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Table 7.4: TP rate (TPR) i TN rate (TNR) obtained by C4.5, SMO, IBk, XCS and UCS with
the original domain and the re-sampled data sets.

Original
C4.5 SMO IBk XCS UCS

TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR

Original 98.40 97.31 0.00 100.00 95.20 98.85 85.60 96.15 100.00 100.00
Ovs 100.00 97.31 100.00 29.04 100.00 94.04 100.00 96.73 100.00 99.62
UnsTL 99.20 79.49 100.00 28.21 99.20 91.45 99.20 90.58 100.00 88.08
SMOTE 98.40 97.50 100.00 30.00 99.40 97.50 98.40 97.50 100.00 100.00
cSMOTE 96.22 97.27 100.00 29.43 97.84 98.54 95.20 98.27 92.80 99.62

be observed in other problems, where the application of a re-sampling technique induced the
learner to misclassify regions that belonged to the majority class. In the case of SMO, there may
be some intrinsic complexities of the domain that created especial difficulties to the system.

The results provided here visually illustrated the behavior of the different re-sampling tech-
niques, giving a more detailed insight on how they work. Nonetheless, conclusions cannot be
extracted from this simple case study. In the next section, we extend the analysis and compare
the four re-sampling techniques in combination with the five learning algorithms on the large
collection of imbalanced real-world problems used in the previous section.

7.5 Results on Re-sampled Domains

In this section, we analyze whether the application of the four re-sampling techniques presented
above improves the performance of the five learning methods. As proceeds, we first introduce
the experimental methodology, especially focusing on the steps taken to generate the re-sampled
data sets. Then, we summarize the results obtained for each learning method and extract general
conclusions about the excellence of each re-sampling technique. The full results are provided in
appendix C.

7.5.1 Experimental Methodology

To compare the effect of the re-sampling techniques on each learning method, we employed the
following methodology. We applied each re-sampling technique to each one of the training folds
of the 25 data sets presented in section 7.3.1. This resulted in 100 new data sets, each one with
10 re-sampled training folds. The test folds were not modified so that the learners were tested
with exactly the same information used in the original experiments (see section 7.3.2).

The five learning methodologies were configured as specified in section 7.3.1. No particular
configuration was set for each re-sampling data set since we aimed at analyzing the impact of
these re-sampling techniques to the system. The performance of each learner was measured
with the product of TP rate and TN rate, since this metric is not biased toward the imbalance
ratio of the learning data set. Also, the statistical procedure followed in section 7.3.1 was
employed to compare the results. That is, the multiple-comparison non-parametric Friedman
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test (Friedman, 1937, 1940) was applied to contrast the null hypothesis that all the re-sampling
techniques yielded the same results, on average, for a specific learner. If the multiple-comparison
test rejected the null hypothesis, the post-hoc Nemenyi test (Nemenyi, 1963) was employed to
detect significant differences among techniques.

With the purpose of compactness, the two next subsections present a summary of the re-
sults from which we extract general conclusions about the competitiveness of each re-sampling
technique. We first provide the statistical analysis of the comparison of the four re-sampling
techniques for each learner. The complete tables of results are supplied in appendix C. There-
after, we summarize all the results in a table that gathers the average rank of each re-sampling
technique for each of the five learning systems and highlight the main ideas and key conclusions
from this summary.

7.5.2 Statistical Analysis of the Results

As proceeds, we statistically analyze the results of the comparisons of the four re-sampling
techniques for each learner.

C4.5. The multiple-comparison Friedman test rejected the null hypothesis that the results ob-
tained with the different re-sampling techniques were equivalent, on average, with p = 0.0018.
Thus, we applied the post-hoc Nemenyi test, at α = 0.10, to detect groups of re-sampling
techniques which yielded equivalent results. Figure 7.7(a) connects the groups of learners that
performed equivalently according to the Nemenyi test at α = 0.10. Note that the test detected
two groups. The first group comprised SMOTE, random over-sampling, and the original data
set. The best ranked method was SMOTE.

The second group consisted of all the techniques except for SMOTE. Notice that the poorest
results were obtained with the under-sampled data sets. This denoted that under-sampling the
majority class might lead to sparsity problems in the particular data sets of the comparison
since, on average, they contain a low number of instances. In general, the statistical analysis
confirms the suitability of SMOTE and random over-sampling in combination with C4.5.

SMO. The multiple-comparison Friedman test rejected the hypothesis that all the re-sampling
techniques resulted in the same performance, on average, with p = 2.98 · 10−6. Therefore, we
applied the post-hoc Nemenyi test, whose results are provided in figure 7.7(b).

Several conclusions can be drawn from these results. Firstly, SMO and C4.5 benefited from
different re-sampling techniques. In SMO, the best re-sampling technique was random over-
sampling, which was also one of the best methods in C4.5. Nonetheless, notice that the second
best ranked re-sampling method was under-sampling based on Tomek links, which, combined
with C4.5, resulted in the poorest results. This highlights the idea that different learners
benefit from different re-sampling methods.

Secondly, the statistical study detected that random over-sampling significantly outperformed
the results obtained with the re-sampled data sets and the original data set. The Nemenyi test
did not detect any further significant difference among the remaining re-sampling techniques
and the original data set. Nevertheless, it is worth noting that the poorest average rank was
obtained with the original data sets, which indicates that all re-sampling techniques are, on
average, beneficial to SMO.
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Figure 7.7: Comparison of the performance obtained by (a) C4.5, (b) SMO, (c) IBk, (d) XCS, and
(e) UCS with the different re-sampling techniques. Groups of classifiers that are not significantly
different at α = 0.10 are connected.
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IBk. The multiple-comparison Friedman test rejected the hypothesis that IBk obtained equiv-
alent results with the original and re-sampled data sets with p = 0.03. However, the Nemenyi
test, at α = 0.10, could not find significant differences among the re-sampling methods. As
follows, we provide some observations based on the average rank of each re-sampling algorithm,
which is supplied in figure 7.7(c).

SMOTE was the best ranked method of the comparison, closely followed by random over-
sampling. In the next positions of the ranking, we find the original data set, cSMOTE, and
under-sampling based on Tomek links. Thence, under-sampling based on Tomek links provided,
again, the poorest results. This was probably due to a problem of sparsity in the under-
sampled data sets. Note that the position in the ranking of each re-sampling technique equals
the corresponding position obtained by C4.5, although in C4.5 some of the differences were
statistically significant.

XCS. The multiple-comparison Friedman test did not permit rejecting the hypothesis that the
results obtained with the original data sets and the re-sampled data sets were equivalent, on
average, at α = 0.05 (the p-value returned by the test was p = 0.1037). Thence, as follows,
we provide some remarks based on the average rank of each technique, which are illustrated
in figure 7.7(d).

As observed for C4.5 and IBk, the two best ranked re-sampling techniques were SMOTE
and random over-sampling. The third best method in the comparison was under-sampling
with Tomek links. Thus, differently from IBk and C4.5—where under-sampling with Tomek
links provided the worst performance—, the experimental results point out that XCS was not
affected, on average, by decreasing the number of training examples, given that the points
that lay close to the boundary were included in the final data set. Notice that the results
achieved with the original data set were never significantly superior than those obtained with
the under-sampled domain. A similar observation was drawn for SMO. This highlights that
the competence of under-sampling with Tomek links was really dependant on the final learning
system employed to learn the data model.

cSMOTE and the original data set come in the last positions of the ranking. Finally, note
that the worst results were achieved with the original data sets. Therefore, as in SMO, all
the re-sampling techniques appeared to improve the results obtained by XCS with the original
data sets.

UCS. The multiple-comparison Friedman test rejected the null hypothesis that all the models
extracted with the different re-sampled data sets and the original data set were equivalent, on
average, with p = 0.01. Figure 7.7(e) groups the learners that performed equivalently according
to the Nemenyi test at α = 0.10.

The statistical analysis identified the same three best ranked methods as in XCS: SMOTE,
random over-sampling, and under-sampling based in Tomek links. Therefore, the same con-
clusions provided in XCS can be extended to UCS. The poorest results were obtained with the
original data sets and cSMOTE.

After analyzing each particular learner, the next section summarizes the results, gathering
some key conclusions about the excellence of the different re-sampling techniques.
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Table 7.5: Intra-method ranking for original and re-sampled data sets for C4.5, SMO, IBk,
XCS, and UCS. Rows 1st to 5th indicate the number of times that each re-sampling technique
was ranked in the correspondent position. The last column shows the average rank and its
standard deviation.

Resamp. Method 1st 2nd 3rd 4th 5th Avg. ± Std.

C
4.

5

original 6 3 4 9 3 3.00 ± 1.39
oversampling 7 4 8 4 2 2.60 ± 1.26
undersampling TL 0 5 6 6 8 3.68 ± 1.12
smote 9.5 7.5 4 3 1 2.14 ± 1.17
csmote 2.5 5.5 2 5 10 3.58 ± 1.44

S
M

O

original 4 3 1.5 3.5 13 3.74 ± 1.56
oversampling 12 11 2 0 0 1.60 ± 0.63
undersampling TL 3 6.5 8 4.5 3 2.92 ± 1.18
smote 3 4.5 8.5 5.5 3.5 3.08 ± 1.20
csmote 2 1 4 14.5 3.5 3.66 ± 1.03

IB
k

original 6 5 2.5 6.5 5 2.98 ± 1.49
oversampling 3.5 8.5 9.5 2.5 1 2.56 ± 0.98
undersampling TL 4 2 6 3 10 3.52 ± 1.47
smote 10.5 3.5 2.5 6.5 2 2.44 ± 1.44
csmote 1 5 5.5 7.5 6 3.50 ± 1.17

X
C

S

original 3 4 2.5 6 9.5 3.60 ± 1.43
oversampling 7 6 3 1.5 7.5 2.86 ± 1.61
undersampling TL 1 6 11.5 6.5 0 2.94 ± 0.81
smote 11 4 1.5 5.5 3 2.42 ± 1.51
csmote 3 4 7.5 6.5 4 3.18 ± 1.23

U
C

S

original 2 4 6 7 6 3.44 ± 1.24
oversampling 5.5 5.5 6 5 3 2.78 ± 1.32
undersampling TL 5 4 8 5.5 2.5 2.86 ± 1.25
smote 7 11 3 2 2 2.24 ± 1.18
csmote 5.5 0.5 1 7.5 10.5 3.68 ± 1.55

7.5.3 Summary

Having compared the performance obtained with each learner with the original and re-sampled
data sets, the aim of this section is to summarize all the experimental analysis. For this purpose,
table 7.5 supplies, for each learner, the number of occurrences of each re-sampling technique in
each position of the ranking. For each classifier, the re-sampling method that is placed first in
the ranking is marked in bold. The last column provides the average rank and the standard
deviation for each re-sampling method, which are used to highlight the main observations and
conclusions of the present comparison.

The results show that, in general, data set re-sampling yielded better learning performance
than the one reached with the original data set. On average, the best results were achieved
with SMOTE and random over-sampling. The empirical observations agree with some studies
concluding that over-sampling is more effective than under-sampling in C4.5 (Japkowicz and
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Stephen, 2002; Batista et al., 2004) and SMO (Japkowicz and Stephen, 2002). The results
obtained herein allow us to extend this conclusion to IBk, XCS, and UCS. We hypothesize that
under-sampling may cause a problem of sparsity as it removes instances that may be needed
for learning. In fact, a deeper inspection of the detailed results (see appendix C) shows that
under-sampling was better ranked in the problems pim, wavd1, wavd2, and wavd3, which have
the highest number of instances per dimension5, and poorly ranked in the problems with the
lowest number of instances per dimension: wdbc, wined1, wined2, wined3, and wpbc.

The standard deviation of the rank somehow denotes the dependency of each re-sampling
method on the characteristics of the training domain. For C4.5, SMOTE was the best ranked
re-sampling method; besides, the rank deviation was small. In most of the cases, SMOTE was
the first or the second method in the ranking. These results indicate that SMOTE should be
used in combination with C4.5 to deal with class imbalances. For SMO, random over-sampling
was the best ranked method and, at the same time, it showed a very low standard deviation.
Consequently, SMO should be combined with random over-sampling in imbalanced domains.
For IBk, SMOTE was the best ranked re-sampling technique followed very closely by random
over-sampling. However, SMOTE had a much higher standard deviation, which indicates that
its behavior highly depends on the domain. Therefore, this promotes the use of over-sampling in
combination with IBk if we search for better robustness. For XCS, the best ranked re-sampling
method, i.e., SMOTE, had one of the highest standard deviations. Thus, the behavior of this
combination depended on the characteristics of the data. In this case, the practitioner may
prefer to combine XCS with under-sampling based on Tomek Links, since its average rank was
close to the SMOTE one and it had a very low standard deviation. For UCS, the best and the
most robust re-sampling method was SMOTE.

Although the average results promote the application of re-sampling techniques to imbal-
anced domains, let us highlight that, in some cases, the best results were achieved with the
original data set. That is, a detailed inspection of the results for each particular data set (see
the full tables in appendix C) reveals that the performance of some learners on particular prob-
lems worsened when the data sets were re-sampled. This happened in problems such as h-s,
tao, wined1, wined2, and wined3. In all these cases, some learners obtained a significantly lower
performance than the one obtained with the original data set, which indicated that re-sampling
was introducing some undesired characteristics to the training domain such as noise or new
small disjuncts or niches. Having this in mind, the next section opens a discussion about several
important aspects that have been made manifest throughout the comparative study, the answer
of which will lead us to future work lines.

7.6 Discussion

The comparison performed in this chapter provided many valuable insights and enabled us to
identify which learning systems were better than others and which combinations of learning algo-
rithms with re-sampling techniques yielded the most accurate models on average. Nonetheless,
we already pointed out a set of particular cases where the application of re-sampling techniques
not only did not result in any improvement, but also provided significantly less accurate mod-

5The ratio between the number of instances and the number of attributes of a problem has been proposed
elsewhere (Bernadó-Mansilla and Ho, 2005) as a measure of sparsity.
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els. In general, after analyzing in detail all the results of the present comparison, the machine
learning practitioner, who needs to solve a new problem, may still be wondering which learning
algorithm and re-sampling technique he or she should use. In fact, these thoughts could be
articulated in a more general way by posting the following two questions:

• Why do some re-sampling techniques work well for some learners and data sets but fail
with others?

• Why could not we find a re-sampling technique that works the best for all learners?

These two questions are of especial interest in the current days, since the maturity of machine
learning has resulted in the design of several algorithms to solve the same types of problems.
Studies that mathematically analyze the properties of learning algorithms are not rare in the
literature. However, they still cannot predict which learning algorithm will be the best performer
for a new real-world problem, as long as the intrinsic characteristics of this problem are not
known.

A particular contribution that provides a nice observation about these two questions can be
found in the no-free-lunch (NFL) theorem (Wolpert, 1992, 1996). Loosely speaking, the NFL
theorem mathematically demonstrates that, if we consider all the possible domains in our data
set space, we can find as many data sets for which a learning algorithm ‘A’ outperforms another
algorithm ‘B’ as viceversa. This theorem should be taken with a grain of salt, since we are not
interested in all the possible domains, but in those domains that can be found in real-world
problems. For example, we are not interested in domains with randomly generated instances,
but in domains in which their instances define real-world concepts. Nevertheless, the NFL
theorem gives mathematical formulation to a conclusion already observed in our experiments:
that we cannot find a learning algorithm that performs the best for all possible domains, but
for a particular range of them. Therefore, this conclusion demands the characterization of the
real-world domains to relate them to the properties of each learning system, and so, to detect
for which type of problems a learning algorithm is better suited than the others.

Some recent efforts have been taken to design measures to characterize classification prob-
lems. Michie et al. (1994) early highlighted the importance of domain characterization to analyze
the performance of machine learning methods. The authors provided a set of measures—which
consisted of statistical indicators and measures coming from the information theory—to char-
acterize classification domains. These metrics were designed especially focusing on the analysis
of decision trees. Later, Sohn (1999) used a more restricted set of metrics in a meta-model
that compared the classification performance of several learning systems in terms of the data
characterization. Although the results were promising, the authors already pointed out the need
for further developing new metrics to capture more characteristics of the learning domains.

After these first promising works, Ho and Basu (2002) carefully examined the possible sources
of data complexity and defined a set of measures that aimed at extracting some geometrical
characteristics of the class distributions in the training data set. It was empirically shown that
there was a considerable correlation between some of these measures and the error of some
classifiers. For example, Bernadó-Mansilla and Ho (2005) and Bernadó-Mansilla et al. (2006)
showed that the error of XCS was correlated with some metrics that estimated the length and
linearity of the class boundary. The experimental results provided in these works evidenced that
the characterization of the training data sets holds promise, being able to explain the behavior
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of learning algorithms on particular data, and so, starting to bridge the gap between artificial
data sets with known characteristics—for which we have developed different models in chapters
5 and 6— and real-world data sets with unknown characteristics. Nonetheless, some drawbacks
were also detected, such as the incapacity of the collection of designed metrics to explain all the
sources of complexity of a classification problem.

As further work, this thesis proposes to continue with the study and design of new complexity
metrics and apply them to

1. examine for which types of data a learning algorithm outperforms the others,

2. analyze the impact, from a geometrical point of view, of applying the re-sampling tech-
niques to the different data sets, and

3. study the feasibility of applying each re-sampling technique with each particular learning
system.

The aim of each one of these aspects is explained in what follows.

First, we will employ the complexity metrics to analyze which geometrical characteristics
affect the different learners, identifying the sweet spot in which each learner is the best performer.
Thence, we aim at answering questions such as “Which learner for which real-world problem?”.
To achieve this, an API that includes all the complexity metrics proposed by Ho and Basu
(2002), extends their definition enabling their application to data sets with continuous and
nominal attributes and multiple classes, and provides new measures was implemented and made
available as open source code (Orriols-Puig et al., 2008a). In addition, the correlation of different
complexity metrics with the test error of XCS was analyzed (Bernadó-Mansilla et al., 2006). In
further work, we aim at extending the analysis to other learners.

Second, the impact that each re-sampling technique has on the original data set—which
has been visually illustrated for a particular case study in section 7.4.5—will be analyzed from
the point of view of the change of the geometrical structure that the re-sampling techniques
cause. That is, re-sampling techniques change the distribution of the training data set since new
instances are added or some of the existing instances are removed from the original data set.
Thus, in further work, it will be interesting to study how these re-sampling methods change the
original distributions.

This change in the initial distribution may be either beneficial or detrimental for the learner
employed in each particular case depending on the change of the initial distribution. For example,
suppose that we over-sample a linearly-separable data set and that the resulting data is no longer
linearly separable. In this case, the results obtained by a linear classifier in the re-sampled data
set will be probably worse than those achieved with the original data. This is because there
would be a misalignment between the re-sampling technique—and the changes that it produces
to the original data—and the learning heuristic. Therefore, the aim of the third future work
line is to identify which re-sampling technique is best suited for a particular learning algorithm
given a real-world problem with a certain apparent complexity, providing answer—or, at least,
some guidelines—to the question of “Which machine learning technique combined with which
re-sampling technique for which problem?”.
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7.7 Summary and Conclusions

In this chapter, we moved to real-world imbalanced classification problems and showed that
both LCSs can successfully deal with the challenges posed by learning accurate models from
rare classes in continuous domains with unknown characteristics. We designed a self-adaptation
mechanism that uses a heuristic procedure to detect the maximum imbalance ratio between
niches that lay closely in the solution space and adjust the parameters of both LCSs according
to the theory presented in the last chapter. The excellence of the two LCSs was made evident
through a comparison with three of the most influential machine learning techniques. XCS and
UCS were the two best ranked methods in the comparison, providing statistically better results
than the other methods in a considerably large number of data sets. Later, we introduced four
re-sampling techniques in the comparison and analyzed the improvements that they supplied in
combination with each one of the five learning techniques, extracting several observations for
each particular case.

Two main conclusions, as well as several future line works, can be extracted from the overall
analysis of this chapter. The first conclusion is that the two LCSs are two of the best options to
extract classification models from imbalanced data sets, since they presented the best rank on
average. Moreover, although it has not been further discussed here, LCSs have two important
assets that differentiate them from the other three learning methods: (1) their online learning
architecture and (2) their rule-based representation. The online learning architecture enables
LCSs to learn from streams of data, which are very common in current scientific and industrial
applications (Aggarwal, 2007; Gama and Gaber, 2007). The rule-based representation permits
extracting models that can be read by human experts to some extend. This is similar to C4.5,
which creates decision trees. Nonetheless, note the difference with respect to SMO and IBk.
The models built by SMO consist of a set of support vector machines defined by weights, which
can be barely interpreted. On the other hand, IBk does not create a general model.

The second conclusion is that, on average, re-sampling techniques improve the discovery
of rare classes. In particular, SMOTE and random over-sampling appeared as the two best
re-sampling techniques. Therefore, according to the empirical evidence provided in the present
comparison, the machine learning user may bet for a combination of LCSs and SMOTE or
over-sampling to deal with new challenging imbalanced problems. Nevertheless, we have also
discussed that the intrinsic complexities of each particular problem may need different treat-
ments. This leads us to consider the study of domain characterization as further work.
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Chapter 8

Fuzzy-UCS: Evolving Fuzzy Rule
Sets for Supervised Learning

In the last three chapters, we studied the capabilities of XCS and UCS to learn from imbalanced
domains, addressing the first challenge proposed in this thesis. Along the study, as we were
concerned about modeling rare classes, we evaluated the quality of the learners with metrics
related to the accuracy per class. Nevertheless, in addition to model’s accuracy, human experts
may require the creation of legible models so that they can understand why a particular machine
learning technique returns an output for a given unlabeled example. In some domains, such in
medical diagnosis, human experts are sometimes more interested in the explanation that yields
a prediction than in the prediction itself (Robnik-Sikonja et al., 2003). Although both LCSs use
a rule-based representation, the interpretability of their models can be impaired by (1) the large
number of rules that they tend to create (Bernadó-Mansilla and Ho, 2005; Bacardit and Butz,
2004; Wilson, 2002a; Dixon et al., 2004; Fu et al., 2001) and (2) the use of reasoning mechanisms
that may be counter-intuitive to human experts. This is not a particular problem of LCSs, but
it is shared by other machine learning techniques. In order to solve it, several authors have
proposed the use of fuzzy logic (Zadeh, 1965, 1973) to create machines that can extract legible
models and that use reasoning mechanisms closer to human ones.

The purpose of this chapter is to incorporate fuzzy logic concepts into LCSs with the aim
of letting the systems evolve more legible classification models and use principled reasoning
mechanisms defined in the fuzzy set theory. With this objective in mind, we take a creative
process to mix the ideas that come from both fields and design Fuzzy-UCS (Orriols-Puig et al.,
2007a,b, 2008b,e), the first Michigan-style LCS that evolves a fuzzy representation online for
supervised learning tasks. The system is inspired by UCS, but it is completely redesigned to be
able to deal with the new fuzzy representation. The competitiveness of the system is shown by
comparing it with a large collection of fuzzy and non-fuzzy systems, which contains several of
the most influential learners (Wu et al., 2007). In addition, we illustrate the added value of the
online learning architecture of Fuzzy-UCS with respect to other learners by using Fuzzy-UCS
to mine large volumes of data online.

The remainder of this chapter is organized as follows. Section 8.1 further discusses on the
motivation of the present work. Section 8.2 introduces the basic concepts of fuzzy logics, presents
some approaches in which GAs and fuzzy logics have been combined to create machine learn-
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ing systems, and reviews some particular LCSs that use a fuzzy representation, highlighting
the key differences with respect to Fuzzy-UCS. Section 8.3 gives a detailed description of the
proposed Fuzzy-UCS algorithm. Section 8.4 examines the sensitivity of Fuzzy-UCS to configu-
ration parameters. Then, section 8.5 studies the limitations that a linguistic representation may
impose and compares it to a more flexible fuzzy representation. Section 8.6 makes an extensive
comparison of the Fuzzy-UCS representation with a set of fuzzy and general-purpose machine
learning techniques, analyzing the differences between the learners in terms of test performance
and interpretability of the models. Section 8.7 exploits the online architecture of Fuzzy-UCS to
mine a large data set, the 1999 KDD Cup intrusion detection data set. Finally, section 8.8 gives
a summary of the work and future lines of research and presents a SWOT analysis to reflect the
strengths, the weaknesses, the opportunities, and the threats of the new system.

8.1 Why Using Fuzzy Logic in LCSs?

Pattern recognition (Theodoridis and Koutroumbas, 2006) is concerned with the design of al-
gorithms that are able to extract novel, useful, and hidden patterns from repositories of data.
In this context, a competent supervised learning technique is required to be able to (1) identify
patterns hidden between a set of descriptive attributes and a dependent variable, i.e., the out-
put or the class, (2) represent these patterns in some legible structure, and (3) generalize over
the input patterns to produce compact representations. During the last few decades, a lot of
research has been conducted to design approaches that totally or partially fulfill the aforemen-
tioned requirements (Mitchell, 1997, 2006). As proceeds, we discuss whether these three aspects
are satisfied by Michigan-style LCSs and propose the use of fuzzy logic as a powerful mechanism
to create highly legible models from domains with uncertainty and imprecision.

We have shown in the previous chapters that Michigan-style LCSs are one of the most com-
petitive alternatives to generalize over the input patterns and extract highly accurate models
from real-world data sets. Therefore, they fulfill the first and third requirement. Nonetheless,
the second requirement is not completely achieved. That is, although most of the current imple-
mentations of Michigan-style LCS use a rule-based representation—and rules can be individually
interpreted—, the readability of the whole rule set may be impaired since LCSs

1. tend to evolve models with a large number of overlapped semantic-free interval-based rules,
and

2. use reasoning mechanisms that can be little intuitive to human experts.

As follows we further discuss these two arguments in the context of interval-based rule repre-
sentation, since it is the most used representation to deal with continuous attributes in LCSs.

The first reason that may hamper the readability of the models evolved by Michigan-style
LCSs is that these systems tend to evolve a large number of overlapped semantic-free interval-
based rules to define complex class boundaries (Bernadó-Mansilla and Ho, 2005; Bacardit and
Butz, 2004; Wilson, 2002a; Dixon et al., 2004; Fu et al., 2001). That is, XCS and UCS systems
alike usually represent continuous attributes with semantic-free intervals. Here, we use the term
semantic free to refer to the fact that the lower and upper limits of each interval of each rule
are modified independent of the value of the same attribute in other rules or the value of other

160



8.1. WHY USING FUZZY LOGIC IN LCSS?

attributes. This has two negative effects on the readability of the final population. The first
negative effect is that Michigan-style LCSs tend to evolve populations that contain rules which
are highly overlapped. Particularly, the class boundary usually consists of a large number of
overlapping rules that predict different classes (Bernadó-Mansilla and Ho, 2005). This is not
only caused by the rule representation, but also by the online learning architecture; that is, as
rules are evaluated online, similar rules are maintained in the population. This large number of
rules may hamper the readability of the rule set. The second effect comes directly with the fact
that attributes are defined by intervals, so defining abrupt boundaries of the region where the
rule is applicable. That is, inside the covered region, the implication predicted by the rule is
completely true. This is counterintuitive from a human point of view, seeming more reasonable
to have rules in which the degree of matching decreases as the boundaries of the covered region
are approached.

The second aspect that may have a negative influence in providing legible explanations to
human experts is that the reasoning mechanisms used by LCSs to infer the class of test instances
usually mix information of all the matching rules to predict the output class. For example, in the
case of XCS, the reasoning mechanism is based on a weighted sum that involves the prediction,
the fitness, and, indirectly, the numerosity—since it is included in the fitness—of each matching
classifier. Therefore, this reasoning mechanism further impairs the interpretability of individual
rules because the contribution of each individual rule to the final prediction is not clear.

These two problems are not only related to LCSs, but to many machine learning techniques.
To improve models legibility, several authors have adhered to the use of fuzzy logic and fuzzy set
theory (Zadeh, 1965, 1973) to define fuzzy systems, that is, systems that use fuzzy logic to create
highly legible models that predict environments with uncertainty and imprecision. Basically, the
fuzzy set theory provides a legible knowledge representation and a robust reasoning mechanism
with a mathematical formulation. In the last few decades, fuzzy logic set theory has been applied
to different machine learning techniques such as rule-based systems and GBML (Cordón et al.,
2001a) or neural networks (Buckley and Hayashi, 1994, 1995).

The motivation of the work performed in this chapter is to design a new supervised machine
learning technique which combines the ideas of accuracy-based LCSs, GAs, and fuzzy logic
together. That is, the new approach will join the online evaluation capabilities of LCSs, the
search robustness of GAs, and the legible representation and reasoning mechanisms of fuzzy
systems. The new online system is addressed as Fuzzy-UCS. Therefore, Fuzzy-UCS aims at
providing similarly accurate, but more readable models than those created by XCS and UCS by
(i) using a more readable rule representation, since rule variables are represented by linguistic
terms, and (ii) evolving smaller rule sets. It is worth noting that Fuzzy-UCS is not the first
Michigan-style LCSs that uses a fuzzy representation, but it is the first learning fuzzy-classifier
system (LFCSs) that works under a supervised learning scheme and builds the knowledge online.

Before proceeding with a detailed description of the learning architecture of Fuzzy-UCS, the
next section provides a concise introduction to fuzzy logic, gives a general schema of how GAs
have been used in fuzzy systems, and reviews some of the early approaches of LCSs that evolve
a fuzzy representation, highlighting the differences with respect to the Fuzzy-UCS architecture.
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8.2 Fuzzy Logics in GBML

Fuzzy Logic can be defined as an extension of the traditional logic systems, which has its origins
in the ancient Greek philosophy. Fuzzy logics provides a conceptual framework that permits
representing the knowledge in environments with uncertainty and imprecision, two characteris-
tics that are really present in nature. In fact, the natural language itself abounds with vague
and imprecise concepts. Therefore, fuzzy logic defines a set of procedures or modes of reasoning
that are approximate rather than exact. In brief, it extends the concepts of “true” and “false”
in bi-valued logic with a third value that indicates that something is “possible” and gives a
numeric value between true and false. Recently, the notion of fuzzy logic gained importance due
to the pioneer contributions of Zadeh (1965, 1973), who established the foundations of the fuzzy
set theory and, by extension, of fuzzy logic. The following subsections briefly explain the basic
mechanisms of fuzzy systems that will be required for the remainder of this chapter. Finally,
the different formulas in which GAs and fuzzy logic have been used together in machine learning
are briefly introduced, especially focusing on the existing proposals of LFCS.

8.2.1 Fuzzy Logic and Fuzzy Systems

Fuzzy Systems are fundamental methodologies to represent and process linguistic information.
Fuzzy systems use fuzzy logic to either represent the knowledge or model the interactions and
relationships among the system variables in environments where there is uncertainty and im-
precision. Because of this ability to deal with ill-defined data, fuzzy systems have been widely
applied to control, classification, and modeling problems (Klir and Yuan, 1995; Pedrycz, 1998)
where classical tools were unsuccessful. In what follows, we briefly introduce the basic concepts
of the fuzzy set theory and shortly review how they can be incorporated into rule-based systems.

In the fuzzy set theory, each fuzzy subset A of a “crisp”1 set X is characterized by giving
a degree of membership to each of its elements x ∈ X. Thence, given a certain observation x
and a fuzzy set A, a function addressed as fuzzy membership function is defined to return a
membership degree of x into A. For example, let us suppose that we define the fuzzy set that
represents the term old. Then, given a new proposition x (e.g., x =“John is 54”), the fuzzy
membership function would provide a degree of membership of x to the set A, which could be
absolutely true (if John is old), absolutely false (if John is not old), or some intermediate truth
degree (John is old with a degree of 0.75). Several propositions can be combined by connectives,
e.g., conjunction, disjunction, and negation. Thence, the fuzzy set theory gives a mathematical
interpretation to these connectives so that a new membership degree can be calculated from
several propositions joined by connectives.

In particular, the fuzzy set theory has been successfully applied to rule-based systems, re-
sulting in the so-called fuzzy rule-based systems (FRBSs). FRBSs consist of fuzzy rules, that is,
if-then constructions that have the following general form:

IF x1 is A1 and ... and xn is An THEN B, (8.1)

where the variables of the antecedent and the consequent contain linguistic labels, that is, the
labels are represented by fuzzy sets. These rules are usually called linguistic FRBS or Mamdani

1Crisp set is used to refer to a set that follows the bi-valued logic.
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Figure 8.1: Schematic of GFRBS architecture.

