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Resumen

Durante la última década y paralelamente al incremento de la velocidad de

computación, las técnicas de simulación molecular se han erigido como una

importante herramienta para la predicción de propiedades fı́sicas de sistemas

de interés industrial. Estas propiedades resultan esenciales en las industrias

quı́mica y petroquı́mica a la hora de diseñar, optimizar, simular o controlar

procesos. El actual coste moderado de computadoras potentes hace que la

simulación molecular se convierta en una excelente opción para proporcionar

predicciones de dichas propiedades. En particular, la capacidad predictiva de

estas técnicas resulta muy importante cuando en los sistemas de interés toman

parte compuestos tóxicos o condiciones extremas de temperatura o presión

debido a la dificultad que entraña la experimentación a dichas condiciones.

La simulación molecular proporciona una alternativa a los modelos ter-

mofı́sicos utilizados habitualmente en la industria como es el caso de las ecua-
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Improvement of Monte Carlo algorithms and intermolecular potentials iv

ciones de estado, modelos de coeficientes de actividad o teorı́as de estados cor-

respondientes, que resultan inadecuados al intentar reproducir propiedades

complejas de fluidos como es el caso de las de fluidos que presentan enlaces

de hidrógeno, polı́meros, etc. En particular, los métodos de Monte Carlo

(MC) constituyen, junto a la dinámica molecular, una de las técnicas de simu-

lación molecular más adecuadas para el cálculo de propiedades termofı́sicas.

Aunque, por contra del caso de la dinámica molecular, los métodos de Monte

Carlo no proporcionan información acerca del proceso molecular o las trayec-

torias moleculares, éstos se centran en el estudio de propiedades de equilib-

rio y constituyen una herramienta, en general, más eficiente para el cálculo

del equilibrio de fases o la consideración de sistemas que presenten elevados

tiempos de relajación debido a su bajos coeficientes de difusión y altas viscosi-

dades.

Los objetivos de esta tesis se centran en el desarrollo y la mejora tanto de

algoritmos de simulación como de potenciales intermoleculares, factor consid-

erado clave para el desarrollo de las técnicas de simulación de Monte Carlo.

En particular, en cuanto a los algoritmos de simulación, la localización de

puntos crı́ticos de una manera precisa ha constituido un problema para los

métodos habitualmente utilizados en el cálculo de equlibrio de fases, como

es el método del colectivo de GIBBS. La aparición de fuertes fluctuaciones de

densidad en la región crı́tica hace imposible obtener datos de simulación en

dicha región, debido al hecho de que las simulaciones son llevadas a cabo

en una caja de simulación de longitud finita que es superada por la longitud

de correlación. Con el fin de proporcionar una ruta adecuada para la local-
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ización de puntos crı́ticos tanto de componentes puros como mezclas bina-

rias, la primera parte de esta tesis está dedicada al desarrollo y aplicación de

métodos adecuados que permitan superar las dificultades encontradas en el

caso de los métodos convencionales. Con este fin se combinan estudios de es-

calado del tamaño de sitema con técnicas de ”Histogram Reweighting” (HR).

La aplicación de estos métodos se ha mostrado recientemente como mucho

mejor fundamentada y precisa para el cálculo de puntos crı́ticos de sistemas

sencillos como es el caso del fluido de Lennard-Jones (LJ). En esta tesis, estas

técnicas han sido combinadas con el objetivo de extender su aplicación a mez-

clas reales de interés industrial. Previamente a su aplicación a dichas mezclas

reales, el fluido de Lennard-Jones, capaz de reproducir el comportamiento de

fluidos sencillos como es el caso de argón o metano, ha sido tomado como

referencia en un paso preliminar.

A partir de simulaciones realizadas en el colectivo gran canónico y recom-

binadas mediante la mencionada técnica de ”Histogram Reweighting” se han

obtenido los diagramas de fases tanto de fluidos puros como de mezclas bi-

narias. A su vez se han localizado con una gran precisión los puntos crı́ticos

de dichos sistemas mediante las técnicas de escalado del tamaño de sistema.

Con el fin de extender la aplicación de dichas técnicas a sistemas multicom-

ponente, se han introducido modificaciones a los métodos de HR evitando

la construcción de histogramas y el consecuente uso de recursos de memo-

ria. Además, se ha introducido una metodologı́a alternativa, conocida como

el cálculo del cumulante de cuarto orden o parametro de Binder, con el fin

de hacer más directa la localización del punto crı́tico. En particular, se pro-
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ponen dos posibilidades, en primer lugar la intersección del parámetro de

Binder para dos tamaños de sistema diferentes, o la intersección del parámetro

de Binder con el valor conocido de la correspondiente clase de universalidad

combinado con estudios de escalado.

Por otro lado, y en un segundo frente, la segunda parte de esta tesis está

dedicada al desarrollo de potenciales intermoleculares capaces de describir las

energı́as inter e intramoleculares de las moléculas involucradas en las simula-

ciones. En la última década se han desarrolldo diferentes modelos de poten-

ciales para una gran variedad de compuestos. Uno de los más comunmente

utilizados para representar hidrocarburos y otras moléculas flexibles es el de

átomos unidos, donde cada grupo quı́mico es representado por un potencial

del tipo de Lennard-Jones. El uso de este tipo de potencial resulta en una

significativa disminución del tiempo de cálculo cuando se compara con mod-

elos que consideran la presencia explı́cita de la totalidad de los átomos. En

particular, el trabajo realizado en esta tesis se centra en el desarrollo de po-

tenciales de átomos unidos anisotrópicos (AUA), que se caracterizan por la

inclusión de un desplazamiento de los centros de Lennard-Jones en dirección

a los hidrógenos de cada grupo, de manera que esta distancia se convierte en

un tercer parámetro ajustable junto a los dos del potencial de Lennard-Jones.

En la segunda parte de esta tesis se han desarrollado potenciales del tipo

AUA-4 para diferentes familias de compuesto que resultan de interés indus-

trial como son los tiofenos, alcanoles y éteres. En el caso de los tiofenos este

interés es debido a las cada vez más exigentes restricciones medioambientales

que obligan a eliminar los compuestos con presencia de azufre. De aquı́ la
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creciente de necesidad de propiedades termodinámicas para esta familia de

compuestos para la cual solo existe una cantidad de datos termodinámicos ex-

perimentales limitada. Con el fin de hacer posible la obtención de dichos datos

a través de la simulación molecular hemos extendido el potencial intermolec-

ular AUA-4 a esta familia de compuestos. En segundo lugar, el uso de los

compuestos oxigenados en el campo de los biocombustibles ha despertado un

importante interés en la industria petroquı́mica por estos compuestos. En par-

ticular, los alcoholes más utilizados en la elaboración de los biocombustibles

son el metanol y el etanol. Como en el caso de los tiofenos, hemos extendido

el potencial AUA-4 a esta familia de compuestos mediante la parametrización

del grupo hidroxil y la inclusión de un grupo de cargas electrostáticas opti-

mizadas de manera que reproduzcan de la mejor manera posible el potencial

electrostático creado por una molecula de referencia en el vacı́o. Finalmente,

y de manera análoga al caso de los alcanoles, el último capı́tulo de esta tesis la

atención se centra en el desarrollo de un potencial AUA-4 capaz de reproducir

cuantitativamente las propiedades de coexistencia de la familia de los éteres,

compuestos que son ampliamente utilizados como solventes.
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Introduction

Parallel with the increase of computer speed, in the last decade, molecu-
lar simulation techniques have emerged as important tools to predict physical
properties of systems of industrial interest. These properties are essential in
the chemical and petrochemical industries in order to perform process design,
optimization, simulation and process control. The actual moderate cost of
powerful computers converts molecular simulation into an excellent tool to
provide predictions of such properties. In particular, the predictive capabil-
ity of molecular simulation techniques becomes very important when dealing
with extreme conditions of temperature and pressure as well as when toxic
compounds are involved in the systems to be studied due to the fact that ex-
perimentation at such extreme conditions is difficult and expensive.

Consequently, alternative processes must be considered in order to obtain
the required properties. Chemical and petrochemical industries have made in-
tensive use of thermophysical models including equations of state [1] [2] [3],
activity coefficients models [4] and corresponding state theories [5]. These pre-
dictions present the advantage of providing good approximations with mini-
mal computational needs. However, these models are often inadequate when
only a limited amount of information is available to determine the necesary
parameters, or when trying to reproduce complex fluid properties such as
that of molecules which exhibit hydrogen bonding, polymers, etc. In addi-
tion, there is no way for dynamical properties to be estimated in a consistent
manner.
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Molecular simulation provides an alternative way to provide equilibrium
and dynamic properties. The term ”molecular simulation” refers to compu-
tational methods in which the molecular structure is explicitly taken into ac-
count and presents the advantage of providing a unified theoretical frame-
work based on statistical mechanics to model fluid properties for industrial
applications. In principle, it is possible to model every kind of molecule at
any temperature or pressure in any mixture. Depending on the type of prob-
lem to be addressed, molecular structure can be specified either at very high
resolution with every single electron, or at coarser levels where the smallest
particles represent atoms or parts of the molecules. In this way molecular sim-
ulation is clearly intimately related with the field of nanotechnology.

In order to calculate thermodynamic properties, one of the main objectives
of this work, only molecular structures at the coarser level are considered, that
is atoms or groups of atoms. To address the calculation of thermophysical
properties, two molecular simulation techniques can be emphasized: molec-
ular dynamics (MD), in which the equations of motion are solved to obtain
equilibrium as well as transport properties [6], and Monte Carlo (MC) simula-
tion which focuses on the equilibrium properties through the use of statistical
methods. Although, unlike molecular dynamics, Monte Carlo techniques do
not provide the user with information about the molecular process or trajec-
tories of the molecules in the system they are generally more efficient for the
calculation of phase equilibria or dealing with systems exhibiting high relax-
ation times, i.e those having low diffusion coefficients and high viscosities.

Despite the fact that since the appearance of the first computers, the growth
of computer speed has been maintained, the applicability of both molecular
dynamics and Monte Carlo simulation is constrained by the maximum num-
ber of particles in the system. Consequently, exploiting the full advantages
of these techniques requires the development and improvement of simula-
tion algorithms, which constitutes a key mission in the development of Monte
Carlo techniques. In particular, the location of critical points is one of the cases
where, despite their simplicity, conventional Monte Carlo techniques like the
Gibbs Ensemble method [7], have difficulties to accurately locate the critical
point. This is due to the strong density fluctuations characterizing the criti-
cal region [8][9]. The divergent correlation length for the energy and density
makes it impossible to obtain directly simulation data in this region, due to
the fact that the simulations are performed in a finite system where the corre-
lation length is cut by the size of the simulation box.
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Although the study of the critical points of mixtures is of great practical
relevance, little work has been done until now. Monte Carlo(MC) simula-
tion has been shown to be an effective tool to study the equilibrium proper-
ties of fluids[10][11] and algorithms such as the Gibbs ensemble Monte Carlo
(GEMC)[7][12], have simplified the determination of phase coexistence prop-
erties. A simple procedure to determine the critical locus consists on applying
scaling laws[13] to the data obtained with the GEMC algorithm. However
this methodology usually results in an overestimation of the critical temper-
ature because of the appearance of the large density fluctuations mentioned
before. Although direct simulations are not possible in the vicinity of the crit-
ical point, molecular simulation adequately represents the near-critical scal-
ing behavior providing a highly effective route to the thermodynamic limit
from simulations of finite size. In this way, finite size scaling studies [14](FSS)
combined with histogram reweighting (HR) techniques [15][16] have been re-
cently shown as much more precise and well founded methodologies for the
calculation of the critical point of simple fluids and binary mixtures such as
the Lennard-Jones (LJ) fluid. The LJ fluid is considered as a reference model
to test and analyze new methodologies and furthermore its use allows to sim-
ulate accurately atomistic fluids, and have been the subject of a number of
theoretical and simulation studies. For instance, Wilding and Bruce[17] used
FSS to estimate the critical constants of the LJ fluid. Also other works have
been done later [18][19] but only Potoff and Panagiotopoulos [20] have ex-
tended the analysis to simple binary mixtures.

In this thesis, the HR and FSS techniques are combined with the main goal
of extending the application of these methodologies to the calculation of the
vapor-liquid equilibrium and critical point of real mixtures. Before apply-
ing the methodologies to the real mixtures of industrial interest, the Lennard-
Jones fluid has been taken as a reference model and as a preliminary step. In
this case, the predictions are affected only by the omnipresent statistical er-
rors, but not by the accuracy of the model chosen to reproduce the behavior of
the real molecules or the interatomic potential [21] used to calculate the con-
figurational energy of the system.

The simulations have been performed in the grand canonical ensemble
(GCMC)using the GIBBS code [22]. Liquid-vapor coexistences curves have
been obtained from HR techniques for pure fluids and binary mixtures, while
critical parameters were obtained from FSS in order to close the phase enve-
lope of the phase diagrams. In order to extend the calculations to multicom-
ponent systems modifications to the conventional HR techniques have been
introduced in order to avoid the construction of histograms and the conse-
quent need for large memory resources. In addition an alternative methodol-
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ogy known as the fourth order cumulant calculation [23], also known as the
Binder parameter, has been implemented to make the location of the critical
point more straightforward. In particular, we propose the use of the fourth
order cumulant calculation considering two different possibilities: either the
intersection of the Binder parameter for two different system sizes or the in-
tersection of the Binder parameter with the known value for the system uni-
versality class combined with a FSS study.

The development of transferable potential models able to describe the in-
ter and intra-molecular energies of the molecules involved in the simulations
constitutes an important field in the improvement of Monte Carlo techniques.
In the last decade, potential models, also referred to as force fields, have been
developed for a wide range of compounds[24, 10, 25]. One of the most com-
mon approaches for modeling hydrocarbons and other flexible molecules is
the use of the united-atoms model, where each chemical group is represented
by one Lennard-Jones center. This scheme results in a significant reduction of
the computational time as compared to all-atoms models since the number of
pair interactions goes as the square of the number of sites. Improvements on
the standard united-atoms model, where typically a 6-12 Lennard-Jones cen-
ter of force is placed on top of the most significant atom, have been proposed.
For instance, Errington et al. have used a Buckingham exp-6 potential [26],
where 3 parameters are involved in each center of force and the repulsive part
of the LJ interaction is replaced by an exponential term. Chen et al. have in-
troduced additional sites on the centers of the C-H bonds[27]. Also, Ungerer
et al. [28] have obtained the AUA 4 model by reparameterizing the initial
Anisotropic United Atom (AUA) model proposed by Toxvaerd[29] [30]. The
AUA model consists of a displacement of the Lennard-Jones centers of force
towards the hydrogen atoms, converting the distance of displacement into a
third adjustable parameter.

In this thesis we have developed AUA 4 intermolecular potentials for three
different families of compounds. The family of ethers is of great importance
due to their applications as solvents. The other two families, thiophenes and
alkanols, play an important roles in the oil and gas industry. Thiophene due
to current and future environmental restrictions and alkanols due ever higher
importance and presence of biofuels in this industry.

In the case of thiophenes, due to the increasing requirements for sulfur
removal from fuel, there has been a constant growth of interest in these com-
pounds in the petroleum industry. The reason for lowering sulfur level in-
clude the environmental effects of acid rain so produced when sulfur com-
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pounds are emitted to the atmosphere, oxidized to sulfur oxides, and later
scavenged by atmospheric precipitation as sulfuric acid. Sulfur containing
molecules must either be removed or converted into hydrocarbons and H2S
in order to accomplish the strict limits in sulfur emissions imposed by the en-
vironmental laws. Since the family of thiophenes is much more resistant than
thiols or sulfides to known conversion processes, adsorption is currently be-
ing considered as an alternative. In particular, the most difficult compounds to
remove from liquid fuels are typically dibenzothiophene(DBT) and its deriva-
tives [31]. Hence, there is a strong need for thermodynamic data for this com-
pound for which only limited vapor-equilibrium data can be found in the lit-
erature. To supply this data, we obtain in Chapter 3 an optimized intermolec-
ular potential for the sulfur group of the thiophene family aimed at giving a
quantitative description of both liquid and coexistence properties, based on
an extension of the AUA 4 intermolecular potentials already given in previ-
ous works[32, 28].

The increasing popularity of the use of oxygenated compounds in the field
of biocombustibles has given rise to a strong interest in the family of alkanols
in the petroleum industry. In particular, the simplest and most commonly
used alcohols in the elaboration of biodiesels are methanol and ethanol. In
Chapter 4, we obtain an optimized intermolecular potential for the hydroxyl
group of the alcohols family aimed at giving a quantitative description of both
liquid and coexistence properties, based on an extension of the AUA 4 inter-
molecular potentials already given in previous works[32, 28]. Several models
have been proposed to investigate the behavior of alkanols [33][34][35] mainly
at ambient temperature and density. Vapor-liquid coexistence curves from
methanol to hexanol have been obtained in [36], by combining the charges of
the OPLS (optimized potential for liquid simulation) force field with the hy-
droxyl group Lennard-Jones (LJ) parameters derived by Van Leeuwen in [37]
and the alkyl groups of the Siepmann-Karaborni-Smit(SKS) [38] force field.
The OPLS force field was found to not to be transferable to high tempera-
tures and longer chains. Despite the model of Van Leeuwen behaves much
better, it requires the methyl groups of the different alcohols to be specifically
readapted. More recently, in 2001 Chen et al [39] have extended the TraPPE
[25](Transferable Potentials for Phase Equilibria) force field to several primary,
secondary and tertiary alcohols. In this work, we obtain an optimized inter-
molecular potential and electrostatic set of charges for the hydroxyl group of
the alcohols family aimed at giving a quantitative description of the coexis-
tence properties, based on an extension of the AUA 4 intermolecular poten-
tials. Our aim is to keep using the same set of LJ parameters for the alkyl
chain as the previously optimized for alkanes, without the need of defining
additional ”pseudo-atoms”.
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Finally in Chapter 5, we devote our attention to the extension of the AUA
4 intermolecular potentials to the family of ethers, which are widely used as
solvents. As in the case of alkanols, a set of electrostatic charges is proposed
to reproduce the electrostatic potential of such compounds prior to the opti-
mization of the oxygen group Lennard-Jones parameters.
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Chapter 1

FUNDAMENTALS

2
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1.1

Statistical Mechanics

Statistical mechanics is primarily concerned with the calculation of properties
of condensed matter sytems. It constitutes the application of statistics, which
includes mathematical tools for dealing with large populations, to the field
of mechanics, which is concerned with the motion of particles or objects when
subjected to a force. It provides a framework for relating the microscopic prop-
erties of individual atoms and molecules to the macroscopic or bulk proper-
ties of materials that can be observed in everyday life, therefore explaining
thermodynamics as a natural result of statistics and mechanics (classical and
quantum) at the microscopic level. Instead of looking for exact solutions, we
deal with the probabilities of the system being in one state or another, hence
the name statistical mechanics. The fundamental postulate in statistical me-
chanics (also known as the equal a priori probability postulate) holds the fol-
lowing:

Given an isolated system in equilibrium, it is found with equal probability
in each of its accessible microstates.

This postulate is a fundamental assumption in statistical mechanics. It
states that a system in equilibrium does not have any preference for any of
its available microstates. Given Ω microstates at a particular energy, the prob-
ability of finding the system in a particular microstate is

p = 1/Ω (1.1)

This postulate is necessary because it allows one to conclude that for a sys-
tem at equilibrium, the thermodynamic state (macrostate) which could result
from the largest number of microstates is also the most probable macrostate
of the system.

1.2

Statistical Thermodynamics

Statistical thermodynamics is based on the fundamental assumption that all
possible configurations of a given system, which satisfy the given boundary
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Improvement of Monte Carlo algorithms and intermolecular potentials 4

conditions such as energy, volume and number of particles, are equally likely
to occur. The overall system will therefore be in the statistically most proba-
ble configuration. Statistical thermodynamics is the study of the microscopic
behavior of thermodynamic systems using probability theory. Statistical ther-
modynamics, generally, provides a molecular level interpretation of thermo-
dynamic quantities such as work, heat, free energy, and entropy. The goal of
statistical thermodynamics is to understand and to interpret the measurable
macroscopic properties of materials in terms of the properties of their con-
stituent particles and the interactions between them.

This is done by connecting thermodynamic functions to quantum-mechanic
equations. As an example, from a classical thermodynamics point of view we
might ask what is it about a thermodynamic system of gas molecules, such
as methane CH4, that determines the free energy characteristic of that com-
pound? Classical thermodynamics does not provide the answer. If, for exam-
ple, we were given spectroscopic data, of this body of gas molecules, such as
bond length, bond angle, bond rotation, and flexibility of the bonds in CH4

we should see that the free energy could not be other than it is. To prove
this true, we need to bridge the gap between the microscopic realm of atoms
and molecules and the macroscopic realm of classical thermodynamics. From
physics, statistical mechanics provides such a bridge by teaching us how to
conceive of a thermodynamic system as an assembly of units. More specifi-
cally, it demonstrates how the thermodynamic parameters of a system, such
as temperature and pressure, are interpretable in terms of the parameters de-
scriptive of such constituent atoms and molecules.

1.3

Statistical Ensembles

1.3.1

Canonical Ensemble

In the canonical ensemble, also known as the NVT ensemble, the number of
particles, volume and temperature are fixed for all systems belonging to the
same ensemble. Temperature is fixed by bringing the different systems in con-
tact with a large heat bath. The quantity

Q(N, V, T ) ≡ 1

N !h3N

∫
d−→r d−→p e−E(−→r ,−→p )/kBT (1.2)
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Improvement of Monte Carlo algorithms and intermolecular potentials 5

is called the canonical partition function. Taking into account that the total en-
ergy of the system can be also expressed as a sum of the kinetic and potential
contributions, it can be also written as the product of the kinetic (ideal gas)
and potential(excess) parts:

Q(N, V, T ) = Qid
NV T Qex

NV T (1.3)

where for an atomic system:

Qid
NV T =

V N

N !Λ3N
(1.4)

being Λ the thermal de Broglie wavelength:

Λ2 =
h2

2πmkT
(1.5)

For the excess part, we can write:

Qex
NV T =

1

V N

∫
d−→r e−U(−→r )/kBT (1.6)

First of all, the partition function is a normalizing factor in the calculation
of averages over the canonical ensemble. For example, the internal energy
may be written as

U ≡ 〈E〉 =
1

Q(N, V, T )

1

N !h3N

∫
d−→r d−→p Ee−E(−→r ,−→p )/kBT (1.7)

But the great practical importance of the partition function stems from its
close relation to Helmholtz free energy A(N, V, T ), which itself is a central
object of thermodynamics. The relation between the two is

Q(N, V, T ) = e−βA(N,V,T ) (1.8)
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Improvement of Monte Carlo algorithms and intermolecular potentials 6

where β ≡ 1/kT . We can prove this from the identity dlnx/dx = 1/x and
the chain rule for differentiation, we then see that Eqn. 1.7 implies

U ≡ 〈E〉 = −


 ∂

∂
1

kT

ln
1

N !h3N

∫
d−→r d−→p e−E(−→r ,−→p )/kBT




V,N

(1.9)

The argument of the logarithm in Eqn. 1.9 is the partition function defined
in Eqn. 1.2. Equation 1.9 is then

U = −k

[
∂lnQ(N, V, T )

∂(1/T )

]

V,N

(1.10)

The last expression can be compared with the Gibbs-HelmHoltz equation
of thermodynamics:

U =

[
∂(A/T )

∂(1/T )

]

V,N

(1.11)

where A is the HelmHoltz free energy. This lead us to the next expression
relating the free energy A and the partition function Q(N, V, T )

A = −kT lnQ(N, V, T ) + Tφ(V, N) (1.12)

where φ(V, N) is an unknown function of those variables that are fixed in
the differentiations in Eqns. 1.9 and 1.11. In [40] it is shown that φ is inde-
pendent of the volume and it is associated with an arbitrary choice for the
zero of entropy. Following the universally accepted convention of taking that
arbitrary function of N to be zero we obtain:

A = −kT lnQ(N, V, T ) (1.13)

All other thermodynamic quantities may now be obtained from A(N, V, T ).
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Improvement of Monte Carlo algorithms and intermolecular potentials 7

For instance, the pressure is given by

P = −
(

∂A

∂V

)

T

(1.14)

Similarly, entropy and Gibbs’ free energy are calculated from

S = −
(

∂A

∂T

)

V

and G = A + PV (1.15)

1.3.2

Grand Canonical Ensemble

In the grand canonical ensemble, once again a small system is put in contact
wit a large one. However, this time we do not only permit the exchange of
energy but also the crossing over of particles from one subsystem to the other.

As before, we can write down the probability density in the phase space of
the smaller system; it depends now both on the number of particles N and on
{~ri, ~pi; i = 1, . . .N}, as follows:

p(~r, ~p; N) ∝ eµN/kT e−E(~r,~p)/kT (1.16)

Summing this density over all possible values of N and integrating - at
each N - over all {~ri, ~pi; i = 1, . . .N} we obtain the grand partition function

Ξ(µ, V, T ) ≡
∞∑

N=0

eNµ/kT Q(N, V, T ) (1.17)

The appropriate thermodynamic function in this case is PV :

PV = kT lnΞ(µ, V, T ) (1.18)

1.3.3

Isothermal-Isobaric (NPT) Ensemble

In the isothermal-isobaric ensemble the probability density is proportional to
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Improvement of Monte Carlo algorithms and intermolecular potentials 8

p(~r, ~p; N) ∝ e−(E(~r,~p)+PV )/kT (1.19)

The quantity appearing in the exponent, when averaged, gives the thermo-
dynamic enthalpy H = 〈E(~r, ~p)〉+P 〈V 〉. In this case the appropriate partition
function is:

Q(N, P, T ) =
∑

Γ

∑

V

e−(E(~r,~p)+PV )/kT =
∑

V

e−PV/kT QN,V,T (1.20)

where the volume has now joined the list of microscopic quantities com-
prising the state point Γ. That is why the partition function includes the sum-
mation over all possible volumes:

This summation can also be written as an integral, choosing some basic
unit V0 to make Q(N, P, T ) dimensionless. Finally, in quasi-classical form we
can write for an atomic system:

Q(N, P, T ) =
1

N !

