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Department of Electronics, Informatics and Automation,
University of Girona.

Supervisors
Dr. Xavier Muñoz Pujol
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que no la k més, oi?) i per tota la paciència que han tingut i el suport que m’han donat.
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Abstract
The release of challenging data sets with ever increasing numbers of object categories is

forcing the development of image representations that can cope with multiple classes and

of algorithms that are efficient in training and testing. This thesis explores the problem of

classifying images by the object they contain in the case of a large number of categories.

We first investigate weather the hybrid combination of a latent generative model with

a discriminative classifier is beneficial for the task of weakly supervised image classifi-

cation. We introduce a novel vocabulary using dense color SIFT descriptors, and then

investigate classification performances by optimizing different parameters. A new way

to incorporate spatial information within the hybrid system is also proposed showing that

contextual information provides a strong support for image classification.

We then introduce a new shape descriptor that represents local image shape and its

spatial layout, together with a spatial pyramid kernel. Shape is represented as a compact

vector descriptor suitable for use in standard learning algorithms with kernels. Experi-

mental results show that shape information has similar classification performances and

sometimes outperforms those methods using only appearance information.

We also investigate how different cues of image information can be used together. We

will see that shape and appearance kernels may be combined and that additional informa-

tion cues increase classification performance.

Finally we provide an algorithm to automatically select the regions of interest in train-

ing. This provides a method of inhibiting background clutter and adding invariance to the

object instance’s position. We show that shape and appearance representation over the

regions of interest together with a random forest classifier which automatically selects the

best cues increases on performance and speed.

We compare our classification performance to that of previous methods using the au-

thors’ own datasets and testing protocols. We will see that the set of innovations intro-

duced here lead for an impressive increase on performance.
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Chapter 1

Introduction

Thousands of images are generated every day, which implies the necessity to classify,

organize and access them by an easy and faster way. With the exponential growth on high-

quality digital images, the need of semantic image classification is becoming increasingly

important to support effective image database indexing and retrieval. Classifying images

into semantic categories (e.g. coast, mountains, streets) and also classify its semantic

objects (e.g. motorbikes, sky, planes) is a challenging and important problem nowadays.

This chapter will first describe the thesis objectives and motivations. We will then answer

why it is a challenge and what we have achieved over the last years. An outline of the

thesis is finally given.

1.1 Objectives

The objective of this work is image classification. Given a set of images our objective is to

classify them by the scene/object category they contain (e.g. coast, forest, kitchen, cars,

leopards). Figure 1.1 and figure 1.2 show some images we are interested in. This prob-

lem has been the subject of many recent papers [63, 74, 76, 102, 157, 158] using specific

scene classification datasets, the Pascal Visual Object Classes datasets or the Caltech-

101 dataset. The release of challenging data sets with ever increasing numbers of object

categories, such as the recent Caltech-256 [59], is forcing the development of image rep-

resentations that can cope with multiple classes and of algorithms that are efficient in

training and testing.

1
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Figure 1.1: Images representing different scenes: coast, road, living room.

Here, we want to distinguish amongst a large amount of image categories (up to 256).

Our goal will be to develop an image classification system reducing the amount of manual

supervision required as well as reducing the computational cost to learn the classifier.

We are looking for a trade-off amongst efficiency, supervision and performance. These

characteristics are crucial for enabling it to function in real-world applications.

Moreover, when lots of categories are used it is not enough to use only one feature

(say the shape) of the objects to distinguish amongst them. For example shape may be a

good feature to distinguish between cars and airplanes but it is not good to distinguish

between horses and zebras. Our goal will be to use features and combination of features

which provide a discriminative image representation amongst all the categories we want

to classify.
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Butterfly
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Figure 1.2: Images containing different object categories. Note that by object we mean

animals, man-made objects, insects, transport etc.

1.2 Motivation

Since I bought my first digital camera I have taken thousands of images which are stored

in my computer. Every time I want to see my photos from a specific travel I have to look

through almost all the folders to find the ones which I am looking for. It would be easier

if I could access them asking by its content! In this way I could access very fast to my

sailing photos, or the photos of my young sister. And, if just by myself I generate such

amount of pictures... what about expert photograph companies?

Describing images by its content can be very useful to organize and access this amount
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of image data generated every day. Moreover there are lots of applications that can benefit

from the scene and object classification:

• Image search. Image search is the most direct application when people talk about

image classification. In this sense, we can think about searching images in the

biggest database in the world, Internet image search engines, or simply provide

applications to search images in a personal computer. Nowadays the poor perfor-

mance when searching images in Internet is due to their use of the image filename

or surrounding HTML rather than the actual image content. However, the natural

way to find images is to search visually -as humans due- using computer vision

methods. Moreover, many companies have large archives of images which they

wish to search in.

• Video search. Lots of adverts and video data have been generated during last years.

People working in marketing is often interested in look for coffee adverts televised

in the past years, or adverts filmed in the mountains. Nowadays all these adverts are

manually annotated and stored in databases using metadata information. It would

be very useful to provide techniques to access them automatically, by its content.

Also producers or film directors would be interested in recover by an automatic way

those shots of movies filmed near a lake, or those shots where Johnny Deep appears

in the middle of the ocean.

• Medical applications. In the medical field also lots of images are generated every

day, radiographies, ecographies etc. It would be very useful for the doctors to pro-

vide tools to access at these images faster, and not looking case by case as they do.

Even though one can thing that this field is very different from the objective of the

thesis we will see in Appendix B that there is a lot in common.

• Travel guide. With the current spread of cheap flights people travel every day more

and more. Instead of having a travel guide of each country we can have a digital

travel guide stored in the mobile phone and retrieve the information by taking a

picture from the famous cathedral, square.

• Video Compression. Due to the very limited bandwidth of a number of important

communication channels (e.g. wireless, underwater, low-power camera networks,
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etc.), video communication over such channels requires substantial compression of

the video signal. One of the most promising answers to this challenge is to adopt

a new compression paradigm that relies heavily in scene understanding. It would

allow the compression of different objects in a scene with specific compression

levels in such a way as to adjust the trade-off between space reduction and visual

quality on a per-object basis. The basic idea is that important objects such as ac-

tors should retain the highest visual quality, while objects in the background can

be encoded with lower quality to save bytes. Here, computer vision must help to

perform automatically the task of separating a video into the objects of which it is

composed.

• Surveillance. Fundamental systems remain relatively unintelligent requiring a per-

son screening the image sequences, looking for suspicious people and unusual

events. Advanced systems try to automatically detect this unusual events. A subject

of relative importance is that related to understand crowded environments (e.g. a

football stadium) detecting risk situations (e.g. fights).

• Aerial images. National mapping agencies spend thousands of euros each year to

keep their data up to date. This tedious and time consuming process often involves

a person in front of a computer screen comparing the current raster/vector map with

the most recent high quality satellite image. Image classification techniques could

be used to detect landscape changes with minimal human interaction

• Robotics. Provide eyes to a robot is maybe one of the most ambitious things in the

computer vision field. In this way a completely autonomous robot specialized to

recognize certain objects of interest will be able to substitute humans in dangerous

situations such as underwater exploration, fireman help etc.

However there is not a clear solution for the applications above mentioned and this is

why image classification is a very challenging problem.

1.3 Challenges

Many satisfactory studies on image classification have been presented from 2000 and it is

a not solved problem yet. This is because maybe together with the object recognition field
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(a) (b)

Figure 1.3: Illumination challenge. (a) Three road scenes affected by different illumina-

tion conditions; (b) three coast scenes affected by different illumination conditions.

it is one of the most challenging and ambitious problems on computer vision. Humans

are able to recognize a tree even if this one is far away of if it is very close to us. The

same tree has different appearances depending on the season of the year: it has no leaves

in winter, brown leaves in autumn, green leaves in spring etc. and humans can recognize

it in all these situations. There are lots of things that humans can due automatically but

are still a challenge in computer vision. Let’s go to discuss which are the major aspects

we have to take into account to develop a robust image classification system:

• Illumination. An important thing to take into account are the illumination changes

in pictures. For example, if we look at figure 1.3a we can recognize three road

scenes even thought the illumination in all of them is different. Also in figure 1.3b

three different coast scenes under different conditions are presented, and we are

able to classify them. This is a trivial task to us, and to develop a robust system we

have to consider that it has also to be able to recognize objects and scenes under

different illumination conditions.

• Intra-class variability. Identifying instances of general object/scene classes is an

extremely difficult problem, in part because of the variations among instances of

many common object classes, many of which do not afford precise definitions. A

coast scene can come in different ways: a paradisiac coast, a cliff coast or a coast

with just water (see figure 1.4a). Also a cormorant can appear in different positions,

in groups, on the floor, in the water as it is shown in figure 1.4b. That means we need

an approach that can generalize across all possible instances of certain categories.

• Inter-class variability. Related to the intra-class variability problem, another ma-

jor difficulty is the inter-class variability within the model. We do not want to
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(a)

(b)

Figure 1.4: Intra-class variation problem. (a) Different coast scenes which present high

intra-class variation; (b) different cormorant images which present high intra-class varia-

tion.

confuse between scenes of different categories that are quite similar. For example

the forest and river scene are not labelled as the same category and we can see in

figure 1.5a-b that would be easily confused. Also the harpsichord and grand piano

in figure 1.5c-d can be easily confused, they have a very similar appearance and

shape.

• Scale invariance. This is also an important thing to take into account for the scene

classification problem. We can have images with a mountain in front of us, or

images with a mountain far away and in both cases it is a mountain scene that the

system must classify. We can also have some objects (e.g a billiard) which appear

at different scale in the images. Figure 1.6 shows some examples related to this

problem.

• Others. Rotations, occlusions and view point variations should also be taken into

account.

A part from the above mentioned problems, for the scene classification task there are

other factors related to the human perception that we would like to comment: the am-

biguities and the subjectivity of the viewer. The obtainable classification accuracies de-

pend strongly on the consistency and accuracy of the manual annotations, and sometimes

annotation ambiguities are unavoidable. For example, the annotation of mountains and

open country is quite challenging. Imagine an image with fields and snow hills in the far

distance: is it open country or mountain? Vogel and Schiele [149] analyzed in detail the

ambiguities between scene categories, showing that there is a semantic transition between
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(a) (b)

(c) (d)

Figure 1.5: Inter-class variation problem. Two forest images (a) that could be easily

confused by the two river (b) images. Three harpsichord images (c) very similar with the

grand piano images (d).

categories. Their experiments with human subjects showed that many images cannot be

clearly assigned to one category.

1.4 Contributions

The contribution of this thesis can be divided into six main themes, summarized below.

Along the thesis we will show that these contributions allow us to achieve superior clas-

sification accuracy to recent publications, in all cases using the authors’ own datasets and

testing protocols. A more detailed account of contributions and how they affect the final

performance will be discussed in section 8.1.

Image representation

Dense features computed over a regular grid with overlapping patches are used to repre-

sent the images. Using sparse features, as in [116, 128], the only information is where a

Harris detector fires and, especially for natural images, this is a very impoverished repre-

sentation. Therefore dense features provides a more robust representation when working

with natural outdoor scenes. In previous work one patch is used to represent each pixel.
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(a)

(b)

Figure 1.6: Scale variation problem. (a) Mountain scenes from different scales; (b) bil-

liard images from different scales.

We propose to use different patches of different sizes to represent each pixel and deal

with possible scale variations. In order to describe these regions most of the system use

SIFT [84] over gray level images. SIFT features have been demonstrated to be one of the

best when working with object recognition and scene classification [94] as well as color

information [54]. So that we propose a novel descriptor which integrates color and SIFT

features.

Hybrid generative/discriminative approach with spatial information

We present a weakly-supervised method for scene classification based on a dimensionality

reduction using latent generative models. First we use a latent model based on probabilis-

tic Latent Semantic Analysis (pLSA) to discover objects in images by an unsupervised

way; second we represent each image by a vector, and train a multi-way classifier on

these vectors (supervised step). pLSA has been previously used by Sivic et al. [128] how-

ever there is a main difference compared to our proposal. In [128], they classify objects

as a single pLSA topic, whereas we classify scenes as a combination of pLSA topics (as

scenes are composed of multiple “objects”). As a result of this, their model is completely

unsupervised whereas ours is a combination of unsupervised and supervised.

Moreover pLSA makes no use of location information in the image, relying solely on

the appearance of a set of regions extracted from the image. Fergus et al. [44] extended the

pLSA model to include location information in a scale and translation invariant manner

(TSI-pLSA). We extended the pLSA framework to incorporate spatial information by
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using a Spatial Pyramid (SP) representation [76] which is able to learn both appearance

and location at different pyramid levels. In this case the image is represented by a Pyramid

Histogram Of visual Words (PHOW).

A new shape descriptor

We explore how the spatial distribution of shape can benefit recognition. In essence, we

wish to assess how well an exemplar image matches (the shape of) another image. To

this end, we extend the spatial pyramid method of Lazebnik et al. [76] in two ways: the

first is to represent shape in the form of edges, replacing the use of quantized appearance

patches (visual words). The second extension is to learn a class specific weighting for the

levels of the hierarchical spatial histogram [57, 76]. This captures the intuition that some

classes are very geometrically constrained (such as a stop sign) whilst others have greater

geometric variability (e.g. dolphins, boats). This descriptor is termed PHOG (for Pyramid

of Histograms of Orientation Gradients)

Merging cues

Having developed the PHOG descriptor we then introduce kernels, suitable for an SVM

classifier, that combine both appearance (visual words) and edge (PHOG) descriptors.

This is a form of feature combination and selection, but here the selection is at the kernel

level. Again, in a class-specific learning step, the descriptors (appearance or shape or

both) most suitable for a particular class are determined. For example, a category such

as car is best described by shape alone, leopard by appearance alone, and buddha by a

combination of the two.

Automatically ROIs detection

For training sets that are not constrained in pose or that have significant background clut-

ter, to describe them with the PHOW and PHOG for the whole image (treating image

classification as scene matching) is not sufficient. Instead it is necessary to “home in” on

the object instance in order to learn its visual description. To this end we automatically

learn a Region Of Interest (ROI) in each of the training images. These regions can be
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identified from the clutter by measuring similarity using the PHOW and PHOG but here

defined over a ROI rather than over the entire image. The result is that “clean” visual

exemplars [12] are obtained from the pose varying and cluttered training images.

Improving classification efficiency

We use random forest classifier to increase the speed of our system. The advantage of

randomized trees is that they are much faster in training and testing than traditional clas-

sifiers (such as an SVM). They also enable different cues (such as appearance and shape)

to be “effortlessly combined” [153]. These classifiers have been applied to object recog-

nition but only for a relatively small number of classes. Here we increase the number

of object categories by an order of magnitude (from 10 to 256). The research question

is how to choose the node tests so that they are suited to spatial pyramid representations

and matching. The novelty of our approach is that the classifier has the ability to choose

the weight given to shape, appearance and the levels of the pyramids of each. This facili-

tates representations and classification suited to the class without weight optimization on

a validation set.

