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Clustering and Classifying Diverse HIV Entry Inhibitors Using a Novel Consensus
Shape-Based Virtual Screening Approach: Further Evidence for Multiple Binding Sites

within the CCR5 Extracellular Pocket
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HIV entry inhibitors have emerged as a new generation of antiretroviral drugs that block viral fusion with
the CXCR4 and CCR5 membrane coreceptors. Several small molecule antagonists for these coreceptors
have been developed, some of which are currently in clinical trials. However, because no crystal structures
for the coreceptor proteins are available, the binding modes of the known inhibitors within the coreceptor
extracellular pockets need to be analyzed by means of site-directed mutagenesis and computational
experiments. Previous studies have indicated that there is more than one binding site within the CCR5
extracellular pocket. This article investigates and develops this hypothesis using a novel spherical harmonic-
based consensus shape clustering approach. The consensus shape approach is evaluated using retrospective
virtual screening of CXCR4 and CCR5 inhibitors. Multiple combinations of CCR5 ligands in multiple trial
superpositions are constructed to find consensus queries that give high virtual screening enrichments.
Receiver-operator-characteristic performance analyses for both CXCR4 and CCR5 inhibitors show that
the new consensus shape matching approach gives better virtual screening enrichments than existing shape
matching and docking virtual screening techniques. The results obtained also provide strong evidence to
support the notion that there are three main binding sites within the CCR5 extracellular cavity.

INTRODUCTION

Human immunodeficiency virus (HIV) entry inhibitors
have emerged as a new generation of antiretroviral drugs
which work by blocking interactions between the viral
surface gp120 protein and the CXCR4 and CCR5 plasmatic
membrane coreceptors of the host cell.1-4 A considerable
number of small molecule antagonists for CXCR4 and CCR5
have been found to be effective for preventing viral entry,
and some of them have been evaluated in clinical trials.5-9

However, no crystal structures of these coreceptors or their
ligand-bound complexes are available. Consequently, several
site-directed mutagenesis (SDM) and computational experi-
ments have been carried out to identify the binding modes
of the existing inhibitors. Analysis of the key CXCR4 SDM
residues points to a well-defined localized binding cavity,10

but the CCR5 SDM residues are found to be spatially well-
distributed around the pocket within the extracellular loops.11

Moreover, the small-molecule inhibitors for CXCR4 are
generally quite similar to each other, whereas CCR5 has
many different inhibitors which derive from several diverse
scaffold families. Several earlier computational binding
experiments have indicated that different CCR5 ligands bind
in fundamentally different ways within the CCR5 extracel-
lular pocket.12-16 Furthermore, considering that (a) it is very
difficult to superpose all the different families of CCR5 active
compounds, (b) the results of retrospective virtual screening

(VS) enrichment studies are strongly dependent on the
conformation of the query molecule, (c) SDM results suggest
a large binding pocket within the extracellular loop region
of the CCR5 structure, and (d) not all SDM mutations affect
the binding of all ligands, there is good evidence to support
a hypothesis that the known binders belong to two or more
groups and that the members of each group bind to the same
general region of the extracellular pocket. However, it is not
clear a priori which actives might belong to which group. For
example, different computational binding mode studies of
ligands such as Aplaviroc,13,15 AD101,11,17 SCH-C,11,13-15,17

TAK-779,11,13,14,17-21 TAK-720,19 2-aryl-4-(piperidin-1-yl)-
butanamines,14,16 and 1,3,4-trisubstituted pyrrolidines piperi-
dines,14,16 predict that they each bind in different ways within
the CCR5 pocket. Hence it is difficult to obtain a clear picture
of how these diverse ligands function.

Here we investigate the multisite binding hypothesis using
a new consensus shape matching technique based on spheri-
cal harmonic (SH) representations of surface shapes22 to
perform rapid and exhaustive comparison and clustering of
multiple combinations of ligands in multiple trial superposi-
tions. This novel SH-based shape-matching approach uses
one or more “pseudomolecules”, obtained from the consensus
shapes of the most active molecules, as VS queries against
a database of known actives and decoys. The algorithm has
been implemented in the ParaFit module of the ParaSurf suite
of programs.23 The new consensus shape-matching approach
has been developed specifically to help analyze targets with
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large ligand-binding pockets, although it may also be used
in conventional VS studies where there are multiple known
actives.

This article presents our new consensus shape matching
VS approach and applies it to a large database of CXCR4
and CCR5 active inhibitors and comparable inactive decoys
which was compiled previously.12 Several trial CCR5 and
CXCR4 consensus shape queries are constructed by cluster-
ing and superposing selected known actives, and the utility
of each query is assessed using receiver-operator-character-
istic (ROC)24 plots. The area under the curve (AUC) of each
ROC plot is used to provide an objective measure of the
ability of each consensus shape to recognize known actives
with similar shapes. To find the best clusters of binders with
which to characterize the different groups of CCR5 antago-
nists, we conduct systematic experiments in which AUCs
are compared for clusters formed in different ways. The best
consensus queries thus found are then further analyzed in
the context of the receptor pocket using rigid-body soft
docking25 onto the homology modeled CCR5 receptor.12 Our
virtual screening results show that the CCR5 inhibitors may
be clustered into four superconsensus (SC) families, and our
docking results show that these may be docked to three
overlapping regions within the CCR5 extracellular pocket.
These results provide strong evidence to support the notion
that there are three main binding sites within the CCR5
extracellular pocket.

METHODS

Shape Representations. We use the ParaSurf and ParaFit
modules of CEPOS InSilico Ltd.23 to calculate and superpose
molecular surfaces. ParaSurf calculates molecular shape and
electronic properties from semiempirical quantum mechanics
theory, and encodes these properties as SH expansions.26

Surface shapes are represented as radial distance expansions
of the molecular surface, r(θ,�), with respect to a selected
harmonic coordinate origin (CoH), which is normally set
equal to the molecular center of gravity (CoG).27 For
example, the radial surface shape of molecule A is repre-
sented as

rA(θ, �))∑
l)0

L

∑
m)-l

l

almylm(θ, �) (1)

where θ and � are the spherical coordinates, ylm(θ,φ) are
real spherical harmonics, alm are the expansion coefficients,
and L is the order or highest polynomial power of the
expansion. Here, L ) 6 is used in all calculations. ParaFit
calculates superpositions between pairs of molecules by
exploiting the special rotational properties of the SH func-
tions.22 For example, rotated SH expansion coefficients for
molecule B may be calculated as

blm
′ ) ∑

m′)-l

l

Rmm′
(l) (R, �, γ)blm′ (2)

where (R, �, γ) are zyz Euler rotation angles and
Rmm′

(l) (R, �, γ) are real Wigner rotation matrix elements.22

To calculate a superposition between a pair of molecules,
the CoH of molecule B is translated to that of the fixed
reference molecule A, and a rotational search is then
performed to find the rotation which minimizes the distance,
DAB, between the corresponding pairs of SH expansions

DAB )∫ (rA(θ, �)- rB
′ (θ, �))2dΩ (3)

Thanks to the orthogonality of the basis functions, this
expression reduces to

DAB )∑
l)0

L

∑
m)-l

l

alm
2 + blm

2 - 2almblm
′ ) |a|2 + |b|2 - 2ab′ (4)

Hence the distance function for any orientation may be
calculated very rapidly from the original expansion coef-
ficients. In VS, it is convenient to rearrange and normalize
the basic distance expression (eq 4) to give a similarity score.
Here, we use the Tanimoto score, SAB, calculated as

SAB )
ab′

(|a|2 + |b|2 - ab′)
(5)

ParaSurf can calculate all necessary SH molecular proper-
ties in a matter of a few minutes. Once the surface shapes
have been calculated, the ParaFit program can perform on
the order of hundreds of molecular comparisons per second.
Hence the overall approach is well-suited to tasks that require
the calculation of multiple molecular comparisons such as
high throughput VS.27

SH Consensus Shape Matching. Using the SH repre-
sentation, a “consensus shape”, rj(θ,�), may be constructed
as the average of N individual molecular shape expansion
coefficient vectors, alm

k , for k )1,..., N as

rj(θ, �)) 1
N∑

k)1

N

∑
l)0

L

∑
m)-l

l

alm
k ylm(θ, �) (6)

However, before computing the average, each molecule in
the consensus must first be rotated to minimize the distance
between it and the remaining N - 1 molecules. In practice,
because these rotations are not known a priori, the consensus
shape is constructed iteratively as follows. First, all-against-
all rotational pairwise superpositions are calculated to find
the two most similar surface shapes. Then, the average of
these two shapes is taken as the initial seed shape for the
consensus, and the remaining N - 2 SH shapes are rotated
into superposition with the seed shape. The overall average
of all SH coefficients is then computed to give the first
estimate of the consensus shape. The consensus average is
then refined by superposing the member molecular shapes
back onto the average and by recalculating a new average
shape. This procedure is repeated until convergence to
optimal overlap is reached between each molecule and the
consensus shape. This protocol is similar to techniques used
for refining electron microscopy density images of similar
molecules observed in different orientations.28 In the present
case, convergence is typically achieved in just three or four
cycles. Hence calculating a consensus shape is a quick
process.Figure1 illustrates theoverallprocedureschematically.

ROC Plot Analyses. Here, all VS results are presented
as ROC plots of true positive rate versus false positive rate
or equivalently Sensitivity versus 1 - Specificity. These
quantities are calculated as

True Positive Rate)TP ⁄ (TP+ FN)) Sensitivity (7)

False Positive Rate) FP ⁄ (TN+ FP)) 1 - TN ⁄ (TN+
FP)) 1 - Specificity (8)

where TP represents the number of correctly identified
actives (true positives), FP represents the number of inactives
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incorrectly predicted as active (false positives), TN represents
the number of correctly identified inactives (true negatives),
and FN represents the number of actives incorrectly predicted
to be inactive (false negatives). Each ROC plot is calculated
by ranking the database molecules by similarity with the
query (or by docking energy with the protein target), and
by summing the number of TPs, FPs, TNs, and FNs on either
side of each rank position. ROC plots are particularly useful
when comparing different VS queries with different numbers
of actives and inactives because the AUC of a ROC plot
gives an objective measure of query performance which is
essentially independent of the actual number of positive and
negative instances (i.e., ROC curves do not suffer from “class
skew”).29

Consensus Shape-Based Virtual Screening. Obviously,
using SH surfaces to compute average shapes will result in
some smoothing and loss of detail compared to the original
individual molecular shapes. However, this can be considered
a desirable property because it provides an unbiased way to
combine the most significant features of a related group of
molecules. Nonetheless, it is important to select the member
shapes carefully to achieve a good balance between capturing

the most significant features for binding and smoothing away
too much detail. In this work, this balance is achieved, and
the overall approach is validated by monitoring the utility
of various consensus shapes as VS queries against our
database of known CCR5 and CXCR4 binders and decoys.12

Since this database was first described, some newly published
CCR5 inhibitors have been added to the set of actives. Table
1 lists the representative families of CXCR4 and CCR5
inhibitors in the updated database, and Figure 2 shows some
representative members of each family. Consensus shape-
based VS was applied to these families using query structures
constructed from: (a) the consensus shape of the three most
active compounds of different scaffolds families in the
databases (i.e., an AMD derivative, a macrocycle derivative,
and a KRH derivative for CXCR4, and a piperidine deriva-
tive, a SCH derivative, and a 1,3,4-trisubstituted pyrrolidine-
piperidine derivative for CCR5), and (b) the consensus shape
of all CXCR4 or CCR5 active inhibitors in the database.

The consensus shape-based approach was also used to
investigate the CCR5 multiple binding site hypothesis. First,
the CCR5 inhibitors were clustered using Ward’s hierarchical
clustering method,77 as implemented in the JKlustor module
of JChem,78 using both chemical (topological) fingerprints
and two-dimensional pharmacophore fingerprints. The op-
timal number of clusters to be selected was calculated using
Kelley’s method,79 also implemented in JKlustor, and the
consensus shapes of these fingerprint-defined clusters were
calculated using ParaFit, as described above. Then, ParaFit
was used again to compute all-against-all rotational super-
positions of the fingerprint-defined consensus shapes. This
produced a shape-based similarity matrix,which was reclus-
tered to identify clusters of similar consensus shapes,80 which
were again superposed and averaged to compute a small

Figure 1. Flow diagram of the consensus shape calculation. First,
ParaFit all-against-all rotational superpositions are calculated for
the group of N molecules that will form the consensus. The two
most similar SH shapes are selected and superposed to form a seed
consensus shape. Then, all molecules are rotationally superposed
onto the seed consensus. A new consensus shape is computed from
the average SH coefficients of the superposed shapes. The consensus
members are then superposed again onto the consensus average,
and the process is iterated until convergence.

Table 1. Families of CXCR4 and CCR5 Antagonists Used in the
Current Study

family
number of
compounds ref

CXCR4 inhibitors
tetrahydroquinolinamines 123 7, 30-34
KRH derivatives (Kureha

Chemical Industries)
23 7, 35-38

macrocycles 4 39
AMD derivatives (AnorMED) 94 7, 39-44
cyclic peptides 2 45
other 2 46
total 248

CCR5 inhibitors
SCH derivatives (Schering-Plough) 120 17, 47, 48
diketopiperazines 9 49-53
anilide piperidine N-oxides 22 54
AMD derivatives (AnorMED) 3 44
4-piperidines 10 55, 56
4-aminopiperidine or tropanes 26 55, 57, 58
1,3,4-trisubstituted

pyrrolidinepiperidines
9 59

phenylcyclohexilamines 9 60-65
TAK derivatives (Takeda) 66 66, 67
1-phenyl-1,3-propanodiamines 57 68-70
1,3,5-trisubstituted pentacyclics 9 71
N,N′-diphenylureas 4 72
5-oxopyrrolidine-3-carboxamides 5 73
guanylhydrazone derivatives 33 74
4-hydroxypiperidine derivatives 36 75
other 6 76
total 424
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number of SC shapes. In other words, the resulting SC SH
shapes correspond to the shapes of pseudomolecules con-

structed from volumetric unions of fingerprint-based and
shape-based subclusters of known actives.

Figure 2. Representative structures of (a) five families of CXCR4 inhibitors and (b) fifteen families of CCR5 inhibitors.
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To explore whether the computed SC pseudomolecules
are sterically feasible in the context of the CCR5 extracellular
pocket, each pseudomolecule was rigidly docked into our
model-built CCR5 structure using blind Hex docking with
default search parameters.25 This structure was built by
homology using bovine rhodopsin as template (PDB code
1HZX: 20% sequence identity and 35% similarity with
respect to CCR5), as described previously.12 To compare
quantitatively the ability of the consensus shapes to identify
known binders, VS was performed using our ligand database
and the screening utility of each query shape was analyzed
objectively using ROC analyses. Finally, VS results for
CXCR4 and CCR5 consensus shape queries were compared
to conventional ROCS 2.2,81 Hex 4.8,25 and ParaFit 0822

shape-matching VS, and to rigid-docking-based VS using
Hex 4.8, AutoDock 3.0,82 GOLD 3.01,83 and FRED 2.2.84

RESULTS

CXCR4 and CCR5 Inhibitor Consensus Shapes. Figure
3a shows the consensus shape calculated from the three most
active compounds of different scaffold families in the
CXCR4 inhibitor database (an AMD derivative, a macrocycle
derivative, and a KRH derivative). Figure 3b shows the
consensus shape computed from all the CXCR4 inhibitors
in our database. Visual inspection of these figures shows that
the first consensus shape captures rather well the overall
shape of the three selected inhibitors, whereas the all-

Figure 3. CXCR4 and CCR5 antagonist consensus shapes. (a) The image on the left shows the consensus shape calculated from the three
most active compounds of different scaffold families in the CXCR4 inhibitor database: an AMD derivative, a macrocycle derivative, and
a KRH derivative. The following three images show the superpositions of these compounds onto the consensus. (b) The consensus shape
calculated from all CXCR4 database actives, and example superpositions onto the consensus of two randomly selected compounds (an
AMD derivative and a KRH derivative). (c) On the left, the consensus shape calculated from the three most active compounds of different
CCR5 database scaffold families: a 1,3,4-trisubstituted pyrrolidinepiperidine derivative, a SCH derivative, and a piperidine derivative. On
the right, the superpositions of these compounds onto the consensus. (d) Consensus shape calculated from all CCR5 actives, along with
example superpositions onto the consensus of two randomly selected actives (a diketopiperazine derivative and a SCH derivative).
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molecule consensus has much less local surface detail, yet
still broadly retains the gross features of the member shapes.
Figure 3c shows the consensus shape calculated for the three
most active compounds of different scaffolds families in the
CCR5 inhibitor database (a piperidine derivative, a SCH
derivative, and a 1,3,4-trisubstituted pyrrolidinepiperidine
derivative). Figure 3d shows the consensus shape of all the

CCR5 active inhibitors. In this case, it can be seen that using
all database compounds to construct the consensus query
causes a more spherical average shape than the CXCR4
inhibitors, because of the greater number and diversity of
compounds in the CCR5 database.

CXCR4 Virtual Screening. Figure 4 shows the perfor-
mance of the CXCR4 consensus shaped-based VS queries

Figure 4. ROC plot validation of various shape-matching and docking VS methods compared to the consensus shape approach applied to
CXCR4 antagonists. The dotted black line represents the expected enrichment if actives were selected at random. The lower bar chart and
table report the AUC values obtained from the corresponding ROC curves. The scoring functions which give the best VS performance are
shown in bold.
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compared to docking-based and shape-based screening using
a single high affinity ligand (AMD3100). This figure shows
that the consensus shape queries give higher AUCs than the
other approaches, although the single-ligand ParaFit query
also performs well. As might be expected from consideration
of Figure 1, the three-ligand consensus performs considerably
better than the all-ligand consensus, due to the high degree
of smoothing and loss of surface detail in the all-ligand shape.
On the other hand, considering the very good performance
of the single high affinity ligand and the marginally superior
performance of the three-ligand query suggests that all three
ligands share highly similar shapes (as confirmed by Figure
3a), which probably all bind in similar way within the
CXCR4 pocket.