FRBSs (Mamdani, 1974) and represent two essential advantages with respect to classical rule-
based systems:

1. As variables use fuzzy sets, they naturally can handle uncertainty and vagueness.

2. Rule inference is driven by the reasoning methods defined in the fuzzy set theory, thus,
providing inference with a mathematical framework.

Thereupon, the two main tasks in the development of a FRBS are: (1) generate a rule set that
represents the problem domain accurately and (2) design an inference mechanism that permit
combining the information of all the matching rules. In the next subsection we discuss different
methodologies in which GAs are used to assist the building of FRBSs.

8.2.2 Genetic Algorithms in Fuzzy Systems

One of the main drawbacks associated with a FRBS is that the fuzzy rule set has to be defined
by human experts, which may be a complex task in some real-world domains. In the last few
decades, research has been conducted on designing methods to automatically extract fuzzy rules
from a set of data, creating a model that represents the learning domain accurately. Many
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authors have regarded the rule extraction as an optimization problem where a set of rules,
whose attributes are defined by linguistic terms, need to be found. Then, several search and
optimization procedures can be applied to solve this problem.

One of the most prominent proposals is the use of GAs—and evolutionary algorithms in
general—to generate this fuzzy rule set. At this point of the thesis, there is not need to further
discuss the several reasons that promote the use of GAs, instead of other search mechanisms, to
tune different components of FRBS. We have extensively discussed, and empirically shown in
the previous sections, (1) the capability of GAs to deal with complex, large search spaces, (2)
the success of the use of genetic search in machine learning, and (3) the flexibility of GAs that
permit introducing a-priori knowledge. These three reasons are also applicable here, making
GAs one of the most appealing methods to be combined with fuzzy systems.

The combination of GA with FRBS has lead to a new branch of GBML that has been
addressed as genetic fuzzy rule-based systems (GFRBSs) (Cordón et al., 2001a). The basic idea
of GFRBS is that GAs are used for either (i) tuning a pre-existing set of fuzzy rules typically
with the aim of increasing the global accuracy of the system, as well as the readability of the
fuzzy rule set, or (ii) generating the fuzzy rule set from scratch. To further illustrate this process,
figure 8.1 provides a general schematic of a GFRBS, which is composed by a FRBS and a genetic
procedure that guides the design process. The FRBS is formed by the knowledge base, which
contains the fuzzy rule set, and an inference engine which, in turn, consists of:

1. An input interface, which transforms the input data into fuzzy sets by using a fuzzification
process.

2. An output interface, which translates the fuzzy rule action to a real action by using a
defuzzification method.

3. A database, which contains the definition of all the linguistic terms and the membership
functions defining the semantics of the linguistic labels.

GAs have assisted the design of the FRBS in several ways. Following the taxonomy provided
by Herrera (2008), GFRBS can be grouped in the following three classes.

• GFRBS in which the GA tunes some component of the rule set such as (i) the parameters
of the membership functions of the linguistic terms used in the rule set (Casillas et al.,
2005; Karr, 1991); (ii) the inference system itself (Alcalá-Fdez et al., 2007; Crockett et al.,
2006, 2007); and (iii) the defuzzification function (Kim et al., 2002).

• GFRBS in which the GA is applied to learn some components of the GFRBS. Four ap-
proaches can be followed in this case, i.e., algorithms that (i) learn the knowledge base from
a set of numerical data (Thrift, 1991); (ii) select the best rules extracted by another algo-
rithm (Ishibuchi et al., 1995, 1997); (iii) learn first the database and then derive the best
fuzzy rules for the selected database (Cordón et al., 2001b)—this process can be repeated
to get the best combination of both database and knowledge base; or (iv) simultaneously
learn both the database and the knowledge base (Homaifar and McCormick, 1995).

• GFRBS in which both the knowledge base and the inference engine parameters are tuned
(Marquez et al., 2007).
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From these three branches of GFRBS, we are concerned about the GFRBS that learn the
rule set from scratch. More specifically, our aim is to design an online Michigan-style LCSs that
learns fuzzy classification models with improved legibility. In the following subsection, we review
few approaches that fall under this definition, emphasizing the key differences with respect to
Fuzzy-UCS.

8.2.3 Related Work on Learning Fuzzy-Classifier Systems

Since Valenzuela-Rendón (1991) presented the first proposal of LFCSs, several authors have
adhered to the idea of building machine learning techniques that evolve models online. Most
of these systems were applied to solve reinforcement learning and control tasks. As follows, we
present the most successful approaches to this topic and finally highlight the differences with
respect to the underlying ideas of Fuzzy-UCS.

Valenzuela-Rendón (1991) introduced the first Michigan-style LFCS, which consisted of a
fixed-size fuzzy-rule set and a fuzzy message list. The system was applied to solve function
approximation tasks. The quality of the fuzzy rules was given according to the accuracy in
which the output was estimated. Thus, the initial approach was not a pure reinforcement
learning architecture. Later, Nomura et al. (1998) enhanced the system with true reinforcement
learning.

Several strength-based Michigan-style LFCS have been proposed since this first description.
Parodi and Bonelli (1993) presented an LFCS that automatically learned fuzzy relations, fuzzy
membership functions, and fuzzy weights. The fitness (strength) of each rule was used for a
double purpose. First, it served to compute the selection and replacement probability of the
rule. Second, it permitted stronger rules to participate more soundly in the inference process.

Furuhashi et al. (1994) designed an LFCS that used multiple stimulus-response fuzzy rules
operating in tandem. The system was applied to a control task in which a simulated ship had to
reach a target without moving the obstacles found on its way. The same problem was addressed
by Nakaoka et al. (1994) by using a single rule list. This approach avoided coverage problems
in high dimensional spaces by using a dual fitness, one based on environmental payoff, and the
other based on the accumulation of the level of activation during simulation.

Velasco (1998) defined a new LFCS architecture specifically designed for fuzzy process con-
trol. The system introduced the so-called limbos, i.e., a special workspace where new rules were
generated and evaluated before being used in the real process plant. In this way, the system
avoided using poorly-evaluated rules in the control system.

Ishibuchi et al. (1999b) designed one of the first proposals of LFCS for pattern classification.
They used a fixed-size rule set where don’t care symbols were defined to permit generalization
in the fuzzy rules. A certainty factor, derived from a heuristic procedure prior to fitness evalu-
ation, together with the predicted class formed the consequent of the rule. The rule consequent
consisted of the class that the rule advocated and a certainty factor which was derived from a
heuristic procedure prior to fitness evaluation. An evolutionary algorithm, which operated only
on the rule antecedent, was responsible for creating promising new rules. Although the authors
referred to the approach as a Michigan-style LFCS, the rule evaluation process was performed
offline; that is, new rules were matched with all the examples of the training data set to compute
their fitness. Therefore, this system was not able to deal with data streams. Recently, Ishibuchi
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et al. (2005) presented an hybridization of Pittsburgh-style and Michigan-style LFCSs. The sys-
tem is mainly a Pittsburgh-style LCSs in which some individuals of the population can receive a
local search procedure which is inspired by a Michigan-style LCSs. Again, the system evaluates
the individuals offline.

Finally, the classic “competition versus cooperation” problem in genetic fuzzy systems was
addressed by Bonarini (1996); Bonarini and Trianni (2001). Bonarini proposed a Michigan-
style LCS called ELF, which faced the dilemma between the desired cooperation among fuzzy
rules that match a given input state and the competition of these rules in the evolutionary
algorithm. In ELF, the rule set was divided into several sub-populations, each one with the
same antecedent. Then, the rules of different sub-populations cooperated to produce the con-
trol action, whilst the members of each subpopulation competed with each other. Moreover,
ELF controlled the instability of general rules that participated in different sub-populations by
providing each rule a reinforcement normalized on the difference between the maximum and
the minimum reinforcement obtained by the subpopulation to which the rule belongs. In this
way, ELF overcame some of the problems of strength-based LCSs. ELF was applied to several
reinforcement learning problems, such as the coordination of autonomous agents.

All the LFCS described through this section are strength-based systems. In reinforcement
learning, the first successful accuracy-based fuzzy rule-based system with generalization capa-
bility was proposed by (Casillas et al., 2007). To the best of our knowledge, no accuracy-based
LFCS specifically designed for classification has been proposed until now. Therefore, Fuzzy-UCS
is the first approach in this field. The system takes an accuracy-based approach to benefit from
the advantages that these types of systems have introduced to LCSs, which are summarized as
follows.

• Accuracy-based LCSs can distinguish over-general from accurate rules (Bull and Hurst,
2002).

• There are theoretical analyses that support the theory that, for binary representation,
LCSs such as XCS will evolve a rule set with maximally-general and highly accurate rules
if certain conditions are met (Butz et al., 2004b; Butz, 2006; Butz et al., 2007). Besides,
there are further models, as those provided in chapters 5 and 6 that explain different
facets of how these systems work. Although similar analyses in the continuous space are
scarce, the positive conclusions extracted for the binary representation promote the use of
Michigan-style LCSs.

The next subsection explains Fuzzy-UCS in detail.

8.3 Description of Fuzzy-UCS

The purpose of this section is to describe the design and implementation details of Fuzzy-UCS so
that it can be used as an implementation guide. Figure 8.2 schematically illustrates the process
organization of the system. The system works in two different modes: exploration or training
and exploitation or test. In the exploration mode, Fuzzy-UCS seeks to evolve a maximally
general rule set that minimizes the training error. In the exploitation mode, Fuzzy-UCS uses
the evolved knowledge to infer the class of unlabeled examples. As proceeds, we first present the
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Figure 8.2: Schematic illustration of Fuzzy-UCS. The run cycle depends on whether the system
is under exploration (training) or exploitation (test).

fuzzy knowledge representation used by Fuzzy-UCS and then introduce the learning interaction,
the rule evaluation system, and the rule discovery component used in the training mode. Finally,
we also introduce the reasoning mechanisms designed to infer the class of new unlabeled examples
in test mode.

8.3.1 Knowledge Representation

We first introduce the fuzzy-rule-based representation of Fuzzy-UCS, explain how the matching
mechanism works, and present the most relevant parameters that are associated with each
classifier. Fuzzy-UCS evolves a population [P] of classifiers which jointly represent the solution
to a problem. Each classifier consists of a rule whose condition is in conjunctive normal form
and a set of parameters. The fuzzy rule follows the structure

IF x1 is Ãk
1 and · · · and xn is Ãk

n THEN ck WITH wk, (8.2)

where each input variable xi is represented by a disjunction of linguistic terms or labels Ãk
i =

{ Ai1 ∨ . . . ∨ Aini}. In our experiments, all input variables share the same semantics, which are
defined by means of triangular-shaped fuzzy membership functions. (see the examples of these
semantics with different number of linguistic terms in figure 8.3). Note that this representation
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Figure 8.3: Representation of a fuzzy partition for a variable with (a) three and (b) five
triangular-shaped membership functions.

intrinsically permits generalization since each variable can take an arbitrary number of linguistic
terms. The consequent of the rule indicates the class ck which the rule itself predicts. wk is a
weight (0 ≤ wk ≤ 1) that denotes the soundness with which the rule predicts the class ck. These
types of rules with a weight in the consequent are known as fuzzy rules of type II (Cordón et al.,
2001a).

The matching degree µAk(e) of an example e with a classifier k is computed as follows.
For each variable xi, we compute the membership degree for each of its linguistic terms, and
aggregate them by means of a T-conorm (disjunction). We enable the system to deal with
missing values by considering that µAk(e) = 1 if the value ei for the input variable xi is not
known. Then, the matching degree of the rule is determined by the T-norm (conjunction)
of the matching degree of all the input variables. In our implementation, we used a bounded
sum (min{1, a + b}) as T-conorm and the product (a · b) as T-norm. Note that, if the fuzzy
partition guarantees that the addition of all membership degrees is greater than or equal to 1—
the membership functions used in our experiments satisfy this condition—, the selected T-norm
and T-conorm allow for a maximum generalization. Therefore, an input variable xi consisting
of two consecutive linguistic terms will result in a matching degree of µxi(e) = 1 if the matching
of ei with both linguistic terms is greater than zero; thus, this choice supports the absence of
the variable xi.

Each classifier has four main parameters: 1) the fitness F, which estimates the accuracy of the
rule; 2) the correct set size cs, which averages the sizes of the correct sets in which the classifier
has participated (see section 8.3.2); 3) the experience exp, which computes the contributions of
the rule to classify the input instances; and 4) the numerosity num, which counts the number
of copies of the rule in the population. Some of the parameters such as the fitness and the
experience have been “fuzzified” with respect the corresponding parameters in XCS and UCS.

To completely understand the new fuzzy rule representation, in the following subsections we
detail how the different components of Fuzzy-UCS interact to evaluate the existing classifiers
and create new promising rules.

168



8.3. DESCRIPTION OF FUZZY-UCS

8.3.2 Learning Interaction

Fuzzy-UCS inherits the process organization form UCS (see chapter 3), but it is adapted to
deal with fuzzy rules. For this purpose, three main differences with respect to UCS need to be
considered: the matching calculation, the rule structure, and the inference methodology.

1. Matching calculation. In UCS, the attributes are represented by intervals [li, ui], and thus,
a rule matches an input example if ∀ei : li ≤ ei ≤ ui. Therefore, the matching function
returns a binary output indicating whether the classifier matches the example e or not.
In Fuzzy-UCS, a rule k matches the input example with a matching degree µAk(e), where
0 ≤ µAk(e) ≤ 1. High values of µAk(e) indicate that the prediction of rule k is fairly
accurate.

2. Rule structure. In UCS, a rule predicts a single class with a certain fitness or quality.
Consequently, the population may contain two rules with the same antecedent advocating
different classes. To avoid this situation in Fuzzy-UCS, rules internally maintain a weight
for each class that indicates the soundness in which this class is predicted. These weights
are updated by the online learning architecture and are only used to determine the class
that the rule predicts; that is, the class advocated by the rule is the class with the maximum
weight. Therefore, the class predicted by the rule can change as the rule is evaluated online.

3. Inference methodology. In UCS, all the classifiers in [M] emit a fitness-weighted vote for
the class they advocate, and the most voted class is chosen as the predicted output. In
Fuzzy-UCS, different fuzzy-logic inference methods can be used to infer the class from the
final fuzzy rule set (Cordón et al., 1999). Section 8.3.5 presents the three types of inference
used by the system.

The learning organization of Fuzzy-UCS was redesigned considering these differences. As fol-
lows, the learning mechanism used during training is carefully reviewed, focusing on the main
differences with respect to UCS. The reader is referred to section 8.3.5 for the details on the
reasoning methods used to classify new instances in exploitation mode.

At each learning iteration, Fuzzy-UCS receives a new input example e and its class c, and
the system builds the match set [M], which contains all the classifiers in [P] that have a matching
degree µAk(e) greater than zero.2 Then, the system creates the correct set [C] with all the rules
in [M] that advocate the class of the input example. If none of the classifiers in [C] match e with
the maximum matching degree, the covering operator is triggered, which creates the classifier
that maximally matches the input example. That is, for each attribute of the condition, we
aggregate the linguistic term Aij that maximizes the matching with the input value ei. If ei is
not known, we randomly select a linguistic term and aggregate it to the attribute. Moreover,
we introduce generalization by permitting the addition of other linguistic terms with probability
P#. The initial values of the new classifiers are initialized according to the information provided
by the current examples. Specifically, the fitness, the numerosity, and the experience are set to

2We do not require that rules have a matching degree greater than a certain threshold to be in [M], as sometimes
done in regression (Casillas et al., 2007). In regression, the output is formed by means of aggregating rules with
different actions. Thus, a minimum matching degree with the input may be required to participate in this process.
However, in Fuzzy-UCS, the rules in [C] advocate the same class. In this way, Fuzzy-UCS avoids aggregating
rules of different classes in the learning process, and so, a matching threshold appears to be less necessary.
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1. The fitness of a new rule is set to 1 to give it opportunities to take over. Nonetheless, two
important aspects should be noted. First, as the new classifiers participate in new match sets,
their fitness and other parameters are quickly updated to their average values, and so, the initial
value is not crucial. Second, as specified in the following sections, the system prevents young
classifiers from having a strong presence in the genetic selection, and protects them from an early
deletion. At the end of the covering process, the new classifier is inserted in the population,
deleting another one if there is not room for it.

Next, in exploration mode, the classifiers in [M] that advocate the class c form the correct
set [C]. As in UCS, the correct set works as a niche where the genetic algorithm is applied.
Besides, after each learning iteration, the parameters of all the classifiers in [M] are updated.
The following two subsections explicate these two procedures in detail.

8.3.3 Classifiers Update

At the end of each learning iteration, Fuzzy-UCS updates the parameters of the rules in [M].
As explained above, most of the parameters were redefined with respect to those of UCS to be
able to deal with fuzzy rules—i.e, the parameters were “fuzzified”. As proceeds, the equations
used to update the parameters are provided.

First, the experience of the rule is incremented according to the current matching degree:

expk
t+1 = expk

t + µAk(e). (8.3)

Thence, in Fuzzy-UCS, the experience parameter accounts for the contributions of the classifier
in matching instances; that is, classifiers that match with high degree several instances will
have high experience. Next, the fitness is updated. For this purpose, each classifier internally
maintains a vector of classes {c1, . . . , cm}, each of them with an associated weight {vk

1 , . . . , vk
m}.

Each weight vk
j indicates the soundness with which rule k predicts class j for an example that

fully matches this rule. These weights are incrementally updated during learning as explained
as follows. The class ck advocated by the rule is the class with the maximum weight vk

j . Thus,
given that the weights may change due to successive updates, the class that a rule predicts may
also vary.

To update the weights, we first compute the sum of correct matchings cmk for each class j:

cmk
jt+1

= cmk
jt

+ m(k, j), (8.4)

where

m(k, j) =

{
µAk(e) if j=c;
0 otherwise.

(8.5)

Then, cmk
j+1 is used to compute the weights vk

j+1:

∀j : vk
jt+1

=
cmk

jt+1

expk
t+1

. (8.6)

For example, if a rule k only matches examples of class j, the weight vk
j will be 1 and the

remaining weights 0. Rules that match instances of both classes will have weights ranging from
0 to 1. Note that the sum of all the weights is 1.
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The fitness is then computed from the weights with the aim of favoring classifiers that match
examples of a single class. To carry this out, we use the following formula (Ishibuchi and
Yamamoto, 2005):

F k
t+1 = vk

maxt+1
−

∑
j|j 6=max

vk
jt+1

, (8.7)

where we subtract the values of the other weights from the weight with maximum value vk
max.

The fitness F k is the value used as the weight wk of the rule (see Equation 8.2). Note that
this formula can result in classifiers with zero or negative fitness (for example, if the number
of classes is greater than 2 and the class weights are equal). Lastly, the correct set size of all
the classifiers in [C] is calculated as the arithmetic average of the sizes of all the correct sets in
which the classifier has participated.

Finally, the rule k predicts the class c with the highest weight associated vk
c . Thus, the class

predicted is not fixed when the rule is created, and can change as the parameters of the rule
are updated (especially during the first parameters updates). Once the parameters of all the
classifiers in [M] have been updated, the GA can be applied to the current niche. In this case,
the GA follows the process explained in the next subsection.

8.3.4 Classifiers Discovery

Fuzzy-UCS uses a steady-state niched genetic algorithm (GA) (Goldberg, 1989a) to discover
new promising rules. The GA is applied to the classifiers that belong to [C]. Thus, the niching is
intrinsically provided since the GA is applied to rules that match the same input with a degree
greater than zero and advocate the same class.

The GA is triggered when the average time from its last application upon the classifiers in
[C] exceeds the threshold θGA. It selects two parents p1 and p2 from [C] using proportionate
selection (Goldberg, 1989a), where the probability of selecting a classifier k is

pk
sel =

(F k)ν · µAk(e)∑
i∈[C]|F i≥0(F i)ν · µAk(e)

, (8.8)

where ν > 0 is a constant that fixes the pressure toward maximally accurate rules (in our
experiments, we set ν=10). Therefore, the probability of a classifier being selected depends on
the product of its fitness and the matching degree with the input instance. Rules with negative
fitness are not considered for selection. The two parents are copied into offspring ch1 and ch2,
which undergo crossover and mutation with probabilities χ and µ respectively. The crossover
operator crosses the antecedents of the rules by two points. The mutation operator checks
whether each variable has to be mutated with probability µ. If so, three types of mutation can
be applied: expansion, contraction, or shift. Expansion chooses a linguistic term not represented
in the corresponding variable and adds it to this variable; thus, it can be applied only to variables
that do not have all the linguistic terms. Contraction selects a linguistic term represented in
the variable and removes it; so, it can be applied only to variables that have more than one
linguistic term. By doing so, we avoid generating rules that do not match any example. Shift
changes a linguistic term for its immediate inferior or superior.
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The new offspring are introduced into the population. First, each classifier is checked for
subsumption (Wilson, 1998) with their parents. Subsumption is a mechanism that prevents the
creation of classifiers with specific conditions if there are more general and accurate classifiers
in the population that cover the same region of the feature space. So, subsumption pressures
toward maximally general and accurate classifiers. The process works as follows. If any parent’s
condition subsumes the condition of the offspring (i.e., the parent has, at least, the same linguistic
terms per variable than the child), and this parent is highly accurate (F k > F k

0 ) and sufficiently
experienced (expk > θsub), the offspring is not inserted into the population and the numerosity
of the parent is increased by one. Otherwise, we check [C] for the most general rule that can
subsume the offspring. If no subsumer can be found, the classifier is inserted into the population.

If the population is full, excess classifiers are deleted from [P] with probability proportional
to the correct set size estimate cs, following a method adapted from (Kovacs, 1999). Moreover,
if the classifier is sufficiently experienced (expk > θdel) and the power of its fitness (F k)ν is
significantly lower than the average fitness of the classifiers in [P] ((F k)ν < δF[P ], where F[P ] =
1
N

∑
i∈[P ](F

i)ν), its deletion probability is further increased. That is, each classifier has a deletion
probability pk of:

pk =
dk∑

∀j∈[P ] dj
, (8.9)

where

dk =

{
cs·num·F[P ]

(F k)ν if expk > θdel and (F k)ν < δF[P ];
cs · num otherwise.

(8.10)

Thus, the deletion algorithm balances the classifier’s allocation in the different correct sets by
pushing toward deletion of rules belonging to large correct sets. At the same time, it favors the
search toward highly fit classifiers, since the deletion probability of rules whose fitness is much
smaller than the average fitness is increased.

8.3.5 Fuzzy-UCS in Test Mode

The aim of Fuzzy-UCS is to evolve a minimum set of maximally accurate rules that cooperate
to cover all the input space. To achieve high classification accuracy, not only needs the system
to create a population of highly accurate classifiers during learning, but it also has to define
effective reasoning methods that use the information of the rule set to infer the class of new input
examples. As these reasoning methodologies may not use all the rules in the inference process,
rule set reduction techniques similar to those used in (Orriols-Puig and Bernadó-Mansilla, 2004)
can be applied to remove the rules that are not considered for the reasoning technique. Herein,
we discuss two different inference schemes. Furthermore, we present a reduction method for each
one of these inference methods that permits a reduction the number of rules in the final rule
set without decreasing training accuracy. Finally, we also introduce a third rule set reduction
mechanism which allows for higher reductions, but does not guarantee that the reduced rule set
results in the same training performance as the original one.
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Class Inference

Once Fuzzy-UCS has evolved a population of highly general and accurate rules, this population is
used to infer the class of new examples. Given a new unlabeled instance e, several rules predicting
different classes can match (with different degrees) this instance. Thus, the knowledge contained
in the set of matching classifiers has to be combined to decide the most likely output. For this
purpose, several reasoning methodologies have been analyzed in the realm of fuzzy-rule based
systems (Cordón et al., 1999; Ishibuchi et al., 1999a). Here, we adapt two inference approaches
to Fuzzy-UCS. In both cases, only experimented rules (expk > θexploit) are considered in the
inference, where θexploit is a user-set parameter that indicates the minimum experience that a
rule must have to participate in the inference process.

Weighted average inference. In this approach, all the experienced rules vote to infer the output.
Each rule k emits a vote vk for class j it advocates, where

vk = F k · µAk(e). (8.11)

The votes for each class j are added:

∀j : votej =
N∑

k|ck=j

vk, (8.12)

and the most-voted class is returned as the output.

Action winner inference. This approach selects the rule k that maximizes µAk(e) · F k, and
chooses the class of the rule as output (Ishibuchi et al., 1999b). Thus, the knowledge of
overlapping rules is not considered in this inference scheme.

Rule Set Reduction

At the end of the learning process, the population is reduced to obtain a minimum set of rules.
We designed three types of reduction, which use one of the inference schemes presented above.

Reduction based on weighted average. Under the weighted average scheme, we reduce the
final population by removing all the rules that a) are not experienced enough (exp ≤ θexploit)
or b) have zero or negative fitness.

Reduction based on action winner. If action winner inference is used, only rules that maximize
the prediction vote for a training example are necessary. Thus, after training, this reduction
scheme infers the output for each training example. The rule that maximizes the vote vj for
each example is copied to the final population.

Reduction based on the fittest rules. This reduction tries to minimize the rule set size by
selecting the most numerous and accurate rules for the final population. The methodology
is a hybrid of the previous approaches. The reduction process is analogous to the reduction
based on action winner, but now, the rule k that maximizes F k · µAk(e) · numk for each input
example is copied to the final population. By including the numerosity in the vote, we favor
the most numerous and accurate rules. As this reduction may copy overlapping rules into the
final population, weighted average is used to infer the class of a new example.
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Overall, Fuzzy-UCS is an LFCS that evolves a set of linguistic fuzzy rules online and uses
three different inference/reduction mechanisms to predict the class of test instances. Since Fuzzy-
UCS is a brand new system that mixes different ideas coming from the LCSs, the GAs, and the
fuzzy logic realms, the following sections take an empirical approach to analyze the behavior of
the system. First, we study the influence of the different configuration parameters that have
appeared along the description. Note that the majority of these parameters—or similar ones—
are also present in XCS and UCS. Therefore, we hypothesize that they have a similar impact in
the three systems; in any case, the next section empirically examines the effect of modifying the
configuration parameters. This study results in a default configuration for Fuzzy-UCS, which
is used in the remainder of this chapter. Subsequently, we analyze the differences between the
three inference/reduction schemes of Fuzzy-UCS.

8.4 Sensitivity of Fuzzy-UCS to Configuration Parameters

In common with many competitive Michigan-style LCSs, Fuzzy-UCS has several configuration
parameters, which enable to adjust the behavior of the system to evolve models of maximal
quality for particular problems. At first glance, choosing a correct configuration may seem a
crucial task only suitable to expert users. Nonetheless, several analyses identified the robust-
ness of Michigan-style LCSs to the majority of configuration parameters. Actually, most of the
applications of Michigan-style LCSs used the same default parameters to solve pattern recogni-
tion problems (Bernadó-Mansilla et al., 2002; Bernadó-Mansilla and Garrell, 2003; Butz, 2006;
Orriols-Puig and Bernadó-Mansilla, 2008b; Dixon et al., 2002, 2004; Fu et al., 2001; Wilson,
2000). We consider that this robustness is also present in Fuzzy-UCS. Thence, this section
empirically illustrates the behavior of Fuzzy-UCS with different configurations and relate this
analysis to theoretical and empirical studies of the sensitivity of LCSs—particularly XCS and
UCS—to configuration parameters. For the sake of compactness, here we also present the sum-
mary of the results and the statistical analysis that leads us to the most important conclusions.
The current analysis is further detailed in appendix C.

Theoretical and empirical analyses of the sensitivity of LCSs3 to configuration parameters
detected four crucial parameters: (1) population initialization (Butz et al., 2001), (2) fitness
pressure (Kharbat et al., 2005; Brown et al., 2007), (3) GA application rate (Butz et al., 2007),
and (4) deletion pressure (Butz et al., 2007). The influence of the other parameters is less
important, and most of LCSs works use a standard configuration for them.

Herein, we empirically study the sensitivity of Fuzzy-UCS to the configuration parameters.
For this purpose, we analyzed the accuracy and size of the models evolved by Fuzzy-UCS related
to the changes of four parameters or groups of parameters: (1) rules generalization in initial-
ization, i.e., P#; (2) fitness pressure, i.e., ν; (3) setting of the genetic algorithm, i.e., θGA, θdel,
and θsub; and (4) deletion pressure, i.e., δ. We compared different configuration settings to the
following default configuration (Cp), which sets the configuration parameters to standard values
in literature: N=6 400, F0 = 0.99, ν = 10, {θGA, θdel, θsub} = 50, θexploit = 10, χ = 0.8, µ = 0.6,
δ=0.1, and P# = 0.6, Note that this configuration will be used in the following experiments of
this chapter.

3These analyses refer to XCS and UCS, but could be easily extended to other Michigan-style LCSs.
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Table 8.1: Properties of the data sets. The columns describe: the identifier of the data set
(Id.), the name of the data set (dataset), the number of instances (#Ins), the total number
of features (#Fea), the number of continuous features (#Cnt), the number of nominal features
(#No), the number of classes (#C), the proportion of instances of the minority class (%Min), the
proportion of instances of the majority class (%Maj), the proportion of instances with missing
values (%MI), and the proportion of features with missing values (%MA).

Id. dataset #Ins #Fea #Cnt #No #C %Min %Maj %MI %MA
ann Annealing 898 38 6 32 5 0.9 76.2 0 0
aut Automobile 205 25 15 10 6 1.5 32.7 22.4 28
bal Balance 625 4 4 0 3 7.8 46.1 0 0
bpa Bupa 345 6 6 0 2 42 58 0 0
cmc Contrac. method choice 1473 9 2 7 3 22.6 42.7 0 0
col Horse colic 368 22 7 15 2 37 63 98.1 95.5
gls Glass 214 9 9 0 6 4.2 35.5 0 0
h-c Heart-c 303 13 6 7 2 45.5 54.5 2.3 15.4
h-s Heart-s 270 13 13 0 2 44.4 56.6 0 0
irs Iris 150 4 4 0 3 33.3 33.3 0 0
pim Pima 768 8 8 0 2 34.9 65.1 0 0
son Sonar 208 60 60 0 2 46.67 53.33 0 0
tao Tao 1888 2 2 0 2 50 50 0 0
thy Thyroid 215 5 5 0 3 14 60 0 0
veh Vehicle 846 18 18 0 4 23.5 25.8 0 0
wbcd Wisc. breast-cancer 699 9 9 0 2 34.5 65.5 2.3 11.1
wdbc Wisc. diag. breast-cancer 569 30 30 0 2 37.3 62.7 0 0
wne Wine 178 13 13 0 3 27 39.9 0 0
wpbc Wisc. prog. breast-cancer 198 33 33 0 2 23.7 76.3 2 3
zoo Zoo 101 17 1 16 7 4 40.6 0 0

Table 8.2: Configurations used to test the sensitivity of Fuzzy-UCS to configuration parameters.

Cp N=6400, F0 = 0.99, ν = 10, {θGA, θdel, θsub} = 50, θexploit

= 10, χ = 0.8, µ = 0.1, δ=0.1, and P# = 0.2

P
# C1 P# = 0.2

C2 P# = 0.4

ν C3 ν = 1
C4 ν = 5

θ G
A
,θ

d
el
,θ

su
b

C5 θGA = θdel = θsub = 100 and numIter = 100 000
C6 θGA = θdel = θsub = 200 and numIter = 100 000
C7 θGA = θdel = θsub = 100 and numIter = 200 000
C8 θGA = θdel = θsub = 200 and numIter = 400 000

δ C9 δ = 1
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Table 8.3: Comparison of the sensitivity of Fuzzy-UCS to configuration parameters. Each
cell shows the average rank of each configuration for a given inference scheme. The best ranked
method is in bold. The ª symbol indicates that the corresponding method significantly degrades
the results obtained with the best ranked method.

Performance Rule set size
wavg awin nfit wavg awin nfit

P
#

Cp 1.83 1.83 1.83 1.67 1.50 1.75
C1 2.42 ª 2.50 ª 2.25 ª 1.75 2.92 ª 3.00 ª
C2 1.75 1.67 1.92 2.58 ª 1.58 1.25

ν

Cp 1.25 1.42 1.42 1.08 2.33 ª 2.67 ª
C3 2.83 ª 2.75 ª 2.83 ª 3.00 ª 1.25 1.17
C4 1.92 1.83 1.75 1.92 ª 2.42 ª 2.17 ª

θ
G

A
,

θ
d

e
l

&
θ

s
u

b Cp 1.92 2.13 2.13 3.42 ª 3.17 3.17
C5 4.00 ª 3.42 3.58 ª 3.42 ª 3.50 2.92
C6 4.33 ª 4.63 ª 4.17 ª 1.75 2.83 2.58
C7 2.33 2.25 2.29 3.42 ª 3.33 3.17
C8 2.42 2.58 2.83 3.00 2.17 3.17

δ Cp 1.25 1.54 1.50 1.33 1.75 1.75
C9 1.75 1.46 1.50 1.67 1.25 1.25

We ran the experiments on a collection of real-world classification problems, whose charac-
teristics are described in table 8.1. Due to the large number of tested configurations, we used a
reduced collection of data sets to perform these experiments, that is: bal, bpa, gls, h-s, irs, pim,
tao, thy, veh, wbcd, wdbc, and wne.