1

h3N

1

V0

∫
dV

∫
drdpe−(E(~r,~p)+PV )/kT (1.21)

The Gibbs free energy G is in this case the corresponding thermodynamic
function:

1.3.4

Gibbs Ensemble

In molecular simulation, first-order phase transitions are often located by com-
puting the thermodynamic properties of the individual phases, then finding
the point where the temperature, pressure and chemical potentials of both
phases are equal. This way of proceeding has the limitation that the two co-
existing phases have a relatively large fraction of particles residing in or near
the interface which divides both phases. The fraction of particles in the in-
terface depends on the system size which forces the use of large systems if
accurate equilibrium properties are required. Unfortunately, for such large
systems, long equilibration times are needed, not only because the systems
contain many particles, but also because equilibration times in two-phase sys-
tems tend to be longer than those in homogeneous systems. That is why in the
mid-1980s Panagiotopoulos [7] devised a new computational method, usually
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Improvement of Monte Carlo algorithms and intermolecular potentials 9

referred to as the Gibbs ensemble method which resulted in a very significant re-
duction of the computational time and became at present the most used tech-
nique to study vapor-liquid and liquid-liquid equilibria.

The success of the Gibbs ensemble method relies on the possibility of ex-
changing particles between the two coexisting phases which are simulated in
different boxes. Particularly, the main disadvantage of this method appears,
as in the case of the Grand Canonical ensemble, when the efficiency of these
insertions decreases, being not very efficient at low temperatures or for very
dense liquid phases.

The necessary condition for the coexistence of two or more phases I, II, . . .
is the equality of pressures PI = PII = . . . = P , temperatures TI = TII =
. . . = T and chemical potentials of all species µα

I = µα
II = . . . = µα. Although

one could think that the best ensemble to simulate phase equilibria would be
at constant chemical potential, pressure and temperature, this ensemble does
not exist because only intensive parameters are fixed. This means that the ex-
tensive parameters are unbounded. As we have seen in previous sections, this
variable is the total number of particles N in the case of the isothermal-isobaric
ensemble or the volume V in the grand canonical ensemble. The reason why
the Gibbs ensemble is able to simulate phase equilibria, is that despite the
differences between chemical potentials in the different phases ∆µ = 0, the
absolute values are not determined.

The Gibbs ensemble method can be derived following the same approach
developed in the previous sections. We focus on the version of the Gibbs en-
semble where the total number of particles and total volumes are fixed; that
is, the total system is at N, V, T conditions. The description of the alternative
N, P, T version can be found in [41]

For a system of N particles distributed over two volumes V1 and V2 = V −
V1, we can write the expression for the partition function where the particles
interact with each other in volume 1 but behave like an ideal gas in volume 2:

Q(N, V1, V2, T ) =

N∑

n1=0

∫
dsN−n1

2

∫
dsn1

1 exp[−βU(sn1

1 )]
(1.22)

Now we consider the case that the particles in both volumes are subject
to the same intermolecular interactions and that the volumes V1 and V2 can

UNIVERSITAT ROVIRA I VIRGILI 
IMPROVEMENT OF MONTE CARLO ALGORITHMS AND INTERMOLECULAR POTENCIALS FOR THE MODELLING OF 
ALKANOLS, ESTHERS, TRIOPHENES AND AROMATICS 
Javier Pérez Pellitero 
ISBN: 978-84-691-0377-7/DL: T.2195-2007  
 



Improvement of Monte Carlo algorithms and intermolecular potentials 10

Figure 1.1: Scheme of the Gibbs ensemble method in which two systems can exchange both

volume and particles in such a way that the total volume V and the total number of particles N

are conserved

change subject to the restriction that the sum of the volumes V = V1 + V2 re-
mains constant, where the two volumes correspond to those of the simulation
boxes which are schematically shown in figure 1.1. In this case, we have to
integrate over the volume V1 which gives the next expression for the partition
function [42] [43]:

QGIBBS(N, V, T ) ≡
N∑

n1=0

1

V Λ3Nn1!(N − n1)!

∫ V

0

dV1V
n1

1 (V − V1)
N−n1×

×
∫

dsn1

1 exp[−βU(sn1

1 )]

∫
dsN−n1

2 exp[−βU(sN−n1

2 )]

(1.23)

According to these expressions it follows that the probability of finding a
configuration with n1 particles in box 1 with a volume V1 and positions sn1

1

and sN−n1

2 is given by:

p(n1, V1, s
n1

1 , sN−n1

2 ) ∝
V

N1(V −V1)N−n1

1

n1!(N − n1)!
exp

(
−β[U(sn1

1 ) + U(sN−n1

2 )]
) (1.24)
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Improvement of Monte Carlo algorithms and intermolecular potentials 11

1.4

Monte Carlo methods

Monte Carlo methods are a widely used class of computational algorithms for
simulating the behavior of various physical and mathematical systems, and
for other computations. They are distinguished from other simulation meth-
ods (such as molecular dynamics) by being stochastic, that is nondeterministic
by using random or pseudo-random numbers as opposed to deterministic al-
gorithms.

Monte Carlo simulation methods are especially useful in studying sys-
tems with a large number of coupled degrees of freedom, such as liquids,
disordered materials, strongly coupled solids, and cellular structures. More
broadly, Monte Carlo methods are useful for modeling phenomena with sig-
nificant uncertainty in inputs, such as the calculation of risk in business. A
classic use is for the evaluation of definite integrals, particularly multidimen-
sional integrals with complicated boundary conditions.

1.4.1

Monte Carlo integration

In mathematics, Monte Carlo (MC) integration is numerical quadrature us-
ing pseudo-random numbers. That is, Monte Carlo integration methods are
algorithms for the approximate evaluation of definite integrals, usually mul-
tidimensional ones. The usual algorithms evaluate the integrand at a regular
grid. Monte Carlo methods, however, randomly choose the points at which
the integrand is evaluated.

The traditional Monte Carlo algorithm distributes the evaluation points
uniformly over the integration region.

The algorithm computes an estimate of a multidimensional definite inte-
gral of the form,

I =

∫ xu

xl

∫ yu

yl

f(x, y, . . .) dx dy . . . =

∫

V

f(x, y, . . .) dx dy . . . (1.25)

over the hypercube with volume V defined by .(x, y, ...)|xl ≤ x ≤ xu, yl ≤
y ≤ yu, ... The basic Monte Carlo algorithm samples points uniformly from
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Improvement of Monte Carlo algorithms and intermolecular potentials 12

the integration region to estimate the integral and its error. Suppose that the
sample has size N and denote the points in the sample by x1, ..., xN . Then the
estimate for the integral is given by

E(f ; N) = V · 〈f〉 = V
1

imax

imax∑

i=1

f(xi), (1.26)

where 〈f〉 denotes the sample mean of the integrand.

The variance in this result can be estimated using

σ2(E; N) =
V

N

N∑

i=1

(f(xi) − 〈f〉)2. (1.27)

The configurational integral of the canonical ensemble Z(N, V, T ) =∫
drexp(−βE(r)) can be estimated using

Z(N, V, T ) ≈ V N

imax

imax∑

i=1

exp(−βE(i)) (1.28)

In our case, for thermodynamic type functions, the use of conventional
sample mean integration would result in having a large number of the trials
that give a very small contribution to the average. An accurate estimation
of Z(N, V, T ) for a dense liquid using a uniform sample mean method is be-
yond the capabilities of current computers as well as for the foreseeable future.
However the problem can be solved using a sample mean integration where
the random coordinates are chosen from a non-uniform distribution. In this
way, techniques such as importance sampling are used to improve the results
of the basic Monte Carlo algorithm

1.4.2

Importance sampling

Importance sampling techniques choose random configurations from a dis-
tribution ρ(x) which allows the function evaluation to be concentrated in the
region of space that makes a significant contribution to the integral. If we
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Improvement of Monte Carlo algorithms and intermolecular potentials 13

consider the canonical ensemble, the desired integral is:

〈A〉NV T =

∫
drdpρNV T (~r, ~p)A(~r, ~p) (1.29)

being the integrand f = ρNV T A. We can estimate the integral by choosing
configurations at random from a chosen distribution ρ using:

〈A〉NV T =

〈
AρNV T

ρ

〉

trials

(1.30)

For most fuctions A(dr, dp), the integrand is significant only where the dis-
tribution of the ensemble ρNV T is significant. Then choosing ρ = ρNV T gives
a good estimate of the integral. In this case we can write:

〈A〉NV T = 〈A〉trials (1.31)

The difficulty lies now in how to generate a sequence of configurations so
that by the end of the simulation each state has been generated with the ap-
propriate probability. To do that, we use a Markov chain constructed in a way
that its limiting distribution is ρNV T . A Markov chain is a generated sequence
of trials satisfying the condition that the outcome of each trial depends only
on the outcome of the previous trial. In natural systems, the physical variables
take values according to the thermodynamic conditions of the system and the
imposed constraints. There are different forms to generate these sequences of
configurations, the most well known and popular is the Metropolis method,
which is described in the next section:

1.4.3

The Metropolis method

The basic principle of the Metropolis method is to find the transition proba-
bility π(o → n) of taking the system from an old state o into any new state n.
Supposing that the probability of finding the system in a state o is ρ(o) and
ρ(n) for the state n, at the equilibrium the condition of detailed balance must
be satisfied:
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Improvement of Monte Carlo algorithms and intermolecular potentials 14

ρ(o)π(o → n) = ρ(n)π(n → o) (1.32)

Metropolis et al suggested the first scheme to generate a suitable trajectory
in the canonical ensemble. This solution is often known as the asymmetrical
solution. This solution considers two cases for two different states o and n.

πon = αon ρn ≥ ρo o 6= n (1.33)

πon = αon
ρn

ρo
ρn < ρo o 6= n (1.34)

where αon is also known as the underlying matrix of the Markov chain

If the system remains in the same state:

πoo = 1 −
∑

n6=o

πon (1.35)

The procedure to apply the Metropolis method is described next:

• In order to change the configuration of the system, a random movement
is generated. For instance, a given atom i is chosen randomly and dis-
placed from its position ro

i to a new position rn
i chosen with equal prob-

ability inside a given volume V

• The appropriate element of the transition matrix depends on the relative
probabilities of the initial and final states o and n. According to eqns 1.33
and 1.34, we consider two cases depending on the difference in configu-
rational energy ∆U = Un − Uo:

– If ∆U ≤ 0 then the probability of the new state n is greater than
the probability of the old state o. Eqn 1.33 applies and the new
configuration is accepted

– If ∆U > 0 then the probability of the new state n is lower than the
probability of the old state o. Eqn 1.34 applies and the new con-
figuration is accepted with a probability ρn/ρo by comparing this
value with a number generated at random ξ in the interval (0,1). If

UNIVERSITAT ROVIRA I VIRGILI 
IMPROVEMENT OF MONTE CARLO ALGORITHMS AND INTERMOLECULAR POTENCIALS FOR THE MODELLING OF 
ALKANOLS, ESTHERS, TRIOPHENES AND AROMATICS 
Javier Pérez Pellitero 
ISBN: 978-84-691-0377-7/DL: T.2195-2007  
 



Improvement of Monte Carlo algorithms and intermolecular potentials 15

the new configuration is rejected the atom remains in the old po-
sition and the old configuration is recounted as a new state in the
sequence of generated configurations.

A new configuration is generated while the average values of the differ-
ent physical variables are calculated according to:

〈A〉 =
1

N

N∑

i=1

A(Γi) (1.36)

where N is the total number of configurations generated during the sim-
ulation and A(Γi) the value of the physical property A at the configura-
tion i.

The Metropolis method ensures that the different configurations are gen-
erated according to the appropriate probabilities of these configurations. The
algorithm makes use of a specific acceptance probabilty for each of the differ-
ent ensembles as will be explained in the next section:

1.5

Simulations in the different ensembles

1.5.1

Simulations in the Canonical Ensemble

As described in section 1.3.1 in the canonical ensemble, the total volume V ,
number of particles N and temperature T are fixed by bringing the system in
contact with a thermal bath. A scheme of this ensemble is shown in figure 1.2.

As can be inferred from eqn 1.6, in the canonical ensemble the probability
of a given configuration Γi is given by:

ρNV T (ri) ∝ e−βUi (1.37)

To generate the appropriate sequence of configurations in the canonical
ensemble:
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Improvement of Monte Carlo algorithms and intermolecular potentials 16

Figure 1.2: Scheme of the Canonical ensemble

• The energy Uo of the initial configuration o is calculated and then a par-
ticle of the system i is selected randomly

• A random displacement is proposed for the selected particle in the new
configuration n according to:

rn
i = ro

i + δrmax(2ξ − 1) (1.38)

where δrmax is the maximum displacement allowed and ξ a random
number generate uniformly in the interval (0,1).

• The energy of the new configuration n is calculated and the movement
accepted or rejected according to the ratio between the probabilities of
both configurations. In the canonical ensemble, this ratio can be ex-
pressed as:

ρn

ρo
=

Q(NV T )−1e(−βUn)

Q(NV T )−1e(−βUo)
= e[−β(Un−Uo)] = e(−βδUon) (1.39)

where δUon is the energy difference between the old state o and the new
state n.
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1.5.2

Simulations in the Grand Canonical Ensemble

According to eqn. 1.17, in the case of the Grand Canonical ensemble the prob-
ability of a given configuration ΓN,i is:

ρµV T (ΓN,i) ∝
V Ne(βµN )

Λ3NN !
e−βUi (1.40)

The probability distribution is then sampled by means of three different
movements:

• Displacement of a particle. In this case the movememt is accepted with
a probabilty equal to eqn 1.39

• Destruction of a particle. In this case the ratio of the probabilities of the
new state n with N particles and the old state o with N − 1 particles is:

ρn

ρo
= e−βδUone−βµ NΛ3

V
(1.41)

• Insertion of a particle. Now the ratio between the probabilities of the
new state n with N + 1 particles and the old state o with N particles is

ρn

ρo
= e−βδUoneβµ V

(N + 1)Λ3
(1.42)

1.5.3

Simulations in the Isobaric-Isothermal (NPT)

Ensemble

As can be inferred from eqn. 1.21 in the case of the isobaric-isothermal ensem-
ble, the Metropolis method is implemented by generating a Markov chain of
states which has a limiting distribution proportional to:

e−β(PV +U(si))+nlnV
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Improvement of Monte Carlo algorithms and intermolecular potentials 18

where s = (s1, s2, . . . , sn) is the set of scaled coordinates:

s =
r

L

and L = V 1/3. To generate the appropriate sequence of configurations in
the isobaric-isothermal ensemble, two different moves are considered:

• Displacement of a particle. In this case the movememt is accepted with
a probabilty equal to eqn 1.39

• Introduction of a volume change . In this case the ratio of the proba-
bilities of the new state with volume Vn with N and the old state with
volume Vo is:

ρn

ρo
= e

−

2

4β[(U(sn,Vn)−U(so,Vo)+P (Vn−Vo)]−Nln

0

@

Vn

Vo

1

A

3

5

(1.43)

1.5.4

Simulations in the Gibbs Ensemble

To sample correctly all possible configurations of two systems that can ex-
change volume and particles, the next trial moves can be proposed according
to equation 1.23. They are schematically shown in figure 1.3:

• Displacement of a randomly selected particle: in this case the acceptance
rule is identical to that used in a conventional NVT ensemble simulation
and the displacement is accepted with a probability according to eqn.
1.39

• Change of the volume of the boxes so that the total volume of the two
boxes remains constant. In this case, for a change of the volume of box
1 by an amount ∆V , V n

1 = V o
1 + ∆V , the ratio of the probabilities of the

new state with volume V n
1 and the old state with volume V o

1 is:

ρn

ρo
= e−[β[(U(sN

n )−U(sN
o )]] (V

n
1 )n1(V − V n

1 )N−n1

(V o
1 )n1(V − V o

1 )N−n1

(1.44)
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Figure 1.3: Monte Carlo steps in the Gibbs ensemble method: particle displacement, volume

exchange and exchange of particles
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• Transfer of a particle from one box to the other. When a new configura-
tion n is generated from an old one o by removing a particle from box 1
and inserting it in box 2, the ratio between the probabilities of the states
o and n is given by:

ρn

ρo
= e−[β[(U(sN

n )−U(sN
o )]] n1(V − V1)

V1(N − n1 + 1)
(1.45)

1.6

Histogram Reweighting

The histogram reweighting technique (HR) has been widely used to compute
phase diagrams and free energies of different fluids [11]. We have used HR to
calculate the VLE and also to facilitate the prediction of the critical constants
by means of the FSS techniques which will be explained later in detail. The
technique was introduced by Ferrenberg and Swendsen [15][16] and is based
on the fact that a single simulation can give information about the proper-
ties of nearby state points. In the original formulation of the methodology,
histograms at different conditions from different simulations are combined
to improve the statistics extending the range of applicability of the method.
During the GCMC simulation we collect information in multiple uncorrelated
states by recording the potential energy U of the system as well as the number
of particles of each compound N1and N2. Even though the original formula-
tion considers the construction of multiple histograms ,as we will see later in
this work, the construction of a conventional histogram can be avoided, which
opens the possibility of easily extending the methodology to multicomponent
systems. Histogram reweighting techniques can be divided in ”single” and
”multiple” histogram reweighting depending on if we are combining more
than a single histogram. In the next sections, both methodologies are de-
scribed:

1.6.1

Simple Histogram Reweighting

For the shake of simplicity, we start deriving the simple histogram reweight-
ing methodology for the canonical ensemble, this means that the methodology
is applied in a single dimension. Then, it will be extended to the grand canon-
ical ensemble due to the fact that the aplication of HR methodologies to this
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ensemble results particularly interesting for the phase equilibria calculation as
well as critical point location.

While the general procedure in a MC simulation is to record the average
values of the thermophisical properties of interest in the system, in this case
we also construct a histogram where we record the number of times H(Ei)
that the system visits a given energy Ei. Because the simulation generates con-
figurations according to the equilibrium probability distribution, a histogram
H(Ei) of energy values provides an estimate for the equilibrium probability
distribution; this estimate becomes exact in the limit of an infinite-length sim-
ulation. For a real simulation, the histogram will suffer from statistical errors,
but H(Ei)/N , where N is the number of observations made, still provides an
estimate for the probability over the range of energy values generated dur-
ing the run. Thus, in the canonical ensemble, the probability of observing the
system at a given energy for a given number of particles, temperature and
volume is given by:

P (Ei; N, V, β) =
Ω(N, V, E) exp(−βEi)

Q(N, V, β)
(1.46)

where Ω(N, V, E) is the density of states. This probability can be estimated
at a certain inverse temperature β0 by constructing a histogram by means of
the next expression:

P (Ei; N, V, β0) =
Ω(N, V, E) exp(−β0Ei)

Q(N, V, β0)
=

H(Ei)

N (1.47)

where Ω(N, V, E) is an estimate for the true density of states Ω(N, V, E)
obtained at β0. Knowledge of the exact distribution at one value of β0 is thus
sufficient to determine the density of states for any different β

If we now replace Ω(N, V, E) in Eqn. 1.46 with the expression for Ω(N, V, E)
from Eqn. 1.47, and normalize the distribution, we find that the relationships
between the histogram measured at β = β0 and the (estimated) probability
ditribution for an arbitrary β is given by:

P (Ei; N, V, β) =
H(Ei)exp(β0−β)Ei

∑
H(Ei)exp(β0−β)Ei

(1.48)
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From this expression, the average value of any function of Ei, denoted
f(Ei) can be calculated as a continuous function of β:

〈f(Ei)〉β =
∑

f(Ei)P (Ei; N, V, β) (1.49)

The ability to continuously vary β makes the histogram method ideal to
study critical behavior.

1.6.2

Multiple Histogram Reweighting

We can write the partition function of the grand canonical ensemble Ξ as:

Ξ(µC , V, β) =
∑

N

∑

U

Ω(NC , V, U) × exp(β(
∑

C

µCNC − U)) (1.50)

being µc the chemical potential of each component, V the volume of the
system, β the inverse temperature and Ω(Ni, V, T ) the microcanonical density
of states. For the case of the real components, the temperature dependance
on the de Broglie wavelength does not affect neither the calculation of the
vapor-liquid equilibrium nor the pressure calculation, since they are done at
constant temperature. The probability of observing the system at a given state
for a given temperature, volume and chemical potential is:

P (NC , U ; µC , V, β) =

Ω(NC , U) × exp(β
∑

C(µCNC − U))

Ξ(µC , V, β)
=

H(U, NC)

N

(1.51)

where H(Nc, U) is the value of the hypothetical histogram constructed and
N is the total number of observations recorded during the simulation. Since
the microcanonical density of states is independent of β and µc, simulations
at different values of β and µc but constant total volume of the system will
provide different estimates for Ω. Generally, it is not possible to cover all the
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thermodynamic states of interest from a single simulation. Multiple simula-
tions at different conditions are needed in order to generate data which will be
reweighted according to the methodology outlined by Ferrenberg and Swend-
sen to form a joint probability which can be extended to the conditions of in-
terest. This probability is given by:

P (NC , U ; µC , V, β) =
∑K

j=1 Hj(NC , U) exp(β
∑

C(µCNC − U))
∑K

j=1 Nj exp(βj(
∑

c µcjNc − U)) × Ξ(µC , V, β)/Ξ(µCj , V, βj)

(1.52)

where K is the total number of simulations performed. To determine the
values for each of the K−1 independent ratios Ξi/Ξj between the local Grand
Partition functions we fix β = βi and µc = µci where i denotes one of the K
simulations. Finally we sum Eq (3.1) over all Nc and U to obtain:

1 =

∑

U

∑

NC

∑K
j=1 Hj(NC , U) exp(βi(

∑
C µCNC − U))

∑K
j=1 Njexp(βj(

∑
C µCjNC − U)) × Ξ(µCi, V, βi)/Ξ(µCj , V, βj)

(1.53)

The values for the constants Ξi/Ξj are obtained by iterating Eqns. (1.52)
and (1.53) specifying arbitrarily the value of Ξ at one of the K runs. As men-
tioned before and according to [44], the construction of a real histogram is not
necessary since the previous expression can be rewritten as:

1 =

∑

U,NC

∑K
j=1 Hj(NC , U)

∑K
j=1 Njexp((βi − βj)U +

∑
C(βjµCj − βiµCi)NC)) × Ξi/Ξj

=

K∑

j=1

∑

,U,NC

Hj(NC , U)
∑K

j=1 Njexp((βi − βj)U +
∑

C(βjµCj − βiµCi)NC)) × Ξi/Ξj

=

K∑

j=1

∑

s

1
∑K

j=1 Njexp((βi − βj)Ujs +
∑

C(βjµCj − βiµCi)NCs)) × Ξi/Ξj

(1.54)
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where the sum over s is over all the states sampled during the jth sim-
ulation and Ujs is the configurational energy of such a state. Basically, the
summation first over energies and number of molecules and then over simu-
lations is replaced with a summation over each simulation, i, and then over
the states in that simulation, s. This has the advantage of allowing us to work
directly with the raw data generated from the simulations making use of all
the available information and avoids the need to store histograms.

In appendix Appendix-1 we show the complete derivation of the multiple
histogram reweighting expression as well as the effect of the presence of the
temperature in the De Broglie wavelength.

1.7

Critical Point calculation

1.7.1

Critical Point Phenomena

In this section, we provide the reader with a brief description of the near crit-
ical region. Although a wide variety of physical systems exhibit critical phe-
nomena, we will concentrate on the liquid gas transition for the shake of sim-
plicity.

In physical chemistry, thermodynamics, chemistry and condensed matter
physics, a critical point, also called a critical state, specifies the conditions
(temperature, pressure) at which the liquid state of the matter ceases to exist.
In the projection onto the PT plane of the phase diagram shown schemati-
cally in figure 1.4, three separate regions can be appreciated corresponding
to the three phases of matter: solid, liquid and gaseous phases. The solid
and gas phases are in equilibrium along the sublimation curve, the solid and
liquid phases are in equilibrium along the fusion curve, and the liquid and
gaseous phase along the vapor pressure curve. Each point on these three
curves represents an equilibrium state in which two or more phases can co-
exist. We notice however that the phase boundary between liquid and gas
does not continue indefinitely. Instead, it terminates at a point on the phase
diagram called the critical point, whose coordinates denoted by (Pc, ρc and
Tc) are critical pressure, critical density and critical temperature respectively.
This reflects the fact that, at extremely high temperatures and pressures, the
liquid and gaseous phases become indistinguishable. As a liquid is heated, its
density decreases while the pressure and density of the vapor being formed in-
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Figure 1.4: Schematical projection of the PVT surface in the PT plane

creases. The liquid and vapor densities become closer and closer to each other
until the critical temperature is reached where the two densities are equal and
the liquid-gas line or phase boundary disappears. Additionally, as the equi-
librium between liquid and gas approaches the critical point, the heat of va-
porization approaches zero, becoming zero at and beyond the critical point.
More generally, the critical point is the point of termination of a phase equilib-
rium curve, which separates two distinct phases. At this point, the phases are
no longer distinguishable. The critical point in a phase diagram is at the high-
temperature extreme of the liquid-gas phase boundary. The fact that the vapor
pressure curve terminates in a critical point was not appreciated until about a
hundred years ago Prior to that time, scientists regarded certain gases as being
”permanent” in the sense that these gases could not be made to condense no
matter how much pressure was applied.

In addition to the PT projection, it is also useful to consider the projection
into the Pρ plane. This is shown schematically in figure 1.5 where we can
appreciate that at low temperatures there is a rather large difference between
the liquid and gas densities, ρL and ρG, but as the critical temperature is ap-
proached this density difference tends to zero. The existence of such a quan-
tity will be seen to be a common feature associated with the critical points of
many different physical systems. In particular, we say that ρL −ρG is the order
parameter for the liquid-gas critical point since it indicates the degree of order
of the system.

The critical point in a phase diagram is at the high-temperature extreme of
the liquid-gas phase boundary.

.
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Figure 1.5: Schematical projection of the PVT surface in the Pρ plane

Critical variables are useful for rewriting a equation of state into one that
applies to all materials. The effect is similar to a normalizing constant.

1.7.2

The Law of Corresponding States

The equations of state of different real gases are nearly the same if expressed
in reduced temperatures, pressures and volumes.

Tr =
T

Tc
(1.55)

Pr =
P

Pc
(1.56)

Vr =
V

Vc
(1.57)

This fact is known as the ”law of corresponding states”. Two gases with the
same value of the compressibility factor z = PrVr/RTr are in ”corresponding”
states.

