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1. INTRODUCTION

Nowadays, a large variety of spectroscopic techniques can provide very
accurate energy transitions. Theoreticians usually determine these energy
differences from the independent calculation of several roots of the Schrödinger
equation, evaluated at a given level of approximation. Although the variational
principle gives a reference criterion to evaluate the quality of the approximate
wavefunction, the importance of getting as low as possible absolute energies is
often over-emphasized. This criterion does not necessarily imply the minimum
error in the calculated transition since the correlation energy included by the
truncated expansion of the wavefunction may be very different for each state.
Moreover, single-reference wavefunctions do not provide in general good
descriptions of excited states. The consequence is that the error may be very
different for each energy evaluated and that it is difficult to obtain reliable energy
transitions from independent calculations, even performed at a high level of
accuracy. The problem becomes particularly dramatic for very small energy
differences such as those found between the different spin multiplets in magnetic
systems, very often lower than 100 cm-1 (∼ 5·10-4 hartree).

Different formalisms have been proposed to evaluate energy differences.
Single reference1,2,3,4,5,6,7 or multireference8,9,10 Green’s functions formalisms have
been used to determine ionization potentials, electron affinities or electronic
spectra. Equation of Motion (EOM)11,12,13,14 and Random Phase Approximation
(RPA)15,16 have been used coupled to single reference17,18,19,20 or multireference
Coupled Cluster (CC) methods21,22,23,24,25. Among Configuration Interaction (CI)
methods, Goddard and collaborators have proposed the Correlation Consistent CI
(CCCI)26,27, useful for singlet-triplet energy gaps in carbenic systems, and the
Dissociation Consistent CI (DCCI)28,29, well adapted to calculate dissociation
energies. The Difference Dedicated Configuration Interaction (DDCI)30 method is
a variational method specifically designed to calculate energy differences such as
ionization potentials, electron affinity, optical transitions, magnetic exchange
coupling, etc. An iterative procedure (IDDCI)31 has been implemented to ensure
the independence of the results of the molecular orbital (MO) set. Many examples,
especially in magnetic systems, have shown the performance of the method that is
described in the next section.



3

2. THE DDCI METHOD TO EVALUATE ENERGY
DIFFERENCES

The CI space used in the DDCI procedure is selected from second-order
Perturbation Theory considerations. Perturbation Theory is however only used
formally to truncate the CI space, to include only the contributions that are relevant
for the energy difference(s) of interest.

Grounded on the early perturbative calculations of singlet-triplet (S-T)
gaps in biradicalar systems by De Loth et al.32, DDCI allows to evaluate
variationally any type of vertical energy difference30 from a common set of MOs
for all states. The first step in the scheme is the definition of a minimal model
space S , that gives a zero-order description of the transition(s) to be calculated.
For this purpose the MO set is partitioned in three subsets, namely doubly
occupied, p, q, active, a, b, and virtual, r, s, as shown in the scheme:

In the most general case, the model space is taken as the minimal Complete
Active Space (CAS) including the orbitals that describe the transition at the single
electron level. If the transition has a strongly mixed character, other orbitals have
to be added to the active space. Some examples will help us to illustrate how this
minimal CAS is chosen.
i) Optical transitions may often be described with two active orbitals.

Nevertheless, there are important exceptions such as the strong valence-
Rydberg mixing occurring in some unsaturated hydrocarbon excited states: the
1Ag → 1B1u transition in ethylene presents such a problem. To take into account
this mixed character, Rydberg orbitals of the correct symmetry have to be added
to the active space33. The active space is thus defined from the configurations
generated with two electrons and  three active MOs: the occupied and the
virtual ones implicated in the transition, b2u , b3g , and a Rydberg orbital of the
same symmetry, Rb3g.

ii) Ionization Potentials (IP) and Electron Affinities (EA) may as well be
calculated by the same procedure. Taking potassium34 as an example, for the

r, s

a, b

p, q
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first IP, 2S (K) → 1S (K+), the active space is defined by one electron and one
orbital, 4s, plus a fictitious orbital of low energy (1s), situated at r → ∞, in order
to keep constant the number of electrons; in the same way, for the EA 1S (K−)
→ 2S (K), the active orbitals are the 4s and 4p      atomic orbitals, and the CAS
is generated by two electrons in four orbitals (plus the 1s orbital at r → ∞).

iii) The exchange coupling constant in bicentric  magnetic systems is proportional to
the energy difference between different multiplicity states. The active space is
generated by the number of magnetic orbitals and of unpaired electrons of the
system: two electrons and two orbitals for diradicalar systems35,36 such as Cu(II)
dinuclear complexes, four electrons and four orbitals in Ni(II) dimers37, six
electrons and six orbitals  in Cr(III) dimers38, etc. The active molecular orbitals
in these weakly interacting systems are bonding and antibonding molecular
orbitals occupied by the unpaired d electrons of the metal centers.