Table 8.2 summarizes the different configurations and the changes that they introduced with
respect to the default configuration in each of the four experiments. Table 8.3 provides the
average rank of the model’s accuracy and size for each configuration and inference scheme. We
divided the configuration settings into four groups, and each group was compared to the default
configuration. The best ranked configurations for each comparison are marked in bold. The ª
symbol indicates that the corresponding configuration significantly degraded the results obtained
with the best configuration according to a Bonferroni-Dunn test at α = 0.1 (Dunn, 1961).

The results show that the generalization in the initial population is essential to the success of
Fuzzy-UCS, supporting the theoretical analyses in the literature (Butz et al., 2001). For all the
inference schemes, configurations Cp and C2 (i.e., P# = {0.6, 0.4}) were statistically equivalent,
on average, and significantly better than C1 (i.e., P# = 0.2) in terms of accuracy. In terms of
model size, the following significant differences were found: (i) for weighted average inference,
Cp and C1 evolved the smallest rule sets; (ii) for action winner and fittest rules inference, C1
created significantly larger rule sets than Cp and C2. The last point can be easily explained as
follows. As C1 used a low value of P#, the final populations contained more specific classifiers
than populations created with Cp and C2. Action winner and fittest rules schemes only kept the
classifiers that maximized the product of fitness and matching degree with a training instance
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in the final populations. As classifiers were more specific, a larger number of them were placed
in the final population. On the other hand, with weighted average, the biggest population sizes
were obtained with C2. This could be due to the existence of slightly general classifiers that
were all maintained in the final population.

The second comparison shows the negative influence of having low fitness pressure. In terms
of accuracy, better results were obtained as the fitness pressure increased (i.e., ν took higher
values). Population sizes varied with the fitness pressure depending on the inference scheme.
For weighted average inference, Cp led to the significantly smaller rule sets. This is because
the fitness pressure drove toward a highly general and accurate set of rules. For the other two
inference schemes, configuration C1 resulted in the significantly smaller rule sets. That is, as
the fitness pressure was low, populations were full of over-general rules, which were kept in the
final populations in detriment of fitter and more specific classifiers.

The third comparison shows the influence of the parameters related to the genetic algo-
rithm, i.e., θGA, θdel, and θsub. Initial intuition indicates that, if all niches receive the same
number of genetic opportunities, the quality of the final models should remain the same.
To test this, configurations C7 and C8 set θGA = θdel = θsub = {100, 200} and increased
numIter = {200 000, 400 000} respectively. In this way, all niches received approximately
the same number of genetic events. On the other hand, configurations C5 and C6 fixed
θGA = θdel = θsub = {100, 200} but maintained the same number of iterations as Cp. So,
we expected that the quality of the models evolved by C5 and C6 was significantly lower than
the quality of the models created by the three other configurations. This hypothesis was clearly
supported by the experimental analysis, which showed that Cp, C7, and C8 resulted in the most
accurate models. Moreover, significant differences on the population sizes were only found for
the weighted average inference. The multiple-comparison test detected that the smaller mod-
els were created with configurations C6 and C8, the two configurations in which the period of
application of the GA was higher.

Finally, the fourth comparison highlights the robustness of Fuzzy-UCS to the deletion pres-
sure toward unfit classifiers, that is, the parameter δ. The pairwise analysis indicated that the
hypothesis that configurations Cp and C9 are equivalent could not be rejected, according to a
Wilcoxon signed-ranks test at α = 0.05.

The study conducted in this section empirically showed that there are two crucial parameters
to guarantee the success of Fuzzy-UCS: generalization in initialization P# and fitness pressure
ν. On the other hand, changing the setting of the other parameters had little effect on Fuzzy-
UCS behavior. We acknowledge that better results could be individually obtained if we tuned
Fuzzy-UCS for each particular problem. Nonetheless, as we are interested in robust systems
that perform well on average, we use the default configuration for all the experiments in the
following sections.

8.5 Knowledge Representation and Decision Boundaries

So far, we have described the Fuzzy-UCS classifier system with a descriptive or linguistic rep-
resentation of fuzzy rules, which is referred to as linguistic Fuzzy-UCS in the remainder of
this chapter, and have analyzed its robustness with respect to its configuration parameters.
Linguistic rules are highly interpretable since they share common semantics; however, as this
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(a) Linguistic fuzzy rule set (b) Approximate fuzzy rule set

Figure 8.4: Graphical comparison between (a) linguistic and (b) approximate fuzzy rule sets.

representation implies the discretization of the feature space, a single rule may not have the
required granularity to define the class boundary of a given domain accurately. Thus, Fuzzy-
UCS would evolve a set of overlapping fuzzy-rules around the decision boundaries which match
examples of different classes, and the output would depend on how the reasoning mechanism
combines the knowledge of all these overlapping rules. Fuzzy-UCS includes three inference and
reduction schemes which lead to a trade-off between the amount of information used for the
inference process (i.e., the precision of the prediction) and the size of the rule set. Consequently,
not only the linguistic representation but also the chosen inference and reduction schemes may
impose a maximum limit on the accuracy rate that the system can reach.

To achieve better accuracy rates, several authors introduced the so-called approximate rule
representation (also known as non-grid-oriented fuzzy systems, prototype-based representation,
or fuzzy graphs) (Alcalá et al., 2001; Bardossy and Duckstein, 1995; Carse et al., 1996; Cordón
and Herrera, 1997). This representation allows the variables of fuzzy rules to define their own
fuzzy sets instead of representing linguistic variables. In this way, approximate fuzzy rules are
semantic free; that is to say, the fuzzy sets of any variable of each rule can be independently
tuned. However, this also results in a degradation of the interpretability of the final rule set, since
the fuzzy variables no longer share a common linguistic interpretation. Figure 8.4 illustrates the
two representations.

This section studies the interpretability-performance trade-off in Fuzzy-UCS and analyzes if
the flexibility provided by the approximate representation allows the system to achieve higher
levels of performance. For this purpose, we include the approximate representation in Fuzzy-
UCS and adapt several mechanisms to deal with approximate rules. This alternative algorithm
is described in the next section. This modification of Fuzzy-UCS is addressed as approximate
Fuzzy-UCS.

Thus, our analysis consists of two parts:

• We first illustrate how both representations approximate the decision boundaries of an
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artificial problem with complex decision boundaries. The study demonstrates how the
approximate representation can fit the training examples more accurately.

• Then, we compare the differences in terms of interpretability and accuracy between 1)
the three inference schemes of linguistic Fuzzy-UCS and 2) linguistic Fuzzy-UCS versus
approximate Fuzzy-UCS.

As follows, in section 8.5.1, we first design an approximate representation for Fuzzy-UCS.
Then, sections 8.5.2 and 8.5.3 respectively develop each one of the two studies.

8.5.1 Approximate Fuzzy-UCS

In the approximate representation (Orriols-Puig et al., 2008g), the rule is similar to the descrip-
tive one, but the variables in the rule condition take fuzzy sets instead of linguistic terms. Thus,
the approximate fuzzy rule has the following form:

IF x1 is FSk
1 and · · · and xn is FSk

n THEN cj WITH F k, (8.13)

where each variable xi is represented by an independent fuzzy set FSi, and each fuzzy set is
defined by

FSi = (a, b, c), (8.14)

where a, b, and c are the x-axis value of the lower, middle and upper vertices of a triangular-
shaped membership function, i.e,

µFSi =


x − a

b − a
, a ≤ x < b

c − x

c − b
, b ≤ x ≤ c

0, otherwise.

(8.15)

The operators that directly manipulate the rules were adapted to deal with the approximate
representation. This includes matching, covering, crossover, mutation, and subsumption, which
are explained in the following sections. Moreover, the inference process was also revised.

Matching. The matching operator calculates the matching degree of each input variable with
its corresponding fuzzy set and aggregates all them by means of a T-norm (conjunction). As
before, we used the product as T-norm. Note that the main difference with respect to linguistic
Fuzzy-UCS is that, now, each variable is represented by a single semantic-free triangular shaped
membership function.

Covering. The covering operator creates an independent triangular-shape fuzzy set for each
input variable as follows.

a = rand

(
mini −

maxi − mini

2
, ei

)
; (8.16)

b = ei; (8.17)

c = rand

(
ei,maxi +

maxi − mini

2

)
; (8.18)
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where mini and maxi are the minimum and maximum value that the attribute i can take
(both values are extracted from the training data set), ei is the attribute i of the example e for
which covering has been fired, and rand generates a random number between both arguments.
Thus, covering creates a triangle-shaped fuzzy set that maximally matches the input instance.

Crossover. The crossover operator generates a new offspring from two parents by crossing the
rule antecedent as follows. First, is crosses the middle vertex b of the fuzzy membership
function:

bchild1 = bparent1 · α + bparent2 · (1 − α); (8.19)
bchild2 = bparent1 · (1 − α) + bparent2 · α; (8.20)

where 0 ≤ α ≤ 1 is a configuration parameter. As we wanted to generate offspring whose
middle vertex b was close to the middle vertex of one of his parents, we set α = 0.005 in
our experiments. Next, for both children, the procedure to cross the most-left and most-right
vertices is the following. First, the two most-left and two most-right vertices are chosen

minleft = min(aparent1 , aparent2 , bchild); (8.21)
midleft = middle(aparent1 , aparent2 , bchild); (8.22)

midright = middle(cparent1 , cparent2 , bchild); (8.23)
maxright = max(cparent1 , cparent2 , bchild). (8.24)

And then, these two values are used for generating the most-left and most-right vertices:

achild = rand(minleft,midleft); (8.25)
cchild = rand(midright,maxright); (8.26)

where the functions min, middle, and max return respectively the minimum, middle, and
maximum values between their arguments.

Mutation. The mutation operator decides randomly if each vertex of a variable has to be mu-
tated. The central vertex is mutated as follows:

b = rand(b − (b − a) · m0, b + (c − b) · m0), (8.27)

where m0 (0 < m0 ≤ 1) defines the strength of the mutation. The left-most vertex is mutated
as

a =

{
rand

(
a − b−a

2 · m0, a
)

if F > F0 & no crossover
rand

(
a − b−a

2 · m0, a + b−a
2 · m0

)
otherwise.

(8.28)

And the right-most vertex

c =

{
rand

(
c − c−b

2 · m0, c
)

if F > F0 & no crossover
rand

(
c − c−b

2 · m0, c + c−b
2 · m0

)
otherwise.

(8.29)

That is to say, if the rule is accurate enough (F > F0) and has not been generated through
crossover, mutation forces to generalize it. Otherwise, it can be either generalized or specified.
In this way, we increase the pressure toward maximally general and accurate rule sets.
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Subsumption. Subsumption was redefined as follows. We considered that a classifier k1, which
is experienced enough (expk1 > θsub) and accurate (F k1 > F0), could subsume another classifier
k2 if for each variable i

ai
k1

≤ ai
k2

; (8.30)

ci
k1

≥ ci
k2

; (8.31)

bi
k1

− (bi
k1

− aki
1
) · δ ≤ bi

k2
≤ bi

k1
+ (ci

k1
− bi

k1
) · δ; (8.32)

where δ is a discount parameter (in our experiments we set δ = 0.001). Thus, a rule’s condition
subsumes another if the supports of the subsumed rule are enclosed in the supports of the
subsumer rule, and the middle vertex of their triangular-shaped fuzzy sets are close in the
feature space.

Inference. Given a new test example, the most likely output is the class predicted by the rule
k that maximizes F k · µAk(e). We have considered this action winner scheme as inference
process because the prototype-based representation considered in the approximate approach
inherently advocates independence among the fuzzy rules.

8.5.2 Decision Boundaries: Study on an Artificial Domain

Before proceeding with a large comparison between the two types of representations and the
three types of inference algorithms in the linguistic representation, we first analyzed linguistic
Fuzzy-UCS and approximate Fuzzy-UCS on a case study. We also included UCS with interval-
based representation (Bernadó-Mansilla and Garrell, 2003; Orriols-Puig and Bernadó-Mansilla,
2006b; Orriols-Puig and Bernadó-Mansilla, 2008a) in the analysis. We graphically studied how
the two fuzzy representations approximated the decision boundaries of an artificially designed
domain with respect to interval-based UCS. We chose a two-dimensional problem to facilitate the
visualization: the tao problem (Bernadó-Mansilla et al., 2002) (see figure 8.5(a)). This problem
presents curved-shaped boundaries, whose approximation poses a challenge to the linguistic
fuzzy representation. Moreover, we compared the training accuracies, as well as the size of the
evolved rule set. This analysis was restricted to the features of the tested problem, and only
estimated the training error; thus, our aim was not to extract general conclusions, but to provide
an intuitive visualization of the knowledge evolved by the different techniques. This analysis is
complemented in the next section, where the three learners are compared in a set of real-world
problems.

We configured UCS with the following parameter values: numIter=100 000, N=6 400,
acc0 = 0.99, ν=10, {θGA, θdel, θsub}=50, χ=0.8, µ=0.04, δ=0.1, r0=0.2. For Fuzzy-UCS, we used
the default configuration (see section 8.4), except for P# = 0.2. We modified this configuration
parameter only for the case study; in all the remaining experiments, the default configuration
is used. This change was because we aimed at initializing the population with quite specific
rules since the problem has only two dimensions and a high density of instances. Besides, for
the approximate representation we set r0 = 0.2. The three types of inference presented in
section 8.3.5 were used: weighted average (wavg), action winner (awin), and fittest rules (nfit).
Figure 8.5(b) depicts the boundaries evolved by interval-based UCS. Figures 8.6, 8.7, and 8.8
report the decision boundaries for linguistic Fuzzy-UCS with weighted average inference, action
winner inference, and fittest rules inference respectively. In each case, we experimented with
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(a) Domain (b) Interval-based UCS

Figure 8.5: (a) Domain of the tao problem and (b) decision boundaries obtained by UCS.

(a) 5 labels (b) 10 labels

(c) 15 labels (d) 20 labels

Figure 8.6: Decision boundaries obtained by linguistic Fuzzy-UCS with weighted average infer-
ence and 5 (a), 10 (b), 15 (c) and 20 (d) linguistic terms per variable.

5, 10, 15, and 20 linguistic terms per variable; the grid in the plots indicates the partitions in
the feature space made by the cross-points of the triangular membership functions associated
with the different fuzzy sets. Figure 8.9 shows the decision boundaries obtained by approximate
Fuzzy-UCS. Table 8.4 summarizes the training accuracies and population sizes in each case. The
results are averages over ten runs with different seeds.

Several observations can be drawn from the evolved decision boundaries. Firstly, the results
show the generalization capabilities of all learners. The rules tend to expand as much as possible
while they are accurate, covering regions in the feature space where there are no examples. This

182



8.5. KNOWLEDGE REPRESENTATION AND DECISION BOUNDARIES

(a) 5 labels (b) 10 labels

(c) 15 labels (d) 20 labels

Figure 8.7: Decision boundaries obtained by linguistic Fuzzy-UCS with action winner inference
and (a) 5, (b) 10, (c) 15, (d) and 20 linguistic terms per variable.

generalization pressure is mostly due to subsumption, which replaces the offspring for most
general and accurate rules when possible. Thus, this operator gives highly general and accurate
rules more strength.

Interval-based UCS reached the maximum accuracy among all learners. It evolved a popula-
tion consisting of 1230 rules which accurately defined the decision boundaries (see figure 8.5(b)),
with 99.8% training accuracy. The accuracy obtained by linguistic Fuzzy-UCS depended on the
number of linguistic terms per variable (see the models built in figures 8.6, 8.7, and 8.8). With
5 linguistic labels per variable, linguistic Fuzzy-UCS could not discover the two inner concepts
of the tao problem regardless of the used inference method. The models only defined one linear
class boundary that did not fit the curved boundary of the domain accurately. As the number
of linguistic terms per variable increased, the boundaries were defined more accurately. With 20
linguistic terms per variable, the three types of inference achieved high training performances.

The models evolved by linguistic Fuzzy-UCS with the three types of inference differed in
the shape of the decision boundaries and the rule set size. Weighted average inference defined
smooth boundaries which resulted from the vote of several overlapping rules (see figure 8.6).
However, it maintained a large number of rules in the final population. Action winner inference
created more reduced rule sets, but the boundaries were more abrupt. Note that the decision
boundaries followed the partitions produced by the fuzzy membership functions, especially when
15 and 20 linguistic terms were used. This is because only the rules that maximized the product
of µAk(e) ·F were kept in the final population. Fittest rules inference evolved the most compact
rule sets. Furthermore, the boundaries were smoother than the ones obtained with action winner
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(a) 5 labels (b) 10 labels

(c) 15 labels (d) 20 labels

Figure 8.8: Decision boundaries obtained by linguistic Fuzzy-UCS with fittest rules inference
and (a) 5, (b) 10, (c) 15, (d) and 20 linguistic terms per variable.

Figure 8.9: Decision boundaries obtained by approximate Fuzzy-UCS.

scheme. This type of inference maintained the most numerous and accurate rules in the final
population. As this process could insert overlapping rules into the final population, the weighted
average inference was used to infer the class, thus forwarding the interpolative reasoning. For
this reason the decision boundaries were not as abrupt as the ones evolved by the action winner
inference.

Finally, figure 8.9 shows that approximate Fuzzy-UCS built a model that accurately fitted the
training examples. Approximate Fuzzy-UCS used an inference method based on action winner,
similar to that used in linguistic Fuzzy-UCS. Regardless of this inference scheme, the decision
boundaries were smoother because each variable evolved an independent fuzzy set. However,
as a consequence of not sharing a unique semantic, the interpretability of the fuzzy-rules was
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Table 8.4: Summary of Fuzzy UCS results with interval-based, approximate and linguistic repre-
sentation with 5, 10, 15, and 20 linguistic terms per variable in the tao problem. Columns show
the training accuracy and the number of rules for action winner and weighted average inference
schemes.

Training acc. Num. rules

Interval-based UCS 99.80 1230
App. Fuzzy-UCS 96.94 555

wavg awin nfit wavg awin nfit

Lin. Fuzzy-UCS 5L 82.95 83.24 88.31 112 17 15
Lin. Fuzzy-UCS 10L 91.85 91.19 91.85 441 78 30
Lin. Fuzzy-UCS 15L 96.68 94.74 96.68 618 144 52
Lin. Fuzzy-UCS 20L 97.15 95.57 97.15 763 200 65

degraded with respect to the linguistic representation. For example, one of the most numerous
rules evolved by approximate Fuzzy-UCS was:

IF x1 is (-3.3, -1.50, -1.13) and x2 is (5.50, 6.48, 11.85) THEN c1 WITH w = 0.998,
(8.33)

where each variable was represented by a triangular-shaped fuzzy set whose vertices could take
any possible value in the feature space. Moreover, note that the number of rules evolved by
approximate Fuzzy-UCS was larger than those created by any configuration of linguistic Fuzzy-
UCS, except for linguistic Fuzzy-UCS with weighted average inference with 15 and 20 linguistic
terms per variable. This large number of rules degraded even more the interpretability of the
semantic-free approach.

8.5.3 Comparison Between Linguistic and Approximate Representations

This section furthers the study on the three types of inference of linguistic Fuzzy-UCS and com-
pares them to the approximate representation. Specifically, we examine the trade-off between
precision and rule set size already pointed out in the previous section for the three types of in-
ference in linguistic Fuzzy-UCS. Besides, we include approximate Fuzzy-UCS in the comparison,
which is expected to fit the training data more accurately. Considering the approximate repre-
sentation, we aim to a) confirm the intuition that the approximate representation permits fitting
significantly better the training instances, b) analyze whether this improvement is also present
in the prediction of previously unseen instances, and c) evaluate the impact of the approximate
representation on the interpretability of the evolved rule set.

Methodology

We selected a collection of 20 real-world data sets whose characteristics are summarized in table
8.1. All the data sets were obtained from the UCI Repository (Asuncion and Newman, 2007),
except for tao, which was selected from a local repository (Bernadó-Mansilla et al., 2002).
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To measure the precision of the method in fitting the training instances, we used the training
accuracy rate, i.e., the proportion of correctly classified examples of the training set. The
performance of the method was measured by the test accuracy rate, i.e., the proportion of
correct predictions on previously unseen instances. To obtain reliable estimates of these metrics,
we used a ten-fold cross validation procedure (Dietterich, 1998). We collected the evolved rule
set sizes to compare the interpretability of the three configurations of linguistic Fuzzy-UCS.
Since the types of rules created by the linguistic representation are different from those of the
approximate representation, we qualitatively compared the rule sets built by both approaches.

The results were statistically analyzed following the recommendations pointed out by Demšar
(2006). In all the analysis, we used non-parametric statistical tests to compare the results
obtained by the different learning algorithms. Parametric tests require that the input data (in
our case, the tables of results) satisfy strong conditions, and the tests to check these conditions
need large amounts of data (i.e., large number of data sets) to be effective (Sheskin, 2000).
For this reason, non-parametric tests are recommended (Demšar, 2006), since they relax the
requirements on the input data.

We applied multiple-comparison statistical procedures to test the null hypothesis that all the
learning algorithms performed equivalently on average. Specifically, we used the Friedman’s test
(Friedman, 1937, 1940), a non-parametric equivalent of the repeated-measures ANOVA (Fisher,
1959). If the Friedman’s test rejected the null hypothesis, we used the non-parametric Nemenyi
test (Nemenyi, 1963) to compare all learners to each other. The Nemenyi test is said to be
quite conservative, especially when a large number of learners is compared, so that it might
not detect some existent differences between the learners. Therefore, we complemented the
statistical analysis by comparing the performance of each pair of learners by means of the non-
parametric Wilcoxon signed-ranks test (Wilcoxon, 1945). The approximate p-values resulting
from the pairwise analysis, calculated as indicated in (Sheskin, 2000), were provided in the
analysis. For further information about the statistic tests, the user is referred to appendix B.

We used the default configuration for Fuzzy-UCS (see section 8.4), since it used equivalent
parameter values to those usually set for XCS and UCS. Moreover, we fixed the number of
linguistic labels to 5. We did not consider a larger number of linguistic terms since it could
hinder the interpretability desired in a linguistic representation. For approximate Fuzzy-UCS,
we fixed r0 = 1.

Results

Our first concern was to analyze the precision in fitting the training instances of linguistic
Fuzzy-UCS with the three types of inference and approximate Fuzzy-UCS. Thus, we computed
the training accuracy obtained with the four approaches, as reported in table 8.5. The two last
rows supply the average rank and the position of each algorithm in the ranking. The ranks were
calculated as follows. For each data set, we ranked the learning algorithms according to their
performance; the learner with highest accuracy held the first position, whilst the learner with
the lowest accuracy held the last position of the ranking. If a group of learners had the same
performance, we assigned the average rank of the group to each of the learners in the group.

The multiple-comparison test enabled us to reject the null hypothesis that all learners were
equally accurate at a significance level of 0.001. Thus, we ran the Nemenyi test at a significance
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Table 8.5: Comparison of the training accuracy of linguistic Fuzzy-UCS with weighted aver-
age (wavg), action winner (awin), and most numerous and fittest rules inference (nfit), and
approximate Fuzzy-UCS on a set of twenty real-world problems.

Linguistic
Approximate

wavg awin nfit
ann 99.35 98.34 99.48 98.83
aut 99.30 92.67 98.87 97.82
bal 91.03 90.97 89.97 98.61
bpa 68.57 68.30 69.79 86.29
cmc 67.34 67.77 70.70 65.29
col 93.04 91.76 96.22 98.95
gls 71.04 65.84 71.46 94.46
h-c 89.75 91.11 92.02 98.77
h-s 94.75 92.46 96.70 98.92
irs 95.78 95.59 94.56 97.47
pim 77.05 77.74 79.16 89.91
son 100.00 99.89 99.50 99.91
tao 81.70 83.31 87.42 89.64
thy 89.03 89.92 92.62 95.70
veh 76.77 72.97 77.49 89.52
wbcd 96.38 95.97 96.51 99.69
wdbc 96.34 95.50 96.18 99.55
wne 98.48 97.28 98.12 100.00
wpbc 97.57 94.01 95.39 96.98
zoo 99.71 99.98 99.90 100.00
Rank 2.70 3.45 2.40 1.45
Pos 2 4 3 1

level of 0.10. Figure 8.10 ranks the four learners and connects those that performed equivalently
according to the Nemenyi procedure. The test indicates that approximate Fuzzy-UCS achieved
significantly better training performance than all the other algorithms. Moreover, linguistic
Fuzzy-UCS with action winner significantly degraded the training performance achieved with
Fuzzy-UCS with fittest rules inference. As the Nemenyi test is said to be quite conservative,
we also performed pairwise comparisons between the learners by means of the non-parametric
Wilcoxon signed-ranks test. Table 8.6 provides the approximate p-values. The ⊕ and ª symbols
indicate that the method in the row significantly improved/degraded the performance obtained
with the method in the column. The + and − symbols denote a non-significant improve-
ment/degradation. The pairwise analysis confirmed the conclusions extracted from the Nemenyi
test. No other significant differences were found by this statistical test.

As expected, the approximate representation fitted the training examples more accurately
since there was no semantic shared among all variables—that is, each variable could define its
own fuzzy sets. Next, we analyzed if this improvement was also present in the test performance,
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Figure 8.10: Comparison of the training performance of all classifiers against each other with
the Nemenyi test. Groups of classifiers that are not significantly different (at α = 0.10) are
connected.

Table 8.6: Pairwise comparisons of the training accuracy achieved by linguistic Fuzzy-UCS with
the three types of inference and approximate Fuzzy-UCS.

wavg awin nfit approx
wavg .0793 .0929 .0017
awin − .0012 .0002
nfit + ⊕ .0017

approx ⊕ ⊕ ⊕

which is shown in table 8.7. The multiple-comparison test rejected the hypothesis that all learn-
ers performed the same on average at a significance level of 0.001. Figure 8.11 shows the rank
of each method and connects the groups of learners that performed equivalently according to
the Nemenyi test at a significance level of 0.10. The statistical procedure identified two groups
of techniques that performed equivalently. The first group included linguistic Fuzzy-UCS with
weighted average inference and approximate Fuzzy-UCS. The second group comprised approxi-
mate Fuzzy-UCS and linguistic Fuzzy-UCS with action winner and fittest rules inferences. The
same significant differences were found with the pairwise statistical analysis. Table 8.8 supplies
the approximate p-values calculated from the Wilcoxon signed-ranks test.

Although the flexibility of the approximate representation allowed Fuzzy-UCS to evolve mod-
els that fitted the training examples more accurately, no significant differences were observed
in the prediction of previously unseen instances. Moreover, approximate Fuzzy-UCS did not
perform as well as linguistic Fuzzy-UCS with weighted average inference, though the difference
was not statistically significant. Further analysis pointed out that approximate Fuzzy-UCS was
over-fitting the training data in some of the tested domains. To contrast this hypothesis, we
monitored the evolution of the training and test performance of the problems in which approx-
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Table 8.7: Comparison of the test accuracy of linguistic Fuzzy-UCS with weighted average
(wavg), action winner (awin), and most numerous and fittest rules inference (nfit), and approx-
imate Fuzzy-UCS on a set of twenty real-world problems.

Linguistic
Approximate

wavg awin nfit
ann 98.85 97.39 98.61 95.44
aut 74.42 67.42 69.32 69.54
bal 88.65 84.40 83.40 82.73
bpa 59.82 59.42 58.93 64.19
cmc 51.72 49.67 49.42 44.79
col 85.01 82.46 78.50 87.96
gls 60.65 57.21 57.43 71.82
h-c 84.39 82.62 82.05 80.16
h-s 81.33 80.78 78.11 78.59
irs 95.67 95.47 93.73 95.80
pim 74.88 74.11 74.32 74.32
son 80.78 73.71 71.66 76.34
tao 81.71 83.02 87.53 89.39
thy 88.18 89.49 91.25 92.28
veh 67.68 65.35 65.34 65.80
wbcd 96.01 95.73 95.29 95.69
wdbc 95.20 94.61 94.51 93.87
wne 94.12 94.86 91.82 95.42
wpbc 76.06 76.05 71.69 59.78
zoo 96.50 94.78 95.90 83.53
Rank 1.60 2.75 3.20 2.45
Pos 1 3 4 2

imate Fuzzy-UCS degraded the results obtained by linguistic Fuzzy-UCS with any inference
type. Figure 8.12 plots the evolution of the training and test performance for the bal problem.
During the first 5 000 learning iterations, both training and test performance rapidly increased,
achieving about 90% and 84% accuracy rates respectively. After that, the training performance
continued to increase whilst the test performance slightly decreased. After 100 000 iterations, the
training performance reached 98%; nonetheless, the test performance decreased to 82%. Thus,
at a certain point in the learning process, the flexibility of the approximate representation led
Fuzzy-UCS to over-fit the training instances in order to create more accurate classifiers, which
was detrimental to the test performance.

Finally, table 8.9 shows the number of rules evolved in each configuration. Friedman’s test
rejected the hypothesis that the population sizes were equivalent on average at a significance
level of 0.001. The post-hoc Nemenyi test supported the hypothesis that the four learners
evolved populations with significantly different sizes. The pairwise comparisons yielded the
same conclusions (see in table 8.10 the approximate p-values according to a Wilcoxon signed-

189



CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

1.5 2 2.5 3 3.5 4

↓
Lin

wavg

1.60

↓
Lin

awin

2.75

↓
Lin

nfit

3.20

↓
Approx

2.45

Rank

CD = 0.9352

Figure 8.11: Comparison of the test performance of all classifiers against each other with the
Nemenyi test. Groups of classifiers that are not significantly different (at α = 0.10) are con-
nected.

Table 8.8: Pairwise comparisons of the test accuracy achieved by linguistic Fuzzy-UCS with
the three types of inference and approximate Fuzzy-UCS.

wavg awin nfit approx
wavg .0032 .0051 .1913
awin ª .2627 .7369
nfit ª − .4781

approx − + +

ranks test). In fact, a simple quantitative analysis highlighted the differences in the population
sizes. Fuzzy-UCS with weighted average inference built populations that consisted of thousands
of rules. Consequently, although using a linguistic representation, this large number of rules
hampered the interpretability of the rule set. Approximate Fuzzy-UCS resulted in smaller
populations; however, these consisted of hundreds of rules. This, together with the loss of
interpretability due to the approximate representation, hindered the readability of the rule set.
The other two types of inference of Linguistic Fuzzy-UCS, especially the fittest rules inference,
resulted in populations with a moderate number of rules. Fuzzy-UCS with fittest rules inference
built populations that ranged from tens of to few hundreds of rules.

These results showed the performance-interpretability trade-off in linguistic Fuzzy-UCS al-
ready pointed out in the previous section. Weighted average inference significantly outperformed
the other two inference schemes since it combined the knowledge of all experienced rules in the
final population. As shown in the case study of the previous section, this allowed Fuzzy-UCS to
fit complex boundaries even though the fuzzy representation made a discretization of the feature
space. Linguistic Fuzzy-UCS could approximate these boundaries by means of evolving a set of
partially overlapping fuzzy rules. However, the interpretability of the rule set was degraded by

190



8.5. KNOWLEDGE REPRESENTATION AND DECISION BOUNDARIES

0 2 4 6 8 10
x 10

4

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Learning Iterations

Approximate Fuzzy−UCS in the Bal Problem

Train accuracy
Test accuracy

Figure 8.12: Evolution of the training and test accuracies with approximate Fuzzy-UCS on the
bal problem.
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Figure 8.13: Comparison of the number of rules evolved by all learners against each other with
the Nemenyi test. Groups of classifiers that are not significantly different (at α = 0.10) are
connected.

the large number of rules. The other two inference schemes considerably improved the readabil-
ity, since they produced large reductions of the rule set. Nonetheless, this went against the test
performance, which was significantly surpassed by the weighted average inference scheme.