This is illustrated in figure 1.6 [45] which shows the measured compress-
ibility factor of several gases expressed in reduced temperature, pressure, and
volume.

The compressibility factor plot [45] is an approximate representation of
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Figure 1.6: Compressibility factors z = PV/RT of a variety of gases vs. reduced pressure
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the equation of state for real gases. Suppose that the critical constants are
known for a given gas Y and we want the molar volume at the temperature
T and pressure P . Then we compute Tr = T/Tc and Pr = P/Pc. Now for
the isotherm at Tr on the z versus Pr plot we read the value of z(Tc, Pc). Then
the reduced molar volume is given by Vc = zRTc/Pc, and the molar volume
is given by V = VrVc. This procedure is only approximate but it is useful over
a wide range of T and P .

1.7.3

Critical Exponents

The critical point theory is traditionally divided into two differents stages. The
first one, called the classical era, and the recent one known as the modern era.
This second starting with the consideration of the critical-point exponents. It
is customary to say that the order parameter ρL − ρG varies as (−ǫ)β where

ǫ ≡ T − Tc

Tc
(1.58)

and where the critical exponent β typically has a value in the range 0.3 −
0.5. More generally we can write:

M = B(−ǫ)β (1.59)

where it is important to stress that it is not necessary to have a strict pro-
portionality between the general order parameter M and (−ǫ)β . In practice,
there exist frequently corrections terms, so that ”M” might have the form
B0(−ǫ)β [1 + B(−ǫ)x + . . .] with x > 0. Hence a more natural definition of
the critical-point exponent β is

β ≡ lim
ǫ→0

lnM

ln(−ǫ)
(1.60)

where the corrections term will drop out on taking the limit.

Critical exponents are also observed in second-order phase transitions.
They characterize the power law behavior of many physical quantities as a
function of ǫ. Next we describe these relations for some of these quanti-
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ties such as the correlation length ξ, the specific heat C or the susceptibil-
ity/compressibility χ

ǫ > 0 ⇒ ξ ∼ ǫ−ν ǫ < 0 ⇒ ξ ∼ (−ǫ)−ν (1.61)

ǫ > 0 ⇒ C ∼ ǫ−α ǫ < 0 ⇒ C ∼ (−ǫ)−α (1.62)

ǫ > 0 ⇒ χ ∼ ǫ−γ ǫ < 0 ⇒ χ ∼ (−ǫ)−γ (1.63)

ǫ > 0 ⇒ M ∼ ǫβ ǫ < 0 ⇒ M ∼ (−ǫ)β (1.64)

where the critical exponents are denoted by the greek letters.ν, α and γ.
They fall into universality classes as is explained in the next section.

1.7.4

Universality

In statistical mechanics, universality is the observation that there are proper-
ties for a large class of systems that are independent of the dynamical details
of the system. In particular, the study of phase transitions characterized by
an order parameter originated the notion of universality. For systems that ex-
hibit universality, the closer the parameter is to its critical value, the less the
order parameter depends on the details of the system. The remarkable discov-
ery made in the second half of the twentieth century was that very different
systems had the same critical exponents, hence universality.

The key observation is that near a phase transition or critical point, dis-
turbances occur at all size scales, and thus one should look for an explic-
itly scale-invariant theory to describe the phenomena. Universality is a by-
product of the fact that there are relatively few scale-invariant theories. For
any one specific physical system, the detailed description may have many
scale-dependent parameters and aspects. However, as the critical point is ap-
proached, the scale-dependent parameters play less and less of an important
role, and the scale-invariant parts of the physical description dominate. Thus,
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a simplified, and often exactly solvable, model can be used to approximate the
behavior of these systems near the critical point.

1.7.5

Finite Size Scaling

The accurate location of the critical point becomes extremely important in or-
der to reliably predict thermodynamic properties either by using equations of
state, contibution groups methods, molecular simulation or any other method-
ology. Locating the critical point with molecular simulation methods, poses
a challenge to this methodology due to the appearance in this region of big
fluctuations in the correlation length. This makes it impossible to apply con-
ventional techniques such as GEMC simulation, due to the fact that the cor-
relation length of the system will be always cut by the size of the simulation
box. Instead, finite size scaling (FSS) studies, which where originally devel-
oped for spin models [46], need to be applied in order to take into account
the finite size effects appearing in the vicinity of the critical locus in molecular
simulation. These techniques provide an efficient way to obtain infinite vol-
ume critical parameters from simulations performed at finite size conditions.
The combination of the FSS methodologies with the histogram reweighting
methodology previously described in section 1.6 has proven to be an efficient
tool to accurately locate the critical point The use of the histogram reweight-
ing methodology facilitates the calculation of the vapor-liquid equilibrium as
well as the location of the critical point by forming a joint density distribution
calculated from the information of nearby conditions which can be extracted
from a given set of simulations. The application of FSS methodologies is de-
scribed in the next section

The use of finite size scaling techniques allows the bulk critical properties
to be extracted from simulations of finite size. The methodology is constucted
around the idea that as the critical point is approached, the correlation length
diverges according to:

T − Tc = ξ−1/ν (1.65)

When we are close to the critical temperature Tc, by eliminating ǫ from
Eqns. 1.62, 1.63 and 1.64 and substituting the correlation length ξ by the size
of the simulation box L we get:
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C ∝ Lα/ν χ ∝ Lγ/ν M ∝ L−β/ν (1.66)

When a system of finite size L is considered, at the critical temperature Tc

the correlation length is cut off as it approaches the system size, so that the
susceptibility χ, heat capacity C and other variables will also be cutoff. This
fact means that in finite size systems χ and C never diverge. This cut-off can be
expressed mathematically as follows. If we continue to denote by ξ the value
which the correlation length would have in an infinite system at temperature
ǫ, then the cut-off takes place when ξ > L. As long as ξ ≪ L the values of
χ and C should be the sames as for the infinite system. For example, we can
express this for the susceptibility by writing:

χL(ǫ) = ξγ/νχ0(L/ξ) (1.67)

where χ0 is a dimensionlesss function of a single variable which has the
following properties:

χ0(x) = constant for x ≫ 1 (1.68)

and

χ0(x) ∼ xγ/ν as x → 0 (1.69)

The precise way in which the susceptibility gets cut off close to the critical
temperature Tc is contained in the functional form of χ0 Although Eqn. 1.67
contains all the information we need about the behavior of our system with
varying the system size, it is not written in a very useful form, since it still
contains the correlation length ξ at temperature ǫ in the infinite system, which
is not known. For this reason it is more convenient to reorganize the equation
defining a new dimensionless variable χ thus:

χ(x) = x−γχ0(x
ν) (1.70)

then making again use of Eqn. 1.62 we get:
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χL(ǫ) = Lγ/νχ(L−1/νǫ) (1.71)

and similarly for the heat capacity C and the order parameter M :

CL(ǫ) = Lα/νC(L−1/νǫ) (1.72)

ML(ǫ) = L−β/νM(L−1/νǫ) (1.73)

where C, χ and M are the so called scaling functions, which are constructed
to be independent of system size, but strongly vary with the parameters Tc,
ν, α, β and γ . If the correct values for the parameters are chosen, the data
obtained for different system sizes will collapse onto a single curve. In the
next section, the scaling relation for the susceptibility is derived showing how
these expressions allow to extrapolate finite system size data to L = ∞ in
order to obtain critical properties in the thermodynamic limit.

1.7.6

Critical Exponents Estimation

The apllication of finite size scaling methodologies allows us not only to locate
the critical point, but also to determine the value of the critical exponents by
extracting the information contained in the scaling functions. Although these
functions are unknown, there are certain things we know about them. Eqn.
1.69 reveals that:

χ(x) −→ x−γ(xν)γ/ν = constant as x −→ 0 (1.74)

for the case of the susceptibility. This fact means that close to the critical
temperature the scaling functions are finite. Since, by design, all the system
size dependence of these functions is contained in Eqns 1.71, 1.72 and 1.73, if
we measure the scaling functions, denoted here generally by ϕ(x), dependent
on the system size L and the reduced temperature ǫ, we should obtain the
same result regardless of the size of the system. This fact allows us to calcu-
late the critical exponents as well as the value of the critical temperature by
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Figure 1.7: Data collapse of magnetic susceptibilty for the two dimensional Ising model. Sym-

bols are Monte Carlo measurements of the susceptibilty for five different system sizes as indi-

cated. From[44]

performing different calculations of the system of interest for different system
sizes L close to the region where we believe the critical temperature is. It is
important to remark the fact that with this methodology, we do not need to be
exactly at the critical temperature, only in its vicinity.

To perform this calculation for each system, we measure the variable of in-
terest at different temperatures ǫ obtaining in this way an estimate of the scal-
ing function ϕ(x) for several different values of the scaling variable x = L1/νǫ
for each system size. Recovering the fact that the scaling functions are sup-
posed to be independent of the system size, if we use the appropriate values
for the critical exponents ν, α and γ as well as the critical temperature Tc, the
estimates of the scaling functions will be expected to fall on the same curve.
This fact can be appreciated in figure 1.7 for the case of the magnetic suscepti-
bility of the two dimensional Ising model.

From this collapse γ = 1.76, ν = 1.00 and Tc = 2.27J are found. J is the
interaction energy between spins in the Ising model.
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1.7.7

Mixed-Field Theory

The FSS technique holds that the coarse-grained properties of systems near
the critical point are universal. This is true only for sufficiently large system
sizes. For the small values of our simulation box length, L, the properties
depend on the specific combination of L and the scaling field measuring the
deviation from criticality. For asymmetric models, like the pure LJ fluid and
their mixtures, mixed-field theory has to be introduced in order to take into
account the effects of density and energy fields near the critical point[17] [14].
Thus, in the absence of the special symmetry prevailing in the ferromagnet
Ising model leading to only one scaling field, the relevant scaling fields will
be comprised of linear combinations of the dimensionless temperature and
chemical potential difference,

τ = Tc − T + s(µ − µc) (1.75)

h = µ − µc + r(Tc − T ) (1.76)

The parameters s and r are system-specific quantities controlling the de-
gree of field mixing. Conjugate to the two relevant scaling fields are scaling
operators M and E , which are comprised of linear combinations of the particle
density ρ and energy density u:

M =
1

1 − sr
[ρ − su] (1.77)

E =
1

1 − sr
[u − rρ] (1.78)

For models with Ising symmetry , M is the magnetization while E is the
energy density. The joint distribution of density and energy is simply related
to the joint distribution of mixed operators by:

PL(ρ, u) =
1

1 − sr
PL(M, E) (1.79)

For pure fluids and their mixtures belonging to the Ising universality class,
the critical behavior of the ordering operator distribution M assumes a scal-
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ing form that matches the universal order parameter distribution p∗m(x) for
the Ising model [47]. This means that at the finite critical point of our sys-
tem, the distribution of our scaling operator M, previously defined as a linear
combination of density and energy, should coincide with the Ising model mag-
netization distribution. The procedure followed to determine the critical point
of the finite systems according to this methodology is described next.

The probability distribution of M is mapped onto the variable x, which is
defined as follows:

x =
(M− 〈M〉)√
〈M2〉 − 〈M〉2

(1.80)

This definition results in x having unit variance allowing for comparison
with available data from the Ising model and has been widely used in the
available literature[20] [18]:

An initial guess for the critical temperature and chemical potential is cho-
sen either from a fit to the power law or from more accurate calculations using
the cumulant methodology explained later:

The values for the critical temperature and chemical potentials as well as
the values for the mixed field parameters r and s are adjusted using a ”Least
Squares minimization algorithm” [48] in order to obtain the same form of the
universal distribution p∗m(x)

1.7.8

Binder Parameter

In order to locate the critical point, an alternative methodology has been em-
ployed. The Binder cumulant parameter[23] UL was calculated for the differ-
ent volume sizes simulated and is defined as follows:

UL =
〈m4〉
〈m2〉2 (1.81)

with m = φ − 〈φ〉 being φ a suitable order parameter, in our case density or
composition. The Binder parameter provides a dimensionless measure of the
shape of the order parameter distribution function and approaches asymptot-
ically a value of 1 if a bimodal density distribution is found, for instance when
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phase separation occurs. On the other hand, it asymptotically approaches a
value of 3 when we deal with supercritical fluids where a Gaussian density
distribution is expected. The Binder parameter is expected to have a univer-
sal value UL = 1.6035 at the critical point [49] for the Ising universality class.
This means that the infinite system size critical point can be identified as the
point where UL becomes system-size independent, being this point where cu-
mulants from different sizes intersect. By taking into account the order pa-
rameter distribution based definition of the Binder parameter, we expect the
universal value of this parameter to be also valid as an estimate of the appar-
ent finite critical temperature calculated by means of the mixed-field theory.
This fact allows us to propose a FSS study of this parameter in order to obtain
the infinite system size critical point.

In the results section we will present both the results for estimating the in-
finite system size critical point either by locating the intersection for the two
largest system sizes, or as a FSS extrapolation of the estimates for the finite
critical temperature taken from the intersection with the Ising universal value.
This combination of the Binder parameter calculation with the FSS methodol-
ogy allows us to also calculate critical properties which are highly dependent
on the system-size such as the composition in binary mixtures. In this work
an estimate of the critical density or composition is taken from the average
of the corresponding density or composition distribution. In the case of the
cumulant intersection method, we use the average value of the largest sys-
tem size as the estimate for these properties which tends to present significant
deviations from the infinite system size value.

1.8

Force Fields

Intermolecular forces are electromagnetic forces that act between molecules
or between widely separated regions of a macromolecule. These forces can
be cohesive between like molecules, for example surface tension or adhesive
between unlike molecules for example in capillary action. Listed in order of
decreasing strength, these forces are:

• Ionic interactions

• Hydrogen bonds

• Dipole-dipole interactions

• Van der Waals’ forces
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The following functional abstraction, known as a potential function or
force field in chemistry, calculates the system’s potential energy in a given
conformation as a sum of individual energy terms.

E = Ecovalent + Enoncovalent (1.82)

where the covalent term Ecovalent can be also written as a sum of the fol-
lowing intramolecular terms:

Ecovalent = Ebond + Eangle + Edihedral (1.83)

where Ebond is the energy associated to the different bonds between parti-
cles, Eangle the bending energy, and Edihedral the torsion energy. The nonco-
valent term can also be split into:

Enoncovalent = Eelectrostatic + EvanderWaals (1.84)

where Eelectrostatic is the energy associated with charged atoms and
EvanderWaals accounts for the non-bonded interactions.

We can write a formal and generalistic description of a typical force field
V according to the addition of the following terms:.

1. Harmonic force constant:

V =
∑

l

1

2
kl(l − l0)

2 (1.85)

where kl are the different harmonic force constants, and l0 the equilib-
rium values for the distances between the different particles.

2. Optional anharmonic force constant.

−
∑

l

1

3!
kanh

l (l − l0)
3 (1.86)

where kanh
l are the different anharmonic constants.
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3. Angle bending constants

+
∑

θ

1

2
kθ(θ − θ0)

2 (1.87)

where kθ are the bending force constants and θ0 the equilibrium val-
ues for the different angles formed between particles. This contribution
could also be expressed in terms of cosθ instead of θ.

4. Torsional potential.

+
∑

n

Vn

2
[1 + cos(nω − γ)] (1.88)

where Vn are the torsion force constants, n is the periodicity of the tor-
sion and ω the torsion angle. An anternative but equivalent expression
is

+
∑

n

Cncos(ω)n (1.89)

where Cn are the torsion force constants.

5. Out of plane bending for trigonal groups.

+
∑

Γ

1

2
kΓ(Γ − π)2 (1.90)

6. Van der Waals terms.

∑

i<j

{
Aij

r12
ij

− Bij

r6
ij

}
(1.91)

where Aij and Bij are specific parameters to reproduce the non-bonded
interactions and rij the distance between differnt particles. Other forms
can also be used to account for this contribution.

7. Electrostatic interactions.
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∑

i<j

1

4πǫ0

qiqj

rij
(1.92)

where qi and qj are the charges of the interacting particles and ǫ0 the
vacuum permittivity.

1.9

Interatomic Potentials

To reflect the physics of our systems of interest, and in particular the previ-
ously described van der Waals forces, molecular simulation techniques make
use of algorithms to generate energy surfaces known as interatomic potentials.
These algorithms are expected to be as simple as possible, but as complicated
as they need to be to accomplish the previous condition. In general, we can
write the next general expression for an interatomic potential:

U =
∑

i

Vi(ri) +
∑

i<j

V2(ri, rj) +
∑

i<j<k

V3(ri, rj , rk) + . . . (1.93)

being Vi the single atom contributions and V2, V3 the contributions due
to the interactions between two and three particles respectively. The basic
criteria to choose the type of intermolecular potential to be used are:

• Accuracy: how many decimal points of the simulation can be reliably
reproduced.

• Transferability: the capacity of the potential to be extended to different
systems, phases or configurations.

In general, the interatomic potentials come either from the literature, fit-
ting to experimental data or quantum calculations of structures, or direct cal-
culations of terms in the potential. Particularly, when fitting a potential, the
availability of experimental data becomes very important for the calculation
performed to include the effects we are trying to fit to.
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1.9.1

Hard Sphere Potential

The hard sphere potential accounts for excluded volume interactions only.
The potential is infinite if particles overlap and zero otherwise. Such poten-
tials are not numerically integrable and cannot be readily used in molecular
simulation techniques such as Molecular Dynamics(MD), Brownian Dynam-
ics(BD), or Dissipative Particle Dynamics(DPD). Hard sphere potentials are
typically used in Monte Carlo simulations methods or in event-based, colli-
sion dynamics methods (also called discontinuous MD).

UHS(rij) =

{
∞, rij < σij

0, rij ≥ σij
(1.94)

1.9.2

Square Well Potential

In order to simplify the LJ potential calculation, a function having in a gen-
eral way the same functional form of the LJ original one. This potential is
obviously not realistic due to the fact that it presents two discontinuities, but
on the other hand, due to its mathematical ease and flexibility, it is useful for
some calculations. The concept of flexibility arises from the fact that it con-
tains three different adjustable parameters, the previously defined diametre
of the particle σij , the well depth ǫij and the reduced amplitude R. In general,
the square well potential can be expressed as:

USW (rij) =





∞, rij < σij

−ǫij , σij ≤ rij ≤ Rσij

0, Rσij ≤ rij

(1.95)

The square well fluid potential has an infinite repulsive slope, what pre-
vents it predicting a maximum value for the second virial coefficient. In partic-
ular, this type of potential has been used to calculate thermodynamical prop-
erties of systems where short range interactions are considered.
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1.9.3

Lennard-Jones Potential

The Lennard-Jones (LJ) potential (also referred to as the L-J potential, 6-12
potential or, less commonly, 12-6 potential) is a simple mathematical model,
proposed in 1931 by John Lennard-Jones of Bristol University , that represents
the behavior of neutral atoms and molecules. These are subject to two distinct
forces in the limit of large distance and short distance: an attractive force at
long ranges (van der Waals force, or dispersion force) and a repulsive force at
short ranges (the result of overlapping electron orbitals, referred to as Pauli
repulsion from the Pauli exclusion principle). It takes the form:

U(rij) = 4ǫij

[(
σij

rij

)12

−
(

σij

rij

)6
]

(1.96)

where U(rij) is the configurational potential energy, rij is the distance be-
tween the LJ particles, ǫij is the potential well depth. and σij the location at
which the potential crosses zero. The latter two parameters can be fitted to
reproduce experimental [50] data or deduced from results of accurate quan-

tum chemistry calculations. The

(
1

r

)12

term describes repulsion while the

(
1

r

)6

term describes attraction. The LJ potential is approximate. The form of

the repulsion term has no theoretical justification; the repulsion force should
depend exponentially on the distance, but the repulsion term of the L-J for-
mula is more convenient due to the ease and efficiency of computing r12 as
the square of r6. The attractive long-range potential, however, is derived from
dispersion interactions. The LJ potential is a relatively good approximation
and due to its simplicity, it is often used to describe the properties of gases,
and to model dispersion and overlap interactions in molecular models. It is
particularly accurate for noble gas atoms and is a good approximation at long
and short distances for neutral atoms and molecules.

1.9.4

Buckingham Potential

Several formulations in which the r−12 repulsive term is replaced by a the-
oretically more realistic exponential expression have been proposed. These
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include the Buckingham potential:

Ubuck = ǫij




6

αij − 6
e
−αij

0

@

rij

rm
ij

−1

1

A

− αij

αij − 6

(
rm
ij

rij

)6


 (1.97)

where there are three adjustable parameters. The minimum energy radius
rm
ij , the well depth ǫij and αij controlling the slope of the repulsive wall. A

value of α between approximately 14 and 15 gives a potential that closely cor-
responds to the Lennard-Jones 12-6 potential in the minimum energy region.
When using the Buckingham potential it is important to remember that at very
short distances the potential becomes strongly attractive. This could lead to
nuclei being fused during the simulation and so it is necessary to check that
atoms did not become too close.

1.9.5

United Atoms(UA) and Anisotropic UA (AUA)

Potential

In the last decade, potential models, have been developed for a wide range of
compounds[24, 10, 25]. One of the most common approaches for modeling hy-
drocarbons and other flexible molecules is the use of the united-atoms (UA)
model scheme, where each chemical group is represented by one Lennard-
Jones center. This scheme results in a significant reduction of the computa-
tional time as compared to all-atoms models since the number of pair interac-
tions goes as the square of the number of sites. Improvements on the standard
united-atoms model, where typically a 6-12 Lennard-Jones center of force is
placed on top of the most significant atom, have been proposed. For instance,
Errington et al. have used a Buckingham exp-6 potential [26], where 3 pa-
rameters are involved in each center of force and the repulsive part of the LJ
interaction is replaced by the more correct exponential term. Chen et al. have
introduced additional sites on the centers of the C-H bonds[27]. Also, Un-
gerer et al. [28] have obtained the AUA 4 model by reparameterizing the initial
Anisotropic United Atom (AUA) model proposed by Toxvaerd[29] [30]. The
AUA model consists of a displacement of the Lennard-Jones centers of force
towards the hydrogen atoms, converting the distance of displacement into a
third adjustable parameter,see figure 1.8 for the cases of a CH2 and a CH3

group, while in the case of the UA model the interaction site is located over
the carbon atom. The net effect of this is to consider the influence of hydrogen

UNIVERSITAT ROVIRA I VIRGILI 
IMPROVEMENT OF MONTE CARLO ALGORITHMS AND INTERMOLECULAR POTENCIALS FOR THE MODELLING OF 
ALKANOLS, ESTHERS, TRIOPHENES AND AROMATICS 
Javier Pérez Pellitero 
ISBN: 978-84-691-0377-7/DL: T.2195-2007  
 



Improvement of Monte Carlo algorithms and intermolecular potentials 43

Figure 1.8: Schematic sketch of AUA model for a CH2 and a CH3 group. Centers of carbon

atoms (used by UA model) are represented by filled circles, and the interaction centers by empty

circles (AUA model)

atoms without explicitly increasing the number of interaction sites.

1.10

Simulation Techniques for Associating Fluids

1.10.1

Bias Sampling

While the accuracy of molecular simulation results depends either on the ap-
proximations done in the construction of the model or intermolecular po-
tentials used to reproduce the interaction between different particles, the ac-
curacy of the simulation itself depends on the sampling of the phase space
performed during the simulation length. In particular, the extension of the
phase space sampled in the simulations in the GCMC and GIBBS ensembles
strongly depends respectively on the creation and destruction of particles and
the transfer of particles between the different simulation boxes. At the same
time, the acceptance probability of these MC steps depends on the structure,
size and shapes of the different molecules. For instance, in the case of associat-
ing fluids some bonded configurations can result in having the system blocked
due to the fact that they have energy enough to form agregates. Nonetheless
these configurations represent only a small part of the phase space if we com-
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pare it with the big amount of non bonded configurations. In this way, an
efficient sample algorithm for associating flids will be one which is able to
find the blocked configurations without being trapped by themselves.

Configurational Bias

Configurational bias Monte carlo, also referred to as CBMC, adresses in partic-
ular the case of long linear or branched molecules that can addopt numerous
conformations. As it can be seen in figure 1.9, this method [51] [52] takes ad-
vantage of the fexibility of the molecule to grow it step by step, testing several
possible random locations rkk = 1, 2, . . . , kmax for the next atom. The final
position of the new atom is selected among the tested locations with a proba-
bility:

p(ri) =
exp (−βU(ri))∑Kmax

k=1 exp (−βU(rk))
(1.98)

where U(rk) denotes the increment of potential energy associated with the
addition of a new atom in position rk . The next process is applied to the next
atom once a position ri is selected, and so on until the end of the chain is
reached. Since U(rk) includes the internal potential energy as well as the ex-
ternal energy, the molecule is thus reconstructed in a non-random way. Once
the whole molecule has been regrown, the move is accepted according to a
modified acceptance probability, so that its geometry is statistically represen-
tative at the temperature under consideration. The acceptance probability of
these CBMC moves adapted for the AUA model can be found in the book by
Ungerer et al [53]. The number of locations tested for each atom. Kmax does
not need to be the same for all atoms of the molecule. For instance, a greater
number of test locations can be used for the first atom of the chain.

Reservoir Bias

Although configurational bias is applicable to flexible cyclic molecules [54],
the constraint of closing the ring often makes for a poor average acceptance
rate. As can be seen schematically in figure 1.10, a satisfactory way of solv-
ing this problem is to use a canonical reservoir of molecular conformations
for the ring. This is a collection of molecular conformations in which the
Boltzmann distribution of internal energies is respected. This means that the
probability of occurrence of a given conformation in the reservoir is propor-
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Figure 1.9: Schematic example of configurational bias applied to the regrowth of a segment

of two atoms from an existing chain of six atoms (a) test of kmax positions to place the first new

atom and selection of its position (here k = 2), (b) test of kmax positions for the second new atom

and selection of its position (here k = 4) The dotted part of the chain is its previous configuration.

