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PEM fuel cell modeling and converters design for a 48 V DC power bus

by

Carlos Alberto Restrepo Patiño

Department of Electronics, Electric and Automatic Engineering
Rovira i Virgily University

Tarragona, 2012

Abstract

Fuel cells (FC) are electrochemical devices that directly convert the chemical energy of a fuel into
electricity. Power systems based on proton exchange membrane fuel cell (PEMFC) technology
have been the object of increasing attention in recent years as they appear very promising in both
stationary and mobile applications due to their high efficiency, low operating temperature allowing
fast startup, high power density, solid electrolyte, long cell and stack life, low corrosion, excellent
dynamic response with respect to the other FCs, and nonpolluting emissions to the environment if
the hydrogen is obtained from renewable sources. The output-voltage characteristic in a PEMFC
is limited by the mechanical devices which are used for regulating the air flow in its cathode,
the hydrogen flow in its anode, its inner temperature, and the humidity of the air supplied to it.
Usually, the FC time constants are dominated by the fuel delivery system, in particular by the
slow dynamics of the compressor responsible for supplying the oxygen. As a consequence, a fast
load transient demand could cause a high voltage drop in a short time known as oxygen starvation
phenomenon that is harmful for the FC. Thus, FCs are considered as a slow dynamic response
equipment with respect to the load transient requirements. Therefore, batteries, ultracapacitors or
other auxiliary power sources are needed to support the operation of the FC in order to ensure a
fast response to any load power transient. The resulting systems, known as FC hybrid systems, can
limit the slope of the current or the power generated by the FC with the use of current-controlled
dc-dc converters. In this way, the reactant gas starvation phenomena can be avoided and the
system can operate with higher efficiency. The purpose of this thesis is the design of a DC-DC
converter suitable to interconnect all the different elements in a PEMFC-hybrid 48-V DC bus. Since
the converter could be placed between elements with very different voltage levels, a buck-boost
structure has been selected. Especially to fulfill the low ripple requirements of the PEMFCs, but
also those of the auxiliary storage elements and loads, our structure has inductors in series at both
its input and its output. Magnetically coupling these inductors and adding a damping network to its
intermediate capacitor we have designed an easily controllable converter with second-order-buck-like
dominant dynamics. This new proposed topology has high efficiency and wide bandwidth acting
either as a voltage or as a current regulator. The magnetic coupling allows to control with similar
performances the input or the output inductor currents. This characteristic is very useful because
the designed current-controlled converter is able to withstand shortcircuits at its output and, when
connected to the FC, it facilitates to regulate the current extracted from the FC to avoid the oxygen
starvation phenomenon. Testing in a safe way the converter connected to the FC required to build
an FC simulator that was subsequently improved by developing an emulator that offered real-time
processing and oxygen-starvation indication. To study the developed converters and emulators with
different brands of PEMFCs it was necessary to reactivate long-time inactive Palcan FCs. Since the
results provided by the manual reactivation procedure were unsatisfactory, an automatic reactivation
system has been developed as a complementary study of the thesis.

Thesis Supervisors: Roberto Giral and Javier Calvente

UNIVERSITAT ROVIRA I VIRGILI 
PEM FUEL CELL MODELING AND CONVERTERS DESIGN FOR A 48 V DC POWER BUS 
Carlos Alberto Restrepo Patiño 
Dipòsit Legal: T. 1049-2012 
 



Preface

This thesis reports the results of my Ph.D. study at the Departament dEnginyeria Electrònica,

Elèctrica i Automàtica, Escola Tècnica Superior d’Enginyeria, Universitat Rovira i Virgili. It docu-

ments the work I carried out between December 2007 and December 2011, which was funded by the

Universitat Rovira i Virgili in the first year and a half and subsequently by the Spanish Ministry of

Education and Science, under FPU scholarship AP2008-03305. I made the study as a Ph.D student

of the Automatic Control and Industrial Electronics Group, to which I have been affiliated since

December 2007.

The thesis contains results that have been accepted or are to be submitted for publication as papers

in international journals or conference proceedings, but the thesis format makes it easier for the

reader to gain a better understanding of the overall work and of the improvements in the state of

the art.

The thesis follows common publishing guidelines given by international journals. Therefore all the

figures have been made in grayscale. Similarly, the bibliographical citations have been numbered

in order of appearance, as have the equations, figures and tables. Finally, the simulations, the

mathematical analysis, the simulator system, the real-time emulator, and the reactivation system

presented in in each of the chapters have been carried out by using PSIM, Matlab/Simulink and

LabVIEW softwares.
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Chapter 1

Introduction

Nowadays the world is clamoring for an energetic change to ensure a sustainability of natural re-

sources for future generations. The increased use of fossil fuels since the industrial revolution is

largely responsible for the globally increasing emissions of carbon dioxide, and consequently for the

global warming and climate change. The economic growth of a nation is related to the control of

energy resources and this has conducted to great social differences between developed and less devel-

oped countries. At present, there is no consensus among geologists about the oil reserves but many

experts estimate that production will reach its maximum point in a few decades. The real oil re-

serves are not believable because the producing countries exaggerate their numbers to get loans from

international institutions or private banks to be invested in commercial and infrastructure projects.

The economic growth that is happening in developing countries like China and India require an in-

creasingly important consume of oil making the reserves more disputed. Additionally the population

is growing, especially in developing countries, therefore the required energy needs will increase and

so will the oil prices. Compounding the oil situation, the large reserves are in politically unstable

countries and this may worsen the situation even more. With this background, it is understandable

that the great powers are making large investments to search for alternative energies to fossil fuels.

In this context, the hydrogen is an energy carrier which is foreseen to play an important role in

sustainable energy systems that is expected to replace fossil fuels. Hydrogen is the lightest, most

basic and most abundant element in the universe. When it is used as an energy form, it becomes

an inexhaustible fuel because the electrolytic production and the combustion are governed by the

same chemical reaction in opposite directions. Another advantage is that the energy produced by

hydrogen is clean, as long as it is obtained using renewable energy technologies, and free of carbon

dioxide emissions.

1
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1.1 Advantages and drawbacks of hydrogen as transporta-

tion fuel

Air pollution is a serious public health problem throughout the world, especially in industrialized and

developing countries, and in this cases motor vehicle emissions are major contributors to urban air

quality [3]. In this context, hydrogen can be used as a fuel applied directly in an internal combustion

engine vehicle, not much different from the engines used with gasoline, but with the advantage of

not emitting carbon dioxide to the atmosphere [3]. Nevertheless, the hydrogen internal combustion

engine vehicle produces nitrogen oxides in small quantities, and researches has shown that nitrogen

oxide is 310 times more harmful acting like a greenhouse gas than carbon dioxide [4]. An alternative

to convert hydrogen energy into electric energy in an efficient manner is through a fuel cell which will

be explained in more detail in another section. Nowadays, the consumers and government programs

are demanding increased technical efficiency in new automobiles [5]. Therefore, the fuel cell vehicles

have all the advantages to be an alternative to fossil fuel vehicles because it has more efficiency and

is less polluting if the hydrogen is obtained by renewable energies. Nevertheless there are barriers

to be overcome for hydrogen vehicles to become widely used. The following subsections will make a

brief explanation of the main problems to be solved before hydrogen turns into a true alternative to

fossil fuels in the automobile field.

1.1.1 Hydrogen storage

Hydrogen is the lightest and most abundant chemical element, constituting roughly 75% of the Uni-

verse’s chemical elemental mass, and on Earth, it is the most abundant component of all flora and

fauna, including the human body, with a 61%. Nevertheless, gaseous hydrogen is extremely strange

to find on earth since its light weight allows it to escape from the Earth’s gravity [6]. It only exists

in nature in combination with other elements such as oxygen in the water, carbon and oxygen in

the organic materials, and high proportion of carbon in the fossil fuels [7].

The hydrogen has physical and chemical properties that makes it a good candidate for a fuel,

such as: odorless, stable, colorless, it does not react with oxygen until sufficient energy is supplied

to begin an exothermic reaction that results in the production of water [6]. Furthermore, in com-

parison with other fuels the hydrogen has a wide range of flammability, a very low ignition energy,

a higher ignition temperature, a fast flame speed, a very high diffusivity, and a wide detonation

range in a confined state [3]. In addition, the hydrogen has the highest energy-to-weight ratio of

any fuel since it is the lightest element and has no heavy carbon atoms like the hydrocarbons fuels.

Therefore, the amount of energy liberated during the reaction of hydrogen, on a mass basis, is about

2
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2.5 times the heat of combustion of common hydrocarbon fuels and this means that the mass of

hydrogen required is only about a third of the mass of the needed hydrocarbon fuel [8]. Neverthe-

less, the hydrogens energy density, that denotes the amount of energy for a given volume of fuel,

is the lowest in comparison with the common hydrocarbon fuels [9, 6]. Since the energy density is

really a measure of how compactly hydrogen atoms are packed in a fuel, then the hydrocarbons of

increasing complexity, with more and more hydrogen atoms per molecule, have increasing energy

density [8]. The energy density of a fuel is also affected by whether the fuel is stored as a liquid or

as a gas at specific pressure. To put it into perspective, the energy density of the liquid hydrogen

is 8.5 MJ/litre, while the gasoline is 31.2 MJ/litre [8], therefore a hydrogen fuel tank would need to

be at least three times larger than a gasoline tank with the same energy content.

On-board hydrogen storage for transportation applications continues to be one of the most techni-

cally challenging barriers to the widespread commercialization of hydrogen-fueled vehicles according

to the U.S. Department of Energy. The hydrogen-storage-system mainly considered that a vehicle

needs a minimum of 5 kg of hydrogen on board to allow a driving range of more than 500 km with

a packaging, safety, cost, and performance competitive with current vehicles [10]. The hydrogen

boiling point is -252.87 ◦C, which means that the storage temperature of liquid hydrogen (LH2)

is -253 ◦C, known as cryogenic LH2, and at room temperature the hydrogen is in gas state. The

hydrogen expansion ratio from the liquid to the gaseous state at atmospheric conditions is 1:848,

therefore the most obvious solution should be to have liquid hydrogen (LH2) stored at or close to

ambient pressure. However, there are disadvantages that make the LH2 storage in an impractical

solution. The first one is that for the liquefaction of hydrogen a complex, multistage process requires

a lot of energy is necessary, which makes this process expensive and not efficient [11, 6]. And the

second one is that the LH2 tends to boil off because the tank can not be perfectly insulated and

pressure build up has to be prevented by venting hydrogen because the pressures would very quickly

become impossible to be contained safely [12, 6]. Therefore, typical boil off venting rates are 1 to

2% per day for automotive-sized cryogenic super-insulating tank [13] which means that it would lose

up to a quarter part of a full tank per week [6].

Another possibility to store the hydrogen is by the metal hydride system that can absorb the

hydrogen in gas state under high pressure and moderate temperature conditions [14]. This metal

hydride system releases the hydrogen gas when a high temperature and low pressure is applied to

them. This system has a high energy density by volume, a low operation pressure, and it is the safest

of all possible methods of storing hydrogen [13]. Nevertheless, this method has a poor energy density

by weight and therefore tends to be very heavy and expensive [13]. In addition, these technologies

are not yet completely mature and therefore indications on energy requirements can be unreliable [7].
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Finally, the high-pressure gas storage systems are the most common and most highly developed

methods of storing hydrogen [13]. Now, researchers are focused on the design of cylinders that are

able to support high pressure to minimize their size, cost and weight, to maximize the driving range

and the security. Recent advances in carbon-fibre technology allow to design new cylinders, know

as the QUANTUM TriShield, which are according with the standards of the European Integrated

Hydrogen Project (EIHP) [15, 6]. Actually, the problems of hydrogen tank weight have two research

directions: the first one uses cryo-compression tanks, which consists of a liquid-nitrogen filled jacket

to cool the hydrogen down to -203 ◦C and increases its volumetric capacity by a factor of four [16, 6].

The second research direction is to integrate the tank as a part of the vehicle structure [6]. More

details about the study of different methods of hydrogen storage on-board and off-board in vehicle

applications can be found in [17].

Although the hydrogen storage is still an open research problem, and the expected improve-

ments are not yet efficient enough, the currently used compressed gas storage has not hindered

vehicle manufacturers to have commercial or concept vehicles as: Toyota FCV-R, Audi A2H2, Peu-

geot 207 EPure, Volkswagen Touran HyMotion, GM’s Chevy Equinox Fuel Cell SUV, Daihatsu

Tanto FCHV, Mercedes-Benz F-Cell, Ford Focus FCV, Kia Sportage FCEV SUV, and more. In

addition, the BMW Hydrogen 7 is the first costumer car with a liquid hydrogen storage system [18]

while the Honda FCX Clarity, which is the first fuel cell vehicle platform-exclusive in the world man-

ufactured in series, works with hydrogen compressed gas [19]. The manner in which the cars convert

hydrogen into electrical energy will be explained in next section. Actually, the commercial vehicles

have improved technical efficiency by means of advantages of injection technologies, turbocharging,

increased transmission efficiency, and overall vehicle technologies for aerodynamic, rolling resistance,

and mass-reduction improvements [5]. However hybrid, electric and fuel cell vehicles exhibit supe-

rior performances than the internal combustion engine as presented in studies performed in [20, 5].

Despite its good efficiency, fuel cell vehicles can not be marketed on a global scale because it does

not exist a hydrogen infrastructure to ensure the supply of fuel, and the reason for not being any

infrastructure for transporting and distributing hydrogen is because there are no hydrogen vehicles.

1.1.2 Hydrogen transport and distribution

In order to supply a large demand for hydrogen in the future, it is necessary to design transport and

distribution systems to ensure the supply of it to the users. There are many possibilities that can

be used for the hydrogen distribution, depending on the quantity, and the place to be produced and

consumed. A central production with a large scale production, independent of the manner in which
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hydrogen is generated, and that requires hydrogen to be transported to the place of consumption,

there are basically four alternatives. For short distances, a tube trailer to transport hydrogen

compressed gas with a maximum of 400 kg per trunk can be used. While for short and medium

distances, and up to 4000 kg, it is more recommended to transport it as a liquid in LH2 trailers. The

third alternative is the use of pipelines for short, medium and large distance transfer of large and

very large quantities in gas state, up to 100 tons/h. Finally, the last alternative is the international

transport of LH2 via ships, that can transport up to 10000 tons per shipment, but so far there is no

experience in this type of transport. For a more detailed study of the advantages and disadvantages

of the different hydrogen transport alternatives refer to [21]. The main problems and potential

solutions related to transport of hydrogen using tanks, either liquid or gas, have been studied in

the previous section. Many projects are also evaluating the possibility of using the already existing

natural-gas pipeline infrastructure for high pressure hydrogen transport [22]. The major risk of the

pipeline transportation is the hydrogen embrittlement that is complicated to predict [23, 22]. This

phenomenon happens when relatively small amounts of hydrogen are absorbed by the pipeline steel,

but the expansion caused either by the presence of interstitial hydrogen atoms of the reformation

of hydrogen molecules in the voids in the materials can lead to cracking and subsequent leaking

from the pipeline [6]. References [6, 24, 23] offer more detailed information about this phenomenon.

Another distribution possibility is to produce the hydrogen in small scales at places such as refueling

stations using a electrolyzer which will be explained in the next section. With this strategy, the

main drawbacks associated to the large scale hydrogen generation and transportation can be avoided

[21]. The last distribution possibility is to produce the hydrogen using home energy stations that

generates hydrogen for the car from natural gas and can also provide heat and electricity for the

home at the same time [25]. This home energy station is designed by the same manufacturers of the

Honda FCX Clarity described in the previous section.

An hydrogen infrastructure could be introduced quickly, but only if a sufficient government

financial investment is provided [6]. A variety of economic studies to analyze the Market penetration

of the hydrogen vehicles in different countries with different energy system models, mainly the

MARKAL model, have been made [26, 27, 28, 29, 30]. In overall result of these studies is that

the combination of tax-free hydrogen fuel, subsidies on hydrogen vehicles and sufficient hydrogen

infrastructure supply will lead to quick market penetration of hydrogen vehicles in less than four

decades.

1.1.3 Hydrogen Production

Every kind of energy source can be used in the hydrogen-producing process, and nowadays, the most

common source for it is natural gas and other light hydrocarbons. Ironically, one of the reasons to

use hydrogen as an energy source is to reduce the emissions of carbon dioxide, but right now, with
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more or less 96% of the produced hydrogen coming from fossil fuels’ conversion [3], the hydrogen-

producing process has become a carbon dioxide producer itself, contributing to the greenhouse effect.

This is where renewable energy sources come to play an important role: hydrogen could be produced

from waste water, biomass (solid biomass, organic waste, etc.), solar, wind, geothermal, even nuclear

energy, which would be a way of clean hydrogen production. At this moment, we have reached the

highest carbon dioxide concentrations in at least 500.000 years. This situation makes it imperative

to improve renewable sources, so that not only the use of hydrogen will be clean, but also the

production process, and have, at the end, a globally environmental-friendly energy source.

1.1.4 Fuel Cell cost reduction

The fuel cell converts chemical energy into electricity, which is generated from the reaction between

hydrogen and an oxidizing agent, usually the oxygen in the air. Over the past 170 years, many fuel

cells have been developed, but only one seems to have a realistic possibility of being used as an

energy source to drive a car: the polymer-electrolyte membrane fuel cells (PEMFCs). These have a

low weight, require low gas pressure and operate at relatively low temperatures. Fuel cells working

with hydrogen are a clean energy source, but here comes another problem associated with this kind

of energy production, and concretely, this fuel cell: platinum, one of the most expensive metals on

earth, is used as catalyst material in the polymer electrolyte membrane (PEM) of the PEMFCs,

which makes it (at the moment) unsuitable for a sustainable way of energy source, because with

this high costs, it is very difficult to compete with battery-based systems. And so researchers are

working on decreasing the necessary amount of platinum (which some researchers have been able

to reduce an 80%, from the years 2005 to 2010 [1]), or even trying to change the metal for cheaper

ones. Researches at Alamos National Laboratory have found a way to produce platinum-free fuel

cells, employing carbon, iron and cobalt on the cathod of the PEM-cell. Other researchers opted to

replace the platinum with nickel and cobalt, even carbon nanotubes, but none could really archive

the same results [6].

The chemistry of each different fuel cell type varies depending on the fuel, operating temperature,

nature of the membrane and the composition of its electrolyte. Fuel Cell Today currently considers

six main fuel cell types: PEMFC (including HT PEMFC), DMFC, MCFC, PAFC, SOFC and AFC.

In terms of commercial success, the leader by far in terms of unit shipments is the PEMFC. This

technology serves the biggest number of individual markets and is found throughout the portable,

stationary and transport sectors. DMFC is the second most significant type by unit shipments and

is mainly found in the portable sector, apart from some niche transport applications. Fuel Cell

Today reports shipment numbers to the nearest 100 units, so while all fuel cell types are establishing

markets for themselves, some unit shipments are currently too small to appear in our figures.

In megawatt terms the story is very different. The significance of MCFC, SOFC and PAFC in
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the large stationary sector makes their contribution much more obvious. With PEMFC expected

to be the electrolyte of choice for the automotive industry, its dominance in terms of shipments is

likely to continue, but the contribution of other electrolytes to the megawatt total will undoubtedly

grow as they are used in more prime power, micro-CHP, large CHP and UPS installations.

1.2 Fuel cell technology

Fuel cells (FC) are electrochemical devices that directly convert the chemical energy of a fuel into

electricity. FCs can operate continuously as long as they are provided with sufficient amounts of

reactant gases. FCs are generally classified according to the nature of the electrolyte as: proton

exchange membrane FC (PEMFC), molten carbonate FC (MCFC), phosphoric acid FC (PAFC),

solid oxide FC (SOFC), alkaline FC (AFC). An exception to this rule is the direct methanol FC

(DMFC) which received its name for the ability to use methanol as a fuel. Table 1.1 summarizes

the main characteristics of the most important FCs. For a detailed study of the historical evolution,

principles, types, applications of FCs it can be found an extensive amount of literature [31, 19]. Power

systems based on proton exchange membrane fuel cell (PEMFC) technology have been the object

of increasing attention in the last years as they appear very promising both stationary and mobile

applications, due to their high efficiency, low operating temperature allowing fast startup, high

power density, solid electrolyte, long cell and stack life, low corrosion, excellent dynamic response

with respect to the other FCs, and nonpolluting emissions to the environment if the hydrogen is

obtain of renewable energies. [32, 33, 34]. This the reason because the PEMFCs is the most popular

technology in terms of commercial success and megawatt terms as shown in Fig. 1-1

Table 1.1: Main characteristic of the different fuel cells type [1].
PEMFC DMFC MCFC PAFC SOFC AFC

Electrolyte Ion Polymer Immobilised Immobilised Ceramic Potassium

exchange membrane liquid liquid hydroxide

membrane molten phosphoric

(water-based) carbonate acid

Operation 80 ◦C 60-130 ◦C 650 ◦C 200 ◦C 1000 ◦C 60-90 ◦C

temperature

Electrical 40-60% 40% 45-60% 35-40% 50-65% 45-60%

efficiency

Typical < 250 kW < 1 kW > 200 kW > 50 kW < 200 kW > 20 kW

electrical

power

Applications vehicles, Portable Stationary Stationary Stationary Submarines,

small spacecraft.

stationary
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Figure 1-1: Fuel Cell Today reported in [1] (a) Shipments by Fuel Cell Type 2010 (b) MW by Fuel
Cell Type 2010

1.2.1 PEMFC principle and structure

The reactant gases used by PEMFCs to produce electrical energy are hydrogen and oxygen. The

basic structure and chemical reactions of a PEMFC are depicted in Fig.1-2. Hydrogen, in a gaseous

state (H2), enters into the fuel cell through the bipolar plates’ channels on the anode side. These

channels allow the distribution of gas uniformly through the entire surface of the gas diffusion layer.

Then, the hydrogen molecule goes to the anode catalytic layer, where it is dissociated as electrons

and protons

2H2 → 4H+ + 4e−. (1.1)
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Figure 1-2: Basic structure and chemical reactions of a PEMFC.
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Figure 1-3: PEMFC system with main control subsystems.

The electrons flow through the electric load to the catalytic layer of the cathode, whilst the

protons travel through the electrolyte membrane. The membrane blocks the flow of electrons to the

catalyst layer on the cathode side. On the other side, the oxygen in a gaseous state (O2), flows to

the catalyst layer of the cathode from the bipolar plates channels within the cathode. Finally, the

oxygen, the hydrogen protons and the electrons react to generate water onto the catalyst layer on

the cathode side. The exothermic reaction is as follows

O2 + 4H+ + 4e− → 2H2O + heat. (1.2)

Each cell, as depicted in Fig. 1-2, generates a low dc voltage and a high dc current. In order to

reach the power requirements of the load, as well as a sufficient level of dc voltage, it is necessary

to connect individual FCs in series, what is known as a stack. The FC stack is a complex system

that requires an auxiliary power-conditioning system to ensure safe, reliable and efficient operation

under different operating conditions. In general, a PEMFC system includes four subsystems that

manage the air, the hydrogen, the humidity, and the stack temperature, as shown in Fig. 1-3.

The output-voltage characteristics in the PEMFC are limited by the mechanical devices which

are used for maintaining the air flow in the cathode by means of a compressor motor, the hydrogen

flows in the anode through a controlled valve, the temperature is controlled using a cooling fan, and

the humidity of the air in the cell by means of a humidity exchanger. Hence, the time constants

are dominated by fuel delivery system. As a consequence, a fast load transient demand could cause

a high voltage drop in a short time known as oxygen starvation phenomenon [35]. This condition

of operation is harmful for the FC and for this reason it is considered as a slow dynamic response
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equipment with respect to the load transient requirements. Therefore, batteries, ultracapacitors or

other auxiliary power sources are needed to support the operation of the FC in order to ensure a fast

response to any load power transient as shown in the Ragone plot of Fig. 1-4. The systems formed

by a FC and an other auxiliary power source, known as FC hybrid systems, have been extensively

researched over recent years [36, 37, 38, 39]. These hybrid systems can limit the slope of the current

or the power generated by the FC with the use of current-controlled dc-dc converters. In this way, the

reactant gas starvation phenomena can be avoided and the system can operate with higher efficiency

[40, 41, 42, 43]. In this context, Chapter 2 is focused in the design of a DC-DC converter suitable

to interconnect all the different elements in a PEMFC-hybrid 48-V DC bus. Since the converter

could be placed between elements with very different voltage levels, a buck-boost structure has been

selected. To fulfill the low ripple requirements of the PEMFCs our structure has inductors in series

at its input and output. Magnetically coupling these inductors and adding a damping network to its

intermediate capacitor we have designed an easily controllable converter. The Chapter 2 shows the

high efficiency of the converter and the wide bandwidth of the voltage regulator initially tested. The

current control of the converter is addressed in Chapter 3. The magnetic coupling allows to control

either the input or the output inductor currents. This is very useful because the designer current-

controlled converter is able to withstand shortcircuits at its output and when connected to the FC

facilitates to regulate the current extracted from the FC to avoid the oxygen starvation phenomenon.

To test in a safe way the converter connected to the FC it was decided to build the FC simulator

presented in Chapter 4. The basic capabilities in simulating the FC behaviour were improved by the

emulator developed in Chapter 5 that offers real-time processing and oxygen-starvation indication.

To test the developed converters and emulators with different brands of PEMFC it was necessary

to reactivate long-time inactive Palcan FCs. Since the results provided by the manual reactivation

procedure were unsatisfactory, the automatic reactivation system presented in Chapter A has been

developed.

1.3 List of publications
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Chapter 2

A Non-Inverting Buck-Boost

DC-DC Switching Converter with

High Efficiency and Wide

Bandwidth

2.1 Abstract

A novel DC-DC switching converter consisting of a boost stage cascaded with a buck converter

with magnetically coupled coils is presented. The converter has the same step-up or step-down

voltage conversion properties as the single inductor non-inverting buck-boost converter but exhibits

non-pulsating input and output currents. The converter’s control-to-output transfer function is

continuous between operation modes if a particular magnetic coupling is selected. The addition of

a damping network improves the dynamics and results in a control-to-output transfer function that,

even in boost mode, has two dominant complex poles without right half plane zeroes. An example

shows that an output voltage controller can be designed with the same well-known techniques usually

applied to the second-order buck regulator. Details of a prototype and experimental results including

efficiency, frequency and time domain responses are presented. The experimental results validate

the theoretical expected advantages of the converter, namely, good efficiency, wide bandwidth and

simplicity of control design.
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2.2 Introduction

In such converter applications as battery charging and discharging, power factor correction, fuel

cell regulation, and maximum power point tracking of solar panels, a DC-DC converter is used to

obtain a regulated voltage from an unregulated source. When the regulated voltage is within the

voltage range of the unregulated voltage source, a step-up/step-down DC-DC converter is required

[44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56].

Step-up/step-down DC-DC converters with a single active switch, such as buck-boost, flyback,

Sepic and Ćuk topologies, have high component stresses and low efficiencies at the same operating

point as the boost or the buck converter if the output voltage is greater or smaller than the input

voltage, respectively [57].

It is possible to combine a buck converter with a boost converter to obtain a two independently

controllable switch buck-boost converter, the size and performance comparable to those of the simple

buck or boost stages [58]. For example, the cascade combination of a buck and a boost stages results

in a single inductor non-inverting buck-boost converter with high performance which is widely used

in low voltage applications [47, 48, 49, 50, 51]. These converters do not operate in buck-boost mode,

because it is more efficient to operate them in either buck mode if the output voltage is lower than

the input one or in boost mode otherwise [45]. Some non-inverting buck-boost converters are high

efficient at higher operational voltages [55, 56] but have the drawback that they have a complex

control. In [55], the authors state that the detailed modelling of the plant and the controller is

currently ongoing. In [56], the output voltage regulators required depend on whether the mode of

operation is boost or buck.

The single inductor non-inverting buck-boost converter is used in applications in which it is im-

portant for the magnetic elements to be small and cheap. However, when the voltages are high, the

size of the converter’s capacitors is also important. In this case, it would be appropriate to use the

cascade buck-boost power converter that has two inductors, one at the input and the other at the

output [44, 46]. With these inductors, the input and output currents are non-pulsating, the noise

level is lower, and the currents are easier to control and limit than in the pulsating case.

Most of the converters mentioned earlier, when operating in continuous conduction boost mode,

have a right-half-plane (RHP) zero that difficults to design their controller, limits the bandwidth of

the loop and penalizes the size of the output capacitor [49]. One possible solution to these problems

is the topology called the KY buck-boost converter [59]. This converter has a very fast transient

response, which is achieved by using switched capacitors for energy transfer, and it is recommended
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for low-power applications. The tristate boost converter reported in [60] eliminates the RHP zero

but is not very efficient; besides, this technique has never been applied to the buck-boost topology.

