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Abstract

During the last decade, Michigan-style learning classifier systems (LCSs)—genetic-based machine learning
(GBML) methods that combine apportionment of credit techniques and genetic algorithms (GAs) to evolve
a population of classifiers online—have been enjoying a renaissance. Together with the formulation of first
generation systems, there have been crucial advances in (1) systematic design of new competent LCSs,
(2) applications in important domains, and (3) theoretical analyses for design. Despite these successful
designs and applications, there still remain difficult challenges that need to be addressed to increase our
comprehension of how LCSs behave and to scalably and efficiently solve real-world problems.

The purpose of this thesis is to address two important challenges—shared by the machine learning
community—with Michigan-style LCSs: (1) learning from domains that contain rare classes and (2)
evolving highly legible models in which human-like reasoning mechanisms are employed. Extracting
accurate models from rare classes is critical since the key, unperceptive knowledge usually resides in the
rarities, and many traditional learning techniques are not able to model rarity accurately. Besides, these
difficulties are increased in online learning, where the learner receives a stream of examples and has to
detect rare classes on the fly. Evolving highly legible models is crucial in some domains such as medical
diagnosis, in which human experts may be more interested in the explanation of the prediction than in
the prediction itself.

The contributions of this thesis take two Michigan-style LCSs as starting point: the extended classifier
system (XCS) and the supervised classifier system (UCS). XCS is taken as the first reference of this work
since it is the most influential LCS. UCS is a recent LCS design that has inherited the main components
of XCS and has specialized them for supervised learning. As this thesis is especially concerned with
classification problems, UCS is also considered in this study. Since UCS is still a young system, for which
there are several open issues that need further investigation, its learning architecture is first revised and
updated. Moreover, to illustrate the key differences between XCS and UCS, the behavior of both systems
is compared on a collection of boundedly difficult problems.

The study of learning from rare classes with LCSs starts with an analytical approach in which the
problem is decomposed in five critical elements, and facetwise models are derived for each element. The
analysis is used as a tool for designing configuration guidelines that enable XCS and UCS to solve problems
that previously eluded solution. Thereafter, the two LCSs are compared with several highly-influential
learners on a collection of real-world problems with rare classes, appearing as the two best techniques of
the comparison. Moreover, re-sampling the training data set to eliminate the presence of rare classes is
demonstrated to benefit, on average, the performance of LCSs.

The challenge of building more legible models and using human-like reasoning mechanisms is ad-
dressed with the design of a new LCS for supervised learning that combines the online evaluation capa-
bilities of LCSs, the search robustness over complex spaces of GAs, and the legible knowledge representa-
tion and principled reasoning mechanisms of fuzzy logic. The system resulting from this crossbreeding of
ideas, referred to as Fuzzy-UCS, is studied in detail and compared with several highly competent learn-
ing systems, demonstrating the competitiveness of the new architecture in terms of the accuracy and the
interpretability of the evolved models. In addition, the benefits provided by the online architecture are
exemplified by extracting accurate classification models from large data sets.

Overall, the advances and key insights provided in this thesis help advance our understanding of how
LCSs work and prepare these types of systems to face increasingly difficult problems, which abound in
current industrial and scientific applications. Furthermore, experimental results highlight the robustness
and competitiveness of LCSs with respect to other machine learning techniques, which encourages their
use to face new challenging real-world applications.
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I am very grateful to Jorge Casillas for insisting on my first visit to the SCI2S group with the
original idea of mixing learning classifier systems and fuzzy logic and for all the great support
and guidance provided not only during my successive visits, but also during the entire last year
of my PhD. I learned a lot from all our long, daily talks and from Jorge’s eagerness and passion
to face new challenging real-world problems. I would like to extend this acknowledgement to
Francisco Herrera for all his valuable advices and for always being ready to help me and to
answer my questions. My visits to Granada were not only fruitful research-wise but also life-
wise. I really enjoyed our Thursday’s home parties and hanging around Granada with the SCI2S
members. Especially, I would like to thank my flatmates, Pietro Ducange and Manolo Cobo, for
making my stay in Granada so joyful.

The present work is the result of the collaboration with a number of researchers. I would
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Chapter 1

Introduction

In the last few decades, there has been increasing interest in machine learning (Mitchell, 1997,
2006; Nilson, 2005; Bishop, 2007), a field in artificial intelligence (Feigenbaum and Feldman,
1995; Brooks, 1990; Russell and Norvig, 2002; McCharthy, 2007) that is concerned with the
development of machines that can learn from the experience. The appeal of machine learning is
based on the idea of having computers that teach themselves to solve new challenging problems
instead of programming them with a deterministic behavior. This approach appears to be
especially attractive in applications (1) that are too complex for human experts to manually
design and implement the solver, or (2) that require the software to improve or refine itself
continuously. Therefore, the ultimate aim of machine learning is to solve problems that are too
complex for human beings to solve or to give instructions on how to solve them.

Machine learning does not only aim at solving engineering problems, but it is also closely
related to different fields such as logic and philosophy, theoretical computer science, statistics,
biology, experimental psychology, cognitive science, and communication theory among others
(Buchanan, 2005). For example, several machine learning techniques derive from works of psy-
chologists that try to understand animal and human behavior through computational modeling.
Similarly, machine learning research and biological learning are related, and research in each area
benefits from the other one resulting in a fruitful crossbreeding among the techniques studied
in the two areas. Thence, machine learning holds promise not only in empowering computers
so that they can solve new challenging problems, but also in providing a framework to study
artificial intelligence.

One of the most appealing machine learning techniques is learning classifier systems (LCSs),
whose theoretical foundation was early outlined by Holland (1962). With the purpose of creat-
ing true artificial intelligence itself, Holland (1971, 1976) envisioned LCSs as cognitive systems
that received perceptions from their environment and, in response to these perceptions, per-
formed actions in the real world to achieve certain goals; besides, the policy of these programs
evolved with their interaction with the changing environment, refining the policies with the aim
of achieving a maximum reward—which was aligned to the goals of the system—while adapting
to the changes found in the environment. Since the first definition by Holland, there has been
an augmenting research on LCSs, which has led to design new systems and to solve increasingly
complex and challenging problems. Currently, LCSs are competent machine learning techniques
that are able to solve hard problems that range in different disciplines. Nevertheless, some chal-
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lenges, most of the times shared by the machine learning community, still need to be addressed
to scalably and efficiently solve new complex real-world problems.

This thesis is concerned about advancing in the research on LCSs to gain a better understand-
ing of their behavior and to improve them to deal with current problems in science, engineering,
and industry. Further, we elaborate the framework of this thesis in more detail, providing some
historical remarks on the LCSs’s research. Taking the original definition of Holland, we follow
the contributions that have led to the current LCSs’ architectures. Then, we identify two im-
portant challenges in LCSs and machine learning systems alike, which are later articulated in
the objectives of this work. Finally, we provide the road map of the entire document.

1.1 Framework: From Holland’s Definition to Current LCSs

Holland (1971, 1976) proposed the original idea of LCSs as cognitive systems that infer environ-
mental patterns from experience and associate appropriate response sequences with them. The
initial schemas of learning classifier systems already pointed out three key aspects, which have
been preserved up to the most recent implementations: (1) a knowledge representation based on
classifiers—usually implemented as production rules—that enables the system to map sensorial
states with actions, (2) an apportionment of credit algorithm which shares the credit obtained
by the machine among classifiers, (3) an algorithm to evolve the knowledge base—typically, a
genetic algorithm (GA) (Holland, 1975). Since the first definition of LCS, more than 30 years
ago, several systems have been designed following Holland’s initial definition; also, slightly dif-
ferent angles of the same problem resulted in different types of LCSs, shaping the LCS branches
that currently exist. As proceeds, we review some of the most important aspects of these 30
years of history.

The first successful implementation of LCSs was the cognitive system one (CS-1) by Holland
and Reitman (1978), which was designed to imitate animal behavior. The goal of the system
was to satisfy its needs by means of obtaining a finite number of resources that were maintained
in different reservoirs. CS-1 acted in a stimulus-response way; given each sensorial input, the
machine performed an action to the environment, which in turn responded with a reward. The
system implemented the three aforementioned key aspects in the following way. CS-1 used
simple string rules to code the internal policy. An epochal apportionment of credit system was
employed to share the resources among rules. This algorithm tracked the utility of rules during
an epoch—that is, a certain time in which payoff events were received—and, at the end of the
epoch, distributed the payoff according to the value of each rule. Learning was accomplished
through a GA. CS-1 was faced to two maze-running tasks in which different units of food and
water were placed around the maze. The experimental results showed that CS-1 could evolve
an accurate policy to reach the system goals, highlighting that LCSs held promise for machine
learning.

Subsequently to the development of CS-1, several authors continued on the design and im-
plementation of new LCSs based on Holland’s original ideas. Booker (1982) adopted an LCS
with an architecture inherited from CS-1 to study the connections between LCSs and cognitive
science. The system was tested on environments where the classifier wandered in a feature
space with the aim of avoiding aversive stimuli (poison) and reaching attractive stimuli (food).
Contemporaneous with this work, Wilson (1981, 1985a) proposed an LCS for the sensory-motor
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coordination on movable video camera, addressed as the EYE-EYE system. Later, Wilson
(1985b) simplified the LCSs architecture and applied the system to the modeling of an artifi-
cial animal—i.e., the animat problem. Thereafter, to investigate further on the system, Wilson
(1987) simplified the learning task by designing a non-sequential problem that provided imme-
diate reward at each learning iteration. Approximately together with the development of these
works, Goldberg applied LCSs to the learning control of a simulated gas pipeline (Goldberg,
1983, 1985a,b, 1987a,b).

In parallel to Holland’s work on CS-1 and its derivations, Smith (1980) took a different
approach and developed a new type of LCSs. Regarding learning as an adaptive search procedure,
Smith raised the focus of operation one notch and developed the learning system 1 (LS-1) (Smith,
1980, 1983, 1984), a system that used a GA to evolve rule sets instead of evolving individual
classifiers or rules as in Holland’s approach. Therefore, genetic manipulation worked at rule set
level instead of at rule level. This permitted sidestepping the apportionment of credit algorithm.
That is, as the rules belonged to a set, the need to compute the individual contribution of each
rule to the whole model disappeared. This LCS model was furthered in new implementations
(Jong et al., 1993; Janikow, 1993). Therefore, CS-1 and LS-1 defined two different ways to
perform learning by means of GAs. After some years of development, the algorithms resulting
from both approaches were distinguished and addressed with different names: Holland’s LCSs
were referred to as Michigan-style LCSs, whilst Smith’s LCSs were addressed as Pittsburgh-style
LCSs. In this thesis, we focus our research on Michigan-style LCS.

Despite these promising designs and first applications on attractive problems, LCSs did not
reach a general acceptance in the machine learning community, probably due to their lack of
mathematical foundation and their restricted applications. Consequently, after a period of strong
research in the late 1970s and early 1980s, the late 1980s were known as the LCSs winter, in
which the problems detected in the first LCSs seemed to cloud the whole field. At the end of the
1980s, Wilson and Goldberg (1989) published a critical review of LCSs, identifying the critical
factors and problems that hindered the success of the LCSs of that time. These problems were
associated with (1) the difficulties of distributing credit among the rules, (2) the inadequacy
of the decision-making process and the tendency to produce over-general rules, and (3) the
limits of the classifier syntax. Besides, the authors also pointed out the need for theory, such as
population size models, to gain a better understanding of how these systems worked.

Some years after the critical review, Wilson (1994) first presented the zeroth-level classifier
system (ZCS) and, one year after, Wilson (1995) proposed the extended classifier system (XCS),
heralding the second spring and summer of the LCSs field. XCS came to give answer to most
of the key problems that were identified in previous LCSs. XCS introduced a new credit appor-
tionment algorithm—which was adapted from a well-known reinforcement learning technique
(Sutton and Barto, 1998), Q-learning (Watkins, 1989)—to solve the difficulties in distributing
credit. The tendency of producing a large number of over-general classifiers was corrected by
(1) basing the classifier fitness on the accuracy of the prediction instead of the prediction itself
and (2) using appropriate niching techniques and fitness-sharing schemes. Besides, the system
architecture was simplified with respect to the initial LCSs’ architecture. Already in the original
paper, XCS was shown to be able to evolve accurate models for single step tasks—in partic-
ular, the multiplexer problem (Wilson, 1987)— and to learn optimal policies in maze-running
environments, problems that previously eluded solution.
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The first publication of XCS promoted an increasing amount of research in the LCSs area,
resulting in the so-called LCSs renaissance. Ad hoc with the implementation of XCS, there
have been crucial advances in (1) enhancements of the learning architecture and design of new
operators, (2) theoretical analyses for design, and (3) applications in important domains. With
respect to the learning architecture, the original scheme of XCS was first refined by Wilson (1998)
and later by Kovacs (1999), resulting in the standard XCS scheme currently used. Also, there
have been notorious works on inclusion of new knowledge representations (Wilson, 2000, 2001,
2008; Lanzi, 1999a; Lanzi and Perrucci, 1999; Bull and O’Hara, 2002; Butz et al., 2008), analyses
and improvements of the credit apportionment algorithm (Butz et al., 2005a; Drugowitsch and
Barry, 2008), and enhancements of some genetic operators (Butz et al., 2005b,c). Second, there
have been several theoretical analyses that enabled a better understanding of the system (Butz
and Pelikan, 2001; Butz et al., 2004b, 2005a, 2007; Drugowitsch and Barry, 2008; Drugowitsch,
2008). Finally, XCS and similar systems have been applied to important applications such as
data mining (Bull, 2004; Bull et al., 2008), function approximation (Wilson, 2002b; Butz et al.,
2008), reinforcement learning (Lanzi, 1999b, 2002; Lanzi et al., 2005; Butz et al., 2005a), and
clustering (Tamee et al., 2006, 2007), demonstrating the competitiveness of LCSs, and XCS
in particular, with respect to other machine learning techniques from other paradigms such as
decision trees (Quinlan, 1995) or neural networks (Widrow and Lehr, 1990). Besides, Michigan-
style LCSs provide a competitive advantage with respect to other machine learning techniques:
they evolve the knowledge online from a stream of examples. Therefore, the data can be made
available in streams, which is very common in current industrial applications where large volumes
of data are generated online (Aggarwal, 2007; Gama and Gaber, 2007).

Along with the application of XCS to important domains, there have been some proposals
in which the learning architecture of XCS has been modified for specific types of tasks (Wilson,
2002b; Bernadó-Mansilla and Garrell, 2003; Bull, 2005; Tamee et al., 2006). In the particular
case of data classification tasks, Butz et al. (2003) detected that XCS produced a deceptive
pressure toward the optimal solution in some specific problems. In order to overcome this prob-
lem, Bernadó-Mansilla and Garrell (2003) proposed the supervised classifier system (UCS), a
system that inherits the main components of XCS, but specializes them for supervised learning—
specifically, for classification tasks. The advantages of the new architecture with respect to UCS
were analyzed on a set of boundedly difficult problems—problems in which the complexity along
different dimensions can be controlled—, illustrating that the system could overcome the de-
tected problems and solve complex applications more efficiently than XCS. Nonetheless, UCS
is still young and, as pointed out by Bernadó-Mansilla and Garrell (2003), there are some open
issues that still need to be addressed to enhance the system and gain a better comprehension of
the implications of the changes introduced to the original XCS.

In summary, starting from Holland’s idea of creating true artificial intelligence, during the
last decade, research on LCSs has been enjoying a renaissance, which has been mainly promoted
by the creation of XCS. Currently, LCSs have reached a mature state and are ready to face new
challenging problems in machine learning. Furthermore, Michigan-style LCSs have two main
assets that distinguish them from machine learning techniques alike:

1. They have a flexible knowledge representation that can be easily adapted to deal with new
types of data.

2. They build the model online, which is crucial to succeed in problems with large volumes
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of data or where the data is made available in data streams.

For this reason, the present work focuses on LCSs as promising alternatives for machine learning.
Despite the recent improvements and applications proposed in the field of LCSs, there are still
important challenges—which are not particular to LCSs, but shared by the machine learning
community in general—that need to be addressed to scalably and efficiently solve real-world
problems. In the following section, we identify the two key challenges in the machine learning
and LCSs community from which we define the objectives of this thesis.

1.2 Two Critical Challenges in LCSs and Machine Learning

Research on machine learning has resulted in the design of several learning techniques, such as
LCSs, that can extract accurate models from the experience. Due to the maturity of the area,
the machine learning community has started to address new important challenges that appear
when applying learning techniques to real-world problems. Among the different research lines,
the following two key challenges have received especial attention:

1. Learning from domains that contain rare classes.

2. Building more understandable models and bringing reasoning mechanisms closer to human
ones.

A more detailed discussion of why these two items represent a critical challenge not only for
LCSs but for machine learning in general is provided as follows.

Learning from domains that contain rare classes. The advances in machine learning have led to
the application of learning algorithms to new complex real-world problems—for which humans
cannot provide an accurate solution—with the aim of extracting novel, interesting, and useful
knowledge. It has been identified that, in these types of problems, the key knowledge usually
is hidden in examples that are rare in nature (Chan and Stolfo, 1998; den Bosch et al., 1997;
Grzymala-Busse et al., 2000; Kubat et al., 1998). In fact, for this reason it is too complex
for human beings to identify this key, hidden knowledge. Empirical studies have shown that
traditional machine learning techniques may not be able to extract critical information from
these rarities. Therefore, a new field has emerged with the aim of creating new approaches
to enhance the extraction of the key knowledge from rare classes. The problem of modeling
rare classes has taken several names such as the problem of mining rarities (Weiss, 2004),
the problem with the small disjuncts, (Holte et al., 1989) or the class-imbalance problem
(Japkowicz and Stephen, 2002). In the three of them, the goal is the same: model patterns or
examples that occur infrequently accurately.

While this critical problem has been widely studied in the context of traditional machine learn-
ing techniques—which learn from collections of static data—little research has been conducted
on online learners and, specifically, on LCSs. Two main reasons explain this lack of analyses
in LCS. First, as mentioned in the previous section, the first successful LCS’s architecture was
designed in 1995, and most of the research conducted during the last decade has been cen-
tered on the analysis and improvement of this architecture. This has resulted in mature LCSs
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that are now ready to face new challenges. On the other hand, the first studies of the small
disjuncts problem started in the late 1980s (for example, see (Holte et al., 1989)). Therefore,
the problem of rare classes has received much more attention in traditional learning techniques
than in LCSs. Second, learning from rare classes poses more complex challenges to LCSs since
they have an online architecture that learns from a stream of examples. That is, the online
system receives a stream of examples, and it has to learn from the upcoming rarities on the fly.
Besides, due to this online architecture, techniques developed for traditional machine learning
techniques cannot be applied to LCSs. Note that the study and improvement of LCSs to ex-
tract accurate models from rarities that come infrequently in a stream of examples appears to
be a crucial task to address, accurately and efficiently, the new problems that are more often
presented to machine learning techniques.

Building more understandable models and bringing reasoning mechanisms closer to human
ones. Besides extracting accurate models from rare classes, a second important challenge in
machine learning is to build learning techniques that represent the knowledge and apply rea-
soning mechanisms that are similar to the human ones. This point is especially important in
classification tasks where human experts may need explanations about the decisions taken by
the systems. For example, in medical domains, human experts are sometimes more interested
in the explanation that yields a prediction than in the prediction itself (Robnik-Sikonja et al.,
2003). As proceeds, we discuss why LCSs may evolve poorly interpretable models and present
fuzzy logic as a competent approach to create highly legible models.

Michigan-style LCSs evolve models that consist of classifiers—typically rules—which can be
individually interpreted by human experts. Nevertheless, it has been detected that Michigan-
style LCSs evolve a large number of rules when dealing with problems that have continuous-
valued attributes (Bernadó-Mansilla and Ho, 2005; Bacardit and Butz, 2004; Wilson, 2002a;
Dixon et al., 2004; Fu et al., 2001), which can be found usually in real-world problems. Besides,
the reasoning mechanisms of LCSs may not be natural for human experts. Until recently, few
alternatives of new reasoning mechanisms, as well as the first pieces of theory that explain how
they work, have been developed for some particular LCSs (Brown et al., 2007). Despite these
first promising results, more research needs to be conducted to approach reasoning mechanisms
to human reasoning.

Contemporaneous with the recent advances on LCSs, there has been a strong research on fuzzy
systems, that is, systems that use fuzzy logic (Zadeh, 1965, 1973) to create highly legible models
from environments with uncertainty and imprecision. Essentially, the fuzzy set theory provides
a robust reasoning mechanism that approaches human reasoning. Therefore, the combination
of fuzzy systems with LCSs appears as an appealing alternative to improve their explicative
capabilities. As a consequence, the first attempts to mix both disciplines have been taken
(Valenzuela-Rendón, 1991; Nomura et al., 1998; Parodi and Bonelli, 1993; Furuhashi et al.,
1994; Velasco, 1998; Ishibuchi et al., 1999b; Casillas et al., 2007); but, so far, no competitive
Michigan-style LCSs that creates fuzzy classification models online from streams of examples
and uses fuzzy reasoning mechanisms have been designed.

Therefore, the scope of this thesis is to address these two challenges in the context of LCSs.
Specifically, we consider XCS and UCS as starting point. We select XCS since it is, by far, the
most influential Michigan-style LCS, representing the state of the art in the LCS field. Besides,
we incorporate UCS since it was specifically designed for supervised learning, and this work
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is especially concerned with classification problems. With these two challenges in mind, the
following section explicitly articulates the objectives of this thesis.

1.3 Thesis Objectives

The general goal of the present work is to address the two aforementioned key challenges with
LCSs, particularly focusing on XCS and UCS. As stated in the previous sections, UCS is a
young promising system derived from XCS that, although having shown to be competitive
with respect to other machine learning techniques, still has some open issues that have to
be addressed before applying it to new complex problems. Thus, before approaching the two
particular challenges defined in the previous section, we first study the UCS classifier system
in detail and update its architecture. Furthermore, to understand its differences with XCS,
we empirically compare both systems on a set of boundedly difficult problems. Thereafter, we
take XCS and the revised version of UCS as a departure point to analyze and improve LCSs to
model rare classes accurately. For this reason, we propose to follow an analytical approach to
study the LCSs’ behavior on problems with rare classes, improve the systems, and apply them
to real-world problems with class imbalances. Furthermore, we also propose to include fuzzy
logic in an LCS architecture to bring the reasoning mechanisms closer to the human’s ones.
Specifically, this leads to the definition of the following four objectives:

1. Revise and update UCS and compare it with XCS.

2. Analyze and improve LCSs for mining rarities.

3. Apply LCSs for extracting models from real-world classification problems with rarities.

4. Design and implement an LCS with fuzzy logic reasoning for supervised learning.

As follows, each one of the four objectives is elaborated in detail.

Revise and update UCS and compare it with XCS. Whereas XCS has received an increasing
amount of attention during the last decade, resulting in many improvements in the architec-
ture, UCS is still a young system which has received no further modifications since its initial
design. Nevertheless, Bernadó-Mansilla and Garrell (2003) detected some critical aspects that
needed to be investigated in more detail. The most important one was the lack of fitness
sharing in the credit apportionment algorithm. That is, differently from almost all the current
Michigan-style LCSs, the rules in UCS are evaluated independent of the remaining rules in
the population. Bernadó-Mansilla and Garrell (2003) took this approach since the benefits of
a credit apportionment algorithm that shared the fitness among individuals were not clearly
identified, and further analysis on sharing algorithms was pointed out as an important future
work line. Therefore, the first objective of the thesis is to design a fitness-sharing scheme
similar to those proposed by GAs and XCS, introduce it to UCS, and analyze the advantages
that the new credit apportionment algorithm provides to UCS. We also aim at analyzing the
differences between UCS and XCS on supervised learning problems.

Analyze and improve LCSs for mining rarities. In this second objective, we address the chal-
lenge of extracting accurate models from domains that contain rare classes with LCSs—in
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particular, with XCS and UCS. Specifically, the goal is to study the intrinsic capacities of both
LCSs to learn from rare classes, identifying critical factors for the success of the systems. For
this purpose, we propose to use design decomposition (Goldberg, 2002) to separate the prob-
lem of learning from domains with rarities in several critical elements and to derive facetwise
models for each element. The integration of these models would permit us to draw the domain
of applicability of both LCSs and to extract critical bounds on their behavior on imbalanced
domains. Moreover, we aim at extracting lessons from the analysis that help improve the
systems and enable them to extract accurate models from problems with rare classes that
currently elude solution.

Apply LCSs for extracting models from real-world classification problems with rarities. After
studying and improving LCSs for mining rarities, we aim at applying both LCSs to a set of
real-world classification problems with rare classes. To analyze their performance, we propose
to compare the accuracy of the models evolved by the two LCSs with the accuracy of the models
created by several highly influential machine learning techniques. As we seek to extract highly
accurate models, we also propose to include and analyze the impact of some of the most known
re-sampling techniques (Japkowicz and Stephen, 2002; Chawla et al., 2002; Batista et al., 2004),
that is, pre-processing methods that try to remove rare classes from the original data sets.

Design and implement an LCS with fuzzy logic reasoning for supervised learning. In the
last objective of this thesis, we address the second aforementioned challenge and take an
inventiveness approach to mix the ideas of the fuzzy systems and the LCSs fields. That is, we
purpose to create a hybrid system that mixes the best characteristics of LCSs—as accurate
online classifier’s evaluators—, GAs—as robust search mechanisms—, and fuzzy logic—as a
human-like approach to represent the knowledge and to reason for decision making.

Each one of these objectives gets, at least, a chapter of the present thesis. The overall
structure of the document is provided in the following section.

1.4 Road Map

This thesis is organized, in addition to the present chapter, in eight chapters whose content is
introduced in what follows.

Chapter 2 starts with a concise introduction to machine learning and to the types of prob-
lems that we can find in this discipline, which is followed by an introduction to evolutionary
computation. This gives way to the presentation of the current LCS families and to what we
currently understand as GBML. That is, while in the present chapter we have provided a brief
history of LCSs, in chapter 2 we review the current branches, draw a big picture of different
learning methodologies that use evolutionary algorithms, and place LCSs in this picture.

Chapter 3 provides a detailed explanation of both XCS and UCS, which can be used as im-
plementation guidelines. Thence, chapters 2 and 3 give all the background material that is
necessary to start with the contributions of this work. Thus, each of the subsequent chapters
focuses on one of the objectives of the thesis.
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Chapter 4 reviews UCS and updates the system with a new fitness-sharing scheme. Then, UCS
with fitness sharing is empirically compared with the original UCS on a set of four artificial
problems that have different complexities that are usually present in real-world problems.
Therefore, the comparison enables us to highlight the benefits of having a credit apportionment
algorithm that shares fitness in UCS. Later, we also introduce XCS in the comparison with
the aim of emphasizing the advantages that the modifications introduced by UCS supply in
problems with certain characteristics.

Chapter 5 starts with the study of how LCSs can learn from domains that contain rare classes.
Although the chapter is focused on XCS, we first take a general approach and intuitively
analyze the problems that may arise in a general LCS architecture when learning from rare
classes. With this intuition in mind, we decompose the problem and identify five elements
that need to be satisfied by any LCS and systems alike to learn, efficiently and scalably, from
domains with rare classes. Thence, we create a general framework from learning from class-
imbalanced problems without getting tied to any particular LCS architecture. Subsequently,
we look at the particular architecture of XCS and derive facetwise models that explain each
one of the different elements. During the analysis of each facet, we assume that the remaining
facets behave in an ideal manner. The integration of all these models enables us to draw the
domain of applicability of XCS, detecting the sweet spot where XCS can efficiently extract
accurate models from instances that come infrequently. At the end of the chapter, we show
that the lessons extracted from the analysis enable us to solve problems with infrequent classes
that previously eluded solution.

Chapter 6 carries over the facetwise analysis to UCS. We start reviewing the general framework
proposed in the previous chapter and analyze the components that UCS changes with respect
to XCS. We derive new models for these components and plug them into the initial framework,
thus, adapting the domain of applicability to UCS. Lastly, we show that UCS has similar
learning capabilities to XCS in imbalanced domains.

Chapter 7 moves the theory developed in the previous two chapters to real-world problems, in
which the characteristics of the domains are not known. We design two heuristic procedures
that gather information from the population evolution and self-adapt XCS and UCS according
to the lessons learned from the theory. Then, we test both LCSs on a collection of real-world
problems that contain rare classes. To evaluate the performance of both systems, we compare
them to three of the most influential machine learning techniques. Later, we introduce pre-
processing techniques that try to remove the rare classes by changing the distribution of the
training examples and analyze the impact of applying these techniques in combination with
each one of the five learners.

Chapter 8 presents Fuzzy-UCS, a hybrid between LCSs, GAs, and fuzzy systems. Fuzzy-UCS is
inspired by UCS, but includes a fuzzy representation and usual reasoning mechanisms in fuzzy
systems, which approach human reasoning. This chapter performs a large experimentation to
show the excellence of Fuzzy-UCS with respect to other machine learning techniques in data
classification tasks. We compare Fuzzy-UCS with several top-notch fuzzy learners and show
that Fuzzy-UCS outperforms them all. Moreover, we also compare the system to some the
most influential non-fuzzy learners. Fuzzy-UCS appears to be, at least, as accurate as the best
performer among the tested learners. Besides, we show that the models evolved by Fuzzy-UCS
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are clearly more interpretable than those created by UCS. Finally, we finish the chapter by
demonstrating the value of Fuzzy-UCS to mine large volumes of data. We use Fuzzy-UCS
to evolve classification models from the data provided in the KDD’99 cup intrusion detection
data set (Hettich and Bay, 1999). The data set consists of 494 022 instances, 21 classes, and
41 attributes. It is worth noting that most of the learners used in the comparison are not able
to learn from such a large data set. The online architecture of LCSs enables Fuzzy-UCS to
deal with this large amount of data.

Chapter 9 finishes with the contributions of this thesis by summarizing, providing key conclu-
sions, reviewing the main lessons extracted from this work, and gathering future work lines.

The material presented in the nine chapters is complemented with four appendices. Ap-
pendix A describes all the boundedly difficult problems used along the experiments of the
thesis. Appendix B gives details about the statistic tests employed in different chapters to
compare results. Appendix C supplies the detailed tables of results of the comparison of sev-
eral machine learning techniques with LCSs on a collection of real-world problems with rare
classes performed in chapter 7. Finally, Appendix D provides an analysis of the sensitivity of
Fuzzy-UCS to its configuration parameters.
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Chapter 2

Machine Learning with Learning
Classifier Systems

This chapter provides a brief introduction to learning classifier systems (LCSs) as one of the
most appealing alternatives for machine learning (ML). The chapter starts with a concise defi-
nition of machine learning, and then, presents a task-oriented taxonomy of ML techniques which
divides ML methods—depending on the type of problems that they can solve—in supervised
learning, unsupervised learning, and reinforcement learning techniques. Next, evolutionary com-
putation—a field of study devoted to the design and implementation of problem solvers inspired
by principles of natural evolution and genetics—is briefly introduced. This introduction is fol-
lowed by a more detailed explanation of genetic algorithms, one of the most promising techniques
in evolutionary computation, since they guide the discovery process in LCSs. Finally, the cur-
rent branches or families of algorithms that use GAs for machine learning—usually addressed as
genetic-based machine learning systems (GBML)—are presented, identifying both Pittsburgh-
and Michigan-style LCSs in this taxonomy. For each one of these families, a picture of their
process organization is provided, and the main differences among them are discussed.

2.1 Machine Learning

Machine learning is concerned with the design of computer programs that are able to learn
from the experience and with the definition of the fundamental laws that govern all learning
processes (Mitchell, 1997, 2006; Nilson, 2005; Bishop, 2007). This definition covers a large
variety of learning tasks such as (1) the design of goal-oriented agents that learn behavioral
policies from their interaction with the real world, (2) the extraction of frequent, interesting
patterns from large volumes of plain data generated, for example, from industrial processes, and
(3) the modeling of specific domains from examples. As a unified vision of all these learning tasks,
Mitchell (2006) considers that a machine learns with respect to a certain task T , a performance
metric P , and a type of experience E, if the system reliably improves its performance P at task
T by following the experience E. Therefore, any application that falls under this definition can
be considered as a machine learning method. With this broad definition in mind, this section
discusses the relationship of ML with other scientific fields as well as the necessity of having
computers that use their own experience to program themselves.
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ML is not an isolated discipline, but it is closely related to other fields such as computer
science, statistics, and psychology and neuroscience. On the one hand, computer science and
ML share a common objective; that is, they are concerned about building machines that can
solve problems. However, the main difference is that computer science is mainly focused on
building deterministic programs, while ML aims at creating programs that learn by themselves.
On the other hand, statistics and ML share the common goal of inferring patterns, behaviors, or
conclusions from data. Nevertheless, the key difference between both resides in the fact that ML
involves additional questions, such as algorithmic scalability, that aim at the creation of machines
that can efficiently, accurately, and scalably deal with complex real-world problems. In addition,
ML is closely related to the study of human and animal learning in fields such as psychology
and neuroscience. For example, several ML techniques derive from works of psychologists that
try to understand animal and human behavior through computational modeling. Similarly, ML
and biological learning are related, and research in each area benefits the other one, resulting in
fruitful crossbreeding of ideas and techniques.

Of course, the idea of having computers teaching themselves is not easy to implement in
practice. Therefore, the question that arises is why we should spend efforts in building machines
that learn to solve new complex problems instead of relying on humans to code hard-wired
solutions for these problems. The need for further research on ML can be explained with two
main reasons. From the pure learning point of view, ML can help understand animal and
human learning processes, thus providing key insights to psychologist and neuroscientists. From
a pure engineering point of view, ML has already provided, and is expected to supply, efficient
algorithms to solve new challenging, complex engineering problems whose solution is not known.
More specifically, the most important reasons that may lead to the application of ML to solve
engineering problems are enumerated as follows.

1. Difficulty of human experts to describe the problem and manually design an algorithm to
solve it.

2. Necessity of programs that continuously adapt to changing environments.

3. Necessity of processing overwhelming volumes of data with hidden concepts.

Below, each item is elaborated in more detail.

The application of ML is mandatory when the problem is too complex to manually design
and code an algorithm to address it properly. These types of complex problems abound in engi-
neering, having some specific examples in speech recognition (Karat et al., 2003), or computer
vision (Jahne et al., 1999). For instance, recognizing faces is a simple task for humans, but
manually programming a system to perform this task is too complex. Nevertheless, collecting
some examples and training a computer vision program that recognizes these objects—with a
certain accuracy—is a more straightforward manner of facing the problem.

Another reason that makes the use of ML necessary is in changing environments. Indepen-
dent of whether we can provide an initial solution to the problem, the system may need to
adapt to changing situations. For example, in speech recognition systems, the program can be
provided with an initial speaker-independent voice-recognition system, plus a learning system
that adapts to the characteristics of each particular person. Other examples where adaptation
is necessary can be found in robot control.
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Classification of the input examples

hello

(a) Supervised Learning

Clustering of the input examples

Length of the stem

(b) Unsupervised Learning

(c) Reinforcement Learning

Figure 2.1: Examples of (a) supervised, (b) unsupervised, and (c) reinforcement learning.

The last reason that may lead us to the application of ML is when overwhelming volumes
of data need to be processed to extract novel, interesting, and useful knowledge from patterns
hidden in these data. Actually, this is a definition of data mining (Frawley et al., 1992). In this
case, ML can be applied to build programs that use heuristics to extract potentially interesting
and novel patterns from the data.

Therefore, ML gathers a large variety of techniques, and several classification criteria can
be used to group them in different families. As follows, we present a classic taxonomy of ML
techniques that is based on the task to perform. New trends in ML may incorporate new groups
or subgroups to this taxonomy; nonetheless, the provided taxonomy gives the three fundamental
types of learning: supervised learning , unsupervised learning , and reinforcement learning .
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2.1.1 Supervised learning

Supervised learning is the process of extracting a function or model that maps the relation
between a set of descriptive input attributes and one or several output attributes. Depending on
the type of output attributes, supervised learning can be further classified as data classification
or data regression. That is, for categorical output attributes (which represent the classes of
the examples), the task is addressed as data classification; in this case, the goal is to find a
model that predicts the class of new instances. Otherwise, for continuous output attributes, the
problem is referred to as data regression; thence, the goal is to find a function that predicts the
output value of new instances. Thus, in general, a supervised learner has to build a function or
model that predicts the output value for any valid input object by means of generalizing from
the known data.

As follows, we present an application example of supervised learning. Let us imagine that
we aim at designing a machine capable of distinguishing poisonous mushrooms from edible
mushrooms. Suppose we have been provided with 1 000 examples of poisonous mushrooms and
1 000 examples of edible mushrooms, which form our training data set. Moreover, let us assume
that the mushrooms are represented by two characteristics or attributes: the length of the stem
and the diameter of the mushroom. These characteristics define the inputs of the classification
problem. The problem has a single output attribute that can take two values, which represent
whether the mushroom is poisonous or edible. Figure 2.1(a) shows how the different examples
are distributed in the feature space (each class is depicted with a different color). By only
considering the 2 000 known examples, the given ML technique has to be able to generalize and
extract a classification model, which will be used to predict the class of new unlabeled examples.

2.1.2 Unsupervised learning

In unsupervised learning , the machine receives a set of examples that consist of input attributes,
but that have no associated output attributes. Then, the goal of unsupervised machine learning
is to build representations from the input that identify novel, interesting knowledge. The result-
ing representations can be used for decision making, predicting future inputs, grouping similar
inputs, or creating prototypes that are fed to other machine learning techniques among others.
Two cornerstones of unsupervised learning are clustering and dimensionality reduction.

Figure 2.1(b) presents an example of clustering. Note that, differently from figure 2.1(a),
the training examples have no associated output (all points are depicted with the same color).
Without any further information about the data rather than the input attributes, unsupervised
learners would group the examples in different clusters according to some proximity criterion (in
the example of the figure, the center of each cluster is depicted with a black dot). This type of
learning is very common when hidden patterns are searched on large volumes of data. A typical
example can be found in the characterization of customer habits from information about their
purchases.

2.1.3 Reinforcement Learning

Reinforcement learning lies between supervised and unsupervised learning. In this type of
task, an agent interacts with an environment in the following manner: the machine receives
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perceptions from the environment—which provide total or partial information about its state—
and performs actions to this environment with the aim of achieving a particular, or several,
goals. The machine eventually receives positive or negative rewards as consequence of its actions.
Therefore, reinforcement learning aims at learning a behavioral policy to maximize a notion of
long-term reward—that is, to maximize not the immediate but the total reward received from
the environment.

Figure 2.1(c) shows an example of reinforcement learning problem in which an ant or agent
aims at reaching its goal—that is, to find the food—as fast as possible without falling in any
trap. The agent may receive negative rewards from the interaction with the environment—for
example, if it finds a trap—and positive rewards if it reaches a goal. Thence, the aim of the
agent is to learn a behavioral policy that maps the best action for each possible sensorial input.
Provided that there may be a large number of possible sensorial states and actions for each state,
generalization over these sensorial states has become a key aspect in reinforcement learning to
scalably solve real-world problems.

In this section we presented a classic taxonomy that identifies three types of learning. Dif-
ferent machine learning techniques have been developed to perform some or several of the afore-
mentioned tasks. One of the most promising approaches to face the problems that range in the
three aforementioned families is learning classifier systems (Holland, 1971, 1976; Holland and
Reitman, 1978). Originally implemented by Holland and Reitman (1978) with the aim of sim-
ulating the animal behavior—therefore, falling under the category of reinforcement learning—,
current LCSs have been extended to deal with the other two types of learning, that is, supervised
learning (Bacardit and Butz, 2004; Bernadó-Mansilla and Garrell, 2003; Fu et al., 2001; Wilson,
2000) and unsupervised learning (Tamee et al., 2006, 2007; Orriols-Puig et al., 2008f). Thence,
LCSs represent a general learning architecture that can be used for different tasks ranging from
extracting classification models from streams of labeled data to building clusters online, also
including reinforcement learning problems. The flexibility of their architecture is one of the
most valuable assets of LCSs with respect to other machine learning techniques, which tend to
be designed specifically for one of the three types of machine learning.

The remainder of this chapter is focused on LCSs. We first provide a brief introduction to
evolutionary computation, which is followed by a more detailed explanation of GAs, since they
are the core of the discovery component of LCSs. Then, we present the different types of GBML
systems, which represent different ways of using GAs for machine learning, and place LCSs in
this big picture.

2.2 Evolutionary Computation and Genetic Algorithms

Evolutionary computation (EC) is a field of study devoted to the design, implementation, and
analysis of computation techniques that are inspired by the evolution of biological life in the
natural world (Jong, 2006). Actually, evolutionary computation does not refer to a single type of
algorithm, but to a series of parallel efforts that shared the idea of using an evolutionary process
for computer problem solving. In the following sections, we provide a brief introduction to the
biological principles that inspire evolutionary computation methods and propose a taxonomy
of the different methods that fall under the definition of evolutionary computation; then, we
focus our explanation on genetic algorithms (Holland, 1971, 1975), one of the most prominent
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techniques in the field of evolutionary computation.

2.2.1 Biological Principles that Inspire Evolutionary Computation

At the beginning of the nineteenth century, the first evolutionary theories, which promoted the
hypothesis that the species are a result of the natural evolution, started to emerge. Jean Batista
Lamark was one of the first researchers that rejected the essentialist thought, which was the
theory mainly considered at the time. Essentialism relied on the idea that living forms were
unchanging. Lamark proposed some revolutionary theories based on the concept of evolution,
which were overlooked by the scientific community at that time. Some decades later, several
researchers were inspired by these theories. Among them, there were Wallace and Darwin
who independently developed the idea of the mechanism of natural selection; this research
culminated in the publication of the book The Origin of Species by Darwin (1859). From
then on, many researchers have adhered to this hypothesis and, currently, the most accepted
collection of evolutionary theories is the new-Darwinian paradigm. As proceeds, we provide
a brief introduction to the basic concepts of these theories, since evolutionary computation
methods are inspired by the evolutionary model proposed by them.