From [53]

tional to exp(−βUint). In practice, this reservoir is created by performing re-
peated internal moves in the molecules belonging to the reservoir. In the case
of branched molecules, the reservoir bias results also interesting to improve
the efficiency of CBMC algorithms by picking bending angles from the reser-
voir [55] instead of generating them repeatedly during the regrowth process.
In the case of Gibbs ensemble transfers, Bourasseau [56] has also proposed the
use of an additional preliminary biasing step to find suitable positions in the
liquid. This methodology involves the following steps:

• In the first step, several random locations for the centre of mass rk are
tested with a very simple potential, e.g. a Lennard-Jones potential. One
of these locations is selected on the basis of a similiar criterion as CBMC
moves with a probability:

p(ri) =
exp (−βULJ(ri))∑Kmax

k=1 exp (−βULJ(rk))
(1.99)

where ULJ(rk) is the interaction energy of the Lennard Jones centre with
the system.

• in the second step, several molecular conformations ck are randomly
picked in the reservoir and tentatively inserted in the system with the

UNIVERSITAT ROVIRA I VIRGILI 
IMPROVEMENT OF MONTE CARLO ALGORITHMS AND INTERMOLECULAR POTENCIALS FOR THE MODELLING OF 
ALKANOLS, ESTHERS, TRIOPHENES AND AROMATICS 
Javier Pérez Pellitero 
ISBN: 978-84-691-0377-7/DL: T.2195-2007  
 



Improvement of Monte Carlo algorithms and intermolecular potentials 46

Figure 1.10: Schematic example of reservoir bias applied to the case of insertion of a new cy-

clohexane molecule in a box (a) initial configuration (b) test insertion of Lennard-Jones particles

in several locations and selection of a favorable location (c) test of several molecular conforma-

tions taken from a canonical reservoir for insertion at the selected location (d) configuration after

successful insertion. From [53]

centre of mass at the location identified in the first step, in a random
orientation. One of these configurations is selected wit a probability:

p(ci) =
exp (−βUext(ci))∑Kmax

k=1 exp (−βUext(ck))
(1.100)

• the move is accepted or rejected with an acceptance criterion which cor-
rects for the bias introduced for the two first steps.[53]

The use of the reservoir bias move affords significant savings in computer
time for cyclic molecules in condensed phases as well as for small flexible
molecules with a limited number of different conformation such as short alco-
hols. In the case of rigid molecules, the reservoir bias is completely useless but
the two-step procedure above described provides a very significant improve-
ment compared with the unbiased moves.

UNIVERSITAT ROVIRA I VIRGILI 
IMPROVEMENT OF MONTE CARLO ALGORITHMS AND INTERMOLECULAR POTENCIALS FOR THE MODELLING OF 
ALKANOLS, ESTHERS, TRIOPHENES AND AROMATICS 
Javier Pérez Pellitero 
ISBN: 978-84-691-0377-7/DL: T.2195-2007  
 



Improvement of Monte Carlo algorithms and intermolecular potentials 47

Figure 1.11: Electrostatic charge decomposition used in the Ewald summation method. Every

point charge qi (vertical bars) is associated with a screening gaussian distribution of opposite

charge qgauss
i (r)(full line). The distribution of point charges is expressed as the sum of screened

charges (qi + qgauss
i (r)) which converges fast and the opposite distributions (-qgauss

i (r)) (dotted

lines) which is integrated by Fourier analysis. From [53]

1.10.2

Ewald Summation

The Ewald summation is a commonly used method in molecular simulation
to compute the electrostatic energy with periodic boundary conditions. Basi-
cally, the problem arises from the fact that the electrostatic energy of an ele-
mentary charge with another charge is infinite when periodic boundary con-
ditions are applied. The method works by splitting the lattice summation into
a short-range part and a long-range part, where the long-range part is evalu-
ated in a fast converging Fourier representation. The short range-part on the
other hand works in real space and calculates particle-particle interactions of
a Coulomb potential, originating from a Gausssian charge distribution, which
results from the splitting procedure. Finally, a self-energy correction is ap-
plied, taking into account summation over all particles in Fourier space. Since
The Ewald summation has been widely treated in the literature [57] [58] only
a simplified acount will be provided here.

As is schematically shown in figure 1.11, the Ewald summation involves
adding a Gaussian distribution of screening charges around every point charge
qi located at position ri according to:
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qgauss
i (r) = −qi

(
α√
π

)3

exp
(
−α2|r − r2

i

)
(1.101)

so that the screened charges qsc
i can be defined as:

qsc
i (r) = qi + qgauss

i (r) (1.102)

The whole charge of the Gaussian distribution is exactly opposite to the
related point charge. The interaction energy Uj of any point charge qj with the
other charges may be computed from the electrostatic potential Φ(r) through:

Uj = qjΦ(rj) (1.103)

where the total electrostatic potential Φ(rj) can be written using the gen-
eral principle of superimposing states in electrostatics as the sum of the next
terms:

• the contribution Φ
′

(rj) due to screened charges qsc
i (rj)

• the contribution Φ
′′

(rj) due to Gaussian distributions qgauss
i (rj) oppo-

site in sign to the screening charges

• a correction factor for the screening charges of the point charge qj itself

The first term Φ
′

(rj) is obtained by summing the contributions of all screened
charges within a spherical cut-off which is generally taken as half the box
length. This contibution converges faster because the screened charges qsc

i (rj)
are neutrally charged entities. It can be computed rather simply from standard

library functions, making the computation of Φ
′

(rj) somewhat similar to LJ in-

teractions. The second term Φ
′′

(rj) is obtained after careful derivation using
Fourier transformation. Its final expression involves a summation of terms in

Fourier space, i.e. a summation over vectors
−→
k =

(
2π

Lx
kx,

2π

Ly
ky,

2π

Lz
kz

)
:

Φ
′′

(rj =

kewmax∑

kx=−kewmax

kewmax∑

ky=−kewmax

kewmax∑

kz=−kewmax

φ
′′

(kx, ky, kz) (1.104)
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where φ
′′

includes contributions for all screening charges −qgauss
i (r), and

kewmax is an integer defining a cutoff distance in Fourier space.

The accuracy of the method depends on the approximations, made in short-
and long-range parts of the method, which are characterized by α, the width
of the Gaussian charge distribution, Rc, the cutoff-radius in the real-space part
and kmax, the maximum wave number in the Fourier space part. For instance,
in the case of liquid water, when a small simulation box is used (20−25Å), the
optimal α is approximately 0.3Å−1, and kewmax = 6 − 7 proves sufficient to
make the energy converge.

UNIVERSITAT ROVIRA I VIRGILI 
IMPROVEMENT OF MONTE CARLO ALGORITHMS AND INTERMOLECULAR POTENCIALS FOR THE MODELLING OF 
ALKANOLS, ESTHERS, TRIOPHENES AND AROMATICS 
Javier Pérez Pellitero 
ISBN: 978-84-691-0377-7/DL: T.2195-2007  
 



Chapter 2

Critical point estimation of
the LJ pure fluid and binary

mixtures

50

UNIVERSITAT ROVIRA I VIRGILI 
IMPROVEMENT OF MONTE CARLO ALGORITHMS AND INTERMOLECULAR POTENCIALS FOR THE MODELLING OF 
ALKANOLS, ESTHERS, TRIOPHENES AND AROMATICS 
Javier Pérez Pellitero 
ISBN: 978-84-691-0377-7/DL: T.2195-2007  
 



Improvement of Monte Carlo algorithms and intermolecular potentials 51

2.1

INTRODUCTION

The Lennard-Jones (LJ) fluid has been the subject of many numerical studies
principally due to its widespread use as a model for nonpolar molecules. For
example, atomistic fluids such as Argon are well represented by means of this
model. The application of Monte Carlo simulation permits the calculation of
the equilibrium properties of any LJ fluid. In particular, algorithms such as
the Gibbs ensemble (GEMC) greatly simplifies the calculation of the phase
equilibria[7]. Despite the simplicity of these methodologies, they generally
have difficulties in the accurate location of critical points due to the appear-
ance of long range density fluctuations. Instead, finite size scaling (FSS) stud-
ies, which were originally developed for spin models[46], need to be applied
in order to take into account the finite-size effects appearing in the vicinity of
the critical locus. These techniques provide an efficient way to obtain infinite
volume critical parameters from simulations performed at finite-size condi-
tions. For off-lattice systems, difficulties arise due to the asymmetry of the
coexisting phases. In the absence of the particle-hole symmetry, the scaling
fields are not identical with the physical fields. In the simplest asymmetric-
fluid scaling description, the scaling fields are assumed to be combinations of
the temperature and the chemical potential [59][17]. Recently[60], however,
it has been found that a more complete scaling description of the fluid criti-
cal point should also involve the pressure in addition to the temperature and
chemical potential. Several systems have been studied using the field mixing
theory such as the square-well fluid[61] or the restricted-primitive model[49].
The combination of the FSS methodologies with histogram reweighting meth-
ods (HR) has proven to be an efficient tool to accurately locate the critical
point. The use of the histogram reweighting methodology facilitates the cal-
culation of the vapor-liquid equilibrium and critical point location by forming
a joint density distribution calculated from the information of nearby condi-
tions which can be extracted from a given set of simulations.

The location of the critical point of the pure LJ fluid has received consider-
able attention. For instance, critical values have been obtained for the reduced
critical temperature T ∗

c and the reduced critical density ρ∗c by fitting GEMC
data at subcritical temperatures to a scaling law using Ising universality class
exponents and the Law of Rectilinear Diameters [62]. [63]. In their FSS studies
Bruce and Wilding [14],[17] calculated the critical constants of the truncated LJ
potential. More recently Caillol applied the same procedure to the full LJ po-
tential on the surface of a four-dimensional hypersphere[18]. Potoff et al[20]
considered the same case with conventional boundary conditions. However,
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little work has been carried out for binary mixtures, although particular men-
tion can be made of the aforementioned work by Potoff et al[20] where they
extended the same calculations to LJ mixtures.

In the present chapter, we compare the combination of mixed-field the-
ory with FSS studies for the full pure LJ fluid and LJ binary mixtures, with the
fourth order cumulant calculation, also known as the Binder parameter. In the
case of the Binder parameter two possibilities are considered, either the inter-
section of the Binder parameter for two different system sizes or the intersec-
tion of the Binder parameter with the known value for the system universality
class combined with a FSS study. The Binder parameter provides an alterna-
tive route to estimating critical pressures and temperatures in a straightfor-
ward and direct way. Furthermore, Kim and Fisher [64] [65] have recently
shown the possibility of performing a detailed near- critical coexistence study
by means of the Binder parameter analysis. It should be stressed that the
main goal of this work is not to improve on the already accurate predictions
of the critical properties of the LJ systems, but rather to present and contrast
the alternative methodology based on the Binder parameter with a view to
the future application of these techniques to models for real mixtures. These
models may include several Lennard Jones interaction sites in each molecule
as well as electrostatic interactions and hence require considerably larger com-
putational resources than the systems studied in this work. In addition, an
alternative strategy for the histogram reweighting will be presented that is
particularly suited for mixtures since it avoids the construction of histograms,
a particularly costly operation in terms of computer memory when more than
one component is present. We also estimate the line of critical points for a
Lennard Jones system using the proposed Binder intersection method with
FSS.

2.2

THEORY

In this section, a brief overview is given of histogram reweighting, mixed-field
theory, Binder parameter and Finite Size Scaling methodologies.
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2.2.1

Histogram Reweighting

The histogram reweighting technique (HR) has been widely used to compute
phase diagrams and free energies of different fluids. In this work HR has been
used to calculate the VLE and also to facilitate the prediction of the critical con-
stants by means of the FSS techniques which was explained in detail in chapter
1. The technique was introduced by Ferrenberg and Swendsen [15][16] and is
based on the fact that a single simulation can give information about the prop-
erties of nearby state points. In the original formulation of the methodology,
histograms at different conditions from different simulations are combined to
improve the statistics, thus extending the range of applicability of the method.
During the simulation we collect information in multiple uncorrelated states
by recording the total energy of the system as well as the number of particles
of each compound N1and N2.

2.2.2

VLE calculation

To determine vapor-liquid equilibrium, equality of chemical potentials, tem-
perature and pressure must be imposed in the system. In the GCMC ensemble
the pressure is related to the partition function of the grand canonical ensem-
ble, Ξ, as follows,

pV = kT ln Ξ′ + constant (2.1)

where Ξ′ is the partition function determined from the simulations with
histogram reweighting, where an arbitrary constant is included.

When phase coexistence occurs, a bimodal distribution of densities is ex-
pected where the area under each peak is the same indicating equality of pres-
sures in each phase. VLE is hence determined for a given temperature by tun-
ing the chemical potentials until equality of pressures is obtained between the
phases. To determine VLE, we take advantage of a simulation in the criticla
region in order to bridge the liquid and vapor regions. Furthermore, this crit-
ical simulation will allow us to directly estimate the critical locus using either
the mixed field theory or the Binder parameter to be described later.

Finally, to deal with the binary systems of interest, the absolute value of the
grand partition function must be evaluated in order to determine the absolute
pressure. To allow for the calculation of the constant present in Eqn. 2.1, an
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extrapolation to low density is carried out taking as reference the ideal gas[20]
[66].

2.2.3

Mixed-Field Theory

As is described in detail in section 1.7.5, the FSS technique holds that the
coarse-grained properties of systems near the critical point are universal. The
concept of universality can be characterized through the probability distribu-
tion functions of observables such as density and energy if the system sizes
are large enough. In the case of small system sizes, the critical properties are
function of the box length if the system sizes are large enough. In the case of
small systems, the critical properties depends on the box length L as well as
on the scaling field measuring the deviation from criticality. For asymmetric
models, like the pure LJ fluid and their mixtures, the mixed-field theory de-
scribed in section1.7.7 must be introduced in order to take into account the
effect of the density and energy fields.

In this work we adopted the simple scaling description of Bruce and Wild-
ing [17] and ignored the effects of pressure in the scaling fields. The param-
eters s and r are system-specific quantities taking into account the contribu-
tions of temperature and chemical potential to each of the fields. Conjugate
to the two relevant scaling fields are scaling operators M and E , which are
comprised of linear combinations of the particle density ρ and energy density
u:

M =
1

1 − sr
[ρ − su] (2.2)

E =
1

1 − sr
[u − rρ] (2.3)

For models with Ising symmetry , M is the magnetization while E is the
energy density. The joint distribution of density and energy is simply related
to the joint distribution of mixed operators by:

PL(ρ, u) =
1

1 − sr
PL(M, E) (2.4)

For pure fluids and their mixtures belonging to the Ising universality class,
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the critical behavior of the ordering operator distribution M assumes a scal-
ing form that matches the universal order parameter distribution p∗m(x) for
the Ising model [47]. This means that at the finite critical point of our sys-
tem, the distribution of our scaling operator M, previously defined as a linear
combination of density and energy, should coincide with the Ising model mag-
netization distribution. The procedure followed to determine the critical point
of the finite systems according to this methodology was previously described
in section 1.7.7.

2.2.4

Binder parameter

In order to locate the critical point, an alternative methodology has been em-
ployed. The Binder cumulant parameter[23] UL was calculated for different
volume sizes using an equal area construction for both phases in equilibrium
and is defined as follows:

UL =
〈m4〉
〈m2〉2 (2.5)

with m = φ − 〈φ〉 being φ a suitable order parameter, in our case density or
composition. As it is explained in more detail in section 1.7.8the Binder pa-
rameter provides a dimensionless measure of the shape of the order param-
eter distribution function and approaches asymptotically either a value of 1
if a bimodal density distribution is found or a value of 3 when we deal with
supercritical fluids. In the critical point, the Binder parameter is expected to
have a universal value UL = 1.6035 at the critical point [49] for the Ising uni-
versality class. This means that the infinite system size critical point can be
identified as the point where UL becomes system-size independent, being this
point where cumulants from different sizes intersect. This is the first method
that we use in order to estimate the infinite size critical point from the Binder
parameter.

In this work we propose a second method for estimating the critical point.
By taking into account the order parameter distribution based definition of the
Binder parameter, we expect the universal value of this parameter to be also
valid as an estimate of the apparent finite critical temperature. This fact allows
us to propose a FSS study of this parameter in order to obtain the infinite
system size critical point in a similar way to the finite critical temperature
estimated by mixed-field theory.

In the results section we will present both methods for estimating the in-
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finite system size critical point. That is, either by locating the intersection for
several system sizes, or as a FSS extrapolation of the estimates for the finite
critical temperature taken from the intersection with the Ising universal value.

2.2.5

Finite Size Scaling

After determining the apparent critical conditions for each of the system sizes,
either by using where the Binder parameter intersects the universal parameter
or by a mixed field study, the critical constants are expected to follow known
scaling laws. [14] For instance, the temperature of the finite system is expected
to vary near the critical point with system size as:

〈T 〉c(L) − 〈T 〉c(∞) ∼ L−(θ+1)/ν (2.6)

where Θ = 0.54 and ν = 0.629 [67] [68].

The critical density of the finite system is expected to vary near the critical
point with system size as:

〈ρ〉c(L) − 〈ρ〉c(∞) ∼ L−(d−1/ν) (2.7)

where d is the dimensionality of the system.

For a mixture, [20] a similar scaling behavior is seen for the critical mole
fraction:

〈x〉1c(L) − 〈x〉1c(∞) ∼ L−(d−1/ν) (2.8)

Since the pressure can be defined in terms of energy density, we scale it in
the same way as the energy like operator [20]:

〈p〉c(L) − 〈p〉c(∞) ∼ L−(d−1/ν) (2.9)

By plotting the finite critical values using these functions, an extrapolation
can be made to estimate the infinite system size value, as shown in the results
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section.

2.3

Model and simulation details

The intermolecular interaction between non-bonded pairs of particles was cal-
culated using the full LJ potential given by Eqn. 1.96:

The LJ parameters were used to obtain reduced quantities T ∗ = kbT/ǫ,
ρ∗ = σ3/ρ and p∗ = pσ∗/ǫ. In the present work, we have studied the prop-
erties of the untruncated potential. To approximate infinite thermodynamic
systems with finite-size systems we employed periodic boundary conditions
with long-range corrections (LRC). A cutoff radius of half the box length was
used.[57]

In the case of binary mixtures, the Lorentz-Berthelot combining rules [11]
were used to calculate the cross potential parameters for the mixture. For the
binary LJ mixture we chose a mixture having σ1 = σ2 = 1.0 and ǫ1 = 1.0, ǫ2 =
0.5 to allow for comparison with the only previous study where FSS has been
applied. [20]

In the case of the pure LJ fluid, different sets of GCMC simulations were
performed in order to sample phase space. The calculation of the phase dia-
gram was extended to subcritical temperatures only for the smaller systems
with reduced volume V ∗ = 100, 250, 750, while in the case of the bigger sys-
tems V ∗ = 1000, 1500, 3000 the computational effort was centered only near
the critical point. During the simulation, we stored the number of particles
and the configurational energy every 500 MC. Applying the cumulant inter-
section calculation to the two smaller system sizes results in a very fast and
straightforward location of the critical point. For the smaller systems, runs
around 100 million MC steps were enough to obtain accurate statistics, while
for the larger systems runs were extended up to 900 million MC steps.

For the selected binary LJ mixture, the systems considered were not as
large as in the case of the pure LJ fluid due to the higher computational time
required. The systems considered were V ∗ = 150, 250, 350, 500, 1000. The
phase diagram was extended down in pressure by adding simulations near
the predicted coexistence chemical potentials when the density distributions
obtained became unreliable. For the smaller systems V ∗ = 150, 250, 350 the
length of the runs was 100 million MC steps while in the case of V ∗ = 500, 1000
it was set to 250 million MC steps. During the simulation we stored the num-
ber of particles and the configurational energy every 1000 MC steps.
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2.4

Results and Discussion

2.4.1

Pure Fluid

In the case of the untruncated LJ potential, different estimates are found for the
critical point depending on the applied methodology, see Table 2.1. The first
studies are based on GEMC data which were extrapolated by means of scaling
laws to the critical point. Following this procedure, Smit [13] reported in 1992
T ∗

c = 1.316(6) and ρ∗c = 0.304(6) while Lotfi [69] also in 1992 gave T ∗
c = 1.310

and ρ∗c = 0.314. Three more FSS studies can be found in the bibliography. The
work by Potoff and Panagiotopoulos [20] in 1998 reported T ∗

c = 1.3120(6) and
ρ∗c = 0.316(1) considering periodic boundary conditions. Shi and Johnson [19]
performed a FSS study for the long-range corrected fluid with a cutoff radius
rc = 5.0σ They predicted T ∗

c = 1.3145(2) and ρ∗c = 0.316(1). The other existing
FSS work by Caillol [18] in 1998 considers the full LJ potential on the surface
of a four- dimensional hypersphere. This technique does not require long-
range corrections. Finally, in another work, Potoff and Panagiotopoulos[70]
predicted T ∗

c = 1.311(2) and ρ∗c = 0.316(2) using a methodology based on the
calculation of the surface tension.

After determining the apparent critical conditions for each of the system
sizes, either by using where the Binder parameter intersects the universal pa-
rameter or by a mixed field study, the critical constants are expected to follow
known scaling laws. [14]

In the present study we have compared mixed-field theory with the cumu-
lant intersection calculation.

In figure 2.1 we present the phase diagram of the pure LJ fluid calculated
with a system volume V ∗ = 250. We have computed coexistence densities
from the equal area construction. The results agrees with the GEMC data of
Smit [63] as well as with the GCMC data from [70]. It should be noted that in
the case of ref. [70] a much larger system size is used which permits the au-
thors to approach more closely the critical point. Away from the critical region
we do not observe any significant difference between the results obtained at
different system sizes.

Figure 2.2 shows the matching between the order operator distribution for
V ∗ = 1500 at the apparent critical point and the universal distribution for the
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Source T ∗
c ρ∗c Type

Wei and Johnson[19] 1.3145(2) 0.316(1) Mixed-Field Th. + FSS
Potoff and
Panagiotopoulos[20]

1.3120(7) 0.316(1) Mixed-Field Th. + FSS

Caillol[18] 1.326(2) 0.316(2) Mixed-Field Th. + FSS
Potoff and
Panagiotopoulos[70]

1.311(2) 0.316(2) Surface tension + FSS

Lotfi et al. [69] 1.310 0.314 Power Law
Smit [13] 1.316(6) 0.304 (6) Power Law
This work 1.3123(6) 0.3174 (6) Mixed-Field Th. + FSS
This work 1.3126(6) 0.3174 (6) Cumulant + FSS
This work 1.313(1) 0.317 (1) Cumulant Intersection

Table 2.1: Critical constants estimations of the pure LJ fluid

Ising three dimensional universality class[47]. The agreement obtained be-
tween our simulation results and the reference Ising model data is excellent,
as observed in previous works for this system. It should be noted, however,
that there exists a small deviation between the two curves, as can also be seen
in previous works. This difference could be due to the fact that pressure mix-
ing has not been incorporated in the scaling fields [71]

We have calculated the critical temperature by extrapolating to infinite vol-
ume the apparent critical temperatures found for different system sizes. The
results are shown in figure 2.3. We obtain T ∗

c = 1.3123(6) and ρ∗c = 0.3174(6).
Our estimate of the critical temperature is in very good agreement with Potoff
and Panagiotopoulos [20] who predicted T ∗

c = 1.3120(6) and ρ∗c = 0.316(1).
As was expected, the prediction of the critical temperature of Shi and John-
son [19] T ∗

c = 1.3145(2) and ρ∗c = 0.316(1) is slightly higher due to the fact
that they considered a cutoff radius rc = 5.0σ instead of half the simulation
box. Meanwhile, the prediction of Caillol T ∗

c = 1.326(2) on the surface of a
four-dimensional hypersphere differs significantly from our results.

As can be observed, in the case of the critical density, the dependence on
the system size is lower than in the case of the temperature. This fact can be
attributed to a lower degree of mixing in the corresponding field.

We have also determined the critical temperature and density T ∗
c = 1.313(1)

and ρ∗c = 0.317(1) using the cumulant intersection methodology or Binder pa-
rameter. The critical density has been determined by taking the average from
the simulation box at the largest system size. The validity of this calculation is
supported by the weak dependence of the critical density observed in the FSS
studies. As will be seen later, this is not true in the case of the binary mixture.

UNIVERSITAT ROVIRA I VIRGILI 
IMPROVEMENT OF MONTE CARLO ALGORITHMS AND INTERMOLECULAR POTENCIALS FOR THE MODELLING OF 
ALKANOLS, ESTHERS, TRIOPHENES AND AROMATICS 
Javier Pérez Pellitero 
ISBN: 978-84-691-0377-7/DL: T.2195-2007  
 



Improvement of Monte Carlo algorithms and intermolecular potentials 60

In figure 2.4 we show the intersection of the Binder parameter for different
system sizes. As can be seen, due to the finite size of our simulations we have
observed a slight dependence in the intersections as the volume of the system
is increased. This fact is attributed to the correction terms present in the for-
mulation of UL when the size is too small [72]. As a consequence, the value
of ULis slightly shifted from the universal value obtained for the Ising model
UL = 1.6035[73], this value is approached when the system size is increased.
[73]. The higher dependence of this value if compared with other models like
the restrictive primitive model [49] or the square well fluid [74] where a value
of UL ≈ 1.6875 is obtained, can likely be attributed to the higher asymmetry
of the Lennard-Jones model [61].

In figure 2.3 are plotted estimates for the finite system size critical temper-
ature taken from the intersection of the Binder parameter with the Ising uni-
versal value.We have found for the different system sizes that the values for
the temperature corresponding to the universal value of the Binder param-
eter agree very well with the apparent finite critical temperatures obtained
by means of the mixed-field theory. This correspondence could be expected
taking into account that the value of UL provides a dimensionless measure
of the shape of the order parameter distribution function analogous to the
mixed-field calculation. The scaling of the former locates the critical point
at T ∗

c = 1.3126(6) and ρ∗c = 0.3174(6), values which are in complete agree-
ment with the mixed-field theory. Since we use the same set of Monte Carlo
data in both the mixed-field FSS as well as the Binder parameter intersection
with FSS, the resulting statistical uncertainties are indicative of the relative ef-
ficiency of each method. As can be seen from the results, the statistical errors
are comparable hence suggesting that the efficiency of both techniques is also
comparable. In other words, the proposed intersection method provides the
same statistical efficiency as the mixed-field theory and at the same time is
simpler to apply.

Despite the fact that the cumulant intersection methodology provides slightly
shifted values for the critical parameters when not large enough systems are
used, this methodology allows a much more straightforward way to locate the
critical temperature with a very reasonable level of accuracy ≈ 0.2%.