The overall results presented in this section pointed out the viability of the linguistic repre-
sentation with respect to its approximate counterpart. While approximate Fuzzy-UCS created
models that fitted the training data very accurately, there was no statistical evidence of this
improvement in the test performance. Furthermore, we also identified that approximate Fuzzy-
UCS may over-fit the training instances in complex domains. Thus, the flexibility provided by
the approximate representation did not imply an improvement of the test accuracy, although it
degraded the readability of the fuzzy-rules. Besides, the rule sets created by approximate Fuzzy-
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Table 8.9: Comparison of the population sizes of linguistic Fuzzy-UCS with weighted average
(wavg), action winner (awin), and most numerous and fittest rules inference (nfit), and approx-
imate Fuzzy-UCS on a set of twenty real-world problems.

Linguistic
Approximate

wavg awin nfit
ann 2769 75 36 409
aut 3872 114 74 158
bal 1212 114 75 441
bpa 1440 73 39 207
cmc 1881 430 271 402
col 4135 154 81 297
gls 2799 62 36 146
h-c 3574 113 46 257
h-s 3415 117 62 231
irs 480 18 7 103
pim 2841 192 62 538
son 3042 178 160 186
tao 111 19 14 464
thy 1283 37 11 134
veh 3732 332 147 532
wbcd 3130 138 28 360
wdbc 5412 276 101 490
wne 3686 95 26 160
wpbc 3772 156 115 175
zoo 773 16 10 55
Rank 1.05 2.95 4.00 2.00
Pos 1 3 4 2

Table 8.10: Pairwise comparisons of the sizes of the rule sets evolved by linguistic Fuzzy-UCS
with the three types of inference and approximate Fuzzy-UCS.

wavg awin nfit approx
wavg .0001 .0001 .0001
awin ª .0001 .0001
nfit ª ª .0001

approx ª ⊕ ⊕

UCS were significantly larger than the ones obtained by linguistic Fuzzy-UCS with action winner
and fittest rules inference. For all these reasons, we focus our analysis on linguistic Fuzzy-UCS
in the remainder of this chapter, and leave further analysis of approximate Fuzzy-UCS as future
research.
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8.6 Comparison of Fuzzy-UCS to Several Machine Learning Tech-
niques

So far, we have clearly shown the competitiveness of linguistic Fuzzy-UCS with respect to its
approximate counterpart. In this section, we study whether the behavior of linguistic Fuzzy-
UCS is comparable to some of the most-used machine learning techniques. For this purpose, we
compared Fuzzy-UCS to two sets of learners: fuzzy rule-based learners and “non-fuzzy” (crisp)
learners. With the former comparison, we analyzed the behavior of Fuzzy-UCS with respect to
other techniques that use the same representation, which may limit the maximum performance
that can be achieved in certain domains. With the latter comparison, we study whether, even
with the limitations that may impose the fuzzy representation, Fuzzy-UCS is competitive with
a large number of the most-representative learners, regardless of the knowledge representation
they use. Below, we first present the experimental methodology, and then compare Fuzzy-UCS
to the other learners.

8.6.1 Experimental Methodology

The followed methodology is similar to the one presented in the previous section. We selected
the same collection of 20 real-world problems, whose characteristics are summarized in table 8.1.
The experiments were ran on a ten-fold cross validation, and the test accuracy rate was used to
measure the performance of the different learners.

The performance of Fuzzy-UCS was compared with a large variety of learning algorithms,
which we organized in two groups. The first group consisted of the following fuzzy rule-based
classification systems: Fuzzy GP, Fuzzy GAP, Fuzzy SAP, Fuzzy AdaBoost, Fuzzy LogitBoost,
and Fuzzy MaxLogitBoost. Fuzzy GP (Sánchez and Couso, 1998, 2000; Sánchez et al., 2001) is
a genetic programming algorithm that builds a fuzzy classifier for each class of the domain by
searching for a tree that represents an analytic expression that relates the input and the output
variables as accurately as possible. Fuzzy GAP (Sánchez and Couso, 1998, 2000) works similarly
to Fuzzy GP, but the optimization system is a hybrid between genetic algorithms and genetic
programming. Fuzzy SAP (Sánchez et al., 2001) combines genetic operators with simulated
annealing (Korst and Aarts, 1997) to create data models similar to those built by Fuzzy GP and
Fuzzy GAP. Fuzzy AdaBoost (del Jesus et al., 2004) is a modification of the boosting algorithm
AdaBoost (Freund and Schapire, 1996) to deal with fuzzy rules; Fuzzy AdaBoost generates a
compound classifier which decides the output as a linear combination of the outputs of weak
classifiers. Fuzzy LogitBoost (Otero and Sánchez, 2006) and Fuzzy MaxLogitBoost (Sánchez
and Otero, 2007) are boosting algorithms that iteratively invoke a genetic algorithm to extract
simple fuzzy rules that are combined to decide the output of new examples. The basic difference
between both algorithms is that Fuzzy MaxLogitBoost may reject a new rule provided by the
genetic algorithm if it does not improve the expected global performance. All these methods were
run using KEEL (Alcalá-Fdez et al., 2008). We followed the recommended parameter values
given in the KEEL platform to configure the methods (Alcalá-Fdez et al., 2008), which also
corresponded to the settings used in the bibliography of these methods. We only changed the
maximum population size of AdaBoost, LogitBoost, and MaxLogitBoost. We tried population
sizes of N={8, 25, 50, 100} for all the data sets, and selected the results of N=50 since they
generally allowed us to achieve higher performance ratios than N=8 and N=25, and did not
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significantly differ from N=100. For all the methods, we used 5 linguistic terms per variable.
Fuzzy-UCS was configured as detailed in section 8.5.3.

The second group gathered a large number of learners with different knowledge representa-
tions: ZeroR, C4.5, IBk, Näıve Bayes, Part, SMO, GAssist, and UCS. Among them, C4.5, IBk,
Näıve Bayes, and SMO have been identified as the top ten data mining algorithms, including
supervised and unsupervised learning techniques (Wu et al., 2007). Therefore, the comparison
aims at measuring the quality of Fuzzy-UCS with several of the best learners. ZeroR is a simple
classifier system that always predicts the majority class in the training data set. We employed
this algorithm to provide a baseline result. C4.5 (Quinlan, 1995) is one of the most used de-
cision trees, which derives from ID3 and introduces methods to deal with continuous variables
and missing values. IBk (Aha et al., 1991) is a nearest neighbor algorithm; it decides the output
of a new example as the most numerous class of the k nearest neighbors. Näıve Bayes (John and
Langley, 1995) is a probabilistic classifier that estimates the parameters of a Bayesian model.
Part (Frank and Witten, 1998) is a learning architecture that combines the creation of rules from
partial decision trees and the separate-and-conquer rule learning technique to create a classifier
without using global optimization. SMO (Platt, 1998) is a support vector machine (Vapnik,
1995) that implements the Sequential Minimization Algorithm. GAssist (Bacardit, 2004) is a
recent Pittsburgh-style LCS. UCS (Bernadó-Mansilla and Garrell, 2003) is a Michigan-style LCS
derived from XCS (Wilson, 1995, 1998) and specialized for supervised learning tasks (see chapter
3 for an extensive description of the system). All the methods except for GAssist and UCS were
run using Weka (Witten and Frank, 2005). For GAssist, we used the open source code provided
in (Bacardit, 2007). For UCS, we used our own code. If not stated differently, all open source
methods were configured with the parameters values recommended by default. For UCS we set:
numIter=100 000, N=6400, acc0 = 0.99, ν=10, {θGA, θdel, θsub}=50, χ=0.8, µ=0.04, δ=0.1,
r0=0.6. Fuzzy-UCS was configured with standard values as indicated in the previous section.

We applied the following statistical analysis to the results. We used the non-parametric
Friedman’s test (Friedman, 1937, 1940) to check whether all the learning algorithms performed
the same on average. If significant differences were found, two procedures were applied to detect
differences among methods. We first aimed at comparing the performance obtained by each of
the inference types of Fuzzy-UCS to all other learners (instead of comparing all learners with the
others as done in section 8.5). To achieve this, we applied the non-parametric Bonferroni-Dunn
(Dunn, 1961) test. Moreover, the analysis is complemented by performing pairwise comparisons
among the learners by means of a Wilcoxon signed-ranks test (Wilcoxon, 1945). For further
details on the statistical tests, the reader is referred to appendix B.

8.6.2 Comparison to Fuzzy Rule-Based Classification Systems

In the following, we compare the test performance and the interpretability of Fuzzy-UCS with
the three types of inference to the aforementioned set of fuzzy rule-based learners.

Comparison of the performance. Table 8.11 details the test accuracies obtained with the
fuzzy classifiers Fuzzy AdaBoost, Fuzzy GAP, Fuzzy GP, Fuzzy LogitBoost, Fuzzy MaxLog-
itBoost, Fuzzy SAP and Fuzzy-UCS with three different types of inference: weighted average
(wavg), action winner (awin), and fittest rules (nfit). The average performance of AdaBoost and
MaxLogitBoost for the ann and aud problems is not provided since neither system was able to
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Table 8.11: Comparison of the test accuracy of Fuzzy-UCS with weighted average (wavg), action
winner (awin), and fittest rules (nfit), to Fuzzy GP, Fuzzy GAP, Fuzzy SAP, Fuzzy AdaBoost,
Fuzzy LogitBoost, and Fuzzy MaxLogitBoost.

GP GAP SAP AdaBoost LogitBoost MaxLogitBoost
Fuzzy-UCS

wavg awin nfit
ann 77.86 77.20 78.02 - 76.20 - 98.85 97.39 98.61
aut 44.65 45.21 41.00 - 32.63 - 74.42 67.42 69.32
bal 69.73 64.33 65.80 85.54 88.30 75.58 88.65 84.40 83.40
bpa 56.62 57.91 62.30 65.34 64.46 56.53 59.82 59.42 58.93
cmc 47.00 46.57 46.27 49.55 51.10 45.21 51.72 49.67 49.42
col 79.15 73.51 81.89 63.06 63.06 63.06 85.01 82.46 78.50
gls 48.89 47.24 46.42 62.52 68.18 62.18 60.65 57.21 57.43
h-c 73.98 75.09 74.18 60.40 62.09 57.48 84.39 82.62 82.05
h-s 73.70 72.00 72.07 57.56 59.33 57.33 81.33 80.78 78.11
irs 94.47 90.80 91.53 95.47 95.33 92.00 95.67 95.47 93.73
pim 75.32 76.62 77.92 70.69 71.84 72.54 74.88 74.11 74.32
son 64.52 65.99 68.70 46.62 53.38 46.62 80.78 73.71 71.66
tao 80.36 81.75 81.15 91.46 91.73 84.52 81.71 83.02 87.53
thy 86.98 84.94 85.55 97.35 97.08 95.33 88.18 89.49 91.25
veh 46.16 44.59 42.96 30.82 37.25 38.05 67.68 65.35 65.34
wbcd 93.31 92.53 92.72 94.88 94.12 91.83 96.01 95.73 95.29
wdbc 90.93 90.49 91.52 37.26 62.74 37.26 95.20 94.61 94.51
wne 82.91 78.23 79.85 85.59 85.02 77.68 94.12 94.86 91.82
wpbc 74.77 74.47 74.37 23.65 76.35 23.65 76.06 76.05 71.69
zoo 71.18 66.65 66.08 41.89 41.89 41.89 96.50 94.78 95.90
Rank 5.55 6.25 5.80 5.80 4.95 7.48 2.10 3.18 3.90
Pos. 5 8 6.5 6.5 4 9 1 2 3

extract competent fuzzy rules from the two domains, leaving nearly all the feature space uncov-
ered. The authors confirmed that this behavior could be due to the large number of nominal
attributes that these two problems have. The last two rows of the table provide the average
rank and the absolute position in the ranking of each learner.

The experimental results show that the three configurations of Fuzzy-UCS were the best
ranked in the comparison. The next methods in the ranking were the boosting algorithm Fuzzy
LogitBoost, the genetic programming-based systems Fuzzy-GP and Fuzzy-SAP, and Fuzzy Ad-
aBoost. Finally, the last methods were Fuzzy GAP, and Fuzzy MaxLogitBoost.

We used the multiple-comparison Friedman’s test to analyze whether the differences in the
ranking were statistically significant. The statistical test rejected the hypothesis that all the
methods performed the same on average at a significance level of 0.001. To evaluate the differ-
ences among them, we applied different statistical tests. First, we compared Fuzzy-UCS with
each inference type with all the other learners. Figure 8.14 graphically represents the rank of
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Figure 8.14: Comparisons of one learner against the others with the Bonferroni-Dunn test at
a significance level of 0.1. All the learners are compared to three different control groups:
(1) Fuzzy-UCS with weighted average inference, (2) Fuzzy-UCS with action winner inference,
and (3) Fuzzy-UCS with fittest rules inference. The learners connected are those that perform
equivalently to the control learner.

each learner and groups the classifiers that perform equivalently to (1) Fuzzy-UCS with weighted
average inference, (2) Fuzzy-UCS with action winner inference, and (3) Fuzzy-UCS with fittest
rules inference according to a Bonferroni-Dunn test at a significance level of 0.1. The statistical
procedure supported the following hypotheses:

• Using Fuzzy-UCS with weighted average inference as the control learner, the statisti-
cal procedure supported the hypothesis that the performance of the control learner was
equivalent to the performance of Fuzzy-UCS with the other two inference types. Moreover,
Fuzzy-UCS with weighted average outperformed all the other learners.

• Using Fuzzy-UCS with action winner inference as the control learner, the test indicated
that this learner performed equivalently to Fuzzy-UCS with the other two types of inference
and Fuzzy LogitBoost.

• With respect to Fuzzy-UCS with fittest rules inference, the test did not reject the hypoth-
esis that all the fuzzy learners except for Fuzzy MaxLogitBoost and Fuzzy GAP performed
equivalently on average.

As the Bonferroni-Dunn test is said to be quite conservative (Sheskin, 2000), especially
when a large number of learners are included in the analysis as in our experimentation, we
complemented the statistical study by comparing each pair of learners. Table 8.12 shows the
approximate p-values for the pairwise comparison according to a Wilcoxon signed-ranks test.
The ⊕ and ª symbols indicate that the method in the row significantly improves/degrades
the performance obtained with the method in the column. Similarly, the + and − symbols
denote a non-significant improvement/degradation. The = symbol indicates that each method
outperforms and degrades the other in the same number of data sets. Furthermore, figure 8.15
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Table 8.12: Pairwise comparison of the test accuracy of fuzzy learners Fuzzy GP, Fuzzy GAP,
Fuzzy SAP, Fuzzy AdaBoost (ABoost), Fuzzy LogitBoost (LBoost), Fuzzy MaxLogitBoost (ML-
Boost), and Fuzzy UCS with weighted average inference (wavg), action winner inference (awin),
and fittest rules inference (nfit) by means of a Wilcoxon signed-ranks test.

GP GAP SAP ABoost LBoost MLBoost
Fuzzy-UCS

wavg awin nfit
GP .0366 .2627 .0522 .4115 .0090 .0001 .0001 .0006

GAP ª .2180 .1005 .4781 .0187 .0002 .0002 .0002
SAP − + .0674 .4330 .0111 .0003 .0005 .0036

ABoost − − − .0038 .0231 .0045 .0079 .0137
LBoost = = = ⊕ .0003 .0100 .0276 .0438

MLBoost ª ª ª ª ª .0005 .0009 .0007
wavg ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ .0032 .0051
awin ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ª .2627
nfit ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ª −

graphically illustrates the significant differences between methods. That is, each method is
depicted in one vertex of the graph, and significant improvements (at α=0.05) of one learner
with respect to another are plotted with a directed edge labeled with the corresponding p-value.
To facilitate the visualization, Fuzzy AdaBoost and Fuzzy MaxLogitBoost were not included in
the graph, since all the other learners significantly improved both methods, except for Fuzzy-
GAP, which did not significantly outperform Fuzzy AdaBoost. At a significance level of 0.05, the
test indicated that Fuzzy-UCS with weighted average inference significantly outperformed all
the other learners, including the two other types of inference of Fuzzy-UCS. Moreover, Fuzzy-
UCS with action winner and fittest inference schemes significantly improved the other fuzzy
learners, i.e., Fuzzy GP, Fuzzy GAP, Fuzzy SAP, Fuzzy AdaBoost, Fuzzy LogitBoost, and
Fuzzy MaxLogitBoost.

Comparison of the interpretability. The study conducted in section 8.5.3 already illustrated
the interpretability-performance trade-off among the different inference schemes in Fuzzy-UCS.
As shown, the excellent results of Fuzzy-UCS with weighted average with respect to all the
other learners were hampered by the large number of fuzzy rules evolved by the method. The
other two types of inference appeared as a positive alternative since, although they slightly
degraded the accuracy rate with respect to the former approach, they resulted in a moderate
number of rules. Aligned with these conclusions, we confirmed the suitability of Fuzzy-UCS by
empirically demonstrating that the three schemes of Fuzzy-UCS resulted in significantly more
accurate models than those obtained with all the other fuzzy learners. In this section, we further
the study and qualitatively analyze if the rule set evolved by these two methods is competitive
in terms of readability.

As the type of rules evolved by the systems differ, we qualitatively evaluated the size of
the models by extracting some characteristics. Figure 8.16 shows examples of partial models
evolved by the fuzzy learners for the tao problem. The models built by Fuzzy GP, Fuzzy GAP,
and Fuzzy SAP consisted of a rule for each class of the domain. Each rule was directly extracted
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Fuzzy GAP Fuzzy GP Fuzzy LogitBoost

Fuzzy-UCS awin Fuzzy-UCS wavg Fuzzy-UCS nfit

Fuzzy SAP
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Figure 8.15: Illustration of the significant differences (at α = 0.05) of the test accuracy among the
fuzzy-methods and Fuzzy-UCS. An edge L1

pvalue→ L2 indicates that the learner L1 outperforms
the learner L2 with the corresponding pvalue. To facilitate the visualization, Fuzzy-AdaBoost
and Fuzzy MaxLogitBoost, the two most outperformed algorithms, were not included in the
graph.

from an expression codified in a tree. The rules were represented by an arbitrary number of
conjunctions (AND) and disjunctions (OR) of conditions over the variables of the domain. One
example of these types of rules for a two-dimensional problem is

IF (x1is Ã1
1 AND x2 is Ã1

2) OR (x1is Ã2
1 AND x2 is Ã2

2) THEN c1, (8.34)

where each variable xi was represented by a linguistic term Ãi = { Ai1∨ . . .∨Aini}. All variables
shared the same semantics which were defined by the combination of triangular-shaped and
trapezoidal-shaped fuzzy membership functions (see figure 8.16(a)).

On the other hand, the fuzzy rule-based boosting algorithms created a set of linguistic fuzzy
rules that took the following form:

IF x1 is Ã1 and · · · and xn is Ãn THEN c1 WITH wk
1 , · · · , cm WITH wk

m, (8.35)

where each variable xi was represented by a linguistic term Ãi = { Ai1 ∨ . . . ∨ Aini}. All
variables shared the same semantics, which was defined by means of triangular-shaped fuzzy
membership functions (see figure 8.16(b)). In the consequent part, the rule maintained a weight
for each class, which were used for the inference process. Therefore, these individuals rules are
less interpretable than the ones of Fuzzy-UCS, which use a single value—the fitness—to infer
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if y is triangle(-6.0,-3.0,0.0) then red

if ( (x is trapezoid(3.0, 6.0) or x is trapezoid(3.0, 6.0))

or (x is triangle(0, 3.0, 6.0) or x is trapezoid(3.0, 6.0)) )

and

( (x is triangle ( -3, 0.0, 3.0) or x is trapezoid(3.0, 6.0)

or . . . )

...

then blue

(a) GP-based learners

if x is L and y is L then blue with -5.42 and red with 0.0

if x is M and y is XS then blue with 2.21 and red with 0.0

if x is M and y is XL then blue with -2.25 and red with 0.0

...

(b) Boosting learners

if x is XL then blue with w=1.00

if x is XS then red with w=1.00

if x is {XS or S} and y is {XS or S} then red with w=0.87

...

(c) Fuzzy-UCS

Figure 8.16: Examples of part of the models evolved by (a) the GP-based methods, i.e., Fuzzy
GP, Fuzzy GAP, and Fuzzy SAP; (b) the boosting learners, i.e., Fuzzy AdaBoost, Fuzzy Logit-
Boost, and Fuzzy MaxLogitBoost; and (c) Fuzzy-UCS for the two-dimensional tao problem. In
the fuzzy learners, we used the following five linguistic terms per variable: {XS, S, M, L, XL}.
All fuzzy learners use triangular-shaped membership functions. Moreover, GP-based learners
also use trapezoid-shaped membership functions.

the class of test instances. The three boosting algorithms supported the absence of a variable
by not assigning any linguistic term to the variable. The maximum size of the rule set was a
configuration parameter. In our experiments, the maximum population size was set to 50.

To compare these two types of representations to the rule sets evolved by Fuzzy-UCS, we
evaluated the size of the models as follows:

• We calculated the size of the models built by Fuzzy GP, Fuzzy GAP, and Fuzzy SAP by
counting the number of AND, OR, and IS of the model. This gave us an idea of the average
size of the rule. However, note that, due to the flexibility of these types of rules, it was not
possible to directly compare them with the rules evolved by the three boosting algorithms
and Fuzzy UCS. The rules constructed by Fuzzy GP, Fuzzy GAP, and Fuzzy SAP permit
the combination of different logic operators, whose associativity and priority is given by
the position of the operators in the tree. An equivalent conjunctive normal form for these
rules could be found by applying De Morgan’s laws. However, this transformation is not
in the scope of this chapter, and so, we only qualitatively evaluated the model sizes.

• The size of the rule sets created by the boosting algorithms and Fuzzy-UCS were computed
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with the following formula:

size =
N∑

i=1

1
`

∑̀
j=1

maxLabels − numLabels(xi)
maxLabels − 1

, (8.36)

where N is the number of rules in the population, ` is the number of variables, and
maxLabels is the number of linguistic labels (in our experiments, maxLabels = 5). This
formula reckons the total number of variables in the model that have, at least, one linguistic
term assigned. It also benefits general variables that have more than one linguistic label.
To achieve a totally fair comparison, we also referred to the number of rules evolved by
Fuzzy-UCS (see table 8.9).

Table 8.13 shows the size of the models created by each fuzzy learner. Table 8.14 illustrates
the approximate p-values resulting from the pairwise comparison between the learners according
to a Wilcoxon signed-ranks test. For the three methods based on genetic programming, we
considered the average number of variables for each rule (i.e., column is divided by the number
of classes of the problems). The comparison shows that Fuzzy SAP, followed by Fuzzy GP, Fuzzy
GAP, and Fuzzy MaxLogitBoost, were the methods that created the smallest models according
to a Wilcoxon signed-ranks test at a significance level of 0.05. We have already discussed how the
representation of Fuzzy GP, Fuzzy GAP, and Fuzzy SAP was much more flexible and by far less
interpretable than the representation of the other learners (see the number of conjunctions and
disjunctions with different associativity and priority in the rules). Thus, although the number of
attributes per rule was smaller, the interpretability of the model was poor due to the flexibility
of the rule (see the partial example provided for the tao problem in figure 8.16(a)). Fuzzy-
UCS with weighted average and with action winner inference created the largest and the second
largest populations of the comparison respectively. On the other hand, Fuzzy-UCS with fittest
rules inference created rule sets that, on average, were not significantly larger than the rule
sets built by Fuzzy-GP, Fuzzy AdaBoost, and Fuzzy LogitBoost. Thus, disregarding the three
learners based on genetic programming, whose rule sets were poorly readable due to the rule
form, only Fuzzy MaxLogitBoost created more reduced populations. However, individual rules
of Fuzzy MaxLogitBoost are less interpretable than those of Fuzzy-UCS since they maintain a
weight per each class, and all these weights are used in the inference process.

The results provided in this section highlighted the high competitiveness of Fuzzy-UCS in
terms of performance and interpretability with respect to other fuzzy learners. In terms of
performance, Fuzzy-UCS with any of the three types of inference significantly outperformed all
the other fuzzy learners. In terms of interpretability, Fuzzy-UCS with fittest rules inference
evolved a number of rules comparable to those evolved by Fuzzy AdaBoost, Fuzzy LogitBoost,
Fuzzy GP, Fuzzy GAP, and Fuzzy SAP. In the next section, we broaden the analysis and compare
Fuzzy-UCS to a set of general purpose non-fuzzy learners.

8.6.3 Comparison with Non-Fuzzy Learners

Now, we compare Fuzzy-UCS to a set of general-purpose learners that use different knowledge
representations: ZeroR, C4.5, IBk, Part, Näıve Bayes, SMO with polynomial kernels of order 3,
SMO with Gaussian kernels, GAssist, and UCS. The systems were configured as recommended
in the open source implementation, with exception of the following aspects. We ran IBk with
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Table 8.13: Size of the models evolved by Fuzzy GP, Fuzzy GAP Fuzzy SAP, Fuzzy AdaBoost
(ABoost), Fuzzy LogitBoost (LBoost), Fuzzy MaxLogitBoost (MLBoost), and Fuzzy UCS with
weighted average inference (wavg), action winner inference (awin), and fittest rules inference
(nfit).

GP GAP SAP
ABoost LBoost MLBoost

Fuzzy-UCS
and or is and or is and or is wavg awin nfit

ann 30.0 34.4 64.3 27.4 31.4 58.8 5.0 6.8 11.8 - 17.9 - 1038.6 27.2 12.7
aut 27.3 31.8 59.1 30.3 35.5 65.8 5.3 6.9 12.1 - 39.2 - 1555.7 45.1 28.7
bal 27.5 32.8 60.3 21.0 20.2 41.1 4.1 4.5 8.6 19.8 23.8 14.3 578.0 54.3 39.0
bpa 17.6 37.3 54.9 17.9 25.2 43.1 1.8 2.9 4.6 35.3 36.0 13.3 795.5 40.0 19.9
cmc 22.2 25.1 47.2 17.6 18.3 35.9 4.8 3.5 8.3 29.1 27.9 2.0 984.6 223.1 135.8
col 14.6 23.8 38.4 12.2 15.1 27.3 2.1 2.5 4.6 45.0 44.1 0.8 1469.3 50.8 26.0
gls 28.8 32.9 61.7 27.5 29.2 56.7 7.8 7.4 15.2 29.2 31.0 22.8 1293.7 27.8 14.5
h-c 13.6 20.0 33.6 11.4 13.5 24.9 1.7 2.6 4.3 39.6 38.9 1.0 1188.3 34.2 14.2
h-s 16.8 26.1 42.9 8.7 13.2 21.9 2.4 3.4 5.9 40.3 39.2 15.0 1173.0 37.2 18.8
irs 18.7 21.6 40.4 11.5 12.3 23.7 2.5 2.7 5.2 23.4 26.9 4.0 231.2 7.6 2.8
pim 18.3 19.9 38.2 13.7 14.6 28.3 2.0 1.7 3.7 36.9 34.0 13.3 1327.1 86.8 28.0
son 18.2 28.3 46.5 15.1 17.1 32.2 2.0 2.3 4.3 22.3 21.6 0.9 1208.1 70.7 63.4
tao 19.0 20.3 39.2 13.3 19.1 32.4 3.3 3.4 6.7 40.1 43.2 18.0 75.3 12.1 8.6
thy 18.2 20.0 38.1 12.4 13.0 25.4 2.8 2.4 5.1 25.7 29.4 8.8 624.4 16.3 5.0
veh 18.8 21.7 40.4 16.9 18.9 35.8 3.4 4.1 7.4 40.3 37.3 25.6 1641.7 143.8 63.7
wbcd 20.4 40.1 60.5 17.9 20.2 38.1 2.6 3.9 6.5 24.0 27.7 13.1 1033.9 38.9 8.4
wdbc 14.7 15.7 30.4 10.2 12.3 22.5 1.9 2.0 3.9 44.9 43.9 0.9 2108.7 105.4 38.4
wne 15.8 19.5 35.3 14.5 14.9 29.4 2.5 2.7 5.2 30.8 31.2 26.9 1437.7 33.1 9.0
wpbc 24.0 38.1 62.1 11.9 19.2 31.1 2.8 4.6 7.4 44.9 44.0 0.8 1536.6 62.3 45.3
zoo 34.0 34.9 68.9 37.8 38.2 76.0 8.2 9.7 17.9 42.0 36.2 0.9 263.4 5.0 3.3

Table 8.14: Pairwise comparisons of the sizes of the models of Fuzzy GP, Fuzzy GAP, Fuzzy SAP,
Fuzzy AdaBoost (ABoost), Fuzzy LogitBoost (LBoost), Fuzzy MaxLogitBoost (MLBoost), and
Fuzzy UCS with weighted average inference (wavg), action winner inference (awin), and fittest
rules inference (nfit) by means of a Wilcoxon signed-ranks test.

GP GAP SAP ABoost LBoost MLBoost
Fuzzy-UCS

wavg awin nfit
GP .0003 .0001 .0005 .0001 .0137 .0001 .0003 .2179
GAP ª .0001 .0002 .0001 .1671 .0001 .0002 .0228
SAP ª ª .0001 .0001 .0276 .0001 .0001 .0001
ABoost ⊕ ⊕ ⊕ .8666 .0001 .0001 .0793 .1790
LBoost ⊕ ⊕ ⊕ − .0001 .0001 .1005 .1084
MLBoost ª − ⊕ ª ª .0001 .0002 .0105
wavg ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ .0001 .0001
awin ⊕ ⊕ ⊕ + + ⊕ ª .0001
nfit = ⊕ ⊕ − − ⊕ ª ª
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k = {1, 3, 5}. We ranked the performance obtained by the three configurations, and we only
provide the results with the settings that maximized the average rank, that is, k = 5 (IB5). The
analogous process was carried out for SMO with polynomial kernels. We experimented with
polynomial kernels of order {1, 3, 5, 10}, and supplied the results obtained with polynomial
kernels of order 3 since they maximized the average rank. We did not introduce the same
system with different configurations in the comparison to avoid biasing the statistical analysis
of the results.

Comparison of the performance. Table 8.15 shows the accuracy of the aforementioned
learners on the same collection of real-world problems. The two last rows of the table provide
the average rank and the position in the ranking of each learner. As proceeds, we discuss several
observations that can be drawn from these results.

Firstly, let us highlight the good performance presented by Fuzzy-UCS with weighted average
inference. This learner was the third best method in the ranking. Its average rank was really
close to UCS, by which Fuzzy-UCS was inspired. Thus, the fuzzy representation did seem not
to limit the capabilities of Fuzzy-UCS if all the evolved rules were used to infer the class of new
examples. Moreover, the average rank was also close to the best ranked method: SMO with
polynomial kernels. The other two inference schemes presented higher average ranks. Fuzzy-
UCS with action winner inference and fittest rules inference occupied the 7th and 9th position
in the ranking.

We statistically analyzed the results to identify significant differences among the learners.
The multiple-comparison Friedman’s test rejected the hypothesis that all the learners performed
the same on average at a significance level of 0.001. We applied the post-hoc Bonferroni-Dunn
test on the results. The test could only reject the hypothesis that the best ranked learners
performed equivalently to Fuzzy-UCS with fittest rules inference, SMO with Gaussian kernel,
and Zero-R. However, the test has a low discriminatory power for a large number of learners
(Demšar, 2006). Thus, we also compared the performance of each pair of learners by means of a
Wilcoxon signed-ranks test (see table 8.16). Figure 8.17 uses a graph to illustrate the significant
differences between the learners. The test confirmed that Fuzzy-UCS with weighted average
inference was one of the best learners in the comparison. It significantly outperformed Näıve
Bayes, SMO with Gaussian kernels, ZeroR, and Fuzzy-UCS with the other two types of inference.
Moreover, Fuzzy-UCS with weighted average inference did not significantly degrade the results
obtained with any other learner. Fuzzy-UCS with action winner inference was only significantly
outperformed by SMO with polynomial kernels, and Fuzzy-UCS with weighted average inference.
Besides, it significantly improved SMO with Gaussian kernel and ZeroR. Fuzzy-UCS with fittest
rules inference presented the poorest results among the three configurations of Fuzzy-UCS. It
significantly degraded the results obtained by SMO with polynomial kernels, UCS, IB5, Part,
and Fuzzy-UCS with weighted average inference. However, note that it performed equivalently
to well-known algorithms such as C4.5, Näıve Bayes, and GAssist.

