

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los
derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como
a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It
can be used for reference or private study, as well as research and learning activities or materials in the
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and
previous authorization of the author is required for any other uses. In any case, when using its content, full
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit
use or public communication from outside TDX service is not allowed. Presentation of its content in a window
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis
and its abstracts and indexes.

The Complexity of Angel-Daemons
and Game Isomorphism

Alina Garcı́a Chacón

PhD Thesis advised by Joaquı́m Gabarró

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya

April 2012

The Complexity of Angel-Daemons
and Game Isomorphism

Alina Garcı́a Chacón

PhD Thesis advised by Joaquı́m Gabarró

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya

April 2012

To my dear son Dani

“There is a driving force
more powerful than

steam, electricity and nuclear power:
the will.”

Albert Einstein

Abstract

The analysis of the computational aspects of strategic situations is a basic field in Com-
puter Sciences. Two main topics related to strategic games have been developed. First,
introduction and analysis of a class of games (so called angel/daemon games) designed
to asses web applications, have been considered. Second, the problem of isomorphism
between strategic games has been analysed. Both parts have been separately considered.

Angel-Daemon Games

A service is a computational method that is made available for general use through a
wide area network. The performance of web-services may fluctuate; at times of stress the
performance of some services may be degraded (in extreme cases, to the point of failure).
In this thesis uncertainty profiles and Angel-Daemon games are used to analyse service-
based behaviours in situations where probabilistic reasoning may not be appropriate.

In such a game, an angel player acts on a bounded number of “angelic” services
in a beneficial way while a daemon player acts on a bounded number of “daemonic”
services in a negative way. Examples are used to illustrate how game theory can be used
to analyse service-based scenarios in a realistic way that lies between over-optimism and
over-pessimism.

The resilience of an orchestration to service failure has been analysed - here angels and
daemons are used to model services which can fail when placed under stress. The Nash
equilibria of a corresponding Angel-Daemon game may be used to assign a “robustness”
value to an orchestration.

Finally, the complexity of equilibria problems for Angel-Daemon games has been
analysed. It turns out that Angel-Daemon games are, at the best of our knowledge, the
first natural example of zero-sum succinct games.

The fact that deciding the existence of a pure Nash equilibrium or a dominant strategy
for a given player is Σp

2-complete has been proven. Furthermore, computing the value of
an Angel-Daemon game is EXP-complete. Thus, matching the already known complexity
results of the corresponding problems for the generic families of succinctly represented
games with exponential number of actions.

Game Isomorphism

The question of whether two multi-player strategic games are equivalent and the com-
putational complexity of deciding such a property has been addressed. Three notions
of isomorphisms, strong, weak and local have been considered. Each one of these iso-
morphisms preserves a different structure of the game. Strong isomorphism is defined to
preserve the utility functions and Nash equilibria. Weak isomorphism preserves only the

player preference relations and thus pure Nash equilibria. Local isomorphism preserves
preferences defined only on “close” neighbourhood of strategy profiles.

The problem of the computational complexity of game isomorphism, which depends
on the level of succinctness of the description of the input games but it is independent
of the isomorphism to consider, has been shown. Utilities in games can be given suc-
cinctly by Turing machines, boolean circuits or boolean formulas, or explicitly by tables.
Actions can be given also explicitly or succinctly. When the games are given in general
form, an explicit description of actions and a succinct description of utilities have been
assumed. It is has been established that the game isomorphism problem for general form
games is equivalent to the circuit isomorphism when utilities are described by Turing Ma-
chines; and to the boolean formula isomorphism problem when utilities are described by
formulas. When the game is given in explicit form, it is has been proven that the game
isomorphism problem is equivalent to the graph isomorphism problem.

Finally, an equivalence classes of small games and their graphical representation have
been also examined.

Resum

L’anàlisi dels aspectes computacionals de situacions estratègiques és un camp bàsic de les
Ciències de la Computació. En aquesta tesi s’han desenvolupat dos aspects fonamentals
relacionats amb els jocs estratègics. Primer, s’ha considerat la introducció i l’anàlisi d’una
classe de jocs anomenada jocs d’àngel-dimoni, dissenyada per avaluar aplicacions web.
Segon, s’ha analitzat el problema de l’isomorfisme entre jocs estratègics. Ambdues parts
han estat considerades de manera independent.

Jocs d’Àngel-Dimoni

Un servei és un mètode de càlcul que es fa disponible a través de la xarxa per ser usat
de manera general. L’acompliment dels serveis web pot fluctuar. Fins i tot, en moments
d’estrès el funcionament d’alguns serveis es pot degradar, fins al punt de fallar en casos
extrems. Per tant, els perfils d’incertesa i els jocs d’Àngel-Dimoni s’utilitzen en aquesta
tesi per analitzar conductes basades en els serveis, en situacions on el raonament proba-
bilı́stic pot no ser apropiat.

En aquests jocs, el jugador àngel actua dins d’una sèrie limitada de serveis angeli-
cals d’una manera beneficiosa. No obstant això, el jugador dimoni actua dins de la sèrie
limitada de serveis demonı́acs d’una manera negativa. Alguns dels exemples mostrats
serveixen per il.lustrar com la teoria de jocs pot utilitzar-se en l’anàlisi d’escenaris basats
en serveis d’una manera realista, a mig camı́ entre l’optimisme i el pessimisme.

Addicionalment s’ha analitzat la resistència d’orquestracions a la manca de serveis.
Aquı́, els àngels i els dimonis s’empren per a modelar els serveis que poden fallar en
condicions de pressió. Els equilibris de Nash del joc corresponent d’Àngel-Dimoni es
poden utilitzar per assignar cert valor de “solidesa” a una orquestració. Per últim, s’ha
analitzat la complexitat de problemes d’equilibri en jocs d’Àngel-Dimoni. Aquesta classe
de jocs d’Àngel-Dimoni constitueixe el primer exemple natural de jocs succints de suma
zero, i aquest és un dels resultats d’aquesta tesi.

A més, s’ha pogut provar el fet que la decisió de l’existéncia d’un equilibri de Nash
pur o d’una estratègia dominant per a un jugador donat és Σp

2 completa. També, s’ha
comprovat que el càlcul del valor d’un joc d’Àngel-Dimoni és EXP-complet, la qual cosa
coincideix amb els coneguts resultats de complexitat dels problemes corresponents de les
famı́lies genèriques de jocs representats de manera succinta, amb un nombre exponencial
d’accions.

Isomorfisme de Jocs

En aquesta tesi també s’ha abordat la qüestió de si dos jocs de múltiples jugadors són
equivalents aixı́ com la complexitat computacional de decidir aquest tipus de propietat.

Addicionalment s’han considerat tres nocions de isomorfismes, Strong, Weak i
Local. Cadascun d’aquests isomorfismes conserva una estructura diferent del joc.
L’isomorfisme Strong es defineix per preservar les funcions d’utilitat i els equilibris de
Nash. L’isomorfisme Weak conserva únicament les relacions de preferència del jugador i
per tant, els equilibris de Nash purs. L’isomorfisme Local conserva les preferències
definides només en veı̈natge dels perfils d’estratègia.

També s’ha demostrat que la complexitat computacional del problema de
l’isomorfisme de joc depèn del nivell de la concisió de la descripció dels jocs d’entrada,
però és independent de quin dels dos tipus d’isomorfismes es considera. Les utilitats en
els jocs, poden venir representades de manera succinta per màquines de Turing, circuits
booleans o fórmules booleanes. Fins i tot, poden ésser representats explı́citament per
taules.

Les accions es poden representar de forma explı́cita o de forma succinta. Quan els jocs
es troben en forma general, s’assumeix una descripció explı́cita de les accions aixı́ com
una breu descripció dels serveis públics. S’ha establert que el problema de l’isomorfisme
de jocs en forma general, és equivalent al isomorfisme de circuits quan les utilitats són
descrites per màquines de Turing i al problema de l’isomorfisme de fórmules booleanes
quan les utilitats són descrites per fórmules. Quan el joc es descriu en forma explı́cita,
s’ha pogut comprovar que el problema d’isomorfisme de joc és equivalent al problema
d’isomorfisme de grafs.

Finalment, s’han examinat algunes classes d’equivalència de jocs petits, aixı́ com la
representació gràfica dels mateixos.

Resumen

El análisis de los aspectos computacionales de situaciones estratégicas es un campo básico
de las Ciencias de la Computación. Han sido desarrollados dos tópicos fundamentales
relacionados con los juegos estratégicos. Primero, se ha considerado la introducción y el
análisis de una clase de juegos llamada juegos de angel-demonio, diseñada para evaluar
aplicaciones web. Segundo, se ha analizado el problema del isomorfismo entre juegos
estratégicos. Ambas partes han sido consideradas de modo independiente.

Juegos de Angel-Demonio

Un servicio es un método de cálculo que se hace disponible a través de la red para ser
usado de modo general. El desempeño de los servicios web pueden fluctuar. Incluso, en
momentos de estrés el funcionamiento de algunos servicios pueden ser degradados, hasta
el punto de fallar en casos extremos. Por lo tanto, los perfiles de incertidumbre y los
juegos de Angel-Demonio se utilizan en esta tesis para analizar conductas basadas en los
servicios, en situaciones en que el razonamiento probabilı́stico puede no ser apropiado.

En tales juegos, el jugador ángel actúa dentro de una serie limitada de servicios an-
gelicales de una manera beneficiosa. Sin embargo, el jugador demonio actúa dentro de la
serie limitada de servicios demonı́acos de un manera negativa. Algunos de los ejemplos
mostrados sirven para ilustrar como la teorı́a de juegos puede ser utilizada en el análisis de
escenarios basados en servicios de una manera realista a medio camino entre el optimismo
y el pesimismo.

Adicionalmente se ha analizado la resistencia de orquestaciones a la falta de servicios.
Aquı́ los ángeles y los demonios se utilizan para modelar los servicios que pueden fallar
en condiciones de presión. Los equilibrios de Nash del juego correspondiente de Angel-
Demonio pueden utilizarse para asignarle cierto valor de “solidez” a una orquestación.

Por último, se ha analizado la complejidad de problemas de equilibrio en juegos de
Angel-Demonio. Resulta que esta clase de juegos de Angel-Demonio son el primer ejem-
plo natural de juegos sucintos de suma cero, en el mejor de nuestro conocimiento.

Además se ha podido probar el hecho de que la decisión de la existencia de un equi-
librio de Nash puro o de una estrategia dominante para un jugador dado es Σp

2 completo.
También, se ha comprobado que el cálculo del valor de un juego de Angel-Demonio
es EXP-completo, lo cual coincide con los conocidos resultados de complejidad de los
problemas correspondientes de las familias genéricas de juegos representados de manera
sucinta, con un número exponencial de acciones.

Isomorfismo de Juegos

En esta tesis también se ha abordado la cuestión de si dos juegos de múltiples jugadores
son equivalentes ası́ como la complejidad computacional de decidir este tipo de propiedad.
Adicionalmente se han considerado tres nociones de isomorfismos, Strong, Weak y Local.
Cada uno de estos isomorfismos conserva una estructura diferente del juego. El isomor-
fismo Strong se define para preservar las funciones de utilidad y los equilibrios de Nash.
El isomorfismo Weak conserva únicamente las relaciones de preferencia del jugador y por
lo tanto los equilibrios de Nash puros. El isomorfismo Local conserva las preferencias
definidas solamente en vecindad de los perfiles de estrategia.

También se ha demostrado que la complejidad computacional del problema del
isomorfismo de juego depende del nivel de la concisión de la descripción de los juegos
de entrada, pero es independiente de cuál de los dos tipos de isomorfismos se considera.
Las utilidades en los juegos, pueden venir representadas de forma sucinta por máquinas
de Turing, circuitos booleanos o fórmulas booleanas. Incluso, pueden representarse
explı́citamente por tablas.

Las acciones se pueden representar de forma explı́cita o de forma sucinta. Cuando
los juegos se encuentran en forma general, se asume una descripción explı́cita de las
acciones ası́ como una breve descripción de los servicios públicos. Se ha establecido que
el problema del isomorfismo de juegos en forma general, es equivalente al isomorfismo
de circuitos cuando las utilidades son descritas por máquinas de Turing y al problema
del isomorfismo de fórmulas booleanas cuando las utilidades son descritas por fórmulas.
Cuando el juego se describe de forma explı́cita, se ha podido comprobar que el problema
de isomorfismo de juego es equivalente al problema de isomorfismo de grafos.

Finalmente, se han examinado algunas clases de equivalencia de juegos pequeños, ası́
como la representación gráfica de los mismos.

Acknowledgements

I have spent several years of the Software department (LSI)1 in the ALBCOM2 research
group, developing this PhD thesis. Time, in which I accumulated knowledge and experi-
ence about research. Many people around have given me an inconditional support make
it possible that I am here today. These words are dedicated to all these people.

Firstly, I would like to thank my advisor Joaquim Gabarró for being always very ac-
cessible. I am specially grateful for his advice and patience. In addition, for giving me
the opportunity to work with him and Maria J. Serna.

Many thanks to the secretaries, who gave me advice and help with my young son.
Especially thanks to Mercè Juan who has always helped with administrative tasks during
these long years as a PhD student.

It is essential to devote a few words of gratitude to those institutions and projects,
which economically have supported our work. First, the FPI scholarship gratefully3,
which gave me four years to devoted to the study of computational game theory. Thanks
as well, to the following projects:

- Técnicas de Optimización Avanzadas para Problemas Complejos (TRACER),
(CYCIT TIC2002-04498-C05-03).

- Fundamental Aspects of Global Computing Systems (FLAGS), (EU IST- 2001-
33116).

- Autoorganización en Sistemas de Comunicación Emergentes (ASCE),
(MEC-TIN2005-09198-C02-02).

- Algorithmic principles for building efficient Overlay computers (AEOLUS), (FET
pro-actives Integrated Project 15964).

- FP6 Network of Excellence CoreGRID founded by the European Commision (Con-
tract IST-2002-004265).

- Métodos Formales y algoritmos para el diseño de sistemas (FORMALISM), (MEC-
TIN2007-66523).

I am also very grateful to the eTUMOUR4 project, which gave me the possibility to
work in the GABRMN5 group at the UAB6 university. This research group has opened

1http://www.lsi.upc.edu
2ALBCOM-SGR-2013 Grup de Recerca Reconegut: Algorismes, Bioinformática, Complexitat i Métodes Formals.
3Ministerio de Ciencia y Tecnologı́a, beca FPI BES-2003-2361
4http://www.etumour.net/
5http://gabrmn.uab.es/
6http://www.uab.cat/

me the door to a very interesting world: brain tumours research. I am especially thankful
to Carles Arus, the group’s director, for giving me some time to finish up this thesis. Sim-
ilarly, many thanks to Margarida Julià Sapé for her English language support. Moreover,
to be open to the computational issues of game theory.

I am very grateful to my parents Jorge and Aı́da, whose infinite love and support have
always been there and also, given me forces to do everything I do. Finally, I want to thank
to Daniel and my son Dani, for their love, patience and constant support.

But nothing would have been possible without the help of one person, Francesc Pun-
tas. He gave me the chance to live in Barcelona. Consequently, thanks too to this city,
which has give me the opportunity to realise my dreams.

Contents

1 Algorithmic Game Theory: Angel-Daemons and Isomorphisms 1
1.1 Algorithmic Game Theory and Isomorphisms 1
1.2 Isomorphisms on Game Theory . 3
1.3 Angel-Daemon Games and Web Orchestrations 4
1.4 Overview of this thesis . 6
1.5 Thesis outline . 8
1.6 Notes . 9

2 Preliminaries on Games 11
2.1 Strategic and Extensive Games . 11
2.2 Definitions and Preliminaries . 15
2.3 Notes . 20

I Angel-Daemon Games 23

3 Preliminaries on Web Orchestrations 25
3.1 Web-services and Orchestration versus Choreography 25
3.2 Orchestration and Game Theory . 31
3.3 Notes . 31

4 Bounded Site Failures: an Approach to Unreliable Web Environments 33
4.1 Unreliable Environments and Risk Management 33

4.1.1 Orchestrations: The Number of Published Values 36
4.2 Assessing Orchestrations . 38
4.3 Two Player Games: The Angel-Daemon Case 39
4.4 Maximisation and Minimisation Approaches 43
4.5 Properties of Uncertainty Profiles and Assessments 45
4.6 Notes . 51

xv

5 On the Complexity of Equilibria Problems in Angel-Daemon Games 53
5.1 Angel-Daemon Games . 53
5.2 Strategic Games and Succinct Representations 54
5.3 Orc and Angel-Daemon Games . 56
5.4 The Complexity of the EPN Problem . 56
5.5 Computing the Value of Angel-Daemon Game 60
5.6 Deciding the Existence of Dominant Strategies 64
5.7 Notes . 64

II Computational Issues of Game Isomorphism 67

6 Preliminaries on Game Isomorphisms 69
6.1 Strong, Weak and Local Game Isomorphism 71
6.2 Classical Complexity’s Problems . 73
6.3 Notes . 75

7 The Complexity of Game Isomorphism 77
7.1 The ISISO and ISO Problems . 77
7.2 Complexity Results for Strong Isomorphisms 79
7.3 Weak Isomorphisms . 99
7.4 Notes . 110

8 On the Hardness of Game Equivalence Under Local Isomorphism 111
8.1 The Isomorphism Problem . 111
8.2 From Strong Isomorphism to Local Isomorphism 114
8.3 From General Games to Binary Actions Games 118
8.4 From Local Isomorphism on Binary Action Games to Strong Isomorphism 126
8.5 The Complexity of Local Isomorphism 127
8.6 Notes . 129

III Conclusions and Future Work 131

9 Conclusions and Future Work 133

IV Appendices 139

A Arranging a Meeting using Reputation 141

B IT System example 145
B.1 Different Failure Scenarios . 148

C Small Games. Graphic Representation 153
C.1 Local Nash Isomorphism . 153
C.2 Equivalence Classes of Games . 154

V Publications and Projects 169

A List of Publications 171

B List of Projects 173

Bibliography 175

Chapter 1

Algorithmic Game Theory:
Angel-Daemons and Isomorphisms

Game theory is a branch of Mathematics, which was conceived as a tool to analyse sit-
uations involving conflict of interests and strategies. It served as theoretical model in
the modern Economics. This theory has military applications, as well as in the fields of
sociology, biology and currently, in informatics.

1.1 Algorithmic Game Theory and Isomorphisms

Game Theory. A game is defined as a competitive situation between two or more players
under specified rules. Therefore, any sort of activity involving contenders, which interact
according to well-defined rules, may be considered as a game. Specifically, a strategic
game represents a situation where two or more players have a set of actions, by which
each may gain or lose, depending on what others choose to do or not to do. These situ-
ations are uncertain, because no player knows for sure what the other player is going to
decide. Consequently, Game theory studies situations where multiple contenders make
decisions in order to maximise their respective gains. Of course, chess, poker and bridge
are instances of games.

The first known discussion connected to game theory took place in 1713, when
J. Waldegrave wrote a letter in which he provided a solution to a two-person version of a
card game. Unfortunately, a generalised theoretical analysis of games was not further
pursued until the publication of Recherches sur les principes mathematiques de la
theorie des richesses of A. Augustin Cournot’s in 1838 [26], in which Cournot
considered a duopoly and presented a solution as a restricted version of what would later
be defined as Nash equilibrium.

Nevertheless, game theory did not really exist as a unique and well-defined field until
J. Neumann and O. Morgenstern published a series of papers starting in 1928, and culmi-

1

1.1. Algorithmic Game Theory and Isomorphisms 2

nating in 1944 with the book The Theory of Games and Economic Behavior [81]. This
book presented the method for finding optimal solutions to two-person zero-sum games,
where one’s gain means the other’s loss.

During the period 1928 to 1950, work on game theory was primarily focused in co-
operative game theory, which analyse optimal strategies for groups of individuals, which
have agreed on the strategies to follow. At the same time, J. Nash [80] developed a defi-
nition for an optimum strategy for multi-player games, where each player chose his best
response to the choices of the other players. If all players announce their strategies simul-
taneously, nobody will want to reconsider his own choice and, such a situation is known as
Nash equilibrium. Besides, Nash equilibrium is the most famous of equilibrium concepts
in game theory.

From 1950 onwards, game theory experienced a flurry of activity. During this period
of time, games in extensive form, and repeated games were developed. In addition, the
first applications of game theory to philosophy and political science occurred.

Algorithmic Game Theory. At the beginning, mathematicians, economists and theorists
never worried about computational representation of games. The classic book on Game
theory by M. Osborne and A. Rubinstein [84] in 1994 does not explore the computability
side of Nash equilibrium.

In game theory, the computability side of Nash equilibrium is a very active research
field. The idea of applying computational complexity to analyse Nash equilibrium was
introduced by C. Papadimitriou [85] in his well known paper Algorithms, games, and the
Internet, at 2001. In this work, C. Papadimitriou presented his ideas about the growing
interaction between game theory and, more generally, Economic theory and Theoretical
Computer Science, mainly in the context of the Internet, where C. Papadimitriou invited
to study into the frontier between these three research areas. Algorithmic game theory
has emerged as a result of such a fusion.

The Algorithmic game theory applies analytical tools from computer science to game
theory and/or economics, and also considers if the efficient computability of best response
is or not a natural consideration for algorithm designer. This allow us to consider the not
rational behaviour of agents, contrary to what classical economics says, and to study
equilibria problems under bounded rationality. It also seeks optimal solutions or the im-
possibility to obtain results for specific problems, and adopts reasonable polynomial-time
computational complexity as a constraint on the behaviour of systems.

This theory considers different ways to represent the input of games. However, all
game representations [82] affect the complexity of problems associated with them. In this
line of research, C. Álvarez et al. [8, 9] studied the computational complexity of deciding
the existence of a pure Nash equilibrium in multi-player strategic games, addressing two

Chapter 1. Algorithmic Game Theory: Angel-Daemons and Isomorphisms 3

questions: How can we represent a game? and how can we represent a game with polyno-
mial payoff functions? In order to resolve these questions, the authors considered different
cases, depending on how are listed the set of actions and payoff functions of each player
in a game. If the actions are described explicitly, by listing set of actions and by tabulat-
ing the payoff functions or more succinct representations, in which the payoff functions
are described in terms of Turing machines TM, on what they called standard form. If the
actions are described explicitly, by giving the list of the actions allowed to each player,
what they called general form, or succinctly, by giving the length of the actions, what they
called the implicit form. To this effect, the Angel-Daemon games proposed in this thesis,
constitute a natural class of strategic games with a succinct representation.

The two main topics developed in this work will be presented: the game isomorphisms
and the Angel-Daemon games.

1.2 Isomorphisms on Game Theory

Morphisms have been well studied in mathematics, as an abstraction of a structure-
preserving mapping between two mathematical entities. Therefore, game isomorphism
is a key concept that may be viewed as an appropriate model to identify structural simi-
larity between strategic or extensive games. First, in 1947, J. von Neumann and O. Mor-
genstern [81] introduced a notion of strategic equivalence. Two years later, in 1949,
J. C. C. McKinsey [72] was interested in the concepts of isomorphisms in games, and
strategic equivalence. In 1951, J. Nash [80] defined the concept of automorphism or
symmetry of a game, as a permutation of its pure strategies, if certain conditions were sat-
isfied. More recently, in 1988, J. C. Harsanyi and R. Selton introduced other definitions
of isomorphism [49] for strategic games.

One of the goals within game theory consists in considering a particular problem as a
game and then restricting its space of possible solutions. In this sense, and given the emer-
gence of this theory, another important goal has been to identify structural equivalence be-
tween games. Since it is interesting to know which transformations leave a game without
changes, i.e., which transformations preserve all relations and operations in a given game,
the following question could be asked: If two strategic games are equivalent, does this
equivalence subsist when both games are represented as extensive games? Otherwise, in
connection to symmetry, do two symmetric strategic games loose their symmetry when
represented as extensive games? This idea was studied by B. Peleg, J. Rosenmüller, and
P. Sudhölder [90, 108] in 2000 and A. Casajus [22, 23] in 2003 and 2006 respectively,
among others.

To our knowledge, no previous studies reported on the complexity of game isomor-
phisms, despite this being a significant issue in computational game theory. This context

1.3. Angel-Daemon Games and Web Orchestrations 4

led us to ask questions like: Whether two games are equivalent or not? And, given the
different ways of representing games, what is the computational complexity of deciding
when two games are equivalent or not?

1.3 Angel-Daemon Games and Web Orchestrations

In order to study the computational complexity of problems on games it is fundamental to
define how an input game is represented. The complexity of a problem is analysed taking
into account the size of the input. Clearly, the size of a game representation depends
mainly on the players number and on the action set size. In the same way, and also as
part of the game description, the utility function of each player depends on the number of
strategy profiles. Therefore, it is important to make clear how to describe the players set,
and for each player their actions set and utility functions.

In this thesis. is defined an Angel-Daemon game, as an example of zero-sum succinct
games, in the sense of [9, 38]. This class of games has been defined in order to analyse
the behaviour of orchestrations over unreliable environments. Similarly that unreliable
environments, the computational models inherent in many Web applications have been
considered. These models consist in acquiring data from remote services, performing
calculations with these data, and invoking other remote services with the results. Addi-
tionally, it is often necessary to rely on alternative services to execute the same calculation,
in order to guard against system failures.

The first discussion about the importance of concurrency, communication and syn-
chronisation in software systems was presented by E. Dijkstra [30], in 1965:

“The applications are these in which the activity of a computer must include
the proper reaction to a possible great variety of messages that can be sent to
it at unpredictable moments, a situation with occurs in process control, traffic
control, stock control, banking applications, automation of information flow in
large organisations, centralized computer service, and, finally, all information
systems in which a number of computers are coupled to each other.”

Some clear examples of the importance of finding solutions that require orchestration
and choreography of concurrent and distributed services are: the networks applications
with many distributed systems available, the increasing dependency of complex work-
flows of data analysis, the workflows among organisations and individuals, and finally the
problems associated to acquiring data from one or more remote services. All of these may
be fail in their components and communications. In addition, it is also necessary to be
able to handle time-outs, and arbitrary delays, among others instances.

Orchestration represents control from the perspective of one party. Choreography

Chapter 1. Algorithmic Game Theory: Angel-Daemons and Isomorphisms 5

tracks the message sequences among multiple parties and sources, i.e., public message
exchanges that occur between web-services.

Practical solutions exist, requiring orchestration of concurrent and distributed ser-
vices, that may have failures in their components and communications. These solu-
tions are based on programming languages, and rely on threads for concurrency and
semaphores for synchronisation. But in spite of these the programming of concurrent
systems is difficult. Theoretical and very flexible models have been developed for con-
currency, for instance, π-Calculus by R. Milner [74] and C. A. R. Hoare [51], that include
constructs for concurrency and channels for communication and synchronisation. Petri
nets by J. L. Peterson [94], have been developed to describe reactive systems.

The orchestration language Orc by J. Misra and W. Cook [76, 58, 25, 59] is a very
useful tool that allows to model concurrency. It also allows to describe orchestrations
of distributed and management systems such as these used in the context of Web. An
Orc language is a process calculus in which basic services, like user interaction and data
manipulation, are implemented by primitive sites. This language provides constructs to
orchestrate the concurrent invocation of sites to achieves a goal while managing time-
outs, priorities, and failures of sites or communications. In addition, this language has
already been used to implement a variety of traditional concurrent programming patterns,
some of which overlap with the workflow patterns, as the W. van der Aalst’s patterns [3].

A very important aspect to take into account when designing computational envi-
ronments, Web applications, workflows, is Risk management. This is a well-established
discipline in finance [60, 53] which has also been applied to software design [112] and
web-services [62, 63]. Risk is quantifiable and, may be measured using probability. In
contrast, uncertainty refers to something less tangible and, consequently, more difficult
to quantify. Theoretical economists have long been trying to model uncertainty (see [6]
Chapter 11). Game theory has been used in order to analyse the behaviour of distributed
systems by modelling players as agents, which want to maximize their utilities. game
theory, has also been used to assess some aspects of risk within computer science (e.g. an
analysis of system failure is given in [77]). In this sense, in 1999, K. Eliaz introduced a
notion of fault tolerance implementation [32]. In this paper he investigated the problem
posed by the failure of a limited number of players. These faulty players have defined
their own preferences well, but for some reason they do not behave in an optimal way,
therefore not act in accordance to their preferences.

Selfishness in systems has also been studied, which may cause suboptimal computa-
tions. T. Moscibroda and S. Schmid and R. Wattenhofer published a work [77] in 2006,
where they considered a Price of Malice in a game over a distributed system. This game
modeled the containment of the spread of viruses. In such game, each node could choose
whether or not to install anti-virus software. A virus started from a random node, to infect

1.4. Overview of this thesis 6

all neighbouring nodes which did not have anti-virus software installed.
The analysis of the behaviour of distributed systems with a certain number of faulty

components, which may show a kind of malicious behaviour, is expressed as the Byzantine
Generals Problem [67] published by L. Lamport, R. Shostak and M. Pease in 1982. They
proposed solutions in order to implement a reliable computer system.

Therefore, the Angel-Daemon game associated to a uncertainty profile for a given Orc

expression E, allows to analyse the behaviour of orchestrations over unreliable environ-
ments. For such an analysis, the risk profile1 concept [44] has been introduced, where a
distinction is made between risk and uncertainty [106].

These games have two players, angel and daemon. The A set represents sites that fail
due to misbehaviour or other reasons, but that essentially are not malicious, and are called
angelic. While the set D represent the sites with malicious behaviour, and thus called
daemonic. In general, each site is assumed to have probability of failure and distinct sites
are assumed to be independent. As such an Angel-Daemon game is a zero-sum game it
follows [113] that all Nash equilibrium of the game will have the same utility for the angel,
which is known as the game value. The game value is used as a measure for assessing
the expected behaviour of expression E in the environment described by the uncertainty
profile [39, 44].

1.4 Overview of this thesis

The thesis objectives. This thesis has two objectives: first, to study the complexity of
equilibrium problems for a class of strategic zero-sum games, called Angel-Daemon
games. Second, to deepen the research on computational complexity of game
isomorphisms and study how the game representations affect the complexity of
problems.

Angel-Daemon Games. This class of zero-sum games is considered, in order to evaluate
Orc expressions in an untrusted environment, by means of game theory. Was analysed the
effect of a number of service failures in Web applications, modelled as Orc expressions in
which sites are called to perform sub-computations. On the other hand, the complexity of
deciding the existence of pure Nash equilibrium or a dominant strategy for a given player
is considered. Furthermore, the complexity of computing the value of an Angel-Daemon
game is also considered. Thus, matching with the already known complexity results of
the corresponding problems for the generic families of succinctly represented games with
exponential number of actions. In particular, the computational complexity of the fol-

1The concepts ”risk profile” and ”uncertainty profile” are the same. From now onwards in this thesis, we will refer
as ”uncertainty profile”.

Chapter 1. Algorithmic Game Theory: Angel-Daemons and Isomorphisms 7

lowing problems on angel-daemon games and on games with succinct representations are
analysed.

Exists pure Nash equilibrium? (EPN). Given a game Γ, decide whether Γ has
a pure Nash equilibrium.

Exists dominant strategy? (EDS). Given a game Γ, and a player i, decide
whether there is a dominant strategy for player i in Γ.

Game Value (GV). Given a zero-sum game Γ, compute its value.

The results include a characterisation of the complexity of all the problems introduced
above, when the input is restricted to be an Angel-Daemon game, showing that:

- Deciding the EPN and the EDS problem are Σp
2-complete, and

- The problem GV is EXP-complete.

This provides the first natural family of succinct games for which such complexity
results can be established. Similar result for general families were already known for
strategic games in implicit form [9] and succinct zero-sum games [38].

Game Isomorphisms. In order to understand the computational complexity of game iso-
morphism, two problems related to games and morphisms have been considered.

Is Game Isomorphism (ISISO). Given two games Γ, Γ′ and a game mapping
ψ : Γ → Γ′, decide whether ψ is a game isomorphism.

Game Isomorphism (ISO). Given two games Γ, Γ′, decide whether there exists
a game isomorphism between Γ and Γ′.

To study the computational aspects of isomorphism problems on strategic games, it
was first needed to determine the way in which games and morphisms are represented
as inputs to a program. For the representation of strategic games, the proposal given in
[9] was adopted, and two representations was considered, each with a different level of
succinctness: when a game is given in general form, the actions are listed explicitly but
utilities and mappings are given by deterministic Turing machines TM. In the explicit
case utilities are stored in tables. In both cases morphisms are always represented by
tables. This is not a restriction as in polynomial time a morphism representation can be
transformed by Turing machines TM into a tabular representation by tables, because the
actions are explicitly given.

The main contributions are to the following problems:

- The ISISO problem is coNP-complete, for games given in general form, and belongs
to NC when games are given in explicit form.

1.5. Thesis outline 8

- The ISO problem belong to Σp
2 , for games given in general form, and to NP when

games are given in explicit form.

- The ISO problem is equivalent to the boolean circuit isomorphism problem, for
games in general form, and to the graph isomorphism problem, for games given in
explicit form.

Besides the above generic forms of representing games another particular class of
strategic games was considered, that was called formula games. Formula games are (as it
was showed) equivalent in power of representation to a subfamily of the weighted boolean
formula games introduced in [71]. The complexity of the ISO problem when the games
correspond to a general form, that is, the number of bits controlled by each player is
a constant. For formula games in general form, was showed that the ISO problem is
equivalent to boolean formula isomorphism. Recall that the complexity of the boolean
formula isomorphism problem is the same as that of circuit isomorphism, however it is
conjectured that both problems are not equivalent.

1.5 Thesis outline

This thesis consists of two parts, organized in 9 chapters. Chapter 2 is a general introduc-
tion to game theory, containing the most important definitions and notations used in this
work.

PART I: Angel-Daemon Games.

- By way of a specific introduction to each area of research, an introductory
Chapter 3 is dedicated to orchestration evaluation of Web applications
using game theory aspects, and all the elements and concepts related.

- In chapter 4 Angel-Daemon games are evaluated, as a method of assess-
ing Orc expressions in untrusted environments. The effect of a number of
service failures during the execution of a Web orchestration is analysed
according to this model.

- Chapter 5 is concerned to the complexity of equilibria problems for called
Angel-Daemon games.

PART II: Game Isomorphisms and complexity.

- Introduction chapter 6 for this area, and with provides the terminology
used in Algorithmic game theory and game isomorphisms.

- Chapters 7 and 8 refer to show the work performed in game isomor-
phisms. The first one is concerned to the complexity of strong and weak

Chapter 1. Algorithmic Game Theory: Angel-Daemons and Isomorphisms 9

game isomorphisms and the second one, studies the complexity of local
game isomorphisms.

PART III: Conclusions.

- The conclusions of this work and the future lines of research, are pro-
posed in chapter 9.

Finally, most references to related works have been moved out of the main chapter
and have been placed a notes section at the end of each chapter.

1.6 Notes

Game Theory. For a general introduction to game theory, and mathematical definitions
of strategic and extensive games refer to An Introduction to the game theory of M. Os-
borne and A. Rubinstein [84] published on 1994, and Theory of Games and Economic
Behavior of John von Neuman and Oscar Morgenstern [81]. A very popular concept and
also very important in this theory, is called Nash equilibrium. The contributions was writ-
ten by John Nash when he was 21-years old. In this dissertation he presented the Nash
Equilibrium for strategic non-cooperative games and proposed a very compact definition
of game morphisms [80, 79]. On the formal side, the existence of a proof was one of
the first applications of Kakutani’s fixed-point theorem. In addition, refer to The Nash
equilibrium: a perspective [52] by Charles A. Holt and Alvin E. Roth. It is important to
read the proposed isomorphism among strategic games, by J. Harsanyi and R. Selten [49]
in 1998.

Algorithmic Game Theory. Other interesting results are When are two games the same?
by J. van Benthem [111] and Game Transformations and Game Equivalence by B. de
Bruin [29].

In order to understand the complexity in game theory, it is crucial be familiar with [45]
Computers and Intractability: A Guide to the Theory of NP-completeness from M. Garey
and D. Johnson. From the point of view of algorithmic game theory, there are a few
important references like The complexity of pure Nash equilibria [34] where the focus
is set on congestion games, investigating multi-player games that are guaranteed to have
pure Nash equilibria.

Angel-Daemon Games and Web Orchestrations. When designing a Web application, the
development and deployment of a number of services is required. These include security,
information, directory, resource allocation, and payment mechanisms in an open envi-
ronment; and high level services for application development, execution management,

1.6. Notes 10

resource aggregation and scheduling. Additionally, it is often necessary to rely on alter-
native services to do the same calculation, in order to guard against system failures. The
study of systems under failure is not new [31, 89, 32, 37]; the analysis of risk is well stud-
ied in microeconomics (chapter 6 from [70]). Finally, refer to an orchestration language
Orc by J. Misra and W. Cook [76, 59] as a solution to orchestrate distributed services.

Chapter 2

Preliminaries on Games

In Game Theory, a game can be described in two different ways: by strategic and exten-
sive representations. The first representation is not graphical and represents a game by
a matrix. Specifying players strategies and their corresponding payoffs. Therefore this
approach is useful in identifying Nash equilibria and the strictly dominated strategies of
players. Unlike strategic representation, an extensive form is a tree representation of a
game, where each non-terminal node belongs to a player. Each player may choose among
the possible moves at each node. Therefore, the nodes represent every possible state of
game. Additionally, as the computational complexity of the game isomorphism problem
depends on the level of succinctness of the description of the input game, was defined the
inputs of games considered. The utilities in games have been given succinctly by a Turing
machines TM, boolean circuits or boolean formulas, or explicitly by tables. Actions have
been given also explicitly or succinctly.

2.1 Strategic and Extensive Games

Game Theory provides the mathematical tools and models to analyse strategic situations
in which multiple participants interact or affect each other. In the last years a huge amount
of research has been devoted to explore the usefulness of Game Theory in situations
arising on the Internet. In these situations, many participants interact with competing
goals and therefore, the games can be modeled by strategic or cooperative games.

Strategic Games. A strategic game is a model consisting in two or more interacting play-
ers, each one with a set of strategies. For each combination of strategies, there is a nu-
merical payoff for each player. In such games, each player chooses her/his best available
action, which depends in general, on other players actions. In order to choose among dif-
ferent alternative actions, each player must keep in mind the actions that the others players
may chose. We may also assume that each player has experience playing the game, so that

11

2.1. Strategic and Extensive Games 12

each player’s belief is derived from her/his past experience. The other players’ actions and
her/his belief upon the correctness of the other players’ actions.

Example 2.1 In Figure 2.1 one of the better-known strategic games is shown: the Pris-
oner’s Dilemma, which was originally framed by M. Flood and M. Dresher, in 1950.

Suspect A

Suspect B
Quiet Betrays

Quiet 1 year, 1 year 3 years, free
Betrays free, 3 years 2 years, 2 years

Figure 2.1: The Prisoner’s Dilemma, where the players are the suspects A and B, and 1 year
means one year in prison, free means that prisoner goes free. The Nash equilibrium is in the
strategy profile (Betrays,Betrays).

This game models a situation in which there are two prisoners accused of a major
crime, which are kept into separate cells. The dilemma arises when we assume that both
prisoners only care about minimizing their own quantity of years in prison. Each prisoner
has two options: cooperate with his accomplice and stay quiet, or betray his accomplice
and confess, in return for a lighter sentence. The outcome of each choice depends on
the choice of the accomplice, but each prisoner must choose without knowing what his
accomplice has chosen to do.

In order to decide what to do in strategic situations, it is usually important to predict
what others will do, but this is not the case here. Knowing that the other prisoner will stay
silent, the best strategy is to betray, because in such a case the betrayer, will be out free,
instead of receiving the minor sentence. Otherwise, knowing that the other prisoner will
betray, the best strategy is still betray, because then, the first prisoner will receive a small
sentence, just like the accomplice. Since the reasoning is similar for the other prisoner, he
will also choose to betray. The Prisoner’s Dilemma has a Nash equilibrium, which takes
place when both prisoners desert, which is the strategy profile (Betrays,Betrays). This
strategy (both betray), is worse than (both quiet), in the sense that the total time in jail is
greater for both prisoners. Nevertheless the strategy (both quiet) is unstable, since each
of the prisoners can improve his result betraying (if his opponent maintains the strategy
of quiet). Therefore, (both quiet) is not an equilibrium.

The strategic model of a games, which are used as ingredient of more complicated
games, allows us to study the interaction between players (i.e., to discuss how the actions
of one of them may be affected by those of the others). This model is focused upon
the strategies as a whole, thus ignoring the corresponding sequence of events. On the
contrary, the extensive games model is centered upon such a sequence of events.

Therefore, strategic games are the first game structure to start analysing the computa-
tional complexity of game equivalence. The combinatorial structure of a strategic game

Chapter 2. Preliminaries on Games 13

is simple enough to allow such kind of analysis by comparison with an isomorphism in
other combinatorial structures.

Extensive Games. These games may be represented as trees of decision nodes, where
actions correspond to arcs, and terminal histories are associated to leaves. That is, each
terminal history is viewed as a sequence or lists of actions, where each list specifies the
actions of a set of players. Thus games may be grouped on two categories: extensive
games with perfect information and extensive games with imperfect information. In the
case of extensive games with perfect information, each player knows every other player
previous actions. In the case of extensive games with imperfect information, players do
not know the previous actions of the other players.

In Figure 2.2, the Prisoner’s Dilemma game is represented in extensive form with
perfect information, and with imperfect information. Note that in sub-figure (a), the
second player knows the action taken by the first one. In (b), the second player cannot
distinguish between Q and B. This game is conceptually similar to the strategic game
given in Figure 2.1.

Example 2.2 The Prisoner’s Dilemma game represented in its extensive form, both, with
perfect information, and with imperfect information.

1

Q B

Q B
2

2,20,3

....................

1

2

Q B

Q BBQ

1,1 3,0 0,3 2,2

Figure 2.2: A game in extensive form, (a) with perfect information and (b) with imperfect infor-
mation. The prisoners choose between the two strategies: staying Quiet (Q), or Betrays (B). The
leaves are terminal histories, represents the payoff for each player.

As occurs in cases of other structures such as graphs, it is interesting to know which
transformations leave a game without change; i.e., which transformations preserve all
relations and operations in a given game. If two strategic games are equivalent, does this
equivalence subsist when both games are represented as extensive games? Otherwise, in
connection to symmetry, two symmetric strategy games, looses their symmetry when they
are represented as extensive games?

Morphisms. Automorphism and isomorphism have been well studied in mathematics,
as an abstraction of a structure preserving mapping between two mathematical entities.

2.1. Strategic and Extensive Games 14

Therefore, game isomorphism is a key concept that may be viewed as an appropriate
model to identify structural similarity between strategic or extensive games.

The informal idea of strategic equivalence [72] has been widely discussed and ex-
plored along the history of Game Theory. Likewise, traditionally the notion of equiv-
alence had been studied at different levels, using different types of isomorphism, de-
pending on the family of games and the structural properties to be preserved. In 1951,
J. Nash [80] gave a definition of automorphism between strategic games. More recently,
S. Elmes and P. Reny [33] introduced a strong isomorphism of extensive games, and Pe-
leg, Rosenmüller and Sudhölt er [90] studied the relationship between strategic games and
their possible representations in extensive form. They also defined a strong isomorphism
of extensive games. But these isomorphisms are very strong and they are incompatible
with the traditional representations of strategic games in extensive form. In essence, in
strategic games, symmetric strategies are not symmetric in their equivalent extensive form
representation. In order to resolve this conflict, they proposed [108] a method to represent
strategic games as extensive forms preserving, essentially, all symmetries of the strategic
games that satisfy additional axioms, so that both notions of symmetries coincide. A.
Casajus [23, 22] also introduced another notion of isomorphism for extensive games, and
equivalence [29] by the way of transformations to a common form.

Example 2.3 Figure 2.3, given by B. Peleg et al. in [90], presents an example of auto-
morphism. Let us consider the strategic game in the same Figure 2.3. Consider an auto-
morphism given by permuting the players; i.e., player 1 is transformed into player 2 and
player 2 is transformed into player 1. The actions bijection are given by ϕi(ai) = 3− ai

for ai ∈ Ai, being Ai = {1,2}.

Player 1

Player 2
1 2

1 2,1 0,0
2 0,0 1,2

Figure 2.3: For the initial matrix game Γ and applying the automorphism given by permuting the
players, with the actions bijection given by ϕi(ai) = 3− ai for ai ∈ Ai = {1,2}, the same initial
matrix game Γ is obtained.

Computational Game Theory. It is sometimes impossible to improve the worst-case time
requirements as a function of the size of the input problem, when an algorithm is devel-
oped to solve a given computational problem. It is specifically in these cases, in which it is
important to develop mathematical techniques for proving that no algorithm exists which
runs faster than the current one. Therefore, the set of mathematical models and techniques
for establishing the impossibility proofs are the focus of computational complexity.

Chapter 2. Preliminaries on Games 15

In order to study the computational aspects of isomorphism problems of strategic
games, we need first to determine the way in which games and morphisms are repre-
sented as inputs to a program. To represent strategic games, was adopted the proposal
given in [8] and considered the following two representations, each with a different level
of succinctness. When a game is given in general form, the actions are listed explicitly
but utilities and mappings are given by deterministic Turing machines. In the explicit
case, utilities are stored in tables. In both cases, the morphisms are always represented
by tables. This is not a restriction, as in polynomial time we can transform a morphism
representation by Turing machines into a tabular representation by tables, because the
actions are given explicitly.

The computational issues arising from this framework, are one of the main objectives
of the Algorithmic Game Theory community [85, 82, 103]. In this sense, an important
issue, to be consider, is the study of complexity of isomorphisms of games, which no
results in previous studies. Therefore, this thesis is concerned in the computational issues
related to game equivalence.

2.2 Definitions and Preliminaries

In this section, definitions and terminology used during this thesis are provided. Firstly,
strategic games and their representations. Will be presented, a discussion on game map-
ping and will follow, as well as the definition of the two types of isomorphism considered
in this work.

Strategic Games

Definition 2.1 (Strategic Game) A strategic game Γ is a tuple Γ = 〈N,(Ai)i∈N ,(ui)i∈N〉
where N = {1, . . . ,n} is the set of players [84]. For each player i ∈ N, Ai is a finite set of
actions. For each player i ∈ N, ui is a utility (or payoff) function, mapping A1 × . . .×An

to the rational.

The set of combined actions A = A1 × . . .×An is called the set of strategy profiles.
Given a strategic game Γ, player i can “make a move” by selecting an action si ∈ Ai

(si is called a strategy). If player i selects a strategy si independently, then the joint
strategy profile is s = (s1, . . . ,sn). Player i assesses the state of a game using ui(s).
A strategy profile s = (s1, . . . ,sn) can be factored for player i as (s−i,si) where s−i =

(s1, . . . ,si−1,si+1, . . . ,sn) (i.e. s−i is the profile s in which has been strategy si removed).
Strategic games model non-cooperative behaviour: a solution to a game corresponds to
being able to identify pure Nash equilibria.

2.2. Definitions and Preliminaries 16

Definition 2.2 (Pure Nash Equilibrium) A strategy profile s = (s1,s2, . . . ,sn) is a pure
Nash equilibrium (PNE from now onwards) if for any player i and any s′i ∈ Ai we have
ui(s−i,si) ≥ ui(s−i,s′i), where (s−i,si) denotes the strategy profile in which si is replaced
by s′i.

Definition 2.3 (Expected Utility) An expected utility ui(σ) for player i, where σ is a
mixed strategy profile σ = (σ1, . . . ,σn), can be defined as:

ui(σ) = ∑
(a1,...,an)∈A1×...×An

σ1(a1) . . .σn(an)ui(a1, . . . ,an)

Definition 2.4 (Mixed Strategy) A mixed strategy σi for player i, is a probability distri-
bution on the Ai set. A mixed strategy profile is a tuple, σ = (σ1, . . . ,σn) and the utility of
ui(σ) for player i is the expected utility.

Definition 2.5 (Nash Equilibrium) A mixed strategy profile σ = (σ1, . . . ,σn) is a Nash
equilibrium if, for any player i and any σ′

i it holds that, ui(σ−i,σi)≥ ui(σ−i,σ′
i).

Theorem 2.1 (Mixed Nash Equilibrium) A mixed strategy profile σ is a mixed Nash
equilibrium iff

- for any i and si ∈ Ai such that σi(si)> 0, it holds that, ui(si,σ−i) = ui(σ),

- and for any i and si ∈ Ai such such that σi(si) = 0, it holds that, ui(si,σ−i)≤ ui(σ).

(see Proposition 116.2 in [84]). All strategic games have a Nash equilibrium [84]; how-
ever, there are games without any pure Nash equilibrium (see Example 2.4).

Two players Zero-Sum Games

In these games, players gains or losses is exactly balanced by the losses or gains of the
other player.

Definition 2.6 (Zero-Sum Games) A zero-sum game is a strategic two-player game Γ =

〈{1,2},A1,A2,u1,u2〉, in which u1(s)+u2(s) = 0, for any s = (a1,a2).

For the case of zero-sum games, all Nash equilibria (pure or mixed) are assessed [81, 113]
using utility player 1. The value of this utility, ν(Γ), is called the value of Γ. A pure saddle
point is a strategy profile s = (a1,a2) such that,

u1(a1,a2) = max
a′1∈A1

min
a′2∈A2

u1(a′1,a
′
2) = min

a′2∈A1
max
a′1∈A2

u1(a′1,a
′
2)

The set of pure saddle points (which can be empty) coincides with the set of PNE (see
Example 2.4 below). A player choice of action can be defined probabilistically. A mixed

Chapter 2. Preliminaries on Games 17

strategy for player 1 is a probability distribution α : A1 → [0,1] and, similarly, a mixed
strategy for player 2 is a probability distribution β : A2 → [0,1]. A mixed strategy profile
is a tuple (α,β), where

u1(α,β) = ∑
(a1,a2)∈A1×A2

α(a1)β(a2)u1(a1,a2)

Let ∆1 and ∆2 denote the set of mixed strategies for players 1 and 2, respectively. It is
well known [81] that there is always a mixed saddle point (α,β) satisfying,

u1(α,β) = max
α′∈∆1

min
β′∈∆2

u1(α′,β′) = min
β′∈∆2

max
α′∈∆1

u1(α′,β′)

The set of saddle points (pure or mixed) coincides with the set of Nash equilibria (pure or
mixed).

Example 2.4 Consider the game Γ where A1 = {t,b} (denoting top and bottom) and
a2 = {l,r} (denoting left and right). If the utility of the first player is

Player 1

Player 2
l r

t u1(t,l) = 0 1
b 1 0

then Γ has no pure Nash equilibrium, because each player will always wants to change
his current strategy. If (t,l) is the current strategy then player 1 will wish to change t to

b (so as to increase the utility by 1). This move is schematised as (t,l)
u1=1−→ (b,l). Profile

(b,l) is not stable because player 2 would wish to change l to r (thereby increasing his
utility by 1). The change in strategies is schematised below:

(t,l)
u1=1−→ (b,l)

u1=0−→ (b,r)
u1=1−→ (t,r)

u1=0−→ (t,l)
u1=1−→ ·· ·

α(t) = α(b) = 1/2 and β(l) = β(r) = 1/2 and ν(Γ) = 1/4+1/4 = 1/2.
Suppose that α(t) = p where p > 0 and α(b) = 1− p. Then u1(t,β) = u1(b,β) and

therefore p = 1/2. Likewise, if β(l) = q > 0 and β(r) = 1− q, then u2(α,l) = u2(α,r)
and therefore q = 1/2. Consequently, ν(Γ) = u1(α,β) = 1/2.