2.4.2

Binary mixture

We have extended our analysis to LJ binary mixtures, where to our knowl-
edge there only exists one previous FSS study[20] . We have selected the same
conditions as used in this work in order to be able to directly compare results.
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Figure 2.2: Ordering operator distribution at the apparent critical conditions for V ∗ = 1500
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The use of histogram reweighting techniques allows us to extend the cal-
culation of the pressure-composition diagrams to nearby temperatures from
a given set of simulations at some fixed temperature. In figure 2.5 we show
the diagram calculated at T ∗ = 1.00 for the system V ∗ = 250 where we com-
pare with GEMC data. In figure 2.6 we have extended the calculation of the
phase diagrams to temperatures T ∗ = 0.86 and T ∗ = 1.14 using the same set
of original simulations at T ∗ = 1.00 for the smallest system V ∗ = 150, which
implies an important advantage if compared with the GEMC methodology. In
this case it is interesting to remark that the use of this methodology allows us
to calculate in a straightforward way the line of critical points applying a FSS
study of the finite critical parameters determined with the cumulant method-
ology from the systems V ∗ = 150 and V ∗ = 250, see figure 6. The critical locus
is determined until we reach the limit of the fluctuations for the larger system
used in the calculations, in this case V ∗ = 250, then additional simulations in
the critical region are required in order to cover the full range of temperatures.

We have calculated critical parameters by applying both, mixed-field the-
ory and cumulant intersection calculations. As in the case of the pure LJ fluid,
for the mixed field theory we have calculated the apparent critical parameters
by tuning the chemical potential until the ordering operator distribution col-
lapses onto the universal distribution p∗m(x). We have found p∗c = 0.152(1),
ρ∗c = 0.401(3) and x∗

c = 0.458(2) in good agreeement with the work of Potoff
and Panagiotopoulos. As can be seen in figure 2.7, the dependence of the ap-
parent critical composition and density is stronger than in the case of the pure
fluid. Potoff and Panagiotopoulos attributed this fact to the presence of larger-
field mixing contributions from the energy-like operator in the mixture. Re-
garding the critical pressure, we find that it appears to scale in the same way as
the density and the composition, since we have obtained what appears to be a
linear dependence of p∗c(L) vs L−(d−1/ν), see figure 2.7, although the relatively
large errors as compared to the pure systems make it difficult to be conclusive.
As can be seen in figure 2.8 we have also calculated the critical parameters us-
ing the cumulant intersection methodology. Critical pressure p∗c = 0.151(1)
has been determined from the intersection of the different curves calculated at
different system sizes. The values of the critical density and composition cal-
culated from the average of the box of the larger system size present a higher
deviation due to the previously mentioned stronger system-size dependence
of these values. In this case, the accuracy of the intersection is lower due to
the large increase in the configurational space.

The critical point has been located using the Binder cumulant methodol-
ogy. As in the case of the pure Lennard-Jones fluid, we have also scaled the
apparent critical pressures found at the Ising universal value of the Binder pa-
rameter. We have determined p∗c = 0.1512(9), ρ∗c = 0.399(4) and x∗

c = 0.458(2),
which are in excellent agreement with mixed field theory and show a similar
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Figure 2.5: P-xy diagram for the binary LJ mixture. HR data from this work (solid line). HR

data from [20] (filled triangles) GEMC data [20](circles). GEMC data [75](squares). The open

triangle represents the prediction of the critical point of this work.

statistical error as for the mixed-field theory showing a similar efficiency for
both techniques.

The results are, as in the case of the pure LJ fluid, in good agreement with
the study by Potoff [20] who predicted p∗c = 0.1522(9), ρ∗c = 0.406(2) and
x∗

c = 0.459(3) with the use of the mixed-field theory. The results obtained us-
ing the mixed-field theory suggests, as stated in section 1.7.7, that the mixture
belongs to the same universality class as the pure fluid. This fact is shown by
the good fits obtained for the universal fixed point ordering operator distri-
butions. We have also found the expected linear dependence of the aparent
critical pressure as a function of L−(d−1/ν). In the case of the critical density,
the dependence of ρ∗c(L) is in this case slightly higher. The aparent critical
composition also exhibits a linear dependence with L−(d−1/ν). Finally, regard-
ing the intersections of the Binder parameter they seem to approach again the
universal Ising value.

2.4.3

H2S/n-hexane mixtures

After testing the methodology with the LJ fluid, the calculations have been
extended to the H2S/n − hexane mixture. As mentioned before, due to the
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Figure 2.8: Critical pressure determination using the Binder cumulant intersection method

Source p∗c ρ∗c x∗
c Type

Potoff and
Panag.[20]

0.1522(9)0.406(2) 0.459(3) Mixed-Field Th.

This work 0.152(1) 0.401(3) 0.458(2) Mixed-Field Th. + FSS
This work 0.1512(9)0.399(4) 0.458(2) Cumulant + FSS
This work 0.151(1) 0.39(1) 0.49(1) Cumulant Intersection

Table 2.2: Critical constants estimations of the binary LJ mixture
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high acidity and toxicity of H2S, little is known about the physichochemi-
cal properties of hydrogen sulfide at the required conditions. Data on phase
equilibria can be found from estimates derived from only a few experimental
data combined with correlations and equations of state [76] [77]. Using the
Kristof&Liszi [78] intermolecular potential, previous works have been done
with molecular simulation obtaining good results for pure H2S [79]. The
phase diagram has been determined at T = 423.15K to allow for compari-
son with previous GEMC data [53]. As in the case of the binary mixture, the
P-xy phase diagram of the binary LJ mixture has been determined from the
smallest system sizes, while for the bigger systems computational effort was
put only near the critical point in order to complete the FSS study. In this
case, special attention must be paid to the system sizes taking into account
the increase of computational time due to the higher complexity of the real
model. To reflect this increase,for the smallest system V ∗ = 250, simulations
performed in the liquid phase required approximately 1 CPU hour per 10 mil-
lion MC steps in a 2800 MHz AMD processor. The results are shown in figure
2.9 for the system V ∗ = 250. The critical pressure was determined from the
cumulant intersection (figure 2.10). Once the critical pressure is known crit-
ical density and composition can be calculated. The mixed field theory has
also been used to confirm the result obtained with the cumulant intersection
methodology (figure2.11). In table 2.3, comparison is given between the re-
sults obtained using both methodologies.

Work Type P ∗
c [Mpa] ρ∗c [kg/m3] xH2Sc

This work Cumulant 9.7(2) 305(3) 0.80(1)
This work Mixed Field 9.86(9) 309(3) 0.820(9)

GEMC data Power Law 9.79 304.8 0.845

Table 2.3: Critical parameters of H2S/n-hexane mixture

2.4.4

Conclusions

We have estimated the critical point of the pure Lennard Jones fluid. To deter-
mine the critical parameters we applied the fourth order cumulant or Binder
parameter intersection method as well as , the Binder parameter intersection
with the universal value and mixed-field theory combined with Finite Size
Scaling. We find excellent agreement between the results obtained with all
three methods and also with previous Finite Size Scaling Studies of the LJ crit-
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Figure 2.9: Pressure composition and Pressure-density diagram for H2S/n-hexane mixture

obtained for the system V ∗ = 250. Histogram reweighting (solid lines). GEMC (diamonds). The
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Figure 2.10: Critical pressure determination using the Binder cumulant method
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ical point. In addition, we have extended the calculation to binary mixtures
interacting with the LJ potential where we have again applied successfully
both mixed field and Binder parameter methodologies with a finite size scal-
ing study as well as the Binder parameter intersection method. Once more,
we find excellent agreement with literature values.

In addition, we have shown that all the applied methodologies are affected
by the use of finite size simulation cells. Furthermore, we have shown the
agreement of the apparent critical temperatures calculated from the cumu-
lant intersection with the result provided by the mixed field theory. Although
the intersections found for the different system sizes appear to approach the
universal Ising value of the Binder parameter, the increasing numerical error
committed when increasing the size of the system makes it difficult to see a
clear trend. This is particularly true in the case of the binary mixture.

Finally, real mixtures have been successfully attempted despite the increase
of computational time due to the complexity of the models. The results ob-
tained present a slight deviation for the composition when compared with
GEMC data. The critical point has also been predicted using HR and FSS
techniques.

To summarize, we have shown that the combination of histogram reweight-
ing techniques with the Binder fourth order cumulant calculation is com-
pletely equivalent to the mixed field methods and can be employed in a finite
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size scaling study in order to estimate the critical parameters with the same
precision as for the mixed field studies.

The main advantage of this method compared with the mixed-field the-
ory is that no matching of the Ising universal distribution is required and the
estimation of the finite critical point is straightforward. In addition, recent
works have shown that the Binder parameter can also be used to estimate the
coexistence properties close to the critical point.
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3.1

Introduction

Due to the increasing requirements for sulfur removal from fuel, there has
been a constant growth of interest in these compounds in the petroleum in-
dustry. The reason for lowering sulfur level include the environmental ef-
fects of acid rain so produced when sulfur compounds are emitted to the
atmosphere, oxidized to sulfur oxides, and later scavenged by atmospheric
precipitation as sulfuric acid. Sulfur containing molecules must either be re-
moved or converted into hydrocarbons and H2S in order to accomplish the
strict limits in sulfur emissions imposed by the environmental laws. Since the
family of thiophenes is much more resistant than thiols or sulfides to known
conversion processes, adsorption is currently being considered as an alterna-
tive. In particular, the most difficult compounds to remove from liquid fu-
els are typically dibenzothiophene(DBT) and its derivatives[31]. Hence, there
is a strong need for thermodynamic data for this compound for which only
limited vapor-equilibrium data can be found in the literature. For example,
experimental data of vapor-liquid equilibrium (VLE) for mixtures containing
thiophene + alkanes + CO2 have been published recently[80]. In addition,
mixtures of ethanol+thiophene have also been considered[81]. A much older
study for systems consisting of aromatic hydrocarbons and thiophene in polar
solvents also exists [82, 83]. Finally, a review on the critical point determina-
tion of organic sulfur compounds can also be found[84]. It should be noted
that available experimental data is sometimes based on extrapolation and em-
pirical adjustments rather than purely on direct measurement and hence care
should be taken when comparing to such data.

Molecular simulation is rapidly becoming an alternative way to predict
equilibrium thermodynamic properties of pure fluids and mixtures. Of course,
the accuracy of the predictions is intimately related with the intermolecular
potentials used to reproduce the interactions between molecules. In the last
decade, potential models, also referred to as force fields, have been developed
for a wide range of compounds[24, 10, 25]. One of the most common ap-
proaches for modeling hydrocarbons and other flexible molecules is the use
of the united-atoms model scheme, where each chemical group is represented
by one Lennard-Jones center. This scheme results in a significant reduction of
the computational time as compared to all-atoms models since the number of
pair interactions goes as the square of the number of sites. Improvements on
the standard united-atoms model, where typically a 6-12 Lennard-Jones cen-
ter of force is placed on top of the most significant atom, have been proposed.
For instance, Errington et al. have used a Buckingham exp-6 potential [26],
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where 3 parameters are involved in each center of force and the repulsive part
of the LJ interaction is replaced by an exponential term. Chen et al. have in-
troduced additional sites on the centers of the C-H bonds[68]. Also, Ungerer
et al. [28] have obtained the AUA 4 model by reparameterizing the initial
Anisotropic United Atom (AUA) model proposed by Toxvaerd[29] [30]. The
AUA model consists of a displacement of the Lennard-Jones centers of force
towards the hydrogen atoms, converting the distance of displacement into a
third adjustable parameter.

In this chapter, we obtain an optimized intermolecular potential for the
sulfur group of the thiophene family aimed at giving a quantitative descrip-
tion of both liquid and coexistence properties, based on an extension of the
AUA 4 intermolecular potentials already given in previous works[32, 28]. To
guarantee the transferability of the parameters to the different compounds of
the family, we used the experimental values of density, vaporization enthalpy
and saturation pressure of both thiophene and benzothiophene. As a starting
point for the procedure, we have taken the parameters for sulfur of sulfides
and thiols by Delhommelle[85]. We have then fitted the Lennard-Jones param-
eters to experimental results of thiophene and benzothiophene according to
the methodology described by Bourasseau et al[86]. These optimized parame-
ters have then been used to calculate the properties of 2-methylthiophene, 2,5-
dimethylthiophene and dibenzothiophene in order to demonstrate the trans-
ferability of the resulting parameters to other members of the thiophene fam-
ily.

3.2

Model

3.2.1

Intermolecular Interactions

To describe the dispersion interactions, the different molecules are represented
by a set of interacting Lennard-Jones sites for each CH3, CH2, C or S group.
The interaction between two different united atoms, i and j, from different
molecules is calculated according to:
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ULJ(rij) = 4ǫij

[(
σij

rij

)12

−
(

σij

rij

)6
]

(3.1)

To calculate the parameters between unlike united atoms, we use the Lorentz-
Berthelot combining rules:

ǫij =
√

ǫiiǫjj (3.2)

σij =
σii + σjj

2
(3.3)

To model the aromatic rings we have taken the AUA 4 CH intermolecular
potential for aromatic compounds by Contreras et al. [21], and the aromatic C
group by Ahunbay et al. [32] optimized for polyaromatic compounds. The
choice of the latter set of parameters is discussed in section 3.3 where we
have tested the influence of the use of C parameters based either on alkyl-
benzenic or polyaromatic compounds. The methylene group was taken from
the work of Ungerer et al.[28] and finally we have fitted the parameters for the
sulfur atom, ǫS and σS . Note that in this case, since there is only one atom
present, there is no anisotropy and hence the displacement parameter is set
equal to zero. The parameters for the different potentials are shown in table
3.1. In table 3.2 we show the bond angles and distances used for the different
bonds. These parameters have been taken from the experimental geometry of
thiophene[87] as well as from ab initio calculations at the Density Functional
Theory level. All the models have been assumed to be rigid, as for the AUA
4 model for aromatics. Due to the moderate dipolar moment of the thiophene
molecule, µ = 0.54D [88] we have considered that a simple model without
charges should be able to reproduce accurately the vapor-liquid equilibrium
properties, at least of pure systems. Previously, the AUA 4 model has already
been successfully implemented for molecules such as orthoxylene which has
a dipole moment similar to thiophene [21].
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Group σ(Å) ǫ/k(K) δ(Å)
CH3[28] 3.607 120.15 0.216
CH[21] 3.246 89.42 0.407
C[32] 3.246 37.73 —

S 3.493 179.2 —

Table 3.1: Lennard-Jones parameters

bond length (Å) angle Σ(deg)
C − C[89](functional groups) 1.53 Car − Car − Car 112.7

Car − Car (aromatic ring) 1.39 Car − S − Car 92.2
Car − S 1.72 Car − Car − S 111.2

Table 3.2: Bond lengths and angles

3.3

Evaluation of the AUA 4 intermolecular potentials

for alkylbenzenes and polyaromatic hydrocarbons

Due to the aromatic character of thiophene compounds the aromatic groups
CH and C are particularly relevant before a new intermolecular potential
for the sulphur atom can be developed. These groups were optimized for
benzene[90] while in later works [21] [32] the C group was reparametrized
to better account for both alkylbenzene and polyaromatic compounds respec-
tively. With this in mind, in the first work p-xylene was used as a reference
alkylbenzene to calibrate the parameters of the aromatic carbon C group to
which the alkyl substituents are attached. The model was then tested on alkyl-
benzenes that were not used to optimize the potential parameters. In this the-
sis GEMC simulations were carried out for styrene to test the transferability
of the LJ parameters. In table 3.4 are shown the LJ parameters used to model

Group σ(Å) ǫ/k(K) Estimated F
S (based on thiophene and benzothiophene) 3.493 179.2 2.668

S(based on thiophene only) 3.518 176.9 1.814
S(based on benzothiophene only) 3.416 184.57 3.036

Table 3.3: Lennard-Jones parameters and error criterion as a function of the
target molecules
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the π-bounded CH and CH2 groups of the vinyl radical and in table 3.5 are
shown the results obtained using the alkylbenzene optimized LJ parameters.

Group σ [Ȧ] ε/k [K] δ [Ȧ]

CH (olefins) [86] 3.32 90.6 0.414
CH2 (olefins) [86] 3.48 111.1 0.295

Table 3.4: LJ parameters of the vinyl group

T (K) Property Calc. Property Exptl. Property % dev
360 Psat 21.4(0.8) 15.94 34.3

Hvap 40.7 40.8 -0.2
ρliq 843.3(1.8) 843 0.0

383 Psat 31.9(0.6) 35.8 -10.9
Hvap 39.3 39.4 -0.3
ρliq 821.6(1.6) 820.7 0.1

418 Psat 120(5) 99.7 20.4
Hvap 36.7 37.1 -1.1
ρliq 783.2(1.5) 784.8 -0.2

500 Psat 676(2) 575 17.7
Hvap 30.4 30.6 -0.7
ρliq 689.7(2) 689.8 0.0

540 Psat 1345(20) 1096 22.8
Hvap 26.2 26.6 -1.5
ρliq 632.9(2.2) 634.1 -0.2

580 Psat 2369(33) 1921 23.3
Hvap 23.4 21.4 9.3
ρliq 554.2(3.8) 565.7 -2.0

Table 3.5: Comparison of predicted and experimental equilibrium proper-
ties of styrene using alkylbenzene based AUA 4 parameters. Vapor pressure
(Psat) is expressed in kPa, vaporization enthalpies (Hvap) is in kJ/mol, and
liquid density (ρliq) is in kg/m3.

As can be seen in figures 3.1-3.2, the proposed parameter set for the C
group of alkylsubstituted aromatics obtained from the optimization of p-xylene
properties appear to provide good predictions for styrene alkylbenzenes and
styrene investigated in the present study. Heats of vaporization, liquid den-
sities, and normal boiling temperatures are predicted with an average accu-
racy of approximately 2%. confirming the good transferability of the AUA
intermolecular potential. In particular, the benzene-based parameters for the
aromatic CH group and the π alkene based parameters for the CH and CH2
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vinyl groups have been used without modification. This transferability is con-
sidered to be the result of the good physical sense of the potential parameters,
which were shown to reproduce correctly the liquid structure of benzene.

Since we plan to develop an intermolecular potential valid also for poly-
thiophenes, we have also tested the behavior of the polyaromatics based pa-
rameters of [32] by repeating some of the simulations done for styrene. The
purpose of these parameters is to extend the AUA potential to polycyclic aro-
matic hydrocarbons, without reconsidering, as in the case of alkylbenzene
compounds, the parametrization of the aromatic CH nor the parametrization
of the CH2 and CH3 groups of alkanes nor the CH and CH2 groups for π
bounded alkenes. For this purpose, naphthalene was used as a reference to
calibrate the parameters of the aromatic carbon that connects the aromatic cy-
cles to each other. The results obtained using these parameters are presented
in table 3.6 as well as in figures 3.1-3.2. The results obtained for the saturated
liquid densities as well as for the heats of vaporization are almost equal to
those obtained using the alkylbenzene based parameters. Despite the fact that
in the case of the saturation pressure, the use of the polyaromatics based pa-
rameters slightly increases the overestimation of this property, we think that
the adoption of this set of parameters for the thiophenes models is well justi-
fied, in particular for the modeling of polythiophenes.

T (K) Property Calc. Property Exptl. Property % dev
383 Psat 33.7(0.7) 35.8 -5.9

Hvap 38.6 39.4 -2.0
ρliq 812.1(1.9) 820.7 -1.0

418 Psat 128(7) 99.7 28.3
Hvap 36.7 37.1 -1.1
ρliq 782(4) 784.8 -0.3

500 Psat 724(2) 575 25.9
Hvap 30.4 30.6 -0.7
ρliq 689.4(2) 689.8 0.0

540 Psat 1366(23) 1096 24.6
Hvap 25.7 26.6 -3.4
ρliq 628.3(2.5) 634.1 -0.9

Table 3.6: Comparison of predicted and experimental equilibrium proper-
ties of styrene using polyaromatics based AUA 4 parameters. Vapor pres-
sure (Psat) is expressed in kPa, vaporization enthalpies (Hvap) is in kJ/mol,
and liquid density (ρliq) is in kg/m3.
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Figure 3.1: Saturated liquid densities of styrene. Solid line represents experimental results

data[88]. Squares and circles represent the simulation results for the alkylbenzene based [21] and

polyaromatics based AUA 4 parameters [32] respectively.
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Figure 3.2: Saturation pressures of styrene. Legend as in figure 3.1.
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Figure 3.3: Vaporization enthalpies of styrene. Legend as in figure 3.1

3.4

Simulation details

3.4.1

Fitting procedure

To determine the coexistence properties at the conditions selected to fit the
Lennard-Jones parameters, we have used the Gibbs ensemble Monte Carlo
(GEMC)[7] method due to the straightforward and easiness of the methodol-
ogy when a single point is involved. GEMC has been combined with a config-
urational bias scheme[56] and an additional bias for the insertion of the center
of mass of the molecules[91]. The selected probabilities for the different moves
were generally set to 0.245 for rigid body translation, 0.25 for rigid body ro-
tation, 0.5 for transfer and 0.005 for volume change. A total of 250 molecules
have been considered in all the simulations, using a cutoff radius equal to half
of the box with standard long range Lennard-Jones corrections [57]. Coexis-
tence densities, average pressure (calculated through the virial) and enthalpies
of vaporization (computed as the difference in enthalpy between the two sim-
ulation boxes) were calculated from the different simulations.
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To calculate liquid properties under atmospheric conditions, we have used
simulations in the isothermal-isobaric (NPT) ensemble by fixing the external
pressure at 1 atm while temperatures close to the experimental normal boiling
temperatures have been chosen: 340 K in the case of thiophene, 400 K in the
case of benzothiophene. The molar enthalpy of vaporization is given by:

∆Hvap = −〈Eliq(inter)〉 + RT (3.4)

where 〈Eliq(inter)〉 is the average molar intermolecular potential energy in
the simulation. This expression assumes that (i) the molar volume of the liquid
is negligible compared with that of the vapor, (ii) the vapor is close enough to
an ideal gas, and (iii) the difference between the intramolecular energies of the
two phases is negligible. In the case of the Lennard-Jones models used in this
work, these assumptions are indeed justified for reduced temperatures T/Tc

lower than 0.6, which corresponds to vapor pressures significantly lower than
atmospheric pressure.

3.4.2

Liquid-Vapor Phase Equilibria

Once the parameters were determined as described in the next section, the
coexistence curves and vapor-pressures of the different compounds consid-
ered were obtained using Grand Canonical Monte Carlo (GCMC) simulations
combined with histogram reweighting[15][16]. As for the Gibbs ensemble, a
configurational bias scheme[56] and an additional bias for the insertion of the
center of mass of the molecules[91] were implemented to enhance the accep-
tance rate of insertions. The probabilities of the different moves used in the
simulations were 0.15 for translation, 0.15 for rotation, and 0.7 for insertion
or deletion. A simulation box of size L = 32Å was used in all cases. Sys-
tems were allowed to equilibrate for at least one million MC steps followed
by the production run. In the case of a liquid phase, the length of the pro-
duction run was set normally to 25 million MC steps. Standard deviations
of the ensemble averages were calculated by breaking the production runs
into three blocks. Due to the limited number of particles present in the box
for the vapor phase at low temperatures, we have applied the assumptions
of Eqn. 3.4. In this way, the enthalpy can be calculated in a much more re-
liable way, since the vapor molar volume of the gas is estimated through the
ideal gas law, not being affected in this way by the error committed due to the
low number of molecules in the vapor phase. In this way the pressure at low
temperatures can be determined by applying thermodynamic integration [86]
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using the enthalpies calculated with the aforementioned approximations. We
have checked this proposed method by comparing the results with additional
NPT simulations in order to ensure that the energy and density of the liquid
phase are not affected by these approximations as will be shown in the results
section.

3.5

Determination of the Lennard-Jones parameters

In order to optimize the Lennard Jones parameters for the S group, we have
selected thiophene and benzothiophene experimental results as reference data.
Thiophene was chosen as being the most representative compound of the fam-
ily, and benzothiophene in order to improve the transferability of the parame-
ters to polyaromatic rings such as dibenzothiophene. For the two compounds,
we have used the vaporization enthalpy, pressure and liquid density at a tem-
perature near to the normal boiling point and at a reduced temperature of
about 0.8 as reference data. The selection of the vaporization enthalpy and
liquid density allows the predictions to be reliable over a large range of tem-
perature since they control the temperature dependence of the vapor pressure
through the Clapeyron equation. To optimize the Lennard-Jones parameters,
a GEMC simulation was carried out at a reduced temperature of 0.8 and a
NPT simulation at a temperature near to the normal boiling point. This set of
simulations optimizes the behavior of the parameters over a total of 10 differ-
ent properties of thiophene and benzothiophene.

Once the simulations have been carried out, an optimization procedure
is applied until the error has been minimized. The optimization methodol-
ogy has already been described in detail[86] and is thus only briefly described
here.

The normalized error criterion selected to drive the optimization proce-
dure is given by the following expression:

F =
1

n

n∑

i=1

(
Xmod

i − Xexp
i

)2

s2
i

(3.5)

where n is the total number of reference data, Xmod
i is the value of the
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ith property calculated in the simulations, Xexp
i is the experimental value of

the ith property and si is the statistical uncertainty of the computed variable
Xmod

i (estimated from the standard block averaging technique[57]). F is a
function of the different yi Lennard-Jones parameters to be optimized, in this
case y1 = ǫS and y2 = σS . The condition for minimizing F implies that:

∂F

∂yj
=

n∑

i=1

2
(
Xmod

i − Xexp
i

) ∂Xmod
i

∂yj

s2
i

= 0 (3.6)

Eqn.3.6 have been obtained by considering a Taylor expansion around an
initial point y0 corresponding to the initial selection of the Lennard-Jones set
of parameters:

Xmod
i (y0 + ∆y) = Xmod

i (y0) +
∑ ∂Xmod

i

∂yk)
∆yk (3.7)

Then the minimum condition of Eqns. 3.6 can be expressed as:

n∑

i=1

(
Xmod

i (y0) − Xexp
i +

∑
k

∂Xmod
i

∂yk
∆yk

)
∂Xmod

i

∂yj

s2
i

= 0 (3.8)

where the derivatives
∂Xmod

i

∂yk
have been evaluated by using statistical fluc-

tuations [86], which are known to provide good results in the estimation of
thermodynamic derivative properties [92] instead of the statistically less reli-
able and more time consuming finite difference evaluations [93]. The mini-
mum of F is then obtained by solving a system of linear equations A∆y = B
with n unknowns ∆yk. The optimized parameters yk are obtained with yk =
y0

k + ∆yk.