Regarding the shape matching approaches, ParaFit Shape
Tanimoto, ROCS Combo Score, and Hex Shape Tanimoto
all give comparable AUCs to the Parafit consensus shape
query. Of the docking tools, FRED Consensus gives the best
AUC, followed by FRED Chemgauss3, Hex Docked Energy,
and rank-by-rank docking Consensus Scoring, which gives
a better enrichment than the individual Autodock Docked
Energy, Gold GoldScore, and Gold ChemScore scoring
functions. The ROCS Combo Score and FRED Chemgauss3
scoring functions both include descriptions of shape and
molecular chemical properties. If the protein structures
contain errors, as is likely with model-built structures, those
docking functions that include terms that favor chemical
complementarity might be expected to be more resilient to

Table 2. CCR5 Antagonist Clustering Results Using Ward’s Clustering of Chemical Fingerprint Descriptorsa

a Kelley’s method predicts 16 clusters as the optimal number. The number of compounds found for each family in each cluster is specified in
parenthesis. The families marked in bold italics comprise the entire family in a unique cluster. The families marked in italics comprise the
entire family between two clusters. The ten initial consensus shapes obtained after the grouping of clusters are also shown.
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structural errors in the receptor. Therefore, it is perhaps not
surprising that the FRED Chemgauss3 gives an AUC which
is closer to that of the ligand-based scoring functions and

much better than the other docking scoring functions such
as FRED Shapegauss, Chemscore, Oechemscore, Shape-
gauss, Chemgauss3, Screenscore, and Plp.

Overall, the enrichment results for CXCR4 show that
ligand-based shape-matching approaches provide better VS
performance than structure-based docking tools, except for
FRED Consensus Scoring, which gives considerably better
enrichments than the other FRED scoring functions. This
indicates that inaccuracies probably exist in the homology-
built structure of the receptor and that, consequently, the use
of ligand-based techniques should provide a more reliable
way to identify new inhibitors for this target. It is also worth
mentioning that in all docking studies the protein structure
was assumed to be rigid, which in reality is not true. The
quality of any docking calculation will intrinsically depend
on the conformation of the receptor and especially the
conformations of the side chains lining the binding region.
Hence keeping the protein rigid is potentially a large source
of uncertainty that can further influence the performance of
docking-based VS calculations.

Clustering Known CCR5 Inhibitor Families. Table 2
shows the result of clustering the CCR5 inhibitors using
Ward’s clustering of chemical (topological) fingerprints. In
this case, Kelley’s method gives the optimal number of
clusters as 16. Table 3 gives the corresponding results for
clustering using 2D pharmacophoric fingerprints, which gives
just 13 more tightly grouped clusters according to Kelley’s
method. Inspection of these clusters shows that the pharma-
cophoric fingerprint clustering tends to distribute compounds
from different chemical families into more different clusters,
whereas clustering on chemical fingerprints tends to group
the compounds more closely according to the known inhibitor
families. For example, all members of two entire families
are assigned to a single cluster in two cases (i.e., the
5-oxopyrrolidine-3-carboxamides and N,N′-diphenylureas are
entirely assigned to cluster 1, and the AMD derivatives and
diketopiperazines are entirely assigned to cluster 2), and the
members of several other families are entirely assigned to
separate clusters (i.e., the members of the anilide piperidine
N-oxides, 4-aminopiperidine or tropanes, guanylhydrazone
derivatives and 4-hydroxypiperidine derivatives are all as-
signed to separate clusters). Furthermore, chemical fingerprint
clustering nicely separates the 1-phenyl-1,3-propanodiamines
and the SCH and TAK families into different clusters
depending on their different R-groups. Hence chemical
fingerprint-based clustering was selected as the most ap-
propriate point from which to proceed. Further inspection
of these clusters shows that by grouping clusters 5 and 6
and similarly grouping clusters 8, 9, 10, 11, and 12, and also
clusters 13 and 14, a total of just ten clusters are obtained
which correctly groups together all the compounds belonging
to a given scaffold family. Hence a total of ten CCR5
inhibitor clusters were selected for further analysis using the
consensus shape-based approach.

Calculating Consensus and Super-Consensus CCR5
Inhibitor Clusters. SH consensus surface shapes were
calculated for each of the ten selected clusters, as described
in Methods (eq 6). An all-against-all SH comparison of each
consensus surface was calculated using ParaFit, and the
resulting pairwise Tanimoto similarity coefficients were used
to calculate consensus superclusters using a further round
of Ward’s hierarchical clustering. Figure 5 shows a dendro-

Table 3. CCR5 Antagonist Clustering Results Using Ward’s
Clustering of 2D Pharmacophore Fingerprint Descriptorsa

cluster compounds found
number of
compounds

1 (3) 1,3,4-trisubstituted pyrrolidinepiperidines 48
(7) 1,3,5-trisubstituted pentacyclics
(38) 1-phenyl-1,3- propanodiamines

2 (6) 1,3,4-trisubstituted pyrrolidinepiperidines 24
(2) 1,3,5-trisubstituted pentacyclics
(14) 1-phenyl-1,3- propanodiamines
(1) 4-aminopiperidine or tropanes
(1) others (1-benzazepine)

3 (4) 1-phenyl-1,3-propanodiamines 35
(8) 4-piperidines
(5) 5-oxopyrrolidine-3-carboxamides
(3) Diketopiperazines
(5) anilide piperidine N-oxides
(3) phenylcyclohexilamines
(2) N,N′-diphenylureas
(2) SCH derivatives
(3) others (MRK-1 CMPD 167, Merck1,

Merck2)
4 (17) 4-aminopiperidine or tropanes 30

(1) phenylcyclohexilamines
(11) SCH derivatives
(1) others (Merck3)

5 (8) 4-aminopiperidine or tropanes 16
(6) Diketopiperazines
(2) anilide piperidine N-oxides

6 (15) anilide piperidine N-oxides 20
(5) phenylcyclohexilamines

7 (18) SCH derivatives 22
(2) N,N′-diphenylureas
(1) 4-piperidines
(1) others (GSK 108)

8 (59) SCH derivatives 61
(2) TAK derivatives

9 (28) SCH derivatives 28
10 (2) SCH derivatives 24

(22) TAK derivatives
11 (42) TAK derivatives 42
12 (1) AMD deriVatiVes 43

(1) 1-phenyl-1,3- propanodiamines
(1) 4-piperidines
(4) guanylhydrazone deriVatiVes
(36) 4-hydroxypiperidine derivatives

13 (2) AMD deriVatiVes 31
(29) guanylhydrazone deriVatiVes

a Kelley’s method predicts 13 clusters as the optimal number. The
number of compounds found for each family in each cluster is
specified in parenthesis. The families marked in bold italics
comprise the entire family in a unique cluster. The families marked
in italics comprise the entire family between two clusters.

Figure 5. Dendrogram of the ten initial CCR5 antagonist groups
clustered using Ward’s clustering of spherical harmonic distances
between the consensus surface shapes of each group. Four main
SC groups, labeled A, B, C, and D, are recognized.

CLUSTERING AND CLASSIFYING DIVERSE HIV ENTRY INHIBITORS J. Chem. Inf. Model., Vol. 48, No. 11, 2008 2153



gram of the resulting SCs in which the initial ten consensus
shape surfaces are clustered to give four main representative
SC groups, A, B, C, and D. Figure 6 shows the 3D molecular
overlays, the SH shapes of the 10 fingerprint clusters, and
the SC shapes calculated from the clustered consensus
surfaces. All molecular orientations shown in this figure were

derived directly from the SH consensus surface shape
superposition calculations. If it is supposed that the calculated
superclusters correspond to four fundamental families of
inhibitors, it might further be hypothesized that these
fundamental families bind within different regions of the
CCR5 pocket. Figure 7 shows a schematic illustration of this

Figure 6. Molecular superpositions and consensus shapes of the ten Ward’s clusters used to calculate the final SH SC shapes.
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hypothesis, along with the calculated scaffold family mem-
bership of each fundamental supercluster.

CCR5 Scaffold Family Virtual Screening. SH consensus
surface shapes were also calculated for each of the 15 CCR5
scaffold families in the database. Results for the comparison
of the VS performance of the SC scaffold queries are shown
in Figure 8. It can be seen that the consensus query for each
family performs quite well individually, except those for
4-hydroxypiperidine and guanylhydrazone derivatives. These
two SC B family queries give poor AUCs because they have
somewhat different molecular and consensus shapes than
those of the other inhibitor families (see Figure 6).

As can be seen from the lower table in Figure 8, the
scaffold family consensus AUCs correspond very well to
the proposed SC clusters. More specifically, it can be seen
that ordering the individual family consensus groups by AUC
is almost sufficient to map each family member directly to
its proposed SC. For example, the large group of high AUC
scaffolds maps to SC C (namely, the SCH derivatives,
5-oxopyrrolidine-3-carboxamides, diketopiperazines, 1,3,4-
trisubstituted pyrrolidinepiperidines, N,N′-diphenylureas, 1,3,5
trisubstituted pentacyclics, 4-piperidines, and AMD deriva-
tives). The next group of good AUC scaffolds maps to SC
A (i.e., the anilide piperidine N-oxides and the TAK
derivatives). Similarly, the final low AUC scaffold families
map to SC groups D (the 4-aminopiperidine and 1-phenyl-
1,3-propanodiamines derivatives) and B (the 4-hydroxypi-
peridine and guanylhydrazone derivatives). The only excep-
tion to this AUC-based mapping is the phenylcyclohexilamine
family which has a very high AUC, but the clustering of
which places it in SC group D.

CCR5 Inhibitor Consensus Shape Virtual Screening.
Figure 9 shows the VS results obtained using the four SC
shapes as queries. It can be seen that SC C gives the best
overall VS performance with an AUC of 0.91. It is perhaps
not surprising that this SC query performs very well because
it includes the three most active compounds in the database
and also a large number of other actives (i.e., 184/424) with

similar shapes to the 4-piperidine derivatives, SCH deriva-
tives, and 1,3,4-trisubstituted pyrrolidinepiperidine deriva-
tives. The SC A query (87/424 actives) also performs rather
well with an AUC of 0.79, and the SC D query (84/424
actives) performs reasonably well (AUC ) 0.63). However,
the ROC plot for SC B shows that this query exhibits good
sensitivity and selectivity in the first percentages of the
database screened, but the overall AUC is low (0.41) because
the database contains relatively few members of the two SC
B families (i.e., a total of only 69/424). However, if the
members of clusters B and D are grouped together to form
a single SC, as might be suggested by the dendrogram in
Figure 5, the screening performance becomes essentially
random (AUC ) 0.51). Thus, despite the small populations
of these two groups, their members have significantly
different overall shapes, and they should be classified as two
distinct structural groups for VS purposes. Performing a
similar exercise with other combinations of SC clusters
shows similar but less dramatic reductions in AUCs com-
pared to the AUCs of the unmerged clusters. For example,
merging A and B gives AUC ) 0.65, merging A and D gives
AUC ) 0.65, and merging A and C gives AUC ) 0.87
(compared to the original AUCs of A ) 0.79, B ) 0.41, C
) 0.91, and D ) 0.63). This behavior supports the chemical
fingerprint clustering results which suggest that the CCR5
inhibitor families may be clustered into no fewer than four
main groups. A similar SC cluster analysis was performed
for the pharmacophore fingerprint clusters (details not
shown), and this also indicated no less than four main SC
families with AUCs of 0.79, 0.43, 0.94, and 0.74 for SC
clusters A, B, C, and D (the cluster members of B, C, and
D differed slightly from the chemical fingerprint analysis).
Hence both clustering approaches ultimately indicate that the
CCR5 antagonists may be grouped into four main SC
families.

Although it is impractical to generate and test large
numbers of different potential SC clusters, we wished to
ensure that the VS performance of the selected four clusters
was not being dominated by a small number of high affinity
actives. Hence the AUCs for SC clusters A, B, C, and D
were recalculated with the three most active CCR5 inhibitors
removed from each cluster. For SC A, the recalculated AUC
was unchanged (0.79). For SC C, the AUC was reduced only
marginally from 0.91 to 0.90. For SCs B and D, the AUC
was reduced from 0.41 to 0.38 and from 0.63 to 0.61,
respectively. The different behavior of the A and C clusters
compared to the B and D clusters seems to be because the
remaining compounds in the B and D clusters have lower
activities than those that were removed, whereas the reduced
A and C clusters still contain several other molecules with
high activities. Nonetheless, because the observed reduction
in AUC is either small or modest in all cases, it may be
concluded that the original four SC clusters seem to capture
very well the general features of many high affinity binders.

Figure 10 shows the ROC plot analysis of the consensus
shape-matching VS approach applied to the CCR5 inhibitor
database. The consensus shape constructed from the three
most active compounds gives the best VS performance (AUC
) 0.99), followed by SC C, which comprises the families
containing the greatest number of active compounds. As with
the CXCR4 inhibitors, the consensus query constructed with
the three most active compounds achieves higher perfor-

Figure 7. Schematic illustration of the hypothesized binding regions
suggested by SC clustering. For each SC, the number of compounds
used to construct the consensus and the family to which they belong
are given.
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mance than the query constructed using all CCR5 inhibitors
(AUC)0.87). This supports the notion that using too many
molecules to make a consensus shape causes an undesirable
degree of surface shape smoothing and the loss of important
surface details. Figure 11 shows the ROC plots for all shape-
matching VS approaches for the CCR5 inhibitor database.
It can be seen that the consensus shape queries generally
give larger AUCs than ROCS, Hex, and the single-query
ParaFit queries.

Comparing Shape Based and Docking Based CCR5
Virtual Screening. Figure 12 shows the VS performance
of selected CCR5 consensus shape queries and several
conventional ligand based shape matching and receptor based
docking approaches. It can be seen that the three-ligand
consensus and SC C queries give the best overall screening
performance, along with the FRED consensus scoring and
Autodock docking methods, both of which also perform very
well even though they do not take into account protein
flexibility. As observed previously, the SC A query also
performs well, but the SC B and D queries and combinations
thereof give rather poor VS results. However, it is interesting
to note that the Gaussian-based docking scoring functions
in FRED generally give better VS performance than the
Gaussian-based superposition scoring functions of ROCS.
Comparing Figures 12 and 4 shows that the docking and
single-query shape-matching results are generally better for
CXCR4 than for CCR5. However, the AUCs for the CCR5

consensus-based query results are almost at the same high
level as for CXCR4. Hence, despite CCR5 having a larger
binding pocket and a much more diverse set of inhibitors
than CXCR4, the use of consensus-based queries can be seen
to find many CCR5 inhibitors remarkably well.

Blind Docking Super-Consensus Pseudomolecules. Fig-
ure 13 shows the results obtained for blind docking the SC
pseudomolecules into the CCR5 extracellular pocket. It can
be seen that the SC A pseudomolecule is docked onto one
side of the CCR5 binding pocket (Site 1) near residues Ala29,
Arg31, Leu33, Tyr37, Thr82, Trp86, Tyr108, and Glu283,
delimited by transmembrane (TM) loops 1, 2, 3, and 7,
whereas the SC C pseudomolecule is docked onto the
opposite side of the pocket (Site 2) near residues Tyr108,
Phe113, Ile198, Ile200, Asn252, Glu283, and Glu286,
delimited by TM loops 3, 5, and 6. The SC B and SC D
pseudomolecules are docked onto the central region of the
binding pocket (Site 3) near residues Tyr108, and Glu283,
delimited by TMs 3, 6, and 7, thus overlapping the predicted
SC A and C binding sites. Figure 14 shows more detailed
views of the calculated docking modes. Docking the four
SCs derived from pharmacophore fingerprint clustering also
gives similar binding modes (details not shown). Thus our
docking calculations consistently suggest the existence of
two or three main binding sites within the CCR5 pocket.
These consensus-based docking predictions are consistent
with experimental data.11,13,14,16

Figure 8. ROC plot evaluation of CCR5 scaffold family consensus shape-matching VS. The dotted black line represents the expected
enrichment if actives were selected at random. The lower table reports the AUC values obtained for the consensus ROC curves for the
different scaffold families, grouped according to their assigned SC clusters. This shows that the consensus families that give the highest
AUC values belong to SC C, followed by those belonging to SC A, D, and B.
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To confirm that the SC queries are properly matched with
their predicted target sites, the three proposed binding sites were
each treated as if they were separate targets for docking-based
VS using rigid body docking of the corresponding SC pseudo-
molecules. In other words, when docking to Site 1, compounds
belonging to SC A were treated as actives, and compounds
belonging to SC B, C, and D were treated as inactives. In a
similar manner, when docking to Site 2, compounds belonging
to SC C were treated as actives, and compounds belonging to
SC A, B, and D were treated as inactives. Similarly for Site 3,
compounds belonging to SC B and D were treated as actives,
and compounds belonging to SC A and C were treated as
inactives. Figure 15 shows the docking VS performance for
each of the three proposed CCR5 binding regions. Comparing
Figures 15 and 9, it can be observed that docking VS onto Sites
1, 2, and 3 (AUC ) 0.83, 0.96, and 0.85, respectively) improves
the SC A, C and B/D shape matching AUCs (AUC ) 0.79,
0.91, and 0.41/0.63, respectively). Given that SCs A and C
already give good shape matching enrichments, reassigning the
B and D members as inactives only marginally improves the
corresponding AUCs. However, treating the large set of C and
A members as inactives for Site 3 gives much higher AUCs
for the SC B and D queries, which clearly supports the notion
that the CCR5 antagonists bind to at least three main sites within
the extracellular pocket.