Once the model space (namely the CAS) is defined, the external correlation
is included up to the second-order in the framework of the quasi-degenerate
perturbation theory. At this level of theory, the elements of the effective
Hamiltonian built on the previously defined model space are, for I J ,  Φ Φ ∈S :

I J(2)
I J I Jeff (0) (0)

J

ˆ ˆV V
ˆ ˆH H    

E E
α

α α

Φ ∉ α

Φ Φ Φ Φ
Φ Φ = Φ Φ +

−∑
S

[1]

where V̂ is the perturbation operator and (0)
JE  and (0)Eα  are the zero-order energies

of the determinants JΦ and αΦ , respectively.
From the Slater rules it is easy to demonstrate that the purely inactive

{ }pq,rs ID+
αΦ = Φ double excitations, i.e. those involving two electrons from the

doubly occupied MOs to virtual ones, do not give any  contribution to the off-
diagonal elements,

pq,rs I J
ˆD H 0+ Φ Φ =   for I ≠ J                                           [2]

These purely inactive double excitations give very important contributions
to the correlation energy, but at the Møller-Plesset level only shift by the same
value the diagonal elements of the effective Hamiltonian:
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pq,rs I pq,rs I

2
I pq,rs I pq,rs I J

(0) (0)
pq rsp,q,r,sD J D

ˆ ˆV D D V pq rs

E E+ +

+ +

→Φ Φ

Φ Φ Φ Φ
=

∆−
∑ ∑ [3]

where the denominator is a difference of orbital energies:

pq rs p q r s→∆ = ε + ε −ε − ε [4]

and thus do not contribute to the spectrum.
To include higher orders of perturbation as well as to avoid intruder states,

a well-known problem of perturbative effective Hamiltonians, the above
perturbative arguments are extrapolated to build a CI space that includes all the
second-order excitations that are significant in the spectrum evaluation. It means
that the same contributors to the perturbative calculation are included in a CI space,
which is then treated variationally. In that way, interactions between double
excitations are automatically allowed. Hence, the CI subspace includes the CAS
and single and double excitations on them involving at least one active orbital.
Figure 1 schematizes the type of determinants included and excluded of the CI,
when compared to the ‘full’ CAS Single Double CI (CAS*SDCI).

Figure 1. Schematic representation of the contributions to the DDCI space
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Because DDCI is entirely variational, it is an uncontracted method and
therefore allows the external correlation to modify the coefficients of the zero-
order CAS wavefunction. This is an advantage over CAS + perturbative
calculations such as CASPT239, which can only overcome this difficulty by
sufficiently enlarging the CAS. When compared with CAS*SDCI calculations, the
DDCI subspace has several advantages. The first one is the computational cost,
since DDCI dimension scales as dim[CAS]*N3, where N is the size of the orbital
set, instead of dim[CAS]*N4. The second one arises from the fact that the purely
inactive double excitations, responsible of the major part of electron correlation,
are not included and thus the calculated correlation energy is only a small part of
the total one, avoiding large size-consistency errors, at least for a small number of
active electrons. The counterpart is of course that DDCI cannot give good absolute
energies.

DDCI gives thus energy differences from purely variational calculations. A
DDCI space is generated for each desidered symmetry and the energies and
wavefunctions for all the searched states are obtained by diagonalization.

An important point is the choice of the MOs since the results are dependent
on them. An iterative improvement in the active orbitals (IDDCI)31 has been
proposed to avoid this difficulty. The DDCI wavefunction for each state,

i ki k
k

cΨ = Φ∑              i = 1, n [5]

gives the first order density matrix, Ri,

i i i
ˆR R= Ψ Ψ [6]

and an average density matrix may be obtained:

i
i

R R /n= ∑ [7]

which after diagonalization gives average natural orbitals (NOs) adapted to the
different states. The procedure is iterated to self-consistency and gives energy
differences independent of the starting MOs. The improvement of the active
orbitals is shown by the weight of the CAS projection of the wavefunction that
increases along the iterative procedure. Furthermore, the analysis of the NO
occupation numbers gives a criterion on the quality of the CAS which may be
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revised. The main advantage of the IDDCI procedure over other cheaper methods
to obtain average orbitals, such as state average CASSCF calculations, is that it
allows to mix states belonging to different irreducible representations without any
difficulty.