1.5 Outline of the thesis

The structure of the thesis is as follows: In chapter 2 we review existing work in the field

of image classification focusing on the different image representation models and most

frequent used descriptors. Special attention is given to the bag-of-words representation

using local image regions, which form the basis for this thesis work. Chapter 3 introduces

the variety of datasets used in the thesis to assess the proposed method. In chapter 4

we propose the hybrid generative/discriminative approach for image classification. We

study and discuss in depth how the different parameters affect the final classification per-

formances. In chapter 5 we add spatial information to the hybrid model and discuss its

advantages and disadvantages over previous works. In chapter 6 we introduce a new shape

descriptor and study how different features can be used together for image classification.

A faster classifier and a new algorithm to automatically detect the salient objects in im-

ages are introduced in chapter 7. Finally, in chapter 8 we draw a summary and discussion



12 Chapter 1. Introduction

about this thesis and discuss future work.

The most used terminology and abbreviations are summarized in appendix A and a

medical image application for breast parenchymal tissue classification is shown in ap-

pendix B.



Chapter 2

Literature review

In this chapter we will review the most recent and significant works in the literature on

image classification. We first discuss the different ways to represent the images in sec-

tion 2.1. Pioneering works on image classification used color, texture and shape features

directly from the image in combination with supervised learning methods to classify im-

ages into several categories (e.g indoor, outdoor, sunset). The problem of image represen-

tation using low-level features has been studied in image and video retrieval for several

years and we review them in section 2.1.1. Later works proposed to model the images by

a semantic intermediate representation in order to reduce the gap between low-level and

high-level image processing. The purpose of these methods is to match the image model

with the perception we humans have (e.g. a street scene mainly contains road and build-

ings). These methods are reviewed in section 2.1.2. Then, in section 2.1.3 we pay special

attention to the most recent representation methods which use local regions. We review

the bag-of-words approaches and the region detectors used. These methods have been the

most used over the past 5 years and it has been shown to obtain very good performances

when used for image classification. In the second part of this review (section 2.2) we

discuss the different appearance and shape descriptors used for image classification.

2.1 Image representation

In the literature many techniques have been used to represent the content of an image.

Here we classify them into three main approaches: (i) those methods which directly ex-

13
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tract low-level features from the images, (ii) those methods which use an intermediate

semantic representation of the image, and (iii) those methods which model the image us-

ing local patches as intermediate representation. The philosophy of each approach as well

as the main methods are described here below.

2.1.1 Low level image representation models

The problem of image classification is often approached by representing the images using

low-level features (e.g. power spectrum, color histograms). This representation is then

used to classify the images into a category (e.g. street, dolphin). These methods consider

that images can directly be described by their low-level properties. For instance, a for-

est scene presents highly textured regions (trees), the presence of straight horizontal and

vertical edges denotes an urban scene, a red color represents a stop sing, and blue color

represents a coast or a dolphin image etc. Amongst these methods we can distinguish two

approaches: (i) global representations where the low-level features are computed over the

whole image, and (ii) local representations where the image is first partitioned into sev-

eral blocks, and then features are extracted from each of these blocks. Figure 2.1a shows

an example of a global model representation and figure 2.1b shows an example of a local

model representation, both using low-level features. Theses two models are reviewed here

below.

Global models

Vailaya et al. [143, 144, 145] consider the hierarchical classification of vacation images,

and show that a global representation can successfully discriminate between many scenes

types using a hierarchical structure. Using binary Bayesian classifiers, they attempt to

capture the image category from global image features under the constraint that the test

image belongs to one of the classes. At the highest hierarchical level, images are clas-

sified as indoor or outdoor; outdoor images are further classified as city or landscape;

finally, a subset of landscape images is classified into sunset, forest, and mountain cate-

gories. Different qualitative measures, extracted from the whole image, are used at each

level depending on the classification problem: indoor/outdoor (using spatial color mo-

ments); city/landscape (edge direction coherence vectors), and so on. The classification
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Input image Global representation Image classification

Chimpanzee

Chimp Face

ChimpChimp

Chimpanzee

Input image Local representation Image classificationLocal classification

(a)

(b)

Figure 2.1: Example of global and local image representation. (a) Global image repre-

sentation by using low-level features (e.g. a color histogram). This representation is the

input of the classifier and a final category is given; (b) local image representation by using

low-level features (e.g. a color histogram at each sub-block). Each subblock is indepen-

dently classified obtaining a category for each one. These results are finally combined to

obtain an image category.

problem is addressed by using Bayes decision theory. The proposal reports an excellent

performance over a set of 6931 images.

Chang et al. [32] use a global image representation to produce a set of category labels

with a certain belief for each image. They manually label each training image with a

category and train k classifiers (one for each category) using Support Vector Machines

(SVM). Each test image is classified by the k classifiers and assigned a confidence score

for the category that each classifier is attempting to predict. As a result, a k-nary label-

vector consisting of k-class membership is generated for each image. This approach is

specially useful for Content Based Image Retrieval (CBIR) and Relevance Feedback (RF)

systems. Other authors have followed this global approach, although they have taken

other aspects into account. For example, Shen et al. [125] makes emphasis on the type of

features that must be used. The authors argue that due to the complexity of visual content,
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a classification system can not be achieved by considering only a single type of feature

such as color, texture and shape alone and proposed Combined Multi-Visual Features.

It produces a low-dimensional feature vector useful for an effective classification. Their

method is tested on image classification using three different classifiers: SVM, K-Nearest

Neighbors (K-NN) and Gaussian Mixture Models (GMM). Other authors use global edges

or orientation histograms [138].

Local models

Theses approaches are a direct extension of the global low-level approaches described

above. The global approaches use low-level features extracted from the whole image,

while the local ones first split the image into a set of subregions, which are further rep-

resented by their low-level properties. Each block is then classified as a certain category

and finally the image is categorized from the individual classification of each block.

The origin of this approach can be found in 1997, when Szummer and Picard [134]

proposed to independently classify image subsections to obtain a final result using a ma-

jority voting classifier. The goal of this work was to classify images as indoor or outdoor.

The image is first partitioned into 16 sub-blocks from which Ohta-space color histograms

and MSAR texture features are then extracted. K-NN classifiers are employed to clas-

sify each sub-block using the histogram intersection norm. Finally the whole image is

classified using a majority voting scheme from the sub-block classification results. They

demonstrated that performance is improved by computing features on sub-blocks, classi-

fying these sub-blocks, and then combining theses results in a way reminiscent of stack-

ing.

Similar results were also obtained by Paek and Chang [110]. Moreover, they de-

veloped a framework to combine multiple probabilistic classifiers in a belief network.

They trained classifiers for indoor/outdoor, sky/no sky and vegetation/no vegetation as

secondary cues for the indoor/outdoor problem. The classification results of each one are

then feeded into a belief network to take the integrated decision.

The proposal of Serrano et al. [123] in 2004 shares this same philosophy, but using

SVM for a reduction in feature dimensionality without compromising classification accu-

racy. Color and texture features are also extracted from image sub-blocks and separately
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classified. Thus indoor/outdoor labels are obtained for different regions of the scene. The

advantage of using SVM instead of K-NN classifier is that the sub-block beliefs can be

combined numerically rather than by majority voting, which minimizes the impact of

sub-blocks with ambiguous labelling.

Discussion

The main advantage of these methods is that they provide a very simple image representa-

tion. The main drawback of representing the images by low level features is that if images

have a notable background clutter or there is lot of intra-class variability, this representa-

tion is not enough to discriminate amongst different categories. Some authors which use

this representation argue that the images they use have low intra-class variation and can

be easily separated by using low-level features. Moreover these methods have been used

to classify amongst a few number of image categories (from 2 to 5).

2.1.2 Semantic image representation

The meaning of the semantic of an image is not unique, so we can find in the litera-

ture different semantic image representations. We can distinguish between two semantic

meanings: (i) those methods which globally represent the semantic properties related to

the image structure such as ruggedness, expansiveness, etc., and (ii) those methods which

identify the “local semantic objects” (e.g. sky, building, car) that appear in the image

and use this object occurrences to classify the image as a category. We will refer to these

methods as global and local models respectively. Both are following reviewed.

Global models

These works make use of a semantic description by using the statistical properties of the

image. They introduce an intermediate semantic level related to global configurations and

image structure. Therefore the image is described by visual properties, which are shared

by images of a same category.

Oliva and Torralba [102, 103, 140] proposed a computational model for the recogni-

tion of real world scenes (4 natural scenes and 4 man-made scenes). The procedure is
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Figure 2.2: Organization of man-made environments according to the semantic degrees

of openness and expansion [102].
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Figure 2.3: Overview of a semantic representation using a local model.

based on a very low dimensional representation of the scene, that they refer to as the Spa-

tial Envelope. It consists of five perceptual qualities: naturalness (vs man-made), open-

ness (presence of a horizon line), roughness (fractal complexity), expansion (perspective

in man-made scenes), and ruggedness (deviation from the horizon in natural scenes). Each

feature corresponds to a dimension in the spatial envelope space, and together represent

the dominant spatial structure of a scene. Then, they show that these dimensions may be

reliably estimated using spectral and coarsely localized information. The model generates

a multidimensional space in which scenes sharing membership in semantic categories are

projected close together (see figure 2.2 for an example). Therein it is possible to assign a

specific interpretation to each dimension: along the openness dimension, the image refers

to an open or a closed environment, etc..

Local models

Local semantic content of the images may be used as an intermediate representation for

image classification allowing to deal with the gap between low- and high-level features.

For example the presence of streets, cars and buildings denotes a urban scene, or the

presence of eyes, nose, mouth, denotes a face image. This is illustrated in figure 2.3

These methods are mainly based on first localizing the different image regions. Then

local classifiers are used to label the regions as belonging to an object (e.g. sky, people,

wheel). Some times it is also introduced some spatial relationships between objects in the
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images (e.g. the sky is above a mountain or the eyes are above the nose) [48, 88]. Finally,

using this local information, the global image is classified. Different ways to carry out the

image classification using this strategy have been proposed recently.

Mojsilovic et al. [96] first segment the image using color and texture information to

find the semantic indicators (e.g. skin, sky, water). Then, these objects are used to identify

the semantic categories (e.g. people, cars, landscapes). A similar approach is proposed

in [49]. Fan et al. [39] introduce a set of functions (learned from the labelled image re-

gions) each one used to detect a specific type of object. The class distribution of the image

category is approximated using finite mixture models of its objects. A new test image is

classified as the category with maximum posterior probability. In addition, a large number

of unlabelled samples are integrated with a limited number of labelled samples to achieve

more effective classifier training and knowledge discovery. Interactions between the ob-

jects in terms of their spatial relationships is introduced by Aksoy et al. [1]. Initially an

image segmentation is performed using a classical split-and-merge algorithm. Then, the

technique automatically learns representative region groups which discriminate different

images and builds visual grammar models.

Barnard et al. [7] present an approach for modelling multi-modal data sets, focusing

on the specific case of segmented images with associated text. They consider in detail

predicting words associated with whole images (auto-annotation) and corresponding to

particular image regions (region naming). Auto-annotation might help organize and ac-

cess large collections of images. They develop a number of models for the joint distribu-

tion of image regions and words, and study multi-model and correspondence extensions

of Hofmann’s hierarchical clustering/aspect mode, a translation model adapted from sta-

tistical machine translation, and a multi-modal extension to mixture of latent Dirichlet

allocation. A similar work was presented in [38]. Singhal et al. [127] proposed a holis-

tic approach to determining scene content (objects) based on a set of individual material

detection algorithms, as well as probabilistic spatial context models.

In contrast to previous approaches that first use a segmentation step, Vogel and Schiele

[150] use a spatial grid layout which splits the image into regular subregions. The tech-

nique uses both color and texture to perform landscape image classification and retrieval

based on a two-stage system. First, the image is partitioned into 10 × 10 subregions, and

each one is classified using K-NN or SVM. An image is then represented by a so-called
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Figure 2.4: Overview of the approach proposed by Vogel and Schiele [150].

concept occurrence vector (COV ), which measures the frequency of different objects in a

particular image. Given this image representation, a prototypical representation for each

scene category can be learnt. Image classification is carried out by using the prototypical

representation itself or Multi-SVM approaches. This approach is illustrated in figure 2.4

Sudderth et al. [133] describe a hierarchical probabilistic model for the detection and

recognition of objets in cluttered, natural scenes. The model is based on a set of parts

which describe the expected appearance and position, in an object centered coordinate

frame, of features detected by a low-level interest operator. Each object category then has

its own distribution over these parts, which are shared between objects. Object appearance

information is shared between all scenes in which that object is found.

An hybrid approach is proposed by Luo et al. [85]: low-level and semantic features

are integrated into a general-purpose knowledge framework that employs a Bayesian Net-

work. The efficacy of this framework is demonstrated via three applications involving se-
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mantic understanding of pictorial images: (i) detection of the main photographic subjects

in an image [86], (ii) selecting the most appealing image in an event, and (iii) classifying

images into indoor or outdoor scenes. The performance is quantitatively evaluated us-

ing only low-level features (Ohta color space histograms and MSAR texture features as

in [134]), and incorporating “semantic features” (sky and grass). They demonstrate that

the classification performance can be significantly improved when local semantic features

are employed in the classification process.

Discussion

The main advantage of theses methods is that they use human meanings to first classify

the objects and then the image. It gives a more powerful, discriminative representation

and actually these methods have been applied to classify images into a big number of

categories than the low-level methods. The main drawback is that most of them are first

based on segmenting the image and this can cause some problems when working with

complex images. If the segmentation method is not accurate it can merge some parts of

the objects causing a bad image description. Other problems can come when the object

discovery fails, because the further image classification is based on the object occurrences.

So a wrong object classification probably implies an erroneous final image classification.

Furthermore, Thorpe et al. [137] found that humans are able to categorize complex

natural images containing animals or vehicles very quickly. Fei-Fei et al. [42] later

showed that little or no attention is needed for such rapid natural image categorization.

Both of theses studies posed a serious challenge to the currently accepted view that to

understand the context of a complex scene, one needs first to recognize the objects and

then in turn recognize the category of the image [141].

2.1.3 Local patches representation

In this case images are represented by hundreds of local patches. They use a region de-

tector to find a set of interesting parts of the image and then represent them by some

kind of descriptor. In recognition a matching between the region descriptors of the new

image and those in the database is computed. The new image is classified if sufficient

matches occur. These methods can be extended by applying geometric constraints. The
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use of local descriptors has become popular for object detection and recognition. For

example Fergus et al. [45] model object classes as probabilistic constellations of parts.

