€ ul_27]7k:|7

where \* is the maximum characteristic speed along the x axis, antbgmas
formulae hold for the y and z axes.

Our CFV algorithm can be interpreted as aaptive viscositynodification
of centered FD algorithms plus KO dissipation, offering aeyalization of the
standard dissipation terms. As far as the slope limitersxateequired, the CFV
method is just a centered FD plus a local dissipation ternmchwis automatically
adapted to the requirements of the numerical simulations.

This generalization procedure can be applied to KreisseDlifissipation op-
erators, used in combination with FD methods, in order t@iobhigher order
schemes.
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5.2.4 Stability and Monotonicity

We consider the Einstein equations in the form of a stronglyerbolic system.
Then we have a complete set of eigenvectors and for eachidireand we can
express the system as a set of simple advection equatiorteefarharacteristic
variables. In order to check the stability properties of G&iv algorithm described
in the previous subsections, it will be sufficient to considesingle advection
equation with a generic speed The corresponding flux can be written

F(u)=vu.

In a first order accurate approximation obtained with zeopes$, the corre-
sponding discretization will be given by replacing Eq. §.inh the general form
Eq. (5.2). The result is the linear three point algorithm:

uptt =l + i—i {%(/\Hl — Vi1 Uiy + %(Ai—l T Jui g — A
(5.22)

As )\, is the absolute value of the maximum characteristic speledleted in every
grid point, one can see that all the coefficients are positithee Courant stability
condition Eq. (5.1) is satisfied. A more restrictive corutitis necessary in the 3D
case, as we must consider all the spatial directions.

In the general case, the positivity the coefficients in treilteng CFV algo-
rithm, requires an extra factor in the Courant condition

At 1
)‘E < 3 (5.23)
At this point we take into account that we have considerettigeselementary step
in the time evolution algorithm. The stability and monottyi limits for the time
step will depend on the choice of the full evolution algamith

The positivity of all the coefficients ensure that the altjori is monotonicity
preserving, no spurious numerical oscillations can appdach implies stability.
The converse argument is not true, the stability of the &@lyordoes not ensure
monotonicity. The FD algorithms loose this property, as \aa clearly see by
setting\ to zero in Eq. (5.22).

However, the monotonicity properties of the piecewise tamseconstruction
are not ensured in the piecewise linear case, as problemarisanin the steep
gradient regions. This could happen when the series of igf} or right {u?}
interface predictions show spurious peaks which were reggt in the original
function. In the case of the centered slope Eg. (5.15), onesleaw that this will
occur only if the left and right slopes differ by a factor ofék or more. This
would be the real meaning sfeep gradienin the centered slope case.
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A way of preventing oscillations could be by enforcing thattbleft and right
predictions are in the interval limited by the left, respeay right point values.
This is equivalent of limited slopes

o™ = minmod (20, o, 20), (5.24)
whereo is the slope in a given cell. The limiters are constructedurhsa way, as
to guarantee that the total variation of the numerical gmubever increases. The
combined CFV plus limiter schemes are caltethl variation diminishing(TVD),
as they do not allow spurious oscillations.

The TVD methods become only first order accurate near anreatciue to
the limiters. There exist other limiter methods that aressally non oscillatory

(ENO) and allow for the variation to grow as long as it is boeehdby an exponen-
tial. These methods are called total variation stable.

5.3 Discussion

We presented some of standard techniques currently usednreftcal Relativity
in order to solve the discretized Einstein equations. Omengonly employs the
Method of Lines, where the spatial derivatives are provioe&D or FV methods
and the time integration is performed using Runge Kutta ou=h

The main topic of this chapter refers to FV methods, in paldicthe CFV
algorithm developed by the Palma group. This algorithm é&sfilst one in the
class of FV methods which allows third order accuracy by qigce-wise linear
reconstruction. It leads also to a generalized dissipatigarithm, which can be
successfully used in combination with FD methods.

This CVF algorithm used in combination with positive-cogffnts RK meth-
ods, for example the third order RK (Appendix 9.4), ensunes the monotonicity
properties of the basic evolution step will be preservedhigyrésulting strong sta-
bility preserving algorithm (SSP). This nice property hlagugh a disadvantage,
namely it imposes a limit on thAt in order to preserve monotonicity Eq. (5.23).
In contrast, when one uses the FD methods for space distietizthe basic time
scheme is limited only by stability, not monotonicity. Moxer, the RK with non-
positive coefficients (for example the fourth order RK) ugedombination with
the FD algorithms allows larger time steps.

The stability issues presented in this chapter, based orotmicity results,
are valid only when applied to flux conservative systemssT$inot entirely our
case, as the systems used in Numerical Relativity contatnsaurce terms. These
terms do not belong to the principal part, so the positivitthe flux terms ensure
some form of stability. Nevertheless, the analogy with é&lDiynamics is only
approximative and the use of slope limiters is a risk, as wédcbe removing
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from the flux part some features that are needed in order t@pensate the source
part.

Our experience with the vacuum Einstein equations, basedimerical tests,
shows that more robust simulations are obtained when thietisrare switched off
and that the numerical dissipation built in the proposed @kthod [23] is suffi-
cient to control the high frequency modes and deal with stgadients. Alterna-
tively, one can use the adaptive dissipation algorithmavei24], in combination
with the standard FD methods.






Chapter 6

Black Hole Simulations

The study of black holes (BH) played for a long time a centoé in Numerical
Relativity. This particular types of spacetime are the $@spmodels of gravitat-
ing bodies in General Relativity, as they represent vaculatiens of the Einstein
equations. However, the numerical evolution of BH spacesiimplies complica-
tions associated with the presence of horizons, singig@atdnd non-trivial topolo-
gies.

Black holes form starting from regular initial data, as tlegresent the final
state of the gravitational collapse of compact objectg, $ilgpernova core collapse
or neutron stars collisions. A problem of special interesGieneral Relativity
is that of binary black hole systems, which are considerdoetone of the most
powerful sources of gravitational waves.

In this chapter, we consider different issues related vighriumerical evolu-
tion of black hole spacetimes. The techniques for dealintb thie BH singularity,
steep gradients formed in normal coordinates, and horizcatibn, are presented
in the context of a single black hole.

This chapter consists of two parts. The first part concerasetiolution of a
Schwarzschild BH in spherical symmetry. We study the apgrda the stationary
state using the '1+log’ slicing and the wormhole puncturehieque for dealing
with the BH singularity. The central finite volume (CFV) metls presented in
Chapter 5 are employed for dealing with the steep gradiehtshnarise in a BH
evolution with zero shift. We perform a comparison between@-V scheme and
the standard finite difference (FD) method plus Kreiss Olig&) dissipation,
and study the behavior in time of the convergence factorsadite numerical grid,
inside and outside the apparent horizon.

The second part extends our study to a 3D Schwarzschild BHitemo. We
consider two approaches for dealing with the BH singulangmely the puncture
technique and scalar field stuffing, and provide numericalemce that they have
a similar approach to the stationary state, in the contextonial coordinates
and '1+log’ slicing. We prove the efficiency of our CFV methadd generalized

87
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dissipation algorithm in 3D simulations.

6.1 Black Hole in Spherical Symmetry

In this section we address problems related the evoluti@anSQifthwarzschild black
hole in spherical symmetry.

In spherically symmetric spacetimes the equations of madi@ greatly sim-
plified and the number of variables that must be evolved isisagintly reduced.
Therefore it is relatively easy to study numerically theteys compared to three
dimensional simulations. Using high resolution is not drietson, even without
employing complications related with mesh refinement (céfd@s arising from
refinement boundaries, interpolation between meshes)heésame time, of all
the symmetries that could be imposed to reduce the field ieqgab a set of par-
tial differential equations in one space dimension and tigpderical symmetry
is clearly the most appropriate for the study of isolatecyviationally compact
objects.

6.1.1 Puncture Initial Data

The initial data for the typical puncture simulation is add&ole with a wormhole
topology Fig. (6.2). As we follow the coordinates toward afi¢he black holes,
we do not reach the black hole’s singularity but instead passigh a wormhole
to another exterior space and find another asymptoticallyetgaon.

We consider such a puncture data in the form of the Schwaldsuoletric in
isotropic coordinates, where the line element takes tha for

2 4
ds? = — G:r#;g:;) dt? + <1 + %) (dr® +r?dQ?), (6.1)

anddQ? = df? + (sin6)2dp?. The isotropic radial coordinateis related to the
Schwarzschild radial coordinate (area radiusyby- /ggs-

One can notice thak — oo for both large and small, so the isotropic coor-
dinater does not reach the physical singularityfat= 0. There is a minimum of
R =2M atr = M/2. The two spaces are connected by a wormhole with a throat
at R = 2M. The pointr = 0, which represents the second asymptotically flat end
is referred to as the puncture.

Applying a coordinate transformation of the type

M
r =S exp(n),

one can obtain the form

ds* = —(tanhn)?dt? + 4M?(cosh n/2)*(dn? + dQ?). (6.2)
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Figure 6.1 Vertical section through an embedding diagram of a two-disienal slice { =
const.,0 = /2) of the Schwarzschild solution. The grey plot correspordthe diagram
attime = 0, rescaled by a factor of 10, and the black oneiate = 100M. A wormhole
connects the two asymptotically flat ends. Notice how theahof the wormhole stretches in
time forming a cylinder with radiu® ~ 1.3M.

This choice aids in pushing the outer boundaries far from(dlyeamical) region
of interest, as an evenly spaced gridjinorresponds to a geometrically increasing
spacing inr,
dr = rdn.

In these logarithmic coordinates the minimal surface iated at; = 0.

This type of initial data can be viewed as a wormhole conngdtivo asymp-
totically flat regions, where the isometry of the two sideshaf wormhole is ex-
pressed by the reflection symmetry

n< -0
Fig. (6.1). Numerical simulations can thus be restrictepldsitive values of) and
one can use the reflection property in order to set proper immeéndary conditions
at the throat.
A very useful gauge-independent quantity in sphericalmmsetric spacetimes

is the mass aspect function, which approaches the ADM mass-asc. It can
be computed in Schwarzschild coordinatés R), where the metric has a form

-1
ds? = — (1 - %) dT? + (1 - %) dR? + R?d0?,
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2M connects the two asymptotically flat ends.

Schwarzschild solution. The distance to the rotation axi8.iA wormhole with the throat at

Figure 6.2 Embedding diagram of a two-dimensional slige £ 0,0 = =/2) of the

R

Schwarzschild solution. The distance to the rotation axiB.i The throat of the wormhole

Figure 6.3, Embedding diagram of a two-dimensional slige=£ 100,60 = =/2) of the
stretches, forming a cylinder with radids~ 1.3M.
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and the constant M is the ADM mass of the system. Considesngeametrical
invariant the square of the gradient of the areal radius,

VJNWR:QMVJN%R:QMW%RVRR:1—%?,
the mass can be defined,
A4:§u—g%@3@3y
In our coordinates it can be calculated as
M(tn) = YU 4 (K2 — (D, 1), (6.3)

whereDng" = % ngg". The mass aspect function provides the mass inside a sphere
of radiusr at a fixed timet. It must be constant for a Schwarzschild spacetime in
any coordinate system, so it can be very useful in checkiegatituracy of the
numerical simulations.

One can track the position of the apparent horizon usinggfimition, namely
a two-surface where outgoing light rays have zero expansion

Vi + KpgiPid — K = 0. (6.4)

7 is the outgoing unit normal, normalized @%7;, = 1 and
N
N

with n,, = x,6;P. In spherical symmetry, a simple calculation leadsito =
V/g8,*. Then the location of the minimal surface can be calculatettis case
as the area where

ng =

F(n,t) = 2(Vg" Dy’ — K4%) = 0. (6.5)

6.1.2 Numerical Specifications and Gauge Choice

We perform numerical simulations with the Z3 system in sjgaésymmetry (see
Appendix 9.6.1 for the complete set of evolution equatiorid)e free parameter
that couples the energy constraint in the evolution egondtiothe extrinsic curva-
ture isn = 1 (see Chapter 3). Similar results can be obtained with otakres,

for examplen = 4/3, which leads to a system equivalent to a first order in space
variant of the BSSN, without the conformal decomposition.

The time evolution is performed with a third order Runge Eualgorithm
(Appendix 9.4). We use for spatial discretization both émiifference plus Kreiss-
Oliger dissipation, and central volume methods (Append®.9rhe Courant fac-
torisC' = 0.5.
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Our evolution domain extends tp = 10M (r ~ 11000M). The treatment
of the boundaries is settled through a simple and stanglaodt pointtechnique.
In this approach, one populates the missing points at theday by copying the
time variation of the nearest neighbor, for every evolutianiable.

The physical singularity associated with the black holesaspresent in the
initial data, as our coordinates stop at the thrgat=(0 corresponds to = M /2),
but it will be rapidly approached during the evolution, wedenve choose a sin-
gularity avoiding condition. We choose as gauge conditiarsicing from the
Bona-Masso family Eq. (2.28) witli = 2/«, and normal coordinates Eg. (2.29).
The initial value of the lapse is = 1.

6.1.3 Numerical Results and Comparison

The wormhole Fig. (6.2), can be pictured in an embeddingrdiagof a two-
dimensional slicet{me = const.,0 = 7/2) of the Schwarzschild solution Fig.
(6.1). Initially, the throat is located @& = 2M.

We evolve the initial data using a foliation of the type,

O = —2aK.

This can be viewed as an asymptotically maximal slicing ¢and as it leads to
a time independent geometry that is maximally sliced for= 0 the lapse does
not evolve). During the evolution, the slices go the statign'l+log’ solution.
The throat stretches into an infinitely long cylinder witldites R = 1.31241M,
connecting the two asymptotically flat ends. The behaviostitated in Fig. (6.3)
is in agreement with the one described in [69] for the worratggdometry.

Performing long term simulations (up to 2000M) in this sgitis a challenging
task, as the numerical methods have to deal with the stedepob the lapse
function. Fig. (6.4) presents the lapse computed with ocorsg and third order
CFV methods. The use of a higher order method leads to a stpepfde, the
same effect which appears by increasing the resolutiorheasumerical solution
approaches the exact one.

A comparison between the CFV methods and the FD plus KO dissip
leads to the conclusion that the FD methods can not deal védpgradients for
longer times. Even though the code does not crash, the FBipl&ig. (6.4) show
that the numerical solution at 1000M has developed verelargors.

The lowest resolution used for our CFV method, that allow®wsachl 000\
in this 1D BH simulations, iglz = 0.1. This is almost double than the minimum
resolution required by the FD methods in the same test. Ehaugh the simula-
tion is performed in a low resolution grid, the profiles loska@oth without the use
of slope limiters.

Studying the propagation speed profiles in Fig. (6.5), omerzdice that the
maximum gauge speed decreases with time, as the lapse ge to the interior
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Figure 6.4. lllustration of the Z3 lapse as a function of theoordinate, for a Schwarzschild
black hole simulation in spherical symmetry. The plots espnt the collapse of the lapse at
time = 50M and time = 1000M. Upper Panel: The lapse function is computed in sim-
ulations using the 2nd order CFV method, resolutian= 0.1 (continuous grey plot) and
dxr = 0.05 (dashed grey plot), and the 3rd order CFV method, resolutior- 0.1 (dashed
black plot). Lower panel: The lapse function is computedimnusations using the 2nd order
FD method (grey plot) and the 4th order FD method plus 3rdrodéssipation (black plot).
Both simulations were performed in a resolutién = 0.05, using 3rd order Kreiss Oliger
dissipation witho = 0.02.
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Figure 6.5. Upper panel: lllustration of the maximum gauge spagdf(«)g"" as a function
of the n coordinate, in a Schwarzschild black hole evolution ushey'ii+log’ slicing. The
profiles are presented atme = 0 (black plot),time = 50M (dark-grey plot) andime =
100M (light-grey plot). Lower panel: lllustration of the lap$enction and apparent horizon
as a function of the) coordinate, in a Schwarzschild black hole evolution ushey'i+log’
slicing. The dashed plots represent the collapse frontefidahse and the vertical lines the
position of the apparent horizon, &tne = 50M (black plots),time = 100M (dark-grey
plots),time = 1000M (light-grey plots).
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of the black hole. This feature appears because of our clobiaial coordinate.
A consequence is the fact that the Courant condition bectesesestrictive and it
allows for bigger time steps. However, we prefer to mainthainitial time step,
in order to have an extra safety factor.

6.1.4 Convergence and Error
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Figure 6.6. lllustration of theL.-norm of the error in the mass, plotted on a logarithmic scale
as a function of time. Left panel: The dark-grey plot coraspto a simulations using the
2nd order FD algorithm without dissipation, which crashemsiadtime = 100M. The light-
grey plot corresponds to the 2nd order FD method plus 3rd étdEss Oliger dissipation and
the black plot to the 2nd order CFV method. Right panel: The-geey plot corresponds
to a simulation using the 4th order FD algorithm without iation, which has the smallest
errors, but crashes arountine = 80M. The light-grey plot corresponds to the 4th order FD
method plus 3rd order accurate Kreiss Oliger dissipatiod,the black plot to the 3rd order
CFV method.

We monitor the behavior of the error in the mass, by plottimgit,-norm of
the difference between the computed and the exact mass astofuof time Fig.
(6.6). One can notice that the smallest errors correspotitidetstandard second
order FD algorithm. However, this simulation crashes adatime = 100M, after
developing high frequency noise. In long runs, ugitae = 1000M, the second
order CFV method shows significantly smaller errors thanséheond order FD
algorithm plus third order Kreiss Oliger dissipation. A @t comparison can be
performed, as all three schemes are second order convétigeti6.7).

We perform a similar comparison between thg-norms of the mass error
function obtained with the 3rd order CFV algorithm and the ditder FD method,
both with and without 3rd order Kreiss Oliger dissipatiorheTlowest errors cor-
respond to the standard 4th order FD method, which latedojesdigh frequency
oscillations and crashes aroutighe = 80M. The 3rd order CFV algorithm leads
to accurate long term simulations, as we can observe in 6ig).(
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Figure 6.7. lllustration of the convergence factor in the mass, as atfon®f time. The
convergence factor is calculated using fhenorms of the differences between the masses at
three resolutiondx = 0.05, 0.025, 0.0125. Left panel: The convergence plots correspond to
simulations using the 2nd order (grey dots) and the 3rd a2#&f methods (black dots). Right
panel: The convergence plots correspond to simulatiomgube 2nd order FD method (grey
dots) and the 4th order FD method plus 3rd order Kreiss Otigemipation (black dots).

As the leading error order in the 4th order FD plus 3rd order $¢@eme is
given by the dissipation terms, one could in principal lotirerviscosity coefficient
in order to obtain more accurate results. However this aoeifi can be modified
only in certain stability limits depending on the specifimsilation. In our case,
lowering more the viscosity coefficient would result in thgpaarance of high
frequency noise, which leads to premature code crashings eftor comparison
does not depend on the resolution, as both schemes showotlied accuracy,
proven by the convergence tests in Fig. (6.7).

The need to employ dissipation could be avoided by incrgatia grid reso-
lution in order to solve the steep profile of the collapse tfrorhis way, one can
obtain long evolutions depending on the available comjartat power. However,
this is not an option in 3D, where we require a more efficienhaggment of the
computational resources. Then we are forced to appeal $ipditon, either the
one intrinsically built in the CFV methods, or the artificahe that is currently
used in combination with the FD methods.

The effect of the dissipation is damping the sharp featysesiic to the high
frequency noise. One can get away with solving the collapset fin a limited
resolution, but the price to pay is more numerical error. ddhegptive viscosity built
in the CFV method provides a compromise between accuracy@mgutational
efficiency.