The arguments that lead to the DDCI selected space are only strictly
correct for vertical transitions, but the method may as well be applied to calculate
adiabatic transitions. The contributions of the neglected double excitations to the
correlation energy of each state vary with the geometry and their effect must be
evaluated and added to the results of the DDCI calculations. In previous works  we
proposed that this correction should be estimated at the MP2 level: in substituted
carbenes40, where there are significant differences between the geometries of the
singlet and the triplet state, this correction contributes about 10% to the gap. When
the perturbative estimation is not accurate enough, a previous good knowledge of
the ground state potential energy surface is needed. This can either be obtained
from independent accurate calculations or from experimental information. The
transition(s) between the ground state and the excited state(s), calculated at the
DDCI level for each geometry is (are) then added to the energy of the ground state.
The controversial ground state of tetramethyleneethane41 – triplet or singlet,
depending on the experimental data origin – could be rationalized by this
procedure. Very accurate potential energy curves for K2 excited states were as well
calculated in this way34.

The ROHF molecular orbitals have been obtained by using the MOLCAS
4.1 package42. The CASDI43 and the DDCI-SCIEL44 programs have been used in
the CI calculations and in the determination of the natural MOs.

3. COMPARISON WITH SOME FULL CI BENCHMARKS

The performance of DDCI has been quoted with the current state-of-the-art
methods to calculate optical transitions, especially with Coupled Cluster methods
such as EOM-CCSD45, including the effect of triple excitations such as CCSDT-346

and CC347 or the Self-Consistent Size-Consistent (SC2) CI method48. Full CI
calculations on small systems as Be, CH+, BH, and CH2

49,50,51 have been used as
benchmarks by several authors49,52,53,54,55,56. IDDCI has also been applied to these
molecules57 with the same basis sets and geometries. For Be50, sixteen states have
been calculated, the lowest 1,3S, 1,3P0 and 1,3D states, giving DDCI spaces with
around 10000 determinants in all cases. For CH+  51 the first excited 1Σ+, 1Π and 1∆
states were calculated, with CI spaces including around 2000 determinants. For
BH49 three 1Σ+, three 1Π and the first 1∆ states were calculated. Finally, for CH2

49

ten states of A1, A2 B1 and B2 symmetries were calculated. For theses two last
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molecules, the CI spaces ranged from 8000 to 20000 determinants, depending on
the symmetry.

Figure 2 summarizes the results on these series of calculations by
representing the mean absolute deviations from FCI obtained by the different
methods: Coupled Cluster Singles and Doubles, different levels of application of
EOM treatment, such as EOM-CCSD or CCSDT-3, or the Linear Response (LR)
approach, such as CC3. Results obtained with the size-consistent self-consistent
SDCI technique, (SC)2SDCI, are also available. The general trend is that IDDCI
results compare advantageously with the other methods. The mean absolute error is
always lower than 0.1 eV: 0.008 eV for Be, 0.03 for BH, 0.05 for CH2 and 0.09 for
CH+. When comparing the results for this last molecule with the impressive quality
of the MCLR51 calculation, it should be pointed out that the latter includes more
than 200000 determinants in the active space, i.e. 13% of the whole CI space, in
front of the 0.2 % used in the IDDCI calculation.

Figure 2. Mean absolute error with respect to FCI calculations

Another observation is that the error range of IDDCI transitions is quite
similar for all the transitions of a given system. It is particularly relevant since
transitions with a predominant biphotonic character are obtained with the same
accuracy while single-reference methods give very large errors, even by including
the effects of triples as CC3 or CCSDT-3.
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4. THE VERTICAL SPECTRUM OF ETHYLENE

Several systems have been studied to test the capability of the DDCI
method to reproduce the experimental spectra. In particular, the lowest vertical
transitions of ethylene33 have been calculated. A large Atomic Natural Orbitals
(ANO) basis set has been used in this case for carbon and diffuse s and d functions
centered on the C-C bond have been added to correctly describe the Rydberg
character when necessary. The active space includes two electrons and three active
orbitals (the π, the π* and a Rydberg orbital of the appropriate symmetry) for all
the states. The DDCI spaces include around 40000 determinants for all the
symmetries. The results reported in Table 1 show that in general the agreement
with the experiment is quite good, and that the performance is in general better
than with CASPT2, which is nowadays accepted to give small errors for a large
series of compounds. Among the results, the 1Ag → 1B1u transition deserves a
special comment, since the 1B1u state presents a strong mixing between a valence
ionic π → π* and a Rydberg π → 3dπ  component. The variational character of
DDCI allows the relaxation of the CAS contributions under the dynamic
correlation effects and the transition is quite well reproduced, unlike the CASPT2
method which has an error of 0.4 eV for this transition.