DISCUSSION

The results of this study show that spherical harmonic
consensus shapes can provide effective 3D query structures

for shape-based VS. For the CXCR4 and CCR5 ligands
studied here, our results show that well-chosen consensus
shape queries can give better (CXCR4) or significantly better
(CCR5) virtual screening enrichments than conventional
single-molecule VS queries. The CXCR4 results show that
consensus shape based queries give higher AUCs (i.e., better
enrichments) than conventional ligand-based and rigid-body
receptor-based screening approaches. However, for CXCR4,
these results are nonetheless broadly similar to the basic
ParaFit one-molecule shape-matching approach because the
inhibitors for this target share rather similar molecular shapes
which individually match quite well the selected query shape.
For CCR5, which has a much larger and more diverse set of
inhibitor families, the SC family C and the SC all-family
queries both give very good overall VS performance.
However, this seems to be at least partly because a high
proportion of all scaffold families cluster into the family C
superconsensus grouping. Hence, by construction, the spheri-
cal harmonic consensus shape derived from these family
members provides a single representative pseudomolecular
shape which recognizes well many of the individual member
structures.

Regarding the more challenging problem of understanding
how so many diverse inhibitor families might bind within
the CCR5 pocket, our consensus shape-based approach
provides a straightforward way to identify clusters of
inhibitor families from a large set of known actives which
is broadly consistent with current experimental SDM
data.11,13,14,16 More specifically, our clustering results indi-

Figure 9. ROC plot validation of the CCR5 inhibitor SC pseudomolecules. The AUC is given for each SC, A, B, C, and D. The diagonal
pink line represents the expected enrichment if actives were selected at random.
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cate that the CCR5 inhibitors are in fact described very well
by four main consensus families, of which SC family C is
the most highly populated. Our docking results suggest that

the families of compounds belonging to SC A bind within
Site 1, and this is consistent with SDM-based experimental
results for TAK derivative binding.11,13,18-21,85 Furthermore,

Figure 10. ROC plot evaluation of consensus shape-matching VS for the CCR5 antagonists. The dotted black line represents the expected
enrichment if actives were selected at random. The lower bar chart and table report the AUC values of the corresponding VS ROC curves.
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our docking results suggest that SC C ligands bind within
Site 2, and this is consistent with published experimental

results for CCR5 binding of certain SCH derivatives, 1,3,4-
trisubstituted pyrrolidinepiperidine derivatives, and diketopi-

Figure 11. ROC plot comparison of various shape-matching VS methods for the CCR5 antagonists. The dotted black line represents the
expected enrichment if actives were selected at random. The lower bar chart and table report the AUC values of the corresponding VS ROC
curves.
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perazines.11,13,15-17,85 To our knowledge, there is not yet
any experimental SDM evidence to relate compounds
belonging to SC B and D to any specific binding site.
However, previous docking predictions by Kellenberger et
al. suggest a binding mode which includes both Site 1 and

Site 2,14 and this would be consistent with our prediction of
Site 3, which is spatially located between Sites 1 and 2.
Overall, the clusters and SC clusters found using our SH-
based approach, and the direct correspondence of these with
the spatial locations of the three binding sites predicted by

Figure 12. ROC plot validation of various shape-matching and docking VS methods compared to the consensus shape approaches for the
CCR5 antagonists. The dotted black line represents the expected enrichment if actives were selected at random. The lower bar chart and
table report the AUC values of the corresponding VS ROC curves. The scoring functions which give the best VS performance are shown
in bold.
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rigid-body pseudomolecule docking, are clearly consistent
with and add weight to the previous computational predic-
tions of Kellenberger et al. and also recently by Kondru et
al.85 In these earlier studies, different clinical drug candidates

were used to establish the nature of the binding pocket in
CCR5. Although all CCR5 antagonists were predicted to bind
to the same main hydrophobic pocket, in agreement with
our results, both previous studies indicate that ligands may

Figure 13. Hex blind docking results for the SC pseudomolecules. The images on the left show the final docked position of the SC
pseudomolecules. The images on the right show close-up views of the docked conformations, annotated with the locations of known SDM
binding site residues. In each case, the pseudomolecule was initially placed outside the CCR5 receptor pocket, as shown. (a) SC A blind
docked onto one side of the CCR5 pocket. (b) SC B blind docked in the middle region of the pocket. (c) SC C blind docked onto the
opposite side of the binding pocket. (d) SC D blind docked in the middle region of the pocket.
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occupy different subcavities. This is clearly demonstrated
by the different CCR5 mutant binding profiles obtained by
Kondru et al., which is consistent with the significantly
different electrostatic shapes and polarities of the CCR5
antagonists analyzed. Their docking predictions, which are
based on SDM and CCR5 homology modeling data, suggest
that the CCR5 receptor can accommodate structurally and
electrostatically diverse antagonists by utilizing a unique set
of interactions for every ligand, which is also consistent with
our clustering results.

Nonetheless, the only completely reliable way to verify
the validity of docking-based predictions is through com-
parison with a known crystallographic structure. Clearly, such

a gold standard reference is not available for CCR5. Hence
any comparison with previous docking studies can, at best,
serve only to add further support to the original prediction.
On the other hand, for practical purposes, an unbiased and
objective way to validate a structural prediction even when
no crystal structure is available is to test its utility in the
context of VS. The fact that the VS results obtained here
using consensus and four SC shape-based similarity and
docking queries give significantly enhanced screening en-
richments compared to single-molecule based queries lends
very strong support both to the initial validity of the notion
of SC structures, and to the hypothesis that the members of

Figure 14. CCR5 binding pocket subsites proposed by the consensus VS and docking results. Here, the SC A pseudomolecule is docked
onto the first subsite (Site 1), delimited by TMs 1, 2, 3, and 7. The SC C pseudomolecule is docked onto a second subsite (Site 2), delimited
by TMs 3, 5, and 6. The SC B and SC D pseudomolecules are docked onto a third subsite (Site 3), delimited by TMs 3, 6, and 7, and which
overlaps the SC A and SC C binding subsites. The top right image shows the CCR5 model with the proposed binding regions specified.
On the top left, the van der Waals interaction surface of the CCR5 receptor cavity colored by H-Bonding (purple), hydrophobicity (green),
and mild polar (blue) regions. TMs and important binding residues delimiting the three binding regions are shown in red and yellow,
respectively. The bottom row of images show close-up views of the SC pseudomolecules in the three proposed subsites.
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these SC clusters bind within at least three main sites in the
CCR5 extracellular pocket.

CONCLUSION

This study has shown that using spherical harmonic
consensus shapes as queries can be a useful strategy to
improve hit enrichments in shape-based VS. We have
developed a straightforward and fast method to construct
consensus molecular shapes from SH surface envelopes. This
consensus shape approach has been applied and validated
by VS using a database of CXCR4 and CCR5 antagonists.
For both receptor targets, ROC plot analyses show an
improvement of VS results using the new approach. More-
over, the CCR5 multiple-binding-region hypothesis has been
quantitatively explored by constructing different trial SH
consensus query structures and by measuring their VS utility
against our CCR5 inhibitor database. This study found four
main SC clusters whose members are predicted to bind to
three different but somewhat overlapping sites within the
CCR5 pocket. The good VS results obtained with these
virtual structures suggest they may profitably be used to
search for novel inhibitors in prospective VS campaigns
against other databases. Pseudomolecules corresponding to
these SC clusters were docked into the CCR5 pocket, and

the locations of these positions were related to the locations
predicted by previous docking studies. Several compounds
within each consensus group have experimentally supported
or computationally predicted binding modes which are
consistent with the locations of the SC clusters docked here.
Therefore, the SC structures calculated here provide strong
supporting evidence for the CCR5 multiple-ligand-binding-
site hypothesis, and help to give a better picture of how the
CCR5 antagonists are probably distributed in the CCR5
receptor pocket.
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ABSTRACT 

The process of HIV entry begins with the binding of the viral envelope glycoprotein gp120 to both the 

CD4 receptor and one of CXCR4 or CCR5 chemokine coreceptors. There is currently considerable 

interest in developing novel ligands which can attach to these coreceptors and hence block virus-cell 

fusion. This article compares the application of structure-based (docking) and ligand-based (QSAR 

analyses, pharmacophore modelling, and shape matching) virtual screening tools to find new potential 

HIV entry inhibitors for the CXCR4 receptor. The comparison is based on retrospective virtual screening 

of a library containing different known CXCR4 inhibitors from the literature, a smaller set of active 

CXCR4 inhibitors selected from a large combinatorial virtual library and synthesized by us, and some 

drug-like presumed inactive molecules as the reference set. The enrichment factors and diversity of the 

retrieved molecular scaffolds in the virtual hit lists was determined. Once the different virtual screening 

approaches had been validated and the best parameters had been selected, prospective virtual screening of 

our virtual library was applied to identify new anti-HIV compounds using the same protocol as in the 

retrospective virtual screening analysis. The compounds selected using these computational tools were 

subsequently synthesized and assayed, and showed activity values ranging from 4 to 0.022 �g/ml.  

 

 

INTRODUCTION 

According to the World Health Organization, about 33 million people live with Acquired Immune 

Deficiency Syndrome (AIDS)  1. The entry of human immunodeficiency virus (HIV) into the host cell 

begins with binding of the viral envelope glycoprotein gp120 to both the CD4 cell surface receptor and 

one of CXCR4 or CCR5 chemokine coreceptors, and leads to fusion of the viral capsid with the cell 

membrane. Current antiretroviral therapies (ARTs) against AIDS are generally based on reverse 

transcriptase inhibitors and protease inhibitors. Despite advances in the development of these potent 

agents which block HIV transcription and assembly, there remain problems regarding drug resistance, 

latent viral reservoirs, and drug induced toxic effects, which can all compromise effective control of the 

virus. Hence there is a need to develop new classes of anti-HIV drugs with different modes of action. 

Several researchers have recognized that knowledge of the mechanism of viral entry into the host cell 

provides further therapeutic targets against HIV infection  2,  3. To date, at least three subclasses of HIV 

viral entry/fusion inhibitors have emerged, namely: CD4 binding or attachment inhibitors, which target 
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initial recognition and binding of the viral glycoprotein gp120 to the cell-surface CD4 antigen;  4 

chemokine coreceptor binding inhibitors, which target binding of virus to the CCR5 or CXCR4 

coreceptor;  5 and cell fusion inhibitors, which target the gp41 viral glycoprotein  6. Therefore, there is 

considerable interest in developing novel ligands which can modulate these receptors and block virus-cell 

fusion  7,  8,  9,  10,  11. 

To make progress towards this goal, we compiled a dataset of CXCR4 antagonists from the literature 

comprising several AMD3100 derivatives, macrocycles, KRH1636 derivatives, dipicolil amine zinc(II) 

complexes, cyclic peptides, and tetrahydro-quinolinamine derivatives. Several of the AMD3100 

derivatives are novel, and have been synthesized in our group  12. To this set was added some 4700 

presumed inactive drug-like compounds from Maybridge Screening Collection  13 which have several 1D 

properties similar to those of the actives. The active molecules synthesized by us belong to a diverse but 

restricted set of compounds, selected using our PRALINS  14 program (Program for Rational Analysis of 

Libraries in Silico) from a large virtual combinatorial library. This library was designed to preserve the 

main features of AMD3100, i.e. polynitrogenated systems separated by a p-phenylene moiety, which is 

treated as an ideal reference CXCR4 antagonist. The compounds selected by PRALINS showed activities 

ranging from 20 to 0.008 �g/ml, and experimental binding assays confirmed that their mode of action was 

indeed to block the CXCR4 receptor  12.  

In order to find other active compounds without having to synthesize the whole of the combinatorial 

virtual library, ligand-based and structure-based virtual screening tools were used. For ligand-based 

virtual screening, QSAR analysis was performed with MOE  15, and a good quantitative structure-activity 

relationship function was obtained. 3D pharmacophore modelling using MOE and Discovery Studio  16 

was applied in order to study the characteristic features of the actives necessary for interaction with the 

coreceptor. Shape matching using the PARAFIT  17, ROCS  18, and HEX  19 programs was also carried out 

to select molecules from the library with similar shapes to known actives. Because the 3D structure of 

CXCR4 has not yet been solved, a homology model of the protein built previously  20 using bovine 

rhodopsin  21 as the template was used for receptor-based analyses using AUTODOCK  22, GOLD  23, 

FRED,  24 and HEX  25. 

In order to validate the different virtual screening approaches and to set the best parameters for each one, 

a retrospective virtual screening analysis was performed on the compiled active and inactive datasets. 

Once the best approaches were selected, prospective analysis of the as yet unsynthesized compounds in 
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our combinatorial virtual library was applied to establish a ranked list of new candidate CXCR4 

inhibitors. A final virtual hit list was obtained from a consensus ranking of the different virtual screening 

approaches. Five molecules in the resulting hit list were synthesized and tested, and were found to have 

activity values ranging from 4 to 0.022 �g/ml. The most active of these are monocyclams, as might be 

expected of AMD3100 derivatives  26,  27,  28 , and these coincided with the compounds in the first ranking 

positions of our hit list. 

 

 

METHODS 

Library Design 

In this study, AMD3100, one of the earliest and still one of the most potent CXCR4 antagonists to be 

developed, was used as a reference ligand from which a combinatorial library was derived  12, 29. The 

compounds in this library were designed in such a way as to retain the main physico-chemical features of 

this ligand, i.e. a central p-phenylene moiety with at least two nitrogen-containing substituents, one in the 

benzylic position and the other(s) in a heterocyclic system, and with similar distances between such 

nitrogens as those observed in cyclam. These considerations led us to design target compounds such as 

the diamines, 1, as shown in Figure 1. A retrosynthetic analysis of those cases in which R1 = R2 and the 

number, n, of methyl linkers led to the selection of symmetrical diimines 2 as precursors, which can be 

extended with further methyls to give terephthalaldehyde 3 and two equivalents of the corresponding 

amine 4 where n 	 1 (see Figure 2). When R1 = R2 and n = 0, compounds 2 are in fact symmetrical 

hydrazones which can be obtained by condensation of terephthalaldehyde and the corresponding 

hydrazine 4 (n = 0). These dihydrazones were also included in our library. In order to obtain non-

symmetric (R1 
 R2) diamines 1 (n 	 1) and dihydrazones 2 (n = 0), it was necessary to modify slightly 

our synthetic approach by using 4-(diethoxymethyl)-benzaldehyde (5) as the core precursor. Thus, the 

intermediate hydrazono and aminobenzaldehydes 6 and 7 allowed such non-symmetric compounds and 

other non-symmetric aminohydrazones 8 to be included as further compounds in the combinatorial library 

(see Scheme 1). Overall, the virtual library consists of 66 amino/hydrazono-amine/hydrazone compounds 

(1, 2 and 8), 11 amino/hydrazono-aldehyde compounds (6 and 7), and 11 cyclam-amine/hydrazone 

compounds (9 and 10). Some representative examples of these structures are shown in Figure 3. 

Figure 1 
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Figure 2 

Scheme 1 

Figure 3 

 

Virtual Screening Datasets 

For the retrospective virtual screening analysis, a dataset of 248 CXCR4 antagonists with activity values 

lower than 0.1 3M against CXCR4 was assembled from the literature. This set was used for receptor-

based docking and ligand-based screening analyses. A subset of the 103 most active compounds plus 48 

compounds representative of other scaffold classes was then used for pharmacophore modelling. As 

summarised in Table 1, these compounds mainly belong to seven representative families, i.e., AMD3100 

derivatives, macrocycles, KRH1636 derivatives, dipicolil amine zinc(II) complexes, 

tetrahydroquinolinamine derivatives, cyclic peptides, and also the most active CXCR4 inhibitors from our 

combinatorial virtual library which had been synthesized by us  12. Figure 4 shows some representative 

members of each family. These datasets were augmented with two further sets of drug-like presumed 

inactive compounds from the Maybridge Screening Collection (1462 for pharmacophore modelling and 

4696 for the docking and shape matching approaches), selected in such a way that several of their 1D 

properties were similar to those of the actives (i.e. molecular weight, number of rotatable single bonds, 

numbers of hydrogen-bond donor and acceptor atoms, number of hydrophobic atoms, and octanol-water 

partition coefficient), as shown in Table 2.  

Table 1 

Figure 4  

Table 2  

For the prospective virtual screening analysis, the same presumed inactive compounds as in the 

retrospective analysis were used, and a subset of 34 hitherto unsynthesized compounds from the 

amino/hydrazono-amine/hydrazone (compounds 1, 2 and 8), hydrazono/amino-aldehyde (compounds 6 

and 7), and cyclam-hydrazone/amine (9 and 10) families were selected from the virtual library for  

synthesis and testing. The 3D structures of all compounds were protonated at physiological pH, assigned 

Gasteiger partial charges, and geometry-optimized using the MMFF94 force field. All molecules were 

aligned with the MOE FlexAlign module  46 using as superposition template the AMD3100 conformation 

obtained previously from a CXCR4 docking study  20 (see Figure 5). 
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Figure 5 

 

QSAR Analysis 

QSAR analysis applies statistical methods to describe quantitative relationships between chemical 

structures and biological activities of a series of analogues. The process can be divided into three general 

steps: 1) dataset selection, 2) data analysis, and 3) model validation. In the present QSAR study, a dataset 

of 39 compounds with known EC50 activity values consisting of AMD3100 plus 38 further compounds 

synthesized by us (structures 1, 2, 6, 7 and 8) was used. This dataset was divided into a training subset of 

30 compounds, and an external test set of 9 compounds, as described in Tables 3 and 4. A total of 194 

descriptors were calculated with MOE, including 2D and 3D descriptors. These descriptors were then 

pruned using correlation analysis and forward-selection and backward-elimination methods.  