In [54] a two-inductor boost superimposed with a buck converter satisfactorily solves the RHP zero

problem but both active switches of the structure are floating, which requires complex drivers. An-

other solution to the problem of the RHP zeros adopted in the work reported here is to use magnetic

coupling between inductors [61] combined with damping networks [62, 63]. This solution has made

it possible to design high-power boost converters with high efficiency and wide bandwidth [64, 65, 66].
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Figure 2-1: Schematic circuit diagram of the buck-boost converter with magnetic coupling between
inductors.

The purpose of this chapter is to analyze the cascaded connection of a boost and buck converter,

with magnetic coupling between inductors, shown in Fig. 2-1. This converter can operate in boost

mode, as in Fig. 2-2(a), and buck mode, as in Fig. 2-2(b). Both topologies have non-minimum

phase transfer functions under certain parametric conditions and have been proposed for battery

charge/discharge regulators for satellites [67]. As will be seen, the proposed converter exhibits high

efficiency in the desired range of operation in spite of using diodes instead of synchronous rectifica-

tion. It also presents a wide bandwidth and low current ripples that reduce the size of the input

capacitor and especially that of the output one. Finally, the converter control is simpler that the

state-of-the-art, which could reduce design costs.

The remainder of this chapter is organized as follows. Section 2.3 presents the key waveforms

of the converter and discusses the small-signal converter model. In the same section, the turns

ratio n of the transformer is also determined, thus avoiding the need for two transfer functions,

namely, one for the buck mode and another for the boost mode, is also determined. This means

that the same transfer function can be used to describe the converter in both modes and simplifies

the controller design. A damping network is added in Section 2.4 where analytical expressions are

obtained to design a minimum phase transfer function. Section 2.5 focuses on a complete circuit

design for the buck-boost converter and its control. Finally, the last two sections present simulated

and experimental results, and the conclusions of this work.
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Figure 2-2: Operating modes of the buck-boost converter: (a) boost mode; (b) buck mode.

2.3 Analysis of the Buck-Boost Converter with magnetic cou-

pling between inductors

Lets us consider the unidirectional buck-boost converter with magnetic coupling between the input

and output inductors shown in Fig. 2-1. The typical current and voltage waveforms of this converter

in steady state are depicted in Fig. 2-3. In boost mode, the currents are shown in Fig. 2-3 (a) and the

corresponding voltages in Fig. 2-3 (b). Fig. 2-3 (c) and (d) represent current and voltage waveforms

in buck mode. The bottom traces of each plot correspond to u1 and u2, which are, respectively, the

logic activation signals of switches Q1 and Q2. In boost mode u2 = 1 while u1 switches whereas in

buck mode u1 = 0 while u2 switches. The duty cycles of u1 and u2 have been adjusted to obtain a

mean output voltage of 48 V. In a typical design, the ripple in the intermediate capacitor voltage

vC is bigger than that of the output voltage, which makes it possible to use a small intermediate

capacitor. As can be observed in Fig. 2-3, a common characteristic of the two operation modes is

that currents ig and iL are non-pulsating with a triangular-shaped ripple.

Assuming a continuous conduction mode (CCM) of operation, no parasitic effects and a switching

frequency much higher than the converter natural frequencies, the use of the state-space averaging

(SSA) method [68] to model the converter leads to the following set of differential equations
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Figure 2-3: Typical waveforms of Fig 2-1 converter for Vo = 48 V: (a), (b) currents and voltages in
boost mode with Vg = 39 V; (c), (d) currents and voltages in buck mode with Vg = 55 V. Logic
signals u1 (in black) and u2 (in white) indicate switch Q1 and Q2 states, respectively.

diLm(t)
dt

=
vg(t)− vC(t)(1− d1(t))

Lm

diL(t)
dt

=
vC(t)d2(t) + n(vg(t)− vC(t)(1− d1(t)))− vo(t)

L

dvC(t)
dt

=
−iL(t)d2(t) + (iLm(t) + niL(t))(1− d1(t))

C

dvo(t)
dt

=
iL(t)
Co

− vo(t)
RoCo

(2.1)

where d1 and d2 are the duty cycles of the switches Q1 and Q2, respectively, and the overline stands

for averaging during one switching period. To analyze the pulse-width-modulated (PWM) converters

operating in CCM the PWM-switch modeling method presented in [69] can be used. This method

describes the way in which the active switches, Q1 and Q2, and the passive switches, Ds1 and Ds2

can be replaced by current and voltage controlled sources. The controlled current source expression
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corresponds to the product of the duty cycle and the current through the corresponding MOSFET

switch when this is closed. Similarly, the controlled voltage source is the product of the duty cycle

and the the voltage blocked by switch diode. Fig. 2-4(a) presents the converter shown in Fig. 2-1

with its respective controlled sources. This PWM-switch model gives exactly the same equations

(2.1) as the SSA method. Assuming that the converter is in steady state with constant duty cycles,

d1(t) = D1 and d2(t) = D2, and input voltage vg(t) = Vg, and using the principles of inductor

volt-second and capacitor charge balance [57], the steady-state expressions of the inductor currents

and capacitor voltages are
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Figure 2-4: Schematic circuit diagrams of the buck-boost converter with magnetic coupling between
inductors: (a) large-signal averaged model and (b) DC model.

ILm
=

VgD2(D2 − n + nD1)
Ro(1−D1)2

IL =
VgD2

Ro(1−D1)

VC =
Vg

1−D1

Vo =
VgD2

1−D1
. (2.2)

These equations could also be derived from (2.1) by noting that, in steady-state, the derivatives

are zero or, equivalently, from the DC circuit of Fig 2-4(b). It is worth noting that the DC values of
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the state variables vo, vC and iL do not depend on the transformer turns ratio n. From the output

capacitor voltage Vo in (2.2), the voltage conversion ratio M(D1, D2) is given by

M(D1, D2) ≡ Vo

Vg
=

D2

1−D1
. (2.3)

Our goal is for the converter operate either in boost mode (0 < D1 < 1 and D2 = 1) or buck

mode (0 < D2 < 1 and D1 = 0), and switch smoothly from one mode to another. Let us define a

single control variable u that can take the values between 0 and 2 (0 < u < 2). The duty cycles D1

and D2 are related to the new variable u as

D1 = max(0, u− 1)

D2 = min(1, u). (2.4)

The new voltage conversion ratio can be expressed as follows

M(u) =
min(1, u)

1−max(0, u− 1)
. (2.5)

With this control input, the DC voltage conversion ratio M(u) is continuous between the boost

and buck modes of operation, as depicted in Fig. 2-5(a). On the border between the two modes of

operation u = 1, so D1 = 0 and D2 = 1. Fig. 2-5(b) shows how to generate the switch activation

signals u1(t) and u2(t) from the control signal u(t), and a symmetric triangular wave of amplitude

Vramp = 1 V.

To obtain a small-signal model around a steady-state operating point, we assume that the in-

put voltage is constant and the duty cycles d1(t) and d2(t) are equal to D1 and D2 plus some

superimposed small AC variations d̂1(t) and d̂2(t), respectively,

vg(t) = Vg

d1(t) = D1 + d̂1(t)

d2(t) = D2 + d̂2(t). (2.6)

After these inputs are considered, the averaged inductor currents and capacitor voltages can also

be expressed in terms of their corresponding steady-state values plus some superimposed small AC

variations
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Figure 2-5: (a) DC conversion ratio M(u) of the buck-boost converter.; (b) activation signal genera-
tion: comparison of control signals with a triangular signal to obtain the MOSFETs binary activation
signals u1(t) and u2(t).

iLm
(t) = ILm + îLm(t)

iL(t) = IL + îL(t)

vC(t) = VC + v̂C(t)

vo(t) = Vo + v̂o(t). (2.7)

Assuming that the AC variations are much smaller than the steady-state values, the set of

differential equations (2.1) can be linearized. The small signal state-space vector x̂ is defined as
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x̂ =
[

îLm îL v̂C v̂o

]T

. (2.8)

Linearizing (2.1) around the equilibrium point (2.2) and separating the dynamic AC small-signal

terms from the DC steady-state component, the following dynamic model is obtained:

dx̂

dt
= Ax̂ + B1d̂1 + B2d̂2 (2.9)

where A is the state matrix and B1 and B2 are, respectively, the input vectors corresponding to d1

and d2

A =




0 0 D1−1
Lm

0

0 0 D2+n(−1+D1)
L − 1

L

1−D1
C

n(1−D1)−D2
C 0 0

0 1
Co

0 − 1
RoCo




B1 =
[
− Vg

Lm(D1−1) − nVg

L(D1−1) − VgD2
2

CRo(D1−1)2 0
]T

B2 =
[

0 − Vg

L(D1−1)
VgD2

CRo(D1−1) 0
]T

.

Hence, on the boundary between the two modes of operation, the small-signal control-to-output

transfer function with respect to the duty cycle d̂1 is

Gvod1(s)
∣∣∣∣
u=1

≡ v̂o(s)

d̂1(s)

∣∣∣∣
u=1

=
N1(s)
D(s)

(2.10)

where

N1(s) = Vg(RonCLms2 + (Lmn− Lm)s + Ro)

D(s) = LmCLRoCos
4 + LmCLs3 + (LmRoCo − 2LmnRoCo + LmCRo + LRoCo + Lmn2RoCo)s2

+ (Lm − 2Lmn + Lmn2 + L)s + Ro.

In the same way, the small-signal control-to-output transfer function with respect to the duty cycle

d̂2 is

Gvod2(s)
∣∣∣∣
u=1

≡ v̂o(s)

d̂2(s)

∣∣∣∣
u=1

=
N2(s)
D(s)

(2.11)

where
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N2(s) = Vg(RoCLms2 + (Lmn− Lm)s + Ro).

If the turns ratio n is equal to 1, the transfer functions Gvod1(s) and Gvod2(s) are coincident, and

Gvod1(s)
∣∣∣∣
u=1; n=1

= Gvod2(s)
∣∣∣∣
u=1; n=1

=
VgRo

LRoCos2 + Ls + Ro
. (2.12)

A similar procedure can be used to determine the small-signal control-to-output transfer functions

GiLd1(s) and GiLd2(s). These transfer functions are also identical between the two modes of opera-

tion if n = 1

GiLd1(s)
∣∣∣∣
u=1; n=1

= GiLd2(s)
∣∣∣∣
u=1; n=1

=
Vg(RoCos + 1)

LRoCos2 + Ls + Ro
. (2.13)

Selecting n = 1, the dynamic characteristics of the output voltage and output current are con-

tinuous between the boost and buck modes, as shown in (2.12) and (2.13), but there is a double

zero-pole cancellation, which indicates an uncontrollable internal dynamics. On the other hand, the

small-signal control-to-output transfer function Gvod1
(s) in boost mode (u > 1) with D2 = 1 and

n = 1 is

Gvod1(s)
∣∣∣∣
D2=1;n=1

=
N3(s)
D3(s)

(2.14)

where

N3(s) = Vg[(LmCRo − LmCRoD1)s2 − LmD1s + (Ro + RoD1
2 − 2RoD1)] (2.15)

D3(s) = (D1 − 1)2(LmCLRoCos
4 + LmCLs3 + (LmD1

2RoCo + LmCRo + LRoCo − 2D1LRoCo

+D1
2LRoCo)s2) + (LmD1

2 + L− 2D1L + D1
2L)s + (Ro − 2RoD1 + RoD1

2)). (2.16)

According to (2.15), Gvod1 has two RHP zeroes. The presence of these RHP zeroes tends to

destabilize wide bandwidth feedback loops and makes the converter prone to oscillation [58]. The

dynamics of the zeroes is the inner behavior of the system when the control regulates the output

without error, e.g., the poles are attracted by the zeroes in a high gain closed loop linear system. In

a converter with an ideal regulation of the output voltage, the inner dynamics is usually associated

to the input filter. Thanks to the magnetic coupling, the dynamics of the zeroes of our converter in

boost mode is of second order, associated to the variables iLm and vc. Note that the zeroes in (2.15)

depend on the parameters Lm and C. Therefore, damping the dynamics of iLm and/or vc by adding

a passive network could transfer the RHP zeroes to the left-half-plane (LHP). Following a similar

procedure to the one reported in [61]-[62], a passive network was connected to the intermediate

capacitor. This damping network can be seen as a low frequency snubber. The modified procedure
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for calculating the parameter values of the passive damping network will be given in the next section.

2.4 Analysis of the coupled inductors Buck-Boost Converter

with damping network

In this section, the buck-boost converter with the damping network included, which is depicted in

Fig. 2-6, will be analyzed. The damping network consists of a series connection of a resistor Rd

and a capacitor Cd connected in parallel with the converter intermediate capacitor C. With this

damping network included and doing n = 1, the SSA model in CCM is

diLm(t)
dt

=
vg(t)− vC(t)(1− d1(t))

Lm

diL(t)
dt

=
vC(t)d2(t) + vg(t)− vC(t)(1− d1(t))− vo(t)

L

dvC(t)
dt

=
−iL(t)d2(t) + (iLm(t) + iL(t))(1− d1(t))

C
− vC(t)− vCd

(t)
CRd

dvCo(t)
dt

=
iL(t)
Co

− vo(t)
CRo

dvCd
(t)

dt
=

vC(t)− vCd
(t)

CdRd
. (2.17)

L

m

v

g

R

o

Q1

Q2

+

−

L

D
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D

s1

v
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−
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C

C

d

R

d

Figure 2-6: Coupled inductor buck-boost converter with RC type damping network and turns ratio
1:1 (n = 1).

As can be expected from (2.2), with n = 1 and the steady-state behavior of VCd
, the converter

operating point for constant duty cycles d1(t) = D1, d2(t) = D2, and input voltage vg(t) = Vg is
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ILm =
VgD2(D2 + D1 − 1)

Ro(1−D1)2

IL =
VgD2

Ro(1−D1)

VC =
Vg

1−D1

VCd
=

Vg

1−D1

Vo =
VgD2

1−D1
. (2.18)

Linearizing the set of equations (2.17) around the operating point (2.18), we obtain the small-signal

SSA model

dx̂

dt
= Ax̂ + B1d̂1 + B2d̂2 (2.19)

where the small signal state vector x̂, the state matrix A and the input vectors B1 and B2 of the

system are now given by

x̂ =
[

îLm îL v̂C v̂Cd
v̂o

]T

A =




0 0 D1−1
Lm

0 0

0 0 D2+D1−1
L 0 − 1

L

1−D1
C

1−D2−D1
C − 1

RdC
1

RdC 0

0 0 1
RdCd

− 1
RdCd

0

0 1
Co

0 0 − 1
RoCo




B1 =
[
− Vg

Lm(D1−1) − Vg

L(D1−1) − VgD2
2

CRo(D1−1)2 0 0
]T

B2 =
[

0 − Vg

L(D1−1)
VgD2

CRo(D1−1) 0 0
]T

.

The transfer functions Gvod1(s) and Gvod2(s) now have a third-order numerator and a fifth-order

denominator with two dominant complex poles. On the border between buck and boost operation

modes, where u = 1, there is a triple zero-pole cancellation and the two transfers function correspond

to expression (2.12). Since this control-to-output transfer function is identical to that of a second-

order buck converter, it is possible to design its control loop compensator in the same well-known

way if the internal dynamics corresponding to the cancelled poles is sufficiently damped. The poles

of the internal dynamics are the roots of the cancelled polynomials in
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Gvod1(s)
∣∣∣∣
u=1

= Gvod2(s)
∣∣∣∣
u=1

=
p(s)(VgRo)

p(s)(LRoCos2 + Ls + Ro)
(2.20)

where

p(s) = LmRdCCds
3 + (LmCd + LmC)s2 + RdCds + 1. (2.21)

The expression (2.21) can be expressed in a third degree polynomial factorized form as

p(s) = (ατs + 1)(τ2s2 + 2ζτs + 1) (2.22)

which leads to the following set of equations

ατ3 = RdCdLmC (2.23)

τ2(2αζ + 1) = Lm(Cd + C) (2.24)

τ(α + 2ζ) = RdCd. (2.25)

Dividing (2.23) by (2.25) and isolating τ2 yields

τ2 =
LmC(α + 2ζ)

α
. (2.26)

Substituting (2.26) in (2.24) and isolating Cd provides the expression of the damping network ca-

pacitor

Cd =
2ζC(1 + 2αζ + α2)

α
. (2.27)

From (2.25) and (2.26), it is straightforward that

Rd =
τ(α + 2ζ)

Cd
. (2.28)

Since the derivative of (2.27) with respect to α is

dCd

dα
=

2ζC(α2 − 1)
α2

(2.29)

Cd has a minimum for α = 1. To minimize the size of the capacitor Cd, a value of α = 1 is selected.

With this choice, the expression of the damping resistance Rd is given by
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Rd =
(1 + 2ζ)

√
1 + 2ζ

4ζ(ζ + 1)

√
Lm

C
. (2.30)

Finally, ζ = 1 is selected as a trade-off between the size of the capacitor and a sufficient and robust

damping of the internal dynamics. The resulting expressions of the damping network parameters

are

Cd = 8C

Rd ≈ 0.65

√
Lm

C
. (2.31)

In the previous section, it was concluded that the small-signal control-to-output transfer functions

Gvod1(s) and Gvod2(s) have the same expression at u = 1. Moreover, this expression corresponds to

the small-signal control-to-output transfer function of a buck converter. To test the validity range

of the small-signal model, a PSIM frequency response simulation was carried out using the switched

model schematic circuit diagram shown in Fig. 2-7 and compared with the MATLAB calculated

frequency response corresponding to the SSA model (2.12). In both cases, the parameters, whose

selection will be explained in the next section, are Lm = 14 µH, C = 2.6 µF, Rd = 1.5 Ω,

Cd = 22 µF, L = 30 µH, Co = 110 µF, and Ro = 9.6 Ω. Three different input voltages

Vg = 39 V (step-up, u > 1), Vg = 48 V (border, u = 1), and Vg = 55 V (step-down, u < 1) were

considered. The duty cycles have been chosen to have a steady-state output voltage Vo = 48 V.

The waveforms depicted in Fig. 2-3 were obtained for the previous list of component values.

The Bode plots of both frequency responses obtained from PSIM (switched) and MATLAB

(small signal) are superimposed for the three different values of the input voltage and are depicted

in Fig. 2-8. In this figure, the maximum frequency plotted corresponds to 50 kHz, which is half of

the switching frequency. The frequency responses are very similar in shape to a second order system

with two complex poles and no zeroes. We conclude that our buck-boost converter can be modelled

and controlled as a buck converter for the input voltage range considered in the example.
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Figure 2-7: Circuit diagram corresponding to the PSIM simulation used to calculate the frequency

response of the control-to-output transfer function.
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Figure 2-8: Frequency response of the small-signal control-to-output transfer function. The black

lines correspond to the simulation of the switched model using PSIM (see Fig. 2-7) while the white

lines correspond to MATLAB simulation of the linear small signal model (2.12).

To highlight the benefits of the magnetic coupling a frequency analysis comparison is performed

between the converter in Fig. 2-7 and the equivalent converter without magnetic coupling in Fig. 2-

9. The magnetic coupling is removed by converting the two coupled inductors in a single inductor

which is located on the primary side and has the same number of turns and the same core as the

coupled inductors. The magnetizing inductance used to calculate the coupled inductors is
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Lm =
µAN2

l
(2.32)

where µ is the core permeability, A is the core area, l is the magnetic path length and, since n = 1,

N is the number of turns in both primary and secondary windings. Therefore, assuming that the

primary and secondary sides of the coupled inductor are connected in series in the same core, their

equivalent inductance Leqv is calculated as

Leqv =
µA(2N)2

l
= 4Lm. (2.33)

Figure 2-9: Circuit diagram corresponding to the PSIM simulation used to calculate the frequency
response of the control-to-output transfer function without magnetic coupling.

Fig. 2-10 shows the transfer functions of the cascaded buck-boost converter without magnetic

coupling superimposed on the transfer functions of the coupled inductor depicted in Fig. 2-8. All

the traces in the figures correspond to PSIM simulations of the switched models of Fig. 2-7 and

Fig. 2-9. The responses in black are those of the converter without magnetic coupling whereas the

white responses are those of the system with magnetic coupling. The white traces are less scattered

for all three voltages in both magnitude and phase. There are two resonant peaks in the black traces

but only one peak in the white ones. At the frequencies of the second peak, the phases of the black

traces present a change of -180o that does not exist in the white cases. The response of the boost

mode depicted in black is coherent with a system with two pairs of LHP complex poles and one

RHP real zero. In the buck and buck-boost modes, the black responses are caused by two pairs of

LHP complex poles and one pair of RHP complex zeroes.

The frequency responses mean that the controller design in the black cases is more difficult. It

is very likely that any closed loop system designed on the basis of the black frequency responses will

have a small bandwidth and a poor output regulation.
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Figure 2-10: Frequency response of the small-signal control-to-output transfer functions provided
by PSIM AC Sweep simulations. The white traces are those of the switched model with magnetic
coupling (Fig. 2-7). The black traces are those of the switched model without magnetic coupling
(Fig. 2-9).

2.5 Circuit design

2.5.1 Buck-boost converter power stage

The buck-boost converter is designed as a battery discharge regulator (BDR) of 13 in-series lithium-

ion battery cells, so the input voltage Vg range from 39 V to 55 V. The output voltage Vo regulates

a DC bus of 48 V. The maximum power output is 480 W for a load resistance Ro = 9.6 Ω and the

switching frequency is 100 kHz. The parameter values of the buck-boost converter in Fig. 2-6 were

selected according to specifications of input and output peak to peak current ripples of4igpp = 12 A

and 4iLpp = 4 A; maximum output impedance of Zomax = 150 mΩ; maximum power dissipation

in the damping resistor PRd
= 4 W, and also expression (2.31). The expressions used to calculate

the ripples of iL, ig and vc are listed in Table 2.1. If a triangular shaped vc ripple is assumed, the

power loss in Rd is

PRd
=
4vCpp

12Rd
. (2.34)

The maximum output closed loop impedance can be calculated approximately as

Zomax =
1

2πfcCo
(2.35)

where fc is the crossover frequency (CF) of the voltage loop.

After a worst case analysis was performed in both buck and boost modes to find the specifications

at nominal power, the components that were finally selected for the buck-boost converter power

stage are the ones listed in Table 2.2. To achieve good efficiency, N-channel MOSFETs with low
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Table 2.1: Peak to peak ripple of the converter variables iL, ig and vC in CCM
Ripple Buck mode Boost mode

4iLpp
(Vg − Vo)VoT

VgL

Vg(Vo − Vg)T
VoL

4igpp
(Vg − Vo)VoT

VgL

Vg(Vo − Vg)T (L + Lm)
VoLLm

4vCpp
(Vg − Vo)V 2

o T

V 2
g RoC

(Vo − Vg)T
RoC

on-resistance and fast Schottky diodes were selected. Kool Mµ core inductors were chosen because

of their low cost and availability. Capacitors that must absorb high pulsed current are ceramic. The

equivalent series resistance (ESR) of Cd is much smaller than Rd. All components are rated up to

100 V.

Table 2.2: Components of buck-boost converter

Component Description Type

Q1, Q2 Power MOSFET IRFB4110PbF

Ds1 , Ds2 Schottky Rectifier 40CPQ080GPbF

Coupled Core: 77083A7 Magnetics

Lm inductors Wire size: 15 AWGb

Number of turns: 13:13

C Ceramic Capacitor 3 × 2.2 µFa

X7R dielectric

Co MKT Capacitor 5 × 22 µF

Core: 77083A7 Magnetics

L Inductor Wire size: 15 AWGb

Number of turns: 20

Rd Damping Resistor 1.5 Ω, 4 W

Cd MKT Capacitor 22 µF

a The capacitance depends on the operating voltage. For

Vc = 48 V the equivalent capacitance is 2.6 µF.

b Multifilar equivalent.

The capacitance value of the ceramic capacitor with X7R dielectric used in the experimental

prototype varies with temperature and current as reported in the technical data sheet provided

by the manufacturer. But it varies more strongly with the operation voltage as presented in the

experimental measurements of Fig 2-11. In this experiment the capacitor is connected to a known

value resistance Rkn in series as shown in Fig. 2-12. The time constant of this simple circuit

is measured with the oscilloscope and thus the value of the capacitor can be calculated for the

specific operation voltage. The equivalent capacitance presented in Table 2.2 is estimated from the
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experimental voltage ripple vc using the expression given in Table 2.1.
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Figure 2-11: Capacitance-Voltage Characteristic for the ceramic capacitor with X7R dielectric and
a nominal value of 2.2 µF used in the prototype.
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Figure 2-12: Experimental configuration of the measurement of the capacitance variation with the
operation voltage by the ceramic capacitor with X7R dielectric and a nominal value of 2.2 µF: (a)
oscilloscope, (b) DC power supply, (c) DC electronic load current with external reference, (d) RC
network, (e) signal generator.
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2.5.2 Buck-boost control circuit

Once the model (2.12) in the section above had been verified, the next step was to design the control

loop compensator. A compensation network for the buck converter-like transfer function plotted in

Fig. 2-8 was designed following classical rules [70]. The third-order compensator transfer function is

Gc =
û

v̂o
= K

(τ3s + 1)(τ4s + 1)
s(τ1s + 1)(τ2s + 1)

(2.36)

where the compensator parameters were selected as follow: τ1 = 1 µs, τ2 = 2 µs, τ3 = τ4 = 1/(2π)

ms, and K = 210 s/V.

The circuit diagram of the compensator and the pulse width modulation (PWM) implemented in

PSIM is presented in Fig. 2-13(a), which includes an estimation of the switching delays. The fact that

there are delays prevents extreme duty cycles and causes a nonlinearity in the transitions between

boost and buck modes [71]. To mitigate these problems, a third mode of operation is permitted in

an adjustable small vicinity zone between buck and boost modes [50, 71]. The new operation mode

is called buck-boost mode because the previous two modes overlap in an interleaving-like manner,

i.e., both MOSFETs can switch in the same period but their switching instants are almost π rad out

of phase. The overlapping adjustment is achieved by reducing the displacement between the signals

that, by their comparison with the triangular signals, generate u1 and u2.

The circuit schematic diagram of the buck-boost control experimental stage is shown in Fig. 2-

13(b). The main component of the control system is the dual-PWM controller-integrated circuit

TL1451A that generates the switch activation signals u1(t) and u2(t). This single monolithic chip

has two error amplifiers, an adjustable oscillator, a reference voltage of 2.5 V, and dual-common-

emitter output transistor circuits. The triangular signal oscillator was adjusted to have a frequency

of 100 kHz, an amplitude of 0.7 V and a DC offset of 1.4 V. One of the error amplifiers is used to

implement the compensator (2.36) to obtain the signal u, and the other one is used to get the signal

(u − 0.7 + overlapping adjustment) in the manner presented in Fig. 2-13(c). This figure shows an

example of the driving signals u1 and u2 generation.

2.5.3 Buck-boost driver with modified bootstrap

An IR2110 integrated driver has to switch the low side N-Channel MOSFET in the boost stage

Q1, and the high side N-Channel MOSFET of the buck stage Q2. A bootstrap circuit is needed

to supply the floating voltage to drive Q2. In buck operation, Q1 should always be OFF while Q2

switches. In buck-boost mode both Q1 and Q2 are switched in the same period. In these latter two

modes a classical bootstrap circuit would operate correctly. The driver operates most critically in

pure boost mode because the bootstrap capacitor CB must be sufficiently charged to keep Q2 ON

for as long as needed. In these circumstances, the capacitor of conventional bootstrap circuits could
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(a)

(b)

(c)

Figure 2-13: Schematic of: (a) the compensator Gc and the dual PWM simulated in PSIM, (b)
buck-boost control circuit diagram, (c) an example of driving signals generation.

be insufficiently charged. To avoid the malfunction of the converter in boost mode, it is therefore

necessary to refresh the capacitor charge. A solution to this problem is presented in [72], where

a charge pump topology with an external clock signal is used. A similar charge pump driver that

refreshes the bootstrap capacitor with the use of the boost control pulses is shown in Fig. 2-14. Since

the source of Q2 is always at a level higher than 15 V, the usual bootstrap path through diode DA

will be cut OFF, so an additional bootstrap circuit made of CBaux
, DB , DC , TC , TD, and a couple

of resistors, was added to recharge CB . The boost pulses turn on the auxiliary Darlington transistor

TD, permitting CBaux to charge to 15 V through DA, DC and TD. The direct polarization of DC

keeps TC OFF. When TD turns OFF, TC starts conducting and provides a current path to recharge

CB from CBaux through DB . Fig. 2-13(b) shows a variable resistor that permits the empirical

overlapping adjustment that guarantees that the bootstrap capacitor will be properly charged by
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10 Ω

Figure 2-14: Scheme of the buck-boost driver with a modified bootstrap circuit and auxiliary sup-
plies.

switching the high side MOSFET when the boost driving pulses are narrower than 2%. A couple of

cascaded linear regulators provide the supply voltages (15 V and 5 V) of the driver circuit shown in

Fig. 2-14 and the control circuit presented in Fig. 2-13(b) from the power stage input voltage Vg.