The initial set of parameters, σ0 = 3.60Å and ǫ0 = 190.0K have been taken
from the S of the sulfide group optimized by Delhommelle[85]. Although
these parameters were not optimized for thiophene, we find that they provide
a relatively good level of agreement with experimental results for the liquid
density, vaporization enthalpy and vapor pressure when evaluated at ambient
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temperatures as well as at a reduced temperature of 0.8. Despite the reason-
able results obtained, the liquid density and vaporization enthalpy of thio-
phene were overestimated while the vapor pressure was underestimated. The
critical point of thiophene was also overestimated by ≈ 25K . After the afore-
mentioned optimization process, the Lennard-Jones parameters obtained for
the sulfur atom were σ = 3.493Å and ǫ = 179.2K . We have also considered
the possibility of optimizing the parameters based only on thiophene or ben-
zothiophene separately. In table 3.3 are given the different sets of parameters
obtained according to the different selections of target properties as well as the
estimated normalized errors committed according to the target molecules cho-
sen on applying these parameters. It may be noticed that compared with the
original S parameters of organic sulfides, both ǫ and σ are smaller, whatever
the reference molecules used.

3.6

Calculation of the critical point

In order to accurately locate the critical point, we have applied a recently
implemented[94] methodology based on the calculation of a fourth order cu-
mulant (Binder parameter) combined with the use of finite size scaling[14]
techniques. The Binder parameter UL is defined as follows:

UL =
〈m4〉
〈m2〉2 (3.9)

where m is an appropriate order parameter, in our case density. The pro-
cedure is as follows: system size dependent critical conditions are determined
for different system sizes by locating the temperature at which the system
takes on the ”universal” Ising value of the system. Once these values are cal-
culated, the critical constants are expected to change as a function of the sys-
tem size according to known scaling laws[14]. For instance, the temperature
of the finite system is expected to vary near the critical point with system size
as:

〈T 〉c(L) − 〈T 〉c(∞) ∼ L−(θ+1)/ν (3.10)

where Θ= 0.54 and ν= 0.629 [67][68].
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In the same way, the critical density of the finite system is expected to vary
with system size as:

〈ρ〉c(L) − 〈ρ〉c(∞) ∼ L−(d−1/ν) (3.11)

where d is the dimensionality of the system.

By plotting the finite size critical values according to these functions, an
extrapolation can be made to estimate the corresponding infinite system size
value.

3.7

Performance of the optimized parameters

The transferability of the optimized parameters has been tested over the two
reference compounds as well as three other thiophenes: 2-methylthiophene,
2,5-dimethylthiophene and dibenzothiophene (DBT). DBT has been selected
in order to test the performance of the optimized parameters for polyaromatic
molecules.

3.7.1

Thiophene and alkylthiophenes

In figure 3.4 and table 3.7 the vapor-liquid coexistence density curve of thio-
phene is given. The results are compared with the TraPPE model proposed by
Lubna et al. [95]. Also shown in figure 3.4 is a comparison between the his-
togram reweighting results obtained by applying the assumptions of section
3.4.2 and NPT simulations. Below a temperature of 0.65 Tc the results shown
from HR are estimated by applying the new methodology. As can be seen,
the proposed method for calculating the coexistence densities at low tempera-
tures is consistent with the NPT simulations. The liquid density is found to be
reproduced on average within 1% of the experimental value while the critical
temperature is predicted within less than 1% improving considerably the 3%
and 4.5 % obtained respectively by the TraPPE model. In the case of the criti-
cal densities, both predictions are almost equivalent being in good agreement
with the experimental value. The set of calculated critical parameters for the
rest of the molecules are presented in table 3.8. To determine the finite size
critical values, additional simulations in the critical region have been done for
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Figure 3.4: Coexistence curve of thiophene. The straight line represents experimental data [88],

open circles are the HR results of the new model. Squares are GEMC simulation results of the

TraPPE model from ref. [95]. The up triangle represents the critical point of this model while the

down triangle represents the critical point of the TraPPE model. Filled symbols represent NPT

simulations results.

the different molecules using system sizes ranging from L = 25Å in the case
of alkylthiophenes up to L = 42Å in the case of polythiophenes. As is shown
in figure 3.5, the Binder parameter has been calculated along the equilibrium
line for different system sizes. The intersections of the Binder parameter with
the Ising universal value have been used as estimations for the apparent criti-
cal points, which have then been scaled according to Eqns. (3.10) and (3.11) as
shown in figure 3.6. The coexistence density curves and the saturated liquid
densities of the alkylthiophenes are presented in figure 3.7.

A good agreement has been obtained for the 2-methylthiophene coexis-
tence densities, and the critical point is underestimated by approximately 1%.
The deviations are larger in the case of 2,5-dimethylthiophene, but in this case
the reliability of the experimental data is poor. Indeed, the DIPPR proper-
ties for this compound are mostly based on extrapolation, the quoted uncer-
tainty being of 10% for all the properties calculated. In the case of thiophene,
these values are 1% for the liquid density and 3% for the saturation pressure
and the vaporization enthalpy. The saturation pressures, as plotted in fig-
ure 3.8, reveal a slight overestimation of this property; despite the fact that
for thiophene the target values have been well reproduced within a reason-
able mean error of 9% for the absolute value of the saturation pressure. In
the case of the other alkylthiophenes the deviations are slightly higher but al-
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Figure 3.5: Binder parameter intersections for different system sizes for thiophene.
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Figure 3.6: Finite size scaling for the critical temperature and density of thiophene.
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Figure 3.7: Coexistence curves of alkylthiophenes. Solid, dashed and dotted lines repre-

sent experimental data[88] for thiophene, 2-methylthiophene and 2,5-dimethylthiophene respec-

tively. Circle, square, and diamond symbols represent the simulation results for thiophene, 2-

methylthiophene and 2,5-dimethylthiophene respectively. Filled triangles denote estimates of the

critical points of this model.
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Figure 3.8: Saturation pressures of alkylthiophenes. Solid, dashed and dotted lines represent

experimental data[88] for thiophene, 2-methylthiophene and 2,5-dimethylthiophene respectively.

Symbols represent the simulation results.
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Figure 3.9: Enthalpies of vaporization of alkylthiophenes. Solid, dashed and dotted lines repre-

sent experimental data[88] for thiophene, 2-methylthiophene and 2,5-dimethylthiophene respec-

tively. Symbols represent the simulation results.

ways within a reasonable error. The calculated normal boiling temperatures
are also presented in table 3.7. A larger deviation, 2%, has once more been
obtained for 2,5-dimethylthiophene, while in the case of thiophene less than a
1% error has been found. Finally, in figure 3.9, we present the results for the
enthalpy of vaporization. A good agreement has been obtained for thiophene
and 2-methylthiophene, while higher deviations have been obtained for 2,5-
dimethylthiophene. This deviation can again be attributed to the low relia-
bility of the experimental data reported for this molecule, and also to the fact
that the model slightly underestimates the decrease in Psat and the increase in
∆Hvap due to the presence of the methyl substituents

3.7.2

Polythiophenes

Simulations for benzothiophene and dibenzothiophene have been conducted
to test the behavior of the optimized parameters for polyaromatic rings. The
vapor-liquid coexistence density curve is shown in figure 3.10 and in table
3.9. In the case of benzothiophene, the liquid density is well reproduced as
expected since the experimental properties of this molecule have been se-
lected as target values in the optimization process. The critical temperature
has been underestimated by approximately 2%. In the case of dibenzothio-
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phene the liquid density is also well reproduced although larger deviations
are observed than for benzothiophene. Critical temperature is underestimated
by 3.5%. As in the case of 2,5-dimethylthiophene, the accuracy of the experi-
mental data is limited for this molecule. An uncertainty of 10% has beeBinder
parameter intersections for different system sizes for dimethyl, ethylmethyl
and diethylether]Binder parameter intersections for different system sizes for
dimethyl, ethylmethyl and diethylethen reported in the case of the density
and vaporization enthalpy while 5% is given for the saturation pressure. In
figure 3.11, saturation pressures are compared with experimental results. In
both cases the simulation results give a slight overestimation of this property
as could be expected from the results obtained for benzothiophene after the
optimization process. Despite this overestimation, the error committed in the
evaluation of the normal boiling temperatures is only approximately 2%. The
enthalpies of vaporization are plotted in figure 3.12. In the case of both ben-
zothiophene and dibenzothiophene this property is reproduced satisfactorily,
with again a higher deviation in the case of dibenzothiophene.

3.8

Conclusions

The AUA4 potential has been successfully extended to alkyl and polythio-
phenes. Despite the simplicity of the model, no charges have been introduced
and a rigid geometry is considered, reparametrizing only the one center of
force for the sulfur group has allowed the vapor-liquid equilibrium proper-
ties to be reproduced satisfactorily. The optimization of the LJ parameters has
been carried out based on target properties of both thiophene and benzothio-
phene, the most significant compounds of the families of alkyl and polythio-
phenes respectively. Although the behavior of the model could be improved
individually by optimizing different sets of LJ parameters for only thiophene
or only benzothiophene, our goal is to produce parameters that are transfer-
able to other molecules. We have hence decided to develop only a single centre
of force based on the simultaneous optimization of both molecules. Saturated
liquid densities have been calculated with mean errors of 1.5% in the case of
alkylthiophenes. Slightly larger deviations have been obtained for polythio-
phenes as was expected from the fact that the experimental data is reported
with high errors. Although the model tends to overestimate saturation pres-
sures, the normal boiling points have been calculated within 1-2% in all cases.
Vaporization enthalpies have also been reproduced with a good level of agree-
ment. The calculation of the critical points has been made through the recently
implemented [94] methodology based on the calculation of a fourth order cu-
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Figure 3.10: Coexistence curves of polythiophenes. Solid and dashed lines represent experi-

mental data[88] for benzothiophene and dibenzothiophene respectively. Symbols represent the

simulation results. Triangles denote estimates of the critical points of this model.

mulant (Binder parameter) combined with the use of finite size scaling[14]
techniques. This method allows the critical points to be located in a straight-
forward and accurate way. Critical parameters have been thereby calculated
in general within a 0.05% statistical error for the critical temperature and at
most 1.5% for the critical density. The model critical temperature of thiophene
is found to be within 1% of the experimental value. The lack of charges in
the model implies that although it should be reliable for both pure systems of
other molecules of the same family as well as non-polar mixtures, care should
be taken when applying it to situations where charges play an important role
such as adsorption in cation-exchanged zeolites or the computation of dynam-
ical properties such as viscosity or diffusion. In addition, attention should be
paid to the reliability of these models for the prediction of non-equilibrium
properties. Indeed, recent work using the AUA model for benzene[96] shows
that an accurate agreement with experiment for transport properties is more
demanding in terms of the intermolecular potential and charges were required
in order to provide a better account of the viscosity[97].
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Figure 3.11: Saturation pressures of polythiophenes. Solid and dashed lines represent exper-

imental data[88] for benzothiophene and dibenzothiophene respectively. Symbols represent the

simulation results.
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Figure 3.12: Enthalpies of vaporization of polythiophenes. Solid and dashed lines represent

experimental data[88] for benzothiophene and dibenzothiophene respectively. Symbols represent

the simulation results.
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ρliquid(kg/m3) ∆Hvap(kJ/mol) Psat(kPa)
T(K)AUA exptl %

dev
AUA exptl %

dev
AUA exptl %

dev
Thiophene

560 607.0±3.7 599.3 1.29 13.6±0.1 12.3 11.3 4754±11 4511. 5.38
530 717.1±2.6 695.3 3.15 19.0±0.1 17.7 7.91 3318±17 3067. 8.15
500 777.8±1.4 763.3 1.9 22.3±0.1 21.2 5.32 2213±12 2013 9.92
470 832.7±1.1 819.7 1.59 25.0±0.05 24.0 4.17 1414±9 1259 12.25
440 879.1±0.5 869.2 1.13 27.0±0.05 26.4 2.63 839±7 739 13.4
410 921.8±1.8 914.3 0.82 28.8±0.1 28.5 1.45 453±4 399 13.36
380 959.2±2.1 956.0 0.34 30.2±0.1 30.3 -0.41 214±3 193 11.27
350 997.3±1.7 995.2 0.21 31.9±0.05 32.0 -0.37 91.6±2 80.3 14.05
332 1020.7±7.41017.8 0.30 32.9±0.3 33.0 -0.15 50.0±1 43.3 15.64

2-methylthiophene
580 551.5±8.6 582.8 -5.38 13.3±0.2 15.6 -14.3 4118±29 3471 18.63
550 655.3±2.0 660.1 -0.74 19.5±0.1 20.5 -4.88 2860±31 2361 21.09
520 728.6±3.4 719.4 +1.27 23.6±0.05 24.0 -1.42 1893±29 1548 22.22
490 776.9±2.4 770.0 +0.90 26.6±0.05 26.8 -0.78 1189±25 968 22.82
460 820.4±0.6 815.3 +0.63 29.1±0.05 29.2 -0.57 708±17 568 24.56
430 862.4±0.9 856.9 +0.64 30.9±0.05 31.4 -1.36 385±13 307 25.16
400 895.6±1.2 895.7 -0.01 33.1±0.1 33.3 -0.74 168±7 149 12.86
370 932.3±1.2 932.5 -0.03 34.5±0.1 35.1 -1.64 74.0±5 63.2 17.02
340 967.9±4.8 967.5 +0.04 35.9±0.2 36.7 -2.15 26.9±2 22.2 21.21

2,5-dimethylthiophene
590 548.5±8.1 606.3 -9.53 15.6±0.05 20.0 -22.0 3381±41 2729 23.8
560 639.7±3.4 670.3 -4.56 21.9±0.05 24.7 -11.0 2339±61 1825 28.1
530 703.9±4.8 720.9 -2.35 26.2±0.1 28.1 -6.61 1562±52 1172 33.1
500 750.6±1.9 764.3 -1.79 30.0±0.1 30.8 -2.47 992±26 715 38.6
470 792.5±1.4 803.0 -1.31 31.6±0.1 33.0 -4.33 584±15 408 42.9
440 836.6±1.7 838.5 -0.23 33.2±0.2 34.9 -4.66 300±12 214 39.7
410 868.9±1.2 871.4 -0.29 33.5±0.2 36.4 -7.94 132±8 101 30.1
380 897.2±2.6 902.5 -0.58 36.0±0.2 37.8 -4.67 57.8±2 41.9 38.0
350 934.6±4.1 931.9 +0.29 37.5±0.3 39.0 -3.81 18.4±0.8 14.5 26.7
332 945.0±5.3 948.9 -0.41 38.0±0.3 39.6 -4.07 10.5±0.2 6.98 51.1

Table 3.7: Equilibrium properties of thiophene, 2-methylthiophene and 2,5-
dimethylthiophene
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Molecule Type Tc(K) ρc(kg/m3) Tb(K)
Thiophene This model 584.1(2) 372.1(4) 356.6

Experiment 579 384 357.3
TraPPE-UA 605 375 357.4

Benzothiophene This model 737.9(2) 388(5) 481.8
Experiment 754 384 493.0

2-methylthiophene This model 597.1(3) 335(1) 380.3
Experiment 609 357 385.7

2,5-dimethylthiophene This model 615(1) 325(5) 399.9
Experiment 630 342 409.9

Dibenzothiophene This model 867.0(3) 383(4) 590.9
Experiment 897(9) 360 604.6

Table 3.8: Critical properties of the different compounds
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ρliquid(kg/m3) ∆Hvap(kJ/mol) Psat(kPa)
T(K)AUA exptl %

dev
AUA exptl %

dev
AUA exptl %

dev
Benzothiophene

710 614.9±11 650.8 -5.52 19.2±0.4 22.6 -15.1 3681±38 2658 38.4
680 701.0±8.1 718.8 -2.48 25.6±0.4 27.4 -6.81 2718±50 1919 41.5
650 773.8±4.2 774.8 -0.14 30.6±0.4 31.2 -1.77 1955±29 1351 44.6
620 829.8±4.0 824.1 0.69 34.5±0.1 34.3 0.56 1358±18 921 47.3
590 873.5±1.3 869.0 0.51 37.4±0.1 37.0 1.04 900±16 602 49.2
560 909.1±3.6 910.7 -0.18 39.4±0.1 39.4 0.03 556±15 374 48.3
470 1011±2.6 1023 -1.19 46.2±0.2 45.4 1.75 82.0±3 58.1 41.1
440 1036±6.8 1058 -2.04 47.6±0.2 47.2 0.86 36.3±1.4 25.4 42.8
410 1068±6.4 1091 -2.13 49.3±0.3 48.8 1.05 13.7±0.3 9.61 42.5
380 1087±7.9 1124 -3.24 50.4±0.4 50.4 0.16 4.33±0.1 3.03 43.0
350 1106±8.5 1156 -4.29 51.6±0.4 51.8 -0.44 1.08±0.05 0.76 43.03

Dibenzothiophene
850 586.8±2.1 637.5 -7.96 21.2±0.2 28.9 -26.8 3497±38 2540 37.7
820 669.7±4.5 695.2 -3.68 28.9±0.2 34.5 -16.4 2633±45 1899 38.7
790 744.3±2.0 741.8 +0.34 36.1±0.1 38.8 -7.16 1940±48 1392 39.4
760 798.6±3.3 782.2 +2.11 41.4±0.1 42.4 -2.44 1402±39 997 40.6
730 841.1±3.4 818.3 +2.79 45.5±0.1 45.6 -0.15 990±27 696 42.4
700 879.7±3.4 851.4 +3.31 48.9±0.05 48.4 +1.25 675±18 470 43.8
670 917.4±2.6 882.3 +3.98 51.9±0.01 50.9 +2.15 436±11 305 43.1
640 953.2±1.3 911.3 +4.6 54.4±0.05 53.2 +2.34 257±6 160 35.9
610 983.7±3.8 938.9 +4.77 58.2±0.3 55.3 +5.26 154±3 112 38.6
580 1012±4.8 965.2 +4.82 60.2±0.3 57.3 +4.93 83.3±1.4 61.7 35.0
550 1044±7.2 990.4 +5.45 62.9±0.4 59.2 +5.69 41.8±0.9 31.5 32.4
520 1066±5.1 1015 +5.03 64.7±0.4 61.0 +5.98 18.2±0.3 14.7 24.0

Table 3.9: Equilibrium properties of benzothiophene and dibenzothiophene
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4.1

Introduction

The increasing popularity of the use of oxygenated compounds in the field of
biocombustibles has given rise to an increased interest in the family of alco-
hols in the petroleum industry. In particular, the simplest and most commonly
used alcohols in the elaboration of biodiesels are methanol (common name
methyl alcohol) and ethanol (ethyl alcohol). Alcohols are polar molecules due
to the presence of the hydroxyl group in the ”head” of the alkyl flexible chain
which gives the molecule a nonpolar character. Alcohols, like water, can show
either acidic or basic properties at the O-H group. With a pKa of around 16-19
they are generally slightly weaker acids than water, but they are able to re-
act with strong bases. On the other hand, the nonbonded pair of electrons of
the oxygen gives these compounds a basic character in the presence of strong
acids. Since alcohols are also widely used as solvents, the thermodynamic
properties of this family and its mixtures has been widely investigated either
experimentally, theoretically or by means of molecular simulation. [98][39]

In the case of the shorter alcohols, as in the case of methanol, several
models have been proposed to investigate its behaviour [33][34][35] mainly
at ambient temperature and density. Vapor-liquid coexistence curves from
methanol to hexanol have been obtained[36] by combining the charges of the
OPLS (optimized potential for liquid simulation) force field with the Lennard-
Jones (LJ) hydroxyl group parameters derived by Van Leeuwen in [37] and
the alkyl groups of the Siepmann-Karaborni-Smit(SKS) [38] force field. The
OPLS force field was found to be unreliable at high temperatures and longer
chains. Although the model of Van Leeuwen behaves much better, it requires
the methyl groups of the different alcohols to be specifically readjusted. More
recently, in 2001 Chen et al [39] have extended the TraPPE [25](Transferable
Potentials for Phase Equilibria) force field to several primary, secondary and
tertiary alcohols trying to introduce as few as possible new ”pseudo-atoms”
to account for the difference in electronegativity between an alkane C − C
bond or a C − O bond. In general they obtained a good agreement for a va-
riety of alcohols and they were also able to reproduce correctly the azeotropic
compositions of binary n-hexane/methanol mixtures.

In this work, we use an optimized intermolecular potential for the hy-
droxyl group of the family of alcohols aimed at giving a quantitative descrip-
tion of both liquid and coexistence properties, based on an extension of the
AUA 4 intermolecular potentials already given in previous works[32, 28]. The
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optimisation of the potential forms part of the works done by Bourasseau [99]
in his thesis, while here we have extended his work to further compounds of
the family and the calculation of Henry constants of different gases in alka-
nols. In contrast with the TraPPE approach,the aim of this optimisation was to
use the same set of LJ parameters for the alkyl chain previously optimized for
alkanes, without the need of defining new ”pseudo-atoms”. The coulombic
charges have been then parameterized to reproduce the electronic structure of
ethanol and methanol obtained from ab initio calculations. In a second step,
the LJ parameters of the OH group have been fitted to reproduce selected
equilibrium properties of methanol and ethanol, where the influence of the
hydroxyl group is higher.

4.2

Model

4.2.1

Intermolecular Interactions

To describe the dispersion interactions, the different molecules are represented
by a set of interacting Lennard-Jones sites for each CH3, CH2, C aromatic C
and CH or OH and the respective Coulombic interactions. The energy be-
tween two different particles, i and j is calculated according to:

ULJ(rij) = 4ǫij

[(
σij

rij

)12

−
(

σij

rij

)6
]

+

[
qiqj

4πǫ0rij

]
(4.1)

where rij is the separation between a given pair of particles i and j, ǫij the
LJ well depth, σij the LJ size of particles, qi and qj the partial charges and ǫ0
the permittivity of space.

To calculate the parameters between unlike united atoms, we use the Lorentz-
Berthelot combining rules:

ǫij =
√

ǫiiǫjj (4.2)
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σij =
σii + σjj

2
(4.3)

The different alkanols considered in this work have been modelled by us-
ing the AUA 4 the CH3, CH2 and C groups from Ungerer et al.[28]. In the case
of the aromatic ring of phenol, we have used the CH intermolecular poten-
tial for polyaromatic compounds of Contreras et al. [21], and the aromatic C
group of Ahunbay et al. [32]. The AUA parameters for the different potentials
are shown in table 4.1. In table 4.3 we give the bond distances as well as the

bond angles of the aromatic ring. The ĈOH angle and the lengths of the bonds
C − O and O − H have been determined from ab initio calculations.

The bending angle is modelled by means of the following expression:

Ubend/k =
1

2
kbend [cos(θ) − cos(θ0)]

2
(4.4)

where k0 is the bending constant and θ, θ0 the bending and equlibrium

angles respectively. While the ĈOH angle has been considered to be rigid, as
will be explained in more detail in the following section, the values for the

ĈCO bending angles have been taken, as in the case of Chen et al, from the
AMBER94 force field[100]. The different values of the bending parameters are
listed in table 4.2. The torsional potentials are taken from the OPLS-UA force
field [101][24]:

Utors(φ) = c0 +
1

2
c1(1 + cosφ) +

1

2
c2(1 − cos2φ) +

1

2
c3(1 + cos3φ) (4.5)

where φ is the dihedral angle and the Fourier coefficients are listed in table
4.4.

4.2.2

Charge Optimization

To determine the values and positions of the electrostatic charges in the hy-
droxyl group of the different compounds as well as of the neighboring car-
bons, we have tried to reproduce the electrostatic potential of an isolated
molecule determined from ab initio calculations. We have decided to optimize
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Group σ(Å) ǫ/k(K) δ(Å)
CH3[28] 3.607 120.15 0.216
CH2[28] 3.461 86.29 0.384

C 2.44 15.04 —
CHar[21] 3.246 89.42 0.407
Car[32] 3.246 37.73 —

OH 3.034 85.27 0.0951

Table 4.1: Lennard-Jones parameters and distances of anisotropy

bond length (Å) angle Σ(deg)
C − C 1.53 Car-Car-Car 112.7

Car − Car (aromatic ring) 1.39 Car − O − H 108.9
C − O 1.425
O − H 0.96

Table 4.2: Bond lengths and angles

the charges to reproduce the potential calculated in a grid placed over the
envelope created by spheres centered on the different atoms of the molecule.
These spheres have been selected to have a radius twice the van der Waals ra-
dius, and they have been constructed according to the methodology proposed
by Singh et al [102]. The methodology used is described next:

• The geometry of the molecule is optimized and the potential energy cal-
culated for the given geometry over the N points of the chosen grid.

• The values of the partial charges are optimized so that they reproduce
the potential energy over the surface. We let {q} = qi, . . . , qM be a distri-
bution of M charges placed over the molecule. The electrostatic poten-
tial created by this set of charges over the different points p of the surface
can be written as:

Vq,p =
1

4πǫ0

M∑

i=1

qi

rip
(4.6)

where rip is the distance between the charge i and the point over the grid
p.

• We now define χ so that:
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Angle θ0[deg] k0/k[K]
CHx − CH2 − O 109.47 59800

CHx − CH2 − CHy 114 74900
CHx − CH − CHy 112 72700
CHx − C − CHy 109.47 70311

Table 4.3: Bending parameters

Torsion c0/k[K] c1/k[K] c2/k[K] c3/k[K]
CHx − CH2 − CH2 − CHy 0 670.06 -136.38 1582.64
CHx − CH2 − CH2 − OH 0 353.24 -106.68 1539.86

CHx − CH2 − O − H 0 419.64 -58.34 375.86
CHx − Car − O − H 0 0 0 327.12

Table 4.4: Torsion potential constants

χ2 =

N∑

p=1

(
Vq,p − V ref

p

)2
(4.7)

where V ref
p represents the potential value at the point p obtained from ab

initio calculations. The value of χ2 must now be minimized to obtain the
optimized values of the partial charges. This requires that the deriva-
tives of χ2 with respect to the charges {q} must be equal to zero, so we
can write:

∀i ∈ {1, M},
N∑

p=1

2

rip




M∑

j=1

qj

rjp
− V ref

p


 = 0 (4.8)

An additional equation is introduced to account for the restriction that
the molecule must be neutral:

M∑

j=1

qj = 0 (4.9)

So we obtain:
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M∑

j=1

qj

rjp
=

M−1∑

j=1

(
qj

rjp
+

0 −∑M−1
j=1 qj

rMp

)
=

M−1∑

j=1

qj

(
1

rjp
− 1

rNp

)
(4.10)

Substituting into equation 4.8 we obtain:

∀i ∈ {1, M},
N∑

p=1

1

rip




M−1∑

j=1

qj

(
1

rjp
− 1

rNp

)
− V ref

p


 = 0 (4.11)

or:

∀i ∈ {1, M},
M−1∑

j=1

N∑

p=1

(
1

riprjp
− 1

riprNp

)
qj =

N∑

p=1

V ref
p

rip
(4.12)

The problem reduces finally to solve a system of M equations with M−1
unknowns.