Partial Least Squares (PLS) regression was used to build the QSAR models using the above descriptors as 

independent variables and using the biological activities as the dependent variables. Model outliers were 

detected using the Grubbs test, as implemented in MOE, by quantifying how far away the experimental 

biological activities are from the model by calculating the Z-SCORE ratio, defined as the difference 

between the experimental and model pEC50 values divided by the RMSE (root mean squared error) of the 

whole dataset. Molecules with Z-SCOREs of 2.5 or higher were considered to be possible outliers. The 

model was then validated using leave-one-out (LOO) cross-validation and validation with an external test 

set (9 compounds). Several statistical parameters were used to evaluate the performance of the model: 

� Correlation coefficient R2, cross-validated R2 and test set validation R2 against an external 

dataset, where x is the experimental pEC50 and y is the model value: 

� � �"�

� �"�
�

22 )()(

)()(

yyxx

yyxxR       Equation 1 

� Root mean squared error, RMSE, for the model, the cross-validation, and the external test set 

validation, where PRESS is the prediction error sum of squares and n the number of compounds: 

n
PRESSRMSE �         Equation 2 

PRESS is an important cross-validation parameter to measure the accuracy of a model. When 

PRESS is less than SSY (sum of the squares deviations for the experimental values from their 

mean), it indicates that the model is significant and predicts better than chance. Furthermore, a 

PRESS/SSY ratio of less than 0.4, indicates that the model is a reasonable QSAR model  47. 
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� Cross-validated R2 has widely been used as criterion of model robustness and predictive ability, 

with a threshold of 0.5 (0.6 for model R2) 48. Nevertheless, a high cross-validated R2 is considered 

a necessary condition for a model to have a high predictive power, but it is not a sufficient 

condition. Therefore, models are often evaluated with external test sets to estimate their true 

predictive power. For example, Tropsha et al. consider a QSAR model to be predictive if the 

following conditions are satisfied  49: 

1.02

2
0

2
4

�

R
RR          Equation 3 

1.150.85 55 k         Equation 4 

 
where Ro is the correlation coefficient, and k is the value of the slope for the regression line 

through the origin (i.e. with the intercept set to 0). 

� The Fisher test, or F-test, reflects the ratio of the variance explained by the model and the 

variance due to the error in the model. High values of the F-test indicate the reliability of the 

QSAR equation. 

Table 3 

Table 4 

 

Ligand-Based Pharmacophore Modelling 

Pharmacophore modelling studies were performed using the MOE and Discovery Studio software suites 

with four families of known actives from the above virtual screening dataset, namely: AMD3100 

derivatives, KRH1636 derivatives, dipicolil amine zinc(II) complexes, and the most active CXCR4 

inhibitors from the combinatorial virtual library. 50 conformations and a maximum of 255 conformations 

of each compound were calculated in MOE (MMFF94 forcefield) and Discovery Studio (Catalyst 

Confirm algorithm), respectively. The training set consisted of the most active compound from each 

family of CXCR4 inhibitors. The pharmacophore queries were built on the alignment of these four 

structures with the FlexAlign module in MOE and using the Common Feature Pharmacophore Generation 

protocol in Discovery Studio. The pharmacophore scheme of PCH (polarity-charge-hydrophobicity) was 

applied throughout the MOE study. Chemical features and their tolerance radii were selected between 

those suggested by MOE to achieve better balance between sensitivity and specificity. Also, in Discovery 
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Studio, hydrogen bond acceptor, hydrogen bond donor, hydrophobic, ionizable positive, and charged 

positive pharmacophore features were used. The maximum number of omitted features was set to one. 

 

Ligand-Based Shape Matching Virtual Screening 

Shape based virtual screening was performed using PARAFIT 08 Shape Tanimoto, ROCS 2.2 Combo 

Score and Shape Tanimoto, and HEX 4.8 Shape Tanimoto scores by superposing each database 

compound onto the docked AMD3100 query conformation. The PARAFIT and HEX superpositions were 

calculated using the conformation of each database compound that was calculated by MOE FlexAlign. 

However, as described previously  20, the ROCS superpositions used ten further conformations of each 

molecule calculated by OMEGA  50. Spherical harmonic consensus shape matching  51 was also performed 

using PARAFIT 08 by superposing each database compound onto a consensus shape query molecule 

calculated from three known CXCR4 actives from different scaffold families (an AMD derivative, a 

macrocycle derivative, and a KRH derivative). Database molecules were ranked according to their shape 

Tanimoto scores with respect to the query shape. The ROCS calculations also used the “color 

optimization” mode to maximize both the shape and chemical property overlays (e.g. proton 

donor/acceptor, cationic/anionic, and hydrophobicity/aromaticity).  

 

Receptor-Based Virtual Screening 

Receptor-based screening against CXCR4 was performed using AUTODOCK 3.0, GOLD 3.0.1, FRED 

2.2.1, and HEX 4.8. In AUTODOCK and GOLD, ten independent LGA and GA runs were carried out, 

respectively, using the same protocol as described  20. In GOLD, the ligands were constrained to form a 

hydrogen bond with a carbonyl oxygen of either Glu288, Asp171, or Asp262 which had been identified 

previously as key binding residues by site-directed mutagenesis (SDM)  44,  52,  53,  54. The ligand databases 

were ranked by AUTODOCK Docked Energy, Gold GoldScore and ChemScore, and a consensus score 

“Rank-by-Rank”  55 of these three scoring functions. In FRED, exhaustive rigid body optimization was 

carried out starting from the ligand conformations aligned to the docked AMD3100 conformation. PLP, 

Chemgauss3, Shapegauss, OEChemScore, ScreenScore, ChemScore scoring functions, and a consensus 

combination of these scores were used to rank the ligand databases. In HEX, docking and ranking was 

performed using a six-dimensional shape-only superposition correlation search with a translational 

distance range of 10 Å from the SDM-defined active site centre, and Hex Docked energy, respectively.  
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Analyzing Virtual Screening Hit Lists and Pharmacophores 

Before virtual screening protocols and pharmacophoric models may be used prospectively, it is first 

necessary to validate them by measuring their ability to retrieve actives from a database of compounds 

with known biological activities. Several formulae have been proposed to score quantitatively the quality 

of hit lists achieved in this way  56. For example, for a database of D compounds containing A actives, and 

where Ht is the number of compounds in a hit list, and Ha is the number of actives in that list, the 

following terms may be defined  57: 

Percent yield of actives: 

100(%) 6�
t

a

H
H

Y          Equation 5 

Percent ratio of the actives in the hit list: 

100(%) 6�
A

H
A a           Equation 6 

Enrichment (enhancement): 

AH
DH

D
A

H
H

EF
t

at
a

6
6

��            Equation 7 

Goodness of Hit list: 

	 

�
�

�
�
�

�
�
6

�6��
�

�
��
�

� �
�

AD
HH

AH
HAH

GH at

t

ta 1
4
3

      Equation 8 

False Negatives: 

aHA �           Equation 9 

False Positives: 

at HH �           Equation 10 

 

For each scoring method, the resulting hit lists were analyzed using the above terms. Following the 

pharmacophore modelling, shape matching and docking calculations, all compounds were sorted into 

ranked lists based upon their RMSD, shape matching scores, and docking energies, respectively. These 

lists were then used to plot the percentage of known actives found versus the percentage of the ranked 
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database screened and to calculate enrichment factors (EFs) at 1%, 5%, and 10% of the screened 

database.  

 

 

RESULTS 

PLS Analysis and Validation of QSAR Models 

After descriptor pruning had been applied, five descriptors were selected to build the QSAR models, 

namely: VAdjEq, Q_VSA_HYD, dipoleY, SlogP_VSA8 and FASA+. Table 5 shows the correlation 

analysis for these descriptors. Three QSAR models were calculated as follows: 

 

Model 1 (Figure 6): 

pEC50 = 2.52586 +0.00940·(Q_VSA_HYD) +0.00507(·SlogP_VSA8) +0.10611·(dipoleY) 

N=29, R2=0.81, RMSE=0.42, F=36.45, R2
LOO=0.75, RMSELOO=0.49, R2

test=0.69, RMSEtest=0.57, n=9 

Ro
2=0.77, (R2- Ro

2)/R2=0.049, k=0.99, PRESS=5.20, SSY=27.93, PRESS/SSY=0.19 

 

Model 2: 

pEC50 = 2.52568 +0.00940·(Q_VSA_HYD) +0.10611·(dipoleY) +0.00507·(SlogP_VSA8) 

+0.00130·(FASA+) 

N=29, R2=0.81, RMSE=0.42, F=26.24, R2
LOO=0.75, RMSELOO=0.49, R2

test=0.69, RMSEtest=0.57, n=9 

Ro
2=0.77, (R2- Ro

2)/R2=0.049, k=0.99, PRESS=5.20, SSY=27.93, PRESS/SSY=0.19 

 

Model 3: 

pEC50 = 2.52606 +0.00940·(Q_VSA_HYD) +0.00507·(SlogP_VSA8) +0.10611·(dipoleY) -

0.00040·(VAdjEq) 

N=29, R2=0.81, RMSE=0.42, F=26.24, R2
LOO=0.75, RMSELOO=0.49, R2

test=0.69, RMSEtest=0.57, n=9 

Ro
2=0.77, (R2- Ro

2)/R2=0.049, k=0.99, PRESS=5.20, SSY=27.93, PRESS/SSY=0.19 

 

One compound 1{6,8} was deleted from the training set because it gave a Z-SCORE > 2.5, which 

indicated it is an outlier. This was confirmed by recalculating the models without it to obtain better 

overall statistics. All three resulting models showed R2 values above 0.6 and R2 for the cross-validation 
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and external test set validation above 0.5. In all cases, the PRESS/SSY ratio was below 0.4, (R2- Ro
2)/R2 

was less than 0.1, and k was between the above thresholds. Because the statistical results where broadly 

similar for all models, model 1 was selected as the most parsimonious because it used only three 

descriptors, whereas models 2 and 3 required four descriptors. The use of dipoleY, an external 3D 

descriptor, as independent variable in the three models enhanced the importance of a correct alignment of 

the molecules in order to obtain a reliable predicted activity value. Prediction of activity values for the 

training set and the external test set using model 1 are shown in Table 3 and Table 4. Predictions were 

made for compounds in the virtual library that had not yet been synthesized (1, 2 and 8) and for 

monocyclams 9 and 10. These results are shown in Table 6. 

Table 5  

Figure 6  

Table 6  

 

Pharmacophore Hypothesis Generation and Validation 

Pharmacophore models were generated and retrospective analyses were performed to select models which 

achieved a good balance between sensitivity and specificity. Several models were proposed (Table 7), 

five using MOE (Models 1 to 5) and four using Discovery Studio (Models 6 to 9). Model 1 was built 

using the MOE Pharmacophore Elucidate module. Features in models 2 and 3 were selected from the 

consensus analysis performed with MOE Pharmacophore Query module. Models 4 and 5 were manually 

designed based on the description of the interactions of AMD3100 and CXCR4  44,  54,  58,  59,  60,  61,  62. Finally, 

models 6 to 9 were built in Discovery Studio using the Hypogen and HipHop algorithms to generate 

hypotheses and to select the best common pharmacophore features produced. The retrospective analysis 

of the models showed that pharmacophore model 1 (Figure 7) was highly selective with our dataset, 

giving no false positives and only nine false negatives. This model accurately classified and ranked all the 

known actives in the dataset, except for the KRH1636 analogues which were positioned at the end of the 

hit list. Visual inspection of the hit lists in the retrospective analysis showed that the ranking of each 

compound depended on the model and type of compound. More reliable results were obtained using a 

consensus of the five MOE models in Table 7. 

Figure 7 

Table 7 
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A prospective analysis using the consensus pharmacophore model was then applied to select new 

compounds for synthesis and testing. These molecules included hitherto unsynthesised compounds from 

the virtual combinatorial library (i.e. amino/hydrazono-amine/hydrazone compounds 1, 2, and 8, 

amino/hydrazono-aldehyde compounds 6 and 7 and cyclam-amine/hydrazone compounds 9 and 10). All 

of these compounds can be seen to match the pharmacophore model equally well. The screened 

compounds selected by the consensus of pharmacophore models and their score values are shown in 

Table 8. 

Table 8 

 

Docking Enrichments 

 In order to analyse the ability of the receptor model structure to discriminate active compounds from 

decoys, retrospective analysis of docking enrichment curves was performed as described previously. 20 

Next, enrichment curves for the virtual combinatorial library compounds were calculated using the same 

protocol. Figure 8 shows the enrichment curves obtained. Inspection of these results shows that the 

enrichments obtained with the FRED consensus, Consensus scoring (AUTODOCK Docked Energy, 

GOLD GoldScore and ChemScore), and ChemScore scoring functions are the best, as was observed in 

the retrospective analysis. Looking at the first percentages of the ranked hit lists, the compounds selected 

by these three scoring functions can be seen to belong to 9, 10, 1, 2, and 8. The compounds found at the 

top 10% of the ranked hit list using these three scoring functions, as well as AUTODOCK Docked 

Energy, HEX Docked Energy, and FRED Chemgauss3 are nearly the same. The screened compounds 

selected by these scoring functions and their score value are shown in Table 9.  

Figure 8 

Table 9 

 

Shape Matching Enrichments 

Because no crystallographic ligand conformation is available for the current system, the SDM-compatible 

conformation of AMD3100 found previously from computational docking was used as the database 

query. In order to study the performance of this query structure and the parameters used in the screening 

protocol, a retrospective analysis of shape matching enrichment curves was first performed  20. Next, 

enrichment curves for the combinatorial virtual library compounds were calculated using the same 
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protocol. Moreover, a consensus query was built from three different scaffold CXCR4 known actives (an 

AMD derivative, a macrocycle derivative, and a KRH derivative) and a retrospective analysis was 

performed. Enrichment curves for the virtual combinatorial library compounds were also calculated 

showing similar results to the basic PARAFIT AMD3100 query shape Tanimoto score. Figure 9 shows 

that the ROCS Combo Score and PARAFIT Tanimoto Score and Consensus Shape Tanimoto give the 

best EFs, as in the retrospective analysis. HEX Shape Tanimoto and ROCS Shape Tanimoto also perform 

well. Overall, the ligand-based shape matching tools perform better than the docking tools used here. 

However, looking at the first percentages of the ranked hit lists obtained, the compounds selected by these 

shape matching methods belong to 9, 10, 1, 2, and 8, as found with the docking tools. Molecules found at 

the top 10% hit ranking list are the same using these different shape matching approaches. The screened 

compounds selected by these shape-based methods and their score value are shown in Table 10. 

Figure 9 

Table 10 

 

Hit Selection  

A consensus “Rank-by-Vote”  55 of all the first hit ranking lists compounds found was performed, and five 

compounds were selected to be synthesized: 1{7,8}, 8{2,8}, 8{1,8}, 10{11}, and 10{8}. Both of the 

cyclam-amine compounds (10) were classified in the top of the ranked list in the virtual screenings but we 

selected the two best ranked and the three best classified amino/hydrazono-amines. Compound 8{1,8} 

was toxic at a concentration of 4.1 �g/ml and showed no activity below this concentration (Table11). 

However, compounds 1{7,8} and 8{2,8} showed anti-HIV activity values of 0.6 and 0.4 �g/ml, 

respectively, and the cyclam-amine compounds 10{11} and 10{8} showed the best anti-HIV activities of 

0.058 �g/ml and 0.022 �g/ml, respectively. 

Table 11 

 

DISCUSSION 

A combination of ligand-based and receptor-based screening tools was used to select molecules from the 

virtual combinatorial library. The different approaches used generally select similar molecules at the first 

percentages of the ranked hit lists. Compounds selected by the various ligand-based virtual screening 

tools are practically the same, whereas those selected by the structure-based docking tools also include 
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some others. All shape-based and pharmacophore ligand-based approaches, and consensus scoring of 

AUTODOCK and GOLD scoring functions, FRED consensus and Chemgauss3, and the HEX Docked 

Energy approaches select nearly the same molecules at first percentages of database screened. However, 

although ligand-based searches give better results than structure-based docking for both retrospective and 

prospective virtual screening analyses, the pharmacophore models and also AUTODOCK Docked Energy 

give the best correlation with experimental data. Of the five compounds selected by the Rank-by-Vote 

consensus, compound 8{1,8} was toxic below 5 �g/ml, but 1{7,8} and 8{2,8}, showed activity values 

below 1 �g/ml., and the remaining two, 10{11} and 10{8}, both of which are monocyclams, showed 

activity values below 0.06 �g/ml. Our proposed QSAR model agrees well with the experimental results, 

especially for the non-monocyclam compounds, with predicted activities of 0.66, 1.58, 7.30, and 0.87 3M 

for 1{7,8}, 8{2,8}, 10{11}, and 10{8}, which differ by only 0.37, 0.02, 7.17, and 0.82 3M, respectively, 

from the experimental biological values. 

Overall, our screening procedure selects the most active compounds from our combinatorial virtual 

library (i.e. 1{8,8} 0.008 �g/ml, 1{8,9} 0.03 �g/ml, 1{5,6} 0.2 �g/ml, 1{8,10} 0.4 �g/ml) in the first 

ranking positions of the final consensus list. Moreover, the first five unsynthesised compounds which 

were also predicted to be active were ranked in order of their known activities. Hence our screening 

procedure can be seen to perform rather well. 

 

 

CONCLUSION 

A database of CXCR4 inhibitors and similar presumed inactive compounds was compiled from the 

literature in order to perform retrospective virtual screening. This database was used to compare docking-

based and ligand-based (i.e. pharmacophore modelling and shape matching) virtual screening approaches. 