Table 1. Vertical transitions (eV) in ethylene

Excited state IDDCI   CASPT2
58

Experiment

11B3u (3s) 7.09 7.17 7.1159,60,61,62

11B1g (3pσ) 7.76 7.85 7.8063,64

11B2g (3pσ) 7.96 7.95 7.9064

11B1u (V) 7.90 8.40 8.065, a)

21A g (3pπ) 8.33 8.40 8.2864

21B3u (3dσ) 8.59 8.66 8.62 59,60,61,66

11A u  (3dπ) 9.12 8.94
11B2u (3dδ) 9.10 9.18 9.0559,66

21B1u (3dπ) 9.35 9.31 9.3367,68

13B1u (V) 4.58 4.39 4.36 – 4.6067,68

13B3u
 (3s) 6.95 7.05 6.9860

13B1g (3pσ) 7.83 7.80 7.7960

13B2g (3pσ) 7.92 7.90
23A g

 (3pπ) 8.19 8.26 8.1560

23B3u (3dσ) 8.56 8.57 8.5760

13A u (3dπ) 9.13 8.94
13B2u (3dδ) 9.05 9.09
23B1u (3dπ) 9.16 9.07

a) from theoretical estimations
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5. ADIABATIC TRANSITIONS

Adiabatic transitions can also be studied provided that the effects of the
neglected purely inactive double excitations are taken into account. Several types
of systems have been studied and in many cases it has been shown that it is enough
to include the effect of double excitations at the second-order pertubation theory
level to reach good energy separations. This is the case for first row atoms systems
but not for systems with highly polarizable cores. An accurate description of the
ground state is needed in this case.

5.1. Singlet-triplet gap in substituted carbenes and silylenes

The first application was the calculation of the singlet-triplet gap in singly
and doubly halogeno-substituted carbenes and silylenes40. In the unsubstituted
molecules of this series, CH2 and SiH2, the singlet state can be described at zero-
order as a combination of the σ2 and the π2 configurations:

 [ ] [ ]1
1(1 A ) core coreΨ = λ σσ − µ ππ

ππ                σσ

and the triplet as the configuration  [ ]3
1(1 B ) coreΨ = σπ

σπ

Therefore, the active space is generated by two orbitals and two electrons.
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Large basis sets including two d and one f functions are needed at the carbenic
center to obtain accurate values of the singlet-triplet gap. Since triplet bond angle is
about 25-30o larger for all the molecules, the differential contribution of the
inactive double excitations is included at the MP2 level. This correction ranges
between 0.3 and 2.4 kcal mol-1. The zero point energy correction has also been
added. Table 2 reports the results for this series, which are in an excellent
agreement with the experimental ones, within the chemical precision. Only CH2

has a triplet ground state and the degree of substitution tends to stabilize the singlet
state. The values are quite comparable with the results of Goddard et al. obtained
with DCCI, which  includes a very similar part of the correlation. In view of this
excellent agreement it may be predicted that trifluoromethylcarbene, CHCF3, with
a calculated gap of 11.1 kcal mol-1 , has a triplet ground state like CH2.

Table 2. Singlet-triplet gap (kcal mol-1) in carbenes and silylenes.

DDCI DCCI69,a) MP470 ,a) MRCI+Q 71 LDA72 LDA/NL72 EXP
CH2    9.5    10.0     12.9        9.5   12.2        7.2      9.173

CF2 -56.3   -57.1    -57.6  -55.8     -55.6   -56.774

CCl2 -19.7   -20.5    -20.5  -21.9     -23.8
CBr2 -15.6    -16.5  -20.9     -22.4
CHF -15.1   -14.7    -14.3   -14.675

CHCl   -5.8     -5.1      -4.8   >-11.475

CHBr   -5.3      -4.4   >-975

SiH2 -19.7   -21.5     -20.2   -21.0,-18.076

SiHF -40.0   -41.3
SiF2 -75.9   -76.6  -75.9     -76.3   -75.2, -77.277

CHCF3 11.1
a) Zero point energy included

5.2. Systems with highly polarizable cores

In systems with highly polarizable cores the inter-shell correlation, namely
the core-valence correlation, plays an important role in the description of the
spectroscopy and of the dissociation energy. To treat these systems, large core
basis sets including internal polarization functions and very large CI are to be used
implying high computational costs and possible size-extensivity errors.
Alternatively, effective core potentials (ECP) are also used, which try to simulate
the effect of the static and dynamical polarization of the core by the valence
electrons. ECP results are in general accurate but some empirical parameters and
some cut-off radii are needed and the core-polarizability is assumed to remain
constant, even with variable occupation of the valence orbitals in the different
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states.
As a third possibility that avoids external parameters but has a relatively

low computational cost, IDDCI has been applied to alkaline atoms, alkaline
hydrides and K2

34. Large basis sets have been used in all cases and a relativistic
small [Ar3d10] core pseudopotential has been used for Rb78. The active spaces
depend on the symmetry and on the dissociation products. The largest DDCI space
in all these calculations includes around 90000 determinants.