• Once the values have been determined, we can calculate the RRMS
(Relative Root Mean Square) deviation of the charge distribution which
will give us information about the accuracy of the optimized set of charges:

RRMS =

√
N∑

p=1

(
V calc

p − V ref
p

)2

√
N∑

p=1

(
V ref

p

)2
(4.13)

The lower the RRMS deviation, the higher the accuracy obtained in
the representation of the electrostatic potential over the van der Waals
surface.

This method presents the inconvenience of optimizing the charges only
with respect to a single conformation of the molecule, so we are assuming
the charge distribution to be valid for the different conformations adopted
by the flexible molecule. The second assumption has to do with the fact that
the charges have been determined for an isolated molecule, so we are assum-
ing that the electrostatic potential created by a molecule in a vapor or liquid
phase is equivalent to that created by an isolated molecule. This approxima-
tion is equivalent to neglecting the induction term created by the surrounding
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molecules.

In the particular case of this work, we wish to obtain a single optimized
set of charges which can be extended to a wide variety of alcohols, either rigid
or flexible. The aforementioned methodology has been applied to different
conformations of methanol and ethanol, in order to find the distribution of
charges that most accurately respresents these two alcohols, which are taken
to be representative of the other molecules to be studied. This assumption
is made based on the fact that these two alcohols have the highest influence
of the electrostatic energy with respect to the total energy, so that if the set
of charges is able to reproduce correctly these target molecules, it will be ex-
pected also to reproduce correctly further compounds. In figure 4.1 we can
see the two different charge distributions that have been investigated. The
first one, referred from now on as distribution A, having three charges, two of
them placed over the hydrogen and the neighbour carbon, and the third one

on the bisector of the ĈOH angle. The second distribution has four charges,
two of them placed over the hydrogen and the neighbour carbon while the
third one is placed on the bond between the carbon and the oxygen and the

last one on the bisector of the ĈOH angle. The first distribution is analogous
to the one commonly used for water [103], so it is interesting to test the behav-
ior of this type of distribution for the alcohols. The reason of adding a fourth
charge in distribution B is to improve the poor description of the dipolar mo-
ment obtained using distribution A. Although these types of distributions are
novel for alcohols in the literature, they are well justified to describe such a
compounds.

The optimization of both distributions has been made according to three
different configurations: methanol, ethanol-trans, and ethanol-gauche where
the dihedral angles are 180◦ and 60◦ respectively. These last two configura-
tions correspond to those found to be more stable experimentally. Table 4.5
gives the values of the RRMS deviations obtained for the six optimizations
according to the different distributions of charges and conformations.

We can see the important effect of adding the fourth charge in the bisector

of the ĈOH angle. The average deviation obtained for the distribution A is
around 25% while for distribution B this value is only about 12% Although
the three optimizations for the distribution B present much improved RRMS
values, we have selected the set of charges optimized for the ethanol-gauche
since this is the one presenting more constant RRMS values for the three dif-
ferent considered conformations. The values of the charges obtained in this
case are shown in table 4.6
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Figure 4.1: Schematic representation of the two different proposed charge distributions for

alcohols.

4.3

Simulation details

To determine the coexistence properties we have used the Gibbs ensemble
Monte Carlo (GEMC) combined with a configurational bias scheme[56] and
an additional bias for the insertion of the center of mass of the molecules[91].
The selected probabilities for the different moves were generally set to 0.245
for rigid body translation, 0.25 for rigid body rotation, 0.5 for transfer and
0.005 for volume change. A total of 250 molecules have been used in all the
simulations, using a cutoff radius equal to half of the box length with standard
finite-size Lennard-Jones corrections [57]. Coexistence densities, average pres-
sure (calculated through the virial) and enthalpies of vaporization (computed
as the difference in enthalpy between the two simulation boxes) were calcu-
lated from the different simulations.

To investigate the critical region we have used Grand Canonical Monte
Carlo (GCMC) simulations combined with histogram reweighting[15][16]. As
for the Gibbs ensemble, a configurational bias scheme[56] and an additional
bias for the insertion of the center of mass of the molecules[91] were imple-
mented to enhance the acceptance rate of insertions. The probabilities of the
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Distribution methanol ethanol-
trans

ethanol-
gauche

A optimized for methanol 25.9 24.9 24.3
A optimized for ethanol-
trans

26.1 24.8 23.7

A optimized for ethanol-
gauche

26.8 25.2 23.4

B optimized for methanol 10.9 11.9 12.9
B optimized for ethanol-
trans

12.91 10.2 13.9

B optimized for ethanol-
gauche

11.5 12.0 12.4

Table 4.5: RRMS values in % obtained after the optimization according to
the different charge distributions and conformations

- charge q1 charge q2 charge q3 charge q4

Distribution B optimized
for ethanol-gauche

-1.99 -1.49 0.70 2.78

Table 4.6: Charges values obtained for the selected optimization

different moves used in the simulations were 0.15 for translations, 0.15 for ro-
tations, 0,1 for internal rotations and 0.6 for insertion or deletion. Simulation
boxes of sizes between L = 16 − 32Å were used depending on the molecule.
Systems were allowed to equilibrate for at least one million MC steps followed
by the production run. In the case of a liquid phase, the length of the produc-
tion run was set normally to 25 million MC steps.

4.4

Determination of the Lennard-Jones parameters

In order to optimize the Lennard Jones parameters for the OH group, we
have selected ethanol and methanol experimental results as the reference data.
These two compounds have been selected because of being the molecules
where the effect of the hydroxyl group is expected to be higher. In addition,
including both compounds in the optimization method takes into account the
effect of both CH3 and CH2 as adjacent groups. To optimize the Lennard-
Jones parameters, a GEMC simulation was carried out at a reduced temper-

UNIVERSITAT ROVIRA I VIRGILI 
IMPROVEMENT OF MONTE CARLO ALGORITHMS AND INTERMOLECULAR POTENCIALS FOR THE MODELLING OF 
ALKANOLS, ESTHERS, TRIOPHENES AND AROMATICS 
Javier Pérez Pellitero 
ISBN: 978-84-691-0377-7/DL: T.2195-2007  
 



Improvement of Monte Carlo algorithms and intermolecular potentials 105

ature close to the critical temperature, (450 K) for each of the compounds as
well as an NPT simulation at a temperature near to the normal boiling point,
(300 K). This set of four simulations optimizes the behavior of the parameters
over a total of 10 different properties of ethanol and methanol.

Once the simulations have been carried out, the optimization procedure al-
ready described in section 3.4.1 is applied until the error has been minimized.

4.5

Calculation of the critical point

In order to accurately locate the critical point, and as in the case of thiophenes
in chapter 3 we have applied the methodology based on the calculation of a
fourth order cumulant (Binder parameter) combined with the use of finite size
scaling[14] techniques described in chapter 2. The methodology is then very
briefly described here. The Binder parameter UL is defined as follows:

UL =
〈m4〉
〈m2〉2 (4.14)

where m is an appropriate order parameter, in our case density. The pro-
cedure is as follows: system size dependent critical conditions are determined
for different system sizes by locating the temperature at which the system
takes on the ”universal” Ising value of the system. Once these values are cal-
culated, the critical constants are expected to change as a function of the sys-
tem size according to known scaling laws[14]. For instance, the temperature
of the finite system is expected to vary near the critical point with system size
as:

〈T 〉c(L) − 〈T 〉c(∞) ∼ L−(θ+1)/ν (4.15)

where Θ= 0.54 and ν= 0.629 [67][68].

In the same way, the critical density of the finite system is expected to vary
with system size as:
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〈ρ〉c(L) − 〈ρ〉c(∞) ∼ L−(d−1/ν) (4.16)

where d is the dimensionality of the system.

By plotting the finite size critical values according to these functions, an
extrapolation can be made to estimate the corresponding infinite system size
value.

4.6

Performance of the optimized parameters

The developed force field has been tested for several alcohols including methanol
and ethanol which were involved in the fitting procedure. In figure 4.2 the
vapor-liquid coexistence curves are presented for the density of the three shorter
alcohols considered: methanol, ethanol and propanol. Saturated vapour pres-
sures and heats of vaporization are compared to experimental data [88] in
figures 4.3 and 4.4 respectively. The numerical values obtained for the differ-
ent properties are presented as well in table 4.7. The liquid densities compare
well with the experimental results, particularly in the case of methanol. The
deviations are slightly higher in the cases of ethanol and propanol. In com-
parison with the UA model, we can state that our model better reproduces the
critical point while the UA model describes better the coexistence curve at low
temperatures. In general, it appears that both models are unable to reproduce
exactly the shape of the liquid-vapor phase coexistence curve, failing either in
the near-critical region or at low temperatures. Further improvements in the
model, such as taking into account the flexibility of the COH angle or consid-
ering polarization in the model, would most likely be necessary to reproduce
more accurately the shape of the diagram.

The saturation pressures of methanol and ethanol are found to be in very
good agreement with the experimental results, while propanol is slightly over-
estimated. In the case of methanol, where the influence of the hydroxyl group
is highest, the heats of vaporization present significant deviations from the
experimental results. As could be expected, this effect becomes less important
when we consider longer chains. Once more, following the behavior observed
in the case of the saturated liquid densities, the AUA4 model reproduces bet-
ter the critical region while it presents deviations at low temperatures. In
the case of the UA model, it reproduces better the low temperatures while it
presents higher deviations near the critical region. The fact that both models
present the same trend for the vaporization enthalpies reinforces the hypoth-
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Figure 4.2: Coexistence curves of ethanol and methanol. Solid and dashed and dotted lines

represent experimental data[88] for methanol and ethanol respectively. Square and circle sym-

bols represent the simulation results for methanol and ethanol respectively. Up triangles denote

critical point predictions. Stars depict experimental critical points. Open symbols denote UA

model results from ref. [39] with GEMC while filled symbols are AUA4 model + HR results

esis that the incorporation of polarization to the model should be considered
to better describe this property. The critical points of the different alcohols
predicted with the AUA4 model are presented in table 4.8. The estimations
of the UA model are also shown although a direct comparison is not possible
due to the fact that in the work of Chen et al [39] the scaling exponent β has
been fitted in order to give a better description of the critical region. In this
case, the critical exponent has been fitted to reproduce the experimental crit-
ical temperatures and densities. They obtain in all cases significantly smaller
values than the universal Ising value of 0.325. As can be observed in figure 4.8
we have not observed for the different alcohols any evidence that this model
belongs to a different universality class. The intersections take place close to
the universal Ising value of UL = 1.6035 as in the case of the LJ fluid in chapter
2 or the thiophene compounds in chapter 3. In figure 4.9 we show the results
obtained for the Finite Size Scaling of the intersections with universal values
of the Binder parameter for the case of methanol.

In figure 4.10 the coexistence liquid densities for octanol and phenol are
presented. The predicitions of the AUA4 model compare well with the avail-
able experimental results, particularly at low temperatures. As in the case of
the UA model, the critical point of octanol is underpredicted. This behav-
ior is accentuated as compared with the shorter alcohols. This effect can be
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Figure 4.3: Saturated vapour pressures of ethanol and methanol. Linestyles for experimental

data and symbols as in figure 4.2
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Figure 4.4: Heats of vaporization of ethanol and methanol. Linestyles for experimental data

and symbols as in figure 4.2
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Figure 4.5: Coexistence curve of propanol. Solid line represents experimental data[88] for

propanol. Up triangles denote critical point predictions. The star depicts the experimental critical

point. Open symbols denote UA model results from ref. [39] with GEMC while filled symbols are

AUA4 model results using GEMC
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Figure 4.6: Saturated vapour pressures of propanol. Linestyles for experimental data and

symbols as in figure 4.5

UNIVERSITAT ROVIRA I VIRGILI 
IMPROVEMENT OF MONTE CARLO ALGORITHMS AND INTERMOLECULAR POTENCIALS FOR THE MODELLING OF 
ALKANOLS, ESTHERS, TRIOPHENES AND AROMATICS 
Javier Pérez Pellitero 
ISBN: 978-84-691-0377-7/DL: T.2195-2007  
 



Improvement of Monte Carlo algorithms and intermolecular potentials 110

200 300 400 500 600
T (K)

0

10

20

30

40

50

60

H
{v

ap
} 

(k
J/

m
ol

)

Figure 4.7: Heats of vaporization of propanol. Linestyles for experimental data and symbols

as in figure 4.2
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Figure 4.8: Binder parameter intersections for different system sizes for , ethanol, methanol

and propanol.
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T (K) ρvap(kg/m3) ρliq(kg/m3) ∆Hvap(kJ/mol) ln Psat(kPa)

Methanol
480 76.55±9 528.4±13 16.79±0.7 15.17±0.05

450 37.3±3 599.5±5.2 22.76±0.6 14.55±0.07

390 4.81±0.9 692.9±4.3 33.53±0.7 12.51±0.06

360 1.97±0.3 733.0±4.1 35.67±0.6 11.90±0.07

330 0.49±0.02 761.0±4.6 39.21±0.5 10.57±0.07

300 0.112±0.012 794.7±4.1 41.81±0.6 8.98±0.06

280 0.041±0.0098 817.8±3.9 43.70±0.2 7.98±0.03

Ethanol
480 70.3±7 556.0±10 19.86±0.8 14.90±0.06

450 26.7±1.3 613.2±8 25.39±0.7 14.12±0.07

420 11.3±0.8 660.5±5.6 33.23±0.7 13.34±0.06

390 4.91±0.53 706.1±4.5 35.70±0.6 12.51±0.07

360 1.44±0.14 738.6±6.6 41.92±0.6 11.28±0.05

330 0.344±0.05 767.0±5.5 44.08±0.7 9.89±0.05

300 0.058±0.008 791.9±2.1 46.57±0.4 8.03±0.06

280 0.0136±0.003 808.6±4.2 48.15±0.3 6.54±0.05

Propanol
500 79.3±7 520.6±8 19.60±0.8 14.89±0.09

475 39.1±3.8 578.0±7.3 26.37±0.7 14.25±0.09

450 20.5±1.4 634.9±5.7 32.75±0.8 13.71±0.09

420 8.79±0.9 678.6±6.4 38.36±0.8 12.98±0.08

390 3.69±0.9 717.6±4.5 40.32±0.8 11.95±0.09

360 0.99±0.2 748.4±4.5 46.96±0.3 10.78±0.08

330 0.33±0.07 777.7±3.1 49.29±0.4 9.59±0.08

300 0.048±0.01 803.8±2.8 51.08±0.6 7.67±0.07

Octanol
600 97.0±11 461.3±12 19.53±1.0 14.50±0.08

550 34.9±2 573.8±3 33.63±0.5 13.74±0.07

500 10.2±1.3 642.0±5.2 44.79±0.5 12.58±0.09

450 2.85±0.2 707.6±3.2 55.30±0.9 11.28±0.08

400 0.469±0.01 754.0±6.4 59.02±0.8 9.38±0.07

350 0.03130.001± 800.7±3.2 65.98±0.9 6.55±0.08

325 0.003±0.0004 816.1±5.3 67.81±0.9 4.20±0.07

Phenol
650 142.2±10 575.4±10 17.44±0.7 15.21±0.06

600 78.6±7 683.9±8 26.5±0.7 14.74±0.05

550 27.2±1.0 776.3±5.9 36.98±0.5 13.91±0.08

500 10.3±0.5 866.0±6.0 45.43±0.6 12.94±0.08

450 2.89±0.2 933.1±4.9 53.24±0.6 11.63±0.07

400 0.396±0.01 976.3±7 57.37±0.8 9.54±0.06

350 0.154±0.02 1022±3.0 61.0±0.3 8.46±0.06

Table 4.7: Equilibrium properties of alcohols
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Figure 4.9: Finite Size scaling of the intersections with the universal Ising value of the Binder

parameter for methanol.

attributed to the fact that the alcohols involved in the fitting process are the
shortest ones: methanol and ethanol. The saturated vapour pressures shown
in figure 4.11 are in very good agreement for both compounds presenting a
slight overestimation in the case of phenol. Finally, in figure 4.12 are shown
the predictions obtained for the heats of vaporization. In the case of octanol we
have obtained an excellent agreement while in the case of phenol the AUA4
model fails to reproduce the experimental trend, overestimating the vaporiza-
tion enthalpy at low temperatures. This fact could be attributed to the fact that
the hydroxyl group has been fitted for short alkanols. In this case, probably
an additional hydroxyl group for aromatic cycles should be optimised.

4.7

Calculation of Henry Constants of gases in alcohols

One of the advantages of the use of molecular simulation lies in the possi-
bility to estimate Henry constants. The use of the particle insertion method,
also referred to as the Widom method [104], associated with the statistical
bias techniques previously described in section 1.10.1, allows for the simple
and ”smart” calculation of the chemical potential µi of a species i either in a
pure fluid or a mixture. Consequently, the Henry constants of such a mix-
ture can then be calculated. In this section, we show the application of this
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Figure 4.10: Coexistence curves of octanol and phenol. Solid and dashed lines represent ex-

perimental data[88] for octanol and phenol respectively. Square and circle symbols represent the

simulation results for octanol and phenol respectively. Up triangles denote critical point predic-

tions.
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Figure 4.11: Saturated vapour pressures of octanol and phenol. Linestyles for experimental

data and symbols as in figure 4.10
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Molecule Type Tc(K) ρc(kg/m3) Tb(K)
Methanol This model 505.6(1) 278(3) 355

TraPPE-UA 502(2) 285(4) 340(1)
Experiment 512.5 273 338

Ethanol This model 514.2(7) 271.5(3) 367
TraPPE-UA 514(2) 281(3) 353(1)
Experiment 514 274 351

Propan-1-ol This model 528.5(9) 275(6) 377
TraPPE-UA 538(2) 290(4) 368(2)
Experiment 536.8 276 370.4

Octanol This model 624.2(5) 252(4) 468
TraPPE-UA 629(2) 270(2) 460(3)
Experiment 652.5 262 468.4

Phenol This model 642.8(5) 342(8) 590.9
Experiment 694.2 411 455

Table 4.8: Critical properties of the different alcohols

methodology to the calculation of Henry constants of different gases in alco-
hols. The Henry constant of five different gases (methane, oxygen, nitrogen,
carbon dioxide, hydrogen sulphide) have been determined for four different
alcohols (methanol, ethanol, propanol, octanol) as a function of temperature.

The Henry constant KH , which has the dimension of a pressure, is related
in the limit of low concentration to the fugacity according to:

KHxi = fi (4.17)

where xi is the concentration of the solute in the liquid phase and fi is its
fugacity in the quilibrium.

The use of the Widom method allows us to calculate the chemical potential
µi of the species i, which is related to the fugacity. In particular, the chemical
potential can be calculated by means of the next expression:

µi = −kT ln

〈
V

Ni + 1
exp(−β∆U+)

〉
(4.18)

where ∆U+ is the potential energy difference caused by the insertion of
the test molecule, V is the volume of the system and Ni is the number of
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Figure 4.12: Vaporization enthalpies of octanol and phenol. Linestyles for experimental data

and symbols as in figure 4.10

gas molecules in the solvent. As discussed by Frenkel and Smit [104], the
de Broglie wavelength does not appear in the last expression due to the fact
that it cancels out when the ideal gas at the same temperature is taken as the
reference state, that is, when µi = 0. According to Eqn. 4.18, these conditions
are satisfied for a fluid of unit density (V/(Ni + 1 = 1) and zero interaction
energy (∆U+ = 0), which means an ideal gas of unit density. Although this
reference state has no physical meaning, it makes the relationship with gas
fugacity explicit through the equation of state of a system of (N +1) molecules
of an ideal gas:

P0 =
(N + 1)kT

V
= kT (4.19)

Then the chemical potential defined by Eqn. 4.17 can be written as:

µi = kT ln

(
fi

P0

)
(4.20)

Since the implicit reference pressure P0 is not constant, it is more conve-
nient to use a reference state with fixed pressure Pref = 1Pa, i.e. the unit of
the international system. Once we have defined this new reference state, we

UNIVERSITAT ROVIRA I VIRGILI 
IMPROVEMENT OF MONTE CARLO ALGORITHMS AND INTERMOLECULAR POTENCIALS FOR THE MODELLING OF 
ALKANOLS, ESTHERS, TRIOPHENES AND AROMATICS 
Javier Pérez Pellitero 
ISBN: 978-84-691-0377-7/DL: T.2195-2007  
 



Improvement of Monte Carlo algorithms and intermolecular potentials 116

can also define a chemical potential µi wich is related to µi according to:

µi = kT ln

(
P0

Pref

)
+ µi = kT ln

(
fi

Pref

)
(4.21)

Now making use of Eqns. 4.18 and 4.19 we can write:

µi = kT ln

(
P0

Pref

)
− kT ln

〈
V

Ni + 1
exp(−β∆U+)

〉
(4.22)

The Henry constant in international system units can be determined by
applying Eqns. 4.17 and 4.21 and by considering that xi = (Ni + 1)/(N + 1)
where N is the total number of molecules in the solvent:

KH

Pref
=

fi

Prefxi
=

(N + 1)exp(µi/kT )

Ni + 1
(4.23)

The Henry constant can then be determined in the limit of infinite dilution
by making test insertions of the different gas molecules in the solvent. It is
important to remark that the big advantage of this methodology is that differ-
ent Henry constants can be determined from the same single simulation. This
expression works correctly for methane, since it can be considered as a single
center Lennard-Jones fluid. In the case of the other gases, which involve sev-
eral force centers and electrostatic charges, as was previously mentioned, we
need to use the statistical bias methods described in section 1.10.1

Finally, the variation of the Henry constant with the temperature is related
to the infinite dilution hydration Gibbs energy ∆hydG

∞[105] according to:

∆hydG
∞ = RT

(
lnKH

p0

)
(4.24)

and through its temperature derivatives to infinite dilution hydration en-
thalpy ∆hydH

∞:

∆hydH
∞ = −RT 2

(
d lnKH

dT

)
(4.25)
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The infinite dilution solvation quantity corresponds to a transfer of one
mol of the solute from the pure ideal gas state at standard pressure P 0 =
100kPa to a hypothetical infinitely dilute solution. This quantity can also
be determined from molecular simulation [106] by estimating the free energy
with HR+GCMC simulations along a thermodynamic path.

4.7.1

Intermolecular potentials for gases

In table 4.9 are given the potential parameters of the different models for the
five different gases considered.

To reproduce the methane molecule, the model proposed by Möller et al
has been selected [107]. It involves a single LJ force center with the absence of
electrostatic charges.

In the case of nitrogen, the model proposed by Delhomelle [85] has been
chosen. It involves two LJ force centers separated by a fixed distance of 1.098 Å
as well as two negative electrostatic charges located on the atomic centers and
one positive charge on the center of mass. These charges were fitted respect-
ing the experimental quadripolar moment of the molecule. The LJ parame-
ters were fitted to reproduce the coexistence curve of the nitrogen molecule
thus providing an excellent account of the liquid-vapor coexistence densities
of pure nitrogen.

The model selected for oxygen has been proposed by Vrabec et al[109] who
determined the parameters of several fluids with a two LJ centers plus point
quadripole moment on the basis of the liquid-vapor coexistence properties.
As our software does not at present allow for point quadripoles, three elec-
trostatic charges have been introduced as in the case of nitrogen or carbon
dioxide, but with a very close spacing of 0.2 Å The values of these charges
were determined in such a way that the quadripolar moment indicated by
Vrabec et al, i.e. 0.8081 D Å, was exactly respected.

For carbon dioxide, the selected model is the EPM2 potential of Harris and
Yung [110] wich involves three LJ force centers and three electrostatic charges
on the atomic centers.

Finally, the model selected for the hydrogen sulfide is that proposed by
Kristof and Liszi [78] involving one single LJ center of force and four elec-
trostatic charges, three of them at the atomic centers of the different atoms of
the molecule and the fourth one on the bisector of the angle formed by the
hydrogens and the sulphur.
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Although Lorentz-Berthelot combining rules were used in the develop-
ment of the AUA potential, we have used Kong [111] [112] [113] combining
rules to evaluate the cross-interactions between unlike groups. These rules
are:

ǫijσ6
ij =

√
ǫiσ6

i ǫjσ6
j (4.26)

ǫijσ
12
ij =

ǫiσ
12
i

213


1 +

(
ǫjσ

12
j

ǫjσ12
j

)1/13



13

(4.27)

The use of Kong combining rules instead of Lorentz-Berthelot rules has
been previously well justified for mixtures of carbon dioxide with alkanes[11].
Also, the these rules have been found to perform better for binary mixtures of
noble gases[114] and carbon dioxide with hydrogen sulfide[115].

4.7.2

Results

The results obtained for the different gases in the different solvents are shown
in figures 4.13-4.16. The Henry constant are ranked in the same order for a
given temperature and solvent for all the figures. The Henry constant de-
creases as the critical temperature of the different solutes increases. In par-
ticular, nitrogen exhibits the highest critical temperature followed by oxygen,
methane, carbon dioxide and hydrogen sulfide. The explanation for this phe-
nomena is that the higher the critical temperature of the solute is, the larger
the attraction energy in the liquid phase is and the higher the solubility in the
solvent is. This behavior is also in good agreement with the available reference
data for ethanol [116]

In the case of the temperature dependence, it differs from one component
to the next. Except for octanol where all the solutes increase their solubilities
as temperature is increased, in the other cases the Henry constant decreases
with increasing temperatures for nitrogen, oxygen and methane, while it in-
creases with increasing temperatures for carbon dioxide and hydrogen sul-
fide. Further investigation of the liquid structure would be required to un-
derstand the origin of the specific temperature dependence shown by these
compounds. In the case of ethanol, where experimental data are available, the
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Figure 4.13: Henry constants for different gases in methanol as a function of the temperature.