Additionally, a large virtual combinatorial library of candidate CXCR4 antagonists was designed, and the 

above screening approaches were used to select five compounds for synthesis and testing. The actives 

identified in this way had activities in the range 20 to 0.008 �g/ml. Experimental binding assays of those 

compounds confirmed that their mode of action was to block the CXCR4 receptor. Activity values were 

used for the development of ligand-based QSAR models in order to use them to predict activity of 

hitherto unsynthesised molecules. Prospective virtual screening, using the same protocol as in 

retrospective screening analysis, was then used to guide the selection of other molecules from the virtual 
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combinatorial library. Molecules found at the first positions of the consensus ranked hit list showed 

activity values in the range from 4 to 0.022 �g/ml. 
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CXCR4 inhibitors for retrospective docking and shape based virtual screening 

Family Number of compounds References 

Tetrahydroquinolinamine derivatives 123  11,  30,  31,  32,  33,  34 

KRH1636 derivatives 23  11,  35,  36,  37,  38 

Macrocycles 4  39 

AMD3100 derivatives 94  11,  26,  27,  39,  40,  41,  42 

Cyclic Peptides 2  43 

Other 2  44 

Total 248  

CXCR4 inhibitors  for retrospective pharmacophore model based virtual screening  

Family Number of compounds References 

KRH1636 derivatives 13  11,  35,  36,  37,  38 

Dipicolil amine zinc(II) complexes 10  45 

AMD3100 derivatives and macrocycles 90  11,  26,  27,  39,  40,  41,  42 

Active molecules from the combinatorial 

virtual library (amino-amine, amino-aldehyde) 
38  12 

Total 151  

 
Table 1. Summary of the CXCR4 inhibitor families used in the current study.  
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Comparison of datasets used in 

pharmacophore modelling MW b_1rotN a_acc a_don a_hyd SlogP 

151 CXCR4 actives 485.2 (104.9) 6.9 (3.9) 3.5 (1.5) 1.5 (1.5) 26.3 (5.0) -0.8 (2.5) 

1462 inactives 381.4 (64.9) 5.1 (2.0) 4.0 (1.1) 1.2 (1.1) 16.6 (2.6) 2.6 (0.9) 

Comparison of datasets used in docking and 

shape matching approaches MW b_1rotN a_acc a_don a_hyd SlogP 

248 CXCR4 actives 507.3 (74.4) 9.2 (4.9) 4.9 (1.1) 1.7 (1.3) 27.6 (4.2) 4.3 (3.0) 

4696 inactives 497.4 (45.6) 6.2 (2.4) 3.6 (1.6) 0.9 (1.0) 21.8 (4.1) 5.5 (1.9) 

 
Table 2. Summary of the 1D physico-chemical properties of active and inactive molecules in the 
screening databases used in pharmacophore modelling, docking, and shape matching approaches. 
This table shows the average and standard deviation (in parenthesis) of the following properties: MW 
(molecular weight); b_1rotN (number of rotatable single bonds); a_acc (number of hydrogen-bond 
acceptor atoms); a_don (number of hydrogen-bond donor atoms); a_hyd (number of hydrophopic atoms); 
S_logP (octanol-water partition coefficient).  
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 Compound Name pEC50 predicted pEC50  Residue

1 
 

8{1,11} 4.512 4.864 -0.352 

2 
 

8{2,4} 4.367 5.303 -0.936 

3 
 

8{2,5} 5.251 5.772 -0.521 

4 
 

8{2,9} 5.005 4.957 0.048 

5 
 

8{3,5} 5.281 4.695 0.586 

6 
 

8{3,6} 4.483 4.578 -0.095 

7 
 

8{3,8} 5.424 5.135 0.289 

8 
 

8{3,9} 4.503 4.238 0.265 

9 
 

8{3,11} 4.647 4.061 0.586 

10 
 

1{4,4} 4.511 4.917 -0.406 

11 
 

1{4,5} 5.299 5.291 0.008 

12 
 

1{4,6} 4.852 4.962 -0.110 

13 
 

1{4,9} 4.659 4.913 -0.254 

14 
 

1{5,5} 5.600 5.548 0.052 

15 
 

1{5,6} 6.250 5.351 0.899 

16 
 

1{5,7} 5.327 5.465 -0.138 

17 
 

1{5,10} 5.177 5.070 0.107 

18 
 

1{6,7} 5.254 5.321 -0.067 
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 Compound Name pEC50 predicted pEC50  Residue

19 
 

1{6,8} 1.106 outlier outlier 

20 
 

1{6,11} 4.305 5.038 -0.733 

21 
 

1{7,9} 5.190 5.520 -0.330 

22 
 

1{7,11} 5.142 5.105 0.037 

23 
 

1{8,8} 7.715 6.843 0.872 

24 
 

1{8,10} 5.987 5.599 0.388 

25 
 

1{8,11} 5.906 5.890 0.016 

26 
 

1{9,9} 4.642 5.047 -0.405 

27 
 

6{2} 4.432 4.724 -0.292 

28 
 

6{1} 4.235 4.169 0.066 

29 
 

7{9} 4.233 3.811 0.422 

30 
 

AMD3100 8.688 8.688 0 

 

Table 3. The training set used for the QSAR model building calculations. pEC50 (derived from EC50 
in �M) refers to the experimental activity values. The two last columns show the predicted and residual 
pEC50values obtained from QSAR model 1. Compound 19 gave a Z-SCORE > 2.5, and was therefore 
considered to be an outlier and was excluded from the training set. 
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 Compound Name pEC50 predicted pEC50 Residue

1 
 

8{1,5} 5.079 5.297 -0.218 

2 
 

8{2,11} 4.375 5.006 -0.631 

3 
 

1{5,8} 6.357 6.045 0.312 

4 
 

1{5,9} 5.889 5.336 0.553 

5 
 

1{5,11} 5.369 5.239 0.130 

6 
 

1{8,9} 7.142 5.783 1.359 

7 
 

1{9,11} 4.647 5.101 -0.454 

8 
 

7{5} 4.337 4.249 0.088 

9 
 

7{8} 5.183 4.962 0.221 

 

Table 4. The external test set used for QSAR model validation. The column headings are described in 
Table 3.  
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 pEC50 VAdjEq Q_VSA_HYD dipoleY SlogP_VSA8 SMR_VSA5 FASA+ 

pEC50 100       

VAdjEq -60 100      

Q_VSA_HYD 84 -68 100     

dipoleY 41 -14 20 100    

SlogP_VSA8 56 -26 41 42 100   

SMR_VSA5 54 -39 37 49 68 100  

FASA+ 38 -16 59 -6 -34 -12 100 

 

Table 5. Correlation analysis for the descriptors used in the QSAR models. 
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Compound Name predicted EC50 (3M) 

 
1{7,8} 0.66 

 
10{8} 0.87 

 
8{2,8} 1.58 

 
8{2,7} 1.88 

 
1{4,8} 2.16 

 
2{1,2} 2.24 

 
10{7} 2.70 

 
10{6} 2.87 

 
1{7,7} 2.93 

 
8{1,8} 3.70 

 
9{2} 3.85 

 
10{9} 4.61 

 
10{4} 4.75 

 
10{5} 5.23 

 
9{1} 5.90 

 
1{4,7} 5.94 

 
8{1,7} 5.98 

 
10{11} 7.30 
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Compound Name predicted EC50 (3M) 

 
1{6,6} 7.53 

 
8{1,4} 9.28 

 
1{7,10} 9.95 

 
8{2,10} 10.13 

 
2{2,3} 10.52 

 
1{4,10} 17.35 

 
8{3,7} 18.96 

 
10{10} 19.70 

 
8{1,9} 21.50 

 
9{3} 24.95 

 
1{10,10} 30.06 

 
8{1,10} 30.44 

 
8{3,4} 43.40 

 
2{1,3} 48.09 

 
8{3,10} 58.34 

 
6{3} > 100 

 

Table 6. Prediction of activity values using QSAR model 1. 
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Model Ha Ht false + false - EF Y(%) A(%) GH 
1 142 142 0 9 10.68 100 94 0.99 
2 139 140 1 12 10.61 99 92 0.97 
3 122 157 35 29 8.30 78 81 0.77 
4 133 186 53 18 7.64 72 88 0.73 
5 123 168 45 28 7.82 73 81 0.73 
6 132 132 0 19 10.68 100 87 0.97 
7 96 96 0 55 10.68 100 64 0.91 
8 106 107 1 45 10.58 99 70 0.92 
9 92 92 0 59 10.68 100 61 0.90 

 

Table 7. Summary of the results obtained for the retrospective screening analysis of the generated 
pharmacophore models. The quantities Ha, Ht, false +, false -, EF, Y(%), A(%), and GH are defined in 
Equations 5-10. Overall, QSAR model 1 can be seen to give the best statistics. 
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Compound Model 1 Model 2 Model 3 Model 4 Model 5 

2{1,2} - - - - - 

2{1,3} 0.9169 0.9086 - 0.9870 - 

8{1,4} 0.7352 0.5261 0.5712 0.7153 1.4686 

8{1,7} - 0.5190 0.6307 0.7327 - 

8{1,8} 0.6071 0.4723 0.6284 0.9790 - 

8{1,9} 0.6714 0.3698 0.5487 0.7998 - 

8{1,10} - 0.5110 0.6307 0.7305 1.2161 

2{2,3} 0.7664 0.9129 - 0.8400 - 

8{2,7} - 0.8506 0.6338 0.6678 1.3628 

8{2,8} 0.4375 0.4742 0.6199 0.6860 - 

8{2,10} - 0.7040 0.6339 0.6660 0.8185 

8{3,4} 0.4417 0.5261 0.5711 0.6690 0.9981 

8{3,7} 0.5551 0.4368 0.6306 0.6317 0.8388 

8{3,10} 0.5551 0.4289 0.6306 0.6291 0.8327 

1{4,7} 0.7565 0.3962 0.5227 0.4716 0.8880 

1{4,8} 0.4157 0.3923 0.4166 0.4902 0.8354 

1{4,10} 0.7308 0.3284 0.5119 0.5366 0.7563 

1{6,6} 0.6027 0.9477 0.4127 - - 

1{7,7} 0.6990 0.5077 0.5190 0.6907 1.0076 

1{7,8} 0.4157 0.3625 0.4166 0.5070 0.8043 

1{7,10} 0.7308 0.3284 0.5119 0.4728 0.7508 

1{10,10} 1.1377 0.4894 0.5079 0.4643 0.7041 

6{3} - 0.9007 - - - 

9{1} 0.4288 0.4014 0.4803 0.5879 1.1812 

9{2} 0.3235 0.3832 0.4742 0.5254 0.8217 

9{3} 0.4747 0.4012 0.4805 0.5449 0.5568 

10{4} 0.3409 0.4270 0.4640 0.4845 0.6615 

10{5} 0.3671 0.3329 0.4250 0.4800 0.7907 

10{6} 0.3925 0.4079 0.4250 0.4800 1.1394 

10{7} 0.2826 0.3789 0.4512 0.3739 0.5394 

10{8} 0.3321 0.4755 0.4248 0.3568 0.5311 

10{9} 0.2655 0.3462 0.4248 0.3320 0.5408 

10{10} 0.2809 0.3786 0.4512 0.3727 0.5405 

10{11} 0.3755 0.2856 0.4248 0.3483 0.5304 

 
 
Table 8. Pharmacophore-based prospective virtual screening results. This table lists the overall 
(RMSD) score obtained for each compound using pharmacophore models 1, 2, 3, 4, and 5. Hyphens 
denote compounds that do not match the pharmacophore model. 
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Compound 
Consensus 

score 
GOLD 

ChemScore 
FRED 

consensus 
AUTODOCK 

Docked Energy 
HEX 

Docked Energy 
FRED 

Chemgauss3 
10{8} 512.70 27.20 446 -16.27 -345.80 -16.97 

10{9} 455.30 25.88 408 -17.69 -373.90 -30.96 

10{11} 1129.30 8.07 388 -15.76 -396.30 -31.67 

10{5} 920.30 15.29 464 -16.59 -343.70 -14.77 

9{2} 707 26.42 329 -14.78 -409.50 -29.98 

8{2,8} 743.70 35.55 119 -14.59 -374.70 -47.45 

1{7,8} 738 31.29 427 -15.14 -407.80 -62.70 

8{1,8} 904.30 25.06 212 -14.69 -325.70 -49.30 

1{4,10} 922.70 28.29 207 -14.03 -421.60 -46.24 

8{2,7} 656 30.80 160 -14.46 -421.20 -57.50 

1{4,8} 492.70 33.11 422 -14.92 -443.60 -42.65 

1{7,10} 738.30 26.30 341 -14.10 -420.50 -40.59 

1{4,7} 683 28.39 185 -15.90 -381.3 -69.14 

 
Table 9. Docking scores of hits from the screened combinatorial library. This table shows compounds 
found within the top 10% of the ranked hit list using Consensus score (AUTODOCK Docked Energy, 
GOLD GoldScore and ChemScore), GOLD ChemScore, FRED consensus (PLP, Chemgauss3, 
Shapegauss, OEChemScore, ScreenScore, ChemScore), AUTODOCK Docked Energy, HEX Docked 
Energy, and Chemgauss3 scoring functions. 
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Table 10. Shape matching scores for hits from the screened combinatorial library. This table shows 
compounds found within the top 10% of the ranked database using PARAFIT Shape Tanimoto and 
Consensus Shape Tanimoto, ROCS Combo Score and Shape Tanimoto, and HEX Shape Tanimoto 
scores.  

Compound PARAFIT 
Shape Tanimoto 

PARAFIT 
Consensus Shape 

ROCS 
Shape Tanimoto 

ROCS   
Combo Score 

HEX 
Shape Tanimoto 

10{11} 0.9725 0.9763 0.5970 0.9010 0.9109 

10{8} 0.9492 0.9506 0.5070 0.6320 0.8479 

10{9} 0.8996 0.9028 0.4820 0.8160 0.8422 

10{5} 0.9193 0.9334 0.5280 0.8720 0.8490 

9{2} 0.9570 0.9507 0.6330 0.6940 0.9145 

8{2,8} 0.9651 0.966 0.5170 0.6840 0.8741 

1{7,8} 0.9597 0.9471 0.5420 0.7320 0.8855 

8{1,8} 0.9393 0.9416 0.5730 0.6070 0.8948 

2{1,2} 0.9230 0.9307 0.5200 0.5580 0.8449 

8{2,7} 0.9101 0.9053 0.4950 0.5480 0.8581 

1{7,10} 0.9498 0.9547 0.4460 0.6240 0.8457 

1{4,7} 0.9015 0.9139 0.4950 0.8100 0.8442 
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Compound Name EC50 / �g/ml CC50 / �g/ml 

 

8{1,8} > 4.1 4.1 

 

8{2,8} 0.6 14.6 

 

1{7,8} 0.4 > 25 

 

10{8} 0.022 > 25 

 

10{11} 0.058 > 25 

 
Table 11. Summary of the five VS-selected hits. EC50 denotes anti-HIV activity, and CC50 is the 
cytotoxicity value (3M). 
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Scheme 1. Synthetic scheme for the symmetrical and non-symmetrical diamines 1, dihydrazones 2, and 
aminohydrazones 8. 
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Figure 1. The AMD3100 reference antagonist for CXCR4, and schematic illustration of the target 
library construction. Top: the AMD3100 reference antagonist for CXCR4, with a p-phenyl linker and 
nitrogen-containing heterocyclic systems on each side of the linker. Bottom: a schematic illustration of 
the construction of the target library which preserves these features. 
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Figure 2. Amine and hydrazine building blocks used for the combinatorial virtual library.  
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Figure 3. Representative examples of compounds in the combinatorial virtual library. Compounds 1 
are symmetrical (R1 = R2) or non-symmetrical (R1 2 R2) diamines, compounds 2 are symmetrical (R1 = 
R2) or non-symmetrical (R1 2 R2) dihydrazones, compounds 8 are aminohydrazones, compounds 6 and 7 
correspond to hydrazonobenzaldehydes and aminobenzaldehydes, respectively, and compounds 9 and 10 
are amino or hydrazone substituted monocyclams. 
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Figure 4. Representative structures of seven families of CXCR4 inhibitor. 
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Figure 5. The MOE alignments of active database compounds with AMD3100 (shown in brown). 
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Figure 6. Correlation of experimental versus predicted pEC50 for QSAR model 1. 
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Figure 7. Alignment of the compounds in the training set and the pharmacophore model 1. 
Hydrophobic and aromatic features (Hyd|Aro) are shown in green. Cationic (Cat) features are shown in 
purple. 
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Figure 8. CXCR4 docking-based enrichment plots. On the left, enrichment results for several docking 
protocols for retrospective (top) and prospective (bottom) virtual screening analyses. The dotted black 
line represents the expected values if actives are selected at random. On the right, enrichment factors for 
actives found within the top-ranking 1%, 5%, and 10% of the screened inhibitor database (top) and 
screened virtual combinatorial library (bottom). 
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Figure 9. CXCR4 shape matching-based enrichments. On the left, enrichment curves obtained for 
various shape matching protocols on the known inhibitor database (top) and compounds from the virtual 
combinatorial library (bottom). The dotted line represents the expected enrichment if actives are selected 
at random. On the right, enrichment values for actives found within the top-ranking 1%, 5%, and 10% of 
the screened database (top) and screened virtual combinatorial library (bottom). 
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Caption for Proposed Front Cover Illustration Only (figure provided separately) 

 

This image shows at the top left the proposed MOE pharmacophore model built from the 

alignment of the four most active structures of four CXCR4 inhibitor families, namely: 

AMD3100 derivatives, KRH1636 derivatives, dipicolil amine zinc(II) complexes, and the 

most active CXCR4 inhibitor synthesised from a combinatorial virtual library built by the 

authors. A polarity-charge-hydrophobicity pharmacophore modelling scheme was used. 