The Problem Input

In the context of computational complexity, it is very important to fix how games are
represented as inputs of the problem. In all the different types of representations it will

2.2. Definitions and Preliminaries 18

always be assumed that the actions for each player are given explicitly, by listing all their
elements used in this thesis. This leads with two types of representations, depending on
whether the utilities are given explicitly or succinctly.

The first representation is the generic representation of strategic games given in [7],
where the payoff functions of a game are described by a deterministic Turing Machine
TM.

Strategic Game in General Form. Game Γ is given by a tuple Γ = 〈1n,A1, . . . ,An,M,1t〉.
The game has n players, and for each player i, where 1 ≤ i ≤ n, their set of actions Ai is
given by listing all their elements. Given a strategy profile and a player i, 1 ≤ i ≤ n, ui(a)
is the output of M on input 〈a, i〉 after t steps.

A more succinct representation of games [8] is obtained by implicitly defining the sets
of actions Ai as subsets of {0,1}m. In such a case a game Γ is given by 〈1n,1m,M,1t〉,
which is called implicit form. For reasons that will be clarified later strategic games in
implicit form will not be considered.

The second representation assumes that payoff functions are given explicitly by means
of a table.

Strategic Game in Explicit Form. Game Γ is given by a tuple Γ = 〈1n,A1, . . . ,An,T 〉,
where T is a table of dimensions |A1| × · · · × |An| × n. Given a strategy profile and a
player i, 1 ≤ i ≤ n, then ui(a) = T [a][i].

Will be considered strategic games in which utility functions are described by boolean
formulas. In [16] player i has a goal ϕi to fulfil. Goals are usually described by boolean
formulas. The utility of the player is binary. It is 1 if the goal is satisfied and 0 otherwise.
Along the lines suggested by circuit games [102], the following family of strategic games
will be considered, whose representation is close to a game given in general form [8].

Formula Game in General Form. Game Γ is given by a tuple,

Γ = 〈1n,A1, . . . ,An,1`,(ϕi, j)1≤i≤n,0≤ j<`〉

The set of actions for player i, 1 ≤ i ≤ n is Ai = {0,1}mi . The utilities of player i are
given by the boolean formulas ϕi, j(a1, . . . ,an) ∈ {0,1}, 0 ≤ j < `, and by the equation
ui(a1, . . . ,an) = ∑0≤ j<`ϕi, j(a1, . . . ,an)2 j.

Another model for strategic games that uses a boolean formula was introduced in [71],
the weighted boolean formula games, that is defined in the next paragraph.

Chapter 2. Preliminaries on Games 19

Weighted Boolean Formula Game (WBFG) [71]. A game is given by a tuple,

Γ = 〈1n,1m,1r,1`,(Fi)1≤i≤n〉

where player i has the set of actions Ai = {0,1}m. For each player i, there is a set Fi =

{(fi,1,wi,1), . . . ,(fi,r,wi,r)} such that fi, j : A1 ×·· ·×An → {0,1}, 1 ≤ j ≤ r, are boolean
formulas and wi, j ∈ {0,1}`, 1 ≤ j ≤ r. The utility for player i is computed by the formula
ui(a1, . . . ,an) = ∑(f ,w)∈Fi w · f (a1, . . . ,an).

In the above definition, the set of actions is described implicitly. In the rest, descrip-
tions will be restricted to WBFG, in which the set of actions is described explicitly. Fol-
lowing the previous notation to such games will be referred as weighted boolean formula
games in general form. Formula games and WBFG in general form are equivalent as,
given a WBFG we can build a Formula Game Γ′ in polynomial time, in the size of Γ
with the same utilities and viceversa. The details of the proof are given in the following
Claim 2.1. Thus, results for Formula Games will be applied also to WBFG.

Claim 2.1 Given a WBFG Γ = 〈1n,1r,1`,(Fi)1≤i≤n〉 we can build in polynomial time
in the size of Γ, a Boolean Formula Game Γ′ = 〈1n,1`,(ϕi, j)1≤i≤n,0≤ j<`〉 with the same
utilities and reciprocally.

Proof. A WBFG has been transformed into a formula game through a sequence of steps.
Let us start to consider a restricted form of utility.

Given A = {0,1}r, ai ∈ {0,1} and a = (a1, . . . ,ar) ∈ A and given v(a) = ∑1≤i≤r wiai,
where each wi has ` bits, we can compute in time O(`r) formulas ϕ j, 0 ≤ j < `+ logr,
such that v(a) = ∑0≤ j<`+logr ϕ j(a)2 j.

To prove the preceding fact, the ideas given in [15] are used. It is defined xi, j to
take care in the future, of the bit j of the word wi, eventually xi, j = wi, jai. Note that,
yi = (xi,`−1, . . . ,xi,0) is like a number of ` bits. Using results given in [95] or [97], a non-
uniform TC0 circuit IteratedSum(y1, . . . ,yr) can easily be built in polynomial time, giving
the sum of the r numbers each one of ` bits. Let us compute the number of outputs of
such a circuit.

With ` bits, the biggest number written with ` bits has value 2`− 1. Therefore, the
sum of r numbers, each one of ` bits, is at most k(2`−1) and this sum can be written with
`+ logk bits. Therefore, IteratedSum(y1, . . . ,yr) outputs `+ logk bits. From this circuit,
it can be easily obtained a TC0 circuit giving the bit j of this iterated sum. Since, TC0

⊆ NC1 and circuits in NC1 have logarithmic depth and polynomial size, in polynomial
time a formula φ j(y1, . . . ,yr) can be found, giving the bit j of IteratedSum(y1, . . . ,yr). To
obtain the final result, xi, j has to be substituted by wi, jai and the following expression is

2.3. Notes 20

obtained,

ϕ j(a1, . . . ,ar) = φ j((w1,`−1a1, . . . ,wr,`−1ar), . . . ,(w1,0a1, . . . ,wr,0ar))

Let us consider another fact.
Given F= {(f1,w1), . . .(fr,wr)} such that, each wi has ` bits and fi : {0,1}n →{0,1},

we can compute in polynomial time, in the size of F, formulas ϕ j such that u(a) =
∑1≤i≤r wi fi(a) = ∑0≤ j<`+logr ϕ j(a)2 j.

Let us prove it. Given b ∈ {0,1}r consider the utility v(b) = ∑1≤i≤r wibi and using the
preceding fact, find φ j such that v(a′) = ∑1≤ j≤`+logr φ j(b)2 j. Now, we identify bi = fi(a)
and ϕ j(a) = φ j(f1(a), . . . , fr(a)). Transformation can be done in polynomial time.

Finally, in order to transform WBFG into boolean formula games, the last fact is
applied to each Fi.

Transforming a boolean formula game into a WBFG is easy. wi, j = 2 j and fi, j = ϕi, j

are defined.
2

In case that the number of players is constant, with respect to number of actions, an
explicit representation can be obtained in polynomial time from a given general form
representation, otherwise transformation requires exponential time.

2.3 Notes

Game Theory. Refer to A Course in Game Theory of M. Osborne and A. Rubinstein [84]
published on 1994, and Theory of Games and Economic Behavior of John von Neuman
and Oscar Morgenstern [81], in order to learn Game Theory, as well as the mathematical
definitions of strategic and extensive games. Note the definition of Nash equilibrium for
non-cooperative games described in [80] by J. Nash. Finally, a good reference to know
more about equilibrium of extensive form games with imperfect information is [46] by
A. Gilpin and T. Sandholm.

Morphisms and Complexity in Games. In the field of game isomorphisms refer to [80]
by J. Nash, where was first proposed a very compact definition of game morphisms. Note
results of J. C. C. McKinsey [72] and J. Harsanyi and R. Selten’s isomorphisms of strate-
gic games [49] published in 1988. Other interesting reference about game equivalence,
are by J. van Benthem [111] and by B. de Bruin [29].

The book [45] Computers and Intractability: A Guide to the Theory of
NP-completeness from M. Garey and D. Johnson, it is crucial to understand the
complexity of games. The reference The complexity of pure Nash equilibria [34], is

Chapter 2. Preliminaries on Games 21

focused on congestion games, investigating multi-player games that are guaranteed to
have pure Nash equilibria.

22

Part I

Angel-Daemon Games

23

Chapter 3

Preliminaries on Web Orchestrations

This chapter is focused on orchestrations and failures in systems, like web-services. Or-
chestration together with choreography, are two prominent approaches for the compo-
sition of services describing two aspects of creating business processes from composite
web-services. So that, we describe some details of these two viewpoint and their re-
lationship. Consider also, the Orc language as a useful tool that allow us to orchestrate
distributed services and Web applications. Finally, we give our alternative approach based
on game theory in order to analyse the behaviour of orchestrations over unreliable envi-
ronments.

3.1 Web-services and Orchestration versus Choreography

There are two fundamental approaches for the composition of web-services: orchestra-
tion and choreography, describing two aspects of creating business processes. Essentially,
orchestration always represents control from one perspective party, where the activities of
the composed services are coordinated by a specific component, called the orchestrator.
This orchestrator calls the composed services and collects their responses. Unlike or-
chestration, choreography tracks message sequences among multiple parties and sources:
message exchanges occur between web-services. This last, also support a high level de-
scription of peer-to-peer interactions among services, which communicate without the
participation of any orchestrator. In the figure 3.1, the relationship between orchestration
and choreography at a high level, is shown.

Choreographies. Choreography languages represent an alternative approach for service
composition with respect to orchestrations, due to it supports a high level description of in-
teractions among services, which directly communicate each other. Precisely, M. Bravetty
and G. Zavattaro in his work [19] addressed the question of the deployment of service
compositions through choreography requirements in the context of service oriented com-

25

3.1. Web-services and Orchestration versus Choreography 26

Invoke Receive

Receive Reply

validate − process

Orchestration Orchestration

Choreography

Purchase Order

Acceptance

Figure 3.1: Orchestration is an executable process, which may interact with internal and external
Web services. It is a process that describes how Web services can interact at the message level.

puting, and formalizing a service choreographies and service contracts through process
calculi. The Example 1 described by them is considered here, as an example of service
composition.

Example 3.1 [Reservation via Travel Agency [19]] Consider a travel agency service
that can be invoked by a client in order to reserve both an air-plane seat and a hotel room.
In order to satisfy the client’s request, the travel agency contacts two separate services:
one for the air-plane reservation and one for the hotel reservation. A choreographic spec-
ification of this service composition describes the possible flows of invocations exchanged
among the four sites: the client, the travel agency, the airplane reservation service, and
the hotel reservation service.

In order to better understanding, the proposed choreography definition 1 of [19] is also
considered. That is,

Definition 3.1 (Choreographies [19]) Given a countable sets of operations, a,b,c, . . .
and sites, r,s, t, . . ., be two countable sets of operation and sites names, respectively. The
set of choreographies, H,L, . . . is defined by the following grammar:

H ::= ar→s | H +H | H;H | H|H | H∗

The invocations ar→s means that site r invokes the operation a provided by the site s.
The operators are: choice ”+“, sequential ”;“, parallel ”|“, and repetition ”∗“. Exists
also, two auxiliary terms: 1 and 0, which are considered in the operational semantics, in
order to model the completion of a choreography.

Chapter 3. Preliminaries on Web Orchestrations 27

Example 3.2 Continuing Example 3.1. Then, consider the choreography composed of
these four sites: Client, TravelAgency, AirCompany and Hotel.

ReservationClient→TravelAgency;

((ReserveTravelAgency→AirCompany ; Con f irmFlightAirCompany→TravelAgency)|
(ReserveTravelAgency→Hotel ; Con f irmRoomHotel→TravelAgency));

Con f irmationTravelAgency→Client +CancellationTravelAgency→Client

The Client initially sends a reservation request to a travel agency, that subsequently
contacts in parallel an airplane company AirCompany and a room reservation service
Hotel in order to reserve both the travel and the staying of the client. Then, the travel
agency either confirms or cancels the reservation request of the client.

But, the researchers defined an automatic procedure, which can be used to check
whether a service (in a choreography) correctly plays one of the roles described by the
choreography. In the specific example of travel agency, given a choreographic specifica-
tion of this, and an actual service (of the travel agency), check whether the current service
behaves correctly according to the choreographic specifications.

For doing that, they proposed the combination of choreography with service con-
tract [21] refinement, which describes the sequence of input/output operations in a session
of interaction with other services.

Definition 3.2 [Choreography implementation [19]] Given the choreography H and
the system P, we say that P implements H if,

- P is a correct contract composition and

- given a sequence w of labels of the kind ar→s, if P
w
√

=⇒ P′, then there exists H ′ such

that H
w
√

−→ H ′.

P
w
√

=⇒ P′ denotes the sequence of transitions with successful termination.

Example 3.3 Continuing Example 3.1 and 3.2. Then, a possible implementation (see
Example 2 of [19]) of choreography is as follows.

[ReservationTravelAgency ; Con f irmation]Client ||
[Reservation;(ReserveAirCompany ; Con f irmFlight |
HotelAirCompany ; Con f irmRoom) ; Con f irmationClient]TravelAgency ||
Reserve;Con f irmFlightTravelAgency]AirCompany ||
[Reserve;Con f irmRoomTravelAgency]Hotel

In this implementation, the travel agency always replies positively to the request of the
client sending a Confirmation message.

3.1. Web-services and Orchestration versus Choreography 28

Orchestration (Orc) Language. Orchestrations require the coordination among partici-
pants services. It is a coordination of multiple component services, in order to create a
business process. In this sense, an orchestration language, Orc, developed by J. Misra
and W. Cook [59, 76] provides uniform access to computational services, including dis-
tributed communication and data manipulation, through the set site calls. This set of sites
calls can be orchestrated into a complex computation by means of an Orc expression [76]
which interacts with services, and manages timeouts, priorities, and failure of sites or
communication. A service provided by a site, may be unreliable because of site overuse,
site failure or network congestion. In Orc, a site call either returns a result or remains in
silence, corresponding this fact to a site failure.

A site accepts an argument and publishes a result value1. A call to a search engine,
f ind(s), may publish the set of sites which currently offer service s. A site is silent if it
does not publish a result. Site calls may induce side effects. A site call can publish at
most one response. Although a site call may have a well-defined result, it may be the case
that a call to the site, fails (silence) in an untrusted environment. Orc contains a number
of inbuilt sites: 0 is always silent while 1(x) always publishes x. It is as well provides a
special site i f (b), which publishes a signal if its boolean argument b is true and remains
silent otherwise.

In Orc, the site calls is combined by three composition operations:

- Sequence P > x > Q(x): For each output x, published by P, an instance Q(x) is
executed. If P publishes the stream of values, v1,v2, . . . ,vn, then P > x > Q(x)
publishes some interleaving of the set {Q(v1),Q(v2), . . . ,Q(vn)}. When the value
of x is not needed we note P � Q.

- Symmetric Parallelism P | Q: Publishes some interleaving of the values published by
P and Q.

- Asymmetric parallelism P where x :∈ Q: In this case, P and Q are evaluated in par-
allel. P may become blocked by a dependency on x. The first result published by
Q is bound to x, the remainder of Q’s evaluation is terminated and evaluation of the
blocked residue of P is resumed.2

In Orc language, the expressions M � (R|T) and (M � R)|(M � T) are differents. In
the first expression, one call is made to M, while T and R sites are called after M responds.
In the second one, two parallel calls are made to M, while T and R sites are called, only,
after the corresponding calls respond. In this expression, M site publishes different values

1The words “publishes”,“returns” and “outputs” are used interchangeably. The same way, the terms “site” and
“service” are also used interchangeably.

2Written also, as P < x < Q: This expression evaluates P and Q independently, but the site calls in P (which depends
on x are suspended until x is bound to a value. The first value from Q is bound to x, evaluation of Q is then terminated
and suspended calls in P are resumed. The values published by P are the ones published by P < x < Q.

Chapter 3. Preliminaries on Web Orchestrations 29

on each call, and the sites, T and R use these values. In Figure 3.2 these two different
expressions, are shown.

M M

R T
R T

M

(a) (M � R | M � T) (b) M � (R | T)

Figure 3.2: In case (a), two parallel call are made to M, while R and T are called only after the
corresponding calls respond. In case (b), one call is made to M, and R and T are called after M
responds. The major difference is that, in case (a), R and T sites use different values published by
the M site, on each call.

Different examples from web-services are shown, in order to illustrate the useful of
these composition operators.

Example 3.4 Let us consider, for instance, the following example of J. Misra [76],
MailOnce(a) , Email(a,m) where m :∈ (CNN(d) | BBC(d)) In this example,

first publication of CNN or BBC of a given date d, is sent to address a.

Definition 3.3 (Output) The number of outputs publishes by an Orc expression E is de-
fined by out(E).

Another version, of this example, is the following.

Example 3.5 [Email News]. A call to site CNN publishes a digital version of the current
newspaper. A call to CNN increases by one the site counter. Site BBC is similar. A call to
Email(a,m) sends the email m to the address a. Publishes also, the signal sent to denote
completion. We consider restricted versions like EmailAlice(m) or EmailBob(m). Let us
consider the orchestration, where sites CNN and BBC are called in parallel, Two Each =

(CNN | BBC)> x > (EmailAlice(x) | EmailBob(x)) Suppose that CNN responds first and
the result is emailed to Alice and Bob. Later on BBC will answer and Alice and Bob get
another newspaper. The orchestration publish 4 times sent, denoted as out(Two Each) =
4. In One Each=(CNN > x>EmailAlice(x)) | (BBC > x>EmailBob(x)), Alice receives
the CNN and Bob the BBC and out(One Each) = 2.

An Orc expression may be naming. This allow use the expression name in its own
definition, getting a recursive definition. Below, a recursion example is shown.

3.1. Web-services and Orchestration versus Choreography 30

Example 3.6 Recursion is allowed, as may be seen in this example given by J. Misra
given in [76], where author presents an expression that may call itself,

MailForever(a) , MailOnce(a)> x > MailForever(a),

which keeps sending newspages to a.

Therefore, Orc language supports a set of internal sites call:

- if(b): Returns a signal if its boolean arguments is true and remains silent otherwise.

- let(x): Immediately publishes its argument. (let is often abbreviated to 1).

- Rtimer(t): (Relative timer), provides a timing operation via an internal site call. This
site call returns a signal after t time units. Rtimer may be used to program timeouts.

- Timeout: May be used to call site s repeatedly until it returns a result.

- Clock: Publishes a current time at the server of this site.

An orchestration scheme allows timeouts, interruptions, and evaluations. An examples
of Orc schemes allowing timeouts and rtimer are shown.

Example 3.7 Let us consider the following Orc expression,

TimeOut , let(z) where z :∈ (f | Rtimer � let(3))

This expression either publishes the first publication of f , or timeout after t units and
publishes a value 3. In this expression let is an internal site call which publishes its
argument. In this case, a value 3.

Example 3.8 A typical programming paradigm is to call site M and publish a pair (x,b)
as the value, where b is true if M publishes x before the time-out, and false if there is a
time-out. In the latter case, x is irrelevant. Below, z is the pair (x,b).

Refine(M) , let(z) where z :∈ (M > x > let(x, true) | Rtimer(t)> x > let(x, f alse))

Example 3.9 As more involved example, call Refine repeatedly starting with some ini-
tial argument, and use a publication as the argument for the next call and publish the
last value (the most refined) that is received before time t. The BestRefine(t,x) expres-
sion implements this specification. It publishes x if there is a time-out; else it publishes
BestRefine(t,y) where y is the value published by Refine before the time-out.

BestRefine(t,x), i f (b)� BestRefine(t,y) | i f (¬b)�
let(x) where (y,b) :∈ (TimeOut(x)> y > let(y, true) | Re f ine(t,y)> y > let(y, f alse))

Chapter 3. Preliminaries on Web Orchestrations 31

Here the parameter t of BestRefine(t,x) is an absolute time.

3.2 Orchestration and Game Theory

Failures in web-service applications can be treated through the use of timeouts and cor-
rective action, but such defensive programming not always be easy and in some cases it
is even impossible. Because of this, it is useful to have an estimate of the likelihoods of
success. In practice, it may be difficult to provide a meaningful measure of site reliability
and the assumption that distinct sites are independent may be too strong. By this reason, it
is interesting to use game theory as alternative approach, in order to analyse the behaviour
of orchestrations over unreliable environment. For doing this analysis, we are partitioned
sites into two disjoint sets, angels A and daemons D:

- Sites in A fail in such a way as to minimize damage to an application. This kind of
failure is called angelic.

- Sites in D fail in such a way as to maximize damage to the application. This kind
of failure is called daemonic.

It is assumed that the number of possible failures in the sets A and D are bounded. Both
sets may be viewed as players in a strategic game. If only angels are present then the
problem is a maximisation one; if only daemons act then we have a minimisation prob-
lem. The interesting case lies between the extremes, when both angels and daemons act
simultaneously and a competitive situation arises that may be represented by a so-called
angel-daemon game. Here, finding a Nash equilibrium, if it exists, gives a solution that
may be used to model realistic situations for unreliable web-service, where the outcome
is found somewhere between over-optimism and over-pessimism.

3.3 Notes

Orchestration and Choreography. Note this interesting reference [19] about orchestra-
tion and choreography. The authors proposed an effective procedure, used to verify
whether a service with a given contract can correctly play a specific site within a chore-
ography. Another needed references about these two terms are [91, 14].

In order to read about Service Oriented Computing (SOC), you must refer to M. P. Pa-
pazoglou and D. Georgakopoulos [88]. Refer to [109], to better understanding orchestra-
tion languages such as XLANG, which consists in a messaging language with some of the
expression capabilities of C#. In the same line, refer to an XML language WSFL [68],
which describe both public and private process flows. Note also, an WS-BPEL [54]
language, which provides support for both executable and abstract business processes.

3.3. Notes 32

Orc Language and Web-Services. All information about the orchestration language by
J. Misra and W. R. Cook we find in [76, 58, 25, 59]. In order to learn about web-services
orchestrations, note to Sidney Rosario et. al. [99]. In addition, refer to [24] by W. R. Cook
and J. Bartfield and [56] by G. Kandaswamy et al., which dealing about web-services too.

Workflows. There have been developed some theoretically sound and very flexible mod-
els of concurrency, allowing synchronisation and communication patterns: The process
calculi by D. Sangiorgi and D. Walker [101] includes constructs for concurrency and
channels for communication and synchronisation, and Petri nets by W. Reisig [98] and
J. L. Peterson [94]. Refer to [27] by M. Danelutto and M. Aldinucci, where authors pro-
posed an extension of the set of principles to be satisfied in order to develop an efficient
skeletal programming systems. Note also, the W. van der Aalst’s patterns [3], and R. Mil-
ner [74] and C. A. R. Hoare [51], where may be find information about π-Calculus. In
order to read about workflow pattern, refer to the Workflow Patterns home page [2].

Game Theory Approach. For learn more about the two lines of works of A. Stewart et al.
refer to [107, 106]. A very interesting references is [77] by T. Moscibroda et al. about
game theory and distributed systems, and the reputation of the sites [104] by G. C. Silaghi.

Chapter 4

Bounded Site Failures: an Approach to
Unreliable Web Environments

The behaviour of a web-services orchestration in untrusted environments, analysed by
means of game theory, is proposed in this chapter. The performance of web-services
may fluctuate: some services may be degraded, while other services may maintain the
capacity to withstand the effects of high demand. Here, uncertainty profiles and angel-
daemon (AD) games are used to analyse service-based behaviours in situations where
probabilistic reasoning may not be appropriate. In such a game, an angel player, tries to
minimise damage to the application, and modifies the behaviour of a bounded number of
angelic services in a beneficial way. In the opposite side, a daemon player tries to max-
imise damage to the application, and modifies a bounded number of daemonic services in
a negative way.

4.1 Unreliable Environments and Risk Management

Web-services run on a variety of platforms, and provide interaction among different ap-
plications or services, making important the analysis of their possible failures. The be-
haviour of a services set may fluctuate, and demand for a particular service may change.
The sequence and conditions in which one web-service invokes other web-services in
order to perform a useful function, has been defined as orchestration [91] in Chapter 3.
User-defined orchestrations may include dynamic mechanisms for altering behaviour de-
pending on the responsiveness of underlying web-services. The robustness of an orches-
tration to underlying service failures is referred to as resilience. Therefore, an orchestra-
tion of web-services is modelled using an Orc expression [76] in which services are called
upon to perform sub-computations. An Orc expression specifies how a set of service calls
are orchestrated to perform a certain overall goal.

In order to analyse the expected number of results that will be published by an orches-

33

4.1. Unreliable Environments and Risk Management 34

tration’s expression, probability theory has been used. To these expressions each site S
is usually assumed to have a probability of failure, and distinct sites are assumed to be
independent. However, this assumption may be too strong. On the other hand, in practice
it may be difficult to provide a meaningful measure of site reliability. Therefore, an alter-
native approach based on game theory is used in this chapter to analyse the behaviour of
orchestrations over unreliable environments.

For orchestrations, the behaviour of web-services can be modelled by defining a
services-based game. This game includes two players: angel A and daemon D, which
control all the sites in the orchestration. Sites in A fail in such a way to minimise damage
to an application, while sites in D fail in such a way to maximise damage to the
application. Neither angels nor daemons can fail excessively because the number of
failures, in both cases, is bounded. Thus, A and D can be viewed as players in a strategic
game. If only angels are present, then the problem is of maximisation, while if only
daemons act then we have a minimisation problem. Therefore, the interesting case
occurs when both angels and daemons act simultaneously into a competitive situation,
which can be represented by a so-called angel-daemon(AD) game. Here, if a Nash
equilibrium exists, it gives a solution which may be used to model realistic situations for
unreliable Web environments.

Risk Management and Uncertainty Profiles. To analyse the behaviour of network, when
a bounded number of services fails, an uncertainty profile is introduced. This concept
is sufficiently rich to allow the analysis of stressed Web environments, where networks
may be under the influence of competing tendencies, one destructive, and the other self-
correcting. In a uncertainty profile, bounds are placed on both the constructive and de-
structive capacities, for example, an unreliable network may have no self-correcting be-
haviour and no angel player.

An uncertainty profile of an orchestration is a parameterised description of a game,
which specifies sets of angel and daemon services as well as, the failure capacities of
both the angel and daemon players. A uncertainty profile provides an abstract, qual-
itative description of uncertainty (without recourse to probability). An analysis of the
game associated to an uncertainty profile can be used to derive an algorithmic measure
of orchestration uncertainty. To our knowledge, the use of uncertainty profiles to model
stressed Web environment is new.

Web-services involve the discovery and utilisation of services. It is often the case that
a service is made available by a number of providers. The performance of a provider
can vary greatly over time (although service level agreements (SLAs) may provide infor-
mation about “normal” expected performance). Brokers [13], are often used to monitor
provider performance and to provide an interface to the “best” current provider.

Chapter 4. Bounded Site Failures: an Approach to Unreliable Web Environments 35

It is usually the case that the performance of a provider deteriorates as demand in-
creases, although “elastic” providers may call on extra servers in times of peak demand.
Thus, in such situations performance, can conceivably improve.

In this thesis, it has been assumed that, first, providers should be treated and secondly,
users behave in non-cooperative way, since Web users alternate between providers in
times of high demand. Given these assumptions, it is reasonable to model the behaviour
of a set of providers (resources) in a stressed environment as a strategic situation in algo-
rithmic game theory [65], [82], [100]. The notion of a Nash equilibrium is used to derive
an efficient broker allocation of providers to users, as shown in Example 4.1.

Example 4.1 [Brokering in an idealised environment]. Consider a situation where a
set of users {1, . . . ,n} submit jobs for execution to a broker. Suppose that the broker
uses multiple predictable service providers (resources) R = {r1, . . . ,rk} to meet demand.
The broker allocates services providers to jobs in such a way as to minimise user delay.
This situation can be modelled by a non-cooperative game with n players in which users
“move” in sequence by allocating (or relocating) their job to a provider. Providers may
have modified work loads and delays as a consequence of a sequence of “moves”. A
Nash equilibrium is an allocation schedule in which no user can improve their situation
by making a move.

The Web is composed of a very diverse range or resources. Such heterogeneity con-
tributes to the complexity of a Web environment. Performance variability and sporadic
unavailability of under lying networks provide further complications. Conventionally, un-
reliability is treated from a probabilistic viewpoint [10], [92], [93]. In contrast, a variety
of provider behaviours within a stressed Web environment using non-cooperative game
theory, has been investigated on this thesis.

Example 4.2 [Brokering in an idealised environment]. Now consider a more realistic
refinement of the brokering Example 4.1 where provider and network behaviour is less
predictable. The following assumptions are made about stressed Web environments.

- stress is non-uniformly distributed across the Web;

- patches of stress can move dynamically in response to users moving jobs from
stressed regions to more responsive providers;

- the performance of certain providers may be highly vulnerable to heavy workloads,
while other providers may incorporate autonomic behaviour, which increases the
number of servers on offer in response to increased demand (elasticity). Conse-
quently, some providers may be associated with increased unreliability at times of
stress while others may exhibit robust behaviour.

4.1. Unreliable Environments and Risk Management 36

An extended form of non-cooperative game is used to reason about brokering in
stressed environments. In addition to the n users, the game also contains two extra play-
ers: a daemon player, who selects a number of sites to be stressed so as to maximise
the delay associated with the game; and an angel, who selects a number of sites so as to
minimise delay. Unreliability is described by the notion of an uncertainty profile which
specifies, a priori, possible angel and daemon behaviours. Given an uncertainty profile,
the behaviour of a broker in a stressed environment can be described by an associated
n+2 player game.

4.1.1 Orchestrations: The Number of Published Values

Given a complex orchestration E, it is unrealistic to assume that there will be no site
failures, when this orchestration is executed.

Reliability assumption. Sites are unreliable and can fail. When a site fails it
remains silent and delivers no result at all. When a site does not fail it delivers
the correct result. Any kind of Byzantine behaviour is excluded. Any kind of
behaviour delivering an approximate result is also excluded.

Given an orchestration E, let α(E) be the set of sites that are called in orchestration
E and α+(E) = α(E) \ {0}. The behaviour of the evaluation of E in this environment
is given by replacing all occurrences of sites s ∈ F , by 0. Let f ailF (E) denote this
expression. Even though some sites fail, orchestration may still produce useful partial
results. Consider the following Examples.

Example 4.3 [Email News under Failures]. Consider the Example 3.5 of Chapter 3.
When there are no failures, it holds that, out(Two Each) = 4, out(One Each) = 2. When
F = {CNN} we have f ail{CNN}(CNN) = 0 and f ail{CNN}(s) = s in other cases.
As (0 | BBC) = BBC we have,

f ail{CNN}(Two Each) = BBC > x > (EmailAlice(x) | EmailBob(x)) and
out(f ail{CNN}(Two Each)) = 2.

Another example of faulty orchestration is, f ail{CNN,EmailAlice(x)}(Two Each) = BBC >

x > EmailBob(x)) and out(f ail{CNN,EmailAlice(x)}(Two Each)) = 1.

Example 4.4 [Failure Expression]. Consider the expression (S > x > (P|Q)), where
S is a site. However, if S fails to publish, then this will result in a catastrophic failure
in the evaluation of S > x > (P|Q). If site T has the same functionality as S, then the
orchestration (P|Q), where x ∈ (T |S), will have the same functionality as S > x > (P|Q),
while being more robust.

Chapter 4. Bounded Site Failures: an Approach to Unreliable Web Environments 37

Example 4.5 [Multiple Job]. Consider a physicist who wishes to execute a program on a
large number of data sets. The jobs will be executed in parallel on a computational Web.
In order to draw conclusions, the physicist requires that at least a certain percentage of
jobs return results. Suppose that the set of parallel jobs are executed on sites S1, . . . ,Sn,
and that each site, has an associated reliability rating. When will the physicist will receive
sufficient experimental results?

The evaluation may still have value to the orchestrator provided that a certain mini-
mum number of results are published.

Value assumption. The evaluation of an orchestration has value even if some
sites fail. For a particular failure set F , the usefulness of the evaluation of E
in failure environment f ailF (E), is measured by out(f ailF (E)), the number
of outputs out, published by an expression.

A function out, should be such that:

- the range of out should be non-negative R.

- the value of out must be 0 when all sites fail.

- out(f ailF (E))≥ out(f ailF ′(E)) when F ⊆ F ′ ⊆ α(E).

- out(E) and outF (E) have a low computational complexity.

Let out(E), be the number of outputs published by a non-blocking expression E. Given
E(z) depending on an input variable z. The behaviour of this expression is denoted by
E(⊥), when the value of z is undefined. This is equivalent to replacing by 0 all sub-
expressions having a dependency on z. E(z) is kept to represent the evaluation when z is
defined.

The benefit by the number of outputs published by E is measured, where out(E) =
numbers of outputs published by E.

Lemma 4.1 ([39]) Let E1, E2 be non-blocking well formed Orc expression, the number
of publications, out(E),

out(0) = 0 , out(s) = 1 if s is a site s 6= 0 ,

out(E1|E2) = out(E1)+out(E2) , out(E1(z)� E2) = out(E1)∗out(E2)

out(E1 where z :∈ E2) =

out(E1) if out(E2)> 0

out(E1(⊥)) if out(E2) = 0

Given a non-blocking well formed Orc expression E, out(E), can be computed in polyno-
mial time with respect to the length of the expression E.

4.2. Assessing Orchestrations 38

Proof. The computation bounds follow from standard techniques. It holds that, out(0)= 0,
and out(1) = 1. Given a call to a single site s, it holds that, out(s(v1, . . . ,vk)) is 1
if all the parameters are defined and 0 otherwise. Let E1, E2 be non-blocking, well
formed Orc expressions, out(E1|E2) = out(E1)+ out(E2), and out(E1 > z > E2(z)) =
out(E1) ∗ out(E2(z)). Finally out(E1(z) < z < E2) is equal to out(E1(z)) if out(E2) > 0
and out(E1(⊥)) otherwise.

Here E(⊥) denotes the behaviour of E, when z is undefined; E(⊥) is found by re-
placing all service calls with a z-dependency by 0. Therefore, given a non-blocking, well
formed Orc expression E, out(E), can be computed in polynomial time with respect to the
length of the expression E. 2

Example 4.6 Consider the following expression,

E = (M1|M2)> x > [(M3|M4)> y > (M5(x)> z > M6(z) | (M7|M8)� M9(y))]

Then out(E) = 12. If site M1 fails the benefit is out(E ′) = 6 where,

E ′ = (0 |M2)> x > [(M3|M4)> y > (M5(x)> z > M6(z) | (M7|M8)� M9(y))]

4.2 Assessing Orchestrations

In this section, a method for partitioning a set of sites into angels and daemons, based on
ranking is proposed.

Reliability ranking assumption. Given an Orc expression E, it is assumed that
a ranking containing α(E) is available. This ranking is a measure (“objective”
or “subjective”) of the reliability of the sites. This ranking can be independent
of any orchestration E, or conversely, can depend strongly on the structure of
E. Let rk(s) be the rank of site s.

An orchestration assessor may use such a ranking to partition, a set of sites α(E), into
angel and daemon sets as follows:

A = {S | S ∈ α(E),rk(S)≥ λE} , D = {S | S ∈ α(E),rk(S)< λE}

λE is a reliability degree parameter fixed by the assessor, following the suggestions of
the client. How λE is determined has not been considered in this thesis. The assessor
will perform an analysis, where sites in A perform as well as possible, and sites in D

perform as badly as possible. This is a way to perform an analysis lying between the
two possible extremes “all is good” or “all is bad”. It would be possible to set up the
following assumption: Sites with a rank higher than λE are believed by the assessor to

Chapter 4. Bounded Site Failures: an Approach to Unreliable Web Environments 39

have non-destructive behaviour. Sites with a rank lower than λE are unknown entities as
far as the assessor is concerned and can have highly-destructive behaviour. The assessor
supposes that during an evaluation of E , a number of sites will fail:

- Let a small fraction βE of angelic sites fail during the evaluation. The number of
failing angels is βE ×#a = fA .

- Let a fraction γE of daemon sites fail. The number of failing daemons is γE ×#d =

fD .

In an abstract way, given an expression E, a partition of α+(E) into two sets A and
D is assumed. An analysis is conducted, where sites in A perform as well as possible.
If α(E) = A , evaluation of the behaviour can be determined by solving a maximisation
problem, while sites in D maximise damage to the application. If α(E) = D , evaluation
of the behaviour can be determined by solving a minimisation problem. The uncertainty
profile gives a perception of risk from an assessor’s point of view.

Definition 4.1 Given an Orc expression E, the tuple U = 〈E,A ,D, fA , fD〉 is an uncer-
tainty profile for an orchestration E, where A ∪D = α+(E), A ∩D = /0, fA ≤ #A and
fD ≤ #D .

Example 4.7 Let us consider how to assess SEQ of PAR and PAR of SEQ under two
different situations. In the first sites are ranked: rk(P)> rk(Q)> rk(R)> rk(S).

Assume that the reliability parameter is such that A = {P,Q} and D = {R,S}, and
moreover, 1/2 of angelic sites will fail and 1/2 of daemonic sites will also fail (therefore
fA = fD = 1). Then, the uncertainty profile is,

U1 = 〈SEQ of PAR,{P,Q},{R,S},1,1〉, U2 = 〈PAR of SEQ,{P,Q},{R,S},1,1〉

Another possible rank could be, rk′(P) > rk′(Q) > rk′(R) > rk′(S). Taking A = {P,R},
D = {Q,S} and fA = fD = 1, the uncertainty profiles fA = fD = 1 are obtained, and

U3 = 〈SEQ of PAR,{P,R},{Q,S},1,1〉, U4 = 〈PAR of SEQ,{P,R},{Q,S},1,1〉

Of course, other profiles are possible.

4.3 Two Player Games: The Angel-Daemon Case

Given a uncertainty profile U = 〈E ,A ,D, fA , fD〉, a competitive situation arises. A
strategic situation occurs when E suffers the effect of two players. Game theory [84]
can be used to analyse system behaviour. Suppose that the set of failing sites is a∪ d,

4.3. Two Player Games: The Angel-Daemon Case 40

where a ⊆ A , #a = fA and d ⊆ D , #d = fD . System behaviour is measured by
f ail(a,d)(E). The rewards (or utilities) of the angelic player a and daemonic player d are
ua(a,d) = out(f ail(a,d)(E)) and ud(a,d) = −out(f ail(a,d)(E)). This is a zero sum
game as ua(a,d) = −ud(a,d). When f ail(a,d)(E) is executed, player a receives
out(f ail(a,d)(E)) from player d. The strategy a is chosen (by player a) to increase the
value of ua(a,d) as much as possible, while d is chosen (by player d) to decrease this
value as much as possible.

Stable situations are Nash equilibria: a pure Nash equilibrium is a strategy (a,d), such
that player a cannot improve the utility by changing a while player d cannot reduce the
utility by changing d. When players choose strategies using probabilities, we have mixed
Nash equilibria. Let (α,β) be a mixed Nash equilibrium. As in zero sum games all the
Nash equilibria have the same utilities, an assessor can measure the value of a program
E by the utility of a ∈ A on any Nash equilibrium. Given a Nash equilibrium (α,β),
the expected benefit of an expression E is given by the Assessment,v(E,rk,λE ,βE ,γE) =

out(f ail(α,β)(E)). The orchestration under uncertainty profile is assessed, as follows:

Definition 4.2 [Assessment]. The assessment v(U) of an uncertainty profile U is defined
to be a value of an angel-daemon game Γ(U), which is v(Γ(U)). The assessment is
defined as,

v(U) = maxa∈∆a mind∈∆d ua(a,d) = mind∈∆d maxa∈∆a ua(a,d)

Let E be an Orc expression, and assume that α+(E) is partitioned into two disjoint
administrative domains, angel domain A and daemon domain D. Like angel a has the
ability to control any fA sites in A and daemon d has the ability to control any fD sites in
D, both have opposed behaviour. Then, consider the following game:

Definition 4.3 [Angel-Daemon Game]. The zero-sum angel-daemon game associated
to uncertainty profile, U = 〈E ,A ,D, fA , fD〉, is the game Γ(U) = 〈{a,d},Aa,Ad,ud,ua〉,
with two players, angel a and daemon d. The players have the following sets of actions.

- The angel a chooses p = fA different failing sites a = {a1, . . . ,ap} ⊆ A . Any call to
a site in A \a is successful. Therefore, Aa = {a ⊆ A | #a = fA}.

- The daemon d chooses q = D different failing sites d = {d1, . . . ,dq} ⊆ D . Calls to
sites in A \d are successful. Therefore, Ad = {d ⊆ D | #d = fD}.

A strategy profile is a tuple s = (a,d), which defines a set of failing sites, a∪ d =

{a1, . . . ,ap,d1, . . . ,dq}. Given E and a∪d, the length of f aila∪d(E) is used to define
the utilities as follows: ua(s) = out(f aila∪d(E)) , ud(s) = −ua(s). Therefore, Γ(U) is a
zero-sum game because ud(s)+ua(s) = 0.

Chapter 4. Bounded Site Failures: an Approach to Unreliable Web Environments 41

A pure saddle point is a strategy profile s∗ = (a∗,d∗) such that,

ua(a∗,d∗) = max
a′∈Aa

min
d′∈Ad

ua(a′,d′) = min
a′∈Aa

max
d′∈Ad

ua(a′,d′)

A pure saddle point does not necessarily exist (see the second game showed in Fig-
ure 4.1). A mixed strategy for a ∈ A is a probability distribution α : Aa → [0,1], and
similarly for d ∈ D. Let ∆a and ∆d be the set of mixed strategies for a ∈ A and d ∈ D .
A mixed strategy profile is a tuple (α,β), and the expected utility for a ∈ A is ua(α,β) =
∑(a,d)∈Aa×Ad

α(a)β(d)ua(a,b). It is well known [81] that there always exists a mixed
saddle point (α∗,β∗) satisfying,

ua(α∗,β∗) = max
α′∈∆a

min
β′∈∆d

ua(α′,β′) = min
β′∈∆d

max
α,∈∆a

ua(α′,β′)

Moreover, all the existing saddle points give the same utility. Such a value therefore, is
called the value of the game Γ(U). Simple cases without pure saddle points are shown in
Example 4.8.

Example 4.8 Consider the two well-known classical parallel workflow patterns
(see [18]), SEQ of PAR and PAR of SEQ. PAR represents parallel execution (e.g. a
farm) while SEQ is sequential composition. In Figure 4.1, the workflows SEQ of PAR
and PAR of SEQ are analysed using angel-daemon games with the utility function out.
A “sequential composition of parallel processes” (SEQ of PAR) is denoted by
, (P | Q) � (R | S) while a “parallel composition of sequential expressions”
(PAR of SEQ) is denoted by , (P � Q) | (R � S).

However, pure saddle points appear in the following example:

Example 4.9 [A kind of multiple job]. A farm, is an embarrassingly parallel computa-
tion defined as FARMn , (S1 | · · · | Sn). For any U = 〈FARMn,A ,D, fA , fD〉, it is easy
to prove ν(U) = n− fA − fD . An angel failure has the same effect as a daemon failure
(because of the simple structure of FARMn). A sequential composition of farms [27] can
be analysed using (AD) games. The sequential composition of k > 0 farms, is defined for
k = 1 as SEQ of FARMn,1 , FARMn and for k > 1 as SEQ of FARMn,k , FARMn �
SEQ of FARMn,k−1. For the profile USEQ = 〈SEQ of FARMn,k,A ,D, fA , fD〉 we have
ν(USEQ) = (n− fA − fD)k.

The players can choose the actions using probabilities. A mixed strategy for the an-
gelic player a is a probability distribution α : Aa → [0,1] such that, ∑a∈Aa

α(a) = 1. Simi-
larly, a mixed strategy for the daemon player d is a probability distribution β : Ad → [0,1].

4.3. Two Player Games: The Angel-Daemon Case 42

SEQ of PAR , (P | Q)� (R | S) , PAR of SEQ , (P � Q) | (R � S)

U1 = 〈SEQ of PAR,{P,Q},{R,S},1,1〉,U2 = 〈SEQ of PAR,{P,R},{Q,S},1,1〉

U3 = 〈PAR of SEQ,{P,Q},{R,S},1,1〉,U4 = 〈PAR of SEQ,{P,R},{Q,S},1,1〉

a

d
R S

P 1 1
Q 1 1

ν(U1) = 1

a

d
Q S

P 0 1
R 1 0

ν(U2) = 1/2

a

d
R S

P 0 0
Q 0 0

ν(U3) = 0

a

d
Q S

P 1 0
R 0 1

ν(U4) = 1/2

Figure 4.1: Angel-daemon games for SEQ of PAR and PAR of SEQ in different environments.
The utility ua is given by the number of outputs of the Orc expression. Games Γ(U1) and Γ(U3)
have pure saddle points. Γ(U2) and Γ(U4) games, have mixed saddle points.

A mixed strategy profile is a tuple (α,β) and the utilities are,

ua(α,β) = ∑
(a,d)∈Aa×Ad

α(a)β(d)ua(a,b) ud(α,β) = ∑
(a,d)∈Aa×Ad

α(a)β(d)ud(a,b)

As players a and d have opposing interests there is a strategic situation and the defini-
tion of Nash equilibrium is recalled as a concept solution.

Definition 4.4 [Pure Nash Equilibrium]. A pure Nash equilibrium is a pair s = (a,d),
such that, for any a′ it holds that, ua(a,d) ≥ ua(a′,d) and for any d′ it holds that,
ud(a,d)≥ ud(a,d′). A mixed Nash strategy is a pair (α,β) with similar conditions.

Example 4.10 Consider how to assess SEQ of PAR and PAR of SEQ under two differ-
ent situations. In the first sites are ranked, rk(P)> rk(Q)> rk(R)> rk(S).

Assume that the reliability parameter is, A = {P,Q} and D = {R,S} and moreover,
1/2 of angelic sites will fail and 1/2 of the demonic sites will also fail (therefore fA =

fD = 1). Then, Aa = {P,Q}, Ad = {R,S} and the bi-matrix games will be,

a

d

R S
P 1 1
Q 1 1

SEQ of PAR

a

d

R S
P 0 0
Q 0 0

PAR of SEQ

In both cases, any strategy profile (pure or mixed) is a Nash equilibrium and assess-
ment,

Chapter 4. Bounded Site Failures: an Approach to Unreliable Web Environments 43

v(SEQ of PAR,rk,1/2,1/2,1/2) = 1
v(PAR of SEQ,rk,1/2,1/2,1/2) = 0

For example, this assessment indicates to the client that, in the present environment, there
is a reasonable expectation1 of obtaining 1 output when executing PAR of SEQ.

Consider a second case with rk′(P)> rk′(R)> rk′(Q)> rk′(S) such that A = {P,R}
and D = {Q,S} with fA = fD = 1.

a

d

Q S
P 0 1
R 1 0

SEQ of PAR

a

d

Q S
P 1 0
R 0 1

PAR of SEQ

Here no game has pure Nash equilibria. There is only one mixed Nash
equilibrium with α(P) = α(R) = β(Q) = β(S) = 1/2, and in this case the angel
has utility 1/2 and the daemon has utility −1/2. In this case, the assessment is
v(SEQ of PAR,rk′,1/2,1/2,1/2) = 1/2, and similarly for PAR of SEQ. This
assessment indicates to the client that, in the present environment, an output of 1 or 0
results (with equal likelihood) is a reasonable expectation.

Example 4.11 Consider the expression (P | Q | R)� (S | T |U) with A = {P,Q,S} and
D = {R,T,U} with fA = 2 and fD = 1.

a

d

R T U
{P,Q} 0 2 2
{P,S} 2 2 2
{Q,S} 2 2 2

(P | Q | R)� (S | T |U)

The pure Nash equilibria are,
(〈{P,S},R〉, 〈{P,S},T 〉, 〈{P,S},U〉, 〈{Q,S},R〉, 〈{Q,S},T 〉 and 〈{Q,S},U〉) In this

case, the assessment says that 2 outputs is the reasonable expectation.

4.4 Maximisation and Minimisation Approaches

The two extremes of behaviour can be determined through angelic and daemonic analysis.
In an angelic analysis the viewpoint “world is as good as possible even when failures

1Here “reasonable expectation” is meant in the everyday sense of the phrase and is not intended to represent a
probabilistic outcome.

4.4. Maximisation and Minimisation Approaches 44

cannot be avoided” is adopted. In this case, the angel will control all the sites and the
daemon has no power at all, formally A = α+(E) and D = ∅. This corresponds to the
uncertainty profile, U = 〈E,α+(E),∅, fA ,0〉.

The set of eligible actions for a and d are then, Aa = {a ⊆ α+(E) | #a = fA}, Ad =

{∅}.
As Ad = {∅}, the only possible choice for d is d = ∅. Given a strategy profile s =

(a,d) = (a,∅), the utility verifies ua(s) = out(f aila∪d(E)) = out(f aila(E)), and a fully
controls the situation in Γ(U). In fact, a is the only real player because d has no choice at
all.

Daemonic failures are in a sense the opposite of angelic failures. In this case there is
one player, the daemon d trying to maximise damage. Formally, A =∅ and D = α+(E).
This corresponds to the uncertainty profile, U = 〈E,∅,α+(E),0, fD〉.

The set of eligible actions for a and d are then Aa= {∅}, Ad= {d ⊆α+(E) | #d = fD}.
As a =∅, for any s = (a,d) it holds that, ud(s) = –out(f aila∪d(E)) = –out(f aild(E)).

ud can be pictured as a quantity of money that d has to pay to a, and naturally d is
interested in paying as little as possible.

Lemma 4.2 Uncertainty profiles can be used to maximise or minimise the output as fol-
lows,

- Given Aa = {a ⊆ α+(E) | #a = fA} it holds that, v(〈E,α+(E),∅, fA ,0〉) = maxa∈Aa out(f aila(E))

- Given Ad = {d ⊆ α+(E) | #d = fD} it holds that,

v(〈E,∅,α+(E),0, fA〉) = min
d∈Dd

out(f aild(E))

Proof. Let us consider the first part. In Γ = Γ(〈E,α+(E),∅, fA ,0〉). The angel a chooses
a strategy a ∈ Aa such that, ua(a,∅) = maxa′∈Aa

out(f aila′(E)). Note that (a,∅) is PNE
because a cannot choose a′ ∈ Aa such that, ua(a,∅) < ua(a′,∅), then v(Γ) = ua(a,∅).
The second part is similar. 2

Example 4.12 Let us consider the two well-known expressions, SEQ of PAR and
PAR of SEQ introduced in [18].

Let us analyse both expressions with two failures. First, consider in detail a
pure angelic behaviour. Since, the player and the possible set of failures
are identified, we have A = {P,Q,R,S} and the set of strategy profiles is
A = {{P,Q},{P,R},{P,S},{Q,R},{Q,S},{R,S}}. The utilities are given in the table. In
order to maximise the utility, in the case of SEQ of PAR, the angel a has to avoid
profiles {P,Q} and {R,S}. In the case of PAR of SEQ, a has to take precisely {P,Q} or
{R,S}. As expected, the daemon d behaves in the opposite way.

Chapter 4. Bounded Site Failures: an Approach to Unreliable Web Environments 45

STRATEGY PROFILES {P,Q} {P,R} {P,S} {Q,R} {Q,S} {R,S}
A

SEQ of PAR 0 1 1 1 1 0
PAR of SEQ 1 0 0 0 0 1

D

SEQ of PAR 0 −1 −1 −1 −1 0
PAR of SEQ −1 0 0 0 0 −1

4.5 Properties of Uncertainty Profiles and Assessments

Uncertainty profiles can be identified with properties of games. For some restricted cases,
game assessments can be made directly from uncertainty profiles. More generally, it is
shown on this section that uncertainty profiles are monotonic: decreasing the number of
failures in a profile improves its assessment.