The convergence plots are presented early in the evoluiitii {ime = 50M),
as at later times large errors develop the inner zones, tar@BV and FD simula-
tions. The reason is not the failure of the algorithm, bus itather a consequence



6.1 Black Hole in Spherical Symmetry

97

5.><1(Tg R 2.x10°%;
Cosx1g® /1 1sxa0®
< -0.0000; b = '.
= 000001 b 12 1x10th
< _0.0000; L 1< o \
~0,00002 L X107
~0.0000 v o 0L e
0 2 3 45 6 7 8 9 10
n n
PO T e
- Ef by ]
B 0.00% E,‘ 78.)(10_9’
E -0.01(} E;: 1 3 6.X10_9'—\\
< -0k f Aax10t N\
-0.02( ; 20109 N
~0.02 P 0 N
0 1 2 3 4 5 6 7 8 9 10
n n
0.0 T
Ve 8|
B —0.1¢ i:l | 4.x107
S 02 N 1S 2x10°
T og :5: 1 I
04 ; -2.x10% | |
R R N 6 7 8 9 1
n n

Figure 6.8. lllustration of the local convergence factor in the Massadsnction of then
coordinate, in a simulation using the 3rd order CFV methotle Grey plots correspond to
the difference between the middie: = 0.025 and high resolutiongz = 0.0125, while
the black plots represent the rescaled difference betweedarselz = 0.05 and middle
resolutionsdz = 0.025. Upper panelst{me = 10M): A convergence factor of 3 is obtained
in the interior BH region where the dissipation terms aré&vadteft panel), and a factor of 4 in
the outer region where the dissipation parameter is clogerm (right panel). Middle panels
(time = 50M): The convergence factor starts downgrading to a value. dfir2the regions
close to the apparent horizon (left panel), while keepinglaesof 4 in the outer region (right

panel). Lower panelsi{me = 100M): The convergence factor drops to a value of 1.6 in the
regions close to the apparent horizon (left panel), whikpkeg a value of 4 in the outer region
(right panel).
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of the large errors in a highly nonlinear context. Furtheestigation indicates a
downgrade of convergence around the collapse front, widletter region keeps
the proper convergence rate Fig. (6.8). Convergence ishlt inside the ap-
parent horizon (AH) and in the outer points close to the AHingghe '1+log’
singularity avoiding slicing, the collapse front of the sgfunction coincides with
the position of the AH, Fig. (6.5). So the downgrade of theveogence factor at
the location of the AH can be seen as an effect of the numamedhod dealing
with steep gradients.

The outer boundary also shows a fluctuation in the conveegeraer, but this
problem remains localized in few boundary points and do¢gxtend throughout
the domain. As the physically relevant part of the spacetisribe outer region,
this partial loss of convergence is not considered prohbiiema similar behav-
ior appears when using the FD plus KO dissipation [12], amddicates that the
wave extraction zone should be located away both from therdadgundary and
the collapse front.

6.1.5 Discussion

The numerical tests presented in this section show that &W &gorithm per-
forms well even at low resolutiongif = 0.1), which is an advantage that the
other standard FD methods can not offer. However, at lowlugsas the perfor-
mance of the system depends on the way the system is writtene &kplicit, if
one uses the system with all indices covariant, the resbttsed are quite differ-
ent than the ones obtained with the same system, but writtinmixed indices.
In 1D simulations, one always has enough computationaluress to improve
resolution and show the equivalence of the two approachdas.ig not the case in
3D, at least not in single grid numerical simulations.

Performing a comparison between different numerical teglas currently
used, we showed that our CFV numerical method allows fordorand more
accurate evolutions. The 1D spherically symmetric caseiges just the initial
step in setting up numerical methods suitable to addresswvblation of the full
Einstein equations [23, 54].

We stress the idea that these CFV methods are useful in egadvnooth so-
lutions of quasi-linear strongly hyperbolic systems, asftlil non-linear Einstein
equations in vacuum when written in flux conservative fornithéugh the main
motivation of this work is to present techniques for the nrioa simulation of the
Einstein equations, the methods presented could be agpli@ay system of this
form.

Moreover, in vacuum cases, one can use the CFV method in thedbFD
plus the adaptive dissipation algorithm (presented iniG&e&.2.3). As long as
one does not require the use of limiters, the two approaaieescaivalent and can
be applied even to systems implemented in a non flux-corthexfarm.
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6.2 Black Holein 3D

One of the most important problems when dealing with blaclefhispacetimes
is the presence of singularities, where the geometric giembecome infinite.
The physical singularity can be dealt with by using différeathniques like ex-
cision, puncture and stuffing. Excision consists in cutiiug a region inside the
black hole apparent horizon, in a consistent way. As thisratlaer numerically
than analytically challenging task, we will focus in theléwVing on the other two
approaches.

In the puncture approach, one of the asymptotically flatoregjis compact-
ified, so that its spatial infinity is transformed into a segloint. The puncture
data is smooth everywhere, except the metric factor, whiwbrges near the sin-
gularity. However, if one prefers to deal with non-singulaitial data, one can
use the stuffing technique and replace the vacuum interitdneoblack hole by a
singularity-free matter solution.

In this section | will present an analytical and numericahparison between
the two approaches, in the context of a 3D Schwarzschilckiiate evolution in
normal coordinates.

We perform numerical simulations using the Z4 system, withddjustments
presented in Subsection 3.1.1, which turned out to be drmidong-term sta-
bility. Our gauge choice is a singularity avoiding slicingnclition and normal
coordinates, namely

oo = a2f(a) (K —mb),
(B = 0.

We choose a value ofi = 2, as the evolution equation for the combinatids —
20) corresponds to the BSSN evolution equationforThe gauge parameter is set
to f = 2/«, the most common choice in BH simulations with the BSSN syste
due to its strong singularity avoidance properties. Thebieh of the system with
various choices of gauge is discussed in detail in the Chaptand 9.

6.2.1 Scalar Field Stuffing

6.2.1.a Initial Data

We consider as initial data the standard wormhole punctwetienEq. (6.1), for
which the interior region is isometric to the exterior ondnem the spatial part of
the line element in isotropic coordinates can be written as

di* = p*8;;dx'da? (6.6)

wherey = 1+ 2L, M is the mass and = /22 + y2 + 22. The Schwarzschild
radial coordinateR is related with the isotropic radial coordinate By= )°r. The
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Figure 6.9. Vertical section through an embedding diagram of a two-disi@nal slice
(t = const.,0 = 7/2) of the Schwarzschild solution with scalar field stuffing. eTilack

dashed plots correspond to a scalar field given by Eq. (6ati)the grey continuous plots to
Eq. (6.19). The plots are presentediabe = 0, rescaled by a factor of 5, anéine = 100M.
Notice the smooth matching in the initial data at the thi@at 2M. The second asymptoti-
cally flat end has been replaced by a singularity-free mattettion. At later times a cylinder
with radiusR ~ 1.3M forms and the behavior is similar to the one presented in(Big.).

valuer = M /2 marks the location of the apparent horizon and 0 is the image
of space infinity.

Our numerical test are based on the 'wormhole’ type of pueaiata for black
hole evolutions, where the singularity in the conformaltdéads ¢» ~ 1/r. The
typical choice in current black hole evolutions is the 'tpeti data, where the sin-
gularity is mildery) ~ 1//r [69]. However, most of our simulations are following
the stuffed black hol@approach [70], where we match a scalar field in the interior
BH region, such that the metric becomes regular inside tmzdw Fig. (6.12).
The procedure is described in the following.

6.2.1.b Matter Terms

The stress-energy tensor associated to the 'stuffed’rsfiald can be written as

T/w = ¢u¢u - g%(gq—p(bfr(ﬁp% (67)
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Figure 6.10 Embedding diagram of a two-dimensional slice£€ 0,60 = x/2) of the
Schwarzschild solution with scalar field stuffing. The locatof the throat is aR = 2M
and the distance to the rotation axisis The second asymptotically flat end, present in Fig.
(6.2), has been replaced by a singularity-free matter isolut

Figure 6.11. Embedding diagram of a two-dimensional slice=£ 100,60 = =/2) of the
Schwarzschild solution with scalar field stuffing. An infedit long cylinder with radius® ~
1.3M forms and the behavior is similar to the one presented in(6ig).
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where ¢, = 0,¢. The scalar field can be decomposed in spatial and normal
components as follows

b= 00, b=t = (b~ Py,

Performing a 3+1 decomposition of Eq. (6.7), and using tHenidiens Eqgs.
(2.20) - (2.22), we obtain the componentsIgf, in terms of the scalar field:

1 7
T = §(¢n2 + (bp(bp + %¢p¢n)7
Si = ondi,
1 7
Sij = ¢ig; + §gz‘j(¢n2 — Py — g—a%%)-

These matter terms enter in the sources of the Einstein figldtons (2.10).

6.2.1.c Scalar Field Evolution Equations

An evolution equation for the scalar field is given by the sdrenergy tensor con-
servation Eq. (2.8). This leads to a scalar wave equation,for
1
O¢p = —0u[\/99" ¢,] = 0. (6.8)
\/g N[\/_ ]
whereg is the determinant of the spacetime metric.
A first order version of the flux conservative evolution equad can be ob-
tained by considering the first derivatives = 9;¢ and¢; = J,¢ as independent
guantities,

O+ Oi[—¢d] =0,

P
WFy + OplVg(g"oq — %M =0, (6.9)
whereFy, = —3@(@ — (P¢,). The principal part of the matter evolution system

is fully decoupled from that of the field equations.

6.2.1.d Matching Technique

The initial data must satisfy the energy and momentum caims¢r Egs. (3.5, 3.6),
wheref andZ; are set to zero. In the time symmetric cdsg = 0, the constraints
translate into

R = 167, (6.10)
0 = ondi (6.11)
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Figure 6.12. lllustration of the initial data for a Schwarzschild blacglé in isotropic coor-
dinates. The black dashed curves correspond to a scalanfalthing given by Eq. (6.15)
and the grey continuous ones, by Eq. (6.19). Left panel: Tagiencomponeny.., on the
x-axis. Note the smooth matching in the Schwarzschild métetween the interior region,
which contains the scalar field, and the exterior region. ifagching point isr = M/2,
respectivelyr = 0.5 in this figure. Right panel: The scalar field varialdlg on the x-axis.

The momentum constraint Eq. (6.11) can be satisfied by cernisglp; to be zero
everywhere on the initial time slice, while the energy caaiat leads to a condition
for the time component of scalar field.

In order to calculate the energy constraint Eq. (6.10), wesicer the line
element Eq. (6.6) withn = m(r). We assume a constant mass value for the black
hole exterior, such that the energy constraint will be Satisfor - = 0. In the
interior region, we choose the following form for the secaadial derivative of
the mass

m”(r) = p(1 — cos(dnr/M)), (6.12)
wherey is a constant. Imposing matching conditions at the centetfathroat,
m=m"=0, (6.13)

r =

m =M, m' =m" =0, (6.14)

SIS

one can calculate the integration constants and ob#air).
Then the metric factor takes the form

4r — (8/M)(r? )2 + (M/(4m))?(cos(4mr /M) — 1))

v=1+ , (6.15)
2r
and the Laplacian of can be written as
_ 1 2 0N m”(T‘)
Ay = 50, () = = (6.16)
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On the other hand, from the energy constraint, where tharsiiald energy density
isT = (¢¢/a)?/2 and K = 0 initially, one can write in the conformally flat case,

A = —2r79)°. (6.17)

Using the two equalities for the metric factor, the initiata for the time derivative
of the scalar field can be computed as

¢t:2a\/1—cos(4ﬂ'r/M)' (6.18)

mr Mapd

The initial data ofF, is presented in Fig. (6.12).
We present also an alternative scalar field initial dataldtar comparison of
numerical results. The mass can be chosen as

21 [ 2r 549 (2o 6 15 /2r 7
M1+ (=1 il (e bl (e
wor=ae |2 (o) = 2 () 2 ()]

(6.19)
such that the matching conditions Egs. (6.13), (6.14) arsfical.

6.2.2 Black Hole Evolution
6.2.2.a Numerical Setting

We performed numerical simulations in an uniform grid, wékolutionsiz = 0.1
anddx = 0.05, boundaries atOM and20M (no mesh refinement). We use the 4th
and 6th order centered FD methods, in combination with tleesponding order
adaptive dissipation algorithm (derived from our CFV methBection 5.2.3). The
time integration algorithm is a 3rd order Runge Kutta met{fopendix 9.4).

The position of the apparent horizon can be calculated Usmg6.4) written
as

gP10png — 20 Digpg® "' + Ty Dpgr g g7 + KpegPg¥iin; — K = 0,

with o i
? " .
P,y — g B 1 n D*Ingn;n; .
VphggP?  npnggh? (np”quq)3/2
Considering just the x-axis, where the normal is defined,as- (—~,0,0) and

. . . . gl‘z ’
n, = (z,0,0), one can write the equation in a simple way,
9" + 9%  Dpug™9"9" _ Dipgg 9" | Dpiag™9" | Kpeg™ g™ _
NG N VI i g
This formula will be used to compute the apparent horizoatioo in our numer-
ical simulations.

K =0.
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6.2.2.b  Numerical Results

The evolution of the black hole initial data presented ingreious section, can be
viewed in an embedding diagram of a two-dimensional sliée.¢ = const.,0 =
m/2) of the Schwarzschild solution Fig. (6.9). The singulagty = 0 is replaced
with a regular solution. The matching of the scalar fieldiahitlata is done at the
throatR = 2M. At later times, a cylinder with radiuB = 1.31241M is formed,
following an evolution similar to the one described in Fidg.1). Even though
there is a difference between the initial slices in Fig. X6&s we use different
scalar fields, the evolution shows an identical behavior.

Our observations are in agreement with the study present¢@9i, where
the numerical evolution of '1+log’ foliations of the Schwachild solution is dis-
cussed in the context of the puncture method. We concludehbabehavior of
standard Schwarzschild data in the *1+log’ gauge is gelyedaiscribed by Fig.
(6.9), whether one chooses to deal with the singularity bgleying the puncture
technique or one appeals to any scalar field content.

This behavior is expected, as the initial profile of the scéa&d is matched
inside the apparent horizon and it remains confined in tlegiottblack hole region
during the evolution. This can be noticed in the energy degrmiofiles in the
right panel of Fig. (6.13). In the left panel of the same figumee can observe
the collapse front of the lapse and the apparent horizon.hAgauge speed is
ay/ f(a)g®, with f(a) = 2/, the upper part of the collapse front moves faster
then the apparent horizon, which travels at the speed df dighy®*.

The dynamics of the lapse function in a Schwarzschild blaulk evolution
with scalar field matching can be viewed in Fig. (6.14). Weagsothat higher
order methods lead to steeper profiles and slower propagattihe collapse front.
The differences in the front propagation speed clearly grotime, although the
plot att = 40M is affected by the dissipative effect of the boundaries s Hfifiect
of steeper profiles was present also in our simulations iersgdd symmetry, and
it does not create stability problems. We can perform longy teimulations, until
the collapse front gets out of the computational domain.

We present also a plot of the lapse function obtained in alsiion using the
third order algorithm Fig. (6.14), with double resolutidm = 0.05 in a smaller
computational domain of0A/. The position and slope of the collapse front are
similar to the ones obtained using the fifth order algoritirnith a resolutiondz =
0.1. This means that the accuracy of the numerical simulatiorbessignificantly
improved by employing higher order spatial discretizasochemes.

Note however that higher order algorithms are known to kerlglsust [71]. As
the profiles get steeper, the risk of under-resolution atttiepse front increases,
so the minimum resolution required by a higher order alborits more expensive
than for the minimum resolution for lower order methods. His tcase, the fifth
order algorithm is a convenient choice for #the = 0.1M/ resolution in isotropic
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Figure 6.13 Upper panel: lllustration of the Z4 lapse function on thexisain a 3D
Schwarzschild black hole evolution with scalar field stigfinThe dashed plots represent
the collapse front of the lapse and the vertical lines thetiposof the apparent horizon, at
time = 1M (black plots),time = 10M (dark-grey plots)time = 20M (medium-grey
plots), time = 30M (light-grey plots). Lower panel: Illustration of Z4 energgnsity on
the x-axis, in a 3D Schwarzschild black hole evolution withlar field stuffing, atime = 0
(black plot),time = 1M (dark-grey plot) andime = 10M (light-grey plot).
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Figure 6.14 lllustration of the Z4 lapse function on the x-axis, in a 3Inalation of a
Schwarzschild black hole with scalar field stuffing and 'Itlslicing. Upper panel: The
collapse of the lapse function is presented frame = 10M to 40M in intervals of 10M,

in a simulation with resolutiodz = 0.1. The continuous plots correspond to a boundary set

at 10M and the dashed plots, a0M/. Lower panel: The collapse of the lapse function is
presented atime = 20M and40M, in a simulation with resolutio@z = 0.1, using 3rd

order (dashed grey plot) and 5th order (dashed black plothads. Notice that the higher
order method leads to a slope steepening and a slower ptapagéthe collapse front. The

same effect is visible when increasing the resolutiodite= 0.05 (continuous grey plot).
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coordinates.

A similar evolution, using the puncture data, is presentellig. (6.15). One
can notice that the two collapse fronts are almost identgmkthe success of the
simulations does not depend crucially on the treatmenteosihgularity. The key
ingredients are most probably the numerical methods eragdlayd the analytical
properties of the system.
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Figure 6.15 lllustration of the Z4 lapse function on the diagonal, in a SBhwarzschild
black hole evolution, with resolutiodiz = 0.05. The collapse of the lapse is presented from
time = 10M to 30M in intervals of10M/. The black plots correspond to an evolution with
scalar field stuffing and the grey plots to a puncture evatutio

One can notice that our isotropic simulations are limitedHsyvicinity of the
boundary. We appeal to the space coordinate freedom, smgt¢h logarithmic
coordinates, defined as

r = Lsinh(R/L),

where R is the new radial coordinate ardthe length scale factor. We perform
long-term numerical simulations with = 1.5M, such thatR = 20M in these
logarithmic coordinates correspondsito= 463000M in the original isotropic
coordinates.

The collapse front is safely away from the boundary, evemtattimes Fig.
(6.16). We stopped the simulationfat 1000/ without any sign of instability.
This provides a new benchmark for Numerical Relativity gdeamely a long-
term simulation of a single black hole in normal coordinateghout excision. It
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shows that a non-vanishing shift prescription is not a rgtpifor code stability in
black hole simulations.

20

Figure 6.16. lllustration of the Z4 lapse function on the xy-plane, in a Sbhwarzschild
black hole evolution with scalar field stuffing. The collap$éhe lapse is presentedtdine =
1000M, with resolutiondz = 0.1. Only one of every ten points is shown along each direction.

6.2.3 Discussion

In this chapter, we presented the first long term simulatiba &chwarzschild
black hole, with singularity avoiding '1+log’ gauge in noaincoordinates with-
out excision. We developed a geometrical picture of thergl&capproaching the
stationary state, for situations where the treatment oéthgularity involves both
scalar field stuffing and the puncture technique.

Our system is based on a first order flux conservative verdidheoz4 for-
malism (Section 3.1.1), that is adjusted for dealing withstmaint violations. The
implementation uses a family of robust, cost-efficient,téirdifference adaptive
dissipation algorithms (Section 5.2.3).

In a similar setting, the simulations performed with the BS§stem are re-
ported to crash arountd= 40M [72]. The success of the BSSN in long term dy-
namical simulations of a single black hole without excisiaglies completely on
a specific combination of the '1+log’ and 'Gamma-driver’ gawconditions. The
choice of lapse is understandable, as dealing with theps®@laingularity, without
the use of excision, requires a singularity avoiding sticiBut this a property of
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the time coordinate, which should be independent of thé prefscription. In the
spirit of General Relativity, we expect a single black halenerical code to work
also in normal coordinates.

A further comparison with the old second order Bona-Massmébism [73],
shows that the steep profiles produced by slice stretchaujalrexpansion) could
be evolved only by employing FV methods with slope limiteBur numerical
method is an efficient CFV algorithm, which does not requinaracteristic de-
composition, it is easy to implement and not expensive im$eof computational
costs. As the limiters are not required in the vacuum casentithod is compara-
ble with a finite difference plus adaptive dissipation aiton.

On an analytical level, both the BSSN and the Bona-Massadnmegwonformal
decomposition of the spatial metric and trace-cleaning {thce of the extrinsic
curvature is set to zero). The numerical experience wittBihiea-Masso system
shows that spurious numerical trace modes arise in the-traeepart of the ex-
trinsic curvature [73]. In our Z4 simulations, both the planetric and extrinsic
curvature can be used without any additional trace cleami@eghanisms.