Ionization potentials, electron affinities and the lowest electronic
transitions of K and Rb have been calculated. The largest error with respect to the
experiment found in all these energies has been 0.08 eV. In the diatomic systems,
the equilibrium distance is very different for different states and therefore the
geometry relaxation has to be included in the calculation. Dissociation and
adiabatic transition energies calculated at the IDDCI level without the contribution
of the inactive double excitations are in general underestimated. However, when
the effect of the inactive double excitations is included at the MP2 level, as shown
in Table 3, all the spectroscopic constants are in very good agreement with the
experimental ones, and in general closer to experiment than ECP ones. The largest
error found for the equilibrium distances is 0.04 Å. The performance is particularly
good for the energetic parameters, dissociation energies or adiabatic excitation
energies, where the largest deviation is 0.05 eV.

Table 3. Spectroscopic constants for the ground and the lowest excited singlet states of KH and  RbH.
IDDCI: DDCI potential energy curve with iteratively optimized MOs including the MP2 contribution
of inactive double excitations. Re, equilibrium distance; De, dissociation energy; ωe, vibrational
constant; Te, adiabatic excitation energy.

X 1ΣΣ ++ A 1ΣΣ ++

IDDCI ECP79 Exp80 IDDCI ECP81 Exp 80

Re (Å) 2.27 2.24 2.24 3.68 3.80 3.68
De (eV) 1.96 1.81 1.92 1.19 1.08 1.18
ωωe (cm-1) 987 1022 984 246 288 228

KH

Te (eV) 2.37 2.16 2.36

Re (Å) 2.38 2.36 2.37 3.66 3.70
De (eV) 1.76 1.81 1.77 1.08 1.04
ωωe (cm-1) 971 950 938 232 245

RbH

Te (eV) 2.25 2.30

For K2, dispersion effects that correspond to double excitations of core
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electrons in both atoms do not belong to the DDCI space and this affects the shape
of the potential energy curves. This fraction of the correlation energy of the core
electrons cannot be isolated when symmetry-adapted MOs are used and the MP2
calculation of the excluded effects does not ensure sufficient precision in this case
and gives up to 0.4 eV error in De. However, there is very precise experimental

information about the 1
g
+Σ  ground state potential energy curve of K2

82 and the
potential curves of the excited states may be calculated by adding the vertical
transition between the ground state and the excited states to each point of the

experimental1 g
+Σ curve.

Table 4. Spectroscopic constants for some low excited states of K2. IDDCI: IDDCI vertical energy

difference to the 1
g1 +Σ  ground state added to the experimental potential energy curve82. Re,

equilibrium distance; De, dissociation energy; Te, adiabatic excitation energy; ωe, vibrational
constant.

Re (Å) De (eV) Te (eV) ωωe(cm-1)
IDDCI 4.55 0.774 1.366 69.82
CCSD86 4.57 0.760 1.318 72.28
ECP83 4.53 0.781 1.365 70.42

1
u1 ++ΣΣ

Exp84 4.55 0.785 1.377 70.55

IDDCI 5.29 0.038 0.510 28.14
CCSD86 5.29 0.011 0.520 28.65
ECP83 5.73 0.029 0.503 20.81

3
u1 ++ΣΣ

Exp85 5.77 0.032 0.520 21.63

IDDCI 4.25 0.241 1.911 74.58
CCSD86 4.30 0.131 1.948 73.54
ECP83 4.24 0.234 1.912 74.05

1
u1 ΠΠ

Exp82 4.24 0.223 1.906 74.89

IDDCI 3.91 0.938 1.213 92.43
CCSD86 3.91 0.928 1.150 91.82
ECP83 3.88 0.928 1.218 94.80

3
u1 ΠΠ

Exp 84 3.88 0.933 1.229 91.54

As shown in Table 4, the results are in excellent agreement with
experimental data, within 0.02 eV error range, and with accurate ECP calculations
and of better quality than CCSD86 calculations.  The only exception is the
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equilibrium distance for the 3
u1 +Σ  state because of the very flat potential curve of

this state, which gives a dissociation energy lower than 0.04 eV.

5.3. Tetramethyleneethane

The controversial ground state of the tetramethyleneethane (TME)
biradical41, schematically represented below, can also be explained from the same
type of calculation, by adding the vertical IDDCI energy differences to an accurate
calculation of the ground state, at the CAS(2,2)*SDCI level, including ACPF
corrections. A triplet or a singlet ground state has been alternatively proposed as
ground state, depending on the experimental source.