The appearance of each part, as well as pair-wise relations between parts, are modelled

using Gaussian distributions. The model can be nicely visualized as a collection parts

connected by springs, so that parts can move with respect to each other. The learning

algorithm automatically looks for a configuration of detected image regions consistent

over the training data. Recognition proceeds by first detecting potential part locations in

an image, and then comparing hypotheses as to whether observed features are generated

by the category model or by the background model. A Bayesian extension of the con-

stellation model of Fergus et al. [45], capable of learning from a small number (3-5) of

training images, was presented by Fei-Fei et al. [40]. This work shows that knowledge

about other object classes, here in the form of a prior, can help in learning new object

class models. The work of Zhang et al. [157] is another example of the successfulness of

the bag-of-words representation.

Bag-of-Words model

In the last years we can find in the literature on image classification, an increasing number

of proposals which make use of the bag-of-words model representing the images using

histograms of quantized appearances of local patches [35, 108, 157, 158]. All these pro-

posals represent the image content by local descriptors, for example visual words [75, 79,

115, 147].

The bag-of-words methodology (sometimes also called bag-of-features or bag-of-

visterns) was first proposed for text document analysis and further adapted for computer

vision applications [79, 129]. The models are applied to images by using a visual analogue

of a word, formed by vector quantizing visual features (color, texture, etc.) like region de-

scriptors. Recent works have shown that local features represented by bags-of-words are

suitable for image classification showing impressive levels of performance [41, 76, 116].

Constructing the bag-of-words from the images involves the following steps: (i) Auto-

matically detect regions/points of interest (local patches), (ii) compute local descriptors

over these regions/points, (iii) quantize the descriptors into words to form the visual vo-

cabulary, (iv) find the occurrences in the image of each specific word in the vocabulary in

order to build the bag-of-words (histogram of words). Figure 2.5 schematically describes
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Figure 2.5: Four steps to compute the bag-of-words when working with images. (i-iii)

obtain the visual vocabulary by vector quantizing the feature vectors, and (iv) compute

the image histograms – bag-of-words – for images according the obtained vocabulary.

the four steps involved in the definition of the bag-of-words model.

The advantage of this method is its simplicity and the relatively small amount of su-

pervision required. Labelling training data only requires indicating the image category.

Moreover these methods have been used to classify images into a big number of categories

(up to 100).

First works using the “bag-of-words” representation can be found in the literature re-

lated to texture classification. The goal of these works is to recognize textures captured

from different camera viewpoints, and under varying illumination. Leung and Malik [79]

quantized responses of a filter bank applied densely over an entire image. These quan-

tizations of appearance descriptors are called “Textons” and textures are represented by

distributions of textons. Varma and Zisserman [147] modified this approach by quantiz-
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ing small image patches rather than filter responses. Lazebnik et al. [75] address texture

classification using quantized affine covariant regions.

Recently, these representations have been extended for object recognition and scene

classification. Perronnin et al. [111] defined a universal vocabulary, which describes the

content of all the considered images, and class visual vocabularies which are obtained

through the adaptation of the universal vocabulary using class-specific data. While pre-

vious approaches characterize an image with a single histogram, here an image is repre-

sented by a set of histograms, one per class. Each histogram describes whether an im-

age is more suitably modelled by the universal vocabulary or the corresponding adapted

vocabulary. They represent a vocabulary of visual words by means of a GMM where

λ = wi, μi, Σi, i = 1..N . λ denotes the set of parameters of a GMM, wi, μi and Σi denote

respectively the weight, mean vector and covariance matrix of Gaussian i and N denotes

the number of Gaussians. Each Gaussian represents a word of the visual vocabulary.

The Universal vocabulary is trained using maximum likelihood estimation (MLE) and the

class vocabularies are adapted using the maximum a posteriori (MAP) criterion. They

successfully test the method classifying images like sunset, underwater, cars, bikes.

Some Bayesian models used for text document classification, such as Latent Dirich-

let Analysis (LDA) and probabilistic Latent Semantic Analysis (pLSA), work over the

bag-of-words model and have been adapted and used to model image categories. Li and

Perona [41] independently proposed two variations of LDA firstly proposed by Blei et

al. [16, 135] which was designed to represent and learn document models. In this frame-

work, local regions are first clustered into different intermediate themes, and then into cat-

egories. Probability distributions of the local regions as well as the intermediate themes

are both learnt in an automatic way, bypassing any human annotation. No supervision is

needed apart from a single category label to the training image.

Quelhas et al. [116] provided an approach by bag-of-words to model visual scenes

in image collections, based on local invariant features and pLSA. pLSA is a generative

model from the statistical text literature [65]. In text analysis this is used to discover top-

ics in a document using the bag-of-words document representation. In this case, there are

“images” as “documents” and they discover “topics” as “object categories” (e.g. grass,

houses, bikes, planes), so that an image containing instances of several objects is mod-

elled as a mixture of topics. pLSA, an unsupervised probabilistic model for collections
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of discrete data, has the dual ability to generate a robust, low-dimensional scene repre-

sentation, and to automatically capture meaningful scene aspects. They successfully used

the first property for scene classification, and have exploited the second one to design two

new algorithms: one for aspect-based image ranking, and another for context-sensitive

image segmentation. pLSA was also used in [128] for object recognition.

Variations of latent space models have recently been applied to the problem of mod-

elling annotated images [7].

Habitual bag-of-words techniques, as the described above, do not take the spatial in-

formation into account. However, in complex natural images, image classification sys-

tems can be further improved by using contextual knowledge like common spatial rela-

tionships between neighboring local objects [88] or the absolute position of objects in

certain scenes [150]. While the above methods have shown to be effective, their neglect

of spatial structure ignores valuable information which could be useful to achieve better

results for image classification.

Lazebnik et al. [76] proposed a method which is based on spatial pyramid matching

of Grauman and Darrell [57]. Pyramid matching works by placing a sequence of in-

creasingly coarser grids over the feature space (in this case over the image) and taking

a weighted sum of the number of matches that occur at each level of resolution (L). At

any fixed resolution, two points are said to match if they fall into the same bin of the

grid; matches found at finer resolutions are weighted more highly than matches found at

coarser resolutions (αl represents the weight at level l). The resulting spatial pyramid is an

extension of the bag-of-words image representation, it reduces to a standard bag-of-words

when L = 0 (see figure 2.6). Multi-class classification is done with SVM. This method

achieves high accuracy on a large database of 15 natural scene categories and on the well

know Caltech-101 dataset. Fergus et al. [44] develop two new models, ABS-pLSA and

TSI-pLSA, which extend pLSA to include absolute position and spatial information in a

translation and scale invariant manner respectively.

Support regions

Salient intensity regions in images are the most used support patches for image classifi-

cation. In this thesis we have chosen to use the similarity-invariant regions and affine-
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Figure 2.6: The Pyramid matching method of Lazebnik et al. [76]. Set of histograms

computed over a multi-level pyramid decomposition of the image.

covariant regions. However other support regions can be found in the literature [68, 84,

91, 142]. A comprehensive review of affine covariant region detectors, and a comparison

of their performance appeared in Mikolajzcyk et al. [94].

Similarity-invariant regions. Early work includes interest point detection ( [99], [60]),

which was based on detecting regions around corners as local structures with high infor-

mation content. This methods were based on first detecting interest points in the images

(e.g. corners) and then open a patch around these points. The patch was normally a

circular or a squared patch with a fixed size. Blostein and Ahuja [17] were the first to

introduce a multiscale region detector based on maxima of the Laplacian. Lindeberg and

Garding [83] have extended this detector in the framework of automatic scale selection.

Other methods use a regular grid of densely sampled patches over the entire image.

Affine-covariant regions. Affine-covariant region detectors were investigated by Miko-

lajczyk and Schmid [92] and by Schaffalitzky and Zisserman [120]. They are designed

to find corners within images, adjusting the shape of the region to find an optimal size.

This is done in two steps (i) use the Harris interest point detector over a range of image
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Figure 2.7: Images with and without the feature detector [68] superimposed.

scales and keep those points which are local maxima over scale evaluated by a Laplacian

of Gaussian operator; (ii) an iterative procedure is then used to adapt the shape of the

circular point neighborhood of each interest point to the skew normalized frame, where

second moment matrix of image gradients is isotropic. This is done by varying the radius

of a scale-normalized Laplacian filter and measuring its response when applied to the im-

age at the interest point. The response will have a peak at a certain radius, which is taken

to be the characteristic shape. The original idea of iterative shape adaptation using the

second moment matrix is due to Lindeberg and Garding [51].

Figure 2.7 shows some images with the feature detector imposed. Affine-covariant

regions are appropriated when working with textured images because they allow to find

representative regions even when scale and view-point variations. Figure 2.8b shows the

results when applying these feature detectors in natural scenes. As is shown, the result is a

sparse representation of the image and we can see that the output is very poor and images

are not very well represented. To solve this problem a regular grid -dense representation-

(figure 2.8c) over the image is often used. In this way we can have information of the

whole image and not only from those parts where objects or interest points are detected.

Similarity-invariance is often sufficient for scene classification because the training data

covers other viewpoint changes. Regular grids have been recently used for pedestrian

detection [36] and in [41] it has been demonstrated better performance than when using

sparse regions.



Figure 2.8: Images with the feature detector superimposed: (a) original image; (b) Harris

affine is superimposed in images representing natural scene; (c) a regular grid is used to

represent regions in natural images.

2.2 Image descriptors

2.2.1 Appearance information

Detection of local image regions is only the first part of the feature extraction process;

the second part is the computation of descriptors to characterize the appearance of these

regions. A goal descriptor should be distinctive, so as to provide strong consistency con-

straints for image matching yet robust to illumination changes and other appearance varia-

tions. We now review a variety of the most recent descriptors used for image classification

which are based on appearance information.

First Koenderink and van Doorm [71] proposed a method which describes a region

using local derivatives up to a given order. This is called “local jet” or differential invari-
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ants. A set of filter are also used to describe intensity regions: Gabor filters [87], steerable

filters [50] or more complex filters presented in [121]. Van Gool et al. [146] presented

the moment invariants, a collection of affine and photometric invariants for planar regions

that describe the shape and intensity distribution. Another technique using histograms on

the intensity values is the spin image [67].

Most of the recently proposed image classification methods used the Scale Invariant

Feature Transform (SIFT) descriptor proposed by Lowe [84]. This descriptor takes each

region, finds its gradients and then normalizes for orientation by finding the dominant

orientation rotating the region so as to make it axis aligned. Then 8-bin orientation his-

tograms are formed of the gradients in each cell of a 4 × 4 spatial grid overlaid on the

region. Each region is described by a 4 × 4 × 8 = 128 dimensional vector (figure 2.9

shows an overview of this method). The idea is that the loose grid gives a little bit of slop

to accommodate minor translation and scale offsets due to inexact feature detection while

the gradient based representation makes it less sensitive to illumination changes. It has

been demonstrated that these features achieve a higher performance for object classifica-

tion [94].

Some extensions of the original SIFT features exist. PCA-SIFT [70] and the Gradi-

ent location and orientation histogram (Gloh) [94] from which change the location grid

and use PCA for dimensionality reduction. A different matching scheme called SURF

(Speeded Up Robust Features) was presented by Bay et al. [9]. The standard version of

SURF is faster than SIFT and proved to be more robust against different image transfor-

mations than SIFT. SURF is based on sums of 2D Haar wavelet responses and makes an

efficient use of integral images.

Color is an important component of the natural image categories [119]. However, out-

door scenes are especially complex to deal with in terms of the lighting conditions and

the fact that color-based features suffer from the problem of color constancy [72]. Bu-

luswar and Draper [24] provided a survey detailing analysis and causes of color variation

due to illumination effects in outdoor images. Color being undoubtedly one of the most

interesting characteristics of the natural world, can be computationally treated in many

different ways. In many cases the basic RGB components may provide a valuable in-

formation about the environment. However, the perceptual models, such as CIE or HSI,

are more intuitive and therefore enable the extraction of characteristics according to the



2.2 Image descriptors 31

Figure 2.9: The SIFT descriptor of Lowe [84]. On the left are the gradients of an image

patch. The blue circle indicates the Gaussian center-weighting. These samples are then

accumulated into orientation histograms summarizing the contents over 4×4 subregions,

as shown on the right, with the length of each arrow corresponding to the sum of the gra-

dient magnitudes near that direction within the region. A 2×2 descriptor array computed

from an 8x8 set of samples is shown here.

model of human perception. Invariance and discriminative power of the color invariants is

experimentally investigated in [54], showing the invariants to be successful in discounting

shadow, illumination, highlights, and noise.

Some authors, like Ohta [101], have proposed their own color space. Celenk [30] pro-

posed operating with the CIE(L*, a*,b*) uniform color coordinate system L*, Ho and C*

(Luminance, Hue and Chroma). This color space defines approximately a space having

uniform characteristics. Campbell et al. [28] also proposed a set of color parameters in

order to work with outdoor scenes. Similarly, Mori et al. [98] proposed the use of the r-b

model (where r and b denote normalized red and blue components respectively) in order

to solve the problems of hue shift, due to outdoor conditions and shadows. We can find

in the literature some models based on the Hue, Saturation and Intensity (HSI) for exam-

ple, the model described by Smith [130] or the alternative proposed by Tenenbaum [136].

Yagi et al. [156] calculates the hue and intensity based on Smith work, and proposed a

different way to obtain the saturation. The most typical way to calculate the components

HSI is described in [55].
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In 2002, Buluswar and Draper [25] developed models for illumination and surface

reflectance to be used in outdoor color vision, and in particular to predict the colour of

surfaces under various outdoor conditions. Moreover, demonstrated the disadvantages

of using the CIE model for predicting colour in outdoor images. More recently, in 2004,

Berwick and Lee [13] presented a framework of logarithmic chromacities for the interpre-

tation of the image colour change due to illumination pose and colour. Some approaches

of using colour with SIFT features have also been proposed recently in [53, 152].

2.2.2 Shape information

It has been demonstrated that shape represented by the edges is a very good cue for object

recognition [108, 126]. Thus, we would like to give a fast review of some of the techniques

used to detect and describe the shape information.

Basic techniques for edge detection include the Sobel/Prewitt edge detector [56].

Canny [29] developed an improved approach to find edges. Since then various others

made slight improvements in various directions [37, 124]. Recently Martin et al. [89]

have proposed the Berkeley natural boundary detector which has reported excellent re-

sults.