In brief, the evolutionary theory argues that the individuals of a population have a genetic
program—i.e., genotype—, which defines the genetic constitution of the individual. This geno-
type, together with the interaction with the environment, forms the phenotype of the individual,
that is, the observable constitution of the organism. Then, the theory states that life can be
accounted for by four physical processes operating on and within populations of species: repro-
duction, mutation, competition, and selection. That is, individuals of a population:

1. are reproduced, transferring the genotype of parents to offspring;

2. are mutated ; that is, errors in the process of information transfer inevitably occur;

3. compete, as a consequence of creating new individuals—over-reproducing the species—in
an environment with finite resources; and

4. are selected, as an inevitable result of competition due to the existence of finite resources.

Therefore, this results in a cycle where species evolve by means of individual competition for a
limited amount of resources. Individuals whose phenotypes are better adapted to the environ-
ment are stronger and have higher probability to survive in competition with poorly adapted
individuals.

Note that stochastic processes play a key role in the theory of evolution. That is, genetic
variation by means of mutation is a chance phenomenon, since errors in information transfer are
unpredictable. Also, selection is probabilistic; although the quality of the individual is one of
the most important aspects for its survival, there are many external factors that may influence
the selection process.

The ideas briefly presented in this section were taken as inspiration by different researchers
who identified the evolutionary process as an appealing approach to solve optimization prob-
lems. Consequently, several authors started their ways on designing optimization methods that
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simulate different aspects of evolution, which, nowadays, have been grouped under the evolu-
tionary computation term. A taxonomy of these different methods is provided in the following
section.

2.2.2 Evolutionary Computation: A Taxonomy

In the 1950s, some researchers started to develop the idea of using biological principles to de-
sign evolutionary problem solvers. At that time, there were the first attempts to apply these
types of computer problems solvers to automatic programming—that is, to find a program that
calculates input-output functions—(Friedberg, 1958; Friedberg et al., 1959), to numerical opti-
mization problems (Bremermann, 1962), and to the design and analysis of industrial experiments
(Box, 1957; Box and Draper, 1969). These early efforts were followed by the establishment, in
the middle 1960s, of three main forms of evolutionary computation: genetic algorithms (Holland,
1967, 1971, 1975), evolution strategies (Rechenberg, 1965, 1973; Schwefel, 1981), and evolution-
ary programming (Fogel, 1962, 1964). Over the next 25 years, these three branches developed
quite independently; not until the early 1990s, was the term evolutionary computation created
to embrace these different technologies, which were considered different “dialects” of biology-
inspired problem solvers.

Since then, the strong research on evolutionary computation has resulted in new branches of
evolutionary solvers. Two of the most significant of these new approaches are genetic program-
ming (Koza, 1989, 1992)—introduced as an extension of genetic algorithms to evolve computer
programs—and estimation of distribution algorithms (EDAs) (Pelikan et al., 2000b; Larrañaga
and Lozano, 2002; Pelikan et al., 2006)—a new approach that creates probabilistic models to
solve optimization problems. In what follows, each one of these families is shortly introduced.

Genetic algorithms (GAs) were originally created by Holland (1967, 1971, 1975) with the initial
aim of understanding the underlying principles of adaptive systems, and further propelled by
Goldberg, who presented GAs to a broad audience by simply and precisely presenting theory
and applications of GAs (Goldberg, 1989a); later, Goldberg (2002) proposed a methodology to
design competent GAs. The key idea of Holland’s work was to use a combination of competition
and innovation to build machines that could adapt to changing environments and could respond
to unanticipated events; Holland simulated this process with a simple model of evolution that
considered the notions of survival of the fittest and continuous production of offspring. The first
implementations of this model used a binary representation and were based on the interaction
of population size, crossover, and mutation. These ideas are still valid in current GAs.

Evolution strategies (ESs) were originally proposed by Bienert, Rechenberg, and Schwefel in
1964. The earliest idea of Bienert et al. did not aim at devising a new optimization method,
but at building a robot that performed a series of experiments in a slender three-dimensional
body so as to minimize its drag; the minimization method relied on changing one variable at
each iteration and testing whether this change produced any improvement. ESs were born
from this initial idea plus a random process to decide the variable changes (Rechenberg, 1965).
The first versions of ESs used a single solution with continuous attributes that was mutated by
means of a binomial distribution. The current ESs incorporate a population of solutions and
perform a cycle that is similar to GAs, involving crossover, a normally distributed mutation,
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and selection. In addition, ESs incorporate mechanisms for self-adapting the mutation operator
to each particular individual.

Evolutionary programming (EP) was originally introduced by Fogel (1962, 1964) with the aim
of creating a machine with adaptive behavior that could achieve its goals in a range of envi-
ronments. For this purpose, Fogel identified that the machine should be able (1) to predict its
environment and (2) to take appropriate actions in light of the predicted next state. Finite-
state machines were found as useful to represent the behavior of the machine. Therefore,
the evolutionary programming approach proposed to evolve a set of finite-state machines by
using mutation as the primary reproductive operator. This general approach was applied to
problems in prediction, identification, and automatic control (Fogel, 1964; Fogel et al., 1966).

Genetic programming (GP), initially proposed by Koza (1989, 1992), is an extension of GAs to
evolve computer programs. To achieve this, GP usually employs a tree-based representation,
whose internal nodes are represented with a set of primitive functions and the leaf nodes
consist of terminals—usually variables of the problem. GP is based on the same GA cycle,
thus involving crossover, mutation, and selection—which are redefined to let them cope with
the new representation—on a finite population. GP have been applied to a large variety
of problems, ranging from circuit design to quantum computing, which have result in the
discovering of several inventions, which were already patented, and new patentable inventions
(Koza et al., 2003).

Estimation of distribution algorithms (EDAs) are optimization methods that were recently
derived from the field of GAs with the aim of building probabilistic models instead of coding
the solution in populations of individuals (Pelikan et al., 2000b; Larrañaga and Lozano, 2002;
Pelikan et al., 2006). Also addressed as probabilistic model-building GAs, EDAs replace both
crossover and mutation with a probabilistic model—built from a data base that contains indi-
viduals from the previous generation—from which the new population is sampled. Although
removing these two primary operators in evolutionary computation, EDAs can be considered as
evolutionary computation methods since they use selection to choose good subsets of samples.

GAs appear as one of the most appealing alternatives among the five branches of evolutionary
computation since they were initially designed with the general purpose of understanding natural
adaptive systems and designing robust adaptive artifacts instead of specifically focusing on
optimization techniques (Rechenberg, 1965) or intelligent agents (Fogel et al., 1966). This is one
of the reasons that explain why GAs, as opposed to ESs or EP, have been selected as the primary
discovery approach in GBML systems. Due to their importance, the next section explains how
GAs work in more detail.

2.2.3 Genetic Algorithms

Genetic Algorithms (Holland, 1971, 1975; Goldberg, 1989a, 2002) are methods for search, op-
timization, and machine learning that are inspired by natural principles and biology. The key
characteristics that differentiate GAs from other optimization techniques are:

• GAs learn from the objective function without assuming any structure or underlying dis-
tribution.
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Figure 2.2: Evolution of a GA population.

• GAs search from a population of points that represent candidate solutions, not from a
single point.

• GAs code potential solutions instead of directly tuning the decision variables of the prob-
lem.

• GAs use random, local operators instead of deterministic, global rules.

As follows, we describe the basic work flow of genetic algorithms, briefly review some existing
theory that explains how and why GAs work, and present some of the real-life applications to
which GAs have been applied in the fields of engineering, science, and industry.

Description of Genetic Algorithms

GAs evolve a population of rules, where each individual in the population represents a potential
solution to the problem. Analogous to genetics, individuals are represented by chromosomes,
which encode the decision variables of the optimization problem with a finite-length string. Each
of the atomic parts of the chromosome is referred to as genes, and the values that the gene can
take are addressed as alleles. For example, in the traveling salesman problem (Applegate et al.,
2006), a chromosome represents a whole route—a sequence of cities—, and a gene represents a
city.

To implement natural selection and competition among candidate solutions, GAs incorporate
an evaluation function that is responsible for assessing the quality of each solution; the quality
of each individual is made explicit with a fitness value that is given to the individual. Several
evaluation functions have been used in GAs, such as mathematical functions provided by human
experts or subjective functions where users choose the best solutions from a set of candidates.
The design of a fitness function that correctly distinguishes between good solutions and poor
solutions is a key point in the success of GAs, since the evolutionary process would push toward
the fittest solutions in the population.
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The population of individuals is evolved by a continuous process of selection, crossover,
mutation, and replacement of individuals. Figure 2.2 schematically illustrates the cycle of a
GA. Algorithm 2.2.1 complements the explanation with the pseudo code of a simple GA. In
the beginning of the run, the population is initialized typically with random individuals—if
available, domain-specific knowledge can be incorporated to the initialization process. Then,
each individual is evaluated; therefore, each individual has a fitness that indicates the quality
of the solution. Next, the GA performs a loop where the following for operators are iteratively
applied:

• Selection: The selection operator chooses the fittest individuals in the population, sim-
ulating the survival-of-the-fittest mechanism. So far, several selection schemes have been
presented with the common idea of biasing the selection toward the fittest individuals.
For example, roulette-wheel selection (Holland, 1975; Goldberg, 1989a) and stochastic
universal selection (Baker, 1985; Grefenstette and Baker, 1989) give each individual a se-
lection probability that is proportional to its fitness. Other selection schemes such as
tournament selection (Goldberg et al., 1989; Sastry and Goldberg, 2001) and truncation
selection (Mühlenbein and Schlierkamp-Voosen, 1993) rank a set of individuals according
to their fitness and select the fittest ones.

• Crossover: The crossover operator combines the genetic information of two or more
parental solutions to create new, possibly better offspring. Recombination plays a key
role in GAs, since it should detect important traits of parental solutions and exchange
them with the aim of generating better individuals that are not identical to their parents.
Several selection operators designed under this goal can be found in (Goldberg, 1989a, 2002;
Pelikan et al., 2000a; Pelikan, 2005; Pelikan et al., 2006; Sastry and Goldberg, 2003a).

• Mutation: Mutation introduces random errors on the transference of the genetic in-
formation from parents to offspring. Thence, this operator acts on single individuals.
Although different mutation operators have been designed (Bäck, 1996; Beyer, 1996; Gold-
berg, 1989a), the commonality among them is that they introduce one or more random
changes applied to individual genes. Competent genetic operators that identify important
traits of parental solutions and search in the structural neighborhoods of these solutions
have been developed Lima et al. (2006); Sastry and Goldberg (2004).

• Replacement: After the selected individuals have gone through crossover and mutation,
the offspring population replaces the original one. Several replacement schemes could be
followed. For example, in a generational GA, all the offspring population may replace
the parent population. Other schemes are elitist replacement—the elite individuals of
the parent population are copied to the new population—or steady state replacement—
the best individuals of the offspring population are copied to the original one, removing
classifiers with poor fitness.

The synergy of all these operators pressures toward the evolution and selection of the best
solutions, which are recombined yielding new promising offspring. Goldberg (2002) emphasized
the idea that, while selection, crossover, and mutation can be shown to be ineffective when
applied individually, they might produce a useful result when working together. This was
explained with the fundamental intuition of GAs, which argues that the combination of the
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Algorithm 2.2.1: Pseudo code of a simple GA.
Data: t is the time stamp and P(t) is the population at time t
Algorithm: GA1

t := 02

P(t) := Initialize randomly P(t)3

P(t) := Evaluate P(t)4

while not finish do5

t := t+16

P’(t) := Select individuals from P(t-1)7

P’(t) := Apply crossover to P’(t)8

P’(t) := Apply mutation to P’(t)9

P(t) := P’(t)10

P(t) := Evaluate P’(t)11

end12

selection and crossover operators introduces a process of innovation or cross-fertilizing, whereas
the combination of selection and mutation represents the continuous improvement or local search
process.

After outlining a GA procedure and discussing the role of the most important operators, the
next section briefly reviews some theory that provides key insights that help explain why GAs
work.

2.2.4 Basic Theory of GA

Since the initial definition of GAs, several authors have developed formal theory to explain their
behavior. In the following, we first go back to Holland (1975) and introduce the schema theorem,
which uses the concept of building block (BB) to give some insights on how GAs work. Then, we
present the work by Goldberg (2002), who adheres to the ideas proposed by the schema theorem
and proposes a methodology for designing competent selecto-recombinative GAs.

Intuitive Idea of Why GAs Work: the Schema Theorem

We have just seen that the operation of GAs is based on the exchange of information from
parents to offspring. Along the description of GAs, we already pointed out that key operators
such as crossover should detect important traits from parents and exchange them properly to
create new children. In this section, we further this idea and present the schema theorem, which
is concerned about accounting for how the key solutions evolve in a population. We start with
the definition of schema and then reproduce the schema theorem proposed by Holland (1975).

The schema theorem is based on the idea of schema or building blocks (BBs), that is, a
template that identifies a subset of individuals. A schema is represented with a string s =
(s1, s2, ..., s`) where each bit si can take a different value of the ternary alphabet {0,1,*} (` is
the total number of bits of the schema). Thence, a schema represents a subspace Bn = {0, 1}n
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so that a binary string x belongs to this schema (x ∈ Bn) if

xi 6= si ⇔ si = ∗ ∀i = 1, 2, ..., n. (2.1)

Thence, for example, provided the schema 1**001, instances 101001 and 111001, among others,
belong to this schema.

Before proceeding to the formalization, the following two concepts need to be defined:

• The order of the schema h, o(h), is the number of fixed positions in the schema, that is,
the number of bits that are 0- or 1-valued. For example, o(∗ ∗ 10∗) = 2.

• The length of the schema h, δ(h) is the distance between the first and the last specific
positions. For instance, δ(∗ ∗ 10 ∗ ∗) = 1.

Provided the definitions above, the schema theorem models how the different schemas evolve
along a GA run. For this purpose, it considers the effects of the selection, the crossover, and the
mutation operators. Moreover, it assumes fitness-proportionate selection, one point crossover,
and gene-wise mutation. Then, the schema theorem demonstrates that the expected number of
offspring that belong to schema s at iteration t + 1, i.e., E[NS(P (t + 1))|P (t)], satisfies that

E[Nh(P (t + 1))|P (t)] ≥ Nh(P (t))
f(h, t)
f(t)

(
1 − δ(h)

` − 1
pc

)
(1 − pm)o(h), (2.2)

where NS(P (t)) is the number of individuals in the population P (t) that belong to schema h at
time t; f(h, t) is the average fitness of the individuals that belong to h at time t; and f(t) is the
average fitness of the population. The effect of fitness-proportionate selection is given by the
term f(h,t)

f(t)
, which increments the expectation of the number of individuals in the next generation

if the average fitness of the individual that belong to schema h is greater than the average fitness
of the population. The effect of crossover is reflected in the term 1− δ(h)

`−1 pc, which indicates that
the probability that a schema survives depends on the length of the schema and the crossover
probability. Finally, the effect of mutation is modeled by the term (1 − pm)o(h), which denotes
that the probability that the schema is preserved to the next generation is inversely proportional
to the mutation probability and exponentially proportional to the number of fixed bits of the
schema (o(h)).

Thence, the schema theorem demonstrates that the expected number of individuals that
belong to schema h at time t + 1 grows exponentially if the average fitness of the individuals
that belong to schema h at time t is greater than the average fitness of the population at time t.
Therefore, the effect of reproduction becomes quantitatively clear; that is, reproduction allocates
exponentially increasing number of trials to schemas whose fitness is above the average.

Design Decomposition: Goldberg’s Approach to Competent GA Design

Although some researchers have strongly criticized or even rejected the schema theorem, Gold-
berg proposed a framework to design selecto-recombinative GAs based on the initial Holland’s
notion of building block. Goldberg (2002) suggested thinking of building blocks as a kind of

22



2.2. EVOLUTIONARY COMPUTATION AND GENETIC ALGORITHMS

matter and to ensure (1) that we have an initial stock of them, (2) that good ones grow in the
market share, (3) that good decisions are made among them, and (4) that they are exchanged
well to solve a large class of difficult problems.

In order to satisfy the four aforementioned points, Goldberg (2002) decomposes the problem
of designing competent selecto-recombinative GAs in the following seven aspects:

1. Know that GAs process BBs.

2. Know the BB challengers.

3. Ensure adequate supply of raw BB.

4. Ensure increased market share for superior BBs.

5. Know BB takeover and convergence times.

6. Make decision well among competing BBs.

7. Mix BBs well.

Goldberg (2002) proposed to examine these items by means of facetwise analysis, which suggests
analyzing separately each one of these elements, assuming that the other ones behave in an
ideal manner. As proceeds, we elaborate on each one of the elements and mention some of the
approaches by which GA researchers have studied each element.

The primary idea of this theory is that selecto-recombinative GAs work through a mechanism
of decomposition and reassembling. That is, GAs implicitly decompose the problem and identify
sets of well-adapted features, which form a building block. Then, these building blocks have to
be correctly processed.

The second key idea in this theory is that complex problems are those problems whose
building blocks are difficult to acquire. This could be a result of having large, complex building
blocks, having building blocks that are hard to separate, or having a deceptive guidance toward
high-order building blocks (Goldberg, 2002).

After identifying the first two key concepts, the next four items of the theory analyze how
these building blocks evolve in a market economy of ideas. First, we need to ensure that the mar-
ket is provided with enough stock of BBs. As GA populations are usually initialized randomly,
one way to obtain more variability is to use larger populations (Goldberg, 1989b; Goldberg et al.,
2001; Holland, 1975).

Having provided the population with an initial stock of BBs, the next two important aspects
are (1) that the best BBs should grow and take over a dominant market share of the population,
and (2) that this growth should be neither too slow—so, delaying the convergence time—, nor
too quick—, thus increasing the risk of falling in a local optimum. Different approaches have been
taken to understand time and convergence, which cover the fourth and fifth elements of the design
decomposition. Three of the most important approaches are (1) takeover time models, which
model the dynamics of the best individual (Bäck, 1994; Cantú-Paz, 1999b; Goldberg and Deb,
2003), (2) selection-intensity models, where the dynamics of the average fitness of the population
are modeled (Bäck, 1995; Miller and Goldberg, 1995, 1996; Mühlenbein and Schlierkamp-Voosen,
1993; Thierens and Goldberg, 1994a,b), and (3) high-order cumulant models, where models of
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the dynamics of average and high-order cumulants are developed (Blickle and Thiele, 1995, 1996;
Cantú-Paz, 1999a).

Yet, just ensuring an initial adequate supply of raw BBs is not enough; in addition, good
decisions among competing BBs need to be taken to ensure that the best BBs will grow in
the market. It has been acknowledged that as we increase the population size, we increase the
likelihood of making the best possible decisions (Jong, 1975; Goldberg et al., 1992; Goldberg
and Rudnick, 1991; Harik et al., 1999). Therefore, decision making has been studied from the
perspective of population sizing.

The last item of the design decomposition relies on the idea that the correct identification
and exchange of BBs is the critical path to innovative success. That is, when designing a
competent GA, one of the key challenges that needs to be addressed is how to identify BBs
and exchange them effectively. In this regard, facetwise models have been developed to show
that fixed-recombination operators, such as uniform crossover, may fail to effectively identify
and exchange BBs, resulting in an exponential scaling up of the population size in boundedly
difficult problems—that is, problems that, for example, have large sub-solutions that cannot be
decomposed in simpler sub-solutions, have several optima, or are affected by noise—(Goldberg
et al., 1993; Sastry and Goldberg, 2002, 2003b). In contrast, recombination operators that can
automatically identify and exchange BBs efficiently have shown to scale up polynomially with
the population size in these boundedly difficult problems (Goldberg, 2002; Pelikan, 2005; Pelikan
et al., 2006).

The design decomposition and facetwise analysis has resulted in a better understanding of
the underlying processes of GAs, creating a formal framework formed by different pieces of
theory. Furthermore, these analyses have been used as a tool for designing competent GAs,
genetic algorithms that can solve boundedly difficult problems quickly, reliably, and accurately
(Goldberg, 2002). The first designs of competent GAs can be found in messy GA (Goldberg
et al., 1989). Currently, there are several implementations of competent GA such as the linkage
learning genetic algorithm (Harik, 1997), the extended compact genetic algorithm (Harik, 1999;
Sastry and Orriols-Puig, 2007), or the Bayesian optimization algorithm (Pelikan et al., 1999).
The maturity in the GA field has promoted the use of GAs in real-world problems. The next
section reviews some of these important applications.

2.2.5 Genetic Algorithms in Real-World Applications

All the success and better understanding of genetic algorithms has led to their application to a
large variety of problems in science, engineering, and industry. Therefore, GAs have not been
stuck in “toyish” problems but have been applied to complex, previously unsolved, real-world
problems. We review some of the most important applications in what follows.

In the scientific field, GAs have been employed in different applications such as the detec-
tion of coronary problems (Grefenstette and Fitzpatrick, 1992), the design and interaction in
computer games (Jo and Ahn, 2002), and the generation of music (Goksu et al., 2005). But the
application of genetic algorithms, differently from other optimization techniques, is not merely
limited to a scientific field. GAs have been successfully applied to complex problems in industry,
providing novel solutions. For instance, GAs were used to partially design the Japanese bullet
train N700; specifically, the shape of the front of the train was optimized by a GA. Another
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significant example is the EvoFIT tool1, a system based on GAs that makes robot pictures,
which was used by the Northamtonshire police.

There are also some companies that use GAs as the heart of their applications such as Op-
timatics and Schema. Optimatics 2 is a world leader provider of innovative and customized
optimization solutions to water industry. This company uses GAs as an essential tool for opti-
mization. The results provided by the company highlight that the GA-based optimization has
resulted in savings of about 20%-30%, on average, in their projects. Schema3 is a global provider
of end-to-end network optimization solutions for transport and mobile networks that uses GAs
in their applications. Some of the most significant projects of this company are missile balanc-
ing, synthetic aperture radar, optimal container stowage, and frequency allocation for cellular
networks.

Therefore, GAs have been used as competent optimization tools in some complex scientific
and industrial applications, assisting the creation of commercial products. In addition to these
applications in the optimization realm, GAs have also been used as the heart of several machine
learning techniques, yielding to a discipline which has been referred to as genetic-based machine
learning. The next section reviews the main branches of the algorithms that fall under these
definitions, which includes both Michigan- and Pittsburgh-style LCSs.

2.3 Genetic-based Machine Learning and Learning Classifier Sys-
tems

The application of GAs has not been restricted to optimization problems, but they have also
been used as the primary discovery heuristic in machine learning procedures. Since Holland
(1962) outlined his theory for adaptive systems, GAs have been used as the main discovery com-
ponent in Michigan-style LCSs (Holland, 1976; Holland and Reitman, 1978) and Pittsburgh-style
LCSs (Smith, 1980, 1983, 1984), which conform the two original branches of GBML. Further-
more, the population-based search, robustness, and knowledge-representation flexibility of GAs,
coupled with the recent advances in efficiency and competent GAs (Goldberg, 2002; Pelikan,
2005; Pelikan et al., 2006; Goldberg et al., 2007), has promoted the use of genetic search as
the primary discovery heuristic in several machine learning techniques that belong to different
learning paradigms that range from neural networks (Kitano, 1990; McInerney and Dhawan,
1993; Liu et al., 2004; Wierstra et al., 2005; Mierswa, 2007) to probabilistic classifiers (del Jesus
et al., 2004; Otero and Sánchez, 2006; Yalabik and Fatos, 2007). This has resulted in several
new approaches to use GAs in machine learning, which have shown to be highly competitive
with respect to traditional non-evolutionary systems (Orriols-Puig et al., 2008d,c).

The purpose of this section is to describe the five main branches of GBML. We start with
the description of Michigan- and Pittsburgh-style LCSs. As several particular implementa-
tions have been designed for both types of systems, we provide a general schema for each LCS.
Then, we present three other forms of GBML that have received a special amount of attention
during the last decade: Iterative rule learning (IRL) (Venturini, 1993), genetic cooperative-
competitive learning (GCCL) (Giordana and Neri, 1995; Greene and Smith, 1993), and the

1http://www.evofit.co.uk
2http://www.optimatics.com
3http://www.schema.com
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Figure 2.3: Simplified schematic of Michigan-style LCSs which the typical process organization.

organizational classifier system (OCS) (Wilcox, 1995). All these three approaches are combines
of Michigan- and Pittsburgh-style LCSs. The IRL approach uses a Michigan-like representa-
tion in a Pittsburgh-style LCSs to learn a set of rules incrementally. GCCL systems define a
framework where both competition in system niches and cooperation among all rules are per-
formed. OCS distributes classifiers in organizations and takes ideas from the economic study of
transaction costs to control the sizes of these organizations. A general schema of the process
organization of each branch of GBML is presented as follows.

2.3.1 Michigan-style LCSs

Since the first successful implementation of a Michigan-style LCSs (Holland and Reitman, 1978),
research on Michigan-style LCSs has resulted in new systems that have been applied to different
types of learning tasks. Therefore, although initially designed to simulate animal behavior—later
inspiring the whole field of reinforcement learning (Sutton and Barto, 1998)—, current LCSs
can be applied to a large variety of learning tasks such as supervised learning and data mining
(Bernadó-Mansilla and Garrell, 2003; Bull, 2004; Bull et al., 2008), function approximation
(Wilson, 2002b; Butz et al., 2008), reinforcement learning (Lanzi, 1999b, 2002; Lanzi et al.,
2005; Butz et al., 2005a), and clustering (Tamee et al., 2006, 2007). As proceeds, we present a
general architecture that highlights the common points among the different implementations.

Figure 2.3 illustrates the common process organization of current Michigan-style LCSs. That
is, all Michigan-style LCSs share three key components that distinguish them from other GBML
and machine learning techniques:

1. a knowledge representation based on classifiers, which maps the inputs with classes or
actions,
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2. a classifier evaluation system which evaluates the population of classifiers online, and

3. a classifier discovery system that is triggered with a certain frequency and is responsible for
discovering new promising classifiers and adapting the knowledge base to eventual changes
in the environment.

It is worth highlighting that the system learns online from an environment, which can represent
either the environment in which an agent lives or a set of examples that are made available in
a data stream.

The core of the system maintains a population of classifiers. Each classifier consists of (a)
a structure that maintains an input/output mapping, identifying to which inputs the classifier
is applicable and which action should be performed in case of matching, and (b) several param-
eters that maintain different statistics of each classifier, such as its fitness. The structure that
maintains the input/output mapping has usually been implemented with production rules (Hol-
land and Reitman, 1978; Wilson, 1994, 1995, 2001; Bernadó-Mansilla and Garrell, 2003); other
implementations such as neural networks (Bull and O’Hara, 2002), first-order logic expressions
(Mellor, 2005), messy representations (Lanzi, 1999a), LISP s-expressions (Lanzi and Perrucci,
1999), and gene expression programs (Wilson, 2008) have also been used. In any case, note
that each classifier covers a restricted set of sensorial inputs; therefore, the solution of a given
problem is the whole population.

Michigan-style LCSs update the parameters of these classifiers online by means of interacting
with the environment. That is, at each learning iteration, the environment provides a new input
example. Then, the system uses a sub-population of classifiers to decide the action or class that
should be taken according to the current input. This action is given to the environment, which,
in turn, returns a feedback that indicates the quality of the prediction. Then, the evaluation
component uses this information to adjust the quality of the classifiers that have participated
in the action decision process. Moreover, with a certain frequency, the rule discovery system
is triggered, generating new promising classifiers. Usually, a niche-based steady-state GA is
employed, which selects a group of classifiers, applies genetic operators to create new ones, and
introduces them into the population removing other classifiers if there is no room for the new
ones. Other search procedures such as evolution strategies have recently been used to guide the
classifier discovery system of LCSs (Morales-Ortigosa et al., 2008a,b).

Several Michigan-style LCSs have been designed since the first implementation of CS-1 by
Holland and Reitman (1978), such as the EYE-EYE system (Wilson, 1981, 1985a), the Boole
system (Wilson, 1985b, 1987)—which took some inspiration from Goldberg (1983) work on
LCSs—, and the NewBoole method (Bonelli and Parodi, 1991). Although these systems were
able to solve some specific applications, several drawbacks, mainly associated with the achieve-
ment of accurate generalizations, hindered their success. Further research resulted in the design
of the extended classifier system (XCS) by (Wilson, 1995), supposing a tipping point in the
LCSs research. As were its ancestors, XCS was originally devised to solve reinforcement learn-
ing tasks. Since then, several new Michigan-style LCSs have been designed based on the XCS’s
architecture. One of these derived systems can be found in UCS (Bernadó-Mansilla and Garrell,
2003), which inherits the main components of XCS, but specializes the system for supervised
learning.
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Figure 2.4: Simplified schematic of Pittsburgh-style LCSs.

2.3.2 Pittsburgh-style LCSs

Contemporaneous with the research on Michigan-style LCSs, some authors took another ap-
proach and extended GAs to machine learning, resulting in the so-called Pittsburgh-style LCSs.
Pittsburgh-style LCSs have three fundamental differences with respect to Michigan-style LCSs:
(1) the knowledge representation, (2) the evaluation system, and (3) the application mode of
the GA and the definition of the genetic operators. In this section, we examine these differences,
describe a general process organization of Pittsburgh-style LCSs, and review some of the most
significant implementations in this area.

Figure 2.4 illustrates the process organization of a Pittsburgh-style LCSs, which is directly
extended from the typical process organization of a simple GA. In Pittsburgh-style LCSs, indi-
viduals are complete solutions to the whole problem; that is, each individual should cover all
the feature space, instead of only covering a portion of it as in the Michigan approach. Usually,
Pittsburgh-style LCSs represent individuals as a disjunction of rules—which in most cases are
made available as a decision list (Rivest, 1987). Nonetheless, other representations such as a set
of decision trees (Llorà and Garrell, 2001; Llorà and Wilson, 2004) have also been used. In the
remainder of this section, for consistency with the Michigan approach, we use the term classifier
to refer to each one of fundamental parts of an individual.

Since each individual maintains a set of classifiers, which jointly cover the whole problem,
there is no need for evaluating the quality of each of these classifiers on its own. Therefore, dif-
ferently from the Michigan approach, the classifier apportionment algorithm can be sidestepped;
instead, a single measure is enough to evaluate the quality of the whole individual. Different
indicators have been used to evaluate the quality of individuals, the prediction accuracy and
the generality of the individuals being the most common ones. Thence, immediately after its
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creation, each individual is evaluated offline with a set of examples, which either have been pro-
vided at the beginning of the run in the form of a static data set or have been collected during
the learning process. Note that, under this approach, there is no control about the contribution
of each classifier to the performance of the whole individual.

Then, the population is evolved by means of genetic algorithm cycles. That is, at each
iteration, the system selects a set of individuals, which are crossed, mutated, and inserted
into the population replacing other probably low fit individuals. The crossover and mutation
operators are adapted to deal with the representation of the individuals. At the end of the
learning process, the best individual in the population is used to predict the output of new test
examples.

After the implementation of LS-1 (Smith, 1980, 1983, 1984), the first Pittsburgh-style LCS,
there have been some successful developments of Pittsburgh-style LCSs for supervised learning
such as GABL (Jong and Spears, 1991) and GIL (Janikow, 1993). In GABL, each individual
is encoded with a variable-length set of rules, and each rule follows a fixed-length, binary rep-
resentation. Rules have no class associated since GABL performs concept learning, that is, it
learns only positive or negative examples. The fitness is computed as the squared accuracy
function. The system uses the typical genetic operators except for crossover, which is restricted
to ensure that the operator selects the same position to cut the variables of two parents. GIL
follows a similar scheme but uses rules defined in the VL1 logic (Michalski et al., 1986) and
a fitness function that tries to balance the accuracy-complexity tradeoff of the individuals. In
addition, the system is provided with several operators that modify the rules at the semantic
level. A more recent implementation of a Pittsburgh-style LCS, which overcomes the scalability
problems detected in previous approaches (Freitas, 2002), can be found in GAssist (Bacardit,
2004).

2.3.3 Iterative Rule Genetic-based Machine Learning

Iterative rule learning (IRL) follows a separate-and-conquer methodology (Pagallo and Haussler,
1990) to learn a set of rules. The separate-and-conquer methodology proposes to iteratively learn
rules that cover a subset of the input instances. That is, the following two steps are iteratively
performed: (1) learn a rule that covers part (or all) of the training examples, and (2) remove
the covered examples from the training set. This process is repeated until no training examples
remain. At the end of the process, the solution is the concatenation of the rules created at
each iteration. Notice that this approach incrementally creates new rules and, at the same time,
reduces the search space since the covered examples are removed from the training data set.
This method has also been referred to as the covering strategy (Michalski, 1969).

Thence, IRL defines a general learning architecture in which different learning procedures
could be applied to extract the individual rules. Among others, GAs have been used to discover
these rules. That is, at each learning iteration, a GA is applied to induce a population of rules.
Therefore, the knowledge representation in the GA is the same as in the Michigan approach,
but rules compete with all the other rules in the population and are evaluated offline as in the
Pittsburgh approach.

The first proposal of IRL in the context of GAs can be found in the SIA system (Venturini,
1993). SIA generates an initial population from generalizations of randomly selected instances,
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and a GA is used to evolve these rules. Rules are evaluated according to their complexity and
accuracy. The process stops when the best rule remains stable for a certain number of genera-
tions. More recent approaches can be found in the HIDER system (Aguilar-Ruiz et al., 2003,
2007) and the NAX method (Llorà et al., 2007) for classification tasks and the HIRElin tech-
nique (Teixidó-Navarro et al., 2008) for function approximation tasks. A common characteristic
of these three learning algorithms is that they make the rules available as a decision list (Rivest,
1987). GAs for IRL have also been extensively used in in genetic fuzzy systems (Cordón et al.,
2001a; González and Pérez, 1999).

2.3.4 Genetic Cooperative-Competitive Learning

Genetic cooperative-competitive learning was initially designed as a synthesis of aspects of both
Michigan- and Pittsburgh-style LCSs (Greene and Smith, 1993). This approach combines the
offline rule processing of Pittsburgh-style LCSs with the idea of Michigan-style LCSs that the
solution is the whole population, and so, that rules need to collaborate to cover all the input
space. Below, we provide a general schema of this type of GBML systems in some detail.

GCCL was born with the purpose of explicitly addressing the goal of constructing highly
accurate and as-simple-as-possible decision models from a set of examples. To achieve this,
GCCL systems approach this problem by assuming that the examples of the training data set
correspond to niches in an ecology. The exact number of niches is not known, but it is assumed
to be less than the total number of examples in the data set; therefore, several examples can
be placed in the same ecological niche. Then, the population is considered to be the whole
model, which represents all the niches of the ecology, and each individual is a representation of
a particular niche. Individuals are coded as single rules, and the examples that are correctly
predicted by the individual are assigned to this rule. Then, the objective is to learn the minimum
number of niches or individuals that can cover all the input instances accurately.

The first proposal of a GCCL system can be found in COGIN (Greene and Smith, 1993)
which was designed after several works on the application of GAs to symbolic induction problems
that produced significant systems such as ADAM (Greene, 1987; Greene and Smith, 1987) and
GARGLE (Greene, 1992). Later, Giordana and Neri (1995) designed a new GCCL addressed as
REGAL, which was based on their previous work on concept learning based on GAs. The main
novelty of the system is that it provided a new selection operator that allowed the population
to converge, on average, to an equilibrium state.

2.3.5 The Organizational Classifier System

The organizational classifier system takes ideas from both Michigan- and Pittsburgh-style LCSs
to debate on appropriately sizing organizations, simulating the economic idea of transaction
costs. In what follows, we briefly review the architecture of OCS and discuss the novelties of
this approach.

OCS inherits the main ideas of simple classifier systems and focuses on the problem of trying
to distinguish rules that lead to optimal decisions from those that lead to suboptimal decisions
in order to evolve ideal rule sets. For this purpose, the system distributes the classifiers of the
population in different organizations of variable size. These organizations can interact among
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themselves. To control the size of the organizations, OCS incorporates ideas from transaction
cost theory by using reputation for organizational recruitment and by paying attention to efficient
organization sizing. That is, on the one hand, OCS includes a credit-allocation scheme that
distributes reputation among classifiers and organizations and a conflict-resolution method that
uses rules and organizations reputation to determine the interactions among classifiers and
organizations. On the other hand, the system implements an organizational growth component
that controls the sizes of the organizations by applying different genetic operators to enlarge or
shrink organizations, which preserve the idea that organizations with larger reputation may be
larger than organizations with lower reputation.

Despite the novelty of the ideas proposed in the OCS framework, research on OCS systems
alike has been scarce during the last decade. Recently, these concepts have been applied by
Vallim et al. (2008) to deal with problems of multi-label classification.

In this section, we presented four branches of GBML, which share the use of a GAs for
machine learning. Among them, this thesis is focused on Michigan-style LCSs. The most
important reasons that led us to research on these types of LCSs is that Michigan-style LCSs

1. Evolve a distributed solution in parallel, applying local search procedures to niches instead
of optimizing a set of classifiers globally.

2. Create individual classifiers whose contribution to the whole is determined by the system;
therefore, each individual classifier can be regarded as an expert in the region of the feature
space that it covers.

3. Learn the model online from a stream of examples. This is not only useful for reinforce-
ment learning problems—where instances come online as the agent finds new sensorial
states while moving around its environment—, but also for tackling current industrial and
scientific applications in which large volumes of data are generated online, and the learning
systems need to extract the key information that resides in the stream of data on the fly.

These three characteristics, together with the increasing application of LCSs to new real-world
problems, encouraged us to take this approach in the present work.

2.4 Summary

This chapter provided a brief introduction to ML and to the use of GAs in ML. Starting from
a brief description of ML and a classic taxonomy of the different ML tasks, we introduced
evolutionary computation methods in general, and GAs in particular, as robust optimization
techniques. Then, we explained different types of algorithms that use GAs to evolve their
knowledge representation, placing LCSs in this context.

The present work focuses on Michigan-style LCSs, the original approach to use GAs for
machine learning. While this chapter has provided a general introduction to these types of
systems, the next chapter focuses on the two approaches studied in this thesis: XCS and UCS.
We consider XCS since it is, by far, the most influential Michigan-style LCS, which has been
widely used to solve different types of problems. Besides, this thesis is also interested in UCS,
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an extension of XCS that restricts the learning architecture to supervised learning with the aim
of dealing with classification problems more efficiently. In the next chapter, these two LCSs are
described in detail.
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Chapter 3

Description of XCS and UCS

The design of the extended classifier system (XCS) by Wilson (1995) supposed a milestone in
the history of learning classifier systems. Wilson proposed XCS after several years of research
that yielded important results such as the boole system (Wilson, 1985b, 1987) or the most
recent zeroth-level classifier system (ZCS) (Wilson, 1994). The success of XCS was mainly
due to its “simplified” structure which addressed the different challenges of LCSs at that time.
XCS avoided the evolution of an excessive number of over-general classifiers by basing fitness
on the accuracy of the reward prediction instead of on the prediction itself. Besides, XCS
provided intrinsic generalization capabilities due to the combination of a niche-based GA and a
population-wise deletion operator.

Since its first proposal in 1995, a lot of research has been conducted on formalizing the
algorithmic structure (Butz and Wilson, 2001), enhancing the system with new operators (Wil-
son, 1998; Kovacs, 1999; Butz et al., 2003), and deriving theory for a better understanding of
its underlying processes (Butz and Pelikan, 2001; Butz et al., 2004b, 2005a, 2007; Drugowitsch
and Barry, 2008; Drugowitsch, 2008). Besides, new systems have been derived from XCS for
specific types of learning tasks. In the context of supervised learning, Bernadó-Mansilla and
Garrell (2003) defined the supervised classifier system (UCS), an LCS that inherited the process
organization from XCS, but was specialized for supervised learning. Since in this thesis we are
especially concerned about solving supervised learning tasks, we consider both XCS—as being
the general learning architecture—and UCS—as being specialized for these types of tasks.

The purpose of this chapter is to provide a concise description of both XCS and UCS. Section
3.1 introduces the XCS architecture and further details the different components of the system
and the process organization; besides, we provide some theory that explains why XCS is able
to generalize from a set of examples. Section 3.2 presents UCS, focusing on the modifications
introduced with respect to the online architecture of XCS. In both cases, we assume a ternary
representation. Section 3.3 reviews some new representations proposed to deal with new types
of data more effectively. Finally, section 3.4 summarizes the chapter.
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3.1 The XCS Classifier System

XCS (Wilson, 1995, 1998) is a Michigan-style LCSs that evolves a population of classifiers—
usually, production rules—online by means the interaction with an environment. A steady
state genetic algorithm is responsible for evolving these classifiers online. The main differences
between XCS and other Michigan style LCSs are (1) that XCS simplifies the architecture of other
Michigan-style LCSs—for example, removing the message list—and (2) that XCS computes the
classifiers’s fitness based on the accuracy of the reward prediction instead of calculating the
fitness from the reward prediction itself. Due to the latter aspect, XCS creates a set of maximally
general and accurate classifiers that map the problem space completely; that is, classifiers with
both low and high expected prediction reward are evolved by the system, creating the so-called
complete action map.