Assessment and Orc Expressions. In certain situations profile uncertainty assessments
can be established directly from the profile itself or from its associated orchestration.
When fA is #A or 0, the angel a has no real choice. The same happens with d, when fD

is #D or 0. Just as it will shown in this case, there is no conflict.

Lemma 4.3 Given a partition of α+(E) into sets A and D , the following holds:

- When fA = #A , the only strategy for a is a = A ,

- When fD = #D, the only strategy for d is d = D,

- When fA = 0, the only strategy for a is a = 0,

- When fD = 0, the only strategy for d is d = 0

Therefore, it holds that, v(〈E,A ,D,0,0〉) = out(E) v(〈E,A ,D,#A ,#D〉) = 0
v(〈E,A ,D,#A ,0〉) = out(f ailA(E)) v(〈E,A ,D,0,#D〉) = out(f ailD(E))

Proof. The first uncertainty profile corresponds to “nothing fails“. In this case Aa = Ad =

∅ and the only possible strategy profile is s = (∅,∅) and then, ua(s) = out(f ail∅(E)) =
out(f ail(E)).

The second uncertainty profile, correspond to one of the sites fails. In this case,
the only choice is a = A and d = D . Then, as A ∪ D = α+(E), we get
ua(s) = out(f ailα+(E)(E) = 0.

In the third case the only possible strategy is a = A and d = ∅, and we get the same
result. Case four is similar. 2

4.5. Properties of Uncertainty Profiles and Assessments 46

The first profile, produces a basic monotonicity property. Under restricted circum-
stances, the value of the assessment is easy to compute:

Lemma 4.4 Let E and F be two expressions, then we have:

ν(〈E | F,α+(E),α+(F), fA , fD〉) = max
a∈Aa

out(f aila(E))+ min
d∈Ad

out(f aild(F))

ν(〈E � F,α+(E),α+(F), fA , fD〉) = max
a∈Aa

out(f aila(E))∗ min
d∈Ad

out(f aild(F))

ν(〈E,A ,D, fA ,0〉) = max
a∈Aa

out(f aila(E))

ν(〈E,A ,D,0, fD〉) = min
d∈Ad

out(f aild(E))

Therefore, in all four cases the associated game has a pure saddle point.

Proof. Given the orchestration E | F , where the angel controls E and the daemon con-
trols F , it is easy to see that, ua(a,d) = out(f aila(E))+ out(f aild(F)). Similarly, given
the same player domains, it follows that E � F is assessed as ua(a,d) = out(f aila(E))∗
out(f aild(F)). In the case that the daemon has no moves fD = 0, we have that ua(a, /0) =
out(f aila(E)) and similarly, when fA = 0, we have that uD(/0,d) = out(f aild(E)). There-
fore, in all the four cases, the extreme values are achievable by pure strategies and the
corresponding games have a pure saddle point. 2

Monotonicity. First of all, it is assumed that A and D remain unchanged. The following
two lemmas allow, under some restricted hypothesis, to build new strategies from the
existing ones, which have adequate monotonicity properties.

Consider the behaviour of the angelic utility: when the number of failures decreases
from fA (uncertainty profile U) to f ′A (uncertainty profile U′), where 0 ≤ f ′A ≤ fA .
The strategies associated with games Γ(U) and Γ(U′) are Aa = {a ⊆ A | #a = fA} and
A′
a = {a′ ⊆ A | #a′ = f ′A}, respectively. A mapping split(α) is used to transform mixed

strategies α ∈ ∆a into mixed strategies in ∆′
a. split(α), and is constructed as follows:

- Initially, the probability of any set a is spread in an equiprobable partition over the
smaller set a′, a′ ⊆ a. As #a = fA and #a′ = f ′A this gives rise to a division factor of(fA

f ′A

)
.

- The probability of any a′ is obtained by adding the probabilities of all a contributing
to a′.

Formally:

Definition 4.5 [Split Strategy]. Suppose that fA ≥ f ′A ≥ 0 and α ∈ ∆a. The mapping

Chapter 4. Bounded Site Failures: an Approach to Unreliable Web Environments 47

split(α) : A′
a → [0,1] is:

split(α)(a′) =
1(fA
f ′A

) ∑
{a | a′⊆a}

α(a)

Example 4.13 Consider split(α), for a given α, where A = {1,2,3,4}, fA = 3 and f ′A =

2.

Aa = {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
A′
a = {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}

Suppose that α is given by α({1,2,3}) = 1/2 and,
α({1,2,4} = α({1,3,4}) = α(({2,3,4}) = 1/6. Here(fA

f ′A

)
= 3, {a | {1,2} ⊆ a} = {{1,2,3},{1,2,4}} and so split(α)({1,2}) = 2/9. Other

cases can be calculated in a similar fashion.

Lemma 4.5 The split(α) mapping is a mixed strategy for a. That is, split(α) ∈ ∆′
a. More-

over, ua(α,β)≤ u′a(split(α),β).

Proof. Given a ∈ Aa, there are #{a′ | a′ ⊆ a} =
(p

p′
)

ways to choose a′ such that, a′ ⊆ a.
For any a′ ∈ A′

a, a′ ⊆ a, and d ∈ Ad, it follows that:

ua(a,d)≤ u′a(a
′,d) (4.1)

(since out(faila∪d(E))≤ out(faila′∪d(E))).

Applying (1) to each a′, where a′ ⊆ a, we get:

ua(a,d)≤
1(p
p′
) ∑
{a′ | a′⊆a}

u′a(a
′,d).

To prove that split(α) is a mixed strategy, consider the construction of split(α)(a′) ≥ 0.
The summation ∑a′∈A′

a
∑{a∈Aa|a′⊆a} can be rewritten as ∑a∈Aa ∑{a′∈A′

a|a′⊆a} because in
both cases there is a sum over the set of pairs {(a,a′) ∈ Aa×A′

a | a′ ⊆ a}.

Thus,

∑
a′∈A′

a

split(α)(a′) =
1(p
p′
) ∑

a∈Aa

(
∑

{a′∈A′
a|a′⊆a}

α(a)
)
= ∑

a∈Aa

α(a)
1(p
p′
)(∑

{a′∈A′
a|a′⊆a}

1
)
= 1

4.5. Properties of Uncertainty Profiles and Assessments 48

Finally, the inequality between ua and u′a is derived as follows:

ua(α,β) = ∑
a∈Aa

∑
d∈Ad

α(a)ua(a,d)β(d)≤ ∑
a∈Aa

∑
d∈Ad

1(p
p′
) ∑
{a′∈A′

a | a′⊆a}
α(a)u′a(a

′,d)β(d) =

∑
a′∈A′

a

∑
d∈Ad

(
1(p
p′
) ∑
{a∈Aa | a′⊆a}

α(a)

)
u′a(a

′,d)β(d) = ∑
a′∈A′

a

∑
d∈Ad

split(α)(a′)u′a(a
′,d)β(d)

= u′a(split(α),β)

2

Now consider the behaviour of the utility, when the number of failures increases from
fD to f ′D , fD ≤ f ′D and f ′D ≤ #D. The strategies associated with the two corresponding
games are, Ad = {d ⊆ D | #d = fD} and A′

d = {d′ ⊆ D | #d′ = f ′D}. Given a mixed
strategy β ∈ ∆d, a mixed strategy joint(β) ∈ ∆′

d can be constructed as follows:

- Set d is extended to set d′ by the addition of f ′D − fD services from D \d. There are(#D− fD
f ′D− fD

)
ways to carry out the extension.

- The probability of any d′ is obtained by adding the probabilities of all d contributing
to d′.

Definition 4.6 [Joint Strategy]. Given fD ≤ f ′D ≤ #D and β ∈ ∆d, the mapping joint(β) :
A′
d → [0,1] is:

joint(β)(d′) =
1(#D− fD

f ′D− fD

) ∑
{d | d⊆d′}

β(d)

Example 4.14 Consider the situation where, D = {1,2,3,4} with fD = 2 and f ′D = 3.

Ad = {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
A′
d = {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}

In this case
(#D− fD

f ′D− fD

)
= 2.

Suppose that, β is given by,

β({1,2}) = β({1,4}) = β({2,4}) = 1/9

β({1,3}) = β({2,3}) = β({3,4}}) = 2/9

For {1,2,3} ∈ A′
d, we have {d ∈ Ad | d ⊆ {1,2,3}} = {{1,2},{1,3},{2,3}} and

joint(β)({1,2,3}) = 5/9.

Lemma 4.6 The mapping joint(β) is a mixed strategy for d, that is, joint(β) ∈ ∆′
d. More-

over, ua(α,β)≥ u′a(α, joint(β)).

Chapter 4. Bounded Site Failures: an Approach to Unreliable Web Environments 49

Proof. Any d ∈ Ad contains q services. Consider a d′ ∈ A′
d where, d ⊆ d′ and d′ contains

q′ ≥ q sites. A strategy d′ can be developed from d by adding q′− q services from the
set D \ d. As this set contains n− q elements there are

(n−q
q′−q

)
ways to choose d′. Since

out(faila∪d(E)) ≥ out(faila∪d′(E)), it follows that ua(a,d) ≥ u′a(a,d
′). By averaging over

all such d′, d ⊆ d′ we get:

ua(a,d)≥
1(n−q

q′−q

) ∑
{d′∈A′

d | d⊆d′}
u′a(a,d

′)

To prove that joint(β) is a mixed strategy, consider the construction of joint(β). In a way
similar to that used in Lemma 4.5 it follows that,

∑
d′∈A′

d

joint(β)(d′) = ∑
d∈Ad

β(d)

(
1(n−q

q′−q

) ∑
{d′∈A′

d|d⊆d′}

)
= 1

The inequality between ua and u′a is derived as follows,

ua(α,β) = ∑
a∈Aa

∑
d∈Ad

α(a)ua(a,d)β(d)≥ ∑
a,d

α(a)

(
1(n−q

q′−q

) ∑
{d′∈A′

d|d⊆d′}
u′a(a,d

′)

)
β(d)

= ∑
a,d′

α(a)

(
1(n−q

q′−q

) ∑
{d∈Ad|d⊆d′}

β(d)

)
u′a(a,d

′) = ∑
a,d′

α(a)u′a(a,d
′)joint(β)(d′)

= u′a(α, joint(β))

2

Theorem 4.1 Let U = 〈E,A ,D, p,q〉 and U′ = 〈E,A ,D, p′,q′〉, p′ ≤ p and q′ ≤ q, be
uncertainty profiles. Then ν(U)≤ ν(U′).

The proof is based on the min-max and max-min characterisation of the value of a game
and uses Lemmas 4.5 and 4.6.
Proof. The proof is in two parts: first consider U = 〈E,A ,D, p,q〉 and
U′ = 〈E,A ,D, p′,q〉, p′ ≤ p. It follows that ν(U) ≤ ν(U′). The proof is based in the
following zero-sum game characterizations:

ν(U′) = max
α′∈∆′

a

min
β∈∆d

u′a(α
′,β), ν(U) = min

β∈∆d

max
α∈∆a

ua(α,β)

Now ua(α,β) ≤ ua′(split(α),β), for any α ∈ ∆a and β ∈ ∆d (Lemma 4.5). Choose
β∗(α) so that, u′a(split(α),β∗(α)) = minβ u′a(split(α),β)

As minβ u′a(split(α),β) ≤ maxα minβ u′a(α,β) = ν(U′) we get
ua(α,β∗(α)) ≤ u′a(split(α),β∗(α)) ≤ ν(U′), and therefore it follows that
ua(α,β∗(α))≤ ν(U′).

4.5. Properties of Uncertainty Profiles and Assessments 50

Now, given the set of pairs {(α,β∗(α)) | α ∈ ∆a},
choose α∗ such that ua(α∗,β∗(α∗)) = maxα ua(α,β∗(α)) As
ν(U) = minβ maxα ua(α,β) ≤ maxα ua(α,β∗(α)) we obtain ν(U) ≤ ua(α∗,β∗(α∗)) and
ν(U)≤ ν(U′).

Secondly, consider an increase in the number of daemon failures. Consider U =

〈E,A ,D, p,q〉, and U′′ = 〈E,A ,D, p,q′〉, q′ ≥ q. It follows that, ν(U) ≥ ν(U′′). The
proof is based in the following game characterisations:

ν(U′′) = min
β

max
α

u′a(α,β), ν(U) = max
α

min
β

ua(α,β)

For any α and β, it follows that ua(α,β) ≥ u′a(α, joint(β)) (see Lemma 4.6). First,
choose α∗(β) such that, u′a(α∗(β), joint(β)) = maxα u′a(α, joint(β)).

As maxα u′a(α, joint(β)) ≥ minβ maxα u′a(α,β) = ν(U′′) we obtain, ua(α∗(β),β) ≥
u′a(α∗(β), joint(β))≥ ν(U′′).

Given the set {(α∗(β),β) | β ∈ ∆d}, choose β∗ such that,
ua(α∗(β∗),β∗) = minβ ua(α∗(β),β).

As maxα minβ ua(α,β) = ν(U) we get, ν(U)≥ ua(α∗(β∗),β∗) and therefore, ν(U)≥
ν(U′′).

Finally, consider the uncertainty profiles U = 〈E,A ,D, p,q〉, and
U′ = 〈E,A ,D, p′,q′〉 such that, p′ ≤ p and q′ ≤ q. Consider the uncertainty profile
U′′ = 〈E,A ,D, p,q′〉. By the first part of the proof it holds that, ν(U′′) ≤ ν(U′) and by
the second part of the proof, ν(U)≤ ν(U′′). 2

Note that trading-off daemon failures for angel failures may actually increase uncer-
tainty.

Example 4.15 Given E =
(
(P|Q)� T)|R

)
, the profile U = 〈E,{T,R},{P,Q},1,1〉 has

assessment ν(R) = 1. Trading a daemonic failure for an angelic one makes the situation
worse because the modified profile U′ = 〈E,{T,R},{P,Q},2,0〉 has assessment ν(U′) =

0.

Uncertainty profiles can be given best-case and worse-case bounds:

Theorem 4.2 The best and worst case uncertainty profiles associated with an orchestra-
tion expression E in an environment in which k service failures occur are,

Angelic(U) = 〈E,α+(E), /0,k,0〉, Daemonic(U) = 〈E, /0,α+(E),0,k〉

Let U be an arbitrary uncertainty profile for E with k failures. Then, ν(Daemonic(U))≤
ν(U) ≤ ν(Angelic(U)). Thus, the profiles Angelic(U) and Daemonic(U) act as bounds
on U.

Chapter 4. Bounded Site Failures: an Approach to Unreliable Web Environments 51

Proof. The actions of Γ(U) and Γ(Angelic(U)) are, respectively,

Aa = {a ⊆ A | #a = p}, Ad = {d ⊆ D | #d = q}
A′
a = {a′ ⊆ α+(E) | #a′ = p+q}, A′

d = /0

In Γ(Angelic(U)), the only mixed strategy available to the daemon is one : A′
d → [0,1],

where one(/0) = 1. Therefore, ν(Angelic(U)) = maxα′ u′a(α′,one). Any profile (a,d) ∈
Aa×Ad can be mapped into a profile (a∪d, /0)∈A′

a×A′
d as follows, given a mixed strategy

profile (α,β) in Γ(U), define the mixed strategy product(α,β) : A′
a → [0,1] as,

product(α,β)(a′) =

α(a)β(d) if a′ = a∪d.

0 otherwise

Then ua(α,β) = u′a(product(α,β),one). Choose (α∗,β∗) such that ν(U) = ua(α∗,β∗).
Note that, ua(α∗,β∗) = u′a(product(α∗,β∗),one) ≤ maxα′ u′a(α′,one) = ν(Angelic(U)).
The daemonic game Γ(Daemonic(U)) has actions, A′

a = /0, A′
d = {d′ ⊆ α∗(E) | #d′ = p+

q}. Since ν(Daemonic(U)) =minβ′ u′a(one,β′), we have a minimization problem. Taking
(α∗,β∗) as before, we have ua(α∗,β∗) = u′a(one,product(α∗,β∗)) ≥ minβ′ u′a(one,β′) =

ν(Daemonic(U)). 2

Finally, to comment that in appendix, there are two examples, which correspond with
this section. The first one (see A), shows an example of Internet computing, where sites
are interpreted as interfaces among the members of a community. This example is based
on MeetingMonitor example given in Section 7.3 of [76]. The second one (see B) is
focused on risk management, applied on a specific IT system and from the viewpoint of
game theory.

4.6 Notes

Orchestration and Choreography. To learn about the orchestration language Orc by
J. Misra and W. R. Cook, refer to [76, 58, 25]. To read about web-services orchestrations,
note to Sidney Rosario et. al. [99]. References [24] by W. R. Cook and J. Bartfield and
[56] by G. Kandaswamy et al., which deal about web-services, are also very instructive.

Game Theory and Fault on Systems. For a good understanding of game theory, refer to
essential books Theory of Games and Economic Behaviour [81] by J. von Neuman and
O. Morgenstern; and A Course in game theory [84] by M. Osborne and A. Rubinstein. In
addition, refer to an another interesting book [70], Microeconomic theory, published on
1995, by A. Mas-Colell.

4.6. Notes 52

T. Moscibroda and S. Schmid and R. Wattenhofer published a work [77] in 2006,
where they considered the Price of Malice of a game, which models the containment of
the spread of viruses, over a distributed system. This is an interesting consideration about
a system of selfish individuals. Another consideration about this, is the [20] reference,
where authors studying the impact of altruism on systems performance in atomic conges-
tion games, noticed that altruism can be harmful in general.

The muskel is founded in M. Danelutto and M. Aldinucci [27], and “the reputation”
of sites by G. C. Silaghi in [104]. Note to S. Marsh [69] and Bin Yu and M. P. Singh [114]
for information about reputation and trustability. Refer to K. Eliaz’s work [32], where the
author introduced a notion of fault tolerance implementation, and [31, 89, 37], which also
deal with “faults” and “tolerance” on systems.

Chapter 5

On the Complexity of Equilibria
Problems in Angel-Daemon Games

The complexity of equilibria problems for a class of strategic zero-sum games1, called
angel-daemon games, is analysed in this chapter. These games were introduced to asses
the goodness of a Web or Grid orchestration on a faulty environment with bounded amount
of failures. Furthermore, this chapter is focused on showing first that, deciding the exis-
tence of a pure Nash equilibrium or a dominant strategy for a given player is Σp

2-complete,
and second, that computing the value of an angel-daemon game is EXP-complete. There-
fore, both focuses match the already known complexity results of the corresponding prob-
lems for the generic families of succinctly represented games with exponential number of
actions.

5.1 Angel-Daemon Games

Failures in Web systems are well accepted. It is practically impossible to have a constant
and proper system behaviour. For this reason, it would be interesting to have available
an estimate of the likelihood of success. Such an analysis has been performed using a
subset of the Orc [76, 75] language to describe the orchestration of sites in the Web, in the
context of game theory, when some additional assumptions on the behaviour of the failed
sites and on the nature and amount of expected faults are met. [39].

In order to undertake such an analysis in an environment with a bounded amount
of failures, the concept of uncertainty profile was introduced in [44]. An uncertainty
profile specifies, for a set of sites participating in an orchestration, a partition into two
sets A and D , and two values fA and fD . The set A represents these sites that fail due
to misbehaviour or other reasons, but that are essentially non-malicious, and thus called

1Work partially supported by FET pro-active Integrated Project 15964 (AEOLUS) and by Spanish projects
TIN2005-09198-C02-02 (ASCE) and MEC-TIN2005-25859-E.

53

5.2. Strategic Games and Succinct Representations 54

angelic. The set D represents these sites with malicious behaviour, and are thus called
daemonic. The numbers fA and fD constitute an estimation of the number of angelic
and daemonic failures. The final component is the angel-daemon game associated to a
uncertainty profile for a given Orc expression E. In an angel-daemon game there are two
players, the angel and the daemon. The angel can select fA sites in A to fail and the
daemon has to select fD sites in D to fail. Once the set of failures is fixed, the number of
outputs of expression E when it is evaluated under such failures. The angel’s objective is
to maximise this value, while the daemon tries to minimise it. As such, an angel-daemon
game is a zero-sum game and it follows from [113] that the entire Nash equilibrium of
the game with have the same utility for the angel, which is known as the game value.
The game value is used as the measure for assessing the expected behaviour of the E
expression in the environment described by the uncertainty profile [39, 44].

The main components of strategic games are players, their actions and the payoffs or
utility functions. Each component of a game, that is, a set or a function, can be explicitly
described by means of a list or a table or implicitly via computation models, for example
a Turing machine. Depending on how each component is described, a different degree
of succinctness [9, 47, 102] can be achieved. This chapter is therefore focused on the
analysis of the computational complexity of the following problems in angel-daemon
games and in games with succinct representations.

Exists pure Nash equilibrium? (EPN). Given a game Γ, decide whether Γ has
a pure Nash equilibrium.

Exists dominant strategy? (EDS). Given a game Γ and a player i, decide
whether there is a dominant strategy for player i in Γ.

Game Value (GV). Given an zero-sum game Γ, compute its value.

The standard terminology for classical complexity classes like LOGSPACE, P, NP, coNP,
Σp

2 and EXP [12, 86] has been used. Results include a characterisation of the com-
plexity of all problems addressed introduced above when the input is restricted to be
an angel-daemon game. The decision on whether the EPN and the EDS problems are
Σp

2-complete, and it GV is EXP-complete are shown. It will be discussed that similar
results for general families were already known for strategic games in implicit form [8]
and succinct zero-sum games [38].

5.2 Strategic Games and Succinct Representations

In essence, a strategic game is a tuple Γ = (N,(Ai)i∈N ,(ui)i∈N), where N = {1, . . . ,n} is
the set of players. For each player i ∈ N, Ai is a finite set of actions. For each player i ∈ N,

Chapter 5. On the Complexity of Equilibria Problems in Angel-Daemon Games 55

ui is an utility (or payoff) function, mapping A1 × . . .×An to the rational. In chapter 2 the
full strategic games definition 2.1 is given, borrowed from [84].

Then, the following question may be asked: How the players play given a strate-
gic game Γ? Let us take a strategic game Γ = (N,(Ai)i∈N ,(ui)i∈N) and the strategy
si for player i, as a selection of an action si ∈ Ai, where a strategy profile is a tuple
s = (s1, . . . ,sn). After independently selecting the joint strategy profile s, player i gets
utility ui(s). Given s = (s1, . . . ,sn) and a player i, s can be factorised as (s−i,si), where
s−i = (s j) j 6=i. A zero-sum game is a strategic game in which, for any strategy profile s
holds u1(s)+u2(s) = 0.

At this point, is defined a strategic game, and an explanation on the way players play
is given. In order to study the computational complexity of problems on games, the way
an input game Γ is represented has to be defined.

The complexity of a problem is always analysed with respect to the size of the input.
It is clear that the size of a game representation depends mainly on the number of players
and on the size of the action set. Similarly, the utility function of each player, which is
also part of the game description depends on the number of strategy profiles. Because of
these, it is necessary to make clear the way the set of players is described: for each player,
their set of actions and utility functions, depending on the succinctness of the description
of the action sets and depending on whether the pay-off functions are described implicitly
by Turing machines (TM).

A strategic game in implicit form [9] is represented by 〈1n,1m,M,1t〉. This game has
n players. For each player i, their set of actions is Ai = Σm and 〈M,1t〉 is the description of
the utility functions. The utility of player i on the strategy profile s is given by the output
of the Turing machine M on input (s, i) after t steps.

Notice that in this case, the length of the representation is proportional to the number
of players n, the length of the actions m (and then logarithmic to the number of different
actions), and the computation time t of the pay-off functions. Observe that this type of
representation includes the circuit games considered in [47, 102]. The complexity of
several problems on games given in implicit form was analysed in [8, 7]. In particular,
they showed that the EPN problem is Σp

2-complete for games given in implicit form with
four players.

A succinct, two-person, zero-sum game [38] representation is a boolean circuit C,
such that the utilities are defined by u1(i, j) = C(i, j) and u2(i, j) = −C(i, j). It is well
known that computing the value of a succinct zero-sum game is EXP-complete [35, 38].
To the best of this thesis candidate’s knowledge, there are no results on the complexity of
the EDS problem.

5.3. Orc and Angel-Daemon Games 56

5.3 Orc and Angel-Daemon Games

An orchestration is a user-defined program that uses services on a Web or Grid. As we
have seen in Chapters 3 and 4, Orc services are modelled by sites which have some pre-
defined semantics. Typical examples of services are: an eigensolver, a search engine or a
database [107]. A site accepts an argument and publishes a result value 2. For example, a
call to a search engine, f ind(x), may publish the set of sites which currently offer service
x. A site call is silent if it does not publish a result. Site calls may induce side effects. A
site call can publish at most one response. An orchestration, which composes a number
of service calls into a complex computation can be represented by an Orc expression. An
orchestrator may use any service that is available on the Web. The simplest kind of Orc

expression is a site (service) call. Orc has two special sites, site 1 and site 0. A call to
1 always returns exactly one signal. A call to 0 never returns and thus remains silent.
The subset of Orc operations, that has been used in the Orc, will defined next. A site
call s(v1, . . . ,vn) is called non-blocking if it must publish a result, when v1, . . . ,vn are well
defined; otherwise s is potentially blocking. In Orc, the predefined site 1 is non-blocking
while i f (b) is potentially blocking. In this thesis only some non-blocking expressions
have been considered, to ensure the use of a subset of non-blocking operators.

Taking Lemma 4.1 in Chapter 4, and given an uncertainty profile U, it is straightfor-
ward to obtain a description of the game Γ(U) in implicit form or in zero-sum succinct
form in polynomial time. Therefore, the following result was obtained.

Lemma 5.1 Given an uncertainty profile U for a non-blocking Orc expression E, a de-
scription of the angel-daemon game Γ(U) in implicit form or zero-sum succinct form can
be obtained in polynomial time.

5.4 The Complexity of the EPN Problem

In this section is proved that, deciding the existence of a pure Nash equilibrium for angel-
daemon games is Σp

2-complete. In this way, this problem is as hard as for the general case
of strategic games given in implicit form [9].

In order to prove the hardness for Σp
2 a restricted version of the Quantified

Boolean Formula is considered i.e., the Q2SAT problem, which is Σp
2-complete

[86]. It is also established that Φ is a Q2BF formula, when Φ has the form
Φ = ∃α1, . . . ,αn∀β1, . . . ,βmF(α1, . . . ,αn,β1, . . . ,βm), where F is a Boolean formula
given in conjunctive normal form (CNF). Recall that Q2SAT is defined as follows:

2The words publish,return and output are used interchangeably. The terms site and service are also used inter-
changeably.

Chapter 5. On the Complexity of Equilibria Problems in Angel-Daemon Games 57

Given a Q2BF formula Φ over the boolean variables α1, . . . ,αn, β1, . . . ,βm, decide
whether Φ is true.

An Orc expression on 2(n + m) + 5 sites, from a given Q2BF formula
Φ = ∃x1, . . . ,xn∀y1, . . . ,ymF(x1, . . . ,xn,y1, . . . ,ym), is constructed. For any i,
1 ≤ i ≤ n+1, there are two sites Xi and X i. For any j, 1 ≤ j ≤ m+1, two sites Yi and Y i,
are considered. Let X be the Orc expression (X1|X1)� ·· · � (Xn+1|Xn+1). Let Y be the
expression (Y1 � Y 1)| · · · |(Ym+1 � Y m+1).

It is assumed that F = C1 ∧ ·· · ∧Ck, where each Cλ, 1 ≤ λ ≤ k is a clause. An ex-
pression Oλ is constructed for each clause (1 ≤ λ ≤ k). This expression is formed by
the parallel composition of the sites corresponding to the literals appearing in Cλ. Then,
the expression O associated to formula F is defined as O1 � ··· � Ok. The expression
associated to the boolean formula is the following:

EΦ = Z(x) where x :∈ [(Ym+1 � Xn+1)|(Y m+1 � Xn+1)|(X � (O|Y))].

The associated uncertainty profile is U(Φ) = 〈EΦ,A ,B,n + 1,m + 1〉, with
A = {Z,X1, . . . ,Xn+1,X1, . . . ,Xn+1} and B = {Y1, . . . ,Ym+1,Y 1, . . . ,Y m+1}.

Lemma 5.2 The Q2BF formula Φ is true iff the angel-daemon game Γ(U(Φ)) has a
pure Nash equilibrium.

Proof. A given formula Φ = ∃α1, . . . ,αn∀β1, . . .βmF(α1, . . . ,αn,β1, . . .βm) is assumed.
Before providing the proof of the lemma some notation is introduced. Given α ∈ {0,1}n

denoted by Aα, the Angel strategy is defined as:

Aα = {Xn+1}∪{Xi|αi = 0}∪{X i | αi = 1}.

A angelic strategy A is consistent when, for any 1 ≤ i ≤ n, exactly one of the sites Xi

or X i belongs to A, and the same for the Daemon, that is, given β ∈ {0,1}m, two Daemon
strategies are defined:

D+
β = {Ym+1}∪{Y j|β j = 1}∪{Y j | β j = 0}

D+
β = {Y m+1}∪{Yj|β j = 1}∪{Y j | β j = 0}.

A daemonic strategy D is consistent if, for any 1 ≤ j ≤ m+1, exactly one of the sites
Y j or Y j belongs to D. Observe that for any consistent strategy for the angel, in which Z
does not fail, X produces some kind of output, and that for any non consistent strategy for
the daemon, Y produces some kind of output.

In the case that Φ is true, an assignment α ∈ {0,1}n for which F(α,β) is true, for
any β ∈ {0,1}m is considered. The Angel strategy Aα is also considered. It is possible to

5.4. The Complexity of the EPN Problem 58

observe that, first X produces some kind of output and second, for any consistent strategy
for the daemon, O produces some kind of output. In addition, for any non consistent
strategy for the daemon, Y produces some kind of output. Therefore, for any strategy of
the daemon, the final number of outputs is 1. Thus, any combined strategy profile (Aα,D)

is a Nash equilibrium.
In the case that F is not true, any strategy profile (A,D) is considered. It is also

shown that (A,D) is not a Nash equilibrium. Proof is given by cases. All possibilities are
divided into 4 cases and it is proven that in any of them, the strategy profile is not a Nash
equilibrium.

- Case 1: Z ∈ A. In this case the utility obtained by the angel, is zero.

If D is not consistent, the angel can move to a consistent strategy replacing Z by
Xn+1, and as Y produces at least one output, the angel improves its utility.

In the case that D is a consistent strategy, then either Ym+1 ∈ D or Y m+1 ∈ D. Then,
it is assumed that Ym+1 ∈ D. Substituting Z by Xn+1 or by any other not failed site, if
Xn+1 ∈ A the angel obtains 1 instead of zero. In the case that the failed site is Y m+1,
a symmetric argument shows that the strategy profile is not a Nash equilibrium.

- Case 2: Z /∈ A but both Xn+1,Xn+1 ∈ A.

If D is not consistent, the angel can move into a consistent strategy making only
Xn+1 fail. Taking into account that Y produces at least one output, the angel im-
proves its utility.

In the case that D is a consistent strategy, either Ym+1 ∈ D or Y m+1 ∈ D. Then, it is
assumed that Ym+1 ∈ D thus, substituting Xn+1 by another not failed site in A, the
angel gets 1 instead of zero. In the case that the failed site is Y m+1, a symmetric
argument shows that the strategy profile is not a Nash equilibrium.

- Case 3: Z,Xn+1,Xn+1 /∈ A.

In this case, A is not consistent and therefore, X does not produce any output.

If Ym+1,Y m+1 ∈ D, the number of outputs is zero. Then, the angel can move to a
consistent strategy and, as Y produces at least one output, improve its own utility.

If Ym+1,Y m+1 /∈ D, the number of outputs is one. In this case the daemon can move
to a non consistent strategy in which both Ym+1,Y m+1, and as X does not produce
any output, it improves its own utility.

It is assumed that knowing that either Ym+1 ∈ D or Y m+1 ∈ D, in this sub-case the
expression produces some kind of output. Then, the angel can move to a strategy in
which both Ym+1 and Y m+1 fail and improve their own utilities.

Chapter 5. On the Complexity of Equilibria Problems in Angel-Daemon Games 59

- Case 4: Z /∈ A, either Xn+1 or Xn+1 belong to A. Without lack of generality, it is
assumed that Xn+1 ∈ A.

- Case 4.1: A is not consistent.

In this case, X does not produce any output.

If Ym+1,Y m+1 ∈ D, the number of outputs is zero. Then, the angel can move
to a consistent strategy and, as Y produces at least one output, improve its own
utility.

If Ym+1,Y m+1 /∈ D, the number of outputs is one. In this case, the daemon can
move to a non-consistent strategy in which both Ym+1,Y m+1 fail and, as X does
not produce any output, improve its utility.

It is also assumed that knowing that Ym+1 ∈ D and Y m+1 /∈ D, in this sub-case
the expression produces some kind of output. Then, the daemon can move to
a strategy in which both Ym+1 and Y m+1 fail and improve its utility. Then, it
is assumed that knowing that Ym+1 /∈ D and Y m+1 ∈ D, in this sub-case the ex-
pression does not produce any output. Then, the angel can move to a consistent
strategy and improve its own utility.

- Case 4.2: A is consistent an D is not consistent.

Let α ∈ {0,1}n be the assignment, so that Aα ⊆ A. Since Φ is not true, there
should be at least one β ∈ {0,1}m such that F(α,β) is false. Let β0 be one of
such assignments.

- Case 4.2.1: D is not consistent.

In this case the number of outputs is one. Then the daemon can move to D−
β0

reducing the outputs to zero.

- Case 4.2.2: D is consistent.

Let β∈{0,1}m be the assignment so that Dβ ⊆D. If F(α,β) is true, the number
of outputs is one, but in which the daemon can change its strategy towards D−

β0
,

reducing the outputs to zero. If F(α,β) is false we have two cases: Ym+1 ∈ D,
which means that the number of outputs is one, and where the daemon can
replace Ym+1 by Y m+1, improving its payoff. However, when Y m+1 ∈ D, the
number of outputs is one and the angel can change strategy and get one output.

2

Lemma 5.1 and Lemma 5.2, are put together, and taking in mind that PNE problems
for games given in implicit form belong to Σp

2 [9], the following theorem is obtained.

Theorem 5.1 Deciding whether an angel-daemon game has a pure Nash equilibrium is
Σp

2 complete.

5.5. Computing the Value of Angel-Daemon Game 60

As a consequence of the above result, some results on the complexity of the PNE
problem on succinct described games, were obtained.

Corollary 5.1 Deciding whether a zero-sum game given in implicit form has a pure Nash
equilibrium is Σp

2 complete. Deciding whether a two-player strategic game given in im-
plicit form has a pure Nash equilibrium is Σp

2 complete.

The above results settles the number of players to a minimum. It were improved the
already known results as in the reduction provided in [9], where the number of players
was four.

5.5 Computing the Value of Angel-Daemon Game

In this section it is proved that computing the number of outputs for a non-blocking Orc

expression is P-complete, and that computing the value of an angel-daemon game is EXP-
complete. Thus, again the VG problem is as hard as for the general case of succinct
zero-sum games [35, 38].

A construction of an angel-daemon game associated to a succinct description of a
zero-sum game, is provided. A boolean circuit C with n+m inputs and k+1 outputs de-
scribing a succinct zero-sum game Γ is assumed. Without lack of generality, it is assumed
that the circuit has only and and or gates and that all the negations are on the inputs.

First, a non-blocking Orc expression SC corresponding to a one output circuit C, is
defined. For any i, 1 ≤ i ≤ n, there are two sites Xi and X i. For any j, 1 ≤ j ≤ m, two
sites Yi and Y i, are considered. These sites have been referred as the input sites. The Orc

expression uses a construction provided in [75] to express the orchestration of a work-
flow on a dag (see proof of Lemma 5.3 for more details). The idea is to associate a site
with each gate and a variable to each wire in the circuit. The expression makes use of
the where constructor to guarantee the appropriate workflow. The input to the circuit is
bound through variables to the input sites, so that when sites fail according to a consistent
assignment α, out(f ailFα(SC)) = C(α), where Fα = {Xi | xi = 0}∪{X i | xi = 1}∪{Yi |
yi = 0} ∪ {Y i | yi = 1}. Thus, the expression produces zero outputs if and only if the
circuit evaluates to zero. This construction is used to devise a reduction from the Circuit
value problem, which is P-complete [66, 48].

Theorem 5.2 Given a non-blocking, well formed, Orc expression E, determine whether
out(E) 6= 0 is P-complete. Given a set of failures F ⊆ α+(E), determine whether
out(f ailF (E)) 6= 0 is also P-complete.

We go back to circuit C, which gives a succinct representation of a game. For each
output gate, a different Orc expression is generated, thus there are expressions S0

C, . . . ,S
k
C.

Chapter 5. On the Complexity of Equilibria Problems in Angel-Daemon Games 61

These expressions are organised so that the final result corresponds to the value repre-
sented by the circuit. To do so, for any 0 ≤ j the Orc expression Pj that produces 2 j out-
puts is considered. This is obtained by repeatedly doubling the number of outputs, P0 = 1
and Pl = Pl−1|Pl−1 for any 0 < l ≤ j. The combination VC = (S0

C � P0)| · · · |(Sk
C � Pk)

produces C(α) outputs provided that the input variables fail according to α. The last
step takes care of inconsistent sets of failures. Let X be the Orc expression (X1|X1) �
···� (Xn|Xn) and let Y be the expression (Y1 �Y 1)| · · · |(Ym+1 �Y m+1). The expression
associated to the circuit EC = X � (VC|(Y � Pk+1)), and the uncertainty profile UC =

〈EC,A ,D,n,m〉 are defined, where D = {Y1, . . . ,Ym,Y 1, . . . ,Y m} and A = α+(EC)\D.

Lemma 5.3 Given a succinct description of a zero-sum game Γ by means of a circuit C,
the angel-daemon game Γ(UC) has the same value as Γ.

Proof. First, the Orc expression SC corresponding to a boolean circuit C is provided, with
n+m inputs and one output gate. It is assumed that all the internal gates are two inputs
and or or gates. Furthermore, the l gates are enumerated in topological order, from 1 to
l, so that gate gi has as inputs the output of lower numbered gates. The output gate gl is
assumed.

The expression Orc will have a site Gi for each gate and a variable zi j whenever the
output of gate i is the input of two gate j. For any 1 ≤ i ≤ n, there are two variables xi and
xi, and for any 1 ≤ j ≤ m two more variables yi and yi represent the circuit’s input. An
additional variable is used for the circuit’s output. Gate gi is associated to the following
expression:

Ei(zi0i,zi1i) =

Gi(zi0i,zi1i) if gi = gi0andgi1

Gi(zi0i) | Gi(zi1i) if gi = gi0orgi1

Moreover, for each wire that goes from gate i to gate j, there is a variable assignment
zi j :∈ Gi(zi0i,zi1i).

An order on the wire variables that corresponds to the reversed topological order of
gates is defined. The output wires of a gate in the gate position, is inserted in any order.
It is assumed that this gives order z1, . . . ,zw, where z1 = zl , is reordered according to the
expressions of the corresponding gates. The expression SC is defined according to the
following schema:

Z(z1) where z1 :∈ E1 where z2 :∈ E2 . . . where zw :∈ Ew

where x1 :∈ X1, · · · ,xn :∈ Xn,x1 :∈ X1, · · · ,xn :∈ Xn

where y1 :∈ Y1, · · · ,ym :∈ Ym,y1 :∈ Y 1, · · · ,ym :∈ Y m.

The following result follows from this definition.

5.5. Computing the Value of Angel-Daemon Game 62

Lemma 5.4 For any α ∈ {0,1}n, β ∈ {0,1}m we have out(f ailFα,β(SC)) =C(α,β), where
Fα,β = {Xi | αi = 0}∪{X i | αi = 1}∪{Yj | β j = 0}∪{Y j | β j = 1}.

Recall that the circuit value problem is defined as follows: given a boolean circuit C
and an assignment of truth values to its inputs α, determine whether C(α) = 1. Given
(C,α), the expression Sα

C which is obtained by first computing SC and then replacing by
O in any site in Fα, is constructed. This expression is equivalent to ϕFα(SC). Observe that
both Fα and Sα

C can be computed using only logarithmic space. This, together with the
previous, show the following hardness result.

Lemma 5.5 Given a non-blocking well formed Orc expression E, determine whether
out(E) 6= 0 is P-hard. Given a set of failures F ⊆ α+(E), determine whether
out(ϕF (E)) 6= 0 is also P-hard.

This concludes the proof of Theorem 5.2, taking into account the result in Lemma 4.1. 2

In the general case, in which the circuit C has k+ 1 outputs that are interpreted as a
k + 1-bit number (for the sake of clarity), the construction for each output is repeated,
although the connection with the input variables could may be written only once,

VC =(S0
C � P0)| · · · |(Sk

C � Pk).

From the definition of Pj, we have that for any j ≥ 0, out(Pj) = 2 j, therefore taking into
account Lemma 5.4.

Lemma 5.6 For any α ∈ {0,1}n, β ∈ {0,1}m, we have that out(f ailFα,β(VC)) =C(α,β).

Recall that the final expression defining an angel-daemon game in the construction is
the following: Let X = (X1|X1) � ·· · � (Xn|Xn) and let Y = (Y1 � Y 1)| · · · |(Ym+1 �
Y m+1). The expression associated to the circuit is EC = X � (VC|(Y � Pk+1)), and
the uncertainty profile is UC = 〈EC,A ,D,n,m〉, where the set of daemonic sites is D =

{Y1, . . . ,Ym,Y 1, . . . ,Y m} and A = α+(EC)\D .
Let Γ = Γ(U) be the associated angel-daemon game. For a consistent strategy a of

the angel, let αa be the truth assignment αi = 1 iff Xi /∈ a, 1 ≤ i ≤ n. In a similar way,
for a consistent strategy d of the daemon, let βd be the truth assignment β j = 1 iff Yj /∈ d,
1 ≤ j ≤ m. Observe that Fαaβd = a∪d.

From the definition of X and Y and taking into account that the circuit outputs a num-
ber with k+1 bits, the following result is obtained.

Lemma 5.7

- For any non-consistent strategy a of the angel, and for any strategy d of the daemon,
we have ua(a,d) = 0.

Chapter 5. On the Complexity of Equilibria Problems in Angel-Daemon Games 63

- For any consistent strategy a of the angel, and any non-consistent strategy d of the
daemon, we have ua(a,d) = 2k+1.

- For any consistent strategy a of the angel, and any consistent strategy d of the dae-
mon, we have ua(a,d) =C(αa,βd) and therefore 0 ≤ ua(a,d)< 2k+1 holds.

Finally, it is shown that a Nash equilibrium of the succinct game described by the
circuit C is a Nash equilibrium in the angel-daemon game Γ(UC).

Lemma 5.8 Let (σa,σd) be a mixed Nash equilibrium of the game defined by C, then the
mixed profile (σ′

a,σ′
d) defined by,

σ′
a(a) =

σa(αa) if a is consistent

0 otherwise
σ′
d(d) =

σd(βd) if d is consistent

0 otherwise

is a Nash equilibrium in Γ(UC).

Proof. Note that, in the support of the strategy profile (σ′
a,σ′

d), only consistent strategies
are possible.

For any possible consistent strategy for the angel that is not in the support, using
Lemma 5.7 and the fact that (σa,σd) is a Nash equilibrium, the expected benefit is equal
or smaller than the one that for a strategy in the support. For any non-consistent strategy
for the angel, the expected value is zero. Therefore, it is equal or smaller than the one for
a strategy in the support. Thus σ′

a is a best response to σ′
d.

For any possible consistent strategy for the daemon that is not in the support, using
Lemma 5.7, the expected benefit again, is equal or smaller than the one that for a strategy
in the support. For any non-consistent strategy for the daemon, since all the strategies in
the support of the angel are consistent, the expected value is 2k+1. Therefore, it is equal
or bigger than the one for a strategy in the support. Thus, σ′

d is a best response to σ′
a.

2

The previous lemma shows the existence of a Nash equilibrium in game Γ(FC) that,
according to Lemma 5.7, has the value of the game associated to the original circuit.
Therefore, both zero-sum games have the same value, as it was proven by Theorem 5.3.

According to Lemma 5.1, a succinct description of an angel-daemon game can be
obtained in polynomial time. Furthermore, computing the value of a succinct zero-sum
game is EXP-complete [38]. This, together with Lemma 5.3 gives the following result.

Theorem 5.3 Computing the value of an angel-daemon game is EXP-complete.

5.6. Deciding the Existence of Dominant Strategies 64

5.6 Deciding the Existence of Dominant Strategies

This section is focused on some considerations on the last problem considered here. The
complexity of the EDS, has not been addressed before on succinctly represented games.

Note that, in the Orc expression constructed in the proof of Theorem 5.1, when the
Q2BF formula Φ is true, the associated angel-daemon game has a dominant strategy, but
when formula Φ is not true the angel-daemon game has no pure Nash equilibrium and
therefore has no dominant strategy.

Theorem 5.4 Deciding whether a dominant strategy exists for:

- angel-daemon games,

- strategic games in implicit form, and

- zero-sum games in implicit form

is Σp
2-complete.

Proof. A player i has a dominant strategy if s∗i exists, such that for any other si and s−i

it holds that, ui(s−i,si) ≤ ui(s−i,s∗i). From the definition it is clear that, given a game in
implicit form, the EDS problem is in Σp

2 . In order to prove completeness, a reduction from
Q2SAT to EDS, is given. A formula Φ = ∃α1, . . . ,αn∀β1, . . .βmF(α1, . . . ,αn,β1, . . .βm),
is mapped into a pair with two components. The first component is the angel-daemon
game corresponding to the uncertainty profile U(Φ) =< EΦ,A ,B,n+ 1,m+ 1 > given
in Section 5.4. The second component is the angel a. When Φ is true, there is α ∈ {0,1}n,
such that F(α,β) is true for any β∈{0,1}m. The Angel’s strategy Aα is dominant, because
ua(Aα,Aβ) = 1 and this is the maximum possible utility for the angel. When Φ is not true,
according to Lemma 5.2, there is no Nash equilibrium, and therefore there is no dominant
strategy for a. 2

5.7 Notes

Game Theory and Computational Complexity. For a good understanding of this chapter,
refer to the books Theory of Games and Economic Behavior [81] by J. von Neuman and
O. Morgenstern, and the Computers and Intractability: A Guide to the Theory of NP-
completeness [45], of M. Garey and D. Johnson. Refer also to [80] about Nash equilibria,
and [11] by J. L. Balcazar, A. Lozano and J. Torán about the complexity of algorithmic
problems on succinct instances.

The complexity of several problems on games given in implicit form was
analysed in [9, 7]. In particular, they show that the EPN problem is Σp

2-complete for

Chapter 5. On the Complexity of Equilibria Problems in Angel-Daemon Games 65

games given in implicit form with four players. It is well known that computing the
value of a succinct zero-sum game is EXP-complete [35, 38].

Orchestration and Web-Services. Refer to Sidney Rosario et. al. [99], to learn about
web-services orchestrations. Very instructive references focused on web-services are [24]
by W. R. Cook and J. Bartfield and [56] by G. Kandaswamy et al.. In addition, essential
references to understanding the orchestration language Orc by J. Misra and W. R. Cook
are [76, 58, 25, 75].

66

Part II

Computational Issues of Game
Isomorphism

67

Chapter 6

Preliminaries on Game Isomorphisms

The introduction of three notions of isomorphisms, strong, weak and local is proposed
in this chapter. Each one of these isomorphisms preserves a different structure of the
game. Strong isomorphisms have been defined as to preserve the utility functions and
Nash equilibria. Weak isomorphisms preserve only the player preferences relations and
thus pure Nash equilibria. Local isomorphisms preserve the structure of Nash dynamics.
The computational complexity of the game isomorphism problem depends on the level of
succinctness of the description of the input games but it is independent on which type of
isomorphism is considered. Some classic computational complexity problems have been,
specifically considered which are to the equivalence of two given problems, with respect
to its computational model.

Game Mappings

Game mappings that provide a way to associate players and their actions in one game to
players and actions in the other have been considered. Inasmuch as, usually these map-
pings are independent of the utilities. The notations and definitions given were adapted
from [90, 108].

Definition 6.1 [Game mappings]. Given Γ = (N,(Ai)i∈N ,(ui)i∈N) and
Γ′ = (N,(A′

i)i∈N ,(u′i)i∈N), a game mapping ψ from Γ to Γ′ is a tuple ψ = (π,(ϕi)i∈N)

where π is a bijection from N to N, the player’s bijection, and, for any i ∈ N, ϕi is a
bijection from Ai to A′

π(i), the i-th player actions bijection.

Example 6.1 The mappings between games Γ and Γ′ with two players and two actions
each one, are considered. As before, A1 = {t,b} and A2 = {l,r}. In the second game,
A′

1 = {t ′,b′} and A′
2 = {l′,r′}. The profiles are located as follows:

69

70

l r
t (t, l) (t,r)
b (b, l) (b,r)

strategy profiles

l′ r′

t ′ (t ′, l′) (t′,r′)
b′ (b′, l′) (b′,r′)

strategy profiles

Consider a mapping ψ = (π,ϕ1,ϕ2) such that,

π = (1 → 2,2 → 1), ϕ1 = (t → r′,b → l′), ϕ2 = (l → t ′,r → b′)

As players are interchanged, ψ(a1,a2) = (ϕ2(a2),ϕ1(a1)) and the profiles are mapped as
follows (t, l) → (t ′,r′) (boldfaced in preceding games), (t,r) → (b′,r′), (b, l) → (t ′, l′),
and (b,r)→ (b′, l′).

In this case N = {0,1} and A1 = A2 = A′
1 = A′

2 = {0,1}. The mapping ψ is,

π = (1 → 2,2 → 1), ϕ1 = (0 → 1,1 → 0), ϕ2 = (0 → 0,1 → 1)

where ϕ1 = (0 → 1,1 → 0) is equivalent to ϕ1 = (t → r′, l → t ′), and ϕ2 = (0 → 0,1 → 1)
is equivalent to ϕ1 = (l → t ′,r → b′), and profiles are mapped (0,0) → (0,1), (0,1) →
(1,1), (1,0)→ (0,0), (1,1)→ (1,0).

Then, ψ is encoded as,

〈11,〈0,1〉,〈0,1〉,〈0,1〉〈0,1〉,〈π〉,〈ϕ1〉,〈ϕ2〉〉
with 〈π〉= 〈2,1〉,〈ϕ1〉= 〈1,0〉, and 〈ϕ2〉= 〈0,1〉.

Note that, a player bijection identifies player i ∈ N with player π(i), and the corre-
sponding actions’ bijection ϕi maps the set of actions of player i on to the set of actions
of player π(i). A game mapping ψ from Γ to Γ′ induces in a natural way, a bijection from
A1 ×·· ·×An to A′

1 ×·· ·×A′
n, where the strategy profile (a1, . . . ,an) is mapped into the

strategy profile (a′1, . . . ,a
′
n), defined as a′π(i) = ϕi(ai), for all 1 ≤ i ≤ n. Consider this map-

ping as ψ(a1, . . . ,an) = (a′1, . . . ,a
′
n), overloading the use of ψ. A mixed strategy profile

p = (p1, . . . , pi, . . . , pn) is given by probabilities pi on Ai (such that ∑ai∈Ai pi(ai) = 1) for
1 ≤ i ≤ n. A game mapping ψ also induces a mapping ψ(p1, . . . , pn) = (p′1, . . . , p′n), such
that p′π(i) is a probability on A′

π(i) defined by p′π(i)(ϕi(ai)) = pi(ai). Thus, isomorphisms
are game mappings, which fulfil some additional restrictions on utilities or preferences as
will be shown, next.