Several methods to describe and compare edges have been proposed. One popular

method is Chamfer Matching which was introduced by Barrow et al. [8] and extended to

hierarchical matching by Borgefors [19]. The algorithm matched edges by minimizing

a generalized distance between them. The matching is performed in a series of images

depicting the same scene, but in different resolution (e.g. in a resolution pyramid). Olson

and Huttenlocher [107] used the Hausdorff-Distance to compare edges. They also showed

how such a technique improves if edge orientation is taken into account. Another method

for describing edges is the shape context descriptor of Belongie et al. [10]. There each

point on an edge is characterized by the histogram of the log-polar coordinates (related

to that specific point) of all other points (in a certain radius). Rothwell et al. [118] pre-

sented a method where edges are described between bitangent points. This results in a

projectively invariant description for near planar curves. This method is an extension of

the affine invariant representation of Lamdan et al. [73].

One of the first approaches for detecting objects of a category which was useful for
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real world images and based on shape was introduced by Gavrila and Philomin [52].

Sets of significant contour examples were used and then the whole contours were applied

to test images. Berg et al. [12] perform generic object recognition on the basis of de-

formable shape matching using a new correspondence finding algorithm. Their algorithm

is formulated as an integer quadratic program, where the cost function is a combination

of geometric blur descriptors and geometric distortion between feature points. The recog-

nition procedure is incorporated in a nearest neighbor framework. Dalal and Triggs [36]

use shape information in the form of grids of Histograms of Oriented Gradients (HOG).

Studying influences of the binning of scale, orientation and position they yield excellent

categorization by a SVM- based classifier. Leibe et al. [77] include shape information to

detect pedestrians. They use a verification step that uses chamfer matching of a represen-

tation of the whole object contour. Recently, Shotton et al. [126] and Opelt et al. [108]

presented a method based on local boundary fragments.
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Chapter 3

Datasets

We will evaluate our classification algorithms on different datasets recently used in the

literature. We can divide theses datasets in three groups: (i) Oliva and Torralba [102],

Vogel and Schiele [149], Fei-Fei and Perona [41], Lazebnik et al. [76] are datasets con-

taining natural scene images; (ii) Caltech 101 [81] and Caltech-256 [59] are datasets

with objects images, while (iii) TrecVid and Pretty woman datasets contain video images.

In this chapter we will describe these datasets in more detail.

3.1 Scene classification

3.1.1 Vogel & Schiele (VS) dataset

Vogel and Schiele [149] dataset (called as VS in this work): includes 702 natural scenes

consisting of 6 categories: 144 coasts, 103 forests, 179 mountains, 131 open country, 111

river and 34 sky/clouds. Figure 3.1 shows some images from this dataset. The size of

the images is 720 × 480 (landscape format) or 480 × 720 (portrait format). Every scene

category is characterised by a high degree of diversity and potential ambiguities since it

depends strongly on the subjective perception of the viewer. For example river and forest

are considered as two kind of different scenes. However most of the river images also

contain a forest and can easily be confused. There is a low inter-class variability and a

high intra-class variability making the scene classification problem a bit more difficult

when working with this dataset.
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Coast Forest Mountain Open country River Sky/clouds

Figure 3.1: Some images from VS dataset.

Coast Forest Mountain Open country Highway Inside city Tall building Street

Figure 3.2: Some images from OT dataset.

3.1.2 Oliva & Torralba (OT) dataset

Oliva and Torralba [102] dataset (called as OT in this work) includes 2688 images classi-

fied as 8 categories: 360 coasts, 328 forest, 374 mountain, 410 open country, 260 highway,

308 inside of cities, 356 tall buildings and 292 streets. Figure 3.2 shows some images from

this dataset. Note that now river and forest scenes are all considered as forest, moreover

there is not an specific sky scene since almost all of the images contain the sky object.

These annotations make a higher inter-class variability. Most of the scenes present a large

intra-class variability. The average size of each image is 250 × 250 pixels.

3.1.3 Fei-Fei & Perona (FP) dataset

Fei-Fei and Perona [41] dataset (referred as FP in this work): contains 13 categories and

is only available in greyscale. This dataset consists of the 2688 images (8 categories) of

the OT dataset plus: 241 suburb residence, 174 bedroom, 151 kitchen, 289 living room

and 216 office. Figure 3.3a shows some images from this dataset. Note that the presence
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Suburb Bedroom Kitchen Living room Office Store Industrial

(a) (b)

Figure 3.3: Some images from: (a) FP and LSP dataset and (b) LSP dataset.

of man-made images (e.g. bedroom, living room etc.) allows a low inter-class variability

since these images have a similar structure. The average size of each image is approxi-

mately 250 × 300 pixels.

3.1.4 Lazebnik, Schmid & Ponce (LSP) dataset

Lazebnik et al. [76] dataset (referred as LSP in this work) contains 15 categories and, as

with FP, is only available in greyscale. This dataset consists of the 13 categories of the

FP dataset plus: 315 store and 311 industrial. Figure 3.3 shows some images from this

dataset. The average size of each image is approximately 250 × 300 pixels.

3.2 Object classification

3.2.1 Caltech-101 dataset

The Caltech-101 dataset (collected by Fei-Fei et al. [81]) consists of images from 101

object categories. This database contains from 40 to 800 images per category however

most categories have about 50 images. Most images are medium resolution, about 300 ×
300 pixels. The significance of this database is its large inter-class variability. Moreover

most images have little or no clutter, objects tend to be cantered in each image and most

objects are presented in a stereotypical pose. So, as was noted by Lazebnik et al.[76],

Caltech-101 is essentially a scene classification dataset as the objects are well aligned

within each class (i.e. rotated, scaled and centred) with little clutter. An image from each

category is shown in figure 3.4.
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Figure 3.4: Some images corresponding to scenes/objects from Caltech-101 dataset.

3.2.2 Caltech-256 dataset

This data set (collected by Griffin et al. [59]) consists of images from 256 object categories

and is an extension of Caltech-101. It contains from 80 to 827 images per category. The

total number of images is 30608. The significance of this database is its large inter-class

variability, as well as a larger intra-class variability than in Caltech-101. Moreover there is

no alignment amongst the object categories. Fig. 3.5 shows 200 images from this dataset.

For comparison to other authors, if otherwise stated, results will be provided for the first

250 categories.
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3.3 Video data

We also evaluated our system using video image data. Concretely we used videos pro-

vided by TRECVid and Pretty woman movie.

3.3.1 TRECVid

We use the annotated training data from TRECVID 20061, which consists of 80 hours

of video sequences. Video shots are annotated into 39 semantic categories which occur

frequently in the database: (1) sports, (2) entertainment, (3) weather, (4) court, (5) of-

fice, (6) meeting, (7) studio, (8) outdoor, (9) building, (10) desert, (11) vegetation, (12)

mountain, (13) road, (14) sky, (15) snow, (16) urban, (17) waterscape-waterfront, (18)

crowd, (19) face, (20) person, (21) government leader, (22) corporate leader, (23) police

security, (24) military, (25) prisoner, (26) animal, (27) computer-TV-screen, (28) flag US,

(29) airplane, (30) car, (31) bus, (32) truck, (33) boat-ship, (34) walking-running, (35)

people marching, (36) explosion-fire, (37) natural disaster, (38) maps, (39) charts.

TRECVID also provides keyframes for each shot. There are a total of 43907 keyframes.

Some examples are shown in Fig. 3.6. Note the difficulty of these images, for example

the mountain scenes are not as clear as the mountain scenes from OT dataset in figure 3.2.

Only the keyframes are used here for learning and video shot retrieval.

The test data provided for TRECVID 2006 is only used for retrieval experiments. This

data consists on about 100K keyframes from 160 hours of video sequences.

3.3.2 Pretty woman

Key frames from the movie Pretty Woman are used as test images to evaluate the scene

classification system. The objective is to classify these images into a certain kind of scene.

Note that this data is more real than previous datasets, there is people and more objects

around, so that theses images will be more difficult to classify into one of the categories

from previous datasets. We used every hundredth frame from the movie to form the testing

set so that we have 1721 images. Figure 3.7 shows some key frames from this movie.

1http://www-nlpir.nist.gov/projects/trecvid/
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Figure 3.5: About 200 images corresponding to scenes/objects from Caltech-256 dataset.
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Mountain Meeting Sports Snow

Corporate Leader Vegetation Waterscape Boat/Ship

Car Bus Airplane Police

Figure 3.6: Some images corresponding to key frames from training shots provided by

TRECVid.



Chapter 4

Scene classification using a hybrid

generative/discriminative approach

In this chapter we investigate whether dimensionality reduction using a latent generative

model is beneficial for the task of weakly supervised scene classification. In detail we are

given a set of labelled images of scenes (e.g. coast, forest, city, river, etc) and our objective

is to classify a new image into one of these categories. One approach is to represent each

image by a vector, and train a multi-way classifier on these vectors. We compare this

approach to that of first discovering latent “topics” using probabilistic Latent Semantic

Analysis (pLSA), a generative model from the statistical text literature here applied to a

bag of visual words representation for each image, and subsequently training a multi-way

classifier on the topic distributions vector for each image.

To this end we introduce a novel vocabulary using dense colour SIFT descriptors,

and then investigate the classification performance under changes in the size of the visual

vocabulary, the number of latent topics learnt, and the type of discriminative classifier

used (k-nearest neighbor or SVM). We achieve superior classification performance to

recent publications that have used a bag of visual word representation, in all cases using

the authors’ own datasets and testing protocols.
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4.1 Introduction

Classifying scenes, such as mountains, forests, offices, is not an easy task owing to their

variability, ambiguity, and the wide range of illumination and scale conditions that may

apply. As was noted in chapter 2, two basic strategies can be found in the literature.

The first uses low-level features such as colour, texture, power spectrum, etc. This ap-

proach considers the scene as an individual object [134, 143] and is normally used to

classify only a small number of scene categories (indoor versus outdoor, city versus land-

scape etc.). The second strategy uses an intermediate representation before classifying

scenes [41, 102, 150], and has been applied to cases where there are a larger number of

scene categories (up to 15).

In this chapter we introduce a classification algorithm based on a combination of unsu-

pervised probabilistic Latent Semantic Analysis (pLSA) [65] followed by a discriminative

classifier. The pLSA model was originally developed for topic discovery in a text corpus,

where each document is represented by its word frequency. Here it is applied to images

represented by the frequency of “visual words”. The formation and performance of this

“visual vocabulary” is investigated in depth. In particular we compare sparse and dense

feature descriptors over a number of modalities (colour, texture, orientation). The ap-

proach is inspired in particular by three previous papers: (i) the use of pLSA on sparse

features for recognizing compact object categories (such as Caltech cars and faces) in

Sivic et al. [128]; (ii) the dense SIFT [84] features developed in Dalal and Triggs [36] for

pedestrian detection; and (iii) the semi-supervised application of Latent Dirichlet Analy-

sis (LDA) for scene classification in Fei-Fei and Perona [41]. We have made extensions

over all three of these papers both in developing new features and in the classification

algorithm. Our work is most closely related to that of Quelhas et al. [116] who also use

a combination of pLSA and supervised classification. However, their approach differs in

using sparse features and is applied to classify images into only three scene types.

We compare our classification performance to that of four previous methods [41, 76,

102, 150] using the authors’ own databases. The previous works used varying levels

of supervision in training (compared to the unsupervised topic discovery developed in

this work): Fei-Fei and Perona [41] requires the category of each scene to be specified

during learning (in order to discover the themes (topics) of each category) – we do not

specify the category when discovering topics; Oliva and Torralba [102] requires a manual
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ranking of the training images into 6 different properties; and Vogel and Schiele [150]

requires manual classification of 59582 local patches from the training images into one

of 9 semantic concepts. As will be seen, we achieve superior performance compared

to [41, 102, 150]. Lazebnik et al. [76] does not use an intermediate topic representation,

but improves performance (compared to our approach) by adding spatial information over

the bag of words model.

We briefly give an overview of the pLSA model in section 4.2. Then in section 4.3 we

describe the hybrid classification algorithm based on applying pLSA to images followed

by discriminative classification. Section 4.4 describes the features used to form the visual

vocabulary and the principal parameters that are investigated. The used datasets and a

detailed description of the experimental procedure evaluation is given in section 4.5. Sec-

tion 4.6 reports the experimental work performed and main task of investigation. First

we optimize the performance over changes in the vocabulary and number of latent topics,

then we compare the hybrid classifier to a more standard approach of classifying on the

bag of words histograms directly. A comparison with other scene classification methods

is given in 4.7. In section 4.8 we demonstrate applications of the hybrid algorithm to

relevance feedback, scene classification in videos, and segmentation. In section 4.9 we

summarize the properties of the method and discuss its weakness and how they could be

solved.

4.2 pLSA model

Probabilistic Latent Semantic Analysis (pLSA) is a generative model from the statistical

text literature [65]. In text analysis this is used to discover topics in a document using

the bag of words document representation. Here we have images as documents and we

discover topics as object categories (e.g. grass, houses), so that an image containing in-

stances of several objects is modelled as a mixture of topics. The models are applied to

images by using a visual analogue of a word, formed by vector quantizing colour, texture

and SIFT feature like region descriptors (as described in section 4.4). pLSA is appropriate

here because it provides a correct statistical model for clustering in the case of multiple

object categories per image. We will explain the model in terms of images, visual words

and topics.
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(a) (b)

d z w

P(d) P(z|d) P(w|z)

N Wd

Figure 4.1: (a) pLSA graphical model. Nodes inside a given box (plate notation) indicate

that they are replicated the number of times indicated in the top left corner (N=number

of images;Wd=number of (visual) words per image). Filled circles indicate observed

random variables; unfilled are unobserved. (b) The goal is to find the topic specific word

distributions P (w|z) and corresponding document specific mixing proportions P (z|d)

which make up the observed document specific word distribution P (w|d).

Suppose we have a collection of images D = d1,...,dN with words from a visual vocab-

ulary W = w1,...,wV . The data is a V × N co-occurrence table of counts Nij = n(wi, dj),

where n(wi, dj, ) denotes how often the term wi occurred in an image dj . A latent variable

model associates an unobserved topic variable z ε Z = z1,...,zZ with each observation, an

observation being the occurrence of a word in a particular image (wi, dj). We introduce

the following probabilities: P (dj) denotes the probability of observing a particular image

dj, P (wi|zk) denotes the conditional probability of a specific word conditioned on the

unobserved topic variable zk, and finally P (zk|dj) denotes an image specific probability

distribution over the latent variable space. Using these definitions, the generative model

is the following:

• Select an image dj with probability P (dj)

• Pick a latent topic zk with probability P (zk|dj)

• Generate a word wi with probability P (wi|zk).

As a result one obtains an observation pair (wi, dj), while the latent topic variable zk is

discarded.