As follows, we explain the learning architecture of XCS in detail. First, we review the
knowledge representation assuming that the classifiers are represented with ternary rules, as
done in the first versions of the system. Then, we explain the process organization of the
system, which includes the learning interaction, the classifier evaluation system, the discovery
component, and the reasoning mechanism to infer the action of a new input instance. Finally, we
review theory that explains why XCS is able to generalize and learn a set of maximally general
and accurate classifiers. All the explanation assumes that XCS is working in single step tasks.
For more details about the architectural changes needed to deal with multiple step problems,
the user is referred to (Wilson, 1995, 1998; Butz et al., 2005a).

3.1.1 Knowledge Representation

XCS evolves a distributed knowledge represented by a population [P] of classifiers, where each
classifier contains a rule and a set of parameters that estimate the quality of the rule. Different
rule representations have been designed for XCS so far. In general, XCS can evolve any type
of rule—or even, other types of representations such as trees or neural networks—provided
that the genetic operators are properly redefined. In this section, we consider the ternary rule
representation, since this was the representation originally designed with the system. Later, in
section 3.3, we present different types of rules representations that have been designed for XCS
and UCS in the last few years.

A rule takes the form

if condition then action. (3.1)

That is, it consists of a condition, which is formed by a set of variables in disjunctive normal
form that specify when the classifier is applicable, and an action, which determines the predicted
action or class. Each variable of the condition can take a value of the ternary alphabet {0, 1,
#}`, where ` is the number of input variables. The don’t care symbol ‘#’ allows for rule
generalization; that is, ‘#’ indicates that the given variable matches any input value. Therefore,
a rule k matches an input example e if for each variable vi: vk

i = ei ∨ vk
i = #.

Besides the rule, a classifier also contains a set of parameters that maintain different statistics
of the rules. The most important parameters associated with a classifier are:
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1 Cà A  P eF  num as tsexp
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Figure 3.1: Schematic of the process organization of XCS.

1. The payoff prediction p, an estimate of the payoff that the classifier will receive if its
condition matches and its action is chosen.

2. The prediction error ε, an estimate of the average error between the classifier’s prediction
and the received payoff; that is, it computes the mean absolute deviation of the prediction
error with respect to the received rewards.

3. The fitness F , an estimate of the scaled, relative accuracy1 of the payoff prediction.

4. The action set size as, an estimate of the size of the action sets in which the classifier has
participated (see section 3.1.2).

5. The experience exp, which reckons the number of examples that the classifier has matched
during its life.

6. The numerosity n, which indicates the number of copies of the classifier in the population.
In this way, identical classifiers can be represented as a single individual in the population,
speeding up the runtime since the matching time (as well as the time required for other
operations) decreases.

To completely understand the knowledge representation, in the following sections we detail
how the different components of XCS interact to evaluate the existing rules and to create new
promising classifiers.

3.1.2 Learning Interaction

XCS learns online by interacting with an environment which provides a new training example
at each iteration. Figure 3.1 schematically illustrates this process. The system works in two

1Relative accuracy is computed with respect to other classifiers in the same action set.
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different modes: exploration or training and exploitation or test. In exploration mode, XCS
seeks to evolve a maximally general rule set that minimizes the prediction error of the rules.
In exploitation mode, XCS uses the rule set to decide the best action for a new input example.
As proceeds, we discuss in more detail how the different components of XCS interact to learn a
population of maximally general and accurate classifiers from the interaction with this environ-
ment; that is, we focus on the exploration phase. In section 3.1.5, we explain how the evolved
knowledge is exploited to predict the action of new inputs.

XCS usually starts the exploration phase with an empty population. At each learning iter-
ation, the system is provided with a new instance e. Then, the system builds a match set [M]
containing all the classifiers in [P] whose conditions match e. If the number of classes repre-
sented in [M] is less than the θmna threshold (θmna is usually set to the total number of possible
classes of the problem), the covering operator is triggered, creating as many new classifiers as
required to cover θmna different classes. The condition of the new classifiers created by covering
is generalized from e. That is, each variable is set to ‘#’ with probability P# (where P# is a
configuration parameter); otherwise, the variable takes the corresponding value in e. The class
of the new classifier is randomly selected among the classes that are not covered in [M]. The
parameters of the new classifiers are set to initial values; typically, p = 10, ε = 0, and F = 0.01.
These parameters are initialized with a value close to zero to avoid an excessive influence of
young classifiers in the selection and inference procedures; as long as these classifiers participate
in action sets, the parameter update procedure adjusts their parameters to their real value.
Besides, the numerosity is set to 1, the experience to 0, and the action set size to the size of the
match set where the covering has been fired.

Next, the system computes the system prediction P (ci) for each possible class, which esti-
mates the payoff that the system will receive if ci is selected as output. P (ci) is calculated as
the fitness weighted average of the predictions of the classifiers in [M] that advocate class ci;
that is:

P (ci) =

∑
cl.class=ci∧cl∈[M ] cl.p · cl.F∑

cl.class=ci∧cl∈[M ] cl.F
, (3.2)

where cl.class, cl.p, and cl.F refer to the class, the reward prediction, and the fitness of the
classifier respectively. Then, XCS selects one of the classes randomly. Thus, XCS explores
the consequences of all classes for each possible input. Notice that other exploration regimes,
such as giving each class ci a selection probability proportional to Pci , could be applied as well.
The chosen class determines the action set [A], which consists of all classifiers advocating that
class. The action set works as a niche where the parameters update procedure and the genetic
algorithm take place. The next subsections explicate these two procedures in detail.

3.1.3 Classifier Evaluation

In training mode, after XCS sends the chosen class to the environment, a reward R is returned. R
is maximal if the proposed class is the same as the training example (usually 1000), and minimal
(usually zero) otherwise. Then, in single step problems, classifier parameters are updated with
respect to the immediate reward in the current action set. As proceeds, we detail this parameter
update procedure.
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The prediction of each classifier cl is first updated according to the Widrow-Hoff rule (Widrow
and Hoff, 1988) as

cl.p ← cl.p + β(R − cl.p), (3.3)

where β (0 < β ≤ 1) is the learning rate. The learning rate fixes the adaptivity of the parameters
to the received rewards. That is, large values of β would produce large corrections in the
prediction parameter each time the classifier participates in [A], whilst low values of β will cause
small corrections. A typical value for this parameter is β = 0.2 (Butz and Wilson, 2001). Next,
the prediction error cl.ε is computed as

cl.ε ← cl.ε + β(|R − cl.p| − cl.ε). (3.4)

Then, the fitness is updated as follows. First, the accuracy cl.κ of each classifier cl in [A] is
calculated as

cl.κ =


α(cl.ε/ε0)−ν cl.ε ≥ ε0;

1 otherwise.
(3.5)

Note that cl.κ is an inverse function of the error. The formula uses a power function with expo-
nent ν (ν is a configuration parameter), enabling in this way to tune the pressure toward highly
accurate classifiers; besides, when the classifier has a prediction error lower than the configura-
tion parameter ε0, the system considers this classifier maximally accurate. The accuracy cl.κ is
used to compute the relative accuracy cl.κ′ as

cl.κ′ =
cl.κ · cl.n∑

cli∈[A] cli.κ · cli.n
, (3.6)

which reflects the relative accuracy of the classifier with respect to the other classifiers in the
same action set. Thence, using this procedure, all the classifiers in the niche share the global
resources of that niche. Then, cl.κ′ is employed to update the fitness as

cl.F = cl.F + β(cl.κ′ − cl.F ). (3.7)

Thus, the fitness is an estimate of the accuracy of the classifier prediction relative to the accura-
cies of the overlapping classifiers. This provides fitness sharing among the classifiers belonging
to the same action set. Finally, the action set size is updated as

cl.as = cl.as + β(|[A]| − cl.as), (3.8)

where |[A]| is the size of the current action set. At the end of this process, the experience of the
classifier is incremented.

Classifier’s parameters p, ε, and as are updated differently in the first iterations of XCS.
That is, to let the classifier parameters move to quickly to their real values at the beginning
of the classifier life, the moyenne adpative modifiée technique (Venturini, 1994) is used. This
technique sets the parameters of the classifiers directly to the average value computed with the
instances that the classifier has matched. This process is applied while the experience of the
classifier is less than 1/β.

Once the parameters of the classifiers in [A] have been evaluated, the GA can be applied to
the current niche. The next section explains the genetic search in more detail.
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3.1.4 Classifier Discovery

XCS uses a steady-state niche-based genetic algorithm (GA) (Goldberg, 1989a) to discover new
promising classifiers. The GA is triggered in the current action set if the average time since
its last application to the classifiers in [A] is greater than θGA. Here, we explain the basic
mechanisms of the GA.

The GA selects two parents from the current [A] following either proportionate selection
(Wilson, 1995) or tournament selection (Butz et al., 2005c) and copies them. Under proportion-
ate selection, each classifier has a probability psel(cl) to be selected proportional to its fitness;
that is,

psel(cl) =
cl.F∑

cli∈[A] cli.F
. (3.9)

Under tournament selection, a proportion of the action set, specified with the configuration
parameter σ, is selected to participate in the tournament. The classifier with maximum fitness
in the tournament is chosen.

The copies undergo crossover with probability χ and mutation with probability µ per allele.
Two crossover schemes have been used for XCS: two-point crossover and uniform crossover. Two-
point crossover copies the two parents into two offspring, selects two cut points in the offsprings,
and swaps all the variables between the two points. Uniform crossover decides, for each variable,
from which parent the information is copied. If crossover, is not applied, the offspring are exact
copies of the parents. After this, mutation is applied as follows. For each input variable, the
mutation operator randomly decides whether the variable needs to be changed. In this case, it
randomly chooses a new value for the variable. The class of the rule also undergoes the same
process.

The offspring parameters are initialized as follows. If crossover is not applied, the prediction,
the error, and the fitness parameters are copied from the selected parent. Otherwise, these
parameters are set to the average value between the corresponding parameters in the parents.
In both cases, the fitness is decreased to 10% of the parental fitness. Experience and numerosity
are initialized to 1.

The resulting offspring are introduced into the population via subsumption (Wilson, 1998).
That is, if there exists a sufficiently experienced (cl.exp > θsub) and accurate (cl.ε < ε0) classifier
cl in [A] whose condition is more general than the new offspring, the numerosity of this classifier
is increased. Otherwise, the new offspring is introduced into the population. Two classifiers are
removed if the population is full. The deletion probability of a classifier is proportional to the
action set size estimate of the classifier; moreover, the deletion probability is increased if the
classifier cl is experienced enough (cl.exp > θdel) and its fitness cl.F is smaller than a proportion
of the average fitness of the population F (cl.F < δF ) (Kovacs, 1999). That is, the deletion
probability pdel of a classifier cl is computed as

cl.pdel =
cl.d∑

∀cli∈[P ] cli.d
, (3.10)
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where

cl.d =

{
cl.n·cl.as·F[P ]

cl.F if cl.exp > θdel and cl.F < δF[P ];
cl.as · cl.n otherwise,

(3.11)

where F[P ] is the average fitness of the population. This deletion scheme biases the search toward
highly fit classifiers and, at the same time, balances the classifiers’ allocation in the different
action sets.

Once the learning finishes, the evolved population is used to infer the class of new unlabeled
instances. The next section provides the reasoning mechanism used by XCS.

3.1.5 Class Inference in Test Mode

The final solution of XCS consists of a set of rules with minimal error that cover all the problem
space. This means that, in classification tasks, the system would evolve two types of rules: (1)
rules with high prediction and low error and (2) rules with low prediction—thence, predicting
the wrong class—and low error. For this reason, it is said that XCS evolves a complete action
map (Wilson, 1995; Kovacs and Kerber, 2001). In test or exploitation mode, all the matching
classifiers in the population are used to infer the class of a new input instance. The reasoning
mechanism works as follows. Firstly, XCS creates [M] with all the matching classifiers; covering
is not applied in any case. Then, the prediction array is formed as explained in section 3.1.2,
and the most voted class is returned as output. Note that during test, the population is never
modified.

In summary, XCS is an online system which represents individuals as classifiers that contain
single rules, uses adapted reinforcement learning techniques to evaluate the quality of these
classifiers, employs a steady-state niche-based GA to discover new promising rules, and applies
a fitness-based voting policy to infer the class of test instances. XCS process organization is
based on the activation of classifiers to form match sets and action sets, and on the application
of the parameter update procedure and the GA on these action sets or niches. In the next
subsection, we explain how this process leads to the evolution of accurate rule sets.

3.1.6 Why Does XCS Work?

After defining the learning process and the reasoning mechanism of XCS, we now intuitively
explain the mechanisms that let XCS evolve a set of maximally general and accurate classifiers.
For this purpose, we revise the work by Butz et al. (2004b), and explain the five evolutionary
pressures identified by the authors that lead the system to evolving a set of optimal classifiers.
The explanations are maintained in an abstract level, and the details of the mathematical
formulation are not provided. The user is referred to (Butz et al., 2004b) for the details.

Butz et al. (2004b) identified five evolutionary pressures that guide the learning process in
XCS:

1. The set pressure.

2. The mutation pressure.
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3. The deletion pressure.

4. The subsumption pressure.

5. The fitness pressure.

In what follows, each item is briefly explained.

Set pressure. The set pressure is mainly due to the combination of the application of the GA
in niches and the deletion in the whole population. This pressure was early explained by
Wilson (1995), who formulated the following hypothesis: if two classifiers are equally accurate
but have different generalizations, then the most general one will participate in more action
sets, having more reproductive opportunities and finally displacing the specific classifier. This
hypothesis was later investigated by Kovacs (1997), defining the optimality hypothesis, and
formalized by Butz et al. (2004b). In brief, this supports the fact that the most general and
accurate classifiers will take over their niches, displacing both over-general and most specific,
accurate classifiers.

Mutation pressure. Whereas the set pressure moves the population toward generality and accu-
racy, Butz et al. (2004b) identified that mutation, in its own, causes the population to tend to
more specific classifiers. That is, mutation changes the value of a variable, which can take one
value from the ternary alphabet {0,1,#}. As two of these values are specific, i.e., {0,1}, and the
last one is general, mutation pushes toward a distribution of 66.7%/33.3% of specific/general
bits. Obviously, the intensity of this pressure depends on the period of application of the GA
and the mutation probability.

Deletion pressure. The population-wise deletion operator removes classifiers depending on their
action set size estimate and their fitness. As classifiers that belong to large action sets are
given a higher deletion probability, the operator makes pressure towards even distribution of
classifiers in the different system niches. Furthermore, the deletion operator also pushes toward
removing classifiers with low fitness, driving the search toward the fittest individuals.

Subsumption pressure. The subsumption pressure pushes towards generalization inside the
niche. Once several accurate classifiers have been found, subsumption deletion causes the
system to prefer the maximally general classifiers over the most specific ones. That is, GA
subsumption checks, for each offspring, if there exists any accurate classifier in [A] whose con-
dition includes the offspring’s condition; if so, the numerosity of this classifier is incremented.
Therefore, subsumption produces an additional pressure toward generalization.

Fitness pressure. Finally, the fitness pressure is present in all the mechanisms of XCS, and
influences the four aforementioned pressures as well. In general, fitness pressure pushes the
population from over-general to more specific and accurate classifiers. It interacts with the
other pressures since selection, mutation, and subsumption depend on classifier’s fitness. In
summary, the interaction of the five pressures drives the population toward a population of
accurate maximally general classifiers.

With the explanation provided in this section we have covered the technical details and have
glimpsed the ideas that explicate why XCS works. Notice that, in essence, XCS is a general
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architecture—which evaluates rules online and uses a robust search mechanism to discover new
promising rules—rather than a specific architecture particularly designed for solving a concrete
set of tasks. For this reason, the learning architecture of XCS has been applied—sometimes with
few modifications—to solve different types of problems. In the following section, we present one
of this system modifications that specializes XCS to deal with data classification tasks more
efficiently. The new architecture is addressed as the supervised classifier system (UCS).

3.2 The UCS Classifier System

UCS is an accuracy-based LCS that inherits the main components of XCS, but specializes the
online learning architecture for classification tasks (Bernadó-Mansilla and Garrell, 2003). The
aim of the system is to take advantage of having the class of the training instances, so focusing the
exploration process toward classifiers that predict the correct class accurately. Therefore, UCS
does not evolve a complete action map—including classifiers with low prediction and error—,
but it does create the best action map, which consists of a set of maximally general and accurate
classifiers that predict the correct class. With this modification, UCS is expected to

1. evolve a solution quicker than XCS, since it only explores the correct class, and

2. require less population to store the solution, as it only needs to maintain the best action
map.

Furthermore, UCS adapts the classifier’s parameters to supervised learning. As follows, we
review the learning mechanism of UCS, especially focusing on the novelties with respect to the
XCS architecture. Therefore, we first revisit the knowledge representation, which introduces new
parameters to assess the quality of the rules. Then, we analyze the differences in the learning
interaction, rule evaluation, rule discovery, and reasoning mechanism to infer the class of new
input instances.

3.2.1 Knowledge Representation

As XCS, UCS evolves a population [P] of classifiers, where each classifier contains a rule and
a set of parameters. The rule representation is copied from XCS. Therefore, rules consist of a
condition that advocates a class. Besides, the classifiers have the following parameters:

1. The accuracy acc, which maintains an average of the proportion of matching examples
that have been correctly classified by the rule.

2. The fitness F , which is computed as a function of the accuracy.

3. The correct set size cs, an estimate of the size of the correct sets in which the classifier
has participated (see section 3.2.2).

4. The experience exp, which reckons the number of examples that the classifier has matched
during his life.

5. The numerosity n, which indicates the number of copies of the classifier in the population.
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Figure 3.2: Schematic of the process organization of UCS.

Therefore, UCS inherits the experience and the numerosity parameters, redefines the accuracy
and the fitness parameters, and introduces the correct set size parameter. Note that one of the
key differences with respect to XCS is that, in UCS, fitness is based on accuracy, which is directly
computed as the true proportion of correct predictions of the given rule. With the modification
of the knowledge representation in mind, the next subsections describes the changes on the
learning interaction proposed by UCS to adapt the online learning architecture to supervised
learning tasks.

3.2.2 Learning Interaction

Figure 3.2 illustrates the process organization of UCS, which redefines the process organization
of XCS according to a supervised learning scheme. The main difference with respect to XCS
is that, in UCS, the class of each learning instance is provided by the environment. Therefore,
the learning architecture takes advantage of this information to explore only the class of each
sampled input example. As proceeds, this procedure is explicated in detail.

As XCS, UCS starts the exploration phase with an empty population. At each learning
iteration the system receives a new input example e with its class c. Then, the system creates
the match set [M], which contains all the classifiers in the population [P] whose condition matches
e. Next, all the classifiers in [M] that predict the class c form the correct set [C]. If [C] is empty,
the covering operator is activated, which creates a new classifier whose condition is generalized
from e (as in XCS), and whose predicted class is set to c. Hence, covering aims at discovering a
single classifier that predicts the sampled input instance correctly; besides, some generalization
is added by setting each variable to ‘#’ with probability P#. The parameters of the new classifier
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are set to: exp = 1, num = 1, cs = 1, acc = 1 and F = 1. As fitness and accuracy are estimated
from a single instance—and so, the estimate may be poor—UCS does not let young classifiers
have a strong participation in the genetic selection and the reasoning mechanism until they do
not receive a minimum number of parameter updates.

After this, the parameters of all classifiers in the match set are evaluated, and eventually, the
correct set—which defines a niche of classifiers with similar conditions and the same predicted
class—receives a genetic event. Note that the parameter update procedure is applied to [M]
instead of to [C]. UCS moves this procedure to the match set since the accuracy of all the
matching classifiers that predict the input instance wrongly needs to be decreased. Also, notice
that the correct set size acts as a niche where the genetic algorithm is applied, following the
same idea of XCS. These two procedures are detailed in the following two subsections.

3.2.3 Classifier Evaluation

Each time a classifier participates in a match set, its experience, accuracy, and fitness are
updated. Firstly, the experience is increased. Then, the accuracy is computed as the percentage
of correct classifications:

cl.acc =
number of correct classifications

cl.exp
. (3.12)

Thus, accuracy is a cumulative average of correct classifications over all matches of the classifier.
Next, fitness is updated according to the following formula:

cl.Fmicro = (cl.acc)ν , (3.13)

where ν is a constant set by the user that determines the strength pressure toward accurate
classifiers (a common value is 10). Thus, differently from XCS, fitness is calculated individually
for each micro-classifier, and it is not shared. The fitness of a macro-classifier cl.Fmacro is
obtained by

cl.Fmacro = cl.Fmicro · cl.n. (3.14)

Finally, each time the classifier participates in [C], the correct set size cl.cs is updated. cl.cs is
computed as the arithmetic average of the sizes of the correct sets in which the classifier has
taken part.

Once the parameters of the classifiers in [M] have been evaluated, the GA can be applied to
the current correct set. The following subsections explain this process.

3.2.4 Classifier Discovery

UCS uses a steady-state niche-based GA as the primary search mechanism to discover new
promising rules. The GA is applied to [C] following the same procedure as in XCS. Here, we
briefly review this process and explain in more detail the rule deletion mechanism, which is
slightly modified with respect to XCS’s one.

The GA is triggered in the current correct set if the average time since its last application
to the classifiers in [C] is greater than θGA. If so, the GA selects two parents from [C]. The
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two selection schemes of XCS are also applicable here: proportionate selection and tournament
selection. The only difference is that the fitness of young classifiers (exp < θdel) is divided by
θdel to avoid their influence in the selection process. Then, the two parents are copied, creating
two new offspring, which are recombined and mutated with probabilities χ and µ respectively.
The crossover and mutation operators are directly inherited from XCS (see section 3.1.4). The
parameters of the offspring are initialized as follows. The experience and the numerosity are set
to 1. The accuracy and the fitness are also set to 1 (these parameters will go quickly to their real
values as they participate in successive match sets). Finally, cs is set to the size of the current
correct set.

Finally, both offspring are introduced into the population. First, each offspring is checked
for subsumption with the classifiers in [C]. The subsumption mechanism is adapted from XCS
as follows: if one of the classifiers cl in [C] is sufficiently experienced (cl.exp > θsub), accurate
(cl.acc > acc0) and more general than the offspring, then the offspring is not introduced into the
population and the numerosity of the subsumer classifier is increased. If the offspring cannot be
subsumed, it is inserted in the population, deleting another classifier if the population is full.
The deletion probability pdel of a rule cl is calculated as:

cl.pdel =
cl.d∑

∀cli∈[P ] cli.d
, (3.15)

where

cld =

{
cl.cs·cl.n·F[P ]

cl.Fmicro
if cl.exp > θdel and cl.Fmicro < δF[P ];

cl.cs · cl.n otherwise,
(3.16)

where δ and θdel are configuration parameters, and F[P ] is the average fitness of the population.
In this way, deletion will tend to balance resources among the different correct sets, while
removing low-fitness classifiers from the population. As fitness is computed from the proportion
of correct classifications of a classifier, classifiers that predict wrong classes are not maintained
in the population, and so, only the best action map is evolved.

The whole process is iterated during several learning steps in which a new instance is sampled
and the processes of match set creation, parameter evaluation, and genetic algorithm application
take place. After this, the system results in a population of highly general and accurate classifiers,
which are used to infer the class of new input instances. The next subsection provides the
reasoning mechanism implemented in UCS.

3.2.5 Class Inference in Test Mode

In test mode, a new input example e is provided, and UCS has to predict the associated class.
For this purpose, UCS implements a reasoning mechanism which is similar to the one of XCS.
That is, firstly, the match set is created. Then, all classifiers in [M] emit a vote, weighted by
their fitness, for the class they predict. The vote of young classifiers (i.e., exp < θdel) is decreased
by multiplying its vote by exp/θdel to diminish their influence with respect to more experienced
classifiers. The most-voted class is chosen. New inference schemes have been proposed in Brown
et al. (2007), showing that the current inference schemes of XCS is one of the best among the
compared ones. Under test mode, the population of UCS does not undergo any change; that is,
all update and search mechanisms are disabled.
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So far, we have detailed the key differences between the architectures of XCS and UCS. In
essence, UCS follows the same mechanisms of XCS, but introduces some little modifications
to take advantage of knowing the class of the training examples. With this new architecture,
UCS is not expected to perform better than XCS, but to be able to evolve a solution spending
less computational resources. That is, UCS needs to evolve and maintain a lower number
of classifiers—since UCS does not evolve low rewarded rules— and is expected to solve the
problem more quickly than XCS, since it only explores the “correct class”. Nonetheless, note
that the key concepts of XCS, such as the accuracy-based approach, the incremental parameter
update procedure, and the steady-state niche-based GA are still present in UCS. In the following
subsection, we argue that the same ideas introduced in section 3.1.6 to explain why XCS works
are still valid in UCS.

3.2.6 Why does UCS work?

As XCS, UCS is guided by the following five evolutionary pressures:

1. The set pressure.

2. The mutation pressure.

3. The deletion pressure.

4. The subsumption pressure.

5. The fitness pressure.

The main differences with respect to XCS is that, now, the fitness definition differs. Therefore,
the system no longer pressures toward obtaining classifiers with low prediction error, but toward
highly accurate classifiers. The consequences of this is that, as already discussed, UCS evolves
the best action map instead of a complete action map. The other pressures do not need to be
redefined as a consequence of the change in the architecture. That is, the set pressure pushes
[P] toward the most general classifiers. The mutation pressure pushes toward specificity. The
deletion pressure maintains an even distribution of classifiers in the different niches, giving more
deletion probability to the classifiers with the lowest fitness with respect to the average fitness
of the population. And finally, the subsumption pressure makes UCS prefer the most general
classifiers that are still accurate to more specific, accurate classifiers. The overall interaction of
these pressures, as in XCS, guides the search toward maximally general and accurate classifiers.

3.3 Rule Representations for LCSs

Thus far, we have described XCS and UCS with a ternary rule representation. During the
last few years, several new rule representations have been introduced to XCS and UCS to let
the systems deal with real-world problems such as interval-based representations (Wilson, 2000,
2001), hyper elipsoidal representations (Butz et al., 2006, 2008), and convex hulls (Lanzi and
Wilson, 2006). Other more general approaches that have been used to codify the classifiers
rules are neural networks (Bull and O’Hara, 2002), messy representations (Lanzi, 1999a) LISP
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s-expressions (Lanzi and Perrucci, 1999), and gene expression program representations (Wilson,
2008). Besides, fuzzy representations have been designed for some Michigan-style LCSs (e.g.,
see Valenzuela-Rendón (1991)); fuzzy representations will be presented in detail in chapter 8.
In here, we introduce one of the most-used representations to deal with continuous attributes
in XCS, that is, the interval-based representation. As follows, we first provide some histori-
cal remarks about the different proposals of interval-based rule representation for LCSs, and
introduce the one used in the present work.

3.3.1 From the Ternary to the Interval-based Rule Representation in LCSs

Initially designed with a ternary representation, LCSs faced a new challenge when dealing with
continuous or quantitative attributes, which are often present in real-world problems. That is,
the ternary rule representation was not suitable for directly dealing with continuous data. Data
preprocessing techniques could be used to transform the continuous values into discrete values;
nonetheless, this could result in an undesirable loss of information. Recently, interval-based rule
representations have been designed to to effectively deal with continuous attributes. The most
significant of these representations are reviewed as follows.

Wilson (2000) designed one of the first interval-based representation for XCS, addressed as
center-spread representation. The center-spread representation codifies each rule variable with
a pair of values (ci, si) that defines a rectangle with center in ci and spread si. Besides, the
representation has to satisfy the constraint that ci − si/2 ≥ maxi and ci + si/2 ≤ mini, where
maxi and mini are respectively the maximum and the minimum values that the attribute can
take.

This representation empirically demonstrated to be able to evolve accurate models in artificial
problems with continuous attributes. Nevertheless, the truncation caused by guaranteing the
constrain on the maximum and the minimum values might result in an inefficient exploration of
the feature space, as later shown by Stone and Bull (2003). To overcome this problem, Wilson
(2001) presented another interval-based representation, referred to as min-max representation
in which each attribute codifies the lower `i and the upper ui limit of the interval of values where
the attribute is applicable. Although the effects of truncation are not present, this representation
still has the problem of invalid intervals eventually caused by the genetic operators. That is,
genetic operators may generate intervals where `i > ui, in which the classifier would not match
any input instance. This situation could be fixed in several ways by modifying the value of the
interval bounds.

A simple approach to deal with this effect was proposed by Stone and Bull (2003), who
introduced the unordered-bound representation. The unordered-bound representation proposes
to use the min-max representation but without prefixing which of the two bounds are the upper
bound and the lower bound. That is, the unordered-bound representation codifies each variable
as an interval (pi, qi); the smaller of these two values is considered as the lower bound of the
interval and the larger value is considered the upper bound. This has been, probably, the most
used representation for continuous attributes in the last few years.

New efforts in the definition of representations for continuous attributes were made after
the presentation of the unordered-bound representation. For example, Dam et al. (2005) argued
that the unordered-bound representation produces large changes in the semantics of the intervals
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when an operator exchanges the lower bound with the upper bound of an interval. Therefore,
this may thwart the correct propagation of the building blocks of the problem. In order to solve
this, Dam et al. (2005) proposed to represent an attribute with the pair (mi, pi), where mi is
the lower bound of the interval and pi is a proportion used to compute the length of the interval
si as

si = pi(pmax − mi), (3.17)

in which pmax is the maximum value that the attribute i can take. Thus, the pair (mi,pi) can
easily be translated to the lower bound `i and upper bound ui of the interval by recognizing
that

`i = mi, (3.18)
ui = mi + si (3.19)

However, the empirical results did not clearly show an improvement with respect to the unordered-
bound representation. For this reason, we used the unordered-bound representation in the
present work. The next section provides more details about this representation.

3.3.2 The Unordered Bound Representation

We now describe the unordered-bound representation in more detail and explain how the genetic
operators were adapted to deal with the new representation. As aforementioned, the new repre-
sentation codifies each variable with an interval (pi, qi), where the minimum value between the
two bounds represents the lower bound, and the maximum value represents the upper bound.
For example, a classifier whose condition is defined by the two variables <[1,2], [10,8]> matches
any input instance whose first variable ranges in [1,2] and its second variable ranges in [8,10]. As
proceeds, we explain how the covering operator, the different genetic operators that deal with
the representation—i.e., crossover and mutation—, and the subsumption operator are redefined
to deal with the new representation. For simplicity, we assume that all the input attributes have
been normalized, and so, that their values range in [0,1].

Covering Operator

The covering operator creates a new classifier whose condition is generalized from the input
example e. For this purpose, the interval of each variable i of the new classifier is initialized as

pi = ei − rand(0, r0) and (3.20)
qi = ei + rand(0, r0), (3.21)

where r0 is a configuration parameter (0 < r0 ≤ 1), and rand(0, r0) returns a random number
between 0 and r0. Therefore, this operator creates an interval that includes the value of the
corresponding attribute, and r0 controls the generalization in the initial population (it is equiv-
alent to P# in the ternary representation). An example of covering is graphically illustrated in
figure 3.3.
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Figure 3.3: Example of covering in the hyper rectangular representation.

< [0.20, 0.80], [0.45, 0.65] > < [0.20, 0.85], [0.25, 0.65] >
=⇒

< [0.60, 0.85], [0.25, 0.75] > < [0.60, 0.80], [0.45, 0.75] >

Table 3.1: Example of two-point crossover, in which the two cut points are in the middle of each
interval.

Crossover Operator

In real-world problems, two-point crossover is usually applied. It randomly selects two cut
points, which can occur either between or within an interval predicate. Then, the offspring are
created by shuffling the information of both parents. The process is detailed in the example
of table 3.1, in which the two parents are crossed, selecting a cut point in the middle of each
interval and generating two new offspring. Figure 3.4 visually illustrates this example in the
feature space.

Mutation Operator

The mutation operator is applied to each of the bounds of the interval. If it decides to change
an interval bound, this is mutated by adding a random value that ranges in (−m0, m0), where
m0 is a configuration parameter. Figure 3.5 shows an example of the mutation operator.

Subsumption Operator

To consider a classifier as a candidate subsumer, the same conditions defined in the ternary
representation need to be satisfied. That is, the subsumer classifier has to be experienced
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Figure 3.4: A crossover example. (a) plots the two parents and (b) shows the offspring resulting
from two cut points occurring in the middle of each interval.
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Figure 3.5: Example mutation in the hyper rectangle representation.

enough, accurate, and its condition has to include the condition of the subsumed classifier. For
an interval-based representation, the condition of rule cl1 includes that of rule cl2 if for each
variable i: cl1.`i ≤ cl2.`i and cl1.ui ≤ cl2.ui, where `i and ui are respectively the smaller and
greater value of the two bounds of the interval.
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3.4 Summary and Conclusions

This chapter provided concise descriptions of XCS and UCS, which can be utilized as imple-
mentation guidelines. Besides, we explained the evolutionary pressures that guide both systems
to evolve a minimal set of maximally general and accurate classifiers. Finally, we presented the
interval-based representation used by the two LCSs to deal with continuous attributes.

During the explanation, we highlighted the differences between XCS and UCS, which are
due to the specialization of UCS for supervised learning. Basically, the two key aspects that
UCS modifies with respect to XCS are:

1. The fitness computation.

2. The exploration scheme.

The fitness computation procedure of UCS introduces two changes with respect to the one
in XCS: (1) UCS computes the fitness based on the rule’s accuracy on classifying the input
instances instead of on the accuracy of the rule’s prediction and (2) UCS does not share the
fitness among the rules in the same niche. The former modification makes UCS push toward rules
that predict all the matching instances correctly; therefore, the system evolves the best action
map. Conversely, XCS evolves rules that are accurate in the prediction reward, regardless of
whether they predict the correct class; thence, XCS builds the complete action map. Therefore,
UCS spends less computational resources with respect to XCS since UCS only evolves and
maintains the rules that predict the correct class. On the other hand, UCS does not use a
fitness-sharing scheme; instead, it computes the fitness as a power of the raw accuracy. The
advantages of not sharing fitness, if neither, are not clear and demand further investigation.

The exploration of UCS was also modified to speed up the convergence in classification
problems. That is, as long as the system only needs to evolve the best action map and as the
class is made available with each input example, UCS only explores the correct class. Hence, in
addition to using less computational resources to store the final population, the system is also
expected to obtain the optimal solution more quickly than XCS.

In the next chapter, we further investigate the impact of the architectural changes proposed
by UCS. We first carefully study the effect of not sharing fitness in UCS. For this purpose, we
design a fitness-sharing scheme, similar to the XCS’s one, and incorporate it to UCS. Then,
we empirically analyze the advantages of the new fitness computation method. Thereafter, we
examine the behavior of UCS with respect to the XCS one in a collection of boundedly difficult
problems. Thus, we include XCS in the comparison and analyze how the new fitness computation
and the new exploration scheme of UCS affects the learning performance and the convergence
to the optimal population.
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Chapter 4

Revisiting UCS: Fitness Sharing and
Comparison with XCS

The previous chapter explained the mechanisms of XCS and UCS in detail and reviewed the
most important differences in the architecture of both systems. In brief, UCS performs a more
focused search since its architecture is specialized for supervised learning tasks. The two main
differences introduced by UCS affected (1) the fitness computation and (2) the exploration
regime. With these changes, UCS was expected to evolve an accurate solution spending less
computational resources than XCS1. These initial hypotheses were already supported by the
experimental results provided by Bernadó-Mansilla and Garrell (2003). In there, the authors
compared the original scheme of UCS with XCS on a collection of three boundedly difficult
problems. The experimental results enabled the authors to emphasize the differences between
both architectures and to demonstrate that, in general, UCS could solve these problems more
quickly than XCS. Although these were promising results, there were still some open issues that
needed to be addressed. The most important aspect in this list is fitness sharing. That is, the
lack of fitness sharing in UCS was identified as a potential weakness of the system. Nonetheless,
no further study about the effect of not sharing fitness has been conducted so far.

The purpose of this chapter is to study whether fitness sharing can provide benefits to UCS
and further compare UCS with XCS in an extension of the collection of boundedly difficult
problems used by Bernadó-Mansilla and Garrell (2003). To achieve this, we design a fitness-
sharing scheme which is inspired by the XCS’s one. Then, we test the three systems on four
boundedly difficult problems. The experimental results illustrate the benefits of fitness sharing
and highlight how the modifications introduced in the learning architecture of UCS affect the
system’s behavior with respect to the XCS’s one in classification problems.

The remainder of this chapter is organized as follows. In section 4.1, we introduce the concept
of fitness sharing and motivate its use in UCS by highlighting its importance in the GAs and
LCSs realms. Section 4.2 specifies the new fitness-sharing scheme for UCS and section 4.3 draws
the analysis methodology. Section 4.4 compares UCS with fitness sharing with the original
UCS, showing the benefits of the fitness-sharing scheme. Section 4.6 extends the comparison by
analyzing the differences between UCS and XCS. Finally, section 4.6 gathers the key observations

1Note that UCS can only be applied to supervised learning, while XCS is a much broader architecture that
can be used for both supervised learning and reinforcement learning in general
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drawn from the experiments, and section 4.7 summarizes and concludes this chapter. Appendix
A supplies a full explanation of all the problems used along the comparison.

4.1 Fitness Sharing in GAs and LCSs

Before proceeding with the description of the fitness-sharing scheme designed for UCS, we first
introduce the concept of fitness sharing and how this has been used in both GAs and LCSs.
Holland (1975, 1992) initially presented the concept of fitness sharing as a way to accomplish
niching. In his early work, Holland discussed the concept of limiting the number of individuals
that occupy a niche. The underlying idea is that if each niche had associated a particular
payoff or objective fitness, and if each individual in this niche were forced to share this payoff
with the other individuals in the same niche, then a stable situation, where each niche contains
approximately the same number of individuals, would arise. Therefore, niching methods that
distribute the payoff among the individuals of the same niche are addressed as fitness-sharing
methods.

In the GA field, fitness sharing has been used to maintain and evolve diverse solutions in
multi-modal optimization problems. Goldberg and Richardson (1987) initially introduced the
concept of explicit fitness sharing into GAs to optimize multi-modal functions. The proposed
scheme derated the fitness of an individual by an amount related to the number of similar
individuals in the population. More specifically, the method computed the shared fitness f i

s of
an individual i, whose objective fitness is f i as

f i
s =

f i∑n
j=1 sh(d(i, j))

, (4.1)

where sh is a function of the distance d between two solutions. sh returns ‘1’ if the elements
are equal, and ‘0’ if they exceed some threshold of dissimilarity, σshare. That is, if the distance
between two solutions is greater than σshare, sh = 0, indicating that none of the two individuals
affects the fitness of the other. One of the most usual sharing functions is:

sh(d) =


1 −

(
d

σshare

)α
if d < σshare,

0 otherwise;

where α is a configuration parameter that permits regulation of the proximity of the solutions
that are considered to be in the same niche. Further analysis investigated other sharing schemes
and their capacities to solve multi-modal problems. For example, Deb (1989) empirically demon-
strated that GAs with fitness sharing were able to solve a large variety of multi-modal functions.
Theoretical models of the effect of different types of sharing can be found in (Mahfoud, 1995)
and (Horn, 1997).

Fitness sharing has also been used in LCSs. Smith and Valenzuela-Rendón (1989) modeled
a generational GA with infinite population size for LCSs and showed that fitness sharing was
necessary to facilitate the coverage in difficult problems. In fact, the majority of new LCS
designs present some form of niching or fitness sharing. This is the case of XCS. As seen in
the previous chapter, XCS intrinsically performs niching by grouping the classifiers in action
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sets. The system also incorporates fitness sharing since the classifier’s fitness depends on the
classifier’s relative accuracy, and the relative accuracy of each classifier is computed with respect
to the accuracies of all the other classifiers in the same niche (see section 3.1.3). Some more
recent LCSs such as XCSF (Wilson, 2002b; Butz et al., 2008) also adopt the same, or a similar,
fitness-sharing scheme.

Although fitness-sharing schemes have been shown to be beneficial to Michigan-style LCSs,
UCS was originally designed without a fitness-sharing scheme. Fitness sharing was not incorpo-
rated in UCS to keep the initial architecture as simple as possible, which would enable a more
detailed analysis of the system. Nonetheless, the combination of the niche-based GA application
with the lack of resource sharing in UCS seems to be counterintuitive since both approaches
have historically come tied together. Therefore, in this chapter, we provide a fitness-sharing
scheme to UCS and empirically analyze its advantages over the original parameter update pro-
cedure. The next section introduces fitness-sharing scheme, similar to that of XCS, for UCS.
Then, we present the experimental methodology, run UCS with both fitness sharing and the
original parameter update procedure, and carefully analyze the results.

4.2 A New Fitness Sharing Scheme for UCS

XCS intrinsically performs niching by grouping similar classifiers in action sets. The niching is
considered (1) by the GA, which selects and crosses classifiers from the same niche, and (2) by
the parameter update procedure, which shares the fitness among all classifiers in the same niche.
As does XCS, UCS performs niching in the first sense because it applies the GA to the niches.
Nevertheless, in the original UCS, the resources are not shared among the classifiers in the same
niche. Therefore, here, we propose to incorporate the resource sharing in UCS. As follows, a
new fitness-sharing scheme for UCS, which is inspired by the one of XCS, is presented, reviewing
how all the parameter update procedure works after introducing the new fitness computation.
For the sake of clarity, in the remainder of the chapter, UCS without sharing is referred to as
UCSns, and UCS with sharing is addressed as UCSs.

The new parameter update procedure works as follows. The experience (exp), the correct
set size (cs), and the accuracy (acc) parameters are computed as in UCSns (see section 3.2).
However, fitness is shared among all classifiers in [M]. First, a new accuracy cl.k is calculated,
which discriminates between accurate and inaccurate classifiers. For classifiers belonging to [M],
but not to [C], the accuracy is set to zero; that is, ∀cl ∈![C]cl.k = 0. For each classifier cl
belonging to [C], cl.k is computed as follows:

cl.k =


1 if cl.acc > acc0;

α
(

cl.acc
acc0

)ν
otherwise.