Comparison of the interpretability. Herein, we qualitatively compare the interpretability
of the models created by the different learners. We do not consider IBk, SMO, and Näıve Bayes
since their knowledge representation can hardly be compared to the other learners. IBk is a
lazy classifier that does not use any knowledge representation; to predict the output of a new
input example, IBk searches for the k nearest neighbors and returns the majority class among
them. SMO represents the knowledge by
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support vector machines (where nc is the number
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8.6. COMPARISON OF FUZZY-UCS TO SEVERAL MACHINE LEARNING TECHNIQUES

IB5

C4.5

Part

NaiveBayes Fuzzy-UCS awin Fuzzy-UCS nfit

SMOp3Fuzzy-UCS wavg

UCS

GAssist p=0.0251

p=0.04

p=0.0366

p=0.0366

p=0.033

p=0.0032

p=0.0051

Figure 8.17: Illustration of the significant differences (at α = 0.05) of the test accuracy among
non-fuzzy methods and Fuzzy-UCS. An edge L1

pvalue→ L2 indicates that the learner L1 outper-
forms the learner L2 with the corresponding pvalue. To facilitate the visualization, ZeroR and
SMO with Gaussian kernels, the two most outperformed algorithms, were not included in the
graph.

of classes), each one consisting of a set of real-valued weights. Therefore, the models created
by these two learners are very difficult to interpret. On the other hand, Näıve Bayes builds
interpretable models formed by a set of parameters which estimate the independent probability
functions and the so-called class-prior of a Bayesian model. Nurnberger et al. (1999) identified a
close connection between Näıve Bayes and neuro-fuzzy classifier systems, providing a framework
that maps a Näıve Bayes classifier into a neuro-fuzzy classifier with the aim of improving its
capabilities. The discussion on the difference in the interpretability of Näıve Bayes and their
similarity to neuro-fuzzy classifier systems or fuzzy rule-based systems is out of the scope of this
chapter. The reader is referred to (Nurnberger et al., 1999) for further details.

Thus, in the remainder of this analysis, we focus on the comparison of the rule-based and
tree-based learners, i.e., C4.5, Part, GAssist, UCS, and Fuzzy-UCS. Figure 8.6.3 plots examples
of the models evolved by these learners for the two-dimensional tao problem; besides, an example
of the weights created by SMO is also depicted. C4.5 evolves trees in which the nodes represent
a decision over one variable (see figure 8.18(b)). We evaluated the model size by counting
the number of leaves of the tree. Part and GAssist create a set of rules which are defined by
conjunction of conditions over their variables, and are interpreted as an ordered activation list
(see figures 8.18(c) and 8.18(d)). Moreover, GAssist uses a default rule. UCS evolves a rule set
similar to Fuzzy-UCS, but replacing linguistic rules by interval-based rules (see figure 8.18(e)).
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 -      1.000      * <0.229 0.875 > * X]
 -      0.298      * <0.708 0.437 > * X]

...

(a) SMO

x <= -2.75
|   x <= -3.25: red (308.0)
|   x > -3.25
|   | y <= 1.75: red (55.0)
|   | y > 1.75
|   |   |   x <= -3: red (11.0/1.0)
|   |   |   x > -3
|   |   |   | y <= 4.25: blue (6.0)
|   |   |   | y > 4.25: red (4.0)

...

(b) C4.5

if x ≤ -3.25 then red (308)

else if x > 2.75 then blue (347/1)

else if y ≤ 0 and x ≥ -1 then red (192/1)

...

(c) Part

if x > 2.72 and (y is [0.92,4.61] or y > 5.07) then blue

else if ( x is [-0.54, 0.54] or x > 2.72) and y is [-4.28, -2.57] then blue

...

otherwise red

(d) GAssist

if x is [-6.00, -0.81] and y is [-6.00, 0.40] then red with acc= 1.00

if x is [2.84, 6.00] and y is [-5.26, 4.91] then blue with acc =1.00

if x is [-6.00, -0.87] and y is [-6.00, 0.74] then red with acc =1.00

...

(e) UCS

if x is XL then blue with w=1.00

if x is XS then red with w=1.00

if x is {XS or S} and y is {XS or S} then red with w=0.87

...

(f) Fuzzy-UCS

Figure 8.18: Examples of part of the models evolved by (a) SMO, (b) C4.5, (c) Part, (d) GAssist,
(e) UCS, and (f) Fuzzy-UCS for the two-dimensional tao problem.

Each rule can be regarded as an expert classifier in the region of the feature space that it covers.
We used the number of rules evolved as the metric of interpretability for Part, GAssist, UCS,
and Fuzzy-UCS, although we acknowledge that the measure is not directly comparable as we
later discuss. Note that we did not use equation 8.36 to compute the model size because some
of the learners are represented by an ordered activation list.

Table 8.17 shows the model sizes of the rule-based and tree-based systems. The number of
support vector machines and weights created by SMO and the number of parameters returned
by Näıve Bayes are not provided since they can be calculated from the problems characteristics.
Qualitatively, it is worth mentioning the following aspects:

• Fuzzy-UCS with weighted average, jointly with UCS, were the two methods in the ranking
with higher performance from those that use a rule-based representation. Thus, when
performance prevails over interpretability, Fuzzy-UCS is a good approach to face new
problems.

• Fuzzy-UCS with weighted average inference, as well as the other two inference schemes,
significantly created smaller populations than UCS according to a Wilcoxon signed-ranks

206



8.6. COMPARISON OF FUZZY-UCS TO SEVERAL MACHINE LEARNING TECHNIQUES

Table 8.17: Average sizes of the models build by C4.5, Part, GAssist, UCS and Fuzzy-UCS with
weighted average (wavg), action winner (awin), and fittest rules inference (nfit).

C4.5 Part GAssist UCS
Fuzzy-UCS

wavg awin nfit
ann 38 15 5 4494 2769 75 36
aut 44 21 7 4565 3872 114 74
bal 45 37 8 2177 1212 114 75
bpa 25 9 6 2961 1440 73 39
cmc 162 168 15 3634 1881 430 271
col 5 9 5 3486 4135 154 81
gls 24 15 5 3359 2799 62 36
h-c 29 21 6 2977 3574 113 46
h-s 17 18 5 3735 3415 117 62
irs 5 4 3 1039 480 18 7
pim 19 7 7 3605 2841 192 62
son 14 8 5 520 3042 178 160
tao 36 17 6 807 111 19 14
thy 8 4 4 1994 1283 37 11
veh 69 32 7 4941 3732 332 147
wbcd 12 10 3 2334 3130 138 28
wdbc 11 7 4 5206 5412 276 101
wne 5 5 3 3685 3686 95 26
wpbc 12 7 4 5299 3772 156 115
zoo 11 8 6 1291 773 16 10

test (at α = 0.05). Thus, Fuzzy-UCS achieved one of the main objectives of this work:
to create smaller models than those evolved by UCS. Notice that, in addition of evolving
smaller rule sets, the individual rules are also more interpretable since the variables are
defined by linguistic terms instead of intervals.

• Fuzzy-UCS was the only method in the comparison in which the same semantics (adapted
to the universe of discourse of each variable) is shared among all variables, and only 5
linguistic terms were specified. Consequently, Fuzzy-UCS rules were more readable.

The results also indicate that, even Fuzzy-UCS with action winner and fittest rules inferences
resulted in moderate-sized populations, the system is still not competitive, in terms of inter-
pretability, with Part, C4.5, and especially with GAssist. However, two important distinctions
need to be considered to justify these differences:

• Fuzzy-UCS and, in general, Michigan-style LCSs evolve rules that, by themselves, are
experts on the region of the feature space that they cover and collaborate to classify all
the input space. Thus, each rule can be regarded as an expert classifier; if the human
expert is only interested in a region of the feature space, only the rules involved in this
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CHAPTER 8. FUZZY-UCS: EVOLVING FUZZY RULE SETS FOR SUPERVISED LEARNING

region need to be considered. On the other hand, the rules evolved by Part and GAssist
form an ordered activation list. That is, to classify a new example, rules are checked in
order and the first rule that matches determines the output. In the case of GAssist, a
default rule is used to classify all the examples not matched by any rule in the activation
list. This implies that all the previous rules need to be considered to understand why the
system is giving this prediction.

• Fuzzy-UCS evolves the rule set incrementally, whilst the other learners go through the data
several times to build a model of the data. Incremental learning gives a big advantage to
Fuzzy-UCS when learning from large data sets.

The analysis supplied in this section showed that Fuzzy-UCS is highly competitive with
respect to a large set of general-purpose machine learning techniques, which include several of
the most influential machine learning techniques (Wu et al., 2007). The proposed weighted
average version of Fuzzy-UCS was one of the best performers. Thus, a fuzzy rule-based system
could achieve accuracy rates as good as—or even better than—other machine learning techniques
with knowledge representations that can barely be read by human experts such as support vector
machines or instance based algorithms. Moreover, Fuzzy-UCS with the two other inference
schemes appeared also to be competitive. Fuzzy-UCS with action winner inference evolved
substantially reduced rule sets, although not as much as the ones evolved by GAssist and Part,
and it was only statistically surpassed by SMO with polynomial kernels, and our Fuzzy-UCS
with weighed average inference. In the next section, we explore the capabilities of the online
learning architecture of Fuzzy-UCS to learn from large volumes of data.

8.7 Fuzzy-UCS for Mining Large Data Sets

The two essential differences between Fuzzy-UCS and other rule-based machine learning tech-
niques are that Fuzzy-UCS a) does not perform any form of global optimization, and b) evolves
the rule-based knowledge online. Based on a rule set roughly initialized in the first learning
iterations by the covering operator, the system is responsible for incrementally evaluating the
parameters of the rules and refining the rule-based knowledge by creating more general and
more accurate rules. This process provides two main advantages with respect to other learners:

• Fuzzy-UCS learns from a stream of examples. This enables the system to learn from
changing environments. This differs from other machine learning methods, such as C4.5,
IBk, SMO, and Pittsburgh-style LCSs, which need to process all the training data set in
order to produce the final model.

• The learning can be stalled whenever required, and the evolved rule set can be used for
predicting the class of new input examples. The more learning iterations the system has
performed, the more general and accurate the rules should be. Consequently, the cost
of the algorithm increases linearly with the maximum population size N , the number of
variables per rule a, and the number of learning iterations nlearn

CostFuzzy−UCS = O (a · N · nlearn) , (8.37)

but it does not depend directly on the number of examples. In static data sets, it is
recommended that nlearn be, at least, the number of examples in the training data set.
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Table 8.18: Properties of the 1999 KDD Cup intrusion detection data set. The columns describe:
the identifier of the data set (Id.), the number of instances (#Inst), the total number of features
(#Fea), the number of real features (#Re), the number of nominal features (#No), the number
of classes (#Cl), the proportion of instances with missing values (%MisInst), and the dispersion
of the data set (Disp) computed as #Fea/#Inst.

Id. #Inst #Fea #Re #No #Cl %MisInst %Disp
kdd’99 494,022 41 35 6 23 0 8.3 · 10−5

In this section, we exploit the benefits of online learning in Fuzzy-UCS and apply the system
to mine very large data sets. Specifically, we test the performance of Fuzzy-UCS on the 1999
KDD Cup intrusion detection data set (Hettich and Bay, 1999). In the following, we describe
the data set and present the experimental results.

8.7.1 Data Set Description

The 1999 KDD Cup intrusion detection data set gathers a large collection of examples of a
wide variety of network intrusions simulated in a military environment. We used the subset of
494 022 examples provided in (Hettich and Bay, 1999) that advocate 23 different classes. Each
example consists of 41 attributes, which usually characterize network traffic behavior. Table
8.18 summarizes the main traits of the data set.

8.7.2 Results

We ran Fuzzy-UCS on the KDD’99 domain with the default configuration as in the previous
section except for θGA = 200 and P# = 0.2. We increased the period of GA application
(θGA = 200) to permit the classifiers to receive more parameter updates before undergoing a
genetic event. We also diminished the probability of generalization in covering (P# = 0.2)
since the number of examples per dimension was very high. We ran the experiment for 2 000 000
learning iterations, so that Fuzzy-UCS only received each learning instance an average of 4 times.
As in all the experiments performed in this work, to obtain reliable estimates, we employed a
10-fold cross validation methodology (Dietterich, 1998).

Figure 8.19 plots the evolution of the test performance and the population size of Fuzzy-
UCS with action winner inference in the first 50 000 learning iterations. That is, we stopped
the learning every 2 500 iterations and tested the rule set with the test fold; each dot in the
plot corresponds to one of these measurements. Note that the system quickly evolved a highly
accurate population. After seeing the first 35 000 examples, that is, a 7% of the whole training
data set, the test performance was already about 99%. Increasing the number of learning
iterations did not significantly improve the average performance, but it did create more general
and equally accurate classifiers. This behavior can be observed in table 8.19, which depicts
the test accuracy and the rule set size obtained by Fuzzy-UCS with weighted average inference
(1st column), action winner inference (2nd column), and fittest rules inference (3rd column) at
different learning iterations. That is, every 500 000 learning iterations, we used the corresponding
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Figure 8.19: Evolution of test accuracies and the population size of Fuzzy-UCS with action
winner inference in first 50 000 learning iterations of the 1999 KDD Cup data set.

Table 8.19: Test performance and number of rules evolved by Fuzzy-UCS with weighted average
(wavg), action winner (awin), and fittest rules (nfit) in the 1999 Kdd Cup intrusion detection
data set at different number of learning iterations.

#Iter
wavg awin nfit

perf. #rules perf. #rules perf. #rules
500 000 99.32 1944 99.13 541 99.27 417

1 000 000 99.36 2089 99.07 492 99.25 369
1 500 000 99.37 2178 99.02 460 99.24 350
2 000 000 99.36 2257 99.00 428 99.19 323

test set to calculate the accuracy with the three types of inference. While sampling the test
examples, all the learning mechanisms of Fuzzy-UCS were disabled, so that the rule set was not
modified.

The results show that the number of rules in the final population for the action winner
and fittest rules inference decreased as the number of learning iterations increased. Thus, the
system was pushing the population toward obtaining maximally general and accurate rules. This
behavior was not so clear with the weighted average inference since this inference scheme used
all the experienced rules in the final population that have positive fitness, regardless of their
generality.

Finally, let us highlight the differences of Fuzzy-UCS with respect to a Pittsburgh-style
LCS. In the last section, we configured GAssist with a population of 400 individuals. At the
initialization phase, these 400 individuals needed to be evaluated. Thus, the condition of all the
rules of each classifier was matched with each of the training instances. This means that, in the
population initialization, a Pittsburgh-style LCSs would go through all the data set 400 times,
seeing about 180 000 000 instances. The use of windowing mechanisms, as the ones implemented
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in GAssist, would permit reducing the number of instances that each individual matches to be
evaluated by a constant value; nevertheless, note that, in any case, the number of evaluations
would increase linearly with the number of input examples. After this, the system would have
only the first approximation, and the evolutionary pressures would create new individuals that
needed to be evaluated. This makes these types of systems computationally expensive for large
data sets. On the other hand, note that Fuzzy-UCS only needed to see 35 000 examples to
extract a highly accurate model, and that further iterations were to create a more general rule
set. These results emphasize the advantages of online learning, which will be further exploited
in future work.

8.8 Summary, Conclusions, and Further Work

The comparative analysis performed throughout this paper has provided many valuable insights
on the behavior of Fuzzy-UCS in real-world data sets. As proceeds, we briefly summarize the
work. Later, we provide the main conclusions and future work that will be made in light
of the promising results supplied in this section. For this purpose, and with the aim of clearly
identifying where Fuzzy-UCS is placed in the machine learning community, we perform a SWOT
analysis, identifying the strengths, weaknesses, opportunities, and threats of Fuzzy-UCS.

8.8.1 Summary

In this chapter, we proposed a Michigan-style online learning fuzzy-classifier system for super-
vised learning which iteratively evolves a set of linguistic fuzzy rules which collaborate to cover
all the input space. Three schemes of inference and reduction algorithms were designed to infer
the output of unknown examples from reduced rule sets. These three mechanisms were designed
to offer different levels of rule set reduction and consequently lead to different accuracy rates.

We performed a detailed analysis of the performance and interpretability of the rule sets
evolved by Fuzzy-UCS. First, we carefully analyzed the three inference and reduction mecha-
nisms in Fuzzy-UCS with a linguistic representation, and studied if Fuzzy-UCS could generally
benefit from the flexibility provided by an approximate representation. This analysis showed
that the approximate representation resulted in models that fit the decision boundaries of the
problem more accurately. However, it was also detected that this may result in data over-fitting
in some real-world domains. In addition, the approximate representation implied a loss of inter-
pretability of the fuzzy rules. All these results supported the use of a linguistic representation.

We also compared Fuzzy-UCS to six fuzzy-rule-based learners and nine general-purpose
learners with different types of representations. The analysis showed that Fuzzy-UCS was highly
competitive with both groups of learners. In comparison with the fuzzy learners, Fuzzy-UCS
with the three types of inference presented the best performances in the study; furthermore,
it evolved rule sets with a moderate size. In comparison with the general-purpose machine
learning techniques, Fuzzy-UCS with weighted average inference was ranked among the best
learners. This showed the suitability of Fuzzy-UCS in spite of the limitations imposed by the
discretization of the feature space produced by the linguistic representation. The many benefits
of the online fuzzy-rule-based architecture, as well as some drawbacks detected in this study,
are detailed in the SWOT analysis of the next section.
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Table 8.20: SWOT analysis of Fuzzy-UCS.

Strengths Weaknesses

- It evolves highly accurate models; compara-
ble with the state-of-the-art in classification
- It uses a highly legible knowledge represen-
tation based on linguistic fuzzy rules
- It performs incremental, on-line learning
- It is capable of mining large data sets

- It generates moderate or large sized rule sets
(depending on the chosen configuration)
- Although it can deal with real, integer or
categorical features, only application for real
and integer data types is recommended

Opportunities Threats

- It may be applied in data streams; further
analysis of this problem will be carried out
- Because of the use of fuzzy logic, the algo-
rithm could be adapted to deal with vague
and uncertain data
- The proposed seminar system opens oppor-
tunities for further research on fuzzy knowl-
edge representation, the fuzzy inference en-
gine, and evolutionary operators

- A small number of interval-based rules can
be interpreted more easily than a large num-
ber of linguistic fuzzy rules
- Other learning approaches combined with
preprocessing can also deal with large data
sets

In the final step of the analysis, we exploited the incremental learning architecture of Fuzzy-
UCS to extract a model from a large data set: the 1999 KDD Cup intrusion detection data set.
It was found that Fuzzy-UCS could quickly evolve a highly accurate model, having seen only
the ten percent of the total number of examples in the domain. Incremental learning enabled
us to have a rough approximation of the model after a few thousand learning iterations, further
refining the rule set as the system received more examples.

8.8.2 SWOT Analysis

All the evidence provided through the experimentations is summarized in the SWOT analysis
presented in table 8.20, where strengths represent the main advantages of Fuzzy-UCS, weaknesses
show its drawbacks, opportunities outline some suggested further lines of investigation, and
threats include some optional approaches considered by other methods that could compete with
our proposal.

Fuzzy-UCS has four main strengths. First, the system presented high accuracy, which sup-
ports the use of Fuzzy-UCS in complex problems. Second, it uses linguistic fuzzy rules, which
are much more readable than interval-based rules since all the variables share the same semantics
and only a small number of linguistic terms per variable are defined (specifically, in our experi-
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ments we only used five linguistic terms per variable). This is really important for domains with
high dimensionality where each variable presents different ranges. Third, Fuzzy-UCS is an online
process that performs incremental learning, and so, the system neither has knowledge about the
data set nor does any kind of global optimization. And fourth, since the run-time complexity
of Fuzzy-UCS does not depend on the number of instances in the data set, our system is very
useful for mining large amounts of data as we showed with the KDD’99 problem, which consists
of about half a million instances, 41 features, and 23 classes.

The main weakness of the system is that, despite the application of reduction schemes, Fuzzy-
UCS evolves slightly larger rule sets than those created by other machine learning techniques
such as GAssist. Consequently, the number of rules may hinder the interpretability of the
evolved knowledge. However, as discussed in previous sections, it is worth highlighting the key
differences between the types of rules build by GAssist and Fuzzy-UCS. That is, GAssist does
not share any semantics between variables, makes the rules available in an ordered decision
list—therefore, each rule depends on the previous rules in the list—, and uses a default rule.
Conversely, Fuzzy-UCS evolves independent classifiers that do not depend on the context, and
no pressure is applied to evolve default rules. A less important feature of our system is that,
although it can work with categorical input variables, fuzzy rules are especially useful for real
or integer-valued variables, since in the former case the rule would be equivalent to a classical
crisp (or non-fuzzy) one.

We also want to honestly mention some possible threats to Fuzzy-UCS. On the one hand,
an expert might find a small number of interval-based rules more legible than many linguistic
fuzzy rules (in fact, the degree of interpretability of a system is very difficult to assess when
different knowledge representations are compared). On the other hand, there are hybrid learning
approaches to deal with problems with large data sets, such as the inclusion of data set reduction
techniques, which would allow some of the systems compared in this chapter to address these
problems.

Finally, the proposed Fuzzy-UCS algorithm shows some interesting opportunities which will
be developed in future work. Firstly, because of its incremental learning capability, the system
can be applied to extract information from data streams, which is currently a topic of increasing
interest (Arasu et al., 2003; Aggarwal, 2007). Furthermore, the use of fuzzy logics allows the
system to be adapted for managing vague and uncertain data, very common in many real-world
problems (Sánchez and Couso, 2007; Sánchez et al., 2007). Finally, as future work, we can
consider the inclusion of some of the techniques proposed by other systems (such as inference
based on an activation list with default rule as in GAssist) and the design of new techniques to
achieve greater reductions of the fuzzy rule set without a significant loss of test performance, as
well as a more detailed research of other fuzzy knowledge representations.
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Chapter 9

Summary, Conclusions, and Further
Work

This thesis has investigated learning classifier systems as competitive methods for machine
learning, addressing two important challenges not only for LCSs, but also for different machine
learning techniques: extracting key knowledge from rare classes and building models that are
comprehensible to human experts. To address the first challenge, we started a journey departing
from a decomposition of the key elements that we would require for any LCS to detect rare classes
and finishing with the improvement and application of LCSs to real-world domains with rare
classes. To approach the second challenge, we took an inventiveness approach to hybridize the
best practices of LCSs, GAs, and fuzzy systems; this resulted in the first Michigan-style learning
fuzzy-classifier system for classification tasks.

In this chapter, we first summarize the results and critical observations provided along the
consecution of each objective. Thereafter, in addition to the particular conclusions derived and
contributions provided under each case, we abstract the work and make an effort to highlight
the lessons learned on the way. Finally, we briefly discuss future work that will be made in light
of the insights and results provided by this thesis.

9.1 Summary and Conclusions

The present work started with the identification of Michigan-style LCSs as mature machine
learning techniques for which we had (1) competent implementations, (2) theory for design, and
(3) applications in important domains. In addition, we discussed three main characteristics that
make Michigan-style LCS an appealing alternative for machine learning. That is, Michigan-style
LCSs (1) evolve a distributed solution in parallel, searching at different pace in different regions
of the search space, (2) create a set of independent classifiers, and (3) learn the model online from
a stream of examples. Among them, we highlighted the added value provided by their online
learning architecture, which makes them suitable to deal with current scientific and industrial
applications in which data are usually generated online and models need to be learned on the
fly. With these potential advantages of Michigan-style LCSs in mind, we proposed to address
the following two critical challenges in machine learning with LCSs:
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1. Learning from domains that contain rare classes.

2. Building more understandable models and bringing reasoning mechanisms closer to human
ones.

These challenges were studied in the context of two particular LCSs: XCS and UCS. We selected
XCS since it is, by far, the most influential Michigan-style LCS. We also included UCS as this
thesis was especially concerned with classification problems, and UCS is a specialization of XCS
for supervised learning. The inclusion of the two LCSs set the first objective of this work. That
is, UCS was identified as a young system that had received no research since its initial design in
2003, and some open issues such as the suitability of the fitness computation scheme, which did
not share resources, remained unaddressed. In addition, the advantages of the new architecture
of UCS with respect to XCS in classification problems needed further investigation. For this
reason, we first proposed to update UCS and compare it with XCS on a set of boundedly
difficult classification problems. Then, taking XCS and the new version of UCS as starting
point, we focused on the challenges of modeling rare classes and building more comprehensible
classification models. More specifically, we articulated the following four objectives:

1. Revise and update UCS and compare it with XCS.

2. Analyze and improve LCSs for mining rarities.

3. Apply LCSs for extracting models from real-world classification problems with rarities.

4. Design and implement an LCS with fuzzy logic reasoning for supervised learning.

Below, we summarize the work done under each objective and provide the key conclusions
extracted from each point.

Revise and update UCS and compare it with XCS. The first objective of this thesis proposed
the design of a fitness-sharing scheme for UCS, since resource sharing schemes have been
shown to provide benefits to both GAs and LCSs. Therefore, we followed a creative analysis
to design a fitness-sharing scheme for UCS based on those of XCS and other Michigan-style
LCSs. With the introduction of the fitness-sharing scheme, the parameter update procedure
of UCS was slightly modified. To evaluate whether the new scheme was beneficial to UCS, we
compared the original UCS with UCS with fitness sharing on a collection of four boundedly
difficult problems. Later, XCS was included in the comparison with the aim of highlighting
the differences between both LCSs in classification tasks.

The empirical analysis provided several insights into the advantages of fitness sharing and
into the differences between XCS and UCS. On the one hand, fitness sharing, while not being
prejudicial in any problem, appeared to be crucial in domains where there was a tendency
to create over-general classifiers. In these problems, the new fitness-sharing scheme enabled
UCS to make a stronger pressure toward the removal of over-general classifiers when the first
accurate classifiers were discovered. On the other hand, the analysis also made evident that
the specialized architecture of UCS enabled the system to solve the tested problems with less
computational resources than those required by XCS. And finally, as UCS computes classifiers’
accuracy as the true proportion of correct predictions of the classifier instead of as the accuracy
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of the payoff prediction, the system produced a more reliable fitness pressure toward the optimal
population than XCS. These results were expected as UCS is specialized for supervised learning
tasks, whereas XCS is a more general architecture that can be applied to reinforcement learning.
Thence, the experimental results confirmed that the architecture of UCS is better suited than
the XCS’s one for classification problems.

Analyze and improve LCSs for mining rarities. With XCS and the updated version of UCS,
we faced the problem of mining imbalanced domains with LCSs. Instead of developing new
approaches that may improve the system performance in particular domains—but provide little
understanding of the real problems that may affect LCSs—we took a more general approach.
We abstracted the problem and considered any Michigan-style LCS as a system that evolves
a distributed collection of sub-solutions—or niches, which, in turn, contain classifiers—that
are evaluated and created online. Thence, we considered the problem of having different
distributed sub-solutions—some of which are activated with a lower frequency—that compete
for the environmental resources. Then, we followed a design decomposition approach and
defined five elements, concerning the creation and evaluation procedures, that needed to be
guaranteed to efficiently and scalably solve class-imbalanced problems.

The elements of the design decomposition were analyzed for the particular cases of XCS and
UCS. Facetwise models were derived to explain the different elements, and critical conditions
for convergence were detected for both systems. More specifically, the study included the
following five points:

• The parameter update procedures were examined, providing key recommendations on
how they should be configured to ensure an accurate estimation of the parameters of
over-general classifiers.

• The capabilities of the covering operator to generate classifiers representing rare classes
were analyzed.

• Population size bounds were derived to guarantee that both XCS and UCS could sustain
niches that are infrequently activated.

• The effect of the period of activation of the GA on the preservation of infrequent solutions
was studied.

• Takeover time expressions for proportionate and tournament selection were deduced, and
critical conditions of niche extinction were developed in the same analysis.

In summary, for XCS, we theoretically demonstrated and empirically validated (1) that the
parameter update procedure needs to be set inversely proportional to the imbalance ratio to
ensure accurate estimates of classifier parameters1 and (2) that either the population size or the
period of application of the GA needs to increase linearly with the imbalance ratio to warrant
that an accurate model can be extracted from the under-sampled class. Also, conditions
where no convergence can be guaranteed were predicted by the niche extinction models. For
UCS, the same conclusions could be extracted, with two key differences. First, the parameter
update procedure of UCS was more robust than that of XCS and did not need any especial
configuration to deal with domains with large imbalance ratios. Second, the theory developed

1In particular, we showed that, with the Widrow-Hoff rule, β needs to decrease linearly with the imbalance
ratio to ensure reliable estimates of over-general classifier parameters
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for UCS predicted an upper bound on the system behavior. All these analyses resulted in key
insights, which were articulated as configuration recommendations, enabling both XCS and
UCS to solve highly imbalanced problems that previously eluded solution.

Overall, the main conclusion derived from this objective is that LCSs are competitive machine
learning techniques that can effectively solve problems with rare classes, scaling linearly with
the imbalance ratio. Therefore, this supports that LCSs are ready to tackle real-world problems
with rarities.

Apply LCSs for extracting models from real-world classification problems with rarities.
Facetwise analysis provided key insights about LCSs behavior on domains with class imbal-
ances, pointing toward several recommendations that need to be followed to learn accurate
models from rare classes efficiently. These models proposed to configure both XCS and UCS
according to the imbalance ratio of the training data set, which was assumed to map the
imbalance ratio among starved and nourished niches. Nonetheless, this information is not
available in real-world domains with unknown characteristics, which opens a gap between the
recommendations provided by the theory and its application.

Therefore, under the current objective, we first started to bridge the gap between theory
and application in real-world domains. For this purpose, we redefined the concepts of niche,
representative classifier, and over-general classifier for domains with continuous attributes.
This also led to the redefinition of the problem of mining rare classes. In the interval-based
representation, we detected that the niche formation depended on the combination of the
expressiveness of the knowledge representation and distribution of examples in the feature
space. In brief, we showed that starved niches—or small disjuncts, as termed in the machine
learning community—could appear in completely balanced data sets if the form defined by the
conditions of the classifiers—in our case, hyper rectangles—did not match the shape of the
class boundary. For example, the hyper rectangular representation required the creation of
starved niches to accurately approximate oblique class boundaries, regardless of the imbalance
ratio of the training data set. Thence, this observation evidenced the relevance and broadness
of the problem with starved niches, which can appear in any real-world problem.

Therefore, we identified the new problem of estimating the ratio of the frequency of activation
of nourished niches to the frequency of activation of starved niches to enable the application of
the recommendations extracted from the theoretical analysis. For this purpose, we designed a
heuristic procedure that automatically computes the niche imbalance ratio and self-adapts both
XCS and UCS. Empirical results showed that the self-adaptation mechanisms enabled XCS
and UCS to solve problems with rare classes without being informed of the actual imbalance
ratio.

With the new heuristic procedure, XCS and UCS were ready to face real-world problems, self-
adapting themselves according to the information gathered during the evolution. Then, the
objective was to analyze whether the two LCSs were competitive with respect to other machine
learning techniques in extracting classification models from domains with rare classes. For this
purpose, we compared the accuracy of XCS’s and UCS’s models with those created by three
of the most influential machine learning techniques: C4.5, SMO, and IBk. The empirical
results showed that both LCSs provided the most accurate models on average. In addition, we
extended the comparison by considering four of the most-competent re-sampling techniques:
random over-sampling, under-sampling based on Tomek links, SMOTE, and cSMOTE. In
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general, random over-sampling and SMOTE enabled the learners to create more accurate
models of the minority class.

In addition to the observations pointed out in the experimental analysis, the whole comparison
came with a crucial conclusion: the performance of each learning system—and each re-sampling
technique if used—depended on each particular problem. That is, although general conclusions
could be extracted, such as that XCS was the classifier that obtained the most accurate models
in the majority of the problems, this does not guarantee that the best method on average will
be the best performer for a new real-world, unknown problem. Actually, along the analysis, in
several particular cases, the worst method of the comparison provided the most accurate models
or vice versa, or re-sampling techniques that resulted in poorer results than those obtained with
the original data sets were identified. Therefore, this conclusion demands further studying the
characteristics that make real-world problems difficult to learn for each specific learner. This
future line work is discussed in more detail in the following sections.

Design and implement an LCS with fuzzy logic reasoning for supervised learning. After
analyzing and improving LCSs with the aim of evolving more accurate models of rare classes,
the last objective of this work pointed toward increasing the interpretability of the models
evolved by LCSs and using reasoning mechanisms that are similar to the human ones. Providing
understandable models is a key aspect in supervised learning, especially in critical domains
where human experts may require an explanation of the prediction to contrast it with their
knowledge, thoughts, or beliefs. For example, in medical domains, human experts may require
an explanation of a given diagnosis to see if it confirms or refutes their initial diagnosis.