The graphical model representation is shown in figure 4.1a corresponding to a joint

probability P (w, d, z) = P (w|z)P (z|d)P (d). Marginalizing out the latent variable z

gives:



4.3 Hybrid classification 47

P (w, d) =
∑
zεZ

P (w, d, z) = P (d)
∑
zεZ

P (w|z)P (z|d) (4.1)

and thence from P (w, d) = P (d)P (w|d), we obtain P (w|d) as:

P (w|d) =
∑
zεZ

P (w|z)P (z|d) (4.2)

This amounts to a matrix decomposition as shown in figure 4.1b with the constraint

that both the topic vectors P (w|z) and mixture coefficients P (z|d) are normalized to make

them probability distributions. Essentially, each image is modelled as a mixture of topics,

the histogram for a particular document being composed from a mixture of the histograms

corresponding to each topic. In particular each image is a convex combination of the Z

topic vectors.

Following the likelihood principle, one determines P (w|z), and P (z|d) by maximiza-

tion of the loglikelihood function:

L = log P (D, W ) =
∑
dεD

∑
wεW

n(w, d) logP (w, d) (4.3)

This is equivalent to minimizing the Kullback-Leibler divergence between the mea-

sured empirical distribution and the fitted model. The model is fitted using the Expectation

Maximization (EM) algorithm as described in [65]. Fitting the model involves determin-

ing the topic vectors which are common to all documents and the mixture coefficients

which are specific for each document. The goal is to determine the model that gives high

probability to the visual words that appear in the corpus.

4.3 Hybrid classification

Training proceeds in two stages. First, the topic specific distributions P (w|z) are learnt

from the set of training images. Determining both P (w|z) and P (z|dtrain) simply in-

volves fitting the pLSA model to the entire set of training images. In particular it is not

necessary to supply the identity of the images (i.e. which category they are in) or any

region segmentation. Each training image is then represented by a Z-vector P (z|dtrain),
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where Z is the number of topics learnt. In the second stage a multi-class discriminative

classifier is trained given the vector P (z|dtrain) of each training image and its class la-

bel. For the discriminative stage we compare K Nearest Neighbors classifier (KNN) to a

Support Vector Machine classifier (SVM). In more detail, the KNN selects the K near-

est neighbors of the new image within the training database (using Euclidean distance).

Then it classifies the test image according to the category label which is most represented

within the K nearest neighbors. For the SVM classifier an exponential kernel of the form

exp−αd is used, where d is the Euclidean distance between the vectors, and the scalar α

is determined as described in [158] (we use the LIBSVM package [31] with the trade-off

between training error and margin at C = 1). The multi-way classification is done using

the one-versus-all rule: a classifier is learned to separate each class from the rest, and a

test image is assigned the label of the classifier with the highest response.

Classification of an unseen test image similarly proceeds in two stages. First the doc-

ument specific mixing coefficients P (z|dtest) are computed, and these are then used to

classify the test images using a discriminative classifier. In more detail document specific

mixing coefficients P (z|dtest) are computed using the fold-in heuristic described in [64].

The unseen image is projected onto the simplex spanned by the P (w|z) learnt during

training, i.e. the mixing coefficients P (zk|dtest) are sought such that the Kullback-Leibler

divergence between the measured distribution and P (w|dtest) =
∑

zεZ P (w|z)P (z|dtest)

is minimized. This is achieved by running EM in a similar manner to that used in learn-

ing, but now only the coefficients P (zk|dtest) are updated in each M-step with the learnt

P (w|z) kept fixed. The result is that the test image is represented by a Z-vector. The test

image is then classified by the multi-class discriminative classifier (KNN or SVM) as de-

scribed above. Figure 4.2 shows graphically the hybrid generative/discriminative process

for both training and testing.

4.4 Visual words and visual vocabulary

In the formulation of pLSA, we compute a co-occurrence table, where each image is

represented as a collection of visual words, provided from a visual vocabulary. This

visual vocabulary is obtained by vector quantizing descriptors computed from the training

images using k-means, see the illustration in the first part of figure 4.2. Previously both
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Figure 4.2: Overview of visual vocabulary formation, learning and classification stages.

sparse [35, 75, 129] and dense descriptors, e.g. [36, 79, 147], have been used. Here we

carry out a thorough comparison over dense descriptors for a number of visual measures

(see below) and compare to a sparse descriptor. We vary the size of the patches and

degree of overlap, and compare normalized to unnormalized images. We then assess

classification performance over four different image datasets described in section 4.5.

We investigate four dense descriptors, and compare their performance to a previously

used sparse descriptor. In the dense case the important parameters are the size of the

patches (N) and their spacing (M) which controls the degree of overlap:

• Grey patches (dense). As in [147], and using only the grey level information, the

descriptor is a N × N square neighborhood around a pixel. The pixels are row

reordered to form a vector in an N2 dimensional feature space. The patch size

tested are N = 5, 7 and 11. The patches are spaced by M pixels on a regular grid.
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The patches do not overlap when M = N , and do overlap when M = 3 (for N =

5, 7) and M = 7 (for N = 11).

• Colour patches (dense). As above, but the colour information is used for each

pixel. We consider the three colour components HSV and obtain a N 2 × 3 dimen-

sional vector. As in the grey level, we used N = 5, 7, and 11. We use HSV because

of its similarities to the way humans tend to perceive colour and because it is less

sensitive to shadow and shading.

• Grey SIFT (dense). SIFT descriptors [84] are computed at points on a regular

grid with spacing M pixels, here M = 5, 10 and 15. At each grid point SIFT

descriptors are computed over circular support patches with radii r = 4, 8, 12 and

16 pixels. Consequently each point is represented by n SIFT descriptors (where

n is the number of circular supports), each is 128-dim. Multiple descriptors are

computed to allow for scale variation between images. The patches with radii 8, 12

and 16 overlap. Note, the descriptors are rotation invariant.

• Colour SIFT (dense). As above, but now SIFT descriptors are computed for each

HSV component. This gives a 128×3 dim-SIFT descriptor for each point. Note, this

is a novel feature descriptor. It captures the colour gradients (or edges) of the image.

Other ways of using colour with SIFT features have been proposed by [53, 152].

• Grey SIFT (sparse). Affine co-variant regions are computed for each grey scale

image, constructed by elliptical shape adaptation about an interest point [93]. These

regions are represented by ellipses. Each ellipse is mapped to a circle by appropriate

scaling along its principal axis and a 128-dim SIFT descriptor computed. This is

the method used by [35, 75, 128, 129].

4.4.1 Implementation details

Dense SIFT descriptors
In most previous applications SIFT like descriptors are used following a sparse feature

detection, and so have only been applied at image points where there is sufficient structure

(e.g. a strong response from a Harris or Hessian operator). In our case the SIFT descriptors

are applied densely, perhaps at every pixel, and this raises two areas of concern.
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First, in regions with near constant colour/brightness (like sky, road) that consequently

have small image gradients, is the resulting description (the visual words) very sensitive

to noise? In practice we find that the assigned word for such patches is often the same and

relatively insensitive to patch size. For example if sky patches with r = 4 are assigned

the word w1, then sky patches with r = 8 are also assigned the word w1 and so on. Where

the small gradients (noise) do result in different random visual word assignments, then

the pLSA topic learns this distribution.

Second, is there a problem with noise causing wrap-around in the H colour channel? This

could occur with a region consisting of small fluctuations around saturated red, and would

result in an alternation of visual word assignment over that region. However, in practice

we do not observe this problem in the current databases.

Normalization

Grey level images are normalized to have intensities with mean zero and unit standard

deviation. Colour images are first normalized as in “Gray World” [34, 47] to have R,G

and B components R ∗ (μ/μr), G ∗ (μ/μg), B ∗ (μ/μb) where μ = (μr + μg + μb)/3

and μr, μg, μb are the mean of each component. The HSV is then computed from these

normalized values.

4.5 Datasets and methodology

Datasets

We evaluated our classification algorithm on four different datasets: (i) Oliva and Tor-

ralba [102], (ii) Vogel and Schiele [150], (iii) Fei-Fei and Perona [41] and Lazebnik et

al [76]. As was noted in chapter 3, we will refer to these datasets as OT, VS, FP and LSP

respectively. All these four datasets consist of images from natural and man-made scenes

and are described in detail in chapter 3.
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Methodology

The classification task is to assign each test image to one of a number of categories.

The performance is measured using a confusion table, and overall performance rates are

measured by the average value of the diagonal entries of the confusion table.

Datasets are split randomly into two separate sets of images, half for training and half

for testing. From the training set we randomly select 100 images to form a validation

set. This validation set is used to find the optimal parameters, and the rest of the training

images are used to compute the vocabulary and pLSA topics. A vocabulary of visual

words is learnt from about 30 random training images of each category.

Excluding the preprocessing time of feature detection and visual vocabulary forma-

tion, it takes about 20 mins to fit the pLSA model to 1600 images (Matlab implementation

on a 1.7GHz computer).

The new classification scheme is compared to two baseline methods. These are in-

cluded in order to gauge the difficulty of the various classification tasks. The baseline

algorithms are:

Global colour model. The algorithm computes global HSV histograms for each training

image. The colour values are represented by a histogram with 36 bins for H, 32 bins

for S, and 16 bins for V, giving a 84-dimensional vector for each image. A test image is

classified using KNN (with K = 10).

Global texture model. The algorithm computes the orientation of the gradient at each

pixel for each HSV channel at each training image. These orientations are collected into a

72 bin histogram for each colour channel and concatenated to form a histogram of 72× 3

bins for each image. The classification of a test image is again carried out using KNN.

4.6 Classification results

In this section we carry out a set of experiments to investigate the various choices of

vocabularies, parameters and classifiers, and also to assess the benefits or otherwise of

using pLSA as an intermediate representation.

The experiments in this section are all on the OT dataset. The results for the other
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datasets (FP, VS and LSP) are given in section 4.7. For the OT dataset three classification

situations are considered: classification into 8 categories, and also classification within

the two subsets of natural (4 categories), and man-made (4 categories) images. The latter

two are the situations considered in [102].

We start by finding the optimal parameters (V , Z and K) over the validation set for

each of the different vocabularies described in section 4.6.1. The optimal parameters are

then fixed, and subsequent results reported on the test set.

4.6.1 Optimizing the parameters V , Z and K (on the validation set)

We first investigate how classification performance (on the validation set) is affected by

the various parameters: the number of visual words (V in the k-means vector quanti-

zation), the number of topics (Z in pLSA), and the number of neighbors (K in kNN).

Figure 4.3 shows this performance variation for two types of descriptor – dense colour

SIFT with M = 10 and four circular supports, and grey patches with N = 5 and M = 3.

Note the mode in the graphs of V , Z and K in both cases. This is quite typical across all

types of visual words, though the position of the modes vary slightly. For example, using

colour SIFT the mode is at V = 1500 and Z = 25, while for grey patches the mode is at

V = 700 and Z = 23. For K the performance increases progressively until K is between

7 and 12, and then drops off slightly.

For colour patches the best performance is obtained when using the 5 × 5 patch over

normalized images, with M = 3, V = 900, Z = 23 and K = 10. The best results overall

are obtained with dense colour sift with 4 circular supports, M = 10, normalized images,

V = 1500, Z = 25 and K = 10. We will see in next section that this vocabulary is also the

one which gives the best results on the test set.

4.6.2 Comparison of features and support regions (on the test set)

We next investigate the patch descriptors in more detail. Again, we use the OT dataset

with 8 categories and the KNN classifier for this task (the SVM classifier is investigated

in section 4.6.3). In the following results the optimum choice of parameters determined

on the validation set is used for each descriptor type, but here applied to the test set.
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Figure 4.3: Validation set performance under variation in various parameters for the 8

category OT classification. Top: example visual words and performance for dense colour

SIFT M = 10, r = 4, 8, 12 and 16 (each column shows the HSV components of the

same word). Lower example visual words and performance for grey patches with N = 5

and M = 3. (a) varying number of visual words, V , (b) varying number of topics, Z, (c)

varying k (KNN).
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Figure 4.4: (a) The performance when classifying the four natural categories using nor-

malized and unnormalized images and with overlapping and non-overlapping patches.

Colour patches are used. (b) Performance when classifying all categories, man-made

and natural using different patches and features. Abbreviations for this and subsequent

figures: CP (Colour Patches), GHA (Grey Harris Affine – sparse, all the other descrip-

tors are dense), G4CC (Grey SIFT four Concentric Circles), CxCC (Colour SIFT with x

Concentric Circles).

Figure 4.4a shows the results when classifying the images of natural scenes with colour-

patches. The performance when using normalized images is nearly 1% better than when

using unnormalized. When using overlapping patches, the performance increases by al-

most 6% compared to no overlap. Similar results occur for the man-made and all scene

category sets. Comparing results when classifying the images using only grey level infor-

mation or using colour, it can be seen in figure 4.4b and table 4.2, that colour brings an

increment of around 2%. This is probably because colour is such an important factor in

outdoor images, and helps to disambiguate and classify the different objects in the scene.

The performance of SIFT features is shown in figure 4.4b. The best results are ob-

tained with dense and not sparse descriptors. This is almost certainly because we have

more information on the images: in the sparse case the only information is where a Harris

detector fires and, especially for natural images, this is a very impoverished representation

(see figure 2.8b). Again colour is a benefit with better results obtained using colour than

grey SIFT. The performance using grey SIFT when classifying natural images is 88.5%

and increase 2% when using colour SIFT, both with four concentric support regions. The

difference when using these vocabularies with man-made images is not as significant.

This reiterates that colour in natural images is very important for classification.
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Training Regions Testing Regions

4CC 2CC 1CC

4CC 86.9 86.7 86.3

Same as Testing 86.9 85.8 85.7

Table 4.1: Changing the number of training and test support regions (for OT 8 categories).

First row: each pixel in the training images are represented by four circles (4CC) and the

testing images are represented by four (4CC), two (2CC) and one (1CC) circle from left

to right. Second row: pixels in the training and testing images are represented by the same

number of circles.

Number of support regions

Turning to the performance variation with the number of support regions for dense SIFT.

It can be seen from figure 4.4b that best results are obtained using four concentric circles.

With only one support region to represent each patch, results are around 1% worse. This

is probably because of lack of invariance to scale changes: using four support regions to

represent each pixel effectively represents the texture at four different scales.

We now investigate how important it is to use four concentric circles to represent each

pixel in both training and testing. The first row of table 4.1 shows the performance when

using four concentric circles with colour to represent each pixel at the training stage, and

four, two and one circles also with colour information for the testing data. The second row

shows the performances when using the same number of circles to represent the pixels at

the training and testing stage. It can be seen that performances in the first row are very

similar, so that four concentric circles is enough to represent the training data and fewer

patches can be used to represent the pixels in the testing images, i.e. sampling only the

training images at multiple scales is sufficient.