Then, the relative accuracy cl.k′ is calculated as

cl.k′ =
cl.k · cl.n∑

cli∈[M ] cli.k · cli.num
, (4.2)

and the fitness is updated from cl.k′:

cl.F = cl.F + β(cl.k′ − cl.F ). (4.3)
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Let us note that, under this scheme, the computed fitness corresponds to the macro-classifier
fitness, as the numerosities of the classifiers are involved in computation of the relative accuracy.
Whenever the micro-classifier’s fitness is needed, we divide this value by the numerosity of the
classifier.

This parameter update procedure is incorporated into UCSs, replacing the traditional scheme.
In the next sections, we empirically analyze the advantages provided by this new scheme.

4.3 Methodology

The experimental analysis consists of two separate parts. First, we compare UCSns with UCSs,
focusing on the advantages provided by the fitness-sharing scheme. Then, XCS is compared
with UCS with the aim of highlighting the practical impact caused by the architectural changes
introduced by UCS. In brief, UCS introduces (1) a new fitness computation which is based on
the classification accuracy instead of on the accuracy of the prediction and (2) a new exploration
scheme, which only explores the class of the input examples and maintains the best action map
instead of the complete action map (see chapter 3). Therefore, we aim at analyzing how these
two modifications influence the learning process in classification problems. The methodology
used in both comparisons is detailed in what follows.

To analyze the behavior of the three systems, we took a systematic approach and compared
their performance on four artificial problems that gather some complexity factors said to affect
the performance of LCSs (Kovacs and Kerber, 2001; Bernadó-Mansilla and Garrell, 2003): a)
a binary-class problem, the parity ; b) a multi-class problem, the decoder ; c) an imbalanced
multi-class problem, the position ; and d) a noisy problem, the multiplexer with alternating
noise . Given a binary input of length `, with k relevant bits (k ≤ `), these problems are
defined as follows. The parity problem returns the number of one-valued bits modulo two. The
decoder problem gives the decimal value of the input as output. The position problem returns
the position of the left-most one-valued bit; if the input does not contain any one-valued bit,
it returns zero. The multiplexer problem takes the first log2` bits as the address bits, and the
remaining bits as the position bits; then, the output is the value of the position bit referred by
the decimal value of the address bits. We added noise to the training instances of the multiplexer
problem by flipping the class of the input instances with probability Px; the test instances are
free of noise. For a detailed description of each problem the reader is referred to appendix A.
The parity, the decoder, and the position problems were configured with input lengths ranging
from ` = 3 to ` = 9. The multiplexer was configured with 20 input bits. These boundedly-
difficult problems permit varying the complexity along different dimensions such as input length,
size of the optimal population, specificity of the optimal classifiers, number of classes, and class
imbalance ratio. For further information, the reader is referred to appendix A. UCSns, UCSs,
and XCS were run with each problem.

We configured the systems as follows. We used a standard configuration for XCS: P# =
0.6, β = 0.2, α = 0.1, ν = 5, θGA = 25, χ = 0.8, µ = 0.04, θdel = 20, δ = 0.1. In UCS, the
parameters that are shared with XCS took the same values, except for ν = 10; additionally
acc0 = 0.999. In both cases, tournament selection was applied. Subsumption was activated
in the genetic algorithm with θsub = 20. The maximum population size of XCS and UCS was
configured depending on the size of the optimal population that the systems were expected to
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evolve. As explained in section 3.1, XCS evolves a complete action map [O], which consists of
all rules with low error, regardless of whether they have high or low reward prediction. On the
other hand, UCS evolves the best action map [B], which includes only highly rewarded rules. As
proposed by Bernadó-Mansilla and Garrell (2003), we set population sizes to N = 25 · |[O]| in
XCS and to N = 25 · |[B]| in UCS. All the results are averages of 25 runs with different random
seeds.

We decided against using the training accuracy to evaluate the performance of the three
LCSs since it does not provide enough evidence of effective genetic search, as highlighted by
Kovacs and Kerber (2004). Instead of accuracy, the achieved proportion of the optimal action
map %[O] was proposed by Kovacs and Kerber (2001) as being a better indicator of the progress
of the genetic search. However, UCS and XCS evolve different optimal populations: XCS creates
a complete action map, whereas UCS represents a best action map. To allow a fair comparison,
we only consider the proportion of best action map %[B] achieved by each system. That is, we
only count the proportion of consistently correct rules. To review the best action map of each
of the four problems, the reader is referred to appendix A.

When required, we used statistical tests to compare the convergence curves between pairs of
algorithms. As our aim was to compare pairs of learning systems, we used the non-parametric
Wilcoxon signed-ranks test (Wilcoxon, 1945), which was fed with the performance measures
taken during the learning process. For further details on this statistical test, the reader is
referred to appendix B.

Having described the experimental methodology, we are now in position to analyze the results
obtained on the four problems. The next section starts with the comparison of UCSns and UCSs.
Later, XCS is introduced in the comparison.

4.4 Analyzing the Fitness Sharing Scheme in UCS

Figures 4.1 and 4.2 depict the proportion of the best action map %[B] achieved by UCSns and
UCSs in the parity, the decoder, the position, and the 20-bit multiplexer with alternating noise
problems. The results show that UCSs could discover the optimal population more quickly than
UCSns in the parity, the decoder, and the position problems. These differences were significant
in the decoder for ` > 4, in the position for ` > 3, and in the parity with any input length
according to a Wilcoxon signed-ranks test at α = 0.05. Oppositely, these benefits could not
be observed in the multiplexer with the highest levels of noise; that is, for Px = {0.10, 0.15},
UCSns significantly outperformed UCSs. As proceeds, we examine these two different behaviors
in more detail.

Benefits of fitness sharing. The improvement provided by the fitness-sharing scheme in the
parity, the decoder, and the position problem—especially for the largest input lengths—can
be explained as follows. Under fitness sharing, the progressive discovery of more accurate
classifiers makes the fitness of less accurate, over-general classifiers that participate in the same
correct sets decrease quickly. That is, when a better classifier is discovered, it gets a higher
proportion of the shared fitness, causing a decrease in the fitness of less accurate classifiers that
exist in the same niche. Therefore, fitness-sharing produces (1) a higher pressure toward the
deletion of over-general classifiers and (2) a higher selective pressure toward the most accurate
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Figure 4.1: Proportion of the best action map achieved by UCSns and UCSs in the parity, the
position, and the decoder problems.
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Figure 4.2: Proportion of the best action map achieved by (a) UCSns and (b) UCSs in the noisy
20-bit multiplexer with Px = {0.05, 0.10, 0.15}.

classifiers in the GA. Without fitness sharing, over-general classifiers maintain the same fitness
along the whole learning process.

The effect of fitness sharing was especially beneficial in the decoder and the position problems,
while it was more modest in the parity problem. To explain the excellent results in the two
former problems, let us first focus on the position problem and then extend the conclusions to
the decoder problem. In the position problem, the system has to evolve a best action map that
consists of classifiers with different degrees of generality ranging from a classifier in which all
bits except one are set to ‘#’ to a classifier with all specific bits (see section A.3). Note that
UCS with fitness sharing could solve the position problem for all the tested input lengths, while
UCS without fitness sharing was not able to discover the complete action map for ` = 9. A
more detailed analysis of the results showed that the final populations of UCSns did not contain
the most specific optimal classifiers. Moreover, it was also identified that, even though the most
specific optimal classifiers were created in some of the runs, they were lost during the genetic
search. This behavior was a result of the combination of the occurrence-based reproduction
with the fitness computation without sharing. To illustrate this, let us assume the case that
the system discovers the most specific classifier for ` = 9, that is, 000000000:0. This classifier
is activated once every 29 sampled instances. Once activated, this classifier may compete with
a set of over-general classifiers. If fitness is not shared, the fitness of over-general classifiers
remains constant regardless of whether the niche contains a high proportion of over-general
classifiers or not. Therefore, as the number of over-general classifiers increases, it is more likely
that the selection procedure chooses one of these over-general classifiers. This, coupled with
the low activation rate of the most specific optimal classifiers, and so, their low reproductive
opportunities, discourages their evolution. In these cases, the fitness-sharing scheme plays
a key role to decrease the fitness of competing over-general classifiers, and so, promotes the
maintenance of the most specific optimal classifiers.

These conclusions can be extended to the decoder problem. In this problem, all the optimal
classifiers are maximally specific, and so, fitness sharing is necessary to promote the selection
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Table 4.1: Accuracy and fitness of UCSns’s classifiers along the generality-specificity dimension,
depicted for the parity problem with ` = 4.

Condition Class Accuracy Fitness
1 #### 0 0.5 0.00097
2 0### 0 0.5 0.00097
3 00## 0 0.5 0.00097
4 000# 0 0.5 0.00097
5 0000 0 1 1

of these specific classifiers. In general, fitness sharing appears to be crucial in problems where
some of the optimal classifiers are activated with a low frequency. This is the case in problems
that (1) contain class imbalances or (2) permit little generalization.

On the other hand, it is worth noting that the improvement in the parity problem was not as
accentuated as the one in the decoder and position problems. This is due to the lack of fitness
guidance toward optimal classifiers in this particular problem. That is, the best action map
of the parity problem consists of classifiers in which all the variables are specific. Therefore,
no generalization is allowed in the optimal population (see section A.1 for further details).
Nonetheless, at the beginning of the run, the covering operator introduces generalization in
the initial population, and UCS has to drive the population from over-generality to optimal
classifiers. However, the fitness pressure does not correctly lead to specificity. That is, spec-
ifying one bit of an over-general classifier does not increase its accuracy unless all bits are
specific. Therefore, although approaching the optimum, all the classifiers in the niche receive
the same amount of resources. Only when an optimal classifier is discovered, its accuracy is
set to 1, and so, the fitness of all the over-general classifiers that participate in the same niche
is decreased. Differently, in the decoder and the position problem, the accuracy guided to
the optimal classifiers; for this reason, the improvement in the convergence time provided by
fitness sharing was larger in these two problems.

To further illustrate the lack of fitness guidance in the parity problem, table 4.1 shows the
evolution that the most over-general classifier needs to go through to become an optimal
classifier in UCSns for the problem with four input bits. At each step, one of the don’t care
bits is specified. Note that accuracy, and so, fitness, remain constant during all the process
until the optimal classifier is achieved. However, we would expect that the specification of
one bit should result in a fitter classifier, since it approaches the optimum classifier (in which
all the bits are specific). Therefore, the fitness is not guiding toward optimal solutions. This
problem is a type of needle-in-a-haystack problem, in which an optimal classifier can only be
obtained randomly. For this reason, the improvement provided by fitness sharing, although
existing and being statistically significant, is not as strong as the one in the decoder and the
position problems.

Fitness sharing in noisy problems. Figure 4.2 shows that UCSns achieved higher performance
than UCSs in the multiplexer problem, especially for the highest levels of noise. In particular,
UCSns significantly outperformed UCSs for Px = {0.10, 0.15} according to a Wilcoxon signed-
ranks test at α = 0.05. This behavior cannot be directly attributed to the fitness-sharing
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Figure 4.3: Proportion of the best action map achieved by (a) UCSns and (b) UCSs in the noisy
20-bit multiplexer with Px = {0.05, 0.10, 0.15} and using β = 0.01 and θGA = 100.

scheme, but to the fact that, with the new parameter computation, UCSs calculates a windowed
average of fitness by means of the learning parameter β. In noisy environments, the parameter
averages oscillate and cannot stabilize properly, especially with the value of β employed in
this configuration (i.e., β = 0.2). So, high levels of noise require low values of β. As UCSns
computes fitness as a power of the accuracy, the parameter values of experienced classifiers
remained steady.

To confirm this hypothesis, we repeated the same experiments but decreased β. That is,
we configured UCSns with β = 0.01. In addition, we set θGA = 100 to have more reliable
parameters estimates before the GA triggered. Figure 4.3 shows the proportion of the best
action map achieved by UCSns and UCSs. The results show a clear improvement of UCSs
with respect to the original configuration. This supports our hypothesis that higher levels of
noise require lower β values to allow for better parameter stabilization, coupled with higher
θGA to let the genetic algorithm operate with better estimates. UCSs especially benefits from
this, reaching almost 100% of the best action map in few iterations. Note that, for all the
noise proportions, UCSs was still able to classify about 99% of the input instances correctly.
That is, even when UCSs was trained with environments with 15% of alternating noise—i.e.,
15% of the incoming instances are wrongly labeled—UCSs was able to classify nearly all the
new free-noise instances correctly. This shows up the robustness provided by the inference
scheme of UCS, which infers the class by means of a rule vote policy. The results of UCSns are
practically the same as those obtained with the original configuration, as UCSns does not use
β in the fitness estimate. Under this configuration, UCSs significantly outperformed UCSns
for all the proportions of noise according to a Wilcoxon signed-ranks test at α = 0.05.

Overall, this section evidenced the benefits of fitness sharing in the four boundedly difficult
problems. This promotes the use of UCS with fitness sharing in the remainder of this thesis. In
the next section, we extend this study and compare UCSs with XCS.
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4.5 Comparing UCSs with XCS

This section introduces XCS in the comparison and empirically analyzes the effect of the architec-
tural changes proposed by UCS with the aim of solving classification problems more effectively.
Figures 4.4 and 4.5 show the proportion of the best action map achieved by UCSs and XCS on
the four boundedly difficult problems. The results of UCSs are the same as those provided in
the previous section. In all the problems, except for the parity problem, UCSs was significantly
quicker in evolving the best action map than XCS according to a Wilcoxon signed-ranks test at
α = 0.05. UCS’s improvement on these problems is mainly result of (1) the exploration regime
and (2) the new accuracy computation, and so, the fitness guidance of UCSs. As follows, these
advantages, as well as the slightly poorer results obtained by UCSs in the parity problem, are
analyzed in more detail.

Advantages due to the exploration regime. The first aspect that made UCSs evolve the optimal
population more quickly than XCS is the exploration regime. That is, there are two reasons that
explain, in general, why XCS requires more time than UCS to evolve the optimal population:
(1) XCS needs to explore all the possible actions for a given input instead of only the class of
the input and (2) XCS has to maintain the complete action map instead of only maintaining
the best action map. This behavior is necessary in reinforcement learning problems where the
consequences of each action have to be explored and modeled. Notwithstanding, this results in
a delay in the convergence curves for the decoder, the position, and the multiplexer problems
with respect to those of UCSs. Especially, note the large differences between XCS and UCSs
in the decoder and the position problems. Although not as noticeable, UCSs also significantly
outperformed XCS in the multiplexer problem with the two tested configurations according to
a Wilcoxon signed-ranks test at α = 0.05.

To exemplify the disadvantages of exploring the complete action map—as XCS does—, let us
consider the decoder problem. The decoder problem is defined by 2` classes. As XCS explores
uniformly each class, only 1 of each 2` explores will be made on the class of the input instance.
The other 2` − 1 explores will be focused on classifiers that predict wrong classes. Therefore,
the system will spend the proportion of (2` − 1)/2` iterations to explore regions of the feature
space that do not need to be explored in supervised learning problems. This issue takes on
especial importance as the number of classes increases. This example is applicable to the
other problems, but is especially important in the decoder and the position problems since the
number of classes increases exponentially (for the decoder) and linearly (for the position) with
the number of input bits.

On the other hand, the exploration regime seems not to provide UCSs with any advantage in the
parity problem. That is, XCS was able to achieve the best action map in an amount of time that
was significantly smaller than the time required by UCSs according to a Wilcoxon signed-ranks
test at α = 0.05. Our hypothesis is that the exploration of consistently incorrect rules may help
XCS discover consistently correct rules in this particular problem. That is, the parity problem
has the particularity that, for each optimal classifier that predicts the correct class, there
exists another one with the same condition but the wrong class in the complete action map.
Therefore, mutation can easily generate a highly rewarded optimal classifier while exploring a
niche with low rewarded classifiers. For example, if a consistently incorrect classifier such as
0001:0 is evolved, XCS may discover the consistently correct classifier 0001:1 by mutating the
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Figure 4.4: Proportion of the best action map achieved by UCSs and XCS in the parity, the
position, and the decoder problems.
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Figure 4.5: Proportion of the best action map achieved by (a,c) UCSs and (b,d) XCS in the
noisy 20-bit multiplexer with Px = {0.05, 0.10, 0.15} with (a,b) the original configuration and
with (c,d) the original configuration but setting β = 0.01 and θGA = 100.

class of the rule. Conversely, UCSs would never maintain an inconsistently correct rule, since
the selection operator would never choose a rule with acc = 0, and the deletion procedure
would eventually remove this rule. As a consequence, UCSs cannot benefit from exploring
low rewarded niches. This, coupled together with the fact that XCS is configured with a
larger population size, results in that XCS can evolve the optimal population more quickly
than UCSs. Nonetheless, note that, still, UCSs uses less computational resources since it is
configured with a smaller maximum population size.

Advantages due to the fitness guidance. Although the explore regime explicates why UCSs
can converge more quickly than XCS to the best action map, this may not be enough to explain
the large differences observed in the decoder and the position problems. Here, we show that,
as indicated by Butz et al. (2003), the fitness computation of XCS may provide a deceptive
guidance toward the obtention of optimal classifiers in these two problems—and problems with
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Figure 4.6: Error of XCS’s classifiers along the over-general/optimal classifier dimension. The
curve depicts how the error of the most over-general classifier ##########:0 evolves as the bits
of the classifier are specified, until obtaining the maximally accurate rule 0000000000:0.
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Figure 4.7: Error of XCS’s classifiers along the over-general/optimal classifier dimension.

similar characteristics. Furthermore, we show that the fitness computation of UCSs overcomes
this problem.

To exemplify the fitness misguidance in XCS in some particular problems, let us first focus
on the decoder problem. The best action map of the decoder consists of maximally specific
classifiers whose class is the decimal value of the binary input. Then, let us suppose that we
have an over-general classifier cl1 1###:8, whose theoretical prediction and prediction error
estimates are P=125 and ε = 218.75. XCS is expected to drive cl1 to the classifier 1000:8.
Imagine now that the genetic search generates the classifier cl2 10##:8, whose prediction
estimate is P=250 and whose prediction error is ε = 375. Note that the error increases as
we are approaching the optimal classifier, that is, 1000:8. Figure 4.6(a) extends this example
and shows the evolution of the error from the over-general to the maximally general dimension
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for the decoder problem with ` = 10. Note that the error curve has an exponential increase
as the classifier moves from the over-general to the maximum general side; the error abruptly
decreases to zero when the optimal classifier is reached. Therefore, as long as the classifier
moves toward the right direction, it gets smaller fitness, which consequently means fewer genetic
opportunities and higher deletion probabilities. Thus, there is a misleading fitness pressure
toward optimal classifiers.

This fitness misguidance is also present in the position problem, although the effect is not as
important as in the decoder problem. To illustrate this, figure 4.7 shows an example of how the
prediction error increases for each one of the optimal classifiers in the position problem with
` = 9. Note that the misleading pressure is larger as the optimal classifier has more specific
bits; that is, the Hamming distance from the maximally over-general classifier to the optimal
classifier is larger as the optimal classifier is more specific, and so, the deception also increases.

This misleading pressure, which was termed as the fitness dilemma by Butz et al. (2003), does
not only appear in these two problems, but in any problem whose optimal population contains
specific classifiers. UCSs overcomes the fitness dilemma because the accuracy is calculated as
the proportion of correct classifications instead of as a function of the accuracy of the prediction
estimate. To exemplify this, figure 4.6(b) depicts the evolution of the error (that is, one minus
the classifier’s accuracy) along the over-general/maximally general dimension for the decoder
problem with ` = 10. Note that, in UCSs, the error diminishes as the classifiers approach the
optimal one. In this way, UCSs accuracy guidance does not mislead the genetic search. This
conclusion is also applicable to the original UCS, that is, UCSns.

Hence, the results provided in this section highlight that, as hypothesized in the previous
chapter, UCS can evolve the best action map more quickly than XCS and spending fewer compu-
tational resources. Moreover, we also showed that the architecture of UCS does not suffer from
the fitness dilemma. In the following section, we summarize all the observations provided in the
present and the previous sections, identifying the key conclusions of the comparative analysis.

4.6 Lessons Learned from the Analysis

The empirical study performed in the last two sections provided many useful insights about the
advantages of fitness sharing and the benefits of the UCS’s architecture with respect to that of
XCS in supervised learning problems. The purpose of this section is to gather and summarize
all the observations. In particular, we first group the observations about the new fitness-sharing
scheme of UCS. Then, we summarize the advantages provided by the explore regime and the
accuracy guidance of UCS with respect to those of XCS. Each one of these aspects is elaborated
in the following subsections.

4.6.1 Fitness Sharing

Fitness sharing speeded up UCS’s convergence in all the tested problems. Especially, we argued
that fitness sharing was the key to solve problems with class imbalances, where some optimal
classifiers are activated with a lower frequency than other optimal and over-general classifiers.
UCSns only yielded better performance in a single configuration of the 20-bit multiplexer with
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alternating noise, which corresponded to a parameter setting that was not suited to solve the
problem. In any case, this effect cannot be attributed to the presence or absence of fitness
sharing, but rather to the way in which fitness is estimated. Recall that UCSns computes fitness
as a power of accuracy, while UCSs computes fitness as a weighted windowed average with
learning parameter β.

4.6.2 Explore Regime

In the comparison between XCS and UCS, the explore regime of UCS has shown to be a crucial
aspect to speed up the convergence time of UCS with respect to the one presented by XCS
in classification problems. That is, in general, exploring the best action map instead of the
complete action map enables UCS to find the optimal solution more quickly than XCS, while
spending fewer computational resources. On the other hand, we empirically illustrated that XCS
may benefit from exploring the complete action map in problems, such as the parity problem,
where the Hamming distance among the optimal classifiers that predict the wrong class and
those that predict the correct class is small. Nevertheless, even in this case, UCS presented
similar convergence times while using half of the maximum population size during the learning
process, thus, saving computational resources.

Finally, it is worth noting that other exploring mechanisms could be adopted in XCS. That
is, XCS uses a pure explore regime, where each available class is uniformly explored for each
possible input. Nonetheless, as already pointed out by Wilson (1995) in the original design
of the system, other exploration/exploitation schemes could be easily adapted to the system.
For example, training in XCS could be based on an exploration regime that gradually changes
from pure exploration toward increasing exploitation, similar to schemes such as ε-greedy or
softmax that can be found in the reinforcement learning literature (Sutton and Barto, 1998).
Changing the exploration regime may help XCS converge more quickly to the optimal solution;
nonetheless, even with a new exploration/exploitation scheme, XCS would need to explore the
different actions and evolve a complete action map, which prevent the system from being as
competitive as UCS in solving hard classification tasks.

4.6.3 Accuracy Guidance

The results provided along the experiments showed that XCS may suffer from not only a lack
of fitness guidance toward accurate classifiers, but also a deceptive guidance toward the optimal
classifiers in some classification domains. This problem, already identified by Butz et al. (2003),
was termed the fitness dilemma. Here, we showed that the problem appeared in almost all the
tested problems, especially as the number of specific bits of the optimal classifiers increased.
More specifically, we showed that XCS strongly suffered from the fitness dilemma in the decoder
and, to a lower degree, in the position problems. As these problems gather some characteristics
of real-world problems, this seems to indicate that XCS could suffer from the fitness dilemma
in complex real-world classification problems. To alleviate the effect of the fitness dilemma
in XCS, Butz et al. (2003) proposed a new error computation scheme that was addressed as
bilateral accuracy. On the other hand, note that UCS could overcome the fitness dilemma since
it computes the accuracy as the proportion of correct classifications.
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4.6.4 Population Size

In the tested problems, UCS evolved best action maps with fewer learning iterations. Also,
smaller population sizes were used in UCS in all the tested problems. The population evolved
by XCS is generally larger, but comparable to that of UCS in terms of readability. In fact,
by removing low-rewarded classifiers from XCS’s final population, we get a set of rules similar
to that of UCS. Thus, the advantage of having smaller populations in UCS is the reduction of
computational resources.

4.7 Summary and Conclusions

In this chapter, we set the double objective of (1) revisiting the architecture of UCS by intro-
ducing a fitness-sharing scheme and (2) empirically comparing XCS with UCS. With the first
objective, we aimed at improving UCS to deal effectively with new challenging problems. The
purpose of the second objective was to illustrate empirically how the modifications introduced
by UCS to solve classification problems more scalably than XCS actually affected the system’s
behavior.

We illustrated that the new fitness-sharing scheme enabled UCS to solve the four boundedly
difficult problems more quickly. In essence, the fitness-sharing scheme helped UCS eliminate
over-general classifiers as long as the first competing optimal classifiers were discovered; there-
fore, this speeded up the learning process. This was especially important in imbalanced domains
such as the position problem, where highly specific, optimal classifiers had to compete with
over-general classifiers. In this case, fitness sharing played a key role in decreasing the fitness
of over-general classifiers, and so, in preventing these over-general classifiers from taking over a
large proportion of the population, removing more specific, optimal classifiers. Thence, these
observations promote the use of UCS with the new sharing scheme, instead of the original fitness
computation, as a competitive tool for supervised learning, and, in particular, for learning from
imbalanced domains. For this reason, we adopt this system in the remainder of our work.

The comparison with XCS allowed for a better understanding of the implications produced
by the architectural changes introduced to UCS. In brief, we showed that UCS could solve the
four classification problems spending fewer computational resources than XCS. Also, the analysis
highlighted that UCS does not suffer from the fitness dilemma detected in XCS. Although the
results and conclusions are limited to artificial problems, the experimental test bed contained
many complexity factors present in real-world problems: multiple classes, noisy instances, and
imbalanced classes, among others. Therefore, this encourages the use of UCS as a competent tool
for supervised learning. It is worth noting that XCS is a broader architecture that can be applied
to reinforcement learning, in general, and to some other tasks such as function approximation.

After the improvement of UCS and the empirical analysis provided herein, now we are in
position to address the second and third objectives of this thesis, which study the performance of
the two LCSs on domains that contain rare classes. Therefore, in the three subsequent chapters,
we conduct a detailed analysis of the behavior of both LCSs on imbalanced domains and improve
the ability of LCSs to extract accurate models from rare classes.

66



Chapter 5

Facetwise Analysis of XCS for
Domains with Class Imbalances

The previous two chapters described XCS and UCS in detail, enhanced UCS with a new fitness-
sharing scheme, and empirically compared the performance of these systems. This provided
background information on how the two systems work and the key differences between them and
led to the choice of using the fitness-sharing scheme instead of the original parameter update
procedure in UCS. Although the experimentation empirically showed that both XCS and UCS
can effectively solve boundedly difficult problems, there are still some challenges that need to
be addressed to solve, scalably and efficiently, real-world problems.

A particular important challenge—shared by traditional machine learning techniques and
GBML systems alike—is learning from domains that contain class imbalances. Learning from
rare classes is a crucial aspect since the key knowledge usually resides in the minority class, and
it has been shown that many traditional learning techniques are not able to extract accurate
models from rare classes (Weiss, 2004). Therefore, the machine learning community has recently
started to design new approaches that aim at improving the model discovery from rare classes
(Chawla et al., 2004). Nonetheless, this aspect has been largely overlooked in online learning
architectures. Imbalanced domains still pose more challenges to online learning systems, since
the learner receives a stream of examples from which rare classes have to be modeled on the fly.
The dearth of examples of rare classes may bias the parameter update procedure, forgetting the
feedback provided by these examples, and so, hampering LCSs from evolving accurate classifiers
that represent these rarities. In the following three chapters, we address this problem in the
context of XCS and UCS, going from an analytic approach to the application of the system to
solve real-world imbalanced problems.

This chapter studies the behavior of XCS on imbalanced domains and takes the lessons
provided by the analysis to improve the modeling of rare classes. Although the analysis is
centered on XCS in this chapter, we methodologically analyze the critical elements that any
LCSs should satisfy to extract knowledge effectively from rare classes. Thence, we aim at
providing a methodological framework rather than an analysis centered on a particular system.
That is, we decompose the problem of learning from imbalanced domains in several critical
elements and derive facetwise models (Goldberg, 2002) for each one of them. The integration
of these models permits us to detect several crucial conditions that need to be met to ensure
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that the system would extract the key knowledge from rare classes; in addition, we also identify
critical bounds on the system behavior (Orriols-Puig and Bernadó-Mansilla, 2008b). The lessons
learned from this analysis result in several configuration recommendations that, when followed,
enable XCS to solve highly imbalanced classification problems that previously eluded solution.
In the next section, we show that the whole framework can also be applied to UCS.

The remainder of this chapter is organized as follows. Section 5.1 presents the class-imbalance
problem, reviews how the machine learning community has faced the problem with offline learn-
ing techniques, and places the problem in the context of online learning. Section 5.2 tests XCS
on an imbalanced problem, intuitively discusses the complexities that learning from imbalanced
domains may pose to the system, and empirically shows limits on the class-imbalance degree
that the system can handle. Section 5.3 introduces the facetwise analysis methodology and spec-
ifies the steps that we follow in the present analysis. In sections 5.4, 5.5, 5.6, 5.7, and 5.8, we
derive the different facetwise models. Section 5.9 integrates all the facetwise models, highlights
the lessons learned along the analysis, and uses them to solve the 11-bit multiplexer problem
(Wilson, 1995) with large degrees of class imbalance, which previously eluded solution. Finally,
section 5.10 summarizes and concludes the chapter.

5.1 The Challenges of Learning from Imbalanced Domains in
Machine Learning

During the last few decades, the increasing research on machine learning has led to the appli-
cation of several learning techniques to real-world problems with the aim of extracting novel,
interesting, and useful knowledge from these domains (Duda et al., 2000). One of the main
characteristics of real-world problems is that some of the sub-concepts or classes may be poorly
represented in the training data set due to either the scarcity of these concepts in nature or the
cost—or inadequacy of the techniques used—to extract positive samples that represent these
concepts. The purpose of this section is to highlight the importance of extracting accurate
models from these rare concepts or classes in machine learning tasks. We begin emphasizing
the high number of real-world applications in which we have class imbalances. Then, we briefly
review how the machine learning community in general, and the GBML field in particular, has
approached this problem, accentuating the differences between the challenges that learning from
rare classes poses to offline learners and to online systems.

Examples of problems that contain rare classes abound in literature and include identifying
fraudulent credit card transactions (Chan and Stolfo, 1998), learning word pronunciation (den
Bosch et al., 1997), predicting pre-term births (Grzymala-Busse et al., 2000), detecting oil spills
from satellite images (Kubat et al., 1998), and predicting telecommunication equipment failures
(Weiss and Hirsh, 1998) among others. In these domains, while regularly occurring patterns
can be modeled easily, learners tend to fail to extract accurate models from the rare classes
(Japkowicz and Stephen, 2002; Japkowicz and Taeho, 2004; Weiss, 2004). Nonetheless, these
rare classes are of primary interest, since they usually contain key knowledge. For this reason,
strong research has recently been conducted on designing new approaches, or modifying existing
machine learning techniques, with the aim of creating models that represent the rare classes
more accurately (Weiss and Provost, 2003; Fawcett, 2008). All these approaches have been
designed for offline supervised learning techniques, that is, methods that learn from static data
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sets in which the examples are provided at the beginning of the learning process. In online
learning, knowledge acquisition from imbalanced domains poses more severe challenges, since
systems receive instances and rare classes have to be detected on the fly.

The many different approaches that have been designed to enhance the discovery of useful
models of rare classes in offline learning can be grouped in methods working at (1) the learner
level or at (2) the sampling level. Learner-level methods usually modify the error calculation of
an existing system by either introducing a more appropriate inductive bias (Carvalho and Freitas,
2002) or assigning a misclassification cost per class (Pazzani et al., 1994). Their main drawback
is that they are designed for specific learning algorithms, and so, they cannot be adapted to other
learning techniques in a straightforward manner. For this reason, sampling-level methods have
received much more attention than learner-level approaches. Sampling-level methods, usually
known as re-sampling techniques, eliminate rare classes by balancing the proportion of examples
per class of the training data set. As they are data-preprocessing methods, they can be generally
used in any learning architecture. Notwithstanding, these methods can only be applied to static
data sets. Many works have shown the benefits of re-sampling the training data sets in some
specific imbalanced problems (Chawla et al., 2002; Japkowicz and Stephen, 2002; Batista et al.,
2004; Garćıa and Herrera, 2008).

While the class-imbalance problem has been extensively analyzed for classical machine learn-
ing techniques that learn from static data sets, analyses and new approximations to overcome
the problem in online learning are scarce. The typical approaches designed for offline learning
to overcome the class-imbalance problem can barely be applied to online learning schemes, since
they need to know the distribution of examples in the training data set. That is, in online
learning, strategies such as over-sampling the occurrence of instances of the minority class or
introducing a higher misclassification cost for minority class instances are impractical solutions.
In this case, as we do not have a static data set, we can neither estimate the imbalance ratio to
re-balance the training data nor assign a misclassification cost per class to favor the rare classes.
Therefore, models for the minority class have to be learned online from a set of samples that
come infrequently. This is the case of Michigan-style LCSs.

Although some ad hoc strategies have been proposed to alleviate this problem in particular
LCSs (Holmes, 1998; Orriols-Puig and Bernadó-Mansilla, 2005a,b), these strategies cannot be
directly extended to other LCSs. In general, these approaches have shown to improve LCSs
performance on imbalanced domains. However, it is not clear how they affect the learning pro-
cesses of LCSs; besides, they do not help increase our understanding of the actual problems that
imbalanced domains pose to LCSs. Thence, in this chapter, we propose to start with a system-
atic analysis that explains the capabilities and limitations of the online learning architecture
of LCSs to extract useful information from instances that come very infrequently. Specifically,
we first apply the analysis to XCS and, in the next chapter, we carry it over to UCS. Before
proceeding with the analysis, the next section provides an intuitive description of the problems
that Michigan-style LCSs may face when learning from domains with rare classes. Then, the
analysis methodology is introduced and all the study is developed in the subsequent sections.
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5.2 The XCS Classifier System in Imbalanced Domains

As mentioned in the previous section, LCSs may have other problems, in addition to those
presented by classical machine learning techniques in learning from imbalanced domains, since
the model is learned online. With the system description provided in chapter 3 in mind, in
this section we first appeal to the intuition to discuss the possible difficulties that XCS may
find when learning from class imbalances, and we take advantage of the discussion to provide
some notation that will be used in the remainder of this work. Then, before proceeding with
a systematic study, we empirically analyze whether XCS is robust to class imbalances; to do
this, we test the system on an artificial problem that is unbalanced by progressively removing
instances of the minority class and check the maximum amount of under-sampling that the
system can accept before failing to discover the concepts of the minority class.

5.2.1 Hypotheses of XCS Difficulties in Learning from Imbalanced Domains

Holland (1975) early defined the term of schema as a template that identified a subset of
individuals, and used this notion to derive theory that explained how the good solutions are
propagated along a GA run. Here, we take the same notion to define the concepts of problem
niche and representative of a niche in LCSs, which will be used to study the effect of class
imbalances in XCS. With these definitions, we review the components of the online learning
architecture that may malfunction when learning from rare classes.

XCS evolves a distributed set of sub-solutions. In the remainder of this analysis, we use the
term problem niche (or simply niche) to refer to a problem subspace where a maximally general
sub-solution applies1. Each niche is represented by a schema (Holland, 1975), which defines the
value of the relevant attributes of the given problem niche, and the class or action of region
covered by the schema. The order o of the schema is the number of relevant attributes of the
niche. Then, we define that a representative of a niche is a classifier whose condition specifies
the o relevant attributes of the niche schema correctly and that predicts the class or action of
the sub-solution that the niche represents. Conversely, classifiers that do not match any problem
schema and cover examples of different classes are referred to as over-general classifiers.

For instance, let us suppose that we have a niche represented by the schema 01*0** and whose
class is 0. This means that all the examples matching 01*0** belong to class 0. Generalizing
any of the o specific bits of the schema will cause the schema to cover instances of other classes,
thence, not representing an accurate sub-solution anymore. Any classifier whose condition has
the same value for the o specific bits and predicts the niche class is a representative of the niche.
For example, classifiers 01#0##:0, 0110##:0, and 010010:0 are representatives of the niche.
The maximally general representative of a niche is the classifier that only fixes the o relevant
bits of the schema and predicts the action of the sub-solution, i.e., 01#0##:0. An example of
an over-general classifier is #1#0##:0, since it generalizes the first fixed bit of the schema.

Therefore, Michigan-style LCSs evolve niches in a distributed manner, and the population
consists of classifiers that represent niches and over-general classifiers. Then, a niche—and all
the matching classifiers—is activated every time that an instance that matches the niche schema
is sampled and the class niche is selected for exploration. In imbalanced domains, instances that

1In XCS and UCS terms, an action set and a correct set, respectively, represent a niche.
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belong to rare classes are sampled with a lower frequency; thence, niches that match these
instances are activated with a lower frequency than the other niches of the system. In the
remainder of this analysis, we address the niches that are activated by instances of the majority
class as nourished niches. Conversely, niches activated by instances of the minority class are
referred to as starved niches. We also define the imbalance ratio ir as the ratio of the number of
examples of the majority class to the number of instances of the minority class that are sampled
to the system.

Provided these definitions, we now intuitively analyze the possible difficulties that XCS
may need to face in imbalanced domains by reviewing how the online architecture works. In
the beginning of the learning process, the covering operator initializes the population with a
set of classifiers that are generalized from the first sampled input instances. Therefore, the
initial population consists mostly of over-general classifiers. Then, the system relies on (1) the
parameter update procedure to obtain trusty estimates of classifier parameters online and (2)
the evolutionary pressures (see section 3.1.6) to drive the population from a set of over-general
classifiers to a set of maximally general and accurate classifiers that represent all niches. Both
processes may be biased by the presence of rare classes.

The first peril that appears is that the parameter update procedure provides poor estimates
of the parameters of the classifiers that match examples of different classes, that is, over-general
classifiers. In XCS, classifier’s parameters are estimated by means of a weighted window average.
Therefore, the system gives more importance to recently received rewards as opposed to older
rewards, with the result that the reward provided by a particular example is forgotten after a
certain number of learning iterations. Therefore, in imbalanced domains, it could be that exam-
ples of the minority class come so infrequently that the rewards provided by them are forgotten
before receiving the next minority class instance, biasing the estimation of the parameters of
over-general classifiers.

The evolutionary pressures may also be misled by the scarce sampling of minority class
instances. Due to the occurrence-based reproduction of XCS, intuition seems to indicate that
the system may suffer to discover representatives of starved niches, since these niches will be
infrequently activated with respect to the other niches of the system. Hence, this low number of
genetic opportunities combined with the other evolutionary pressures—which promote the most
general classifiers—may discourage XCS from evolving representatives of starved niches.

In our study, we take all these hypotheses, systematically analyze the difficulties that XCS
may face as the imbalance ratio increases, and provide solutions to let the system learn from
highly imbalanced domains. To do this, we define several elements that need to be satisfied
and derive models that relate these conditions with the imbalance ratio of the problem. Before
proceeding with this analysis, in the next subsection we empirically show the behavior of XCS
on an artificially imbalanced domain. The same experimentation is repeated after conducting
the facetwise analysis and integrating all the models, emphasizing the importance of the lessons
obtained from the analysis.

5.2.2 Empirical Observations of XCS Behavior on Class Imbalances

Here, we show the performance of XCS on the imbalanced multiplexer problem (Orriols-Puig and
Bernadó-Mansilla, 2006a), a redefinition of the multiplexer problem where one of the classes is
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Figure 5.1: Evolution of (a) the proportion of the optimal population and (b) the product of TP
rate and TN rate in the 11-bit multiplexer with imbalance ratios ranging from ir=1 to ir=1024.

progressively unbalanced with respect to the configuration parameter ir. That is, given a certain
imbalance ratio ir, the sampling process of the multiplexer problem is modified such that the
system receives ir instances of the majority class for each instance of the minority class. Thence,
we empirically show the maximum imbalance ratio ir that XCS, using a standard configuration
reported in the literature, could solve.

For this purpose, we ran XCS on the imbalanced multiplexer problem with imbalance ratios
of ir ={1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}. We set XCS with standard values used in
the literature for its configuration parameters, that is:

α = 0.1, ε0 = 1, ν = 10, χ = 0.8, µ = 0.04, θdel = 20, δ = 0.1, θsub = ir, P# = 0.6.

We used tournament selection, two point crossover with χ = 0.8, and bitwise mutation with
µ = 0.04. We applied GA subsumption, setting θsub = ir to avoid having poorly evaluated
over-general classifiers considered as accurate subsumers. We ran XCS during 40 000 · ir itera-
tions; thus, given a problem, we ensured that the system received the same number of genetic
opportunities for all imbalance ratios. Finally, to prevent having young over-general classifiers
with poorly estimated parameters in the final population, we introduced 5 000 · ir iterations with
the GA switched off at the end of the learning process.

Figure 5.11(a) illustrates the evolution of the proportion of the optimal population %[O]
achieved by XCS. That is, XCS was expected to evolve 32 optimal classifiers, each one repre-
senting a different niche. In this way, we measured the capacity of XCS to generalize and obtain
the best representative of each niche at high imbalance ratios. Figure 5.1(b) depicts the evolu-
tion of the product of TN rate—i.e., the proportion of correct classifications of the over-sampled
class—and TP rate—i.e., the proportion of correct classifications of the under-sampled class.
Note that XCS can evolve all the optimal population and yield 100% of the product of TP rate
and TN rate only for ir ≤ 32. As the imbalance ratio increases, XCS is able to discover a lower
proportion of the optimal population; particularly, the classifiers that represent starved niches
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are not created and maintained by the system. For ir ≥ 64, the system cannot discover the
knowledge that resides in the minority class.