The numerical results show that the Z4 implementation hasyagood perfor-
mance not only in the standard Numerical Relativity testsafiier 4), but also in
black hole simulations [54], using both scalar field stuffamgl the puncture tech-
nigue. The code behaves well with different slicing cormudis from the '1+log’
family and is not especially tuned for normal coordinateswa will present in
Chapter 9 simulations with non-vanishing shift. Howeven, pumerical simula-
tions require further technical developments, like impmgvthe boundary treat-
ment and using mesh refinement techniques.



Chapter 7

Boson Stars

Dark matter and dark energy are believed to account for mme %0% of the
mass in the universe. The existence of dark matter was ptestusince 1933, by
astronomers who observed that distant galaxies must betdgither by a huge
gravitational pull caused by some invisible form of mattérgained the name
"dark matter” because it is undetectable by its emittedatamh, but its presence
can be inferred from gravitational effects on visible matte

The observed phenomena which imply the presence of darleniattude the
rotational speeds of galaxies, orbital velocities of gedsin clusters, gravitational
lensing of background objects by galaxy clusters and th@éeature distribution
of hot gas in galaxies and clusters of galaxies. Dark matser glays a central
role in structure formation and galaxy evolution, and hassneable effects on
the anisotropy of the cosmic microwave background. Onee@htbst convincing
evidence comes from the observations of the rotationalesuof galaxies. These
usually exhibit a characteristic flat behavior at largeatises [74].

Even though direct detection of dark matter has not beenrooadi yet, there
are promising detections which lead to the believe that deaier is more then a
theoretical concept. Recent observations [75] report aassxof galactic cosmic-
ray electrons at high energies which could arise from (alatibn of) dark matter
particles. A possible laboratory detection of dark mattatiples hitting the Earth
has been announced this year by the DAMA collaboration [E&En though sci-
entists belive that this is not just a statistical fluke, thgutt should be confirmed
by other research groups.

Determining the nature of the missing mass in the universaésof the most
important problems in modern cosmology and particle plsysiclarge number of
different particles have been proposed as candidates fomaatter. We focus on
scalar fields dark matter models, in which the particle is asiva spinless boson.

The boson patrticles can collapse into the same quantumddtéte gravita-
tional potential to form a Bose Einstein condensate. Inghmmfigurations, the
guantum effects become apparent even on a macroscopic cedef these Bose
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Einstein condensate is a compact gravitating object, ndragdn star. Boson stars
are solutions of the Einstein equations that describe alfamfiself-gravitating
scalar field configurations within General Relativity.

In this chapter we present boson stars evolutions performithcthe Einstein-
Klein-Gordon system, using as initial data several comptafar fields, following
the classical approximation. We show a brief descriptiohaef the initial data for
the mixed states is constructed, and study these modelsativisic evolutions.
The results are focused on two models. In the first one, we addssless scalar
field perturbation to a model of ground configuration andofelithe evolution in
order to see the effect of the perturbation on the stabilitthe configuration. In
the second one, we study the evolution of Mixed State Bosars 8#1SBS) under
perturbations, identify the unstable models and deterrthieefinal state of the
configurations. We analyze the coupling phase and the gnataiof the unstable
configurations, in order to find the separation betweenataibdl unstable states.

7.1 Theoretical Aspects

Boson stars are self-gravitating scalar field objects, taictvthe gravity attraction
balances the dispersive character of the scalar field. Ba¢ntient of boson stars
follows two different approaches, the first settled by Kadp][and the latest by
Ruffini and Bonazzola [32]. The one developed in [77] is a cletety classical
treatment with a massive complex scalar field which is mitiyr@upled to grav-
ity. The second one [32], also known as semiclassical lawitpts a real quantized
scalar field though maintaining the geometry as a classittéelt turns out that
the two approaches lead to the same self-gravitating systartil now, the only
known stable boson stars are made of ground state scalas. fi€ltk associated
mass density profiles decay exponentiallyras: oo, making it difficult to fit the
flat rotational curves of most galaxies.

We use a generalization of boson stars which was previousiyted out in
[32]. The idea is to consider a system of bosons which are lhot the ground
state, but formed by particles which are coexisting in difé states. In this view,
the MSBS can be seen as a collection of complex scalar fiehdsfar each state,
coupled only through gravity.

Our study is focused on the properties of these mixed (gr@xaited) state
configurations and their possibility to model dark mattegataxy halos (see [33]
for a recent review). For a single boson star without sd#raction, the only
free parameters are the mass of the boson particénd the central value of the
scalar fieldp(r = 0), which determines the compactness of the object (ie, ratio
of total mass over radius) in adimensional units. There lhaen several attempts
to fit these parameters, with different levels of successall®ying more general
MSBS, there are extra free parameters coming from the diftdractions between
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the ground and excited states. These parameters changalyndhe total mass,
but also the compactness of the final object. The extra degrefreedom may
allow a better fit of the models to different galaxies.

An important point of our study is the stability of the modeidgich is a nec-
essary condition in order to be considered models of galakysh A single boson
star in the ground state is stable against perturbatiofiis, nfiass is below a max-
imum allowed value\f,,..., result that has been shown both by analytical [78, 79]
and numerical [31] studies. On the other hand, a single betmn the excited
state is unstable even fad < M,,.., since small perturbations drive the star ei-
ther to collapse to a black hole or to decay to the ground.skatem these results
one could expect that the MSBS states are unstable, singedh&in at least one
excited unstable state. However, our numerical result® shat at least a subdo-
main of the solution space gives stable solutions. Rougbdaking, the ground
state produces a deeper gravitational potential which eanbugh to stabilize the
excited state.

7.1.1 The Einstein-Klein-Gordon System

We consider a real massive scalar field withdifferent excited states, which is
equivalent to considering a collection &f complex scalar fields, one for each
state, coupled only through gravity.
In a curved spacetime, the dynamics of these MSBS can beildeddry the
following Lagrangian density,
2
). e

_ g 5mg o) (n)
- +Z [ 8,6™a,¢ +V<‘<;S

where¢(™ are the scalar fieldsy™ their complex conjugate, and(|¢(™|?) a
potential depending only g™ |2.

This Lagrangian gives rise to the equations determiningettodution of the
metric (Einstein equations) and those governing the sdigllar behavior (Klein-
Gordon equations).

7.1.1.a The Klein-Gordon Equations
The variation of the Lagrangian (7.1) with respect to eactesdield¢(™ leads to
a set of Klein-Gordon equations, which are coupled througlity,

Og(™ = |2¢<" (7.2)

N d|¢

We restrict ourselves to the free field case where the patdaiies the form

V(o™ [?) =m? ™2, (7.3)
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with m a parameter that can be identified with the bare mass of tluketfiebry.
The complex scalar field can written as

¢ = o —igl,

¢ = o +iol,

where¢p, is the real partgp; provides the imaginary part anglis the complex
conjugate. A reduction to first order can be performed by dejims evolution
variables,

o = Vg,
[0
o = 0t
Then the Klein-Gordon system can be written for each fietd ¢(") as
oo™ = avirel, (7.4)
oo = ofavirel, (7.5)
apt = O laVhT ol + oV i [2(Dre” + 1/)0f +
12/ B Ko o1 — mh,,0"). (7.6)

The matter Lagrangian is invariant under global U(1) trarmeftions:
oM s g eiet™
This symmetry implies that there are a set of Noether cusremte for each field,
i . _
JH = 5\/ _ggﬂ [¢ azx¢ - ¢ 81/¢]7
satisfying the conservation law

V= %&L(\@J“) 0,

This law ensures the conservation of the charge den&ity J#n,, which can
be computed as

N=al® = L (p/6F — oRo).

Vv hT’f’
As discussed in [32], the Noether charge
N = /x/ﬁ]\? da® = 47r/ 2N/ hyrhgodr, (7.7)

can be associated with the number of bosonic particles.
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7.1.1.b The Einstein Equations

The variation of the action associated with the Lagrangiamh)( with respect to
the metricg,;, leads to the well-known Einstein equations

R
R“V — Eg“l, == 87TT/.U/7 (78)

whereT),, is given by the addition of the single stress-energy tenfmreach
scalar field, namely

N
T = Y Tw™, (7.9)

7,™ = {aM(Z;(n)au(b(n)jLam(n) ay@(n)}

>—\[\'>|r—tﬁ

— Sow [P +V (J61)] . (7.10)

The explicit form of the matter terms can be found in the Amie®.6.2.

A useful quantity for the analysis of the system is the mad®s froblem of
finding a general definition for the total mass (or energy) sistem is a diffi-
cult challenge in General Relativity, mainly because ttavigmtional field energy
is not part of the energy-momentum tensor. However, for efimes which are
asymptotically flat, namely represent some isolated gaing system in other-
wise empty and gravity-free infinite space, the ADM mass @aweéll-defined,

[
Mapm = 167 TILHJO 9"10q9pk — akgpq]de&

where N™ = +/h'§," is the unit outward normal to the sphere. In spherical
symmetry, it can be translated into

Mapy = —1>VhD,°. (7.11)

The ADM mass gives valid results only in the regions wheresfiacetime asymp-
totically approaches Minkowski space.

We monitor also the Tolman mass, which can be written in tise cd spheri-
cally symmetric systems with matter,

Mry = /(To0 —Ti')y/—g da® =

= —dnrlo/hehog(T + S, + 255%). (7.12)

We write the Einstein equations (7.8) in the form of the Z8stfty hyperbolic
system in spherical symmetry (Appendix 9.6.1).
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7.1.1.c Regularization

We consider a generic spherically symmetric spacetimeyevtie line element
takes the form,
ds* = —a®dt® + 1 (r)* (dr® + r?dQ?),

with ¢ = (1 + 3%). One can notice thatyy = r** is singular when- — 0.
Also D, ! = hTeeaThgg is proportional tol /r, which leads to a singular behavior
at the origin. When dealing with black holes systems, thidbjam can be avoided
by setting the inner boundary at the apparent horizon, tanfthe physical and
coordinate singularity at = 0 (Chapter 6). The problem is different when dealing
with stars, since there is no way of cutting the solution befo= 0 without loos-
ing physically relevant information. The coordinate silagitly destroys stability
and accuracy near the origin.

We use the approach proposed in [80] and remedy this probdamg the extra
Z' quantities introduced in the Z3 formulation of the Einsteguations (Section
3.1.1). The first step consists in analytically extracting geometrical factors
from the equations, so that we only have to deal with the eequdrt. This can be
done by writing the line element as

ds® = —a2dt® + hy,dr? + r2hgedQ?,
which implies the following transformation of variables

hey = 12hgo,
Do’ = D+,
where the quantities marked wititde are the old variables. Theyy andD,,’ are
now regular at the center, but the stability of the impleragai is still not insured.
One has to deal with the factotgr in the fluxes and /2 in the sources.

The second step consists in cross-cancellation betweee teems, in order
to obtain a regular system. One can take advantage of the Meagndomentum
constraint was built into the system through the variahle A simple and conve-
nient way to redefine th&,. in order to obtain the desired cross-cancellation in the
n =4/3 case is

= 1 hrr
Ly = Zp+—|1- .
= g (1)

We have eliminated this way the singularities from the ettotuvariables and
the numerical error caused by the geometrical factors irflthes and sources.
A detailed description of the evolution equations in giverthe Appendix 9.6.2.
One can notice that the sources contain termslljketimes other variables which
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are radial derivatives of the metric coefficients. But thes=ens do not create
problems as — 0, as the radial derivatives of any differentiable functi@nish
at the origin. However, due to finite differencing, we can as¢ a grid point at
r=20.

This way of performing the regularization of the Einsteiniatpns in spherical
symmetry allows us to evolve the whole grid, without any sgletechniques or
different algorithms in the center. The system of equatisngsow intrinsically
stable.

7.1.2 Boson Initial Data

The initial data for boson star configurations is computedgherical symmetry
with a one-dimensional code. We follow the technique predas [77, 81, 82],
where the initial data is generated in maximal-isotropiordinates, by first con-
structing the stars in polar-areal coordinates and thefoqpeing a coordinate
transformation.

The line element in these coordinates takes the form,

ds® = —a (r)* di* + a () dr® + 120, (7.13)
We adopt the following harmonic ansatz for each scalar field,
¢(n) (t,r) = dp(r) o~ iwnt (7.14)

With this assumption the source for the Einstein equati@®ines time indepen-
dent. Our goal is to find ¢, (r),wn, a(r), a} such that the spacetime generated
by this matter configuration is static. Then the extrinsiovature tensor vanishes
identically and the momentum constraint is automaticadlyssied.

The Hamiltonian constraint and the Klein-Gordon equateadlto the follow-
ing equilibrium equations:

a a®?—1 N w2 2\ 2,9 9
Oa = 59— +4WTZ[<§+m>aqﬁn+®n} ,

n=1
2 _q N 2
{ a4 " —|—4777‘Z[<%—m2> azgzbi—l—fbi] ,
n=1

ny

o
2
)

op®, = -— {1 +a? — 4rr?a®m? (?:1 ¢§> } % - (Z—Tz‘ - m2> bna’.
The conditions for regularity at the origin
a(0) = 1, (7.15)
®,(0) = 0, (7.16)
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and for asymptotic flatness

Tim 6, () ~ O, (7.17)
lim a(r) = a2tr)’ (7.18)

complete our system.

For given central values of the field®., }, using the conditions Egs. (7.15,
7.16), one only needs to adjust the eigenvaljies} and the valuex(0) in order
to generate a solution with the appropriate asymptoticwieh&qgs. (7.17, 7.18).
This is a 3-parameter shooting problem, that one solvestbgiating fromr = 0
outwards, using a second order shooting method for the peasiw,, } anda(0).

The outer boundary conditions for the scalar fields are imgasnsidering
that localized solutions decrease asymptotically as

¢n ~ exp (—\/m2 - w%r) /T,

in a Scharzschild-type asymptotic background. These tondiare

On (Tout) < m? — w2 + 21 ) + &, (1ou) = 0. (7.19)

out
The shooting procedure is performed for different values @f. AS r,y; IS in-
creasing, the shooting parameters converge and we chamseltiiion as the one
which satisfies the conditions Eq. (7.19), for sorgg within a prescribed toler-
ance. From this point on, we match to the scalar fields and #taacoefficients
their asymptotic behavior. This is a necessary step in thetoaction of the initial
data that we evolve in a numerical domain bigger thap.

A qualitative characteristic of the radial functioas is their number of nodes,
namely how many times do they cross zero, which determireesxbited state of
the boson star. If the radial function does not have any nibéeboson star is in
the ground state. If there is a node, the boson star is in thtecficited state, and
SO on.

We have constructed initial configurations with two scalald§, one in the
ground state and the other in the first excited state. Thiseieasiest non-trivial
state, since the MSBS with two scalar fields in the grounc:stah be reduced to
one scalar field solution by redefining the scalar fields. & consequence of
the indistinguishability of the boson particles in the sastate.

Once the solution is computed in this coordinate systemaagd of coordi-
nates is performed to maximal isotropic ones,

ds* = o® (7) dt* + " (7) (di* + 72dQ?) (7.20)
which is convenient for our numerical evolutions.

One obtains this way the initial data for the 4-metric congraa and the scalar
field, which will be used in the following general relativissimulations.
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7.2 Numerical Results

Boson stars have equilibrium configurations corresponttindifferent levels of
excitation of the scalar fields (different number of nodes).this section, we
present two classes of boson star models: single state (BS)raxed states
(MSBS) boson stars. From the first class, we choose a modebond configura-
tion and compare two cases: the unperturbed behavior arevthation under the
perturbation of a massless scalar field. In the second alas$ycus on a model
of mixed ground and excited configurations, and study thedyocal evolution of
two cases (stable and unstable), which have different nuwibparticles in the
excited state.

We perform the BS analysis for two reasons. First, checkiegalidity of our
numerical setting by comparison with previous results m literature. Second,
tuning the perturbation such that its effect would not cleeting dynamics of stable
states. We are interested in applying the same perturbtatithre stability study of
MSBS configurations, for which previous results are notlaisée. We note that
numerical errors alone would also excite modes in the utestainfigurations, but
the timescale for which these would appear could be veng|atgpending on the
resolution.

In order to facilitate the interpretation of the results, imind the notation of
the basic fields used in this section. The scalar field hasotine f

S (tr) = Gulr)eT =
= on(r) cos(wpt) — idy, (1) sin(wyt),
where by¢Z(t,7) = ¢,(r)cos(w,t) we denote the real part, ang,(¢,r) =
on(r) sin(w,t) provides the imaginary part of the scalar field. Each real and
imaginary field can be viewed as a harmonic oscillator, withpktude ¢,,(r).

At ¢ty = 0, the real part of the scalar field is just the amplitude of theilator
®E(r) = ¢n(r). In the following, we will focus on the behavior o (¢, r).

7.2.0.a Numerical Specifications

The numerical simulations are performed with Z3 system hespal symmetry
with regularization, as described in Section 7.1.1.c. beoto complete the sys-
tem, we specify as gauge conditions a harmonic slicing aral steft,

o = —a(K," + 2K,
ap = 0.

We need to perform long term evolutions, so it is importantiminish the
amount of spurious reflections from the boundaries. We impoaximally dis-
sipative boundary conditions, which suppress all incontfielgls at the boundary.
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This condition translates into:
1
oKy’ — a\/h’”’”g(2Zr — Dy’ = 0,

aK—avhTA, = 0,
o o =0,

The full characteristic decomposition of the system in enésd in Appendix 9.6.2.

The numerical evolutions are performed using a third oréatered finite vol-
ume algorithm for spatial discretization (Appendix 9.5a8)d a third order Runge
Kutta method for time integration (Appendix 9.4).

The evolution domain extends to= 600M, with resolutiondx = 0.02. We
use a Courant factor @f25. In most BS numerical simulations, an evolution up
tot = 5000M is sufficient in order to capture the relevant behavior. Hare
in the case of MSBS configurations we performed long term kitimns, until
t = 15000M or more.

The Tolman and ADM masses Egs. (7.12, 7.11), as well as thébeuof
particles Eq. (7.7) are calculatedra= 2500 .

7.2.1 Single State of Ground Configuration

In this subsection, we address the issue of stability fomglsistate boson star
configuration. Stability refers to the ability of a star tdtkeinto a new config-
uration from the same branch, when perturbed. Under radigé fperturbations,
the ground state configurations of boson stars consist afdesbranch and an un-
stable branch. The transition point is at a critical mass/gf,, ~ 0-6337”;2;1 /m,
wherem,, is the Planck mass and the mass of the boson star, corresponding to
a central amplitude of the field(0) ~ 0.08. The stars become more compact as
¢(0) increases.

Numerical studies [31] show that the perturbed boson starestable branch,
will oscillate and settle into a new configuration, with lesass and larger radius
than the initial configuration. Since the system is sphéyicymmetric (no gravi-
tational waves can be emitted) and it satisfies the Kleind@orequation (with no
viscous terms), the system can return to an equilibriune stalty through radiation
of scalar field. This mechanism seems to be crucial for thel@asation and for-
mation of boson stars. Heavier boson stars are unstableshganall perturbations
and they either collapse to a black hole or migrate and settiehe stable branch
depending on the perturbation [31].

7.2.1.a Unperturbed case

We consider a boson star from the stable branch, namely avitathe central
amplitude of the scalar field; (0) = 0.0423. The initial data is presented in Fig.
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Figure 7.1 lllustration of initial data for an unperturbed boson starthe stable branch.
The lapse function (upper left panel), the metric companémpper right panel) and the real
component of scalar field (lower panel) are plotted as a fondaf ther isotropic coordinate.

(7.1). The Tolman mass gives the best agreement with thelidata, while the
ADM mass tends as — oo to the expected value Fig. (7.2).

The configuration, evolved up to a tinhe= 5000\, presents a typical stable
state BS dynamics. The central value of the scalar fiél¢r) shows constant
amplitude oscillations Fig. (7.4) . One can notice in its maxm Max (¢ (rg))
Fig. (7.5), very small deviations from the initial valge(r,). There is a decrease
in the number of particles, arourid02% from the initial value, which is caused
by numerical errors and the dissipative character of therdagundary conditions.
In Fig. (7.3) one can see that the mass remains constant. MWeece different ap-
proaches in calculating the mass during the evolution andlade that the Tolman
mass provides very accurate results, while the ADM massriEpgas expected)
on the radius of extraction.
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Figure 7.2. lllustration of the mass as a function of thesotropic coordinate. Notice the
values of the Tolman mass (dashed plot), which matches vetlythe expected value of
M = 0.5915, and ADM mass (continuous plot), which approaches the eggdecalue as
T — OQ.