In order to describe a game mapping, the less succinct approach has been considered.
Note that for information on each game, only the set of actions for each player, have to be
kept.

Chapter 6. Preliminaries on Game Isomorphisms 71

Game Mapping in Explicit Form. All components of the mapping are given explicitly.
Action sets are given by listing all their elements and permutations are given by tables, that
is ψ = 〈1n,A1, . . . ,An,A′

1, . . . ,A
′
n,Tπ,Tϕ1, . . . ,Tϕn〉, where Tπ,Tϕ1, . . . ,Tϕn are tables such

that Tϕi[ai] = a′Tπ[i]
.

The description of a mapping by Turing machines,

ψ = 〈1n,A1, . . . ,An,A′
1, . . . ,A

′
n,Mπ,Mϕ1, . . . ,Mϕn,1

t〉

has not been considered, because in such a case, it is possible to construct an explicit
coding of ψ with size bounded by 2|ψ| in time |ψ|2.

Note that it is not trivial to consider an adequate description of mapping associated to
a set with exponentially many actions. In view of that, the implicit form representation
for mappings and games, has not been considered.

6.1 Strong, Weak and Local Game Isomorphism

Strong Isomorphism. Traditionally the notion of equivalence is studied at different levels
using different types of isomorphism, depending on the family of games and the structural
properties to be preserved. Therefore, a stronger version of isomorphism introduced by
J. Nash [80] (see also [90, 108]), is defined.

Definition 6.2 [Strong Isomorphism]. Given two strategic games
Γ = (N,(Ai)i∈N ,(ui)i∈N) and Γ′ = (N,(A′

i))i∈N ,(u′i)i∈N), a game mapping
ψ = (π,(ϕi)i∈N) is called a strong isomorphism ψ : Γ → Γ′ when, for any player
1 ≤ i ≤ n and any strategy profile a, it holds that, ui(a) = u′π(i)(ψ(a)). In the particular
case that Γ′ is Γ, a strong isomorphism is called a strong automorphism.

An example of strong isomorphism, is provided in Example 6.2.

Example 6.2 Given the following games, Γ and Γ′:

Player 1

Player 2
l r

t 0,0 0,1
b 1,1 1,0

Γ

ψ−→ Player 1

Player 2
l′ r′

t ′ 1,0 0,1
b′ 0,0 1,1

Γ′

Consider the morphism ψ : Γ → Γ′ defined as ψ = (π,ϕ1,ϕ2), where π = (1 → 2,2 → 1),
ϕ1 = (t → l′,b → r′) and ϕ2 = (l → b′,r → t ′). This morphism maps strategy profiles as:
ψ(t, l) = (b′, l′), ψ(t,r) = (t ′, l′), ψ(b, l) = (b′,r′) and ψ(b,r) = (t ′,r′). Therefore it is a
strong isomorphism.

6.1. Strong, Weak and Local Game Isomorphism 72

Given a strong isomorphism ψ between Γ and Γ′, a mixed strategy profile p is a
Nash equilibrium in Γ iff ψ(p) is a Nash equilibrium in Γ′. The same holds for pure
Nash equilibria. Thus, the bijection induced by strong isomorphisms on to the set of
mixed strategy profiles, preserves the structure of Nash equilibria. Furthermore, a strong
isomorphism induces an isomorphism among the Nash dynamics graphs of both games.

Weak Isomorphism. There are several ways to relax the notion of strong isomorphism
while maintaining the structure of Nash equilibria. For instance, Harsanyi and Selten [49]
substitute uπ(i)(ψ(a)) = ui(a) by uπ(i)(ψ(a)) = αiui(a)+ βi. In order to generalize this
approach the following game isomorphism [84] is considered, in which the preference
relations (�i)i∈N induced by the utility functions are preserved. The preference relations
induced by the utility functions ui are defined as:

a �i a′ when ui(a)≤ ui(a′)

a ≺i a′ when ui(a)< ui(a′)

a ∼i a′ when ui(a) = ui(a′)

Note that strict preference a ≺i a′ iff a �i a′ but not a′ �i a as usual. Note also in-
difference by a ∼i a′, as usual indifference occurs when a �i a′ and a′ �i a holds. The
definition of isomorphism can be adapted to respect only preference relations instead of
utility functions.

Definition 6.3 [Weak Isomorphism]. A weak isomorphism ψ : Γ → Γ′ is a mapping
ψ = (π,(ϕi)i∈N), such that any triple a, a′ and i verifies: a �i a′ iff ψ(a)�π(i) ψ(a′).

Example 6.3 Consider a �i a′ iff ui(a)≤ ui(a′). Below follows an example of weak iso-
morphism ψ = (π,ϕ1,ϕ2):

Player 1

Player 2
l r

t 0,0 0,1
b 1,1 1,0

Γ

ψ−→ Player 1

Player 2
l′ r′

t ′ 3,3 2,2
b′ 2,3 3,2

Γ′

where π = (1 → 2,2 → 1), and ϕ1 = (t → r′,b → l′), ϕ2 = (l → t ′,r → b′). Observe that
ui(a) and ui(ψ(a)) are not even related by a linear function.

When games Γ and Γ′ are weakly isomorphic, note that Γ ∼w Γ′. In the particular case
that Γ′ is Γ, the weak isomorphism is called weak automorphism.

Weak isomorphisms preserve preferences for any pair of strategy profiles and any
player, therefore they maintain the structure of pure Nash equilibria.

Chapter 6. Preliminaries on Game Isomorphisms 73

Local Isomorphism. This type of isomorphism is a more relaxed notion than the strong
and weak isomorphisms. This isomorphism preserves the preferences of the player on
the “close” neighborhood of the strategy profile, for each player and each strategy profile.
This is an even weaker requirement, which still guarantees that the structure of Pure Nash
equilibria is preserved, however the structure of mixed Nash equilibria is not.

Definition 6.4 [Local Isomorphism]. A local isomorphism ψ : Γ → Γ′ is a mapping
ψ, such that for any triple a, a′ and i such that a−i = a′−i, a ≺i a′ iff ψ(a) ≺π(i) ψ(a′)
and a ∼i a′ iff ψ(a) ∼π(i) ψ(a′) are verified. When Γ and Γ′ are locally isomorphic it is
noted Γ ∼` Γ′. In the particular case that Γ′ is Γ, a weak isomorphism is named a local
automorphism.

Here, only preferences a�i a′, have been considered, such that a−i = a′−i are preserved
for any player. It is easy to see that local isomorphisms preserve pure Nash equilibria.

Example 6.4 Consider the following games, which are locally isomorphic but not
strongly isomorphic.

Player 1

Player 2
l r

t 0,0 0,1
b 1,1 1,0

Γ1

ψ−→ Player 1

Player 2
l′ r′

t ′ 3,3 1,0
b′ 2,3 2,1

Γ2

Let a mapping ψ = (π,ϕ1,ϕ2) with π = (1 → 2,2 → 1), ϕ1 = (t → r′,b → l′), ϕ2 =

(l → t ′,r → b′). We can easily check that ψ is a local morphism. For Γ1, (t, l) ≺1 (b,r)
and (t, l)∼2 (b,r), but for Γ2, ψ(t, l)≺π(1) ψ(b,r) and ψ(t, l)≺π(2) ψ(b,r), therefore the
morphism is not weak.

It is easy to see that local isomorphisms preserve pure Nash equilibria.

6.2 Classical Complexity’s Problems

In this section, the definitions of several computational problems are briefly explained.
The coNP-hardness results follow from reductions of the following coNP-complete prob-
lem [45].

Validity problem (VALIDITY): Given a boolean formula F , decide whether F is satisfi-
able by all truth assignments.

The following problems on boolean circuits were also considered. Recall that two
circuits C1(x1, . . . ,xn) and C2(x1, . . . ,xn) are isomorphic, if there is a permutation π of
{1, . . . ,n} such that, for any truth assignment x ∈ {0,1}n, C1(x) =C2(π(x)).

6.2. Classical Complexity’s Problems 74

Boolean circuit isomorphism problem (CIRCUITISO): Given two boolean circuits C1 and
C2, decide whether C1 and C2 are isomorphic.

A related problem is based on the notion of congruence. A congruence between two
circuits on n variables, C1(x1, . . . ,xn) and C2(x1, . . . ,xn) is a mapping ψ = (π, f1, . . . , fn),
where π is a permutation of {1, . . . ,n} and, for any 1 ≤ i ≤ n, fi is a permutation on {0,1}
(either the identity or the negation function). Similarly that in the case of game morphism,
the image ψ(x) is obtained by permuting the positions of the input bits, according to
permutation π, and then applying to any bit i the permutation fi.

Boolean circuit congruence problem (CIRCUITCONG): Given two circuits C1 and C2,
decide whether C1 and C2 are congruent.

The CIRCUITISO problem has been studied by B. Borchert, D. Ranjan and F. Stephan
in [17]. Among many other results, they show that CIRCUITISO and CIRCUITCONG are
equivalent. It is known that CIRCUITISO ∈Σp

2 , but M. Agrawal and T. Thierauf prove that
it cannot be Σp

2-hard unless the polynomial hierarchy collapses (see Corollary 3.5 in [4]).
The isomorphism and congruence problems for boolean formulas have been con-

sidered. Recall that two formulas Φ1(x1, . . . ,xn) and Φ2(x1, . . . ,xn) are isomorphic if
there is a permutation π of {1, . . . ,n} such that, for any truth assignment x ∈ {0,1}n,
C1(x) =C2(π(x)). They are congruent if there is a mapping ψ = (π, f1, . . . , fn), where π
is a permutation of {1, . . . ,n} and, for any 1 ≤ i ≤ n, fi there is a permutation on {0,1}
such that for any truth assignment x ∈ {0,1}n, C1(x) =C2(π(x)).

Boolean formula isomorphism problem (FORMULAISO): Given two boolean formulas
Φ1 and Φ2, decide whether Φ1 and Φ2 are isomorphic.

Boolean formula congruence problem (FORMULACONG): Given two boolean formulas
Φ1 and Φ2, decide whether Φ1 and Φ2 are congruent.

B. Borchert, D. Ranjan and F. Stephan in [17] show that FORMULAISO and FORMU-
LACONG are equivalent. It is known that FORMULAISO ∈ Σp

2 . but it cannot be Σp
2-hard

unless the polynomial hierarchy collapses (see Corollary 3.4 in [4]).
Two graphs are isomorphic if there is a one-to-one correspondence between their ver-

tices. There is an edge between two vertices of one graph, if and only if there is an edge
between the two corresponding vertices in the other graph.

Graph isomorphism (GRAPHISO): Given two graphs, decide whether they are isomor-
phic.

It is well known that GRAPHISO is not expected to be NP-hard [61].

Chapter 6. Preliminaries on Game Isomorphisms 75

Notation

Some additional definitions and notation used in this thesis are given in this section. A
binary actions game is a game in which the set of actions for each player is {0,1}. A
binary game is a binary actions’ game in which the utility functions range is {0,1}. One
will need to construct binary actions’ games associated to general games. To do this, a
binify process on the strategies of the original game is used.

Given a strategic game Γ = (N,(Ai)i∈N ,(ui)i∈N), without loss of generality is as-
sumed that N = {1, . . . ,n} and that, for any i ∈ N, Ai = {1, . . . ,ki}. An action j ∈ Ai

is “binify”, coding it with ki bits, as binify(j) = 0 j−110ki− j. In a strategy profile the
“binify” process can be used such that, given a = (a1, . . . ,an), we write binify(a) =
(binify(a1), . . . ,binify(an)). Observe that by setting k = ∑i∈N ki, binify(a) ∈ A′ = {0,1}k

is obtained. Then, good(A′) = {binify(a)|a ∈ A} and bad(A′) = A′ \good(A′) are defined.
Note that binify : A → good(A′) is a bijection and therefore the inverse function is also a
bijection.

Example 6.5 Given Γ with 3 players, A1 = A3 = {1,2} and A2 = {1,2,3},
binify(1,2,2) = (10,010,01) = (1,0,0,1,0,0,1) and binify−1(10,010,01) = (1,2,2) is
obtained.

6.3 Notes

Game Theory. For mathematical definitions of strategic and extensive games, refer to A
Course in Game Theory of M. Osborne and A. Rubinstein [84] published in 1994, and
also the Theory of Games and Economic Behavior of John von Neuman and Oscar Mor-
genstern [81]. It is also very important to note the definition of Nash equilibrium for
non-cooperative games in [80] by J. Nash.

Morphisms in Games. In the field of game isomorphisms refer to [80] by J. Nash,
where a very compact definition of game morphisms was first proposed. Note the re-
sults of J. C. C. McKinsey [72] and J. Harsanyi and R. Selten’s isomorphisms of strategic
games [49], published in 1988.

Algorithmic Game Theory. Essential reference is Computers and Intractability: A Guide
to the Theory of NP-completeness [45], by M. Garey and D. Johnson. This book features
a compendium of NP-complete problems. In order to understand the complexity in game
theory, it is crucial to refer to [36, 35] by J. Feigenbaum and J. Feigenbaum, D. Koller and
P. Shor respectively. These researches were devoted to the study of connection between
game theory and the traditional complexity class. In addition, note [64], which is devoted

6.3. Notes 76

to the analysis of the complexity involving in finding max-min strategies in zero-sum
games represented in extensive form. Finally, very important references in algorithmic
game theory are [65, 87, 86].

Chapter 7

The Complexity of Game Isomorphism

The question of whether two multi-player strategic games are equivalent and the compu-
tational complexity of deciding such a property are evaluated in this chapter. Furthermore,
is focused in showing the computational complexity of the game isomorphism problem
depends on the level of succinctness of the description of the input games, but it is inde-
pendent on which of the two types of isomorphisms is considered. In cases where games
are given in general form, an explicit description of actions and a succinct description of
utilities is assumed.

It is as well shown that the game isomorphism problem for general form games is
equivalent to circuit isomorphism when utilities are described by Turing Machines TMs,
and to the boolean formula isomorphism problem when utilities are described by formu-
las. When a game is given in explicit form, the game isomorphism problem is shown to
be equivalent to the graph isomorphism problem.

7.1 The ISISO and ISO Problems

In defining a concrete equivalence between games, it has to be kept in mind a structural
properties preserved in equivalent games. A strong isomorphism, which preserves pure
and mixed Nash equilibria is considered, and also a weak isomorphism that only preserves
pure Nash equilibria. Each of them requires preserving less information about the relative
structure of profiles while preserving still the structure of the Nash or pure Nash equilibria.

This chapter is focused in the computational complexity of deciding whether two
games are equivalent. Two problems related to isomorphisms are considered.

Game Isomorphism (IsIso). Given two games Γ and Γ′ and a game mapping ψ : Γ → Γ′,
decide whether ψ is a game isomorphism.

77

7.1. The ISISO and ISO Problems 78

Game Isomorphism (Iso). Given two games Γ, Γ′, decide whether there exists a game
isomorphism between Γ and Γ′.

In order to study the computational aspects of isomorphism problems on strategic
games, the way in which games and morphisms are represented as inputs to a program, is
the first needed to be determined. As it has been said in Chapter 1, in order to represent
strategic games, the following two representations proposed in [7] are considered, each
with a different level of succinctness. When a game is given in general form the actions
are listed explicitly, but utilities and mappings are given by deterministic Turing machines.
In the explicit case, utilities are stored in tables. In both cases morphisms are always
represented by tables. This is not a restriction, since in polynomial time a morphism
representation is transformed by Turing machines into a tabular representation by tables,
because the actions are given explicitly.

The main contributions of this chapter are classified into the following ones:

- The ISISO problem is coNP-complete, for games given in general form, and belongs
to NC when games are given in explicit form.

- The ISO problem belongs to Σp
2 , for games given in general form, and to NP when

games are given in explicit form.

- The ISO problem is equivalent to the boolean circuit isomorphism problem, for
games in general form, and to the graph isomorphism problem, for games given in
explicit form.

The above results hold independently of the type of isomorphism considered. Note that
the boolean circuit isomorphism problem is believed not to be Σp

2-hard [4], and that the
graph isomorphism problem is conjectured not to be NP-hard [61]. Therefore the same
results are valid for the ISO problem.

Besides the above mentioned generic forms of representing games, will also be con-
sidered another particular class of strategic games, which is called formula games. As
it will be proven, the formula games considered in this thesis are equivalent in power of
representation to a subfamily of the weighted boolean formula games introduced in [71].
The complexity of the ISO problem when the games correspond to a general form was
analysed, that is, the number of bits controlled by each player is a constant. Thus, for
formula games in general form, it will be showen that the ISO problem is equivalent to
the boolean formula isomorphism problem. Recall that the complexity of the boolean
formula isomorphism problem is the same as that of circuit isomorphism, however it is
conjectured that both problems are not equivalent.

The ISISO and ISO problems can be formulated for the strong and weak isomorphisms
introduced above, and also for games in general form (strategic or boolean formula) or
games in explicit form. The game isomorphism problem can also be considered for the

Chapter 7. The Complexity of Game Isomorphism 79

case in which n = 1. For this particular case, the isomorphism problem is computationally
easy.

Theorem 7.1 The ISO problem for games with one player is solvable in polynomial time,
for strong and weak isomorphisms, for general form strategic and formula games and for
explicit form games.

Proof. A 1-player game Γ({1},A1,(u1)) and the vector x = (x1, . . . ,xm), where xi = u1(i)
and m = |A1|, are considered. The game’s characteristic vector S(Γ) is defined as the
vector obtained after sorting x in increasing order. Then, there are two 1-player games
that are strongly isomorphic iff their characteristic vectors are identical.

For the case of weak isomorphism the condition is equivalent to the fact that the rela-
tive order of two consecutive elements is the same in both characteristic vectors.

The vector can be obtained in polynomial time for any of the considered game repre-
sentation and thus, the problems can be solved in polynomial time.

2

Assumption. In view of the above result, it is assumed that all games have at least two
players, for the rest of the work.

7.2 Complexity Results for Strong Isomorphisms

Let us start with the complexity for the ISISO problem in the case of strategic games.

Theorem 7.2 The ISISO problem for strong isomorphisms is coNP-complete for strategic
games in general form and for boolean formula games in general form. The problem
belongs to NC whenever the games are given in explicit form. The strong isomorphism is
given in both cases in explicit form.

Proof. First, is assumed that games are given in general form. In this case the input is com-
posed of two games, Γ = 〈1n,A1, . . . ,An,M1,1t1〉 and Γ′ = 〈1n,A′

1, . . . ,A
′
n,M2,1t2〉, and a

game mapping between the two games ψ = 〈1n,A1, . . . ,An,A′
1, . . . ,A

′
n,Tπ,Tϕ1, . . . ,Tϕn〉.

Then, we have 〈Γ,Γ′,ψ〉 ∈ ISISO iff

∀ (a1, . . . ,an) ∈ A1 ×·· ·×An ∀ i ∈ N u′π(i)(ψ(a1, . . . ,an)) = ui(a1, . . . ,an).

Therefore ISISO belongs to coNP. Since this is enough to guess a strategy profile a =

(a1, . . . ,an) and a player i, using polynomial space, then, u′π(i)(ψ(a)) 6= ui(a) is checked
in polynomial time.

7.2. Complexity Results for Strong Isomorphisms 80

To prove hardness two games are defined. The first one is associated to a boolean
formula, and a mapping between them. Given a boolean formula F with n variables, the
following game is considered:

WINWHENTRUE(F): This game has n players, N = {1, . . . ,n}, and player i
has Ai = {0,1}. All the players 1 ≤ i ≤ n have the same utility ui(a1, . . . ,an) =

F(a1, . . . ,an).

The game is coded in general form as 〈1n,A1, . . . ,An,Eval,1logn(n+|F |)2〉, where Eval is a
TM that evaluates a formula in time O((n+ |F |)2). Some additional time is provided, to
get rid of the constant. Observe that this codification can be obtained in polynomial time
given F .

ALWAYSWIN: This game has n players, N = {1, . . . ,n}, and player i has
Ai = {0,1}. All players 1 ≤ i ≤ n have the same utility ui(a1, . . . ,an) = 1.

This game can be represented in general form as 〈1n,A1, . . . ,An,One,1n+1〉, where
One is a TM that, after reading the input, outputs 1 in time n + 1. Furthermore, the
representation can be computed in O(n) time.

IDENTITY: This mapping combines the identity function on N = {1, . . . ,n}
with the identity function on {0,1}.

The mapping is represented by 〈1n,A1, . . . ,An,A1, . . . ,An, idπ, id1, . . . , idn〉, where idπ(i) =
i and idi(ai) = ai for i ≤ i ≤ n. Note that, such a representation can be obtained in time
O(n).
The mapping is claimed: 〈WINWHENTRUE(F),ALWAYSWIN, IDENTITY〉 ∈ ISISO iff F
is valid. When F is a valid formula both games have the same utility functions. Then, the
mapping IDENTITY is a strong isomorphism. When F is not valid, there exists x1, . . . ,xn

such that F(x1, . . . ,xn) = 0. Therefore, the utility of this strategy profile, for player 1
in WINWHENTRUE is 0. But, the same player gets utility 1 in the ALWAYSWIN game.
Then, IDENTITY is not a strong isomorphism.

When Γ1, Γ2 and ψ are formula games in general form, the same argumentations show
that the ISISO problem is coNP-complete.

When Γ1, Γ2 and ψ are given in explicit form the strong isomorphism can be verified
in poly-logarithmic parallel. The corresponding a′ = (a′1, . . . ,a

′
n), have to be computed in

parallel, such that a′Tπ[i]
= Tϕi[ai]. Finally, it has to be tested if T1[a, i] = T2[a′,Tπ[i]] for

each player i.
2

The next theorem provides upper bounds for the complexity of the ISO problem.

Chapter 7. The Complexity of Game Isomorphism 81

Theorem 7.3 The ISO problem for a strong morphism belongs to Σp
2 for strategic and

formula games in general form. The problem belongs to NP when the games are given in
explicit form.

Proof. First, the proof of membership is considered. A non-deterministic algorithm work-
ing in polynomial space/time is defined, depending on the representation of the input
game. Given two strategic games Γ1 = (N,(Ai)i∈N ,(ui)i∈N) and Γ2 = (N,(A′

i)i∈N ,(u′i)i∈N)

by definition, is assumed that there is a strong isomorphism between Γ1 and Γ2 iff,

∃ψ = (π,ϕ1, . . . ,ϕn) ∀a ∈ A1 ×·· ·×An ∀i ∈ N ui(a) = u′π(i)(ψ(a)),

where ψ is a mapping of Γ1 to Γ2. Note that it is possible to guess an isomorphism
ψ = 〈A1, . . . ,An,A′

1, . . . ,A
′
n,Tπ,Tϕ1, . . . ,Tϕn〉 using polynomial space. Furthermore, given

a strategy profile a = (a1, . . . ,an) it is possible to compute ψ(a) in polynomial time, just
doing a′Tπ[i]

= Tϕi [ai]. To check the correctness of the guess, it is needed verify that, for
every player i and strategy profile a, it holds that, ui(a) = u′π(i)(ψ(a)).

When games are given in general form, the strategy profile can be represented in
polynomial space and the test performed in polynomial time, both for utilities given by
TM or formulas. Therefore, the ISO problem belongs to Σp

2 . When games are given in
explicit form, the number of strategy profiles is polynomial in the size of the input. Then,
for all a, the condition ui(a) = u′i(ψ(a)) can be checked in polynomial time, once the
mapping has been guessed. Therefore, the ISO problem belongs to NP.

2

In the following paragraph, the fact that ISO is equivalent to CIRCUITISO is proved
for games in general form. This is done through a series of reductions transforming the
game while preserving the existence of a strong isomorphism. Firstly, it is shown how
to construct corresponding isomorphic binary actions games. Secondly, the construction
from a binary action game of a binary game preserving isomorphism is illustrated. Finally,
the equivalence with the Boolean circuit congruence is as well shown. All transformations
presented here can be computed in polynomial time, and this will not be specified again
along the rest of the chapter. Let us start with the first transformation:

A construction for the first reduction that makes use of the binify process, is defined.
Let Γ = (N,(Ai)i∈N ,(ui)i∈N) be a strategic game. In this case, k = ∑i∈N ki were ki = |Ai|.
The binify process can be used in a strategy profile, given a = (a1, . . . ,an) ∈ A, is written:
binify(a) = (binify(a1), . . . ,binify(an)). Recall that good(A′) = binify(A).

BINARYACT(Γ,µ) = (N′,(A′
i)i∈N′,(u′i)i∈N′), where N′ = {1, . . . ,k} and, for

any i ∈ N′, A′
i = {0,1} and thus the set of action profiles is A′ = {0,1}k. The

players are partitioned into B1, . . . ,Bn blocks. Block i is formed by ki players.

7.2. Complexity Results for Strong Isomorphisms 82

Given i ∈ B j, it is possible to say that i belongs to block j of players and the
following expression can be written: block(i) = j.

The utilities are defined by,

u′i(a
′) =

ublock(i)(binify−1(a′)) if a′ ∈ good(A′),

µ if a′ ∈ bad(A′).

Notice that, for a ∈ A, u′i(binify(a)) = ublock(i)(a). Furthermore, all players in a given
block have the same utility function. Each strategy profile a′ in BINARYACT(Γ,µ) can be
factorised considering the actions taken by the k players as a′=(a′1, . . . ,a

′
k) or by grouping

the actions according to the blocks B1, . . . ,Bn as a′ = (b1, . . . ,bn), where bi ∈ {0,1}ki .
The value µ will be selected to create a gap on the utility that separates the profiles in
BINARYACT(Γ,µ), which correctly separate a Γ profile, from those that do not.

Example 7.1 The transformation from Γ into BINARYACT(Γ,µ) is considered. The Γ
game is taken as a version of BS game with non-zero utilities and setting µ = 0, such that:

Player 1

Player 2
1 2

1 3,2 1,1
2 1,1 2,3

BS game

A′ u1 u2 u3 u4

1010 3 3 2 2
1001 1 1 1 1
0110 2 2 3 3
0110 1 1 1 1
a′ ∈ bad(A′) 0 0 0 0

In the BS game A1 = A2 = {1,2}, and binify(1) = 10, binify(2) = 01. Therefore
good(A′) = {1010,1001,0110,0101} and bad(A′) = {0,1}4 \good(A′).

The game BINARYACT(BS,0) has N′ = {1,2,3,4}. The partition of players into
blocks is given by B1 = {1,2} and B2 = {3,4}.

Given a good strategy profile a and the player i, u′i(a) is computed as follows:
Suppose a = 1010 = (binify(1),binify(1)) and i = 4. As player 4 belongs to B2 it

holds that, block(4) = 2, u′4(1010) = u4(binify(1), and texts f bini f y(1)) = ublock(4)(1,1) =
u2(1,1) = 2.

Now, the reduction from the ISO problem for strong isomorphism is applied to the
same problem for binary actions games.

Lemma 7.1 Let Γ1, Γ2 be two strategic games given in general form. Let t be max{t1, t2},
where ti, 1 ≤ i ≤ 2, is the time allowed to the utility TM of the game Γi. There is a strong
isomorphism between Γ1 and Γ2 iff there is a strong isomorphism between the games
BINARYACT(Γ1,µ) and BINARYACT(Γ2,µ) where µ =−2t .

Chapter 7. The Complexity of Game Isomorphism 83

Proof. When M is a TM computing the utilities in time t the following inequalities are
obtained |ui(a)| ≤ t and −2t ≤ ui(a) ≤ 2t . Given Γ and Γ′ with utilities computed in
times t and t ′, and taking t = max{t, t ′} and µ = −2t a TM for BINARYACT(Γ,µ) and
BINARYACT(Γ′,µ) can be found, computing utilities in O(t). Furthermore, a description
of both machines can be obtained in polynomial time.

Given a strong isomorphism ψ = (π,ϕ1, . . . ,ϕn) of Γ into Γ′, let us define a mapping
ψ′ = (p, f1, . . . , fk) of BINARYACT(Γ,µ) into BINARYACT(Γ′,µ). Suppose that it holds
that, in ψ, π(i) = j. Then, as ϕi : Ai → A′

j is a bijection, by construction blocks Bi and B′
j

in binary games have the same cardinality and p will be to considered to be a bijection
p : Bi → B′

j. Writing Ai = A′
j = {1, . . . , `} and Bi = {i1, . . . , i`} and B′

j = { j1 . . . , j`},
the action bijection ϕi(p) = q, 1 ≤ p ≤ `, induces the bijection p(ip) = jq between both
blocks. This concludes the definition of p.

In ψ′ all the fi for 1 ≤ i ≤ k are taken to be identities. Let us prove that ψ′ is a strong
isomorphism. The proof is stated as a sequence of claims.

ψ′ maps any strategy profile bi for players in Bi into a strategy profile b′π(i) for players
in B′

π(i), it can be written ψ′ : Bi → B′
π(i) and ψ′(bi) = b′π(i). This is clear because p gives

a bijection between Bi and B′
π(i).

If |Bi| = `, profile bi = 0p−110`−p = binify(p) maps into
ψ′(bi) = 0q−110`−q = binify(q) iff ϕi(p) = q. As all the fi’s are identities and p is a
permutation of {1, . . . , `}, a binified action is mapped into a binified action. Moreover as
p(ip) = jq the 1 in position p is mapped into the 1 in position q. As ψ′ maps strategy
profiles between blocks Bi and Bπ(i), ψ′(binify(p)) = binify(ϕi(p)) can be written.

Given a = (a1, . . . ,an) ∈ A in Γ and binify(a) = (binify(a1), . . . ,binify(an)), it holds
that, for binary action games: ψ′(binify(a)) = (binify(a′1), . . . ,binify(a′n)) such that
binify(a′π(i)) = binify(ϕi(ai)).

For any a ∈ A in Γ, it holds that, ψ′(binify(a)) = binify(ψ(a)). For
a = (a1, . . . ,an) ∈ A in Γ, it holds that, ψ(a) = (a′1, . . . ,a

′
n) with a′π(i) = ϕi(ai). As

binify(ψ(a)) = (binify(a′1), . . . ,binify(a′n)), binify(ψ(a)) = ψ′(binify(a)) is obtained.
For p(ip) = jq, it holds that, u′jq(ψ

′(binify(a))) = u′ip
(binify(a)). Note that, since we

have u′jq(ψ
′(binify(a))) = u′jq(binify(ψ(a))) = u j(ψ(a)) and u′ip

(binify(a)) = ui(a) and ψ
is a morphism, the identity holds.

As ψ′ maps bijectively bad strategy profiles, in this case utilities are the penalty payoff,
and µ and ψ′ are a morphism.

For the reverse implication, it is assumed that ψ′ = (p, f1, . . . , fk) is a strong isomor-
phism between the games BINARYACT(Γ1,µ) and BINARYACT(Γ2,µ) having players N′

1
and N′

2 with N′
1 = N′

2. The strategy profiles in both binary actions games are A′
1 and A′

2.
Now, a mapping (π,ϕ1, . . . ,ϕn) of Γ1 to Γ2 is defined. The permutation of players π mim-
ics the block permutation induced by p. Thus, if Bi is mapped into B′

p(i), π(i) = p(i) can

7.2. Complexity Results for Strong Isomorphisms 84

be set.
The i action bijection is defined as follows: The action j in Ai corresponds in

BINARYACT(Γ1,µ) to the profile binify(j) in block Bi. As this block is mapped into
B′

p(i), the profile is mapped into another good profile binify(j′), and ϕi(j) = j′ is defined.
The mapping (π,ϕ1, . . . ,ϕn) is a strong isomorphism from Γ1 to Γ2. Again, the proof is
stated as a sequence of claims.

ψ′ : A′
1 → A′

2 induces a bijection between ψ′ : bad(A′
1)→ bad(A′

2). Let a′ ∈ bad(A′
1)

then u′i(a
′) = µ, as µ is a penalty payoff and ψ′ is a morphism, u′p(i)(ψ(a

′)) = µ but this
forces ψ(a′) ∈ bad(A′

2) and ψ′(bad(A′
1)) ⊆ bad(A′

2). Given a′ ∈ bad(A′
2), any player

gets µ and then ψ−1(a) ∈ bad(A′
1). As good(A′

1) = A′
1 \bad(A′

1) there is also a bijection
ψ′ : good(A′

1)→ good(A′
2).

Note that N′
1 can be partitioned into the different blocks of players as N′

1 = B1 ∪ ·· · ∪Bn

and N2 = B′
1 ∪·· ·∪B′

n being n the number of players in Γ and Γ′.
Given a block Bk in N′

1 and i, j ∈ Bk with i 6= j, it is impossible that p(i) and p(j) belongs
to different blocks of N′

2. Suppose that Bk has ` players and 1 ≤ i < j ≤ `. The strategy
profile bk = binify(i) = 0i−110 j−i−100`− j for block Bk is considered. All other blocks take
the corresponding binify(1). Then, a′ = (b1, . . . ,bn) ∈ good(A′

1) and ψ′(a′) ∈ good(A′
2).

Therefore, we have a factorisation ψ′(a) = (b′1, . . . ,b
′
n) corresponding each b′i, 1 ≤ i ≤ n,

to a binify process. The profile ck = binify(j) = 0i−100 j−i−110`− j is defined for block
Bk. All other blocks keep as before binify(1) then, c = (c1 . . . ,cn) is good, and ψ(c) is
also good and factorises as ψ(c) = (c′1, . . . ,c

′
k). Let us compare ψ′(a) = (b′1, . . . ,b

′
n) with

ψ′(c) = (c′1, . . . ,c
′
k). Let p(i) = i′ ∈ B′

k1
and p(j) = j′ ∈ B′

k2
with k1 6= k2. In fact, the bits

in ψ′(a) and ψ′(c) coincide everywhere except in positions corresponding to the players
i′ ∈ B′

k1
and j′ ∈ B′

k2
. Suppose |B′

k1
|= `1. The bijection f associated to the position i in Bk

is considered: This bijection can be an identity or a negation. When f is the identity, the 1
appearing in position i of block bk is mapped into the 1 in position i′ of b′k1

, as this profile
is binified, we have b′k1

= 0i′−110`1−i′ . Unfortunately, the 0 appearing in position i of ck

will give c′k1
= 0l1 turning a valid profile into an invalid profile. When f is a negation b′k1

,
it has a 0 in position i′, and c′k1

will have two 1’s, giving a contradiction.
Permutation of p maps bijectively, each block Bi into another B′

j. Let k ∈ Bi and p(k) ∈
B′

j then p(Bi) ⊆ B′
j. Suppose that l ∈ B′

j \ p(Bi) exists, then i′ = block(p−1(l)) verifies
Bi ∩Bi′ = /0. Let f and f ′ the bijections associated to the positions k in Bi and p−1(l) in
Bi′ . Let us consider two cases depending on the size of Bi′ .

- Case |Bi′|= 1. When f ′ is the identity, defining B′
j = binify(p(k)) we force Bi′ = 0.

Fulfilling all the other blocks in BINARYACT(Γ2,µ) with binify(1), it is obtained that
ψ′ maps a bad profile into a good one, but this is a contradiction. Consider the case,
in which f ′ is a negation. In this case, taking B′

j = binify(l) the similar contradictio
is obtained. The same argumentation allow us to assume that |Bi|> 1.

Chapter 7. The Complexity of Game Isomorphism 85

- Case |Bi′| > 1 and |Bi| > 1. When f ′ is the identity, any bijection associated to
a position m in Bi is a negation. Take Bi′ = binify(p−1(l)) and B′

j = binify(l) and
Bi = binify(m) as good profiles which map into good profiles, then the 1 in position
m in Bi is transformed into a 0 in B′

j. Therefore Bi = binify(1) = 10|Bi|−1 will give
|Bi|−1 > 0 1’s in B′

j and the number of 1’s in such a block will be at least 2.

Consider the case, in which f ′ is a negation. As B′
i has at least two positions, take a

position m in a block such that m 6= p−1(l) and fix Bi = binify(m). This profile fixes
a 0 in position p−1(l) of Bi′ and a 1 in position l of B j and the preceding argument
is applied.

It is assumed that all the bijections f are identities. It is supposed that p(Bi) = B′
j. Three

cases depending on the size of Bi are considered.

- Case |Bi| = 1. In this case, B j′ has also one element. As good profiles map into
good profiles, the bijection associated to this element has to be the identity.

- Case |Bi| = 2. See in detail the different possibilities: Call Bi = {1,2} and B′
j =

{1′,2′} and call the corresponding bijections f1 and f2. There are two possibilities
for p. The cases p(1) = 1′ and p(2) = 2′ are considered, and look at the different
possibilities for fi.

- When f1 = f2 are identities, the property holds.

- When f1 is the identity and f2 is a negation, a contradiction is obtained because
Bi = binify(2) is mapped into B′

j = 00. When f1 is a negation and f2 is the
identity, the same argumentation applies with Bi = binify(1).

- When f1 and f2 are negations, it should be remarked that bad profile maps into
bad profile because 00 maps to 11 and 11 maps to 00. In addition, good profiles
map into good profiles because 10 maps to 01 and 01 maps into 10. No bad
happens in this case. To obtain identities, another morphism ψ′′ is defined such
that p(1) = 2′, p(2) = 1′ and f1 = f2 are identities. Under ψ′′, bad profiles map
into bad profiles because 00 maps to 00 and 11 maps into 11. Much better good
profiles map into ψ′ and into ψ′′ similarly, because 10 maps to 01 and 01 maps
to 10. Note that ψ′′ and ψ′ are isomorphic, therefore one can take ψ′′, where f1

and f2 are identities.

When p(1) = 2′ and p(2) = 1′, the proof is similar to the preceding case.

- Case |Bi| > 2. If all the f ’s associated to Bi are identities, the property holds. Oth-
erwise, there is a position l such that fl is a negation. As Bi = binify(l) maps to
a good profile, there exists l′ such that B′

j = binify(l′). Moreover, as fl is a nega-
tion l′ 6= p(l), fp−1(l′) is also a negation, and |Bi| > 2. Then, there is a position

7.2. Complexity Results for Strong Isomorphisms 86

k 6∈ {l, p−1(l′)} in Bi, and Bi = binify(k) give at least two one’s corresponding to
positions l and p−1(l′). Therefore, a contradiction is obtained.

To summarise, given a strong isomorphism ψ′ = (p, f1, . . . , fk) between the games
BINARYACT(Γ1,µ) and BINARYACT(Γ2,µ), we have that p maps blocks of players bi-
jectively and it can be assumed that all the fi, 1 ≤ i ≤ k are identities.

Let us consider the mapping (π,ϕ1, . . . ,ϕn) of Γ1 to Γ2. The permutation of players
π mimics the block permutation induced by p, thus if Bi is mapped to B′

p(i), π(i) = p(i)
can be set. The i action bijection is defined as follows: The action j in Ai corresponds in
BINARYACT(Γ1,µ) to the profile binify(j) in block Bi. As this block is mapped into B′

p(i),
the profile is mapped into another good profile: then, binify(j′) and ϕi(j) = j′ are defined.
It is straightforward to show that the mapping (π,ϕ1, . . . ,ϕn) is a strong isomorphism
from Γ1 to Γ2.

2

Now, a binary actions’ game is transformed into a binary game. There is a game
Γ = (N,(Ai)i∈N ,(ui)i∈N) in which Ai = {0,1}, for any i ∈ N, and N = {1, . . . ,n}. There
are positive values t and m such that, for any action profile a and any player i, |ui(a)| ≤ t
and m ≥ {n, t}. Then, it is possible to set k = n+ tn+m+2. Furthermore, the following
game is considered.

BINARY(Γ, t,m) = (N′,(A′
i)i∈N′,(u′i)i∈N′), where N′ = {1, . . . ,k} and, for any

i ∈ N′, A′
i = {0,1}. The set N′ is partitioned into n+ 2 consecutive intervals

B0, . . . ,Bn,Bn+1 so that the interval B0 has exactly n players. For 1 ≤ i ≤ n,
block Bi has t players, and block Bn+1 has m+ 2 players. Inside the blocks,
relative coordinates are used to identify the players. In all blocks, coordinates
start at 1 except for the last block, which starts with 0. In this situation, a
strategy profile a is usually factorised as a = xb1 . . .bn z, where x = x1 . . .xn,
bi = bi1 . . .bit and z = z0 . . .zm+1. To improve readability, a = xb1 . . .bnz is
written as a = (x,b1, . . . ,bn,z). The utility function, by properties of the strat-
egy profile, is defined and it is assumed that a = xb1 . . .bn z is a strategy profile
of BINARY(Γ, t,m).

- In the case that for some `, 0 ≤ ` ≤ m+ 1, the last one ` bits of z are 1,
all players except the last one ` get utility 0. The remaining players get
utility 1. Observe that, in the case in which `= 0, one has that z = 0m+2,
therefore all players get utility 0.

- In the case that for some j, 1 ≤ j ≤ t, the j-th bit of z is the only 1 in
z, all players in blocks B1, . . . ,Bn that do not occupy position j in their
block get utility 0, all players in blocks B0 and Bn+1 get utility 1, and all
the remaining players get as utility their action.

Chapter 7. The Complexity of Game Isomorphism 87

- In the case that the 0-th bit of z is the only 1 in z, for any i, 1 ≤ i ≤ n,
player i in block B0 and all the players in block Bi get utility 1 when
ui(x) = bi, and 0 otherwise. All players in block Bn+1 get utility 0.

- In the remaining cases all players get utility 1.

In a strategy profile a = xb1 . . .bn z, the parts x = x1 . . .xn, bi = bi1 . . .bit and
z = z0 . . .zm+1 are binary words. Then, the whole profile a is also a binary
string, having length k = n+ tn+m+ 2. As the utilities for all players are
either 0 or 1, take all the utilities together as a binary string u(a) = u1 . . .uk.

Example 7.2 This is the continuation of the game used in Example 7.1. The game Γ =

BINARYACT(BS,0) where actions are binary but utilities are not, is considered. The
utilities values are 1, 2 and 3 obtained from the utilities in BS and 0, corresponding to the
utility of any bad profile. As expressed in binary form the utilities are 00, 01, 10 and 11,
with two bits sufficing. The game Γ has n = 4. Therefore, t = 2 and m = 4 can be taken.
The game BINARY(Γ,2,4) has k = n+ tn+m+2 = 18 players.

Set N′ is partitioned into 6 blocks. Block B0 contains 4 players, each Bi, 1 ≤ i ≤ 4 has
2 players and B5 has 6 players. A strategy profile has the format a = xb1 . . .b4z with x =
x1 . . .x4, bi = bi1bi2 for 1 ≤ i ≤ 4 and z = z0z1 . . .z4z5. Utilities are coded u(a) = u1 . . .u18.
Then, let us consider the following examples of utilities in each of the preceding four
cases:

- For instance, taking ` = 3. Then, a = xb1 . . .b40313 and u(a) = 01513. The block
structure of the preceding utility can be displayed as,

u(a) = 0 . . .0︸ ︷︷ ︸
B0

00︸ ︷︷ ︸
B1,...,B4

000
`︷︸︸︷

111︸ ︷︷ ︸
B5

There are profiles such as a = xb1 . . .b406, when `= 0. In this case, all players get
utility 0.

- Profile z “looks at” the second bit of each bi, 1 ≤ i ≤ 4, when z = z0z1z2z3z4z5 =

001000. In this case,

u(a) = 1 . . .1︸ ︷︷ ︸
B0

0b120b220b320b42︸ ︷︷ ︸
B1,...,B4

1 . . .1︸ ︷︷ ︸
B5

Profile z points to an “out of range” position in blocks bi, 1 ≤ i ≤ 4, when z =

7.2. Complexity Results for Strong Isomorphisms 88

000010. In this case,

u(a) = 1 . . .1︸ ︷︷ ︸
B0

00︸ ︷︷ ︸
B1,...,B4

1 . . .1︸ ︷︷ ︸
B5

- The connections between strategy profiles and utilities appear when z = 100000. It
has to be noted at this point that in the game Γ = BINARYACT(BS,0) it holds that,

u1(1010) = u2(1010) = 11,u3(1010) = u4(1010) = 10

Profiles starting and ending as a = (1010,b1, . . . ,b4,100000) are considered. For
instance a = (1010,10,11,00,10,100000). Since b1 = 10 6= u1(1010), player 1 and
players in block B1 get utility 0. Since b2 = 11 = u2(1010), player 2 and players in
block B2 get 1 utility. Following this argumentation,

u(a) = 0101︸︷︷︸
B0

00︸︷︷︸
B1

11︸︷︷︸
B2

00︸︷︷︸
B3

11︸︷︷︸
B4

000000︸ ︷︷ ︸
B6

- In all the remaining cases, all players get utility 1.

Lemma 7.2 Let Γ1, Γ2 be two binary action games given in general form. Set
t = max{t1, t2,3}, where ti is the time allowed to the utility TM of game Γi, and
m = max{t,n1,n2}, where ni is the number of players in game Γi. There is a strong
isomorphism between Γ1 and Γ2 iff there is a strong isomorphism between
BINARY(Γ1, t,m) and BINARY(Γ2, t,m).

Proof. Given a mapping ψ = (π,ϕ1, . . . ,ϕn) of Γ1 into Γ2, the mapping ψ′ = (p, f1, . . . , fk)

of BINARY(Γ1, t,m) into BINARY(Γ2, t,m) is considered. In such mapping, fi is the iden-
tity, for any 1 ≤ i ≤ n, fi = ϕi, and, for any i > n. The permutation p on B1,0 is exactly
π. For any 1 ≤ i ≤ n, block B1,i is mapped to block B2,π(i) and block B1,n+1 is mapped
to block B2,n+1. Players inside each block are assigned preserving the relative order of
positions in the block. It is straightforward to show that if ψ is an isomorphism, then ψ′

is also an isomorphism.
For the reverse implication, it is assumed that ψ′ = (p, f1, . . . , fk) is a strong isomor-

phism between the BINARY(Γ1, t,m) and BINARY(Γ2, t,m) games. In such case, Γ1 and
Γ2 have the same number n of players. In this case, it can be shown that a permutation
p preserves blocks and relative positions inside interior blocks. Therefore, a mapping
ψ = (π,ϕ1, . . . ,ϕn) is defined. In this mapping, π is the restriction of p to block B1,0 and,
for any 1 ≤ i ≤ n, ϕi = fi.

Let a = xb1 . . .bn z be a strategy profile for BINARY(Γ1, t,m), where x = x1 . . .xn,
bi = bi1 . . .bit and z = z0 . . .zm+1 are binary words. The utilities of a are represented as a

Chapter 7. The Complexity of Game Isomorphism 89

binary string u(a) = u1, . . . ,un+tn+m+2. When we speak in general terms about a property
of the construction subindices will not be used. However, u1(a) and u2(ψ(a)) will be
used to denote vector utilities for the first or second game. As usual, for a binary string
w is used |w|1 to denote the number of 1’s present in w. Note that, for a strategy profile
a, |u1(a)|1 = |u2(ψ(a))|1. According to the definition of utilities for BINARY(Γ, t,m) for
any profile a, we have that,

1. if z = 0m+2−`1`, then |u(a)|1 = `, and at least one player in block Bn+1 gets utility
1.

2. if z = 00 j−110m+1− j, for some 1 ≤ j < t, then n+m+2 ≤ |u(a)|1 ≤ n+ t +m+2,
and all players in block Bn+1 get utility 1.

3. if z = 10m+1, then |u(a)|1 is a multiple of t + 1, and all players in block Bn+1 get
utility 0.

4. In the remaining cases, |u(a)|1 = n+ tn+m+2.

Permutation p maps the block n+ 1 of Γ1 to the block n+ 1 of Γ2. Furthermore, the
restriction of p to B1,n+1 is the identity and, for any j ∈ B1,n+1, f j is the identity. The
claim follows from condition 1, as this is needed to guarantee that, when z = 0m+2−`1`,
|u1(a)|1 = |u2(ψ(a)|1.

Let BIT(j) be the set of players that appears at the j−th position in a block B1, . . . ,Bn.
For any 1 ≤ j ≤ t, permutation p maps BIT1(j) to BIT2(j). Furthermore, for any

i ∈ BIT1(j), fi is the identity. The rigidity of ψ on block B1,n+1 forces that profile a, in
which all players i ∈ BIT1(j) select action 1 and z = 00 j−110m+1− j, creating an utility
string with exactly 2n+m ones. Therefore, the only possibility for ψ to remain as an
isomorphism, is the one expressed in the claim.

As a consequence of the previous claims we have that permutation p maps the players
in block B1,0 to block B2,0.

For any 1 ≤ i ≤ n, permutation p maps block B1,i to block B2,p(i). Furthermore, for
any 1 ≤ j ≤ n, the player in the j − th position of B1,i is mapped by ψ to the j − th
position of B2,p(i). Profile a is considered. In this profile a, z = 10m+1 and x verify that
bi = ui(x) and, for any ` 6= i, b` 6= u`(x). The rigidity of ψ on block B1,n+1 forces that in
|u1(a)|= t +1. In u2(ψ(a)), it is known that the utility for player p(i) has to be one and
therefore, all utilities of all players in B2,p(i) must be one. Again, the only possibility is
the one expressed in the first part of the claim. The second part follows as a consequence
of the first part and the previous claim.

Putting all together, a morphism ψ = (π,ϕ1, . . . ,ϕn) can be defined, in which π is the
restriction of p to block B1,0 and, for any 1 ≤ i ≤ n, ϕi = fi. Profile a is considered,
in which z = 10m+1, and x verifies that, for any 1 ≤ i ≤ n, verifies b1,i = ui(x). Then

7.2. Complexity Results for Strong Isomorphisms 90

u1(a) has a one in all positions except the last m+2 that hold a 0. Furthermore, ψ(a) =
π(x)b2,1 . . .b2,nz and, for any 1 ≤ i ≤ n, if b2,π(i) = b1,i. Therefore we have that, for any
1 ≤ i ≤ n, u1(x) = u2(ψ(x)), therefore ψ is an isomorphism.

2

Given a binary game Γ = (N,(Ai)i∈N ,(ui)i∈N) with n players, such that for any 1 ≤
i ≤ n, utility ui has range {0,1} and Ai = {0,1}. A circuit CΓ on 4n+ 2 variables is
constructed. Recall that, when ui(x) is computed by a Turing machine in polynomial
time, Ladner’s construction [48] gives us a polynomial size circuit when computing the
same function.

Circuit CΓ. The variables in CΓ are grouped in four blocks, the X-block con-
tains the first n-variables. The Y -block is formed by these variables in posi-
tions from n+ 1 to 2n. The C-block contains the following n+ 2 variables,
and the D-block the remaining variables. For the sake of readability, the
set of variables is split into four parts a = (x,y,c,d), where x = (x1, . . . ,xn),
y = (y1, . . . ,yn), c = (c1, . . .cn+2), and d = (d1, . . . ,dn).

The circuit CΓ is defined with the help of the following n+2 circuits,

C1(x,y,d) = [(x1 = d1)∧·· ·∧ (xn = dn)∧ (u1(x) = y1)∧·· ·∧ (un(x) = yn)]

C2(y) = [y1 ∨·· ·∨ yn]

Ci+2(xi,yi,di) = [yi ∧ (xi = di)] for 1 ≤ i ≤ n.

Finally,

CΓ(x,y,c,d) =

{
0 if ∑1≤i≤n+2 ci = 0 or ∑1≤i≤n+2 ci > 1
C j if ∑1≤i≤n+2 ci = 1 and c j = 1

The previous construction is used to reduce the ISO problem to the CIRCUITCONG

problem.