TME

The torsion angle is different at the equilibrium geometries of both states
(90o for the singlet, 45o for the triplet). In our calculations, the singlet state is found
more stable than the triplet one for any conformation, but only 0.3 kcal mol-1 below
the triplet state at the triplet minimum geometry. At this geometry, the singlet and
triplet states can therefore be considered almost degenerate. The spin-orbit
coupling of these states has been determined to be negligible by Michl87. If the
mechanism of the reaction that produces the TME diradical leads to triplet
products, the decay from the triplet to the singlet must be slow. Therefore, the
triplet state can be populated and consequently experimentally observed. In any
case, the S-T energy difference is tuned by the torsion coordinate, to the extent that
the ground state can be modified when the TME is incorporated in a larger
structure that constrains rotationally the diradical.

6. MAGNETIC SYSTEMS

6.1. General aspects

In transition metal polynuclear complexes where the metallic centers are
bridged by large diamagnetic ligands, the weak interaction between the metallic
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centers is dominated by the spin coupling between the unpaired electrons of the
metal through the bridge ligand. This type of interaction may lead to high spin or
low spin ground states, but in general the separation of the different spin multiplets
is very small. The phenomenon is observed in molecular systems as well as in
periodic solids such as cuprates. A lot of bridged metal binuclear compounds with
a wide variety of bridging ligands have been described. Among the metals, Cu(II)
is one of the most frequent and there is a large  variety of bridges of different
structural complexity, among which chloro88, azido89, oxo,  hydroxo90, oxalato91,
etc., are the most simple ones. In general, there is a strong relationship between the
magnetic behaviour and the structural factors such as the metal coordination, the
nature of  the external  ligands,  the  geometrical  structure  of  the   metal-bridge-
metal unity, etc.

In the early 1970s successful qualitative interpretations 92,93 of the magneto-
structural correlations were established for dimeric Cu(II) systems. In the 1980s,
the first quantitative approaches to evaluate the exchange coupling constant also
dealt with copper binuclear complexes. Among these methods, the second-order
perturbative treatment by de Loth et al. for biradicals32 gave reasonable agreement
with experiment for a number of systems. Noodleman's broken symmetry
approach94 was also applied to a number of systems.

The coupling constant is ‘experimentally’ obtained by fitting the
experimental data (magnetic susceptibility, EPR or other) to the microscopic
expression of the observable. The spectrum needed in the partition function is
obtained from the phenomenological Heisenberg Hamiltonian, which expression
for a two center systems is:

1 2
ˆ ˆĤ 2JSS= − [8]

where 1Ŝ and 2Ŝ are the local spin operators and J is the exchange coupling
constant. The energy difference between two states of S and S-1 total spin is given
by:

E(S-1) - E(S) = 2JS [9]

In this formulation, a negative value of the coupling constant indicates
antiferromagnetic coupling (low spin ground state), usually interpreted through
Anderson's95 superexchange mechanism. Other terms may be added to [8] to obtain
better data fitting but only when the contribution of these additional terms becomes
important, i.e., when the energy transitions significantly deviate from expression
[9].
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A consequence of the indirect extraction of J is that, although great
precision is got in the experimental data, the final value depends on the model
adopted to fit the data to and also of the quality of the fitting. This makes it difficult
to precise its error range.

The theoretical estimation of J consists thus in evaluating the energy
difference between states of different multiplicity. The magnetic interaction in
diradicals such as Cu (II) (d9) binuclear complexes leads to two possible states, a
triplet (T) and a singlet (S), and the separation is:

ES - ET = 2J [10]

Parallelly, for Ni (II) (d8) dimmers, the triplet-quintet (Q) difference is given by:
ET - EQ = 4J [11]

DDCI has been applied to a large number of magnetic systems, from the molecular
as well as from the solid state fields. The magneto-structural dependence of the
[L3Cu(µ-C2O4)CuL3]

2+ and [L4Ni(µ-C2O4)NiL4]
2+ complexes are among the recent

applications.

6.2. Oxalato-bridged copper and nickel binuclear complexes

Oxalato-bridged Cu(II) binuclear complexes constitute a very rich family
since there is a wide variety of compounds with different external
ligands91,96,97,98,99,100. Most frequently, copper is pentacoordinated96-100, in
complexes with [(L3)2(µ-C2O4)Cu2]

2+ generic formula where L3 stands for external
ligands, from three monodentate to a single tridentate ligand, usually coordinated
by nitrogen or oxygen centers. In parallel with the volume of experimental
information, theoreticians have also paid attention to the µ-oxalato Cu(II) binuclear
complexes applying different levels of theory and rationalizing the magneto-
structural dependence.92,101,102,103