7.2.1.b Perturbed case

In order to study the stability of this model under pertuidnat, we send a spherical
shell of “massless” scalar field into the boson star. Théainitata for this field is
a Gaussian of the form

o2

63 (to,r) = H exp (—M> , (7.21)

whereH, r., o are adjustable parameters, accounting for the amplituokgtiqn,
and respectively width of the Gaussian.

For all the cases presented in this chapter, welset 0.00007, r. = 50
ando = 2. The position of the center ensures that the Gaussian fielklis
separated from the complex field of the boson star at thaiithe. The width is
chosen such that the Gaussian pulse is not too sharp and gailllvesolved with
a resolutiondz = 0.02. The amplitude is very small, as we are only interested
in a perturbation that accelerates the expected behaviovad tuned such that
the integral of the energy density associated with the Gagzilse is less than
0.01% from the energy of the boson star configuration.

The equations of evolution for the massless real scalar sddthe Klein-
Gordon Egs. (7.4-7.6), witm = 0 and¢’ = 0. The typical evolution of the
perturbed initial data described above, proceeds as fsllofhe Gaussian per-
turbation splits into two pulses, traveling in oppositeediions with the speed of
light (gauge speed+/h'", as we chose a harmonic slicing). One of the pulses is
moving towards: = 0, while the boson star sits in its static state, centereden th
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Figure 7.3. lllustration of the evolution of a boson star in the stablenwh. The ADM (black
plot) and Tolman (grey plot) masses are presented as a danatitime, for the unperturbed
(left panel) and perturbed (right panel) configurationse dashed line marks the exact initial
data value.
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Figure 7.4. The amplitude of the central value of the scalar field is plbts a function of
time, for the unperturbed (left panel) and perturbed (rjgdriel) configurations.
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Figure 7.5. Left panel: The maximum value of the scalar field in the cergglotted as
a function of time, for the unperturbed (black plot) and pesed (grey plot) configurations.
Right panel: The number of particles in the unperturbedcfbfdot) and perturbed (grey plot)
configurations, are plotted as a function of time. The dadinedmarks the exact initial data
value.
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origin. The massless field passes through the origin anddkplodes outward,
eventually propagating off the computational domain. Asplerturbation is very
small, the boson star remains in a stable state.

We compare the evolution of the two configurations, unpbedrand per-
turbed, in Fig. (7.3 - 7.5). Both configurations are stabl®ig term simulations,
which shows that the perturbation has only a small effecthencbnstraint viola-
tions. It does not affect the dynamics of stable BS configmmat but it can be very
useful in detecting unstable configurations. We will uss tiipe of perturbation
in the following study of MSBS configurations.

7.2.2 Mixed States of Ground and Excited Configurations

We consider the simplest non-trivial case, with only twolacéields. The first
one with N () particles in the ground state, and the second witR particles in
the first excited state. A useful way to define the initial dathy specifying the
fraction between the number of particles in each state ofdinéiguration

N®)

ﬁzm-

In this case, the equilibrium equations for the initial dated to be completed
with a differential expression for the number of particlegach state,

8, N — 4wgwn¢ir2, (7.22)

with boundary conditiongv (™) (0) = 0. If n is specified, one imposes as boundary
conditions only one of the central values of the scalar fidhisinstancey..; .

The new system of equations (7.19, 7.22) becomes a shoatotmiem for
four parametergwy, wy, a(0), p2(0)}. For a specific fractiom, it is necessary to
adjust the four parameters such that Eq. (7.19) and the tiomdV ®) (r,,,,,.) =
nN® (r,....) are satisfied. In this way, each configuration is fully deieed by
the fractionn and the amplitude of one of the scalar fields at the origin

We restrict our numerical analysis to only four differentues of the central
amplitude of the scalar field, namepy (0) = {0.007,0.0113,0.0197,0.0423}. In
the following, we will present the casg (0) = 0.0197, and focus on three sub-
cases representative for the behavior of MSBS configursitistabley = 0.4, and
unstablen = 1.6 andn = 3.0.

7.2.2.a Fraction 0.4

The initial data for the MSBS configuration, with an amplituof the scalar field
in the centerp; = 0.0197 and fraction of the number of particles in the excited
staten = 0.4, is presented in Fig. (7.6). The plots of the radial functign
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Figure 7.6. lllustration of initial data for a stable MSBS, with; (0) = 0.0197 andn = 0.4.
The lapse function (upper left panel), the metric compandnpper right panel), the real
component of the zero nodes scalar field (lower left paned)@re node scalar field (lower
right panel), are plotted as a function of thésotropic coordinate.

correspond to the ground state configuratign(zero nodes), respectively excited
state configuratior, (one node).

We perturb the initial data with a massless scalar field EQ.1)7 as described
in Section 7.2.1.b and follow its evolution upte= 15000)/. One can not notice
any growth in the central amplitudes of the two scalar fieﬁlﬁ§(r0) presented in
Fig. (7.8). An analysis of the maximum amplitudéaz (% (ro)) reveals very
small oscillations, Fig. (7.9). These deviations from thastant value are compa-
rable with the case of a perturbed stable boson star, Fig). (7.

One can also notice an apparent decrease in the number iofggarHowever,
this effect is very low0.002% — 0.007% of initial number of particles Fig. (7.7).
The mass has very small amplitude oscillations around aaongalue Fig. (7.9).

These results allow us to conclude thatihe 0.4 MSBS configuration is sta-
ble. We expect that any unstable growing modes would have @leeady excited
by the perturbation within our time of observation.
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a function of time, for the one node state. Right panel: Thien&io mass of the MSBS
configuration is plotted as a function of time.
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Figure 7.10. lllustration of initial data for an unstable MSBS, with (0) = 0.0197 and

n = 1.6. The lapse function (upper left panel), the metric comptséuapper right panel),
the real component of the zero nodes scalar field (lower kafef) and one node scalar field
(lower right panel), are plotted as a function of thisotropic coordinate.

The initial data for the unstable MSBS configuration, witheamplitude of the
scalar field in the centet; = 0.0197, and fraction of the number of particles in
the excited state = 1.6, is presented in Fig. (7.10).

We follow the procedure described in Section 7.2.1.b antugethe initial
data with the same massless scalar field. The central achditof the two scalar
fieIngzbfz(ro) show an exponential growth followed by oscillations Figl@. A
detailed analysis of the functioh/ax (4% (ry)) presented Fig. (7.13), reveals an
exponentially growing behavior, which can be fitted by a tiorc

5¢T = A exp(—ot) cos(wt + ). (7.23)

The growth rates of the unstable MSBS calculated,if0) andg,(0) show a very
good agreement Fig. (7.16).
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Figure 7.13 Left panel: The maximum of the central value of the scaladfislplotted
as a function of time, for the one node state. Right panel: Tdiman mass of the MSBS
configuration is plotted as a function of time.

One can also notice in Fig. (7.12 - 7.13) a clear decreaseeimtimber of
particles,0.65% — 3.3% of initial value, and in the mass of the configurati@f,
which indicates that a part of the scalar field is radiatedyawadeed, a detailed
analysis of the evolution shows that the unstable configurds migrating into
a stable configuration, through radiation of scalar fieldwaswill show in the
following subsection.

7.2.2.c Fraction 3

In order to determine the final state of unstable MSBS corditpms, we per-
formed long term simulations, untilime = 300000 and beyond. In this sec-
tion we present results obtained with an amplitude of théasdield in the center
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¢1 = 0.0197, and fraction of the number of particles in the excited state 3.
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Figure 7.14 The maximums in the center (upper panel) and the frequentiescillation
(lower panel) for thep® (grey plots) andpZ® (black plots) scalar fields are presented as a
function of time, for an unstable MSBS configuration whictiles into a stable configuration.

The evolution of the scalar fields maximums and their freqgiesnof oscilation
are presented in Fig. (7.14). One can notice in the firse = 2000M an expo-
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Figure 7.15 The scalar fields are presented as a function of radial coateli-, at time=0
(dark continuous plots) and 28000M (grey dashed plots).l&Meanel corresponds to the ini-
tially ground state, which later becomes excited (one natg) the right panel to the initially
one node state, which later transforms into a ground state (mdes).

nential growth similar to the one previously presented lierfractionn = 1.6. At
the end of this strong couplig phase, there is a change betiineetwo states of
the configuration, namely the excited one node state c@ajpdo a ground state,
while the initially ground state becomes excited, Fig. $7.1The behavior is re-
flected also in a change of the frequencies of oscilationHertivo scalar fields,
Fig. (7.14). Following the evolution, one can notice that tiscilations decrease
in amplitude and the configuration settels into a stable stat

7.3 Discussion

MSBS configurations are an appealing model for dark matt@es& configura-
tions allow more freedom in matching the velocity rotatiooarves of galaxies
with the observational data. However, the stability of th&B& is a necessary
condition in order to be considered as a model of galaxy haldsle the stability
of a single boson star has been previously studied both tgwly and numeri-
cally, the MSBS configurations require further investigati

In this study, we focused on the numerical approach. Thestiegtconsisted in
constructing initial data for MSBS, with different centahplitudes of the com-
plex scalar fields; (0) and Noether fractions. In order to study their stability, we
added a real massless scalar field, which contains les®1hHf of the energy of
the configuration. This field acted only as a small pertudmatas we showed that
its the effect on a single state ground configuration doeslmatge the stability of
the star.

The second step consisted in performing numerical evelstrath the Einstein-
Klein-Gordon system and studying the dynamics of the peemirMSBS. We
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Figure 7.16. lllustration of the frequency fit for the exponentially griog modes in MSBS
configurations, as a function of the fraction of the numberasticles in the ground and excited
states. Left panel: The frequency #f (ro) = 0.0197 is calculated in Magp?® (o)) (grey
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(light grey plot). The value of the fraction which separaties stable and unstable states is

chose a small additional perturbation, as the unstable snexigted by numeri-
cal errors only, would require even larger timescale sitinnia.

Our numerical stability analysis is restricted to four éifint values of; (0) =
{0.007,0.0113,0.0197,0.0423}. In the simulations with) < 1.2, we did not find
any unstable exponentially growing mode. We presentedyjieal behavior for
n = 0.4 andn = 1.6 simulations, corresponding to a stable, respectivelyalobest
MSBS.

Finally, we fitted the growth rate of the unstable MSBS forleag¢(0), and
extrapolated to find the maximum allowed Noether fractjgp.. which separates
the stable and unstable states. The results for the fregudrtbe exponentially
growing modes are represented in Fig. (7.16), with the patedion to then, ..
which in principle could be a function af;(0). The four different family of
solutions point to a value 0f,,,, ~ 1.

An interesting result of this study is the final state of thetable MSBS. Long
term simulations show that even unstable MSBS settle irbletconfigurations
through the scalar field radiation mechanism.

The results of our numerical studies, regarding the long &ability of MSBS
configurations, suggest that they could be suitable catefidar dark matter mod-
els. The MSBS withy < 1 are intrinsically stable. The unstable ones with
1 < n < 3, migrate into stable configurations, through radiationaafiar field.
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Chapter 8

The behavior of the Lapse
Function

The covariance of the Einstein theory implies that one cardatermine a priori
the spacetime coordinates. There is no preferred choiceoofimates, as the lapse
function and the shift vector are not set by the field equati@hapter 2). In order
to complete the system of evolution equations, we have tosghthe coordinates
by providing some prescription for the gauge degrees ofifree

The gauge choice played a crucial role in proving the wefisgalness of the
system of Einstein equations and finding exact solutionsstardcally, the har-
monic gauge was very important, as defining the spacetimelictes by a set of
four independent harmonic functions, it was possible to@tbe well-possedness
of the Cauchy problem for Einstein’s equations.

Recently, the gauge has proven to be a very important ingmedi solving the
binary black hole problem, which led to the recent impressigvelopments in the
field of Numerical Relativity [83—85]. The problem of deaiwith the black hole
singularity was solved in two different ways. The codes basegeneralized har-
monic systems used the excision technigue, which consiststiing out a region
inside the apparent horizon, in a consistent way. This agmbrovas necessary, as
these systems rely on the harmonic condition Eq. (2.25) lwisigust marginally
singularity avoiding. Alternatively, the codes based aa BESN system, worked
with a global solution of the spacetime and could deal withlifack hole interior
through the puncture technique. The inner region is maiathsufficiently regular
for numerical purposes, using a strong singularity avgjdilicing condition Eq.
(2.28), in combination with a specific'Gamma driver’ shiig.§2.30), leading to
themoving punctur@pproach [10, 84—86].

The so calledjold rushtowards new frontiers of Numerical Relativity left be-
hind open questions. Some of them refer to gauge issuesehdtto be clarified,
like the behavior of singularity avoidance slicing condlits and related instabili-
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ties. We present in this chapter a study of these problenmdiedpon one of the
most popular choices of hyperbolic gauge conditions ctigrersed in BH simu-
lations.

8.1 Singularity Avoiding Slicing Conditions

The lapse variable relates the proper tidrewith the coordinate timét, namely
dr = a(t,z,y, z)dt. In numerical simulations, one can determine the lapse dy-
namically, through a general evolution equation of the type

oo = —a’f(a)K, (8.1)

from which one can recover the particular cases of the geodgés= 0), maxi-
mal (f = oo, K = 0), generalized harmonicf(= n) and generalized '1+log’
(f = n/a) foliations. Beside the numerical study of critical cob@pphenomena,
where maximal slicing is used, the preferred choice in blaale evolutions are
singularity avoiding slicing conditions of the '1+log’ tgp These ensure that the
lapse is dynamically adjusted in order to freeze the propee bf the observers
near the singularity.

One could start the analysis of the singularity avoidingoprties by consider-
ing first the harmonic condition for the time coordinate

Oz = 0, (8.2)

which can be written in 3+1 language as

9 In <@> — 0, (8.3)
«

corresponding to a choicgé = 1 in Eq. (8.1). One notices that the lapse can not
be zero unless the space volume elemghtis zero, meaning that the time evolu-
tion will take us arbitrarily close to the singularity [87This implies a marginally
singularity-avoidance behavior of the continuum equatarthe lapse. The nu-
merical errors accumulated during the evolution can sgodingularity avoidance
properties.

This situation is reflected in the class of harmonic code&dam the De
Donder-Fock form of the Einstein field equations. The ppatipart of these
systems can be generically written as a set of wave equatiothé spacetime
metric

Ogu +0,H, +0,H, = ..., (8.4)

whereH,, is given by the choice of coordinates

Oat = —g”"TH,, = H. (8.5)
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Itis common to assum#&,, = 0 (harmonic coordinates), or use the gauge sources
approach by providing some kinematical prescription [88].

We present a brief comparison between the Generalized Hecrand the Z4
system in order to study the singularity avoidance progerif the systems in the
harmonic gauge. With the following parameterization

oM = —g""TH,. — 27", (8.6)

the system Eq. (8.4) can be viewed as an equivalent of theatdely
T
Ry +V,2,+V,Z, =81(Tu — ng,). (8.7)
Then the time component of Eq. (8.6) reads in 3+1 language:
1
aH = —9,Ina+ K —2a2°, (8.8)
o

where Hy = 0 in the harmonic gauge. This results into a singularity aanod
failure which is generic to harmonic codes. Long term nuoasimulations are
obtained only when the region close to the singularity issed from the com-
putational domain. The control of dynamical excision cesaterious technical
problems, as the collapse region grows and even moves gbhessmputational
grid.

An alternative to excision is the use of a foliation with sitayity avoiding
properties. One can use the slicing Eqg. (8.1), in the gemerhl1+log’ variant.
The choicen = 2 (f = %) is known as the '1+log’ condition, as it can be written
in normal coordinates

a = oy + In(h/hg), (8.9)

whereh is the determinant of the space metric. This condition iegthat the
coordinate time evolution stops before getting close tosthgularity. The limit
surface, namely the point where the lapse vanishes, is

Vh/hy = exp(—ap/2). (8.10)

As the initial lapse is usually close to one, the final volurtearent will be about
60% of the initial one.

We explored other slicing conditions, with the limit suacloser to the sin-
gularity [54]. We notice that the collapse front gets stegpan in thef = 2/«
case Fig. (8.1), but we were able to perform long term staldugons. In our
simulations, this specific choice is not mandatory, butihespreferred choice for
the current black hole simulations, not only due to its sjrsimgularity avoidance
properties, but also because it leads to smoother profilesmparison with other
gauge choices from the same class.
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Figure 8.1 lllustration of the lapse as a function gfcoordinate, atime = 10M in a
Schwarzschild black hole simulation. Notice how the caafront gets steeper for a '1+log’
slicing with f = 1/« (black continuous plot), in comparison with tife= 2/« case (grey
dashed plot).

In the particular case of the Z4 system, hyperbolicity resgia generalization
of the slicing condition Eq. (8.1) by adding a linear couglinith thed variable,

dia = —a’ f(a)(K —mé).

This particular change of the slicing is more obvious if onéeg the Z4 system
as a harmonic formulation

Ogur — (T +22,) — 0,(Tp +27,) = ...,

with T* = ¢**T'*,. In order to obtain a wave equation for the metric, one must
ask
" =—-22#,

which is the equivalent of the harmonic condition for thengird Einstein equa-
tion (Z# = 0). Then the harmonic slicing for the Z4 system must be modified
with
10— 970 — 50
«
The Z4 system is strongly hyperbolic for ajfiy> 0, with a value ofm = 2 in
the f = 1 harmonic case [89]. In the case of the "1+log’ slicing, one temove
the coupling with the energy-constraint terms, but the micaktests show that a
choicef = 2/a, m = 2 is the best option in black hole numerical simulations.
The use of the generalized '1+log’ family of gauge conditionormal coordi-
nates is known to lead to a distortion of the foliations, thgio the slice stretching
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process, a problem that has been viewed as a final obstable wety of long term
black hole evolutions. The increase along the radial dmegiroduces a progres-
sive loss of resolution, which leads to the appearance tffné@uency noise. The
problem can be delayed by increasing the grid refinementhiglier resolution
produces steeper profiles for the dynamical fields, whichreztnbe solved un-
less one employs special dissipation algorithms. We obththe best numerical
results (described in Chapter 6) using an adaptive algoritbr which the dissi-
pation parameter is tuned through the maximum gauge spe¢igeagrid (for a
detailed description see Chapter 5).

A possible problem related with hyperbolic slicing corwfits typically used
in numerical relativity is singularity formation due to gpupathologies [90]. Re-
cent studies based on a non-linear analysis of the systa thiat these gauge
instabilities arise due to the unbalance of the quadraticceoterms. This modes
grow only at a polynomial rate, so the evolution system idypeted, but they will
lead to code crash in long term simulations [91]. We are adiing this point in
the next section, where we follow the behavior of '1+logtsig in evolutions of
Schwarzschild spacetime.

The numerical tests presented in the following sectiongvperformed in nor-
mal coordinates (zero shift). In general, one would chobseshift to adapt the
geometry to the physical system under study, by fixing it tnsspacetime func-
tion or using it as a dynamical variable (Chapter 9). The @haif shift does not
affect the behavior of the slices addressed in this study.

8.2 Numerical Study of Gauge Instabilities

The success of binary black hole numerical evolutions wagsdan two strate-
gies of dealing with the singularity: excision and 'movingngtures’. The first
approach is computationally challenging, as it requirasking the two apparent
horizons during the evolution, using one sided finite défere next to the excised
region, and repopulating the grid via extrapolation. Weragnly interested in
the second approach, which deals with a global solutionesgacetime and uses
the gauge freedom in order to obtain a regular interior regioat can be evolved
numerically. The key of this strategy are the puncturedfj@al interior asymp-
totically flat regions, conformally compactified as a conede singularity. They
are used to construct initial data with a given number oflblamles. The numer-
ical evolution of this BH initial data, with various gaugést allow a coordinate
movement of the punctures, has proven to be a non-trivikl tas

The geometric picture of the moving punctures evolutions lheen only re-
cently understood [11], in a study where 'trumpet data’ tindependent represen
tations of black holes, play a crucial role. In the geomefrthe stationary solu-
tion, corresponding to a foliation of Schwarzschild-Krak&pacetime in maximal
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slices, the slices were shown to asymptote to cylinders n$temt areal radius.
The result was extended to the hyperbolic slicing conditioammonly used in
numerical relativity. Comparison with numerical resulbsried a simple picture
of the gauge conditions used in the moving puncture rechmy. allow the interior

of the black hole to approach the stationary representatiorparticular the co-

ordinate singularity associated with compactifying amgtically asymptotic end
is milder than that associated with compactifying the Eledin asymptotics of a
standard puncture [11].