(a) (b)

Figure 2-15: Regulator prototype (a) buck-boost power stage, (b) dual PWM control stage.

2.6 Experimental results

Fig. 2-15 shows pictures of the power stage and the control circuit of the buck-boost regulator

prototype. The experimental response of the buck-boost regulator to a low-frequency triangular

input voltage going from 36.8 V to 55.8 V is depicted in Fig. 2-16 where the waveform of the output
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voltage can be compared with its corresponding simulation. In addition to the input and output

voltages, the simulated logic signals u1 and u2, ranging from 0 V to 1 V, are also depicted on the

left. The oscillogram on the right shows the equivalent signals that correspond to the outputs of

the dual PWM controller that are in the 0 V to 5 V range. The input voltage range ensures that in

both simulation and experimental measurements the converter works in its three operation modes.

The output voltage is well regulated and exhibits a smooth behavior in all the transitions between

modes. These good results are due to the use of the same controller in all the operation modes. The

sampling capabilities of the digital oscilloscope made it possible to capture the switching noise in

the output voltage waveform. There is less switching noise in boost mode because it is attenuated

at the output by a third order filter while the buck stage has only a second order filter between its

switches and the output.
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Figure 2-16: Waveforms of input voltage Vg, output voltage Vo, boost pulses u1 and buck pulses
u2 for changes in the input voltage. (a) PSIM simulation (b) Waveforms measured. CH1: Vg (10
V/div), CH2: Vo (1 V/div, AC coupling), CH3: u1 (5 V/div), CH4: u2 (5 V/div), timebase: 20
ms/div.

Fig. 2-17 shows the experimental setup for measuring the efficiency of the hard-switching buck-

boost converter. The efficiency measurements take into account the consumption of the drivers and

control stages. A Voltech PM6000 Power Analyzer with calibrated precision shunt resistors measures

the input and output currents. The energy conversion are shown efficiencies as a function of the

output current iRo for different input voltage vg levels in Fig. 2-18(a), whereas in Fig. 2-18(b), the

horizontal axis is the input voltage and the output current is the parameter of the set of curves. Since

buck-boost mode there are some switching losses, for a given current the maximum efficiencies are

attained in boost and buck modes when the input voltage is close to the desired output level. The

maximum efficiency obtained of about 97% would be improved if the diodes could be substituted

by synchronous rectifier MOSFETs [55, 56]. Other techniques like multiphase and zero voltage

switching (ZVS) [55] or dynamic adjustment of the switching frequency [56] are also possible.
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Figure 2-17: Experimental configuration of the measurement of efficiency: (a) buck-boost converter,
(b) buck-boost control, (c) DC power supply, (d) power analyzer, (e) oscilloscope, (f) DC electronic
load.
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Figure 2-18: Energy conversion efficiency for Vo = 48 V as: (a) function of the output current iRo

for different input voltage vg levels, (b) function of the input voltage vg for different output current
iRo levels.

PSIM-simulated and experimental Bode plots of the regulator loop gain are illustrated in Fig. 2-

19. In the simulations, delays and losses were estimated. The frequency measurements were obtained

using a frequency response analyzer (FRA) Venable 3120 as shown in Fig. 2-20. This frequency

response has the three above mentioned modes of operation, which are achieved by varying the

value of the input voltage vg.

Some of the differences that can be observed between simulated and experimental loop-gain

Bode plots for vg = 48 V are attributed to the nonlinearities in the transitions between the modes

mentioned above. Other differences are mainly due to nonlinearities in some passive components
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Figure 2-19: Loop-gain Bode plots of the buck-boost converter: boost mode for vg = 39 V, buck-
boost mode for vg = 48 V and buck mode for vg = 55 V. a) Simulated magnitude, b) Experimental
magnitude, c) Simulated phase, d) Experimental phase.

of the experimental prototype. For instance, the capacitance of the intermediate capacitor exhibits

a strong dependency on the applied voltage as has already been noted in Fig. 2-11. Also, the

parameters of the magnetic components vary with the mean average current flowing through them.

The crossover frequency and phase margin (PM) are calculated and listed in Table 2.3 for each

input voltage value. In spite of the differences observed between the simulated and the experimental

frequency responses, the table shows remarkably similar results in all cases. As in a buck regulator,

the bandwidth is wide since the crossover frequency is between one tenth and one fifth of the switching

frequency. Furthermore, the PMs indicate that the feedback system is stable for the desired input

voltage range.
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Figure 2-20: Experimental configuration of the measurement of frequency response: (a) frequency re-
sponse analyzer, (b) DC power supply, (c) Bode box injection transformer, (d) buck-boost converter,
(e) buck-boost control, (f) resistive load, (g) computer with Venable software.

Table 2.3: CF and PM for different input voltages
Simulated Experimental

Vg CF PM CF PM

[V] [kHz] [deg] [kHz] [deg]

39 13 54 11 51

48 18 62 18 61

55 17 65 16 65

Figs. 2-21 to 2-27 show simulated and experimental transient responses to load changes for

various constant input voltages in to boost, lower buck-boost, buck-boost, upper buck-boost and

buck modes. For each input voltage, the load current was changed from 10 A to 5 A in the top

subplots (a) and (b) and from 5 A to 10 A in the bottom subplots (c) and (d). In all cases, the

output voltage is well regulated and the transient deviations are within the desired boundaries. In

addition to output voltage and current, the input current and the intermediate capacitor voltage

are also depicted. The transient dynamics of these variables is damped as expected, and there is

reasonable agreement between simulated and measured variables. The main discrepancy appears

near and in the buck-boost mode, as is illustrated in Figs. 2-22, 2-23 and 2-24. Extreme duty

cycles, close to zero or to one, are required to obtain a smooth transition between operation modes,

but they cannot be achieved in practice because switching delays are unavoidable, the dual PWM

controller integrated circuit TL1451A is not designed for this application and the integrated circuit
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layout of the regulator prototype is an experimental prototype that is not optimized to avoid these

problems. For this reason, when the input and output voltages are close, switching pulses can be

skipped and the resulting ripple contains components at frequencies below the converter switching

frequency [71]. The skipped pulses also appear in transients such as the one depicted in Fig. 2-22(d)

in which a boost pulse is missed. In Figs. 2-23(b) and 2-24(b) during the transient some buck pulses

are close to the zone where a missing one should have been and one unexpected boost pulse appears.

In our prototype, this noise is attenuated by the output LC filter or rejected by the control loop

and has little effect on the output voltage. Pulse skipped pulses do not hinder the operation of

the buck-boost converter and have also been reported in the widely used non-inverting buck-boost

converter. Therefore, we will focus on the current control of our converter, which we believe is more

important, and leave the investigation of the skipped pulses for future study.
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Figure 2-21: (a),(c) PSIM simulations and (b),(d) experimental measurements of the converter main
variables when the load current changes from 10 A to 5 A and back to 10 A while the input voltage
is Vg = 39 V. Black traces show the simulated output current iRo and output voltage vo while the
input current ig and the intermediate capacitor voltage vc are in white. CH1: vc (5 V/div), CH2:
vo (500 mV/div, AC coupling), CH3: ig (5 A/div) and CH4: iRo (5 A/div).
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Figure 2-22: Simulated (a), (c) and measured (b), (d) converter main variables for the same load
changes as Fig. 2-21 and Vg = 46 V.
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Figure 2-23: Simulated (a), (c) and measured (b), (d) converter main variables for the same load
changes as Fig. 2-21 and Vg = 47 V.
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Figure 2-24: Simulated (a), (c) and measured (b), (d) converter main variables for the same load
changes as Fig. 2-21 and Vg = 48 V.
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Figure 2-25: Simulated (a), (c) and measured (b), (d) converter main variables for the same load
changes as Fig. 2-21 and Vg = 49 V.
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Figure 2-26: Simulated (a), (c) and measured (b), (d) converter main variables for the same load
changes as Fig. 2-21 and Vg = 50 V.
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Figure 2-27: Simulated (a), (c) and measured (b), (d) converter main variables for the same load
changes as Fig. 2-21 and Vg = 55 V.
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2.7 Conclusions

A new non-inverting buck-boost DC-DC switching converter was obtained by magnetically coupling

the input and output inductors of a cascade connection of the boost and buck stages. The combina-

tion of a coupling and a damping network at the intermediate capacitor provides a minimum-phase

control-to-output transfer function with two dominant complex poles, simulation and experimental

results of a prototype verify the predicted wide control bandwidth because there are no RHP zeroes.

Efficiency is high when the converter switches are operated in three regions that depend on the

input-output voltage ratio: boost, buck and buck-boost. In the buck-boost region both MOSFETs

are allowed to switch in the same period. This overlapping is permitted only for a narrow range

of nearly equal input and output voltages to improve the efficiency. The converter usually operates

in the other more efficient modes in which there is only one periodically switching MOSFET. In

buck mode, the MOSFET of the boost stage is always OFF, whereas in boost mode, the buck stage

MOSFET is continuously ON, so a bootstrap driver had to be specially built for the buck stage

high-side N channel MOSFET.

For a given specification of output impedance and voltage ripple, we believe that the proposed

converter could offer a solution with larger magnetic components but smaller capacitors than other

state-of-the-art topologies. Since both input and output currents are non pulsating there are two

or more possible current control strategies. For this reason, controlling the converter in current

mode is a work in progress. The input and/or output converter currents cycle-by-cycle limiting

capability offers interesting possibilities to many applications like battery, supercapacitor, PV panel

or fuel cell energy management. Future work will also consider a bidirectional implementation of

the switches that could provide even higher conversion efficiencies. Another open problem is the

converter operation at light loads where several discontinuous conduction modes can appear.

48

UNIVERSITAT ROVIRA I VIRGILI 
PEM FUEL CELL MODELING AND CONVERTERS DESIGN FOR A 48 V DC POWER BUS 
Carlos Alberto Restrepo Patiño 
Dipòsit Legal: T. 1049-2012 
 



Chapter 3

Current Mode Control of a

Coupled-Inductor Buck-Boost

DC-DC Switching Converter

3.1 Abstract

This chapter makes an in-depth study of the coupled-inductor buck-boost converter described in

chapter 2. The output voltage of this DC-DC converter can be regulated above and/or below its

input voltage with high efficiency and wide bandwidth. The control of the input and/or output

non-pulsating converter currents is addressed. The small-signal control-to-input/output current

open-loop transfer functions makes it possible to design the average current-mode controllers. The

combination of the input and output current controllers with an additional output voltage limiter

loop is proposed as a method for regulating one of the currents while limiting the maximum values

of the other two variables. The theoretical analyses have been validated by means of simulations and

also experimentally on a 48-V 800-W purpose-built prototype. In particular, the frequency response

measurements that have been carried out for a representative set of the converter operating points

are in good agreement with the simulations.

3.2 Introduction

Many applications need either the input-current or the output-current of the power stage to be

controlled. In photovoltaic power generation systems the input-current is controlled so that the

maximum power point of the PV modules can be tracked [73, 74, 54, 75]. An input-current control
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is also used in fuel cell applications such as [43], where fuel consumption is minimized and the loads

are connected to a regulated DC bus voltage. In [38] and [76] the control minimizes the fuel cell

input-current undulation rate, and in [36] it limits the slope of the fuel cell current to prevent the

starvation phenomenon. The input-series-output-parallel connection [77], which consists of multiple

modular DC-DC converters connected in series at the input and in parallel at the output, requires

an output-current control to ensure that the load current is shared equally between the converters.

Light-emitting diode (LED) technology typically requires power electronic drivers to regulate LED

currents and obtain an optimum balance between the efficacy, color stability, and power factor cor-

rection [78, 79].

In distributed generation systems (DGS) [80] and satellite power systems [54, 67] different DC-

DC converters need to be designed in which the input or output current control depends on their

position in the system. PEM fuel cell-based DGS topologies are usually combined with auxiliary

storage devices in such hybrid configurations as the series or the parallel ones [81], or the more

efficient series-parallel hybrid (SPH) topology non-regenerative presented and analyzed in [80]. If

SPH is to be implemented in practice, DC-DC switching converters with regulated input and/or

output currents are required to interface between varying voltage-source-like elements such as fuel

cells, batteries, supercapacitors, etc. One possible solution is to use Ćuk converters because they

make it easy to control both input and output currents and they operate in voltage step-up or

step-down modes. The main drawbacks of the non-isolated basic Ćuk stage are the reverse polarity

of its input-output voltage transfer ratio and the fact that it is less efficient than structures using

four switches [57]. Up to six battery charge/discharge DC-DC converter topologies whose input and

output currents can be regulated with wide bandwidth are presented in [67]. However, none of them

can offer simultaneous step-up and step-down voltage conversion capabilities.

In many other applications, such as uninterruptible power supplies [44], battery charging and

discharging [47, 46, 49, 51, 55, 56, 48, 50], power factor correction [50, 45], fuel cell regulation

[52, 50, 55], and maximum power point tracking of solar panels [53], a DC-DC converter is used

to obtain a regulated output-voltage from an unregulated source. When the regulated voltage

is within the voltage range of the unregulated voltage source, a step-up/step-down DC-DC con-

verter is required. In continuous conduction step-up mode, most of the converters mentioned earlier

[47, 46, 49, 51, 55, 56, 48, 50, 45, 52, 53] present a right-half-plane (RHP) zero that makes it difficult

to design their controller, limits the bandwidth of the control loop and penalizes the size of the

output capacitor [49].

One possible way of eliminating the boost converter RHP zero that can be used efficiently in low
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and high power applications, and which does not have floating switches nor require complex drivers

is to use magnetic coupling between inductors [61] combined with damping networks [62, 63]. This

solution has made it possible to design high-power buck-boost converters with high efficiency and

wide bandwidth [82]. This converter is the result of combining two of the topologies proposed in [67]:

a) the coupled inductor boost converter with RC type damping network and output filter, and b)

the coupled inductor buck converter with RC type damping network and input filter. The resulting

coupled inductor buck-boost converter [82] has the same step-up or step-down voltage conversion

properties as the single inductor non-inverting buck-boost converter but exhibits non-pulsating input

and output currents, which makes several current control strategies possible. Since the converter

structure is novel and it makes it possible to operate in several operation modes and to regulate the

input or/and output current, many of its applications are still to be developed. The output-voltage

compensator that was studied and implemented in [82] performed well for the various ranges of

operation and it was proposed that current control strategies to regulate the input and the output

currents of the novel non-inverting buck-boost converter could be studied and implemented in the

future. This is what we are doing in this chapter. We predict that the system can be used to transfer

energy between unregulated voltage sources limiting the input-power and the output-power with a

single compact converter structure and relatively simple control.

The rest of this chapter is organized as follows: Section 3.3 discusses the small-signal converter

model and presents the small-signal control-to-input-current and control-to-output-current transfer

functions for the various operation modes. An average current-mode control of the input and output

current is designed in Section 3.4. Experimental measurements and PSIM simulation Bode plots of

the input and output current regulator loop-gains for the different operation modes are presented

in Section 3.5. The energy conversion efficiencies of an 800-W coupled-inductor buck-boost exper-

imental prototype, the experimental transient responses, and a capacitor-charging power supply

application example are also provided. Finally, the main conclusions of this chapter are outlined in

Section 3.6.

3.3 Analysis of the coupled inductors Buck-Boost Converter

Let us consider the unidirectional buck-boost converter with magnetic coupling between the input

and output inductors, RC type damping network and coupled inductors turns ratio 1:1 shown in

Fig. A-1. For the analysis of the converter it is assumed that the input-voltage vg and the output-

voltage vo are voltage sources such as fuel cells, batteries, supercapacitors and regulated DC buses.

Therefore, our primary focus in the converter analysis is the control of its input and/or output

current. Assuming a continuous conduction mode (CCM) of operation, no parasitic effects and a
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Figure 3-1: Schematic circuit diagram of the buck-boost converter with magnetic coupling between
inductors and damping network RdCd.

switching frequency much higher than the converter natural frequency, the use of the state space

averaging (SSA) method [68] to model the converter leads to the following set of differential equations

diLm(t)
dt

=
vg(t)− vC(t)(1− d1(t))

Lm

diL(t)
dt

=
vC(t)d2(t) + vg(t)− vC(t)(1− d1(t))− vo(t)

L

dvC(t)
dt

=
−iL(t)d2(t) + (iLm(t) + iL(t))(1− d1(t))

C
− vC(t)− vCd

(t)
CRd

dvCd
(t)

dt
=

vC(t)− vCd
(t)

CdRd
(3.1)

where d1 and d2 are the duty cycles of the switches Q1 and Q2, respectively, and the overline

stands for averaging during one switching period. Assuming that the converter is in steady-state

with constant duty cycles d1(t) = D1 and d2(t) = D2, input-voltage vg(t) = Vg, and output-voltage

vo(t) = Vo, equating the right-hand side expressions in (3.1) to zero yields the steady-state conditions

in the converter

0 = Vg − VC(1−D1) (3.2)

0 = VCD2 + Vg − VC(1−D1)− Vo (3.3)

0 = −ILD2 + (ILm + IL)(1−D1(t))− VC − VCd

Rd
(3.4)

0 =
VC − VCd

Rd
. (3.5)

Solving this system of equations for the DC components of the inductor currents and capacitor

voltages leads to
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ILm =
Pg(D2 + D1 − 1)

VgD2
(3.6)

IL =
Pg(1−D1)

VgD2
(3.7)

VC =
Vg

1−D1
(3.8)

VCd
=

Vg

1−D1
(3.9)

where Pg is the average input-power given by Pg = VgIg = Vg(ILm + IL).

Substituting the steady-state expression of the capacitor voltage VC of (3.8) in (3.3) the following

voltage conversion ratio M(D1, D2) is obtained

M(D1, D2) ≡ Vo

Vg
=

D2

1−D1
. (3.10)

Our goal is for the converter to operate in either boost or buck mode, switching smoothly

between modes and reducing switching losses in all operation modes. Therefore, to generate the

switch activation signals u1(t) and u2(t), let us define a single continuous control variable 0 ≤ u(t) =

d1(t) + d2(t) < 2 so that in boost mode d2(t) = 1 and d1(t) = u(t)− 1, and in buck mode d1(t) = 0

and d2(t) = u(t)

u(t) =





1 + d1(t) for boost mode

d2(t) for buck mode.

(3.11)

In steady-state, the duty cycles D1 and D2 are related to the new variable 0 ≤ U < 2 as

D1 = max(0, U − 1)

D2 = min(1, U). (3.12)

The voltage conversion ratio 0 ≤ M(U) < ∞ can be obtained by substituting (3.12) in (3.10),

which leads to

M(U) = − min(1, U)
max(0, U − 1)− 1

. (3.13)

With this control input, the DC voltage conversion ratio M(U) is continuous between the boost and

buck modes of operation. On the border between the two modes of operation U = 1, so D1 = 0 and

D2 = 1. Fig. 3-2(a) shows the key waveforms in the generation of the switch activation signals u1(t)
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and u2(t) from the control signal u(t), and a 50% duty cycle triangular waveform of [0, 1] amplitude

range. A schematic diagram of a dual pulse-width modulator circuit used to generate u1(t) and

u2(t) is given in Fig. 3-2(b).

(a)

u(t) +

−

−

+

0

u2(t)

u1(t)

1
+

−1

(b)

Figure 3-2: (a) activation signal generation: comparison of control signals with a triangular signal
to obtain the MOSFET binary activation signals u1(t) and u2(t); (b) dual pulse-width modulator
circuit used to obtain the MOSFET binary activation signals u1(t) and u2(t) from the signal control
variable u.

To obtain a small-signal model around a steady-state operating point, we assume a constant

input-voltage vg(t) = Vg, a constant output-voltage vo(t) = Vo, and duty cycles d1(t) and d2(t) that

are equal to D1 and D2 plus some superimposed small AC variations d̂1(t) and d̂2(t) respectively

d1(t) = D1 + d̂1(t)

d2(t) = D2 + d̂2(t). (3.14)

Therefore, the single control variable u(t) can be expressed as

u(t) = U + û(t). (3.15)

In small-signal model, the duty cycles d̂1(t) and d̂2(t) are related to the single control variable

û(t) as

d̂1(t) =





û(t) for boost mode

0 for buck mode

(3.16)
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and

d̂2(t) =





0 for boost mode

û(t) for buck mode.

(3.17)

The averaged inductor currents and capacitor voltages are also expressed in terms of their cor-

responding steady-state values plus superimposed small-signal AC variations in (3.18).

iLm(t) = ILm + îLm(t)

iL(t) = IL + îL(t)

vC(t) = VC + v̂C(t)

vCd
= VCd

+ v̂Cd
(t). (3.18)

Assuming that the AC variations are much smaller than the steady-state values of (3.18) and

(3.14), the set of differential equations (3.1) can be linearized around the operating point (3.6) to

obtain the small-signal SSA model

dx̂

dt
= Ax̂ + B1d̂1 + B2d̂2 (3.19)

where the small-signal state vector x̂, the state matrix A and the input vectors B1 and B2 of the

system are given by

x̂ =
[

îLm îL v̂C v̂Cd

]T

A =




0 0 D1−1
Lm

0

0 0 D2+D1−1
L 0

1−D1
C

1−D2−D1
C − 1

RdC
1

RdC

0 0 1
RdCd

− 1
RdCd




B1 =
[
− Vg

Lm(D1−1) − Vg

L(D1−1) − Pg

VgC 0
]T

B2 =
[

0 − Vg

L(D1−1)
Pg(D1−1)

VgD2C 0
]T

.

In order to design their respective controllers, Laplace-domain control-to-input-current and control-

to-output-current transfer functions are obtained for both duty cycles d̂1(s) and d̂2(s) from the
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small-signal SSA model (3.19). The control-to-input-current small-signal transfer function in boost

mode is obtained as

Gigd1(s) ≡
îg(s)

d̂1(s)

∣∣∣∣
D2=1

= − a3s
3 + a2s

2 + a1s + a0

k1(b4s4 + b3s3 + b2s2 + b1s)
(3.20)

where

a3 = Vg
2RdCCd(L + Lm)

a2 = Vg
2LCd + LmPgD1

2RdCd + Vg
2LmC + LPgRdCd − LmPgD1RdCd + LPgD1

2RdCd

+Vg
2LmCd − 2LPgD1RdCd + Vg

2LC

a1 = −2LPgD1 + LPgD1
2 + Vg

2RdCd − LmPgD1 + LmPgD1
2 + LPg

a0 = Vg
2

b4 = LmLRdCCd

b3 = LmL(C + Cd)

b2 = RdCd(L + LmD1
2 + LD1

2 − 2LD1)

b1 = LmD1
2 + L− 2LD1 + LD1

2

k1 = Vg(D1 − 1).

In the same way, the control-to-input-current small-signal transfer function in buck mode is

Gigd2(s) ≡
îg(s)

d̂2(s)

∣∣∣∣
D1=0

=
c3s

3 + c2s
2 + c1s + c0

k2(e4s4 + e3s3 + e2s2 + e1s)
(3.21)

where

c3 = Vg
2D2LmRdCCd

c2 = LmPgRdCd + LPgRdCd + Vg
2D2LmCd + Vg

2D2LmC − LmPgD2RdCd

c1 = LPg + LmPg − LmPgD2 + Vg
2D2

2RdCd

c0 = Vg
2D2

2

e4 = LmLRdCCd

e3 = LmL(C + Cd)

e2 = −2LmD2RdCd + LmD2
2RdCd + LmRdCd

+LRdCd

e1 = LmD2
2 − 2LmD2 + L + Lm

k2 = VgD2.

Similarly, the control-to-output-current small-signal transfer function in boost mode can be writ-

ten in the form
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GiLd1(s) ≡
îL(s)

d̂1(s)

∣∣∣∣
D2=1

= − m3s
3 + m2s

2 + m1s + m0

k1(b4s4 + b3s3 + b2s2 + b1s)
(3.22)

where

m3 = Vg
2LmRdCCd

m2 = Vg
2LmCd + Vg

2LmC + LmPgD1
2RdCd − LmPgD1RdCd

m1 = −Vg
2D1RdCd + Vg

2RdCd − LmPgD1 + LmPgD1
2

m0 = Vg
2(1−D1)

while the control-to-output-current small-signal transfer function in buck mode is

GiLd2(s) ≡
îL(s)

d̂2(s)

∣∣∣∣
D1=0

=
n3s

3 + n2s
2 + n1s + n0

k2(e4s4 + e3s3 + e2s2 + e1s)
(3.23)

where

n3 = Vg
2D2LmRdCCd

n2 = LmPgRdCd + Vg
2D2LmCd + Vg

2D2LmC − LmPgD2RdCd

n1 = LmPg − LmPgD2 + Vg
2D2

2RdCd

n0 = Vg
2D2

2.

In order to have a better understanding of the transfer functions (3.20) to (3.23), several numerical

frequency responses are obtained for different power and voltage levels considering the following set

of converter nominal parameters: Lm = 35 µH, C = 7 µF, Rd = 1.5 Ω, Cd = 66 µF and L = 35 µH.

The voltages and power levels are determined by the following ranges: (15 V ≤ Vg ≤ 55 V),

(0 V ≤ vo ≤ 55 V), (0 A ≤ ig ≤ 16 A) and (0 A ≤ iL ≤ 16 A). While the choice of the power

and voltage levels will be explained in Section 3.5, the parameter values of the coupled inductor

buck-boost power stage are determined using the design criteria proposed in [82].

Each of the transfer functions (3.20) to (3.23) are studied in their respective mode and also at

the border between the two modes of operation when U = 1. The Bode plots of frequency responses

obtained from MATLAB simulation of the linear small-signal model are superimposed for the various

operation modes in Figs. 3-3 and 3-4, where the maximum frequency plotted corresponds to 50 kHz,

which is half of the switching frequency.

Although the small-signal transfer functions (3.20) to (3.23) correspond to a high order system,

at high frequency, they present roughly first-order low-pass characteristics with magnitude slopes of

about −20 dB per decade and phase angles approaching −90◦ as is illustrated in Figs. 3-3 and 3-4.

The presence of zeros in the right half-plane is discarded because they would have caused additional

large falls in the phases that have not been detected in the figures. Therefore, using the design

criteria proposed in [82], make it possible to design wide bandwidth and high phase margin current
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Figure 3-3: Frequency responses of the small-signal control-to-input-current transfer functions
Gigd1(s) and Gigd2(s) for Pg = 600 W and operation voltages that correspond to boost, lower-
border boost, upper-border buck and buck modes.

loops for the buck-boost converter that regulate the input or/and output current in all modes of

operation.
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Figure 3-4: Frequency responses of the small-signal control-to-output-current transfer functions
GiLd1(s) and GiLd2(s) for Pg = 600 W and operation voltages that correspond to boost, lower-
border boost, upper-border buck and buck modes.

3.4 Average Current-Mode Control of a Coupled Inductor

Buck-Boost DC-DC Switching Converter

In the section above, we obtained the small-signal transfer functions (3.20) to (3.23) that relate the

converter’s input and output currents to duty cycles d̂1(s) and d̂2(s) or, according to (3.16) and

(3.17), the single control variable û(s). Various control schemes can be implemented to regulate the

input or the output current of the proposed buck-boost converter. We have selected the average

current-mode control (ACC) because it offers excellent noise immunity, does not need a external

compensation ramp enables the current of any circuit branch to be controlled [83, 84, 85, 86]. It has

been extensively studied in the literature, and has been applied to a large number of systems with

several final control objectives [87, 88]. In addition to the properties mentioned, the ACC is suitable

for systems described by small-signal transfer functions such as the ones presented in the section

above, in which the control variable û corresponds explicitly to the duty cycle of the controlling

signals. Furthermore, the ACC makes it possible to combine output and input current loops in a

limiting manner, which will be explained in the next section. A small-signal SSA block diagram

of the buck-boost converter with the ACC is illustrated in Fig. 3-5, where î is the current to be

controlled (the input or the output current), Acs is the gain of the current sense amplifier, Rs is the

current sense resistor, and Fm is the constant gain of the PWM modulator that is defined [89] by
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Fm =
1

Vpp
(3.24)

where Vpp is the peak to peak voltage of the triangle oscillator shown in Fig. 3-2(b).

Small-signal SSA model

dx̂
dt

= Ax̂ + B1
̂d1 + B2

̂d2

+
−

Current

sense

gain

Acs Rs

Hc(s)

Fm

Current

loop

controller

Modulator

gain

̂iû

v̂ir

Reference

input

Figure 3-5: Small-signal block diagram of the converter system incorporating the ACC.