Table 4.2 summarizes the results for the three OT image sets (all 8 categories, 4 natural

and 4 man-made) covering the different dense vocabularies: grey and colour patches,

grey and colour SIFT and the two baseline algorithms when using KNN classifier. From

these results it can be seen that: (i) The baseline texture algorithm works better than the

baseline colour in all three cases. Despite its simplicity the performance of the baseline

texture algorithm on man-made images (73.8%) is very high, showing that these images

may be easily classified from their edge directions. (ii) For the various descriptors there
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Visual Vocabulary GP CP G4CC C4CC PS GlC GlT

All categ. 71.5 77.0 84.3 86.6 82.6 55.1 64.6

Natural categ. 75.4 82.4 88.5 90.2 84.0 59.5 70.1

Man-made categ. 77.4 83.5 91.1 92.5 89.3 66.1 73.8

Table 4.2: Rates obtained different features when using database OT. GP (Gray Patches),

CP (Colour Patches), G4CC (Grey SIFT four Concentric Circles), C4CC (Colour SIFT

with four Concentric Circles). PS (Colour Patches and Colour SIFT), GlC (Global

Colour), GlT (Global Texture).

pLSA BoW

KNN SVM KNN SVM

C4CC 86.6 87.1 82.5 83.8

G4CC 84.3 84.7 79.7 80.8

Table 4.3: Rates obtained for KNN and SVM when data provided by pLSA and BoW are

used as input vectors for the classifiers. OT database (8 categories) is used. G4CC (Grey

SIFT four Concentric Circles), C4CC (Colour SIFT with four Concentric Circles)

are clear performance conclusions: man-made is always better classified than natural (as

expected from the baseline results); SIFT type descriptors are always superior to patches;

colour is always superior to grey level. The best performance (86.6% for all 8 categories)

is obtained using colour SIFT and four concentric circles. (iii) Somewhat surprisingly,

better results are obtained using the SIFT vocabulary alone, rather than when merging

both vocabularies (patches and SIFT). This may be because the parameters (V , Z and K)

have been optimized for a single vocabulary, not under the conditions of using multiple

vocabularies.

4.6.3 KNN vs SVM

All the results above are for P (z|d) with the KNN classifier. Now we investigate classifi-

cation performance when using a SVM. Table 4.3 shows the results for the SIFT support

regions for both classifiers KNN and SVM. Optimized parameters for each vocabulary

are used. It can be seen that SVM performs around 1% better than KNN.
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4.6.4 pLSA vs Bag-of-Words (BoW)

The results to this point use pLSA to obtain an intermediate representation, with P (z|d) as

the inputs for the classifiers. We now compare to the performance obtained by classifying

the BoW representation directly. Again the performance is for the OT dataset with 8

categories, and in all the experiments: V = 1500 (unless stated otherwise), Z = 25,

K = 10, and four support regions are used for each point spaced at M = 10. For

the SVM classifier a χ2 exponential kernel [158] is used for the BoW, and an Euclidean

exponential kernel for pLSA. These kernels were found to give the best performance in

each case.

Table 4.3 shows pLSA and BoW rates for different support regions and using a SVM

and KNN. It can be seen that in all cases the performance using pLSA is around 4% better

than that obtained using a BoW.

Number of training Images

We now evaluate the classification performance when less training data is available. The

OT dataset is split into 2000 training images and 688 test images. A varying number,

ntrain, of images from the training set are used for both learning the pLSA topics (gen-

erative part) and learning the topic distribution of each scene (discriminative part). The

classification performance using P (z|d) is compared to that of using BoW vectors. As

can be seen in figure 4.5, the gap between pLSA and BoW increases as the number of

labelled training images decreases, as was demonstrated in [116].

In the previous experiment, we varied the amount of training data for both: the generative

and discriminative learning. However, a key advantage of the hybrid approach is that the

generative part of the model can be trained on large amounts of unlabelled data (hence

discovering the structure of the data), so that relatively few labelled examples are needed

for high accuracy. To show this advantage, we repeat the previous experiment training

the generative classifier using the 2000 training images and decreasing the number of

labelled training images (ntrain) only for the discriminative classifier. Figure 4.6 shows

the comparison of the previous experiment and the current experiment when using SVM

as a discriminative classifier. It can be seen that much better results are obtained when

decreasing only the number of labelled training data than when reducing the training data
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Figure 4.5: pLSA and BoW performances when decreasing the number of training im-

ages. 8 categories from the OT dataset with four concentric circles and V = 1500 words,

Z = 25 and K = 10.

in both learning parts. So there is a clear advantage of using a hybrid approach: the system

has acceptable performances with less labelled training data.

Vocabulary size

Figure 4.7 shows the performance when changing the vocabulary size V (from 200 to

5000 words) for both the discriminative classifiers (KNN and SVM). It can be seen that

for both classifiers, pLSA is less affected by the vocabulary size than the BoW.
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K = 10. SVM is used as a discriminative classifier.

V Size

60

65

70

75

80

85

90

200 500 1000 1500 2000 2500 5000

V

P
er

fo
rm

an
ce

 (
%

)

SVM-pLSA

KNN- pLSA

SVM-BOW

KNN- BOW

Figure 4.7: Changing the vocabulary size for the OT dataset. Parameters are Z = 25,

K = 10, M = 10 and four concentric circles.



4.6 Classification results 61

pLSA vs BOW - KNN

50

60

70

80

90

100

4 8 13 15

# Categories

P
er

fo
rm

an
ce

 (%
)

pLSA

BOW

pLSA vs BOW - SVM

50

60

70

80

90

100

4 8 13 15

# Categories

P
er

fo
rm

an
ce

 (%
)

pLSA

BOW

Figure 4.8: pLSA and BoW performances when classifying different number of categories

(from 4 to 15). Parameters used are V = 1500, Z = 25, M = 10 and 4 concentric circles

as support regions. First row: pLSA vs BoW when using KNN (K = 10); second row:

pLSA vs BoW when using SVM.

Number of scene categories

Figure 4.8 shows the performances when increasing the number of categories to be classi-

fied for both KNN (first row) and SVM (second row). For the KNN, when classifying the

4 natural images in the OT dataset, the results using the topic distribution is 90.2% and

with the BoW directly the classification performance decreases by only around 1.5%, to

88.7%. However for 8 categories, the performance decreases by nearly 4%, from 86.6%

to 82.5%. Using the 13 categories from the FP dataset and the 15 LSP dataset, the per-

formance falls around 8%, from 73.4% to 64.8% and from 71.0% to 63.1% respectively.

Thus there is a clear gain in using pLSA (over the BoW) with KNN when classifying a

large number of categories.
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KNN SVM

# Categ. pLSA BoW pLSA BoW

4 OT dataset 90.2 88.7 91.5 88.4

8 OT dataset 86.6 82.5 87.1 83.8

13 FP dataset 73.4 64.8 74.9 73.6

15 LSP dataset 71.0 63.1 72.6 72.5

Table 4.4: Classification rates for pLSA and BoW when classifying categories from dif-

ferent datasets. Parameters used are V = 1500, Z = 25, M = 10 and 4 concentric circles

as support regions.

If we focus on the SVM, performances with pLSA are better as well. However when

classifying a large number of categories (13 or 15) pLSA is 1% better than BoW, thus the

gap is not as large as when using the KNN classifier. Table 4.4 summarizes the perfor-

mances for KNN and SVM over pLSA and BoW.

4.6.5 Summary

The best results are obtained using dense descriptors – colour SIFT with four circular

support regions. Overlap increases the performance. When using the SIFT vocabulary

the values for the parameters giving the best results are M = 10 pixels with concentric

circles support regions of r = 4, 8, 12 and 16 pixels. For patches the best results are

for N = 5, M = 3. Table 4.5 shows the optimized values V , Z and K learnt from a

validation set for each dataset. Note that V strongly depends on the size of the feature

vector (128 × 3 dimensionality vector for SIFT and 25 × 3 dimensionality vector for

patches), while Z depends on the number of categories in each dataset. In both (SIFT

and patches), colour information increases performance. The result that dense SIFT gives

the best performance was also found by [36] in the case of pedestrian detection. It it

interesting that the same feature applies both to more distributed categories (like grass,

mountains) as well as the compact objects (pedestrians) of their work where essentially

only the boundaries are salient.

When comparing the discriminative classifiers KNN and SVM, better performances

are obtained with SVM. We also demonstrated that pLSA works better than the BoW
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SIFT Patch

Dataset V Z K V Z K

VS 1500 25 7 900 25 9

OT 1500 25 10 900 23 10

FP 1200 35 9 600 33 10

LSP 1200 40 11 700 42 12

Table 4.5: Optimized parameters when using the SIFT vocabulary for the four datasets:

M = 10 and r = 4, 8, 12 and 16 pixels, and when using the patch vocabulary: N = 5,

M = 3 pixels. A validation set is used for each dataset.

representation (pLSA provides a better intermediate representation of the images), and

that pLSA is less affected by the vocabulary size and the number of training images. More

concretely for the KNN discriminative classifier, when working with a small number of

categories the difference between pLSA and BoW is 1.5%. However when the number

of categories increases this difference is around 8% showing that pLSA provides a more

robust intermediate representation than BoW. Thus there is a clear gain in using pLSA

(over the BoW) with KNN when classifying a large number of categories. Moreover

a clear advantage of using a generative model (pLSA), over BoW directly, is that the

number of labelled training images can be reduced considerably without much loss of

performance.

Moreover a clear advantage of using a generative classifier (pLSA) over BoW to dis-

cover the topic representation of the images is that the number of labelled training images

can be considerably reduced without much loss of performance. We can train the system

with a large amount of unlabelled images and use few labelled images reducing the human

annotation effort.

4.7 Comparison to previous results

We compare the performance of our scene classification algorithm to the supervised

approaches of Vogel and Schiele [150] and Oliva and Torralba [102], and the semi-

supervised approach of Fei-Fei and Perona [41] and Lazebnik et al. [76], using the same

datasets (VS, OT, FP and LSP respectively) that they tested their approaches on and the
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Dataset # of categ. # train # test hybrid approach Authors

OT 8 800 1888 83.5 ± 1.2 83.7 1

OT 4 Natural 1000 472 90.7 ± 0.9 89.0 [102]

OT 4 Man-Made 1000 216 91.7 ± 1.2 89.0 [102]

VS 6 600 100 87.8 ± 1.0 74.1 [150]

FP 13 1300 2459 74.3 ± 1.3 65.2 [41]

LSP 15 1500 2986 72.7 ± 1.2 81.4 [76]

Table 4.6: Comparison of our algorithm with other methods using their own databases.

Validation set optimized values are used for each dataset.

same number of training and testing images. For each dataset we use the SVM classifier,

SIFT and four circular supports spaced at M = 10; the parameters V and Z have the

optimized values for each dataset (see table 4.5). We used colour for OT and VS, and

grey for FP and LSP. The visual vocabulary is computed independently for each dataset,

as described in section 4.5. We return to the issue of sharing vocabularies across datasets

in section 4.8. The results are given in table 4.6.

Note that much better results are obtained with the four natural scenes of OT, than with

the six of VS. This is because the images in VS are much more ambiguous than those of

OT and consequently more difficult to classify. In table 4.6 we can see that our method

outperforms the previous methods in [41, 102, 150], despite the fact that our training is

unsupervised in the sense that the scene identity of each image is unknown at the pLSA

stage and is not required until the SVM training step. This is in contrast to [41, 76],

where each image is labelled with the identity of the scene to which it belongs during the

training stage. In [150], the training requires manual annotation of 9 semantic concepts

for 60000 patches, while in [102] training requires manual annotation of 6 properties for

thousands of scenes. It is worth to state that in [102, 150] the intermediate information

which represents the images has a semantic meaning while in [41, 76] and our approach

the intermediate information has not a semantic meaning from the human point of view.

However this is not a problem, because our final goal is to give a label for each scene:

we are interested in the semantic meaning of the whole scene and not in the semantic

meaning of the intermediate information. In the case of the 8 categories in OT the method

1http://people.csail.mit.edu/torralba/code/spatialenvelope/
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in [102] is only marginally better (0.2%) than ours. The method in [76] is nearly 10%

better than ours.

Discussion

The superior performance (compared to [41, 150]) could be due to the use of better fea-

tures and how they are used. In the case of Vogel and Schiele [150], they learn 9 topics

(called semantic concepts) that correspond to those that humans can observe in the im-

ages: water, trees, sky etc. for 6 categories. Fei-Fei and Perona learn 40 topics (called

themes) for 13 categories. They do not say if these topics correspond to natural objects.

In our case, we discover between 22 and 30 topics for 8 categories. These topics can vary

depending if we are working with colour features (where topics can distinguish objects

with different colors like light sky, blue sky, orange sky, orange foliage, green foliage

etc...) or only grey SIFT features (objects like trees and foliage, sea, buildings etc...).

In contrast to [150] we discover objects that sometimes would not be distinguished in a

manual annotation, for example mountains with snow and mountains without snow. Our

superior performance compared to [102], when using the 4 natural or man-made cate-

gories, could be due to their method of scene interpretation. They use the spatial envelope

modelled in a holistic way in order to obtain the structure (shape) of the scene using

coarsely localized information. On the other hand, in our approach specific information

about objects is used for scene categorization. Performance in [102] is 0.2% better when

using the 8 categories in the OT dataset. This score has been obtained with few training

images (100 per category in contrast to the 4 natural/man-made where 250 per category

have been used). Our method is better if more images are used in the generative learning

(as it is demonstrated for the 4 Natural and 4 Man-Made images – see table 4.6), because

it is an unsupervised approach and needs more information to discover the class specific

distributions. Nevertheless, this performance has been overcome by our approach, with a

87.1%, when more training images are used (see table 4.4).

We do not outperform the spatial pyramid classifier proposed in [76]. This is because

their spatial representation is more discriminative for the scene classification task. How-

ever when using their method without spatial information their performance is 72.2% and

we increase up to 72.45% (here we used V = 200 for a better comparison). This means

that if we find a way to codify the spatial information into the proposed hybrid approach,
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we can also improve on performance. This issue will be addressed in chapter 6.

4.8 Applications

We applied the pLSA based classifier in four other situations. The first one is also a

classification task, but combining the images of two different datasets, the second is a

relevance feedback application, the third is scene retrieval for the film Pretty Woman

[Marshall, 1990], and in the fourth we apply pLSA for image segmentation. In all the

following the descriptor is dense colour SIFT with circular support and V = 700, Z = 22

and K = 10 (these are the optimal parameter values when working with the four natural

scenes from the OT dataset).

Vocabulary generalization

In this classification test, we train the system with the four natural scenes of the OT

dataset (coast, forest, mountains and open country) and test using the same four scene

categories from the VS dataset. This tests whether the vocabulary and categories learnt

from one dataset generalize to another. We obtain a performance of 88.2% of correctly

classified images for KNN and 88.9% for SVM. This performance is only slightly worse

than the 89.8% obtained when classifying the same four categories in the VS dataset with

no generalization (i.e. using training images only from VS). This slight performance drop

is because (i) images within the same database are more similar, and (ii) the images in

VS are more ambiguous than OT, so this ambiguity is not represented in training the OT

classifier. However, 88.9% compared to 89.8% does demonstrate excellent generalization.