While in the previous objectives we took an analytic approach to studying existing systems,
we followed a creative analysis to achieve the last objective of the thesis. That is, we mixed
the ideas that come from LCSs—which provide an accurate online evaluation system—, GAs—
which represent a robust discovery component—and fuzzy logic—which supplies human-like
representations and reasoning mechanisms. The combination of the three ideas was not novel
itself, but the way in which the elements were combined was. The result was the first Michigan-
style fuzzy-classifier system that evolves a linguistic fuzzy rule set online for classification tasks.
It is worth noting that the system was not a result of a trial/error process, but was derived from
a careful analysis of the different ways in which fuzzy logic could be introduced in both the
representation and the reasoning mechanisms of UCS. The presented learning method resulted
from few iterations on the initial design.

The system was provided with two important characteristics that came from the crossbreed-
ing between LCSs and fuzzy logics, which prepare the system to deal with new challenging
problems. Inherited from Michigan-style LCSs, Fuzzy-UCS consists of an online learning ar-
chitecture; therefore, it can learn from data streams (Aggarwal, 2007; Gama and Gaber, 2007).
Thence, the system can deal with applications in which a continuous flow of labeled data is
generated, which is usual in many current industrial applications. On the other hand, due
to the integration of fuzzy logic into the system, the evolved linguistic fuzzy rules are more
legible, and the reasoning mechanisms are closer to human reasoning. Moreover, rule reduction
mechanisms were designed for each fuzzy inference. Therefore, the system is prepared to deal,
effectively and scalably, with problems with vague and uncertain data, which is very common
in many real-world problems (Sánchez and Couso, 2007; Sánchez et al., 2007).

Fuzzy-UCS was extensively analyzed. As Fuzzy-UCS was applied to real-world problems with
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unknown characteristics, we evaluated the quality of the evolved models by comparing them
with the models created by several of the most influential machine learning techniques for pat-
tern recognition. The experimental results showed that Fuzzy-UCS statistically outperformed
all the fuzzy learners included in the comparison; also, Fuzzy-UCS was one of the best methods
when compared to non-fuzzy learners. Besides, the models evolved by Fuzzy-UCS were, by
far, more interpretable than the correspondent models in UCS. Finally, the advantages of the
hybridization of LCSs and fuzzy logics was shown by using Fuzzy-UCS to solve a very large
problem, the 1999 KDD Cup intrusion detection data set.

In general, the contributions of this work emphasize that Michigan-style LCSs represent a
general-purpose, highly-competitive framework for the evolution and the discovery of indepen-
dent classifiers online. The results provided along this work showed that this framework resulted
in competent implementations, that is XCS and UCS, that can capture and accurately model
rare classes on the fly. Furthermore, we also illustrated that LCSs easily permit the crossbreed-
ing of ideas, enabling the integration of the best practices that come from several fields. All
this makes LCSs one of the most appealing alternatives for facing new challenging applications,
which usually require the discovery of knowledge from rarities, the integration of complex repre-
sentations, and the combination of new techniques. For this reason, LCSs probably have much
to say in the future of machine learning.

In addition to the conclusions extracted from the contributions of this work, the development
of the present thesis also resulted in valuable lessons for facing new engineering and machine
learning problems. The next section discusses these lessons in more detail.

9.2 Lessons from LCSs Design and Application

On our way toward the thesis objectives, two notably different strategies have been followed.
While we employed an analytical approach to study LCSs in domains with rare classes, we took
an inventiveness methodology and creative analysis to build a machine that mixed the ideas
coming from the LCSs, the GAs, and the fuzzy logic fields. Here, we raise the analysis one notch
and emphasize the general lessons learned from the application of the two approaches to solve
the problems that were defined in the beginning of this document. More specifically, we want
to emphasize the following two key lessons:

1. The importance of design decomposition.

2. The relevance of ideas crossbreeding for successfully dealing with complex applications.

These two lessons are further discussed in what follows.

The importance of design decomposition. When we started to approach the challenge of learn-
ing from imbalance domains with LCSs, we faced the problem of improving a complex existing
learning architecture in a complicated problem. At that point of the thesis, we initially thought
about the following three main methodologies to address the problem:

1. Follow intuition to design new modifications that may help discover rare classes.
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2. Develop models of the whole system.

3. Decompose the problem in critical elements and analyze them separately.

The first two approaches provide two completely opposite ways of focusing the problem. Using
intuition to develop new approaches may lead to some modifications of a particular system
that may help get more accurate models of rare classes. Actually, this approach was initially
followed in (Orriols-Puig and Bernadó-Mansilla, 2005a,b, 2007). Although this resulted in
some improvements on LCSs behavior, these works could not explain the real problems that
LCSs may need to face when learning from domains with rare classes. On the other end of
the spectrum, we have the option of building global models of the system and then using these
models to study the impact of rare classes. The main difficulty of this approach is that the
models have to consider all the interactions among the system components. Thence, this may
require a high cost to derive complex mathematical equations, especially in LCSs, where several
components interact during learning. Moreover, the complexity of the equations themselves
may hamper some key insights.

In this thesis, we took the third approach and followed a design decomposition methodology.
That is, we sought an effective design decomposition for the problem of creating accurate
models of rare classes with LCSs. This lead us to a decomposition in five elements that
focused on the problems that LCSs may have in discovering starved niches, and the study of
each element permitted us to derive simple models that provided key insights into the system
behavior and served as a design tool to improve LCSs’ ability to solve highly imbalanced
domains. The benefits of this approach have been soundly evidenced along the present work.

Therefore, the lesson extracted here is that design decomposition is a powerful tool not only
for analyzing GAs and LCSs, but also for studying any complex system for which models of
the whole system are too complex or costly. That is, design decomposition proposes a novel
engineering methodology in which complex problems are analyzed by decomposing them into
simpler subproblems and, with little algebraic effort, facetwise or “little” models are derived
for each subproblem assuming that all the other facets behave in an ideal manner. The models
of different facets provide key insights on the system behavior and can be used as a tool
for designing new competent systems that satisfy the requirements identified by the models.
Furthermore, this approach enables us to save efforts in computing more complex models that,
sometimes, may hide some important insights in their complexity. This thesis has provided
a good example of how “little” models can help us increase our understanding of complex
systems, solving new challenging problems that previously eluded solution. Therefore, the
results of this work provide another example of the power of design decomposition, which we
hope help encourage other researchers to follow this approach—or even utilize some of the
derived models—to analyze complex systems and apply LCSs to new challenging problems.

The relevance of ideas crossbreeding for successfully dealing with complex applications. The
second important conclusion of the present work is the need of mixing ideas that come from
different learning paradigms to tackle, scalably and efficiently, increasingly complex real-world
problems and to build more robust, intelligent, and practical machine learning techniques.
That is, current real-world applications usually consist of a large number of examples with
complex structures and, sometimes, with vagueness and uncertainty. Most of the typical
learning methods are not ready to deal with these types of data or, simply, are not scalable
and so not applicable to large data sets. Therefore, this situation demands gathering the best
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practices of different machine learning fields and building scalable learners that take the best
characteristics of each area. Actually, fields such as soft computing were born with the aim of
crossbreeding the ideas that come from different machine learning areas.

Fuzzy-UCS is an example of fruitful crossbreeding of LCSs, GAs, and fuzzy logics which re-
sulted in a system that can evolve fuzzy rule sets online from a stream of data that may contain
vagueness or uncertainty. In addition to the benefits shown in the application of Fuzzy-UCS
across several problems, its design comes with the second key lesson of this thesis. That is, the
design of Fuzzy-UCS makes evident that LCSs are a “friendly” framework for ideas crossbreed-
ing, probably because they were initially designed as a general framework to create artificial
intelligence itself. If we regard the general model proposed by the several Michigan-style LCSs
studied in the present work, we can realize that LCSs propose a largely general learning model
that permits easily incorporating new knowledge representations, apportionment of credit algo-
rithms, or even new search procedures. Therefore, in the current machine learning era, where
the field is constantly faced with increasingly challenging problems and ideas crossbreeding
appear as the best way to tackle these problems, LCSs turn to be one of the most appealing
methods to build next generation machine learning techniques.

All the results, the conclusions, and the lessons learned in this work have also served to fix
new objectives that will be approached in further work. In the next section, we take a glance
ahead and define two major future research lines that derive from this thesis.

9.3 Further Work

Along the consecution of the objectives of this thesis, several open issues that demand further
research have been identified in the end of each chapter. Here, we discuss two important future
work lines that come directly or indirectly from the work of this thesis. These two new goals
that will guide our immediate future work are:

1. Design measures to characterize real-world classification problems and relate this charac-
terization to the theory.

2. Adapt LCSs to extract association rules online.

The former, the need for a better characterization of real-world classification problems, was al-
ready emphasized in the comparison of several machine learning techniques performed in chapter
7. The later, the adaptation of LCSs to extract association rules online, comes motivated by the
types of problems in industry that currently face machine learning techniques. The motivation
for each of these two lines is elaborated in more detail in what follows.

Design measures to characterize real-world classification problems and relate this character-
ization to the theory. The study of the class-imbalance problem in LCSs indirectly evidenced
the increased difficulty of dealing with real-world problems. That is, in the first stage of the
study, we took an analytical approach, derived facetwise models, and validated these models
with artificial problems in which we could control the different dimensions of problem diffi-
culty. The experiments emphasized that, given the particular complexities of the artificial
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problems, the theory could explain the behavior of LCSs on these problems. Nonetheless, the
same analysis could not be directly applied to real-world problems. That is, the fact that the
characteristics of real-world problems were unknown opened a gap between the theory and its
application.

Therefore, to evaluate LCSs performance, we compared them with a collection of top-notch
machine learning techniques and analyzed which learners resulted in the most accurate results
on average. This type of comparison permitted us to extract conclusions on the average
performance of the learners; however, it provided poor information about whether a given
learner would be the best performer in a new real-world problem. This was an inevitable effect
of having no information about the intrinsic complexities of the new problem. Therefore, in
general, we could barely predict whether a given learner can efficiently solve a new problem.
To do this, we need to (1) identify the sources of complexity that affect each particular learner
and (2) create some methodology to characterize real-world problems. While the first types of
analyses are common in machine learning (the facetwise analysis provided in this thesis is a
clear example), the characterization of real-world problems is still a young field.

Consequently, the first future work line aims at advancing in the characterization of real-world
problems. For supervised learning, Ho and Basu (2002) designed a collection of metrics that
provide some indicators about the geometrical characteristics of the class distributions in the
training data set. Some analyses that relate these metrics with the error of XCS have been
already conducted (Bernadó-Mansilla and Ho, 2005; Bernadó-Mansilla et al., 2006). In spite
of these first successful analyses, these complexity metrics were not enough to fully capture all
the sources of difficulty of classification problems. Thence, as further work, we will follow up
these works, taking the defined metrics as starting point, with the aim of defining more metrics
and using them to characterize real-world problems. This characterization would permit us to
approach the theory to the actual difficulties of real-world problems.

Moreover, it appears appealing to use these metrics to enrich the study of different learning
systems by comparing them on collections of data sets with a certain given complexity. That is,
the characterization of learning domains would permit identifying the problem characteristics
for which each learner is better suited than the others, thence, identifying the sweet spot
where each learning algorithm is the best in the comparison. Furthermore, the definition of
complexity metrics would enable us not only to assess the difficulty of existing data sets, but
also to create new data sets with certain complexities to evaluate learning methods. The first
steps toward this promising research area have been taken in (Macià et al., 2008a,b,c).

Adapt LCSs to extract association rules online. Under the fourth objective of this thesis, we
designed Fuzzy-UCS, preparing the system to deal with streams of labeled data with vagueness
and uncertainty. This resulted in a powerful tool that was shown to be able to mine large data
sets online, which were made available as data streams. We already argued that the online
learning architecture made Fuzzy-UCS an appealing alternative to extract classification models
from data streams, which is increasingly demanded in industrial applications.

In addition, there are many industrial applications which generate streams of unlabeled data
(Aggarwal, 2007; Gama and Gaber, 2007). This defines an unsupervised learning problem, in
which learning examples need to be processed on the fly to extract useful information. To solve
these types of problems, we propose to use the same ideas of XCS, UCS, and Fuzzy-UCS and
prepare LCSs to extract key information from these streams of data in form of association rules.
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For this purpose, concepts of association rule mining would be incorporated to a system similar
to Fuzzy-UCS, and the affected mechanisms of the system would be modified to deal with the
new representation. Note that this future work line also puts emphasis on the crossbreeding
of ideas to solve a new challenging problem in machine learning. That is, we propose to define
an unsupervised learning technique by combining the best practices in LCSs, GAs, fuzzy logic,
and association rule mining.

Recently, the first steps toward this direction have been taken. A Michigan-style LCS for
association rule mining, which incorporates many of the mechanisms discussed in this thesis,
was designed in (Orriols-Puig et al., 2008f). Later, another version of the same system, which
included the fuzzy representation of Fuzzy-UCS, was used to model the consumer behavior
in a web-based trust model (Orriols-Puig et al., 2008h,g). New applications as well as more
analyses of the system behavior will be conducted as further work.

After all the conclusions and future work lines provided through all the chapters of this
thesis and collected in the present and previous sections, little extra motivation can be given
to highlight the many future lines of this work. To conclude with the thesis, I would only
recall to the reader the innovation and creativity capabilities of evolution, which by means of
basic genetic information (building blocks) mixing, random changes, and selection-of-the-fittest
principle, has been able to provide accurate, adapted, and diverse solutions to life. Therefore,
the power of competent GAs, LCSs, and GBML systems encourages their application to solve
increasingly challenging problems that require a dose of innovation and creativity. Without
GAs, many real-world problems would not have been solved. Surely, GAs and GBML have a
lot to contribute in the following decades.
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Appendix A

Description of the Artificial
Problems

This appendix describes the artificial problems used along the chapters of this thesis. For each
problem, we provide a concise description, specify and give a particular example of the best
action map [B] (Bernadó-Mansilla and Garrell, 2003) and the complete action map [O] (Wilson,
1995; Kovacs and Kerber, 2001) of the problem, and describe the dimensions along which the
problem difficulty can be moved.

A.1 Parity

The parity is a problem that has widely been used as a benchmark in LCS since it was originally
introduced by Kovacs (2001) to show the dependence of XCS’s performance on the optimal
population size. The problem is defined as follows. Given a binary string of length `, where
there are k relevant bits (0 < k ≤ `), the output is the number of one-valued bits in the k relevant
bits modulo two. The complexity of the problem can be moved along the building block length,
which is controlled with the parameter k. That is, larger values of k poses more complexity to
the learner, which needs to discover larger building blocks, and so, larger populations, without

Table A.1: Best action map (first and second columns) and complete action map (all columns)
of the parity problem with ` = k = 4.

0000:0 1000:1 0000:1 1000:0
0001:1 1001:0 0001:0 1001:1
0010:1 1010:0 0010:0 1010:1
0011:0 1011:1 0011:1 1011:0
0100:1 1100:0 0100:0 1100:1
0101:0 1101:1 0101:1 1101:0
0110:0 1110:1 0110:1 1110:0
0111:1 1111:0 0111:0 1111:1
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Table A.2: Best action map (first column) and complete action map (all columns) of the decoder
problem with ` = k = 4.

0000:0 ###:0 #1##:0 ##1#:0 ###1:0
0001:1 ###:1 #1##:1 ##1#:1 ###0:1
0010:2 ###:2 #1##:2 ##0#:2 ###1:2
0011:3 ###:3 #1##:3 ##0#:3 ###0:3
0100:4 ###:4 #0##:4 ##1#:4 ###1:4
0101:5 ###:5 #0##:5 ##1#:5 ###0:5
0110:6 ###:6 #0##:6 ##0#:6 ###1:6
0111:7 ###:7 #0##:7 ##0#:7 ###0:7
1000:8 ###:8 #1##:8 ##1#:8 ###1:8
... ... ... ... ...
1111:15 ###:15 #0##:15 ##0#:15 ###0:15

fitness guidance.

The best action map size consists of 2` rules, each one with all the k relevant bits specified
and predicting the correct class. The complete action map doubles the best action map, as it
also maintains specific rules predicting the wrong class; thence, the size of the complete action
map is |[O]| = 2`+1. Table A.1 shows the best action map and the correct action map for a
parity problem with ` = 4 and k = 4.

A.2 Decoder

The decoder problem is an artificial problem with binary inputs and multiple classes. Given
an input of length `, where there are k relevant bits (0 < k ≤ `), the output is determined by
the decimal value of k relevant bits. Therefore, the k relevant bits form a building block. The
number of classes increases exponentially with the condition length, that is, numclasses = 2`.
Thus, k controls three dimensions of complexity: the number of classes, the length of the building
blocks of the problem, and the size of the optimal population.

The best action map is formed by 2` classifiers, each one with the k relevant variables
specified and the class set to the decimal value of the k relevant bits. The complete action map
adds ` consistently incorrect rules per each consistently correct rule of the best action map;
thus, |[O]| = 2` · (` + 1). Table A.2 shows the best action map and the correct action map for a
decoder problem with ` = 4 and k = 4. Note that whilst the best action map contains classifiers
with all k bits specified, the correct action map contains consistently incorrect classifiers that
have all bits general but one.

A.3 Position

Position is an imbalanced multi-class problem defined as follows. Given a binary-input instance
of length `, the output is the position of the left-most one-valued bit. The best action map
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Table A.3: Best action map (first column) and complete action map (all columns) of position
with `=6.

000000:0 1#####:0 #1####:0 ##1###:0 ###1##:0 ####1#:0 #####1:0
000001:1 1#####:1 #1####:1 ##1###:1 ###1##:1 ####1#:1 #####0:1
00001#:2 1#####:2 #1####:2 ##1###:2 ###1##:2 ####1#:2
0001##:3 1#####:3 #1####:3 ##1###:3 ###0##:3
001###:4 1#####:4 #1####:4 ##0###:4
01####:5 1#####:5 #0####:5
1#####:6 0#####:6

Table A.4: Best action map (first column) and complete action map (all columns) of the
multiplexer problem with ` = 6.

000###:0 000###:1
001###:1 001###:0
01#0##:0 01#0##:1
01#1##:1 01#1##:0
10##0#:0 10##0#:1
10##1#:1 10##1#:0
11###0:0 11###0:1
11###1:1 11###1:0

consists of ` + 1 rules with different levels of generalization. The complete action map needs
to maintain `2+3`

2 consistently incorrect rules; thence, the size of the complete action map is
|[O]| = ` + 1 + `2+3`

2 Table A.3 shows the best action map and the complete action map for
position with ` = 6. Notice that k controls four dimensions of complexity: the number of classes,
the length of the building block, the size of the optimal population, and the imbalance ratio
between the most general and the most specific optimal classifier.

A.4 Multiplexer

The multiplexer problem is one of the most used benchmarks in accuracy-based learning classifier
systems (Wilson, 1995). The multiplexer is defined for binary strings of size `, where the first
log2 ` bits are the address bits and the remaining bits are the position bits. Then, the output
is the value of the position bit referred by the decimal value of the address bits. Note that k
controls two dimensions of problem difficulty: the length of the building block and the size of
the optimal population.

The best action map consists of 2log2`+1 classifiers with all the address bits and the cor-
responding position bit specified and all the other bits set to ‘#’. The complete action adds
2log2`+1 classifiers with the same conditions as those in the best action map, but the opposite
class; therefore, |[O]| = 2log2`+2. Table A.4 shows an example of the best action map and the
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complete action map for the multiplexer problem with ` = 6.

A.4.1 Imbalanced Multiplexer

The imbalanced multiplexer was introduced in (Orriols-Puig and Bernadó-Mansilla, 2006a) to
analyze the effects of under-sampled classes in XCS. Departing from the original multiplexer
problem, the imbalanced multiplexer under-samples one of the classes—labeled as the minority
class—so that the ratio of the number of instances of class 0 to the number of instances of class
1 sampled to the system equals to the parameter ir, which is specified by the user. The best and
the complete action map are the same than those of the original multiplexer problem. Therefore,
the system has to generalize the same optimal population regardless of the fact that the instances
of one of the classes are under-sampled. Note that the imbalanced multiplexer enables moving
the complexity of the problem along three dimensions: the length of the building block, the size
of the optimal population, and the imbalance ratio.

A.4.2 Multiplexer with Alternating Noise

The multiplexer with alternating noise was firstly used in (Butz, 2006) to show that XCS with
tournament selection is able to handle data sets with inconsistent data. The problem modifies
the multiplexer by adding alternating noise. That is, when a new input instance corresponding
to the multiplexer problem is sampled, its action is flipped with probability Px. Again, the best
and the complete action map are the same than those of the original multiplexer problem. Note
that the multiplexer with alternating noise permits moving the complexity of the problem along
three dimensions: the length of the building block, the size of the optimal population, and the
proportion of noise in the class of the learning instances.
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Statistical Tests

This appendix describes the statistical tests employed along this thesis. We first briefly moti-
vate the use of non-parametric statistical tests for multiple and pairwise comparisons. Then, we
describe the methodology used to statistically analyze the results in the experimental compar-
isons of this thesis. This methodology contemplates comparisons among multiple learners and
comparisons between pairs of learners. The procedures followed and the particular tests used in
each of the two types of comparisons are explained in detail.

B.1 Statistical Tests for Contrasting Hypotheses

The strong research on machine learning has resulted in the design of several learning algorithms
whose behavior is typically compared with existing learning systems on a collection of data sets.
For this purpose, the machine learning community has agreed in some common procedures to set
up the experiments. Currently, most of the published papers use validation procedures such as
k-fold cross validation (Dietterich, 1998) to obtain reliable estimates of the metric employed to
assess the quality of the learners. In turn, this quality can be measured with different metrics; for
example, in this thesis, we have used the test accuracy, the product of TP rate and TN rate, and
the size of the models as some of these indicators. This procedure yields large tables of results
in which, for each data set and method, we have n measures of performance (n ≥ 1) that have
been obtained by applying the method in each validation set and repeating this procedure for
multiple seeds in case that either the validation process or the learning algorithm is stochastic.

The purpose of this chapter is to provide detail on the statistical tests employed to analyze
these tables of results. The underlying idea is to apply statistical methods to contrast our initial
hypotheses. Some examples of these hypotheses could be

• “method A outperforms method B”, for pairwise comparisons, or

• “method A is the best of the comparison, surpassing the results obtained with methods
B, C, and D”, for multiple comparisons.

All the statistical methodology presented herein follows the recommendations by Demšar (2006),
who emphasizes the importance of using non-parametric statistical tests for the types of compar-
isons usually performed in machine learning. The reason for this is clearly stated by the author;
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in general, parametric tests require that the input data—in our case, the tables of results, which
consist of the performance of the compared methods—satisfy strong conditions, and the tests to
check these conditions need large amounts of data—that is, a large number of data sets—to be
effective (for further details, please see (Demšar, 2006)). This is not usually the case in machine
learning. For this reason, all the statistical analyses conducted in this thesis have been based
on non-parametric tests.

In the following sections, we describe the methodology used to compare (1) pairs of learners
(section B.2), and (2) multiple learners (section B.3). All these tests are computed on tables
of results in which, for each data set and learner, a single performance measure is provided; in
case of multiple runs, the average performance is supplied. For each statistical test, we provide
a general description of which type of null hypotheses the statistical tests check and carefully
describe the process followed by the test, illustrating the procedure with an example.

B.2 Comparisons of Two Learning Systems

When two algorithms are compared, we aim at contrasting the null hypothesis of whether
“algorithm A significantly outperforms algorithm B on a collection of problems”. Following the
recommendations by Demšar (2006), in our statistical comparisons we avoided using the paired
t-test parametric test (Sheskin, 2000), probably the most used test for pairwise comparisons
in machine learning in the last decade. Although this common use, the main drawback of the
paired t-test is that it requires three conditions on the data: commensurability of the data,
normal distribution of the differences between the two random variables, and lack of outliers.
Since these three conditions are hard to satisfy in the typical machine learning comparisons,
our statistical analysis used the non-parametric counterpart of the paired t-test, that is, the
Wilcoxon signed-ranks test (Wilcoxon, 1945). The Wilcoxon signed-ranks test can be reliably
applied to the average of the performance measure computed for a machine learning technique
and imposes no additional restrictions to the data. As proceeds, this test is explained in more
detail.

B.2.1 The Wilcoxon Signed-Ranks Test

The Wilcoxon signed-ranks test ranks the differences in the performance of two classifiers for
each data set, ignoring the signs, and compares the ranks for the positive and the negative
differences. As proceeds, we explicate the procedure to compute the statistic for this test.
Besides, we exemplify the procedure by applying the statistical test on the results of table B.1,
in which the performance of two methods, let us say method M1 and method M2, are compared
on a collection of 20 data sets. For each method and data set, the table provides an average
value of performance.

The first step of the test is to compute the differences of the performance measures obtained
by each method in each data set. These differences are calculated in the fourth column of table
B.1. Then, the absolute values of these differences are ranked, considering that the smallest
difference holds the first position of the ranking, and the largest difference gets the last position
of the ranking. In case of ties, the average rank is assigned to all the elements that have the
same performance.
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Table B.1: Comparison of the performance of methods M1 and M2 (second and third column).
The fourth column provides the performance difference, and the fifth column supplies the rank
of the differences.

M1 M2 difference rank
ann 97.39 98.61 1.22 11
aut 67.42 69.32 1.90 14
bal 84.40 83.40 -1.00 9
bpa 59.42 58.93 -0.49 7
cmc 49.67 49.42 -0.25 5
col 82.46 78.50 -3.96 18
gls 57.21 57.43 0.22 4
h-c 82.62 82.05 -0.57 8
h-s 80.78 78.11 -2.67 16
irs 95.47 93.73 -1.74 12
pim 74.11 74.32 0.21 3
son 73.71 71.66 -2.05 15
tao 83.02 87.53 4.51 20
thy 89.49 91.25 1.76 13
veh 65.35 65.34 -0.01 1
wbcd 95.73 95.29 -0.44 6
wdbc 94.61 94.51 -0.10 2
wne 94.86 91.82 -3.04 17
wpbc 76.05 71.69 -4.36 19
zoo 94.78 95.90 1.12 10

Thereafter, the method computes R+ as the sum of ranks for the data sets on which M2
outperformed M1, and R− as the sum of ranks for the data sets on which M1 outperformed
M2. Ranks for which the difference is 0 are split evenly between R+ and R−. If there is an odd
number of them, one is ignored. In the example, we obtain R+ = 75 and R− = 135.

Then, we assign to T the smaller value between R+ and R−, that is, T = min(R+, R−).
With T , we can compute the z statistic as

z =
T − 1

4N(N + 1)√
1
24N(N + 1)(2N + 1)

, (B.1)

where z is distributed normally and N is the number of data sets of the comparison. With
α = 0.05, the null hypothesis can be rejected if z is smaller than -1.96. The exact p-value can
be extracted from the table of the normal distribution.

Let us apply this final step to our example. Replacing T = 75 and N = 20 into equation
B.1, we obtain that z = −1.11. As z < −1.96, we cannot reject the hypothesis that both
learners perform the same, on average, with α = 0.05. Besides, by consulting the table of the
normal distribution, we can compute the exact p-value by checking the probability whose value
approaches the z statistic the most; in this case, we obtained p = 0.26.
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Table B.2: Comparison of the performance of methods M1, M2, and M3. For each method and
data set, the average rank is supplied in parentheses. The last column provides the rank of each
learning algorithm for each data set.

M1 M2 M3
ann 98.85 (1) 97.39 (3) 98.61 (2)
aut 74.42 (1) 67.42 (3) 69.32 (2)
bal 88.65 (1) 84.40 (2) 83.40 (3)
bpa 59.82 (1) 59.42 (2) 58.93 (3)
cmc 51.72 (1) 49.67 (2) 49.42 (3)
col 85.01 (1) 82.46 (2) 78.50 (3)
gls 60.65 (1) 57.21 (3) 57.43 (2)
h-c 84.39 (1) 82.62 (2) 82.05 (3)
h-s 81.33 (1) 80.78 (2) 78.11 (3)
irs 95.67 (1) 95.47 (2) 93.73 (3)
pim 74.88 (1) 74.11 (3) 74.32 (2)
son 80.78 (1) 73.71 (2) 71.66 (3)
tao 81.71 (3) 83.02 (2) 87.53 (1)
thy 88.18 (3) 89.49 (2) 91.25 (1)
veh 67.68 (1) 65.35 (2) 65.34 (3)
wbcd 96.01 (1) 95.73 (2) 95.29 (3)
wdbc 95.20 (1) 94.61 (2) 94.51 (3)
wne 94.12 (2) 94.86 (1) 91.82 (3)
wpbc 76.06 (1) 76.05 (2) 71.69 (3)
zoo 96.50 (1) 94.78 (3) 95.90 (2)
Avg 1.25 2.20 2.55

B.3 Comparisons of Multiple Classifiers

In a multiple classifier comparison, the machine learning practitioner may think of using pairwise
comparisons repeatedly, so that all possible pairs of algorithms are compared against each other.
Although this has been a common practice in machine learning, statisticians have warned that
this procedure causes a certain proportion of the null hypotheses to be rejected due to random
chance (Sheskin, 2000; Demšar, 2006). In fact, testing multiple hypotheses is a well-known
problem is statistics. Along this thesis, we have followed the methodology proposed by Demšar
(2006), which is based on non-parametric statistical tests. This methodology proposes to first
apply a multiple-comparison test to analyze whether all the algorithms performed the same on
average. If this is the case, no further actions can be taken. Otherwise, different post-hoc tests
can be applied depending on the null hypothesis to be tested.

As proceeds, we describe the three multiple-comparison tests used in this thesis. We first
describe the Friedman’s tests (Friedman, 1937, 1940), which contrasts the null hypothesis of
whether all the algorithms perform the same on average. Then, we explain the Nemenyi test
(Nemenyi, 1963), a post-hoc test that compares all learning algorithms with each other. Finally,
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we describe the Bonferroni-Dunn procedure (Dunn, 1961), which compares all the learning
algorithms with another one that is selected as the control classifier. To exemplify the procedures,
we apply each test on the results of the comparison of three learners provided in table B.2.

B.3.1 Friedman’s Test

The Friedman’s test (Friedman, 1937, 1940) is a non-parametric multiple-comparison test that
is used to detect significant differences across multiple methods. That is, the procedure checks
the null hypothesis of “whether all algorithms perform the same on average”. The procedure
is similar to its parametric counter part, the ANOVA test (Fisher, 1959). The key difference
between them is that the Friedman’s test is based on the ranks of the algorithms and does
not require further assumptions of normality and sphericity of the data (Demšar, 2006). As
proceeds, the statistical procedure is detailed and applied to the example in table B.2.

The procedure starts ranking the algorithms for each data set (see the ranks in parentheses
in table B.2). In case of ties, the average rank is assigned to each learner. Then, the procedure
computes the average rank Ri of each algorithm i, which is provided in the last row of table
B.2. Next, the Friedman statistic is computed as

χ2
F =

12N

k(k + 1)

[∑
i

R2
i −

k(k + 1)2

4

]
(B.2)

where N is the number of data sets, and k is the number of learning algorithms in the comparison.
The Friedman statistic is distributed according to the χ2 distribution with k − 1 degrees of
freedom.

Let us now calculate the Friedman statistic for the example in table B.2. Replacing N = 20
and k = 3 in equation B.2 we obtain that

χ2
F =

12 · 20
3 · 4

[
(1.252 + 2.202 + 2.552) − 3 · 42

4

]
= 18.1 (B.3)

With three algorithms, the statistic behaves as the χ2 distribution with 2 degrees of freedom.
Hence, the critical value of χ2(2) for α = 0.05 is 10.60. As the computed Friedman statistic is
greater than 10.60, we can reject the null hypothesis that all the learners perform the same on
average. Besides, we can use the same table to provide the p-value by checking the probability
whose value is the closest to the obtained Friedman statistic; in this example, p=0.0001.

When the Friedman procedure rejects the null hypothesis, a post-hoc test is applied to detect
further differences. The next subsections explicate two of these procedures: the Nemenyi test
and the Bonferroni-Dunn test.

B.3.2 Post-hoc Nemenyi Test

The post-hoc Nemenyi test aims at comparing all classifiers with each other. The method
is based on the critical distance among learners, that is, the minimum distance between two
methods to consider that they are statistically different. The procedure is detailed as follows.
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Table B.3: Critical values for the two-tailed Nemenyi test.

#classifiers 2 3 4 5 6 7 8 9 10
q0.05 1.960 2.343 2.569 2.728 2.850 2.949 3.031 3.102 3.164
q0.10 1.645 2.052 2.291 2.459 2.589 2.693 2.780 2.855 2.920

1 1.5 2 2.5 3

↓
M1

1.25

↓
M2

2.2

↓
M3

2.55

CD = 0.649 

Figure B.1: Comparison of the performance of all classifiers against each other with the Nemenyi
test. Groups of classifiers that are not significantly different (at α = 0.10) are connected.