Therefore, these preliminary experiments show that XCS is robust at moderate imbalance
ratios, but that it fails to provide accurate representatives of the minority class for high imbalance
ratios. In the next section, we explicate the facetwise methodology used to analyze the possible
causes of this failure. We enumerate the different elements that need to be guaranteed to learn
accurate models from rare classes; then, models for each one of the elements are elaborated in
the subsequent sections.

5.3 Facetwise Analysis of XCS in Imbalanced Domains

In this section, we follow a design decomposition approach to systematically analyze the different
sources of difficulty that XCS may find when learning from imbalanced domains. We first
briefly introduce the design decomposition methodology adopted by Goldberg (2002) as a design
approach to competent genetic algorithms and review how it has been transported to XCS. Then,
we follow this approach to decompose the problem of learning from imbalanced domains in XCS.

5.3.1 Design Decomposition in GAs

Goldberg (2002) emphasizes the relevance of design decomposition and facetwise analysis for
advancing in the design and the understanding of complex systems. The design decomposition
methodology separates the working process of complex systems into different elements, and
each one of these elements is analyzed separately assuming that all the others are behaving in
an ideal manner. All these models provide key insights into the working of the complex system,
increasing our understanding of the underlying processes of the system. Furthermore, they also
can be used as a tool for designing new competent and efficient complex systems that satisfy
the requirements identified by the different models. Besides, the individual facetwise models
can be combined, identifying the sweet spot where the algorithm actually scales. For further
details about the application of this methodology to the design of competent GAs, the reader is
referred to section 2.2.4.

As described in the previous section, similarly to GAs, LCSs are complex systems in which
several components interact to evolve a set of maximally general and accurate classifiers. Due
to this complexity, efforts have recently been made to apply the design decomposition and the
facetwise analysis methodology to LCSs. In the next section, the existing work on carrying the
design decomposition approach to LCSs domain is briefly reviewed.

5.3.2 Carrying the Design Decomposition from GAs to XCS

The application of facetwise modeling to LCSs, and specifically XCS, has provided key insights
into XCS working processes, enabling the solution of more complex problems. As follows, we
review these analysis in more detail.

One of the first works toward the definition of a theory based on facetwise analysis for XCS
can be found in (Butz et al., 2004b). In this work, the authors studied the learning pressures in
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XCS and derived critical bounds on the system convergence. In particular, the authors derived
two boundaries beyond which the convergence of XCS could not be guaranteed, which were
addressed as the covering challenge and the schema challenge. Continuing the analysis of the
different pressures of XCS, Butz et al. (2003) analyzed the fitness pressure and derived the so-
called reproductive opportunity bound, which sets the population size required to warrant that
a classifier, with a certain specificity, will have reproductive opportunities. Later, Butz et al.
(2004a) complemented the previous study by deriving models of the learning time in XCS. The
models were simplified by not considering crossover and by assuming a domino-convergence
model (Thierens et al., 1998). More recently, Butz et al. (2007) presented a Markov chain
analysis of niche support in XCS. The analysis showed that the number of classifiers of a niche
followed a binomial distribution, which yielded another population size bound to ensure effective
problem sustenance.

However, these facetwise models do not explain all the aspects of XCS. Whereas these models
have provided considerable insights and increased our understanding of XCS, they do not fully
capture the effect of dealing with problems that contain class imbalances. Hence, in this thesis,
we follow a design decomposition methodology to study whether XCS can efficiently deal with
rare classes. As follows, we first present an artificial problem that will enable us to identify
the different difficulties that we may face when learning from imbalanced domains. Later, we
present the problem decomposition.

5.3.3 A Boundedly Difficult Problem for LCSs: The Imbalanced Parity Prob-
lem

The first step before proceeding to the facetwise analysis is to design a proper test problem
that highlights the difficulties that are to be studied and that serves to validate the developed
models. Following this analogy, we designed the imbalanced parity problem, whose description
is provided as follows.

The imbalanced parity problem extends the parity problem (Kovacs and Kerber, 2001) by
introducing a parameter that permits controlling the complexity along the imbalance dimension.
The problem is defined as follows. Given a binary string of length `, where there are k relevant
bits (0 < k ≤ `), the output is the number of one-valued bits in the k relevant bits modulo two.
This corresponds to the original definition of the parity problem. We introduce the imbalance
complexity to this definition by starving the class labeled as ‘1’. That is, ir denotes the ratio
of examples of the majority class to the number of instances of the minority class. For ir = 1,
the problem has, approximately, the same number of instances per class. For ir > 1, there are
ir instances of the majority class for each instance of the minority class. Independent of the
imbalance ratio, the optimal population for this problem consists of 2k+1 classifiers that have
specific values for the k relevant attributes and all the remaining attributes are set to ‘#’ (see
appendix A.1).

Note that the complexity of the problem can be moved along two dimensions: the building
block size k and the imbalance ratio ir. Larger values of k pose more challenges to XCS, since the
system needs to discover larger, more complex building blocks whose bits have to be processed
together. Moreover, k also defines the number of irrelevant attributes which XCS must gener-
alize to obtain the optimal population. On the other hand, increasing ir implies a progressive
under-sampling of instances of the minority class, which may hinder XCS in discovering optimal
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classifiers for this class.

Now that we have defined the parity problem and analyzed its possible sources of complexity,
the next section introduces the particular decomposition proposed for Michigan-style LCSs in
general.

5.3.4 Decomposition of the Class Imbalance Problem in XCS

With the intuitive difficulties of XCS in learning from rare classes discussed in section 5.2.1
and adhering to the design decomposition methodology proposed by Goldberg, we are now in
position to articulate the different elements that need to be satisfied to successfully deal with
problems that contain class imbalances. Our major concern is to guarantee that representatives
of starved niches will win in competition with over-general classifiers even for high imbalance
ratios. Thus, we decompose the problem and consider all the facets that are likely to be affected
by the dearth of examples of the minority class. Then, we derive facetwise models that model
each one of the subproblems. More specifically, we consider the following five subproblems:

1. Estimate the classifier parameters correctly—prediction, error, and fitness of classifiers.

2. Analyze whether representatives of starved niches can be provided in initialization.

3. Ensure the generation and growth of representatives of starved niches.

4. Adjust the GA application rate.

5. Ensure that representatives of starved niches will take over their niches.

Estimate the classifier parameters correctly. The primary factor that needs to be satisfied is
that the evaluation procedure obtains accurate estimates of the parameters of all classifiers, and
especially of over-general classifiers. In XCS, classifier parameters are updated online according
to the reward received at each time step by means of the Widrow-Hoff rule (Widrow and Hoff,
1988). This method makes a temporal windowed average of the received rewards, which gives
more importance to the last received rewards as opposed to the older rewards. Consequently,
the dearth of sampling of examples that represent one of the classes may cause poor estimations
in over-general classifiers, since infrequent negative rewards can be forgotten. This aspect is
really important since it may completely mislead the genetic search. That is, if the error of
over-general classifiers is underestimated, XCS may promote these over-general classifiers when
they are competing with accurate classifiers in the same niche. We investigate the accuracy of
the parameter update procedure and provide some alternative parameter evaluation methods
in section 5.4.

Analyze whether representatives of starved niches can be provided in initialization. Once
ensuring that classifier parameters can be properly evaluated, we have to analyze whether XCS
initialization process can supply the initial population with classifiers that contain schemas of
starved niches in the beginning of the run (Orriols-Puig et al., 2007c). That is, XCS starts
with an empty population. Then, the covering operator is applied in the first iterations of the
learning process, providing classifiers whose conditions are generalized from the first instances
that are sampled to the system. Covering should initialize the population with several classifiers
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that, although not being maximally accurate, contain schemas that represent niches of different
classes. Nonetheless, intuition seems to indicate that, for highly imbalanced domains, covering
is mainly triggered on instances of the majority class; therefore, covering may fail to provide
schemas of niches that represent the minority class. Furthermore, this problem is even more
severe as the schema of starved niches gets larger (in the parity problem, this translates to
having larger values of k). In section 5.5, we derive models that formally explain this behavior.
The remainder of the analysis is derived assuming a covering failure.

Ensure the generation and growth of representatives of starved niches. After the population is
initialized, the genetic algorithm drives the search toward more accurate and general classifiers.
We already appealed to the intuition that the occurrence-based reproduction of XCS may
hamper the discovery of maximally general and accurate classifiers for starved niches. In section
5.6, we derive facetwise models that systematically analyze the effect of class imbalances in the
(1) generation and (2) growth of representatives of starved niches. Consequently, we derive
bounds on the population size to guarantee that XCS will be able to learn classifiers that
belong to starved niches. All the analysis is performed assuming that the GA is applied at
each learning iteration.

Adjust the GA application rate. Having ensured the discovery of representatives of starved
niches, section 5.7 introduces the frequency of application of the GA into the analysis and
theoretically shows that decreasing the frequency of application of the GA results in a counter-
balancing effect that may help XCS discover representatives of starved niches.

Ensure that representatives of starved niches will take over their niches. Discovering the first
representatives of starved niches is not enough. That is, once discovered, the accurate repre-
sentatives of starved niches should take over their niches, removing competing over-general,
less accurate classifiers. Nonetheless, the effect of the occurrence-based reproduction may pro-
duce the opposite effect, resulting in situations where over-general classifiers take over starved
niches. In section 5.8, we study the takeover time of the best representative in starved niches,
following the methodology used in the genetic algorithms literature for these types of analy-
ses (Goldberg and Deb, 2003). Takeover time expressions are derived for the two most-used
selection techniques in XCS: proportionate selection (Wilson, 1995) and tournament selection
(Butz et al., 2005c). Moreover, conditions for starved niches extinction, i.e., deletion of the
best representatives of starved niches in favor of over-general classifiers, are also derived for
both selection schemes.

In the remainder of this chapter, each of these facets is covered in a different section in
which the technical argument will be developed more completely. Moreover, all the models are
experimentally validated with the imbalanced parity problem. Then, in section 5.9, we unify
all the models, emphasizing the lessons derived from each one. Specifically, the patchquilt
integration of the models results in a domain of applicability of XCS for imbalanced domains,
which (1) determines under which conditions and imbalance ratios the system will be able to
successfully represent the minority class in the evolved model and (2) provides guidelines of
how to set the system for different imbalance ratios. The insights supplied by these models
are crucial to increase our understanding of how XCS evolves classifiers that represent starved
niches, enabling the solution of highly imbalanced problems that previously eluded solution. We
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show, as example, that all the acquired knowledge enables us to appropriately set XCS so that
it can solve the multiplexer problem (Wilson, 1995) with large amounts of class imbalances.

5.4 Estimation of Classifier Parameters

In this section, we analyze whether the Widrow-Hoff rule provides accurate estimates of the
parameters of over-general classifiers as the imbalance ratio increases. We especially focus on
the prediction error of over-general classifiers, since it determines the classifier’s fitness. If
the prediction error is underestimated, over-general classifiers may be considered as accurate
classifiers by the system; hence, they will win in competition with more specific but accurate
classifiers. Thence, as follows, we first theoretically relate the error of over-general classifiers with
the imbalance ratio, deriving a bound beyond which the system will not be able to distinguish
between over-general classifiers and accurate representatives. Then, we empirically analyze
whether the parameter update procedure of XCS can provide estimates that accurately predict
the theoretical bound.

5.4.1 Imbalance Bound

We start the derivation of the maximum imbalance bound by considering that, according to
Butz et al. (2003), the prediction p of a classifier can be approximated by

p = Pc(cl) · Rmax + (1 − Pc(cl)) · Rmin, (5.1)

where Pc(cl) is the probability that a classifier predicts the matching input correctly, Rmax is
the maximum reward, and Rmin the minimum reward given by the environment. Then, the
error of a classifier can be approximated as

ε = |p − Rmax| · Pc(cl) + |p − Rmin| · (1 − Pc(cl)). (5.2)

For classification problems, Rmin is usually 0, so that the prediction of a classifier can be
estimated by p = Pc(cl) ·Rmax. Substituting p into formula 5.2, we get the following prediction
error estimate:

ε = 2Rmax · (Pc(cl) − Pc(cl)
2). (5.3)

Now, let us relate Pc(cl) with ir (Orriols-Puig and Bernadó-Mansilla, 2006a, 2008a). In average,
over-general classifiers will match ir examples of the majority class for each example of the
minority class. Assuming that p is correctly estimated, a classifier would correctly predict the
output for the ir instances of the majority class, and would give an erroneous prediction for the
example of the minority class. Thus, Pc(cl) can be approximated as

Pc(cl) =
ir

1 + ir
, (5.4)

and its error estimate as

ε = 2 · Rmax
ir

(1 + ir)2
. (5.5)
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An over-general classifier will be considered inaccurate as long as

ε ≥ ε0. (5.6)

Using equation 5.5, we obtain that

2 · Rmax
ir

(1 + ir)2
≥ ε0, (5.7)

which can be written as

−ir2ε0 + 2ir(Rmax − ε0) − ε0 ≥ 0. (5.8)

This represents a parabola where ε takes values higher than ε0 for ir ranging between ir` and iru,
where ir` < iru. We are concerned about the maximum imbalance ratio up to which XCS would
consider over-general classifiers as inaccurate; that is, iru. Solving equation 5.8, and assuming
that ε0 << Rmax, we obtain the following expression:

iru ≈ 2Rmax

ε0
. (5.9)

That is, the maximum imbalance ratio up to which XCS will be able to detect over-general
classifiers grows linearly with Rmax and decreases linearly with ε0. Substituting ε0 = 1 and
Rmax = 1000, the maximum imbalance ratio is: iru ≈ 2000. Nonetheless, the experiments
provided in section 5.2.2 illustrated that XCS failed to extract all the knowledge that resides in
the minority class for ir > 32. As proceeds, we analyze whether this deviation between theory
and experiments can be caused by a deviation of the real value of the error with respect to its
theoretical estimate.

5.4.2 Does the Widrow-Hoff Rule Provide Accurate Estimates?

Here, we empirically analyze if XCS can obtain reliable estimates as ir increases. For this
purpose, we ran the imbalanced parity problem with ` = 11, k = 4, and ir = {1, 10, 100}. We
initialized XCS with the optimal population plus the most over-general classifier predicting class
0 (i.e., ###########:0) and deactivated the GA. We set β = 0.2, which is a typical value used
in the literature. Figure 5.2 shows a histogram of the error estimate of the most over-general
classifier along a complete run. Results are averages over 10 runs. The vertical line shows the
theoretical value for each case.

Theoretically, the error of the most over-general classifier should be ε = {500, 165.28, 19.60}
for imbalance ratios ir = {1, 10, 100} respectively. For a completely balanced domain (see figure
5.2(a)), the error oscillates around the theoretical value, i.e., ε = 500. For ir = 10, the error of
the most over-general classifier is around zero with high frequency. For ir = 100, the classifier
error is zero most of the time. That is, as the classifier receives instances of the majority class,
its error keeps on decreasing until becoming approximately zero. At some point, an instance of
the minority class is sampled, which causes an increase in the error of the over-general classifier.
For ir = 100, as 100 instances of the majority class are sampled for each instance of the minority
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Figure 5.2: Histogram of the error of the most over-general classifier with Widrow-Hoff delta
rule at β = 0.2 and different imbalance ratios.

class, the error of the most over-general classifier is underestimated during most of the time.
Note that when ε < ε0, XCS considers that the classifier is accurate (a typical value for ε0 = 1).
This is the case during large part of the training time for ir = 10 and, especially, for ir = 100.
Besides, as the classifier is the most over-general possible, it will be favored to the detriment of
highly accurate but more specific classifiers.

The problem of having non-stable estimates for over-general classifiers does not appear ex-
clusively in highly imbalanced domains. This topic has been studied for multi-step problems
with large delayed rewards, and several approaches have been designed to propagate the error
effectively along the previous action sets when several steps have to be taken before reaching
a reward. Herein, we consider two methods to obtain better parameter estimates. First, we
show that the Widrow-Hoff rule can obtain better parameter estimates if β is properly tuned.
Then, we adapt one of the most relevant methodologies for parameter evaluation designed for
multi-step problems to single step tasks: gradient descent (Butz et al., 2005a). The next two
sections show that the two methods allow for better estimates in highly imbalanced domains.

5.4.3 Obtaining Better Estimates with the Widrow-Hoff Rule

In the Widrow-Hoff rule, the parameter β determines the proportion of update in the classifier
parameters. As the Widrow-Hoff rule works as a temporal windowed average, β also fixes the
capacity to forget past rewards. That is, high values of β produce large modifications of classifier
parameters every time a new reward is received, forgetting perviously received rewards quickly.
Usually, this allows for a faster convergence of the classifier parameters to their real values.
However, we have already seen the harmful effect in imbalanced domains.

Here, we show that a simple solution to prevent the oscillation of the parameters of over-
general classifiers is to decrease β, considering in this way a longer history of rewards. Lower
values of β would cause smaller corrections, and so, less oscillations. Nonetheless, they would
also imply slower convergence. For very small values of β, accurate offspring classifiers may lose
against over-general parents at the beginning of the run, since their fitness increases slowly. This
may impair XCS’s ability to discover new accurate and more specific rules. Thence, β should
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Figure 5.3: Histogram of the error of the most over-general classifier with Widrow-Hoff delta
rule at β = 0.01 and different imbalance ratios.

be the highest value that prevents over-general classifiers from having zero error.

Figure 5.3 shows a histogram of the error estimate of the most over-general classifier along
a complete rule for β = 0.01. For all the cases, the histograms are centered on the theoretical
value of the error. Thus, over-general classifiers have precise estimates of their parameters most
of the time. The standard deviation of the histograms increases with the imbalance ratio, since
the rewards generated by the minority class examples are less frequent.

5.4.4 Obtaining Better Estimates with Gradient Descent Methods

Here, we study another approach, originally adapted from a gradient descent methodology, to
obtain better parameter estimations. Butz et al. (2005a) introduced a gradient descent method
to improve the parameter estimation of XCS in multi-step problems that involve a large number
of state-action pairs. The new approach relies on identifying that the gradient term for a classifier
is F∑

[A] Fi
, in which Fi is the fitness of classifier i of the action set. Thus, classifier prediction is

updated as

p = p + β(R − p)
F∑
[A] Fi

, (5.10)

where R is the received reward. The rest of the parameters are updated as usual (see section
5.2). Note that this procedure aims at stabilizing classifier prediction. In consequence, the
classifier error will also be stabilized since it tracks the prediction error.

The results provided by Butz et al. (2005a) illustrate that the gradient descent technique
enables XCS to solve multi-step problems that eluded solution in XCS with Widrow-Hoff rule.
Such improvement is explained by noting that the gradient term in the prediction update is
actually an adaptive learning rate that prevents parameters from large corrections when the
fitness of the updated classifier is much lower with respect to the fitness of the other classifiers
in the same action set. Thereupon, gradient descent uses a heuristic procedure to automatically
tune β depending on the fitness of each classifier. Then, the difference between gradient descent
and decreasing β is that gradient descent automatically uses the aforementioned heuristic to
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Figure 5.4: Histogram of the error of the most over-general classifier with gradient descent at
β = 0.2 and different imbalance ratios.

determine the most suitable value for β instead of requiring the user to tune this parameter.

We repeated the same experiments with the imbalanced parity problem but now used gra-
dient descent with β = 0.2. Figure 5.4 plots the histograms of the error estimate of the most
over-general classifier along a complete run for gradient descent. XCS with gradient descent
maintains fairly accurate estimates of the error of the most over-general classifier for all the
imbalance ratios, even though a high value of β is used. However, note that these estimates are
not as accurate as the ones obtained with Widrow-Hoff rule with a proper configuration of β.

In summary, this section showed that the Widrow-Hoff rule may provide poor estimates of the
error of over-general classifiers for high class imbalances. This effect is undesirable since this may
cause XCS to consider over-general classifiers as accurate. Two approaches, i.e., decreasing β for
Widrow-Hoff rule and gradient descent provided more reliable parameter estimates. Although
these methods would result in a slower convergence of XCS, their use is critical to guarantee
that XCS will be able to obtain reliable estimates and converge to an optimal population. In
the remainder of the analysis, we consider that classifier parameters are accurately estimated
by the procedures presented above, and thus, that the genetic search is not misled. With this
assumption, the next sections study the generation and growth of representatives in starved
niches.

5.5 Supply of Schemas of Starved Niches in Population Initial-
ization

Here, we study whether the covering operator is able to supply classifiers that represent schemas
of starved niches for high imbalance ratios. As explained in section 5.2, covering is activated in
the first stages of the learning process, creating new classifiers from the first sampled instances.
To provide representatives of starved niches, the covering operator has to be triggered on minor-
ity class instances. However, as ir increases, fewer minority class instances are sampled. Thus,
covering will be mainly activated from majority class instances. Then, most of the classifiers
will be generalized from majority class instances, and so, classifiers representing schemas of the
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minority class will be scarce. To analyze this effect, here we derive the probability that covering
is triggered on the first minority class examples sampled to the system.

For this purpose, we first consider the probability that one instance is covered by, at least,
one classifier P (cover). According to Butz et al. (2004b), this probability is

P (cover) = 1 −

[
1 −

(
2 − σ[P ]

2

)`
]N

, (5.11)

where ` is the input length, N is the population size, and σ[P ] is the specificity of the population.
During the first learning stage of XCS, we can approximate σ[P ] ≈ 1 − P#.

Now, let us relate this probability to the imbalance ratio ir. We consider the worst case
where (1) XCS receives ir instances of the other classes before receiving the first instance of the
minority class and (2) the covering operator is triggered for each instance supplying n classifiers
per instance (where n is the number of classes; thus θmna = n). In this case, the probability
that the population contains, at least, a matching classifier for each class is

P (cover) = 1 −

[
1 − 1

n

(
2 − σ[P ]

2

)`
]n·ir

. (5.12)

In this equation, we assumed that N > n · ir, i.e., that XCS will not delete any classifier during
the first ir iterations. This assumption is usually satisfied since covering is only applied for the
first input examples, when there is room in the population. It is worth noting that, given a fixed
` and σ[P ], the term in brackets in the right hand of the equation decreases exponentially as
the imbalance ratio increases. Thus, the probability of having classifiers in the population that
match the first minority class instances tends to one exponentially with the imbalance ratio.
Notice that the matching classifiers would have been generated from majority class instances,
and so, would not represent schemas of starved niches.

With equation 5.12, we can derive the probability of activating covering having sampled a
minority class instance. Provided that the probability of activating covering is 1 − P (cover),
and recognizing that (1 − r/n)n ≈ e−r, we obtain that

P (activate cov. on. min.) = 1 − P (cover) ≈ e−ir·e−
`σ[P ]

2 , (5.13)

which decreases exponentially with the imbalance ratio and, in a higher degree, with the con-
dition length and the initial specificity. Figure 5.5 depicts the equation for ` = 20, n = 2,
and different initial specificities, showing that the probability of activating covering on the first
sampled instance of the minority class decreases exponentially with the imbalance ratio.

Thence, this analysis manifests that the covering operator fails to supply classifiers repre-
senting correct schemas of the minority class for moderate and high imbalance ratios. In the
next section, we assume a covering failure in providing schemas of starved niches and study
whether the genetic search can discover representatives of starved niches.

5.6 Generation of Classifiers in Starved Niches

Assuming a covering failure to provide classifiers that represent schemas of starved niches, we
now study how the GA can evolve representative classifiers for these starved niches. As follows,
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Figure 5.5: Probability of activating covering on a minority class instance given a certain
specificity σ[P ] and the imbalance ratio ir. The curves have been drawn from equation 5.13
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we first enumerate the assumptions of the models and then analyze the probabilities of creating
and maintaining representatives of starved niches. Finally, we use the different models to derive
a population size bound to ensure the discovery of starved niches.

5.6.1 Assumptions for the Model

Before proceeding with the theoretical derivations, we first enumerate the assumptions made to
develop the models. The analysis is focused on the evolution of starved niches. We assume a
simplified scenario model where: (1) we do not consider crossover and contemplate mutation as
the main operator for discovery, assuming low probabilities of mutation µ (µ < 0.5) as usual in
practice; (2) we assume that the GA is applied at each learning iteration (i.e., θGA = 0); and (3)
we consider random deletion. Subsequently, we relax all these constraints and experimentally
analyze the impact of breaking each one of the assumptions. We experimentally examine the
effect of introducing two point crossover. Furthermore, we investigate the biases caused by the
enhanced deletion technique used currently in XCS (see section 3.1.4). In the next section, we
study the effect of θGA theoretically and empirically.

5.6.2 Genetic Creation of Representatives of Starved Niches

In the first step of the analysis, we derive the time until the creation of the first representatives
of starved niches, assuming that covering has not provided any of them. To achieve this, we first
derive the probability to obtain the first accurate representative clmin of the starved niche i,
which is represented by a schema with order km. Thence, we study the probabilities of creating
clmin when sampling (1) instances of the minority class and (2) instances of the majority class.
Recognizing that the probability of sampling a minority class instance is 1/(1 + ir) and the
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probability of sampling a majority class instance is ir/(1 + ir), we can write that

P (clmin) =
1

1 + ir
P (clmin|min. inst) +

ir

1 + ir
P (clmin|maj. inst). (5.14)

Let us first derive P (clmin|min. inst), that is, the probability of generating a representative
of a starved niche when sampling a minority class instance. As we assumed that there are no
representatives of starved niches in the population, the match set will only consist of over-general
classifiers. Then, the system will choose a class randomly and will explore it, running a genetic
event on the selected action set. Regardless of the selected class, and considering that there are
only over-general classifiers in [M], a representative of a starved niche can be created if all the
km bits are correctly set to the values of the niche schema. Here, we consider the worst case and
assume that all the km bits need to be mutated. Thence, the probability of getting the correct
schema is (µ

2 )km . Besides, the class of the rule needs to be set to the class of the niche. If the
system selected to explore the minority class (which will be selected with probability 1/n, where
n is the number of classes), we have to ensure that the mutation operator would not change
this class (that is, with probability (1 − µ)). Otherwise, we have to require that the mutation
operator change this class to the niche class (with probability µ/(n − 1)). Therefore,

P (clmin|min. inst) =
1
n

(µ

2

)km

· (1 − µ) +
n − 1

n

(µ

2

)km

· µ

n − 1
=

1
n

(µ

2

)km

. (5.15)

The same procedure can be followed to derive the probability of creating clmin when sampling
an instance of the majority class, i.e., P (clmin|maj. inst). In this case, the match set will consist
of both over-general classifiers and representatives of nourished niches. Again, we consider the
worst case and assume that, to create a representative of a starved niche, all the km bits of
the niche schema need to be mutated. Moreover, if the system chooses to explore the minority
class, the class of the classifier must be preserved; otherwise, the class has to be changed to the
minority class. This results in exactly the same probability as before, i.e.,

P (clmin|maj. inst) =
1
n

(µ

2

)km

. (5.16)

Substituting equations 5.15 and 5.16 into equation 5.14 we obtain that

P (clmin) =
1
n

(µ

2

)km

. (5.17)

Then, we can derive the time required to discover the first representatives of starved niches tclmin

as

tclmin
=

1
Pclmin

= n

(
2
µ

)km

, (5.18)

which depends linearly on the number of classes and exponentially on the order of the schema,
but does not depend on the imbalance ratio.

Thus, even though covering fails to provide classifiers representing schemas of the minority
class, XCS will be able to generate the first correct classifiers of the minority class independent
of the imbalance ratio. In the following, we derive the time until the deletion of these classifiers.
With both the generation and deletion time, we calculate the minimum population size to
maintain these classifiers and ensure that the best representatives of starved niches will receive,
at least, one genetic event.
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5.6.3 Deletion of Representatives of Starved Niches

We now provide an approximate time to the extinction of representatives of starved niches. The
time to extinction of classifiers mainly depends on the applied deletion procedure. The current
deletion scheme of XCS (Kovacs, 1999) gives the classifiers a deletion probability proportional
to their action set estimate as. This approach permits balancing the allocation of rules in
the different niches in problems for which the frequency of the different niches is similar, i.e.,
balanced problems. Nonetheless, in highly imbalanced problems, the action set size estimate of
accurate classifiers of starved niches may be negatively biased by over-general classifiers. That
is, as over-general classifiers participate in the same action sets as accurate classifiers of starved
niches, the action set size of these accurate classifiers may be overestimated.

As our model is developed for highly imbalanced domains, we consider the worst case, i.e.,
that the deletion procedure gives the same probability to each classifier to be deleted. Since
two classifiers are deleted at each GA application, we obtain that the deletion probability is
P (delete cl) = 2/N , where N is the population size. From this formula, we derive the time
until deletion:

t(delete cl) =
N

2
. (5.19)

In the next section, we use both the creation and the extinction time of representatives of
starved niches to derive the minimum population size that guarantees the discovery, mainte-
nance, and growth of starved niches.

5.6.4 Bounding the Population Size

The population size is a critical aspect that determines the niches that the system could maintain.
In this section, we use the formulas calculated above and derive population size bounds to
guarantee (1) that XCS will be able to maintain accurate representatives of starved niches, and
(2) that representatives of starved niches will receive genetic events before being removed.

Minimum Population Size to Guarantee Representatives

In the previous section, we theoretically showed that XCS would be able to create representatives
of starved niches regardless of the imbalance ratio. To guarantee that these classifiers will be
preserved in the niche, we require that, before deleting any representative of a starved niche,
another representative for the given niche be generated. Therefore, we use the formulas derived
in the previous section and require that the time until deletion be greater than the time until a
new representative of a the starved niche is created. That is, we require that

t(delete clmin ) > t(clmin). (5.20)

Using formulas 5.18 and 5.19, the expression can be rewritten as

N > 2n
(µ

2

)km

. (5.21)
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which indicates that the population size has to increase linearly with the number of classes and
exponentially with the order of the schema to guarantee that representatives will be maintained
in starved niches. Note that this formula does not depend on the imbalance ratio. This means
that XCS will be able to maintain accurate classifiers in starved niches regardless the imbalance
ratio.

Population Size Bound to Guarantee Reproductive Opportunities

To ensure the growth of starved niches, we not only should guarantee that XCS would maintain
representatives of starved niches, but that these representatives receive, at least, a genetic op-
portunity. Otherwise, XCS could be continuously creating and removing classifiers from starved
niches, but not searching toward better classifiers. Therefore, here we derive a population size
bound to ensure this condition.

In our model, we assume that the selection procedure chooses one of the strongest classifiers
in the niche (the effect of different selection schemes will be studied in more detail in the next
section). Then, the time required for a classifier of a starved niche to receive a genetic event is
inversely proportional to the probability of activation of the niche to which it belongs, i.e.,

t(GA nichemin) = n · (1 + ir), (5.22)

which depends on the imbalance ratio and the number of classes.

To guarantee that these accurate classifiers of starved niches receive a genetic opportunity
before being deleted, we require that t(delete nichemin ) > t(GA nichemin ), from which we
derive the population size bound

N > 2n · (1 + ir). (5.23)

That is, the population size has to increase linearly with the number of classes and the imbalance
ratio to warrant that accurate classifiers of starved niches will receive, at least, a genetic event
before being deleted.

Thereupon, the models derived in this section explained the creation, the maintenance, and
the growth of starved niches, showing that XCS is able to maintain representatives of starved
niches regardless of the imbalance ratio and that the population size has to increase linearly
with the imbalance ratio if we want to ensure that the niche will grow. In the next section, we
empirically validate the population size bounds with a set of artificial problems.

5.6.5 Experimental Validation of the Models

In this section, we experimentally evaluate whether the population size bound increases linearly
with ir as predicted by the bound in equation 5.23. We first analyze whether the theory fits
the experimental results when all the assumptions are made. Later, we study the impact of
breaking each one of the assumptions.

Experimental Validation When the Assumptions Are Satisfied

To examine whether the theory approximates accurately the empirical results when all the
assumptions are met, we performed the following experiments. We ran XCS on the imbalanced

86



5.6. GENERATION OF CLASSIFIERS IN STARVED NICHES

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5
x 10

4

Imbalance Ratio

P
op

ul
at

io
n 

S
iz

e
Scaling−up of the Population Size with the Imbalance Ratio

 

 

par1 empirical
par1 theory
par2 empirical
par2 theory
par3 empirical
par3 theory
par4 empirical
par4 theory

(a) Default configuration
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(b) Gradient descent

Figure 5.6: Scalability of the population size with the imbalance ratio in the k-parity problem
with k={1,2,3,4} and the default configuration with (a) Widrow Hoff rule update with adjusted
β according to ir and (b) gradient descent parameter update with β = 0.2. The dots show the
empirical results and lines plot linear increases with ir (according to the theory).

parity problem with k = {1, 2, 3, 4}, ` = 10, and ir = {1, 2, 4, 8, 16, 32, 64, 128}, and we used
the bisection procedure to obtain the minimum population size required to solve the problem.
That is, for each parity problem and imbalance ratio, we ran XCS with an initial, randomly
selected population size. If the run succeeded, we decreased the population size. Otherwise,
we increased the population size. This procedure was repeatedly applied until we obtained the
minimum population size with which XCS was able to solve the problem. We employed the
following procedure to determine if an XCS run was successful. After training, we tested XCS
with all the training instances and measured the proportion of correct classifications of instances
of the majority class (TN rate) and the proportion of correct classifications of the minority class
(TP rate). All these results were averaged over 50 different random seeds. We considered that
XCS succeeded if the product of TP rate and TN rate was greater than a certain threshold θ
(we set θ = 0.95).

XCS was configured so that all the assumptions of the model were satisfied. Therefore,
crossover was deactivated (χ = 0), random deletion was used, and the GA was applied every
time a niche was activated (θGA=0). The other parameters were set as α = 0.1, ε0 = 1, ν = 10,
µ = 0.04, θdel = 20, δ = 0.1, θsub = ir, P# = 0.6. We used tournament selection for the GA. We
ran XCS during {10 000 · ir, 20 000 · ir, 40 000 · ir, 80 000 · ir} iterations for the parity problem
with k = {1, 2, 3, 4} respectively; thus, given a problem, we ensured that the system received the
same number of genetic opportunities for all imbalance ratios. Finally, to prevent having young
over-general classifiers with poorly estimated parameters in the final population, we introduced
5, 000·ir iterations with the GA switched off at the end of the learning process. In the remainder
of this chapter, this configuration is referred to as the default configuration.

The two parameter update procedures proposed in section 5.4 were used: (1) Widrow-Hoff
rule and (2) gradient descent. For the former method, we used the following heuristic procedure
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to tune β. For each run, we supposed the worst case and assumed that over-general classifiers
received 1 instance of the minority class and then ir instances of the majority class. Thus, we
set β so that the error calculated for the most over-general classifier was approximately the
same as the theoretical error provided by equation 5.9. We followed an iterative approach that
incrementally discounted the value of β until a value that yielded error estimates that were close
to the theoretical ones was found.

Figure 5.6 shows the minimum population size required to solve the parity with different
building block sizes (k = {1, 2, 3, 4}) and imbalance ratios from ir = 1 to ir = 128 for Widrow-
Hoff rule (figure 5.6(a)) and gradient descent (figure 5.6(b)). For each plot, the points depict the
empirical values and the lines show the theoretical bounds. Note that the theory approximates
the empirical results accurately for the two parameter update procedures and the different
configurations and imbalance ratios. These results also permit establishing a comparison among
the two parameter update procedures. The pairwise Wilcoxon statistical test (Wilcoxon, 1945),
at α = 0.05, indicated that gradient descent needed significantly smallest populations to solve
the different configurations of the parity problem.

The results provided herein indicated that the theory nicely predicts the experiments when
the assumptions of the models are met. In the next section, we investigate whether the popula-
tion size bound is still valid when the different assumptions are not satisfied.

Impact of Breaking the Assumptions

Here, we repeated the experiments done in the previous section, but breaking each assumption.
That is, we used the default configuration specified in the last section. Widrow-Hoff rule was
employed for parameter estimation. Then, we ran XCS with (1) crossover, setting χ = 0.8, and
(2) the typical deletion scheme of XCS, configuring θdel = 20 and δ = 0.1. Moreover, we also
analyzed (3) the effect of replacing tournament selection with proportionate selection and (4)
the impact of increasing the specificity in the initial population by setting P# = 0.4. Figure 5.7
shows the minimum population size required in each configuration.

Several conclusions can be drawn from these results. First of all, it is worth noting that
the theory nicely approximates the empirical results for all the experiments, although the initial
assumptions were not satisfied. Figure 5.7(a) shows the curves obtained by XCS with crossover,
which are equivalent to those evolved with the default configuration (see figure 5.6(a)) according
to a Wilcoxon signed-ranks test at a significance level of 0.05. This suggests that the models
are still valid although crossover is used in the experimental runs. Figure 5.7(b) plots the
curves resulting from running XCS with the typical deletion scheme of XCS. The results clearly
evidence the decrease in the population size required to solve the different configurations (the
Wilcoxon signed-ranks test confirmed this observation). In any case, note that the the minimum
population size still increases linearly with the imbalance ratio, as predicted by the theory.
The configuration with proportionate selection (see figure 5.7(c)) yielded equivalent results to
those obtained with the default configuration according to a Wilcoxon signed-ranks test at a
significance level of 0.05. Finally, figure 5.7(d) illustrates the results obtained when there was a
higher specificity in the initial populations. The pairwise analysis supports the hypothesis that
a higher initial specificity requires larger population sizes to solve the parity with k = 1. For
the other parity problems, no statistical differences were found.
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(a) Crossover
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(b) Fitness deletion
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(c) RWS
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(d) P#=0.4

Figure 5.7: Scalability of the population size with the imbalance ratio in the k-parity problem
with k={1,2,3,4} and different XCS’s configurations. The dots show the empirical results and
lines plot linear increases with ir (according to the theory).

The overall experimentation conducted in this section showed an agreement between theory
and experiments, even when the initial assumptions were not satisfied. Notice that no experiment
broke the assumption that the GA is applied at each learning iteration. The effect of varying
the frequency of application of the GA is carefully studied in the next section.

5.7 Occurrence-based Reproduction: The Role of θGA

Throughout all the analysis performed in the last section, we assumed that the different niches
of the system receive a genetic opportunity each time they are activated (i.e., θGA=0). Conse-
quently, nourished niches received more genetic events, and so, generated more offspring. This
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section takes in consideration the effect of having θGA > 0, revisits the models derived in the
previous section, and shows that we can use θGA to re-balance the number of genetic opportuni-
ties that both starved and nourished niches receive. Finally, the new models are validated with
the imbalanced parity problem.

5.7.1 Including θGA in the Generation Models

To analyze the impact of varying θGA, let us consider again the occurrence-based reproduction
of both types of niches and calculate the period of application of the GA to the different niches.
The frequency of activation of nourished niches (Foccmaj ) and the frequency of activation of
starved niches (Foccmin) are

Foccmaj =
1

n · m
ir

1 + ir
(5.24)

and

Foccmin =
1

n · m
1

1 + ir
, (5.25)

where m is the number of niches2. From these frequencies, we can compute the period of
activation of each type of niche as

Toccmaj = n · m1 + ir

ir
(5.26)

and

Toccmin = n · m(1 + ir). (5.27)

Once activated, the niche will receive a genetic event if the time since the last application of the
GA on the niche exceeds θGA. Therefore, the period of application of the GA (TGA) on a niche
is

TGA =

{
Tocc if Tocc > θGA

θGA otherwise.
(5.28)

That is, if the period of activation of a niche is greater than θGA, the classifiers that belong to
the niche will receive a genetic event every time the action set is formed; thus, the period of
application of the GA equals the period of niche activation. This is the case of the theoretical
model, in which we assumed θGA = 0. On the other hand, if Tocc ≤ θGA, TGA is approximately
θGA.

To give all niches the same number of genetic events, TGA should be approximately the same
for all the niches. Note that this can be easily satisfied by setting θGA = T ∗

occ, where T ∗
occ is the

period of the niche that is activated less frequently, i.e., T ∗
occ = Toccmin . Therefore, θGA should

be set as follows:

θGA ≈ n · m · (1 + ir). (5.29)

2We introduce the number of niches in these equations since we are now modeling the occurrence of a specific
niche
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(a) Default configuration
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(b) Fitness deletion

Figure 5.8: Scalability of the population size with the imbalance ratio in the k-parity problem
with k={1,2,3,4} and different XCS’s configurations with θGA = n · m · ir. The points indicate
the empirical values of the minimum population size required by XCS. The lines depict the
theoretical increase calculated with the previous models, which assumed θGA = 0.

Note that if the restriction of equation 5.29 is satisfied, all niches will receive approximately the
same number of genetic events; moreover, as deletion is only activated after a GA application,
the time of deletion of a classifier (see equation 5.19) would now increase linearly with the
imbalance ratio. Therefore, XCS will be able to maintain starved niches without increasing the
population size. The next section experimentally validates this assertion.

5.7.2 Experimental Validation

To validate the theory derived in the previous section, we ran the same experiments with the par-
ity problem proposed in section 5.6.5. We configured the system with the default configuration,
but we set θGA = n · m · ir; Widrow Hoff rule was used to update classifier parameters. Figure
5.8(a) shows the minimum population size required to solve the parity problem with different
building block sizes (k = {1, 2, 3, 4}) and imbalance ratios from ir = 1 to ir = 128. The points
depict the empirical values. To analyze the differences introduced by adjusting θGA = n ·m · ir,
the lines depict the population size increase predicted by the theoretical model calculated for
the same configurations but with θGA = 0 (see figure 5.6(a)).