Chemical features and their tolerance radii were selected between those suggested by 

MOE to achieve better balance between sensitivity and specificity. Hydrophobic and 

aromatic features are shown in green. Cationic features are shown in purple. On the 

bottom left, the MOE FlexAlign alignments of active database compounds found using as 

superposition template the AMD3100 conformation obtained previously from a CXCR4 

docking study (shown in brown). On the right, a depiction of how the selected database 

compounds fit the calculated pharmacophore model. 
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ABSTRACT 

A new interaction fingerprint (IF) called APIF (Atom Pairs based Interaction Fingerprint) has been 

developed for post-processing protein-ligand docking results. Unlike other existing fingerprints which 

employ absolute locations of individual interactions, APIF considers the relative positions of pairs of 

interacting atoms. Docking-based virtual screening was performed with GOLD using the crystal 

structures of trypsin, rhinovirus, HIV protease, carboxypeptidase and estrogen receptor-alpha (ER-�) as 

targets. A score derived from the similarity of the bit strings for each docking solution to that of a known 

reference binding mode was obtained. Comparisons between APIF, GoldScore function, and a standard 

interaction fingerprint (CHIF) scores were performed using enrichment plots. Superior recovery rates 

were observed in the interaction fingerprints (IFs) score cases. Comparable results were achieved by 

using either of the two interaction fingerprints, substantially improving GoldScore function enrichment 

factors. Binding mode analyses were also carried out in order to study the best method for selecting 

conformations with a binding mode similar to that of the reference crystallized complex. These showed 

that the first conformations retrieved by interaction fingerprint scores had a more similar binding mode to 

the reference complex than those retrieved by GoldScore function. 

 

INTRODUCTION 

Interaction fingerprints (IFs) have been developed to enhance the representation and analysis of three-

dimensional protein-ligand interactions  1,  2,  3. In particular, they have proven to be very useful in docking 

output post-processing as a virtual screening (VS) filter and for binding mode detection  4. These methods 

have been developed in order to overcome the known deficiencies in identifying accurately the 

conformations with closest binding modes to the X-ray structures  5,  6.  

IFs encode the 3D protein-ligand contacts in bit strings of a length derived from the number of 

residues/atoms in the target protein binding cavity. Typically, each bit denotes either the presence (1) or 

absence (0) of a particular interaction such as a hydrogen bond, or hydrophobic or van der Waals contact. 

The different interaction fingerprint implementations vary depending on the bit string definition and the 

type of interactions considered. The initial proposal of Deng and co-workers  1,  4 operated at the residue 

level and considered hydrophobic and hydrogen bond contacts. Following this idea, Kelly and Mancera  2 

transferred the initial concept based on residues to a new one based on atoms for hydrogen bond sites. 

Moreover, these authors introduced the concept of weighting the importance of the detected interactions. 
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Recent atom-based IF advances were developed by Mpamhanga and Willet  3. These authors encoded 

hydrogen bonds or/and hydrophobic contacts in a fingerprint of length equal to the number of heavy 

atoms in the binding site.  

In this paper we present a new fingerprint called APIF (Atom Pairs based Interaction Fingerprint) that 

encodes ligand-protein binding modes in a bit string based on the concept of atom pairs. This approach is 

widely used in the context of fragment-based similarity searches  7. APIF encodes ranges of distances 

between two receptor-ligand interaction points. Each observed distance increases a count in an associated 

7-range bin. Depending on the combination of the type of contacts, the corresponding bit is set on.  

The three IF approaches previously reported encode ligand-protein interaction information in an absolute 

manner, i.e., a contact is expected or not at a concrete atom/residue of the protein sequence. On the other 

hand, APIF considers the relative pairwise position of the interacting atoms rather than their absolute 

locations. Thus, from our viewpoint, the main novelty of this approach is that our IF encodes the 

conserved distance between two receptor-ligand interactions rather than requiring a specific atom/residue 

of the protein. 

The performance of this new fingerprint was validated through docking-based VS using both enrichment 

plots and binding mode analyses. Enrichment results obtained with APIF were compared with those 

retrieved with the GoldScore function and an in-house implementation of the CHIF fingerprint of 

Mpamhanga’s et al. Inspection of the binding modes for the poses selected by these three criteria was 

carried out in order to analyze their ability to retrieve the closest binding modes to the crystallographic 

structures within the first top-ranked conformations.  

 

METHODS 

Case Studies: Protein and Databases Preparation 

To evaluate our approach, we decided to dock several different experimentally determined X-ray co-

crystal structures and known inhibitors. Thus, the set of known inhibitors was collected from FlexS-77 

dataset  8 for the trypsin, rhinovirus, HIV protease, and carboxypeptidase targets. The “Bissantz active set” 

 9  was used to compile the inhibitors for estrogen receptor-alpha (ER-�) target for comparison purposes 

with Mpamhanga’s work  3. The structures of these compounds are shown in Figures 1, 2 and 3. For each 

target of these sets, the complex with the best crystallographic resolution was selected as the reference for 

docking. These reference complexes and their corresponding PDB entries are listed on Table 1. For each 
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target complex, the ligand binding site was defined from the bound ligand using a radius cut-off of 10 Å. 

Bound waters were removed from the binding sites, and the receptors were protonated at pH 7.  

Figure 1 

Figure 2 

Figure 3 

Table 1 

In order to perform the virtual screening, the known actives were combined with presumed inactive 

compounds from the Maybridge Screening Collection database  9 in such a way that several 1D properties 

calculated by MOE  11 were similar to those of the active compounds (molecular weight, number of 

rotatable single bonds, number of hydrogen-bond acceptor atoms, number of hydrogen-bond donor atoms, 

octanol-water partition coefficient and number of hydrophobic atoms)  12. Table 2 shows the average and 

standard deviations of these properties for the datasets used. It can be seen that they are quite similar for 

the active and inactive pools.  

We would like to remark that for APIF and CHIF (in-house implementation) comparison purposes the 

ER-� inactive pool of 490 compounds differs from that of Mpamhanga et al.  3. However, it is worth 

mentioning that Mpamhanga et al. repeated their calculation for three different inactive pools without 

finding significant differences, so it is not expected that our modified inactive pool will have much 

influence in reproducing results. 

Table 2 

 

Docking Methodology 

All the dataset compounds were docked into the aforementioned protein structures using GOLD  13. In the 

GOLD runs, the ligand binding site was limited to all protein atoms within 10 Å from the centroid of the 

binding residues  14 -  26. The GOLD cavity-detection algorithm was enabled in order to confine the 

calculation to concave regions in the vicinity of the binding site. A total of 100 docking runs per 

experiment (conformations) were performed, with each run consisting of a maximum of 100,000 GA 

operations. All other GA parameters used default values. Cut-off distances of 2.5 Å for hydrogen-bonds 

and 4.0 Å for non-bonded contacts were set. In each study all the ligand poses generated were retained for 

subsequent binding mode analyses. The GoldScore function was used for scoring the docked 

conformations as the first criterion for VS ranking and for the subsequent respective enrichment plots. 
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Construction of APIF (Atom Pairs based Interaction Fingerprint) 

The algorithm to generate the APIF was implemented in the MOE SVL language  11. First: given a 

complex, the active site is defined using a radius value (10 Å in the present study). Second: the 

interactions between the protein and the ligand are detected using the function pro_Contacts as 

implemented in MOE: hydrogen bonds are defined following Stickle446 function and hydrophobic 

contacts are determined using a cut-off of 4.5 Å. Depending on the type of interaction, both the atoms of 

the protein (P) and the ligand (L) are labelled as hydrogen bond donor, hydrogen bond acceptor or 

hydrophobic. This results in six possible types: acceptor-L, acceptor-P, donor-L, donor-P, hydrophobic-L, 

and hydrophobic-P. Third: all possible pairwise protein-ligand interactions are detected and classified 

depending on one of the six possible combinations of pairs of interaction contacts. The six possible types 

are listed in Figure 4a. For each pairwise interaction detected in a complex, the distance between the two 

receptor atoms (d1) and the distance between the two ligand atoms (d2) are measured. Figure 4b shows 

this process. Each observed distance increases a counter within a bin divided into seven ranges, taken 

from Mason  27, which correspond to distance ranges of (Å): [0-2.5], [2.5-4], [4-6],[6-9], [9-13], [13-18] 

and [>18]. The two distances taken together define a single bit in a string of 49 bits (enumerated from 

zero) according to Equation 1. 

 

Bit Position = bin (d2) + 7·bin(d1)                Equation 1 

 

Fourth: the final fingerprint length corresponds to the number of possible combinations of pairs of 

interaction contacts (six) and the dimension of the binning partition scheme for the ligand distances 

(seven) and the receptor distances (seven). In this way, the total fingerprint is composed of 6x7x7=294 

bits. Figure 5 illustrates this encoding system. Both raw fingerprints and normalized ones between 0 and 1 

were constructed. 

Figure 4 

Figure 5 
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In-house CHIF Fingerprint Implementation 

Here, the CHIF fingerprint was also implemented in SVL. We followed the CHIF design description from 

Mpamhanga et al.  3, although some differences arise in the function used to determine protein contacts. In 

our case, and as for APIF, the MOE pro_Contacts function was used. This function uses a different 

hydrogen bond distance threshold and different atom type definitions (donor, acceptor, hydrophobic) 

from those of Mpamhanga et al.  3. We also fixed a radius of 10 Å to define the binding site. 

 

Virtual Screening Protocol 

After docking the inhibitors against their corresponding target, CHIF and APIF fingerprints were 

calculated for all the retrieved poses. Similarly, a reference CHIF and APIF fingerprints were directly 

generated from the crystallographic reference complexes. Then, a similarity search was performed 

between the fingerprints derived from each docked conformation and the reference fingerprints. Two 

scoring systems were used to evaluate the conformations for each ligand and to rank the screened list: 

� Traditional similarity coefficients  28: Euclidean distance, Manhattan distance, Tanimoto 

coefficient and Simple matching coefficient. These similarity values can be calculated using 

Equations 2-5 (below), where A and B denote the numbers of bit sets in the two IFs that are 

being compared and C denotes the number of bits in common. This scoring system will 

subsequently be called SCORE1, specifying in each case the particular coefficient used 

(Euclidean, Manhattan, Tanimoto or Simple matching). 

 

Euclidean Distance =          

 

Manhattan Distance =     

 

Tanimoto coeffcient = 

 

Simple matching coefficient =                                                            

 

� Following Mpamhanga’s work  3, a second kind of score was calculated resulting from the 

multiplication of the value obtained from the GoldScore function for each solution by the 
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Equation 6

similarity coefficient (in this case we only considered Tanimoto and Simple matching). This 

scoring system will subsequently be called SCORE2, specifying in each case the particular 

coefficient used (Tanimoto or Simple matching). 

 

SCORE2 = SCORE1 x GoldScore function       

 

Finally, the VS was analyzed in terms of enrichment plots using the three criteria: GoldScore function, 

SCORE1 and SCORE2. 

 

Binding Mode Analyses 

IFs provide a good method for analyzing the protein-ligand interactions and optimizing the resulting 

docking poses. Several studies have been made for analyzing the binding modes obtained from IFs 

selected conformations  1,  2,  3,  4,  29,  30. As many docking validation studies have shown, scoring functions 

(such as GoldScore) do not always identify within the first ranked conformations the co-crystallized 

binding modes. This also happens with the poses selected using IF-based similarity scores. However, 

since IFs take into account experimental data, it is reasonable to suppose that they can select closer poses 

to the experimental crystallographic complex than using only docking scoring functions. In this work we 

compared the ability of GoldScore function, APIF-based and CHIF-based similarity fingerprints to 

retrieve the closest binding modes to the crystallographic structures within the first top-ranked 

conformations. Binding modes of four out of the five targets used in the enrichment studies (trypsin, 

rhinovirus, HIV protease and carboxypeptidase) were analyzed. For each target, the RMSD between the 

crystallographic reference complex and each docked pose was calculated. Results were analyzed using 

three different plots: 

- Graph 1 (RMSD from crystallographic binding mode vs CHIF-based Tanimoto or APIF-based 

Tanimoto similarity coefficient). Plotting RMS deviations from the X-ray pose versus similarity 

of IFs expressed by a Tanimoto coefficient, calculated from APIF and CHIF fingerprints, 

generated by the X-ray and the predicted docking pose. 

- Graph 2 (RMSD from crystallographic binding mode vs GoldScore rank or APIF-based 

Tanimoto rank or CHIF-based Tanimoto rank). Plotting RMS deviations from X-ray pose versus 



 8 

ranked active ligand docked conformations according to GoldScore function, or APIF-based and 

CHIF-based similarity Tanimoto scores.   

- Graph 3 (% cases predicted within 2 Å RMSD vs binding mode rank). A comparison of the 

effects of using GoldScore function, and APIF and CHIF IFs to postprocess the docking-

generated poses on the likelihood of identifying the crystallographic binding mode within the 

active docked conformations obtained. 

 

RESULTS AND DISCUSSION 

Performance of APIF in Virtual Screening: Database Enrichment 

Here we present the VS enrichment plots for the ER-�, trypsin, rhinovirus, HIV protease and 

carboxypeptidase targets calculated using the GoldScore function, and the CHIF, APIF and normalized 

APIF based similarity criteria. For the similarity, both the SCORE1 and SCORE2 metrics were used. In 

order to enhance the first part of the plots, the x axis uses a logarithmic scale for the percent of the 

database screened plotted against the percent recovery of known active compounds. We also list the 

enrichment factor values (EFs) for the first 2%, 5% and 10% screened databases. 

ER-� recovery plots (Figure 6) show that our in-house CHIF implementation (Figures 6a and 6b) 

reproduces the results reported for the same case study analyzed in Mpamhanga’s work  3. Therefore, we 

have validated our CHIF implementation in spite of the previously mentioned differences determining 

protein contacts. Regarding the APIF (Figures 6c and 6d) and normalized APIF (Figures 6e and 6f) 

results, although APIF is able to retrieve compounds over a random selection, the enrichment obtained 

with the similarity scores is lower than the enrichment achieved using the GoldScore function (Figures 6c 

and 6e). The combination of the similarity and energetic criteria (SCORE2) achieves higher performance 

than that the obtained only with the energetic criterion (Figures 6d and 6f). However, even considering 

SCORE2, APIF does not achieve the high performance achieved by CHIF in the first 1-2% of screened 

database, although it does at higher percentages. Regarding normalization, no well defined tendency can 

be found. Whereas for SCORE1 the normalization gives worse results (Figures 6c and 6e), for SCORE2 it 

has a positive effect (Figures 6d and 6f). 

Figure 6 

For ER-�, the EFs for the first 2%, 5% and 10% screened database are shown in Table 3. The maximum 

theoretical value for the EF is 50 (500/10). The maximum value found for each percentage is shown in 
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bold. It can be observed that CHIF with SCORE2 gives the optimum result. APIF and normalized APIF 

with SCORE1 are not able to discriminate between active and inactive compounds better than the docking 

energetic criterion (GoldScore), although its behaviour improves in combination with energetic criterion. 

Table 3 

Results for trypsin (Figure 7) show that docking does not perform so well in this case. The enrichment 

obtained with the similarity scores is higher than the enrichment calculated using GoldScore for APIF 

(Figures 7c, 7d, 7e and 7f), which achieves higher performance than CHIF (Figures 7a and 7b). In both 

cases, the combination of the similarity and energetic criteria (SCORE2) achieves higher performance 

than that obtained only with the energetic criterion (Figures 7b, 7d and 7f). APIF normalization does not 

improve the results in this case (Figures 7e and 7f). Table 4 shows the EFs obtained at the first 

percentages of database screened. The maximum theoretical value for the EF is 67.7 (474/7). The 

maximum value found for each percentage is shown in bold. 

Figure 7 

Table 4 

Results for rhinovirus (Figure 8) show that the enrichments given by the APIF-based and CHIF-based 

similarity scores are higher than those obtained by docking. The CHIF fingerprint achieves higher 

performance than APIF in all SCORE1 metrics (Figures 8a, 8c and 8e) and simple matching SCORE2 

(Figure 8b). APIF achieves higher performance than CHIF in Tanimoto SCORE2 (Figure 8d) and 

normalized APIF Tanimoto SCORE1 and SCORE2 (Figures 8e and 8f). Table 5 shows in detail some EF 

values. In this case, the maximum theoretical EF is 63.2 (506/8). 

Figure 8 

Table 5 

Results for HIV protease (Figure 9) show that the enrichments obtained using GoldScore are similar to 

those from the APIF-based similarity scores (Figures 9c, 9d, 9e and 9f) and higher than those obtained 

from the CHIF-based similarity scores (Figures 9a and 9b). APIF (Figures 9c and 9d) achieves higher 

performance than CHIF (Figures 9a and 9b). In both cases Simple matching score gives the best results. 

In this case, APIF normalization does not improve the APIF results for both SCORE1 and SCORE2 

(Figures 9e and 9f). Table 6 shows some EF values. The maximum theoretical value for the EF is 49.9 

(499/10). 

Figure 9 
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Table 6 

Results for carboxypeptidase (Figure 10) show that the enrichment obtained using GoldScore is similar to 

the enrichment performed by similarity coefficients. CHIF (Figures 10a and 10b) achieves higher 

performance than APIF (Figures 10c and 10d). CHIF-based Manhattan and Euclidean SCORE1 and 

CHIF-based Tanimoto and Simple matching SCORE2 perform better than GoldScore function (Figures 

10a and 10b). Regarding the combination of the similarity and energetic criteria (SCORE2), Simple 

matching gives the best results in all cases. Regarding normalization, the normalized APIF gives similar 

results for both SCORE1 and SCORE2 than APIF, except for Simple matching score (Figures 10e and 

10f), which improves results. Table 7 shows the enrichment values for the first percentages of database 

screened. The maximum theoretical value for the EF is 55.4 (277/5). 