Pentacoordination is compatible with a large flexibility of the geometry of
the coordinated copper cation. All the structures found are intermediate between
three limit structures, represented in Figure 3. Different types of interaction are
found between the oxalato bridge and the metal centers. The NNOO structure, Fig.
3a), is a square basis pyramid with two oxygen atoms of the ligand coordinated to
the metal; in the TBP trigonal bypiramid structure, Fig. 3b), and the NNNO square
basis pyramid, Fig. 3c), only one oxygen atom is coordinated to the metal. The α
angle allows to summarize the structural differences in a single parameter.
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Several complexes with saturated N-coordinated ligands have been
crystallographically and magnetically characterized96-99. It is accepted that the
external ligands play a limited role in the magnitude of the coupling, provided that
the electronegativity of the ligand and the type of coordination are preserved.
Because of the large size of the external ligands, the DDCI calculations have been
performed36 on a model in which all the nitrogen coordinated ligands are
substituted by NH3 groups, [(NH3)6(µ-C2O4)Cu2]

2+, and the remaining
crystallographic parameters are used. Several centrosymmetric experimental
structures have been considered, and the three limit geometries, represented in
Figure 3, have been added since they have been discussed previously102,104 in the
analysis of the magnetic trends of this family.

Figure 3. Schematic representation of  [(NH3)6(µ-C2O4)Cu2]
2+ structure, in the three limit structures:

a) square basis pyramid,  NNOO; b) trigonal bipyramid, TBP; c) square basis pyramid NNNO.

The basis set includes 2d and 1f functions for the metal, DZP basis set for
the oxalato ligand and DZ basis set for the external ligands. The active space is
generated by two electron and two active orbitals, the symmetry
combinations of the magnetic orbitals.
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Table 5 reports the DDCI results obtained for this family. The NNOO
coordination, with α = 90º, presents the strongest antiferromagnetic coupling and
the NNNO coordination, with α = 180º the weakest one. For the  experimental
structures, the coupling constant has intermediate values, according to α. This
trend has been justified in previous rationalizations based on one electron
arguments102,104, such as the overlap between the oxygen pair orbitals and the metal
magnetic d orbitals, as shown in Figure 3.

Table 5. Structural  dependence of  the magnetic exchange coupling constant, J (cm -1), in [(L3)2(µ-
C2O4)Cu2]

2+ complexes. For the definition of α, see Figure 3. DDCI calculations performed on the
[(NH3)6(µ-C2O4)Cu2]

2+ model.

Structure αα (o) JDDCI JB3LYP Jexp

NNOO 90 -139
TBP 120 -72

NNNO 180 -2
[(Et5dien)2(µ-C2O4)Cu 2](BPh 4)2

a) 130 -38 -81103, b) -37 96,98

[(Et5dien)2(µ-C2O4)Cu 2](PF6)2
a) 153 -13 -1096,98

[(tmen,2-MeIm)2(µ-C2O4)Cu 2](PF6)2
a) 153 -7 -799

[(dien)2 (µ-C2O4)Cu 2](ClO4)2
a) 160 -2 < |-1|97

a) dien = diethylenetriamine, Et5dien = 1,1,4,7,7-pentaethyldiethylenetriamine, tmen = N,N,N',N'-
tetramethylethylenediamine , 2-MeIm = 2-methylimidazole

b) Calculated with Noodleman’s 94 unrestricted broken symmetry method, with J = EBS-ET,   where
BS stands for the broken-symmetry state.

DFT calculations have also been performed103 on a series of complexes of
the same family, with the B3LYP105 functional and the Noodleman’s expression.
When taking into account that the broken symmetry state is approximately midway
between the true singlet and the triplet states, B3LYP overestimates J by a factor of
2. Although the trends are in agreement with the experimental ones, it is a general
fact that DFT methods tend to overestimate the antiferromagnetic coupling because
of the tendency of these methods to overestimate delocalization effects. This trend
is related to a strong delocalization of the spin density, as demonstrated from the
comparison with FCI on models 106. Polarized neutron diffraction experiments on
oxamato and oxamido bridged Mn(II)-Cu(II) compounds107 have given evidence
that DFT predicts too low spin densities on the metal.

The role of the external ligands is a matter of discussion. From one-
electron considerations 108 and DFT calculations103, it has been argued that an
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increase of the σ donor character of the ligands gives rise to a stronger
antiferromagnetic character. The apical nitrogen coordinated group can be
substituted by H2O in near NNOO coordination structures in [(L2,H2O)2(µ-
C2O4)Cu2]

2+ complexes99,109. Since it is not possible to find equivalent structures
with only a different apical ligand and, as shown previously, the magnetic coupling
is extremely sensible to small geometrical differences, DDCI calculations have
been performed on the NNOO model (see Figure 3) with a H2O ligand in the apical
position. From the above discussion, a weaker  antiferromagnetic  coupling was
expected  for  the [(NH3)4(H2O)2(µ-C2O4)Cu2]

2+ complex since H2O is a more
electronegative ligand. However, the DDCI coupling constant, J = -141 cm-1, does
not confirm this hypothesis, and shows that one electron arguments, although often
very useful, have to be used prudently in problems with complex correlation
mechanisms.