The figure shows that, with the default configuration, the population size remained nearly
constant for all the tested parity problems and imbalance ratios. This is because the effect of
the imbalance ratio was counter-balanced by the increase of the period of application of the
GA, as deduced in the previous section. The population size only presented a slight increase
for ir = 128. This behavior can be easily explained as follows. At such imbalance ratios, the
parameter update procedure decreases the value of β to prevent the oscillation of the parameters
of over-general classifiers. For very small values of β, accurate offspring classifiers may lose
against over-general parents at the beginning of the run, since their fitness increases slowly. As

91



CHAPTER 5. FACETWISE ANALYSIS OF XCS FOR DOMAINS WITH CLASS IMBALANCES

the deletion procedure is random and these offspring receive a low number parameter updates,
they may be removed before their parameters are correctly adjusted to the real value. Therefore,
slightly larger populations may be set to let new accurate offspring persist in the population
until their parameters are sufficiently updated.

To contrast this hypothesis, we ran the same experiments but used the typical deletion scheme
of XCS. Figure 5.8(a) illustrates the minimum population sizes required for each configuration of
the parity problem. The experimental results show that the population size remains constant as
the imbalance ratio increases, even for the largest imbalance ratios. That is, the typical deletion
scheme of XCS protects the young classifiers by giving more deletion probability to over-general,
experienced classifiers.

With the present study, we have theoretically and empirically demonstrated that representa-
tives of starved classifiers will be evolved independent of the population size. In the next section,
we analyze the takeover time of these classifiers in more detail.

5.8 Takeover Time of Accurate Classifiers in Starved Niches

The study provided so far showed that XCS is able to create accurate classifiers of starved niches,
and that these classifiers will receive, at least, a genetic opportunity before being deleted. This
facet of the analysis set the population size requirements to guarantee that starved niches are
represented. Also, the effect of increasing θGA was analyzed in detail. However, the conditions
required in the previous models are not enough; to ensure full convergence, we have to warrant
not only that starved niches will not be extinct but also that accurate classifiers will take over
starved niches, removing the majority of over-general classifiers. Therefore, we have to analyze
the competition between accurate classifiers of starved niches and over-general classifiers. This
analysis is crucial because it permits extracting the upper bound on the admissible imbalance
ratio under which XCS will be able to extract the key knowledge that resides in the minority
class.

The purpose of this section is to model the takeover time of the best representatives of
starved niches and determine the conditions under which starved niches will be extinguished.
We first calculate the takeover time of accurate classifiers, which depends on (i) the initial stock
of accurate classifiers in the niche and (2) the type of selection used by the GA. In LCSs, two
selection procedures have mainly been considered: proportionate selection (Wilson, 1995) and
tournament selection (Butz et al., 2005c). In this section, we model the takeover time of the
best classifier of a niche for both selection schemes. Although we focus the analysis on the
effect of class imbalances, note that the derived models can be used as general models for the
two selection schemes. Then, we use the takeover time equations to calculate the extinction
conditions of a niche, i.e., the conditions under which all representatives of a given starved niche
will be removed from the population due to an overpressure toward generalization. As follows,
we present the assumptions made for the analysis, develop the models for each type of selection,
and experimentally validate the takeover time and extinction models.
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5.8.1 Model Assumptions

Here, we provide the assumptions of the models. We derive takeover time models for problems
with an arbitrary number of niches m. The models consider that all the m niches appear with the
same frequency. In fact, in section 5.7, we showed that this could be easily achieved by setting
θGA according to ir. Then, we incorporate the effect of the imbalance ratio in the error of the
over-general classifier. That is, imagine that we have a two-class problem. For ir = 1, the error
εo of the most over-general classifier will be εo ≈ 500, since this classifier will correctly predict
half of the instances. As the imbalance ratio increases, εo decreases as shown in section 5.4.
Thence, the imbalance ratio is intrinsically included in the difference between the errors of the
over-general and the accurate classifiers. Thus, the takeover time models derived herein compute
whether high imbalance ratios may discourage XCS to promote representatives of starved niches
in favor of over-general classifiers.

To simplify the mathematical derivation of the models, we make the following assumptions.
We consider that XCS has evolved a maximally general and accurate classifier cl b, with error εb

and numerosity nb, for each niche of the system (this is ensured by the models provided in the last
sections). Moreover, we assume that there is a single over-general classifier no, with error εo and
numerosity no, which matches all the niches. As cl b is maximally accurate, εo > εb. The same
expression can be written in function of the classifiers accuracy (a inverse function of the error)
as κb > κo. Therefore, our aim is to model the competition between accurate representatives of
the different niches and the over-general classifier. For the analysis, we assume random deletion.
We also consider that the GA is applied at each learning iteration and that both crossover and
mutation are switched off. Therefore, the GA only selects two parents, copies and introduces
them into the population, removing two other classifiers. The subsequent sections model the
takeover time for proportionate and tournament selection under these assumptions.

5.8.2 Takeover Time for Proportionate Selection

In this section, we first derive the probability of selecting the best representative of a niche under
proportionate selection, and then, we use this information to develop equations that model the
evolution of the numerosity of this classifier in the niche. Under proportionate or roulette wheel
selection (RWS), the selection probability of a classifier i depends on the ratio of its fitness Fi

over the fitness of all classifiers in the action set. Without loss of generality, we assume that
the classifier’s fitness is a simple average of the classifier’s relative accuracy. Thus, focusing on
a single niche, we compute the fitness of classifiers cl b and clo as

Fb =
κbnb

κbnb + κono
=

1
1 + ρnr

and

Fo =
κono

κbnb + κono
=

ρnr

1 + ρnr
,

where nr = no/nb and ρ is the ratio between the accuracy of clo and the accuracy of cl b
(ρ = κo/κb). ρ can also be viewed as the fitness separation between clo and cl b. The probability
Ps of selecting the best classifier cl b in the niche is computed as

PsRWS =
Fb

Fb + Fo
=

1
1 + ρnr

.
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Once selected, each classifier is copied and inserted into the population while one classifier is
randomly deleted from the niche with probability Pdel(cl j) = nj/N , where N is the population
size. With this information, as proceeds we model the evolution of the best classifier in a niche.

Evolution of the Best Classifier

The numerosity of the best classifier clb at time t+1, nb,t+1, given the numerosity of the classifier
at time t, nb,t, will

• increase in the next generation if the GA is applied to the niche, cl b is selected by the GA,
and another classifier is selected for deletion;

• decrease if (a) the GA is applied to the niche, cl b is not selected by the GA, but cl b is
selected for deletion or if (b) the GA is not applied to the niche and cl b is selected for
deletion;

• remain the same, in all the other cases.

More formally,

nb,t+1 =


nb,t + 1 1

m
1

1+ρnr,t

(
1 − nb,t

N

)
,

nb,t − 1 1
m

(
1 − 1

1+ρnr,t

)
nb,t

N + m−1
m

nb,t

N ,

nb,t otherwise.

where m is the number of niches in the problem. Grouping the above equations, we obtain

nb,t+1 = nb,t +
1
m

· 1
1 + ρnr,t

(
1 −

nb,t

N

)
− 1

m

(
1 − 1

1 + ρnr,t

)
nb,t

N
− m − 1

m

nb,t

N
, (5.30)

which can be expressed as

nb,t+1 = nb,t +
1
m

1
1 + ρnr,t

−
nb,t

N
. (5.31)

This expression can be rewritten in terms of the proportion Pt of classifiers cl b in the whole
population, i.e.,

Pt =
nb,t

N
. (5.32)

Considering that the numerosity of the best classifier in each niche is nb,t, we write that the
numerosity of the over-general classifier no,t is no,t = N −m ·nb,t, and thus, nr,t can be expressed
as

nr,t =
no,t

nb,t
=

1 − m · Pt

Pt
. (5.33)

Replacing equations 5.33 and 5.32 into equation 5.31, we obtain

Pt+1 = Pt +
1

Nm

Pt

Pt + ρ(1 − mPt)
− 1

N
Pt. (5.34)
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Assuming Pt+1 − Pt ≈ dp/dt, we have

dp

dt
≈ Pt+1 − Pt =

1
Nm

Pt

Pt + ρ(1 − mPt)
− 1

N
Pt = (5.35)

=
Pt − mP 2

t − ρmPt(1 − mPt)
Nm [Pt + ρ(1 − mPt)]

. (5.36)

That is,

Pt(1 − mρ) + ρ

Pt [(1 − ρm) − mPt(1 − ρm)]
dp =

1
Nm

dt, (5.37)

which can be solved by integrating each side of the equation between the initial proportion P0 of
cl b and the final proportion PF of cl b up to which cl b has taken over the population. Note that,
assuming m balanced niches, cl b will take over, at most, a proportion 1/m of the population.∫ PF

P0

Pt(1 − mρ) + ρ

Pt [(1 − ρm) − mPt(1 − ρm)]
dp =

1
Nm

∫
dt =

t

Nm
. (5.38)

This integral can be solved as follows

t

Nm
=

∫ PF

P0

1
1 − mPt

dp +
ρ

1 − mρ

∫ PF

P0

1
Pt[1 − mPt]

= (5.39)

=
[
− 1

m
ln(1 − mPt) −

ρ

1 − mρ
ln

∣∣∣∣1 − mPt

Pt

∣∣∣∣]PF

P0

= (5.40)

= − 1
m

ln
(

1 − mP0

1 − mPF

)
+

ρ

1 − mρ
ln

∣∣∣∣PF (1 − mP0)
P0(1 − mPF )

∣∣∣∣ . (5.41)

Since Pt < 1/m, we can rewrite the expression as

t

Nm
= − 1

m
ln

(
1 − mP0

1 − mPF

)
+

ρ

1 − mρ
ln

(
PF (1 − mP0)
P0(1 − mPF )

)
, (5.42)

from which we derive the takeover time of cl b in roulette wheel selection

t∗RWS = Nm

[
1
m

ln
(

1 − mP0

1 − mPF

)
+

ρ

1 − mρ
ln

(
PF (1 − mP0)
P0(1 − mPF )

)]
. (5.43)

The takeover time formula depends on (1) the fitness separability ρ and (2) the number of
niches m. If ρ increases, the influence of the second logarithm also increases; therefore, as the
accuracies of cl b and clo get closer, the takeover time increases.

In this subsection we provided a closed-form solution of the takeover time for proportionate
selection. In the next subsection, we derive the conditions under which the best classifier will
not take over its niche.

Conditions for the Extinction of Starved Niches under Proportionate Selection

With the formulas derived above, we analyze under which circumstances the best classifier will
not be able to take over the population, and then, we relate it to the imbalance ratio. For
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this purpose, we take equation 5.35 and analyze under which conditions the increment of the
numerosity of the best classifier will be negative; in this case, the best classifier will lose copies
in favor of over-general classifiers. We can write this expression as

Pt − mP 2
t − ρmPt(1 − mPt)

Nm [Pt + ρ(1 − mPt)]
< 0, (5.44)

that is,

Pt (1 − mρ)(1 − mPt)
Nm [Pt(1 − mρ) + ρ]

< 0. (5.45)

This condition holds when the numerator is positive and the denominator is negative and vicev-
ersa. Thus, we search for values of ρ and m that result in combinations of positive numerator
and negative denominator and viceversa. Assuming that Pt < 1

m , we have the following cases.
For ρ < 1

m , both numerator and denominator take positive values. Therefore, for ρ < 1
m , the

best classifier will always take over the population. For ρ = 1
m , the expression is 0, indicating

that numerosity of the best classifier would remain constant. For ρ > 1
m , the numerator is

always negative. Then, the whole expression will be negative if the denominator is positive, i.e.,

Nm [Pt(1 − mρ) + ρ] > 0, (5.46)

which can be written as

Pt <
ρ

mρ − 1
. (5.47)

Having that 0 < Pt < 1
m and 1

m < ρ ≤ 1, this expression is always satisfied for m ≥ 2. Thence,
this theoretically demonstrates that for m ≥ 2 the best representative will not be able to take
over the niche if

ρ >
1
m

, (5.48)

That indicates that the best classifier will not take over its niche if the ratio of the accuracy of
the over-general classifier to the accuracy of the best classifier is greater than 1/m, that is, the
fitness separability between both classifiers is small.

Note that the expression in equation 5.47 can be easily related to the imbalance ratio by
identifying that ρ = κo

κb
, where the accuracy of the over-general classifier can be computed from

its error, which is expressed in equation 5.9. That is, recognizing that the accuracy of the
representative of each niche is one (κb = 1), and that the accuracy of the over-general classifier
κo is

κo = α

(
εo

ε0

)−ν

, (5.49)

and considering the relation between the imbalance ratio and the error computed in equation
5.9, we obtain that

ρ = α

(
(1 + ir)2ε0
2 · ir · Rmax

)ν

. (5.50)
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Replacing equation 5.50 into equation 5.48, we can write that the best classifier will not take
over its niche if

α

(
(1 + ir)2ε0
2 · ir · Rmax

)ν

>
1
m

. (5.51)

This expression can be derived as

ir2 +
(

2 − (mα)ν2Rmax

ε0

)
ir + 1 > 0. (5.52)

Recognizing that

1 <<
(mα)ν2Rmax

ε0
, (5.53)

and making further simplifications, we can get that, under proportionate selection, the best
classifier will not take over its niche if

ir >
(mα)ν2Rmax

ε0
. (5.54)

Note that the maximum accepted ir can be modified by decreasing ε0.

After developing the same models for tournament selection, in section 5.8.4, we experimen-
tally validate the takeover time under proportionate selection, and show that the best classifier
cannot take over the niche for ρ > 1/m.

5.8.3 Takeover Time for Tournament Selection

To develop takeover time models for tournament selection, we assume that the tournament size
s is fixed during all the learning process. That is, in each GA event, tournament selection
randomly chooses s classifiers in the action set and selects the one with the highest fitness. As
before, we assume that cl b is the best classifier in the niche and clo is the over-general classifier;
in terms of tournament selection, this translates into requiring that fb > fo, where fi is the
fitness of the micro-classifiers associated with cl i (i.e., fi = Fi/ni). Given this scenario, the
probability of selecting the best classifier is

PsTS =
[
1 −

(
1 − no

n

)s]
, (5.55)

where n is the numerosity of the niche, i.e., n = nb+no. Thus, the probability of selecting the best
classifier is one minus the probability that this classifier does not participate in the tournament.
With this information, the next subsections model the evolution of the best classifier, provide
some particular expressions of the takeover time for tournament selection, and extract the critical
bounds beyond which the best representative will not take over its niche.

Evolution of the Best Classifier

We first model the evolution of the numerosity of the best classifier clb at time t + 1, nb,t+1,
given the numerosity of the classifier at time t, nb,t, which will
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• increase if the GA is applied to the niche, clb is selected to participate in the tournament,
and another classifier in the population is selected for deletion;

• decrease if (1) the GA is applied to the niche, clb is not selected to participate in the
tournament, but it is selected for deletion; or if (2) the GA is applied to another niche,
and clb is selected for deletion;

• remain the same otherwise.

More formally,

nb,t+1 =


nb,t + 1 1

m

[
1 −

(
1 − nb,t

n

)s] (
1 − nb,t

N

)
,

nb,t − 1 1
m

(
1 − nb,t

n

)s nb,t

N + m−1
m

nb,t

N ,

nb,t otherwise.

Grouping the above equations we can derive the expected numerosity of cl b,

nb,t+1 = nb,t +
1
m

[
1 −

(
1 −

nb,t

n

)s] (
1 −

nb,t

N

)
− 1

m

(
1 −

nb,t

n

)s nb,t

N
− m − 1

m

nb,t

N
, (5.56)

from which we obtain

nb,t+1 = nb,t +
1
m

[
1 −

(
1 −

nb,t

n

)s]
−

nb,t

N
. (5.57)

As done for proportionate selection, we rewrite the formula above in function of the proportion
Pt of classifiers clb in the whole population, i.e.,

Pt =
nb,t

N
. (5.58)

From which we can calculate no as

no = N − mnb = N − mNPt = N(1 − mPt), (5.59)

and n as

n = nb + no = NPt + N(1 − mPt). (5.60)

Substituting equations 5.59 and 5.60 into equation 5.57, we obtain

NPt+1 = NPt +
1
m

[
1 −

(
1 − Pt

1 + Pt(1 − m)

)s]
− Pt, (5.61)

Pt+1 = Pt +
1

mN

[
1 −

(
1 − Pt

1 + Pt(1 − m)

)s]
− 1

N
Pt. (5.62)

Assuming dp
dt ≈ Pt+1 − Pt, we derive

dp

dt
≈ Pt+1 − Pt =

1
mN

[
1 −

(
1 − Pt

1 + Pt(1 − m)

)s

− mPt

]
. (5.63)
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That is,

1
mN

dt =
1

1 −
(
1 − Pt

1+Pt(1−m)

)s
− mPt

dp. (5.64)

If we integrate each side of the expression, we obtain

1
mN

dt =
t

mN
=

∫ PF

P0

1

1 −
(
1 − Pt

1+Pt(1−m)

)s
− mPt

dp (5.65)

The above integral cannot be solved in general for any value of s and m. Nonetheless, note
that this analysis still provides essential information since (1) it permits calculating particular
expressions of the takeover time and (2) enables the derivation of the conditions for the extinction
of starved niches. With the aim of showing some particular cases of the takeover time in
tournament selection, the next section provides (1) a closed-form solution of the integral for
problems with a single niche and any selection pressure s and (2) a closed-form solution for
problems with two niches (m = 2) and tournament size s = 2, since s = 2 is the lowest pressure
that can be applied.

Particular Expressions of the Takeover Time for Tournament Selection

In this section, we use equation 5.65 to derive some particular expressions of the takeover
time. Expressions for other tournament sizes and niche sizes can be computed by replacing the
corresponding values into equation 5.65.

Number of Niches m=1

Replacing m = 1 into equation 5.65 we obtain the following expression

t = N

∫ PF

P0

1
1 − (1 − Pt)s − Pt

dp = (5.66)

=
∫ PF

P0

1
1 − Pt

dp +
∫ PF

P0

(1 − Pt)s−2

1 − (1 − Pt)s−1
dp = (5.67)

= N

[
ln

(
1 − P0

1 − P

)
+

1
s − 1

ln
[

1 − (1 − P )s−1

1 − (1 − P0)s−1

]]
. (5.68)

Thence, the takeover time of cl b for tournament selection is

t∗TSm=1
= N

[
ln

(
1 − P0

1 − PF

)
+

1
s − 1

ln
[
1 − (1 − PF )s−1

1 − (1 − P0)s−1

]]
, (5.69)

which depends on the initial P0 and final PF proportion of classifiers, and it is always positive
regardless of the values of P0 and PF . Therefore, if the problem contains a single niche—a
situation that is nonrealistic in real-world problems—the best classifier always will take over the
niche (Orriols-Puig et al., 2007d).

Number of Niches m=2, Tournament Size s=2
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Substituting m = 2 and s = 2 into equation 5.65, we obtain

t = 2N

∫ PF

P0

1

1 −
(
1 − Pt

1−Pt

)s
− 2Pt

dp = (5.70)

=
∫ PF

P0

(1 − Pt)2

(1 − Pt)2 − (1 − 2Pt)2 − 2Pt(1 − Pt)2
dp = (5.71)

=
∫ PF

P0

(1 − Pt)2

P 2
t (1 − 2Pt)

dp =
∫ PF

P0

1
P 2

t

dp +
∫ PF

P0
1

1 − 2Pt
dp = (5.72)

=
[
− 1

Pt
− 1

2
ln(1 − 2Pt)

]PF

P0

= 2N

[
1
P0

− 1
PF

+
1
2

ln
1 − 2P0

1 − 2PF

]
. (5.73)

Then, the takeover time for tournament selection for m = 2 and s = 2 is

tTSm=2,s=2 = 2N

[
1
P0

− 1
PF

+
1
2

ln
1 − 2P0

1 − 2PF

]
, (5.74)

which depends linearly on the initial and the final proportion of the best classifier in the pop-
ulation and logarithmically on the difference between them. However, it does not depend on
any scale between the fitness of cl b and clo. Moreover, as PF > Po, the takeover time is always
positive; this indicates that the best classifier always will be able to takeover its niche, regardless
of the imbalance ratio of the problem. Note that this analysis has been made for the lowest
possible selection pressure. Therefore, this conclusion can be extended to any tournament size
for problems with two niches.

Finally, we compare the conclusions provided by this analysis with those obtained with pro-
portionate selection. In 5.8.2, we theoretically demonstrated that, with proportionate selection,
the best classifier would not be able to take over its niche if ρ ≥ 0.5 for problems with two niches
(see equation 5.48). Thus, tournament selection appears to be more robust in highly imbalanced
data sets when the fitness separation between accurate and over-general classifiers is low.

This subsection provided some specific expressions of the takeover time for tournament selec-
tion. Note that, although the general closed-form solution could not be extracted, the analysis is
still crucial since it enables us to detect the critical bounds of the system behavior when learning
from imbalanced domains, which are derived in the next subsection.

Conditions for the Extinction of Starved Niches under Tournament Selection

To derive the conditions for niche extinction for tournament selection, we consider the differential
equation obtained during the derivation of the model (see equation 5.57) and require that the
increase in the numerosity of the best classifier be negative. That is,

1
m

[
1 −

(
1 −

nb,t

n

)s]
−

nb,t

N
< 0, (5.75)

which can be rewritten as

1 − m
nb,t

N
<

(
1 −

nb,t

n

)s
. (5.76)
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This expression depends on the number of niches m, the number of accurate classifiers in the
niche nb,t, the niche size n, and the population size N . Note that the left-most term decreases
linearly with m, whilst the right-most term decreases exponentially with s. Therefore, the
condition will be satisfied, i.e., the best classifier will not be able to take over its niche, for low
values of s combined with moderate and large number of niches m.

Thence, different from proportionate selection, the imbalance ratio does not appear as a
decision variable in the extinction model for tournament selection. This is normal since we
assumed that the parameters of classifiers are accurately estimated; thus, the error of clo will
be always greater than the error of clb, and tournament selection will select clb when both
classifiers compete in the same tournament. Thereupon, the extinction condition is basically
guided by the selection pressure s—that is, the number of classifiers that will participate in the
tournaments—and the size of the niches, which models the effect of population-based deletion.

5.8.4 Experimental Validation of the Takeover Time Models

Here, we experimentally validate (1) the theoretical models of takeover time and (2) the condi-
tions for the extinction of starved niches for both proportionate and tournament selection. For
this purpose, we ran XCS on the parity problem setting the number of niches m of the system.
We initialized the population with P0 · N copies of maximally accurate classifiers (equally dis-
tributed in the m niches) and (1−m ·P0) ·N copies of an over-general classifier that appeared in
all the niches. The prediction error of the over-general classifier was deterministically calculated
as εovg = ε0

( ρ
α

)ν . In our experiments, we set α=0.1 and ν = 10. Note that varying ρ, we are
changing the fitness scaling between clo and clb. This could be equivalently done by maintaining
ρ and varying ν, as done by Kharbat et al. (2005).

Figure 5.9 shows the evolution of the proportion of the best classifier in one of the niches for
RWS and (a) m=1, (b) m=2, and (c) m=3 number of niches. The empirical data are averages
over 50 runs. According to the model, we computed the proportion of the best classifier in the
population. Therefore, the average of this proportion would tend to 1/m, as approximately the
same resources would be placed in each niche. In the figure, we plot the proportion of the best
classifier in the niche, which ranges from 0 to 1. Figure 5.9 shows a perfect match between
the theory and the empirical results. It also shows that, as predicted by the models derived in
section 5.8.3, the ratio of the accuracy of the over-general classifier to the accuracy of the best
classifier is a crucial aspect. For the problem with two niches, the best classifier could not take
over its niche if ρ ≥ 0.5 (see figure 5.9(b)), as predicted by the niche extinction model provided
in equation 5.47. This behavior was also present in the problem with three niches 5.9(c), where
neither ρ = 0.4 nor ρ = 0.5 let the best classifiers take over their niches.

Figure 5.10 shows the evolution of the proportion of the best classifier in the niche for TS
and (a) m=1, (b) m=2, and (c) m=3 number of niches. For the problem with one niche, we
depict the selection pressures of s={1,2,10}. Figure 5.10(a) shows a perfect match between the
theoretical model and the experiments. Tournament selection is not influenced by the ratio of
the accuracy of the best classifier to the accuracy of the over-general classifier. That is, we ran
experiments with different values of ρ, obtaining equivalent results to those plotted in the figure.
Moreover, it is also shown that increasing the tournament size results in faster convergence
times. For s>10, the takeover time barely decreases (these curves are not depicted in the figure
for clarity).
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Figure 5.9: Takeover time in proportionate selection for (a) m=1, (b) m=2, and (c) m=3 and
ρ={0.01,0.10,0.20,0.30,0.40,0.50}.

For the problems with two and three niches, we plot the evolution of the best classifier
under tournament selection for s=2 and s=3 (see figures 5.10(b) and 5.10(c)). The theoretical
model was calculated for each case by replacing m and s into equation 5.65 and solving the
integral. Again, the theory nicely approximates the experimental results. For m=2, the best
classifier can take over its niche, even for the lowest possible selection pressure. For m=3, the
best classifier can take over its niche only if s ≥ 3. This experimental evidence agrees with the
niche extinction model supplied in equation 5.76. That is, as the number of niches increases, the
selection pressure needs to be stronger to let the best classifier emerge, regardless of the initial
proportion of this classifier in the population.

The overall analysis also permits comparing the two selection approximations and relating
them to the class-imbalance problem. For low values of ρ, that is, when the fitness of the best
classifiers is much higher than the fitness of the over-general classifiers, proportionate selection
can yield the fastest takeover times. Therefore, proportionate selection appears as the most
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Figure 5.10: Takeover time in tournament selection for (a) m=1, (b) m=2, and (c) m=3.

appealing alternative for domains in which there is a high separation among the fitness of
accurate and inaccurate rules. As pointed out by Kharbat et al. (2005), in balanced domains,
this can be easily done by tuning the fitness pressure ν. Nonetheless, in imbalanced domains, the
error of over-general classifiers decreases with the imbalance ratio (see equation 5.9). In these
cases, proportionate selection may promote the existence of over-general classifiers. Thence,
tournament selection appears to be the most robust selection scheme for imbalanced domains,
provided that s is sized properly. A combination of both schemes seems to be an attractive
alternative to deal with new real-world problems with unknown characteristics.

With the study of the takeover time and the conditions of extinction of starved niches, we
completed the analysis of the different facets proposed in section 5.3.4. Facetwise models have
provided key insights and points of view of the problem. The next section integrates all these
models, provides configuration guidelines based on the lessons learned from them, and shows
that, following these recommendations, XCS is able to solve highly imbalanced problems that
previously eluded solution.
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5.9 Lessons Learned from the Models

In this section, we use qualitative arguments to integrate the different models and extract lessons
from the whole design decomposition and facetwise analysis. Then, we use the derived facetwise
analysis as a tool for designing a set of guidelines that should be satisfied to warrant that XCS
will be able to extract key knowledge from rare classes. We experimentally show that, if the
system is configured according to these recommendations, XCS is able to solve problems with
large imbalance ratios that previously eluded solution. More specifically, we show that XCS with
a proper configuration solves the imbalanced multiplexer problem with large imbalance ratios,
for which we showed that first generation XCS failed to discover the minority class in section
5.2.2.

5.9.1 Patchquilt Integration of the Facetwise Models

Along this chapter, we have studied the five subproblems, identified by the design decomposition,
that may impair XCS from learning from rare classes. Now, we integrate the different models in a
general framework and highlight the lessons derived from each particular model and, in general,
from their interaction. This integration permits us to (1) identify under which cases XCS will
not be able to learn from the minority class and (2) establish configuration recommendations to
ensure convergence if possible. To achieve this, we revisit the models from the most restrictive
one to the less restrictive one, setting the three steps that need to be guaranteed to ensure
convergence and pointing out several configuration guidelines.

1. Niche extinction models (see section 5.8) set the conditions on the maximum imbalance
ratio admitted by XCS to create key knowledge from the minority class for proportionate
and tournament selection (see equations 5.47 and 5.76). If the requirements are met,
takeover time models predict the convergence time inside each niche, that is, the number
of learning iterations that an accurate, maximally general representative will need to take
over its niche. Satisfying the requirements identified by the extinction time models is a
necessary but not sufficient condition. That is, these models indicate that, if the identified
restrictions are met, representative classifiers will take over their niche. Therefore, we have
to guarantee that, at some point, these representatives are fed into the population.

2. Classifier parameters have to be correctly estimated by one of the methods presented in
section 5.4. Otherwise, XCS will not be able to distinguish between over-general and
accurate classifiers. We experimentally showed that the Widrow-Hoff rule provided very
accurate estimates of the parameters if β was properly set. For this reason, we took this
approach in our experiments and proposed an heuristic that automatically sets the value
of β ensuring that the error estimate of over-general classifiers is close to the theoretical
value (see section 5.6.5).

3. If the above two conditions are satisfied, we can ensure convergence by either (1) sizing the
population according to the imbalance ratio or (2) setting θGA depending on the imbalance
ratio according to the models evolved in sections 5.5 and 5.6. It is worth noting that the
models work independently of whether covering is able to provide the initial population
with schemas of starved niches, as identified in section 5.4.
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In the next section, we show that, if the recommendations derived from the models are followed,
XCS can solve extremely imbalanced data sets.

5.9.2 Solving Problems with Large Imbalance Ratios

In this section, we take again the imbalance multiplexer problem and show that the lessons
extracted from the facetwise analysis enable us to properly configure XCS, letting the system
learn from imbalance ratios that previously eluded solution. That is, in section 5.2.2 we showed
that XCS was not able to extract the key knowledge from rare classes when ir > 32. Now, we
run the same experiments and illustrate that, with the better understanding acquired along the
facetwise analysis, we can set XCS so that it can solve the multiplexer problem with extremely
large imbalance ratios; in particular, we solve the problem for ir = 1024.

Before proceeding with the analysis of the results, we first explain how the recommendations
have been followed to configure XCS. We took the default configuration as a starting point (see
section 5.6.5), but we used the typical deletion scheme of XCS, set N = 1000 and probability of
crossover χ = 0.8, and employed tournament selection with σ = 0.4 (that is, 40% of the classifiers
in the action set participate in the tournament). This also corresponds to the configuration
used in section 5.2.2. Besides, the configuration satisfied the conditions required by the different
models, that is:

1. As we used tournament selection, we need to satisfy the condition that

1 − m
nb,t

N
>

(
1 −

nb,t

n

)s
, (5.77)

to ensure that the best classifier will take over its niche (note that we change the inequality
with respect to equation 5.76 since, now, we require that the best classifier take over its
niche). From this equation, we know that N=1 000 and m=32, but nb,t and n are unknown.
We assume the worst case, that is, that we only have a best classifier per niche. Thence,
nb,t = 1 and n = 1000 − 32 = 968. Substituting these parameters into the equation, we
obtain that s ≥ 29; this condition is satisfied since 40% of the n classifiers in each niche are
selected to be in the tournament. This condition is also satisfied for larger values of nb,t.
Therefore, this indicates that, if discovered, representatives of starved niches will take over
their niches. It is worth noting that similar results can be achieved with proportionate
selection.

2. The classifier parameters are estimated according to the Widrow-Hoff rule, but setting β
appropriately so that the error of over-general classifiers does not decrease rapidly to zero.
For this purpose, we used the heuristic method mentioned in the previous section.

3. Finally, to guarantee that all the niches receive the same number of genetic opportunities,
and so, warrant that representatives of starved niches will be created regardless of the
imbalance ratio, we set θGA = n · m · ir as proposed in section 5.7.

Figure 5.11 plots the results obtained by XCS in the imbalanced 11-bit multiplexer problem
with imbalance ratios ranging from ir = 1 to ir = 1024. More specifically, figure 5.11(a)
illustrates the evolution of the proportion of the optimal population %[O] achieved by XCS. That
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Figure 5.11: Evolution of (a) the proportion of the optimal population and (b) the product
of TP rate and TN rate in the 11-bit multiplexer with imbalance ratios ranging from ir=1 to
ir=1024.

is, XCS was expected to evolve 32 optimal classifiers, each one representing a different niche.
In this way, we measured the capacity of XCS to generalize and obtain the best representative
of each niche at high imbalance ratios. Moreover, figure 5.11(b) depicts the evolution of the
product of TN rate and TP rate. Therefore, in addition to measuring whether XCS evolved the
optimal population, this figure visualizes whether the instances of the two classes were correctly
predicted by the system. Note that we tested extremely imbalanced problems with imbalance
ratios up to ir = 1024.

Figure 5.11(a) shows that XCS was able to obtain 100% of the optimal population at any
imbalance ratio with the same population size. This indicates that class imbalances did not
reduce the generalization capabilities of XCS. Similarly, figure 5.11(b) illustrates that the product
of TP rate and TN rate raised to 100% for all the tested imbalance ratios. Notice that before
the analysis, XCS could only solve the problem for ir ≤ 32. Hence, the lessons extracted from
the design decomposition served to increase our understanding of the system and solve much
more complex problems without introducing new mechanisms to the system.

The whole experimental and theoretical analysis performed herein highlights the importance
of, previously to designing new approaches to enhance a system whose behavior is only partially
understood, really comprehending the underlying problems of the learning architecture. In this
way, better approaches that focus on the actual problems of the system can be designed more
effectively. Here, we showed that the increased understanding provided by the facetwise analysis
enabled first generation XCS to solve problems that seemed to be initially intractable.

5.10 Summary and Conclusions

In this chapter, we analyzed the behavior of XCS in domains that contain rare classes. As XCS
learns a set of distributed solutions online, we investigated whether the system may lose, or may
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never discover, some sub-solutions whose representative examples are infrequently sampled to
the system. XCS learning is driven by the interaction of several components, which introduces
complexity to the derivation of models that explain the behavior of the system in its whole.
For this reason, we followed the design decomposition approach to study the effect of class
imbalances on different components of XCS. That is, we decomposed the problem of learning
from imbalanced domains into five subproblems and derived simpler, tractable models that
focused on explaining the behavior of concrete parts of the system assuming that the other
elements were functioning in an ideal manner. This enabled us to highlight several aspects—
mainly related to classifier evaluation, and creation, maintenance and growth of representatives
of starved niches—that were critical to guarantee that XCS extract key knowledge from rare
classes. In addition, the patchquilt integration of all these models permitted us to draw the
domain of applicability of XCS in imbalanced domains. We derived critical bounds on the
system behavior, identifying the sweet spot where XCS could scalably and efficiently solve
problems with class imbalances. Moreover, the study resulted in several recommendations on
the system configuration to deal effectively with rare classes. Finally, we showed that all the
insights provided by this analysis served to solve new complex problems with high imbalance
ratios which previously eluded solution. As example, we empirically demonstrated that XCS
was able to solve the 11-bit multiplexer problem with large degree of class imbalance provided
that the system was properly configured according to the guidelines indicated by the models.

The importance of the lessons extracted from the whole analysis goes beyond the application
of XCS to imbalanced domains. The analysis sets the conditions required to ensure complete
solution sustenance—i.e., discovery, maintenance, and growth of all niches of the system—in
problems where some niches are activated with less frequency than other niches. This is a
common characteristic in real-world classification problems that contain continuous attributes,
in which, although not having large imbalance ratios, there may be small regions of instances of
one class for which the system needs to evolve starved niches. A deeper discussion about this
aspect is postponed to chapter 7, where LCSs are applied to real-world classification problems.

Finally, let us highlight that, as we applied a design decomposition principle, the provided
analysis is not restricted to XCS. In fact, we developed a framework in which several subproblems
were analyzed separately and simplified models were provided. In all the derived models, we
tried to keep the analysis as simple as possible and used intuitive arguments to patch the pieces
together. This supplied high flexibility and power to the theoretical framework, which can be
adapted with low cost to model other Michigan-style LCSs or other online learning architectures
that are based on a competition-collaboration scheme. For this purpose, models that are affected
by the architecture change may be revisited and plugged again into the theoretical framework.
Other models may still be valid; for example, takeover time models may still be accurate for
most of the Michigan-style LCSs. In the next chapter, we illustrate this, and carry over the
design decomposition framework developed for XCS to UCS.
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Chapter 6

Carrying over the Facetwise Analysis
to UCS

In the previous chapter, we decomposed the problem of learning from imbalanced domains in
five elements that need to be satisfied by any LCSs to efficiently and scalably extract accurate
models from rare classes. Then, we centered on XCS and, with little algebra effort, we developed
facetwise models for each one of these elements. Although the models were particularly designed
for XCS, we claimed that the framework could be applied to other LCSs for two main reasons.
The first reason is due to the simplification and abstraction effort taken when deriving the models
and the use of qualitative arguments to patch the pieces together. That is, since the analysis was
kept as abstract as possible, considering the general learning architecture and avoiding going
into too specific details of XCS, some of the models can be applied to other Michigan-style LCSs.
The second reason comes implicitly with the design decomposition methodology; that is, since
each facet was analyzed considering that the others behave in an ideal manner, changes that only
affect one of the facets could be incorporated by rewriting the models of the corresponding facet
and plugging the new model into the general framework. This gives an important advantage
of facetwise analysis with respect to global models, in which, probably, a little change in the
system architecture may require to rewrite the totality of the model.

In this chapter, we take advantage of the flexibility of the framework provided in the previous
chapter and show that, with little changes on some of the facets, the behavior of UCS can be
easily modeled using the same ideas employed for XCS. We first recall the design decomposition
with the list of elements that should be followed by any LCSs to solve class-imbalanced problems.
Then, we review each subproblem for UCS. We show that some of the models developed in
the previous section, such as the takeover time models, can be directly applied to UCS with
no modifications. In other cases, such as the starved niches generation models, new theoretical
derivations need to be done and plugged into the general framework. Therefore, we demonstrate
the “plug and play” capabilities that design decomposition and facetwise analysis provide.

The remainder of this chapter is structured as follows. Section 6.1 reviews the design decom-
position presented in the previous section, which identified five main elements or subproblems,
and intuitively analyzes whether UCS can solve the five subproblems. Then, each of these five
subproblems gets one of the subsequent sections, regardless of whether the original models pro-
vided in the previous chapter are still valid for UCS. Therefore, section 6.2 studies whether
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UCS can obtain reliable parameter estimates in imbalanced domains, section 6.3 and section 6.4
model the initialization and generation of classifiers of the minority class, section 6.5 studies the
effect of occurrence-based reproduction, and section 6.6 revisits the takeover time models. Note
that most of these sections are very concise since they use the models derived in the previous
chapters. All these models are integrated in section 6.7. Finally, section 6.8 summarizes and
concludes the chapter.

6.1 Design Decomposition for UCS

In the previous chapter, we decomposed the problem of learning from imbalanced domains in
LCSs in five elements that need to be guaranteed, i.e.,

1. Estimate the classifier parameters correctly.

2. Analyze whether representatives of starved niches can be provided in initialization.

3. Ensure the generation and growth of representatives of starved niches.

4. Adjust the GA application rate.

5. Ensure that representatives of starved niches will take over their niches.

Here, we follow the same decomposition to study the behavior of UCS in imbalanced domains.
As proceeds, we first intuitively discuss the differences between XCS and UCS in these types of
problems. Then, each of the subsequent sections analyzes of these elements in detail.

Estimate the classifier parameters correctly. Having accurate estimates of the classifier pa-
rameters was identified as one of the most important elements that need to be guaranteed
in imbalanced domains. That is, the system relies on these estimates to distinguish between
over-general and accurate classifiers; therefore, poor parameter estimates may thwart the com-
petition between over-general and accurate classifiers. XCS used a temporal widowed average
to update the classifier parameters. We showed that this may result in poor estimates if the
size of the window is not set properly. In UCS, the classifier’s accuracy—which is equivalent
to the classifier’s error in XCS—is computed as a the true average of the number of exam-
ples that have been correctly classified over the total number of examples that the classifier
has matched. Intuitively, this seems to indicate that the parameters of over-general classifiers
would not oscillate as abruptly as in XCS. A further study of the parameter update procedure
is conducted in section 6.3.

Analyze whether representatives of starved niches can be provided in initialization. Once the
proper evaluation of classifier parameters is ensured, we are concerned about whether UCS is
able to provide representative schemas of starved niches in the beginning of the run. For XCS,
we showed that the probability that the covering operator supplies the population with schemas
of starved niches decreases exponentially with the imbalance ratio. This is because, in XCS,
covering is applied to the match set, creating classifiers that can predict any class. On the other
hand, UCS applies covering in the correct set as the class of the input example is also provided
at each learning iteration. Thence, the covering operator in UCS only generates classifiers
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that predict the class of the sampled input instance. In section 6.4, we analyze whether the
new covering scheme in UCS is able to provide the initial population with schemas of the
under-sampled class.

Ensure the generation and growth of representatives of starved niches. After initializing
the population, the GA is responsible for obtaining high accurate classifiers that represent the
different niches. As in XCS, intuition seems to indicate that the occurrence-based reproduction
of UCS may favor both over-general classifiers and representatives of nourished niches, which
may go in detriment of representatives of starved niches. Section 6.4 develops this aspect in
detail.

Adjust the GA application rate. As in XCS, varying the application rate of the genetic algorithm
influences the genetic opportunities that the different niches receive. Section 6.5 studies the
impact of varying the frequency of application of the GA.

Ensure that representatives of starved niches will take over their niches. Finally, we analyze
whether the best classifiers will be able to take over their niches. For this purpose, section
6.6 validates the applicability of the takeover time models to UCS and relates these models to
the maximum imbalance ratio up to which the representatives of starved niches will be able to
take over their niche.

As proceeds, each of the five elements is analyzed in detail and the derived models are
validated with the imbalanced parity problem. Section 6.7 unifies all the models, emphasizing
the lessons extracted from all them. Finally, as done for XCS, we show that following the
recommendations provided by the models, UCS is able to solve the 11-bit multiplexer problem
with large imbalance ratios.