Now that the the small-signal transfer functions (3.20) to (3.23) have been presented, the next

step is to design the control loop compensators. The current loop compensator Hc(s) is designed

using a lag network with a high frequency pole [90]. In [89], it is recommended to place the high

frequency pole between one-third and one-half of the switching frequency to attenuate switching

noise while in [86] it is recommended that this pole be located above half of the switching frequency.

The intersection of both criteria requires the high frequency pole to be placed at half of the switching

frequency. The low frequency pole of the compensator has been placed at the origin to eliminate

the steady-state error [70]. The zero should be placed at least one decade below half the switching

frequency according to the design guidelines proposed in [86]. Hence, the zero was placed at a tenth

of the high frequency pole. Finally, the gains of both compensators were adjusted experimentally

for the worst case of the frequency responses of the small-signal control-to-input/output current

transfer functions of Figs. 3-3 and 3-4 to ensure wide bandwidth and a minimum phase margin of

45o. The second order compensator transfer function of the input-current loop is

Gcg(s) =
û(s)
îg(s)

= AcsRsFmHcg(s) = K1
(τ2s + 1)
s(τ1s + 1)

(3.25)

where the compensator parameters have been selected as follows: τ1 = 3.3 µs, τ2 = 33 µs, and

K1 = 590 s/A. The switching frequency is 100 kHz. The output-current loop compensator transfer

function is
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GcL(s) =
û(s)
îL(s)

= AcsRsFmHcL(s) = K2
(τ2s + 1)
s(τ1s + 1)

(3.26)

where τ1 = 3.3 µs, τ2 = 33 µs, and K2 = 1298 s/A.

The small-signal SSA block diagram of the buck-boost converter and the ACC illustrated in

Fig. 3-5 could have the practical realization shown in Fig. 3-6 for both current controllers. As can

be seen in the practical realization scheme, both currents are measured on the high-side to allow

converters in future applications to be connected in parallel.
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Figure 3-6: Average current-mode control of a buck-boost converter (a) buck-boost converter with
the current sensors. Practical realization of the current loop compensation of the (b) output-current,
(c) input-current

To verify the correct design of the controllers Gcg(s) and GcL(s) we analyzed the loop-gain

responses in all operation modes. According to the block diagram in Fig. 3-5 and the equation

(3.25), the loop-gains of the system with input-current control evaluated in boost and buck modes

are

Tg(s)
∣∣∣∣
boost

= Gigd1(s)Gcg(s) (3.27)

Tg(s)
∣∣∣∣
buck

= Gigd2(s)Gcg(s). (3.28)

The Bode plots of the loop-gain in (3.27) and (3.28) correspond to the black traces depicted in

Fig. 3-7.
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Figure 3-7: Loop-gain Bode plots of the buck-boost converter with input references that ensure input
currents of: (a) 11 A in boost mode for Vg = 36 V and Vo = 48 V, (b) 12 A in lower-border boost
and upper-border buck modes for Vg = 32 V and Vo = 32 V, (c) 8 A in buck mode for Vg = 48 V
and Vo = 24 V. The black lines correspond to the small-signal linear model using MATLAB while
the white x-marks correspond to the simulation of the switched model using PSIM.
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To validate the small-signal linear model, a PSIM frequency response simulation was carried out

using a switched model (called model A), as illustrated in Fig. 3-8, and plotted using white x-marks

in the loop-gain responses of Fig. 3-7.

Figure 3-8: Circuit diagram corresponding to the PSIM simulation used to calculate the loop-gain
Bode plots called PSIM switched model A.

The small differences in boost and buck mode between the two responses in Figs. 3-7(a) and (c) are

due to the switching effects not included in the small-signal linear model. In lower-border boost and

upper-border buck modes there are differences with the switched model A as can be seen in Fig. 3-

7(b). Thus, neither of the two transfer functions, Gigd1(s) and Gigd2(s), is in a good agreement

with the switched model on the border between the two modes of operation, U = 1. Consequently

a model needs to be developed that fits better on the border between boost and buck operation

modes. According to equations (3.16) and (3.17), in small-signal the duty cycles d̂1(t) and d̂2(t) are

related in the border mode of operation U = 1 with the single control variable û(t) as

d̂1(t) =





0 if U < 1

û(t) if U ≥ 1

d̂2(t) =





û(t) if U ≤ 1

0 if U > 1.

(3.29)

Therefore, on the border between the boost and the buck modes, the duty cycles are expressed

as d̂1(t) = d̂2(t) = û(t) and a new control-to-input-current small-signal transfer function is defined

on the border as

Gigu(s) = Gigd1(s)
∣∣∣∣
U=1

+ Gigd2(s)
∣∣∣∣
U=1

(3.30)
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All the operation modes of the buck-boost converter and its control can be generalized as is

shown in the small-signal block diagram depicted in Fig. 3-9(a), where the dual PWM block is

generated using the equation (3.29). According to the block diagram of Fig. 3-9(a), in boost mode

the loop-gain of the system is (3.27) while in buck mode it is(3.28). On the border between boost

and buck modes, the loop-gain is defined according to (3.30) as

Tg(s)
∣∣∣∣
U=1

=
(

Gigd1(s)
∣∣∣∣
U=1

+ Gigd2(s)
∣∣∣∣
U=1

)
Gcg(s). (3.31)

This model is in good agreement with the switched model A even on the border of the boost and

buck modes as shown in Fig. 3-7.

Gigd1
(s)

û

Gigd2
(s)

Dual
PWM

Gcg(s)
+

+

̂d1

̂d2

̂ig

(a)

GiLd1
(s)

û

GiLd2
(s)

Dual
PWM

GcL(s)
+

+

̂d1

̂d2

̂iL

(b)

Figure 3-9: Small-signal block diagram of the converter used to calculate the different linear-model
loop-gains of the: (a) input-current control, (b) output-current control.

Likewise, the loop-gain Bode plots in boost mode, buck mode and on the border between these

modes with the output-current control

TL(s)
∣∣∣∣
boost

= GiLd1(s)GcL(s) (3.32)

TL(s)
∣∣∣∣
buck

= GiLd2(s)GcL(s) (3.33)

TL(s)
∣∣∣∣
U=1

=
(

GiLd1(s)
∣∣∣∣
U=1

+ GiLd2(s)
∣∣∣∣
U=1

)
GcL(s) (3.34)

are constructed in Fig. 3-10 using the small-signal block diagram illustrated in Fig. 3-9(b).
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Figure 3-10: Loop-gain Bode plots of the buck-boost converter with input references that ensure
input currents of: (a) 8 A in boost mode for Vg = 36 V and Vo = 48 V, (b) 11 A in lower-border boost
and upper-border buck modes for Vg = 36 V and Vo = 36 V, (c) 15 A in buck mode for Vg = 48 V
and Vo = 24 V. The black lines correspond to the small-signal linear model using MATLAB while
the white x-marks correspond to the simulation of the switched model using PSIM.
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According to Figs. 3-7 and 3-10, the small-signal linear models proposed for the closed loop buck-

boost converter and the switching model are in good agreement. The theoretical crossover frequency

of the response in Fig. 3-7 is about 10 kHz with a phase margin of 63o in buck mode, 8 kHz with

a phase margin of 51o in boost mode, and 9 kHz with a phase margin of 53o in the border. In

Fig. 3-10, on the other hand, they are 13 kHz and 55o in buck mode, 8 kHz with a phase margin

of 47o in boost mode, and 13 kHz with a phase margin of 56o on the border between boost and

buck modes. Consequently, we can ensure that the feedback system is stable at the operation point

studied. As will be seen below, the controller gains have been refined by means of an experimental

iteration in which some bandwidth has been traded-off for phase margin.

3.5 Experimental results

To validate the proposed converter and its analysis under ACC presented in the section above, a

prototype of the coupled-inductor buck-boost converter depicted in Fig. 3-11(a) with the input and

output current controller of Fig. 3-11(b) has been developed and tested. The buck-boost converter

was been designed to transfer power between two voltage sources, such as batteries and superca-

pacitors, so that the input-voltage vg and the output-voltage vo ranged between 15 V and 55 V,

0 V to 55 V, respectively. The power supply for the analog control was obtained from the converter

input-voltage vg. A linear regulator was used to adjust the voltage supply to 15 V and determine

the lower limit of vg. The maximum converter input and output currents were limited to 16 A to

prevent the saturation of the magnetic cores selected in the inductor design procedure, where the

switching frequency of 100 kHz has been considered. The nominal values of the buck-boost power

stage parameters, whose components are listed in Table 3.1, were selected according to the design

criteria presented in detail in [82]. The main specifications are desired input and output peak-to-

peak current and voltage ripples, the zeros damping factor, and power dissipation of the damping

network. The ESR (Equivalent Series Resistance) of Cd is much smaller than Rd. All components

are rated up to 100 V. Fig. 3-12 depicts a diagram of the coupled inductors structure with emphasis

in the primary and secondary turns distribution in the selected toroidal core.
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(a)

(b)

Figure 3-11: Regulator prototype (a) buck-boost power stage, (b) average current-mode control
board.

Table 3.1: Components of buck-boost converter

Component Description Type

Q1, Q2 Power MOSFET IRFB4110PbF

Ds1 , Ds2 Schottky Rectifier 40CPQ080GPbF

Coupled Core: 77438A7 Magnetics

Lm inductors Wire size: 12 AWGb

Number of turns: 12:12

Inductance: 35 µH

C Ceramic Capacitor 6 × 2.2 µFa

X7R dielectric

Core: 77083A7 Magnetics

L Inductor Wire size: 12 AWGb

Number of turns: 29

Inductance: 35 µH

Rd Damping Resistor 1.5 Ω, 4 W

Cd MKT Capacitor 66 µF

a For Vc = 48 V the equivalent capacitance is 7 µF.

b Multifilar equivalent.
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Figure 3-12: Longitudinal cut of the coupled-inductor.

The existence of delays means that duty cycles are not extreme and causes a nonlinearity in

the transitions between boost and buck modes [71]. To mitigate these problems, a third mode

of operation is permitted in an adjustable narrow transition zone between buck and boost modes

[82, 71, 50]. In the new overlapping operation mode, called buck-boost mode, both switches are

allowed to commutate within a switching period.

Experimental measurements and PSIM simulation Bode plots of the input-current regulator

loop-gain are illustrated in Fig. 3-15 for the three different operation modes, achieved by selecting

appropriate values for the input and output voltages, Vg and Vo. The input-current reference viref

is adjusted in each mode to achieve a steady-state operation point corresponding approximately to

400 W, which is half of the maximum power of the converter. For the three operation modes, two

switching models have been considered. The PSIM switching model A is the ideal model used in

the previous section, whereas in the PSIM switching model B depicted in Fig. 3-13, estimations of

delays, switching losses, a non-ideal current sensor model, and control stage operational amplifier

models have been taken into account. In the circuit diagram of the PSIM switching model B the

triangular-signal oscillator frequency has been adjusted to 100 kHz, an amplitude of 0.7 V and a

DC offset of 1.4 V, which corresponds to the values that are used in the experiments and which will

be explained in greater detail below. Moreover, since the voltage drop of diode D1 is smaller than

the amplitude of the triangular signal oscillator, model B considers an overlapping that ensures that

the buck-boost region is narrow. The input-current loop compensator (3.25) and the output-current

loop (3.26) transfer functions differ only in the gain. Therefore, the value of resistor RG in the

simulation scheme presented in Fig. 3-13 is adjusted to 22 kΩ and 10 kΩ, the result is it provides

Gcg(s) and GcL(s), respectively. All simulations, for both switching models, have considered the

nonlinearities in some passive components of the experimental prototype using their measured values

instead of the theoretical nominal ones. For instance, the capacitance of the intermediate capacitor
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exhibits a strong dependence on the applied voltage as has already been noted in Table 3.1 and in

Fig. 2-11. Also, the parameters of the magnetic components vary with the mean average current

flowing through them as shown in Fig. 3-14 (see Appendix B). The experimental frequency data

have been obtained using a Venable 3120 frequency response analyzer (FRA). In the same way,

experimentally measured and PSIM-simulated Bode plots of the output-current regulator loop-gain

are illustrated in Fig. 3-16. Although not shown in these Bode plots, the theoretical small-signal

frequency responses in buck and boost mode are in good agreement with the results obtained using

the switched model A and could be used for a preliminary quick design of the controller parameters

without having to develop more complex models [91]. In buck-boost overlapping mode the small-

signal frequency response was not obtained theoretically but by using experimental measurements

and simulations.

(a)

(b)

Figure 3-13: Circuit diagram corresponding to the PSIM simulation used to calculate the loop-gain
Bode plots with the PSIM switched model B. (a)buck-boost power diagram, (b)buck-boost control
circuit diagram.

The crossover frequencies (CF) and phase margins (PM) of the experimental frequency responses

shown in Figs. 3-15 and 3-16 are measured and listed in Table 3.2 for each operation mode and current

control. The stability margins are in agreement with the design criteria assumed in the previous

section. The smallest measured phase margins are 44o and, since the objective was 45o, we conclude
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Figure 3-14: Inductance vs DC current characteristics. The black trace corresponds to the inductor
L while the white trace corresponds to the magnetizing inductance Lm of the coupled inductor.

that the closed-loop system is stable for all the operation modes for both input and output current.

The smallest crossover frequency is 8 kHz, which provides a reasonably wide bandwidth.

Table 3.2: Crossover frequency (CF) and phase margin (PM) for different operation modes
Input-current Output-current

control control

Operation CF PM CF PM

mode [kHz] [deg] [kHz] [deg]

boost 8 47 8 44

buck-boost 11 45 17 46

buck 8 62 14 44

Three main factors explain the stability degradation: switching delays in the order of 200 ns, a

small bandwidth of the current sensor circuit (one pole at about 300 kHz and another one close to

450 kHz), and the even more reduced bandwidth of the controller operational amplifiers (one pole

of the voltage error amplifier at 230 kHz and a second one introduced by the current PI stage at

240 kHz). For instance, in the buck output-current case, the initial theoretical phase margin of 55o

has been reduced only to about 44o. The first factor accounts for 1o of the total 9o phase margin

reduction. The other two factors are responsible for 3o and 5o respectively. In the buck-boost mode

the overlapping adjustment has a small influence on the system gain. Overall, the final experimental

stability results are quite good in spite of the limiting factors mentioned. Future implementations

could improve the bandwidth if better current sensors and operational amplifiers are selected.
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Figure 3-15: Loop-gain Bode plots of the buck-boost converter with input references that ensure
input currents of: (a) 11 A in boost mode for Vg = 36 V and Vo = 48 V, (b) 12 A in buck-boost
mode for Vg = 32 V and Vo = 32 V, (c) 8 A in buck mode for Vg = 48 V and Vo = 24 V.
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Figure 3-16: Loop-gain Bode plots of the buck-boost converter with input references that ensure
output currents of: (a) 8 A in boost mode for Vg = 36 V and Vo = 48 V, (b) 11 A in buck-boost
mode for Vg = 36 V and Vo = 36 V, (c) 15 A in buck mode for Vg = 48 V and Vo = 24 V.
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The energy conversion efficiencies as a function of the output-current iL and with output-current

control are shown in Fig. 3-17 for the three different operation modes. In CCM, the converter ef-

ficiencies are in the range 93.5% to 96.5% including the power consumption of the control board

of Fig. 3-11(b), the driver stage, and two current sensors with their conditioning circuits. These

energy conversion efficiencies were experimentally measured using the Voltech PM6000 Power Ana-

lyzer. The buck-boost mode is the least efficient since in this mode both transistors are switching.

Efficiencies will improve if the diodes are substituted by synchronous rectifier MOSFETs [55, 56].

Other efficiency improving techniques such as multiphase and ZVS [55] or the dynamic adjustment

of the switching frequency [56] are also possible.
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Figure 3-17: Energy conversion efficiency as a function of the output-current iL in the three different
modes of operation: boost mode with Vg = 48 V and Vo = 55 V, buck-boost mode with Vg = 48 V
and Vo = 48 V and buck mode with Vg = 55 V and Vo = 48 V.

Fig. 3-18 depicts the main converter experimental waveforms when the input-current control

reference is a high frequency triangular shaped signal. The input and output voltages have been

adjusted to show the converter response in its three operation modes: (a) boost, (b) buck-boost, and

(c) buck. The same waveform reference is also used to test the output-current control in the three

different modes as is illustrated in Fig. 3-19. The four commutations per period that can be observed

in a small zone of the input-current of Figs. 3-18(d) and 3-19(d) are caused by the overlapping in

the buck-boost mode. In Fig. 3-18(c) it can be seen that the ripple in the simulation is smaller

than the ripple obtained experimentally in Fig. 3-18(d) due to the nonlinearities of the PWM when

the pulses are extreme. As can be observed in Figs. 3-18 and 3-19, the controlled current follows

the fast 4 kHz triangular reference waveform in the three operation modes for both current control

strategies. Therefore, these good transient responses validate the experimental wide bandwidths

that are reported in Table 3.2.
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Figure 3-18: PSIM simulations (a), (c), (e) and experimental measurements (b), (d), (f) of the
transient responses of the system under input-current control when the reference is a 4 kHz triangular
waveform. Three operation modes are shown: (a),(b) boost mode with Vg = 32 V, Vo = 48 V, and
ig varies from 8 A to 16 A, (c),(d) buck-boost mode with Vg = 32 V, Vo = 32 V, and ig varies from
8 A to 16 A, (e),(f) buck mode with Vg = 48 V, Vo = 24 V, and ig varies from 4 A to 8 A. Black
traces in the simulation show the input voltage Vg and the input reference virg while the output
voltage Vo and the input current ig are in white.
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Figure 3-19: PSIM simulations (a), (c), (e) and experimental measurements (b), (d), (f) of the tran-
sient responses of the system under output-current control when the reference is a 4 kHz triangular
waveform. Three operation modes are shown: (a),(b) boost mode with Vg = 32 V, Vo = 48 V, and
iL varies from 4 A to 8 A, (c),(d) buck-boost mode with Vg = 32 V, Vo = 32 V, and iL varies from
8 A to 16 A, (e),(f) buck mode with Vg = 48 V, Vo = 24 V, and iL varies from 4 A to 8 A. Black
traces in the simulation show the input voltage Vg and the input reference virL while the output
voltage Vo and the output current iL are in white.

75

UNIVERSITAT ROVIRA I VIRGILI 
PEM FUEL CELL MODELING AND CONVERTERS DESIGN FOR A 48 V DC POWER BUS 
Carlos Alberto Restrepo Patiño 
Dipòsit Legal: T. 1049-2012 
 



L

m

Q1

Q2

L

D

s2

D

s1

i

g

i

Lm

i

L

1 : 1

v

C

+

−
v

Cd

+

−

C

C

d

R

d

+

−

R

s

R

s

−

+

A

csA

cs

A

cs

R

s

i

g

A

cs

R

s

i

L

−

+

R1

R2

R2

R1

A

cs

R

s

i

g

v

irg −

+

R3

R4 C1

vref

2

−

+

R1

R2

2

R2

R1

A

cs

R

s

i

L

v

irL −

+

R5
R4 C1

vref

2
R2

R2

v

C2

v

C1

−

+

R9
R11

C2

vref

2

v

C1

−

+

R10
R11

C2

vref

2

v

C2

−

+

+

−

V

pp

u1

u2

D3

−

+

R7

R6C3

vref

2

R2

2

R8

v

g

v

o

+
−

+
−

D1

D2

D4

OP-AMP

TLC2272ACP

Dual PWM

Control Circuit

TL1451A

AD8210AD8210

Figure 3-20: Proposed simplified scheme of the buck-boost converter prototype with input and
output current loop compensators and output-voltage limiter.

Fig. 3-20 shows the final scheme of the buck-boost regulator that was implemented. In addition

to the average input and output current-mode control loops, a new output-voltage control loop

designed to limit the maximum voltage vo has been included. The dual PWM controller integrated

circuit TL1451A generates the switch activation signals u1(t) and u2(t).

Each separate current control loop has the small-signal behavior of the block diagram presented

in Fig. 3-5 but split in three stages in cascade: an error amplifier block (TLC2272), a PI compensator

(TLC2272), and high-frequency pole block (TL1451). This implementation makes it possible to use

a unipolar 5 V supply for all the integrated circuits of the control board. The diodes D1 and D2
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enable the two current loops to be combined so that, in steady-state, one of the currents is smaller

than the input reference while the other, regulated by the active loop, is equal to the input reference.

Thus, the maximum average value of each current is limited by its reference input. Combining both

current loops in this way is a simple technique although if there is a transition between current

control loops, it is slow because the PI for the loop not regulating the converter saturates, as is

illustrated in Fig. 3-21. One technique that can be used to achieve fast transitions between control

loops is pre-charging the capacitors of the current-control integrators [92].

CH 1: virg

CH 2: ig

CH 3: virL

CH 4: iL

(a)

CH 1: vrg
CH 2: ig

CH 3: virL

CH 4: iL

(b)

CH 1: virg

CH 2: ig

CH 3: virL

CH 4: iL

(c)

CH 1: virg

CH 2: ig

CH 3: virL

CH 4: iL

(d)

Figure 3-21: Transitions between control loops using two different input references. The first is a
4 kHz triangular waveform to ensure variations from 4 A to 8 A in the average current value and
the second a 100 Hz square waveform that provides variations from 2 A to 16 A. Boost mode with
Vg = 32 V, Vo = 48 V (a) triangular waveform in virg and square waveform in virL, (b) square
waveform in virg and triangular waveform in virL. Buck mode with Vg = 48 V, Vo = 24 V (c)
triangular waveform in virg and square waveform in virL, (d) square waveform in virg and triangular
waveform in virL.

The TL1451A has two error amplifiers, an adjustable oscillator, a reference voltage of Vref =

2.5 V, and dual common-emitter output transistor circuits. The triangular signal oscillator has been

adjusted to a frequency of 100 kHz, an amplitude of Vpp = 0.7 V and a DC offset of 1.4 V. Therefore,

the diode forward voltage drop of D3 must be approximately Vpp to obtain the control signals vc1 and
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vc2 as illustrated in Fig. 3-20. The variable resistor R10 makes it possible to adjust the overlapping

zone in the buck-boost mode. Additionally, diode D4 enables the reference of the output-current

loop virL to be substituted by a limiting value provided by an outer PI loop when the output-voltage

exceeds its maximum value. Fig. 3-22 depicts the PSIM control implementation of the input and

output current loop compensators and the output-voltage limiter presented in Fig. 3-20.

Figure 3-22: Circuit diagram of the buck-boost control circuit used in PSIM simulation in conjunc-
tion with the buck-boost power diagram of the Fig. 3-13(a) to simulate the final scheme proposed
in Fig. 3-20.

To prove that the current sensors operated correctly the test box illustrated in Fig. 3-23 had to

be developed. This box obtains a regulated power supply for the AD8210 from the input voltage and

compares the current sensor output with the one obtained using a current probe of the oscilloscope

as presented in Fig. 3-24. In addition, one variable load or two fixed ones can be connected and

changes made with a switch to test the dynamics of the sensor. All these tests are performed in high

common-mode voltage.
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Figure 3-23: Different views of the current sensor test box.

Figure 3-24: Experimental configuration to test the current sensor: (a) oscilloscope, (b) DC electronic
load, (c) DC power supply, (d) test box.
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Figure 3-25: Experimental configuration of the capacitor charging system: (a) DC power supply,
(b) DC electronic load in constant resistance mode of 48 Ω to ensure a minimum consumption, (c)
buck-boost control, (d) buck-boost converter, (e) switch that minimizes electric arc formation, (f)
Schottky rectifier in series with the load to prevent a reverse current, (g) Three electrolytic capacitor
of 3.3 mF connected in parallel, (h) oscilloscope.

Finally, as already mentioned, one of the proposed applications of the buck-boost converter and

its ACC are the charging-discharging of capacitors, supercapacitors and batteries. As an example

to verify the operation of the current control loops and the voltage limitation, a capacitor-charging

power supply was implemented using the experimental setup shown in Fig. 3-25. The experimental

capacitor-charging waveforms are presented in Fig. 3-26. In this experiment, both current references

are equal to 9.2 A, the maximum output-voltage adjusted by R8 is equal to 49.2 V and the input-

voltage Vg is equal to 36 V. Initially, there is a short circuit in the output voltage with a duration

∆t1, during which the active loop regulates the average output-current iL to 9.2 A. At the beginning

of ∆t2 the short circuit is removed and the capacitor voltage starts to increase with values lower

than Vg. Therefore, in this time period the buck-boost power stage is in buck operation mode

with an output-current control. During the small period ∆t3, the capacitor voltage and the input-

voltage Vg are close, so the converter operates in buck-boost mode and the input current exceeds

the current reference at the end of ∆t6, so that the new active loop is the input-current control. In

the interval ∆t4, the capacitor voltage continues to increase and clearly shows a boost mode with

an input-current control. At the beginning of ∆t5, the capacitor voltage exceeds the output-voltage

limit of 49.2 V, so the new active loop is an output-current control limiting the output-voltage.

One advantage of the ACC is that it regulates well even in discontinuous conduction mode (DCM)
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as can be seen during the interval ∆t5 and in other experimental tests. The PSIM simulation of

the controlled charge of the capacitor is presented in Fig. 3-27. The experimental result and the

simulation are in good agreement as can be seen in Figs. 3-26 and 3-27. Since our model does not

include the DCM operation the period ∆t5 does not appear in Fig. 3-27. Converter operation in

DCM will be studied in a future work. The fast capacitor charging profile presented in Fig. 3-26

confirms the correct operation and interaction of the current control loops and the output voltage

limiter for the three operation modes of the converter.

CH 1: Vg

CH 2: vo

CH 3: iL

CH 4: ig

∆t1 ∆t2 ∆t3 ∆t4 ∆t5

∆t6

Figure 3-26: Experimental measurement of the controlled charging capacitor. CH1: input-voltage
Vg (20 V/div), CH2: output-voltage vo (20 V/div), CH3: output-current iL (2 A/div), CH4: input-
current ig (2 A/div) and time base of 10 ms.
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Figure 3-27: PSIM simulation of the controlled charging capacitor.

3.6 Conclusions

A recent study showed that the voltage-mode controlled coupled-inductor buck-boost converter is

a high-efficient regulator with wide bandwidth and a continuous input-to-output voltage conversion

ratio that makes it very useful in applications whose output voltages are above and/or below the

input level. Since the converter has continuous input and output currents, the present contribution

has studied the application of average current-mode control strategies that would also make the con-

verter suitable for large voltage conversion ratio applications like battery/supercapacitor charging

and discharging regulators or fuel-cell interfaces. Obtaining control-to-input/output current small-

signal transfer functions in open-loop operation makes it possible to design fast input and output

current controllers, as the switched mode ideal PSIM simulations have made clear. Experiments with

a 800-W prototype have shown that delays and other implementation-related control limitations re-

duce the theoretical phase-margins and provide new adjustments for controller gains. Experiments

with the prototype and simulations of an improved switched model that includes the main imple-

mentation non-idealities reveal that worst-case 45 degree phase-margins and 8 kHz wide-bandwidths

are obtained for the two average current-mode controls considered.

The combination of the two current control strategies and an additional output voltage limiter

loop is proposed as a simple method to control one of the currents and to impose limits on the

maximum values of the other one and the output voltage. The advantages of this control have

been revealed by using the prototype to charge a large capacitor from a short-circuit condition to

a maximum voltage well above the input voltage of the buck-boost converter. In this experiment,
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the input and output current references were selected so that a correct representative sequence of

changes between active loops is evidenced. The use of the converter as a current regulator connected

between variable voltage sources and loads is currently under investigation.

Future studies will also analyse the discontinuous conduction mode, the parallel connection of

several stages, and the bidirectional implementation of the power stage and the current regulators.
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Chapter 4

Simulator of a PEM Fuel-Cell

Stack Based on a Dynamic Model

4.1 Abstract

This chapter presents a low cost, easy to use digital simulator for a Proton Exchange Membrane

Fuel-Cell (PEMFC) stack. The PEMFC stack simulator is implemented by controlling the output

voltage of a power source using LabVIEW. The simulator enables different models to be easily

implemented and, simultaneously, makes it possible to study different FC types. The FC stack is

represented by a circuital model that considers the capacitive effects of the electrodes and the internal

thermodynamic characteristics. This model allows a simulator to be developed that reproduces the

static and dynamic characteristics of a specific fuel cell. The program on the computer handles

two main tasks: the first one is the evaluation of the model and the second one is the writing and

reading of the experimental data. Each of these tasks is assigned to a different core of the computer

and the communication between both processes is carried out using only local variables. The fact

that the programming used specific tasks for each core allows for greater computational speed of

the simulator. Experimental results are contrasted with the data model from a Relion SR-12 500-W

PEMFC stack.