Two structures corresponding to crystallographically99,109 characterized
complexes were as well calculated. The influence of the pyramidalization of the
complex in the coupling, schematized in Figure 4 is shown in Table 6.

Figure 4. Schematic representation of the pyramidalization distortion in the [(NH3)4(H2O)2(µ-
C2O4)Cu2]

2+ model

The first result reported in the table is in a reasonable agreement with the
experimental value. As shown by the precedent results with nitrogen coordinated
external ligands, distorsions from the square basis NNOO coordination tend to give
weaker antiferromagnetic coupling, which is in agreement  with the trend shown in
this case. The B3LYP results is overestimated as previously discussed.

The Ni(II) homologues have less versatile structures because of the
almost octahedral coordination of the metal. Two hexacoordinated complexes have
also been calculated, on the [(NH3)8(µ-C2O4)Ni2]

2+ and [(NH3)6(H2O)2(µ-
C2O4)Ni2]

2+ models, following experimental structures108,110.  The DDCI active
space is generated by the magnetic orbitals, i.e. by four electrons in four orbitals.
Table 7 shows that the results are of the same quality as for copper complexes.
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Table 6. Influence of pyramidalization on the magnetic exchange coupling constant, J (cm -1), in
[(L2,H2O)2(µ-C2O4)Cu2]

2+ complexes. For the definition of h, see Figure 4. DDCI calculations
performed on the [(NH3)4(H2O)2(µ-C2O4)Cu2]

2+ model.

Structure h (Å) JDDCI JB3LYP Jexp

[(tmen,H2O)2(µ-C2O4)Cu 2](ClO4)2
a) 0.182 -163 -338103, b) -19399

[(tmen,H2O)2 (µ-C2O4)Cu 2](PF6)2
109, a) 0.208 -143

a) tmen = N,N,N',N'-tetramethylethylenediamine
b) Calculated with Noodleman’s94 unrestricted broken symmetry method, with J = EBS-ET,  where

BS stands for the broken-symmetry state.

Table 7. Exchange coupling constant, J (cm -1), in [(L3,H2O)2(µ-C2O4)Ni2]
2+ complexes. DDCI

calculations performed on the [(NH3)8(µ-C2O4)Ni2]
2+ and the [(NH3)6(H2O)2(µ-C2O4)Ni2]

2+ models.

Structure JDDCI Jexp

[(Me2ciclen)2(µ-C2O4)Ni2](ClO4)2 -11 -17110

[(dien2,H2O)2(µ-C2O4)Ni2]Cl2 
a) -10 -14108

     a) Me2cyclen = 1,7-dimethyl-1,4,7,10-tetraazacyclododecane, dien = diethylenetriamine

Many other magnetic systems have been calculated with DDCI.
Particularly interesting results have been obtained by F. Illas et al. 111,112,113,114,115 in
ionic solids. Since magnetic coupling is a local phenomenon116,117, solids can be
treated with the same level of complexity as molecules by using cluster models,
where the Madelung field of the periodic lattice is conveniently simulated. The
agreement with experiment follows the same trend of accuracy as presented here.

7. CONCLUSIONS AND PERSPECTIVES

As illustrated by the preceding applications, many types of energy
differences can be calculated with DDCI within the highest level of accuracy
obtained at present by quantum chemistry methods that include high level
treatments of correlation. The basic feature of the method consists in including in a
variational CI only the part of the correlation energy that contributes to the energy
difference from a second-order perturbative analysis. Optical vertical and adiabatic
transitions, singlet-triplet gaps and exchange magnetic coupling constants are
obtained with small deviations from experiment. It gives the possibility of using
the method to predict with reliability the behaviour of new systems. In particular,
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magnetic interactions and charge transfer in new materials offer a large field of
applications. Examples of the predictive capacity have been given recently113,114.

Many systems of technological interest have a complex structure and need
very large computation requirements. The active spaces increase very quickly with
the number of active electrons and the dimension of the CI space becomes
unmanageable. Although techniques as Dedicated MOs118 have been proven to be
efficient to truncate the MO set, many systems go beyond the present possibilities.
Different strategies may be explored. One possibility is the selection of the most
relevant configurations of the CAS. This largely reduces the multireference model
spaces and consequently the total space. Another way is to combine variational and
perturbative methods in the DDCI scheme through effective Hamiltonian
techniques. These strategies do not rule out each other. Work is in progress in both
directions.

Finally, although size extensivity error is much smaller than in methods
including a larger part of the correlation energy, it may become significant when a
large number of active electrons are correlated and size-consistency corrections can
probably become very important. The development of new multireference size-
extensive corrections is another important goal to obtain accurate results in
electronically complex systems.
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