Lemma 7.3 Let Γ and Γ′ be two binary games in general form with at least two play-
ers each. There is a congruence isomorphism between CΓ and CΓ′ , iff there is a strong
isomorphism between Γ and Γ′.

Proof. It is assumed that ψ = (π,ϕ1, . . . ,ϕn) is a strong isomorphism from Γ to Γ′.
Also, the following variable transformation preserving blocks is considered. Variable
xi is mapped to variable x′π(i). With permutation ϕi, the same happens with block D. The
variable yi is mapped to variable y′π(i) with permutation to the identity function, variable c1

is mapped to variable c′1, c2 to c′2, and c2+i to c′2+π(i), and all the block c with permutation
to the identity function.

Chapter 7. The Complexity of Game Isomorphism 91

For the reverse implication, let ψ′ = (p, f1, . . . , f4n+2) be a congruence morphism be-
tween CΓ and CΓ′ . Given a = (a1, . . . ,a4n+2), for 1 ≤ i ≤ 4n+ 2 the value p(i) points to
the image of ai. When ψ(a) = (a′1, . . . ,a

′
4n+2) it holds that, a′p(i) = f (ai).

When a = (x,y,c,d), we note p(xi) the position of the image of xi and we take similar
conventions for p(yi), p(ci) and p(di) to avoid confusions. Similarly, the value of the
image of xi will be f (xi). The congruence verifies that for any truth assignment a to the
variables of CΓ, there is CΓ(a) = CΓ′(ψ′(a)). Congruence Ψ′ allows to be proved that ψ
preserves the structure of the C and Y blocks as follows:

The values of variables c1, . . . ,cn+2 are used to activate the different circuits
C1, . . . ,Cn+2 that form CΓ. Each of these circuits has different properties. As before, the
proof is stated as a series of claims.

Permutation pf p maps to the variables in the C-block of CΓ to the C-block of CΓ′ .
By contradiction, it is assumed that there are k ≥ 1 variables mapped from outside the
C-block of CΓ to the C-block of CΓ′ . Please see that an assignment a can be forced in
which there is only one 1 in position 2 of the C-block for which CΓ(a) is true, while in
ψ′(a) there are at least two 1’s, and that is impossible. The case k = 1 is considered in
detail. As in a = (a1, . . . ,a4n+2), one position leaves block C, there are an ai in blocks
X , Y or D entering block C′ in ψ′(a) and c′p(i) = f (ai). Two cases based on p(c2) will be
considered in the following paragraphs:

- Case p(c2) is a position in C′. In this case, c′p(c2)
= f (c2). When the bijection f is

the identity, c′p(c2)
= c2, different possible origins of ai will be considered below:

- When ai is located in X we have ai = xi. Fix xi ∈ {0,1} to the value such that
f (xi) = 1. It is considered a = (x,y,c,d), such that x = 0i−1xi0n−i, y = 10n,
c = 010n and d = 0n. It is holds that CΓ(a) = C2(a) = 1 but CΓ′(ψ(a)) = 0
because C′ contains at least two ones in c′p(i) and c′p(c2)

.

- When ai is located in D we have ai = d j, for j = i−3n+2. Fix d j ∈ {0,1} to
the value, such that f (d j) = 1. It is considered a = (x,y,c,d), such that x = 0n,
y = 10n, c = 010n and d = 0 j−1d j0n− j. Again, it holds that, CΓ(a) =C2(a) = 1
but CΓ′(ψ(a)) = 0.

- When ai is located in Y , it holds that yi−n = ai. Fix the value of yi−n such
that f (yi−n) = 1. As the Y block has at least two positions, there is j, such
that j 6= i−n and y j = 1 can be fixed. Then, a = (x,y,c,d) with x = 0n, y =

0 . . .0yi−n0 . . .0y j0 . . .0 (case i− n ≥ j, other cases are similar) c = 010n and
d = 0n verify CΓ(a) 6=CΓ′(ψ(a)).

Next, the situation in which f is a negation, c′p(c2)
= ¬c2 is considered. As just one

position in C is mapped outside C′, there exists a j such that p(c j) is not a position

7.2. Complexity Results for Strong Isomorphisms 92

in C′, therefore c j 6= c2. Taking C also as a set, we have that for any ck ∈C\{c2,c j}
it holds that p(ck) is located in C′. Two cases are considered next:

- For all ck ∈C\{c2,c j} it holds that f (ck) is the identity, c′p(ck)
= ck. The value

c′p(j) can be forced to be 0, therefore for C = 010n, C′ = 0n+2 is obtained. As
block Y can be chosen having at least one 1, a profile a can be easily built such
that CΓ(a) 6=CΓ′(ψ(a)).

- There exists ck ∈C\{c2,c j} such that f (ck) is a negation, c′p(ck)
=¬ck. Fixing

C = 010n, ck = 1 is obtained. Forcing c′p(i) to be 1, block C′ will have at least
two 1. As Y has at least two positions, an a not fulfilling the congruence can
be easily built.

- Case p(c2) is a position in X ′, Y ′ or D′. Intuitively, c2 leaves the C block and at the
elements ck ∈C \{c2} have to be examined. Two cases are considered next:

- For any ck ∈ C \ {c2}, the bijection f (ck) is the identity. Fixing c′p(i) to be 0
and C = 010n, C′ = 0n+2 is obtained and an a not fulfilling the congruence can
be built.

- There exists ck ∈C\{c2} such that f (ck) is a negation. Fixing c′p(i) to be 1 and
C = 010n, C′ has at least two 1 and an a not fulfilling the congruence. can be
built.

This concludes the analysis of the impossibility when k = 1. When k > 1 the analysis
follows the same ideas.

All functions associated to variables in the C-block are the identity. If there are more
than two negations, ψ′ transforms an input with exactly one 1 in block C to a situation
with two 1’s in block C. If there is one negation, the situation in which all the bits in C
are set to 0 is transformed into another one in which there is only one 1.

We have p(c1) = c′1 and p(c2) = c′2. Let us consider the possible misplacements for
p(c1). There are two cases,

- The index p(c1) = ci is located in one of the last n positions of C′. Then, C = 10n+1

is mapped into C′ = 0i−110n+2−i and the activated circuits are CΓ =C1 and CΓ′ =Ci.
Fix x′i−2 = y′i−2 = 0 and d′

i−2 = 1 and CΓ′ = 1. As p maps C into C′ it also maps
X ∪Y ∪D bijectively into X ′∪Y ′∪D′. As |X |+ |D| ≥ 4 and x′i−2 y′i−2 d′

i−2 are fixed,
only three anti-images have been fixed and there are at least one “free” position in
the X ∪D blocks. It is assumed that x j is the free position (the case d j is similar) and
that is looks the corresponding d j. If d j is fixed, take x j = d j. If d j is free, define
d j = x j = 1. In both cases C1 = 0.

Chapter 7. The Complexity of Game Isomorphism 93

- Index p(c1) points to c′2, that is c2 = c1. Block C = 10n+1 is mapped to 010n and
under this situation CΓ = C1 and CΓ′ = C2. Fixing an arbitrary bit y′i in Y ′ and
looking at the possible anti-image of y′i follows that in the bijection p : X ∪Y ∪D →
X ′∪Y ′∪D′ only the anti-image of y′i fixed. Suppose that the anti-image is one and
is an x j, then fix d j = x j. When the anti-image belongs to Y , choose one xk, fix it
and the corresponding dk as well to 1. When the anti-image is d j fix x j to the same
value. In all cases, C1 = 0.

It is then proven that p(c1) = c′1. To prove p(c2) = c′2 the same train of thought has need
to be followed.

Permutating p maps on to the variables in the Y -block of CΓ to the Y -block of CΓ′ .
Furthermore, the functions associated to the variables in the Y -block are the identity.
This is a consequence of the rigidity of ψ′ on c2 and the definition of the C2 formula.

Furthermore, the function fi, for i in block C or Y , is the identity. This allows us to
consider the permutation π on {1, . . . ,n}, such that p(ci+2) = c′π(i)+2. Moreover, it will
be proven that this permutation verifies p(xi) = x′π(i) iff p(di) = d′

π(i) and p(xi) = d′
π(i) iff

p(di) = x′π(i). π is considered to be the permutation on {1, . . . ,n}, such that p(ci+2) =

c′π(i)+2.

For any 1 ≤ i ≤ n, positions i in blocks X, Y and D of CΓ are mapped to positions π(i)
of blocks X, Y and D of C′

Γ. Furthermore, p(yi) = y′π(i). This result is enforced by the
definition of the n formulas Ci+2, as each of them forces to combine the input bits xi and
yi with di. The last part of this section takes into account that the Y -block of CΓ is mapped
to the Y -block of CΓ′ .

The above result implies that, for any 1 ≤ i ≤ 1, either p(xi) = xπ(i) or p(xi) = dπ(i).
Furthermore, the permutation associated to xi and di must be the same,

p(xi) = x′π(i) iff p(di) = d′
π(i) and p(xi) = d′

π(i) iff p(di) = x′π(i),

otherwise, an input for which Ci+2(xi,yi,di) = 1 can be found, while there is also a
Cπ(i)+2(ψ′(xi,yi,di)) = 0.

The mapping ψ′′ = (p′, f ′1, . . . , f ′4n+2) is considered, such that the behaviour of the
permutation and bijections coincides with ψ′ in blocks Y and C. In blocks X and D the
mapping is given by,

p′(xi) =

{
x′π(i) if p(xi) = x′π(i)
x′π(i) if p(xi) = d′

π(i)
and p′(di) =

{
d′

π(i) if p(di) = d′
π(i)

d′
π(i) if p(di) = x′π(i)

7.2. Complexity Results for Strong Isomorphisms 94

then, p′ : X → X ′ and p′ : D → D′ and the behaviour of p′ is the same in both blocks, that
is p′(xi) = x′π(i) iff p′(di) = d′

π(i). The bijections are defined as:

f ′(xi) =

{
f (xi) if p(xi) = x′π(i)
¬ f (xi) if p(xi) = d′

π(i)
and f ′(di) =

{
f (di) if p(di) = d′

π(i)
¬ f (di) if p(di) = x′π(i)

The morphism ψ′′ is a congruence. This trivially happens because for any strategy profile
a, ψ′(a) = ψ′′(a) holds.

Finally, it is easy to prove that the morphism ψ, given by ψ = (π, f ′1, . . . , f ′n), is an
isomorphism between Γ and Γ′. 2

It is easy to show that CIRCUITCONG is reducible to ISO. A game with as many
players as variables, in which the utilities for all players are identical and coincide with
the evaluation of the circuit is considered. Taking into account that CIRCUITCONG is
equivalent to CIRCUITISO and putting all together, the following is obtained:

Theorem 7.4 The strong isomorphism problem for strategic games in general form, is
polynomially equivalent to the circuit isomorphism problem.

The ISO problem for strong isomorphisms of games in general form remains equiva-
lent to the ISO problem for strong isomorphisms, when games are restricted to be binary
actions or binary games, since the identity trivially reduces the latest problem to the for-
mer one.

Formula games in general form are considered. The results also apply to WBFG
games [71], where actions are given in explicit way. The proof follows the same steps as
in the previous case. Now, a description of the games provided in the reduction as formula
games will be shown, that can be computed in polynomial time.

Theorem 7.5 The strong isomorphism problem for formula games and WBFG in general
form are equivalent to the boolean formula isomorphism problem.

Proof. The game BINARYACT(Γ,µ) when Γ is a formula game in general form is a
formula game. The game BINARY(Γ, t,m), when Γ is a binary action formula game in
general form, is a formula game. A description in general form of the games
BINARYACT(Γ,µ) and BINARY(Γ, t,m) can be computed in polynomial time.
Furthermore, a description of the circuit CΓ, for a binary formula game Γ can be obtained
in polynomial time. First, it is shown that the BINARYACT(Γ,µ) game, for a given
formula game in general form Γ = 〈1n,A1, . . . ,An,1`,(ϕi, j)1≤i≤n,0≤ j<`〉, as defined in
Page 81, is a formula game whose description can be computed in polynomial time.

Chapter 7. The Complexity of Game Isomorphism 95

Recall that the utility functions of BINARYACT(Γ,µ) are defined as follows:

u′i(a
′) =

ublock(i)(binify−1(a′)) if a′ ∈ good(A′),

µ if a′ ∈ bad(A′).

where good(A′)= {binify(a)|a∈A} and binify(j)= 0 j−110ki− j. To compute the utilities, it
will be needed to show that the function binify−1 can be represented by a boolean formula
as well as the property a′ ∈ good(A′). For doing so, it will be shown that they can be
computed in NC1, and the same argumentation was used in the proof of Claim 2.1 in
Chapter 2 to construct the formulas.

For a′ ∈ good(A′), it must happen that the sum of all its bits is 1, and this can be
computed in NC1. To compute binify−1(a′) for some a′ ∈ good(A′), let a′ = 0 j−110ki− j

be assumed. The suffix sum of the bits of a′ is computed, thus getting b = 1 j0ki− j. Then,
j is the sum of the bits of b.

Finally, the set of formulas describing the utilities for BINARYACT(Γ,µ) in polyno-
mial time can be constructed using the formula for a′ ∈ good(A′) and the ones that com-
pute the bits of binify−1(a′), combined with a constant µ, and formulas describing the
utilities of the player’s in Γ. Therefore, according to Lemma 7.1, the ISO problem for
formula games in general form is equivalent to the the ISO problem for formula games in
general form with binary actions.

Now, it will be shown that given Γ = 〈1n,A1, . . . ,An,1`,(ϕi, j)1≤i≤n,0≤ j<`〉, a formula
game in general form with binary actions, the game BINARY(Γ, t,m), as defined in
Page 86, is a formula game whose description can be computed in polynomial time.

Recall that BINARY(Γ, t,m) is the game (N′,(A′
i)i∈N′,(u′i)i∈N′) where N′ = {1, . . . ,k}

and, for any i ∈ N′, A′
i = {0,1} where k = n + tn + m + 2. The set N′ is partitioned

into n + 2 consecutive intervals B0, . . . ,Bn,Bn+1, so that the interval B0 has exactly n
players, for 1 ≤ i ≤ n, the block Bi has t players, finally block Bn+1 has m+2 players. As
before, a strategy profile a is usually factorised as a = xb1 . . .bn z where now x = x1 . . .xn,
bi = bi`−1 . . .bi0 and z = z0 . . .zm+1. Note that if the formula game uses ` formulas per
player, then t = `+1.

To express the utilities by a boolean formula, the following auxiliary formulas for
z = z0, . . . ,zm+1 are considered:

FROMi(z) =
(i−1∧

j=0

¬z j
)
∧
(m+1∧

j=i

z j
)

for 0 ≤ i ≤ m+1

ONLYi(z) =
(i−1∧

j=0

¬z j
)
∧ zi ∧

(m+1∧
j=i+1

¬z j
)

for 0 ≤ i ≤ m+1

7.2. Complexity Results for Strong Isomorphisms 96

The previous formulas allow the expression of the different conditions considered in the
definition of a game BINARY(Γ, t,m).

ONE(z) = ∨m+1
i=0 FROMi(z)

TWO(z) = ∨t
i=1ONLYi(z)

THREE(z) = ONLY0(z)

FOUR(z) = ¬(ONE(z)∨ TWO(z)∨ THREE(z))

Note that predicates ONE, TWO, TWO, FOUR give a partition of the strategy
profiles. Recall that the utility of player i in Γ is given by the equation
ui(a1, . . . ,an) = ∑0≤ j<`ϕi, j(a1, . . . ,an)2 j. The formula,

EQUTi(x,bi) = ∧`
j=0(ϕi j(x)∧bi j)∨ (¬ϕi j(x)∧¬bi j),

which express the fact that bi is the utility of player i in game Γ is also considered.
Below, a formula for each “type of player” that allows to compute their utility in game

BINARY(Γ, t,m) is provided.

- The utility for player α in position β of block j (1≤ j ≤ n). The formula is expressed
as disjunction of the four cases.

- When ONE(z) holds, the utility is 0. This gives a term ONE(z)∧ 0, which is
equivalent to 0.

- When TWO(z) hold, there are two cases. When ONLYβ(z) holds, the position
of player α inside the block j coincides with the position of the 1 in z and then,
the utility is b jβ . When ONLYβ(z) is false the utility is 0. Therefore, this part
contributes with a term TWO(z)∧ONLYβ(z)∧b jβ .

- When THREE(z) holds, all players in block j have the same boolean utility,
defined as the value of the expression (u j(x) = b j). This part is encoded as
THREE(z)∧ EQUT j(x,b j).

- When FOUR(z) holds, the value of the utility is 1, therefore a term FOUR(z)∧1
is obtained.

Using basic properties of boolean functions, it is obtained,

Ψα(a) = (TWO(z)∧ONLYβ(z)∧b jβ)∨ (THREE(z)∧ EQUT j(x,b j))∨ FOUR(z)

- The utility for player α in position β of block 0 is:

Ψα(a) = TWO(z)∨ (THREE(z)∧ EQUTβ(x,bβ))∨ FOUR(z)

Chapter 7. The Complexity of Game Isomorphism 97

- The utility for player α in position β of block n+1 is:

Ψα(a) = (ONE(z)∧ FROMβ(z))∨ TWO(z)∨ FOUR(z)

It is straightforward to show that the previous formulas can be written in polynomial
time. Thus, using Lemma 7.2, we have that the ISO problem for formula games in general
form is equivalent to the the ISO problem for binary formula games.

The last step is to show that, given a binary formula game Γ, the boolean circuit CΓ as
defined in Page 90 can be described by a formula. From the definition of CΓ, it follows
trivially that Ck (1 ≤ k ≤ n+2) can be described by formulas as the utility for the player
is given by a formula. The following formulas are considered:

ONLYi(c1, . . . ,cn+2) = ¬c1 ∧·· ·∧¬ci−1 ∧ ci ∧¬ci+1 ∧·· ·∧¬cn+2, 1 ≤ i ≤ n+2

EXONE(c1, . . . ,cn+2) = c1 ∨·· ·∨ cn+2

MOREONE(c1, . . . ,cn+2) = ∨1≤i< j≤n+2(ci ∧ c j)

Then, CΓ can be expressed as a disjunctions of the three cases. When ¬EXONE(c) or
MOREONE(c) holds, the result is 0. Otherwise the value is computed by a disjunction of
terms ONLY j(c)∧C j(a). Therefore CΓ is expressed as,

∨n+2
j=1 ONLY j(c)∧C j(a).

It is straightforward to show that a description of the previous circuit can be computed
in polynomial time. Thus, using Lemma 7.3, it results that the ISO problem for formula
games in general form is equivalent to the FORMULAISO problem.

2

Proving NP-completeness in the case of explicit form appears to be a difficult task. A
game in explicit form can be seen as a graph with edge labels and weights. As the total
number of different weights appearing in both games is polynomial, the problem can be
reduced to the Graph isomorphism (GI) problem [110]. Therefore, the NP-hardness of
ISO will imply the NP-hardness of GI. The opposite direction is needed to prove. Thus,
the following discussion is started by constructing a game from a graph.

Given an undirected graph G, a strategic game Γ(G) associated to this graph is defined.

Game Γ(G). It is assumed that G = (V,E) is a non-directed graph with V =

{1, . . . ,n} and m edges. Given e ∈ E, it is written e = {i, j} to denote an edge
connecting i and j. The game has 4 players with A1 = A2 = {0,1, . . . ,n},
A3 = {0,1}, A4 = E ∪{0}. Let A = A1 ×A2 ×A3 ×A4 and (i, j,k, l) ∈ A. The
utilities are:

7.2. Complexity Results for Strong Isomorphisms 98

u1(i, j,k, l) = u2(i, j,k, l) =

1 if l = {i, j} and k = 0,

0 otherwise

u3(i, j,k, l) =

1 if i = 0, j 6= 0, k = 1 and l 6= 0,

0 otherwise

u4(i, j,k, l) =

1 if i = j = k = 0,

0 otherwise

Note that the graph isomorphism problem is equivalent to the problem restricted to
connected graphs G and G′ that have n > 2 vertices. Otherwise, new vertices connected
to all other vertices are added, one after the other, in the graph (in both graphs) until
the condition is fullfilled. This type of vertex addition preserves isomorphism. With this
construction it is possible to assume that, any vertex has at least one outgoing edge.

Lemma 7.4 Let G, G′ be two connected undirected graphs, with at least two vertices.
The games Γ(G) and Γ(G′) are strongly isomorphic iff G and G′ are isomorphic.

Proof. An isomorphism p between graphs G and G′ is assumed. Let ψ= (π,ϕ1, . . . ,ϕ4) be
a game mapping defined as follows, π and ϕ3 being the identity, ϕ1 = ϕ2 = p, ϕ4(0) = 0
and, for any edge {u,v} ∈ E(G), ϕ4({u,v}) = {p(u), p(v)}. It is straightforward to show
that ψ is a strong isomorphism between Γ(G) and Γ(G′).

Let ψ = (π,ϕ1, . . . ,ϕ4) be a strong isomorphism between Γ(G) and Γ(G′). This veri-
fies the following:

The player’s permutation verifies π : {1,2} → {1,2}, π : {3} → {3} and finally π :
{4}→{4}. Denoting the cardinality of a set by #, there are #{a|u1(a)= 1}= #{a|u2(a)=
1} = 2m, #{a|u3(a) = 1} = mn and #{a|u4(a) = 1} = m+ 1. When n > 2 and m > 2,
these sets have different cardinality. As #{a|ui(a) = 1} = #{ψ(a)|u′π(i)(ψ(a)) = 1}, the
result is obtained.

As players 1 and 2 have the same behaviour, π(1) = 1 and π(2) = 2 are assumed,
therefore π is the identity.

The action’s bijection ϕ3 is the identity. As π is the identity, the following bijec-
tion ψ(A1 × A2 ×{0}× A4) = A′

1 × A′
2 ×{1}× A′

4 holds. Therefore, for any i′, j′, l′

u′3(i
′, j′,1, l′) = 0 holds, because u3(ϕ−1

1 (i′),ϕ−1
2 (j′),0,ϕ−1

4 (l′)) = 0. This is a contradic-
tion because u′3(i

′,0,1,e′) = 1 when 1 ≤ i ≤ n and e′ ∈ E ′.
The action’s bijections for players 1 and 2 verify ϕ1(0) = 0 and ϕ2(0) = 0.

This is forced by the rigid the structure of u4. As u4(0,0,0, l) = 1, then
u′4(ϕ1(0),ϕ2(0),0,ϕ1(l)) = 1 and this force ϕ1(0) = ϕ2(0) = 0. Therefore, ϕ1 and ϕ2

are permutations on vertices {1, . . . ,n}.

Chapter 7. The Complexity of Game Isomorphism 99

The action’s bijection ϕ4 verifies ϕ4(0) = 0. When this does not hold, as ϕ4 is a
bijection, there exists an e such that ϕ4(e) = 0. For j 6= 0 it holds that u3(0, j,1,e) = 1
and, as ψ is a morphism, u′3(0,ϕ2(j),1,0) = 1, but this is a contradiction. Therefore, ϕ4

is a permutation on the m edges.
When ϕ4(e) = e′ and e = {i, j}, it holds that e′ = {ϕ1(i),ϕ2(j)}. As

u1(i, j,0,{i, j}) = 1 and ψ is a morphism, u′1(ϕ1(i),ϕ2(j),0,ϕ4({i, j})) = 1, and
ϕ4({i, j})) = {ϕ1(i),ϕ2(j)}.

ϕ1 and ϕ2 are the same permutations on {1, . . . ,n}. It is needed to be proven that,
for all i ∈ {1, . . . ,n} it holds that ϕ1(i) = ϕ2(i). Let i be a vertex, as every node has a
positive grade, there exits an j such that e = {i, j} is an edge in G. As u1(i, j,0,e) =
u1(j, i,0,e) = 1, ϕ4(e) = {ϕ1(i),ϕ2(j)} = {ϕ1(j),ϕ2(i)} holds. There are two possibil-
ities, ϕ1(i) = ϕ2(i) and ϕ1(j) = ϕ2(j) or ϕ1(i) = ϕ1(j) and ϕ2(j) = ϕ2(i). But ϕ1(i) =
ϕ1(j) is impossible because ϕ1 is a permutation.

When ψ is an isomorphism, the mapping ϕ1 : {1, . . . ,n}→ {1, . . . ,n} induces a graph
isomorphism. Edge e = {i, j} in G is considered, as ψ is a game morphism u1(i, j,0,e) =
u′1(ϕ1(i),ϕ1(j),0,ϕ4(e)) and this forces ϕ4(e) = {ϕ1(i),ϕ1(j)}.

2

As a consequence of previous results the following is obtained.

Theorem 7.6 The strong isomorphism problem for games given in explicit form is equiv-
alent to the graph isomorphism problem.

7.3 Weak Isomorphisms

Replacing strong by weak isomorphisms does not modify complexity bounds. In this
section is shown that, for the case of a weak isomorphism, the ISISO problem is coNP-
complete, and the ISO problem is equivalent to the ISO problem for strong isomorphisms.
The last equivalence will hold for any of the considered representations of the games.

Theorem 7.7 The ISISO problem for a weak isomorphism is coNP-complete, for games
given in general form (strategic, formula and WBFG), and it belongs to NC when the
games are given in explicit form. The ISO problem belongs to Σp

2 , when the games are
given in general form (strategic, formula and WBFG), and it belongs to NP when the
games are given in explicit form.

Proof. The proofs given in Theorems 7.2 and 7.3 is have adapted. Membership in coNP

of the ISISO problem for weak isomorphism and for games given in explicit or general
form follows from the definitions.

7.3. Weak Isomorphisms 100

When the games and the morphism are given in explicit form, a direct adaptation of
the proof given in Theorem 7.2 gives us that ISISO belongs to NC for weak isomorphisms.

To prove hardness, given a boolean formula F with n variables, a variation of the
game WINWHENTRUE(F) is defined that is, WINWHENTRUEW(F) in which utilities
are redefined as follows:

ui(a1, . . . ,an) =

2n if F(a1, . . . ,an) is true,

∑n
i=1 ai2n−i if F(a1, . . . ,an) is false.

For any pair of strategy profiles a 6= a′, a ∼i a′ holds when both F(a) = F(a′) = 1. When
F(a) = F(a′) = 0, a ≺i a′ if and only if a < a′ in lexicographic order. When F(a) 6= F(a′)
player i prefers the satisfying assignment. On the other hand, the ALWAYSWIN game in
which a ∼i a′ always holds is as well considered.

The IDENTITY morphism is a weak isomorphism between ALWAYSWIN and
WINWHENTRUEW(F) games iff F is valid. Thus, the ISISO problem for weak
isomorphisms and games in general form is coNP-complete.

Finally, it is observed that a description in general form of the WINWHENTRUEW(F)

and the ALWAYSWIN games can be computed in polynomial time, when the utility func-
tions are described by Turing machines or by formulas.

2

When considering a weak isomorphism, it is shown first that the ISO problem is equiv-
alent to the boolean circuit isomorphisms, second that the formula games in general form
are equivalent to the boolean formula isomorphism, and third that the strategic games
in explicit form are equivalent to the graph isomorphism problem. Before proving these
results, a series of game transformations that preserve weak isomorphism is provided, es-
tablishing equivalence with the strong isomorphism. Later on will, it will be shown that
these transformations are indeed reduction in polynomial time for the considered repre-
sentations.

The Γ = (N,(Ai)i∈N ,(ui)i∈N) game is assumed. It is a binary game, where N =

{1, . . . ,n}. The following game is considered.

CHECKW(Γ) = (N′,(A′
i)i∈N′,(u′i)i∈N′), where N′ = {1, . . . ,n,n+ 1} and, for

any 1 ≤ i ≤ n, A′
i = {0,1} and A′

n+1 = {0,1,2,3}. The utilities are defined as
follows, for a player i, 1 ≤ i ≤ n,

u′i(a
′) =

1 if ui(a′1, . . . ,a
′
n) = (a′n+1 mod 2),

0 otherwise,

Chapter 7. The Complexity of Game Isomorphism 101

For the last player,

u′n+1(a
′) = a′n+1.

The equality
(
ui(a′1, . . . ,a

′
n) = (a′n+1 mod 2)

)
is taken as a boolean expression with val-

ues {0,1}. Under this point of view it can be written shortly, u′i(a
′) =

(
ui(a′1, . . . ,a

′
n) =

(a′n+1 mod 2)
)
.

Note that Γ is a binary game (both, actions and utilities are binary). CHECKW(Γ) is
not a binary game, neither a binary action game due to the last player. Player n+ 1 in
CHECKW(Γ) has four actions and un+1 takes four values.

Lemma 7.5 Let Γ1 and Γ2 be two binary games. Γ1 and Γ2 are strongly isomorphic iff
the games CHECKW(Γ1) and CHECKW(Γ2) are weakly isomorphic.

Proof. Let Γ′
1 = CHECKW(Γ1) and Γ′

2 = CHECKW(Γ2). A strong isomorphism ψ =

(π,ϕ1, . . . ,ϕn) between Γ1 and Γ2 is assumed. The mapping ψ′ = (p, f1, . . . , fn+1) is
defined for 1 ≤ i ≤ n, p(i) = π(i) and fi = ϕi, p(n+ 1) = n+ 1, and fn+1 is the identity
function. Let us prove that ψ′ is a strong (therefore also a weak) isomorphism between
Γ′

1 and Γ′
2.

Let a′ = (a1, . . . ,an,an+1) be a strategy profile in CHECKW(Γ1). It is written a′ =
(a,an+1) with a = (a1, . . . ,an). By definition of ψ′ it holds that ψ′(a′) = (ψ(a),an+1),
because fn+1(an+1) = an+1. Let us prove that ψ′ is a strong isomorphism. For 1 ≤ i ≤ n,
uπ(i)(ψ(a)) = ui(a), since ψ is a strong isomorphism, and therefore,

u′p(i)(ψ
′(a′)) =

(
uπ(i)(ψ(a)) = (a′n+1 mod 2)

)
=
(
ui(a) = (a′n+1 mod 2)

)
= u′i(a

′).

It remains the case n+ 1. As p(n+ 1) = n+ 1 and fn+1 is the identity, u′n+1(ψ
′(a)) =

a′n+1 = un+1(a).
Now, ψ′ = (p, f1, . . . , fn+1) is assumed a weak isomorphism between Γ′

1 and Γ′
2. As

p maps between players having the same number of actions, and the only player with 4
actions is the last one we are forced to have p(n+ 1) = n+ 1. Let ψ be ψ′ restricted to
players 1, . . . ,n, that is ψ = (π,ϕ1, . . . ,ϕn), such that for 1 ≤ i ≤ n, π(i) = p(i) and ϕi = fi.
For any a′ = (a,a′n+1) with a = (a1, . . . ,an), we have that ψ′(a′) =

(
ψ(a), fn+1(a′n+1)

)
.

The definition of the preference relation of player n+1 forces fn+1 = Id (see Claim 7.1).
Let ψ be ψ′ restricted to players 1, . . . ,n, that is ψ = (π,ϕ1, . . . ,ϕn). Then, π(i) = p(i) and
ϕi = fi, for 1 ≤ i ≤ n and ψ′(a′) =

(
ψ(a), fn+1(a′n+1)

)
. In CHECKW(Γ1) player n+1 has

the following chain of strict preferences,

(a,0)≺n+1 (a,1)≺n+1 (a,2)≺n+1 (a,3)

7.3. Weak Isomorphisms 102

As ψ′ is a weak morphism, preferences of player n+1 in CHECKW(Γ2) verify that,(
ψ(a), fn+1(0)

)
≺n+1

(
ψ(a), fn+1(1)

)
≺n+1

(
ψ(a), fn+1(2)

)
≺n+1

(
ψ(a), fn+1(3)

)
This forces u′n+1(fn+1(0)) < u′n+1(fn+1(1)) < u′n+1(fn+1(2)) < u′n+1(fn+1(3)). There-
fore,

u′n+1(fn+1(0)) = 0, u′n+1(fn+1(1)) = 1, u′n+1(fn+1(2)) = 2, u′n+1(fn+1(3)) = 3

The only possibility to fulfill the preceding equalities is to take fn+1(a′n+1) = a′n+1 for
a′n+1 ∈ {0,1,2,3}.

After that, it has a factorisation ψ′(a′) =
(
ψ(a),a′n+1

)
. Note that for any a′ = (a,an+1)

it holds that, u′n+1(ψ
′(a′)) = u′n+1(ψ(a),an+1) = an+1 = u′n+1(a

′). Given a = (a′1, . . .a
′
n),

since Γ1 is a binary game, ui(a) ∈ {0,1} holds. It is defined ui(a) = 1− ui(ai) and in
this case, ui(a) = (ui(a) mod 2) and ui(a) = (ui(a) mod 2). In CHECKW(Γ1), given
a = (a′1, . . .a

′
n) for any player 1 ≤ i ≤ n it holds that,

u′i(a,ui(a)) =
(
ui(a) = (ui(a) mod 2)

)
=
(
ui(a) = ui(a)

)
= 0

u′i(a,ui(a)) =
(
ui(a) = (ui(a) mod 2)

)
=
(
ui(a) = ui(a)

)
= 1

Therefore, (a,ui(a)) ≺i (a,ui(a)). As ψ′ is a weak isomorphism,
ψ′(a,ui(a)) ≺π(i) ψ′(a,ui(a)), since fn+1 is the identity (ψ(a),ui(a)) ≺π(i) (ψ(a),ui(a)).
This forces u′π(i)(ψ(a),ui(a)) < u′π(i)(ψ(a),ui(a)) and consequently
u′π(i)(ψ(a),ui(a)) = 0 and u′π(i)(ψ(a),ui(a)) = 1. According to the definition of u′π(i), it
holds,

u′π(i)(ψ(a),ui(a)) =
(
uπ(i)(ψ(a)) = (ui(a) mod 2)

)
=
(
uπ(i)(ψ(a)) = ui(a)

)
= 1.

Therefore, uπ(i)(ψ(a)) = ui(a) for any 1 ≤ i ≤ n, and ψ is a strong isomorphism.
2

Claim 7.1 Let ψ′ = (p, f1, . . . , fn+1) be a weak isomorphism ψ′ : CHECKW(Γ1) →
CHECKW(Γ2) then, fn+1 = Id holds.

Proof. Let ψ be a ψ′ mapping restricted to players 1, . . . ,n, that is ψ = (π,ϕ1, . . . ,ϕn),
as in the proof of Lemma 7.5. Then, π(i) = p(i), ϕi = fi for 1 ≤ i ≤ n and ψ′(a′) =(
ψ(a), fn+1(a′n+1)

)
. In CHECKW(Γ1), player n + 1 has the following chain of strict

preferences: (a,0) ≺n+1 (a,1) ≺n+1 (a,2) ≺n+1 (a,3). Since ψ′ is a weak morphism,
preferences of player n+1 in CHECKW(Γ2) verify,(

ψ(a), fn+1(0)
)
≺n+1

(
ψ(a), fn+1(1)

)
≺n+1

(
ψ(a), fn+1(2)

)
≺n+1

(
ψ(a), fn+1(3)

)

Chapter 7. The Complexity of Game Isomorphism 103

This forces, u′n+1(fn+1(0))< u′n+1(fn+1(1))< u′n+1(fn+1(2))< u′n+1(fn+1(3)) and there-
fore, u′n+1(fn+1(0)) = 0, u′n+1(fn+1(1)) = 1, u′n+1(fn+1(2)) = 2, u′n+1(fn+1(3)) = 3. The
only possibility to fulfil the preceding equalities is to take, fn+1(a′n+1) = a′n+1 for a′n+1 ∈
{0,1,2,3}.

2

As it has been explained in the previous section, a transformation to a binary ac-
tion game is defined. The construction of the game follows the same lines as in the
BINARYACT(Γ) (see Page 81). But now, an adequate preference relation has been guar-
anteed for each player. The game Γ=(N,A1, . . . ,An,(ui)1≤i≤n), it is assumed. In addition,
without loss of generality, it is assumed that utilities are non-negative. If this happens, it
is sufficient to add a “big positive number”. When utilities are computed by a TM with
time t, 2t can be added.

BINARYACTW(Γ) = (N′,(A′
i)i∈N′,(u′i)i∈N′), where N′ = {1, . . . ,k} and, for

any i ∈ N′, A′
i = {0,1} and thus the set of action profiles is A′ = {0,1}k. A

block Bi is associated to Ai of ki = |Ai| players, each one taking care of one
bit. Thus, k = k1 + · · ·+ kn. A strategy profile a′ is split into n blocks. Thus,
a′ = (b1, . . . ,bn) where bi ∈ {0,1}ki . a′j has been kept to refer to the strategy
of player j. Recall that, if Ai = {0,1}ki , good(Ai) = {binify(a) | a ∈ Ai}, where
binify(j) = 0 j−110ki− j, good(A′) = {binify(a1) · · ·binify(an) | a1 ∈ A1, . . . ,an ∈
An} and that, for a′ ∈ good(A′), binify−1(a′) = (binify−1(b1), . . . ,binify−1(bn)).
For a player α occupying position j in block Bi, the player partitions A′ in the
following sets are:

X0(α) = {a′ | bi 6∈ good(Ai)}
X1(α) = {a′ | bi j = 0 and bi ∈ good(Ai) and a′ ∈ bad(A′)}
X2(α) = {a′ | bi j = 1 and bi ∈ good(Ai) and a′ ∈ bad(A′)}
X3(α) = good(A′)

and the utility function is defined as

u′α(a
′) =


0 if a′ ∈ X0(α),

1 if a′ ∈ X1(α),

2 if a′ ∈ X2(α),

3+ui(binify−1(a′)) if a′ ∈ X3(α),

7.3. Weak Isomorphisms 104

When |Ai|= ki = 1, we have Ai = {0,1}, binify(1) = 1 and Bi has just one player. Let
α be such a player, in this case, X1(α) = /0. When ki > 1, all sets X0(α), . . . ,X3(α) are non
empty.

Player α prefers profiles in X3(α) to profiles in X2(α), profiles in X2(α) to profiles in
X1(α), and profiles in X1(α) to profiles in X0(α). Moreover, player α is indifferent among
two profiles belonging to the same set X0(α), X1(α), or X2(α). For profiles a′1 and a′2, both
in X3(α), player α keeps the preferences of player i in Γ among the profiles binify−1(a′1)
and binify−1(a′2).

Lemma 7.6 Let Γ1 and Γ2 be two strategic games. Γ1 and Γ2 are weakly isomorphic iff
BINARYACTW(Γ1) and BINARYACTW(Γ2) are weakly isomorphic.

Proof. Let Γ′
1 = BINARYACTW(Γ1) and Γ′

2 = BINARYACTW(Γ2).
It is assumed that ψ = (π,ϕ1, . . . ,ϕn) is a weak isomorphism between Γ1 and Γ2. The

mapping ψ′ = (p, f1, . . . , fk) is considered where, for 1 ≤ i ≤ n, p maps the bits in block i
of Γ′

1 to the bits in block π(i) of Γ′
2 so that the j-th bit of Bi goes to bit ϕi(j) of Bp(i), and,

for 1 ≤ j ≤ k, f j is the identity function. It is straightforward to show that ψ′ is a weak
isomorphism between Γ′

1 and Γ′
2.

The reverse part is considered. It is assumed that ψ′ = (p, f1, . . . , fk) is a weak isomor-
phism between Γ′

1 and Γ′
2. As it will be proven later on, all the fα, 1 ≤ α ≤ k are identities

and p induces a permutation into the blocks.
If ψ′ = (p, f1, . . . , fk) is a weak isomorphism between the games,

Γ′
1 = BINARYACTW(Γ1) and Γ′

2 = BINARYACTW(Γ2). The proof is stated as a series
of claims.
Given players α ∈ Bi and α′ ∈ B j with i 6= j, it holds X0(α) 6= X0(α′). When ki 6= k j, the
proof is direct, because X0(α) has a cardinality 2k−ki(2ki −ki), which is different from the
cardinality of X0(α′). The case ki = k j is considered. It is assumed that block i precedes
block j, and the profile schematised is considered as follows,

a = (b1, . . .bi−1,badi,bi+1, . . . ,b j−1,god j,b j+1, . . . ,bn)

where badi is a bad profile in Ai and good j is a good profile in A j. It holds that a ∈ X0(α)
but a 6∈ X0(α′).
Given the permutation p and a player α, sets X0(α) and X0(p(α)) are both non-empty.
Player α occupies forcedly a position into a block. It is supposed that Bi is such a block.
As good(Ai) has ki ≥ 1 elements, the set Ai \good(Ai) contains 2ki − ki > 0 elements. By
the same reason X0(p(α)) is not empty.
It holds that ψ′(X0(α)) = X0(p(α)) for any player α. First note that
ψ′(X0(α))⊆ X0(p(α)). Otherwise, there is a′ ∈ ψ′(X0(α))\X0(p(α)) and a′′ ∈ X0(p(α))
(because X0(p(α)) is not-empty), such that a′′ ≺p(α) a′. Then ψ′−1(a′′)≺α ψ′−1(a′), but

Chapter 7. The Complexity of Game Isomorphism 105

this is impossible because ψ′−1(a′) ∈ X0(α) and therefore, ψ′−1(a′) is a less preferred
element. It is supposed that ψ′(X0(α)) 6= X0(p(α)). Let a′ ∈ X0(p(α)) \ψ′(X0(α)) and
ψ′−1(a′) is considered. If ψ′−1(a′) belongs to X0(α), a contradiction is obtained. If
ψ′−1(a′) 6∈ X0(α) is assumed, there exists an b ∈ X0(α) such that, b ≺α ψ′−1(a′). Then,
ψ(b)≺p(α) a′, but this is impossible because a′ is a less preferred element.

It holds that p(Bblock(α)) = Bblock(p(α)) for all α. Let α and α be players in block Bi,
that is block(α) = block(α′) = i. As X0(α) = X0(α′) it holds that ψ(X0(α)) = X0(p(α)) =
X0(p(α′)). Both X0(p(α)) = X0(p(α′)) iff block(p(α)) = block(p(α′)).

Thus, ψ′ induces a permutation π on {1, . . . ,n} such that π(Bi) = Bπ(i) moreover,
π(block(α)) = block(p(α)). For a player α in position j inside block Bi, let ϕ(j) be the
position of player p(α) in block π(i). Therefore, a mapping ψ = (π,ϕ1, . . . ,ϕn) is defined.

It holds that ψ′(X1(α)) = X1(p(α)) for any player α. There are two cases depending
on the values of the ki corresponding to the block containing α. First, the case ki = 1 is
considered. In this case, Bi = {0,1} and Xi(α) = /0. One has p(Bi) = Bπ(i) = {0,1}
and X1(p(α)) = /0. The case ki > 1 is considered. As ψ′ is a bijection between
strategy profiles and, there is a bijection between X0(α) and X0(p(α)) we have
ψ(X1(α)) ⊆ X1(p(α))∪ X2(p(α))∪ X3(p(α)). If there exists an a′ ∈ X1(α) such that
ψ′(a′) ∈ X2(p(α)) ∪ X3(p(α)), there exists a b ∈ X1(p(α)) such that b ≺p(α) ψ′(a′).
Therefore, ψ′−1(b)≺α a′, but this is impossible because ψ′−1(b) cannot be an element of
X0(α). Therefore, ψ(X1(α)) ⊆ X1(p(α)). Since ψ(X1(α)) and X1(p(α)) have the same
number of elements, it is concluded that ψ(X1(α)) = X1(p(α)).

It holds that ψ′(X2(α))=X2(p(α)) for any player α. One has ψ′(X2(α))⊆X2(p(α))∪
X2(p(α)) and by similar argumentation the equality is concluded.

It holds that ψ′(X3(α)) = X3(p(α)) for any player α. As ψ′ is a bijection and
ψ′(X2(α))⊆ X2(p(α)), this forces equality.

It holds that, fα is the identity for any player α. Note that α belongs to a block of
players Bi, i = block(α) having Ai as the corresponding alphabet. Two cases depending
on the size of Ai are considered. First, it is considered the case such that Ai has just one
element. In this case good(Ai) = {1}. As ψ(good(Ai)) = good(Aπ(i)) = {1} this forces
fα to be the identity. It is considered the case where Ai contains more than one element.
It is supposed that α occupies the position j in Bi, and the profile a′ = (b−i,0 j−110ki− j)

is considered, belonging to X2(α), as ψ(a′) belongs to X2(p(α)). A factorization ψ(a′) =
(ψ(b−i),0ϕi(j)−110ki−ϕi(j)) is needed, and this forces to fα to be the identity.

Given a strategy profile a in Γ1, it holds that ψ′(binify(a)) = binify(ψ(a)). Note that
Ai = {1, . . . ,ki} and for j ∈ Ai we have binify(j) = 0 j−110ki− j ∈ Ai. As p(Bi) = Bπ(i), we
have ψ(binify(j)) = 0ϕi(j)−110ki−ϕ j(j) ∈ Aπ(i) and the result is concluded.

Given two profiles a, a′ and a player i in Γ1 and a player α in Γ′
1 such that, block(α) =

i, it holds that a≺i a′ iff binary(a)≺α binary(a′). This happens because there are equalities

7.3. Weak Isomorphisms 106

like uα(binary(a)) = ui(a)+3. The same property holds for Γ2 and Γ′
2.

The mapping ψ = (π,ϕ1, . . . ,ϕn) is a weak morphism between Γ1 and Γ2. It is sup-
posed that in Γ1 there are a ≺i a′. Let in Γ′

1 a player α such that, block(α) = i, then it holds
that binify(a) ≺α binify(a′). As ψ′ is a weak morphism ψ′(binify(a)) ≺p(α) ψ′(binify(a′))
and therefore, changing ψ′ into ψ, binify(ψ(a)) ≺p(α) binify(ψ(a′)). Then it holds that
ψ(a) ≺block(π(α)) ψ(a′), as block(π(α)) = π(block(α)) = π(i) Finally, ψ(a) ≺π(i) ψ(a′) is
obtained.

Therefore, a player permutation π on {1, . . . ,n} is considered. Let ϕ(j) be the position
of player p(β) in block π(i), for a player α in position j inside block Bi. It holds that
(π,ϕ1, . . . ,ϕn) is a weak isomorphism between Γ1 and Γ2.

2

The next step is to transform weakly isomorphic games into strongly isomorphic
games. The transformation consists in coding precedence relations into utilities. Given a
binary actions game Γ = (N,(Ai)i∈N ,(ui)i∈N), where N = {1, . . . ,n} and Ai = {0,1}, the
following game is considered:

FLIPW(Γ) = (N,(A′
i)i∈N ,(u′i)i∈N), where A′

i = {0,1}2. Let
a′ = (a1b1, . . . ,anbn) be a strategy profile in game FLIPW(Γ), and
driver(a′) = (a1, . . . ,an) = a and flipper(a′) = (b1, . . . ,bn) = b are defined.
Note shortly a′ = a ↑ b. For xy ∈ {0,1}2 is defined,

flip(xy) =

x if y = 0,

x if y = 1.

Let a′ = (a1b1, . . . ,anbn) be a strategy profile in game FLIPW(Γ), the follow-
ing are defined:

flip(a′) = (flip(a1b1), . . . ,flip(anbn)).

Note that, flip(a′) is a strategy profile in game Γ. Given a strategy profile
a′ = (a1b1, . . . ,anbn), for any player i, 1 ≤ i ≤ n, the following are defined,

u′i(a
′) =



5 if ui(flip(a′))< ui(driver(a′)) and bi = 1

4 if ui(flip(a′)) = ui(driver(a′)) and bi = 1

3 if ui(flip(a′))> ui(driver(a′)) and bi = 1

2 if ui(flip(a′))< ui(driver(a′)) and bi = 0

1 if ui(flip(a′)) = ui(driver(a′)) and bi = 0

0 if ui(flip(a′))> ui(driver(a′)) and bi = 0

Chapter 7. The Complexity of Game Isomorphism 107

Example 7.3 The Γ game is considered,

Player 1

Player 2
0 1

0 0,0 1,0
1 0,1 0,0

Γ

It holds that (1,0) ≺1 (0,1). It will be shown how this preference is coded as an utility
in FLIPW(Γ). To transform a = (1,0) into (0,1), both bits in (1,0) have to be flipped,
therefore the flipper is b = (1,1) and the transformation in FLIPW(Γ) with the strat-
egy profile a′ = (11,01) = (1,0) ↑ (1,1) = a ↑ b is coded. There are driver(a′) = (1,0),
flipper(a′) = (1,1) and flip(a′) = (0,1). To compute u′1(a

′), one has to look at the flipper
of first player. Since b1 = 1 and u1(1,0)< u1(0,1), u′1(a

′) = 3 is obtained. A case of in-
difference is considered, for instance (0,0)∼2 (0,1). The driver is a = (0,0), the flipper
is b = (0,1) and a′ = (00,01) = a ↑ b. Since b2 = 1, u′2(a

′) = 4 is obtained.

Lemma 7.7 Let Γ1 and Γ2 be two binary actions games. Γ1 and Γ2 are weakly isomor-
phic, if and only if the games, FLIPW(Γ1) and FLIPW(Γ2) are strongly isomorphic.

Proof. Let Γ′
1 = FLIPW(Γ1) and Γ′

2 = FLIPW(Γ2).
Let ψ = (π,ϕ1, . . . ,ϕn) be a mapping between two binary actions games Γ1 and Γ2.

Let ψ′ = (π, f1, . . . , fn) be a mapping between Γ′
1 and Γ′

2, verifying fi(aibi) = ϕi(ai)bi for
1≤ i≤ n. It is taken also µ= (π, id1, . . . , idn), for any a′ = a ↑ b, then ψ′(a′) =ψ(a) ↑ µ(b)
holds.

Moreover, it is proven that flip(ψ′(a′)) = ψ(flip(a′)), given a′ = (a1b1, . . . ,anbn) =

a ↑ b, with a = (a1, . . . ,an) and b = (b1, . . . ,bn). In all mappings ψ, µ and ψ′, the bi-
jection function π maps player i into player π(i). There is ψ(a) = (â1, . . . , ân) with
âπ(i) = ϕ(ai), for all i. There is also µ(b) = (b̂1, . . . , b̂n) with b̂π(i) = bi, for all i. Moreover,
ψ′(a′) = (â1b̂1, . . . , ânb̂n) with âib̂i = ϕi(ai)bi, for all i. Therefore, ψ′(a′) = (â1, . . . , b̂n) ↑
(b̂1, . . . , b̂n) = ψ(a) ↑ µ(b).

The behaviour of the flips is considered. Given a′ = a ↑ b, note that ψ(flip(a′)) =
flip(ψ′(a′)) is equivalent to ψ(flip(a ↑ b)) = flip(ψ(a) ↑ µ(b)). The component wise this
equality corresponds to ϕi(flip(aibi)) = flip(ϕi(ai)bi). Since flip, as flip(xy) = xy+ xy is
a boolean function, the preceding equality is ϕi(aibi + aibi) = ϕi(ai)bi +ϕi(ai)bi. Since
ϕi is a permutation in {0,1}, the only possibilities are ϕ(ai) = ai or ϕ(ai) = ai. Equation
trivially holds for identity. It is enough to check ¬(aibi +aibi) = aibi +aibi, when ϕi is a
negation.

It is assumed that ψ = (π,ϕ1, . . . ,ϕn) is a weak isomorphism between games, Γ1 and
Γ2. Then, games Γ′

1 and Γ′
2, and a morphism ψ′ = (π, f1, . . . , fn), where fi(aibi) =ϕi(ai)bi

for 1 ≤ i ≤ n, are considered.