To address (i) we investigate using a vocabulary composed from both databases and find

this improves the performance to 89.6%.

Relevance Feedback (RF)

[159] proposed a method for improving the retrieval performance, given a probabilistic

model. It is based on moving the query point in the visual word space towards good

example points (relevant images) and away from bad example points (irrelevant images).
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The vector moving strategy uses the Rocchio’s formula [117]:

qpos = αq + β(
1

a

a∑
i=1

reli) − γ(
1

b

b∑
j=1

irelj) (4.4)

where q is the BoW for the query image, a is the number of relevant images b is the

number of irrelevant images, and rel, irel are the BoW representations for the relevant

and irrelevant retrieved images. The parameters α, β and γ are set to 1. With the modified

query vector qpos and a constructed negative example qneg:

qneg = α(

b∑
j=1

irelj) + β(
1

b

b∑
j=1

irelj) − γ(
1

a

a∑
i=1

reli) (4.5)

their representations in the discovered concept space are obtained P (z|qpos) and P (z|qneg)

and their similarities spi and sni to each image iεI in the database are measured using the

cosine metric of the corresponding vectors in the topic space, respectively. Then the

images are ranked based on the similarity si = spi − sni.

To test RF we simulate the user’s feedback using 25 random images of each cate-

gory. For each query image, we carry out n iterations. At each iteration the system

examines the top 20, 40 or 60 images that are most similar to the query excluding the

positive examples labelled in previous iterations (this is refered as P(20), P(40) and P(60)

respectively).Images from the same category as the initial query will be used as positive

examples, and other images as negative examples.

Figure 4.9a shows the average precision vs recall graph for all 8 categories in the OT

dataset. The cyan line represents the performance in the first iteration (Content Based

Image Retrieval CBIR) and the others when using the RF algorithm after 4 iterations.

Best results are obtained when considering the top 60 images (P(60)). Figure 4.9b shows

the results for 200 query images, 25 of each category, in OT considering P(60) also after

4 iterations. The first 100 images can be retrieved with an average precision of 0.75.

We can see that the most difficult category to retrieve is open country while the better

retrieved are forest and highway followed by tall buildings. This is in accordance with the

classification results.
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Figure 4.9: (a) Precision vs Recall graph. (b) Performance when retrieving each category

separately (25 images query for each).

Classifying film frames into scenes

In this test the images in OT are again used as training images (8 categories), and key

frames from the movie Pretty Woman are used as test images. We used V = 1500 and

Z = 25 which are the optimized values for the 8 categories in the OT dataset. Note,

this is a second example of vocabulary and topic generalization as we are using training

images from a different dataset. We used every hundredth frame from the movie to form

the test set. In this movie there are only a few images that could be classified as the

same categories used in OT, and there are many images containing only people. So it is

a difficult task for the system to correctly classify the key frames. Although the results

obtained (see figure 4.10) are purely anecdotal, they are very encouraging and show again

the success of using pLSA in order to classify scenes according to their topic distribution.

Segmentation

Figure 4.11 shows examples of segmentation of five topics using the colour SIFT vocab-

ulary. Circular patches are painted according to the maximum posterior P (z|w, d):

P (z|w, d) =
P (w|z)P (z|d)∑

zlεZ
P (w|zl)P (zl|d)

(4.6)

For each visual word in the image we choose the topic with maximum posterior

P (z|w, d) and paint the patch with its associated colour, so each colour represents a dif-
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Inside City Inside City Inside City Inside City Inside City Inside City

Open Country Open Country Coast Tall building Tall building Street Inside City

Inside City

Figure 4.10: Example frames from the film Pretty Woman with their classification. The

classifier is trained on the OT dataset.

ferent topic (the topic colour is chosen randomly). To simplify the figures we only paint

one topic each time. Note that topics represent consistent regions across images (enabling

a coarse segmentation) and there is a straightforward correspondence between topic and

object.

4.9 Discussion

We have proposed a scene classifier that learns topics and their distributions in unlabelled

training images using pLSA, and then uses their distribution in test images as a feature

vector in a supervised discriminative classifier. We have shown the advantage of the

hybrid approach when decreasing the number of labelled training images in the training

step.

We studied the influence of various descriptor parameters and have shown that using

colour (if available) dense SIFT descriptors with overlapping patches gives the best results

for man-made as well as for natural scene classification. Furthermore, discovered topics

correspond fairly well with different textural objects (grass, mountains, sky) in the images,

and topic distributions are consistent between images of the same category. It is probably

this freedom in choosing appropriate topics for a dataset, together with the optimized

features and vocabularies, that is responsible for the superior performance of the scene

classifier over previous work (with manual annotation and without spatial information).

Moreover, the use of pLSA is never detrimental to performance, and it gives a significant

improvement over the original BoW model when a large number of scene categories are
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Vegetation Clouds Fields Mountains Sky

Figure 4.11: Topics segmentation. Five topics (vegetation, clouds, fields, mountains and

sky) are shown. Only circular regions with a topic posterior P (z|w, d) greater than 0.8

are shown.

used.

In contrast to previous approaches [41, 102, 150], our topic learning stage is com-

pletely unsupervised and we obtain significantly superior performance in the pure bag of

words situation (without spatial information). Nevertheless, it is demonstrated in [76] that

using the spatial information is very useful for the scene classification task. So that the

main issue in next chapter will be to investigate how to incorporate spatial information to

our hybrid approach to improve the scene classification performance.



Chapter 5

Adding spatial information

In this chapter we investigate the benefits of introducing spatial information to the prob-

lem of scene (coast, forest, kitchen) and object (dolphins, cars, airplanes) classification.

In order to introduce spatial information, we were inspired by the method of Lazebnkik

et al. [76]. This method is based on repeatedly subdividing the image and computing

histograms of local features at increasingly fine resolutions levels obtaining a Pyramid

Histogram Of visual Words (PHOW). This descriptor is then used as input for a discrimi-

native classifier. In the first part of the chapter we extend the Spatial Pyramid (SP) frame-

work of Lazebnik et al. [76] in two ways. First we introduce a new Pyramid-radial basis

function kernel (P-rbf), suitable for SVM classifier. Second, we generalize the PHOW

descriptor, and learn its level weighting parameters (on a validation set). The proposed

P-rbf kernel increases performance by 1% respect to the original pyramid kernel and the

weight generalization improves performance another 1%.

In the second part of the chapter we study how to incorporate spatial information

into the hybrid approach proposed in chapter 4. Here we are inspired by the ABS-pLSA

framework proposed by Fergus et al. [44]. We use the PHOW which represents the joint

density on the appearance and location of each region as input of the generative classifier

of the hybrid system. This method is called SP-pLSA, and it improves performance by

2.4% compared to original SP [76].

71
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5.1 Introduction

Recently it has been shown [20, 44, 76] that position information can improve scene

classification performance (earlier work had shown little benefit [150]). Motivated by

this, we consider the problem of image classification where our main goal in this chapter

is both, to find an image representation which incorporates spatial information and to

explore wether this representation is suitable as input of the generative learning of our

hybrid system.

Lazebnik et al. [76] successfully incorporated spatial information to the bag-of-words

showing very good performances for scene classification. This method works by placing

a sequence of increasingly coarser grids over the image and taking a weighted sum of the

number of matches that occur at each level of resolution. The image is represented by

a Pyramid Histogram Of visual Words (PHOW) descriptor. We extend this method by

introducing a new Pyramid radial basis function kernel (P-rbf). This is a kernel which

generalizes from the original one and has the advantage that the most suitable similarity

distance measure can be used. This kernel is introduced in section 5.2.

The original pyramid level weighting has fixed ratios between the pyramid levels and

gives more importance to the matches found at higher resolution levels. However this

ratios have not to be the optimum and the higher pyramid level has not to be the best. The

PHOW is improved by generalizing the weighting for the levels of the hierarchical spatial

histogram [57, 76]. This level-weighting is introduced in section 5.3.

In the second part of the chapter we investigate wether the spatial information can

be used within the generative learning. We are inspired by the ABS-pLSA proposed by

Fergus et al. [44] which incorporates location into the pSLA model by quantizing the

location within the image into one of X bins and then to have a joint density on the

appearance and location of each region. Though the operation itself seems trivial there is

the open question of what is the right subdivision scheme or which is the right number of

bins X to use. We can solve this by using the PHOW, and the best results will be achieved

when multiple resolutions are combined in a principled way. We use the Spatial Pyramid

representation with the optimum level weights as input for the pLSA learning. We call

this method as SP-pLSA and it is explained in depth in section 5.4. Figure 5.3 shows an

example of our spatial pyramid proposal and how it is used as the input of the generative
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learning of the hybrid system proposed in previous chapter.

Sections 5.5 and 5.6 describe the datasets, methodology and implementation details.

We compare a number of methods that include both latent models and spatial informa-

tion, and demonstrate improved results over [44, 76] in section 5.7. A comparison with

previously published results is provided in section 5.8. A summary and quantization im-

provement in performance for each of the extensions proposed is given in section 5.9. A

discussion about the ambiguities and difficulties of the scene/object classification task is

given in section 5.10.

5.2 Pyramid radial basis function kernel – P-rbf

Spatial Pyramid framework - SP

We follow the scheme proposed by Lazebnik et al. [76] which is based on spatial pyramid

matching [57]. Consider matching two images each consisting of a 2D point set, where

we wish to determine soft matches between the point sets when the images are overlaid –

for a particular point the strength of the match depends on the distances from its position

to points in the other set. Each image is divided into a sequence of increasingly finer

spatial grids by repeatedly doubling the number of divisions in each axis direction (like

a quadtree). The number of points in each grid cell is then recorded. This is a pyramid

representation because the number of points in a cell at one level is simply the sum over

those contained in the four cells it is divided into at the next level. The cell counts at each

level of resolution are the bin counts for the histogram representing that level. The soft

correspondence between the two point sets can then be computed as a weighted sum over

the histogram intersections at each level. Similarly, the lack of correspondence between

the point sets can be measured as a weighted sum over histogram differences at each level.

In the image case, the pyramid matching is applied to the two-dimensional image

space, and a BoW vector is computed for each grid cell at each pyramid resolution level.

So the 2D points in the example above are replaced by visual words obtaining a Pyramid

Histogram Of visual Words (PHOW) descriptor for the image. The kernel (used within

and SVM classifier) is defined as follow:
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l = 0 l = 1 l = 2

+ +α0 α1 α2

SVM

Figure 5.1: Spatial Pyramid [76] framework. The image is recursively split, and a BoW

vector is then computed for each grid cell at each pyramid resolution level.

KL(X, Y ) =
V∑

v=1

kL(Xv, Yv) (5.1)

where V is the vocabulary size and kL(X, Y ) = ΣL
l=0αlI

l, and I is the histogram intersec-

tion between the two feature vectors X and Y at each pyramid level. Normally matches

found at finer resolutions are weighted more highly than matches found at coarser resolu-

tions. The PHOW is normalized to sum the unity. A graphical example of this method is

shown in figure 5.1.

In forming the pyramid the grid at level l has 2l cells along each dimension. Conse-

quently, level 0 is represented by a V -vector corresponding to the V visual words of the

histogram, level 1 by a 4V -vector etc, and the PHOW descriptor of the entire image is a

vector with dimensionality V
∑

lεL 4l. For example, for levels up to L = 1 and K = 200

bins it will be a 1000-vector.

P-rbf kernel

The kernel above uses the histogram intersection distance to measure the similarity be-

tween two descriptors at each level. However this distance has not to be the best one to

find the similarity between a couple of descriptors. We generalize the kernel by introduc-

ing a Pyramid-radial basis function kernel:



5.3 Global Level-Weights – GLW 75

K(DI , DJ) = exp{ 1

β

L∑
l=0

αldl(DI , DJ)} (5.2)

where dl is the distance between DI and DJ at pyramid level l. We use the χ2 on the nor-

malized PHOW descriptors to compute it, as it is demonstrated to be a good distance for

histogram comparison [158]. It is shown that this kernel increases performance compared

to kernel in (5.1) in section 5.7. Implementation details are given in section 5.5.

5.3 Global Level-Weights – GLW

In the original spatial pyramid representation [76] each level was weighted using αl =

1/2(L−l) where L is the number of levels and l the current level. This means that his-

tograms from finer resolutions are weighted more highly than those at coarser resolu-

tions. However, this may not be the optimum weight choice. We investigate a method to

optimally learn the weights called Global Level-Weights (GLW).

Instead of giving a fixed weight to each pyramid level as in [76], we learn the weights

αl which give the best classification performance over all categories on the validation set

(see section 4.5). Consequently, the finer resolutions may not be given the highest weight.

In this case, the number of parameters to learn is the same as the number of pyramid

levels we explore. For example if we explore up to L = 2 we need to learn 3 parameters

α0, α1 and α2. Implementation details are given in section 5.7.

5.4 Spatial Pyramid-pLSA – SP-pLSA

ABS-pLSA

This is the method proposed in [44] and was applied for object recognition. The pLSA

model is extended to incorporate location information by quantizing the location within

the image into one of X bins. The joint density on the appearance and location of each

region is then represented. Thus P (w|z) in pLSA becomes P (w, x|z), a discrete density

of size (W × X) × Z. The same pLSA update equations outlined in section 4.2 can be
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Original Image
(X=4 bins)

BoW for each bin BoW concatenation

pLSA

Figure 5.2: ABS-pLSA [44] framework. Spatial information is incorporated into pLSA

by quantizing the location into each bin.

easily applied to this model in learning and recognition. The case X = 1 corresponds to

standard pLSA with no spatial information. The size of the feature vector is XV, (X times

the vocabulary size V). A graphical example of this method is shown in figure 5.2.

SP-pLSA

Our proposal is inspired by both previous ones, ABS-pLSA and SP. We incorporated

location information in pLSA by using the X bins at each resolution level L, weighting the

bins for each level (αl) as in SP. Note that in ABS-pLSA only the bins for one resolution

level are used and in SP-pLSA we use the weighted bins for L resolutions. So for example

when L = 1, if using ABS-pLSA we have X = 4 bins, and if we use SP-pLSA we have

X = 5 bins (one bin for L = 0 and four bins for L = 1). Thus P (w|z) in pLSA

becomes P (w, x, l|z). The same pLSA update equations outlined in section 4.2 can be

easily applied to this model in learning and recognition. The size of the PHOW descriptor

is V
∑

lεL 4l as in SP. The PHOW is normalized to sum to unity. A graphical example is

shown in figure 5.3.

5.5 Datasets and methodology

Datasets

We evaluated the improvements introduced in this chapter for scene classification on the

four scene datasets (OT, VS, FP and LSP) and for the object classification on Caltech-101.
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l = 0 l = 1 l = 2

+ +α0 α1 α2

Generative Learning - pLSA

Discriminative Learning - SVM

Image Representation - PHOW

optimizationαl

Figure 5.3: Generative/Discriminative hybrid system using spatial information.