In these studies, numerical convergence to an analyta@bsary solution can
be observed at late times for an evolution of Schwarzsdfildskal spacetime,
where the initial data is not adapted to the stationary swiutHowever, the anal-
ysis of standard hyperbolic gauge conditions [90—95], sagthe possibility of
singularity formation and recently it has been argued to gjmil standard single
and binary black hole evolutions [96].

We centered our study on the '1+log’ slicing condition [9%hich is the most
popular singularity-avoiding slicing condition in bingpuncture black hole simu-
lations. Different pathologies which can result from thipd of slicing condition
have been discussed in the literature. Alcubierre idedtifiechanisms that lead to
singularity formation in the slicing [90], which he calls&gge shocks” to express
the claim that they appear due to the crossing of charattsrigassociated with
gauge propagation. Alcubierre has studied the formatigaofe shocks in a num-
ber of different simple models, and identifies scenariosrevtigey can be avoided,
and others where they can not be avoided. More recently itokas claimed
that gauge shocks are indeed generic for evolved gaugetimmglias the slicing
always shocks ity is different from 1 initially [96]. For a Schwarzschild blac
hole, these shocks can be triggered by propagating gaugelmgions (‘gauge
waves”), but in general situations they could be triggergadtual gravitational
waves.

A different type of blowup behavior inherent to the '1+lodicgng, has been
identified in [91]. This is a runaway phenomenon in the lapsgéred by a cou-
pling to the mean extrinsic curvatuf€, in the case wher& corresponds to expan-
sion. Singularity avoidance works for positive K, but negawalues of K trigger
instead a blow-up in the lapse. This type of runaway soluti@ncharacterized by
the growth of the lapse function without bound, at an aceétel rate, and can not
be cured by using shock capturing algorithms.

In the following we will use numerical results to illustratigat gauge shocks
in the form described by Alcubierre do not seem to be typioal T+log’ based
evolutions of Schwarzschild spacetime that model the sttman a binary black
hole simulation, since they seem to require rather corfigeking perturbations
of typical initial data. Singularities of the runaway typsesn more typical, but can
apparently be cured by a modification of the slicing equation

For evolutions of manifestly spherically black hole spanes we use the Z3
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system described in Chapter 3. The spatial discretizasipeiformed with a stan-
dard fourth order centered finite difference scheme plugédinder accurate local
dissipation term, which is automatically adapted to thelregnents of either the
interior or exterior black hole regions [24]. The time euw@n algorithm is a
third order strong stability preserving Runge Kutta metfiode stepAt = 0.01,
Courant factolC' = 0.5). The condition for high resolutionr = M /50, claimed
in [96], necessary in order to reveal shock formation, isad.

In addition to manifestly spherically symmetric simulaiso(1D), we also per-
formed full 3D simulations with the Z4 system [98]. The tmaant of the sin-
gularity in the 3D implementation of the Z4 system uses theffisd black hole”
approach [70], assuming a regular interior solution withiteble scalar field con-
tent as described in Chapter 6.

8.2.1 Gauge Initial Data

We consider the geometrical setup for Schwarzschild blaalk kvolutions in
spherical symmetry as presented in Section 6.1, with tleediament

ds* = — tanh? n dt® + 4M?(coshn/2)* (d772 + dQZ) . (8.11)

For 3D stuffed black hole evolutions, discussed in detagéation 6.2, the initial
data is set in isotropic coordinates

ds® = — (% J_r %%;;)2 at? + (1 n 2—]\04 (dr? + r2dQ2) .

The isotropic radial coordinateis related to the Schwarzschild radial coordinate
(area radius) by? = /ggg. We will use the notatiod = [ /g, dr for the proper
distance along the slice.

We adopt two strategies to perturb the initial data for Sehaehild with re-
spect to the coordinate gauge. In the first approach, we @rgtthe initial lapse
with respect to the metric Eq. (8.11), using a Gaussian imtbeordinate,

a=1+ Hexp (—M> . (8.12)

o2

The initial values for the shift vector and the componenthefextrinsic curvature
are set to zero.

In the second approach we adopt the perturbations propon$@d]i One con-
siders an initial slice given in terms of Schwarzschild iKij time coordinate Eq.
(8.11) in the following way:

by = ¢(t7 77) =1+ h(n) (813)
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The new line element will have the form
ds? = —aZ dt* — 202 W dtdn + (U — (c,h')?)dn* + wdQ?,
with
U = 4M?(coshn/2)%,

wherea,, is the Schwarzschild Killing lapse (8.11) and we denotepliyne the
derivative with respect tg.
We can calculate the new lapse function as

v
Q= Qg | —»
Imm
and the shift vector
o2 h
pl = -
G

The components of the extrinsic curvature for this slice tidde form,

[0, B (0vwh/)? — W (0uyh” + 200, h') + 2]
Ky = ’

V' ¥

o,/
2/ Vg '

The initial values of the variableB,," = g™g,, /2, Dy’ = 4% g,/2 can be
calculated according to their definitions in terms of themeflhe initial lapse is
set to unity everywhere, so the compondnt= o'/« is initially zero.

The functionsh(n) are chosen as a 3-parameter family of Gaussians,

Kog =

h(n) = H exp (—M> : (8.14)

o2

with amplitudeH, width o and center,.

8.2.2 Flat Space

We consider a non-trivial initial slice [90], given in terno$ Minkowski coordi-
nates ag,, = h(ry). Assuming that the radial coordinatecoincides initially
with the Minkowski radial coordinate;,;, one can write the metric and the extrin-
sic curvature components as:

Grr = 1- h/za
goo = 7“2,
Krr - _h///\/ 9rr,

KBG = _Th//\/grr-
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Figure 8.2 lllustration of the MFS model in a Z3 simulation with the "y’ slicing condi-
tion. Left panel: The lapse anll as functions of the radial coordinateare represented by
the black, respectively grey plots@itne = 70M. Notice the presence of instabilities. Right
panel: The plot represents the convergence factor id.theorm of K, as a function of time.
The factor is computed fromime = 0 to 100M in intervals of 10M. Convergence is lost due
to the presence of gauge instabilities.

The functioni(r) has a Gaussian profile,

2
h(r) = H exp (—@) : (8.15)
g

We chose the values of the perturbation parameters sucththamatch [90],
namely amplitudeé? = 15, centerr, = 300, widtho = 20, and refer to this setting
as "Model Flat Space” (MFS). Our numerical results confirmdhes presented by
Alcubierre. The initial perturbation separates into twdspa traveling in opposite
directions. The pulses moving in the in-going, respedgfivait-going directions
are not symmetric, since the directions are not equivalent.

The numerical tests were performed using the '1+log’ sficiburing the evo-
lution, instabilities develop in both in- and out-going ges and convergence is
completely lost Fig. (8.2). A%  has values in the negative domain because of the
initial perturbation, these instabilities could be asata with runaway solutions.

8.3 Gauge Choice and Gauge Pathologies

8.3.1 Gauge Instabilities

The problem of finding a good coordinate system, that showsattwlogies for a
generic spacetime, is very difficult. Even in very simplessa® given prescription
of the lapse and shift may not exist globally. An example hesgeodesic or Gauss
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coordinatesq = 1, 3" = 0), where the coordinate lines typically cross over after
some finite time, even when one starts from a curved slice tisfiacetime. This
obvious gauge choice, which significantly simplifies thedtm equations, is not

a viable choice for numerical relativity.

Instead, the most popular form of specifying gauge conastion numerical
relativity is via hyperbolic evolution equations. | will¢as on the family of Bona-
Masso slicing conditions [97], which also include the fanaf harmonic slicings.
The existence of discontinuous solutions to the Bona-Malsing conditions that
arise from smooth initial data has been studied by Alcubif30, 92, 93, 95], who
termed these instabilities “gauge shocks”or “coordin&igcks”. These solutions
are not physical discontinuities, but regions where thedioate system breaks
down. In this context, the term “shock” was used in a regtiddense of crossing
of the characteristic lines. We prefer to use in the follayvihe term “gauge insta-
bilities” in order to denote any form of unbounded growth loé tapse or its first
derivatives, related with the gauge behavior.

Alcubierre discusses in particular two types of instale#itwithin the Bona-
Masso family of gauge conditions. In [90], performing an lgs@ of the char-
acteristic speeds, he concludes that one type of instabikiffects just the gauge
degrees of freedom with characteristic SpW , While the second one af-
fects even the spatial metric degrees of freedom, with cheriatic speed equal to
the speed of light.

Alcubierre finds that the first class of instabilities can eided by ensuring
that the evolution of the eigenvalues is independent of treesponding eigen-
fields (condition for indirect linear degeneracy). This t@achieved by choosing
f(a) =1+ k/a?, with k arbitrary constant, that leads to the following sig

oo = —(a? + k)K. (8.16)

However, this result is pointed out to be impractical in nuica simulations, since
for small values of the lapse and positike there is nothing that prevents the lapse
from becoming negative.

The analysis of the second class of instabilities leads tryanestrictive con-
dition, that is impossible to satisfy with a diagonal metido practical cure was
proposed for this class of instabilities, which were presticeven for thef = 1
case of harmonic slicing. Note that these instabilitiesanly characterized by
the behavior of theé = const. hypersurfaces and therefore do not depend on the
choice of shift vector. Alcubierre showed that his analy&s in fact independent
of the field equations in [99]. This class of instabilitiev@aot been encountered
in numerical simulations.

An analysis of the non-linear coupling between fkieand the lapse function
has been presented in [91], and suggests that this couimdead to runaway
solutions, that grow without bound at an increasing rate.cdresider, for exem-
plification, the Z3 system with = 4/3. Taking a second time derivative of the
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evolution equation for the lapse, one can write in the vacuase,

aTlfattOé —Aa = Oé[—Kinij + (2f + Oéf/)K2] (8.17)

wheref’ = df/0a. This equation can be interpreted as a generalized wave equa
tion for the lapse function, with the characteristic spe¢ds,/f. The conclusion
of the analysis was that gauge instabilities can be integras the effect of the
non-linear source terms in the evolution equations.

According to our numerical observations, the contributcaming from the
non-linear right-hand-side terms does play a crucial moléhe evolution of the
lapse, as we will show that a modification of the slicing of fibien

oo = —fa* (K + Ky), (8.18)

with K a small positive offset, can cure the runaway instabilitiesis modified
slicing condition amounts to

aTlfatta — Na=a[-Ki K9 + (2f + af')(K + Ko)?. (8.19)

In a study of different types of blow-ups that can occur inteys of hyper-
bolic evolution equations of the type found in general reigt[94], Reimann in-
vestigates the existence of an ODE-mechanism that leadsvieups within finite
time. Using as example a wave equation with sources and dgnaave speed,
a comparison is performed between the "geometric blow-apfgested by Alcu-
bierre) and this "ODE-mechanism”. In order to avoid inglieibs asource criteria
is proposed, which demands that the source terms shoulédeffquadratic terms
in the eigenfields. The conclusion was that in most caseseictdinear degener-
acy and the source criteria led to the same conditions fadenginstabilities. In
the cases where they don't, the source criteria proved todse important. This
result supports the idea that gauge instabilities are mald result of an ODE
mechanism triggered by the source terms.

In the Sections 6.1 and 6.2, we presented foliations for av@ctschild black
hole that do not show gauge instabilities. In the presertystwe use two dif-
ferent families of data which do lead to the formation of gaulgstabilities in
Schwarzschild-Kruskal spacetime. The first consists itupeing the initial slice,
which has been used by Alcubierre [90]. The second familiegahe initial lapse
function. Since this family is simpler to implement, we uswicompare 1D and
3D evolutions. As “unperturbed” situation, we will considm initial lapsen. = 1
and the 1+log slicing condition. As a first step in our anayse will show that
this case does not show any pathologies.
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8.4 Numerical Results

8.4.1 Unperturbed Initial Data

i+
ly

N T

Figure 8.3. Penrose diagram of the slices at early times {1, 2, 3,8M }, in an evolution of
the unperturbed model of a Schwarzschild black hole, usiaglt+log’ slicing condition with
n = 2. Our coordinates stop at the throat. As we use zero shiffytihgerical slices penetrate
Ry and are not able to retreat Iy at later times.
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Figure 8.4. Penrose diagram of the slices at later times {30, 37,40, 500/}, in an evo-

lution of the unperturbed model of a Schwarzschild blaclehdlhe picture is similar to Fig.
8.3, only that the slices are shifted along the Killing ved& ~ 1.31M in order to allow a

better view of the exterior region. Every slice approactjeslong the curveRo. This is the

typical behavior of the slices defined by the stationary tsmhuof the '1+log’ condition with

n=2.
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Figure 8.5. lllustration of the unperturbed model of a Schwarzschilackl hole, using the
"1+log’ slicing condition. Left panel: The lapse and K are plotted as functions of proper
distance at = 50/ (grey plots) and at = 100M (black dashed plots). Notice the agreement
of the plateau value ofC with the theoretically predicted valug = 0.300934, marked by
the continuous black line. Right panel: The Schwarzschittial coordinater is presented as

a function of proper distance at= 50M (grey plot) and at = 100M (black dashed plot).
The result is in agreement with the theoretically predict@die Ry = 1.31241M marked by
the continuous black line.

We consider first the “unperturbed” case, where the initids set according
to Eq. (8.11). We evolve using the 1+log slicing conditionthwy = 1 initially.
During evolution, the grid points situated at the throatmrshed to spatial infinity
in accordance with the development of an asymptoticallyndyical region and
the approach to the stationary solution as described in [@%je values of the
Schwarzschild radial coordinafe = 1.31241M corresponding to the asymptotic
cylinder, and the trace of the extrinsic curvatute= 0.300934 at the cylinder
Fig. (8.5), are in agreement with the analytical and nunaégolutions presented
in [69].

The numerical results obtained, show the expected conveegtactor of 3,
as we use 3rd order accurate methods for both space disti@tizand time inte-
gration. In Fig. (8.6) we plot the convergence factor of fienorm of K as a
function of time. One can notice that the results of the satioih can be trusted
up to a timet ~ 60M. Afterwards the convergence drops due to large numerical
errors (see Section 6.1.4 for details). An estimate of therén the mass aspect
function Eq. (6.3) shows that at a time&f — 60M the deviations from the exact
value are about.8 — 3.8%, while att = 100M the errors are arour2B%. Inde-
pendently of the choice of initial data, convergence is &idate times due to the
large errors which develop at the steep wall of the collapzet {23].

The second “unperturbed” case corresponds to a 3D stuffedvé@eschild
black hole, as described in Section 6.2. We consider the séoieg and initial
data value for the lapse function as described above. THat®mis comparable
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with the spherically symmetric case Fig. (8.6).
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Figure 8.6. lllustration of the unperturbed model of a Schwarzschilackl hole, using the
"1+log’ slicing condition. Left panel: The lapse and K are presented as functions of the
isotropic coordinate: att = 200, in a 3D simulation (black plots) anf is shown also in

a 1D simulation in spherical symmetry (grey plot). There goad agreement in the outer
region betweerk in the 1D and 3D cases. The behavior in the inner region diffecause of
the treatment of the singularity. Right panel: The plotgespnt the convergence factor in the
L»-norm of the mass (black plot) arfd (grey plot) as a function of time. The expected third
order convergence is obtained upiter 60M, afterwards the convergence is lost due to large
numerical errors at the steep collapse front of the lapse.

8.4.2 Perturbing the Initial Lapse

We consider initial data induced at= 0 by the metric Eq. (8.11), with a Gaus-
sian perturbation in the lapse Eq. (8.14). We will refer testh data as “Model
Perturbed Lapse” (MPL). The initial profile of the lapse prods perturbations in
all other evolution variables. The evolution proceeds #evic. The initial Gaus-
sian profile gives rise to two pulses traveling in oppositedations, with speeds
+a+/f. The out-going pulse will eventually leave the domain, wltiie in-going
pulse will collide with the collapse front of the lapse Fi§.%).

We illustrate the results obtained with two data sets, MPlanti MPLw?2,
both with center inp. = 5.0, and witdhso = 0.1 (model MPLw1) ands =
1.0 (model MPLw?2). We consider this model with two amplitudese @ositive
H = 0.5 (MPLw1P, MPLW2P) and the other negativé = —0.5 (MPLW1N,
MPLwW2N). For the sharper pulse (MPLw1), the in-coming waetsgsteeper and
produces instabilities Fig. (8.8). The smoother pulse (MR)Lgets swept over by
the collapse front and no problems occur Fig. (8.9).

One can compare the behavior of the slices for the MPLw2 mieigel(8.11),
with the unperturbed case in Fig. (8.4). The MPLw2 shows dlsitisiortion of
the slices, but they do not become pathological. Even tholuglinperturbed and
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Figure 8.7. The lapse is presented as a function of proper distance fawvMP (left panel)
and MPLw1N (right panel). The grey plots correspond to tlitggirprofile, when the lapse was
perturbed with a Gaussian profile. The black plots show thigmgturbation atime = 20M,

when the left and the right moving pulses can be clearly ifledt
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Figure 8.8. The plots correspond to MPLw1P (left panel) and MPLw1N (righnel), at
time = 50M. The lapse and as functions of proper distance, are represented by thi,blac
respectively grey plots. One can notice the instabilitethe lapse function an#’.
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Figure 8.9. The plots correspond to MPLwW2P (left panel) and MPLwW2N (righanel), at
time = 100M. The lapse and< as functions of proper distance, are represented by the
black, respectively grey lines. The evolution proceed$ait instabilities.
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j+

Figure 8.10. Penrose diagram of the slices at tintes {46, 46.8,47.2, 50M }, in an evolu-
tion of the MPLw1 model of a Schwarzschild black hole, using tl+log’ slicing condition
with n = 2. Notice how the slices are distorted with respect to the ttogeed model Fig.

(8.4).
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Figure 8.11 Penrose diagram of the slices at timtes {44, 46, 48, 50M }, in an evolution
of the MPLw2 model of a Schwarzschild black hole, using theldd)’ slicing condition with
n = 2. Notice how the slices reach the stationary state, as inrtperturbed model Fig. (8.4).
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Figure 8.12 The plots represent the convergence factor infthenorm of K, as a function
of time. The factor is computed fromime = 0 to 100M in intervals of 10M. The grey
plots correspond to MPLw1P and MPLw1N, for which convergeisccompletely lost. The
black plots, marking the expected third order convergeaoe,obtained with MPLwW2P and
MPLW2N.

MPLw2 models start with different values of the lapse, thethlyeach the station-
ary state. This is not the case for the MPLw1 model, which igeeinstabilities
and shows a strong distortion of the slices Fig. (8.10).

Our results prove that for this class of perturbed initidgbdane can find param-
eters which lead to long evolutions, free of instabilitiéde check for blow-ups
by performing a convergence test in tihg-norm of K. A third order conver-
gence factor is obtained for the MPLw2 case, while the MPLadecmanifests a
complete loss of convergence Fig. (8.12).

8.4.3 Perturbing the Initial Slice

We now consider an initial slice of the type Eq. (8.13), whtre perturbation
is a Gaussian in the height function, which depends on 3 pateamEq. (8.14).
We performed several tests in which we varied the values efpamameter, while
keeping the other two fixed. The results show that instaslidevelop only for
some specific combinations of the parameters, so they amgenetic. Moreover,
these instabilities are identified as runaway solutiorggygred by the trace of the
extrinsic curvature becoming negative in some points ofdii@ain. This leads
to small rebounds of the lapse function in these points, evbdllapsing in the
neighboring points. The resulting stretching determimeseiasingly large gradi-
ents, which trigger high frequency noise. This behaviorlheen reported before
in [91]. The conclusion is that singularity avoiding coralits are fragile in the
negative/ domain, as they can produce runaway solutions.