Figure 10 

Table 7 

Finally, we show the correlation diagram of APIF fingerprint for trypsin, rhinovirus, HIV protease and 

carboxypeptidase reference complexes (Figure 11). The number of contacts found for each target and the 

type of protein-ligand interactions are shown: hydrophobic hydrophobic (HYD HYD), hydrophobic 

acceptor (HYD Acceptor), hydrophobic donor (HYD Donor), donor donor (Donor Donor), acceptor 

acceptor (Acceptor Acceptor) or donor acceptor (Donor Acceptor).  

Figure 11 

Summarizing database enrichment analyses, CHIF obtains the best EF values for ER-�, rhinovirus, and 

carboxypeptidase. For trypsin and HIV protease, APIF achieves the best EFs. Moreover, rhinovirus and 

carboxypeptidase APIF SCORE2 and normalized APIF SCORE2, respectively, improve CHIF EF results. 

Furthermore, the APIF Tanimoto and Euclidean similarity scores always return good enrichments even 

though they do not always achieve the best results. Generally, the combination of the similarity and 

energetic criteria (SCORE2) achieves higher enrichments than those obtained only with the energetic 

criterion, except for failed docked conformations or bad scoring function behavior (Tables 3 to 7).  

 

APIF Recognition of The Binding Mode  

Here we present the binding mode analyses for trypsin, rhinovirus, HIV protease and carboxypeptidase 

first-ranked conformations according to the previously described criteria (Figures 12, 13, 14, and 15). For 
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each target, the docked conformations corresponding to the reference crystallographic ligand are shown in 

pink colour, whereas those corresponding to the rest of active compounds of the set are shown in blue.  

Results for the trypsin target (Figure 12) show a non-well-defined tendency to associate high Tanimoto 

scores with low RMSD values from the crystal structure (Figure 12a), although this tendency is clearer 

for the conformations corresponding to the complexed ligand (PDB code: 3PTB). It can be seen that 

docking performs randomly (broad range of RMSD values), but rather well for some conformations 

(RMSD < 2 Å). Moreover, IFs capture the basic interactions for the lowest RMSD conformations 

(Tanimoto score values = 1 for 3PTB conformations). Lower RMSD conformations from the 

crystallographic binding mode are found in the top CHIF and APIF hitlist ranking positions, especially 

for CHIF top ranked conformations (Figure 12b). Ligand conformations corresponding to the complexed 

compound are found in the first ranking positions for CHIF and APIF ranking lists and in the last 

positions for GoldScore function (Figure 12b). The first 35 CHIF and APIF top-ranked ligand 

conformations have lower RMSD from the crystallographic binding mode than the first top ranked 

GoldScore conformations. For the subsequent ranked conformations APIF-based Tanimoto score and 

GoldScore function give better results (Figure 12c). 

Figure 12 

Results for the rhinovirus target (Figure 13) show no tendency to associate high Tanimoto scores with 

low RMSD values from the crystal structure because multiple conformations with the same protein 

interacting points but different binding mode are found (Figure 14). Two groups of ligand conformations 

are found, one with low RMSD from crystallographic binding mode (between 0 and 2 Å), and the other 

with higher RMSD values (between 11 and 14 Å). Moreover, the conformations corresponding to the 

complexed ligand (PDB code: 2R04) show high Tanimoto score values (Figure 13a), but not exceeding 

0.8. These conformations with RMSD < 2 Å do not achieve Tanimoto score values of 1 due to the fact 

that a hydrophobic interaction present in the crystal reference complex is changed to hydrogen bond 

contact, and a new hydrophobic interaction is created between the ligand and a neighboring residue to the 

crystallographic interacting one. Lower RMSD from the crystallographic binding mode ranked 

conformations alternate with higher RMSD ranked conformations, according to the two binding modes 

found (Figure 13b). Ligand conformations corresponding to the complexed compound are found in the 

first ranking positions for CHIF and APIF ranking lists and in the last positions for GoldScore function 
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(Figure 13b). The first top ranked CHIF and APIF conformations show lower RMSD from the 

crystallographic binding mode than the first ranked GoldScore function conformations (Figure 13c). 

Figure 13 

Figure14 

Results for the HIV protease target (Figure 15) show that the docking procedure performs poorly in this 

case. The RMSD values obtained are generally high, i.e. over 4 Å from the crystallographic binding 

mode, and the similarity between the docked conformations and the reference complex is always lower 

than 0.5 (Figure 15a). Both for GoldScore function and for CHIF and APIF IFs, the ligand conformations 

corresponding to the complexed compound (PDB code: 4PHV) are found randomly along the ranking 

lists (Figure 15b). Given that the docking procedure cannot find the experimental binding mode, the IFs 

calculation from the docked poses achieves poor results too (Figure 15c). 

Figure 15 

Results for the carboxypeptidase target (Figure 16) show that docking performs well (high number of 

conformations within RMSD < 2 Å). Higher Tanimoto similarity scores correspond to lower RMSD from 

the crystal structure values (Figure 16a). Moreover, this tendency is emphasized for the ligand 

conformations corresponding to the complexed compound (PDB code: 2CTC). Ligand conformations 

with the lowest RMSD from the crystallographic binding mode are found in the first IF ranking positions. 

However, they are found in the last positions for GoldScore (Figure 16b). The first top-ranking IF ligand 

conformations show lower RMSD from the crystallographic binding mode than the first GoldScore 

ranked conformations (Figure 16c).  

Figure 16 

In order to visualize binding modes, a PCA analysis was performed. Figure 17 shows three-dimensional 

PCA plots for trypsin, rhinovirus, HIV protease and carboxypeptidase complexes. These plots show that 

active molecules are located in a different region than the inactive compounds. Corroborating the above-

mentioned binding mode results, trypsin and carboxypeptidase seem to best recognize the binding mode 

closest to the crystallographic structures for the first top-ranked conformations, restricting active 

molecules to a specific region of space far from inactive compounds in the PCA plot. 

Figure 17 

Summarizing binding mode analyses, carboxypeptidase and trypsin show the best tendency to associate 

high Tanimoto scores with low RMSD values from the crystal structure. Rhinovirus and HIV protease do 
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not follow this tendency because docking is not able to find the correct binding mode conformations. 

However, all results show that the lowest RMSD conformations are found in the first CHIF and APIF top-

ranked positions and in the subsequent ranked GoldScore positions (Figures 12c, 13c, 14c, 15c). 

Therefore, IFs provide a better method for identifying low RMSD conformations from the 

crystallographic binding mode than only using a docking scoring function.  

 

CONCLUSION 

The analyses in this study indicate that our new interaction fingerprint (APIF) yields satisfactory results, 

often comparable to our CHIF implementation, and it improves the GoldScore results, inasmuch as our 

enrichment plots exhibit good recognition of the known actives. Overall, this study shows that APIF has 

proven to be suitable for ranking and filtering virtual screening docking results. However, the quality of 

the EFs obtained by APIF scoring strongly depends on docking success. Our results show that if docking 

is successful, as in the trypsin and carboxypeptidase cases, then APIF scoring retrieves good enrichments, 

substantially improving the results obtained when using only a docking scoring function. Using APIF is 

thus a good way to select poses or virtual hits that satisfy a defined ligand-protein interaction reference, 

which will be useful for receptor-based prospective virtual screening.  

 

ACKNOWLEDGEMENTS 

We thank Dave Ritchie for proof-reading the manuscript. VIPN thanks the Generalitat de Catalunya – 

DURSI for a grant within the Formació de Personal Investigador (2008FI) Program. This work was 

supported by The TV3 Marathon Foundation (AIDS-2001) promoted by the Catalan Radio and Television 

Corporation (Corporació Catalana de Ràdio i Televisió, CCRTV) and the Programa Nacional de 

Biomedicina (Ministerio de Educación y Ciencia, SAF2007-63622-C02-01). 



 14 

REFERENCES 

1. Deng, Z.; Chuaqui, C.; Singh, J. Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-

ligand binding interactions. J. Med. Chem. 2004, 47, 337-344. 

2. Kelly, M. D.; Mancera, R. L. Expanded interaction fingerprint method for analyzing ligand binding modes in docking and structure-

based drug design. J. Chem. Inf. Comput. Sci. 2004, 44, 1942-1951. 

3. Mpamhanga, C. P.; Chen, B.; McLay, I. M.; Willett, P. Knowledge-based interaction fingerprint scoring: a simple method for 

improving the effectiveness of fast scoring functions. J. Chem. Inf. Model. 2006, 46, 686-698.  

4. Chuaqui, C.; Deng, Z.; Singh, J. Interaction Profiles of Protein Kinase-Inhibitor Complexes and Their Application to Virtual 

Screening. J. Med. Chem. 2005, 48, 121-133. 

5. Warren, G. L.; Andrews, C. V.; Capelli, A.; Clarke, B.; LaLonde, J.; Lambert, M. H.; Lindvall, M.; Nevins, N.; Semus, S. F.; Senger, 

S.; Tedesco, G.; Wall, I. D.; Woolven, J. M.; Peishoff, C. E.; Head, M. S. A critical assessment of docking programs and scoring functions. J. 

Med. Chem. 2006, 49, 5912-5931. 

6. Taylor, R. D.; Jewsbury, P. J.; Essex, J. W. A Review of Protein-Small Molecule Docking Methods. J. Comput.-Aided. Mol. Des. 

2002, 16, 151-166.  

7. Carhart, R. E.; Smith, D. H.; Venkataraghavan, R. Atom Pairs as Molecular Features in Structure-Activity Studies: Definitions and 

Applications. J. Chem. Inf. Comput. Sci. 1985, 25, 64-73. 

8. FlexS-77 dataset collected by C. Lemmen / G. Klebe / M. Böhm, first published in: Lemmen, C; Lengauer, T; Klebe, G. FlexS: A 

Method for Fast Flexible Ligand Superposition. J. Med. Chem. 1998, 41, 4502-4520. 

9. Bissantz, C.; Folkers, G.; Rognan, D. Protein-Based Virtual Screening of Chemical Databases. 1. Evaluation of Different 

Docking/Scoring Combinations. J. Med. Chem. 2000, 43, 4759-4767. 

10. Maybride Bringing life to drug discovery TM, Maybridge Databases Autumn 2005; Fisher Scientific International: England, 2005. 

11. MOE (Molecular Operating Environment), 2006.08 Release; Chemical Computing Group, Inc.: Montreal, Canada, 2004. 

12. Verdonk, M. L.; Cole, J. C.; Hartshorn, M. J.; Murray, C. W.; Taylor, R. D. Virtual screening using protein-ligand docking: avoiding 

artificial enrichment. J. Chem. Inf. Comput. Sci. 2004, 44, 793-806. 

13. Verdonk, M. L.; Cole, J. C.; Hartshorn, M. J.; Murray, C. W.; Taylor, R. D. Improved Protein-Ligand Docking Using GOLD. Proteins: 

Struct., Funct., Genet. 2003, 52, 609-623. 

14. Marquart, M.; Walter, J.; Deisenhofer, J.; Bode, W.; Huber, R. The Geometry of the Reactive Site and of the Peptide Groups in 

Trypsin, Trypsinogen and its Complexes with Inhibitors. Acta Crystallogr., Sect.B 1983, 39, 480-490. 

15. Renatus, R.; Bode, W.; Huber, R.; Stürzebecher, J.; Stubbs, M. T. Structural and Functional Analyses of Benzamidine-Based Inhibitors 

in Complex with Trypsin: Implications for the Inhibition of Factor Xa, tPA, and Urokinase. J. Med. Chem. 1998, 41, 5445-5456. 

16. Böhm, M.; Stürzebecher, J.; Klebe, G. Three-Dimensional Quantitative Structure-Activity Relationship Analyses Using Comparative 

Molecular Field Analysis and Comparative Molecular Similarity Indices Analysis To Elucidate Selectivity Differences of Inhibitors Binding 

to Trypsin, Thrombin, and Factor Xa. J. Med. Chem. 1999, 42, 458-477. 

17. Badger, J.; Minor, I.; Oliveira, M.A.; Smith, T.J.; Rossmann, M.G.; Structural analysis of antiviral agents that interact with the capsid 

of human rhinoviruses. Proteins 1989, 6, 1-19. 

18. Matthews, D. A.; Dragovich, P. S.; Webber, S. E.; Fuhrman, S. A.; Patick, A. K.; Zalman, L. S.; Hendrickson, T. F.; Love, R. A.;  

Prins, T. J.; Marakovits, J. T.; Zhou, R.; Tikhe, J.; Ford, C. E.; Meador, J. W.; Ferre, R. A.; Brown, E. L.; Binford, S. L.; Brothers, M. A.; 

DeLisle, D. M.; Worland, S. T. Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with 

potent antiviral activity against multiple rhinovirus serotypes. Proc. Natl. Acad. Sci. USA 1999, 96, 11000–11007. 



 15 

19. Bone, R.; Vacca, J.P.; Anderson, P.S.; Holloway, M.K. X-Ray Crystal Structure of the HIV Protease Complex with L-700,417, an 

Inhibitor with Pseudo C2 Symmetry. J. Am. Chem. Soc. 1991, 113, 9382-9384. 

20. Specker, E.; Böttcher, J.; Brass, S.; Heine, A.; Lilie, H.; Schoop, A.; Müller, G.; Griebenow, N.; Klebe, G. Unexpected Novel Binding 

Mode of Pyrrolidine-Based Aspartyl Protease Inhibitors: Design, Synthesis and Crystal Structure in Complex with HIV Protease. 

ChemMedChem 2006, 1, 106 – 117. 

21. Specker, E.; Böttcher, J.; Lilie, H.; Heine, A.; Schoop, A.;  Müller, G.; Griebenow, N.; Klebe, G. An Old Target Revisited: Two New 

Privileged Skeletons and an Unexpected Binding Mode For HIV-Protease Inhibitors. Angew. Chem. Int. Ed. 2005, 44, 3140 –3144. 

22. Teplyakov, A.; Wilson, K.S.; Orioli, P.; Mangani, S. High-resolution structure of the complex between carboxypeptidase A and L-

phenyl lactate. Acta Crystallogr. Sect., D 1993, 49, 534-540. 

23. Rees, D. C.; Lipscomb, W. N. Binding of ligands to the active site of carboxypeptidase A. Proc. Natl Acad. Sci. USA 1981,78, 5455-

5459. 

24. Kim, H.; Lipscomb, W. N. Crystal Structure of the Complex of Carboxypeptidase A with a Strongly Bound Phosphonate in a New 

Crystalline Form: Comparison with Structures of Other Complexes. Biochemistry 1990, 29, 5546-5555. 

25. Christianson, D. W.; Lipscomb, W. N. Binding of a possible transition state analogue to the active site of carboxypeptidase A. Proc. 

Natl. Acad. Sci. USA 1985, 82, 6840-6844. 

26. Shiau, A.K.; Barstad, D.; Loria, P.M.; Cheng, L.; Kushner, P.J.; Agard, D.A.; Greene, G.L. The structural basis of estrogen 

receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 1998, 95, 927-937. 

27. Mason, J. S.; Morize, I.; Menard, P. R.; Cheney, D. L.; Hulme, C.; Labaudiniere, R. F. New 4-point pharmacophore method for 

molecular similarity and diversity applications: overview of the method and applications, including a novel approach to the design of 

combinatorial libraries containing privileged substructures. J. Med. Chem. 1999, 42, 3251-3264. 

28. Willet, P. Chemical Similarity Searching. J. Chem. Inf. Comput. Sci. 1996, 36, 900-908. 

29. Hert, J.; Willet, P.; Wilton, D. J.; Comparison of Fingrprint-Based Methods for Virtual Screening Using Multiple Bioactive Reference 

Structures. J. Chem. Inf. Comput. Sci. 2004, 44, 1177-1185. 

30. Marcou, G.; Rognan, D.; Optimizing Fragment and Scaffold Docking by Use of Molecular Interaction Fingerprints. J. Chem. Inf. 

Model. 2007, 47, 195-207. 