7.3. Weak Isomorphisms 108

Now, a strong isomorphism ψ′ between Γ′
1 and Γ′

2, is considered. It will be proven
later on that u′i(a

′) = u′π(i)(ψ
′(a′)). Utilities have 6 different values. It is assumed that

there exists an a′, such that ui(a′) = 6. This is equivalent to ui(flip(a′))< ui(a), factorising
a′= a ↑ b. It holds that, uπ(i)(ψ(flip(a′)))< uπ(i)(ψ(a)), because ψ is a weak isomorphism.
Therefore, ψ(flip(a′)) = flip(ψ′(a′)) and ψ′(a′) = ψ(a) ↑ µ(b). Since uπ(i)(flip(ψ′(a′)))<
uπ(i)(ψ(a)), u′π(i)(ψ

′(a′)) = 6 is concluded. For other utility values, the proofs are similar.
If ψ′ = (π, f1, . . . , fn) is a strong isomorphism between Γ′

1 and Γ′
2, the definition of

utility functions of player i forces to fi(aibi) = ϕi(ai)bi, for a permutation ϕi in {0,1} and
any action aibi. A morphism ψ = (π,ϕ1, . . . ,ϕn) and a profile a′ = (a1b1, . . . ,anbn) are
considered. Observe that flip(ψ′(a′)) = ψ(flip(a′)).

This fact is taken and also ψ′, which preserves utilities, then a weak isomorphism
ψ between Γ1 and Γ2 can be shown. Sets Zero(i) = {a′|a′ = (a′−i,ai0)} and One(i) =
{a′|a′ = (a′−i,ai1)} are considered. Note that, a′ ∈ Zero(i) iff u′i(a

′) ∈ {0,1,2} and a′ ∈
One(i) iff u′i(a

′) ∈ {3,4,5}. Moreover, the following holds:

- For n > 0, every set Zero(i) and One(i) contains 22n−1 > 0 elements each one.

- Zero(i)∩One(i) = /0 and Zero(i)∪One(i) = A′
1 are disjoint.

- It holds that, ψ′(Zero(i)) = Zero(π(i)). If this fact is false,
ψ′(Zero(i)) ∩ One(π(i)) 6= /0. Therefore, there exists an a′ ∈ Zero(i) such that
u′i(a

′) ∈ {0,1,2}, but utilities u′π(i)(ψ
′(a′)) ∈ {3,4,5}. This cannot be happen

because ψ′ is a strong isomorphism.

- Similarly ψ′(One(i)) = One(π(i)).

- Player’s bijections verify fi(aibi) = ϕi(ai)bi, for a permutation ϕi on {0,1}. This is
just another way to write ψ′(Zero(i)) = Zero(π(i)) and ψ′(One(i)) = One(π(i)).

A weak isomorphism ψ will be proven. It is assumed that in Γ1, there exists an a and â,
such that ui(a) < ui(â). It will be proven that uπ(i)(ψ(a)) < uπ(i)(ψ(â)). The inequality
ui(a) < ui(â) is given. Let b be the flipper such that, flip(a ↑ b) = â. It is assumed that
bi = 0, and take care that case bi = 1 is similar. Then, in FLIPW(Γ1), u′i(a ↑ b) = 0 holds.
Since ψ′ is a strong isomorphism, it holds that u′i(a ↑ b) = u′π(i)(ψ

′(a ↑ b)) = 0. Therefore,
uπ(i)(flip(ψ′(a ↑ b))> uπ(i)(driver(ψ′(a ↑ b))).

Since fi(aibi) = ϕi(ai)bi, flip(ψ′(a ↑ b)) = ψ(flip(a ↑ b)) = ψ(â) holds, by the follow-
ing Claim.

Claim 7.2 Let ψ = (π,ϕ1, . . . ,ϕn) be a mapping between binary action games, Γ1 and
Γ2. Let ψ′ = (π, f1, . . . , fn) be a mapping between FLIPW(Γ1) and FLIPW(Γ2) such
that, fi(aibi) = ϕi(ai)bi, for 1 ≤ i ≤ n. A mapping µ = (π, id1, . . . , idn) is taken, for any
a′ = a ↑ b. Then, ψ′(a′) = ψ(a) ↑ µ(b) holds. Moreover, flip(ψ′(a′)) = ψ(flip(a′)).

Chapter 7. The Complexity of Game Isomorphism 109

Proof. Given a′ = (a1b1, . . . ,anbn) = a ↑ b with a = (a1, . . . ,an) and b = (b1, . . . ,bn). In
all mappings ψ, µ and ψ′, the bijection function π maps player i into player π(i). There
is ψ(a) = (â1, . . . , ân) with âπ(i) = ϕ(ai) for all i. There is also µ(b) = (b̂1, . . . , b̂n), with
b̂π(i) = bi for all i. Moreover, ψ′(a′) = (â1b̂1, . . . , ânb̂n) with âib̂i = ϕi(ai)bi for all i.
Therefore, ψ′(a′) = (â1, . . . , b̂n) ↑ (b̂1, . . . , b̂n) = ψ(a) ↑ µ(b) holds.

Behaviour of the flips, is now considered. Given a′ = a ↑ b, note that
ψ(flip(a′)) = flip(ψ′(a′)) is equivalent to ψ(flip(a ↑ b)) = flip(ψ(a) ↑ µ(b)). The
component wise is equality corresponds to ϕi(flip(aibi)) = flip(ϕi(ai)bi).
Since a boolean function is flip(xy) = xy + xy, the preceding equality is
ϕi(aibi +aibi) = ϕi(ai)bi +ϕi(ai)bi.

Since ϕi is a permutation on {0,1}, the only possibilities are ϕ(ai) = ai or ϕ(ai) = ai.
The equation trivially holds for identity. When ϕi is a negation, it is enough to check that
¬(aibi +aibi) = aibi +aibi. 2

Moreover, as ψ′(a ↑ b) = ψ(a) ↑ µ(b), driver(ψ′(a ↑ b)) = ψ(a) also holds. Finally,
uπ(i)(ψ(â))> uπ(i)(π(a)) is obtained. Other cases are similar.

2

It has to be pointed that, all previous results are taken into account together, and it
remains to show that previous transformation can be performed in polynomial time, when
an input and output game representation is fixed to be one of the considered in this thesis,
as stated in the following complexity equivalence.

Theorem 7.8 For strategic games given in general form, the ISO problem for a weak iso-
morphism is equivalent to the circuit isomorphism problem. For formula games given in
general form, the ISO problem for a weak isomorphism is equivalent to the boolean for-
mula isomorphism problem. For strategic games given in explicit form, the ISO problem
for a weak isomorphism is equivalent to the graph isomorphism problem.

Proof. It is straightforward to show that, for a strategic game in general form, games
constructed in this section can be computed in polynomial time. The same happens when
an original and a target representation, are a formula games in general form, or a games
in explicit form. In consequence, in this section, all games constructions show reductions
in polynomial time, between different isomorphism problems.

Lemma 7.5 reduces a strong isomorphism for binary games to a weak isomorphism.
Lemma 7.6 reduces a weak isomorphism to a weak isomorphism for binary actions games.
Lemma 7.7 reduces a weak isomorphism to a strong isomorphism. Finally, Lemmas 7.1
and 7.2 establish a reduction from a strong isomorphism to a strong isomorphism for
binary games. Therefore, all problems, for same games representations, are polynomially
equivalent. Therefore, according to the complexity’s equivalences stated in Section 7.2,
the claim follows.

2

7.4. Notes 110

7.4 Notes

Game Theory. Refer to A Course in Game Theory of M. Osborne and A. Rubinstein
[84] published on 1994. Refer also to the Theory of Games and Economic Behavior
of John von Neuman and Oscar Morgenstern [81], for a general introduction to game
theory, and mathematical definitions of strategic and extensive games, as well as the ref-
erence [80] for a definition of Nash equilibrium.

Algorithmic Game Theory. It is crucial to note the results from C. Álvarez et al. [8,
9] published on 2005. They studied the existence of a pure Nash equilibrium in multi-
player strategic games, and proposed a brief description of games depending of explicit
representations.

Refer to the well known book Computers and Intractability: A Guide to the Theory
of NP-completeness from M. Garey and D. Johnson [45] in order to read more about
coNP-complete problems.

Note explicitly, references like [71] by M. Mavronicolas, B. Monien and K. W. Wagner
about weighted boolean formula games, and [16] published in 2006 by E. Bonzon, M. C.
Lagasquie-Schiex, J. Lang and B. Zanuttini about boolean games.

Chapter 8

On the Hardness of Game Equivalence
Under Local Isomorphism

This chapter is focused on a type of isomorphism among strategic games that has been
called local isomorphism. Local isomorphisms is a weaker version of the notions of
strong and weak game isomorphism. In a local isomorphism it is required that, for any
player, the player’s preferences are preserved on the sets of strategy profiles that differ
only in the action selected by this player. It will be shown that the game isomorphism
problem for local isomorphism is equivalent to the same problem for either strong or weak
isomorphisms for strategic games given in general, extensive and formula general form.
As a consequence of results shown in Chapter 7 (see [41]), this implies that the local
isomorphism problem for strategic games is equivalent to (a) the circuit isomorphism
problem for games given in general form, (b) the boolean formula isomorphism problem
for formula games in general form, and (c) the graph isomorphism problem for games
given in explicit form.

8.1 The Isomorphism Problem

Just as it has been said before in defining a concrete equivalence between strategic games,
it is crucial to pay attention to the structural properties that are preserved in equivalent
games. In this sense, the strong and weak isomorphisms, which preserve the structure
of Nash equilibria at different levels were introduced in the previous Chapter 7. Isomor-
phisms are defined on the basis of game mappings formed by a bijection among players,
and for each player a bijection among its action set. In this chapter, a weaker concept of
isomorphism, which has been called local isomorphism is considered. This isomorphism
is a mapping that preserves, for each player and each strategy profile, the preferences of
the player on the “close” neighborhood of the strategy profile. This condition still guaran-
tees that the structure of Pure Nash equilibria is preserved, however the structure of mixed

111

8.1. The Isomorphism Problem 112

Nash equilibria is not.
Accordingly, the objective is to analyse the computational complexity of the isomor-

phism problem. The same computational problems related to games and morphisms,
which were analysed in the Chapter 7, have been considered here.

Strong Isomorphism problem (STRONGISO). Given two strategic games Γ, Γ′

, decide whether Γ ∼s Γ′.

Local Isomorphism problem (LOCALISO). Given two strategic games Γ, Γ′ ,
decide whether Γ ∼` Γ′.

Due the importance of fixing the way that games are represented as problem inputs
in the context of computational complexity, two of the game representations considered
in the previous chapter are also considered here. Providing a list of the sets of actions
allowed to each player and their respective utilities, it is possible to give a game Γ. The
two representations differ on the form in which utilities are given. In the general form
utilities are given implicitly by a Turing Machine (TM). In the explicit form, utilities
are provided explicitly by giving the value corresponding to each profile. Also, another
succinct representation of games has been considered: formula game in general form. In
those games, the player’s utility is defined by a collection of boolean formulas, each one
providing a part of the player’s utility. This is one of the many ways in which games have
been described in terms of formulas. In [16], player i has a goal ϕi to fulfill. Goals are
usually described by boolean formulas. The utility of the player is binary. It is 1 if the
goal is satisfied and 0 otherwise. Another model for strategic games, which uses boolean
formula was introduced in [71], the weighted boolean formula games. Along the lines
suggested by circuit games [102], the formula strategic for, whose representation is close
to a game given in general form but with utilities defined by formulas, was introduced
in Chapter 7 (see [41]). Therefore, the representations considered are as following.

• Explicit form by a tuple 〈1n,A1, . . . ,An,(Ti,a)1≤i≤n,a∈A〉. Γ has n players, and for
each player i, 1 ≤ i ≤ n, their set of actions Ai is given by listing all its elements.
The utility ui(a), for player i of strategy profile a, is the value Ti,a.

• General form by a tuple 〈1n,A1, . . . ,An,M,1t〉. Γ has n players, and for each player
i, 1 ≤ i ≤ n, their set of actions Ai is given by listing all its elements. The utility
ui(a), for player i of strategy profile a, is the output of M on input 〈a, i〉 after t steps.

• Formula general form by a tuple 〈1n,A1, . . . ,An,1`,(ϕi, j)1≤i≤n,0≤ j<`〉. The set of
actions for player i, 1 ≤ i ≤ n, is Ai = {0,1}mi . The utility of player i is given by the
boolean formulas ϕi, j(a1, . . .an)∈ {0,1}, 0≤ j < `, by the equation ui(a1, . . . ,an) =

∑0≤ j<`ϕi, j(a1, . . . ,an)2 j.

Chapter 8. On the Hardness of Game Equivalence Under Local Isomorphism 113

Previously, a classification of the complexity of the game isomorphism problem, ac-
cording to the level of succinctness of the games representation has been obtained. These
results show that the isomorphism problem for strong and weak isomorphisms is equiv-
alent to the circuit isomorphism problem for games given in general form, the boolean
formula isomorphism problem for formula games in general form, and the graph isomor-
phism problem for games given in explicit form. Consequently, the fact that the classifi-
cation differs depending on the game representation, has been shown.

Wherefore, in this chapter, the computational equivalence between the isomorphism
problem for strong isomorphism and the isomorphism problem for local isomorphism is
shown. This equivalence is proved for any of the three game representation considered
above. Thus, the fact that the local isomorphism problem for strategic games has the
same classification as the other stronger notions of isomorphism, will be shown. The
proof shows the equivalence through a series of steps.

Firstly, the StrongIso problem for binary games, games whose actions and utilities are
binary, is reduced to the LocalIso problem. Then, it is shown how to reduce the LocalIso

problem to the LocalIso problem for binary actions games, games whose actions are bi-
nary. Finally, the LocalIso problem for binary actions games is reduced to the StrongIso

problem for binary games. The reductions are polynomial time computable, when the
given games and the output games are written in explicit, general, and formula general
form.

For the rest of this chapter, it is assumed all games with 2 or more players. Note
that, in case the number of players is constant with respect to the number of actions, an
explicit representation in polynomial time from a given general form representation, can
be obtained. Otherwise, the transformation requires exponential time.

Theorem 8.1 (Chapter 7 (see [41])) The STRONGISO problem is polynomially equiva-
lent to

• the CIRCUITISO problem, for strategic games given in general form,

• the FORMULAISO problem, for strategic games given in formula general form, and

• to the GRAPHISO problem, for strategic games given in explicit form.

The equivalence is also valid for binary games and binary actions games.

In the following sections, the computational equivalence among the two game iso-
morphism problems have been proved. For doing so, a series of game transformations is
provided, which preserve local isomorphism or strong isomorphism. Finally, it will be
shown that for any of these transformations, given an strategic game in form F , a descrip-
tion in form F of the transformed game can be obtained in polynomial time, when F is
any of the three game representations considered.

8.2. From Strong Isomorphism to Local Isomorphism 114

8.2 From Strong Isomorphism to Local Isomorphism

Game Γ = (N,(Ai)i∈N ,(ui)i∈N) is assumed as a binary game, where N = {1, . . . ,n}. For
ai ∈ {0,1}, ai = 1−ai has been defined.

CHECKL(Γ) = (N′,(A′
i)i∈N′ ,(u′i)i∈N) has n+1 players, that is N′ = {0,1, . . .n}. Player 0 has

A′
0 = {0,1} and for i > 0 the set of actions is A′

i = {0,1}2. A profile factor is defined as c =
(a0,a′) with a0 ∈ A′

0, a′ = (a1b1, . . . ,anbn) with aibi ∈ A′
i. Note that the part a = (a1, . . . ,an)

extracted from c is a profile in Γ.

The utilities for any player i, 0 ≤ i ≤ n, and any profile c = (a0,b), have been defined. The
utility of player 0 is defined as u′0(c) = a0. Note that it depends only on a0, and player 0
prefers 1 to 0. In order to define u′i for i> 0, the cases a0 = 1 and a0 = 0, have been considered
separately. When a0 = 1, we set u′i(c) = 7 when bi = 0, and u′i(c) = 8 when bi = 1. When
a0 = 0, there are three cases:

• When ui(a) 6= ui(a−i,ai), the following can be defined:

u′i(c) =


0 when bi = 0 and ui(a) = 1,

1 when bi = 0 and ui(a) = 0,

2 when bi = 1 and ui(a) = 0,

3 when bi = 1 and ui(a) = 1.

• When ui(a) = ui(a−i,ai) = 0, u′(c) = 4 is defined.

• When ui(a) = ui(a−i,ai) = 1, set

u′i(c) =

5 when bi = 0,

6 when bi = 1.

Example 1 CHECKL(Γ) for the following game Γ, is constructed

Player 1

Player 2
0 1

0 0,1 0,1
1 1,0 1,0

Γ1

Since Γ has two players, the game CHECKL(Γ1) has three players N′ = {0,1,2}. Any profile in CHECKL
factors as c = (a0,a1b1,a2b2), and utilities are defined by two tables: one corresponds to a0 = 0 and the
other to a0 = 1.

When a0 = 0, as u1(0,0) = 0 6= u1(1,0) and for any a ∈ {0,1} the first player utilities are defined as,

u′1(0,0b1,0a) =

{
1 if b1 = 0
2 if b1 = 1

u′1(0,1b1,0a) =

{
0 if b1 = 0
3 if b1 = 1

Chapter 8. On the Hardness of Game Equivalence Under Local Isomorphism 115

When a2 = 0, the analysis is similar and for any a ∈ {0,1} the following is obtained,

u′1(0,0b1,1a) =

{
1 if b1 = 0
2 if b1 = 1

u′1(0,1b1,1a) =

{
0 if b1 = 0
3 if b1 = 1

Utilities for the second player, are written. When a1 = 0, since u2(0,0) = u2(0,1) = 1 the utility of u′2
depends on b2. Nevertheless, when a1 = 1 as u2(1,0) = u2(1,1) = 0 the utility is independent of b2. Thus,
for any a,b,c ∈ {0,1},

u′2(0,0a,bb2) =

{
5 if b2 = 0
6 if b2 = 1

u′2(0,1a,bc) = 4

Collecting all this information, the first table is obtained.

Player 1

Player 2
00 01 10 11

00 0,1,5 0,1,6 0,1,5 0,1,6
01 0,2,5 0,2,6 0,2,5 0,2,6
10 0,0,4 0,0,4 0,0,4 0,0,4
11 0,3,4 0,3,4 0,3,4 0,3,4

Player 0 chooses 0

When a0 = 1, utilitites u′1 and u′2 are defined as follows. For any a,b,c ∈ {0,1},

u′1(1,ab1,bc) =

{
7 if b1 = 0
8 if b1 = 1

u′2(1,ab,cb2) =

{
7 if b2 = 0
8 if b2 = 1

and the following table is obtained,

Player 1

Player 2
00 01 10 11

00 1,7,7 1,7,8 1,7,7 1,7,8
01 1,8,7 1,8,8 1,8,7 1,8,8
10 1,7,7 1,7,8 1,7,7 1,7,8
11 1,8,7 1,8,8 1,8,7 1,8,8

Player 0 chooses 1

Before showing the correctness of this transformation, some ad-hoc notation will be
introduced in order to deal with profiles in CHECKL(Γ). Given a′ = (a1b1, . . .anbn) there
is a′ = a ↑ b with a= (a1, . . . ,an) and b= (b1, . . . ,bn). Given a player i, we factor a profile
c in CHECKL(Γ) as c = (a0,a−i ↑ b−i,aibi), adopting here the criterion −i = N′ \ {0, i}
(−i is the adversary team of i in game Γ). Given ψ and defining µ= (π, id1, . . . , idn), using
that for i > 0 player i maps into player π(i), it holds that,

ψ′(a0,a−i ↑ b−i,aibi) = (a0,ψ(a−i) ↑ µ(b−i),ϕ(ai)bi).

8.2. From Strong Isomorphism to Local Isomorphism 116

Lemma 8.1 Let Γ1 and Γ2 be two binary games such that, Γ1 ∼s Γ2, then
CHECKL(Γ1)∼` CHECKL(Γ2).

Proof. Let Γ′
1 = CHECKL(Γ1) and Γ′

2 = CHECKL(Γ2). Let also ψ : Γ1 → Γ2 be a
strong isomorphism, then it is assumed that ψ = (π,ϕ1, . . .ϕn). The mapping
ψ′ : CHECKL(Γ1)→ CHECKL(Γ2), ψ′ = (p, f0, . . . , fn) has been considered where,

• p(0) = 0 and p(i) = π(i), for i > 0, and,

• f0(a0) = a0 and fi(aibi) = ϕi(ai)bi, for i > 0.

The fact that mapping ψ′ verifies ui(c) = up(i)(ψ′(c)) will be shown.
Player i = 0 is considered. Since, p(0) = 0 and f0(a0) = a0 given c = (a0, . . .) it holds

that, u0(c) = up(0)(ψ′(c)) = a0.
Case i> 0 with c= (0,a−i ↑ b−i,aibi) is considered. It holds that, ui(c) = up(i)(ψ′(c)).

The proof is shown by case analysis.

• When ui(a) 6= ui(a−i,ai) it holds that, uπ(i)(ψ(a)) 6= uπ(i)(ψ(a−i),ϕ(ai)). Since ψ
is a strong morphism, ui(a) = uπ(i)(ψ(a)) and ui(a−i,ai) = uπ(i)(ψ(a−i),ϕ(ai)) are
obtained. As ai ∈ {0,1} and ϕi is a bijection, ϕi(ai) = ϕi(ai) holds. Then, the
inequality is concluded. The case u′i(c) = 0 is considered (other cases are similar).
When u′i(c) = 0, the profile c verifies bi = 0 and ui(a) = 1. Since µi(bi) = bi and
uπ(i)(ψ(a)) = 1, it holds that u′p(i)(ψ

′(c)) = u′i(c) = 0.

• When ui(a) = ui(a−i,ai) = 0 it holds that, uπ(i)(ψ(a)) = uπ(i)(ψ(a−i),ϕ(ai)) = 0.
Therefore, u′p(i)(ψ

′(c)) = u′i(c) = 4. The proof is similar to the preceding case.

• When ui(a) = ui(a−i,ai) = 1 it holds that, uπ(i)(ψ(a)) = uπ(i)(ψ(a−i),ϕ(ai)) = 1.
As µi(bi) = bi it holds that, u′p(i)(ψ

′(c)) = u′i(c) ∈ {5,6}.

Case i > 0 with c = (1,a−i ↑ b−i,aibi) is considered. Since µi(bi) = bi, u′p(i)(ψ
′(c)) =

u′i(c) ∈ {7,8} holds.
Therefore, it is possible conclude that ψ′ is a strong isomorphism, and indeed a local

isomorphism.
2

Now, the reverse implication will be proven.

Lemma 8.2 Let Γ1 and Γ2 be two binary games. If CHECKL(Γ1)∼` CHECKL(Γ2), then
Γ1 ∼s Γ2.

Proof. It is assumed that ψ′ : Γ′
1 → Γ′

2 is a local isomorphism with ψ′ = (p, f0, . . . , fn).
Since, all fi for 0 ≤ i ≤ n are bijections, players’ bijection p has to map player 0 into
player 0, because player 0 is the only one with 2 actions. Therefore, p(0) = 0 and players

Chapter 8. On the Hardness of Game Equivalence Under Local Isomorphism 117

{1, . . . ,n} are bijectively mapped into {1, . . . ,n} by p, so π(i) = p(i) can be defined for
1 ≤ i ≤ n, and a player’s bijection has been obtained.

Two profiles c1 = (0,a′1) and c2 = (1,a′2 . . .) are considered, and it holds that c1 ≺0 c1.
In addition, f0(a0) = a0 is assumed. Since p(0) = 0, ψ′(c) = (1, . . .), ψ′(ĉ) = (0, . . .) and
ψ′(c) ≺0 ψ′(ĉ) holds. Therefore, a contradiction is obtained, and it holds that f0 is the
identity.

Now it will be proven that, fi(ai0) = ϕ0
i (ai)0 and fi(ai1) = ϕ1

i (ai)1, for 1 ≤ i ≤ n.
Given a′−i = a−i ↑ b−i it holds that (1,a′−i,ai0) ≺i (1,a′−i,a

′
i1), because

u′i(1,a
′
−i,ai0) = 7 and u′i(1,a

′
−i,a

′
i1) = 8. As ψ′ is a local isomorphism and f0(1) = 1

there is necessarily a (1,ψ′(a′−i), fi(ai0)) ≺p(i) (1,ψ′(a′−i), fi(a′i1)). This forces
factorisations fi(ai0) = ϕ0

i (ai)0 and fi(ai1) = ϕ1
i (ai)1.

Finally, the fact that the mapping ψ0 = (π,ϕ0, . . . ,ϕ0) between Γ1 and Γ2 is a strong
isomorphism will be proven. It is proved by cases that ui(a) = uπ(i)(ψ0(a)).

Case 1: a = (a−i,ai) with ui(a−i,ai) 6= ui(a−i,ai).
In the following, b = (0, . . . ,0) is used. The array containing n−1 zeros.
The proof for ui(a−i,ai) = 1 and ui(a−i,ai) = 0, has been given. For ui(a−i,ai) = 0

and ui(a−i,ai) = 1 the proof is similar. Since,

u′i(0,a−i ↑ b,ai0) = 0, u′i(0,a−i ↑ b,ai0) = 1

u′i(0,a−i ↑ b,ai1) = 2, u′i(0,a−i ↑ b,ai1) = 3

Then, (0,a−i ↑ b,ai0)≺i (0,a−i ↑ b,ai0)≺i (0,a−i ↑ b,ai1)≺i (0,a−i ↑ b,ai1).
Since ψ′ is a local morphism,

(0,ψ0(a−i) ↑ b,ϕ0
i (ai)0)≺π(i) (0,ψ0(a−i) ↑ b,ϕ0

i (ai)0)

≺π(i) (0,ψ0(a−i) ↑ b,ϕ1
i ai1)≺π(i) (0,ψ0(a−i) ↑ b,ϕ1

i (ai)1)

This forces us to the values,

u′π(i)(0,ψ
0(a−i) ↑ b,ϕ0

i (ai)0) = 0, u′π(i)(0,ψ
0(a−i) ↑ b,ϕ0

i (ai)0) = 1

u′π(i)(0,ψ
0(a−i) ↑ b,ϕ1

i ai1) = 3, u′π(i)(0,ψ
0(a−i) ↑ b,ϕ1

i (ai)1) = 4

Since uπ(i)(0,ψ0(a−i) ↑ b,ϕ0
i (ai)0) = 0 and uπ(i)(0,ψ0(a−i) ↑ b,ϕ0

i (ai)0) = 1, the differ-
ence in values forces that, we must have uπ(i)(ψ0(a−i),ϕ0

i (ai)) = uπ(i)(ψ0(a)) = 0 in Γ2,
and uπ(i)(ψ0(a−i),ϕ0

i (ai)) = 1.

Case 2: a = (a−i,ai) with ui(a−i,ai) = ui(a−i,ai) = 1. As before, b−i = (0, . . . ,0) is used.
In this case utilities verify:

u′i(0,a−i ↑ b,ai0) = u′i(0,a−i ↑ b,ai0) = 5

u′i(0,a−i ↑ b,ai1) = u′i(0,a−i ↑ b,ai1) = 6

8.3. From General Games to Binary Actions Games 118

Then, (0,a−i ↑ b,ai0)∼i (0,a−i ↑ b,ai0)≺i (0,a−i ↑ b,ai1)∼i (0,a−i ↑ b,ai1).
Since ψ′ is a local isomorphism,

(0,ψ0(a−i) ↑ b,ϕ0
i (ai)0)∼π(i) (0,ψ0(a−i) ↑ b,ϕ0

i (ai)0)

≺π(i) (0,ψ0(a−i) ↑ b,ϕ1
i ai1)∼π(i) (0,ψ0(a−i) ↑ b,ϕ1

i (ai)1)

This preorder structure forces the value of utilities, in particular we have that
u′π(i)(0,ψ

0(a−i) ↑ b,ϕ0
i (ai)0) = 5, but then uπ(i)(ψ0(a)) = 1.

Case 3: a = (a−i,ai) with ui(a−i,ai) = ui(a−i,ai) = 0. In this case there is

(0,a−i ↑ b,ai0)∼i (0,a−i ↑ b,ai0)∼i (0,a−i ↑ b,ai1)∼i (0,a−i ↑ b,ai1).

This forces u′π(i)(0,ψ
0(a−i) ↑ b,ϕ0

i (ai)0) = 4, but then uπ(i)(ψ0(a)) = 0.
Then, the proof has been concluded.

2

8.3 From General Games to Binary Actions Games

The next step is to transform a strategic game into a binary actions game preserving local
isomorphism. The game construction follows the same lines as in the BINARYACT in pre-
vious Chapter 7, but now, definition has been adapted, in order to guarantee an adequate
local preference relation for each player.

Given a strategic game Γ = (N,(Ai)i∈N ,(ui)i∈N), N = {1, . . . ,n} is assumed without
loss of generality and that, for any i ∈ N, Ai = {1, . . . ,ki} for suitable values. Given Ai =

{1, . . . ,ki} we “binify” an action j ∈ Ai coding it with ki bits, as binify(j) = 0 j−110ki− j.
Thus, binify(Ai) ⊆ Ai = {0,1}ki . The binify process can be used in a strategy profile,
given a = (a1, . . . ,an), binify(a) = binify(a1) · · ·binify(an)) is writen. Note that, by set-
ting k = ∑i∈N ki, there is binify(a) ∈ A′ = {0,1}k = Ak1 × ·· · ×Ak2 . Thus, good(A′) =

{binify(a)|a ∈ A} and bad(A′) = A′ \ good(A′) have been defined. Note that, binify :
A → good(A′) is a bijection and therefore, its inverse function is also a bijection. No-
tice that, for a′ ∈ good(A′), binify−1(a′) = binify−1(b1) · · ·binify−1(bn). It is assumed that,
Γ = (N,A1, . . . ,An,(ui)1≤i≤n). Then, the following game is constructed.

BINARYACTL(Γ) = (N′,(A′
i)i∈N′ ,(u′i)i∈N′), where N′ = {1, . . . ,k} and, for any i ∈ N′, A′

i =

{0,1} and thus, the set of action profiles is A′ = {0,1}k.

For a player i with |Ai|> 2, a block Bi is associated to Ai, and a block Ci of ki = |Ai| players
in each block, each player takes care of one bit. For a player i with |Ai| ≤ 2, a block Bi is
associated to player i, formed by three players, ki = 3. Thus, k = 2(k1 + · · ·+ kn).

A strategy profile a′ is decomposed into 2n blocks, 2 blocks per player, so that
a′ = (b1, . . . ,bn,c1, . . . ,cn) where bi,ci ∈ {0,1}ki , often a′ = (b,c) will be also decomposed.

Chapter 8. On the Hardness of Game Equivalence Under Local Isomorphism 119

We keep a′j, to refer to the strategy of player j in the profile a′. But sometimes, we refer to its
strategy by the position inside its corresponding B or C block.

For a player α, which occupies position j in block Bi, the utility function is defined as,

u′α(a
′) =


0 if bi ∈ bad(Ai),

1 if bi ∈ good(Ai) and b ∈ bad(A′),

2 if b ∈ good(A′).

For a player β, which occupies position j in block Ci, the utility function is defined as,

u′β(a
′) =


1−a′β if bi 6= ci and b ∈ bad(A′),

3−a′β if bi = ci and b ∈ bad(A′),

4+ui(binify−1(b)) if a′β = 1 and b ∈ good(A′),

4+ui(binify−1(b)−i, j) if a′β = 0 and b ∈ good(A′).

The case with alphabets having a small number of actions, will be commented.
When Ai = {1}, by definition Bi contains 3 players, Ai = {0,1}3 and
good(Ai) = {binify(1)} = {100}. When Ai = {1,2}, there is Ai = {0,1}3 and
good(Ai) = {binify(1),binify(2)} = {100,010}. Finally, when Ai = {1,2,3} there is also
Ai = {0,1}3 but good(Ai) = {100,010,001}.

Example 2 A version game Γ of rock-paper-scissors has been considered, where 1 is added to all util-
ities, to obtain non negative values. The set of actions is Ai = {1,2,3}, where 1 corresponds to rock, 2 to
paper and 3 to scissors.

Player 1

Player 2
1 2 3

1 1,1 0,2 2,0
2 2,0 1,1 0,2
3 0,2 2,0 1,1

Γ

BINARYACTL(Γ) has 12 players having binary actions. The strategy profiles are a′ = (a1, . . . ,a12) =

(b1,b2,c1,c2), with bi,ci ∈ {0,1}3. In this case,

good(A3) = {100,010,001}, bad(A3) = {0,1}3 \good(A3)

Since the number of strategy profiles is 212 some examples are given.
The profile a′ = (b1,b2,c1,c2) = (000,010,100,010) is considered. The utility u′α for a player α in

block B1 or B2, depends only on the b part of the profile. As, b1 = 000 ∈ bad(A3), b2 = 010 ∈ good(A3)

and b = 000010 ∈ bad(A6) therefore,

u′α(a
′) =

{
0 if α ∈ {1,2,3}
1 if α ∈ {4,5,6}

8.3. From General Games to Binary Actions Games 120

for a player β, which occupies position j in block Ci,

u′β(a
′) =

{
1−a′β if β ∈ {10,11,12}
3−a′β if α ∈ {13,14,15}

These results can be summarised in the following table,

player β 7 8 9 10 11 12
action a′β 1 0 0 0 1 0

utility u′β 0 1 1 3 2 3

When a′ = (010,100,011,010), b = 010100 ∈ good(A6) and u′α(a
′) = 2 for α ∈ {1, . . . ,6}. Further-

more, setting a = binify−1(010100) = (2,1) ∈ A, that is associated to an action profile in Γ. Then,

u′β(a
′) =



4+u1(a−1,1) = 4+u1(1,1) = 5 if β = 7
4+u1(a) = 4+u1(2,1) = 6 if β ∈ {8,9}
4+u2(a−2,1) = 4+u1(2,1) = 5 if β = 10
4+u2(a) = 4+u2(2,1) = 5 if β = 11
4+u1(a−2,3) = 4+u2(2,3) = 6 if β = 12

Which results is in the following table,

player β 7 8 9 10 11 12
block number i 1 1 1 2 2 2
position into the block j 1 2 3 1 2 3
action a′β 0 1 1 0 1 0

utility u′β 5 6 6 5 5 6

Given a player α in BINARYACTL(Γ), local indifference set of α has been defined as
I(α) = {a′−α|(a′−α,0)∼α (a′−α,1)}.

Lemma 8.3 Let Γ1 and Γ2 be two strategic games, such that Γ1 ∼` Γ2, then
BINARYACTL(Γ1)∼` BINARYACTL(Γ2).

Proof. Let Γ′
1 = BINARYACTL(Γ1) and Γ′

2 = BINARYACTL(Γ2). It is assumed that
ψ = (π,ϕ1, . . . ,ϕn) being a local isomorphism between Γ1 and Γ2. The mapping ψ′ =

(p, f1, . . . , fk) is considered such that, for 1 ≤ i ≤ n, p maps bits in block Bi of Γ′
1 to bits

in block Bπ(i) of Γ′
2, and bits in block Ci of Γ′

1 to bits in block Cπ(i) of Γ′
2, so that bit j

goes to bit ϕi(j), and for 1 ≤ α ≤ k, fα is the identity function. It is straightforward to
show that ψ′ is a strong (therefore also a local) isomorphism between Γ′

1 and Γ′
2.

2

Before proving the reverse implication, some properties of the constructed game have
been analysed. Let Γ be a game and let Γ′ = BINARYACTL(Γ). As usual, n > 1 is
assumed. A player α is considered. This player occupies position j in block Bi, for
u = 0,1,2, and define Xu(α) = {a′ | u′α(a

′) = u}.

Chapter 8. On the Hardness of Game Equivalence Under Local Isomorphism 121

Lemma 8.4 Given an α player belonging to a B-block, it holds that |X0(α)|> |X1(α)|>
|X2(α)|.

Proof. Notice that, any strategy a′ factors a′ = (b,c). Since the utility u′α(a
′) only depends

on the b part, the c part gives a common multiplicative constant. The b part of a′, is only
analysed. Suppose that α occupies position j in block Bi and we factor b = (b−i,bi).

First, |X0(α)| > |X1(α)| will be proven. When a′ ∈ X0(α), the profile factors a′ =
(b,c), such that bi ∈ bad(Ai) and there are no special restrictions on b−i. When â′ ∈
X1(α), the profile factors â′ = (b̂, ĉ), such that b̂i ∈ good(Ai) and b̂−i ∈ bad(A′). Since
|bad(Ai)|= 2k

i −ki and |good(Ai)|= ki and ki > 3, it holds that |bad(Ai)|> |good(Ai)|. As
there are 2k/2−ki profiles b−i with no special restrictions, note that, k/2− ki = k1 + · · ·+
ki−1 + ki+1 + · · ·+ kn and |bad(A′)|= 2k/2−ki − k/2− ki, the inequality also holds for the
second part. Since there are more elements in both parts (parts are i and −i) in the first
case, inequality holds.

It remains to be proven that |X1(α)| > |X2(α)|. There is a′ ∈ X1(α), iff a′ = (b,c)
and b factors as (b−i,bi) with bi ∈ good(Ai) and b−i ∈ bad(A−i). There is â′ ∈ X2(α),
iff â′ = (b̂, ĉ) and b̂ factors as (b̂−i, b̂i) with b̂i ∈ good(Ai) and b̂−i ∈ good(A−i). As
bad(A−i)> good(A−i) inequality holds

2

Given a player α in Γ′, local indifference set I(α) for this player is the set I(α) =
{a′−α|(a′−α,0)∼α (a′−α,1)}.

Lemma 8.5 Let α be a player belonging to a B-block and, let β be a player belonging to
a C-block. It holds that,

• the indifference set to I(α) has 2k−3 elements,

• the indifference set to I(β) has at most k1 . . .kn2k/2−1 elements and

• |I(β)|< |I(α)| holds.

Proof. A player α, which occupies position j in block Bi, is considered. Notice that for
any strategy profile a′ of Γ′, the following is obtained:

• if (a′−α,1) ∈ X2(α) then (a′−α,0) ∈ X0(α), since we are eliminating the unique 1 in
Bi,

• if (a′−α,0) ∈ X2(α) then (a′−α,1) ∈ X0(α), since B1 will have two 1’s after the trans-
formation,

• if (a′−α,1) ∼α (a′−α,0) iff (a′−α,1),(a
′
−α,0) ∈ X0(α). Note that, profile bi corre-

sponding to block Bi in a′α factors bi = bi1 . . .bi j . . .biki
. Profile a′−α ignores the

8.3. From General Games to Binary Actions Games 122

action bi j corresponding to player α. Ignoring player α in bi we write (bi)−α =

bi1 . . .bi j−1bi j+1 . . .biki
, the preceding indifference condition is equivalent to 1 ∈

{bi1, . . . ,bi j−1} and 1 ∈ {bi j+1, . . . ,biki
}. Since |Ai| ≥ 3 we always have at least

3 positions.

Now, I(α) will be analysed. Since any profile (bi)−α contains ki−1 players and (at least)
two players have to choose 1, ki −3 “free” choices remain profile a′−α contains a profile
c and this give us k/2 possibilities. Finally, profile a′−α contains also a part b−i and this
gives us k/2− ki extra choices. Based on that, the cardinal of I(α) is 2k−3. Thus, the
number of a′−α, which give raise to an indifferent pair for player α is 2k−3. Note that this
value is independent of the chosen block, Bi.

A player β, which occupies position j in block Ci and the set I(β) have been considered
now. The cardinal of I(β) is at most k1 . . .kn2k/2−1 because, in order to give raise to an
indifferent pair for player α profile a′ must verify b ∈ good(A′). Since n > 1 it holds that
|I(β)|< |I(α)|. 2

Given Γ′
1 = BINARYACTL(Γ1) and Γ′

2 = BINARYACTL(Γ2) let ψ′ = (p, f1, . . . , fk) be
a local morphism between Γ′

1 and Γ′
2.

Lemma 8.6 Local morphisms map bijectively indifference into indifference sets, that is:

• given a player α1 in Γ′
1 it holds ψ′(I(α1)) = I(p(α1)) and

• given a player α2 in Γ′
2 it holds ψ′−1(I(α2)) = I(p−1(α2)).

Proof. A player α1 in Γ1 has been taken. A profile a′−α1
belongs to

I(α1), iff (a′−α1
,0) ∼α1 (a′−α1

,1). Since, ψ′ is a local morphism, then
ψ′(a′−α1

,0) ∼p(α1) ψ′(a′−α1
,1). As player α1 is mapped into p(α1), the factorisations

ψ′(a′−α1
,0) = (ψ′(a′−α1

), fα(0)) and ψ′(a′−α1
,1) = (ψ′(a′−α1

), fα(1)) are obtained. Since
fα1 is a bijection in {0,1}, then ψ′(a′−α1

) ∈ I(p(α1)) and therefore, ψ′(I(α1)) is included
in I(p(α1)). It is supposed that inclusion is strict, then a′−p(α1)

∈ I(p(α1)) \ψ′(I(α1))

exists. It is straightforward to prove that ψ′−1(a′−p(α1)
) belongs to I(α1), getting a

contradiction. Case ψ′−1 is similar.
2

Lemma 8.7 Let ψ′ = (p, f1 . . . ,kk) be a local morphism between Γ′
1 and Γ′

2,

• ψ′ preserves B-blocks and fα is the identity, when α is a B-player.

• ψ′ preserves C-blocks and fβ is the identity, when β is a C-player.

• The permutation π induced in B-blocks and C-blocks by p is the same.

Chapter 8. On the Hardness of Game Equivalence Under Local Isomorphism 123

• Let ϕi be a mapping p restricted to Bi, and let ϕ̂i be a mapping p restricted to Ci. It
holds that ϕi = ϕ̂i.

Proof. The proof proceeds through a sequence of claims. The local morphism ψ′ preserves
B-blocks. Block Bi in Γ′

1 has been supposed the only partially mapped into block B` in
Γ′

2. There exists player α in Bi and another B-player α′ such that, p(α) and p(α′) belong
to B`. It is supposed that player α occupies position j in Bi. In Γ′

1, a profile a′ = (b,c)
is chose such that, bi = 0 j−110ki− j. In addition, b−i is chosen in such a way that, in
ψ′(b) = (b−`,b`) the profile b` is bad. This is always possible because we are free to
set the action belonging to α′ in such a way that, fα′(aα′) forces b` to be bad. Note
that, u′α(a

′) ∈ {1,2} but u′p(α)(ψ
′(a′)) = 0 and a′ = (a′−α,1). Profile â′ = (a′−α,0) factors

as â′ = (b̂, ĉ) with bi ∈ bad(Ai), because bi = 0ki . Therefore, u′α(â) = 0. It holds that
a′ = (a′−α,1)�α (a′−α,0) = â′. Since ψ′ is a local we should have ψ′(a′)�p(α) ψ′(a′−α,0).
This cannot be true, because ψ′(a′) is a minimal element among preferences (in view of
u′p(α)(ψ

′(a′)) = 0). Therefore, ψ′ preserves B-blocks.
For any B-player, α mapping fα is the identity. Note that, functions fα can only be

identities or negations. The case analysis has been done based on the number of negations.

• Case with 1 negation. fα has been supposed the only negation among players in
Bi. In addition, it is supposed that α plays position j in the block. We consider
a′ = (b,c) with b = (b−i,bi) and also bi = 0 j−110ki− j then, a′ = (a′−α,1). Consider
â′ = (a′−α,0) = (b̂, ĉ) with b̂i = 0ki . Then, a′ �α â′ but ψ′(bi) = 0ki , therefore a
contradiction is obtained.

• Case with 2 negations. It is supposed that only α and α′ have negating player func-
tions. Note that, I(α) = I(p(α)). In Bi there are at least three players. Therefore, γ
exists such that fγ is the identity. A bi has been considered such that actions corre-
sponding to α, α′ and γ are 1, and all other actions are 0. Clearly, such bi is bad. Let
a′ = (b,c) be a profile containing the preceding bi. Clearly, a′−α ∈ I(α) because the
part of the profile corresponding to bi has two ones (the one corresponding to player
α is missing). Profile ψ′(a′−α) contains just one 1. Therefore, ψ′(a′−α) 6∈ I(p(α)),
because player p(α) can force a good (choosing 0) or a bad (choosing 1) block.
Then, (ψ′(a′−α),0) 6∼p(α) (ψ′(a′−α),1).

• Case with at least 3 negations. Let α be having a negation for fα. Similarly to the
case with one negation, a profile a′ = (a′−α,1) containing bi = 0 j−110ki− j, is con-
sidered. Then, u′α(a

′) is 1 or 2. Profile ψ′(a′−α,1) = (b̂, ĉ) contains at least two ones
in the corresponding B-block. Therefore, up(α)(ψ′(a′−α,1)) = 0. A contradiction is
obtained.

All fβ in the C-blocks are identities. It is supposed that there is a player β ∈ Ci such

8.3. From General Games to Binary Actions Games 124

that, fβ is a negation. Let be C` a block such that p(β) ∈ C`. There are two exclusive
possibilities for the other players in C`,

• there is at least one player γ such that, fγ is the identity and p(γ) ∈C`,

• all players γ mapped into C` have functions fγ corresponding to negations.

The first possibility is considered. An a′−β is fixed such that all B-blocks are fixed to
1, and all C-blocks are fixed to 0. Note that, independently of a′β ∈ {0,1}, ci 6= bi

holds. Since u′β(a
′
−β,0) > u′β(a

′
−β,1) it holds that (a′−β,0) �β (a′−β,1). Since γ en-

ters C` and fγ is the identity, profile ψ′(a′−β) corresponding to the team −p(β) ver-
ifies b` 6= c`, independently of the value of the action chosen by p(β). Additionally,
u′p(β)(ψ

′(a′−β,0)) = u′p(β)(ψ
′(a′−β),1) = 0 and u′p(β)(ψ

′(a′−β,1)) = 1. Then, a contradic-
tion is obtained.

Now, the second possibility is considered. A profile a′−β is choosen such that all
players in B-blocks choose 1 and all players in C blocks choose 0, except player γ choosing
1. The analysis follows in a similar way.

The players bijection p induces a bijection between C-blocks and moreover, this bi-
jection coincides with the bijection for the B-blocks.. By π a bijection has been denoted,
which is induced by the B-blocks. If this does not hold, there exists an i such that play-
ers in Ci are only partially mapped into Cπ(i). Let β be a player mapped into C` with
` 6= π(i). A profile a′−β taken such that, bi and (ci)−β contains only ones in (a′−β,1),
then bi = ci and u′β(a

′
−β,1) = 2. As in (a′−β,0) there are bi 6= ci and u′β(a

′
−β,1) = 1.

Therefore, (a′−β,0) ≺β (a′−β,1). Since, Bi is mapped into Bπ(i), there is no intersec-
tion between Bπ(i) and B`. The profile corresponding to players C` in ψ′(a′−β,0) is de-
noted by ĉ`. Note that in such a profile, the action chosen by player β is 0. Profile
bπ−1(`) corresponding to Bπ−1(`), has been fixed in a′−β such that ψ′(bπ−1(`)) = ĉ`. No-
tice that u′p(β)(ψ

′(a′−β,0)) = 3, because profiles belonging to B` and C` coincide. Note
also that u′p(β)(ψ

′(a′−β,1)) = 0, because profiles in B` and C` are different. Profiles for
player p(β) factor as ψ′(a′−β,0) = (ψ′(a′−β),0) and ψ′(a−β,1) = (ψ′(a′−β),1). Therefore,
(ψ′(a′−β),0)�p(β) (ψ′(a′−β),1) is obtained and leads to a contradiction.

Let ϕi be a mapping p restricted to Bi. Let ϕ̂i be a mapping p restricted to Ci. Then,
ϕi = ϕ̂i holds. Note that, ϕi : Bi → Bπ(i) and ϕ̂i : Ci →Cπ(i). It is supposed that, ϕi(r) = s
and ϕ̂i(r) = t with s 6= t. A profile a′ = (b,c) is considered. b = (b−i,bi) is fixed with
bi = binify(r), and the b−i filled with zeroes in order to get a bad b. Then, c = (c−i,ci)

with ci = binify(r) has been considered. Let β be the player belonging to the Ci block
and controlling position r. Then, a′ = (a′−β,1). Moreover, uβ(a′−β,1) = 2 because b is
bad, bi = ci, and a′β = 1. Also uβ(a′−β,0) = 1 because b is bad, bi 6= ci, and a′β = 0. Fi-

nally, (a′−β,1)�β (a′−β,0). Profile ψ′(a′) = (b̂, ĉ) is considered. Since Bi is mapped into

Bπ(i) we factor b̂ = (b̂−π(i), b̂π(i)) with bπ(i) = binify(s). Similarly, ĉ = (ĉ−π(i), ĉπ(i)) with

Chapter 8. On the Hardness of Game Equivalence Under Local Isomorphism 125

ĉπ(i) = binify(t). In ψ′, player β is mapped into p(β), controlling position t in Cπ(i). More-
over, ψ′(a′) = (ψ′(a′)−p(β),1) and u′p(β)(ψ

′(a′)−p(β),1) = 0. As u′p(β)(ψ
′(a′)−p(β),0) = 1,

(ψ′(a′)−p(β),1)≺p(β) (ψ′(a′)−p(β),0) is obtained, and this leads to a contradiction.
2

Lemma 8.8 Let Γ1 and Γ2 be two strategic games. Γ1 ∼` Γ2, if and only if
BINARYACTL(Γ1)∼` BINARYACTL(Γ2).

Proof. Let Γ′
1 = BINARYACTL(Γ1) and Γ′

2 = BINARYACTL(Γ2) and let
ψ′ = (p, f1, . . . , fk) be a local isomorphism between Γ′

1 and Γ′
2. Let α be a player

belonging to a B-block and let β be a player belonging to a C-block. As ψ′ preserves
local indifference sets and |I(β)| < |I(α)|, players α and β cannot be mixed (look at
Lemmas 8.4, 8.5, and 8.6). It must happen that p(α) belongs to a B-block in Γ′

2 and p(β)
belongs to a C-block in Γ′

2. Moreover, the structure of ψ′ verifies conditions established
in Lemma 8.7. Notice that ψ′ induces a permutation π on {1, . . .n}. Furthermore, for a
player α in position j inside block Bi, mapping ϕ(j) gives us the position of player p(β)
in block π(i).