4.2 Introduction

Fuel cells (FC) are a highly promising source of distributed energy, because of their reliability and

nonpolluting emissions to the environment [32]. FC simulators are needed in research since they

make it possible to safely evaluate different control strategies and to test the performance of power

transducers such as inverters and DC-DC converters. They also make it possible to carry out critical
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tests that would otherwise involve a risk for the equipment. Moreover, different FC models and FC

types can be studied using FC emulators.

The literature reports a PEMFC simulator that consists of a computer-controlled power recti-

fier controlled by LabVIEW software [93]. This simulator behaves like a PEMFC. The simulator

calculates the theoretical Vout signal for a specific I current, I being the real current from the load

connected to the rectifier. The Vout signal is compared with the real Vdc output that is measured

from the rectifier, so the error between the theoretical signal and the real signal can be calculated.

This error is used to manipulate the rectifier firing angle. One of the drawbacks detected in this

simulator system is that the rectifier dynamic response is slower than a PEMFC response at fast

load changes. Furthermore, the absence of a thermal model and the lack of parameter knowledge

of the FC model mean that the real output voltage Vout cannot be accurately calculated for a given

load current I.

The ohmic region of the static characteristic of the FC is represented by a linear function in [94].

The FC V-I characteristic is emulated by using a Digital Signal Processor (DSP), which controls a

Buck converter delivering the desired Vout output signal. The main disadvantage of this proposal is

that it requires three different linear functions to model the activation, the ohmic and the concen-

tration regions without considering any of the associated dynamic effects of the FC.

The static characteristic of a Solid Oxide FC (SOFC) is presented in [95], by a third order

polynomial of the I current. The voltage Vout is calculated from the I -current solution using the

Newton-Raphson iterative method. The emulator was implemented using LabVIEW software. The

main disadvantage of this application is that only the static characteristic is represented in the SOFC

model.

The main advantage of the simulator of the Direct Methanol FC (DMFC) presented in [96] is

that it does not require the use of a computer, acquisition cards or software licenses and replaces

them all with a DSP based system. The main drawbacks of this system are the low mathematical

complexity that the DSP can process, and the fact that it uses the the Nernst reversible voltage as

a constant variable. A better approach presented in [97] uses a real single DMFC cell as a reference

to determine the FC stack operation voltage. This approach is not applicable to all types of FC,

since there are a limited number of single cell available. This emulator also has such disadvantages

as fuel costs, and the need for a reformer and preheating equipment.

In [98], a simple emulator for a proton exchange membrane (PEM) fuel cell is presented. In
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the study, the fuel cell emulator is developed by using the PEM electric circuit model proposed in

[99]. The open circuit voltage E of the fuel cell is generated by a programmable DC power supply.

The activation Ract and concentration Rconc resistances are represented by two of 330 mΩ resistors.

The capacitor C is modeled by two 100 nF electrolytic capacitors connected in parallel. The ohmic

resistance Rohm is assumed to be equal to the internal resistance of the programmable power supply.

The main advantage of this emulator is the simplicity of its implementation. Its main disadvantages

are the absence of a temperature model, and the use of physical fixed value resistors that cannot

show the dependence of the resistance on the temperature and current of the proposed model. Ad-

ditionally, the hardware is specific for one type of fuel cell, and all the fixed components will have

to be replaced to study another type of fuel cell. Finally, no resistor selection criteria are provided.

This chapter proposes a digital simulator based on the dynamic model of a Relion SR-12 500-W

PEM FC stack, in the form of a circuital equivalent, proposed by Wang in [99]. The simulator uses

a power supply controlled by a LabVIEW graphical interface. Due to the nature of the model it is

necessary to use the LabVIEW control module, and simulation and multicore programming. The rest

of this chapter is organized as follows: Section 4.3 provides a mathematical description of the dynamic

model and details of the PEMFC simulator implementation in LabVIEW. A thermodynamic model

based on heat balance equations and its corresponding LabVIEW development is presented in Section

4.4. Details of the experimental configuration and program development of the simulator are given

in Sections 4.5 and 4.6, respectively. Experimental measurements and MATLAB simulations are

presented in Section 4.7. Finally, the main conclusions of this chapter are outlined in Section 4.8.

4.3 Model of the Fuel Cell

This section provides a mathematical description for modeling the dynamics of a PEM FC stack. In

order to simplify the analysis, the following assumptions are taken into account [100, 101, 32]:

1. One-dimensional treatment.

2. Ideal and uniformly distributed gases.

3. Constant pressures in the fuel-cell gas flow channels.

4. The fuel is humidified H2 and the oxidant is humidified air. The effective anode water vapor

pressure is 50% of the saturated vapor pressure while the effective cathode water pressure is

100%.

5. The fuel cell works under 100 ◦C and the reaction product is in liquid phase.
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6. Thermodynamic properties are evaluated at the average stack temperature, temperature vari-

ations across the stack are neglected, and the overall specific heat capacity of the stack is

assumed to be a constant.

7. Parameters for individual cells can be put together to represent a fuel-cell stack.

Figure 4-1: Electrical model of the PEMFC used to implement the simulator.

The circuital model of the PEMFC is represented in Fig. 4-1. The output voltage is given [102]

by

Vout = E − Vact1 − VC − Vohm (4.1)

where the reversible potential [99] is calculated as follows

E = E0
0 +

RT

2F
ln

[
pH2(p

0.5
O2

)
]− kE(T − 298.15)− λeI(s)

τes

τes + 1
(4.2)

where
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E0
0 is the standard reference potential [1.229 V].

T is the temperature of the FC [K].

R is the constant of ideal gases [8.3143 J/(mol K)].

F is the Faraday constant [96.487 kC/mol].

pH2 is the partial pressure of hydrogen in the channel [Pa].

pO2 is the partial pressure of oxygen in the channel [Pa].

kE is an empirical constant [85 mV/K].

τe is the constant time delay of the flow for a load transient [80 s].

λe is a constant factor [69.4 µΩ].

Fig. 4-2 shows the built-in LabVIEW sub-function which calculates the reversible potential and

also shows the value of the constants used for this calculation. The model of the FC is developed

in National Instruments’ LabVIEW with the Control Design and Simulation module. This module

enables the differential equation to be solved by different mathematical methods. In this case, the

simulator uses the step variable third-order Runge-Kutta method to solve the afore mentioned dif-

ferential equation (4.7) of the circuit in Fig. 4-1.

Figure 4-2: Block diagram used to calculate the reversible potential.

The activation voltage in a fuel cell is given according to the Tafel equation [103]

Vact =
RT

αzF
ln

(
I

I0

)
= T [a + b ln(I)] (4.3)
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where α is the electron transfer coefficient, I0 is the exchange current and z is the number of electrons

participating in the electrode reaction. Unfortunately, not all of the parameters of this equation are

directly available. Therefore, it is necessary to use empirical means to estimate these unknown

terms. An empirical equation is proposed in [100], to which a constant has been added. It can be

written as

Vact = η0 + a (T − 298.15) + Tb ln(I) = Vact1 + Vact2. (4.4)

The voltage activation Vact1, which depends only on the temperature of the FC, is calculated as

follows

Vact1 = η0 + a (T − 298.15) (4.5)

where η0 is the temperature invariant part and a is a constant term in the Tafel equation [103]. The

subfunction to calculate the activation voltage is shown in Fig. 4-3.

Figure 4-3: Activation voltage drop affected only by the internal temperature.

The ohmic losses can be expressed [99] as

Vohm = I Rohm = I [0.2793 + 0.001872 · I − 0.0023712 (T − 298.15)]. (4.6)

In Fig. 4-4 the subfunction for the calculation of the ohmic voltage is described.

Fig. 4-1 shows the voltage at the model capacitor which can be calculated as

VC =
(

I − C
dVC

dt

)
· (Ract + Rconc) (4.7)

where Ract is the resistance that varies with the temperature and the current of the FC and which

is expressed [99] as
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Figure 4-4: Block diagram used to calculate the ohmic voltage drop.

Ract = 1.2581 + 0.00112 (T − 298.15)− 1.6777× 10−6 · I5 + 1.2232× 10−4 · I4 (4.8)

−3.3998× 10−3 · I3 + 0.045452 · I2 − 0.31163 · I

Rconc also depends on the current and the temperature [99] and its expression is

Rconc = 0.080312 + 0.0002747 (T − 298.15) + 5.2311× 10−8I6 − 3.4578× 10−6I5 (4.9)

+8.6437× 10−5I4 − 1.0089× 10−3I3 + 5.554× 10−3I2 − 0.010542I

The final block diagram represented in LabVIEW for the electrical model of the PEMFC is shown

in Fig. 4-5.

4.4 Thermal model

The thermodynamic model of the PEM fuel cell is based on heat balance equations. This model

calculates the net heat generated by the chemical reaction inside the fuel cell, as shown in the

following equation

˙qnet = ˙qchem − ˙qelec − ˙qs+l − ˙qloss (4.10)

where qchem represents the calorific or chemical energy, qelec is the electrical energy, qs+l corresponds

to latent and sensible calorific energy, also called heat of transformation and potential energy in the

form of heat energy, and qloss represents heat losses. They are all expressed in joules [104, 105]. The

calorific energy is given by
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Figure 4-5: Block diagram of the electrical model of the PEMFC shown in Fig. 4-1 implemented in
LabVIEW.

˙qchem = η̇H2,c∆G (4.11)

with η̇H2,c as the consumed molar flow of H2. This can be calculated as

η̇H2,c =
I

2F
Ncell (4.12)

where Ncell is the number of cells in the stack. The second factor of the calorific energy, ∆G,

represents the free Gibbs energy or free enthalpy, and is calculated [106] as

∆G = ∆Go −RTln
[
pH2(pO0.5

2
)
]

(4.13)

where ∆Go is the free energy in standard conditions given in [ J
mol ].

The electrical energy is calculated as

˙qelec = VoutI. (4.14)

The sensible and latent heat energy is determined as

˙qs+l = (η̇H2,c.CH2 + η̇O2,c.CO2 + η̇H2O,g.CH2O,l) .∆T + η̇H2O,g.HV (4.15)
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where the temperature variation ∆T is equal to T − Troom, CH2 , CO2 , CH2O,l are specific heat ca-

pacities in [ J
mol.K ], HV is the heat vaporization of H2O in [ J

mol ], η̇H2O,g is the generated mole flow

of H2O in [mol
s ], and η̇O2,c is the consumed mole flow of O2, which is given by

η̇O2,c =
I

4F
.Ncell

Finally, heat losses are calculated in

˙qloss = hcell.∆T.Ncell.Acell. (4.16)

where hcell is the coefficient of connectivity heat transference in [ W
m2.K ] [104] and Acell the area of

each cell in [ W
m2.K ].

In steady state, ˙qnet = 0, the fuel cell operates at constant temperature. During transients, the

temperature in the fuel cell varies according to the following expression [104]

Ṫ =
˙qloss

MFC .CFC

where MFC is the total mass of the fuel cell [kg] and CFC is the specific heat capacity of the stack

[F ]. The diagram in Fig. 4-6 represents the implementation in LabVIEW of the fuel cell temperature

model.

Figure 4-6: Block diagram of thermodynamic properties in the PEMFC.

Therefore, the block diagram of the thermo-electric model of the fuel cell is obtained by joining

the circuital model presented in Fig. 4-6 and the thermal model presented in Fig. 4-5, which results

in the model in Fig 4-7.
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Figure 4-7: Block diagram of the thermo-electric model of the PEMFC used by the simulator.

4.5 Experimental configuration

The experimental setup configuration used to validate the mathematical model implemented in Lab-

VIEW is shown in Fig. 4-10. The acquisition card NI USB-6008 inputs are the current given by the

source of power and the room temperature. The value of the current is given by the power source

Electronika Delta SM 1500 through its programming analog port. The source provides a voltage

in the [0 to 5]V range, which is proportional to the value of this current. The temperature value

is measured by an LM35 sensor. This integrated-circuit provides a linearly proportional output

proportional to the temperature, in Celsius degrees, that is amplified by an AD620 instrumentation

amplifier. The current and temperature values are delivered to the built-in LabVIEW model, which

gives an output voltage reference for the power source. This value is scaled in the [0 to 5]V range

proportional to the maximum voltage source output and is sent to the acquisition card by the analog
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port of the programmable source. Connected to the voltage source to provide load changes there is

a 6050a HP programmable electronic load whose parameters are programmed from the PC by using

the National Instruments GPIB-USB-HS connector.

Figure 4-8: Experimental configuration of the PEMFC simulator.

Tables 4.1, 4.2 and 4.3 summarize the main characteristics of the elements of the experimental

setup of the simulator presented in Fig. 4-10.

Table 4.1: Main features of the NI USB-6008 data acquisition device.
Analog Input

Converter type Successive approximation
Analog inputs 8 single-ended or 4 differential

Input resolution 12-bits differential or 11-bits single-ended
Maximum sampling rate 10 kS/s

Input impedance 144 kΩ
Single-ended input range ±10 V
Differential input range ±20 V, ±10 V, ±5 V, ±4 V, ±2.5 V, ±2 V, ±1.25 V, ±1 V

Analog Output
Analog Output 2

Output resolution 12 bits
Maximum update rate 150 Hz

Output impedance 50 Ω
Output current drive 5 mA

Slew rate 1 V/µs
Short circuit current 50 mA
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Table 4.2: Main features of the GPIB Controller for Hi-Speed USB.
Specifications

Hi-speed USB signaling 480 Mb/s
IEEE 488 Compatibility IEEE 488.1 and IEEE 488.2

IEEE 488 interlocked handshake 1.8 MB/s
IEEE 488 noninterlocked handshake (HS488) 7.2 MB/s

GPIB connector IEEE 488 standard 24-pin
USB connector USB standard series A plug

Table 4.3: Main features of the SM 70-22 Delta Elektronika BV power supply in voltage control
mode.

Output
Voltage 0 - 70 V
Current 0 - 22 A

Regulation
Load 0 - 100% 2.5 mV

Line 120 - 265 V AC 1 mV
Ripple + noise

rms (BW = 300 kHz) 3 mV
p-p (BW = 50 kHz) 15 mV

Analog programming inputs
Input Range 0 - 5 V

Accuracy ±0.2%
Offset 0 - 5 V

Input impedance > 1 MΩ
Reference voltage

Vref 5.114 V ± 15 mV
Rise time (10-90 %) for a voltage step of 0-70 V

100 % load 13.2 ms
10 % load 4.4 ms
Fall time (90-10 %) for a voltage step of 70-0 V

100 % load 12.9 ms
10 % load 129 ms

Programming connector
Type 15 pole D-connector at rear panel (Female)
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4.6 Multicore Processors

Fig. 4-9 shows the block diagram of the simulator, which has two main tasks. The simulation block

in the top part gets the model inputs, current, hydrogen and oxygen partial pressures, and room

temperature, from the time block depicted in the bottom part. The simulation block outputs are

the voltage and inner temperature of the FC. The time block is responsible for acquiring the signals,

controlling the electronic load, storing the time signals, generating the steady-state characteristics

of the FC and sending to the power supply the voltage value to be placed in its terminal. Both

blocks are executed in parallel, each one using a different processor to carry out its task, thereby

ensuring a multicore process. The communication between the two blocks is carried out using local

variables. The benefit of moving from a single- to dual-core computer is that performance increases

twofold [107].

Figure 4-9: Block diagram of the simulator.

4.7 Experimental results

Fig. 4-10 shows the experimental setup for testing the PEMFC simulator and Fig. 4-11 illustrates

the graphical user interface that controls the simulator developed in LabVIEW.
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The steady state characteristics of the SR-12 FC were obtained by increasing the load current

from 0 A to 21.6 A every 40 seconds, as shown in Fig. 4-12. The same figure shows the response of

the Wang’s model evaluated with the currents and temperatures acquired during the experimental

test. The response of the simulator agrees very well with that of Wang’s model.

Figure 4-10: Experimental configuration of the PEMFC simulator: (a) Laptop with Intel core 2 duo
processor, (b) DC electronic load, (c) GPIB-USB-HS connector, (d) DC power supply, (e) analog
programming port, (f) temperature acquisition system, (g) NI USB-6008.
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Figure 4-11: Graphical user interface of the simulator.

Fig. 4-12 shows three regions with different mechanisms loss that explain the voltage drop from

the maximum ideal voltage. In the beginning of the curve the activation losses that are due to

the slow reactions that occur at the electrode surface. In the middle of the curve the conduction

losses that are caused by ohmic resistance opposed to the ionic flow in the electrolyte and the flow

of electrons in the stack. This voltage drop is essentially proportional to the current density, so

this area can be considered to be linear. Finally, the losses of concentration or mass transport are

the result of the reduced concentration of the reactives on the surface of the electrodes. At the

maximum current value that can produce electricity, the concentration on the catalyst surface is

practically zero, since the reactives are consumed as soon as they are supplied to the surface. This

zone corresponds to the right corner of the polarization curve in Fig. 4-12.

Fig. 4-13 shows the behavior of the output power versus current changes, where the behavior of

the simulator and the model of Wang can be compared. The peak power of 500 W corresponds to

the nominal power of the SR-12 FC.

The dynamic properties of the PEMFC depend mainly on the double-layer charging effects, fuel

and oxidant flow delays, and thermodynamic characteristics inside the FC. Although the capacitance

caused by the double-layer charging effect is large, in the order of several Farads for each cell, the
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Figure 4-12: VI characteristics of Wang model and the simulator of the SR-12 fuel cell.

τ time constant is normally small because the activation resistances and concentrations are small

when the FC works in the linear zone. Therefore, this capacitance will affect the transient response

of the PEM fuel cell in the short time range. The transient responses of the model to the fast step

load changes depicted in Fig. 4-14 are given in Fig. 4-15. The measured room temperature is shown

in Fig. 4-16.

Fig. 4-15 shows that when the load current steps up, the voltage drops simultaneously due to

the voltage drop across Rohm, and then decays exponentially to its steady state value due to the

capacitance of the double layer charging effect.
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Figure 4-13: PI characteristics of Wang’s theoretical model and the simulator.
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Figure 4-14: Variation in the load.
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Figure 4-15: Dynamic response of the FC simulator in comparison with Wang’s model.
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Figure 4-16: Measured room temperature.
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In order to estimate how accurate the simulator is with respect to Wang’s theoretical model, an

error analysis was carried out using the Mean Relative Error (MRE) criterion [108] given in (4.17),

where mj and fj represent the theory and experimental data sets, respectively, and N is the number

of samples.

MRE(%) = 100× 1
N

N∑

j=1

∣∣∣∣
mj − fj

mj

∣∣∣∣ (4.17)

Table 4.4: Dynamic validation error analysis (MRE) of the simulator
Curve MRE [%]

VI characteristics 0.0865
PI characteristics 0.0855
Dynamic response 0.3704

The MRE criterion applied to the polarization curve data depicted in Fig. 4-12 gives a relative

mean error equal to 0.00865%. The application of the same criterion to the power curves depicted

in Fig. 4-13 gives a value equal to 0.0855% as shown in Table 4.4. Finally, the MRE of the dy-

namic responses gives an error equal to 0.3704%. These results confirm the accuracy of the simulator.

4.8 Conclusions

In this chapter a digital PEMFC simulator has been presented. The simulator is based on a dy-

namic mathematical model that considers the electrode double layer effect and the fuel cell internal

thermodynamics. A LabVIEW software is used for the simulator hardware implementation. Exper-

imental results are contrasted with the data model from a Relion SR-12 500-W PEM FC stack and

validated with the theoretical model proposed by Wang in [99]. The accuracy of the simulator for

both the polarization curve and the dynamic response is confirmed by the low MRE values obtained.

The fuel cell chosen to test the simulator was the Relion SR-12 500-W PEM FC stack because the

parameters of this stack model are available in the literature and also because the power source

available in our research laboratory has a range of voltages and currents that fits well with those of

the Relion stack. Since our laboratory has a Ballard NEXA 1.2 kW fuel cell, developing a simulator

for this fuel cell is a task for the future that can be divided into three main sections. The first is to

adjust the parameters of the thermal-electric model presented in this study for the Nexa fuel cell.

The second is to find a power supply that has a range of voltages and currents that make it possible

to simulate the Nexa fuel cell and find another model already tested for this stack. And the last is

to find out more about instrumentation systems to ensure real-time development of FC emulators.
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Once these tasks have been completed a Hardware-in-the-loop (HIL) system of the Nexa FC can

be developed for testing different configurations, topologies and control strategies of the different

equipment connected to it.
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Chapter 5

PEM fuel cell emulator for oxygen

excess ratio estimation in power

electronics applications

5.1 Abstract

This chapter proposes a real-time emulator of a Proton Exchange Membrane Fuel-Cell (PEMFC)

implemented by means of a power source controlled using the MatlabTM real-time toolbox. The

FC is represented by a polarization model that reproduces both static and dynamic behaviors. The

emulator estimates the oxygen excess ratio behavior and interacts with electrical loads connected to

the fuel cell terminals, such as motor drivers or switching converters. Consequently, the proposed

emulator can be used to design and test devices, before they are connected to the fuel cell, to avoid

the oxygen starvation effect and/or minimize the fuel consumption. The emulator has been adjusted

to a real Ballard NEXA 1.2 kW fuel cell. The proposed PEMFC emulator has made it possible to

implement and experimentally test a hardware-in-the-loop system in which the fuel cell load is a

step-up switching converter. The controller has been designed and adjusted to avoid the oxygen

starvation effect in the converter dynamics.

5.2 Introduction

Fuel cells (FC) are a highly promising source of distributed energy because of their reliability and

nonpolluting emissions to the environment [32]. FC emulators, then, are needed in research, since

they enable control strategies to be evaluated safely and the performance of power stages such as
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inverters and dc/dc converters to be tested. They also make it possible to carry out critical tests

that would otherwise a risk for the equipment [109], and different FC models and FC types can be

studied using FC emulators.

Several FC simulators and emulators have been reported in the literature. For example, a PEMFC

simulator consisting of a power rectifier controlled by a computer using LabVIEW software is re-

ported in [93]. The simulator calculated the PEM theoretical output voltage Vout for a specific load

current I. The error between the theoretical Vout signal and the measured rectifier output Vdc is

minimized by controlling the rectifier firing angle. One drawback of this simulator system is that

the rectifier dynamic response is slower than the PEMFC response at quick load changes. In [94],

the ohmic region from the static characteristic of an FC is represented by a linear function. The

linearized V-I curve, without considering dynamic effects, is emulated by using a Digital Signal Pro-

cessor (DSP) which controls a Buck converter that delivers the desired Vout output signal. A similar

simple approach is proposed in [95], where the V-I static characteristic of a Solid Oxide FC (SOFC)

stack is modeled by a three order polynomial. The simulator was implemented using a laboratory

power source controlled with LabVIEW. A real-time simulator or emulator of a Direct Methanol FC

(DMFC) is presented in [96], where a DSP-based system replaces a computer, acquisition cards and

costly licensed software. Since the selected DSP can process relatively low complexity mathemat-

ical equations, the Nernst reversible voltage is considered to be constant. The improved approach

presented in [97] uses a real DMFC single cell as the reference to determine the FC stack operation

voltage. However, this emulator requires additional equipment to reform and preheat the fuel that

the reference cell consumes.

The FC emulator is a useful tool for evaluating dangerous operating conditions imposed by the

load, where the most critical phenomenon is fuel or oxygen starvation [110]. The FC stack has a

time constant of several hundredths of a millisecond. This constant is mainly determined by the

compressor and the membrane hydration level [111]. Therefore, a high change in the load connected

to the FC could produce a large voltage drop in a short time. This behavior is described by the

authors as fuel or oxygen starvation. Fuel starvation describes the operation condition of the FC

at sub-stoichiometric reaction conditions [110]. Several factors can cause reactant starvation: poor

heat management during sub-zero temperatures and cold start-ups with ice in the cell can block

the pores of the gas diffusion layers, poor stack design or assembly with uneven flux distribution

between cells, poor cell design or machining with uneven mass distribution in flow fields and poor

water management with channel block by flooding. When starved of fuel or oxygen, the FC perfor-

mance degrades and the cell-voltage drops [112]. This operation condition is evidently dangerous

for the FC stack [111]. Therefore, an accurate FC emulator is desirable so that dangerous operating
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situations can be analyzed, and regulation strategies, and test devices intended to interact with real

FC prototypes evaluated.

The emulator proposed in this dissertation is an improved version of the one presented in [113]

which was a simulator without real-time execution capability adjusted to reproduce the output volt-

age characteristic of a Relion SR-12 500-W PEM FC stack. The main characteristics of the new

emulator, adjusted to the 1.2 kW NEXA Power Module [114] shown in Fig. 5-1(a), are that it repro-

duces the dynamics of the FC, predicts the oxygen excess ratio and can be connected to real power

electronics devices. Hence, the emulator proposed is a good candidate for testing power electronic

devices for FC applications [115, 116, 117, 118, 119] and for determining their impact on the oxygen

excess ratio (λO2) so that potential sources of oxygen starvation can be avoided and/or detected. The

emulator takes the thermal effects into account so that it can reproduce the general behavior bet-

ter. The emulator accuracy has been validated by means of the experimental data presented in [114].

The rest of this chapter is organized as follows. Section 5.3 outlines the model used in the emu-

lator. Section 5.4 proposes the implementation of the emulator using a PC-based kernel. Section

5.5 presents the validation of the emulator by means of experimental data. Section 5.6 gives an

application example of the emulator connected to a step-up dc/dc converter to test its impact on

the FC operation. Finally, the conclusions are given in Section 5.7.

5.3 Fuel cell system description and modeling approach

The model used to reproduce the behavior of the fuel cell system has been developed by using ex-

perimentally measurable inputs and outputs to adjust it to the real prototype [114, 120]. It allows

real-time calculation of the model outputs. The model considers the thermal effects on the stack

voltage and predicts the oxygen excess ratio λO2 , which is an important parameter in FC operation,

and control and safety procedures that impact on FC durability [121].

The experimental system used in the modeling procedure is based on the Ballard 1.2 kW NEXA

Power Module shown in Fig. 5-1(a), which is composed of a stack of 46 cells with 110 cm2 area

membranes. In this system the anode-cathode pressure ratio is regulated to prevent membrane

damage, and also the stack temperature is limited. The Nexa system includes a control board that

implements regulation strategies for the anode purge valve and the air compressor voltage to pre-

vent undesired phenomena like flooding and oxygen starvation. Flooding occurs when the water

generated and the inert gases supplied with the hydrogen get stuck in the anode and decrease the

stack voltage and power [122]. Oxygen starvation occurs when not enough oxygen is supplied to
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the fuel cell and cannot respond to the demand of the stack current. This degrades the FC, and

frequently requires the FC to be shut down [123]. It decreases the stack power and increases the

probability of hot spots or even burn-through on the surface of a membrane. To prevent this, the

cathode oxygen excess ratio (λO2) must be regulated by controlling the compressor motor voltage

according to changes in current drawn from the stack [124, 125], where one of the main difficulties

is to measure/estimate the oxygen excess ratio value.

(a)

(b)

Figure 5-1: Ballard 1.2 kW Nexa power module. (a) Nexa power module (1. Hydrogen supply, 2.
Hydrogen control valve, 3. Fuel cell stack, 4. Air compressor, 5. Control board, 6. Cooling fan.),
(b) Fuel cell model structure.

The emulator inputs must be measurable variables, so the load current Inet and the ambient

temperature Tca,in were selected as inputs. The model calculates the stack temperature Tst in order

to take into account the thermal effects. The model outputs are the oxygen excess ratio λO2 and

the stack voltage Vst.
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The Nexa system uses the stack power to supply the compressor, and therefore the compressor

is a closed loop system as depicted in Fig. 5-1(b). The air flow generated by the compressor Wcp,

the net current requested by the stack Ist, and stack Tst and ambient Tca,in temperatures are used

to process the oxygen excess ratio electrochemical equations. The stack power (Ist · Vst) affects the

thermal model that impacts on the stack voltage (Vst) and the oxygen excess ratio as described in

the model structure.

The subsections below describe the main dynamics and relations of the fuel cell system used to

process the model in a real-time environment. A more detailed description of the modeling approach

is given in [114, 120].

5.3.1 Air-compressor model

The compressor model is composed of three main subsystems as depicted in Fig. 5-1(b): the com-

pressor controller, the compressor dynamics, and the compressor consumption and losses. The first

subsystem is the compressor controller of the Nexa system. It is a feedforward network that depends

on the stack current to generate the compressor control signal. This controller has been identified

from its experimental behavior as

Vcp(z) = 0.9987 · Ist(z) + 46.02 (5.1)

where Vcp(z) is the compressor control signal [0%,100%] [114].