The Nemenyi test considers that the performance of two classifiers is different if the distance
between their ranks is larger than the critical distance CD computed as

CD = qα

√
k(k + 1)

6N
(B.4)

where N and k are the number of learners and the number of data sets respectively, and qα is
the critical value based on the Studentized range statistic (Sheskin, 2000). Table B.3 provides
the critical values for the Nemenyi test for α = {0.05, 0.01} and from k = 2 to k = 10.

The critical distance for the example in table B.2 is calculated as follows. Recognizing that
k = 3, we can extract, from table B.3, that q0.10 = 2.052 at α = 0.10. Thence, the critical
distance is

CDα=0.10 = 2.052

√
3 · 4
6 · 20

= 0.649 (B.5)

Therefore, any pair of algorithms whose rank differs by more than 0.649 perform significantly
different. These results are illustrated in figure B.1 in which each learner is depicted according
to its rank, and all the algorithms that perform equivalently are connected with a line.
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Table B.4: Critical values for the two-tailed Bonferroni-Dunn test.

#classifiers 2 3 4 5 6 7 8 9 10
q0.05 1.960 2.241 2.394 2.498 2.576 2.638 2.690 2.724 2.773
q0.10 1.645 1.960 2.128 2.241 2.326 2.394 2.450 2.498 2.539

B.3.3 Post-hoc Bonferroni-Dunn Test

If we want to compare all learning systems with respect to a control learner, we can use the
Bonferroni-Dunn (Dunn, 1961) test instead of the Nemenyi test. As proceeds, this statistical
procedure is explained in detail.

The Bonferroni-Dunn test provides a general procedure to control the family-wise error in
multiple hypotheses tests by dividing α by the number of comparisons that have to be performed;
in our case, we perform k − 1 comparisons since each learner is compared with the control
algorithm. The statistical procedure can be computed in two different ways. Firstly, the statistic
for comparing the ith and the jth classifiers can be calculated as

z =
Ri − Rj√

k(k+1)
6N

(B.6)

where Ri and Rj are the ranks of the ith and the jth learners, k is the number of learning
systems in the comparison, and N is the number of data sets. Once computed, the z value
is used to find the corresponding probability from the table of normal distribution, which can
be compared with the desired α. As mentioned, the significance level needs to be adjusted as
α/(k − 1).

The second equivalent procedure to compute the Bonferroni-Dunn test is by using the concept
of critical distance, as done by the Nemenyi test. The critical distance is computed as indicated
in equation B.4, where the values of qα are calculated from the Studentized range statistic, but
with the difference that α/(k − 1) instead of α is considered to obtain these values. Table B.4
provides the critical values for the Bonferroni-Dunn test for α = {0.05, 0.01} and from k = 2 to
k = 10. The advantage of applying this second procedure to compute the Bonferroni-Dunn test
is that the results can be visually illustrated, as done for the Bonferroni-Dunn test.

Let us now compute the Bonferroni-Dunn test for the example in table B.2. The first step is
to identify the control learner with which the classifiers will be compared. Let us assume that we
want to compare the different classifiers with the best rank method, that is, M1. Then, having
that k = 3, table B.3 indicates that q0.10 = 1.960 at α = 0.10. Thence, the critical distance is

CD = 1.960

√
3 · 4
6 · 20

= 0.619 (B.7)

Then, we compare the differences of ranks between each classifier and the control learner. The
difference between the ranks of M1 and M2 is 0.95 which is greater than 0.619; therefore, M2
significantly degrades the results of M1. Similarly, the difference between the ranks of M1 and
M3 is 1.30, which in turn is greater than 0.619; thence, M1 also significantly outperforms M3
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APPENDIX B. STATISTICAL TESTS

according to a Bonferroni-Dunn test at α = 0.10. The same graphical representation as the one
done for the Nemenyi test can be used here. Nonetheless, note that, in this case, M1 significantly
outperforms all the other methods, so no graphic representation is necessary.

B.4 Summary

This appendix has described the statistical tests used along the thesis. We first briefly dis-
cussed the robustness of non-parametric tests with respect to parametric tests and draw the
methodology used in this thesis to compare pairs of classifiers and multiple (more than two)
learning systems. Then, each of these two types of comparisons got a different section where the
particular statistical methods used in our analyses were described in detail, providing a detailed
example of use for each one.
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Appendix C

Full Results of the Comparison of
the Re-sampling Techniques

Section 7.5 analyzed whether the application of re-sampling methods improved the accuracy
of the models extracted by XCS, UCS, C4.5, SMO, and IBk on imbalanced domains. For
compactness, the analysis only gathered the statistical analysis and extracted conclusions from
it. The purpose of this appendix is to provide the full results of the comparison, which involved
the following four re-sampling techniques: (1) random over-sampling, (2) under-sampling based
on Tomek links, (3) SMOTE, and (4) cSMOTE. As proceeds, we describe and provide the tables
of results.

Description of the Tables of Results
Tables C.1, C.2, C.3, C.4, and C.5 supply the average of the product of the TP rate and the

TN rate obtained in each data set by C4.5, SMO, IBk, XCS, and UCS respectively. Moreover,
to let a more detailed analysis of each problem, we also provide pair-wise comparisons for each
particular combination of learner and re-sampling technique per data set. The • and ◦ symbols
denote a significant degradation/improvement of the method in the corresponding data set with
respect to the same data set but with another re-sampling method (or without re-sampling).
We acknowledge in advance that pair-wise comparisons may be taken with a grain of salt;
nevertheless, they also help draw good insights about the performance of each learner. Finally,
the last four rows of the table summarize (i) the average performance, (ii) the average rank,
(iii) the position of each learner in the ranking, and (iv) the number of times that the results
obtained with the learner are surpassed/degraded by another learner.
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APPENDIX C. FULL RESULTS OF THE COMPARISON OF THE RE-SAMPLING TECHNIQUES

Table C.1: Comparison of the performance, measured as the product of TP rate and TN rate,
achieved by C4.5 with the original and re-sampled data sets. For each method and data set, the
• and ◦ symbols indicate that the method is statistically inferior/superior than another of the
learners according to a Wilcoxon signed-ranks test at α = 0.05. Avg provides the performance
average of each method over the 25 data sets. Rows Rank and Pos show the average rank of each
learning algorithm and its position in the ranking respectively. The last row provides Inf/Sup,
where Inf is the number of times that the learner has been surpassed by another one, and Sup
is the number of times that the method has outperformed another one.

Original Ovs UnsTL SMOTE cSMOTE

bald1 0.00 ± 0.00 • 19.91 ± 37.27 ◦ ◦ ◦◦ 0.00 ± 0.00 • 0.00 ± 0.00 • 1.90 ± 6.32 •

bald2 69.30 ± 6.83 • 67.57 ± 6.85 •• 68.03 ± 6.40 • 72.73 ± 8.28 ◦ 75.35 ± 6.88 ◦ ◦ ◦

bald3 71.20 ± 6.04 •◦ 68.31 ± 5.55 • 65.78 ± 4.91 • • • 72.82 ± 4.21 ◦ 77.75 ± 6.87 ◦ ◦ ◦

bpa 33.08 ± 14.09 36.81 ± 11.78 31.67 ± 17.31 33.31 ± 7.49 29.56 ± 15.74
glsd1 79.50 ± 42.16 89.50 ± 31.62 89.81 ± 0.00 • 99.50 ± 0.00 ◦◦ 59.00 ± 51.64 •

glsd2 34.50 ± 47.43 • 82.50 ± 33.75 ◦ 58.50 ± 48.30 63.50 ± 47.43 68.00 ± 42.16
glsd3 28.97 ± 42.16 • 46.45 ± 47.14 45.96 ± 35.36 64.95 ± 42.16 ◦ 24.22 ± 35.36
glsd4 73.55 ± 32.63 80.70 ± 25.40 71.73 ± 19.95 • 84.93 ± 19.33 ◦ 74.29 ± 32.63
glsd5 66.52 ± 16.77 ◦ 70.29 ± 17.10 ◦ 52.12 ± 15.06 • • •• 64.77 ± 16.56 ◦ 66.68 ± 15.43 ◦

glsd6 52.54 ± 15.13 53.80 ± 9.75 49.78 ± 15.69 54.54 ± 24.12 46.34 ± 25.53
h-s 63.33 ± 13.29 58.06 ± 9.98 61.17 ± 15.84 59.44 ± 14.80 56.67 ± 13.72
pim 43.87 ± 13.27 • 54.68 ± 7.25 ◦◦ 50.50 ± 12.19 52.38 ± 8.98 46.76 ± 7.87 •

tao 90.98 ± 2.14 • 90.98 ± 2.14 • 91.10 ± 1.30 92.71 ± 1.53 ◦◦ 91.86 ± 3.96
thyd1 87.61 ± 16.10 84.63 ± 17.21 87.31 ± 14.05 82.09 ± 17.21 76.53 ± 17.21
thyd2 93.24 ± 12.45 ◦ 91.94 ± 12.45 85.32 ± 13.61 • 91.11 ± 13.61 88.06 ± 16.87
thyd3 87.65 ± 10.34 88.13 ± 8.08 86.06 ± 7.81 83.25 ± 11.99 84.79 ± 8.05
wavd1 67.79 ± 4.06 •◦ 67.99 ± 2.93 ◦ 70.25 ± 3.36 ◦◦ 70.75 ± 4.02 ◦ 64.04 ± 3.50 • • ••

wavd2 62.54 ± 3.89 65.05 ± 3.62 ◦ 64.02 ± 3.19 64.41 ± 2.91 ◦ 61.33 ± 3.56 ••

wavd3 68.60 ± 2.38 •◦ 69.35 ± 3.35 •◦ 70.54 ± 2.18 ◦◦ 71.45 ± 3.50 ◦◦ 65.66 ± 3.54 • • ••

wbcd 89.12 ± 3.42 89.63 ± 4.21 90.70 ± 3.29 91.94 ± 2.18 91.94 ± 5.17
wdbc 88.79 ± 5.09 86.51 ± 6.88 85.95 ± 5.01 87.67 ± 3.30 86.53 ± 5.04
wined1 85.15 ± 16.63 89.62 ± 16.63 79.92 ± 16.36 89.92 ± 16.36 89.69 ± 13.98
wined2 91.81 ± 8.05 89.38 ± 8.05 87.71 ± 8.05 • 91.74 ± 8.05 ◦ 88.47 ± 8.78
wined3 87.62 ± 11.70 84.46 ± 11.68 84.03 ± 9.64 84.61 ± 6.90 83.36 ± 11.76
wpbc 33.55 ± 12.87 33.30 ± 21.92 30.19 ± 13.29 38.36 ± 21.66 30.66 ± 28.36

Avg 66.03 70.38 66.33 70.52 65.18

Rank 3.00 2.60 3.68 2.14 3.58

Pos 3 2 5 1 4

Inf/Sup 9/5 5/11 13/4 1/14 13/7
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Table C.2: Comparison of the performance, measured as the product of TP rate and TN rate,
achieved by SMO with the original and re-sampled data sets. For each method and data set,
the • and ◦ symbols indicate that the method is statistically inferior/superior than another of the
learners according to a Wilcoxon signed-ranks test at α = 0.05. Avg provides the performance
average of each method over the 25 data sets. Rows Rank and Pos show the average rank of each
learning algorithm and its position in the ranking respectively. The last row provides Inf/Sup,
where Inf is the number of times that the learner has been surpassed by another one, and Sup
is the number of times that the method has outperformed another one.

Original Ovs UnsTL SMOTE cSMOTE

bald1 0.00 ± 0.00 • 16.38 ± 13.78 ◦ ◦ ◦◦ 0.00 ± 0.00 • 0.00 ± 0.00 • 0.00 ± 0.00 •

bald2 84.03 ± 7.30 ◦◦ 84.28 ± 7.11 ◦◦ 85.09 ± 6.50 ◦◦ 76.94 ± 8.26 • • • 77.88 ± 9.00 • • •

bald3 85.81 ± 8.40 •◦ 85.43 ± 9.16 •◦ 85.24 ± 6.11 •◦ 78.06 ± 9.85 • • •• 90.13 ± 7.76 ◦ ◦ ◦◦

bpa 0.00 ± 0.00 • • • 36.33 ± 6.75 ◦ ◦ ◦◦ 11.99 ± 4.16 • • ◦◦ 0.00 ± 0.00 • • • 28.18 ± 11.16 • ◦ ◦◦

glsd1 0.00 ± 0.00 •• 87.83 ± 7.60 ◦ ◦ ◦ 71.71 ± 24.59 ◦ ◦ ◦ 10.00 ± 31.62 •• 0.00 ± 0.00 ••

glsd2 15.00 ± 33.75 • • • 82.50 ± 29.74 ◦◦ 67.00 ± 36.61 • ◦ ◦ 74.50 ± 39.61 ◦ ◦ ◦ 15.00 ± 33.75 • • •

glsd3 0.00 ± 0.00 •• 30.36 ± 11.39 ◦ ◦ ◦ 21.03 ± 16.84 ◦ ◦ ◦ 0.00 ± 0.00 •• 0.00 ± 0.00 ••

glsd4 80.03 ± 24.33 85.09 ± 17.44 ◦ 82.03 ± 16.81 •• 85.61 ± 17.83 ◦ 82.99 ± 19.30
glsd5 9.50 ± 9.42 • • •• 44.67 ± 16.83 ◦◦ 38.33 ± 13.33 •◦ 42.57 ± 14.42 ◦ 28.65 ± 22.27 ◦

glsd6 0.00 ± 0.00 • • •• 26.89 ± 13.24 ◦◦ 27.36 ± 11.27 ◦◦ 17.71 ± 8.40 • • ◦ 22.28 ± 14.58 ◦

h-s 68.83 ± 8.87 ◦ 66.89 ± 9.24 67.61 ± 7.32 65.83 ± 12.08 63.78 ± 8.70 •

pim 48.31 ± 5.60 • • • 55.75 ± 7.12 ◦ 56.25 ± 6.88 ◦◦ 49.79 ± 8.14 • 53.44 ± 8.05 ◦

tao 70.59 ± 6.45 ◦◦ 70.59 ± 6.45 ◦◦ 70.49 ± 6.15 ◦ 62.44 ± 5.91 • • •• 69.28 ± 6.92 • • ◦

thyd1 76.67 ± 22.50 • 90.00 ± 16.10 ◦◦ 80.00 ± 23.31 80.00 ± 23.31 76.67 ± 22.50 •

thyd2 54.17 ± 24.92 • • •• 98.33 ± 2.68 ◦◦ 93.61 ± 12.29 ◦ 96.39 ± 7.86 ◦◦ 80.83 ± 18.02 • • ◦

thyd3 33.81 ± 21.35 • • • 52.38 ± 19.76 ◦ ◦ ◦ 41.67 ± 21.68 •• 62.13 ± 18.65 ◦ ◦ ◦ 39.76 ± 24.49 • • ◦

wavd1 78.68 ± 4.27 •• 80.98 ± 3.00 ◦◦ 80.81 ± 2.90 ◦◦ 80.35 ± 2.37 78.84 ± 3.73 ••

wavd2 72.30 ± 2.71 •• 75.15 ± 2.18 ◦◦ 74.67 ± 1.69 ◦ 74.40 ± 2.56 73.75 ± 1.80 •

wavd3 79.57 ± 2.04 81.09 ± 1.35 ◦ 80.84 ± 1.49 80.55 ± 1.57 • 79.75 ± 2.58
wbcd 92.70 ± 5.32 • 93.70 ± 5.06 93.31 ± 5.64 • 95.30 ± 4.68 ◦◦ 93.12 ± 6.19
wdbc 94.28 ± 3.28 93.64 ± 4.66 93.60 ± 3.04 93.63 ± 4.82 92.80 ± 4.71
wined1 98.46 ± 3.24 98.46 ± 3.24 96.15 ± 4.05 98.46 ± 3.24 96.46 ± 6.61
wined2 97.50 ± 5.62 97.50 ± 4.03 95.00 ± 4.30 96.67 ± 4.30 96.67 ± 5.83
wined3 97.14 ± 6.02 95.71 ± 6.90 92.94 ± 8.14 95.23 ± 6.36 94.45 ± 7.93
wpbc 9.37 ± 16.98 • • •• 43.76 ± 16.91 ◦ 38.92 ± 19.79 ◦ 42.35 ± 18.95 ◦ 43.85 ± 21.27 ◦

Avg 53.87 70.95 65.83 62.36 59.14

Rank 3.74 1.60 2.92 3.08 3.66

Pos 5 1 2 3 4

Inf/Sup 6/40 1/40 11/24 23/14 23/14
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APPENDIX C. FULL RESULTS OF THE COMPARISON OF THE RE-SAMPLING TECHNIQUES

Table C.3: Comparison of the performance, measured as the product of TP rate and TN rate,
achieved by IBk with the original and re-sampled data sets. For each method and data set, the
• and ◦ symbols indicate that the method is statistically inferior/superior than another of the
learners according to a Wilcoxon signed-ranks test at α = 0.05. Avg provides the performance
average of each method over the 25 datasets. Rows Rank and Pos show the average rank of each
learning algorithm and its position in the ranking respectively. The last row provides Inf/Sup,
where Inf is the number of times that the learner has been surpassed by another one, and Sup
is the number of times that the method has outperformed another one.

Original Ovs UnsTL SMOTE cSMOTE

bald1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 4.06 ± 9.56 0.00 ± 0.00
bald2 81.16 ± 5.54 ◦◦ 79.66 ± 5.09 ◦ 73.83 ± 3.26 • • • 78.60 ± 6.09 ◦ 75.25 ± 6.45 •

bald3 82.11 ± 8.67 ◦◦ 80.95 ± 7.66 ◦ 75.25 ± 6.21 •• 78.32 ± 8.46 • 79.61 ± 10.01
bpa 32.40 ± 9.44 36.10 ± 13.80 ◦ 32.68 ± 11.87 28.97 ± 8.57 • 32.35 ± 13.56
glsd1 69.32 ± 48.30 86.94 ± 31.62 65.07 ± 0.00 87.81 ± 31.62 68.28 ± 48.30
glsd2 24.13 ± 35.36 • • • 79.94 ± 33.75 ◦ 68.80 ± 42.16 ◦ 84.62 ± 31.62 ◦ 72.75 ± 42.49
glsd3 0.00 ± 0.00 •• 38.64 ± 43.78 ◦ 37.01 ± 35.36 ◦ 44.70 ± 33.33 28.03 ± 34.96
glsd4 77.07 ± 24.98 76.23 ± 24.91 76.84 ± 25.40 76.64 ± 24.91 77.92 ± 24.91
glsd5 62.26 ± 21.14 ◦ 62.37 ± 15.72 58.37 ± 14.75 • 62.57 ± 15.06 62.52 ± 17.88
glsd6 61.74 ± 18.23 61.70 ± 15.76 59.84 ± 24.83 63.19 ± 12.46 60.99 ± 17.86
h-s 64.40 ± 14.65 61.52 ± 10.24 59.11 ± 11.95 60.63 ± 7.91 61.50 ± 13.03
pim 46.91 ± 4.84 50.27 ± 11.30 ◦ 51.50 ± 9.82 ◦ 49.65 ± 6.03 ◦ 44.05 ± 11.48 • • •

tao 94.25 ± 2.10 ◦◦ 92.61 ± 2.00 92.61 ± 2.17 • 93.02 ± 2.29 91.92 ± 2.15 •

thyd1 76.67 ± 22.50 91.26 ± 14.05 76.09 ± 23.31 84.28 ± 23.31 81.51 ± 23.57
thyd2 77.90 ± 21.40 • • •• 98.33 ± 0.00 ◦ 95.88 ± 7.91 ◦ 98.33 ± 0.00 ◦ 93.98 ± 10.54 ◦

thyd3 81.12 ± 16.16 92.38 ± 6.55 87.31 ± 7.84 88.81 ± 8.03 87.84 ± 11.45
wavd1 72.28 ± 3.97 ◦◦ 71.62 ± 2.14 ◦◦ 72.34 ± 2.42 ◦◦ 66.67 ± 0.77 • • • 65.71 ± 2.93 • • •

wavd2 67.49 ± 1.75 ◦ ◦ ◦ 65.62 ± 1.79 • ◦ ◦ 66.69 ± 2.50 ◦◦ 57.51 ± 0.76 • • •• 61.08 ± 3.58 • • •◦

wavd3 74.14 ± 2.86 ◦◦ 73.71 ± 1.98 • ◦ ◦ 74.81 ± 2.70 ◦ ◦ ◦ 68.32 ± 0.95 • • •◦ 65.53 ± 2.96 • • ••

wbcd 92.72 ± 5.36 94.91 ± 2.13 93.53 ± 3.83 95.02 ± 1.32 92.34 ± 4.49
wdbc 93.47 ± 3.64 91.70 ± 3.51 93.59 ± 3.51 91.45 ± 2.70 91.21 ± 4.53
wined1 94.98 ± 8.29 96.15 ± 0.00 93.85 ± 0.00 97.69 ± 0.00 96.92 ± 0.00
wined2 97.50 ± 4.03 ◦ 95.76 ± 0.00 ◦ 92.35 ± 0.00 • • •• 95.76 ± 0.00 ◦ 96.59 ± 0.00 ◦

wined3 87.94 ± 12.53 91.43 ± 9.99 92.01 ± 7.53 95.71 ± 6.90 93.34 ± 7.38
wpbc 28.98 ± 16.49 29.36 ± 20.88 • 27.70 ± 22.66 •• 37.39 ± 19.73 ◦◦ 37.10 ± 21.96 ◦

Avg 65.64 71.97 68.68 71.59 68.73

Rank 2.98 2.56 3.52 2.44 3.50

Pos 3 2 5 1 4

Inf/Sup 9/15 3/14 13/11 12/8 15/4
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Table C.4: Comparison of the performance, measured as the product of TP rate and TN rate,
achieved by XCS with the original and re-sampled data sets. For each method and data set, the
• and ◦ symbols indicate that the method is statistically inferior/superior than another of the
learners according to a Wilcoxon signed-ranks test at α = 0.05. Avg provides the performance
average of each method over the 25 data sets. Rows Rank and Pos show the average rank of each
learning algorithm and its position in the ranking respectively. The last row provides Inf/Sup,
where Inf is the number of times that the learner has been surpassed by another one, and Sup
is the number of times that the method has outperformed another one.

Original Ovs UnsTL SMOTE cSMOTE

bald1 0.00 ± 0.00 1.98 ± 6.27 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
bald2 71.14 ± 5.02 70.06 ± 7.81 71.58 ± 5.03 72.79 ± 9.49 73.10 ± 6.56
bald3 69.98 ± 7.23 • • • 73.95 ± 4.75 73.47 ± 6.03 ◦ 72.78 ± 6.71 •◦ 76.15 ± 6.58 ◦◦

bpa 47.58 ± 10.92 ◦◦ 45.05 ± 12.20 ◦ 38.61 ± 9.89 ◦ 22.40 ± 14.39 • • •• 40.69 ± 11.47 •◦

glsd1 20.00 ± 42.16 •• 69.50 ± 47.98 ◦ 73.00 ± 27.01 ◦ 58.50 ± 50.45 59.50 ± 51.23
glsd2 59.00 ± 45.02 59.50 ± 45.49 62.75 ± 35.72 73.50 ± 41.57 63.00 ± 45.90
glsd3 0.00 ± 0.00 • • • 47.99 ± 38.80 ◦◦ 42.11 ± 17.78 ◦◦ 42.22 ± 40.93 ◦◦ 9.74 ± 20.54 • • •

glsd4 80.03 ± 24.33 87.25 ± 18.72 84.68 ± 15.68 80.59 ± 25.66 79.66 ± 24.59
glsd5 68.67 ± 18.71 66.17 ± 15.41 • 68.28 ± 19.81 73.07 ± 17.37 ◦◦ 62.44 ± 16.52 •

glsd6 60.53 ± 11.21 63.48 ± 14.17 64.18 ± 12.62 64.50 ± 14.51 62.47 ± 12.64
h-s 59.89 ± 15.59 58.00 ± 11.45 • 58.61 ± 14.68 65.61 ± 15.12 ◦ 60.22 ± 15.51
pim 45.85 ± 6.37 •• 50.53 ± 4.89 •◦ 51.24 ± 7.64 • 55.41 ± 8.76 ◦ ◦ ◦ 48.36 ± 8.97
tao 82.89 ± 5.42 •◦ 83.60 ± 6.04 ◦ 83.39 ± 5.91 ◦ 58.01 ± 31.57 • • •• 84.45 ± 6.34 ◦◦

thyd1 78.36 ± 22.01 • 87.96 ± 15.98 81.29 ± 20.83 • 91.70 ± 13.68 ◦◦ 89.07 ± 16.44
thyd2 82.50 ± 24.98 95.56 ± 10.41 92.78 ± 11.43 91.94 ± 11.60 93.06 ± 12.09
thyd3 89.84 ± 11.75 87.25 ± 10.81 • 88.43 ± 11.84 93.11 ± 8.73 ◦ 87.51 ± 10.38
wavd1 80.44 ± 2.97 81.91 ± 3.24 ◦ 80.87 ± 3.58 80.24 ± 2.00 80.11 ± 2.97 •

wavd2 73.48 ± 2.88 76.03 ± 2.24 ◦◦ 75.60 ± 1.52 ◦ 71.96 ± 2.78 •• 73.84 ± 2.89 •

wavd3 81.01 ± 3.99 82.01 ± 2.05 ◦◦ 81.16 ± 2.49 80.23 ± 2.19 • 79.46 ± 2.59 •

wbcd 92.31 ± 5.50 92.72 ± 6.01 92.49 ± 5.63 94.42 ± 4.41 92.70 ± 6.13
wdbc 90.27 ± 4.61 88.16 ± 6.33 90.48 ± 4.13 92.17 ± 4.95 91.08 ± 6.24
wined1 99.23 ± 2.43 95.69 ± 6.60 96.15 ± 5.44 97.69 ± 3.72 96.62 ± 8.36
wined2 99.17 ± 2.64 95.76 ± 5.96 96.67 ± 4.30 98.33 ± 3.51 97.50 ± 5.62
wined3 93.38 ± 7.15 91.86 ± 9.81 92.29 ± 6.84 94.11 ± 8.13 92.12 ± 7.74
wpbc 20.33 ± 16.38 25.84 ± 19.03 25.32 ± 17.21 31.65 ± 18.85 21.35 ± 11.96

Avg 65.83 71.11 70.62 70.28 68.57

Rank 3.60 2.86 2.94 2.42 3.18

Pos 5 2 3 1 4

Inf/Sup 12/3 4/11 2/7 12/12 8/5

241



APPENDIX C. FULL RESULTS OF THE COMPARISON OF THE RE-SAMPLING TECHNIQUES

Table C.5: Comparison of the performance, measured as the product of TP rate and TN rate,
achieved by UCS with the original and re-sampled data sets. For each method and data set, the
• and ◦ symbols indicate that the method is statistically inferior/superior than another of the
learners according to a Wilcoxon signed-ranks test at α = 0.05. Avg provides the performance
average of each method over the 25 data sets. Rows Rank and Pos show the average rank of each
learning algorithm and its position in the ranking respectively. The last row provides Inf/Sup,
where Inf is the number of times that the learner has been surpassed by another one, and Sup
is the number of times that the method has outperformed another one.

Original Ovs UnsTL SMOTE cSMOTE

bald1 0.00 ± 0.00 3.23 ± 6.82 0.00 ± 0.00 3.55 ± 7.48 0.00 ± 0.00
bald2 69.75 ± 8.19 72.07 ± 6.79 72.35 ± 5.60 72.73 ± 8.03 73.22 ± 5.32
bald3 73.61 ± 6.66 • 72.18 ± 5.14 • 74.01 ± 7.05 • 73.15 ± 6.58 • 78.40 ± 6.64 ◦ ◦ ◦◦

bpa 47.59 ± 11.22 41.72 ± 10.60 48.29 ± 9.68 41.20 ± 7.60 40.74 ± 9.18
glsd1 59.00 ± 50.87 59.50 ± 51.23 72.19 ± 18.80 68.52 ± 47.33 58.52 ± 50.46
glsd2 74.00 ± 41.89 ◦ 63.50 ± 46.25 77.12 ± 27.40 ◦ 82.50 ± 32.68 ◦ 38.50 ± 49.78 • • •

glsd3 19.49 ± 25.17 33.50 ± 45.22 28.93 ± 22.94 45.24 ± 42.50 23.25 ± 24.64
glsd4 83.54 ± 19.53 87.25 ± 18.72 ◦ 74.41 ± 24.70 • 82.67 ± 19.50 77.25 ± 28.64
glsd5 65.63 ± 21.46 68.54 ± 16.54 64.50 ± 14.10 62.54 ± 23.57 70.44 ± 17.42
glsd6 57.06 ± 14.20 61.64 ± 18.57 69.26 ± 21.48 62.70 ± 12.96 59.05 ± 15.39
h-s 55.00 ± 13.61 54.17 ± 16.60 55.61 ± 14.45 57.00 ± 15.95 52.83 ± 17.96
pim 47.82 ± 6.60 49.38 ± 5.11 52.45 ± 6.93 ◦ 51.89 ± 8.05 ◦ 46.74 ± 6.71 ••

tao 78.81 ± 7.18 80.65 ± 6.64 78.21 ± 4.27 75.72 ± 7.23 78.53 ± 7.51
thyd1 92.25 ± 13.66 88.89 ± 15.71 88.92 ± 15.51 91.88 ± 14.46 88.89 ± 15.49
thyd2 93.06 ± 12.09 91.94 ± 11.60 84.81 ± 15.61 93.33 ± 9.99 94.44 ± 10.14
thyd3 88.08 ± 14.89 84.98 ± 10.52 86.79 ± 9.80 87.95 ± 8.94 85.03 ± 10.16
wavd1 76.33 ± 2.10 •• 78.18 ± 3.10 ◦◦ 78.99 ± 3.77 ◦◦ 78.66 ± 3.35 ◦ 75.56 ± 3.75 • • •

wavd2 71.49 ± 3.83 73.08 ± 2.93 ◦ 70.57 ± 2.67 • 74.46 ± 2.76 ◦◦ 69.66 ± 1.60 ••

wavd3 76.60 ± 4.14 •• 80.60 ± 2.21 ◦◦ 78.32 ± 2.78 ◦ 79.56 ± 1.84 ◦◦ 75.10 ± 2.75 • • •

wbcd 94.06 ± 4.23 93.10 ± 4.97 93.10 ± 4.35 94.25 ± 4.81 94.28 ± 4.36
wdbc 89.68 ± 5.61 90.54 ± 4.08 89.84 ± 4.43 90.38 ± 7.75 87.81 ± 6.17
wined1 99.23 ± 2.43 100.00 ± 0.00 ◦◦ 94.92 ± 6.49 • 96.92 ± 3.97 • 93.96 ± 9.30
wined2 91.88 ± 10.02 95.83 ± 7.08 ◦ 92.56 ± 7.98 • 94.92 ± 7.07 95.83 ± 7.08
wined3 85.33 ± 9.55 • • •• 94.11 ± 8.17 ◦ 93.86 ± 8.52 ◦ 94.71 ± 6.94 ◦ 91.90 ± 5.97 ◦

wpbc 17.17 ± 21.63 21.55 ± 14.96 25.55 ± 18.72 30.70 ± 15.04 21.34 ± 13.56

Avg 68.26 69.61 69.82 71.49 66.85

Rank 3.44 2.78 2,86 2.24 3.68

Pos 4 2 3 1 5

Inf/Sup 9/1 1/10 5/6 2/8 13/5
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Appendix D

Empirical Analysis of the Sensitivity
of Fuzzy-UCS to Configuration
Parameters

As many competitive Michigan-style LCSs, Fuzzy-UCS has several configuration parameters,
which permit adjusting the behavior of the system to evolve models with maximum quality for
particular problems. At a first glance, choosing a correct configuration may seem a crucial task
only suitable to expert users. Nonetheless, several analyses identified the robustness of Michigan-
style LCSs to the majority of configuration parameters. Actually, most of the applications of
Michigan-style LCSs used the same default parameters to solve pattern recognition problems
(Bernadó-Mansilla et al., 2002; Bernadó-Mansilla and Garrell, 2003; Butz, 2006; Orriols-Puig and
Bernadó-Mansilla, 2008b; Dixon et al., 2002, 2004; Fu et al., 2001; Wilson, 2000). We consider
that this robustness is also present in Fuzzy-UCS. For this reason, we used the same default
configuration to solve the collection of real-world problems in all the experiments conducted in
chapter 8.