Let us show that the mapping ψ = (π,ϕ1, . . . ,ϕn) is a local isomorphism between Γ1

and Γ2.
It is supposed that (a−i,r)≺i (a−i,s) with r,s∈{1, . . .ki}. Then, ui(a−i,r)< ui(a−i,s).

a′ = (b,c) is considered such that b = binify(a−i,r) and c = (c−i,ci) with c−i is all filled
with zeros and ci = binify(s). Let β be the player controlling the 1 in ci (player β controls
the position s in C-block i). Then, it holds that, u′β(a

′) = 4 + ui(a−i,r). Factorising
player β we have a′ = (a′−β,1). Now, player β can change the action from 1 to 0 getting
the profile (a′−β,0) such that u′β(a

′
−β,0) = 4+ ui(a−i,s). Therefore, there is (a′−β,1) ≺β

(a′−β,0). Thus, ψ′ is a local morphism it holds that ψ′(a′−β,1)≺p(β) ψ′(a′−β,0).
Now, it is proven that (ψ(a−i),ϕi(r)) ≺π(i) (ψ(a−i),ϕi(s)) holds. As i is mapped to

the π(i) block, Ci is mapped to block Cπ(i). Actions for player i are mapped as ϕi(r) = r′

and ϕi(s) = s′. The B-blocks are mapped as follows:

ψ′(b) = ψ′(binify(a−i,r)) = (binify(ψ(a−i)),binify(ϕi(r)) = (b̂−π(i), b̂π(i))

C-blocks are mapped as well, ψ′(c) = (ĉ−π(i), ĉπ(i)) with ĉ−π(i) filled with zeroes
and ĉπ(i) = ψ′(binify(s)) = binify(s′). Note that p(β) controls the unique one in
binify(s′). Then, ψ′(a′−β,1) = (b̂, ĉ) and u′p(β)(ψ

′(a′−β,1)) = 4 + uπ(i)(ψ(a−i),ϕi(r)).
When player p(β) changes its action corresponding to 1 in binify(s′) into a
0, u′p(β)(ψ

′(a′−β,0)) = 4 + uπ(i)(ψ(a−i),ϕi(s)) is obtained. Therefore,
ψ′(a′−β,1)≺p(β) ψ′(a′−β,0), uπ(i)(ψ(a−i),ϕi(r))< uπ(i)(ψ(a−i),ϕi(s)) is obtained. Then,
the result is concluded.

8.4. From Local Isomorphism on Binary Action Games to Strong Isomorphism 126

It is possible then to conclude that the mapping ψ = (π,ϕ1, . . . ,ϕn) is a local isomor-
phism between Γ1 and Γ2.

2

8.4 From Local Isomorphism on Binary Action Games to Strong Iso-
morphism

Then, next step is to transform two binary-action, locally isomorphic games into two
strongly isomorphic games.

FLIPL(Γ) = (N,(A′
i)i∈N ,(u′i)i∈N) is defined as follows: given a binary action’s game Γ =

(N,(Ai)i∈N ,(ui)i∈N) where N = {1, . . . ,n} and Ai = {0,1}. Actions are A′
i = {0,1} and, for

a′ ∈ A′ and i ∈ N, flipi(a′) = (a′−i,1−ai) is defined. Utilities are, (≺i and ∼i are defined using
ui in Γ):

u′i(a
′) =


2 if a′ ≺i flipi(a′),

1 if a′ ∼i flipi(a′),

0 if flipi(a′)≺i a′.

.

Example 3 The flipi function over A′ for i ∈ {1,2} is given by

A′ (0,0) (0,1) (1,0) (1,1)
flip1 (1,0) (1,1) (0,0) (0,1)
flip2 (0,1) (0,0) (1,1) (1,0)

Next follows an example of FLIPL(Γ):

Player 1

Player 2
0 1

0 0,1 1,1
1 0,0 0,1

Γ

Player 1

Player 2
0 1

0 1,1 0,1
1 1,2 2,0

FLIPL(Γ)

Lemma 8.9 If Γ1 and Γ2 are two binary action’s games. Γ1 ∼` Γ2 iff FLIPL(Γ1) ∼s

FLIPL(Γ2).

Proof. Let Γ′
1 = FLIPL(Γ1) and Γ′

2 = FLIPL(Γ2).
Given a game mapping ψ′ = (p, f1, . . . fn) between Γ′

1 and Γ′
2 the equality

ψ′(flipi(a′)) = flipp(i)(ψ′(a′)) holds. To prove it, note first that as fi is the identity or a
negation fi(1−ai) = 1− f (ai) holds. Therefore,

ψ′(flipi(a
′)) = ψ′(a′−i,1−a′i) = (ψ′(a′−i), fi(1−a′i)) = flipp(i)(ψ′(a′))

Chapter 8. On the Hardness of Game Equivalence Under Local Isomorphism 127

Now, it is assumed that ψ = (π,ϕ1, . . . ,ϕn) is a local isomorphism between games Γ1

and Γ2. Mapping ψ′ = (p, f1, . . . , fn) between Γ′
1 and Γ′

2 defined by p = π and for all
players fi = ϕi is considered. The fact that ψ′ is a strong isomorphism will be proven.
Let a′ be a profile in Γ′

1 and suppose u′i(a
′) = 2. Other cases are similar. Condition

u′i(a
′) = 2 forces a′ ≺i flipi(a′). Then ψ is a local morphism and a′ is also a profile in Γ1.

It holds that ψ(a′) ≺π(i) ψ(flipi(a′)). Since ψ′ behaves identically to ψ, the relationship
ψ′(a′)≺p(i) flipp(i)(ψ′(a′)) holds and u′p(i)(ψ

′(a′)) = 2.
It is assumed that ψ′ = (p, f1, . . . , fn) is a strong isomorphism between games Γ′

1 and
Γ′

2. Let ψ = (π,ϕ1, . . . ,ϕn) be a copy of ψ′. Note that a local preference in Γ1 like
a = (a−i,ai)≺i (a−i,1−ai) can be rewritten in Γ′

2 (formally a′ = a) as a′ ≺i flipi(a′), and
u′i(a

′) = 2. As a result, ψ′ is a strong isomorphism and u′p(i)(ψ(a
′)) = 2 holds, but this

forces (ψ(a−i),ϕi(ai))≺π(i) (ψ(a−i),ϕi(1−ai)). Therefore, ψ is a local isomorphism.
2

8.5 The Complexity of Local Isomorphism

In this section, game transformations defined in the previous sections will be shown which
can be computed in polynomial time. This settles the complexity classification of the
LocalIso problem.

Lemma 8.10 Let Γ be a game given in explicit form. A description in explicit form of the
games BINARYACT(Γ) and FLIPL(Γ) when Γ is a binary actions game, and CHECKL(Γ)
when Γ is a binary game, can be computed in polynomial time.

Proof. Recall that a representation in explicit form of a game is

Γ = 〈1n,A1, . . . ,Am,(Ti,a)1≤i≤n,a∈A〉.

The computation of the representation in explicit form of the games BINARYACT(Γ),
FLIPL(Γ), for a given binary actions game Γ, and CHECKL(Γ), for a given binary game
Γ will be shown.

Note that in the three constructions, the number of players increases at most polyno-
mially in the size of Γ. Furthermore, for any player, the size of the set of actions is poly-
nomial in the size of the set of actions of players in the original game. In consequence,
the number of strategy profiles is polynomial in the size of Γ. Therefore, tabulated utility
functions can be computed in polynomial time.

2

Lemma 8.11 Let Γ be a game given in general form. A description in general form of the
games BINARYACT(Γ) and FLIPL(Γ) when Γ is a binary actions game and CHECKL(Γ)
when Γ is a binary game, can be computed in polynomial time.

8.5. The Complexity of Local Isomorphism 128

Proof. When game Γ is given in general form, Γ = 〈1n,A1, . . . ,Am,M,1t) in all three
constructions we have that both the number of players and the size of the sets of actions are
polynomial. Now, a Turing machine TM that computes utility functions in each case will
be constructed. From the definitions of games, the codification of the TM in polynomial
time, given a description of machine M is straightforward.

2

Lemma 8.12 Let Γ be a game given in formula general form. A description in formula
general form of the games BINARYACT(Γ) and FLIPL(Γ) when Γ is a binary actions
game and CHECKL(Γ) when Γ is a binary game, can be computed in polynomial time.

Proof. Now, it will be shown how to compute a description in formula general form of
the game CHECKL(Γ), when Γ is a binary game. It is assumed that a game is given as
Γ = 〈1n,A1, . . . ,Am,1`,(ϕi)1≤i≤n〉, where Ai = {0,1}. In the following table we recall
the definition of utility functions of game Γ′ = CHECKL(Γ), as defined in Page 114, and
reformulate its utility functions so as to describe the formula required to compute a bit of
the utility value.

Recall that a profile for Γ′ has form c = (a0,a′) where a′ = (a1b1, . . . ,anbn). We
also set a = (a1, . . . ,an) as original strategy profile in Γ. The range of utility values is
{0, . . . ,8} and therefore, 4 formulas are needed as there are 9 different utility values,
φ j

i , for 0 ≤ i ≤ n and 0 ≤ j ≤ 3. In the following table, the utility functions are given,
according to definitions, rewritten so to make clear the conditions for each value and the
utility value written in binary.

u′i(c) φ3
i φ2

i φ1
i φ0

i

Player 0
a0 0 0 0 a0

Player i > 0
bi = 0∧ui(a) = 1 0 0 0 0 0

a0 = 0 ∧ bi = 0∧ui(a) = 0 1 0 0 0 1
ui(a) 6= ui(a−i,ai) bi = 1∧ui(a) = 0 2 0 0 1 0

bi = 1∧ui(a) = 1 3 0 0 1 1
a0 = 0∧ui(a) = ui(a−i,ai) = 0 4 0 1 0 0
a0 = 0 ∧ bi = 0 5 0 1 0 1
ui(a) = ui(a−i,ai) = 1 bi = 1 6 0 1 1 0
a0 = 1 bi = 0 7 0 1 1 1

bi = 1 8 1 0 0 0

Using the above table it is easy to write an expression of boolean formulas, for each
player, as a disjunction of corresponding minterms. Indeed, these formulas have a con-
stant number of minterms and thus can be written in polynomial time.

For the remaining constructions working in a similar (but slightly more involved) way
it can be shown the claimed result. 2

Chapter 8. On the Hardness of Game Equivalence Under Local Isomorphism 129

Theorem 8.2 The LOCALISO problem and the STRONGISO problem are polynomially
equivalents for strategic games given in general form, formula general form and explicit
form. The equivalence holds even for binary games.

As a consequence of results in Theorem 8.1 and the previous one, the following result
is obtained.

Theorem 8.3 The LOCALISO problem is polynomially equivalent to

• the CIRCUITISO problem, for strategic games given in general form,

• the FORMULAISO problem, for strategic games given in formula general form, and

• to the GRAPHISO problem, for strategic games given in explicit form.

The equivalence is also valid for binary games.

As a corollary of the above result we have that the LOCALISO problem belongs to Σp
2

for games given in general form or formula general form and to NP for games in explicit
form. In any of the three cases the problem is not expected to be hard.

8.6 Notes

Game Theory. Refer to A Course in Game Theory of M. Osborne and A. Rubinstein
[84] published in 1994, for mathematical definitions of strategic and extensive games.
Also, refer to the Theory of Games and Economic Behavior of John von Neuman and
Oscar Morgenstern [81]. Additionally, it is very important to note the definition of Nash
equilibrium for non-cooperative games in [80] by J. Nash.

Morphisms in Games. Refer to [80] by J. Nash, where a very compact definition of
game morphisms was first proposed in the field of game isomorphisms. Note the results
of J. C. C. McKinsey [72] and J. Harsanyi and R. Selten’s isomorphisms of strategic
games [49], published in 1988.

Algorithmic Game Theory. Consider the book Computers and Intractability: A Guide to
the Theory of NP-completeness [45], by M. Garey and D. Johnson. This book features
a compendium of NP-complete problems. It is crucial to refer to [36, 35] by J. Feigen-
baum and J. Feigenbaum, D. Koller and P. Shor respectively, in order to understand the
complexity in game theory. These researches were devoted to the study of connection be-
tween game theory and the traditional complexity class. Note also [64], which is devoted
to the analysis of the complexity involving in finding max-min strategies in zero-sum
games represented in extensive form. Finally, [65, 87, 86] are very important references
in algorithmic game theory.

8.6. Notes 130

Graphical Games. Examples of graphical representations are the games networks of
La Mura [78], and graphical models for game theory of M. Kearns, M. Littman, and
S. Singh [57]. Note also [55] in order to learn about correlated equilibria in graphical
games, as a succinct representation for multi-player games. In addition, refer to [28] by
C. Daskalakis, P. Goldberg, and C. Papadimitriou. In this work, the authors concern their
hardness result for computing a Nash equilibrium and also present an interesting graph
showing what players affect other players’ payoffs.

Part III

Conclusions and Future Work

131

Chapter 9

Conclusions and Future Work

This thesis has studied several problems arising from algorithmic game theory and or-
chestration analysis. The behaviour of orchestrations over unreliable environments has
been analysed in the first part. Moreover, the complexity of equilibrium problems for a
class of strategic zero-sum games, called Angel-Daemon games, has been studied. It has
been found established that this class of games provides the first natural family of succinct
games for which such complexity results can be established. Additionally, the effect of a
number of service failures in Web applications, modelled as orchestrations expressions,
has been analysed through this class of games. The second part of this thesis is focused
on computational complexity of game isomorphisms and is devoted to the study of how
games’ representations affect the complexity of problems.

Angel-Daemon Games. The well known characteristic of Grid programming is its dy-
namicity. The Grid users have significantly less control over resources employed than
in traditional scenarios: sites used for the execution of application components may fail.
Thus, an important consideration for practical Grid applications is the provision of an
assessment of the quality of an application based on the expected performance of its con-
stituent execution sites. In terms of an Orc expression E, used to model the application,
an ordered list for α(E) is needed. How this list should be built is unclear and is perhaps
a controversial question: the likely behaviour of a site may depend on subjective percep-
tions of its qualities. In drawing up the list, two distinct classes of considerations may be
identified:

- Aspects independent of the application. A “stand-alone” quality of a site has been
considered. Taking, also into account the “reputation” of sites [104].

- Aspects depending on the application. The designer has a priori knowledge of avail-
able potential sites S . From S , the designer has to choose α(E). Once α(E) has been
determined, the orchestration has to be developed.

133

134

In many cases, I show that the development of an application and the rank of α(E)
are inextricably linked. For instance, a site used only as a “thread” in a parallel
search may fail with little consequence for the application; failure of a site which
forms a constituent of a sequential backbone of an application will be catastrophic
for the application.

The ordering of α(E) depends also on risk perception. Different people have different
perceptions of risk and will rank sites accordingly. For instance, consider a database D
with no back-up available. Assume that D is crucial for the application, so that a failure
in D significantly harms the application. There are two possibilities for ranking D:

- Moderate optimism. As a failure of D harms the application, an optimistic view will
rank D among the angels. In this way the angel will try to avoid having D fail, but
if it does fail, then the outcome will fall far short of expectation.

- Safe pessimism. Since D is crucial to the application, D is ranked among the dae-
mons, so that the outcome (likely failure of D), although far from ideal, is at least
predictable and uncertainty is removed.

Therefore, failure of Grid sites is a reality of Grid computing and forms a significant
part of its challenge. Assessing the likelihood of success of an application requires both
an evaluation of the quality of its constituent sites and a means of combining the results
to measure the quality of the assembly. This thesis proposes the use of Orc together with
game theory as a way of addressing the latter point; the assessment of individual sites and
the establishment of a ranking among them remain open questions, touching as they do
upon issues such as degree of trust and perception of risk, issues which remain largely
subjective.

One of the contributions of this thesis is the question of the management of risk in
orchestrations. An ex-ante vision of the risk in an uncertainty profile has been captured,
applying this idea to two different types of orchestrations. Additionally, the results in-
clude a characterisation of the complexity of all problems introduced on Chapter 5, when
problems inputs are restricted to be an Angel-Daemon games. For doing such an analysis,
a standard terminology for classical complexity classes like LOGSPACE, P, NP, coNP,
Σp

2 and EXP has been used.
Furthermore, the problem of deciding the existence of a pure Nash equilibrium or

a dominant strategy for a given player has been shown to be Σp
2-complete. Moreover,

computing the value of an Angel-Daemon game, has been shown to be EXP-complete,
thus matching the already known complexity results of the corresponding problems for
generic families of succinctly represented games with exponential number of actions.
Similar results for general families were already known for strategic games in implicit
form [9] and succinct zero-sum games [38].

Chapter 9. Conclusions and Future Work 135

Future Work and Open Questions. Several open question remain:

- The establisment of a taxonomy or uncertainty profiles for large families of orches-
trations could be envisioned.

- It also seems possible to define the behaviour in relation to risk attitudes.

- The behaviour of an orchestration under failures can also be studied using a proba-
bilistic approach [106].

- The relationship between the two approaches also merits investigation.

Game Isomorphisms. The second part of this thesis is focused on the computational
complexity of deciding whether two multi-player strategic games are equivalent. For do-
ing such an analysis, three notions of isomorphisms have been introduced, where each
of them preserves different structures of a game. Strong isomorphisms are defined to
preserve the utility functions and Nash equilibria. Weak isomorphisms preserve only the
player’s preference relations and thus preserve only pure Nash equilibria. Local isomor-
phisms preserve only the structure of Nash dynamics. This last notion of isomorphism
retains a minimum requirement on partially maintaining the structure of Nash equilibria.

Therefore, one contribution of this thesis, are the following classification of problems:

- The ISISO problem is coNP-complete, for games given in general form, and belongs
to NC when games are given in explicit form.

- The ISO problem belongs to Σp
2 , for games given in general form, and to NP when

games are given in explicit form.

- The ISO problem is equivalent to the boolean circuit isomorphism problem, for
games in general form, and to the graph isomorphism problem, for games given in
explicit form.

The above results hold independently of the type of isomorphism considered, although
they depend on the level of succinctness of the description of the input games. Note that
the boolean circuit isomorphism problem is believed not to be Σp

2-hard [4], and the graph
isomorphism problem is conjectured not to be NP-hard [61]. Therefore, the same results
are valid for the ISO problem.

Besides the above generic forms of representing games, another particular class of
strategic games, which are called formula games, has been also considered. The formula
games are equivalent in power of representation to a subfamily of the weighted boolean
formula games introduced in [71]. Furthermore, the complexity of the ISO problem has
been analysed, when games correspond to a general form. That is, the number of bits con-
trolled by each player is a constant. For formula games in general form, it has been shown

136

that the ISO problem is equivalent to the boolean formula isomorphism problem. Recall
that the complexity of the boolean formula isomorphism problem is the same as that of
circuit isomorphism. However, it is conjectured that both problems are not equivalent.

In this area, a second line of research was to obtain more information about the clas-
sification of strategic games with the same number of players, according to the structure
of classes induced by the type of isomorphism: pure Nash equilibria. In order to do
this analysis, small games were defined. For these games, all equivalence classes have
been provided, giving information about the possible structure of Nash equilibria under
local isomorphism. In addition, a graphical representation of these classes of equivalence,
fulfilling some conditions about preferences, has been proposed.

Under Local isomorphism, a first naive approach is to consider games as equivalent
if they have the same number of Nash equilibria. The count of pure Nash equilibria has
been undertaken via probabilistic analysis by I. Y. Powers [96]. She studied the limit
distributions of the number of pure strategies of Nash equilibria for n players’ strategic
games. Further results can be found in [73]. The sole estimation of the number of pure
Nash equilibria is different from Strong and Weak isomorphisms since, the notions provide
a finer classification.

Future Work and Open Question. A further line of interest could be to extend the notion
of game isomorphisms to other game families, in particular for strategic games given in
implicit form. The main difficulty here is to select a suitable succinct representation of
permutations on the set {0,1}k that are able to represent a morphism. It is expected that
the ISO problem for games in implicit form (with utilities given by TM, circuits or formu-
las) is computationally harder than for the case of games given in general form. Observe
that for strategic games in implicit form, the reductions in this work will not longer be
computable in polynomial time as the number of strategy profiles will be exponential in
the size of the representation.

Another family of interest is extensive games. It would be of interest to study the
isomorphism problem for such games avoiding the use of strategic forms. An interesting
open question is whether a suitable definition of game isomorphisms for games without
perfect information can be found.

On the other hand, there are several fields in computer science which develop games,
strategic or extensive, that can be used to attain different goals in the Semantic Web. One
clear example in this direction are games with a purpose approach [5], [105], and [50].
These games are used for instance, to label an image, thus facilitating the acquisition of
terms for the semantic Web. Games, strategic or extensive, are used in this approach
to learn from the strategic behaviour of the players. Games are defined in such a way
that term agreement provides higher utility. Observe that, in this setting, games designed

Chapter 9. Conclusions and Future Work 137

by different research teams might lead to different definitions of the game corresponding
to the label of a single image. To asses the validity of the final results, the equivalence
among games should be checked. This might lead to notions of equivalence which differ
from those presented in this thesis. It is expected that the results on this work will provide
the basis for the analysis of the complexity of equivalence of such games and other Web

games.
Finally, it is worth remarking that another area of interest in the field of game theoreti-

cal analysis are the graphical models for multi-player games, and the complexity of these
classes of concisely represented games [28]. Compared to strategic and extensive rep-
resentations of games, some graphical models are more structured and compact games’s
representations, as the case of game networks of La Mura [78], and a Graphical Models
For Game Theory of Kearns and Littman [57].

Overall, this thesis has aimed at complexity study of Angel-Daemon games and game
isomorphism, which provides that complexity results depends on the problems inputs
rather than the classification type of isomorphisms.

138

Part IV

Appendices

139

Appendix A

Arranging a Meeting using Reputation

This section is an example of Internet computing where, sites are interpreted as interfaces
among the members of a community. Consider a university rector who wishes to consult
his staff before making a decision. He sends an email to professors in his university to
arrange a meeting. Some professors answer; others do not. Assume that professors have
a reputation metrics. For example, reputation may be based on position. After a time ∆T ,
the rector has to decide if the meeting will take place or not. The decision will be based
on the average reputation of the professors replying. The Orc expression Meeting is based
on MeetingMonitor (see section 7.3 in [76]). It is assumed that a call to a professor’s site
p, with a message m, is denoted by p(m). The call p(m), either returns the reputation of
the professor or is silent (this is represented as p(m)> r). See table A.1.

PROFESSOR REPUTATION

Rector 0.3
Ex-Rector 0.3
Head of Dept. 0.2
Professor 0.1
Instructor 0.1
TOTAL 1.0

r(a,d) E H P rA(a)
R 0.13. . . 0.16. . . 0.2 0.1
I 0.2 0.23. . . 0.26. . . 0.3
rD(d) 0.15 0.2 0.25

Figure A.1: The first table gives the professors’ reputations, and the second one reflects the
reputation values associated to the strategies in the game associated to the uncertainty profile
〈P ,{R, I},{E,H,P},1,1〉.

The expression AskFor(L,m, t,∆T) gives the number and the total reputation of the an-
swers received. In the expression, L= (h, t) is the list of professors, m is the message, t the
suggested meeting time, and ∆T the maximum waiting time for responses. AskFor pub-
lishes a pair (count, total reputation). The average reputation is r = reputation/count.
As the reputation ri of any professor i satisfies 0 < r − i < 1, it holds that 0 < r < 1.
Following [69, 114] a lower 0 ≤ ω ≤ 1 threshold was defined, in order to classify the rel-

141

142

evance of data. The meeting will take place when the reputation is good enough: ω ≤ r;
otherwise, the meeting is cancelled. The final expression is ProceedOrCancel, where LP

is the email list of all professors in the university.

AskFor([],m, t,∆T), let(0,0)

AskFor(H : T,m, t,∆T), let(count, total reputation) where

count :∈ add(u.count,v.count)

total reputation :∈ add(u.reputation,v.reputation)

u :∈ {h(m)> r > let(1,r) | Rtimer(∆T)� let(0,0)}
v :∈ AskFor(T,m, t,∆T)

ProceedOrCancel(c, total r,ω), average(c, total r)> r >

(i f (ω ≤ r)� let(“do”)) | i f (ω > r)� let(“cancel”))

Meeting(P ,ω, t,∆T), AskFor(LP ,m, t,∆T)> (c,r)> ProceedOrCancel(c,r,ω)

Consider how to assess the meeting. To do this, consider a strongly divided university
with a set of professors P such that, P = A ∪D . As before, the easy way to analyse this
situation is by introducing an uncertainty profile.

Definition A.1 For the meeting problem, an uncertainty profile contains information
about the reputation and the threshold, U = 〈P ,(ri)i∈N ,ω,A ,D, fA , fD〉.

This profile contains elements in common with those given in definition 4.1, just re-
placing α+(E) by P . Let a = {a1, . . . ,ap} be the failing sites (do not respond) for a ∈ A ,
and d = {d1, . . . ,dq} the failing sites for d ∈ D and, as before, the strategy profile is
s = (a,d). The set of sites answering the email (successful sites) is, Sa = A \ a and
Sd = D \ d. Given a strategy profile (a,d), the average reputations of a ∈ A and d ∈ D

and the average reputation of the strategy profile are defined as follows,

ra(a) =
∑s∈Sa rs

#Sa
,rd(d) =

∑s∈Sd
rs

#Sd
,r(a,d) =

∑s∈Sa∪Sd
rs

#(Sa ∪Sd)

The angel a ∈ A is happy when the meeting takes place and unhappy otherwise. The

Appendix A. Arranging a Meeting using Reputation 143

daemon d ∈ D behaves in the opposite direction.

ua(a,d) =

+ra(a) if ω ≤ r(a,d)

−ra(a) otherwise
ud(a,d) =

−rd(d) if ω ≤ r(a,d)

+rd(d) otherwise

Based on these utilities, the angel-daemon game is adapted to this situation and, we
obtain the strategic game Γ(U) = 〈A ,D,ua,ud〉 called the Meeting game. Note that the
Meeting game is not a zero-sum game.

Example A.1 A university with N = 5 professors P = {R,E,H,P, I} partitioned as A =

{R, I}, D = {E,H,P} and fA = fD = 1. Several examples of the meeting game for
different values of w are given in the Figure A.2. Observe that, for w = 0.1, 0.18 and
0.3, the meeting game has a pure Nash equilibrium. However, when w = 0.25, the game
does not have a Nash equilibrium.

a

d
E H P

R 0.1,−0.15 0.1,−0.2 0.1−0.25
I 0.3,−0.15 0.3,−0.2 0.3,−0.25

w = 0.1

a

d
E H P

R −0.1,0.15 −0.1,0.2 0.1,−0.25
I 0.3,−0.15 0.3,−0.2 0.3,−0.25

w = 0.18

a

d
E H P

R −0.1,0.15 −0.1,0.2 −0.1,0.25
I −0.3,0.15 −0.3,0.2 0.3,−0.25

w = 0.25

a

d
E H P

R −0.1,0.15 −0.1,0.2 −0.1,0.25
I −0.3,0.15 −0.3,0.2 −0.3,0.25

w = 0.3

Figure A.2: Some examples of the meeting game for the case in Example A.1, for different values
of w. That is, w ∈ {0.1,0.18,0.25,0.3}.

Theorem A.1 Given U = 〈N ,(ri)i∈N ,ω,A ,D, fA , fD〉, let players a∈ A and d∈ D , and
A=Aa×Ad. Define δ=min(a,d)∈A r(a,d), µ=max(a,d)∈A r(a,d), δa =mina∈Aa ra(a) and
finally, µa = maxa∈Aa ra(a).

- Γ(U) has a Nash equilibrium iff either (1) ∃a ∈ Aa with ra(a) = µa such that ∀d ∈
Ad r(a,d)≥ ω, or (2) ∃d ∈ Ad with rd(d) = µd such that, ∀a ∈ Aa r(a,d)< ω.

- If ω ≤ δ or ω > µ, game ΓP (U) has a Nash equilibrium.

Furthermore, in any Nash equilibrium (a,d) of the game (if one exists), either the
meeting holds and ua(a,d) = µa and ud(a,d) = −δd or the meeting is cancelled and
ua(a,d) =−δa and ud(a,d) = µd.

Proof. Observe that function r has some monotonicity properties. In the case that r(a,d)≥
ω, for any a′ ∈ Aa with ra(a′) ≥ ra(a), we have that r(a′,d) ≥ ω. Let (a,d) be a Nash
equilibrium, in which the meeting holds. That is, r(a,d)≥ ω. This means that ra(a1)≥ 0

144

and rd(d1)≤ 0. Therefore, taking into account the monotonicity, we have that ra(a1) = µa
and rd(d1) = δd, otherwise a1 will not be a best response to d1 and vice versa. But in
such a case, condition (1) holds. In the case that condition (1) holds, we have that a is
the best response to any action of the daemon d′. Furthermore, the best response to a
happens in the daemon strategy with minimum rd value. Therefore the game has a Nash
equilibrium in which the meeting holds. Symmetrically, if r(a,d) < ω, for any d′ ∈ Ad

with rd(d′) ≤ rd(d), we have that r(a,d′) < ω. Reversing the arguments, we obtain the
equivalent in which Nash equilibrium exists and the meeting does not hold and condition
(2).

Observe that ω ≤ δ implies condition (1) and ω > µ implies condition (2). 2

Appendix B

IT System example

Organisations manage and process large amounts of information, and use automated in-
formation technology (IT) systems to process it. Risk assessment is also used to determine
the extent of the potential threats and the risks associated with an IT system, so that, risk
assessment is the first process in the risk management methodology [1].

Risk is a function of the likelihood of a given threat-sources exercising a par-
ticular potential vulnerability, and the resulting impact of that adverse event
on the organisation.

There are many vulnerability studies and their causes, associated to companies, or-
ganisations, and IT system environments. In fact, there are institutes 1 and organisations
dedicated to management and assessments of risks. There are also tools and techniques
for managing organisational risk, because it plays a critical role in protecting an organi-
sation’s information, and therefore its mission, from IT-related risk.

Risk management involves three processes: risk assessment, risk mitigation, and eval-
uation and assessment. These processes include identification of the potential threat, setup
of appropriate controls for reducing or eliminating risks, as well as prioritisation, evalua-
tion and implementation of the appropriate risk-reducing controls recommended from the
risk assessment process. Therefore, security protocols 2 have been designed and imple-
mented to minimise the effects of potential threats.

In this section an example about the risk assessment will be given, through the IT
system implemented at the GABRMN group, and from the game theory viewpoint.

1http://www.theirm.org/
2http://www.nist.gov/index.html

145

146

GABRMN IT System. The GABRMN group 3 manages different databases that give ser-
vice to the international scientific community. These databases contain relevant clinical
data from brain tumour research, which have been the result of previous national and
European projects. The group also processes large amounts of biological data. Mainly,
these are magnetic resonance spectroscopy data, both in-vivo and ex-vivo, from clinical
(human) and preclinical (mouse and rat) models. Therefore, the conservation of all in-
formation and data of the group is utmost importance. These data are constantly being
acquired, therefore, it is necessary to perform backups at regular intervals, and to have a
large storage capacity available.

A well designed IT system must take in mind an estimation of the likelihood of suc-
cess of all their hosted services and applications. Therefore, a particular IT system has
been modelled through expressions of orchestrations and its behaviour, over unreliable
environments. Thus, an analysis based on an alternative approach via game theory has
been performed, where games have been used to risk asses the IT system.

An identification of potential risks to IT systems is one of the main tasks in risk as-
sessment. Risks occur when vulnerabilities in the IT system or its environment can be
exploited by natural, human, or environmental threats.

Likelihood Determination and Risk Impact Analysis. To obtain an overall likelihood rat-
ing, in order to indicate the probability that a possible vulnerability may be exercised
within the associated threat environment, the following factors must be considered: threat
motivation and capability, nature of the vulnerability, and existence and effectiveness of
current controls. The likelihood can be described as high, moderate, and low, as they been
previously described in Table B.1.

Likelihood Level Likelihood Definition
High 0-25% chance of successful exercise of threat

during a one year.
Moderate 25-75% chance of successful exercise of threat

during a one year.
Low 75-100% chance of successful exercise of threat

during a one year.

Figure B.1: The likelihood that a potential vulnerability could be exercised by a given threat can
be described as high, moderate, or low.

Identifying risk for an IT system requires understanding the system’s processing en-
vironment. Therefore, to conduct a risk assessment, system-related information must be

3Aplicacions Biomèdiques de la Ressonància Magnètica Nuclear (GABRMN), que pertany a l’Unitat de Bioquı́mica
i el Departament de Biologı́a Molecular ubicat a la Facultat de Biociència de l’Universitat Autónoma de Barcelona
(UAB), accessible des de http://gabrmn.uab.es.

Appendix B. IT System example 147

collected, usually classified as: hardware, software, system interfaces, data and informa-
tion among others. On the other hand, it is necessary to bear in mind the most common
threats for an IT system like floods, earthquakes, electrical storms, network based attacks,
malicious software upload, unauthorised access to confidential information, long term
power failure, pollution, and chemicals.

In this example, hardware components and softwares have been considered as threats.
Technical failures in hardware components (HW) such as memory dimms, networks, and
HDDcan lead to system instability as well as its partial or catastrophic failure. Therefore,
the set of hardware components considered are defined in general as HW = {h1, . . . ,hp},
where each hp is considered a hardware component.

The other threat to be considered is the softwares’ set. That is, the necessary software
to the proper behaviour of servers, for instance: Operating System (OS), Tomcat Apache,
Php, Mysql, and also database applications, Mail service, Dirvish, Subversion. Therefore,
the set of software is defined as SW = {s1, . . . ,si}, where si corresponds to each installed
application. See Example B.1 below.

Example B.1 [Failures services] Suppose that a server hosts several database appli-
cations: one Oracle database and two MySQL databases over a Linux system. There
are some services such as the Operating System (OS), Oracle, Apache Tomcat, MySQL
and Php behind these database applications. Failure of one service will affect other ser-
vices. Suppose that the Oracle service fails. This failure causes the failure of the Oracle
databases, however the MySql databases remain active. Moreover, if an hdd fails, then
the server may fail and a full crash must be considered. But if any memory Dimm fails, the
system will be unstable and recovery is possible by replacing the failing memory Dimm.

Any of the possible selected threats can cause failure to the provided services. There-
fore, an Orc expression was defined. This expression asks first if hardware devices are
alive, in order to ask next whether the needed services are alive or not,

AskForAlive(h1, . . . ,hp, t), let(x1, . . . ,xn)> (x1, . . . ,xn)> i f (x1 ∧ . . .∧ xn)

where

x1 :∈ (h1 � let(true)|RTimer(t)� let(f alse))
...

xn :∈ (hp � let(true)|RTimer(t)� let(f alse))

In this expression, AskForAlive publishes a tuple (x1, . . . ,xn) of true values if all hardware
devices (h1, . . . ,hp) are alive.

B.1. Different Failure Scenarios 148

AskForAlive(b1, . . . ,bn, t), AskForAlive(h1, . . . ,hp, t)�
let(x1, . . . ,xn)> (x1, . . . ,xn)> i f (x1 ∧ . . .∧ xn)

where

x1 :∈ (b1 � let(true)|RTimer(t)� let(f alse))
...

xn :∈ (bn � let(true)|RTimer(t)� let(f alse))

Here, AskForAlive expression publishes a tuple (x1, . . . ,xn) of true values, if all basic
services (b1, . . . ,bn) are alive.

The relevant data to brain tumour research managed and served by the group are stored
in different databases. These data are constantly being acquired, for which it is necessary
to have backups and storage capacity. The databases were designed in MySql and Oracle.
Also, some applications for the group’s research are stored on an applications’ server.
Besides these servers, in order to maintain the proper functioning of the research group,
there are the Proxy and, also the mail server. Therefore, the IT system is composed of a
few servers, which host the different services provided.

- The databases server:

SW(Databases) = {OS, Tomcat, MySQL, Apache, Oracle, Php, eT, eTf , uabDB, I, I f }

- The backups server:

SW(Backups) = {OS, Rsync, Apache, OpenSSH, Dirvish, Subversion, NXFree}

- The applications server:

SW(Applications) = {OS, Java, Apache, OpenSSH, LcModel, IDL, SC, De f iniens, NXFree}

- The Firewall with Proxy:

SW(Proxy) = {OS, Firewall, Apache, Drupal, MySQL, Php, WebGroup}

- The Mail and Mirror servers:

BS(Mail) = BS(Mirror) = {OS, Post f ix, Courier, Spamassassin, Amavis, Php,
Apache, MySQL, Mail service, Squirrelmail, Post f ixadmin}

B.1 Different Failure Scenarios

It has been shown that the IT system in this example is composed by independent servers
with their own characteristics of hardware components and software. The correct be-
haviour of the system depends first on the Proxy server. This server is the face of all

Appendix B. IT System example 149

servers, and all applications and databases are accessible through this one. If this server
fails, the entire system will fail. On the other hand, the proper behaviour of the mail ser-
vice depends on the synchronisation and orchestration of both involved nodes: Mail and
Mirror. Thus, the system IT − system was defined by an expression Orc as follows:

IT − system , Proxy � [Mail � Mirror] | Applications | Backups | Databases

Outputs (out) of the Orc expression were considered. The number of outputs published
by the expression measure the benefit of the expression itself. One simple way to analyse
the Orc expression was to consider whether each site on the expression was alive or not.
Then, the maximum number of outputs would be out(IT − system) = 5. In case that one
server failed, for instance the Applications server, the output of the expression would be
out(IT − system) = 4. Moreover, if the Proxy server failed, the other nodes would be
inaccessible and then, out(IT − system) = 0.

In this way, the importance of the Proxy server for the IT system is easy to understand,
knowing that is crucial to mitigate any threat to the Proxy server. Since a Proxy’s failure
means the whole system’s failure. Moreover, another way to analyse the IT system’s
behaviour under failures, by defining the estimated impact for each risk, and the impact
rating assigned to the risk.

First Possible Scenario. For such an analysis, an angel-daemon game associated to an
Orc expression, which models the considered system IT − system, was provided.

An uncertainty profile defined in [39] as U = 〈E,A,D, fA, fD〉, were considered. In
this expression, E is the IT − system expression. A and D, are the angel and the daemon
players respectively, where fA and fD are their own failures, such that: fA ≤A and fD ≤D.

A strategic game of uncertainty profile U was considered, that is
Γ(U) = 〈N = {a,d},Aa,Ad,ua,ud〉, where N = {a,d} are the angel and the daemon
players. The player actions are Aa and Ad , selected from nodes composing the system.
The strategic profile s = (a,d) is a set of failures associated with IT − system. The
utilities are defined as ua(s) = out(f aila∪d(E)) and ud(s) =−ua(s).

In order to construct a strategic game, the angel and the daemon sets were defined.
These sets must be selected between nodes composing the IT system. To assign the
actions (servers) to each player, the system administrator’s opinion about the behaviour of
processes and applications inside each server was considered. The system administrator’s
opinion must be based on whether the system will have recovery capacity or not, as well
as on the cost of the recovery process or the mitigation of vulnerabilities. Thus, two
actions set for both players were defined.

By nature, the Angel modifies the behaviour of a bounded number of “angelic” ser-
vices in a beneficial way (e.g. to model service elasticity, or network resilience), while

B.1. Different Failure Scenarios 150

a daemon player modifies a bounded number of “daemonic” services in a negative way
(e.g. to model the effects of over-demand), Angel = {Mail, Mirror, Applications} and
Daemon = {Databases, Backups, Proxy}.

Risk Determination. To assess the risk level to the IT system, the risk determination is
derived by multiplying the ratings assigned to threat likelihood and threat impact. The
rationale for this justification can be explained in terms of the probability assigned to
each threat is likelihood level and the value assigned to each impact level, to assess the
level of risk to the IT system, as shown in Figure B.2.

Risk Impact
Risk Likelihood Low Moderate High

(10) (50) (100)
High Low Moderate High
(1.0) (10∗1.0 = 10) (50∗1.0 = 50) (100∗1.0 = 100)

Moderate Low Moderate High
(0.5) (10∗0.5 = 5) (50∗0.5 = 25) (100∗0.5 = 50)
Low Low Moderate High
(0.1) (10∗0.1 = 1) (50∗0.1 = 5) (100∗0.1 = 10)

Figure B.2: This table shows the overall risk levels: high, medium, and low.

Assign a risk rating to each server, in the IT system, with their own hardware compo-
nents and softwares. The data entry in the following table is derived from the table B.2.
Then, the overall risk rating was defined as shown in the Table B.3.

A failure in the Proxy is regarded as non-accessibility to all applications and services.
In addition, the proper behaviour of the Mail servers and the Mirror has been assumed
as a single publication, since the Mirror is activated only if the other is down. Then, a
strategic game was obtained, as shown in Figure B.4.

Overall Risk Ratings
Node Risk Likelihood Risk Impact Risk Overall
(Risk) (Rating) (Rating) (Rating)
Proxy 1.0 100 100

Databases 1.0 100 100
Mail 1.0 100 100

Mirror 1.0 10 10
Applications 0.5 100 50

Backups 0.5 50 25

Figure B.3: Overall Risk Ratings.

Appendix B. IT System example 151

Angel

Daemon
Databases Backups Proxy

Mail 4 / 100 4 / 25 0 / 100
Mirror 5 / 100 5 / 25 0 / 100

Applications 4 / 100 4 / 50 0 / 100

Figure B.4: Strategic game for IT − system expression.

This game has three pure Nash equilibria on the strategic profiles, which consider to
Proxy server. What does this mean? Precisely, the Proxy is the “door” of the system. A
failure on this server does not allow access to the rest of the IT system. Therefore, the
Proxy server is always subject to possible threats, being a point of access to the whole
system.

For each strategic profile, table B.4 shows two values: first, the number of system
outputs. Second, the overall Risk, where the values were calculated as a public service
for strategic profiles. This calculation is explained through an example. The strate-
gic profile (Mail, Database) has been taken. The Overall Risk (OR) in case of Mail
server failures is OR(Mail) = RiskLikelihood(RL) ∗RiskImpact(RI) = 1.0 ∗ 100 = 100,
but since it is known that Mirror server was active, therefore, the true Risk Impact (RI) for
Mail server decreasy to a value of 10. However, the Overall Risk for Databases server,
OR(Databases) = RiskLikelihood(RL) ∗RiskImpact(RI) = 1.0 ∗ 100 = 100. Added the
values of the Overall Risk, the following is obtained SUM(OR(Mail),OR(Databases)) =
SUM(10,100) = 110.

This means that when deciding the strategic profile (Mail, Database), the IT system
becomes vulnerable and failures have high risk of impact. It is very important to correct
this situation immediately. This can be achieved having a mirror to the mail server, which
solves the problem immediately, because it automatically activates the mirror, minimising
the risk impact. However, the problem will persist for the system manager. The analysis
of failures in the server database is similar. It may be catastrophic and, above all, with
high risk of impact. In addition, correcting a failure or some type of threat in a database
could be a lengthy and costly process.

Second Possible Scenario. Another possible scenario has been considered,
with the following action sets for the Angel and the Daemon players,
Angel = {Mail,Applications,Proxy} and Daemon = {Mirror,Databases,Backups}.
Figure B.5 shows the corresponding strategic game. This game has not PNE. What
conclusion can be obtained? The analysis is similar to the previous one. In this game, as
seen above, a failure in any strategy profile is critical, whith respect to the Proxy server.
A failure is also critical for the strategic profiles (Mail, Databases) and (Mail, Mirror).
Correcting the problem for both strategic profiles may be costly and complex, with a

B.1. Different Failure Scenarios 152

high impact for system users.

Angel

Daemon
Mirror Databases Backups

Mail 4/200 4/200 4/35
Applications 4/60 3/150 3/75

Proxy 0/110 0/200 0/125

Figure B.5: Another strategic game for IT − system. This game has not PNE.

Third Possible Scenario. For the third possible scenario, the
action’s sets for the Angel and the Daemon players has been
partitioned as follows: Angel = {Mail, Databases, Applications} and
Daemon = {Mirror, Backups, Databases}. The angel-daemon game obtained considers
a slightly different scenario. However it is essentially the same situation as the above
scenarios. The overall Risks obtained for each strategic profile are similar in all cases.
For instance, in these strategic profiles where there is a Proxy server, the overall Risk is
maximum and the system became non-accessible. Moreover, faults in the other server
profile strategy might complicate IT system recovery and threat mitigation.

Angel

Daemon
Mirror Backups Proxy

Mail 4/200 4/35 0/110
Databases 4/110 3/125 0/200

Applications 4/60 3/75 0/150

Figure B.6: Another strategic game for IT − system. This AD game, like the game in Figure B.4,
has 3 pure Nash equilibria. The strategic profiles consider the Proxy as Daemon’s action.

Conclusions. The angel-daemon games designed for the three scenarios, consider
whether each node is active or not. This implies a very simple model, which is especially
unrealistic, because there are always several applications running at the same time in a
single node. Some of them may be active, while others may not be available, which
would result in partial performance of the IT system. This scenario is not taken into
account under the point of view of this example.

It would be more realistic to create AD games for each node and to define their uncer-
tainty profiles. Then, for every strategic game, their mixed strategies should be calculated
in order to obtain the players’ utilities of each strategic profile of the whole game, there-
fore, modeling an entire IT system.

Appendix C

Small Games. Graphic Representation

C.1 Local Nash Isomorphism

In Chapter 8 the local notion of isomorphism has been introduced. This local isomor-
phism preserves preferences defined only on the “close” neighborhood of strategy pro-
files. More precisely, as it was already showed local isomorphisms only preserve pure
Nash equilibria [41].

Definition C.1 [Local isomorphism]. A local isomorphism ψ : Γ → Γ′ is a mapping ψ,
such that for any triple a, a′ and i, such that a−i = a′−i, a ≺i a′ iff ψ(a) ≺π(i) ψ(a′) and
a ∼i a′ iff ψ(a)∼π(i) ψ(a′) are verified. When Γ and Γ′ are locally isomorphic it is noted
as Γ ∼` Γ′. In the particular case that Γ′ is Γ, a weak isomorphism is named a local
automorphism.

Here, only preferences a �i a′ have been considered, such that a−i = a′−i are preserved
for any player. It is easy to see that local isomorphisms preserve pure Nash equilibria.

Example C.1 An example of local isomorphic games is provided. Games Γ and Γ′ are
given.

l r
t 0,0 0,1
b 1,1 1,0

Γ

ψ−→
l′ r′

t ′ 3,3 1,0
b′ 2,3 2,1

Γ′

A mapping ψ = (π,ϕ1,ϕ2) is also given, such that π = (1 → 2,2 → 1), ϕ1 = (t → r′,b →
l′), and ϕ2 = (l → t ′,r → b′). It can easily be checked that ψ is a local isomorphism.
For game Γ, (t, l) ≺1 (b,r) and (t, l) ∼2 (b,r), but for game Γ′, ψ(t, l) ≺π(1) ψ(b,r) and
ψ(t, l)≺π(2) ψ(b,r). Therefore, the isomorphism is not weak.

153

C.2. Equivalence Classes of Games 154

Given two strong isomorphic games Γ ∼s Γ′, it holds that Γ and Γ′ are weakly iso-
morphic, Γ ∼w Γ′, because the second one is less restrictive than the first one. Since local
isomorphisms are always less restrictive than weak isomorphisms, the following holds:

Lemma C.1 Given two games Γ and Γ′, the following holds:

- if Γ ∼s Γ′, then Γ ∼w Γ′.

- if Γ ∼w Γ′, then Γ ∼` Γ′.

However, the implication is not true in the opposite sense. If two games Γ and Γ′ are
locally isomorphic, it does not mean that they are also weakly isomorphic.

Local Nash Isomorphism. A local Nash isomorphism will be considered, as a particular
case of local isomorphims with more restrictive conditions. This case has the minimum
requirement that the structure of Nash equilibria should be partially preserved.

Definition C.2 [Local Nash isomorphism]. A local Nash isomorphism is a mapping ψ,
such that for any strategy profile a in Γ, a ∈ PNE iff ψ(a) ∈ PNE.

Example C.2 Given two games Γ1 and Γ2, such that there is an isomorphism under a
local Nash isomorphism, but not under a local isomorphism,

l r
t 1,1 0,0
b 0,0 1,1

Γ1

l′ r′

t ′ 0,0 0,0
b′ 0,0 1,1

Γ2

where utilities corresponding to the Nash equilibria are boldfaced.

Moreover, it is possible to write Γ ∼`N Γ′, when two games Γ and Γ′ are Nash isomorphic
locally.

Note that, different morphisms are just refinements: ∼s =⇒ ∼w =⇒ ∼` =⇒ ∼`N .
That is, Γ ∼s Γ′, Γ ∼w Γ′, Γ ∼` Γ′, Γ ∼`N Γ′. But this is not true for the number of Nash
equilibria (∼#N), Γ ∼#N Γ′.

C.2 Equivalence Classes of Games

This section is focused in classifying games considering their structure as pure Nash equi-
libria. In order to have a classification of strategy games with the same number of players
according to the structure of pure Nash equilibria, a first naive approach is to consider

Appendix C. Small Games. Graphic Representation 155

games as equivalent, if they have the same number of Nash equilibria. Just counting
pure Nash equilibria is different from a Local Nash isomorphism, as it can be seen in the
following example.

Example C.3 Two two-player games Γ and Γ1 are given. Both of them have two pure
Nash equilibria. But they are not isomorphic under a local Nash isomorphism,

l r
t 1,0 0,0
b 1,0 1,1

Γ3

l′ r′

t ′ 1,0 0,0
b′ 0,1 0,0

Γ4

where utilities corresponding to Nash equilibria are boldfaced.

Given two weak games Γ and Γ′, it is possible to define an identity mapping between
both games, so that these games are defined as weakly-identical.

Definition C.3 Two games Γ and Γ′ are called weakly-identical, iff the identity mapping
is a weak isomorphism between both games. It is possible to write Γ ∼I

w Γ′.

Therefore, by definition C.3 if Γ ∼I
w Γ′, Γ and Γ′ games are taken as two “representa-

tions” of the same game. Thus, players and preferences are the same in both games, but
preferences are encoded with different utility values. The encoding 〈u〉= (〈u1〉, . . . ,〈un〉)
in Γ has a well defined block structure because, for each 1 ≤ i ≤ n, the block correspond-
ing to the utilities of player i is 〈ui〉 = 〈ui(0), . . . ,ui(k−1)〉. This block structure is used
to consider 〈ui〉 in Γ and 〈u′i〉 in Γ′. In the following lemma, both blocks have the same
number of different values, as it will be proven.

Lemma C.2 Game Γ is given. Let n be the number of players, and k the number of
strategy profiles, and for 0 ≤ i ≤ n, 0 < δi < k exists, such that for any Γ′ ∼I

w Γ it holds
that δi = #{u′i(a)|a ∈ A}.

Proof. Given a game Γ, the pre-order induced by ui is noted as ≺i and ∼i, that is s ≺i s′ iff
ui(s) < ui(s′), and s ∼i s′ iff ui(s) = ui(s′). Let s1r1

i s2r2
i · · ·slrl

i · · ·r
k−1
i sk be the ordering

of all the strategy profiles belonging to A, where relations r j
i ∈ {≺i,∼i} are based on

ui. Let δi the number of different values in the preceding chain. Since Γ′ ∼I
w Γ, the

identity is a weak isomorphism. Also, the utilities of Γ and Γ′ verify ui(s) < ui(s′) iff
u′i(s) < u′i(s

′) and ui(s) = ui(s′) and u′i(s) = u′i(s
′). Let r̂ be the relationship based in u′i,

it holds that sris′ is equivalent to sr̂is′ and therefore the number of different values in the
chain s1r̂1

i s2r̂2
i · · ·sl r̂l

i · · · r̂
k−1
i sk is also δi.

2

C.2. Equivalence Classes of Games 156

The lexicographic order of games Γ and Γ′ is such that Γ ∼I
w Γ′ and Γ 6= Γ′ is taken.

This order is based on the block structure taken by game encoding. Both games have the
same number of players and the same set of actions. Consequently, the encoding of Γ
and Γ′ differs only in the encoding of utilities, that is (〈u1〉, . . . ,〈un〉) 6= (〈u′1〉, . . . ,〈u′n〉).
The leftmost player i, such that 〈ui〉 6= 〈u′i〉 is considered. Both utilities are expanded
as follows: 〈ui〉 = 〈ui(0), . . . ,ui(k − 1)〉 and 〈u′i〉 = 〈u′i(0), . . . ,u′i(k − 1)〉. The leftmost
profile l, such that ui(l) 6= u′i(l) is taken. It is defined Γ <lex Γ′ if ui(l)< u′i(l). Otherwise
Γ >lex Γ′. In case that it is not possible to find such i and l, both games coincide and
Γ =lex Γ′ is defined.