The main subsystem is the dynamics in the air flow, which has been identified from the ex-

perimental behavior of the Nexa system [114] following the Reaction Curve Method (RCM) [126],

as

Wcp(z) =
10−4

(
1.446z2 − 2.869z + 1.423

)

z3 − 2.997z2 + 2.993z − 0.9966
Vcp(z)− 45.00 (5.2)

In (5.2), Wcp(z) is the discrete representation of the air mass flow supplied to the cathode of the

stack, and the discretization was performed by considering a sampling time Ts = 1 ms.

Finally, the electric power consumed by the FC system ancillaries, and mainly by the air com-

pressor, are modeled by the compressor current Icm, which perturbs the stack current Ist that also
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depends on the net current Inet requested by the load as Ist = Inet + Icm. The consumption and

losses of the ancillaries have been identified experimentally from the prototype as a function of the

air mass flow Wcp as follows [120, 114]

Icm = −3.231× 10−5 ·W 2
cp + 1.8× 10−2 ·Wcp + 0.616 (5.3)

5.3.2 Thermal model

The thermal model can be obtained by an energy balance (5.5), where Ḣreac is the energy produced

in the chemical reaction of water formation, Pelec is the electric power supplied and Q̇rad,B2amb

and Q̇conv,B2amb are the amount of heat evacuated by radiation, and by natural and forced convec-

tion [127], respectively [120, 114]. This energy balance has been modeled by using the trapezoidal

approximation and bilinear transform with a sampling time Ts, which leads to

Tst(z) =
Ts

2 ·mst · Cst
· z + 1
z − 1

·∆HTst (5.4)

∆HTst = Ḣreac − Pelec − Q̇rad,B2amb − Q̇conv,B2amb (5.5)

Pelec = Pst = Vst · Ist (5.6)

These thermal dynamics are modified by the air flow Wcool supplied by the cooling fan to limit

the stack temperature in the Nexa prototype. This system has been identified [120, 127] as

Wcool(z) = 36 · ucool(z) (5.7)

where ucool(z) is the control signal of the fan.

5.3.3 Electrochemical model: oxygen excess ratio

A PEM FC stack generates electricity from the chemical reaction between hydrogen (H2) and oxy-

gen (O2) [128]. In order to prevent membrane stress and damages, the anode-cathode pressure ratio

is regulated in a safe relation by modifying the hydrogen control valve, which regulates the anode

pressure following the cathode pressure [129]. In this way, the main control variable is the oxygen

flow, while the hydrogen flow is a consequence of the anode-cathode pressure ratio control.

The oxygen and hydrogen flows (WO2,reac and WH2,reac, respectively) consumed in the reaction
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depend on the stack current and are defined by electrochemistry principles [121, 127], as

WO2,reac = MO2

n · Ist

4F
, WH2,reac = 2MH2

n · Ist

4F
(5.8)

where MH2 , MO2 , n and F are the hydrogen molar mass, the oxygen molar mass, the number of cells

in the stack and the Faraday constant, respectively.

The ratio between the oxygen flow provided to the stack, generated by the air compressor, and

the oxygen consumed in the electrochemical reaction is expressed by the oxygen excess ratio λO2

[121]

λO2 =
WO2,ca,in

WO2,reac
(5.9)

The oxygen excess ratio must be regulated to λO2 ≥ 1 in order to prevent starvation [123]. A

high oxygen excess ratio, and thus high oxygen partial pressure, increases the stack power. However,

after an optimum value is reached, further increments in λO2 cause an excessive air compressor

consumption that decreases the efficiency of the overall system [120, 125].

5.3.4 Electrochemical model: polarization system

The polarization model of the stack is defined by the interaction of three effects at any time t:

the activation of both electrodes, the charge transfer from electrode to electrode, and the voltage

drop vR introduced by the Ohm law applied to all resistive parts of the cell. These effects interact

according to (5.10) as described in [114], where ∆E0 is the open circuit voltage, (i.e. the difference

of the standard potentials of the electrodes).

v(i, t) = ∆E0 + vA(i, t) + vD(i, t) + vR(i, t) (5.10)

The explicit equation of the stack polarization model [114] is given in (5.11), where AD and AA

are parameters that model the open circuit voltage ∆E0, iRA and iRD are parameters that define

the saturation currents of the electrodes, and m is the number of cells that make up the stack. In

the model, k is the Boltzmann constant, q is the electron charge, T is the reference temperature of

35 oC expressed in Kelvin and RC = m · rC is the overall stack resistance. Finally, Isc is the short

circuit current of the fuel cell.

Vst = m · ADkT

q
· ln

(
1 +

Isc − Ist

iRD

)
−m · AAkT

q
· ln

(
1 +

Ist

iRA

)
−RC · Ist (5.11)
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The polarization model was parameterized by using experimental measurements from the Nexa

prototype [114], and the stack temperature was regulated to the reference temperature To = 35 oC.

The λO2 was adjusted to between 3.0 and 6.5, and the relation given in (5.12) was obtained with

the following parameters: ADkT/q = 199.9 mV, AAkT/q = 6.9 mV, iRA = 3.9 mA, iRD = 790.8

mA, and RC = 92.6 mΩ.

Isc = −0.45 · λ2
O2

+ 8.5 · λO2 + 35 (5.12)

In the experimental setup, the stack current was limited to the desired operating range of

Ist ≥ 6.63 A in which the compressor dynamics are linear. The fitting was performed using a

new current axis (Ist − 6.63) to reproduce the behavior of the non-linear polarization system.

The stack voltage predicted by the system of equations (5.11)-(5.12) is valid for the modeling

reference temperature To. This means that a thermal correction factor needs to be introduced, which

calculates the deviation of the polarization curve dVT by using the changes in the stack temperature.

The deviation law [127] has been experimentally identified as

dVT = kdV · (Tst − T0), kdV =





Tst > T0 → kdV = 0.138

Tst ≤ T0 → kdV = 0.250
(5.13)

Finally, this model accurately reproduces the behavior of a commercial fuel cell system, and

enables it to be emulated in realistic operating conditions. In the following sections the real-time

implementation of this model is described.

5.4 Real-time simulation using a PC-based kernel

Real-time simulator applications are increasing because they allow rapid prototyping, low-cost ex-

perimental testing without the risk of damaging expensive equipment, and the design of different

control system and signal processing algorithms. The PC-based real-time simulation has been used,

for example, to develop a solar array voltage estimator [130], to measure a variable as complex as

the torque in a switched reluctance motor [131], and to produce hardware-in-the-loop applications

like the one presented in this disertation. Real-Time Windows TargetTM is a rapid prototyping

software by MathWorksTM that makes it possible to execute a complex system model in real-time

with Simulinkr external mode [132] [133]. Real-Time Windows TargetTM uses a real-time kernel

that runs at CPU ring zero and intercepts the interruption from the PC clock before the Windowsr

operating system receives it. This kernel, then, uses the interruption to trigger the execution of

the compiled model in Real-Time Workshopr. Therefore, the kernel can give the highest priority
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available to the real-time application. Real-Time Windows TargetTMprovides a connection between

the real-time model and the model in Simulinkr external mode. The real-time model can be con-

nected to physical devices through an I/O board. Fig. 5-2 shows the block diagram of the emulator

including the offline code generation sequence.

Physical 
Devices

Discrete-Time
Compressor

Model
(z)

Discrete-Time
Fuel Cell  

Stack Model
(z)

Data
Store

ADC

ADC

Display
Signals

DAC

T       [t]ca,in

I     [t]net

V  [t]st
T  [k+1]st

λ   [k+1]02

V  [k+1]st

I    [k+1]cm
I   [k+1]st

W  [k+1]cp

Simulink External Mode

C
Code

generate create Binary
File

Real-Time Workshop

Ring 0
Windows
Operating

System

Real-Time
Model

 run
Real-Time Windows

 Target

++

 connect

I     [k]net

T       [k]ca,in

 connect

Offline
Process

Real-Time
Process

Figure 5-2: Block diagram of the emulator.

The system’s real-time processing capability was validated by reading an analog input in a

channel of the data acquisition (DAQ) card and writing the acquired value in an analog output

channel. The Simulinkr discrete simulation was configured to use the fourth order Runge-Kutta

(RK4) integration technique with a step size of 1 ms. Microsoft Visual C++ 6.0 c© was used for the

offline C compiling procedure. Fig. 5-3 shows that the delay between the input and output signals

in the experiment is in the order of a few tenths of microseconds. This value is considered to be

acceptable for the emulator model that operates in the millisecond range, two orders of magnitude

greater than the delay.
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Figure 5-3: Delay between the input and output signals in the real-time implementation (23 µs).

Fig. 5-4 shows the experimental setup used to validate the mathematical models implemented

in Simulinkr. Although other solutions for implementing the emulator power stage are possible

[109], we have selected a programmable power supply source Electronika Delta SM 3000 because it is

robust and versatile, and it is straightforward to interface with it. The acquisition card NI PCI6024E

inputs are the current supplied by the power source to the load and the ambient temperature. The

value of the current is given by the power source through its programming analog port. This power

source provides a signal in the [0 to 5] V range that is proportional to the output current. The

ambient temperature value is sensed by an LM35. This integrated circuit provides a voltage output

linearly proportional to the temperature in Celsius degrees. This signal is amplified by an LM324

operational amplifier. The current and temperature values are delivered to the built-in Simulinkr

model that gives the reference for the output voltage of the power source. The output voltage

reference is scaled between [0 to 5] V and drives the voltage source output proportionally. It is sent

to the analog port of the programmable source through the acquisition card.
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+
-

Figure 5-4: Experimental setup configuration of the Hardware-in-the-loop (HIL) fuel cell system.

Fig. 5-5 shows the real-time fuel cell model interface developed in Simulink. The DAQ in-

put/output blocks, the scopes used to visualize and store the emulation data, and the switches

adopted to choose between real-time data acquisition or reproduction of a pre-loaded current and/or

temperature profile can also be observed. Finally, to operate the emulator turn on both Simulink

and the Electronika Delta SM 1500 power source, load the real-time model in Fig. 5-5, connect the

load or device to be tested, and start the real-time simulation.

Figure 5-5: Simulink-based real-time FC model interface.
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5.5 Experimental validation

The numerical results obtained with the emulator validated by means of experimental measurements

on a 1.2 kW Ballard Nexa FC system as shown in Fig. 5-6. The parameters of the emulator model

used in the validation procedure are given in Table 5.1.

Table 5.1: Emulator model parameters

Parameter Value Parameter Value

mst [kg] 5 q [C] 1.602176× 10−19

m, n [−] 46 k [J · kg−1] 1.380650× 10−23

MH2 [kg ·mol−1] 0.002 Cst [J · kg−1 · K−1] 1100

MO2 [kg ·mol−1] 0.032 F [C ·mol−1] 96485

Figure 5-6: Experimental configuration of the PEM fuel cell emulator.

The steady-state characteristics of the Ballard NEXA power system that were obtained in a

previous study [114] are compared with the emulator data as shown in Fig. 5-7. The emulator

prediction is in good agreement with the experimental measurements for all the λO2 values in the 3

to 6.5 range considered.

The comparison between the experimental data from [114] and the emulator dynamic response is
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Figure 5-7: Polarization curves for different λO2 values provided by the emulator (continuous trace)
with superimposed experimental data (discrete symbols).

presented in Fig. 5-8. The physical variables externally imposed on the real system and the emulator

were the load current Inet and the ambient temperature Tca,in. The applied Inet profile shown in

Fig. 5-8(a) exhibits high and low frequency transients that permits a realistic validation of the

model. The Tca,in behavior measured during the experiments is depicted in Fig. 5-8(b). The good

agreement between the model and the experimental results also holds for the oxygen excess ratio

λO2 (Fig. 5-8(c)). Experimental data made it possible to identify the λO2 static profile regulated

by the control law implemented in the NEXA proprietary control board (5.14), which presents a

static relation between the desired λO2,Nexa and the stack current Ist. This relation gives a safe λO2

reference against oxygen starvation only in steady state conditions but not during transients. The

NEXA board controller parameters are a0 = 402.4, a1 = 8.509 × 10−5 [1/A], a2 = −0.8387 [1/A2],

a3 = 0.027 [1/A3], b0 = 61.4 [1/A] and b1 = 1.0.

λO2,Nexa =
a3 · I3

st + a2 · I2
st + a1 · Ist + a0

b1 · Ist + b0
(5.14)

Similarly, Fig. 5-8(d) shows the comparison between the stack voltage experimental values and

the experimental measurements from the emulator, where a satisfactory fitting of the results is evi-

dent.

The consumption and dynamics of the emulator air compressor were also compared with the

experimental measurements. Fig. 5-8(e) compares the losses estimated by the emulator and the

measured current consumption of the auxiliary systems, with the emulator reproducing the mean
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consumption. Fig. 5-8(f) shows that the compressor dynamic model satisfactorily reproduces the

experimental air mass flow.

The MRE criterion 4 applied to the data for the polarization curves depicted in Fig. 5-7 gives a

relative mean error equal to 0.34 %. The application of the same criterion to the dynamic responses

depicted in Fig. 5-8 gives the relative mean errors shown in Table 5.2. These results confirm the

accuracy of the emulator. The errors in the ancillary systems, consumption and losses, compressor

air flow, oxygen excess ratio and stack voltage are believed to be mainly due to the non-modeled

ripple component affecting these signals.

Table 5.2: Dynamic validation error analysis (MRE) of the emulator

Variable Icm Wcp λO2 Vst

MRE [%] 8.768 2.377 2.363 0.497
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(d) Stack voltage profile.
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(e) Parasitic losses.
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(f) Air mass flow profile.

Figure 5-8: PEMFC emulator experimental validation.
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Figure 5-9: Diagram of the hardware-in-the-loop system.

5.6 Application Example

The emulator proposed in this disertation permits a safe a priori testing of several devices which,

if connected to the FC, could cause oxygen starvation. To illustrate this, a design example of the

control of a step-up dc/dc converter is presented. The converter has a second-order low pass input

LC filter (L = 2 µH; C = 1 mF ) to reduce the high frequency components that can degrade

the operation of the FC [134]. The 1.2 kW switching converter is implemented using four 300 W

boost converter modules in parallel [135], each one of which has a local inner sliding-mode current

control. The reference of all inner loops is regulated by a global input current controller to obtain

null steady-state error in the current supplied by to the FC. The parameters of the individual boost

modules are L = 56 µH, Ci = 44 µF and Co = 44 µF , where Ci and Co are the input and output

high frequency capacitors, respectively. Fig. 5-9 shows a scheme of the hardware-in-the-loop system

made up of the cascade connection of a real-time FC emulator, a power step-up converter (four

boost converters in parallel) with its input filter and current control, and a programmable electronic

load. A more detailed explanation on the circuit implementation is given in [136].

In Fig. 5-10, the experimental behavior of the λO2 for different changes in the system input

current is shown. Different current transients with the same 96 A/s rise and fall slopes can be seen

in Fig. 5-10(a). Fig. 5-10(b) depicts the λO2 profile for each current transient. A magnification of

the 6 ms to 8 ms time interval shows that oxygen starvation (λO2 < 1) is predicted by the emula-

tor. A 46 A current step with different slopes and their corresponding λO2 profiles are depicted in

Fig. 5-10(c) and Fig. 5-10(d). The emulator predicts λO2 < 1 only for positive high fast transients,

which indicates that controlling the current slew-rate can prevent oxygen starvation. One way of

controlling the slew rate may be to include a slope limiter in the current loop. However, this method

considers the slope but not the amplitude of the current step. If the amplitude and slew-rate effects

have to be addressed simultaneously, other methods using fuzzy logic controllers [137] could be used.
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Figure 5-10: λO2 for different input current transients.

The experimental configuration of the emulator and the dc/dc converter is presented in Fig. 5-11.

According to Fig. 5-10(d) a current slew-rate of 34 A/s ensures a λO2 higher than 1.3 for the 46 A step

change. To limit the input current slope to around 34 A/s, the global current controller integrates

the input current error (Ierr) with a time constant of 220 ms yielding a λO2 ≥ 1.9 condition for

a 40 A step transient. This can be seen in Fig. 5-12(b), which depicts the emulator λO2 signal

for the current transient shown in Fig. 5-12(a). The white trace in Fig. 5-12(a) corresponds to a

step change of the emulator current from 4 A to 40 A, which is represented by a change in the

converter’s current reference signal from 1 V to 10 V. The black trace shows the measured current of

one of the four 300 W modules using a current sensor with a 1 V/A gain. A peak-to-peak ripple of

2 A corresponding to a switching frequency of approximately 100 kHz can be observed in the boost

converter current trace.
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Figure 5-11: Experimental configuration of the emulator and dc/dc converter.
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Figure 5-12: Experimental results of the emulator and dc/dc converter. (a) Current reference and
current approximately limited by the slew-rate. (b) λO2 in the emulator.
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5.7 Conclusions

Using an experimentally validated model of a 1.2 kW PEM fuel cell, a real-time emulator of the

FC has been parameterized and its static and dynamic behaviors successfully tested. The emulator

explicitly estimates the oxygen excess factor λO2 which when smaller than one, indicates the occur-

rence of the dangerous phenomenon of oxygen starvation.

The experiments revealed that oxygen starvation depends strongly on both the level and the slew-

rate of the current extracted from the fuel cell. The emulator has been used to test different step-like

current profiles and to identify the specific conditions that cause the oxygen starvation. It has been

determined that, for a positive current transition from idle to a maximum level of 46 A, a slew-rate

of 34 A/s does not cause oxygen starvation with a reasonable safety margin. Smaller current steps

without oxygen starvation can be supplied even when slew rates are larger. The real-time emulator

was used to build a hardware-in-the-loop system containing a step-up converter whose integral con-

trol loop was adjusted to prevent oxygen starvation. The experiments confirmed that a time constant

of 220 ms results in an average slew-rate of 36 A/s and a minimum oxygen excess factor of about 1.9.

The emulator developed is a valuable tool that enables the power systems that are to be connected

to the real fuel cell to be safely tested and adjusted. Work is still being carried out on the design of

a DC bus using a new type of DC converter that will be connected to the fuel cell [82].
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Chapter 6

Reactivation System for

Proton-Exchange Membrane

Fuel-Cells

6.1 Abstract

In recent years, Proton-Exchange Membrane Fuel Cells (PEMFCs) have been the focus of very inten-

sive researches. Manufacturers of these alternative power sources propose a rejuvenation sequence

after the FC has been operating at high power for a certain period of time. These rejuvenation meth-

ods could be not appropriate for the reactivation of the FC when it has been out of operation for a

long period of time or after it has been repaired. Since the developed reactivation system monitors

temperature, current, and the cell voltages of the stack, it could be also useful for the diagnostic and

repairing processes. The limited number of published contributions suggests that systems develop-

ing reactivation techniques are an open research field. In this disertation, an automated system for

reactivating PEMFCs and results of experimental testing are presented.

6.2 Introduction

Power systems based on proton-exchange membrane fuel cell technology have been the object of in-

creasing attention over recent years. This is because they appear very promising for both stationary

and mobile applications due to their high-efficiency, low-operating temperatures allowing fast start-

up, high-power density, solid electrolytes, long cell and stack lives, low corrosion, and non-polluting

emissions into the environment [32, 33, 34].
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One of the areas addressed by researchers has been FC modelling. In the literature, there are

several models that describe polymer electrolyte membrane fuel cell (PEMFC), ranging from static,

dynamics, frequencial, impedance spectroscopy, empirical, electrochemical, electrical circuit, arti-

ficial neural network, and real-time simulation models. In addition, models that analyze and/or

design air flow controllers that protect the FC from oxygen starvation during load transients, esti-

mate the oxygen excess ratio, , analyzes the behavior of transient flooding in the cathode, permit

studding of interactions between the different elements that can be connected to the FC, among

many others, are also found in the literature [33, 34, 138, 139, 140, 141, 114, 142, 143, 144, 145, 146].

The estimation of parameters by a specific FC model is also an area of interest for researchers as

evidenced by the number of publications that can be found on this topic [147, 146, 148].

Another recent area attracting research is the design of power converters for being connected to

the FC [149, 150, 151, 152, 153, 38, 39, 154, 146, 155, 125, 156]. These power converters allow to

manage the energy delivered by the stack to be used over wide-range of applications to be done in

a safe and efficient manner. The studies focus primarily on the design of dc/dc converters, inverters

and filters with high-efficiency, reliability, low-ripple input currents and isolated structures that en-

sure the correct and safe operation of the FC under all load conditions. The use of an FC emulator is

the most suitable way of testing these power converters and other different devices before being con-

nected to the FC. Advances in computing technologies, such as microprocessors, field-programmable

gate arrays (FPGAs), digital signal controllers (DSP), multi-core processors and stream processors,

have driven the development of increasingly complex, fast, versatile, and economical FC emulators

into becoming another area of research. These, then, are needed in research, since they enable

control strategies to be evaluated, in a safe, economical, realistic, real-time and repetitive manner,

and the performances of power stages to be tested. They also make it possible to carry out critical

tests that would otherwise be a risk for the equipment, and different FC models and FC types to be

studied using FC emulators [139, 157, 143, 158, 93, 159]. The systems formed by the emulator and

the devices to be connected to the FC is known as hardware-in-the-loop (HIL) simulation and it is

one of more recently studied research areas [143, 158, 157, 159].

The output characteristics in the PEMFC are limited by the mechanical devices that are used to

maintain the air-flow in the cathode by means of a compressor-motor, hydrogen-flow in the anode

through an adjustable valve command, temperature control using a cooling-fan, and the humidity

of the air in the cell by means of a humidity-exchanger. Hence, the time constants are dominated

by a fuel delivery system. As a consequence, a load transient demand will cause a high-voltage drop

after a short time, well-known as the oxygen starvation phenomena [35]. This operational condition

126

UNIVERSITAT ROVIRA I VIRGILI 
PEM FUEL CELL MODELING AND CONVERTERS DESIGN FOR A 48 V DC POWER BUS 
Carlos Alberto Restrepo Patiño 
Dipòsit Legal: T. 1049-2012 
 



is evidently harmful for the FC and for this reason the FC is considered as slow dynamic-response

equipment with respect to the transient load’s requirement. Therefore, batteries, ultracapacitors or

other auxiliary power sources are needed to work together with the FC, in order to ensure a fast

response to any load power changes. Consequently, the systems formed by FC and other auxiliary

power sources, known as FC hybrid systems, have been one of the more studied areas over recent

years [36, 37, 38, 39].

As mentioned above, oxygen starvation is a complicated phenomenon that reduces an FC’s life.

This phenomenon entails a rapid decrease in cell-voltage, which in severe cases can cause a hot spot,

or even burn-through on a membrane’s surface [34]. Therefore, in the literature it is possible to find

many studies on the oxygen starvation phenomenon, and it has become another area of research

regarding FCs. In [125] controlling the FC air-pump voltage and regulating the FC-current through

a dc/dc switching converter provides FC protection against the oxygen starvation phenomenon. In

[160] the test station of fuel cell is built, equipped with versatile control systems that regulate the

fuel-flow, the air-flow, and the temperature, for studying the behaviour of a PEMFC under different

air stoichiometric conditions. The design of a high-speed three phase switch reluctance machine

(SRM) presented in [160] is needed for driving a compressor regarding the air management of an

automotive application FC, since this kind of compressor-motor is widely-used in high-speed appli-

cations. The two models of predictive control loops proposed and compared in [161] are aimed at

satisfying the oxygen starvation avoidance criterion, and the maximum efficiency criterion in the

FC. A very similar goal is addressed in [162], which analyzes the performance limitations and trade-

offs associated with compressor-driven air supply and discusses different feed-forward and feed-back

architecture controllers for avoiding oxygen starvation during load changes. A PEMFC dynamic

electrical-circuit model that can estimate the oxygen excess ratio is presented in [114], and its model

is used in [139] to implement a real-time simulation system. In [163] a simplified model of the

permanent-magnet synchronous motor is used to feed the FC with air. This control ensures less

excursions away from the motor-equilibrium operation point, and thus reduces the risk of oxygen

starvation, and reacts quickly to load changes.

During shipping or idleness for a long period of time, the FC stack could lose its performance

and it is necessary to reactivate it. The Nexa FC, of the manufacturer Ballard, has a rejuvenation

sequence process that is performed prior to normal shutdown if the FC has been running for be-

tween 10-30 minutes at an average gross stack power of 200 W or greater, measured over the last

10 minutes of operation [164]. This automated rejuvenation process lasts approximately 3 minutes

and restores any FC stack performance that may have been degraded by certain contaminants, by

repeatedly cycling stack voltage under the presence of internal parasitic loads. The drawback of the

127

UNIVERSITAT ROVIRA I VIRGILI 
PEM FUEL CELL MODELING AND CONVERTERS DESIGN FOR A 48 V DC POWER BUS 
Carlos Alberto Restrepo Patiño 
Dipòsit Legal: T. 1049-2012 
 



Nexa system is that a separate software has never been designated for the rejuvenation cycle and,

depending on the severity of the performance degradation, the short duration of its rejuvenation

process might be insufficient for obtaining the FC reactivation after a long inactivity period. Also,

taking into account that the Nexa is a self-humidified closed system FC, triggering the Nexa’s reju-

venation cycle with relatively high power levels without a previous reactivation cycle could endanger

the FC. Additionally, not all FC’s have the internal system of rejuvenation that Nexa has. Systems

that achieve a rejuvenation of the FC stack can be found within two groups of patents, as described

below. The performance of the stack may gradually decrease due to the accumulation of water in the

stack, thus producing a blockage of those channels through which gases circulate. A technique that

includes applying a vacuum to the manifold of a FC stack in order to remove at least some of the

accumulated water, is presented in [165]. The performance of FC can also be affected by impurities

known as electrocatalyst poisons, either from the reactant streams or generated from within the FC

as intermediate species during FC reactions, which may be absorbed or deposited on the surface of

the anode, and the cathode electrocatalysts [166]. The patents [166, 167, 168] show a system for re-

moving electrocatalyst poisons and obtaining an improvement in FC performance. All the processes

described are used to rejuvenate a healthy FC but none can be applied for achieving reactivation of

a long time stored or repaired FC. Some user guides [169] recommend manual activation procedures

to ensure a progressive humidification of the stack while performing frequent voltage measurements

on each of the stack cells to ensure that they are always above a safe value. This process is slow,

wastes a lot of hydrogen, and is manpower intensive. The study of the technical literature on the

different FC power electronics application research areas, that has been resumed previously, has

shown that there is not any automated system that can perform the reactivation of a PEMFC. This

means that an automated reactivation system using a combination of software and hardware can be

of great interest. This work opens the door to the reactivation of fuel cells a new area of research

that will be vital to ensure a better positioning of PEMFCs as practical electrical generators and

will promote their use.

The rest of this chapter is organized as follows: Section 6.3 describes the PEMFC system to reac-

tivate, and Section 6.4 performs a detailed description of the hardware and software that comprises

the proposed reactivation system. Finally, the last two sections present respectively experimental

results and the conclusions of this work.

6.3 Description of the PEMFC system to reactivate

The air-cooled proton exchange membrane (PEM) fuel-cell stack comprising 40 membrane electrode

assemblies (MEA) is the PC3F40 of the Palcan Fuel Cell Co Ltd as shown in Fig. 6-1 and its main
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Figure 6-1: Top and back views of the PC3F40 fuel cell system: (a) PC3F40-AC-AXX stack, (b) air
pump, (c) fuel cell controller, (d) humidifier, (e) fan.

characteristics are presented in Table 6.1. The PC3F40 fuel-cell power model includes the stack,

air pump, humidifier, valves, relay, DC-DC converter, digital-signal processing (DSP) controller and

displays, as shown in Fig. 6-2. The DSP-controller gets the feedback signal, such as fuel-cell voltage,

current, and temperature, from the stack and sends the control signal to the air-pump, fan, valves

and relay. The manufacturer recommends shutting-down the system immediately by turning the key

to the off-position, if the following situations should occur: stack is over-heating, that is, the fuel cell

temperature is over 75 ◦C, stack voltage is under 18 V, stack current is over 20 A, and the system

connection is incorrect. In addition, the manufacturer delivers a list of warnings to be considered

for obtaining good functioning of the fuel-cell. Many of these warnings are easy to perform, such

as: never bring the inlets of air and hydrogen pressures be above 8 psig, never use pure oxygen in

the stack, never use the stack when cooling air is not flowing along the cooling channels, never use

a stack without proper cooling. One of the warnings determines the optimal point of operation as:

monitor the temperature at the core outlet and never let it be above 75 ◦C, the stack is performs

at its best between 50 and 65 ◦C. Finally, the last warning is a little more complex to perform as

explained in the next session, this is: for better operation, a cell-voltage monitor is required, and
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never allow a cell to go below 0.45 V.