One can picture this behavior in the following examples. \&qgym two nu-
merical tests, choosing the initial data for the height fiomcfrom the 3-parameter
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Figure 8.13 Left panel: The lapse is presented as a function of prop¢artis, atime =
30M, for MPScl. The instability produced bi becoming negative (the grey plot in Fig.
8.15), determines at the same location a spike in the lapsgidm. Right panel: The plot
corresponds to MPSc2, aitne = 100M. The lapse ands” as functions of proper distance are
represented by the black, respectively grey lines. Theugiool proceeds without instabilities.

family Eq. (8.14), which we will denote by 'Model Perturbetic®’ (MPS). The
amplitude corresponding to this modelis = 5.0, and the widtho = 2.3. We
chose different values for the center of the initial peratidn, namelyy. = 3.0
(model MPScl) andy. = 4.6 (model MPSc2). The second choice corresponds
exactly to the initial data parameters chosen in [90], ngni&l= 5.0, o = 5.0,

r. = 50 in isotropic coordinates. Both simulations are carried iaud similar
way. One can notice that at the throat of the wormhole theslapiapses, as ex-
pected for a black hole spacetime. In the outer wave zonenitied perturbation
separates into two pulses traveling in opposite directwitls gauge speed.

In the plots corresponding to the MPScl, we can notice thabiigies devel-
oping in K, located at the same points as the oscillations in the lapge(8.13).
This behavior inK” appeared because of the negative values produced by the osci
lations of the points where the in-going pulse met the ouigyaollapse front. By
moving the center of the initial perturbation more in the waone (MPSc?2), the
in-going pulse gets swept over by the collapse front Ahkeeps positive values
all over the domain. The behavior is shown in Fig. (8.15), ehee compard{
for the two simulations at time&) M and30M. The simulation in whichi got
negative values &t0)M, develops instabilities @0/, while the other one runs
smoothly.

A way of avoiding the appearance of runaway solutions isgmgrg the val-
ues of K from entering in the negative domain. This can be achieveddoyng a
small offset in the lapse evolution equation, of the form

(0 — B0))a = —f(a)® (K + Ky), (8.20)
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Figure 8.14. The plots correspond t& as a function of proper distance, for MPSc1 (grey
plot) and MPSc2 (black plot). Left panek” attime = 20M. Notice how a small change in
the location of the center of the perturbation leads to ackffit behavior of<. This feature
will get accentuated during the evolution. Right pan€lattime = 30M. One can notice an
instability developing ink for MPScl, due td< entering in the negative domain, which leads
to runaway solutions. The MPSc2 continues with a smoothugieml (Fig. 8.13).
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Figure 8.15 Left panel: The plots correspond @ as a function of proper distance, in
the MPSc1 with and without offset, &tme = 30M. The grey line corresponds to the slicing
without offset, which leads to instabilities. The blackdirepresents a smooth evolution, using
the slicing with offset. Right panel: The plots represert¢hnvergence factor in the,-norm

of K, as a function of time. The factor is computed fretme = 0 to 100M in intervals

of 10M. The light grey plot corresponds to MPScl, where converges completely lost.
The dark grey plot presents the convergence factor for MPi8@h evolution which uses the
slicing with a small offsetX; = 0.1. The convergence factor drops between first and second
order. The black plot, marking the expected third order eogence, is obtained with MPSc2.
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where K is a positive constant. In the example presented aboveng@d, =
0.1 is sufficient for a long smooth evolution Fig. (8.14). Theadigantage of using
this type of slicing comes from the fact that the lapse cekapvery fast and soon
all the computational domain enters inside the black hajere

We showed that not all initial data of this type producesahsities, as for
some range of parameters (MPSc2) we can obtain long termterswoulations
Fig. (8.13). In order to show that no blow-ups are hidden armapggated in
this case, we analyze the convergence properties of thewtatigmal simulation.
A convergence test in thes-norm of K is performed Az = 0.04,0.02,0.01).
Fig. (8.14) shows the expected third order convergencen®MPSc2 case and a
complete loss of convergence for the MPScl case. The secdad@nvergence
for the MPScl case witli(y correction can be explained by the fact that all the
computational region is soon contained inside the appd@izon.

8.4.4 Comparison between the 1D and the 3D cases
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Figure 8.16. lllustration of MPL13. Left panel: The black plots correspdo the lapse in the
3D case, and the grey plots in the 1D casejatc = 0 and1M. The 1D plots start at = 0.5,

as a result of our choice of coordinates, which stop at tteathiThe 3D plots cover the entire
domain and the interior is regular by scalar field matching.bdth cases the singularity is
absent from our computational domain. Right panel: Thekopdats correspond to the lapse
and K, as a function of the isotropic coordinate in the 3D case and the grey plots in e 1
case, atime = 10M. The two cases show very good agreement in the outer reglespite
the difference in resolution (for an explanation of theeliénce in the inner region see in the
main text the unperturbed case). The evolutions procedtbutiinstabilities.

We perform a comparison between a black hole collapse in hergal sym-
metry and in full 3D. The initial data settings correspondatdMPL13 model
with the following parameters: amplitudd = —0.1, width 0 = 0.1 and cen-
ter n. = 2.3, respectivelyr. = 5.0, for the Gaussian perturbation in the initial
lapse profile.
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We have chosen a negative initial pulse. The behavior isdhgesas in the
previous cases, hamely the perturbation splits into a @figgand a right going
pulse. The pulse traveling right will loose amplitude andrgually leave the com-
putational domain, while the left pulse will interact withet collapse front. One
can notice in Fig. (8.16) that the lapse alidprofiles manifest the same behavior
for the 1D (radial direction) and the 3D (x direction, cutat 0, z = 0) cases.

8.5 Discussion

We study two classes of initial data with various pertudrainodels and conclude
that instabilities appear only for a restricted set of aliperturbation parameters.
Most instabilities are related with thi€ entering the negative domain, because of
numerical errors or just initial data perturbations. InecAS < 0 locally, accord-
ing to the slicing conditiord;a = —a?f(a)K the lapse will have local rebound
points, which contrast with the general collapse behavictated by the source
terms. We associate this instabilities with runaway sohsj in agreement with
[91].

Our study satisfies the criteria of high resolution propasg®6]. We search
for instabilities in the models using the standard critefigproposed in the liter-
ature, namely convergence tests. Furthermore, we presembs$e diagrams in
order to picture the dynamics of the slicings. This chaptartains only a re-
stricted collection of relevant results. The full studyexnds to various choices of
the parameters in the MPL and MPS models.

Based on our numerical results, we will argue that thesalilgies are not
generic for evolved gauge conditions as claimed by [96]. Wapsrt the conclu-
sion that instabilities can appear, but whether they do bdepends strongly on
the form of the initial data. The slicing withh = 1 initially never creates instabil-
ities, which is in agreement with the current numerical oletons.






Chapter 9

Symmetry Seeking Shift
Conditions

In the 3+1 formalism of General Relativity, the evolutioruatjons and the slicing
condition determine the history of the geometry. The lapseiies the distance
between the spatial slices, while the shift dictates howspiaial coordinates are
carried between the slices. In practice, in computatiomauktions, the shift

determines how the distribution of points is carried frone @patial slice to the
next.

There have been many attempts of finding good coordinatgsteati#o spe-
cific problems in Numerical Relativity (like critical colf@e or binary systems).
We presented in the Chapter 8 several possibilities for @uppime coordinate
conditions. In this chapter, we will concentrate on the cbm@f space coordinate
conditions, with focus on a particular case well suited fack hole evolutions.

It is worth reminding the fact that Numerical Relativity iaded on Einstein’s
theory of gravitation, which does not assume a preferredfsaiordinates. So the
success of the black hole codes should not depend on a sysEfie coordinate
system, as long as the slicing condition is appropriatelyseh in order to avoid
singularities.

We consider as a convenient slicing condition for black tsplacetimes, one
that has a suitable behavior near the singularity and essimgularity avoidance
(Chapter 8). Regarding the choice of shift conditions, ligeane wishes to de-
couple the true physical behavior of the spacetime from tleedinate effects, by
constructing 3-covariant shift gauge conditions, such tihe behavior would be
independent of coordinate changes within a given hypeaserf For spacetimes
that have a Killing vector, it is useful to use coordinategdd to the symme-
try, while for spacetimes with an approximate Killing vegtone would wish to
minimize the rate of change of the metric with time.

We present in this chapter a generalization of the harmonost-Killing

157
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equation (HAKE) [100], derived from considerations of appmative symme-
tries in the spacetime. The numerical simulations perfarmih the Z3 and 24
systems, show that the generalized almost-Killing equa#d<E) [20] provides a
space coordinate condition that satisfies these requirtsmen

9.1 The Almost-Killing Equation

9.1.1 Harmonic Almost-Killing Equations

Killing vectors are solutions of the equation:

Eﬁ(gul/) = Vugu + Vl/fu =0. (9.2)

An intuitive example is choosing the time lines to be thegna curves of and
the time coordinate to be the affine parameter on these gurves

5 - 813.
Then the Killing equation written as
8tg/u/ =0, (92)

tells us that the metric is stationary, so the spacetime gagris preserved along
the integral curves of.

The AKE address the problem of finding 'quasi-stationarybrciinates (as
stationary as possible) in a generic spacetime [100]. liased on the idea of
finding "almost-Killing’ vectors fields#, using the standard variational principle,

5§=0, S= /L\/§ d*z. (9.3)

We consider for the Lagrangian densitya general quadratic form, which can be
written as a linear combination of the two scalars formedhwit tensor Eq. (9.1),

L= V&) Ve — S (v e
The resulting Euler-Lagrange equations take the folloviorg
V[V + VHE" — k(Vo€7)g""] = 0, (9.4)
or equivalently written as a wave equation,

0 + Ruw&” + (1 —k)0,(V,E") =0, (9.5)
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which admits as solutions Killing vectors and 'almost-Kidi’ vectors, for any
value of thek parameter. This AKE condition can be viewed from a geneatifn
of Eqg. (9.1).

An intuitive example of a vector satisfying the AKE, is thevector of the Z4
formalism. The Z4 can be written in the vacuum case as

R, +V,2,+V,2Z,=0.
Its subsidiary system is given by the contracted Bianchitities
Oz + R*,ZY = 0. (9.6)

Then the AKE casé& = 1 is a special choice, as Eq. (9.5) becomes the condition
Eq. (9.6) for theZ vector. One finds that the combinati¢W,~Z, + V,Z,) in the
Z4 system is minimized for this particular value lafsuch that one gets as close
as possible to the original Einstein system.

We consider the integral curves 6fto be the time lines of our coordinate
system. Then the Euler-Lagrange equations (9.4) in theapted coordinates
read:

g o, + (1 —k)g? 0,1, = 0. (9.7)
The choicek = 1 becomes a generalization of the harmonic coordinate dondlit
gm—atruu’r = 0.

The relationship between the harmonic and the 3+1 formaksmore trans-
parent if we decompose the contracted Christoffel symbbls: ¢*"T'#,. as

1
n,J" = ol = —g(ﬁt —pBP0,)a — K,
hi; , p
ofy = "S5 po)F —diot %Ap Lo ®r,.  (9.8)

The value of™® will provide an evolution equation for the lapse, namely tinge
slicing, and the value df; amounts to an evolution equation for the shift, which
determines the time lines for a given slicing. The main défee is that th&* are
constraints in the harmonic formalism, while the corresiiog 3+1 conditions are
part of the evolution system.

In the case of the Z4 systemk, = 1 is the only choice that ensures strong
hyperbolicity for the full system of evolution equationsuplgauge conditions.
This choice leads to the HAKE equation [100],

g o, + ... =0, (9.9)
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with extra Z terms included in order to obtain a well posedfgm. However, this
leads to a slicing condition which is not well suited for idwle simulations, as
the principal part exhibits a close resemblance with thenlbbarc coordinates

g =0, (9.10)

S0 it presents the same singularity avoidance problem dsattmeonic lapse (Sec-
tion 8.1).

9.1.2 Almost-Killing Shift

The idea of the AKE shift is still very appealing, as this atinate condition is not
only well adapted to the stationary spacetimes, but it alsvmizes the deviation
from the stationary regime. The problem consists in makiregduasi-stationary
conditions derived from the variation principle Eq. (9.8)patible with the sin-
gularity avoidance requirement for black hole evolutions.

A solution would be to split the slicing from the time linesclition. One can
notice that by enforcing = 9, we demand two things, namely that the time lines
are the integral curves of the almost Killing vectgrand that the time coordinate
is chosen to be the preferred affine parameter associatbdheise lines. While
the first requirement fits the idea of obtaining a quasi-@tatiy gauge condition,
the second one does not have a clear physical motivation. eAwigh to enforce
singularity avoidance in black hole simulations, the sela@guirement is not well
suited.

A better strategy is to choose a priori the time coordinatde $pacetime
slicing

¢(x#) = constant,
can be chosen such that it ensures singularity avoidancen @he can use this
time coordinate as a parameter along the integral linesetdliinost-Killing vector
&, by requiring
§'o,e = 1. (9.11)
One constrains this way the vectoto fulfill Eq. (9.11) in the minimization pro-

cess.
The new Lagrangian can be written as

L' =L+ A&"9,0 — 1). (9.12)

The Euler-Lagrange equations include now the constraint(€£41) and the sys-
tem
Vy[V7EH + VHEY — k(V,E7)g""] = oM e, (9.13)
which is a generalization of the almost-Killing equationd(® In adapted coordi-
nates,
¢ =t, g = 8t7
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the generalized AKE takes the form
g o+ (1= k)g?H oI, = N7 . (9.14)

We split the system into 3+1 components and use only the spamelinate
conditions, as the time slicing was chosen a priori. Oneiodta second order
evolution equation for the shift

Gor 9" O 1 + (1 — k)OI - = 0. (9.15)

This way, the AKE gauge conditions are completely separatethe generalized
AKE shift equation is compatible with any a priori chosendisiicing.

One can observe that the shift condition is independent efviilue of the
Lagrangian. This means that we could obtain the same conditom the original
unconstraint Lagrangian. We can conclude that the slicmgsizaint does not
affect the minimization process in the shift sector. Theegalized AKE shift
Eqg. (9.15) contains a free parameter, for which one can eéoos/ even the
harmonic valué = 1, as the requirement of singularity avoidance can be enflorce
separately.

9.1.3 Gauge Evolution Equations

In the 3+1 form of the Z3 and Z4 systems, the gauge evolutipmagided by the
following equations for the lapse and shift,

dha = —aQ, (9.16)
ap = —aQ’, (9.17)
whereQ andQ’ can be either a combination of other dynamical fields, orpede
dent quantities with their own evolution equation.
In the numerical evolution of harmonic spacetimes, as wenatanterested
in singularity avoidance, it is convenient to use the full Bkonditions Eq. (9.7)

which have a form close to the harmonic gauge. Their decoitiogrovides the
following evolution equations for the shorthan@sandQ*:

WP + 202(KpQ? — Q K) +20QP(A, + Z,) = 0, (9.18)
WP — 20QP(aK,' — B,") —2a*h"™(QP1 — h*1Q)(Dpgn + Dypn —
— Dupg) —40°(Q" — h"Q)Z, + aQ'(a(Q — K) + ' Ap) —
— 203(1 = k)(Q? — hPQ)(A, + Dp,?) = 0, (9.19)
whereP and P’ stand for the following combinations

P=a(Q— K +20) + PA,, (9.20)
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P' = aQ' + BPB," + 20*(D,F + Z') — ka*(DP, + AY). (9.21)
We use damping terms of the forma>Q in Eq. (9.18) andraQ’ in Eq. (9.19), in
order to ensure the stability of the solutions.

The standard harmonic lapse and shift gauge conditionseegcbvered from
the AKE Eqgs. (9.20 - 9.21), by setting the and P* evolution variables to zero
and choosing a value &f= 1 for the gauge parameter. In this way, the shorthands
Q and@’ can be directly calculated as

14
0 = k-2%-"a, 9.22)
. . . . . P .
Q' = a(A'+DP,)—2a(Z + D) — %Bpl. (9.23)

In the black hole evolutions presented in Chapter 6, we chluggbraic gauge
conditions, namely a singularity avoiding slicing of the-ldg’ type and zero shift,
translated into

Q = —K, (9.24)

Q" = 0.
Even though a vanishing shift works well, the black hole amigrows rapidly in
coordinate space, such that soon all the computational idosanside the black
hole. For long term evolutions, we would like to have an outiyaointing shift
vector, that will prevent the time lines from falling intogttolack hole.

The generalized AKE shift Eq. (9.15) offers us the posgibitif applying a
shift condition which is well adapted to stationary spacets. Even in cases where
there is only an approximate symmetry, the coordinates greated to adapt in
order to minimize the rate of change of the metric. For thelbl@oles evolutions
presented in the following section, we considered a contibimaf the singularity
avoiding slicing Eq. (9.24), with the quasi-stationary AKEift Eq. (9.19).

9.2 Numerical Analysis

9.2.1 Harmonic Spacetimes

In order to test the properties of the AKE gauge conditiorescloose first a simple
numerical setting, one of the standard ApplesWithAppleppsals. As described
in Chapter 4, the Gauge Waves test provides initial data b§flace in non-trivial
coordinates. It was designed for testing the ability ofati#ht formulations to
handle gauge dynamics.

The test considers flat Minkowski space in a slicing wheretheetric is time
dependent

ds® = (1 — H)(—dt* + da?) + dy® + dz?,
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Figure 9.1 lllustration of the Z4 metric components on the x-axis, in auGe Wave test
(H = 0.01) with the AKE conditions §k = 1, 0 = 2), resolutiondz = 0.005 and 3rd
order CFV method. The plots correspond to the component of the metric (upper panel)
and theB” component of the shift (lower panel), &tne = 0 (continuous dark-grey plot),
time = 10CT (dashed light-grey plot) andme = 100CT (black plot).
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Figure 9.2. lllustration of the Z4 metric components on the x-axis, in auGe Wave test
(H = 0.1) with the AKE conditions ¥ = 1, o = 2), resolutiondz = 0.005 and 3rd order
CFV method. The plots correspond to thie. component of the metric (upper panel) and the
£* component of the shift (lower panel),@tne = 0 (continuous dark-grey plot}jme = 10

CT (dashed light plot) antime = 100 CT (black plot).
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and H = Asin %ﬁ) is a propagating sine wave in the x direction. We run
the test with amplitude$/ = 0.001 and H = 0.01, on a computational domain
d = 1, with periodic boundary conditions. As the relevant dynzsris along the
x-axis, we consider a chanel with higher resolution in the direction (z =
0.005), while for the y and z axis we assign a minimum number of @ithe
numerical methods employed are a third order CenteredeFiatume algorithm
for the spatial discretization (Appendix 9.5) and a thirdesrRunge Kutta time
integration method (Appendix 9.4).

We perform the evolution with the Z4 system using the AKE dtiods, with
a parametek = 1 and dampingr = 2. Notice the form of the damping terms
in the AKE Egs. (9.18 - 9.19), which are constructed from fghtrhand-sides of
the evolutions equations for the lapse and shift Egs. (9916#). This damping is
responsible for the 'freezing’ behavior of the wave, preésérin Fig. (9.1) for low
amplitude and Fig. (9.2) for medium amplitude.

One can see for comparison in Chapter 4 the results obtaiitlke¢the harmonic
gauge for a medium amplitude wave. The profiles follow vensely the exact
solution Fig. (4.3). Only a small amount of dissipation isibie, as we are using
a third order method in order to get rid of the dispersionrerro

The behavior of the quasi-stationary AKE in the same setshgws that the
amplitude is quickly decreasing, such that we get very closthe stationary
Minkowski valueg,, = 1 after only 10 crossing-times (CT). Although a small
residual profile remains even aftéd0 CT, the change in the initial amplitude is
significantly reduced. Additionally, the shift vector greand stabilizes at a non-
zero value, while the lapse approaches a value of 1.