6.2 Estimation of Classifier Parameters

The first element of the design decomposition that needs to be satisfied is that the parameters of
classifiers be correctly estimated. In XCS, we detected that the original parameter update pro-
cedure may provide poor estimates of the parameters of over-general classifiers in problems with
large imbalance ratios. However, note the difference between the parameter update procedure
in both systems. XCS computes the quality of a rule by means of a fitness based on the error of
the prediction of the rule. This error is updated online by a credit apportionment algorithm that
performs a windowed average of the last received rewards. Conversely, as UCS is specialized for
supervised learning tasks, the fitness of a classifier is based on its classification accuracy, which
is computed as the true average of the number of examples correctly classified with respect to
the total number of examples matched by the classifier. Then, the fitness is computed from the
relative accuracy of each classifier1. Therefore, the larger the number of examples matched by
the rule, the more accurate the estimation of the classifier’s accuracy, and, consequently, the
fitness estimate.

To illustrate the differences between the parameter update procedures of XCS and UCS,
we ran the same experimentation proposed in section 5.5 but with UCS. Figure 6.1 shows a

1In all the experiments conducted along the subsequent chapters, we use UCS with fitness sharing.
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Figure 6.1: Histogram of the error of the most over-general classifier in UCS for ir = {1, 10, 100}.

histogram of the accuracy estimate of the most over-general classifier along a complete run. The
vertical line depicts the theoretical value of the accuracy. As expected, the empirical accuracy
estimate of the most over-general classifier matches perfectly with the theoretical one most of
the time. Note the difference of these results with respect to those provided by XCS. In XCS, the
parameters of over-general classifiers oscillated as they received infrequently negative rewards.
In UCS, the parameters of over-general classifiers are stabilized as the classifier receives more
updates.

In summary, in this section we discussed and empirically showed that the parameters update
procedure of UCS enables the system to obtain reliable estimates. Thence, the remainder of the
analysis is conducted assuming accurate parameter estimates.

6.3 Supply of Schemas of Starved Niches in Population Initial-
ization

In this section, we analyze the first element that leads to the creation of representatives of
the different niches: population initialization. In the previous chapter, we identified that the
covering mechanism of XCS impaired the system from initializing the population with correct
schemas of starved niches. This was mainly due to the exploration regime of XCS, which, given
an unlabeled input example, analyzed the consequences of each possible class. Therefore, we
assumed a covering failure in XCS, and derived the models for the remaining elements considering
this covering failure.

Differently from XCS, the supervised learning architecture of UCS only applies covering on
the correct set. That is, covering only creates classifiers that predict the class of the sampled
example. Therefore, covering will be triggered on the first instances of the each one of the classes,
including the rare class, regardless of the imbalance ratio of the learning data set. Consequently,
we can calculate the probability that a minority class instance is covered by, at least, one classifier
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in the population as

P (cover) = 1 −

[
1 −

(
2 − σ[P ]

2

)`
]N

ir

, (6.1)

where ` is the input length, N is the population size, and σ[P ] is the specificity of the population.
Note that the only difference with respect to the corresponding equation in XCS (see equation
5.11) is that, in UCS, the power of the term in brackets of the right-most expression is N/ir
instead of N . This modification is because the number of minority class classifiers provided by
covering is directly proportional to the number of instances of the minority class that have been
sampled to the system.

Provided that the probability of activating covering is 1 − P (cover), and recognizing that
(1 − r/n)n ≈ e−r, we can derive that the probability of activating covering, having sampled a
minority class instance, is

P (activate cov. on. min.) = 1 − P (cover) ≈ e−
N
ir
·e−

`σ[P ]
2 , (6.2)

which decreases exponentially with the ratio of the population size to the imbalance ratio N/ir
and, in a higher degree, with the condition length and the initial specificity. Notice that N/ir
decreases linearly with the sampling frequency of the minority class. Therefore, the capabilities
of covering to provide accurate schemas of the minority class do not depend directly on the
imbalance ratio, but on the initial population specificity.

The analysis performed in this section showed that, differently from XCS, the success of
the covering operator in supplying classifiers representing correct schemas of the minority class
does not depend on the imbalance ratio. Although these positive results, in the next section
we derive the models for creation of new representative classifiers of the minority class under
the assumption that the population has not any representative of starved niches, as done for
XCS. As we are assuming the most pessimistic situation, we expect that the models predict an
upper bound on the time and the population size required by UCS to solve the problem. Note
that, although this would not result in a precise model of the population size, it will bound the
maximum population size required to solve problems with large imbalance ratios, which still
provides critical information about UCS behavior in imbalanced domains.

6.4 Generation of Classifiers in Starved Niches

In this section, we study the conditions that must be satisfied to enable the GA to create rep-
resentatives of starved niches. Therefore, as done for XCS, we derive models that predict the
time until creation and extinction of these representatives. With these models, we write popu-
lation size bounds to warrant the existence and growth of representatives of starved niches. As
proceeds, we first review the assumptions of the model, which are equivalent to those considered
for XCS, and then revisit the models for each element.
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6.4.1 Assumptions for the Model

The models are developed under the same assumptions considered for XCS, i.e., (i) covering has
not provided any representative of starved niches, (ii) mutation is the only operator that guides
the genetic search (i.e., we do not consider crossover), (iii) the GA is applied at the end of each
learning iteration (i.e., θGA = 0), and (iv) the system uses random deletion. Note that the first
assumption may not be necessarily true in UCS; in fact, the previous section demonstrated that
the covering operator could provide the same number of schemas of the minority class regardless
of the imbalance ratio. Nonetheless, we consider this assumption and derive an upper bound of
the convergence and population size models. After this, we experimentally study the effect of
breaking the three last assumptions.

6.4.2 Creation and Deletion of Representatives of Starved Niches

With the assumptions provided above, we are now in position to derive both the time until
creation and the time until deletion of representatives of starved niches. For this purpose, we
first calculate the probability to obtain the first accurate representative clmin of the starved
niche i, which is represented by a schema with length km. This probability will be used to
compute the creation time.

As proposed in section 5.6.2, we calculate the probabilities of creating clmin when sampling
(i) instances of the minority class and (ii) instances of the majority class. Recognizing that the
probability of sampling a minority class instance is 1/(1 + ir) and the probability of sampling a
majority class instance is ir/(1 + ir), we can write that

P (clmin) =
1

1 + ir
P (clmin|min. inst) +

ir

1 + ir
P (clmin|maj. inst). (6.3)

Let us first derive P (clmin|min. inst). When an instance of the minority class is sampled, a
niche containing classifiers that predict the minority class will be activated. As we assumed that
there are no representatives of starved niches in the population, the correct set will only consist
of over-general classifiers. Thence, to create a representative of a starved niche, all the km bits
of the schema that represents the niche must be correctly set to the values of the niche schema;
here, we consider the worst case, and assume that all the km bits need to be mutated. Thence,
the probability of getting the correct schema is (µ

2 )km . Besides, the class of the classifier cannot
be changed. Therefore,

P (clmin|min. inst) =
(µ

2

)km

· (1 − µ). (6.4)

We follow the same procedure to derive the probability of creating clmin when sampling
an instance of the majority class, i.e., P (clmin|maj. inst). When a majority class instance is
sampled, a nourished niche containing both representatives and over-general classifiers will be
activated. Again, we consider the worst case and assume that we need to change all the km bits
of the schema, i.e., (µ

2 )km . Furthermore, in this case, the class has to be mutated to the minority
class, which will happen with probability µ/n − 1, where n is the number of classes. Thence,

P (clmin|maj. inst) =
(µ

2

)km

· µ

n − 1
. (6.5)
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Substituting equations 6.4 and 6.5 into equation 6.3, we obtain that

P (clmin) =
1

1 + ir

(µ

2

)km
[
(1 − µ) +

µ · ir
n − 1

]
. (6.6)

From this formula, we can derive the time required to discover the first representatives of starved
niches tclmin

as

t(clmin) = (n − 1)
(

2
µ

)km
[

1 + ir

(1 − µ)(n − 1) + µ · ir

]
, (6.7)

which depends on the imbalance ratio ir, the probability of mutation µ, and the length of the
schema km. For highly imbalanced domains, we can consider that (1 − µ)(n − 1) << µ · ir.
Thence, t(clmin) increases linearly with 1+ir

µ·ir , which becomes nearly constant for large values of
ir.

After computing the creation time, we now approximate the deletion time of these represen-
tatives. As done for XCS, we consider random deletion. Hence, as two classifiers are deleted at
each GA application, we obtain that the time until deletion is

t(delete cl) =
N

2
, (6.8)

where N is the population size. In the next section, we use both equations 6.7 and 6.8 to derive
population size bounds that guarantee the discovery, maintenance, and growth of representatives
of starved niches under the assumption that covering has not provided any of them.

6.4.3 Bounding the Population Size

We now follow the same steps proposed in section 5.6.4 to derive two population size bounds
that ensure (i) that XCS will be able to maintain accurate representatives of starved niches and
(ii) that these representatives will receive, at least, a genetic opportunity.

The first bound can be derived by requiring that the deletion time of starved niches repre-
sentatives be larger than their creation time, i.e.,

t(delete clmin ) > t(clmin). (6.9)

Using formulas 6.7 and 6.8, the expression can be rewritten as

N > 2(n − 1)
(

2
µ

)km
[

1 + ir

(1 − µ)(n − 1) + µ · ir

]
. (6.10)

Again, note that, for large values of ir, the population size increase is guided by the term 1+ir
µ·ir ,

which remains nearly constant. Consequently, at a certain imbalance ratio, the population size
needed to discover representatives of the minority class becomes constant.

We now derive the second bound by requiring that the deletion time of representatives of
starved niches be greater than the time until these representatives receive a genetic event, that
is,

t(delete nichemin ) > t(GA nichemin ). (6.11)
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As we assumed that θGA = 0, a starved niche receives a genetic event every time that it is
activated. Since the probability of sampling a minority class instance is 1/(1+ir), the time to
apply a GA on a starved niche is

t(GA nichemin) = (1 + ir). (6.12)

Replacing equations 6.8 and 6.12 into equation 6.11, we obtain that

N > 2(1 + ir), (6.13)

which indicates that the population size has to increase linearly with the imbalance ratio to
ensure that representatives of starved niches will receive, at least, a genetic opportunity.

In this section, we derived models that explain the creation and growth of representatives
in starved niches. As the models were developed under the assumption of a failure of the
covering operator to provide schemas of starved niches—which it is not necessarily the case, as
argued in section 6.3—, the models represent an upper bound of the population size required
by UCS to solve imbalanced problems. Therefore, the models explain that the population size
has to increase, at most, linearly with the imbalance ratio to ensure the discovery and growth of
accurate classifiers in starved niches. In the next section, we empirically validate the population
size bounds with different configurations of the imbalanced parity problem.

6.4.4 Experimental Validation of the Models

To validate the population size models, we first use a configuration of UCS that satisfies the
assumption of the models. Then, we empirically analyze the effect of breaking these assumptions.

Experiments Satisfying the Assumptions

Our first concern is to empirically contrast whether the population size bound derived in equa-
tion 6.13 predicts an upper-bound of the population size as the imbalance ratio increases. For
this purpose, we performed the same experiments as for XCS (see section 5.6.5). We ran UCS on
the imbalanced parity problem with k = {1, 2, 3, 4}, ` = 10, and ir = {1, 2, 4, 8, 16, 32, 64, 128},
and we used the bisection procedure to obtain the minimum population size required to solve
the problem (see section 5.6.5 for more details about the procedure). The results are aver-
ages over 50 runs with different random seeds. UCS was configured so that the initial as-
sumptions were satisfied. Thence, crossover was deactivated (χ = 0), random deletion was
used, and the GA was applied every time a niche was activated (θGA=0). The other param-
eters were set as acc0 = 0.999, ν = 10, µ = 0.04, θdel = 20, δ = 0.1, θsub = ir, P# = 0.6,
β = 0.2. We used both proportionate and tournament selection for the GA. We ran UCS during
{10 000 · ir, 20 000 · ir, 40 000 · ir, 80 000 · ir} iterations for the parity problem with k = {1, 2, 3, 4}
respectively; thus, given a problem, we ensured that the system received the same number of
genetic opportunities for all imbalance ratios. Finally, to prevent having young over-general
classifiers with poorly estimated parameters in the final population, we introduced 5 000 · ir
iterations with the GA switched off at the end of the learning process. In the remainder of this
analysis, this configuration is referred to as the default configuration.
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(b) Default with prop. selection

Figure 6.2: Scalability of the population size with the imbalance ratio in the k-parity problem
with k={1,2,3,4} and the default configuration with (a) tournament selection and (b) roulette
wheel selection The dots shows the empirical results and lines plot linear increases with ir
(according to the theory).

Figure 6.2 shows the minimum population size required to solve the parity problem with
different building block sizes (k = {1, 2, 3, 4}) and imbalance ratios from ir = 1 to ir = 128 for
(a) tournament and (b) proportionate selection. For each plot, the points depict the empirical
values and the lines show the theoretical bound, that is, they draw a linear increase with the
imbalance ratio. Two main conclusions can be extracted from these results. Firstly, note that
the theory estimates an upper bound of the population size required by UCS to solve the
problem, especially as the imbalance ratio increases. This behavior was already announced in
the beginning of this section. The theory was developed with the assumption that the covering
operator was not able to provide accurate schemas of starved niches. Nonetheless, section 6.3
showed that the initial supply of schemas of starved niches was independent of the imbalance
ratio. For this reason, the theory is approximating an upper bound of the required population
size. Secondly, UCS with proportionate selection requires smaller population sizes to solve the
parity problems than UCS with tournament selection, especially as the imbalance ratio increases.
The Wilcoxon signed-ranks test confirmed that this difference was significant at α = 0.05. This
may be due to the fact that proportionate selection can produce a stronger pressure toward fit
classifier than tournament selection in this particular problem. Nevertheless, we leave further
discussion about the selection schemes to section 6.6.

In summary, the experimental analysis pointed out that the theory is an accurate upper
bound of the population size of UCS for imbalanced domains when the system is configured
so that the underlying assumptions of the model are met. In the next section, we investigate
whether this population size bound is still valid when the different assumptions are not satisfied.
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(a) Crossover
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(b) Fitness deletion

Figure 6.3: Scalability of the population size with the imbalance ratio in the k-parity problem
with k={1,2,3,4} and different UCS’s configurations that do not satisfy the initial model as-
sumptions: (a) using 2-point crossover and (b) using the correct set size deletion scheme. The
dots shows the empirical results and lines plot linear increases with ir (according to the theory).

Impact of Breaking the Assumptions

In this section, we experimentally analyze the impact of breaking two of the initial assumptions.
That is, we introduce crossover and the typical deletion scheme of UCS. The impact of breaking
the third assumption, i.e., varying the frequency of application of the GA, is further studied
in the next section. Figure 6.3 provides the results of running UCS on the same configuration
of the parity problem used in the previous subsection, but using (a) two-point crossover, with
χ = 0.8 and (b) the typical UCS’s deletion scheme, setting θdel = 20 and δ = 0.1. In both cases
we used tournament selection.

Several conclusions can be drawn from the comparison of these results with those obtained in
the previous section. Firstly, notice that, in both cases, the theory still predicts an upper bound
of the minimum population size required to solve the problem, although the initial assumptions
are not satisfied. The population size required by UCS when using crossover (see figure 6.3(a))
is equivalent to the population size needed by UCS with the default configuration (see figure
6.2(a)) according to a Wilcoxon signed-ranks test at α = 0.05. This indicates not only that the
models are still valid when using crossover, but also that the population sizes demanded solving
the different configurations of the problem are statistically equivalent to the ones required by
UCS without crossover. On the other hand, the population sizes needed for UCS with the usual
deletion scheme are statistically smaller than those required by UCS with random deletion, since
the deletion scheme protects classifiers that belong to starved niches.

The overall study provided along this section showed that the theory approximates the
experiments accurately, even though two of the initial assumptions of the model are not satisfied.
In the next section, we investigate the effect of breaking the last assumption; that is, we analyze
the effect of varying the frequency of application of the GA.
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Figure 6.4: Scalability of the population size with the imbalance ratio in the k-parity problem
with k={1,2,3,4} and different UCS’s configurations with θGA = n · m · ir. The points indicate
the empirical values of the minimum population size required by UCS. The lines depict the
theoretical increase calculated with the previous models, which assumed θGA = 0.

6.5 Occurrence-based Reproduction

The models developed so far have assumed that any niche received a genetic event every time
that it was activated, i.e., θGA = 0. Due to this occurrence-based reproduction, nourished niches
receive a larger number of genetic events than starved niches. Besides, the reproductive opportu-
nities of over-general classifiers with respect to the reproductive opportunities of representatives
of starved niches increase linearly with the imbalance ratio. To counterbalance this effect in
XCS, section 5.7 showed that if θGA was set according to the imbalance ratio, i.e.,

θGA ≈ n · m · (1 + ir), (6.14)

both starved and nourished niches would receive, approximately, the same number of genetic
opportunities. The models developed for XCS are still applicable to UCS, since they are based on
the occurrence-based reproduction, which is shared in both systems. That is, the key difference
between the exploration methodology of both systems is that XCS explores the consequences
of all possible actions, while UCS only explores the class of the input instance. Nevertheless,
in both cases, niches are only activated when an instance that is matched by the niche schema
is sampled. Therefore, in both LCSs, niches that represent instances of the minority class are
activated with a lower frequency that niches that represent instances of the majority class.
Due to this similarity, we use the models developed for XCS to explain the occurrence-based
reproduction in UCS.

To validate that the conclusions extracted from XCS models are still valid for UCS, we ran
the same experiments with the parity problem proposed in section 5.7. That is, we ran UCS
on the parity problem with ` = 10, k = {1, 2, 3, 4}, and ir = {1, 2, 4, 8, 16, 32, 64, 128}. Figure
6.4(a) shows the minimum population with which UCS with the default configuration could
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solve the parity problem. In this picture, the empirical values are plotted with points. To
analyze the differences introduced by adjusting θGA according to the theory, the lines depict the
population size increase predicted by the theoretical model calculated for the same configurations
but with θGA = 0 (see figure 6.2(a)). As happened with XCS, the empirical results obtained
with UCS show that the population size remained nearly constant for all the imbalance ratios.
There was only a slightly small increase for ir > 32. Figure 6.4(b) provides the same results
for UCS with the typical deletion scheme instead of random deletion. The typical deletion
scheme protects young classifiers and produces more pressure toward deletion of over-general,
inaccurate classifiers. The experimental results show that, with the enhanced deletion scheme,
the population size remained constant as the imbalance ratio increased, even for the largest
imbalance ratios.

6.6 Takeover Time of Accurate Classifiers in Starved Niches

With the theory and experiments provided so far, we have shown that UCS is able to create
representatives of starved niches, and that starved niches receive, at least, a genetic event before
removing their representatives. Then, the last element that has to be analyzed according to
our design decomposition is whether the best representatives of the different niches will be able
to take over their niche when they are in competition with over-general classifiers. Therefore,
we model the competition between accurate classifiers and over-general classifiers, especially
focusing on the problems caused by rare classes. That is, in imbalance domains, the accuracy
of over-general classifiers predicting the majority class may be high since the minority class
is under-sampled. This, combined with the occurrence-based reproduction, may promote the
existence of over-general classifiers in the population in detriment of accurate representatives
of starved niches. In this context, the purpose of this section is two-fold: (i) develop models
that predict the takeover time of the best representative of a niche for UCS and (ii) derive the
conditions under which the best representative of a starved niche will not be able to take over
its niche.

Instead of developing new theory, in this section we consider the same the takeover time
models that were derived for XCS in section 5.8. That is, in the takeover time models developed
for XCS, we considered a system that evolved a distributed set of niches where each niche
contained a representative that was maximally accurate, which we addressed as cl b; besides,
there was an over-general classifier that matched all niches, which was referred to as clo. The
quality of these classifiers was denoted by a the accuracy parameter k associated with each
classifier, i.e., κb and κo. Notice that UCS exactly follows the same schema. Therefore, the
takeover time models can be directly applied to UCS. The only difference between XCS and UCS
is that the accuracy of each classifier is computed differently. For this reason, the conditions
under which the best classifier will not be able to take over its niche may vary in both systems.
The next section computes these conditions.
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6.6.1 Conditions for Starved Niches Extinction under Proportionate Selec-
tion

To compute the conditions of niche extinction under proportionate selection, we depart from
equation 5.47, that is,

Pt <
ρ

mρ − 1
, (6.15)

to derive under which conditions the best classifier will not take over its niche. m is the number
of niches and ρ is the ratio of the accuracy of the over-general classifier to the accuracy of the
best representative of the niche, i.e., ρ = κo

κb
. As demonstrated in section 5.47, this inequality

only holds for m > 2 and

1/m < ρ ≤ 1. (6.16)

In UCS, κ is computed from the raw accuracy acc of the classifier. In imbalanced domains,
the most over-general classifier that predicts the majority class will receive ir examples of the
majority class for each example of the minority class. Therefore, the raw accuracy of the most
over-general classifier is

acco =
ir

1 + ir
, (6.17)

where acco < acc0; that is, the accuracy of the over-general classifier is less than the threshold
beyond which UCS considers that a classifier is accurate. The accuracy of the best representative
is accb = 1. From this, we can compute κb and κo using equation 4.2 of the fitness-sharing scheme
as

κo = α

(
acc0

acco

)ν

, (6.18)

and

κb = 1. (6.19)

Replacing equations 6.17, 6.18 and 6.19 into equation 6.16 we obtain that, for proportionate
selection, the best classifier will not be able to take over its niche if

1
m

< α

(
acc0 · (ir + 1)

ir

)ν

< 1 (6.20)

where ir
1+ir < acc0; besides, provided that 0 < α < 1 (usually 0.1) and that ν ≥ 1, the right-most

inequality is typically satisfied. The left-most inequality can be expressed as

1 + ir

ir
>

1
acc0

(
1

mα

) 1
ν

. (6.21)

Recognizing that the left-most term is the inverse of the raw accuracy of the over-general classifier
clo, we can derive that the best classifier will not be able to take over its niche if

acco < acc0(αm)
1
ν . (6.22)
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Note that the right-most expression depends on the threshold acc0, but especially in α and the
number of niches m. As the number of niches depends on the problem, the user can tune the
imbalance acceptance of UCS by adjusting the α parameter. That is, lower values of α produce
a decrease in the right-most expression. Given the accuracy of the most over-general classifier,
which depends directly on ir, we can tune α so that the equation is not satisfied, and thus, the
best classifier takes over its niche.

6.6.2 Conditions for Starved Niches Extinction under Tournament Selection

We now perform the same analysis for tournament selection. Tournament selection randomly
chooses a set of classifiers from the population and selects the one with highest fitness. As
the fitness of the best classifier is greater than the fitness of the over-general classifier, if the
best classifier participates in a tournament, it will be selected. For proportionate selection, the
condition for the extinction of starved niches depended on ρ; for this reason, the condition varied
from the one computed for XCS. For tournament selection, the condition for the extinction of
starved niches only depends on the selection pressure s, the number of niches m, the size of
the niche n, the size of the population N , and the number of the representatives in the niche
nb. For this reason, the same condition derived for XCS is still valid for UCS. Thus, the best
representative will not be able to take over its niche if

1 − m
nb,t

N
<

(
1 −

nb,t

n

)s
. (6.23)

where s is the tournament size, N is the population size, m is the number of niches, n is the
number of classifiers in the niche, and nb,t is the numerosity of the best classifier.

In this section, we argued why the takeover time models derived for XCS are still valid for
UCS, and have used the takeover time equations to develop the conditions for the extinction
of starved niches. In the following section, we put all the pieces together and provide recom-
mendations for UCS configuration in imbalanced domains. Finally, we show that, following the
guidelines, UCS, as XCS, is able to solve the 11-bit multiplexer problem with large imbalance
ratios.

6.7 Reassembling the Theoretical Framework: UCS in Imbal-
anced Domains

With the different models and qualitative arguments provided along this chapter, this section
follows the same steps as done for XCS to unify all the different models, analyze the interaction
among them, and give guidelines on how the system should be configured to guarantee the
discovery of the minority class. Then, we show that applying the lessons learned from the
theoretical study enables UCS to solve problems with large imbalance ratios.

6.7.1 Patchquilt Integration: from XCS to UCS

In this section, we consider the theoretical framework derived for XCS and study how the new
models of UCS can be plugged into the framework. We review the models in the same order
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as proposed in section 5.9, that is, from the most restrictive one to the less restrictive one, and
compare the differences with respect to the models derived from XCS.

1. The takeover time models set the maximum imbalance ratio beyond which UCS will not
be able to discover the minority class. The takeover time models derived for XCS are
still valid, and the specific conditions under which representatives of starved niches will
be deleted from the population for proportionate and tournament selection have been
calculated in equations 6.22 and 6.23 respectively. Satisfying the requirements identified
by these models is a necessary but not sufficient condition.

2. The parameter update procedure in UCS is fairly robust, providing accurate approxima-
tions of the real values of over-general parameters. Thence, differently from XCS, in UCS
it is not necessary to tune the parameter update procedure according to the imbalance
ratio.

3. Once the takeover time requirements are met, we have to ensure that accurate representa-
tives of starved niches will be feeded into the population. For this purpose, we can either
(i) increase the population size linearly with ir–at maximum—or (ii) set θGA according to
ir. Note that the main difference with respect to XCS is that, in UCS, the population size
model provides an upper bound instead of predicting the actual increase.

UCS appears to be slightly more robust to class imbalances than XCS since the parameter
update procedure is not as sensitive as the XCS’s one and, as experimentally shown, the pop-
ulation size increases slightly slower than XCS’s one. In the next section, we show that, if the
recommendations derived from the models are followed, UCS can solve extremely imbalanced
data sets.

6.7.2 Solving Highly Imbalanced Domains with UCS

Having revised the information provided by the different methods and established the framework
of UCS’s learning from class imbalances, we use this information to tune UCS so that it can solve
highly imbalanced domains. For this purpose, we ran UCS on the imbalance 11-bit multiplexer
problem with ir = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024} (see appendix A.4.1 for a description
of the problem). We used the default configuration provided in this section with proportionate
selection and the following exceptions: (i) crossover was activated with χ = 0.8, (ii) the typical
deletion scheme of UCS was employed and (iii) θGA was set to n · m · ir. We set a population
size of N=1,000, and we used tournament selection. Note that, with this configuration, the
requirements of the three items enumerated in the previous section are satisfied:

1. As we used tournament selection, we need to satisfy the condition of equation 6.23. In
the previous chapter, we already showed that the proposed configuration satisfied this
condition (notice that the condition imposed by tournament selection is equal in both
XCS and UCS).

2. Parameters are correctly estimated by the update procedure, especially as the experience
of the classifier increases.
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Figure 6.5: Evolution of (a) the proportion of the optimal population and (b) the geometric
mean of TP rate and TN rate in the 11-bit multiplexer with ir={1, 2, 4, 8, 16, 32, 64, 128, 256,
512, 1024}.

3. As we set θGA = n · m · ir, we ensure that starved and nourished niches will have, ap-
proximately, the same number of genetic opportunities. Since we take this approach, we
maintain the same population size for all the runs.

Figure 6.5 plots (a) the evolution of the proportion of the optimal population size (%[O])
achieved by XCS and (b) the evolution of the geometric mean of TN rate and TP rate in the
11-bit imbalanced multiplexer problems from ir = 1 to ir = 1024. Note that, for ir = 1024, the
system only received an instance of the minority class every each 1024 instances of the majority
class. The results show that, even under these large imbalance ratios, UCS is able to extract
accurate knowledge from the under-sampled class. Figure 6.5(a) shows that UCS is able to
obtain 100% of the optimal population for all the runs. Besides, figure 6.5(b) indicates that the
system achieves 100% performance measured as the geometric mean of TP rate and TN rate.
Notice that, for ir = 1024, the performance reaches 100% after activating the condensation runs,
which explains that the performance curve increases abruptly from 94% to 100% in the last few
iterations. This is because the frequent activation of nourished niches and over-general classifiers
of the majority class leads to the creation of some over-general classifiers of the majority class
with poorly estimated parameters. As these over-general classifiers match a negative example
very infrequently, the system needs several learning iterations to adjust their parameters, realize
that they are not accuracy, and remove them from the system. When condensation is activated,
as crossover and mutation are deactivated, these classifiers are correctly evaluated and removed
from the population. In any case, these results evidence that UCS is able to classify correctly
all the input instances, regardless of whether they belong to the minority class or not.
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6.8 Summary and Conclusions

In this section, we carried over the facetwise analysis of XCS to UCS. Following the design
decomposition provided for LCSs in general, we examined the behavior of UCS in imbalanced
domains. Similar conclusions than those extracted for XCS were reached for UCS. That is, the
models showed that, to ensure the growth and takeover of representatives of starved niches, either
(1) the population size needs to increase linearly with the imbalance ratio or (2) the frequency
of application of the GA has to decrease linearly with the imbalance ratio. Besides, two key
differences with respect to XCS were found. Firstly, the parameter update procedure of UCS
was shown to provide accurate estimates of classifier parameters without requiring any especial
configuration. Secondly, theory indicated that the covering operator is able to supply the initial
population with schemas of the minority class regardless of the imbalance ratio. Consequently,
the population size bounds derived subsequently predict an upper bound, instead of an exact
bound, of the scalability of the population size with the imbalance ratio.

Finally, let us point out two important conclusions. The first conclusion is related to the
analysis methodology, that is, the design decomposition and facetwise analysis principle. Note
that, at the beginning of the previous chapter, we decomposed the complex problem of learning
from imbalanced domains in five critical elements that need to be satisfied to efficiently deal with
rare classes. Then, for each one of the elements, we developed low cost models that explained the
corresponding facet, assuming that the others behave in an ideal manner. This approach has two
key advantages with respect to creating complex models that try to capture all the interactions
in the components of the whole system. The first advantage is that the algebra effort is reduced
with respect to that required in global models since each element is analyzed separately, and
the interactions with other elements are not considered. At first glance, one may think that this
approach also results in models that can explain less than global models which include complex
interactions among different elements. Nonetheless, as shown along the two previous chapters,
this may not be the case. That is, facetwise models permit focusing on the actual problems of
each element, some of which could be hidden in more complex models. Then, the patchquilt
integration enables to draw a domain of competence of the systems, indicating the sweet spot
in which the system actually scales. The second advantage is that design decomposition enables
us to easily transport models from one system to another. In the present chapter, we used parts
of the theory developed for XCS, merged this theory together with new models particularly
developed for UCS, and put the pieces together, obtaining a framework that explains how UCS
behaves in imbalanced domains.

The second conclusion is about the excellence of UCS—and XCS as well—in imbalanced
domains. The experiments provided in this section culminated the whole study of the behavior of
both LCSs in domains that contain rare, under-sampled classes. In summary, we showed that, as
XCS, UCS is a competitive machine learning technique able to deal with large imbalance ratios.
We showed this competitiveness in a set of artificial problems which were defined with binary
attributes. In the next section, we move to real-world problems which contain continuous values.
We will discuss how the theory adapts to these cases and will test both LCSs on a collection of
real-world imbalanced classification problems.
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Chapter 7

XCS and UCS for Mining
Imbalanced Real-World Problems

In the previous two chapters, we have carefully analyzed the behavior of XCS and UCS in
domains that contain class imbalances. We decomposed the problem of learning from imbalanced
domains in several elements or subproblems and derived facetwise models for each element. This
resulted in a better understanding of how the two LCSs work and in the definition of several
guidelines or recommendations that need to be satisfied to warrant that the two LCSs are able
to learn from rare classes. All these models and recommendations depended on the imbalance
ratio ir. Throughout all the theory development, we assumed that the imbalance ratio of the
training data set was equivalent to the ratio of the frequency of activation of nourished to the
one of starved niches. The artificial problems used to contrast the models met this assumption.
Nevertheless, the number of niches and their frequency of activation is not known in real-world
problems. Therefore, there is a gap between the theory and its application to effectively solve
real-world problems.

The purpose of this chapter is three fold. Firstly, we aim at connecting the dots between the-
ory and application in imbalanced real-world domains. We study in more detail the structure
of real-world problems and provide some heuristic procedures, which are based on the infor-
mation gathered during the online evolution of the two LCSs, to estimate the imbalance ratio
between niches; this estimate is used to self-adapt the parameters of the two LCSs according to
the recommendations derived from the theory. We show the effectiveness of these procedures
in the imbalanced 11-bit multiplexer problem. The second objective is to confirm that both
LCSs are really valuable machine learning techniques for supervised learning, and especially, for
extracting classification models from imbalanced domains. For this purpose, we compare the
performance of XCS and UCS with the one achieved by three of the most influential machine
learning techniques (Wu et al., 2007). The third objective is to incorporate re-sampling meth-
ods into the comparison, since these types of techniques have been identified—and widely used
in the machine learning community—as one of the best alternatives to improve the accuracy
of different learning methods in imbalanced domains. For this reason, we include some of the
most-used re-sampling techniques into the comparison and empirically analyze how the different
learners are influenced by these re-sampling techniques.

The remainder of this chapter is structured as follows. Section 7.1 points out new character-
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istics that can be found in real-world problems and how the theory can be adapted to these new
characteristics. With the new identified challenges, section 7.2 proposes a heuristic method to
self-adapt the configuration parameters of XCS and UCS that are sensible to class imbalances
and shows that, with this heuristic procedure, both XCS and UCS can solve the imbalanced
11-bit multiplexer problem although they are not properly configured in the beginning of the
run. Section 7.3 compares XCS and UCS with three highly-competent learners, showing the
competitiveness of the two LCSs. The study of learning from imbalanced domains is comple-
mented with the introduction of re-sampling techniques. That is, section 7.4 presents some of
the most-used re-sampling techniques and illustrates how they work in a case study. These tech-
niques are introduced in the comparison of the five learners in section 7.5. Section 7.6 discusses
the overall results and points out some future work lines. Finally, section 7.7 summarizes and
concludes this chapter.

7.1 LCSs in Imbalanced Real-World Problems: What Makes
the Difference?

In this section, we study how the theory—which has been validated with artificial problems with
known characteristics— can be applied to imbalanced real-world problems whose characteristics
are unknown and can barely be estimated. As proceeds, we deal with two aspects that need
to be solved to adapt the theory to real-world problems. Firstly, as a reminder of the concepts
presented in chapter 3, we briefly reintroduce a rule representation for XCS and UCS that is able
to deal with data that contain continuous attributes; then, we revise the concept of niche under
this new representation. Lastly, we discuss which information is lacking in real-world problems
to apply the theory.

7.1.1 XCS and UCS Enhancements to Deal with Continuous Data

Thus far, all the artificial problems used in the previous chapters were defined with binary
strings. To solve these problems, we used the original rule representation defined by Wilson
(1995), in which each variable of a rule takes a value of the ternary alphabet {0,1,#} (see
chapter 3). Nonetheless, real-world problems have new types of attributes such as continuous
attributes and ordered nominal attributes. To cope with these new types of data, the system
was provided with an interval-based representation in which each variable of a rule is coded
with an interval which determines the range of values that the corresponding input attribute
can take (Wilson, 2001; Stone and Bull, 2003). Therefore, a rule is a conjunction of feasible
intervals, and a new example e matches the a rule if each attribute ei is included in the interval
of the corresponding variable of the rule. For more information about this rule representation
the reader is referred to chapter 3.

The introduction of this new representation makes the definition of problem niche and rep-
resentative of a niche a little fuzzy. According to the definitions given in chapter 5, a niche is a
subproblem where a maximally general sub-solution applies. This niche is defined by a schema,
and a representative of a niche is any classifier whose condition specifies all the relevant bits of
the schema.

These ideas still apply—not rigorously, but intuitively—to real-world problems. In the
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Figure 7.1: Example of a domain with two niches (a) and examples of possible representatives
of the two niches and over-general classifiers (b) in a two-dimensional problem with continuous
attributes

interval-based representation, a niche can be defined as a hyper rectangle in the feature space
in which a maximally general and accurate solution applies. This hyper rectangle expresses the
schema of the niche. Consequently, a representative of this niche is any classifier whose condition
draws a hyper rectangle included in the hyper rectangle of the niche. Moreover, an over-general
classifier is a classifier that defines a hyper rectangle that covers examples of different classes.

To further explain the consequences of this redefinition, figure 7.1(a) shows a very simple
two-class domain where there are two niches, and figure 7.1(b) illustrates some examples of rep-
resentative classifiers of each niche and over-general classifiers. This simple example shows two
important aspects that must be highlighted since they make the difference with the definitions
of niche and representatives given in the previous chapters. Firstly, notice that there may be
several hyper rectangles that represent the niche. That is, by slightly varying one of the sides
of any of the hyper rectangles in figure 7.1(a), with the condition that all the instances of the
corresponding class are covered and that no instance of another class is matched, we obtain
another hyper rectangle that can represent the niche as well. Therefore, the definition of niche
schema is not deterministic. Secondly, there may be different accurate representatives of the
niches whose condition is partially overlapped. This aspect is not exclusive of continuous-valued
problems; in binary problems, we could find some overlapped representatives. Nonetheless, in
continuous-valued problems, as the interval-based representation can define any possible hyper
rectangle, the number of potential overlapping representatives increases abruptly. In general, it
can exist an infinite number of representatives, equally general1, that are highly overlapped. For
example, in figure 7.1(b) there are two representatives of the red niche that are equally general
and highly overlapped.

Although these differences, the ideas derived from the facetwise analysis are still valid in
this new scenario. That is, the same mechanisms of the evolutionary learners apply: the pop-
ulation is initialized by the covering operator, and the evolutionary pressures drive the search
toward obtaining representatives of different niches. These best representatives should be able

1In the interval-based representation, the generality can be computed as the volume of the hyper rectangle
defined by the condition.
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Figure 7.2: Example of two domains with the same imbalance ratio in the training data set but
different niche imbalance ratio.

to take over their niches and remove competing over-general, less accurate classifiers. The main
difference with the binary case is that, due to the fuzziness inherent in the definition of niche
schema, there may be several highly overlapped representatives of the niches which will share
the niche resources instead of having a single representative per niche. Therefore, an effort needs
to be made to connect this new situation to the theory. The implications of this difference are
analyzed in more detail in the next subsection.

7.1.2 What Do we Need to Apply the Theory?

Having redefined the concepts of niche and representative in imbalanced domains, now we are in
position to examine which information, handy in the artificial problems used in the two previous
chapters, is not available in real-world data sets. That is, the different models developed in the
previous chapters were translated into a set of recommendations that suggested to configure
different parameters of XCS and UCS depending on the imbalance ratio ir. We assumed that
the class-imbalance ratio of the training data set reflected the ratio of the frequency of activation
of nourished niches to the frequency of activation of starved niches, which we refer to as the
niche imbalance ratio in the rest of this chapter. This condition was satisfied in the tested
artificial problems, since the number of starved niches was equal to the number of nourished
niches, all nourished niches had the same activation frequency, and all starved niches had the
same activation frequency which, in turn, was smaller than that of nourished niches.

Nonetheless, this is not the case in real-world domains since, the formation of niches depends
not only on the class-imbalance ratio but also on the distribution of the training examples in
the feature space. To illustrate this, figure 7.2 shows two domains with the same imbalance
ratio. Notice that, in these examples, the niche imbalance ratio is not directly determined by
the class-imbalance ratio of the training data set. That is, the domain in figure 7.2(a) contains
one niche of the minority class, and the domain in figure 7.2(b) consists of five niches of the
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minority class—two of them overlapped—with a lower number of instances per niche. Therefore,
the domain in figure 7.2(b) is more difficult to learn than the domain in figure 7.2(a), since both
LCSs have to discover a larger number of smaller niches. Besides, notice that, in figure 7.2(b),
there exist niches with different frequencies of activation2, and that, in this case, the most
starved niche corresponds to a niche of the majority class—that is, the bottom right most niche.

Two important conclusions can be extracted from this elemental example. Firstly, that the
imbalance ratio of the training data set may provide a misleading information about the real
niche imbalance; therefore, we need to develop new procedures to obtain more accurate estimates
of the niche imbalance ratio. Secondly, that the niche imbalance problem may be present in the
majority of real-world domains, and that this is related to (1) the knowledge representation and
(2) the geometrical distribution of the training examples in the feature space.

To further illustrate this last point, let us suppose that XCS or UCS are used to extract
an interval-based rule set from the domain represented in figure 7.3, which is a completely
balanced data set with oblique boundaries. The same figure shows some of the possible niches
and representatives of the blue class. The two LCSs may be expected to have no problems to
learn this domain since the training data set is completely balanced. Nevertheless, note that the
interval-based representation needs to evolve some representatives whose conditions define small
hyper rectangles to approximate the class boundary accurately; these representatives belong to
starved niches. On the other hand, the interval-based representation also enables the existence of
representatives with larger conditions—which belong to nourished niches—that match examples
that are far away from the class boundary. Notice that, in this particular example, this problem
is due to the combination of geometrical complexity and expressiveness—or shape—of the rule
representation, but not to the class-imbalance ratio. If we had conditions that defined triangles
in the solution space, this domain could be predicted with only two rules.

In fact, a similar problem has been addressed by the machine learning community, in the
context of offline learning, under the label of the problem with small disjuncts (Holte et al.,
1989). That is, a disjunct is the analogous definition of niche in an offline system, and the
problem of small disjuncts refers to the problem of extracting accurate models of infrequent or
starved niches. As discussed in chapter 5, approaches designed to deal with this problem in
offline learning can be barely carried over to online learning since, in the latter one, instances
are made available in data streams, and so, no information about the class distribution is known
a priori. For sake of notation, in the remainder of this chapter, we will indistinctively use the
two terms to refer to the described problem.