130

UNIVERSITAT ROVIRA I VIRGILI 
PEM FUEL CELL MODELING AND CONVERTERS DESIGN FOR A 48 V DC POWER BUS 
Carlos Alberto Restrepo Patiño 
Dipòsit Legal: T. 1049-2012 
 



Table 6.1: PC3F40-AC-AXX Palcan PEM FC stack specifications

Specifications

Electrical voltage 20 - 40 V DC unregulated

Nominal power rating 400 W

Stack efficiency @ 400W > 40%

Dimension

Width 11.7 cm

Height 11.3 cm

Depth 30 cm

Width 2.70 kg

Operating conditions

Nominal Reactant Air

Flow rate 24 SLPM

Inlet dew point temperature 55 ◦C

Inlet pressure 1.2 psig

Reactant Hydrogen

H2 grade Industrial grade

Consumption 4.4 SLPM

Inlet dew point temperature 55 ◦C

Inlet pressure 3 psig

Cooling requirement

Coolant type Air

Flow rate As required

Stack temperature 60 ◦C

Range Reactant Air

Flow rate 1 to 30 SLPM

Inlet dew point temperature Stack temperature up to 60 ◦C

Inlet pressure 0.5 to 5 psig

Reactant Hydrogen

H2 grade Industrial grade, reformate

Inlet dew point temperature Stack temperature up to 60 ◦C

Pressure 0.5 to 5 psig

Cooling

Coolant type Air

Flow rate As required

Stack temperature 4 to 60 ◦C
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Figure 6-2: Block diagram of the PC3F40 fuel cell system.

6.4 Description of the PEMFC embedded and automated

reactivation system

In the previous section, the main features of the PEMFC system required for reactivation, were

described in detail. The complexity of the system for reactivating, and the reactivation process

itself become crucial for the development of an embedded and automated reactivation system. The

main functions of this system are: sensing the cells’ voltages in the FC, sensing and controlling the

temperature, sensing the current generated by the stack in order to determine the power-operation

point, keeping the FC within those security conditions recommended by the manufacturer, and

optionally allowing communication for the monitoring of key FC variables from an external system,

such as a computer. This section presents the main characteristics of the hardware and software

that make the PEMFC reactivation system.

6.4.1 Hardware of the fuel cell reactivation system

Cell voltage sensing and multiplexing stage

In general, fuel cells are systems with a large number of cells in series, thus making monitoring of

the cell-voltage a complex task. This difficulty is due to the need of the data acquisition (DAQ)

with 40 differential analog input channels to monitor 40 cell voltages in the specific case of the

PC3F40 FC of Palcan and 47 differential analog input channels, in the case where it is necessary

to reactivate the Nexa FC of Ballard. Although the market may get a few cards with a large

number of differential analog input channels, such as the NI USB-6255, the PXI-6255, the NI PXI-

6225, and the NI PCI-6255 of National Instruments, the USB-AI12-128A of Acces I/O Products, the

DaqLab/2000 and DaqScan/2000 series of the Measurement Computing Corporation, their high-cost

is the main disadvantage for their use. Therefore, it is necessary to build a system for monitoring

132

UNIVERSITAT ROVIRA I VIRGILI 
PEM FUEL CELL MODELING AND CONVERTERS DESIGN FOR A 48 V DC POWER BUS 
Carlos Alberto Restrepo Patiño 
Dipòsit Legal: T. 1049-2012 
 



those voltages in a stack that can be extended to other possible cells requiring reactivation. The

sensing voltage cells system consists of precision resistive dividers, as illustrated in Fig. 6-3, that

convert the differential analog signals of the cells into referenced single-ended (RSE) signals, with

a range of voltages of 0 V to 5 V, corresponding to the digital analog converter (DAC) range that

will be used. The reading accuracy of the cell-voltages depends primarily on ADC resolution, the

accuracies of the resistors, and the final voltage ranges of the resistive dividers. The manner in

which the resistors are connected to the bipolar plates of the FC, follows the standard RJ45 for the

connectors and their wiring. A capacitor is placed at each output of the resistive divider in order

to stabilize and filter the acquired signal, as shown in Fig. 6-3. The acquired signals pass through a

stage of multiplexing which allows for up to 48 differential signals to be sensored with only 6 analog

inputs for the signal multiplexed, 3 digital outputs for the address decoders of all the multiplexers

using the truth Table 6.2, and 3 digital-outputs for enable each of the multiplexers as depicted in

Fig. 6-3. The high-performance CMOS analog multiplexer used is the DG407 Vishay Siliconix and

its main characteristics are its fast transition time of 200 ns, higher accuracy, and high-speed data

acquisition is included between their applications. The solution for acquiring the differential voltage

proposed in this work is simple, low-cost, and provides high-speed acquisition with good accuracy.

Table 6.2: Truth table of the multiplexer stage
Position A2 A1 A0

(k) A2 A1 A0

1 0 0 0
2 0 0 1
3 0 1 0
4 0 1 1
5 1 0 0
6 1 0 1
7 1 1 0
8 1 1 1

Fig. 6-4 shows the multiplexing circuit prototype presented schematically in Fig. 6-3. On either

side of each multiplexer can be observed a 8P8C connector that allows an easy connection and

disconnection of the signals coming from the fuel cell. The solution to acquire the differential

voltage proposed in this work is a simple, low-cost, high speed acquisition and with good accuracy.

PWM FC fan Driver control and FC current and temperature sensing stage

Since, the FC performs better between 50 ◦C and 65 ◦C, it is important to control the temperature

of the stack to obtain a reactivation in less time, and thus ensure lower consumption of hydrogen

during the test. This required designing a stage that could control the FC fan using pulse-width

modulation (PWM) and it is also required for characterizing the temperature sensor that has the

FC, for proper control. Fig. 6-5 presents the circuit schematic of the stage responsible for FC
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Figure 6-3: Circuit schematic of the multiplexing stage.

Figure 6-4: Circuit prototype of the multiplexing stage: (a) analog output signals, (b) 8P8C con-
nector, (c) DG407 multiplexer, (d) resistive dividers, (e) digital input signals, (f) input power of 5
V.

temperature control. The PWM fan motor driver is implemented using a totem-pole output and

the positive voltage regulator L78XX is selected according to the voltage that is powering the fan,

and in the case of the PC3F40 FC is 12 V. This design allows to use the reactivation system for any

kind of PEMFCs. In order to allow operation with high currents the IRFP150N MOSFET and the

BYV79E diode are oversized. The FC thermistor is connected to a conditioning circuit that consist
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of a resistance divider with a precise 5 V voltage source, as shown in Fig. 6-5. The thermistor is

characterized for all the temperature ranges of the FC, using the experimental setup detailed in

Fig. 6-6 and the FC thermistor characteristic as plotted in Fig. 6-7. Using a curve-fitting toolbox,

the software of MATLAB adjusts the coefficients of the cubic polynomial of thermistor resistance,

as a function of the temperature in ◦C as

Rt(Temp) = −0.07108 · Temp3 + 16.37 · Temp2

−1350 · Temp + 4.186× 104. (6.1)

Therefore, the FC temperature as a function of voltage obtained by the conditioning circuit Vtemp

presented in Fig. 6-5 is:

Temp(Vtemp) = 1.914 · V 3
temp − 13.96 · V 2

temp

+54.04 · Vtemp − 38.74. (6.2)
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Figure 6-5: Circuit schematic of the PWM fan driver, current and temperature sensing of the
PEMFC.

Finally, a current sensor is installed at this stage to measure the current generated by the cell,

and thus determines its power output at all times. The Allegro ACS758xCB hall effect-base linear

current sensor used can measure currents up to 50 A and can be used with other kinds of FC’s.

Additionally, this bidirectional sensor has a sensitivity of 40 mV/A, with internal resistance of only

100 µΩ, thus providing a low-power loss. The circuit prototype of the temperature control and
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Figure 6-6: Experimental configuration to obtain the characteristic of the fuel cell thermistor: (a)
1910 inductance analyzer of the QuadTech manufacturer used to accurately measure the resistance,
(b) the Fluke 179 digital multimeter to verify the measurement of temperature inside the oven, (c)
KPK 35 oven of the Mytron manufacturer, (d) thermistor to characterize.
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Figure 6-7: Fuel cell thermistor characteristic. In black line is depicted the experimental measure-
ment using the configuration of Fig. 6-6 and in white line is represented the cubic polynomial fit of
(6.1)

current sensing of the reactivation system is shown in Fig. 6-8.

Embedded control system

The selected system for the management of the systems presented above is the NI Single-Board RIO

sbRIO-9631, which is cost-optimized with an embedded real-time processor, reconfigurable FPGA,

and analog and digital inputs/outputs on one printed circuit board (PCB) [170]. The open design
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Figure 6-8: Circuit prototype of the temperature control and current sensing of the reactivation
system: (a) PWM control input signal UFAN , (b) analog output signal of the current measurement
VIout, (c) analog output signal of the temperature measurement Vtemp, (d) FC thermistor input, (e)
input power Vcc of 15 V, (f) PWM control output signal PWMFan, (g) terminals for current being
sample.

decreases cost and provides flexibility for designing a customized enclosure. NI Single-Board RIO

devices are designed for acquisition applications that require high performance and reliability. The

main characteristics of the sbRIO-9631 are described in the caption of Fig. 6-9.

PEM fuel cell reactivation system

Fig. 6-10 shows the configuration for all the hardware described above including the FC, the elec-

tronic load, and the computer for the monitoring and storage of the main variables. The difference

in the sub-FC system presented in Fig. 6-10, with respect to that described in Fig. 6-2, is that the

DSP does not control the temperature of the FC, but still controls the hydrogen supply and the air

pump. It was necessary to design an additional stage of power conversion due to the different volt-

ages of each stage comprising the reactivation system. The input voltage of this power conversion

stage is the same power supply used by the FC control system, as shown in Fig. 6-10. During a

test before starting, the reactivation of the FC was controlled by the Agilent 6050A DC electronic

load through of its analog programming port in current mode, using an analog output signal of the

sbRIO-9631. However, large fluctuations were present in the electronic load in the current mode

that it threatened the FC. These fluctuations are due to the need of an input filter design for the

electronic load, but since spectroscopic models for this kind of fuel-cell are unknown and our fuel cell

was damaged to make this model, therefore it was impossible to create a proper filter design. The

electronic load behaved stably in the resistance mode, but this mode can not be programmed using

the analog programming port for this type of electronic load. The only forms that the electronic
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Figure 6-9: Top view of the sbRIO-9631: (a) RJ-45 ethernet port, (b) 266 MHz processor with
128 MB nonvolatile storage and 64 MB DRAM for deterministic control and analysis, (c) RS-232
serial port, (d) Xilinx Spartan-3 Reconfigurable with 1M gate FPGA by for custom timing, inline
processing, and control, (e) 1930 V DC power supply connector, (f) 110 digital inputs or outputs
of 3.3 V and TTL tolerant, (g) 32 single-ended or 16 differential analog input channels ( 16 bits of
analog to digital converter (ADC) resolution and conversion time of 250 kS/s) and 4 analog output
channels (16 bits of digital to analog converter (DAC) resolution), (h) connectors to expand the
built-in analog and digital input/output.

load resistance mode is programmed for are manual or by using the GPIB port [171]. Therefore, the

value of the electronic load current is sent through the ethernet port to the computer, together with

the monitoring data and in the computer transformed into a resistance value that is sent using the

GPIB port as shown in Fig. 6-10. Additionally, an analog output of the sbRIO-9631 was left, thus

enabling its for use in other types of FC that allow for controlling the electronic load in current mode.

All hardware elements described and presented in this section 6.4 for the reactivation of the

PEMFC and which are presented in Fig. 6-10 with a dashed line rectangle named PEM fuel cell

reactivation system are developed experimentally using a methacrylate enclosures shown in Fig. 6-

11. The methacrylate enclosures provides all the hardware development benefits such as strength,

protection, security and easy operation, facility of connection and transportation, a compact system

with overcurrent protection and a cooling system to operate for long hours without overheating.

The reactivation system presented in Fig. 6-11 also has the possibility to reactivate other types of

FC with more cells or more current levels, to control the temperature to reactivate the FC if this is

necessary, to communicate with advanced protocols for monitoring the main variables, besides if not

connected to the computer or if there is a failure in the computer during its execution the system is

able to continue with the recovery of the FC despite the faults.
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Figure 6-10: Hardware configuration using to the reactivation of PEMFC.
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(c)

(d)

Figure 6-11: Different views of the real-time automated system development for the reactivation of
the PEMFC: (a) front view, (b) back view), (c) side view, (d) top view.

6.4.2 Software architecture of the fuel cell reactivation system

According to the hardware configuration shown in Fig. 6-10, it is necessary to develop programs for

the desktop computer and for the Single-Board RIO. This latter device contains the design programs
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for the real-time processor and for the reconfigurable FPGA. The software architecture diagram that

controls the entire hardware described in the last section, is illustrated in Fig. 6-12. This subsection

explains, in detail, all those programs implemented to ensure reactivation of the FC.

Single-Board RIO

Real-time processor

Main program

Data transfer TCP program

(Not time critical process)

Reactivation program

(Time critical process)

Shared

Variables

Reconfigurable

FPGA

FPGA

program
High speed

PCI bus

Host computer program

TCP/IP

Desktop computer

Figure 6-12: Software architecture diagram of the FC reactivation system.

As depicted in Fig. 6-12, the main program runs within a real-time processor and is basically

responsible for executing in parallel the FC reactivation program and the transmission control pro-

tocol (TCP) communication program, as illustrated in the flowchart of the Fig. 6-13. This flowchart

diagram has four process in parallel, the first one being responsible for FC reactivation, the second

controls the FC temperature using a digital PID, the third write and read all signals connected to

the reactivation system as can be seen in gray rectangles, and the fourth transmits the data to the

host computer using TCP communication as can be seen in black rectangles in the Fig. 6-13. The

reactivation and the temperature control processes use the reconfigurable FPGA in order to acquire

or control the different signals required for FC reactivation as presented in gray rectangles in the

Fig. 6-13. All input and output signals are connected directly to the FPGA, providing low-level

customization of timing, and input and output signal processing. The FPGA is connected to the

embedded real-time processor via a high-speed PCI bus, as shown in Fig. 6-12. The program of the

FPGA presented in Fig. 6-13 uses the advantage of parallel computing offered by the reconfigurable

FPGA in order to acquire the analog signals, DA1, DB1, DA2, DB2, DA3, DB3, Viout, and Vtemp,

and to control each of the digital signals, A0, A1, A2, E1, E2, E3 and UFAN .

The reactivation program process presented in Fig. 6-13 has the most important function of all

regarding designed software. The design of this function is based on the methodology proposed by

the fuel-cell manufacturer in order to obtain reactivation of the stack [169], but also adapting it to

all the instrumentation systems designed for this purpose, and with the objective of it being valid

for other types of FC. During the first part of this flowchart, the number of multiplexers necessary
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Figure 6-13: Flowchart of the reactivation process in the Single-Board RIO.
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to sense the differential cell voltages within the FC, according to its number of MEA’s are configured

using the digital output enabling signals E1,E2, and E3. The second part of the reactivation function

presents a timed loop sequence with a period of 200 ms running in real time within the processor

of the sbRIO. Inside the time-loop sequence, the truth table of the multiplexer stage, A0,A1,A2,

is controlled using a repetition structure. In order to reduce the noise from the acquired signals,

an arithmetic mean is calculated. Each cell-voltages is sampled five times at a frequency of 100

Hz before calculating its mean value. The next step inside of the timed-loop sequence presented in

Fig. 6-13, is to convert the referenced cell-voltages into differential cell-voltages and, thus, determine

the voltage per cell. This is achieved by subtracting the voltage of each cell from the cell-voltage

above and then multiplying it by the gain from the resistive divider. In those cases where all the

voltage cells have a voltage greater than 0.5 V, this increases the load current by 0.1 A, and waits

5 seconds to ensure stabilization of the FC to the change of current. In the event that any of the

cells voltages are less than 0.5 V, they should be expected to exceed this minimum value. During

each iteration of the timed-loop sequence, the FC current IFC , the FC temperature Temp and the

cell voltages are stored and sent to the Host computer program through an ethernet port using

the TCP/IP. This program successfully ensures the sending of large amounts of data, 43 variables

every 200 ms. If after 5 minutes the stack appears to have reached its limit, because the minimum

cell-voltage does not exceed the value of 0.5 V, it is necessary to remove the load slowly as, 0.1 A

with 1 second between changes, and the start again.

Finally, the host program running on the desktop computer and shown as a flowchart in Fig. 6-

14, is responsible for receiving data using TCP/IP communication. This allow the user to view and

store all the reactivation information by a graphical user interface and, additionally, an electronic

load control through the GPIB port. As mentioned previously, the electronic load is controlled in

resistive mode, therefore it was designed as a continuous function for converting the current sent

by the reactivation program into a resistance value. This function is presented in (6.3) and its

characteristic curve is illustrated in Fig. 6-15.

Rload(Iload) =





600− 1038 Iload for Iload < 0.5A

38.62 Iload
−1.072 for Iload ≥ 0.5A.

(6.3)
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Figure 6-14: Host program flowchart diagram.
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Figure 6-15: Characteristic curve of the electronic load in resistive mode.
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6.5 Experimental results

Two PC3F40 PEMFCs were reported as damaged after being stored for several years without being

used. An attempt was made to reactivate one of the FCs following a manual procedure, but after

reaching half its maximum rated power a sudden and permanent power drop occurred. The main

consequence of the manual reactivation failure was the development of the automated reactivation

system shown in Fig. 6-16. A posterior reactivation attempt using the automatic system determined

that a large number of the FC cells were always in an undervoltage condition associated to membrane

damage. These first FC is still repair pending but we have been able to test the automatic system

on the other twin FC. The experimental results have proved that the reactivation system has been

able to reactivate the FC to a power-point of around 340 W, as shown in Fig. 6-17. Each trace

of this figure corresponds to a different cycle of the FC reactivation. A cycle ends when any of

the cells voltages is under a minimum value of 500 mV for five minutes. After this undervoltage

condition appears, the load is decreased slowly to zero amperes as described in flowchart 6-13 and

an alarm message is shown at the computer screen. At this point a human operator has to take the

decision of either initiating a new reactivation cycle or finishing the procedure. In the experiments,

the reactivation was ended when a seventh cycle (not shown) offered almost identical results than

the sixth one. Fig. 6-18 presents the V-I static characteristics corresponding to the reactivation

experiment, in which it can be seen how the stack voltage was regaining its performance with each

of the six consecutive reactivation cycles after which an increase of more than 10 V of the FC stack’s

reversible potential was obtained. The six cycles depicted of the reactivation process lasted 10 hours

and 25 minutes, and had a hydrogen consumption of 1433 liters at standard ambient temperature

and pressure conditions (25 C, 100 kPa). The experimental results clearly verify that the PEMFC

reactivation system works properly. The system’s computer interface makes it easy to use and

simplifies its reconfiguration for other models of PEMFC requiring reactivation.
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Figure 6-16: Experimental configuration using to FC reactivation: (a) PC3F40 PEMFC system,
(b) PEMFC reactivation system, (c) power supply, (d) electronic load, (e) desktop computer with
TCP/IP and GPIB ports, (f) fume cupboard.
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Figure 6-17: Fuel-cell power experimental characteristic.

145

UNIVERSITAT ROVIRA I VIRGILI 
PEM FUEL CELL MODELING AND CONVERTERS DESIGN FOR A 48 V DC POWER BUS 
Carlos Alberto Restrepo Patiño 
Dipòsit Legal: T. 1049-2012 
 



2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

40

45

t
exp

=   319 s

t
exp

=  1144 s

t
exp

=  5420 s

t
exp

=  6066 s

t
exp

=  6843 s

t
exp

= 17709 s

FC Current [A]

F
C

 V
o

lt
a

g
e

 [
V

]

Figure 6-18: Fuel-cell V-I static experimental characteristic.
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6.6 Conclusion

A new automated system for reactivating damaged FC has been developed and, using it, we have

successfully reactivated a long period stored PEMFC. The proposed system implementation has

allowed to monitor in real-time the main FC variables and to verify in practice the validity of the

reactivation procedure for a Palcan PEMFC. Further research will address the improvement of the

proposed system with an oxygen starvation detection feature that could allow the use of faster

reactivation current profiles.
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Chapter 7

Conclusions and Future Works

The main result of this Thesis is the design, building and testing of a new coupled-inductor buck-

boost DC-DC converter structure, suitable to interconnect any pair of the elements in a PEMFC-

based hybrid voltage bus: the PEMFC, the auxiliary storage device, and the load. The wide

bandwidth and high efficiency performances exhibited by the converter, in addition with its simple

controllability either in voltage or in current mode, allow the elements in a hybrid voltage bus to be

connected in a variety of combinations, such as series, parallel or series-parallel.

The designed current controller is able to regulate either the input or the output current of the

converter. It has been implemented so that if a sudden increase of the load causes the current ex-

tracted from the FC to reach a maximum level the controller switches in a fast and smooth manner

from regulating the output current to regulating the input current, thus protecting the PEMFC.

Similarly, it alternates from regulating the input current to limiting the load current if it increases

too much, which makes the converter able to withstand even permanent short circuits.

The design and implementation of several FC emulators/simulators has allowed to test in advance

the connection of the FC with the converter. Once the safety of the interconnection of the converter

and its load has been assessed the real FC can be used without risking to damage it. Since the testing

procedures could be very long, the use of the emulator provides savings in hydrogen consumption.

Also, in some cases, the mathematical model in the emulator offers much more information on the

FC variables than a real FC monitoring system.

The limitations of the available control and monitoring FC systems were also evident when the

manual reactivation of a long time inactive FC resulted in its permanent damage. This motivated

the design of an automated system that performed successfully in reactivating another FC of the
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same model of the damaged one. To our knowledge, there is no other automated reactivation system

reported in the literature, therefore this opens a new field of research that could be of great interest

to facilitate the PEMFC adoption as electrical generator.

7.1 Future Works

The use of optimization techniques to determine the parameters that best fit an FC electrical cir-

cuit model is one of the tasks that are not included in the thesis but was completed. The fuel cell

was modelled by an electrical circuit which includes the capacitive effects of the electrodes and the

thermal effects of the stack fan. The circuit and thermal model parameters are adjusted to the

experimental measurements using an evolutionary algorithm so that the obtained model reproduces

the static and dynamic output voltage characteristics, and the fuel cell temperature, as a function

of the load current. This is the major contribution of this work since in the specialist literature only

some optimization techniques to adjust just the FC static characteristic had been applied. This

work emerged because in the literature it is difficult to find all the parameters of a specific model

to be used in a specified FC, in many cases different authors propose different values of them and

generally none of them fits the experimental data of the real FC used. In addition, the developed

model can be used by other researchers to implement different simulations and was also useful to

develop a digital emulator of a PEMFC implemented by means of a power source controlled using

the sbRIO (Single Board RIO) real time system from National Instruments. With this emulator it

was possible to carry out critical tests and studies that would otherwise constitute a risk for the fuel

cell. The developed system has been used to emulate the Ballard’s 1.2 kW NEXA fuel cell, but its

model can be trained to emulate other kinds of fuel cells. This work is currently under review in the

journal “Revista Iberoamericana de Automática e Informática Industrial”.

As a result of the above mentioned work it was observed that the model was extremely complex

with a considerable computational cost during the training phase. In order to have a simpler and

easier training to facilitate its implementation in real-time FC emulation systems diffusive mod-

els were investigated. These models had appropriately performed for the parameters estimation in

battery applications. Additionally, several models in which the fuel cells have a fractional order

behaviour have been reported, therefore the diffusive model could have a good performance in the

FC parameters estimation. The tests that have been conducted confirmed the good performance of

a diffusive model trained from our FC’s current and voltage experimental data. Currently we are

in the process of acquiring new training data to obtain a model that could reproduce the FC high

frequency behaviour, up to 50 kHz. The diffusive model that will be obtained should be compared

150

UNIVERSITAT ROVIRA I VIRGILI 
PEM FUEL CELL MODELING AND CONVERTERS DESIGN FOR A 48 V DC POWER BUS 
Carlos Alberto Restrepo Patiño 
Dipòsit Legal: T. 1049-2012 
 



with the experimental results already achieved by electrochemical impedance spectroscopy.

In one of the chapters of this thesis it was presented a real-time emulator of a PEMFC im-

plemented by means of a power source controlled using the MATLAB real-time toolbox which

additionally estimates the oxygen excess factor λO2 . This factor is very important because it in-

dicates the occurrence of the dangerous phenomenon of oxygen starvation when it is smaller than

one. Therefore, a low-cost real-time system that allows to estimate this important factor during FC

operation and return signals that can alert to the converters connected to the FC of a dangerous

behavior has been designed. The system is complete and the experimental results obtained are very

good. Therefore, we are in the process of writing an article to publish this work.

With respect of the work on DC-DC converters there are 5 different lines of continuation, some

of them currently ongoing:

• A detailed analysis of the buck-boost transition using the high resolution digital PWM module

of a DSP to improve both the efficiency and the harmonic contents of the converter variables

in this operation mode.

• The design of a small power bidirectional converter plant to test several FPGA -based digital

controls.

• The adaptation of the structure to be used in a high voltage power factor correction system.

The performances of Si and SiC devices will be investigated.

• The use of the developed module as the building block in the FC-based hybrid 48-V DC bus

approaches currently under research.

• The modelling of the discontinuous conduction modes of the converter unidirectional imple-

mentation.

151

UNIVERSITAT ROVIRA I VIRGILI 
PEM FUEL CELL MODELING AND CONVERTERS DESIGN FOR A 48 V DC POWER BUS 
Carlos Alberto Restrepo Patiño 
Dipòsit Legal: T. 1049-2012 
 



152

UNIVERSITAT ROVIRA I VIRGILI 
PEM FUEL CELL MODELING AND CONVERTERS DESIGN FOR A 48 V DC POWER BUS 
Carlos Alberto Restrepo Patiño 
Dipòsit Legal: T. 1049-2012 
 



Appendix A

Fast Transitions Between Current

Control Loops of the

Coupled-Inductor Buck-Boost

DC-DC Switching Converter

A.1 Abstract

An already published current control strategy for the coupled-inductor buck-boost converter is able

to change its aim from regulating the input current to regulate the output current, and viceversa,

depending on the converter operation point and the applied current references. Its two-PI-based

implementation main drawback is the slow transients that occur at the control objective alternation

points. Due to the magnetic coupling, the converter control-to-input and control-to-output current

small signal transfer functions exhibit similar first-order-like characteristics, which has made it pos-

sible to improve the previous implementation to a single-PI based one that exhibits faster and, in

some occasions, much faster transitions between input and output current regulation operation. The

experiments show also that the steady-state behavior of the converter is not affected by the new

control implementation.

A.2 Introduction

In distributed power generation systems, such as photovoltaic (PV) and fuel cell (FC) based power

supply systems, dc-dc converters are interconnected between two voltage-like sources. The primary
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task of these converters is to control the input and the output currents because, in order to assure

safe and reliable operation of the FC or PV systems, their currents must have appropriate ripples

and dynamics. Using the novel converter topology studied in [82] whose input and output current

control loops were designed in [2], the output voltage can be regulated above and/or below its input

voltage with high efficiency and wide bandwidth. We foresee that the converter can be used to

transfer energy between unregulated voltage sources, limiting the input and output powers with a

single and compact converter structure and with relatively simple controls like the one presented in

[2]. A version of the average current control method has been used in order to regulate the currents

[86], [90], and [89].

As it was already recognized in [2], the slow transition responses in the alternations between

the two current-loops is the main drawback of the converter dynamic behavior. This disertation

presents a procedure that allows to reduce the transition durations, which results in a dynamics

improvement. In Section A.3, the buck-boost dc-dc converter with coupled-inductors is analyzed

by means of the state-space averaging method [68] in order to obtain the control-to-input-current

and control-to-output-current small-signal transfer functions. Based on the obtained small-signal

models, the design of the control-loop compensators are studied in Section A.4. Section A.5 is

dedicated to the experimental verification of both the initial and the improved control strategies. A

purpose-built 800-W power stage and its two different control boards have been built and tested.

Finally, the conclusions of this appendix are in Section A.6.

A.3 Analysis of the coupled inductors Buck-Boost Converter
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Figure A-1: Schematic circuit diagram of the buck-boost converter with magnetic coupling between
inductors and damping network RdCd.