The same behavior has been reported in [20], where a sinehntas per-
formed with the Z3 system, for a value of the AKE paraméter 0.5 and damping
o =2.

9.2.2 Black Hole Spacetimes
9.2.2.a Black Hole in Spherical Symmetry

We present the evolution of a Schwarzschild black hole iregpal symmetry as
described in Section 6.1, in this case with non-vanishiriff. siihe line element
takes the form

ds* = —(tanhn)?dt? + 4M?(cosh n/2)*(dn? + dQ?), (9.25)

where we performed a coordinate transformation of the type % exp(n) to
the Schwarzschild line element in isotropic coordinates Bqgl). Our evolution
domain extends tg = 10M (r =~ 11000M).

The tests are performed with the Z3 system (Appendix 9.@hgre the free
parameter that couples the energy constraint in the evol@iuation for the ex-
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Figure 9.3. lllustration of the Z3 metric components as a function ofltgarithmicr coordi-
nate, in a Schwarzschild black hole simulation in sphesgaimetry, using the '1+log’ lapse
and AKE shift ¢ = 0.5, o = 2) conditions. We use a 3rd order CFV method, with resolution
dxr = 0.05. Left panel: The collapse of the lapse function is preseatédne = 50M and
time = 1000M, in a simulation with zero shift (continuous black plot) atheé AKE shift
(dashed grey plot). Right panel: The evolution of the AKHtsbkipresented atime = 50M
(continuous black plot)time = 100M (dashed dark-grey plot)ime = 200M (dashed
medium-grey plot) andime = 1000M (dashed light-grey plot).

trinsic curvature is» = 4/3. This choice leads to a system equivalent to a first
order in space variant of the BSSN, without the conformalodgmosition. We
combine the "1+log’ singularity avoiding lapse conditiog< (9.16), (9.24), and
the quasi-stationary AKE shift Eqgs. (9.17), (9.19), (9,24ith a value ofk = 0.5

for the gauge parameter aad= 2 for the gauge damping.

One can see in Fig. (9.3) a comparison with the simulatiorommal coordi-
nates, as presented in Section 6.1. The lapse shows a sitygal®@iding behavior
in both cases. The effect of the shift is adding some outgepeged to the grid
nodes, so that the advance of the collapse front acrossithis gielayed. One can
also notice a smoothing in the profile of the lapse, so thairitie better solved nu-
merically. The logarithmic character of the grid makes tifecknce between the
two simulations less obvious at later times, when the ce#dpont is at situated at
larger values of the coordinate.

9.2.2.b Black Hole in 3D

We present the evolution of a Schwarzschild black hole in 3Ddascribed in
Section 6.2, in this case with non-vanishing shift. Theahidata is provided by
the metric in isotropic coordinates, where the line elentakes the form

M\*
ds* = —a’dt* + (1 " 2_> (dr® +r%dQ%) (9.26)
T
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Figure 9.4. lllustration of the Z4 metric components on the x-axis, in(aSchwarzschild
black hole simulation, with "1+log’ lapse and AKE shift (= 1, 0 = 10). We use a 3rd
order CFV method, with resolutiofiz = 0.1. Left panel: The collapse of the lapse function
is presented atime = 10M (black plot),time = 20M (dark-grey plot) andime = 30M
(light-grey plot). Right panel: The evolution of the AKE his presented atime = 10M
(black plot),time = 20M (dark-grey plot) andime = 30M (light-grey plot).

anddQ? = df? + (sinf)?d¢®. We follow thestuffed black holepproach and
match a scalar field such that the metric becomes regulateirtee horizon Eq.
(6.15).

The test is performed with the Z4 system (Appendix 9.7). Thegg con-
ditions are provided by '1+log’ singularity avoiding lapsendition Eqs. (9.16),
(9.24), in combination with the AKE shift Egs. (9.17), (9).18.21), withk = 1
for the gauge parameter and= 2 for the gauge damping.

One can notice in Fig. (9.4) that the lapse function show=sairthe same
rate of collapse in the simulation where the AKE shift is\e&tcompared with the
vanishing shift simulation in Chapter 6, Fig. (6.14). We fordy a small decrease
in the K variable, which controls time variation of the metric cogéints. The
shift is not successful in slowing the dynamics and one ddsiro the behavior
associated with the 'Gamma driver’ condition Eq. (2.30).

9.3 Discussion

From a numerical point of view, the desired coordinates khbe free of arti-
ficial (coordinate) singularities, they should take adaget of the symmetry of
the problem, namely in stationary spacetimes they shouald e explicitly time
independent metric components, and in the absence of syiam#étey should
minimize the rate of change of the metric.

The 'Gamma driver’ shift condition currently used in comdtion with the
BSSN system in the moving puncture approach, manages twectiodé binary
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black hole data to a stationary state. In the case of an aispinary system,

one can consider an approximative Killing vector and onenésfa (non-unique)
corotating coordinate system. The coordinate system osgaeetime is obtained
by Lie-dragging the slice and its coordinates along theitgjlivector. However

this shift choice does not have the expected behavior whed uscombination

with other 3+1 Einstein systems.

We developed the AKE shift condition as an alternative td@esmma driver’
shift condition. The AKE gauge shows very good results inGaeige Wave Test,
as the metric gets very close to the stationary Minkowski@alln the case of a
black hole in spherical symmetry, the results are alsofaat@y. We have shown
both analytically and numerically, that one can combine’thdog’ slicing with
the generalized AKE shift, without loosing the quasi-stadéiry properties of the
AKE condition and the singularity avoidance of the slicinhe effect of the
shift is a delay in the advance of the collapse front acrosgtid, such that the
computational domain is prevented from falling into thecklhole. However, the
generalization to full 3D black hole evolutions requiredlier investigation.

We have added standard damping terms to the AKE conditiorder to
control the growth of the lapse and shift values. We found i results depend
crucially on the particular value of the gauge paramétand on the damping.
Furthermore, the preferred values lofchanges for different evolution systems,
namely we foundk = 0.5 for the Z3, andk = 1 for the Z4. These particular
values are in fact special, &s= 1 is a generalization of the harmonic coordinate
condition, while fork = 0.5 the minimum principle leads to a minimization of the
conformal-Killing equation, namely a quasi-conformalfsbondition. This opens
an interesting perspective for future work.



Concluding Remarks

In this thesis, we studied several analytical and numepoablems related with
simulations of general relativistic black holes and boganss The principal new
results are as follows.

We developed a new centered finite volume (CFV) method basdteoflux
splitting approach (Chapter 5). This algorithm is the finsedn the class of fi-
nite volume methods which allows third order accuracy by qi¢ce-wise linear
reconstruction. Used in combination with positive-coédfits Runge Kutta meth-
ods, it ensures that the monotonicity properties of thecbagblution step will be
preserved by the resulting strong stability preservingitigm. This CFV method
can also be used in the form of an adaptive dissipation algoriwhich can be
combined with the standard finite difference methods. Aglas one does not
require the use of limiters, the two approaches are equivaled can be applied
even to systems implemented in a non flux-conservative form.

A comparison between different techniques currently usddumerical Rel-
ativity, is performed in the context of a Schwarzschild kldole simulation in
spherical symmetry (Chapter 6). The study shows that our @fthod allows
longer and more accurate evolutions, even at low resolsitidihe method is effi-
cient especially in dealing with the steep gradients whitsean black hole evo-
lutions with vanishing shift.

We performed the first long term simulation of a Schwarzsichiack hole in
normal coordinates without excision (Chapter 6). Our sssaes not rely on
a specific choice of gauge conditions or treatment of theusamiy. We consider
two approaches for dealing with the BH singularity, nambb/puncture technique
and scalar field stuffing, and provide numerical evidencettiey have a similar
approach to the stationary state, in the context of normaiddinates and '1+log’
slicing.

The crucial ingredients in our 3D Schwarzschild black hoteugations are the
Z4 system and the efficiency of our CFV method. We devised andued version
of the Z4 system, with constraint adjustments and dampimgs€Chapter 3). In
addition, we use a flux conservative implementation, whidved to be important
in standard Numerical Relativity tests (Chapter 4).

We present the first general relativistic study of Mixed &tBbson Stars

169
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(MSBS) configurations (Chapter 7). Performing numericall@yons with the
Einstein-Klein-Gordon system in spherical symmetry, wiofo the evolution of
MSBS under massless scalar field perturbations. We fit thetgrate of the un-
stable configurations and extrapolate to find the maximuowall Noether frac-
tion which separates the stable and unstable models. Oufaions show that
even unstable MSBS settle into stable configurations thrahg scalar field ra-
diation. The results of this numerical study, regarding Ity term stability of
MSBS configurations, suggest that they can be suitable datedi for dark matter
models.

We performed a detailed study of gauge instabilities rdlatéh the '1+log’
family of singularity avoiding slicing conditions (Chap®). We study two classes
of Schwarschild initial data, by perturbing the initial $sgpand perturbing the initial
slice. Our numerical results based on evolutions with weriperturbation mod-
els, show that instabilities appear only for a restrictedagenitial perturbation
parameters. Most instabilities are associated with rugaseéutions. The slicing
with lapse equal to one initially, never creates instabsit which is in agreement
with the current numerical observations. We argue thatethhestabilities are not
generic for evolved gauge conditions.

We developed a generalized Almost Killing Equation (AKEhigh is ex-
pected to adapt the coordinates to the symmetry of the probleler study (Chap-
ter 9). The resulting 3-covariant AKE space coordinate @¢@mcan be used in
combination with any slicing, without loosing its quasatsbnary properties. The
behavior of the AKE shift in numerical evolutions of harmospacetimes (Gauge
Wave Test), manages to bring the metric close to the statiorsdue. In the case
of a black hole in spherical symmetry, the effect of the skit delay in the ad-
vance of the collapse front across the grid, such that thepatational domain is
prevented from falling into the black hole. However, thegmatfization to full 3D
black hole evolutions requires further investigation.



Appendix: Numerical Methods

9.4 Time Integration Methods

9.4.1 Crank Nicholson
The iterative Crank Nicholson integrator is defined as:
ki = kf(t,,u"),

k2 = kf(tn+k/27un+kl/2)v

ks = kf(tn+k/2,0" + ky/2),

W= u ks

9.4.2 Runge Kutta

Most of our numerical results are based on a 3rd order aecRitatime integration
method:

wo= A,

3 1

utt = Zu’”‘—i—zf(u*,At),
1 2

un+1 — §Un+§f(u**’At)

9.5 Spatial Discretization

9.5.1 Finite Differencing

The spatial discretization is based on a centered finitergifice method, 2nd order
accurate,

Do;Doj ifi#j

% = Doi a"aj_’{DHD_i ifi=j °
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or 4th order accurate,

Az
8; — D" = Dyi(1 — —g DyiD_;),

pWpW if i 4 j
62-63» — J A o o
DyiD_i(1 - 55-DyiD—y) ifi=j
where
Vitl — U5
D+'Uj = 7J+A(L‘ J s
Dy = WU
UV, — Vi—
DO'Uj = 7‘7+12ij 1,
Vijt1l — 20; +v i—1
DyD_v; = -* AT

For a summary of definitions and results for standard finitierdince discretiza-
tions one can see [40], where some results concerning thetievosystems that
we considered in this thesis are derived.

9.5.2 Kreiss-Oliger Dissipation

It is common practice to add third order accurate Kreissgéldissipation [101]
to all the right-hand-sides of the time evolution equatiags

81311 — atll + Qu.

We use the following general form of the Kreiss—Oliger giasion operator) of
order2r,

Q = o(-1)"" V(A "Dy ) (D-)" /2%,
for a(2r —2) accurate scheme, where the parametergulates the strength of the
dissipation.

9.5.3 Finite Volumes

The explicit steps that one needs to follow when applying @antered Finite
Volume (CFV) method are:

e The algorithm for the grid point:
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- Calculate the left and right predictions for the fluxes:
FR, = F;,— \u,. (9.28)

- Calculate the left and right slopes of the left flux in thel éeby using the
left fluxes in the neighboring points:

DL; = (FL;—FL;_),
DR; = (FLjy1—FL;).
- Calculate the slope of the left flux in the cellby averaging the above

computed slopes:

- Calculate the left and right slopes of the right flux in th# ¢eby using the
right fluxes in the neighboring points:

DL; = (FR;—FR;—4),
DR; = (FRiy1 — FRy).
- Calculate the slope of the right flux in the céllby averaging the above

computed slopes:
SR; =bDL; + aDR,. (9.30)

e Repeat the algorithm for th + 1) grid point.
o Compute the left and right flux at the interfage+ 3):

1
Ly = FLi+3SL; (9.31)
1
RH% = FRi+1_§SRi+1> (9.32)

and average them in order to obtain the final flux at the interfa

1
= §(Li+§ + Ri—i—%)'

Fiy

=

e Repeat the scheme for the flux at the interféaice ).
e Obtain the value of the flux in the grid poihas:
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A comparison between our CFV method with the dissipatidriefms) sup-
pressed, and the standard 4th order finite difference scladlows us to uniquely
determine the slope coefficients Egs. (9.29), (9.30).

An equivalence between the CFV method with= 0 and the standard FD
algorithms can be obtained in the following way:

e The second order finite difference algorithm can be recalvin the pre-
viously described CFV method by setting the numerical speee: 0 in
Egs. (9.27), (9.28) and the slop84. = SR = 0in Eqgs. (9.31), (9.32).
After performing the replacements, one obtains:

1
= S5-I+ Fi),

Fi+% 2dx
1
Fi_% = %(Fi—l-i'Fi)»
Fiy1 — Fiy
F, o= STl
! 2dx

e The fourth order finite difference algorithm can be recosdrem the pre-
viously described CFV method, by setting the numerical dpee= 0 in
Egs. (9.27), (9.28). A simple calculation leads to:

1 1

Fo= %[Fi + 5((@ —b)F; —al; 1 +bFj1q) +
+ Fit = 5((0—@)Fi1 +aFiys — b)),
Fii = ——[Fiy+o((a—b)Fy - aFiy +bF) +
2 2dx 2
bR = 5((b— )R + aFi — bF )]
Fo— (—aFi 2 +8akFiy1 — 8aF;_1 + an‘—z)’

4dx

Comparing with the standard 4th order FD algorithm, oneiobta =

1
g .
The value ob = £ is obtained taking into account the constrint-b) = 1.
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9.6 The Z3 system

9.6.1 The Z3 system in spherical symmetry and normal coordiates

Consider a Schwarzschild line element written as
ds® = —(tanh r)2dt* + 4M?(cosh r/2)*(dr? 4 d0?), (9.33)

corresponding to

ds® = —a?dt? + hypdr? + hggdQ?.

Then the evolution equations of the Z3 system used to evaBehavarzschild
black hole in spherical symmetry can be translated into:

Othry = —2ah., K",
Othgg = —2ahgeKy”,
8,4, + OafK] =0,
oDy" 4+ OplaK,"] =0,
oDy’ + 0.]aKy’] =0,
o Z, + O [204K99] =

Il
[\
L
)
=
/—?
=
:
|

KGG) + ATKGG - KTTZT]y
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OK," + Dok (A + (2= m)Dr” — (2= 5)Z,)] =

= alK,"K," 4 (2 —n)K, Ky — gngng -

— WD (A 4 (2 —n)Dyef + (g —Z,) +

b HTDG (2 - A~ (2= DD’ nZ,) -
— WT(2—n)AZ, — ghee]’
O+ Ofah((1=m)Du’ + 57, =
= a[(l -n)K, K" + (2 - g)ngKee _
— WDy ((1—n)Dyp” + gzr) n

b HTDG (2 - )7~ (2~ 2D) -

— nTA(Dy’ = Z) + (L= 5]

9.6.2 The Z3 system in spherical symmetry, normal coordin&s and
regularization

Consider a Schwarzschild line element written as

M 4
ds® = —a?dt® + (1 + 5) (dr® + r2dQ?),

corresponding to
ds? = —a®dt* + hypdr® + heer?dQ2.

Then the evolution equations of the Z3 system used to evolvesan star
configuration can be translated into:

Othyy = —2ah. K",

Othgy = —20hgeKy’,

WA, + OfafK] =0,
ODy" +  OpaK,"] =0,
0Dy’ + O;lak,’] =0,
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8tZr

8tK7"T

9, Ky?

+

87[2(1}(96] =
1h 1 h
20 — (K’ - K,") - K,” | Z, + — [1-
a{47‘h99( 0 ) |: +47‘< h99>:|+
1
<Dre"+ —> (K," — Ko¥) + A, Ky’ —4m},
T

2 4
T " Ar _Dre__Zr =
o o (450’ - 32

2
a {(K,ﬂ“)2 + §K99(Kx — K) —h'"D," A+

1
3—r[h""(DWT — A, —42Z,) + h%(D,y% — A)]+

2 1 h

S\ Zo+— (1= 22 ) | (2D,." — 2D,4% — A,)—
3 [ T < h99>] ( 0 )

2 rr 0 1 r T STT 6
gh <Dr0 +;> (Drr Ar)+877 <6 2 +S€ >},

1 2
T " __Dr 0 _Zr =
19) [ah ( 3o + 3 )]

1
a {gKae(—Kﬁ +4Ky%)+

1
oW (A = 2Dy — 42,) + h% (A, —2D,%)]—

2 1 h

SR Z+ — (1 - 2 ) | (D" — Dy? — 24,

3 [ +47’< hee)]( ’ *

1 rr 0 1 r T STT 0
3h <DT9 +T> (DW 4A,) + 8w <6 5 + Sy )}

9.6.2.a The Matter Terms

The matter terms introduced by a complex scalar figle= ¢ — i¢!, can be
explicitly written as:

SO + (] + W00 + (8597 + (61 + (™)),
VAT (Gl b+ 011y,
SO0 + 6]+ K00 + (85— m2[(61)? + (6771,

SUTION + (OR] = B ID? + (6 — (6 + (6™},



178 Einstein Systems

where the radial and temporal derivatives are denoted by

(bt = @at¢7
«
¢r = 8r¢>

and the evolution of; , is given by the Klein-Gordon equations.

9.6.2.b Characteristic Decomposition

The characteristic decomposition of the system, along argngspace direction,
is given by the following fields which propagate

e along the time lines (with zero speed):

«, hrra h9€7 ¢7 Ara (Ar - f t?“D), (2Dr06 - Zr)?
e along the light cones, with speedsyv/ A"
1
aky? + a\/h""g(2Zr — DY),

Or £ O
e with gauge speed-a/f:
o/ f K +aVhTA,,

wheref = 1 for our gauge choice of harmonic slicing.

9.6.3 The full Z3 system

The Z3 system has the form:

1 1
Ochij = —20lKij = 5 (Bij + Bji) = ~ Dy,
0Zi + O~ Zi+ o(—KP +67K) + p(BY 5 B,")] = S(Zy),
O Kij + Op[=B K+ afXy — gh,-j(Dp — EP — ZP)}] = S(K55),
where thet parameter comes from the definition of the Ricci tengaorresponds
to the ordering choice andtunes the coupling with the energy constraint, allowing

us to obtain different forms of the Z3 system (Section 3.1The shorthands can
be translated aB; = D;,P andE; = DP,,.
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The A?;; in principal part of the extrinsic curvature equation canvoéten
explicitly as

Nij = DPyj— %(1 +O)(Dyg? + Dji?) +
4 %@-p(Ai b Di— (1—&)F; —27) +
bSO+ Dy~ (1 - B, — 22)).
The Z3 source terms are given by
S(Kij) = Szu(Ki)— ghijsm(e) = ga(m — EP — ZP)(2Dyij + Aphij),

S(ZZ) = Oé[AzK - Apri — Diqupq + Dpri - 2K7”,Zp] - ZitTB —
—8raS;.