The aim of this appendix is to empirically show the robustness of Fuzzy-UCS to configuration
parameters. For this purpose, we systematically analyze the impact of the parameter settings
on the quality of the final solution on a set of real-world problems; besides, we relate the results
to theoretical and empirical studies of the sensitivity of LCSs—particularly XCS and UCS—to
configuration parameters. It is worth highlighting that the following study does not pretend to
establish guidelines to configure Fuzzy-UCS, but to intuitively show the effect of the different
parameters.

The remainder of this appendix is organized as follows. Section D.1 gathers and provides a
brief description all the parameters of Fuzzy-UCS. Section D.2 details the experimental method-
ology followed in the analysis. Section D.3 compares different configurations of Fuzzy-UCS to
the default configuration used in chapter 8 and studies the impact of changing the configuration
of the different parameters. Finally, section D.4 summarizes and concludes.
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D.1 Configuration Parameters of Fuzzy-UCS

The configuration parameters of Fuzzy-UCS are:

1. N : Maximum population size.

2. P#: Generalization probability in covering.

3. ν: Fitness pressure.

4. F0: Minimum fitness required for subsumption.

5. θGA: Threshold that controls the application period of the genetic algorithm on each niche.

6. θsub: Minimum experience required to be a candidate subsumer.

7. θexploit: Minimum experience required to participate in the class inference of a new exam-
ple.

8. θdel: Minimum experience required to use classifier’s fitness to calculate its deletion vote.

9. δ: Fraction of mean fitness below which the deletion probability of a classifier is further
decreased according to the ratio of its fitness to the average fitness of the population.

10. χ: Probability of crossover.

11. µ: Probability of mutation.

D.2 Experimental Methodology

For the sake of clarity, we analyzed the effect of different parameters or groups of related pa-
rameters separately. Specifically, we examined the sensitivity of Fuzzy-UCS to:

1. Rule initialization (parameter P#). That is, we studied how the generalization degree in
the initial population affected the quality of the models.

2. Fitness pressure (parameter ν). We analyzed to which extend the selection pressure toward
highly accurate classifiers affected the learning process.

3. Genetic algorithm. We empirically showed the effect of changing a set of parameters
related to the genetic algorithm: θGA, θdel, and θsub.

4. Deletion (parameter δ). We examined the effects of changing the pressure toward deletion
of classifiers with fitness below the average fitness.

We compared modifications on these configuration parameters with the default configuration
CP used in chapter 8, that is: N=6 400, F0 = 0.99, ν = 10, {θGA, θdel, θsub} = 50, θexploit = 10,
χ = 0.8, µ = 0.6, δ=0.1, and P# = 0.6, As done in chapter 8, we used the test accuracy and
the size of the final rule set to evaluate the quality of the models. The results were statistically
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analyzed as follows. First, we applied the multiple-comparison Friedman’s test (Friedman, 1937,
1940) to contrast the hypothesis that the results of all learners were equivalent on average. If
significant differences were found, the post-hoc Bonferroni-Dunn test (Dunn, 1961) was used
to compare a control method against the others. Moreover, pairwise comparisons were applied
according to the Wilcoxon signed-ranks test (Wilcoxon, 1945).

All results provided through this appendix are averages over ten runs with different random
seeds. Due to the large number of configurations run for this analysis, we restricted the data
set collection to twelve of the twenty real-world problems used in chapter 8: bal, bpa, gls, h-s,
irs, pim, tao, thy, veh, wbcd, wdbc, and wne.

D.3 Fuzzy-UCS’s Sensitivity to Configuration Parameters

This section analyzes in detail the effect of changing the parameters related to (1) rule initial-
ization, (2) fitness pressure, (3) genetic algorithm, and (4) deletion. Each one of these analyses
gets one of the subsequent subsections.

D.3.1 Sensitivity to Rule Initialization

Population initialization was identified as a crucial aspect for the success of LCSs and evolution-
ary algorithms in general (Goldberg, 2002). Butz et al. (2001) theoretically derived a covering
bound for XCS indicating that the initial population should be general enough to cover all the
training instances and permit the genetic algorithm to take place. The theoretical study resulted
in practical guidelines suggesting that the initial generalization level (i.e., the parameter P# in
Fuzzy-UCS) be set to a high value. The same study showed that the best results on a set of
artificial problems were obtained with P# ≈ 0.6. For this reason, as many LCS practitioners
have done during the last few years, we set P# = 0.6 in our experiments.

Herein, we empirically analyze the effect of decreasing the generalization in the initial pop-
ulation of Fuzzy-UCS. For this purpose, we ran Fuzzy-UCS with the default configuration CP ,
but changing P# = 0.2 (C1) and P# = 0.4 (C2). Tables D.1 and D.2 show the performance
and the rule set size achieved by Fuzzy-UCS with the three inference schemes and the three
configurations.

The multiple-comparison Friedman’s test did not permit rejecting the null hypothesis that
the three configurations performed equivalently on average for each inference technique of Fuzzy-
UCS at 95% confidence level. Nonetheless, note that configurations CP and C2, that is, the
configurations that use P# = {0.6, 0.4} respectively, were the two best ranked configurations
in all the inference schemes. A more detailed analysis on each particular problem permitted
detecting in which problems a higher specificity on the initial population yielded more accurate
models. For example, for the problems thy, and especially gls, Fuzzy-UCS obtained better results
when the initial population was more specific (that is, P# took a low value). On the other hand,
for other problems such as bal, h-s, pim, veh, wdbc, and wne, Fuzzy-UCS presented better results
with higher values of P#. Thus, we acknowledge that different settings of P# may be used
for different problems with particular characteristics and that further analysis has to be done
to detect correlations between problem complexity and the setting of P#. Nevertheless, these
results also evidence that it is safer to set P# to higher values as a general rule of thumb.
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Table D.1: Comparison of the test accuracy obtained with the three types of inference and the
three configurations which vary P#. Rank gives the average rank of each configuration for each
one of the three inference schemes. Pos shows the absolute position in the ranking. Frd reports
the p-value obtained with the multiple-comparison Friedman test performed for each inference
methodology.

wavg awin nfit

Cp C1 C2 Cp C1 C2 Cp C1 C2

bal 88.65 86.90 88.63 84.40 74.24 82.66 83.40 73.53 82.89
bpa 59.82 59.19 60.82 59.42 57.16 58.54 58.93 56.72 56.67
gls 60.65 68.77 66.10 57.21 60.53 56.60 57.43 62.76 61.81
h-s 81.33 79.26 79.89 80.78 74.81 80.63 78.11 67.07 76.32
irs 95.67 95.00 94.93 95.47 95.53 95.73 93.73 94.67 93.40
pim 74.88 73.93 74.70 74.11 73.77 74.01 74.32 71.15 72.41
tao 81.71 81.10 81.31 83.02 82.91 83.08 87.53 89.00 88.46
thy 88.18 93.93 91.28 89.49 90.66 90.09 91.25 92.75 92.23
veh 67.68 67.29 68.67 65.35 66.65 67.02 65.34 63.81 65.65
wbcd 96.01 95.35 96.11 95.73 94.61 95.78 95.29 93.97 95.58
wdbc 95.20 93.55 95.31 94.61 91.40 93.64 94.51 90.05 93.62
wne 94.12 95.34 95.04 94.86 93.51 96.06 91.82 89.74 93.40

Rank 1.83 2.42 1.75 1.83 2.50 1.67 1.83 2.25 1.92

Pos 2 3 1 2 3 1 1 3 2

Frd 0.2053 0.097 0.558

Table D.2: Comparison of the model sizes obtained with the three types of inference and the
three configurations which vary P#. Rank gives the average rank of each configuration for each
one of the three inference schemes. Pos shows the absolute position in the ranking. Frd reports
the p-value obtained with the multiple-comparison Friedman test performed for each inference
methodology.

wavg awin nfit

Cp C1 C2 Cp C1 C2 Cp C1 C2

bal 1212 827 1580 114 128 122 75 105 60
bpa 1440 1714 1623 73 103 64 39 63 30
gls 2799 2551 3484 62 81 60 36 58 27
h-s 3415 2456 4002 117 139 122 62 93 62
irs 480 1217 634 18 26 19 7 10 6
pim 2841 1976 3407 192 251 183 62 141 42
tao 111 153 117 19 19 19 14 15 12
thy 1283 1838 1487 37 49 36 11 14 9
veh 3732 1776 4717 332 428 431 147 221 136
wbcd 3130 2305 4299 138 161 145 28 70 31
wdbc 5412 2724 5243 276 406 271 101 211 102
wne 3686 3695 4529 95 137 103 26 58 27

Rank 1.67 1.75 2.58 1.50 2.92 1.58 1.75 3.00 1.25

Pos 1 2 3 1 3 2 2 3 1

Frd 0.0458 0.0010 0.00006
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The rule set sizes evolved with the different configurations were not statistically equivalent
according to the Friedman’s test at a significance level of 0.05. To detect the significant dif-
ferences among configurations, we applied the Nemenyi test with α = 0.1 (that is, the critical
difference is CD=0.83). The Nemenyi test identified the following three significant differences:
(i) with weighted average inference, C2 resulted in significantly larger rule sets than Cp; (ii)
with action winner inference, C1 created significantly larger rule sets than the other two configu-
rations; (iii) with most numerous and fittest rules inference, C1 built significantly larger models
than the other two configurations. The last two points can be easily explained as follows. As
C1 used a low value of P#, final populations contained more specific classifiers than populations
created with Cp and C2. These two inference schemes only kept the classifiers that maximally
matched an input instance in the final population. Thus, if classifiers were more specific, a larger
number of them were set to the final population. On the other hand, with weighted average
inference, the largest populations were obtained with C2. We hypothesize that this is because
C2 created slightly general and accurate classifiers that coexisted in the population and par-
tially covered the same training instances. Although the learning process pressured to obtain a
minimum set of these classifiers, the evolved populations of C2 were bigger than those obtained
with the other two inference schemes since these classifiers with partially overlapped conditions
were maintained in the final population as they covered some training instances with maximum
degree.

D.3.2 Sensitivity to Fitness Pressure

In Fuzzy-UCS, fitness pressure is determined by the parameter ν. This parameter biases the
selection pressure toward the fittest classifiers. A few analyses have been conducted on the
correct setting of this parameter in LCSs. Kharbat et al. (2005) showed that ν had a strong
effect if proportionate selection was used in XCS and recommended to use values around 10 for
this parameter. Similarly, Brown et al. (2007) empirically showed that ν = 10 was an optimal
setting for UCS in a set of artificial problems. Thus, in our experiments, we used ν = 10.

As proceeds, we analyze the impact of decreasing ν on the quality of the models. To achieve
this, tables D.3 and D.4 show the accuracies and sizes of the evolved models for ν = 1 (C3)
and ν = 5 (C4). The statistical analysis indicated that the accuracy of the models was not
equivalent on average according to the multiple-comparison Friedman’s test. Therefore, we
applied the Nemenyi test (at α = 0.10) to detect significant differences among learners (the
critical distance is CD = 0.83). The test identified that, for all inference schemes, Fuzzy-UCS
evolved more accurate models with Cp than with C3. Besides, the models created with Cp held
the first position of the ranking, and the models built with C4 held the second position of the
ranking for any inference level. Thus, these results evidenced that larger values of ν yielded
more accurate models. We applied a pairwise comparison between Cp and C4 according to a
Wilcoxon signed-ranks test, which detected, with p = 0.02, that the models evolved with Cp
were significantly more accurate than those created with C4.

Conclusions on the model sizes depend on the used inference scheme. For weighted average
inference, C3 created significantly larger models than the other configurations, and C4 evolved
significantly larger models than Cp according to a Bonferroni-Dunn test at α = 0.1. So, the
higher the fitness pressure was, the smaller the final models were. This evidenced that setting
high values of ν is crucial to remove over-general classifiers in favor of highly-fit classifiers.

247



APPENDIX D. EMPIRICAL ANALYSIS OF THE SENSITIVITY OF FUZZY-UCS TO CONFIGURATION
PARAMETERS

Table D.3: Comparison of the test accuracy obtained with the three types of inference and the
three configurations which vary the fitness pressure ν. Rank gives the average rank of each
configuration for each one of the three inference schemes. Pos shows the absolute position in
the ranking. Frd reports the p-value obtained with the multiple-comparison Friedman test
performed for each inference methodology.

wavg awin nfit

Cp C3 C4 Cp C3 C4 Cp C3 C4

bal 88.65 83.31 87.87 84.40 80.11 83.90 83.40 63.33 82.49
bpa 59.82 57.94 59.08 59.42 58.42 58.50 58.93 56.45 60.23
gls 60.65 55.55 58.23 57.21 52.60 56.92 57.43 48.45 56.06
h-s 81.33 83.52 82.03 80.78 81.89 81.53 78.11 78.59 78.53
irs 95.67 93.13 95.07 95.47 94.80 95.07 93.73 82.60 92.27
pim 74.88 71.30 74.61 74.11 72.07 73.38 74.32 71.81 73.80
tao 81.71 79.18 80.90 83.02 82.57 83.36 87.53 79.05 86.68
thy 88.18 78.67 85.88 89.49 87.42 89.02 91.25 86.18 89.11
veh 67.68 61.12 67.23 65.35 61.22 64.77 65.34 57.59 65.79
wbcd 96.01 95.33 95.50 95.73 94.90 95.42 95.29 92.39 94.40
wdbc 95.20 94.68 94.96 94.61 93.99 94.11 94.51 92.88 94.00
wne 94.12 93.27 94.49 94.86 94.98 95.20 91.82 85.29 93.92

Rank 1.25 2.83 1.92 1.42 2.75 1.83 1.42 2.83 1.75

Pos 1 3 2 1 3 2 1 3 2

Frd 0.00050 0.00380 0.00140

Table D.4: Comparison of the model sizes obtained with the three types of inference and the
three configurations which vary the fitness pressure ν. Rank gives the average rank of each
configuration for each one of the three inference schemes. Pos shows the absolute position in
the ranking. Frd reports the p-value obtained with the multiple-comparison Friedman test
performed for each inference methodology.

wavg awin nfit

Cp C3 C4 Cp C3 C4 Cp C3 C4

bal 1212 2371 1580 114 63 122 75 8 60
bpa 1440 2960 1623 73 47 64 39 12 30
gls 2799 4484 3484 62 52 60 36 17 27
h-s 3415 5469 4002 117 115 122 62 31 62
irs 480 1334 634 18 20 19 7 5 6
pim 2841 4166 3407 192 132 183 62 22 42
tao 111 149 117 19 16 19 14 5 12
thy 1283 2122 1487 37 32 36 11 7 9
veh 3732 5709 4717 332 242 431 147 84 136
wbcd 3130 4992 4299 138 137 145 28 26 31
wdbc 5412 5839 5243 276 255 271 101 92 102
wne 3686 5514 4529 95 97 103 26 29 27

Rank 1.08 3.00 1.92 2.33 1.25 2.42 2.67 1.17 2.17

Pos 1 3 2 2 1 3 3 1 2

Frd 0.00001 0.0052 0.0010
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For action winner inference, the statistical analysis only detected that the models evolved
with C3 were significantly smaller than the models created with the other two configurations.
This might be due to the presence of over-general classifiers with moderate fitness in the final
populations, which had not been removed due to the poor genetic pressure toward highly fit clas-
sifiers. These classifiers replaced more specific but fitter ones in the final population. The same
behavior could be observed for most numerous and fittest rules inference, where Fuzzy-UCS with
configuration C3 created significantly smaller models than with the other two configurations.

D.3.3 Sensitivity to the GA

In this section, we analyze the sensitivity of Fuzzy-UCS to the parameters concerning the genetic
algorithm application: θGA, θdel, and θsub. The parameter θGA is a threshold that controls the
application period of the GA on the different correct sets [C] of the system. That is, a correct
set will receive a genetic event if the average time since the last application of the GA on this
correct set exceeds θGA. If we want to maximize the genetic discovery, and so, the learning rate,
θGA should be set to zero. In this case, a correct set would receive a genetic event every time
it is activated. However, note that the parameters of new classifiers are incrementally updated
as these classifiers participate in successive correct sets. So, if we apply a genetic algorithm to
each correct set, selection would be biased since there would be poorly evaluated classifiers in
the niches. Moreover, this would also imply the generation of a large number of new classifiers
with poorly evaluated parameters. For this reason, θGA should be set to a higher value in real-
world problems. In the configuration used in the paper, we set θGA = 50, since this corresponds
to the standard value used for the equivalent parameter in XCS and UCS (Bernadó-Mansilla
et al., 2002; Bernadó-Mansilla and Garrell, 2003; Butz, 2006; Orriols-Puig and Bernadó-Mansilla,
2008b; Dixon et al., 2002, 2004; Fu et al., 2001; Wilson, 2000).

The values of the θdel and θsub parameters are usually determined by θGA. If we consider
that the classifiers in a niche need to receive an average of θGA parameter updates before going
through a genetic event, intuitively this should also apply for deletion and subsumption. For
this reason, in the configuration used in chapter 8, we set θdel = θsub = θGA.

To analyze the sensitivity of Fuzzy-UCS to this set of parameters, we performed the following
experiments. In configurations C5 and C6, we incremented θGA, θdel, and θsub to 100 and 200
respectively. As we decreased the application rate of the genetic algorithm, we expected to
obtain a lower accuracy in the final models. Moreover, to confirm the stability of the system,
we ran C7 and C8, two other configurations of Fuzzy-UCS. C7 equaled C5 except for the
number of iterations, numIter=200 000. C8 equaled C6 except for the number of iterations,
numIter=400 000. Therefore, we guaranteed that the number of genetic events received by the
niches with configurations C7 and C8 was equivalent to the number of genetic events received
with configuration Cp. Thus, we expected to obtain similar results.

Tables D.5 and D.6 show the accuracies and sizes of the models for the different config-
urations. The multiple-comparison Friedman’s test rejected the null hypothesis that all the
configurations performed the same on average for a particular inference scheme at 95% confi-
dence level. As configuration Cp is the best ranked in all cases, we used the Bonferroni-Dunn
test to detect which configurations performed worse than Cp at α = 0.10 (the critical differ-
ence is CD = 1.44). The statistical test detected that: (i) with weighted average and most
numerous and fittest rules, inferences Cp, C7, and C8 performed equivalently, whilst C5 and
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Table D.5: Comparison of the test accuracy obtained with the three types of inference and the
five configurations varying θGA, θdel, and θsub. Rank gives the average rank of each configuration
for each one of the three inference schemes. Pos shows the absolute position in the ranking.
Frd reports the p-value obtained with the multiple-comparison Friedman test performed for
each inference methodology.

wavg awin nfit

Rp C5 C6 C7 C8 Rp C5 C6 C7 C8 Rp C5 C6 C7 C8

bal 88.65 86.88 86.35 88.52 88.50 84.40 83.95 82.82 84.25 83.33 83.40 82.46 80.85 83.59 83.42
bpa 59.82 58.38 59.18 59.76 59.17 59.42 57.99 57.57 58.64 57.16 58.93 58.76 60.75 57.32 57.07
gls 60.65 56.78 55.75 61.79 64.17 57.21 56.57 55.59 57.30 56.63 57.43 54.77 53.50 57.91 58.96
h-s 81.33 81.04 81.81 80.75 79.79 80.78 80.89 80.78 80.40 80.71 78.11 78.52 79.30 77.57 77.08
irs 95.67 94.73 94.40 94.87 95.00 95.47 95.73 94.73 95.20 95.67 93.73 93.40 92.60 93.73 94.40
pim 74.88 74.00 72.17 74.75 74.74 74.11 73.17 71.81 73.83 74.00 74.32 73.71 72.78 73.25 72.62
tao 81.71 81.67 80.98 81.79 82.05 83.02 82.91 82.17 82.95 82.97 87.53 84.96 82.13 87.54 86.97
thy 88.18 86.89 85.41 88.18 89.65 89.49 89.45 87.93 89.81 90.00 91.25 89.34 88.28 90.20 91.74
veh 67.68 65.64 64.10 67.89 67.41 65.35 64.75 63.40 65.92 65.23 65.34 64.11 62.13 65.82 64.69
wbcd 96.01 95.65 95.14 95.82 95.74 95.73 95.43 94.96 95.76 95.92 95.29 94.73 94.26 95.29 95.14
wdbc 95.20 95.12 94.96 95.04 95.28 94.61 94.41 93.99 94.87 94.71 94.51 94.25 94.09 94.49 94.15
wne 94.12 93.50 94.73 95.12 94.91 94.86 94.08 94.46 95.24 94.93 91.82 90.33 90.88 92.09 92.86

Rnk 1.92 4.00 4.33 2.33 2.42 2.13 3.42 4.63 2.25 2.58 2.13 3.58 4.17 2.29 2.83

Pos 1 4 5 2 3 1 4 5 2 3 1 4 5 2 3

Frd 0.00014 0.00035 0.006

C6 presented significantly poorer results; and (ii) with action winner, Cp, C5, C7, and C8 had
the same accuracy on average, while C6 showed the poorest results. Further statistical analysis
by means of pairwise comparisons supported these conclusions and, moreover, detected that C5
degraded the results obtained with Cp, C7, and C8 with action winner inference (see table D.7).
Therefore, all this statistical study supported the initial hypothesis: as the number of genetic
events decreases, the evolved models are less accurate.

The statistical analysis on the model sizes only identified significant differences for weighted
average inference. In this case, the post-hoc Bonferroni-Dunn test detected that configuration
C6 evolved larger models than the other configurations. This is because, with configuration C6,
the correct sets received the lowest number of genetic events; therefore, the population had less
diversity.

D.3.4 Sensitivity to Deletion

The deletion mechanism designed for Fuzzy-UCS was inspired by the initial deletion procedure of
XCS (Kovacs, 1999). This schema increases the probability of deletion of experienced classifiers
whose fitness is less than δ times the average fitness of the population. So, varying δ results in
changing the pressure toward deletion of classifiers with low fitness. Nonetheless, recent studies
have shown that XCS is not sensitive to the settings of δ (Kovacs and Bull, 2007). To confirm
this statement, we ran XCS with δ = 1 (configuration C9).

Table D.8 and D.9 compare the models accuracies and sizes of Fuzzy-UCS with configurations
Cp and C9. We applied a pairwise comparison between the two configurations for each inference
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Table D.6: Comparison of the model sizes obtained with the three types of inference and the five
configurations varying θGA, θdel, and θsub. Rank gives the average rank of each configuration for
each one of the three inference schemes. Pos shows the absolute position in the ranking. Frd
reports the p-value obtained with the multiple-comparison Friedman test performed for each
inference methodology.

wavg awin nfit

Rp C5 C6 C7 C8 Rp C5 C6 C7 C8 Rp C5 C6 C7 C8

bal 1212 1233 1164 1096 1002 114 117 119 115 114 75 71 63 80 84
bpa 1440 1320 934 1519 1607 73 60 52 74 73 39 24 20 43 43
gls 2799 2684 2528 2835 2926 62 62 60 59 59 36 31 28 39 41
h-s 3415 3505 3273 3449 3396 117 133 137 113 107 62 68 67 59 58
irs 480 540 378 495 482 18 18 18 17 17 7 8 8 7 7
pim 2841 2539 2072 2707 2686 192 179 161 193 181 62 48 41 79 87
tao 111 143 117 107 101 19 18 17 19 19 14 13 10 14 14
thy 1283 1166 780 1266 1259 37 37 34 38 36 11 11 11 10 10
veh 3732 3859 3981 3581 3498 332 319 310 326 317 147 143 116 169 199
wbcd 3130 3184 2477 3097 3111 138 148 150 138 140 28 33 36 28 28
wdbc 5412 5343 5037 5415 5412 276 279 272 275 269 101 88 83 112 115
wne 3686 3568 3241 3746 3764 95 101 100 96 95 26 29 30 25 24

Rank 3.42 3.42 1.75 3.42 3.00 3.17 3.50 2.83 3.33 2.17 3.17 3.50 2.83 3.33 2.17

Pos 4 4 1 4 2 3 5 2 4 1 3 5 2 4 1

Frd 0.0368 0.1466 0.6289

Table D.7: Pairwise comparison of the test accuracy of Fuzzy-UCS obtained with the three
types of inference and the five configurations varying θGA, θdel, and θsub by means of a Wilcoxon
signed-ranks test.

wavg awin nfit

Cp C5 C6 C7 C8 Cp C5 C6 C7 C8 Cp C5 C6 C7 C8

Cp .002 .008 .695 .938 .012 .003 .875 .480 .006 .034 .424 .530
C5 ª .182 .010 .012 ª .004 .041 .347 ª .100 .084 .182
C6 ª − .012 .015 ª ª .003 .005 ª − .060 .100
C7 − ⊕ ⊕ .938 + ⊕ ⊕ .327 − + + 1.00
C8 − ⊕ ⊕ − − + ⊕ + − + + −

scheme according to a Wilcoxon signed-ranks test (the approximate p-value is provided in the
last row of the tables). The null hypothesis that the results obtained with both configurations
were equal on average could not be rejected. This supported the empirical conclusions extracted
by Kovacs and Bull (2007), which highlighted the robustness of XCS (and Fuzzy-UCS in our
case) to the parameter δ.
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Table D.8: Comparison of the test accuracy obtained with the three types of inference and the
two configurations which vary the deletion pressure δ. Rank gives the average rank of each
configuration for each one of the three inference schemes. Pos shows the absolute position in
the ranking. PW reports the p-value obtained with the pairwise Wilcoxon signed-ranks test
performed for each inference methodology.

wavg awin nfit

Cp C9 Cp C9 Cp C9

bal 88.65 88.68 84.40 84.30 83.40 82.91
bpa 59.82 59.61 59.42 58.37 58.93 58.32
gls 60.65 59.85 57.21 56.70 57.43 58.21
h-s 81.33 80.81 80.78 80.78 78.11 79.44
irs 95.67 95.13 95.47 95.60 93.73 94.40
pim 74.88 74.70 74.11 74.19 74.32 74.11
tao 81.71 81.64 83.02 83.11 87.53 87.79
thy 88.18 89.04 89.49 90.29 91.25 89.47
veh 67.68 66.50 65.35 65.84 65.34 65.59
wbcd 96.01 95.59 95.73 95.52 95.29 95.03
wdbc 95.20 95.09 94.61 94.43 94.51 94.19
wne 94.12 94.58 94.86 94.97 91.82 92.94

Rank 1.25 1.75 1.54 1.46 1.5 1.5

Pos 1 2 2 1 1.5 1.5

PW 0.1099 0.8311 0.7334

Table D.9: Comparison of the model sizes obtained with the three types of inference and the
three configurations which vary the deletion pressure δ. Rank gives the average rank of each
configuration for each one of the three inference schemes. Pos shows the absolute position in
the ranking. PW reports the p-value obtained with the pairwise Wilcoxon signed-ranks test
performed for each inference methodology.

wavg awin nfit

Cp C9 Cp C9 Cp C9

bal 1212 1310 114 109 75 67
bpa 1440 1437 73 74 39 40
gls 2799 2869 62 60 36 35
h-s 3415 3450 117 116 62 60
irs 480 492 18 17 7 7
pim 2841 2765 192 188 62 66
tao 111 107 19 19 14 14
thy 1283 1276 37 37 11 11
veh 3732 3741 332 321 147 139
wbcd 3130 3385 138 135 28 28
wdbc 5412 5439 276 277 101 99
wne 3686 3808 95 97 26 25

Rank 1.33 1.67 1.75 1.25 1.75 1.25

Pos 1 2 2 1 2 1

PW 0.064 0.0977 0.1719
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D.4 Summary and Conclusions

The study performed in this chapter empirically showed that there are two key parameters to
guarantee the success of Fuzzy-UCS: generalization in initialization (P#) and fitness pressure
(ν). Specifically, the generality in the initial population has to be high enough to let the genetic
algorithm take place, as suggested by Butz et al. (2001). Moreover, the fitness pressure should
be high enough to ensure a strong and reliable pressure toward the fittest classifiers in the
population. On the other hand, changing the setting of the other parameters appears to have
little effect on the model’s quality.

We acknowledge that better results could be individually obtained if we tuned Fuzzy-UCS
for each particular problem. Nonetheless, we are interested in robust systems that perform well
on average. For this reason we did not consider to tune the system for each problem in the
experiments conducted in chapter 8.
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A. González and R. Pérez. SLAVE: A genetic learning system based on an iterative approach.
IEEE Transactions on Fuzzy Systems, 7(2):176–191, 1999.

D. P. Greene. Automated knowledge acquisition: Overcoming the expert systems bottleneck. In
Proceedings of the Seventh International Conference on Information Systems, pages 107–117,
Pittsburgh, PA, 1987. Lawrence Erlbaum Assoc.

D. P. Greene. Inductive knowledge acquisition using genetic adaptive search. PhD thesis, Pitts-
burgh, PA, 1992.

D. P. Greene and S. E. Smith. Competition-based induction of decision models from examples.
Machine Learning, 13:229–257, 1993.

D. P. Greene and S. F. Smith. A genetic system for learning models of consumer choice. In Pro-
ceedings of the Second International Conference on Genetic Algorithms and their Applications,
pages 217–223, Boston, MA, 1987. Morgan Kaufmann.

J. J. Grefenstette and J. E. Baker. How genetic algorithms work: A critical look at implicit
parallelism. In Proceedings of the Third International Conference on Genetic Algorithms,
pages 20–27, 1989.

J. J. Grefenstette and J. Fitzpatrick. Genetic search with approximate function evaluations. In
International Conference on Genetic Algorithms and their Applications, pages 112–120, 1992.

J. W. Grzymala-Busse, L. K. Goodwin, and W. J. Grzymala-Busse. An approach to imbalanced
data sets based on changing rule strength. In Learning from Imbalanced Data Sets: Papers
from the AAAI Workshop, pages 69–74, 2000.

H. Han, W. Y. Wang, and B. H. Mao. Borderline-SMOTE: A new over-sampling method in
imbalanced data sets learning. In ICIC’05: Proceedings of the 2005 International Conference
on Intelligent Computing, pages 878–887. Springer-Verlag, 2005.

G. Harik. Linkage learning via probabilistic modeling in the ECGA. Technical report, Illinois
Genetic Algorithm Laboratory, University of Illinois at Urbana-Champaign (IlliGAL Report
No. 99010), 1999.

263



BIBLIOGRAPHY

G. Harik. Learning gene linkage to efficiently solve problems of bounded difficulty using genetic
algorithms. PhD thesis, University of Michigan, Ann Arbor, 1997. Also available as IlliGAL
Report 97005.
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A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla. First approach toward on-line evolution of
association rules with learning classifier systems. In GECCO’08: Proceedings of the 2008 Ge-
netic and Evolutionary Computation Conference Workshop Program, pages 2031–2038, New
York, NY, USA, 2008f. ACM. ISBN 978-1-60558-131-6. doi: http://doi.acm.org/10.1145/
1388969.1389017.
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ear regressors. In GECCO’08: Proceedings of the 10th annual conference on Genetic and
evolutionary computation, pages 1413–1420, New York, NY, USA, 2008. ACM. ISBN 978-1-
60558-130-9. doi: http://doi.acm.org/10.1145/1389095.1389367.

S. Theodoridis and K. Koutroumbas. Pattern Recognition. Elsevier, 3rd edition, 2006.

D. Thierens and D. E. Goldberg. Convergence models of genetic algorithm selection schemes.
In Parallel Problem Solving from Nature, volume 3, pages 116–121, 1994a.

D. Thierens and D. E. Goldberg. Elitist recombination: An integrated selection recombination
ga. In Proceedings of the First IEEE Conference on Evolutionary Computation, pages 508–512,
1994b.

274



BIBLIOGRAPHY

D. Thierens, D. E. Goldberg, and A. G. Pereira. Domino convergence, drift, and the temporal-
salience structure of problems. In Proceedings of the IEEE International Conference on Evo-
lutionary Computation, page 535540, 1998.

P. Thrift. Fuzzy logic synthesis with genetic algorithms. In R. K. Belew and L. B. Booker,
editors, Proceedings of the fourth International Conference on Genetic Algorithms, pages 509–
513. Morgan Kaufmann, 1991.

I. Tomek. Two modifications of CNN. IEEE Transactions on Systems, Man and Cybernetics,
6:769–772, 1976.

M. Valenzuela-Rendón. The fuzzy classifier system: A classifier system for continuously varying
variables. In 4th ICGA, pages 346–353. Morgan Kaufmann, 1991.
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