Filled symbols represent result from the simulations while open symbols represent experimental

results [120]

obtained results are in good quantitative agreement for the different solutes
and the predicted variations with temperature is reproduced satisfactorily. In
the case of methane and oxygen, the effect of temperature on the Henry con-
stant is found to be insignificant if statistical uncertainties are accounted for,
in agreement with experiment.

Although it is generally recommended to use staged insertions for eval-
uating chemical potentials [117] in our case we have obtained reasonable es-
timations of the Henry constants for the different solvents. This can be ex-
plained because the temperatures are not too low, except in the case of octanol,
where the lowest temperature considered is 130 K below its normal boiling
point. This means that, in general, at these conditions, the liquid structure still
presents sufficient ”holes” to accommodate the small solutes we have consid-
ered and a reasonable sampling can be obtained. The second explanation is
the amount of computational time dedicated to the sampling of the solvent:
at least 100 million MC moves in all cases and up to 400 million MC steps for
octanol at the lower temperatures. This fact can be illustrated by the average
statistical deviations obtained, whose values are around 5%. Staged insertion
would probably have been required when considering significantly larger so-
lutes or significantly lower temperatures, where the computational time nec-
essary required to apply the Widom test at the same conditions obtained using
the staged deletion method is significantly higher.[118][119]
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Figure 4.14: Henry constants for different gases in ethanol as a function of the temperature.

Filled symbols represent result from the simulations while open symbols represent experimental

results[116] [120]
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Figure 4.15: Henry constants for different gases in propanol as a function of the temperature.
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Figure 4.16: Henry constants for different gases in octanol as a function of the temperature.

Filled symbols represent result from the simulations while open symbols represent experimental

results [121]

4.8

Conclusions

The AUA4 potential has been extended to alcohols by adjusting the LJ pa-
rameters of the hydroxyl group and optimizing a set of charges so that they
reproduce the electrostatic distributions of methanol and ethanol. Although
the behavior of the model could be improved individually by optimizing dif-
ferent sets of LJ parameters for the carbon groups next to the hydroxyl, our
goal is to produce parameters that are transferable to other molecules. In this
way, we have kept the LJ parameters of the groups adjacent to the hydroxyl
in order to maintain as far as possible the transferability of the AUA4 model,
while still reproducing the equilibrium properties with an accuracy similar to
previously proposed models. While the predictions for the saturated liquid
densities and the vapor pressures agree well with the experimental data, the
model has more difficulties to reproduce the heats of vaporization. Contrary
to the TraPPE model, our model compares better near to the critical region
while presenting higher deviations at low temperatures. From the finite size
scaling study, we have shown that the presence of the electrostatic charges in
this model does not change the universality class, belonging still to the Ising
class.
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We have also calculated the Henry law constants of different gases in dif-
ferent alcohols by applying the Widom particle insertion method and have
obtained very good agreement with the available experimental data. In par-
ticular, the temperature dependence of the constants is well reproduced.
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Force
center /
charge

Position LJ parameters Charge

X Y Z ǫ/k(K) σ(Å)
CH4[107]
C 0 0 0 149.92 3.7327 0
N2[108]
N 0.549 0 0 36.0 3.30 -

0.5075
N -0.549 0 0 36.0 3.30 -

0.5075
q1 0 0 0 - - 1.015
O2[109]
O1 -0.485 0 0 43.183 3.1062 0
O2 0.485 0 0 43.183 3.1062 0
q1 0 0 0 - - 4.2
q2 0.2 0 0 - - -2.1
q3 -0.2 0 0 - - -2.1
CO2[110]
C 0 0 0 28.129 2.757 0.6512
O1 1.149 0 0 80.507 3.033 -

0.3256
O2 -1.149 0 0 80.507 3.033 -

0.3256
H2S[78]
H2S 0 0 0 250 3.73 0
q1 0 0 0 - - 0.4
H1 1.149 0.9639 0.9308 - - 0.25
H2 -1.149 -

0.9639
0.9308 - - 0.25

S -1.149 0 0 - - -0.9

Table 4.9: Intermolecular potential parameters of the five different gases
considered
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Chapter 5

An Anisotropic United Atoms
(AUA) potential for ethers
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5.1

Introduction

The important role played by solvents in organic chemistry as well as in bio-
chemistry is responsible for the need to model a variety of liquid compounds.
Ether compounds are slightly polar, but not as much as the compounds of
other families with similar structures like alcohols, esters or amides. The
fact that ether compounds are not able to form hydrogen bonds between the
molecules, results in lower boiling points compared to the analogous alco-
hols. Nonetheless, the lone pair of electrons on the oxygen atom allow for
hydrogen bonding with water molecules. In particular, cyclic ethers such as
tetrahydrofuran and 1,4-dioxane are totally miscible in water due to the fact
that the oxygen atom is more exposed for hydrogen bonding as compared to
aliphatic ethers. Due to their application as solvents, there is a considerable in-
terest in the thermophysical properties of ethers. In particular, aliphatic ethers
and polyethers are used in gasolines as additives, appear in chromatographic
stationary phases and are also employed as cosolvents in supercritical fluids.

As has been shown in previous chapters of this thesis, molecular simula-
tion is an alternative way to predict equilibrium thermodynamic properties
of pure fluids and mixtures. Hence the need for accurate force fields able
to describe the microscopic interactions of different compounds. In the case
of ethers, the united-atom OPLS force field developed by Jorgensen et al for
dimethyl, ethyl methyl and diethylether [122] was proposed to reproduce
thermodynamic quantities at or near standard temperature and pressure. Far
away from these conditions, such a model becomes less accurate. To account
for a better and more general description, Siepmann and coworkers [123] have
proposed the extension of the TraPPE [25] (transferable potentials for phase
equilibria) force field by developing paramethers for the ether oxygen sites
taking the rest of the groups from earlier works.

As in the case of alcohols in chapter 4, we have optimised an intermolecu-
lar potential for the oxygen atom of the ether molecules, based on an extension
of the AUA 4 intermolecular potential already developed in previous works
[32, 28]. A simple model of three different electrostatic charges placed on the
oxygen and the adjacent carbons is proposed to reproduce the electronic struc-
ture of dimethylether before fitting the LJ parameters of the oxygen to repro-
duce selected equilibrium properties of ethers. As in the case of alcohols, we
avoid the definition of new ”pseudo-atoms” for those carbons next to the oxy-
gen group.
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5.2

Model

5.2.1

Intermolecular Interactions

As in the case of alcohols in the previous chapter, to describe the dispersion
interactions, the different molecules are represented by a set of interacting
Lennard-Jones sites for each CH3, CH2, C or O group. The interaction be-
tween two different united atoms, i and j, from different molecules is calcu-
lated according to equation 4.1

To calculate the parameters between unlike united atoms, we use the Lorentz-
Berthelot combining rules of equations 4.2 and 4.3.

As for the force field developed for alcohols, the different ethers consid-
ered have been modelled by using the AUA 4 model parameters for the CH3

and CH2 groups from Ungerer et al.[28] in order to mantain the transferabil-
ity of the model and to keep to a maximum its simplicity. The oxygen group
has then been fitted to reproduce experimental properties of ethylmethylether
which has the advantage of incorporating both the effect of the adjacents CH2

and CH3 groups for the optimization of the LJ parameters. The parameters for
the different potentials are shown in table 5.1. The length of the bond C − O
has been determined from ab initio calculations.

The bending angle is controlled by means of the following expression:

Ubend/k =
1

2
kθ (θ − θ0)

2
(5.1)

where kθ is the bending constant and θ, θ0 the bending and equlibrium
angles respectively. The values for the bending angles have been taken as from
the AMBER94 force field[100]. The different values of the bending parameters
are listed in table 5.3. The torsional potentials are taken from the OPLS-UA
force field [122]:

Utors(φ) = c0 +
1

2
c1(1 + cosφ) +

1

2
c2(1 − cos2φ) +

1

2
c3(1 + cos3φ) (5.2)
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where φ is the dihedral angle and the Fourier coefficients are listed in table
5.4.

Group σ(Å) ǫ/k(K) δ(Å)
CH3[28] 3.607 120.15 0.216
CH2[28] 3.461 86.29 0.384

O 2.991 59.69 —

Table 5.1: Lennard-Jones parameters and distances of anisotropy

bond length (Å) angle Σ(deg)
C − C 1.53 C − O − C 112
C − O 1.425

Table 5.2: Bond lengths and angles

Angle θ0[deg] kθ/k[K]
CHx − CHy − O 112 50300
CHx − O − CHy 112 60400

CHx − CH2 − CHy 114 62500

Table 5.3: Bending parameters

5.2.2

Charges Optimization

By adjusting the values of the electrostatic charges in the oxygen group of the
different compounds as well as of the neighbouring carbons, we have tried to
reproduce the electrostatic potential of an isolated molecule of dimethylether
determined from ab initio calculations. The charges have been optimized to
reproduce the potential calculated in a grid placed over the envelope created
by the spheres centered on the different atoms of the molecule. These spheres
have been selected to have twice the van der Waals radius, and they have been
constructed according to the methodology proposed by Singh et al [102]. We
have then used the methodology previously described in section 4.2.2. The
distribution proposed in this case is much simpler than the one used in the
case of alcohols due to the moderate dipole moments of the ether molecules.
In this case we have set a negative charge over the oxygen atom plus two
positive and equal charges over the adjacent carbons with independence of
the pseudoatom type.

UNIVERSITAT ROVIRA I VIRGILI 
IMPROVEMENT OF MONTE CARLO ALGORITHMS AND INTERMOLECULAR POTENCIALS FOR THE MODELLING OF 
ALKANOLS, ESTHERS, TRIOPHENES AND AROMATICS 
Javier Pérez Pellitero 
ISBN: 978-84-691-0377-7/DL: T.2195-2007  
 



Improvement of Monte Carlo algorithms and intermolecular potentials 128

Torsion c0/k[K] c1/k[K] c2/k[K] c3/k[K]
CHx − CH2 − CH2 − CHy 0 670.06 -136.38 1582.64
CHx − CHy − O − CHz 0 1450.7 -327.5 1116.4

O − CH2 − CH2 − O 503.24 0 -503.24 2012.94
CHx − CH2 − CH2 − O 0 353.24 -106.68 1539.86

Table 5.4: Torsion potential constants

5.3

Determination of the Lennard-Jones parameters

The oxygen group of the ether molecules has been fitted to the experimental
properties of ethylmethylether. To optimize the Lennard-Jones parameters,
two GEMC simulation were carried out. The first one at a reduced tempera-
ture of 0.95, concretely 420 K, while the second one was performed at 280 K.
Once the simulations were done, the optimization methodology described in
section 3.5 was applied. These two simulations optimizes the behavior of the
oxygen LJ parameters over a total of 6 different properties of ethylmethylether
including saturated liquid densities, saturation pressures and heats of vapor-
ization. After applying the aforementioned methodology the LJ parameters
shown in table 5.1 were obtained.

5.4

Performance of the parameters

Once the distribution of charges and the LJ parameters of the oxygen group
were determined, the model has been tested with different compounds of the
family: dimethylether, diethylether, 1,2-dimethoxyethane and tetrahydrofu-
ran (THF). The results for dimethyl, ethylmethyl and diethylether are shown
in figures 5.1-5.3 as well as in table 5.6. The saturated liquid densities compare
well with the experimental results, 4% being the highest deviation obtained in
the case of diethylether. In table 5.5 are shown the predictions for the criti-
cal point as well as for the normal boiling points of the AUA 4 model. The
results are also in good agreement with the experimental data, particularly in
the cases of dimethyl and ethylmethylether, where the obtained deviations are
lower than 2%. As explained in previous chapters, the critical properties have
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Figure 5.1: Coexistence curves of ethers. Solid lines represent experimental data[88] for

dimethyl, ethylmethyl and diethylether. Square, diamond, and circle symbols represent the sim-

ulation results for dimethyl, ethylmethyl and diethylether respectively. Open symbols denote UA

model results from ref. [123] with GEMC while filled symbols are GEMC results of this model.

Up triangles denote the calculated critical points.

been determined by applying Finite Size Scaling techniques to the intersec-
tions with the universal value of the Binder parameter. The results obtained
for the three shorter ethers are shown in figures 5.8- 5.10. The saturation pres-
sures are in very good agreement with the experimental results in particular
for ethylmethylether, where the normal boiling point is reproduced within 2%.
Finally, the heats of vaporization compare well with the experimental results
in particular for ethylmethylether. In the case of dimethylether this property
is slightly underestimated as is expected from the fact that the saturated liquid
densities are also.

Tetrahydrofuran and 1,2-dimethoxyethane have been selected to test the
behavior of the parameters in the case of a cyclic molecule in the former and
in the presence of a double ether functionality in the latter one. The results
obtained for both molecules are shown in figures 5.4-5.6. The densities are
very well reproduced for both compounds, and in particular in the case of 1,2-
dimethoxyethane. The estimations of the critical temperatures are within 1 %
for the two compounds. The saturation pressures are slightly overestimated
in the case of THF, leading to higher deviations in the normal boiling point
while in the case of 1,2-dimethoxyethane this property is reproduced within 1
%. Finally, in the case of the heats of vaporization, the predictions are this time
better for THF than for 1,2-dimethoxyethane where this property is slightly
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Figure 5.2: Saturated vapour pressures of ethers. Linestyles for experimental data and symbols

as in figure 5.1
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Figure 5.3: Heats of vaporization of ethers. Linestyles for experimental data and symbols as in

figure 5.1
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Figure 5.4: Coexistence curves of THF and 1,2-dimethoxyethane. Solid and dashed lines rep-

resent experimental data[88] for THF and 1,2-dimethoxyethane respectively. Circle and square

symbols represent the simulation results for THF and 1,2-dimethoxyethane respectively. Open

symbols denote UA model results from ref. [123] with GEMC while filled symbols are GEMC

results of this model. Up triangles denote the calculated critical points.

underestimated.

5.5

Conclusions

The AUA-4 model has been extended to ethers by optimizing the LJ parame-
ters of the oxygen and fitting a set of electrostatic charges to the electrostatic
potential of an isolated molecule of dimethylether. The optimiztion of the LJ
parameters has been done based on target properties of ethylmethyleter. It
should be noted that the LJ parameters of the carbons adjacent to the oxy-
gen group have not been reoptimized in order to keep to a maximum the
simplicity and transferability of the model. Nevertheless, satisfactory results
have been obtained for the different compounds considered. Saturated liq-
uid densities have been calculated with mean errors of 2% while vaporization
enthalpies and saturation pressures have also been reproduced with a good
level of agreement. By considering THF we have shown that the transfer-
ability of the group to non linear ethers is also satisfactory. In the case of 1,2
dimethoxyethane the presence of a second ether functionality does not affect
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Figure 5.5: Saturated vapour pressures of THF and 1,2-dimethoxyethane. Linestyles for exper-

imental data and symbols as in figure 5.4
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Figure 5.6: Heats of vaporization of THF and 1,2-dimethoxyethane. Linestyles for experimental

data and symbols as in figure 5.4
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Figure 5.7: Binder parameter intersections for different system sizes for dimethyl, ethylmethyl
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Figure 5.8: Finite Size Scaling for the critical temperature and density of dimethylether
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Figure 5.9: Finite Size Scaling for the critical temperature and density of ethylmethylether
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Figure 5.10: Finite Size Scaling for the critical temperature and density of diethylether
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Molecule Type Tc(K) ρc(kg/m3) Tb(K)
Dimethylether This model 393.2(1) 274(3) 237.5

TraPPE-UA 398(1) 277(2) 242(2)
Experiment 402.1 271 248.3

Ethylmethylether This model 439.2(2) 270.3(15) 274.8
TraPPE-UA 435(1) 270(2) 272(1)
Experiment 437.8 272 280.5

Diethylether This model 477.3(2) 262(2) 312.1
TraPPE-UA 466(2) 265(3) 297(1)
Experiment 466.7 265 307.6

1,2-dimethoxyethane This model 533.2(2) 295(3) 358.8
TraPPE-UA 542(2) 291(2) 359(2)
Experiment 539.2 333 357.8

THF This model 530.4(5) 337(3) 328.7
Experiment 540.2 322 339.1

Table 5.5: Critical properties of the different ethers

the quality of the predictions. In all cases, the calculation of the critical points
has also been made through the methodology based on the calculation of a
fourth order cumulant (Binder parameter) combined with the use of finite size
scaling techniques. The predictions for the critical point compare well with
the experimental data. In particular, the critical point of ethylmethylether has
been located within 1% of its experimental value. As in the case of alkanols
in chapter 4, we have not observed any evidence of a difference in the univer-
sality class due to the presence of the electrostatic charges in the model. The
intersections takes place close to the universal Ising value indicating that this
is the universality class to which the systems belong .
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T (K) ρvap(kg/m3) ρliq(kg/m3) ∆Hvap(kJ/mol) ln Psat(kPa)

Dimethylether
380 125.4±12 448.7±13 7.99±0.55 15.28±0.05
360 73.2±2.7 508.6±3.4 11.23±0.12 14.94±0.02
340 46.9±0.7 563.0±1.4 13.61±0.04 14.56±0.01
320 28.6±0.8 601.4±2.2 15.42±0.06 14.10±0.02
300 17.9±0.5 638.7±1.4 16.88±0.04 13.63±0.02
280 10.2±0.3 670.7±1.4 18.14±0.07 13.04±0.02

Ethylmethylether
420 110±12 465.3±8 9.95±0.49 15.01±0.04
400 65.3±2.9 520.7±4.2 13.77±0.15 14.66±0.03
360 28.1±1.3 599.0±3.1 18.26±0.11 13.92±0.03
340 17.6±0.4 632.4±1.6 19.70±0.07 13.48±0.02
320 10.5±0.4 661.0±2.2 21.07±0.09 12.95±0.04
300 6.15±0.25 689.4±1.4 22.36±0.05 12.38±0.04
280 2.47±0.27 715.0±2.8 23.49±0.04 11.69±0.04

Diethylether
410 37.4±2.2 566.9±4.6 18.86±0.19 14.01±0.03
390 23.87±1.2 599.3±3.1 20.92±0.13 13.65±0.04
370 16.21±0.6 633.8±2.5 22.75±0.11 13.25±0.03
350 9.44±0.5 658.0±2.2 24.25±0.10 12.71±0.05
330 5.61±0.2 684.9±1.5 25.67±0.10 12.17±0.03
310 2.80±0.17 706.4±1.9 26.80±0.10 11.43±0.05
280 0.96±0.09 743.6±1.5 28.65±0.06 10.27±0.04

1,2 dimethoxyethane
480 56.9±1.7 604.0±5.9 20.92±0.3 14.37±0.07
450 32.8±1.1 653.0±2.2 24.06±0.11 13.88±0.03
420 16.65±0.6 704.5±2.1 27.95±0.13 13.22±0.03
390 7.89±0.3 745.7±1.7 30.82±0.11 12.47±0.03
360 3.40±0.21 783.5±1.3 33.16±0.13 11.58±0.06
330 1.20±0.11 820.5±2.1 35.50±0.40 10.48±0.08
310 0.63±0.05 844.6±1.0 36.88±0.52 9.79±0.09
290 0.23±0.04 866.7±2.2 38.27±0.45 8.72±0.08

THF
490 96.6±7.1 624.7±8.0 15.51±0.37 15.03±0.03
450 45.3±2.0 701.6±4.1 20.31±0.17 14.40±0.03
410 21.3±0.8 765.9±2.0 23.64±0.09 13.66±0.03
370 8.61±0.7 820.0±2.0 26.24±0.13 12.74±0.07
330 2.96±0.32 869.2±1.5 28.48±0.11 11.56±0.08
290 0.71±0.10 915.6±2.6 30.73±0.20 10.07±0.08

Table 5.6: Equilibrium properties of ethers
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A1-1

Probability distribution and partition function

The grand canonical partition function Ξ is given by:

Ξ(µ, V, T ) =
∑

N

1

N !Λ3N
exp(βµN)

∫
drN exp(−βE) (A-1)

where Λ =
√

h2

2πmkbT is the de Broglie wavelength, β = 1/kbT and E is the

configurational (potential) energy of the system with coordinates rN

We introduce the density of states ρ(N, V, E) through:

Ξ(µ, V, T ) =
∑

N

1

N !Λ3N
exp(βµN)

∫
dEδ(E − E(rn)) exp(−βE) (A-2)

Ξ(µ, V, T ) =
∑

N

1

N !Λ3N
exp(βµN)

∫ ∞

E0

ρ(N, V, E) exp(−βE)dE (A-3)

Finally, we can write the histogram-reweighting inspired equation for both
the partition function and the probability:

Ξ(µ, V, T ) =
∑

N

1

N !Λ3N

∑

E

ρ(N, V, E) exp(βµN − βE) (A-4)

Following these definitions the probability of observing a configuration
with a given number of particles N and a configurational energy E is:

P (N, E) =
1

N !Λ3N exp(βµN − βEρ(N, V, E)

Ξ(µ, V, T )
(A-5)
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Note that in this case the prefactor 1
N !Λ3N is not cancelled out, due to the

sumation over the number of particles present in the grand partition function.

A1-2

Histogram reweighting

If we perform a Monte Carlo simulation at inverse temperature β, chemical
potential µ and volume V and make n measurements of the energy E of the
system and the number of particles N , then we can make an estimate of the
probability of a given energy and number of particles P (N, E):

P (N, E) =
H(N, E)

n
(A-6)

where the histogram H(N, E) is the number of times that the system was
measured to have energy E and number of particles N . From equation A-5
we can write the density of states as follows:

ρ(N, V, E) =
H(N, E)

n

Ξ

exp(βµN − βE)
N !Λ3N (A-7)

Supposing that we perform severa simulations at a different number of
inverse temperatures βi and chemical potential µi we obtain a number of dif-
ferent estimations of the density of states:

ρi(N, V, E) =
Hi(N, E)

ni

Ξi

exp(βiµN − βiE)
N !Λ3N

i (A-8)

What we want to do is form a weighted average over the estimates ρi(N, V, E)
to get the best estimate of the whole range of energies covered by the differ-
ent histograms. The standard way of performing such a weighted average is
as follows. If we have a number of measurements xi of a quantity x, each of
which has an associated standard error σi, then the best estimate xavg of x is:
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xavg =

∑
i xi/σ2

i∑
j 1/σ2

j

(A-9)

Assuming as in [44] that the true error on the number of samples in each
bin of our histograms should be Poissonian and a function of the average his-

togram Hi(N, E) (which is the real value of the histogram obtained with per-
fect sampling, the exact density of states is:

ρi(N, V, E) =

H(N, E)

ni

Ξi

exp(βiµN − βiE)
N !Λ3N

i

(A-10)

Note, that the value of Hi(N, E) is not known.

Making the previous assumptions, the error σi for ρi(N, V, E) is:

σi =

√
Hi(N, E)

ni

Ξi

exp(βiµN − βiE)
N !Λ3N

i (A-11)

and the variance is:

σ2
i =

Hi(N, E)

n2
i

[
Ξi

exp(βiµN − βiE)
]2[N !Λ3N

i ]2 =
ρ2(N, V, E)

Hi(N, E)
(A-12)

Performing the weighted average of equation A-9 our best estimate of
ρ(N, V, E) is:

ρ(N,V, E) =
P

i Hi(N, E)Hi(N, E)/ni[Ξi/ exp(βiµiN − βiE)]N !Λ3N
i

P

j Hj(N, E)

(A-13)

Making use of equation A-10 to cancel out the quantities Hi(N, E) whose
values we do not know, we obtain:
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ρ(N, V, E) =

∑
i Hi(N, E)∑

j njΞ
−1
j exp(βjµN − βjE) 1

N !Λ3N
j

(A-14)

where the well known factor 1
N !Λ3N now appears. (note that the value of Λ

depends also on the temperature of each simulation). This factor is not given
in the normal formulation of the histogram reweighting.

In order to determine the partition function we have still to find the values
of Ξi, whose values we do not know.

To do that we apply the definition of the partition function in equation A-4:

Ξk =
∑

N

1

N !Λ3N
k

∑

E

ρ(N, V, E) exp(βkµkN − βkE) (A-15)

Substituting the value of the density of states by our best estimate we ob-
tain:

Ξk =
∑

N

∑

E

1
Λ3N

k

exp(βkµkN − βkE)
∑

i Hi(E, N)
∑

j njΞ
−1
j exp(βjµjN − βjE) 1

Λ3N
j

(A-16)

where now a factor 1
Λ3N appears at different temperatures (it does not can-

cel out) both in the numerator and the denominator. As in [19] [18] we can
define a virtual chemical potential shifted by the temperature-dependence of
the DeBroglie wavelength, according to:

exp(µβN)

Λ3N
= exp(µβN − 3N ln Λ) = exp(µβN) (A-17)

with

µ = µ − 3

β
ln Λ (A-18)

to obtain finally:
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Ξk(µ, V, T ) =

∑

N,E

∑
i Hi(E, N)∑

j njΞ
−1
j exp(βjµjN − βkµkN − (βj − βk)E)

(A-19)

Also we could consider using the activity instead of chemical potential
where the activity a can be defined as follows:

a =
expβµ

Λ3
(A-20)

Each of the values of Ξk corresponding to the different simulations must
be found by solving the previous set of equations iteratively.

Once we have calculated these values, we can calculate the partition func-
tion at any other temperature or chemical potential generalizing the previous
equation:

Ξ(µ, V, T ) =
∑

N,E

∑
i Hi(E, N)∑

j njΞ
−1
j exp(βjµjN − βµN − (βj − β)E)

(A-21)

A1-3

Relation with the computational code

In the grand canonical algorithm of the Gibbs code we are sampling the phase
space with a probability:

P (N → N + 1) = min

(
1,

V

N + 1
exp(βµ − βE

)
(A-22)

Hence, we are ignoring the DeBroglie wavelength in the acceptance prob-
ability. As a consequence, we are shifting the value of the chemical potential
by an ammount −3 lnΛ. This is equivalent to the use of the modified chemical
potential defined in equation A-18 or to use activity in the acceptance proba-
bility. In this way we can use directly equation A-21 to reweight our data.
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