Let us consider the unidirectional buck-boost converter with magnetic coupling between the input

and output inductors, RC type damping network, current sense amplifiers of Acs gain, current sense

resistors of Rs value, and coupled inductors turns ratio 1:1 shown in Fig. A-1. For the analysis of

the converter it is assumed that the input-voltage vg and the output-voltage vo are voltage sources
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such as fuel cells, batteries, supercapacitors and regulated DC buses. Therefore, our primary focus

in the converter analysis is the control of its input and/or output current. Assuming a continuous

conduction mode (CCM) of operation, no parasitic effects, and a switching frequency much higher

than the converter natural frequency, the use of the state space averaging (SSA) method [68] to

model the converter leads to the following set of differential equations

diLm(t)
dt

=
vg(t)− vC(t)(1− d1(t))

Lm

diL(t)
dt

=
vC(t)d2(t) + vg(t)− vC(t)(1− d1(t))− vo(t)

L

dvC(t)
dt

=
−iL(t)d2(t) + (iLm(t) + iL(t))(1− d1(t))

C

−vC(t)− vCd
(t)

CRd

dvCd
(t)

dt
=

vC(t)− vCd
(t)

CdRd
(A.1)

where d1 and d2 are the duty cycles of the switches Q1 and Q2, respectively, and the overline stands

for averaging during one switching period. Assuming that the converter is in steady-state with

constant duty cycles d1(t) = D1 and d2(t) = D2, input-voltage vg(t) = Vg, and output-voltage

vo(t) = Vo, the operation point of the converter is obtained as ILm = Pg(D2+D1−1)
VgD2

, IL = Pg(1−D1)
VgD2

,

and VC = VCd
= Vg

1−D1
. Where Pg is the average input-power given by Pg = VgIg = Vg(ILm + IL).

Linearizing (A.1) around the equilibrium point described above leads to Laplace-domain control-

to-input-current and control-to-output-current transfer functions for both duty cycles d̂1(s) and

d̂2(s) from the small-signal SSA model. The frequency responses of the control-to-input-current

small-signal transfer function in boost mode Gigd1(s) ≡ îg(s)

d̂1(s)

∣∣∣∣
D2=1

, and in buck mode Gigd2(s) ≡

îg(s)

d̂2(s)

∣∣∣∣
D1=0

evaluated with the components values of the Table A.1 are shown in Fig. A-2. Similarly,

the frequency responses of the control-to-output-current small-signal transfer function in boost mode

GiLd1(s) ≡ îL(s)

d̂1(s)

∣∣∣∣
D2=1

and in buck mode GiLd2(s) ≡ îL(s)

d̂2(s)

∣∣∣∣
D1=0

are presented in Fig. A-3. For a

more detailed study of the small-signal transfer coefficients functions please refer to [2].

Table A.1: Components of buck-boost converter
Component Description Value

Lm Coupled inductors 35 µH
C Ceramic Capacitor 7 µF
L Inductor 35 µH
Rd Damping Resistor 1.5 Ω, 4 W
Cd MKT Capacitor 66 µF

Each of the transfer functions are studied in their respective mode and also at the border between

the two modes of operation, which is named the buck-boost mode [82, 2]. Several Bode plots
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Figure A-2: Frequency responses of the small-signal control-to-input-current transfer functions
Gigd1(s) and Gigd2(s) for Pg = 384 W and operation voltages that correspond to boost, lower-
border boost, upper-border buck and buck modes.

of the frequency responses obtained from MATLAB simulations of the linear small-signal model

corresponding to different operations modes are superimposed in Figs. A-2 and A-3, where the

maximum plotted frequency is 50 kHz, which correspond to half of the switching frequency. Although

the small-signal transfer functions Gigd1(s), Gigd2(s), GiLd1(s), and GiLd2(s) correspond to a high

order system, at high frequency [2], they present roughly first-order low-pass characteristics with

magnitude slopes of about −20 dB per decade and phase angles approaching −90◦ as is illustrated

in Figs. A-2 and A-3. The presence of zeros in the right half-plane is discarded because they would

have caused additional large phase drops that have not been detected in the figures. Therefore, the

design criteria proposed in [82] makes it possible to design wide bandwidth and high phase margin

current loops for the buck-boost converter that regulate the input or/and output current in all modes

of operation.
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Figure A-3: Frequency responses of the small-signal control-to-output-current transfer functions
GiLd1(s) and GiLd2(s) for Pg = 384 W and operation voltages that correspond to boost, lower-
border boost, upper-border buck and buck modes.

A.4 Average Current-Mode Control of a Coupled Inductor

Buck-Boost DC-DC Switching Converter

Now that the the small-signal transfer functions have been studied, the next step is to design the

control loop compensators. The current loop compensator is designed using a lag network with

a high frequency pole [90]. In [89], it is recommended to place the high frequency pole between

one-third and one-half of the switching frequency to attenuate switching noise while in [86] it is

recommended to locate this pole above half of the switching frequency. The intersection of both

criteria requires the high frequency pole to be placed at half of the switching frequency. The low

frequency pole of the compensator has been placed at the origin to eliminate the steady-state error

[70]. The zero should be placed at least one decade below half the switching frequency according to

the design guidelines proposed in [86]. Hence, the zero was placed at a tenth of the high frequency

pole. Finally, the gains of both compensators were adjusted experimentally for the worst case of

the frequency responses of the small-signal control-to-input/output current transfer functions of

Figs. A-2 and A-3 to ensure wide bandwidth and a minimum phase margin of 45o. The second order
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compensator transfer function of the input-current loop is

Gcg(s) = K1
(τ2s + 1)
s(τ1s + 1)

(A.2)

where the compensator parameters have been selected as follows: τ1 = 3.3 µs, τ2 = 33 µs, and

K1 = 590 s/A. The switching frequency fs is 100 kHz and the corresponding switching period Ts

is 10 µs. The output-current loop compensator transfer function is

GcL(s) = K2
(τ2s + 1)
s(τ1s + 1)

(A.3)

where K2 = 1298 s/A.

In [2] a manner to combine the two current loops (A.2) and (A.3) so that, in steady-state, one

of the currents is smaller than the input reference while the other, regulated by the active loop,

is equal to the input reference is described. Thus, the maximum average value of each current is

limited by its reference input as shown in Fig. A-4. Combining both current loops in this way is

a simple technique although if there is a transition between current control loops occurs, it is slow

because the PI for the loop not regulating the converter winds-up. One technique that can be used

to achieve fast transitions between control loops is pre-charging the capacitors of the current-control

integrators [92]. A simpler way to obtain fast transitions between control loops for this converter is

to take advantage of the similarity between the transfer functions (A.2) and (A.3) to use a single PI

as presented in Fig. A-5. This is an additional advantage to those already studied in previous papers

of this converter [82, 2]. The new proposed control has the same behavior as the one presented in

[2] but with the advantage of the possibility to perform faster transitions between control loops.

The dual PWM block presented in the Fig. A-4 is generated using the equations

d̂1(t) =





0 if U < 1

û(t) if U ≥ 1

(A.4)

d̂2(t) =





û(t) if U ≤ 1

0 if U > 1.

(A.5)

where u(t) is the single continuous control variable with small signal variation û(t) and steady-state

U widely described in [82, 2].

Fig. A-6 shows the final scheme of the buck-boost regulator that implemented the block diagram

illustrated in Fig. A-4. Diodes DA and DB enable the two current loops to be combined so that,
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Figure A-4: Small-signal block diagram of the converter and the interaction between current loops
presented in [2]. irL and irg are the small-signal variations of the output and input current references,
respectively. The rest of the variables are described in the text.

in steady-state, one of the currents is smaller than the input reference while the other, regulated by

the active loop, is equal to the input reference. Thus, the maximum average value of each current

is limited by its reference input. The dual PWM controller integrated circuit TL1451A generates

the switch activation signals u1(t) and u2(t). This circuit has two error amplifiers, an adjustable

oscillator and dual common-emitter output transistor circuits. The triangular signal oscillator has

been adjusted to a frequency of 100 kHz, an amplitude of Vpp = 0.7 V and a DC offset of 1.4 V.

Therefore, the forward voltage drop of DC must be approximately Vpp to obtain the control signals

vc1 and vc2, as illustrated in Fig. A-6. The variable resistor R8 makes it possible to adjust the

û

̂ig

̂iL
−

+

−

+

̂irL

̂irg

Small-signal SSA model

K2

K1

min

Combination of current loops

(τ2s+1)

s(τ1s+1)

Figure A-5: Small-signal block diagram of the converter and the interaction between current loops
presented in this work.
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overlapping zone in the buck-boost mode [82, 2].
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Figure A-6: Proposed simplified circuital scheme of the input and output current loop compensators
of the block diagram illustrated in Fig. A-4 by the buck-boost converter presented in Fig. A-1.

The steady-state relationship between the current sensed and their references are presented in

the following equations

Virg = Vos +
IgAcsRsR2

R1

VirL = Vos +
ILAcsRsR2

R1
. (A.6)

Fig. A-7 presents the final scheme of the fast buck-boost regulator that implements the block

diagram illustrated in Fig. A-5 using the same dual PWM generator shown in Fig. A-6. The operation

of this new scheme is quite similar to the Fig. A-6 one but with the difference that it only uses one

PI. The voltage drop in DC is added to the voltage reference Vos to compensate for the voltage

drops in DA or DB . In small-signal the circuit schemes of the Figs. A-6 and A-7 corresponds to the

block diagrams of Figs. A-4 and A-5, respectively.
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Figure A-7: Proposed simplified circuital scheme of the input and output current loop compensators
of the block diagram illustrated in Fig. A-5 by the buck-boost converter presented in Fig. A-1 and
using the dual PWM scheme shown in Fig. A-6.

A.5 Experimental results

To validate the controllers presented in the previous section, a prototype of the coupled-inductor

buck-boost converter depicted in Fig. A-8(a) with the input and output current controllers of Figs. A-

8(b) and A-8(b) has been developed and tested.

Fig. A-9 shows the experimental setup for measuring the time delays in the alternations between

loops of both control schemes. In Fig. A-10, the experimental characteristic of the transitions be-

tween current loops using two PI regulators are presented, while Fig. A-11 shows the same experiment

but using the fast current control with a single PI described in Figs. A-7.
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(a)

(b)

(c)

Figure A-8: Regulator prototype: (a) buck-boost power stage, (b) average current-mode control
board with two PI, (c) fast average current-mode control board.
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Figure A-9: Experimental configuration for testing the transitions between control loops: (a) DC
power supply of the input voltage vg, (b) input current reference signal generator, (c) output current
reference signal, (d) oscilloscope, (e) buck-boost converter, (c) buck-boost current control, (g) DC
power supply, (h) DC electronic load in constant voltage mode in parallel with g to emulate a voltage
source-like load.
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Figure A-10: Transitions between current control loops using two different input references. The
first reference is a 4 kHz triangular waveform to ensure variations in the average value of one of
the currents and the second reference is a 100 Hz square waveform that provides variations in the
other current. Boost mode with Vg = 32 V, Vo = 48 V: (a) triangular waveform in virg and square
waveform in virL, (b) square waveform in virg and triangular waveform in virL. Buck mode with
Vg = 48 V, Vo = 24 V: (c) triangular waveform in virg and square waveform in virL, (d) square
waveform in virg and triangular waveform in virL.
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Figure A-11: Fast transitions between current control loops using two different input references.
The experimental conditions, and the figures and variables plotted are the same of Fig. A-10.
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The time delays of the experiments are summarized in Table A.2. The table clearly shows that

the proposed control with a single PI ensures a faster transition in all operation modes in comparison

with the two-PI control scheme recently published.

Table A.2: Time delay between control loops.
Operation Input-current Output-current Two PI Fast

mode reference reference control control
waveform waveform delay delay

boost triangular square 1.92 ms 40 µs
192 Ts 4 Ts

boost square triangular 0.44 ms 70 µs
44 Ts 7 Ts

buck triangular square 0.45 ms 160 µs
45 Ts 16 Ts

buck square triangular 2.08 ms 50 µs
208 Ts 5 Ts

A.6 Conclusion and future works

An improved version of the current control scheme for the coupled-inductor buck-boost DC-DC

switching converter has been proposed and tested. With the new fast scheme, the control system is

able to switch from regulating the converter input current to regulate its output current, or viceversa,

in a shorter time. In the experiments, the durations of the transitions have been reduced between a

factor of almost three to up to forty eight times.
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Appendix B

Virtual instrument for the

characterization of inductors at

different operation points

B.1 Abstract

A virtual instrument for inductance characterization at different operation points is presented in

this appendix. The parameters obtained from the characterization of inductors using the virtual

instrument allows to make more realistic simulations and thus obtain better converter designs before

making them. The reports generated by the virtual instrument of the analyzed inductor will allow

to create a database to facilitate the search of the most appropriate inductor according to a desired

parameter and operation point. The virtual instrument was developed using LabVIEW and this

permits to control an inductance analyzer and a DC current source both of QuadTech manufacturer

through GPIB communication. By controlling these two instruments, it is possible to estimate

the parameters of different mathematic models of the tested inductor as a function of the DC

current and the frequency operation. The analyzed inductors are components used principally

for the manufacture of DC-DC converters. If the DC-DC converter control operates at constant

frequency, such as those using a PWM control, it is necessary to obtain an inductor model as a

function of the different operation points of the DC current at the control switching frequency. On

the other hand, if the control that uses the DC-DC converter has a variable frequency like when a

sliding mode control is used, it is necessary to know the inductor model as a function of the frequency

and DC current of operation. In both cases the virtual instrument is a powerful tool to obtain the

model that satisfies the requirements of the converter control. The experimental results presented
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in this appendix and the good agreement between the experimental and simulated results presented

in Chapters 2 and 3 validate the advantages of the virtual instrument.

B.2 Introduction

The use of power electronic circuits has been increasing significantly in the last decade, due to the

advances in power semiconductors and also because the required electronic devices have become

more sophisticated. One of the main applications of power electronics is the design and manufacture

of switching converters, which have become a vital element for the transformation of AC or DC

energy from renewable sources at market values.

The main drawback in the experimental validation of a converter is to build a prototype with

the component values corresponding with the ones used in the previous simulations. This is because

the selection of the values of the elements is a little different from those found in the laboratory,

which leads to differences between the designed and the real device. Another problem is that the

values of certain elements are not commercial and the designer must build the device himself, as in

the case of many inductors.

Usually for the construction of an inductor the designer has a program provided by the cores

manufacturer, that can estimate the number of turns and the wire size according to the full load

inductance, the DC current, the ripple current, the frequency, the temperature, the selected core, and

other parameters. A disadvantage of this methodology is that the value of the wire size is designed

with a solid wire or single-strand wire. At high frequencies, the current tends to flow along the

surface of the conductor, known as the skin effect, resulting of the increased power loss in the wire.

Stranded wire with an equivalent area reduces this effect, but this other type of wire changes the

inductance value to the one designed by the manufacturer’s core program. Another disadvantage of

this procedure is the determination of the inductance value of an inductor already manufactured and

whose technical characteristics of construction are unknown. Finally, this methodology can only be

used on cores provided by the manufacturer. Another alternative is to measure the inductance with a

handheld LCR meter but its measurement is at a constant frequency and at very low current, when in

fact the inductor is designed for a very different operation point and that is the reason why the value

provided by this device differs from the operating value of the inductor. In order to characterize

different already built inductors, improve the designs and make more realistic simulations of the

converters, a virtual instrument to characterize inductors was designed.

The remainder of this appendix is organized as follows. Section B.3 describes the components

that constitute the virtual instrument. Section B.4 provides a detailed description of the program
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developed in LabVIEW to control the virtual instrument. Finally, the last two sections present the

experimental results, and the conclusions of this appendix.

B.3 Components of the instrumentation system

A virtual instrument consists of an industry-standard computer or workstation equipped with pow-

erful application software, cost-effective hardware such as plug-in boards, and driver software, which

together perform the functions of traditional instruments [172]. Virtual instruments represent a fun-

damental shift away from traditional hardware-centered instrumentation systems towards software-

centered systems that exploit the computing power, productivity, display, and connectivity capabil-

ities of popular desktop computers and workstations [172, 173, 174].

The software is the most important component of a virtual instrument. With the right software

tool, it is possible to create an appropriate user interface that permits an easy handling of the ap-

plication. This software can define the acquisition control, the mathematical processing, the storage

and report of the signals and display the results to the user [172]. The virtual instrument was de-

veloped with LabVIEW software. This software is based on a graphical programming environment

with object-oriented programming [175]. LabVIEW allows the construction of data acquisition sys-

tems, instrumentation, control and test [176]. The hardware that conforms the virtual instrument

is composed of an desktop computer, GPIB connectors, an inductance analyzer and a source of bias

current as illustrated in Figure B-6.

Figure B-1: Device interconnection scheme of the virtual instrument.
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The original GPIB was developed in the late 1960s by Hewlett-Packard (called the HP-IB)

to connect and control programmable instruments that Hewlett-Packard manufactured. With the

introduction of digital controllers and programmable test equipment, it was necessary to create a

communication standard with a high-speed data transfer that permits the communication between

instruments and controllers from different manufacturers [177]. In 1975, the Institute of Electrical

and Electronic Engineers (IEEE) published ANSI/IEEE Standard 488-1975, the IEEE Standard

Digital Interface for Programmable Instrumentation, which contained the electrical, mechanical,

and functional specifications of an interfacing system [178, 179]. The original IEEE 488-1975 was

revised in 1978, primarily for editorial clarification and addendum [180, 181]. This bus is now used

worldwide and it is known by three names: General Purpose Interface Bus (GPIB), Hewlett-Packard

Interface Bus (HP-IB) and IEEE 488 Bus, because the original IEEE 488 document did not contain

any guidelines for a preferred syntax or format conventions [177].

The following subsections provide a brief description of the equipments used by the virtual

instrument to determinate the inductor model at different operation points.

B.3.1 Inductance Analyzer

The used inductance analyzer was the 1910 of the manufacturer QuadTech. It is designed to per-

form inductance and impedance measurements on coils and wire wound devices in a frequency range

between 20 Hz and 1 MHz [182]. This device has the following standard interfaces: an IEEE-488.2,

a RS-232 Handler and a serial printer. The analyzer has a wide range of measures as listed in Table

B.1 and a good accuracy as presented in Table B.2. An impedance that is neither a pure resistance

nor a pure reactance can be represented at any specific frequency by either a series or a parallel

combination of resistance and reactance. Such a representation is called an equivalent circuit. The

value of the primary measurement of a device depends on which equivalent circuit, series or parallel,

is chosen to represent it. The equivalent circuit to model inductors that is most commonly used

is a series RL network. However, the virtual instrument can analyze other equivalent circuits as a

parallel RL network or any combination of impedances presented in Table B.1.
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Table B.1: Parameter measurement range of the 1910 inductance analyzer

Parameter Measurement range

Inductance (L) 0.001nH to 99.999H

Capacitance (C) 1 pF to 9.9999 F

Dissipation factor (DF) 0.00001 to 99.999

Quality factor (Q) 0.00000 to 9999.9

Admittance (|Y |), Conductance (Gp) , Susceptance (Bp) 10 nS to 9999.9 S

Impedance (|Z|), Resistance (R), Reactance (Xs), 0.0001 mΩ to 99.999 MΩ

Equivalent series resistance (ESR)

Phase angle -180.00◦to +179.99◦

Table B.2: Accuracy parameter measure of the 1910 inductance analyzer

Parameter Fast speed Medium speed Low speed

Inductance (L) ±0.5% ±0.25% ±0.1%

Capacitance (C) ±0.5% ±0.25% ±0.1%

Dissipation factor (DF) ±0.005% ±0.0025% ±0.001%

Quality factor (Q) ±0.005% ±0.0025% ±0.001%

Admittance (|Y |), Conductance (Gp) , Susceptance (Bp) ±0.005% ±0.0025% ±0.001%

Impedance (|Z|), Resistance (R), Reactance (Xs), ±0.5% ±0.25% ±0.1%

Equivalent series resistance (ESR)

Phase angle ±1.8◦ ±0.9◦ ±0.18◦

B.3.2 Bias Current Source

The 1320 Bias Current Source is a programmable DC current source and DCR meter for the produc-

tion and laboratory testing of inductors [183]. The 1320 Bias Current Source provides 0-20 A DC

Bias and measures external resistance (DCR). A maximum of 5 units can be connected in parallel

to obtain 100 A of DC Bias Current. The accuracy and resolution of the bias current output for

different operation ranges are listed in Table B.1. The 1320 instrument is connected to the 1910

inductance analyzer using 4 BNC to BNC cables (1320-03). The set of 2 Binding Posts and 2 BNC

terminals labeled UNKNOWN are connected to the DUT using the 1320-01 cable lead set. The DC

Bias current is selectable as forward or reverse and is programmable from 20.0 A to 20.0 A. Test

conditions are stored and recalled from 50 internal memory locations. The 1320 instrument also has

the capability of performing up to 21 steps (tests) in any one test setup. An internal timer can be
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selected on/off and a delay time from 0-100 seconds can be programmed for any test [183]. Current

Output Mode is selectable as single, multiple manual or multiple automatic for multi-point current

inductance testing. Standard rear panel interfaces, for remote operation or communication with

other instrumentation, include an LCR Link, a Slave Link, an IEEE-488 interface and a Handler

interface. Up to 30 IEEE-488 addresses are programmable.

Table B.3: Main features of the 1320 Bias Current Source.
Bias current

Range Accuracy Resolution
0.000 A - 1.000 A ±[1% + 3mA] 0.001 A
1.010 A - 5.000 A ±2% 0.001 A
5.050 A - 20.000 A ±3% 0.010 A

B.4 Virtual instrument program for the characterization of

inductors

The virtual instrument program consists of a main function which is responsible for setting of the

two desired parameters that will be measured by the 1910 inductance analyzer. The program uses

two nested loops to make changes in the value of the current in the 1320 bias current source and the

value of the frequency in the 1910 inductance analyzer. Once the inductor characterization graph

has shown each of the parameters it stores all the acquired data. Fig. B-2 shows the block diagram

of the main function.

Figure B-2: Block diagram of the main function of the virtual instrument.
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Figure B-3: Block diagram of the subfunction responsible for reading and writing GPIB port pre-
sented in Fig. B-2.

Figure B-2 illustrates a subfunction detailed in Fig. B-3 that is called in each iteration of

the nested loop and it is responsible for communication between the virtual instrument and the

controlled equipment. This subfunction performs a sequence to ensure proper functioning of the

equipment to be controlled. The first sequence sends to the inductance analyzer the parameters of

the equivalent circuit to be measured and the range of frequency to characterize the inductor. The

following sequence sends the DC current value and the activating signal to the 1320 bias current

source connected to the inductor. The next step is a delay sequence to warranty that the inductance

analyzer acquires the measurements in the steady state current value and so avoid the transient

current. The last sequence, waits for the inductance analyzer to sent the measurements which will

be converted from string to number format using the subfunction illustrated in Fig. B-4. Finally,

the graphical user interface of the virtual instrument for the characterization of inductors developed

in LabVIEW is illustrated in Fig. B-5.

Figure B-4: Block diagram of the subfunction that converts the measurements sent by the analyzer
inductances from a text format to a number format.
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Figure B-5: Graphical user interface of the virtual instrument for the characterization of inductors.

B.5 Experimental results

Fig. B-6 shows the experimental configuration for the measurement of the inductor characteristic at

different operation points.

The first test used the 77206-A7 core manufacturer Magnetics and for the design of the inductor the

program named Magnetics Inductor Design Using Powder Cores provided by the same manufacturer

was applied. The inductor was designed to operate at a frequency of 20 kHz, a current of 4.5 A and

an inductance at full load of 33 µH. For the input parameters, the Magnetics program established

that the inductor should be built with 29 turns of a single-strand wire of an equal area of 18 AWG

(American Wire Gauge) as depicted in Figure B-7.

For the inductor built using the virtual instrument the series RL network by different operation

points of current and frequency were determined. The current was varying from 0.5 A in increments

of 0.5 A to 9 A, while the frequency was differing from 10 kHz to 29 kHz in increments of 1 kHz. Fig.

B-8(a) shows the series inductance and Fig. B-8(b) presents the series resistance of the analyzed

inductor. The virtual instrument can also produce various 2D curves that result from fixing one

of the parameters, current or frequency, and varying the other parameter at all operation points.

From Fig. B-8(a), that analyzes the characteristic of the inductor at a frequency of 20 kHz, Figure

B-8(c)is obtained.
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Figure B-6: Experimental configuration of the virtual instrument for the characterization of induc-

tors: (a) 1910 inductance analyzer, (b) inductor being tested, (c) 1320 bias current source.

Figure B-7: Result of magnetics program for the design of the 33 µH inductor.

175

UNIVERSITAT ROVIRA I VIRGILI 
PEM FUEL CELL MODELING AND CONVERTERS DESIGN FOR A 48 V DC POWER BUS 
Carlos Alberto Restrepo Patiño 
Dipòsit Legal: T. 1049-2012 
 



0
2

4
6

8
10

10

20

30

10

20

30

40

50

60

DC current [A]Frequency [kHz]

S
e
ri
e
s
 i
n
d
u
c
ta

n
c
e
 L

s
 [

µ
 H

]

(a)

0
2

4
6

8

10
15

20
25

30

0.04

0.06

0.08

0.1

0.12

0.14

0.16

DC current [A]Frequency [kHz]

S
e
ri
e
s
 r

e
s
is

ta
n
c
e
 R

s
 [

Ω
]

(b)

1 2 3 4 5 6 7 8 9
15

20

25

30

35

40

45

50

55

60

DC current [A]

S
e
ri
e
s
 i
n
d
u
c
ta

n
c
e
 L

s
 [

µ
 H

]

(c)

Figure B-8: Experimental results of the characterization of the 33 µH inductor using a circuit model

consisting of a RL network: (a) series inductance, (b) series resistance, (c) series inductance by a

constant frequency of 20 kHz. 176
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Fig. B-8(a) shows that for a current of 4.5 A the inductance value is of 33.48 µH. This value

is very close to that estimated by the Magnetics program of 33 µH in Fig. B-7, and therefore has

a small relative error of 1.43%. The experimental results obtained by the virtual instrument and

presented in Fig. B-8 behave as expected, since the series inductance should decrease with increasing

current, and series resistance should increase with operation frequency.

A very common practice to make inductors is to use stranded wire to reduce the impact of the

skin effect. Fig. B-9 shows a design of the inductor made with the Magnetics program, which

determines that for an inductance of 120 µH at a full load of 12 A,it is required for the 77083-A7

core to give 57 turns with a conductor single-strand wire of an area equal to 14 AWG. Instead, the

inductor was made using stranded wire with an equivalent size of 14 AWG. The current was varying

from 0.5 A in increments of 0.5 A up to 20 A, while the frequency was varying from 10 kHz to 29

kHz in increments of 1 kHz. Fig. B-10(a) shows the series inductance and Fig. B-10(b) presents

the series resistance of the analyzed inductor. The virtual instrument can also produce various 2D

curves which result from leaving one of the parameters fixed, current or frequency, and varying the

other parameter at all operation points. From Fig. B-10(a), which analyzes the characteristic of

the inductor at a frequency of 20 kHz, Fig. B-10(c)is obtained. From this figure an inductance

value of 165.6 µH was obtained by a current of 12 A. This value differs from the estimated by the

Magnetics program of 120 µH in Fig. B-9, and the relative error is therefore significant: 27.54 %. In

conclusion, the Magnetics program requires a single-strand wire for the construction of the inductor

and substantial differences are obtained with stranded wire. And that is why the virtual instrument

becomes a powerful tool for manufacturing and modelling inductors.

The last test analyzes the PE-51 511 toroidal inductor to verify the data provided by the Pulse

manufacturer. Figs. B-11(a) and B-11(b) show the RL network series parameters obtained by the

virtual instrument for the PE-51511 toroidal inductor. According to the catalog specification, this

inductor has an inductance of 43 µH for a current of 10 A and an operating frequency ranging

from 20 kHz to 50 kHz, but as shown in Figure B-11(c) the inductance values do not match with

the values given by the manufacturer. Once again, it has been shown how important it is to

characterize elements well so that the virtual instrument that designs simulations can more closely

mirror experimental results.
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Figure B-9: Result of magnetics program for the design of the 120 µH inductor.
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Figure B-10: Experimental results of the characterization of the 120 µH inductor using a circuit

model consisting of RL network: (a) series inductance, (b) series resistance, (c) series inductance at

a constant frequency of 20 kHz. 179
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Figure B-11: Experimental results of the characterization of the PE-51 511 toroidal inductor from

the Pulse manufacturer: (a)series inductance, (b) series resistance, (c)series inductance at a constant

current of 10 A. 180
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B.6 Conclusions

The virtual instrument presented in this appendix models various inductors at different operation

points in an automatic and simple form. The developed virtual instrument made it possible to create

a database for different inductors that have already been constructed and thus be able to select the

most appropriate inductor according to the operation point. The inductor characteristic can make

better simulations and designs of the converter’s components.
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