9.7 The Z4 system

The Z4 system has the form:

1 1
Othij = —2a[K;; — %(Bij + Bj;) — > pii O],

0Zi + Op[-FZ; + al—KP +6:(K — 0)} + u(B¥ — 6:7trB)] = S(Z),
OiKij +  Op[=FPKij + aij] = S(Kyj),
00 + 0p[—pP0 +a(DP — EP — ZP)| = S(0).
The Z4 source terms are given by

S(K;j) = —KitrB+ KpBjP + K,;B¥ +
+a{D”(Dijp + Djip — Dpiz) +
+%(1 — ED[(Ap = 2Bp)(Dig? + Dyji?) — (A Ei + AiEj) +
+2(Dypgi Dj** + Dpg; Di*1)] + %(AjDi + AiDj) +
+2(Dpgj DPi = Dypg DT — %Diququ) +
—22P(Dipj + Djpi — Dpij) — (AjZi + AiZj) —

—2quin + KZ](K — 2@)} — 87TC¥[SZ" — %(WS — T)],
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S(ZZ) = Oé[AZ(K - 29) — Apri — Diqupq + Dpri - 2KpZZp] —
—ZitrB + ZpBip — 8ralS;,
S(0) = F24,(D" = BY =227) + D,""(2Dyg = D'y -

-DP(D, —2Z,) — KK, + K(K — 20)] — 6tr B — 8mar.

9.8 The Friedrich-Nagy system

9.8.0.a The constraint equations fdr

(e1)P0pT 232 — (€2)POpI'231 — E31+
+Xx23X21 + X22X13 — 2X23X12+ (9.34)
+D9321'991 — 9911131 + 217231 M121 = 0,

(e2)P0pT'131 — (€1)POp'231 — Eso+
+x23X11 + X12X13 — 2X21X13+ (9.35)
+D9321M121 — I'1211M131 — 21793117221 = 0,

(e3)POpI'131 — (€1)POpI'331 + Eao+
+x33X11 + X13X13 — 2Xx31X13F (9.36)
+1'3320M121 — 1311131 — T'3311'331—
—T931T931 — 2732117231 = 0,

(e3)P0pT232 — (€2)P0pT'332 + E11+
+X33X22 + X23X23 — 2X32X23— (9.37)
—I'3311921 — I'a320"232 — ['33217'332— '
—I'9311'931 + 2I'321'231 = 0,

(e3)POpl'a31 — (e1)POpI'330 — Eg1+

+X33X12 + X23X13 — X32X13 — X31X23— (9.38)
—I'3311"121 — I'a32l’231 — ['3300'331—

—Tog11M131 — I'321T232 + I's21 131 = 0,

(e3)P0pl'231 — (e2)POpl'331 — Eo1+

+X33X21 + X23X13 — X32X13 — X31X23— (9.39)
—I'3311'332 — I'2320'321 + ['33017991 —

—Tog11M131 — Tagallog1 + 's211'131 = 0,

(e1)P0pI'321 — (e3)POpM121 + Eso—
—X32X11 + X31X12+ (9.40)
+1'3310301 + 2211321 + '332131+
+1'1210131 — 3311231 + 231221 = 0,



9.8 The Friedrich-Nagy system 181
(€2)P0pI'301 — (e3)POpI'221 — E31—
—X32X21 + X31X22—
941
—I'331'232 + I'9211"939 + I'3321"231 — ( )
—I'1211'321 + I'121231 + I'3321'301 = 0,
(e2)POpI'121 — (€1)POpI'291 — En1—
—F2 — x12X21 + X11X22—
9.42
—I'991'221 — I'211M121 + T'2311M231 — ( )
—I'930I'131 = 0.
9.8.0.b The constraint equations foy
(e2)POpx11 — (€1)POpx21 — B3 — x21F1 + x12F1—
—x130231 — x211'221 — x120221+ (9.43)
+x230'131 + x221'121 — x111'121 = 0,
(e2)P0px12 — (€1)POpx22 — B3z — x21F2 + x12F5—
—x130232 + Xx2317231 — x221'201+ (9.44)
+x11221 — x211'121 — x121'121 = 0,
(e3)POpx21 — (€2)P0px31 — B11 — x32F1 + x23F1—
—x311'332 — x230'331 — x220'321 + x111'321— (9.45)
—x211'232 + x331'231 — x111'231 + Xx321'221 = 0,
(e3)POpx12 — (€1)POpx32 + Baa — x31F2 + x13F5—
—x131'332 — x320'331 — Xx220'321 + Xx111'321+ (9.46)
+x331'231 — x220'231 — x121"131 — Xx311'121 = 0,
(e3)POpx11 — (€1)POpx31 + Bar — x31F1 + x13F1—
—x311'331 — x130'331 — x21'321 — x121'321— (9.47)
—x21T'231 + x330'131 — x11M131 + x321"121 = 0,
(e3)POpx22 — (€2)POpx32 — Ba1 — Xx32F5 + Xx23Fo—
—x321'332 — x230'332 + x21'321 + X120'321+ (9.48)
+x3307232 — x22'232 — x121'231 — Xx311'221 = 0,
(€1)POpxa3 — (€2)POpx13 + fx21 — [x12 — Boz — B+
+x21'232 — 2x121M232 + X220'231 — Xx111'231+ (9.49)
+x230221 + 2x211'131 — x121'131 + x1307121 = 0,
(e3)POpx13 — (€1)POpx33 — fx31 + fx13 + Baa+
+x120'332 — x330'331 + x111'331 — Xx230'321 — X3117232+ (9.50)
+x131232 — x32'231 — x231'231 — 2x311'131 = 0,
(e3)POpxa3 — (€2)POpx33 — fx32 + fx23 — B31—
—x330'332 + Xx221'332 + x21'331 + Xx131'321 — 2x321232— (9.51)

—x311'231 — x130'231 — x321"131 + x231'131 = 0.
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9.8.0.c The evolution equations fdr

(e0)POpI'121 + Ba1 + x11F2 — x12F1+
+x111121 — x230131 + x12T7221 + x1317231 = 0,
(e0)POp'221 + Bag + x21F2 — x22F1+
+x1307232 — Xx230'231 + x221'221 + Xx211'121 = 0,
(€0)P0pI'321 — Baa — Bi1 + x31F2 — x32F1+
+x130'332 — Xx231'331 + X330'321 + X321'221+ (9.54)
+x230'221 + x311'121 + x131'121 = 0,
2(e0)P0pl'231 — (e2)P0px13 — (€1)POpx23+
+fx21 + fx12 — Boa + Bi1 — 2x13F> — 2x23F1+

(9.52)

(9.53)

9.55
+x211'232 + 2x12232 + x221'231 + x111'231+ ( )
+x230221 + 2x21'131 + x121'131 — x131'121 = 0.

(€0)POpI'331 — (e1)POpx33 — Xx33F1 + x12I'332 + x11'331 = 0, (9.56)
(€0)POpI'332 — (e2)POpx33 — X33F2 + x22I'332 + Xx211'331 = 0, (9.57)
(€0)POpI'131 — (e1)POpx13 + fx11 — Bo1— (9.58)

—2x13F1 + x11T'232 + x121'231 + 2x11M131 + Xx231121 = 0, '
(€0)POpT 232 — (€2)POpX23 + fX22 + Bo1— (9.59)

—2x23F5 + 2x221'232 + x211'231 — Xx130'221 + Xx221'131 = 0,

9.8.0.d The evolution equations foy

(e0)POpx12 — (€1)POpFa + Egy—
—X23X13 + X22X12 + X12X11— (9.60)
— Iy Fy 4 fTo31 — Fil'1o1 + 'azol’a31 + oz I'i31 = 0,

(€0)POpx21 — (€2)POpF + Ea1—
—X23X13 + X22X21 + X21X11— (9.61)
— Iy Fy 4 fTog1 + Fol'ao1 + I'azol’a31 + 'z I'131 = 0,
(€0)POpx11 — (€1)POpF1 + E11—
—X13X13 + X12X21 + X11X11— (9.62)
—FFy + T30 + Fol'o1 + T'agalMi31 + T'izil'i31 = 0,
(e0)POpx22 — (€2)POpFs + Egp—
—X23X23 + X12X21 + X22X22— (9.63)
—FoFy + fTo39 — F1I'201 4 T'a321'932 + I'a301'131 = 0,
(€0)POpx13 — (€1)POpf — (e2)POpl'ag1 — (e1)POpIM 131+
+X23X21 + X22X13 + 2X13X11— (9.64)
—fF1 — F1T932 — FyI'a31 — 2F1 131+ '
+2l 9311121 — I'2211M131 + I'2211'232 = 0,
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(€0)POpx23 — (€2)POp f — (e2)POp'a32 — (e1)POpL 231+
+X23X11 + X12X13 + 2X23X22— (9.65)
—fFy — F1T931 — F3l'131 — 2F500930— '
—2I'921 931 + ['agoll121 — I'i31l'121 = 0,

(€0)POpx31 — (€3)POpF1 + E31+
+X31X11 + X13X11 — X33X13 T X23X21 + X32X21 + X33X31+ (9.66)
—fF1 + fI331 — F1l'a32 — F1I'131 + Fl'391+
+1'331232 + I'3311'131 = 0,

(€0)POpx32 — (€3)POpF + Esa+
+X31X12 + X13X12 + X33X32 + X23X22 + X32X22 — X33X23+ (9.67)
—fFs + fl332 — F1'391 — Fl'a39 — FblM31+
+1'1310332 + ['3320'232 = 0,

(€0)POpx33 — (€3)POp f — (€2)POpI'332 — (e1)POpI'331+
+x33X33 T X33X11 + X33X22 + 2X23X23 + 2X13X13—
—f? = 2fT131 — 2fTa3s — Fil's31 — Fol's30— (9.68)
—I'3321'332 — I'3311'331 + ['3300"121 — I'33107221—
—2T 93217932 — 2793117231 — 2193217131 — 27131 1M131 = 0,

where the following constraints fat were added to the evolution equations for
Eq. (9.34) to Eq. (9.64); Eq. (9.35) to Eq. (9.65); Egs. (2.88.37) to Eq. (9.68),
and the constraints foy to the evolution equations far. Eqg. (9.50) to Eq. (9.56);
Eq. (9.51) to Eq. (9.57), in order to obtain a symmetric hippéc system.

The Gauss equation with respect to the hypersurfacéRo; . j ) corre-
sponds taRy121 EQ. (9.52),Rp201 EQ. (9.53),Rp120 EQ. (9.60),Rg210 EQ. (9.61),
Rp110 EQ. (9.62), Ry220 EQ. (9.63). The Codazzi equation with respect/to
(Ri”’j”’3k”’) can be written a$p131 Eq (9.58),R0232 Eq (9.59),R0132 + Roo31
Eq. (9.55),Ro130 + Ri232 EQ. (9.64),Ro230 + R2131 Eq. (9.65).

9.8.0.e The evolution equations for the frame

In the following, we will consider a specific gauge, for whigh)* = (e2)* =0
andfy = Fy, = 0.

Ao(e1)? — Fy + xi2(e2)? + xa1(e)” = 0, (9.69)
doer)" + x12(e2)" + x11(er)t =0, (9.70)
do(e1)? + x12(e2)? + x11(e1)? = 0, (9.71)
do(e2)” — F + x22(e2)” + x21(e1)° = 0, (9.72)
Bo(e2)" + xa2(e2)" + x21(e1)' =0, (9.73)
do(e2)? + xa2(e2)? + xa1(e1)? = 0, (9.74)
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Ao(e3)' + x3a(es)t + xa2(e2)' + x23(ea)! + xz1(er)t + x13(e1)' =0, (9.75)
Ao(e3)? + x3a(es)? + xa2(e2)? + x23(ea)® + xz1(e1)? + x13(e1)? = 0, (9.76)

do(e3)® + xa3(es)® = 0. (9.77)

do(e3)? + x33(e3)? + x3a(e2)? + x2s(e2)? + x31(er)? + xazler)? — f —
—T'og0 —T'131 =0, (9.78)

9.8.0.f The constraint equations for E

(eg)papEgl + (eg)papEgl + (el)f”apEll—
—B3ax33 — B22Xx32 — 2B11X32 + B21Xx31 — Baaxos+
+B11x23 + Ba2x22 — Bsixe1 — 2B21x13 + 2B31x12+ (9.79)
+E91330 + Eool's31 + 2E111'331 — E32'301 — E311M030—
—FE390'931 — Eool'901 + E111'991 — 2E311'131 — 2E21I'121 = 0,

(e3)POp L3 + (€2)P0p Faa + (€1)P0p Eor1+
+B31x33 — B21x32 + 2B22X31 + B11x31 + 2B21X23—
—2B3ax21 — Baax13 + Bi1x13 + Baaxi2 — Baixii+ (9.80)
+2F991'330 + E111'330 + Eo11'331 + E311'301 — 23217930 —
—FE310931 + 2E011'991 — E320'131 — E2ol'121 + E11l'191 = 0,

(el)papEgl — (63)p8pE22 — (eg)p8pE11—
—2B31Xx32 + 2B32Xx31 + B31Xx23 — B21Xx22 + 2B22X21+
+B11x21 — Ba2x13 — Baax12 — 2B11x12 + Baixii+ (9.81)
+2E300'330 + 2311331 + 2E921932 + 2E111'131 + 2E21 931+
+E31901 + Fool'131 + E11l230 — Ei3al'191 = 0.

9.8.0.g The constraint equations for B

(63)p8p331 + (eg)paszl + (el)papBll-i-
+x33E32 — x22F32 + X21 F31 — 2x12F31 + x32 00+
+x23E22 — x31 821 + 2x13 21 + 2x32 511 — X23F11+ (9.82)
+B91'339 + Baal'331 4+ 28111331 — B3al'391 — B311'232—
—B3ol'931 — Baol'og1 + B111'991 — 2B311'131 — 2B21I'121 = 0,

(eg)papng + (62)p8p322 + (61)p8p321+
+2x21F32 — x12F32 — Xx33E31 + x11E31 — 2Xx31E02+
+x13F22 + x32F21 — 2X23F21 — x31E11 — x13E11+ (9.83)
+2B221'332 + B111'332 + B211'331 + B31'321 — 2B320'230—
—B311'931 + 2B211'921 — B3aI'131 — Bool'121 + B11l'121 = 0,
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(eg)papng + (eg)papBll — (eg)papng — (el)p8PB31+
+2x31 32 — x13F32 — 2x32F31 + X23F31 + 2x21 Eoo—
—X12E22 — Xx22F01 + x11E21 + X21E11 — 2x12F11—
—2B321'330 — 2B311'331 — 2892230 — 2B11M131 — 2B91M231—
—B31I'221 — Baal'131 — B111'232 — B3al'121 = 0.

9.8.0.h The evolution equations for E

(eo)f”(‘)pEll + (eg)papBgl — (eg)papBgl—

—FE22x33 + E11x33 + E3ax32 — E31x31 + E32x23+
+Eaox22 + 2E11x22 — E21x21 — 2E31x13 — 2f Ba1+
+2B31F» + B311'332 + B3al'331 + Baol'sor — B11l'301—
—B21T232 + Baoal'a31 + 28111231 — B3al'o21 — 28211131 = 0,

(eo)papEgg — (el)papng + (eg)papBgl-F
+FE92x33 — E11xss — E3axs2 + Ezixs1 — 2E32x23+
+E31x13 — E21x12 + 2E22x11 + Erix11 + 2f Bo1—
—2B3oF| — B31T'330 — B3a'331 — Baol'so1 + B11l'301+
+2B211'932 — 2B22l'931 — B11l'231 — B31l'121 + Bo1l'131 = 0,

2(60)p8pE31 + 2(61)1781,321 — 2(62)p6p311+
+FE31x33 — E21Xx32 + 2E22x31 + E11x31 + 4FE31X22—
—2FE32x21 + 3E22x13 + 3E11X13 — E32x12 + E31x11—
—Es1x33 + Eo1x32 — 2E22x31 — E1ixs1 — 2E21x23+
+2E32x21 + E2ax13 — E1ix13 — Esaxi2 + Esixii—
—2B32l'932 + 2B311'231 + 48211201 —
—4B321'131 — 2B92'121 + 2B11'121 = 0,

2(eo)p8pE32 + 2(61)p8p322 — 2(62)p8p321+
+E32x33 — Eo1x31 + Eoaxsz + 2E11x32 + 4E32x11+
+FE32X22 + 3E22X23 + 3E11X23 — Es1x21 — 2E31X12—
—FE32x33 — Eoox32 — 2E11x32 + Fa1x31 — Ea2x23+

+E11x23 + E32X22 — Ezi1x21 — 2E01x13 + 2E31X12+

+2B31f — 2Bo1 F5 + 4By Fy + 2B11 F1+

+4B311'932 — 2B321'931 + 2B22l'991 —
—2B11T921 + 2B31'131 +4B21'121 = 0.

(9.84)

(9.85)

(9.86)

(9.87)

(9.88)

2(60)p8pE21 + (eg)papng — (el)pé)pBgl — (eg)”c‘?png + (eg)papBll-i-
+4E91x33 — 2E31X32 — 2E32x31 — 3E31X23 + E21X22 — 2E22X21—

—Erix21 — 3Es2x13 — Eaaxi2 — 2E11x12 + E2ixai—
—2fBoy +2fB11 + 2B32F> — 2B31 F1+
+2B320'330 — 2B311'331 — 4B21'321 + 3B111M232+
+B311'921 — 3B221'131 + B32l'121 = 0,

(9.89)
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9.8.0.i The evolution equations for B

(€0)P0pB11 — (€2)P0pE31 + (€3)P0pFo1—
—Baoxss + Bi1x33 + Bs2x32 — B31x31 + Bsaxas+
+Baax22 + 2B11x22 — Boi1x21 — 2B31x13 + 2f E21— (9.90)
—2F31F5 — E311'332 — E3ol'331 — Fool'sor + Eq1'301+
+Eo1'030 — E9ol'og1 — 2E11M231 + E32l'991 + 2E911M31 = 0,

—(eo)papng — (el)papEgz + (eg)f”Z?pEgl—
—Baox33 + B11x33 + Bs2xs2 — B3ixs1 + 2Bsaxa23—
—Bs1x13 + B21x12 — 2B22x11 — Biixi1 + 2f Eo1— (9.91)
—2F32F) — E311'330 — E32l'331 — FEaal'301 + E11l'301+
+2F91T930 — 2E901931 — E111'931 — E311M101 + Eo11M131 = 0,

2(60)1781,331 — 2(61)p8pE21 + 2(62)p8pE11+

+B31x33 — Ba1Xx32 + 2B2ax31 + Biixs1 + 4Bz x22—
—2B39X21 + 3B22X13 + 3B11X13 — B32Xx12 + Bs1x11—
—Bs1x33 + B21X32 — 2B22Xx31 — B11x31 — 2Ba1x23+ (9.92)
+2B32x21 + B22X13 — B11Xx13 — Bsax12 + Baixu+ '

+2E30f + 2E90Fy + AE 1 Fy — 2E9 F1+

+2FE321'930 — 2E311931 — 4FE01 9091+
+4FE331'131 + 2E22M121 — 2E111M21 = 0,

2(eo)p8p332 — 2(61)p8pE22 + 2(62)p8pE21+
+B32x33 — B2a1x31 + Baaxs2 + 2B11xs2 + 4Bs2x11+
+B32X22 + 3B22X23 + 3B11X23 — B31Xx21 — 2B31X12—
—B32X33 — B22X32 — 2B11Xx32 + B21Xx31 — Boax23+ (9.93)

+B11x2s + Bs2x22 — Bsix21 — 2Ba1x13 + 2B31X12— '

—2B31 f + 2E91 Iy — 4E9»Fy — 2E11F1—

—4F31 930 + 2E321931 — 2E901M991 +
+2F111901 — 2311131 — 4E011'191 =0,

2(60)p8p321 — (eg)papEgg + (el)papEgl + (eg)pé)pE22 — (eg)pE11+
+4B21x33 — 2B31X32 — 2B32x31 — 3B31Xx23 + B21X22 — 2B22X21—
—Bi1x21 — 3Bsax13 — Ba2x12 — 2B11x12 + Baixut+ (9.94)
+2fFE — 2fFE11 — 2E32F5 — 2E31 F1— '
—2F391'330 + 2E311'331 + 4F21'391 — 3F711T7230—
—E31901 + 3E221'131 — E32I'121 = 0,

where the constraints for E, Eq. (9.79), respectively EQQR were added to the
evolutions for B, Eq. (9.93), respectively Eq. (9.92), dnel tonstraints for B, Eq.
(9.82), respectively Eq. (9.83) to the evolutions for B, E1188), respectively Eq.
(9.87), in order to obtain a symmetric hyperbolic system.
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