In summary, the problem of learning from imbalanced domains has been broadened due to
the presence of continuous attributes; note that, now, the effects of class imbalances can be
present in any real-world problem. Thence, we reformulate the problem as follows. As in the
binary case, we are concerned about the competition among starved niches, nourished niches,
and over-general classifiers. Notwithstanding, the imbalance ratio gives now little information
about the distribution of niches around the feature space. In this context, the general purpose
would be to estimate the number of niches of the system and the frequency of all these niches
to get an accurate estimate of the niche imbalance ratio and tune the configuration of the two
LCSs based on this estimate. In fact, if we could be able to perform this complex task, we would

2The frequency of activation is directly related to the number of instances that are included in the hyper
rectangle defined by the niche.
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Figure 7.3: Example of a domain with oblique boundaries. Several interval-based rules are
required to define the class boundary precisely.

have solved the learning problem itself, removing the necessity of applying a machine learning
technique. Here, we relax the goal of obtaining the information of all niches and define that
the niche imbalance ratio equals to the ratio between the frequency of the most nourished niche
and the frequency of the most starved niche that lay together in the solution space. Thus, we
only need to estimate the frequency of two niches of our problem to obtain an estimate that
represents the upper bound of the niche imbalance ratio. Even though this simplification is
done, the problem of estimating the niche frequency is not trivial. In the following section, we
propose a mechanism to estimate the niche imbalance ratio.

7.2 Self-Adaptation to Particular Unknown Domains

This section presents a heuristic approach to determine the frequency of application of starved
and nourished niches and self-configure XCS and UCS based on this information. This approach
enables us to properly estimate the niche imbalance ratio and so to self-configure both LCSs
according to this information. Before applying XCS and UCS to real-world problems, we show
that this self-configuration procedure enables both XCS and UCS to solve the imbalanced 11-bit
multiplexer problem with large imbalance ratios without being previously configured according
to the imbalance ratio.

7.2.1 Online Adaptation Algorithms

To estimate the niche imbalance ratio irn and self-adapt the LCSs based on this estimate, we
propose to use the information that intrinsically resides in over-general classifiers. Over-general
classifiers cover several niches that are close in the feature space. By computing the number
of examples covered per class of an over-general classifier, we can estimate the imbalance ratio
between these niches. Note that this strategy permits not only detecting the presence of starved
niches, but also calculating an estimate of the imbalance ratio between these starved niches and
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Algorithm 7.2.1: Pseudo code for the online adaptation algorithm in XCS.
Algorithm: OnlineAdaptationXCS ( cl is classifier )1

Data: cl is a classifier after updating its parameters.
Result: Modify β and θGA if necessary.
if cl is overgeneral then2

irn := expmaj(cl)
expmin(cl)3

if ( irn < 2Rmax
ε0

∧ expcl > θir ∧ numcl > num[P ]) then4

Adapt β and Adapt θGA based on irn5

end6

end7

Algorithm 7.2.2: Pseudo code for the on-line adaptation of β.
Algorithm: Adapt β ( irn is double )1

Data: irn is the niche imbalance ratio
ζ is a discount factor (0 < ζ < 1)
Result: New value of β.
εth = 2 · Rmax

ir
(1+ir)22

Obtain εirβ
with the current value of β3

while εirβ
< pth do4

β = β · ζ5

Obtain εirβ
with the current value of β6

end7

their neighbors.

We first present the algorithm for online self-adaptation of XCS and later translate this
algorithm to the particular case of UCS. Algorithm 7.2.1 provides the pseudo code of the main
procedure, and algorithm 7.2.2 supplies the code for the subroutine that specifically tunes the
β parameter for the Widrow-Hoff rule. The algorithm works as follows. Algorithm 7.2.1 is
applied to each classifier after updating its parameters. It first checks whether the classifier is
over-general or not. For this purpose, we extended the parameters of a classifier to compute the
experience per class. Then, a classifier is over-general if it is experienced in more than one class.
Next, the imbalance ratio between the niches in which this classifier participates is estimated as
follows. We select the class with maximum experience expmaj(cl) and the class with minimum
experience expmin(cl) (we require that expmin(cl) > 0), and return the ratio of these two values
as an estimate of the niche imbalance ratio. Then, we use this information to self-adapt the
configuration of XCS only if (i) the niche imbalance ratio is less than the maximum imbalance
ratio identified in equation 5.9, (ii) the classifier is experienced enough (exp(cl) > θir, where
θir is a configuration parameter), and (iii) the classifier is strong in the population, i.e., if its
numerosity is greater than the average numerosity of the classifiers in the population.

If we are using the Widrow-Hoff rule, we first adapt β. Algorithm 7.2.2 provides the im-
plementation details of this procedure. The goal of the algorithm is to adjust the value of β
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Algorithm 7.2.3: Pseudo code for the online adaptation algorithm in UCS.
Algorithm: OnlineAdaptationUCS ( cl is classifier )1

Data: cl is a classifier after updating its parameters.
Result: Modify θGA if necessary.
if cl is overgeneral then2

irn := expmaj(cl)
expmin(cl)3

if ( irn < acc0 ∧ exp > θir ∧ numcl > num[P ] ) then4

Adapt β and Adapt θGA based on irn5

end6

end7

so that the estimate error of a classifier approaches its theoretical value, which is computed in
equation 5.5. Thus, the procedure first computes this theoretical value, εth. Then, it calculates
the real value of the error for the given β. To do this, the algorithm assumes the worst case: that
an instance of the minority class is sampled, and then, ircl instances of the majority class are
received. If the real value of the error is lower than the theoretical one, β is decreased according
to a discount factor ζ. This process is repeated until a β for which the theoretical and the real
value of the error are approximately the same is found. Finally, the algorithm adapts θGA by
setting θGA = ir.

In algorithm 7.2.3, this procedure is extended to UCS. The algorithm works similarly to the
one designed for XCS with two main differences. The first difference is that, in UCS, the update
parameter procedure does not need to be adapted. The second difference is that the condition
to update θGA depends on whether irn > acc0. The remaining part of the algorithm is the same.
In the next section, we show that these self-adaptation mechanisms enable XCS and UCS to
self-configure according to the estimated niche imbalance ratio and solve the imbalanced 11-bit
multiplexer with large imbalance ratios.

7.2.2 Experiments

In this section, we empirically analyze whether the two heuristic procedures can provide accurate
estimates for XCS and UCS. For this purpose, we ran XCS and UCS on the imbalanced 11-
bit multiplexer problem with ir = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}, that is, the same
experiments with the imbalanced multiplexer problem performed in chapters 5 and 6. We used
the same configuration proposed in these two chapters for XCS and UCS, but with the following
exceptions. We set θGA = 0 for both systems and fixed β = 0.2 for XCS. That is, we did not
configured the systems according to the imbalance ratio and the recommendations derived from
the theory. Therefore, we expected the heuristic procedures to discover the niche imbalance ratio
of each problem and to use it to self-adapt both systems. All the results provided as follows are
averages over 25 runs with different random seeds.

Figure 7.4 plots the results obtained by XCS and UCS in the imbalanced 11-bit multiplexer
problem with imbalance ratios ranging from ir = 1 to ir = 1024. More specifically, figures 7.4(a)
and 7.4(c) plot the proportion of the optimal population achieved by XCS and UCS, and figures
7.4(b) and 7.4(d) depict the evolution of the performance, measured as the product of TN rate
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Figure 7.4: Evolution of (a,c) the proportion of the optimal population and (b,d) the geometric
mean of TP rate and TN rate of XCS and UCS, respectively, in the 11-bit multiplexer with
ir={1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}.

and TP rate, of XCS and UCS respectively. These results can be compared with those obtained
by XCS and UCS when they were properly configured according to the imbalance ratio and the
recommendations derived from the theory (see figures 5.11 and 6.5 respectively).

The results show that both XCS and UCS could achieve 100% optimal population and 100%
performance for all the imbalance ratios. Therefore, this confirmed that the heuristic procedure
was able to tune the configuration of both LCSs correctly. Furthermore, these results also
permitted establishing a comparison of the performance of XCS and UCS. UCS achieved 100%
of the optimal population slightly quicker than XCS, especially in the larger imbalance ratios.
Note that, although XCS’s curves were stepper at the beginning of the run, the system suffered
more than UCS to discover the last optimal classifiers in the population. These behavior was
also observed in the performance curves for high imbalance ratios. Nonetheless, it is worth
noticing that both approaches could completely learn all the optimal population and classify all
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the input instances correctly with similar training time. This indicates that the application of
these systems in real-world imbalanced domains with unknown characteristics holds promise. In
the next section, we deal with real-world problems and analyze the capabilities of both online
learning architectures.

7.3 LCSs in Imbalanced Real-World Domains

After analyzing the two LCSs on artificial problems, we now apply both systems to a collection
of real-world imbalanced problems and examine their behavior. The understanding of LCSs
behavior—and the behavior of any learner in general—on real-world problems is really com-
plicated since these problems may have different sources of complexity which can hardly be
identified; the interaction of all these complexities may limit the maximum performance that a
given learner can achieve (Ho and Basu, 2002). Notice the difference between real-world prob-
lems and the artificial problems that have been used through all the previous study, where we
could control the different sources of complexity.

Thence, we need to take another approach to evaluate the competence of XCS and UCS in
real-world problems. That is, information about the optimal population is no longer available,
and providing the training or test accuracy of the two learners may be not enough to conclude
whether the two systems are competitive for mining real-world domains. To measure the compe-
tence of both LCSs on imbalanced real-world domains, we compare the performance of XCS and
UCS with three of the most influential machine learning systems (Wu et al., 2007). Therefore,
the aim of this section is to analyze whether XCS and UCS are competitive with these highly
recognized learning methods. It is worth noticing that XCS and UCS perform online learning—
i.e., they process data streams—, whereas the three order methods learn offline. Thus, XCS
and UCS provide an added value with respect the three other techniques. As proceeds, we first
present the methodology, and then, we compare XCS and UCS with the other learners.

7.3.1 Comparison Methodology

Before proceeding with the analysis of the experimental results, we first describe the test prob-
lems used in the comparison, and the details about the metrics used to evaluate the learners
and the statistical tests employed to aid the process of conclusion extraction.

We used a collection of 25 real-world problems with different characteristics and imbalance
ratios, which were constructed as follows. We selected the following twelve problems: balance-
scale, bupa, glass, heart disease, pima indian diabetes, tao, thyroid disease, waveform, Wisconsin
breast-cancer database, Wisconsin diagnostic breast cancer, wine recognition data, and Wiscon-
sin prognostic breast cancer. All the real-world problems were obtained from the UCI reposi-
tory (Asuncion and Newman, 2007), except for tao, which was selected from a local repository
(Bernadó-Mansilla et al., 2002). To force higher imbalance ratios and increase the test bed, we
discriminated each class against all the other classes in each data set, considering each discrim-
ination as a new problem. Thus, n two-class problems were created from a problem with n
classes (n > 2), resulting in a test bed that consisted of 25 two-class real-world problems. Table
7.1 gathers the most relevant features of the problems. Note that the imbalance ratio between
niches irn can be much higher than the imbalance ratio of the learning data set reported in the
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Table 7.1: Description of the data sets properties. The columns describe the data set identifier
(Id.), the original name of the data set (Data set), the number of problem instances (#Ins.), the
number of attributes (#At.), the proportion of minority class instances (%Min.), the proportion
of majority class instances (%Maj.), and the imbalance ratio (ir).

Id. Data set #Ins. #At. %Min. %Maj. ir
bald1 balance-scale disc. 1 625 4 7.84% 92.16% 11.76
bald2 balance-scale disc. 2 625 4 46.08% 53.92% 1.17
bald3 balance-scale disc. 3 625 4 46.08% 53.92% 1.17
bpa bupa 345 6 42.03% 57.97% 1.38

glsd1 glass disc. 1 214 9 4.21% 95.79% 22.75
glsd2 glass disc. 2 214 9 6.07% 93.93% 15.47
glsd3 glass disc. 3 214 9 7.94% 92.06% 11.59
glsd4 glass disc. 4 214 9 13.55% 86.45% 6.38
glsd5 glass disc. 5 214 9 32.71% 67.29% 2.06
glsd6 glass disc. 6 214 9 35.51% 64.49% 1.82
h-s heart-disease 270 13 44.44% 55.56% 1.25
pim pima-inidan 768 8 34.90% 65.10% 1.87
tao tao-grid 1888 2 50.00% 50.00% 1.00

thyd1 thyroid disc. 1 215 5 13.95% 86.05% 6.17
thyd2 thyroid disc. 2 215 5 16.28% 83.72% 5.14
thyd3 thyroid disc. 3 215 5 30.23% 69.77% 2.31
wavd1 waveform disc. 1 5000 40 33.06% 66.94% 2.02
wavd2 waveform disc. 2 5000 40 33.84% 66.16% 1.96
wavd3 waveform disc. 3 5000 40 33.10% 66.90% 2.02
wbcd Wis. breast cancer 699 9 34.48% 65.52% 1.90
wdbc Wis. diag. breast cancer 569 30 37.26% 62.74% 1.68

wined1 wine disc. 1 178 13 26.97% 73.03% 2.71
wined2 wine disc. 2 178 13 33.15% 66.85% 2.02
wined3 wine disc. 3 178 13 39.89% 60.11% 1.51
wpbc wine disc. 4 198 33 23.74% 76.26% 3.21

table.

The performance was measured with the product of TP rate and TN rate. Ten-fold cross val-
idation (Dietterich, 1998) was used to estimate the product of TP rate and TN rate. The results
obtained with the different techniques were statistically compared with the following procedure.
We first used the multiple-comparison Friedman’s test (Friedman, 1937, 1940) to test the null
hypothesis that all the learning methods performed the same on average. If the null hypothesis
was rejected, the Nemenyi test (Nemenyi, 1963) was employed to identify groups of learners with
statistically equivalent results. Moreover, as we were interested in analyzing the differences in
particular problems, the performance of each pair of learning algorithms on each problem was
compared using the Wilcoxon signed-ranks test (Wilcoxon, 1945). We acknowledge in advance
that pairwise comparisons increment the risk of rejecting null hypotheses that are actually true.
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In our experiments, we assume this risk with the aim of providing further information about the
excellence of each learning algorithm in particular problems. For more information about the
used tests, the reader is referred to appendix B.

Both LCSs were compared with three of the most competent learners: C4.5 (Quinlan, 1995),
SMO (Platt, 1998), and IBk (Aha et al., 1991). C4.5 is a decision tree derived from the ID3
algorithm (Quinlan, 1979). SMO is a support vector machine (Vapnik, 1995) that implements
the Sequential Minimal Optimization algorithm. IBk is a nearest neighbor algorithm. All
these machine learning methods were run using WEKA (Witten and Frank, 2005), and the
recommended default configuration was used. We selected the model for SMO as follows. We
ran SMO with polynomial kernels of order 1, 5, and 10, and with Gaussian kernels. Then, we
ranked the results obtained with the four configurations and chose the model that maximized the
average rank: SMO with lineal kernels. In this way, we avoided using particular configurations
for each problem. We followed the same process with IBk, which was ran for k = {1, 3, 5, 7};
here, we provide the results with k=5. XCS and UCS were configured as previously specified,
except for N=6400, and the two parameters that refer to the interval-based representation, i.e.,
r0=0.6, and m0=0.1. Finally, we did not introduce asymmetric cost functions in any system,
although the majority of them permitted it. In this way, we aimed at analyzing the intrinsic
capabilities of each method to deal with class imbalances.

7.3.2 Results

After defining the experimental methodology, we now analyze the results obtained with the
different learning methods. Table 7.2 summarizes the performance of the different learners on
the 25 data sets. The last three rows provide the average accuracy, the average rank, and the
position of each learner in the ranking. The ranks were calculated as follows. For each data set,
we ranked the learning algorithms according to their performance; the learner with the highest
accuracy held the first position, whilst the learner with the lowest accuracy held the last position
of the ranking. If a group of learners had the same performance, we assigned the average rank
of the group to each one of the learners in the group.

The results provided in this table allowed for two types of analyses. Firstly, the results
indicated which problems were more complex, in general, for all the learning systems. All
learners presented poor performance in the problems bald1, bpa, glsd1, glsd3, pim, and wpbc.
Examining the measure of performance, we observed that all the learners had a low TP rate,
which indicated that the minority class was not well defined in these problems. Most of these data
sets were highly imbalanced; so, the imbalance ratio turned up to be an important factor that
hindered the performance of the tested learners. Nonetheless, the problems bpa and pim were
almost balanced, so there might be other complexity factors affecting the learning performance
such as small disjuncts.

Moreover, the experimental results also allowed for a statistical comparison of the perfor-
mance of the different learners. Firstly, let us note that XCS and UCS were the two best
ranked techniques. That means that the two LCSs were among the best performers in most
of the problems. To analyze whether this improvement was statistically significant, we used
multiple-comparison tests to check the null hypothesis that all the learners performed the same
on average. The Friedman multiple-comparison test did not permit rejecting the null hypoth-
esis with p = 0.2519. Consequently, post-hoc tests could not be applied since no significant
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Table 7.2: Comparison of C4.5, SMO, IBk, XCS, and UCS on the 25 real-world problems.
Each cells depicts the average value of the product of TP rate and TN rate and the standard
deviation. Avg gives the performance average of each method over the 25 data sets. The two last
rows show the average rank of each learning algorithm (Rank) and its position in the ranking
(Pos).

C4.5 SMO IB5 XCS UCS
bald1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
bald2 69.30 ± 6.83 84.03 ± 7.30 81.16 ± 5.54 71.14 ± 5.02 69.75 ± 8.19
bald3 71.20 ± 6.04 85.81 ± 8.40 82.11 ± 8.67 69.98 ± 7.23 73.61 ± 6.66
bpa 33.08 ± 14.09 0.00 ± 0.00 32.40 ± 9.44 47.58 ± 10.92 47.59 ± 11.22
glsd1 79.50 ± 42.16 0.00 ± 0.00 69.32 ± 48.30 20.00 ± 42.16 59.00 ± 50.87
glsd2 34.50 ± 47.43 15.00 ± 33.75 24.13 ± 35.36 59.00 ± 45.02 74.00 ± 41.89
glsd3 28.97 ± 42.16 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 19.49 ± 25.17
glsd4 73.55 ± 32.63 80.03 ± 24.33 77.07 ± 24.98 80.03 ± 24.33 83.54 ± 19.53
glsd5 66.52 ± 16.77 9.50 ± 9.42 62.26 ± 21.14 68.67 ± 18.71 65.63 ± 21.46
glsd6 52.54 ± 15.13 0.00 ± 0.00 61.74 ± 18.23 60.53 ± 11.21 57.06 ± 14.20
h-s 63.33 ± 13.29 68.83 ± 8.87 64.40 ± 14.65 59.89 ± 15.59 55.00 ± 13.61
pim 43.87 ± 13.27 48.31 ± 5.60 46.91 ± 4.84 45.85 ± 6.37 47.82 ± 6.60
tao 90.98 ± 2.14 70.59 ± 6.45 94.25 ± 2.10 82.89 ± 5.42 78.81 ± 7.18
thyd1 87.61 ± 16.10 76.67 ± 22.50 76.67 ± 22.50 78.36 ± 22.01 92.25 ± 13.66
thyd2 93.24 ± 12.45 54.17 ± 24.92 77.90 ± 21.40 82.50 ± 24.98 93.06 ± 12.09
thyd3 87.65 ± 10.34 33.81 ± 21.35 81.12 ± 16.16 89.84 ± 11.75 88.08 ± 14.89
wavd1 67.79 ± 4.06 78.68 ± 4.27 72.28 ± 3.97 80.44 ± 2.97 76.33 ± 2.10
wavd2 62.54 ± 3.89 72.30 ± 2.71 67.49 ± 1.75 73.48 ± 2.88 71.49 ± 3.83
wavd3 68.60 ± 2.38 79.57 ± 2.04 74.14 ± 2.86 81.01 ± 3.99 76.60 ± 4.14
wbcd 89.12 ± 3.42 92.70 ± 5.32 92.72 ± 5.36 92.31 ± 5.50 94.06 ± 4.23
wdbc 88.79 ± 5.09 94.28 ± 3.28 93.47 ± 3.64 90.27 ± 4.61 89.68 ± 5.61
wined1 85.15 ± 16.63 98.46 ± 3.24 94.98 ± 8.29 99.23 ± 2.43 99.23 ± 2.43
wined2 91.81 ± 8.05 97.50 ± 5.62 97.50 ± 4.03 99.17 ± 2.64 91.88 ± 10.02
wined3 87.62 ± 11.70 97.14 ± 6.02 87.94 ± 12.53 93.38 ± 7.15 85.33 ± 9.55
wpbc 33.55 ± 12.87 9.37 ± 16.98 28.98 ± 16.49 20.33 ± 16.38 17.17 ± 21.63
Avg 66.03 53.87 65.64 65.83 68.26
Rank 3.46 3.14 3.08 2.52 2.80
Pos 5 4 3 1 2

differences among the learners were found (Demšar, 2006). This conclusion is not surprising
since compared XCS and UCS with three of the most competent machine learning techniques.
Nonetheless, note that these results highlight the robustness of XCS and UCS. That is, XCS and
UCS were not only as competitive as three of the most competent machine learning techniques
in the used test bed, but they also were the best ranked methods of the comparison.

To extend the statistical analysis to each particular problem, we applied statistical pair-
wise comparisons according to a Wilcoxon signed-ranks test at 0.95 confidence level. Table 7.3
shows the results. The • and ◦ symbols denote a significant degradation/improvement of the
given learning algorithm with respect to another in a particular data set. The overall degrada-
tion/improvement comparison (see the row labeled Score) permitted ranking the quality of the
five learners. Under this criterion, XCS appeared as the most robust method with a ratio of
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Table 7.3: Comparison of C4.5, SMO, IBk, XCS, and UCS on the 25 real-world problems. For a
given problem, the • and ◦ symbols indicate that the learning algorithm of the column performed
significantly worse/better than another algorithm at 0.95 confidence level (pairwise Wilcoxon
signed-ranks test). Score counts the number of times that a method performed worse-better,
and Scoreir>5 does the same but only for the highest imbalanced problems (ir > 5).

C4.5 SMO IBk XCS UCS
bald1
bald2 •• ◦ ◦ ◦ ◦ ◦ ◦ •• ••
bald3 •• ◦ ◦ ◦ ◦ ◦ ◦ •• ••
bpa • • ◦ • • •• • • ◦ ◦ ◦ ◦ ◦ ◦ ◦
glsd1 ◦◦ • • • ◦ • ◦
glsd2 •• • ◦ ◦◦
glsd3
glsd4
glsd5 ◦ • • •• ◦ ◦ ◦
glsd6 ◦ • • •• ◦ ◦ ◦
h-s ◦ ◦ ••
pim
tao • ◦ ◦◦ • • •• ◦ ◦ ◦◦ • • ◦◦ • • •◦
thyd1
thyd2 ◦ • • •• ◦ ◦ ◦
thyd3 ◦ • • •• ◦ ◦ ◦
wavd1 • • •• ◦◦ • • •◦ ◦ ◦ ◦ • ◦ ◦
wavd2 • • •• ◦◦ • • •◦ ◦◦ ◦◦
wavd3 • • •• ◦◦ • • ◦ ◦ ◦ ◦ •◦
wbcd • • • ◦ ◦ ◦
wdbc • ◦◦ ◦ • •
wined1 • • • ◦ ◦ ◦
wined2
wined3 ◦ ◦ ••
wpbc
Score 26-10 29-18 11-22 8-20 14-18
Scoreir>5 0-3 9-0 1-2 1-2 0-4

degradation/improvement of 8/20, followed closely by IBk and UCS. Both LCSs presented the
poorest results with respect to the other learners in the bald2, bald3, and tao problems, which
have a low imbalance ratio. In (Bernadó-Mansilla and Ho, 2005), the hyper rectangle codifica-
tion used by XCS and UCS was shown to be inappropriate when the boundary between classes
in the learning data set was curved. This is the case of the tao problem (Bernadó-Mansilla et al.,
2002). We hypothesize that bald2 and bald3 are also characterized by curved boundaries, which
would explain the degradation in performance of both LCSs. This hypothesis is also supported
by the results obtained with IBk, which improved XCS and UCS in the three aforementioned
problems. IBk is not affected by curved boundaries since it decides the output as the majority
class of the k nearest neighbors.

The two last methods in the ranking were C4.5 and SMO. The surprisingly poor rank of
C4.5 was mainly caused by the results obtained in the problems wavd1, wavd2, and wavd3,
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in which C4.5 was outperformed by all the other learners. These results were not correlated
with the imbalance ratio, so there may be other types of complexity that made C4.5 perform
poorly in these problems. Finally, SMO was the last ranked method. It showed a tendency to
over-generalize toward the majority class in problems with moderate and high class imbalances
such as glsd1, glsd3, and glsd6, in which the TP rate was zero. The same behavior was shown
in problems with low imbalance ratios such as the bpa problem, which we identified as a difficult
problem may be due to the tendency of the learners to create small disjuncts to create accurate
models of these problems. However, we can also find significant improvements with respect to
other learners in the problems: bald2, bald3 and wdbc. Thus, these results indicate that SMO
performs competitively in a restricted set of problems, but it is affected by some complexities
among which we may find the imbalance ratio.

Finally, let us compare the learners in terms of imbalance robustness. To do this, we consider
the data sets with the highest imbalance ratio: glsd1, glsd2, bald1, glsd3, glsd4, thyd1, and thyd2,
which have imbalance ratios ranging from ir=5 to ir=23. In these problems, UCS appeared
to be the best learner, with a degradation/improvement ratio of 0/4, followed closely by C4.5.
These results agree with several papers which indicate that C4.5 can deal with high amounts
of class imbalance (Japkowicz and Stephen, 2002; Batista et al., 2004). IBk and XCS were the
two next methods in the ranking. IBk might suffer from small disjuncts, since minority class
regions are surrounded by many instances of the majority class, concentrating a high amount
of the test error around the small disjuncts. XCS also turned up to be more sensitive to class
imbalances than UCS and C4.5. Lastly, SMO performed poorly in the most imbalanced data
sets. As mentioned above, we tried other orders of polynomial kernels, as well as a Gaussian
kernel, but no significant improvement was found.

In this section, we have shown the competitiveness of both XCS and UCS with respect to
three of the most influential machine learning techniques in imbalanced data sets. Throughout
all the comparison, we have considered the intrinsic capabilities of the learners to deal with rare
classes without introducing further mechanisms to promote the discovery of the knowledge that
resides in the minority class. In the following sections, we consider these types of mechanisms. As
the comparison contains learning algorithms with different characteristics, we use re-sampling
techniques since they are independent of the final learner. As proceeds, we first explain the
re-sampling methods considered in the analysis, and further study whether they improve the
accuracy of the models of the minority class when they are combined with the five learning
methods used in this section.

7.4 Re-sampling Techniques

Re-sampling techniques have become one of the most used approaches to boost the capabilities
of machine learning techniques to discover the knowledge that resides in rare classes. These
types of methods are pre-processing methods that re-balance the proportion of examples of
the minority class in the training data set by either over-sampling the minority class or under-
sampling the majority class. During the last few years, several approaches have been developed
in this field. Herein, we adopt three of the most famous algorithms: random over-sampling
(Ling and Li, 1998), under-sampling based on Tomek links (Batista et al., 2004), and synthetic
minority over-sampling technique (SMOTE) (Chawla et al., 2002). We selected these three
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Algorithm 7.4.1: Pseudo code for the Tomek Links algorithm.
Algorithm: TomekLinks ( d is Dataset )1

Data: d is the training data set
Result: Collection of Tomek links represented as pairs of examples
var2

setTomek is PairsExamples3

exMin, exMaj, ex is TrainingExample4

dst is double5

end6

forall example of the majority class exMaj in d do7

forall example of the minority class exMin in d do8

dst = dist(exMin, exMaj )9

if ¬ ∃ex ∈ d|dist(ex, exMin) < dst ∨ dist(ex, exMaj) < dist then10

cjtTomek := addLink (cjtTomek,<exMin,exMaj>)11

end12

end13

end14

algorithms since they have been empirically shown to the some of the most competitive re-
sampling techniques (Chawla et al., 2002; Batista et al., 2004). Moreover, we introduce a
modified version of SMOTE that incorporates a data cleaning process, which we address as
cluster SMOTE (cSMOTE) (Orriols-Puig and Bernadó-Mansilla, 2008b). As proceeds, each
one of these approaches is explained in detail, and their behavior is illustrated in a case study;
in the next section, the performance of each one of the re-sampling techniques, in combination
with the five learners, is empirically examined.

7.4.1 Random Over-sampling

The first re-sampling technique considered in the comparison is random over-sampling. This is
a very simple approach that proposes to over-sample the rare classes in the training data set
so as to match the size of the majority class. Although the simplicity of this approach, several
authors have demonstrated that it improves the performance of highly-known learners in pattern
recognition tasks. Japkowicz and Stephen (2000) showed that random over-sampling, combined
with a multi-layer perceptron classifier (Rumelhart et al., 1986), was a very effective method to
deal with class imbalances. Later, Japkowicz and Stephen (2002) extended this conclusion to
the C5.0 decision tree. Moreover, Batista et al. (2004) experimentally showed that random over-
sampling resulted in one of the best improvements in comparison with eleven more sophisticated
re-sampling techniques. Due to these excellent results, we included random over-sampling in
our experiments.
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7.4.2 Under-sampling based on Tomek Links

Under-sampling with Tomek links (Batista et al., 2004) is an under-sampling technique that
uses the concept of Tomek link (Tomek, 1976) to remove examples of the majority class from
the training data set. As follows, we first present the concept of Tomek link and then explain
how the re-sampling technique works.

The goal of the Tomek links procedure is to find pairs of examples with different class, but
that are geometrically close in the feature space. Algorithm 7.4.1 provides the pseudo code
of the algorithm that finds all the Tomek links. That is, a tomek link is a pair of examples
< Ei, Ej > that belong to different classes and for which there does not exist any other example
Ek so that dist(Ei, Ek) < dist(Ei, Ej) or dist(Ej , Ek) < dist(Ei, Ej), where dist is a function
that computes the distance between two examples.

Therefore, the examples that do not form any Tomek link are not in the decision boundary,
and thus, the information that they provide is not as interesting as the information that resides
in the examples that form Tomek links. Batista et al. (2004) used this idea and proposed
an under-sampling technique that removed examples of the majority class that did not belong
to any Tomek link. This technique showed to provide competitive results, especially when
combined with other over-sampling methodologies. For this reason, we incorporate this re-
sampling algorithm in our analysis.

7.4.3 SMOTE

The synthetic minority over-sampling technique (SMOTE), originally designed by Chawla et al.
(2002), is one of the most influential re-sampling techniques. SMOTE is an over-sampling
technique that creates new minority class instances by means of performing different operations
on the minority class instances of the training data set. Therefore, the application of this
technique results in a new data set where the presence of the minority class is increased by
the creation of new “synthetic” examples of the minority class. As follows, the details of the
algorithm are given.

Algorithm 7.4.1 provides the pseudo code for the SMOTE algorithm, which works as follows.
For each example of the minority class ei, the procedure searches for the k nearest neighbors
of ei that also belong to the minority class. Then, it creates N examples of the minority class
along the line segments joining any of the k minority class nearest neighbors (the value of N
depends on the desired degree of over-sampling). To achieve this, for each new example of the
minority class that has to be generated, the algorithm randomly selects one of the k nearest
neighbors er and creates a new instance in which each attribute is a randomly generated on the
segment that joins ei and er.

Chawla et al. (2002) empirically demonstrated the competitiveness of SMOTE with respect
to other re-sampling techniques. Subsequent to this publication, several authors proposed new
approaches, based on SMOTE, to generate synthetic data. For example, Chawla et al. (2003)
combined SMOTE with a boosting technique to improve the detection of rare classes. Later,
Han et al. (2005) designed a new approach which mainly used the SMOTE algorithm, but
trying to re-sample only those instances that lay closely to the decision boundary. All these
new approaches supposed little modifications of the initial idea of creating synthetic data of the
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Algorithm 7.4.2: Pseudo code for the SMOTE algorithm.
Algorithm: SMOTE ( d is Dataset, N is integer, k is integer ) return (dOut is1

Dataset)
Data: N is the proportion of over-sampling

k is the number of neighbors considered to create new instances
Result: dOut is the new re-sampled data set
var2

numNewNeigh, numMin, i is integer3

currEx, newEx, selectedNeigh is Example4

att is Attribute5

dOut, neighbors is Dataset6

end7

numMin := number of instances of the minority class in dOut8

i := 09

dout := d10

while i < numMin do11

currEx := get the ith example of the minority class12

neighbors := get the k nearest neighbors of the minority class closer to currEx13

numNewNeigh := N14

while numNewNeigh > 0 do15

selectedNeigh := randomly get a neighbor from neighbors16

/* create a new example of the minority class */
forall attribute att do17

newEx [att ] := curEx [att ] + (currEx [att ] - selectedNeigh[att ])· rand(0,1)18

end19

numNewNeigh := numNewNeigh - 120

dout := addExample(dout, newEx )21

end22

i := i + 123

end24

return dout25

minority class. In the next section, we propose another modification of the SMOTE algorithm
that combines these ideas with a data cleaning phase.

7.4.4 cSMOTE

We now introduce cluster SMOTE (cSMOTE), a re-sampling technique based on SMOTE.
cSMOTE introduces two main modifications to the SMOTE algorithm, which consist in:

• including a phase to clean instances that are considered noise; and

• disabling the creation of new minority class instances beyond the boundaries of a virtual
cluster calculated for each minority class instance.
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Algorithm 7.4.3: Pseudo code for the cSMOTE algorithm.
Algorithm: cSMOTE ( d is Dataset, k is integer ) return (dOut is Dataset)1

Data: k is the number of neighbors considered to create new instances
Result: dOut is the new re-sampled data set.
var2

numFavor, numAgainst is integer3

currEx, newEx, selectedNeigh is Example4

att is Attribute5

dOut,neighbors is Dataset6

end7

dOut = empty data set8

forall example currEx en d do9

neighbors := et the k nearest neighbors closer to currEx10

numFavor := number of neighbors of the same class as currEx11

numAgainst := number of neighbors of differnet class than currEx12

if numFavor = 0 then13

Do not insert currEx into dOut14

else15

if currEx belongs to the majority class then16

dOut := addExample(dOut, currEx )17

else18

dOut := addExample(dOut, currEx )19

while numAgainst > 0 do20

selectedNeigh := select a neighbor from the same class as currEx21

/* create a new example of the minority class */
forall attribute att do22

newEx [att ] := curEx [att ] + (currEx [att ] - selectedNeigh[att ])· rand(0,1)23

end24

dOut := addExample(dOut, newEx )25

numAgainst := numAgainst - 126

end27

end28

end29

end30

return dOut31

As follows, we explain each one of these two modifications in detail.

Algorithm 7.4.3 provides the pseudo code for cSMOTE. The algorithm is guided by a main
loop over all the examples of the data set, independent of whether they belong to the minority
class or to the majority class. For each example ei, the algorithm selects the k nearest neighbors
regardless of their class; besides, it counts the number of these k neighbors that belong to the
same class as ei (numFavor) and the number of them that belong to another class (numAgainst).
Depending on these variables and the selected example ei, the next steps are taken:
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1. If, given ei, there does not exist any other example among its k nearest neighbors that
belongs to the same class, ei is considered as a noisy instance and it is not included in the
final data set.

2. If ei belongs to the majority class and, at least, there exists another example of the majority
class among its k nearest neighbors, ei is copied to the final data set.

3. If ei belongs to the minority class, we create as many new examples as the number of
nearest neighbors of the majority class that ei has (i.e., new numAgainst instances of
the minority class are created). The underlying idea of this re-sampling strategy is the
fact that, in general, the number of nearest neighbors of another class would be higher
as the minority class instance approaches the class boundary. Thence, this technique
aims at introducing more examples of the minority class around the class boundary, but
not increasing the number of them in regions of the feature space that are far from this
boundary.

The generation of new examples of the minority class is also modified with respect to that
in SMOTE. cSMOTE does not allow the creation of examples of the minority class beyond the
virtual cluster to which the original example belongs. This virtual cluster is defined as follows.
The center of the cluster is determined by the example Ei. Then, the cluster is defined by a sphere
with radius equal to the distance to the example Ej , where Ej is the farthest neighbor of Ei for
which it does not exist any other instance Ek of another class such as dist(Ei, Ek) < dist(Ei, Ej).
Thus, as the new instances are created in the segment defined between two instances of the
minority class that belong to this cluster, they would never go beyond the virtual cluster. The
behavior of cSMOTE and of the other three re-sampling techniques as well is exemplified in the
following subsection.

7.4.5 What Do Re-sampling Techniques Do? A Case Study

Before proceeding with the comparison of the four re-sampling techniques—combined with each
one of the five learning methods—on the collection of real-world problems, we first illustrate
how these techniques work on a two-dimensional artificial problem. Thence, the purpose of this
section is not to extract general conclusions about the re-sampling techniques behavior, but to
intuitively explain how they work. As follows, we first introduce the artificial domain used in
the case study and illustrate how the four re-sampling techniques modify this domain; then, we
depict the knowledge created by the five different learners on this problem.

Artificial Problem Used in the Case Study

To illustrate the behavior of the different re-sampling techniques, we designed the two-dimensional
artificial problem shown in figure 7.5(a). The problem consists of four concepts of the minority
class (red dots) that have a circular shape and are distributed around the feature space. More-
over, the two concepts of the minority class placed in the top of the feature space contain a
sub-concept of the majority class inside them, drawing the shape of a “doughnut”. Therefore,
this data set shows that some of the small disjuncts belong to the majority class, highlighting
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(a) Original (b) Ovs (c) Und-TL

(d) SMOTE (e) cSMOTE

Figure 7.5: Original domain (a) and domains after applying random over-sampling (b), under-
stampling with Tomek links (c), SMOTE (d), cSMOTE (e).

that there is not always a direct mapping between the imbalance ratio of the training data set
and the imbalance ratio among the sub-solutions or clusters in the solution space.

Figures 7.5(b), 7.5(c), 7.5(d), and 7.5(e) show the modified data set after applying random
over-sampling, under-sampling with Tomek links, SMOTE3, and cSMOTE4 respectively. Ran-
dom over-sampling replicates some of the training instances until the data set contains the same
number of instances of both classes; for this reason, the resulting domain is apparently equal to
the original domain. Under-sampling based on Tomek links removes instances of the majority
class that are not close to the class boundary. Note that the final data set contains a consider-
able lower number of examples. This may be beneficial in terms of run time of the final learner,
especially when the original data set consists of a large number of instances; nonetheless, in do-
mains with few instances, it may result in a problem of sparsity. SMOTE creates new instances
of the minority class by interpolation. A potential problem of this technique is that, depending
on the size of the small disjunct and the chosen k, SMOTE can generate noisy instances if one

3SMOTE was configured with k=N=5
4cSMOTE was configured with N=10
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of the nearest neighbors selected to create a new example belongs to another disjunct. cSMOTE
returns a domain that is similar to the one generated by SMOTE. The main difference is that
the minority class instances generated by cSMOTE are closer to the class boundary. In the next
section, we show the models evolved by the different learners on the original and the re-sampled
data sets.

Models Built by the Learners

Figure 7.6 illustrates the domain learned by the five learners on the original and the re-sampled
data sets. These results are complemented by table 7.4, which provides the TP rate and TN
rate, measured on the training data set, of each learner and domain. The same configurations
of the five learners used in the previous sections were employed for these experiments. The
domains are depicted by exhaustively testing all the feature space. That is, we generated a test
problem with ten million instances distributed uniformly around the feature space, and we used
each learner to predict the class of each instance; then, we depicted a point—with a different
color depending on the predicted class—in the solution subspace.

Several observations can be drawn from these results. We first analyze the behavior of the
different learners on the original data set. In this case, note that all the learners, except for
SMO, could discover totally or partially all the sub-concepts of the minority class. IBk (see
figure 7.6(k)) is the learner that resulted in the model that is probably closer to the model that
a human expert would define from the set of points depicted in Figure 7.5(a). On the other
hand, C4.5, XCS, and UCS discovered concepts whose shape resembled rectangles. This is due
to the knowledge representation employed by each learner. That is, C4.5, XCS, and UCS (see
figures 7.6(a), 7.6(p), and 7.6(u)) used a knowledge representation based on hyper rectangles to
discriminate between classes; for this reason, they had more difficulties to approximate curved
boundaries. Despite this, note that these learners, and especially UCS, provided an accurate
approximation of the class boundary for the given problem. On the other hand, SMO (see figure
7.6(f)) used a linear kernel which failed to discriminate between classes. Note that SMO pre-
dicted that any instance in the input space belonged to the minority class. We tried polynomial
kernels with higher degree, but significantly better results were not found for this particular
artificial problem. The first row of table 7.4 complements these visual results by reporting the
TP rate and the TN rate, measured on the training instances, achieved by the five learners. The
table shows that UCS predicted all the training instances correctly; IBk, C4.5, and XCS also
yielded accurate results.

Let us now examine the results obtained with the re-sampling techniques. The figures show
that, in general, all the learners, except for SMO, benefited from re-sampling the training data
set. XCS especially benefited from random over-sampling and SMOTE and, to a lower extend,
from cSMOTE. However, note that random over-sampling and under-sampling based on Tomek
links result in some uncovered regions in the feature space (white regions in the figures). UCS
seems to give the best results with cSMOTE. It is worth noting that UCS evolves a maximally
accurate model with the original data set.

In general, SMOTE and random over-sampling were the most effective re-sampling tech-
niques. But this general behavior needs to be analyzed carefully. For example, when C4.5 was
trained with the domains under-sampled with Tomek links, and re-sampled with SMOTE, or
cSMOTE, it was not able to identify the first majority class sub-concept. This behavior can
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