 16 

 
Target Complexed ligand PDB code Resolution/Å 
Trypsin Benzamidine inhibitor 3PTB 1.7 

Rhinovirus 5-(7-(4-(4,5-dihydro-2-oxazolyl)phenoxy)heptyl)-3-methyl isoxazole 2R04 3 
HIV protease N,N-bis(2-hydroxy-1-indanyl)-2,6-diphenylmethyl- 4-hydroxy-1,7-heptandiamide 4PHV 2.1 

Carboxypeptidase alpha-hydroxy-beta-phenyl-propionic acid 2CTC 1.4 
ER-� 4-hydroxy tamoxifene 3ERT 1.9 

 
 
Table 1.  Reference complexes of trypsin, rhinovirus, HIV protease, carboxypeptidase and ER-� 
targets used in docking and IFs virtual screening. 
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Trypsin Weight b_1rotN a_acc a_don 

7 Actives 174.8 (113.6) 2.9 (2.5) 0.4 (1.1) 0.1 (0.4) 

467 Inactives 238.7 (53.4) 1.9 (1.2) 0.2 (0.7) 0.1 (0.4) 

 
Rhinovirus Weight b_1rotN a_acc a_don 

8 Actives 351.1 (23.8) 9.4 (1.2) 3.0 (0.0) 0.0 (0.0) 

498 Inactives 356.2 (20.4) 5.4 (1.0) 3.1 (0.6) 0.2 (0.5) 

 
HIV protease Weight b_1rotN a_acc a_don 

10 Actives 740.2 (88.9) 20.7 (5.8) 7.0 (2.4) 6.5 (2.0) 

489 Inactives 609.2 (55.2) 8.4 (3.9) 4.9 (2.3) 1.4 (1.5) 

 
Carboxypeptidase Weight b_1rotN a_acc a_don 

5 Actives 333.3 (183.7) 7.6 (4.7) 1.8 (1.3) 1.4 (0.9) 

272 Inactives 281.3 (43.0) 5.5 (0.8) 2.6 (0.5) 1.5 (0.7) 

 
ER-�� Weight b_1rotN a_acc a_don 

10 Actives 458.8 (67.1) 11.3 (4.3) 3.6 (0.8) 1.6 (0.7) 

490 Inactives 465.1 (16.2) 8.5 (3.1) 4.2 (1.8) 1.0 (0.9) 

 
Table 2.  Summary of the 1D physico-chemical properties of active and inactive molecules in the 
trypsin, rhinovirus, HIV protease, carboxypeptidase and ER-� screening databases. This table 
shows the average and standard deviation (in parenthesis) of the following properties: Weight (molecular 
weight), b_1rotN (number of rotatable single bonds), a_acc (number of hydrogen-bond acceptor atoms), 
a_don (number of hydrogen-bond donor atoms). 
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2% 5% 10%
GOLDSCORE (docking ) 15 10 7

CHIF-SCORE1-TANIMOTO 15 10 6
CHIF-SCORE1-SIMPLE_MATCHING 25 12 8
CHIF-SCORE1-EUCLIDEAN 15 10 6
CHIF-SCORE1-MANHATTAN 15 10 6

CHIF-SCORE2-TANIMOTO 25 12 7
CHIF-SCORE2-SIMPLE_MATCHING 30 14 8

APIF-SCORE1-TANIMOTO 10 4 4
APIF-SCORE1-SIMPLE_MATCHING 0 6 4
APIF-SCORE1-EUCLIDEAN 10 4 2
APIF-SCORE1-MANHATTAN 0 4 3

APIF-SCORE2-TANIMOTO 20 10 8
APIF-SCORE2-SIMPLE_MATCHING 20 10 7

NORMALIZED_APIF-SCORE1-TANIMOTO 0 2 2
NORMALIZED_APIF-SCORE1-SIMPLE_MATCHING 10 6 5
NORMALIZED_APIF-SCORE1-EUCLIDEAN 0 4 2
NORMALIZED_APIF-SCORE1-MANHATTAN 0 0 2

NORMALIZED_APIF-SCORE2-TANIMOTO 10 6 5
NORMALIZED_APIF-SCORE2-SIMPLE_MATCHING 20 14 8

ESTROGEN RECEPTOR-ALPHA

 
 
Table 3. ER-� enrichment factor values for the first 2%, 5% and 10% screened database. 
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2% 5% 10%
GOLDSCORE (docking ) 7 3 1

CHIF-SCORE1-TANIMOTO 0 0 0
CHIF-SCORE1-SIMPLE_MATCHING 0 6 3
CHIF-SCORE1-EUCLIDEAN 0 0 0
CHIF-SCORE1-MANHATTAN 0 0 0

CHIF-SCORE2-TANIMOTO 7 6 4
CHIF-SCORE2-SIMPLE_MATCHING 14 6 7

APIF-SCORE1-TANIMOTO 14 14 7
APIF-SCORE1-SIMPLE_MATCHING 14 9 7
APIF-SCORE1-EUCLIDEAN 14 6 3
APIF-SCORE1-MANHATTAN 14 6 4

APIF-SCORE2-TANIMOTO 29 14 7
APIF-SCORE2-SIMPLE_MATCHING 21 14 7

NORMALIZED_APIF-SCORE1-TANIMOTO 14 11 6
NORMALIZED_APIF-SCORE1-SIMPLE_MATCHING 14 11 6
NORMALIZED_APIF-SCORE1-EUCLIDEAN 14 6 3
NORMALIZED_APIF-SCORE1-MANHATTAN 7 3 1

NORMALIZED_APIF-SCORE2-TANIMOTO 29 14 7
NORMALIZED_APIF-SCORE2-SIMPLE_MATCHING 21 11 7

TRYPSIN

 

Table 4. Trypsin enrichment factor values for the first 2%, 5% and 10% screened database.  
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2% 5% 10%
GOLDSCORE (docking) 6 8 5

CHIF-SCORE1-TANIMOTO 13 5 4
CHIF-SCORE1-SIMPLE_MATCHING 19 8 4
CHIF-SCORE1-EUCLIDEAN 13 5 5
CHIF-SCORE1-MANHATTAN 13 5 4

CHIF-SCORE2-TANIMOTO 13 8 4
CHIF-SCORE2-SIMPLE_MATCHING 13 5 4

APIF-SCORE1-TANIMOTO 6 8 5
APIF-SCORE1-SIMPLE_MATCHING 0 5 3
APIF-SCORE1-EUCLIDEAN 13 8 5
APIF-SCORE1-MANHATTAN 6 5 4

APIF-SCORE2-TANIMOTO 19 10 6
APIF-SCORE2-SIMPLE_MATCHING 6 8 4

NORMALIZED_APIF-SCORE1-TANIMOTO 13 8 6
NORMALIZED_APIF-SCORE1-SIMPLE_MATCHING 6 5 5
NORMALIZED_APIF-SCORE1-EUCLIDEAN 6 10 6
NORMALIZED_APIF-SCORE1-MANHATTAN 0 3 4

NORMALIZED_APIF-SCORE2-TANIMOTO 31 13 8
NORMALIZED_APIF-SCORE2-SIMPLE_MATCHING 13 10 9

RHINOVIRUS

 
Table 5. Rhinovirus enrichment factor values for the first 2%, 5% and 10% screened database.  
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2% 5% 10%
GOLDSCORE (docking ) 15 8 4

CHIF-SCORE1-TANIMOTO 5 2 1
CHIF-SCORE1-SIMPLE_MATCHING 15 6 4
CHIF-SCORE1-EUCLIDEAN 0 2 1
CHIF-SCORE1-MANHATTAN 0 2 1

CHIF-SCORE2-TANIMOTO 5 2 2
CHIF-SCORE2-SIMPLE_MATCHING 10 4 3

APIF-SCORE1-TANIMOTO 15 10 7
APIF-SCORE1-SIMPLE_MATCHING 15 12 7
APIF-SCORE1-EUCLIDEAN 15 8 4
APIF-SCORE1-MANHATTAN 10 6 4

APIF-SCORE2-TANIMOTO 20 12 8
APIF-SCORE2-SIMPLE_MATCHING 20 10 8

NORMALIZED_APIF-SCORE1-TANIMOTO 10 6 5
NORMALIZED_APIF-SCORE1-SIMPLE_MATCHING 10 4 3
NORMALIZED_APIF-SCORE1-EUCLIDEAN 10 10 6
NORMALIZED_APIF-SCORE1-MANHATTAN 15 8 7

NORMALIZED_APIF-SCORE2-TANIMOTO 10 6 5
NORMALIZED_APIF-SCORE2-SIMPLE_MATCHING 15 6 3

HIV PROTEASE

 
 
Table 6. HIV protease enrichment factor values for the first 2%, 5% and 10% screened database.  
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2% 5% 10%
GOLDSCORE (docking ) 30 16 10

CHIF-SCORE1-TANIMOTO 10 8 6
CHIF-SCORE1-SIMPLE_MATCHING 20 12 10
CHIF-SCORE1-EUCLIDEAN 30 20 10
CHIF-SCORE1-MANHATTAN 30 20 10

CHIF-SCORE2-TANIMOTO 30 20 10
CHIF-SCORE2-SIMPLE_MATCHING 40 16 10

APIF-SCORE1-TANIMOTO 10 4 6
APIF-SCORE1-SIMPLE_MATCHING 20 12 10
APIF-SCORE1-EUCLIDEAN 10 4 2
APIF-SCORE1-MANHATTAN 10 4 2

APIF-SCORE2-TANIMOTO 30 16 8
APIF-SCORE2-SIMPLE_MATCHING 30 12 10

NORMALIZED_APIF-SCORE1-TANIMOTO 10 4 6
NORMALIZED_APIF-SCORE1-SIMPLE_MATCHING 30 12 10
NORMALIZED_APIF-SCORE1-EUCLIDEAN 10 4 2
NORMALIZED_APIF-SCORE1-MANHATTAN 10 4 2

NORMALIZED_APIF-SCORE2-TANIMOTO 30 12 10
NORMALIZED_APIF-SCORE2-SIMPLE_MATCHING 50 20 10

CARBOXYPEPTIDASE

 
 
Table 7. Carboxypeptidase enrichment factor values for the first 2%, 5% and 10% screened 
database.  
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The following pages contain SEVENTEEN Figures for the article. 
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Figure 1. Known ER-� and carboxypeptidase active inhibitors in the virtual screening datasets.  
 
 
 
 
 
 
 



 25 

Trypsin inhibitors 

+H3N

PDB code: 1TNJ

F
+H3N

PDB code: 1TNH

NH3
+

PDB code: 1TNL

+H3N

PDB code: 1TNK

+H3N
PDB code: 1TNI

O

N

O

O N

PDB code: 2R06

Rhinovirus inhibitors 

O

N

O

O N

PDB code: 2RS5

O

N
O

O N

PDB code: 2R04

Cl

O

ON

O

N

PDB code: 2R07

O
N

O

O
N

PDB code: 2RR1

O
N

O

O
N

PDB code: 2RS1

O
N

O

O
N

PDB code: 2RS3

Cl

O

O N

O

N

PDB code: 2RM2

H2N
C

H2N

PDB code: 3PTB
S

O
O HN

C
H2N

NH2O
N

PDB code: 1PPH

 

 
 
Figure 2. Known trypsin and rhinovirus active inhibitors in the virtual screening datasets.  
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Figure 3. Known HIV protease active inhibitors in the virtual screening dataset.  
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Figure 4. Atom Pairs based Interaction Fingerprint (APIF). (a) Six possible combinations of pairs of 
interactions defining a set of 49 bits (7 bits for a total of 7 distances). (b) Codification of the pairwise 
interactions from the distances measured between the two protein (d1) and the two ligand (d2) interacting 
atoms. This specific case shows the carboxypeptidase in complex with an alpha-hydroxy-beta-phenyl-
propionic acid. For a pair of interactions detected, for example a hydrogen bond between ND2 of Asn144 
and a negatively charged oxygen of the alpha-hydroxy-beta-phenyl-propionic acid, and a hydrogen bond 
between OE2 of Glu270 and an oxygen of the alpha-hydroxy-beta-phenyl-propionic acid, the interacting 
distances between the two protein atoms (d1) and the two ligand atoms (d2) are measured. 
 
 
 

Donor-L
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Figure 5. Atom Pairs based Interaction Fingerprint encoding system. The six possible combinations 
of pairs of interaction contacts are each represented with 49 bits. For each pairwise interactions detected 
in a complex, the distance between the two receptor atoms (d1) and the two ligand atoms (d2) is 
measured. The results are clustered into seven distance ranges (Å): [0-2.5], [2.5-4], [4-6],[6-9], [9-13], 
[13-18] and [>18]. Thus, the total fingerprint length is always 6x7x7=294 bits.   
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Figure 6. ER-� enrichment plots obtained using (a) CHIF in-house implementation and SCORE1, 
(b) CHIF in-house implementation and SCORE2, (c) APIF and SCORE1, (d) APIF and SCORE2, 
(e) Normalized APIF and SCORE1, (f) Normalized APIF and SCORE2. The different similarity 
scores used correspond to Simple matching (purple), Euclidean distance (blue), Tanimoto coefficient 
(green) and Manhattan distance (yellow). The enrichment plot obtained using GoldScore is shown in red 
and a random screening in black. The x axis is the logarithm of the percent of the database screened, 
plotted against the percent recovery of known active compounds on the y axis. 
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Figure 7. Trypsin enrichment plots obtained using (a) CHIF in-house implementation and 
SCORE1, (b) CHIF in-house implementation and SCORE2, (c) APIF and SCORE1, (d) APIF and 
SCORE2, (e) Normalized APIF and SCORE1, (f) Normalized APIF and SCORE2. The different 
similarity scores used correspond to Simple matching (purple), Euclidean distance (blue), Tanimoto 
coefficient (green) and Manhattan distance (yellow). The enrichment plot obtained using GoldScore is 
shown in red and a random screening in black. The x axis is the logarithm of the percent of the database 
screened, plotted against the percent recovery of known active compounds on the y axis. 
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Figure 8. Rhinovirus enrichment plots obtained using (a) CHIF in-house implementation and 
SCORE1, (b) CHIF in-house implementation and SCORE2, (c) APIF and SCORE1, (d) APIF and 
SCORE2, (e) Normalized APIF and SCORE1, (f) Normalized APIF and SCORE2. The different 
similarity scores used correspond to Simple matching (purple), Euclidean distance (blue), Tanimoto 
coefficient (green) and Manhattan distance (yellow). The enrichment plot obtained using GoldScore is 
shown in red and a random screening in black. The x axis is the logarithm of the percent of the database 
screened, plotted against the percent recovery of known active compounds on the y axis. 
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Figure 9. HIV protease plots obtained using (a) CHIF in-house implementation and SCORE1, (b) 
CHIF in-house implementation and SCORE2, (c) APIF and SCORE1, (d) APIF and SCORE2, (e) 
Normalized APIF and SCORE1, (f) Normalized APIF and SCORE2. The different similarity scores 
used correspond to Simple matching (purple), Euclidean distance (blue), Tanimoto coefficient (green) and 
Manhattan distance (yellow). The enrichment plot obtained using GoldScore is shown in red and a 
random screening in black. The x axis is the logarithm of the percent of the database screened, plotted 
against the percent recovery of known active compounds on the y axis. 



 33 

 
Figure 10. Carboxypeptidase plots obtained using (a) CHIF in-house implementation and SCORE1, 
(b) CHIF in-house implementation and SCORE2, (c) APIF and SCORE1, (d) APIF and SCORE2, 
(e) Normalized APIF and SCORE1, (f) Normalized APIF and SCORE2. The different similarity 
scores used correspond to Simple matching (purple), Euclidean distance (blue), Tanimoto coefficient 
(green) and Manhattan distance (yellow). The enrichment plot obtained using GoldScore is shown in red 
and a random screening in black. The x axis is the logarithm of the percent of the database screened, 
plotted against the percent recovery of known active compounds on the y axis. 
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Figure 11. Correlation diagram of the APIF fingerprint for (a) trypsin, (b) rhinovirus, (c) HIV 
protease and (d) carboxypeptidase complexes. The total fingerprint length is 294 bits, divided in six 
atom pair contacts: HYD HYD referred as hydrophobic hydrophobic protein/ligand interactions, HYD 
Acceptor referred as hydrophobic acceptor protein/ligand interactions, HYD Donor referred as 
hydrophobic donor protein/ligand interactions, Donor Donor referred as donor donor protein/ligand 
interactions, Acceptor Acceptor referred as acceptor acceptor protein/ligand interactions, and Donor 
Acceptor referred as donor acceptor protein/ligand interactions. 
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Figure 12. Trypsin binding mode analyses. a) RMSD from crystallographic binding mode (Å) versus 
APIF-based Tanimoto (left) and CHIF-based Tanimoto (right) for a set of 7 active ligands. b) RMSD 
from crystallographic binding mode (Å) vs GoldScore rank (left), APIF-based Tanimoto rank (right) and 
CHIF-based Tanimoto rank (centre). c) Fraction of cases (%) predicted within 2 Å RMSD vs binding 
mode rank for GoldScore (pink curve), APIF (blue curve), and CHIF (yellow curve) for the 700 active 
docked conformations obtained (left) and the top 100 ranked solutions (right).  



 36 

 
Figure 13. Rhinovirus binding mode analyses. a) RMSD from crystallographic binding mode (Å) 
versus APIF-based Tanimoto (left) and CHIF-based Tanimoto (right) for a set of 8 active ligands. b) 
RMSD from crystallographic binding mode (Å) vs GoldScore rank (left), APIF-based Tanimoto rank 
(right) and CHIF-based Tanimoto rank (centre). c) Fraction of cases (%) predicted within 2 Å RMSD vs 
binding mode rank for GoldScore (pink curve), APIF (blue curve), and CHIF (yellow curve) for the 800 
active docked conformations obtained (left) and the top 100 ranked solutions (right). 
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Figure 14. Rhinovirus binding modes. Two binding modes found for rhinovirus conformations 
interacting with the same protein atoms. 
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Figure 15. HIV protease binding mode analyses. a) RMSD from crystallographic binding mode (Å) 
versus APIF-based Tanimoto (left) and CHIF-based Tanimoto (right) for a set of 10 active ligands. b) 
RMSD from crystallographic binding mode (Å) vs GoldScore rank (left), APIF-based Tanimoto rank 
(right) and CHIF-based Tanimoto rank (centre). c) Fraction of cases (%) predicted within 2 Å RMSD vs 
binding mode rank for GoldScore (pink curve), APIF (blue curve), and CHIF (yellow curve) for the 1000 
active docked conformations obtained (left) and the top 100 ranked solutions (right). 
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Figure 16. Carboxypeptidase binding mode analyses. a) RMSD from crystallographic binding mode 
(Å) versus APIF-based Tanimoto (left) and CHIF-based Tanimoto (right) for a set of 5 active ligands. b) 
RMSD from crystallographic binding mode (Å) vs GoldScore rank (left), APIF-based Tanimoto rank 
(right) and CHIF-based Tanimoto rank (centre). c) Fraction of cases (%) predicted within 2 Å RMSD vs 
binding mode rank for GoldScore (pink curve), APIF (blue curve), and CHIF (yellow curve) for the 500 
active docked conformations obtained (left) and the top 100 ranked solutions (right). 
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Figure 17. PCA analyses of trypsin, rhinovirus, HIV protease and carboxypeptidase compounds 
databases, showing the separation of active compounds’ IFs into specific eigenvector spaces. a) 
Trypsin compounds database PCA analysis. b) Rhinovirus compounds database PCA analysis. c) HIV 
protease compounds database PCA analysis. d) Carboxypeptidase compounds database PCA analysis. In 
all cases PCA axes correspond to APIF-based Tanimoto score, CHIF-based Tanimoto score and 
GoldScore function. Active compounds are shown in red ball and stick and inactive compounds in blue 
stick representation. 
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