Definition C.4 A game Γ is given. Then,

- minWeak(Γ) = lexMin{Γ′|Γ′ ∼I
w Γ} is defined as a weakly-identical game with lex-

icographically minimal game encoding.

- minLocal(Γ) = lexMin{Γ′ | Γ′ ∼I
` Γ} is defined as a local-identical game with

lexicographically minimal game encoding.

The following lemma shows that, the minWeak(Γ) is the encoding of Γ, using values
as small as possible.

Lemma C.3 Given a game Γ = (N,(Ai)i∈N ,(ui)i∈N), the pre-orders induced by ui are ≺i

and ∼i, that is s ≺i s′ iff ui(s) < ui(s′), and s ∼i s′ iff ui(s) = ui(s′). Then, the following
conditions are equivalent:

1. Γ′ = minWeak(Γ).

2. Γ′ = (N,(Ai)i∈N ,(u′i)i∈N). Suppose |A| = k and let s1r1
i s2r2

i · · ·slrl
i · · ·r

k−1
i sk be an

ordering of all strategy profiles belonging to A. Relations r j
i ∈ {≺i,∼i} are based

on ui. The utility u′i of player i in Γ′ verifies u′i(s1) = 0, and for 0 < l < k, u′i(sl+1) =

u′i(sl) if sl ∼i sl+1, and u′i(sl+1) = 1+u′i(sl) if sl ≺i sl+1.

3. Γ′ = (N,(Ai)i∈N ,(u′i)i∈N), such that Γ′ ∼I
w Γ and, for any i ∈ N, u′i(a) ∈ {0, . . . ,δi −

1}, where δi = #{ui(a)|a ∈ A}.

Proof. The fact that point (1) implies (2), will be proven next. Let
s1r1

i s2r2
i · · ·rl

isl+1rl+1
i sl+2 · · ·rk−1

i sk be the pre-order obtained by (2) and
s1r̂1

i s2r̂2
i · · · r̂l

isl+1r̂l+1
i sl+2 · · · r̂k−1

i sk be the pre-order obtained by lexMin. Recall that u′i
are the utilities corresponding to (2), and ûi are called the utilities corresponding to
lexMin.

The proof proceeds by induction using the length l of rl
i . Initially ui(s1) = ûi(s1) = 0,

because 0 is both a starting value in (2) and the smallest value in lexicographical order. It

Appendix C. Small Games. Graphic Representation 157

is supposed that utilities both coincide until sl . Let us consider sl+1. It is also assumed that
u′i(sl) = u′i(sl+1) in Γ′ and, since equivalences are maintained through identity, ûi(sl+1) =

ûi(sl) in Γ′ is obtained. Now, it is supposed that u′i(sl+1) = 1+u′i(sl). Then, we are forced
to ûi(sl+1)> ûi(sl), and the best lexicographical choice is ûi(sl+1) = 1+ ûi(sl).

In order to prove that (2) implies (3) note that, by construction, the game Γ′ given in
(2) is weakly identical to the initial Γ. Moreover, ascending values given to the utilities
force the chain 0 < · · ·< δi −1.

Let us prove that (3) implies (1). Let s1r1
i s2r2

i · · ·rl
isl+1rl+1

i sl+2 · · ·rk−1
i sk be the pre-

order obtained by (3), and s1r̂1
i s2r̂2

i · · · r̂l
isl+1r̂l+1

i sl+2 · · · r̂k−1
i sk be the pre-order obtained

getting lexMin.
Now, u′i is the utility corresponding to (3) and ûi is an utility corresponding to lexMin.

Since in Γ, δi values are needed to encode utilities, we are forced to start with the smallest
one. The smallest value is 0, otherwise there will not be enough increasing values. More-
over, a lexicographical order forces the first utility to be 0. Then, ui(s1) = ûi(s1) = 0 is
obtained.

Let us deal with profile sl+1. There is no problem when u′i(sl) = u′i(sl+1). The case
u′i(sl+1)> u′i(sl) is considered. Since in Γ′ we have the number of strictly needed values
to encode utilities, we are forced to take u′i(sl+1) = 1+u′i(sl). Moreover, the best choice
under lexicographical order forces û′i(sl+1) = 1+ û′i(sl).

2

Example C.4 Games Γ and Γ′, such that Γ ∼I
w Γ′, are considered.

l r
t 3,2 0,2
b 0,0 3,0

Γ

I−→
l′ r′

t ′ 1,1 0,1
b′ 0,0 1,0

Γ′

The utilities of Γ are encoded by the string (〈u1〉,〈u2〉) = 30032200. Since 3 =

u1(t, l) = u1(b,r) > u1(t,r) = u1(b, l) = 0, the utilities of player 1 encode preferences
(t, l)∼1 (b,r)�1 (t,r)∼1 (b, l). The same preferences can be encoded with values 1 and
0. In the case of player 2, utilities encode preferences (t, l) ∼2 (t,r) �2 (b, l) ∼2 (b,r).
As before, two values are necessary for encoding such a preference. Encoding pref-
erences with values as small as possible are obtained: minWeak(Γ) = Γ′, such that
(〈u′1〉,〈u′2〉) = 10011100.

Lemma C.4 An encoding of Γ = (N,(Ai)i∈N ,(ui)i∈N) is given. Then, the encoding of
minWeak(Γ) can be computed in time O((k1 + · · ·+ kn) log(k1 + · · ·+ kn)).

C.2. Equivalence Classes of Games 158

Proof. This lemma can be seen as an efficient implementation of the algorithm sketched
in Lemma C.3. The input is a tuple 〈u〉= (〈u1〉, . . . ,〈un〉), such that for 1 ≤ i ≤ n, 〈ui〉=
〈ui(0), . . . ,ui(k−1)〉. It is assumed that sorting algorithms are stable. Construction goes
through several steps.

- Scan 〈u〉 and fill a table 〈U〉 = (〈U1〉, . . . ,〈Un〉), such that “segment” i corresponds
to 〈Ui〉 = 〈Ui(0), . . . ,Ui(k−1)〉, where for 1 ≤ l ≤ n, Ui(i) = (ui(l), i, l) is defined.
This table can be built in time O(k1 + · · ·+ kn).

- Order 〈U〉 according to the values u of utilities in elements (u, i, l). This is achieved
in time O((k1 + · · ·+ kn) log(k1 + · · ·+ kn)).

- Scan 〈U〉 and build a table 〈V 〉, such that each 〈Vi〉 contains all values of 〈Ui〉 ordered
in a non-decreasing order of utilities. Using the process identifier i in elements
(u, i, l), can be done in time O(k1 + · · ·+ kn).

- Scan 〈V 〉 and build a table 〈R〉 containing the reduced utility values for each block
〈Ri〉. Suppose that the scanning block is started 〈Vi〉. Zero is assigned as first value
of the utility. The first time that the utility (arbitrary) increases, utility 1 is is assigned
to the corresponding item of 〈Vi〉. Proceed in this way until the end of the block.
The corresponding items are called (v, i, l). The entire process can be performed
in time O(k1 + · · ·+ kn). Note that preferences are coded with minimal values, but
strategies are not well ordered inside each block.

- Sort 〈V 〉 according to profile value l into a new 〈Z〉. As usual, time is O((k1 + · · ·+
kn) log(k1 + · · ·+ kn)).

- Scan〈Z〉 according to i and fill 〈u′〉. This is done in O(k1+ · · ·+kn). Therefore, new
utilities are ordered according to profiles in each block 〈ui〉.

2

Lemma C.5 For any pair of games Γ and Γ′, it holds that Γ ∼w Γ′ iff minWeak(Γ) ∼s

minWeak(Γ′).

Proof. First, it is proven that Γ ∼w Γ′ implies minWeak(Γ) ∼s minWeak(Γ′). Since Γ ∼w

minWeak(Γ) and Γ′ ∼w minWeak(Γ′), minWeak(Γ) ∼w minWeak(Γ′) holds. It is known
that A = A′, and it is supposed that |A| = k. The ordering given by the utilities ui in Γ of
all the strategy profiles is considered. Look at Lemma C.3. Let s1r1

i s2r2
i · · ·slrl

i · · ·r
k−1
i sk

be an ordering of all strategy profiles belonging to A, where r j
i ∈ {≺i,∼i}. For instance,

it is supposed that s1 ≺i s2 ∼i s3 ≺i s4 · · · , then ui(s1) = 0, ui(s2) = ui(s3) = 1, ui(s4) = 2.
Since minWeak(Γ) ∼w minWeak(Γ′), there exists an isomorphism ψ between

both games, and ψ(s1)r1
π(i)ψ(s2)r2

π(i) · · ·ψ(sl)rl
π(i) · · ·r

k−1
π(i) ψ(sk). For instance, if

Appendix C. Small Games. Graphic Representation 159

we begin with the same example, ψ(s1) ≺π(i) ψ(s2) ∼π(i) ψ(s3) ≺i ψ(s4) · · · .
This forces (by Lemma C.3) the following values of utilities:
u′π(i)(ψ(s1)) = 0, u′π(i)(ψ(s2)) = u′π(i)(ψ(s3)) = 1, and u′π(i)(ψ(s4)) = 2. In general,
u′i(s) = u′π(i)(ψ(s)) and minWeak(Γ)∼s minWeak(Γ′).

It remains to be proven that minWeak(Γ) ∼s minWeak(Γ′) implies Γ ∼w Γ′. By
Lemma C.1, ∼s implies ∼w. Therefore, minWeak(Γ) ∼w minWeak(Γ′) holds and the
result follows. 2

Families of Small Games

Two families of games have been considered: the family of games under weak isomor-
phisms Fw, and the family of games under local isomorphisms, F`. The weak family
was introduced by I. Young [96] to model “random”-n person ordinal games. We have to
look at utilities ui as encoding preferences ≺i, since weak isomorphisms deal with ordinal
preferences between players. Therefore, as |A|= k, k = k1 . . .kn the longest chain of strict
preferences ≺i contains at most k different elements. Using the techniques in Lemma C.3,
it is possible to re-encode utilities with values in {0, . . . ,k− 1}. Then, given a Γ game,
there exists an Γ′ = (N,(Ai)i∈N ,(u′i)i∈N), such that Γ′ ∼I

w Γ and u′i(a) ∈ {0, . . . ,k−1} for
any i and a.

Definition C.5 [96] The family Fw(n,k1, . . . ,kn) contains all strategic games
Γ = (N,(Ai)i∈N ,(ui)i∈N), such that N = {1, . . . ,n}, Ai = {0, . . . ,ki −1}, for all 0 ≤ i ≤ n.
Moreover, ui(a) ∈ {0, . . . ,k − 1}, and for any player 1 ≤ i ≤ n and profile 0 ≤ a ≤ k,
where k = k1 . . .kn.

Note that |Fw(n,k1, . . . ,kn)|= knk. Therefore, Fw contains many encodings for a given
ordinal preference, as Example C.5 shows. In the same way, the family of local isomor-
phisms games F`(n,k1, . . . ,kn) must be defined.

Definition C.6 Given a game Γ, a maxLocalNash(Γ) = lexMax{Γ′|Γ′ ∼I
`N Γ} is defined

as local-Nash identical game with lexicographically maximal game encoding.

It is well known that the number of parameters to be specified grows exponentially
with the set of players’ actions. Additionally, a strategic game may fail to capture the
structure present in the players’ interaction. However, it helps in order to understand the
game and the computation of its equilibria, as it has been shown before. This section is
focused in defining and classifying small games accordingly to the structure of PNE, and a
graphical model to represent small games is proposed as well. The graphical model should
be regarded as the way in which relationships among players under local isomorphisms
are captured and exploited. Then, a small game is defined as follows.

C.2. Equivalence Classes of Games 160

Definition C.7 [Small Game]. A small game is defined as a game with a set of players
N = {1, . . . ,n}, where n is at most 3. Each player i ∈ N, has a finite set of actions Ai,
such that Ai = {0, . . . ,ki − 1} for all 0 ≤ i ≤ n = 3, where a player i has ki actions. For
i = {1, . . . ,n} and a ∈ A1× . . .×An, the utilities of players are ui(a) = {0, . . . , |A1× . . .×
An|−1}. Then, the family Fw(n,k1, . . . ,kn) is defined for n ≤ 3, and ki ≤ 3. The classes
Fw(2,2,2), Fw(2,2,3), Fw(2,3,3), Fw(3,2,2,2) are identified with the family of small
games.

Example C.5 The class C of games Γ ∈ Fw(2,2,2), such that players 1 and 2 are indif-
ferent about the choice of any strategy profile, is considered. A game Γ belongs to C iff
exists 0 ≤ v1,v2 < 4, such that for all a, u1(a) = v1 and u2(a) = v2. Therefore, |C | = 16
and minLocal(C) is the game, such that u1(a) = u2(a) = 0 for any profile a.

Family Game Fw(2,2,2). In order to give a graphical representation of small games, a
brief analysis about their equivalence relationships is first needed. In order to perform
such analysis, a family of games Fw(2,2,2) is considered. This family has two players
with two actions Ai = {1,2}, i ∈ {0,1}. Since A = A1×A2 = {(0,0),(0,1),(1,0),(1,1)},
the length of any chain of �i is at most 4; for instance, (1,1)≺1 (1,0)≺1 (0,1)≺1 (0,0).
Therefore, ui(a) ∈ {0,1,2,3} is enough to encode all possible preferences. For example,
the preceding preference has been encoded as u1(3) = 0, u1(2) = 1, u1(1) = 2, u1(0) = 3.
Then, for this class of games, in order to obtain a complete classification it is required that
48 = 65536 games are explored. In order to compute all games, an easy way to encode
them was found.

Definition C.8 [Game’s encoding]. A small game Γ ∈ Fw(2,2,2)
is shorty encoded as the following string g 1 of 8 characters:
g= u1(0)u1(1)u1(2)u1(3)u2(0)u2(1)u2(2)u2(3) where ui(l)= {0,1,2,3}.

Applying this definition, the encoding of any small game Γ ∈ Fw(2,2,2) should
follow the following pattern: 〈11, 〈0,1,2,3〉, 〈0,1,2,3〉, 〈0,1,2,3〉, 〈0,1,2,3〉,
〈u1(0)u1(1)u1(2)u1(3)〉, 〈u2(0)u2(1)u2(2)u2(3)〉〉. All games contain a common prefix,
encoding the number of players and actions. This prefix can be avoided, and it is just
needed that the part corresponding to utilities is kept. Moreover, in order to represent
small games, the utilities are encoded as a unique string. For instance, game Γ given in
Example C.4 is encoded as g=30032200.

Counting PNE in the Family Games Fw(2,2,2). The usual algorithms for counting the
number of PNE in bi-matrix games, with players having n actions, takes time O(n2) [83].

1Note that the g string is the encoding of game Γ. In this section “g“ and ”h“ instead of Γ and Γ′ are used.

Appendix C. Small Games. Graphic Representation 161

I. Y. Powers [96] however, chose a different strategy, which consisted in counting pure
Nash equilibria via probabilistic analysis. She studied the limit distributions of number of
pure Nash equilibria strategies in Fw.

In order to deal with small games, the following ad-doc compact code, is proposed:

int countNash(string g){

int n=0;

if((g[0]>=g[2])and(g[4]>=g[5])) ++n;

if((g[1]>=g[3])and(g[5]>=g[4])) ++n;

if((g[2]>=g[0])and(g[6]>=g[7])) ++n;

if((g[3]>=g[1)]and(g[7]>=g[6])) ++n;

return n;

}

This simple approach has limitations, because games with different structures may have
the same number of Nash equilibria. Therefore, it is needed that a better answer is pro-
vided to the question: When are two games the same? Obviously, a mathematical setting
to deal with equivalence is through the notions of strong, weak and local isomorphisms.
In a first classification, small games of the Fw(2,2,2) family can be grouped, according
to the number of Nash equilibria, as it is in the following table.

PNE 0 1 2 3 4 total
Games 2592 29376 27936 5376 256 65536

Nevertheless, this first classification remains wide. Then, to reduce the number of
equivalence classes, games have been analysed from the point of view of their local iso-
morphisms.

Definition C.9 [minLocalGame]. Given a small game g, minLocalGame(game) is a
game with the same local preference relationships as g, but encoded with numbers as
small as possible.

Example C.6 Consider a game Γ = 30032200. Then, minLocalGame(30032200) =

10010000.

Therefore, applying the minLocalGame definition below, the following snipped code

C.2. Equivalence Classes of Games 162

computes the minLocalGame(game) of each game in the Fw(2,2,2) family.

string minLocalGame(string game){

string s="";

char a, b, c, d, e, f, g, h;

//first player

if(game[0]==game[2]){a=c=’0’;}

else if(game[0]<game[2]){a=’0’; c=’1’;}

else{a=’1’; c=’0’;}

if(game[1]==game[3]){b=d=’0’;}

else if(game[1]<game[3]){b=’0’; d=’1’;}

else{b=’1’; d=’0’;}

//second player

...

s=s+a+b+...;

return s;

}

The following table summarises the number of local isomorphisms for this class of
games, Fw(2,2,2). As it is shown in the following table, one type of game with 0 PNE,
and 4 types of games with 1 PNE are obtained. Therefore, the equivalence classes contain
the least amount of different games in each class.

Types of Local Isomorphism

PNE 0 1 2 3 4
Types 1 4 7 2 1

Graphical Representations

Family Game Fw(2,2,2). The set of strategy profiles {(0,0),(0,1),(1,0),(1,1)} in the
Fw(2,2,2) family can be represented as a set of nodes in a square, where edges represent
preferences. For instance, (0,0) ↔ (0,1) means (0,0) ∼2 (0,1) and (0,0) → (0,1), iff
(0,0) ≺2 (0,1) (when dealing with local preferences, the sub-index 2 can be avoided).
Figure C.1 shows this setting.

This notation allows us the representation of local preferences. To the best of this
thesis candidate’s knowledge, this approach goes back to Harsanyi and Selten ([49], page
150). Therefore, each class of equivalence is represented by a square fulfilling some
conditions about preferences. Tables C.1, C.2, and C.3 provide equivalence classes giving
information about the possible structure of Nash equilibria under a local isomorphism.
Graphs that appear in these tables are precisely the Nash dynamics graphs defined in [34].

Appendix C. Small Games. Graphic Representation 163

Local Types
1PNE, 29376 games 0PNE, 2592 games

00010101 00010110 00110101 00110110 01101001

Table C.1: This table shows the local isomorphic types for cases with 0 PNE and 1 PNE, for this
family of games. For instance, cases having 0 PNE have 1 local isomorphic type, a 01101001
game, which is a local reduced minimum, common to all games with the same PNE.

Local Type: 2PNE, 27936 games

00000101 00000110 00010001 00010010

00011001 00011010 01100110

Table C.2: This table shows the local isomorphic types for cases with 2 PNE, for this family of
games. There are 7 local isomorphic types.

Local Types
3PNE, 5376 games 4 PNE, 256 games

00000001 00011000 00000000

Table C.3: This table shows the local isomorphic types for cases with 3 PNE and 4 PNE, for this
family of games.

Local Types
0 PNE 1 PNE 2 PNE 3 PNE 4 PNE

01101001 00110110 01100110 00011010 00000001 00000000

Table C.4: This table shows the local isomorphic types for cases with 3 PNE and 4 PNE, for this
family of games.

C.2. Equivalence Classes of Games 164

(0,1)

(0,0) (1,0)

(1,1)

Figure C.1: Vertical edges represent preferences of one player, while horizontal edges represent
preferences of the other player.

Family Game Fw(2,2,3). A small game Γ ∈ Fw(2,2,3) is a game having two players
with different number of actions: A1 = {0,1} and A2 = {0,1,2}, such that A = A1×A2 =

{(0,0),(0,1), (0,2),(1,0),(1,1),(1,2)}. Therefore, ui(a) ∈ {0,1,2,3,4,5} is enough to
encode all possible preferences. Games are described using one table for both play-
ers, as the following table shows.

Player 1

Player 2
0 1 2

0 a,g b,h c, i
1 d, j e,k f , l

Γ

In this game utilities are, for instance, u1(0,0) = a and u2(0,0) = g. Coding each
matrix, we have T = abcde f ghi jkl, and Γ = 〈12,{0,1},{0,1,2},abcde f ghi jkl〉.

Note that, in a mapping ψ=(π,ϕ1,ϕ2) for this class of games, π does not swap players
since they have different numbers of actions.

Player 1

Player 2
l c r

t a,g b,h c, i
b d, j e,k f , l

Γ

ψ−→ Player 1

Player 2
l′ c′ r′

t ′ b,h a,g c, i
b′ e,k d, j f , l

ψ(Γ)

In order to explore all games in this family, a total of (62)6 = 2176782336 games has
been needed to be analysed, since the cardinal of {ui(a)|a ∈ A} is 66 = 46656. However,
as this computation takes too long, it was decided to reduce utilities values of players,
without lost information. Accordingly to this, one player takes value u1(a) = {0,1},
and the second one takes values u2(a) = {0,1,2}. Then, 46656 different games were
generated. Nevertheless, still a high number of different types of games according to PNE

resulted. For instance, if games with 6PNE: 24 different games under strong isomorphism
were obtained, 6 under weak isomorphisms, and only one under local isomorphisms.

Therefore, each class of equivalence is represented by a graph, fulfilling some con-
ditions about preferences. In these graphs, vertical edges represent preferences of one

Appendix C. Small Games. Graphic Representation 165

player. The remaining edges represent preferences of the other player. Tables C.5 and C.6
show the class of equivalences for games in Fw(2,2,3) without pure Nash equilibria, un-
der a local isomorphism. As it will be shown, there are 17 local types for 0PNE. Table C.7
shows the case of 6PNE, where 72 small games have only one local type.

Local Types: 0PNE, reduced games: 17

(001010010001,108) (001010010012,72) (001010010102,72) (001010021012,12)

(001010021102,24) (001010120102,12) (001110110001,54) (001110110012,36)

(001110120001,36) (001110120012,12) (001110120102,12) (001110010001,108)

Table C.5: Class of equivalences for family games Fw(2,2,3) with 0PNE, under a local isomor-
phism.

Family Game Fw(3,2,2,2). Now, games in Fw(3,2,2,2) having three players with two
actions, are considered. The set of strategy profiles for these games is A1 ×A2 ×A3 =

{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)}. This set can be
represented as a set of nodes in a cube. Vertices represents a strategy profile for players,
and each edge the movements that they make. Therefore, the following is adopted: player
1 moves between points {000,100}, {001,101}, {010,110} and {011,111}. Player
2 moves between points {000,010}, {001,011}, {100,110} and {101,111}. Player 3
moves between points {000,001}, {010,011}, {100,101} and {110,111}.

110

111

011001

000

100

101

010

C.2. Equivalence Classes of Games 166

Local Types: 0PNE, reduced games: 17

(001110010012,36) (001110010102,36) (001110021001,36) (001110021012,12)

(001110021102,12)

Table C.6: Continuation of the previous table C.5. Class of equivalences for family games
Fw(2,2,3) with 0PNE, under a local isomorphism.

Local Types: 6PNE, reduced games: 1

(000000000000,72)

Table C.7: Class of equivalences for family of games Fw(2,2,3) with 6PNE, under a local isomor-
phism.

As before, games with ordinal preference relations �i are considered. Since a ∈
A1 × A2 × A3 = {(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)},
the length of any chain of �i is at most 8. Therefore, ui(a) = {0,1,2,3,4,5,6,7} for
i = {1,2,3} is enough in order to encode all possible preferences.

The following example shows a strategic game with three players and two
actions each. Players’ actions are Ai = {0,1}, for i ∈ {0,1,2}. In these tables,
u1(0,0,0) = a, u2(0,0,0) = i and u3(0,0,0) = q. Giving a code to each matrix, a game
Γ = 〈13,{0,1},{0,1},{0,1},abcde f ghi jklmnopqrstuvwx〉 is obtained.

Example C.7 A strategic game with three players and two actions.

Player 1

Player 2
0 1

0 a, i,q c,k,s
1 e,m,u g,o,w

Player 3, action (0)

Player 1

Player 2
0 1

0 b, j,r d, l, t
1 f ,n,v h, p,x

Player 3, action (1)

Appendix C. Small Games. Graphic Representation 167

The following notation is adopted: player 1 with actions (t,b) (top, bottom), player
2 with actions (l,r) (left, right), and player 3 with actions (F,B) (Forward, Backward).
Additionally, each player has 2 actions, therefore it is possible to swap players’ actions.

Applying the mapping ψ = (π,ϕ1,ϕ2,ϕ3), where π = (1 → 3, 2 → 1, 3 → 2),
ϕ1 = (t → F, b → B), ϕ2 = (l → t, r → b), and ϕ3 = (F → l, B → r) then, 3PNE

have been acquired in the strategic profiles (1,0,0), (0,0,1) and (1,1,1).

Player 1

Player 2
l r

t 0,0,0 0,1,1
b 1,1,1 1,0,0

Player 3, action (F)

Player 1

Player 2
l r

t 1,0,1 0,1,0
b 1,0,0 0,0,1

Player 3, action (B)
ψ−→

Player 1′

Player 2′

l′ r′

t 0,0,0 0,1,1
b 1,1,0 1,0,0

Player 3′, action F ′

Player 1′

Player 2′

l′ r′

t 1,1,1 0,0,1
b 0,0,1 0,1,0

Player 3′, action B′

Like in the previous family of games, the cardinal of {ui(a)|a ∈ A} was computed and
it is 88. Since, there are three players, it is needed that a total of (83)8 games are analysed.
However, since this computation could take too long, it was that decided that utility values
of players would be reduced, without losing information. In this way, (23)8 games were
obtained. For instance, in a first classification, these games can be grouped according to
the number of PNE, obtaining 4096 different games with 8PNE.

The classification of this family of games was possible through reduction of player’
utilities. According to isomorphism types, games were analysed and classified. For in-
stance, 144 different “reduced“ strong isomorphic games, and only 1 local isomorphic
game for games with 8PNE were acquired. Therefore, it is possible to represent these
game taking into account a local isomorphism. For example, Figure C.2 shows a graphi-
cal representation of the previous Example C.7. Note that it is easy to detect the 3PNE in
the game represented.

Finally, as an example of graphs for this family of games, two graphs of local isomor-
phisms are shown in Figure C.2. Case (a) shows the graph for games with 0PNE, while
the second graph, games with 8PNE.

C.2. Equivalence Classes of Games 168

Γ ψ(Γ)
010000

100 110

011001

111101

001 011

101 111

010000

100 110

Table C.8: Graph representation of the previous Example game C.7. The game Γ =
abcde f ghi jklmnopqrstuvwx, where an identity mapping is tblrFB, and written briefly as ψ(Γ) =
im jnkol pqurvswtxaeb f cgdh.

0PNE (a) 8PNE (b)

Figure C.2: Case (a) shows the graph for games with 0PNE, and case (b), games with 8PNE.

Part V

Publications and Projects

169

Appendix A

List of Publications

Publications that have been written during the development of the research here presented,

[41] J. Gabarro, A. Garcia and M. Serna. On the complexity of game isomor-
phism. Mathematical Foundations of Computer Science, MFCS:LNCS 4708:559-
571, 2007. http://dx.doi.org/10.1007/978-3-540-74456-6 50

[39] M. Clint, P. Kilpatrick, A. Stewart, J. Gabarro, A. Garcı́a. Bounded site
failures: an approach to unreliable grid environments. In ”Making Grids
Work”, Proceedings of the CoreGRID Workshop on Programming Models
and P2P System Architecture, Grid Systems and Environments. Edited by
M. Danelutto, P. Fragopoulou, V. Getov. Springer, 175-187, 2008.
http://www.springerlink.com/content/uk21g31059737777/

[44] Gabarro, J; Garcia, A.; Serna, M; Stewart, A; Kilpatrick, P.:, Analysing
Orchestrations with Risk Profiles and Angel-Daemon Games. In ”Grid Computing
Achievements and Propects”, CoreGRID Integration Workshop 2008. Edited
by S. Gorlatch, P. Fragopoulou, Th. Priol. Springer 121-132, 2008.
http://www.springerlink.com/content/m13372778r57p5n8/

[42] Joaquim Gabarro and Alina Garcia and Maria J. Serna, On the Complexity of
Equilibria Problems in Angel-Daemon Games. COCOON-2008: LNCS 5092:31-
40. http://www.springerlink.com/content/dvkv7753nh514203/

[43] Joaquim Gabarro, Alina Garcia, Maria J. Serna, The complexity of game
isomorphism. Theoretical Computer Science, Vol. 412(48): 6675–6695, 2011.
http://www.sciencedirect.com/science/article/pii/S0304397511006323

[40] Joaquim Gabarro, Alina Garcia, Maria J. Serna, On the Hardness of game
equivalence under Local Isomorphism. Theoretical Informatics and Applications.
(Submitted).

171

172

Appendix B

List of Projects

Projects in which I participated during the development of the research here presented,

- Técnicas de Optimización Avanzadas para Problemas Complejos (TRACER),

(CYCIT TIC2002-04498-C05-03).

- Fundamental Aspects of Global Computing Systems (FLAGS),

(EU IS- 2001-33116).

- Autoorganización en Sistemas de Comunicación Emergentes (ASCE),

(MEC-TIN2005-09198-C02-02).

- Algorithmic principles for building efficient Overlay computers (AEOLUS),

(FET pro-actives Integrated Project 15964).

- FP6 Network of Excellence CoreGRID founded by the European Commision,

(Contract IST-2002-004265).

- Métodos Formales y algoritmos para el diseño de sistemas (FORMALISM),

(MEC-TIN2007-66523).

173

174

Bibliography

[1] Risk management guide for information technology systems recommendations of
the national institute of standards and technology. Technical report, USA/NIST.

[2] Workflow Patterns home page. Also available as:
http://www.workflowpatterns.com/.

[3] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

[4] M. Agrawal and T. Thierauf. The Formula Isomorphism Problem. SIAM Journal
on Computing, 30(3), 2000.

[5] Luis von Ahn. Games with a purpose. IEEE Computer, 39:92–94, 2006.

[6] George Akerlof and Robert Shiller. Animal spirits how human psychology drives
the economy, and why it matters for global capitalism. Princeton University Press,
2009.

[7] Carme Alvarez, Joaquim Gabarro, and Maria J. Serna. Polynomial Space Suf-
fices for Deciding Nash Equilibria Properties for extensive games with large trees.
In ISAAC, Lecture Notes in Computer Science, LNCS, pages 634–643. Springer,
2005.

[8] Carme Alvarez, Joaquim Gabarro, and Maria J. Serna. Pure Nash Equilibria in
Games with a Large Number of Actions. Electronic Colloquium on Computational
Complexity (ECCC), (031), 2005.

[9] Carme Alvarez, Joaquim Gabarro, and Maria J. Serna. Pure Nash Equilibria in
Games with a Large Number of Actions. In Joanna Jedrzejowicz and Andrzej
Szepietowski, editors, Mathematical Foundations of Computer Science, 30th Inter-
national Symposium, MFCS, volume 3618 of Lecture Notes in Computer Science,
LNCS, pages 95–106. Springer, 2005. 10.1007/11549345 10.

[10] Moshe Babaioff, Robert Kleinberg, and Christos H. Papadimitriou. Congestion
games with malicious players. In Jeffrey K. MacKie-Mason, David C. Parkes,

175

Bibliography 176

and Paul Resnick, editors, Proceedings of the 8th ACM conference on Electronic
commerce, EC’07, pages 103–112, New York, USA, 2007. ACM.

[11] José L. Balcázar, Antoni Lozano, and Jacobo Torán. The complexity of algorithmic
problems on succinct instances. In Computer Science, pages 351–377, New York,
USA, 1992. Plenum Press.

[12] José Luis Balcázar, Joseph Dı́az, and Joaquim Gabarro. Structural complexity 2.
Springer-Verlag, New York, USA, 1990.

[13] Ranieri Baraglia, R. Ferrini, Nicola Tonellotto, D. Adami, S. Giordano, and Ramin
Yahyapour. A Study on Network Resources Management in Grids. In Proc. Core-
GRID Integration Workshop, Cracow, 2006.

[14] A.P. Barros, M. Dumas, and P. Oaks. A Critical Overview of the Web Services
Choreography Description Language (WS-CDL). BPTrends, 2005.

[15] Amos Beimel and Enav Weinreb. Monotone circuits for monotone weighted thresh-
old functions. Information Processing Letters, 97(1):12–18, 2006.

[16] Elise Bonzon, Marie-Christine Lagasquie-Schiex, Jérôme Lang, and Bruno Zanut-
tini. Boolean games revisited. In Proceeding of the 2006 conference on ECAI,
pages 265–269, Amsterdam, The Netherlands, 2006. IOS Press.

[17] B. Borchet, D. Ranjan, and F. Stephan. On the computational complexity of some
classical equivalence relations on boolean functions. Theory of Computing Systems,
31:679–693, 1998.

[18] L. Bougé. Le mòdele de programmation à parallélisme de donés: une perspective
sémantique. 12:541–562, 1993. Techniques et Science Informatiques.

[19] Mario Bravetti and Gianluigi Zavattaro. Towards a unifying theory for choreog-
raphy conformance and contract compliance. In Proceedings of the 6th interna-
tional conference on Software Composition, SC’07, pages 34–50, Berlin, Heidel-
berg, 2007. Springer-Verlag.

[20] I. Caragiannis, C. Kaklamanis, P. Kanellopoulos, M. Kyropoulou, and E. Papaioan-
nou. The impact of altruism on the efficiency of atomic congestion games. volume
6084 of Lecture Notes in Computer Science, LNCS, pages 172–188. In Proc. of the
5th Symposium on Trustworthy Global Computing (TGC’10), 2010.

[21] Samuele Carpineti and Cosimo Laneve. A basic contract language for web ser-
vices. In Peter Sestoft, editor, Programming Languages and Systems, 15th Eu-
ropean Symposium on Programming (ESOP), volume 3924 of Lecture Notes in
Computer Science, LNCS, pages 197–213. Springer-Verlag, 2006.

Bibliography 177

[22] André Casajus. Weak isomorphism of extensive games. Mathematical Social Sci-
ences, 46(3):267–290, 2003.

[23] André Casajus. Super weak isomorphism of extensive games. Mathematical Social
Sciences, 51(1):107–116, 2006.

[24] William R. Cook and Janel Barfield. Web Services versus Distributed Objects:
A Case Study of Performance and interface design. In ICWS’06: Proceedings of
the IEEE International Conference on Web Services (ICWS’06), pages 419–426,
Washington, DC, USA, 2006. IEEE Computer Society.

[25] William R. Cook, Sourabh Patwardhan, and Jayadev Misra. Workflow Patterns in
Orc. In COORDINATION, pages 82–96, 2006.

[26] A. A. Cournot. Recherches sur les principes mathématiques de la théorie des
richesses. L. Hachette, Paris, 1838.

[27] Marco Danelutto and Marco Aldinucci. Algorithmic skeletons meeting grids. Par-
allel Comput., 32(7):449–462, 2006.

[28] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The
complexity of computing a Nash equilibrium. In STOC’06: Proceedings of the
thirty-eighth annual ACM symposium on Theory of computing, pages 71–78, New
York, USA, 2006. ACM.

[29] Boudewijn P. de Bruin. Game transformations and game equivalence. Technical
report, 1999.

[30] Edsger W. Dijkstra. Cooperating sequential processes, pages 65–138. Springer-
Verlag, New York, USA, 2002.

[31] C Dwork, D Peleg, N Pippenger, and E Upfal. Fault tolerance in networks of
bounded degree. In STOC’86: Proceedings of the eighteenth annual ACM sympo-
sium on Theory of computing, pages 370–379, New York, USA, 1986. ACM.

[32] Kfir Eliaz. Fault Tolerant Implementation. Review of Economic Studies, 69(3):589–
610, 2002.

[33] Susan Elmes and Philip J. Reny. On the strategic equivalence of extensive form
games. Journal of Economic Theory, 62(1):1–23, 1994.

[34] Alex Fabrikant, Christos H. Papadimitriou, and Kunal Talwar. The complexity of
pure Nash equilibria. In Proceedings of the thirty-sixth annual ACM symposium on
Theory of computing, STOC’04, pages 604–612, New York, USA, 2004. ACM.

Bibliography 178

[35] J. Feigenbaum, D. Koller, and P. Shor. A game-theoretic classification of inter-
active complexity classes. In SCT’95: Proceedings of the 10th Annual Structure
in Complexity Theory Conference (SCT’95), page 227, Washington, USA, 1995.
IEEE Computer Society.

[36] Joan Feigenbaum. Games, complexity classes, and approximation algorithms. In
Proceedings of the International Congress of Mathematicians, Vol. III, number Ex-
tra Vol. III, pages 429–439, 1998.

[37] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

[38] Lance Fortnow, Valentine Kabanets, Russell Impagliazzo, and Christopher Umans.
On the complexity of succinct zero-sum games. In IEEE Conference on Computa-
tional Complexity, pages 323–332, 2005.

[39] Joaquim Gabarro, Alina Garcia, Maurice Clint, Peter Kilpatrick, and Alan Stew-
art. Bounded Site Failures: an Approach to Unreliable Grid Environments. In
V. Getov M. Danelutto, P. Fragopoulou, editor, CoreGRID Workshop on A Grid
Programming Model, A Grid and P2P Systems Architecture, A Grid Systems Tools
and Environments, pages 175–187. Springer, 2007.

[40] Joaquim Gabarro, Alina Garcia, and Maria Serna. On the hardness of game equiv-
alence under local isomorphism. In Theoretical Informatics and Applications.

[41] Joaquim Gabarro, Alina Garcia, and Maria Serna. On the complexity of game
isomorphism. In Ludek Kucera and Antonin Kucera, editors, Mathematical Foun-
dations of Computer Science, 32nd International Symposium, MFCS 2007, volume
4708 of Lecture Notes in Computer Science, LNCS, pages 559–571. Springer, 2007.

[42] Joaquim Gabarro, Alina Garcia, and Maria Serna. On the complexity of equilibria
problems in angel-daemon games. In Xiaodong Hu and Jie Wang, editors, Com-
puting and Combinatorics, volume 5092 of Lecture Notes in Computer Science,
LNCS, pages 31–40. Springer, 2008.

[43] Joaquim Gabarro, Alina Garcia, and Maria Serna. The complexity of game iso-
morphism. Theoretical Computer Science, 412(48):6675 – 6695, 2011.

[44] Joaquim Gabarro, Alina Garcia, Maria Serna, Peter Kilpatrick, and Alan Stew-
art. Analysing Orchestrations with Risk Profiles and Angel-Daemon Games. In
Sergei Gorlatch, Paraskevi Fragopoulou, and Thierry Priol, editors, Grid Comput-
ing, pages 121–132. Springer, 2008.

Bibliography 179

[45] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. W.H.Freeman and Co., San Francisco, 1979.

[46] Andrew Gilpin and Tuomas Sandholm. Finding equilibria in large sequential games
of imperfect information. In EC’06: Proceedings of the 7th ACM conference on
Electronic commerce, pages 160–169, New York, USA, 2006. ACM.

[47] Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. Pure Nash Equilibria:
Hard and Easy Games. In Journal of Artificial Intelligence Research, pages 215–
230. ACM Press, 2003.

[48] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. Limits to parallel
computation: P-completeness theory. Oxford University Press, Inc., New York,
USA, 1995.

[49] John C. Harsanyi and Reinhard Selten. A General Theory of Equilibrium Selection
in Games. MIT Press, Cambridge, MA, 1988. With a foreword by Robert Aumann.

[50] Martin Hepp and Katharina Siorpaes. On to game: Weaving the Semantic Web
by Online Games. In Sean Bechhofer, Manfred Hauswirth, Jörg Hoffmann, and
Manolis Koubarakis, editors, The Semantic Web: Research and Applications, 5th
European Semantic Web Conference, ESWC 2008, pages 751–766, 2008.

[51] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International
(UK) Ltd., 1985.

[52] Charles A. Holt and Alvin E. Roth. The Nash equilibrium: A perspective. Pro-
ceedings of the National Academy of Sciences of the United States of America,
101(12):3999–4002, 2004.

[53] John C. Hull. Risk Management and Financial Institutions. Prentice Hall Interna-
tional (UK), 2006.

[54] Diane Jordan (IBM) and John Evdemon (Microsoft). Technical Committee: OA-
SIS Web Services Business Process Execution Language (WSBPEL) TC Chair(s),
2007.

[55] Sham Kakade, Michael Kearns, John Langford, and Luis Ortiz. Correlated equi-
libria in graphical games. In Proceedings of the 4th ACM conference on Electronic
commerce, EC’03, pages 42–47, New York, USA, 2003. ACM.

[56] G. Kandaswamy, L. Fang, Y. Huang, S. Shirasuna, S. Marru, and D. Gannon.
Building web services for scientific grid applications. IBM J. Res. Dev., 50(2-
3):249–260, 2006.

Bibliography 180

[57] Michael J. Kearns, Michael L. Littman, and Satinder P. Singh. Graphical Models
for Game Theory. In UAI’01: Proceedings of the 17th Conference in Uncertainty
in Artificial Intelligence, pages 253–260, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

[58] David Kitchin, William R. Cook, and Jayadev Misra. A Language for Task Or-
chestration and Its Semantic Properties. In Christel Baier and Holger Hermanns,
editors, Concurrency Theory, 17th International Conference, CONCUR 2006, vol-
ume 4137 of Lecture Notes in Computer Science, LNCS, pages 477–491. Springer,
2006.

[59] David Kitchin, Adrian Quark, William R. Cook, and Jayadev Misra. The Orc
programming language. In David Lee, Antónia Lopes, and Arnd Poetzsch-Heffter,
editors, Proceedings of FMOODS/FORTE 2009, volume 5522 of Lecture Notes in
Computer Science, LNCS, pages 1–25. Springer, 2009.

[60] Frank H. Knight. Risk, Uncertainty and Profit. Houghton Mifflin, 1921. Electronic
acces at http://www.econlib.org/library/Knight/knRUP.html.

[61] J. Kobler, U. Schoning, and J. Torán. The Graph Isomorphism Problem: Its Struc-
tural Complexity. Birkhauser Verlag, Basel, Switzerland, 1993.

[62] Natallia Kokash. Risk Management for Service-Oriented Systems. In Luciano
Baresi, Piero Fraternali, and Geert-Jan Houben, editors, Web Engineering, volume
4607 of Lecture Notes in Computer Science, LNCS, pages 563–568. Springer, 2007.

[63] Natallia Kokash and Vincenzo DAndrea. Evaluating Quality of Web Services:
A Risk-Driven Approach. In Witold Abramowicz, editor, Business Information
Systems, volume 4439 of Lecture Notes in Computer Science, LNCS, pages 180–
194. Springer, 2007.

[64] D. Koller and N. Megiddo. The complexity of two person zero-sum games in
extensive form. Games and Economic Behavior, (4):528–552, 1992.

[65] Elias Koutsoupias and Christos Papadimitriou. Worst-case equilibria. In 16th An-
nual Symposium on Theoretical Aspects of Computer Science, volume 1563 of Lec-
ture Notes in Computer Science, LNCS, pages 404–413. Springer-Verlag, Berlin,
1999.

[66] Richard E. Ladner. The circuit value problem is log space complete for p. ACM
Special Interest Group on Algorithms and Computation Theory, SIGACT News,
7(1):18–20, 1975.

Bibliography 181

[67] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Gener-
als Problem. Transactions on Programming Languages and Systems (TOPLAS),
4(3):382–401, 1982.

[68] Frank Leymann. Web Services Flow Language (WSFL 1.0). Technical report,
IBM, 2001.

[69] Stephen Paul Marsh. Formalising Trust as a Computational Concept. PhD thesis,
University of Stirling, 1994.

[70] A. Mas-Colell, M.D. Whinston, and J.R. Green. Microeconomic Theory. Oxford
University Press, New York, 1995.

[71] Marios Mavronicolas, Burkhard Monien, and Klaus Wagner. Weighted boolean
formula games. In Xiaotie Deng and Fan Graham, editors, Internet and Network
Economics, volume 4858 of Lecture Notes in Computer Science, LNCS, pages 469–
481. Springer, 2007.

[72] J.C.C. McKinsey. Isomorphism of games, and strategic equivalence. Annals of
Mathematics Study (24), pages 117–130, 1950.

[73] A. McLennan and J. Berg. Asymptotic expected number of Nash equilibria of two-
player normal form games. Games and Economic Behavior, 51:264–295, 2005.

[74] Robin Milner. Communication and concurrency. Prentice Hall International (UK)
Ltd., 1995.

[75] Jayadev Misra. A Programming Model for the Orchestration of Web Services. In
SEFM’04: Proceedings of the Software Engineering and Formal Methods, Second
International Conference, pages 2–11, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[76] Jayadev Misra and William Cook. Computation Orchestration: A Basis for Wide-
Area Computing. Software and Systems Modeling (SoSyM), 6(1):83–110, 2007.

[77] Thomas Moscibroda, Stefan Schmid, and Roger Wattenhofer. When selfish meets
evil: byzantine players in a virus inoculation game. In PODC’06: Proceedings
of the twenty-fifth annual ACM symposium on Principles of distributed computing,
pages 35–44, New York, USA, 2006. ACM.

[78] Pierfrancesco La Mura. Game networks. In Proceedings of the 16th Conference
on Uncertainty in Artificial Intelligence (UAI), pages 335–342. UAI, 2000.

[79] John Nash. Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences of the United States of America, 36(1):48–49, 1950.

Bibliography 182

[80] John Nash. Non-cooperative games. The Annals of Mathematics, 54(2):pp. 286–
295, 1951.

[81] John Von Neumann and Oskar Morgenstern. Theory of Games and Economic Be-
havior. Princeton University Press, 1944.

[82] Noam Nisan, T. Roughgarden, E Tardos, and V. Vazirani. Algorithmic Game The-
ory. Cambridge University Press, New York, USA, 2007.

[83] M. J. Osborne. An Introduction to Game Theory. Oxford University Press, 2003.

[84] Martin J Osborne and Ariel Rubinstein. A Course in Game Theory. MIT Press,
1994.

[85] Christos Papadimitriou. Algorithms, games, and the internet. In Proceedings of
the thirty-third annual ACM symposium on Theory of computing, STOC’01, pages
749–753, New York, USA, 2001. ACM.

[86] Christos H. Papadimitriou. Computational complexity. Addison-Wesley Publishing
Company, Reading, MA, 1994.

[87] Christos H. Papadimitriou. Game theory and mathematical economics: a theoret-
ical computer scientist’s introduction. In 42nd IEEE Symposium on Foundations
of Computer Science (Las Vegas, NV, 2001), pages 4–8. IEEE Computer Soc., Los
Alamitos, CA, 2001.

[88] Mike P. Papazoglou and Dimitrios Georgakopoulos. Introduction: Service-oriented
computing. Communication of the ACM, 46(10):24–28, 2003.

[89] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. Journal of ACM, 27:228–234, 1980.

[90] B. Peleg, J. Rosenmuller, and P. Sudholder. The Canonical Extensive Form of a
Game Form - Part I - Symmetries, 1996. Institute of Mathematical Economics,
Bielefeld University, Working Paper No.253.

[91] Chris Peltz. Web Services Orchestration and Choreography. Computer, 36(10):46–
52, 2003.

[92] Michal Penn, Maria Polukarov, and Moshe Tennenholtz. Congestion games with
failures. In Proceedings of the 6th ACM conference on Electronic commerce,
EC’05, pages 259–268, New York, USA, 2005. ACM.

Bibliography 183

[93] Michal Penn, Maria Polukarov, and Moshe Tennenholtz. Congestion games with
load-dependent failures: identical resources. In Proceedings of the 8th ACM con-
ference on Electronic commerce, EC’07, pages 210–217, New York, USA, 2007.
ACM.

[94] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1981.

[95] Nicholas Pippenger. The complexity of computations by networks. IBM Journal
of Research and Development, 31(2):235–243, 1987.

[96] Imelda Young Powers. Limiting Distributions of the Number of Pure Strategy Nash
Equilibria in n-Person Games. International Journal of Game Theory, 19:277–286,
1990.

[97] John H. Reif and Stephen R. Tate. On threshold circuits and polynomial computa-
tion. SIAM Journal on Computing, 21(5):896–908, 1992.

[98] Wolfgang Reisig. Petri Nets: an Introduction. Springer-Verlag, New York, USA,
1985.

[99] S. Rosario, A. Benveniste, S. Haar, and C. Jard. Probabilistics QoS and soft con-
tracts for transaction based Web services orchestrations. Services Computing, IEEE
Transactions on, 1(4):187 –200, 2008.

[100] R.W. Rosenthal. A Class of Games Possessing Pure-Strategy Nash Equilibria. In-
ternational Journal of Game Theory, 2:65–67, 1973.

[101] Davide Sangiorgi and David Walker. PI-Calculus: A Theory of Mobile Processes.
Cambridge University Press, 2001.

[102] Grant Schoenebeck and Salil Vadhan. The computational complexity of Nash equi-
libria in concisely represented games. In EC’06: Proceedings of the 7th ACM con-
ference on Electronic commerce, pages 270–279, New York, USA, 2006. ACM.

[103] Yoav Shoham. Computer science and game theory. Communication of the ACM,
51:74–79, 2008.

[104] G. C. Silaghi, A. Arenas, and L. Silva. Reputation-based trust management systems
and their applicability to grids. Technical report, Institute on Programming Models,
CoreGRID-Network of Excellence, 2007.

[105] Katharina Siorpaes and Martin Hepp. Games with a Purpose for the Semantic Web.
IEEE Intelligent Systems, 23:50–60, 2008.

Bibliography 184

[106] Alan Stewart, Maurice Clint, Terry Harmer, Peter Kilpatrick, Ron Perrott, and
Joaquim Gabarro. Assessing the reliability and cost of web and grid orchestrations.
In Proceedings of the The Third International Conference on Availability, Reliabil-
ity and Security, ARES 2008, volume 0, pages 428–433, Los Alamitos, CA, USA,
2008. IEEE Computer Society.

[107] Alan Stewart, Joaquim Gabarro, Maurice Clint, Terence J. Harmer, Peter Kil-
patrick, and R. Perrott. Managing Grid Computations: An ORC-Based Approach.
In Minyi Guo, Laurence Tianruo Yang, Beniamino Di Martino, Hans P. Zima, Jack
Dongarra, and Feilong Tang, editors, Parallel and Distributed Processing and Ap-
plications, 4th International Symposium, ISPA 2006, volume 4330 of Lecture Notes
in Computer Science, pages 278–291. Springer, 2006.

[108] P. Sudholter, J. Rosenmuller, and B. Peleg. The Canonical Extensive Form of
a Game Form - Part II - Representation. Journal of Mathematical Economics,
33(3):299–338, 2000.

[109] S. Thatte. XLANG: Web Services for Business Process Design. 2001.

[110] J. Torán. Personal Communication.

[111] J. van Benthem. When are two games the same? ILLC Scientific Publications.
Institute for Logic, Language and Computation (ILLC), University of Amsterdam,
1999.

[112] Denis Verdon and Gary McGraw. Risk Analysis in Software Design. IEEE Security
and Privacy, 2:79–84, 2004.

[113] J Watson. Strategy: An Introduction to Game Theory. W. W. Norton & Company,
2002.

[114] Bin Yu and Munindar P. Singh. An Evidential Model of Distributed Reputation
Management. In Proceedings of First International Conference on Autonomous
Agents and MAS, pages 294–301. ACM Press, 2002.