See chapter 3 for a complete description about them.

Methodology

The performance is measured using a confusion table, and overall performance rates are

measured by the average value of the diagonal entries of the confusion table. This process

is repeated 10 times and the mean average and standard deviation are given.

For the SP framework we use an M-SVM classifier with the kernel in (5.2) and PHOW.

β is the average of
∑L

l=0 αldl(DI , DJ) over the training data, αl is the optimized weight

at level l (see section 5.7.1). For the hybrid system SP-pLSA we use the generative
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learning with the PHOW descriptor and then the P (z|d) is used as input for the M-SVM

discriminative classifier, with an L2 kernel. ABS-pLSA is evaluated for X = 1, 4 and 16

bins.

Moreover we implemented a baseline method for comparison:

xy-pLSA. The x and y normalized position of each pixel is concatenated to the feature

vector. So in this case the dimension of the feature vector is N 2 × 3+2. Each component

of the feature vector (both spatial and SIFT) is in the range [0, 1]. However, the SIFT part

of the vector is sparse in general.

5.6 Implementation

Scene datasets

For each dataset we use SIFT and four circular supports spaced at M = 10; the parameters

V ,Z,α0, α1 and α2 have the optimized values for each dataset (see table 4.5 and table 5.1).

For the PHOW descriptor we only explored up to L = 2 which was demonstrated in [76]

to be the optimum level. We used colour for OT and VS, and grey for FP and LSP. The

visual vocabulary is computed independently for each dataset, as described in section 4.5.

Caltech-101

For the experiments, four concentric circles SIFT with colour information are used to

represent each pixel, spaced at M = 10, V = 300, Z = 80 topics for SP-pLSA. The

weights ratios for GLW are α0 : α2 = 0.9 and α1 : α2 = 0.8 for SP-pLSA, and α0 : α2 =

1 and α1 : α2 = 0.9 for SP. For the PHOW descriptor we only explored up to L = 3 to

prevent object overfitting. We carried out experiments using 15 and 30 random training

images per category, and 50 random testing images per class (disjoint from the training

images). The mean recognition rate per class is used so that more populous (and easier)

classes are not favored.
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Figure 5.4: Optimization rates between the weights at each pyramid level using the vali-

dation set from the OT dataset: (a) SP is used; (b) SP-pLSA is used.

ratios OT - 8 OT - 4N OT - 4MM VS FP LSP

SP weights

α0 : α2 1 0.8 0.9 1 0.9 1

α1 : α2 0.9 0.9 0.8 0.9 0.8 0.8

SP-pLSA weights

α0 : α2 0.7 0.9 0.9 0.9 1 1

α1 : α2 0.8 0.8 0.8 0.7 0.9 0.8

Table 5.1: Optimized weight ratios α0 : α2 and α1 : α2 for each dataset using the valida-

tion set. 4N = 4 Natural categories; 4MM = 4 Man-Made categories.

5.7 Measuring the improvements

5.7.1 Optimizing the parameters α0, α1 and α2 (on the validation set)

GLW. Since the final PHOW is normalized there are only two independent parameters

which represent three of the ratios in: α0 : α1 : α2. Using the validation set we optimize

the ratio between the weights α0:α2 and α1:α2 over the range [0, 1.5]. Figure 5.4a shows

the performance when optimizing using SP on the OT dataset (8 categories). Figure 5.4b

shows performances when optimizing the weights for SP-pLSA on the same dataset. The

optimized ratios using the validation set are summarized in table 5.1.
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L pLSA xy-pLSA ABS-pLSA SP (5.1) SP (5.2) SP-pLSA

L = 0 87.1(±0.9) 89.0(±0.6) 87.1(±0.8)(X = 1) 82.6(±0.7) 83.8(±0.7) 87.1(±1.0)

L = 1 − − 87.9(±0.9)(X = 4) 89.4(±0.6) 90.3(±0.7) 90.7(±0.8)

L = 2 − − 88.3(±0.9)(X = 16) 90.2(±0.7) 91.0(±0.6) 91.1(±0.9)

Table 5.2: Performance comparison for the OT dataset when spatial information is used.

Four concentric circles spaced at M = 10 and V = 1500, Z = 25, α0 : α2 = 0.5 and

α1 : α2 = 0.5 (the same weight ratios used in [76]).

5.7.2 Spatial frameworks comparison

In this section we compare the two reviewed methods (ABS-pLSA and SP framework)

with the hybrid method without spatial information, the SP-pLSA and the baseline xy-

pLSA. The OT dataset (8 categories) is used.

Table 5.2 shows the values for the hybrid method without position and the four meth-

ods above described. For the SP results with both kernels (5.1),(5.2) are included. The

weights used in this experiments are: α0 = 0.25, α1 = 0.25 and α2 = 0.5 (the same

weights are used in [76]). When only the first level of the pyramid is used (L = 0) the

best result (89.0%) is obtained when using xy-pLSA. In this case SP works directly over

the BoW and has worse results than the methods that use pLSA. When L = 1 and L = 2

the best results are obtained for SP-PLSA (90.7% and 91.1%) followed by SP with the

proposed kernel (90.3% and 91.0%). The proposed radial basis kernel (6th column) in-

creases performance by 1% respect to the original pyramid kernel (5th column). Unless

stated otherwise we are going to use (5.2) with the SP framework.

When using GLW optimization, for SP the best performance (92.2% for the test data)

is for α0 : α2 = 1 and α1 : α2 = 0.9. For the SP-pLSA framework the performance

increases to 92.7% for the test data using the validation set optimized ratios α0 : α2 = 0.7

and α1 : α2 = 0.8. Note that best performances are obtained for higher ratios and they

exceed that given in table 5.2 by 1%. Two main conclusions can be extracted from these

results: (i) higher weight is given to finer levels, so they have more importance in order

to represent the image, but even though (ii) a significative weight is also given to all the

other lower levels, so that they all are significative to describe the image.
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Dataset # of categ. # train # test pLSA SP SP-pLSA Authors

OT 8 800 1888 83.5 ± 1.2 87.1 ± 0.8 87.8 ± 1.4 83.7 [102]

OT 4 N 1000 472 90.7 ± 0.9 93.3 ± 0.7 93.9 ± 1.2 89.0 [102]

OT 4 MM 1000 216 91.7 ± 0.8 94.2 ± 0.9 94.8 ± 1.3 89.0 [102]

VS 6 600 100 87.8 ± 1.0 88.6 ± 0.9 88.3 ± 1.4 74.1 [150]

FP 13 1300 2459 74.3 ± 1.3 85.5 ± 0.8 85.9 ± 1.3 65.2 [41]

LSP 15 1500 2986 72.7 ± 1.2 83.5 ± 0.8 83.7 ± 1.3 81.4 [76]

Table 5.3: Comparison of our algorithm with other methods using their own databases.

L = 2 for SP-pLSA and SP. GLW optimization. L2 kernel is used for the discriminative

classifier of the hybrid system. Kernel in (5.2) is used for SP.

Summary

We outperform the (SP) classifier proposed in [76] by 1% when working with the pro-

posed kernel. Moreover if we use the GLW optimization we increase performance an-

other 1%, making a total of 2% respect the original SP framework. We successfully

incorporated spatial information into the pLSA framework (SP-pLSA) obtaining slightly

better performances (0.2%) than SP when using level-weights optimization and the P-rbf

kernel. Performance increases by 4%, compared to results shown in chapter 4, if spatial

information is used.

5.8 Comparison to previous results

5.8.1 Scene classification

We compare the performance of our scene classification algorithm to the supervised

approaches of Vogel and Schiele [150] and Oliva and Torralba [102], and the semi-

supervised approach of Fei-Fei and Perona [41] and Lazebnik et al. [76], using the same

datasets (VS,OT,FP and LSP respectively – see chapter 3) that they tested their approaches

on and the same number of training and testing images.

The results are given in table 5.3. Without using spatial information (5th column in

table 5.3) our method outperformed the previous methods in [41, 102, 150]. Better results
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# train [76] [11] [58] [100] [151] [157] SP SP-pLSA

15 56.4 52.0 49.5 51.9 44.0 59.0 58.7(±0.8) 59.3(±1.4)

30 64.6 − 58.2 56.0 63.0 66.0 66.5(±0.7) 67.1(±1.5)

Table 5.4: Classification of Caltech 101 with 15 or 30 training images per class. For SP-

pLSA and SP four concentric circles spaced at M = 10 are used, V = 1500, Z = 80, and

SVM is used as the discriminative classifier.

are obtained with spatial information (6th and 7th columns). We have better performances

(83.7%) than in [76] when using SP-pLSA and also when using their own method with

our features, kernel and level-weight optimization. In [76] with V = 400 words and

weight ratios α0 : α2 = 0.5, α0 : α1 = 0.5 they achieve 81.4% of correct classified

scenes. Using SP with theses same parameters and the P-rbf kernel (5.2) our performance

increases up to 82.5%. In both our and their experiments grey SIFT descriptors are used.

This demonstrates again that the P-rbf kernel increases performance.

5.8.2 Object classification – Caltech-101

Caltech-101 contains 101 object categories to distinguish amongst. Chapter 3 provides a

complete description of this dataset. [76] argued that Caltech-101 was essentially a scene

matching problem so an image based representation was suitable. Their representation

added the idea of flexible scene correspondence to the bag-of-visual-word representations

that have recently been used for image classification [35, 112, 158]. So that this dataset is

also useful to test our scene classification algorithm.

A number of previously published papers have reported results on this data set: Lazeb-

nik et al. [76], Berg et al. [11], Grauman and Darrell [58], Zhang et al. [157] etc.

Table 5.4 shows our results and those reported by other authors. Our best performance

is when using SP-pLSA algorithm with a mean recognition rate of 59.3% with 15 training

images per class, and 67.1% with 30 training images per class. This outperforms the

results reported by Zhang et al. [157] that to our knowledge were the best until now.
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SP original kernel & original weights

SP radial basis kernel & original weights

SP radial basis kernel & GLW

Hybrid Model (SP-pLSA) & GLW

+ 1%

+ 1%

+ 0.4 %

Figure 5.5: This graph shows how much each representational and feature increment

contributes to the overall performance.

5.9 Summary

Following the approach in [76], a spatial grid at different resolution levels is used to repre-

sent the images. The novelty arises in: (i) the kernel; (ii) the level-weights. We introduced

a new P-rbf kernel which increases performance by 1%. We demonstrated that globally

optimizing the weights increases performance another 1%. We successfully incorporate

this spatial pyramid descriptor within pLSA (SP-pLSA). In this case performance slightly

increases by 0.4%. Figure 5.5 attributes how much each representational and feature in-

crement contributes to the overall performance.

5.10 Discussion

5.10.1 The scene classification task

We discuss here the results obtained with and without spatial position information when

using the hybrid system for scene classification.

Figure 5.6a shows the confusion matrix between the 8 categories in OT dataset when

no spatial information is used. The best classified scenes are highway and forest with a

performance of 89.8% and 98.8% respectively. The most difficult scenes to classify are
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Figure 5.6: (a) Confusion matrix for the 8 categories in the OT dataset. (b) Dendrogram

showing the closest categories, which are also the most confused.

open country. There is confusion between the open country and coast scenes, and between

the open country and mountain scenes. The most confused man made images are street,

inside city and highway. These are also the most confused categories in [102]. We can

also establish some relationship amongst the categories by looking at the distances among

the topic distributions between them (see the dendrogram in figure 5.6b). When the topic

distributions are close, the categories are also close to each other on the dendrogram.

For example, the closest natural categories are open country and coast and the closest

man-made are inside city and street.

Figure 5.7 shows some confused images between categories showing the ambiguity

between some of them. Scene categorization is characterized by potential ambiguities

since it depends strongly on the subjective perception of the viewer. For example some

of the open country images shown in figure 5.7a can be easily classified as mountain for

some humans as the system did. Obviously, the obtainable classification accuracies de-

pend strongly on the consistency and accuracy of the manual annotations, and sometimes

annotation ambiguities are unavoidable. For example, the annotation of mountains and

open country is quite challenging. Imagine an image with fields and snow hills in the far

distance: is it open country or mountain? Even more confused are coast and open country

scenes (figure 5.7b) yet both of them have a similar structure: water or fields and the sky
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(a)

(b)

(c)

Figure 5.7: Images showing the most confused categories: (a) open country images con-

fused as mountains; (b) coast images confused as open country; (c) highway images con-

fused as street.

in the distance. For that reason, it is not surprising that coast and open country are con-

fused in both directions. Another major confusion appears between streets and highway.

This results mainly from the fact that each street scene contains a road whereas the most

important part of highway scenes is the road. Streets and inside city images are confused

because normally streets occur in cities.

Let’s see what happens when spatial information is included. Figure 5.8a shows the

confusion matrix for the 8 categories in the OT dataset when using SP-pLSA with L = 2.

Now for the forest scenes we obtain a rate of 100% of correct classified images, and all the

classification rates for the other scenes are also increased. Again the most difficult scenes

to classify are the open country. Figure 5.8b shows some images well classified using SP-

pLSA and wrongly classified without spatial information. This demonstrates that spatial

distribution can reduce the ambiguity – or at least that spatial distribution correlates with

the annotator’s choices. However we are still far from 100% correct classification, again
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Figure 5.8: (a) Confusion matrix for the 8 categories in the OT dataset when using SP-

pLSA. (b) Top: two coast scenes confused as mountain when spatial information is not

used, and well classified using SP-pLSA; Middle: two forest scenes confused as moun-

tains without spatial information, and well classified with SP-pLSA; Bottom: two street

scenes confused as highway without spatial information, and well classified using SP-

pLSA.

due to the ambiguities between the scene categories used. Vogel and Schiele [150] ana-

lyzed in detail the ambiguities between scene categories, showing that there is a semantic

transition between categories. Their experiments with human subjects showed that many

images cannot be clearly assigned to one category. How far away must a mountain be so

that the image moves from the mountains category to the open country category? How

much road is necessary to make a street image into a highway image and vice versa? And

we arrive at the same conclusion as [150]: it is not wise to aim for a hard decision cat-

egorization of scenes. However, since scenes, that is full images, contain very complex

semantic details, hard scene categorization is an appropriate task for: (i) testing the im-

age representation [150], in this case provided by topics, (ii) having an approximation on

how the ranking on an image retrieval system would work, and (iii) classifying mutually

exclusive scenes such as indoor/outdoor, garden/bathroom or coast/kitchen.

We have done some preliminary experiments with k-means clustering the image topics
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Bonsai (87.9%)

Minaret (97.7 %)

Menorah (90.1%)

Leopards (95.2%)

Figure 5.9: Some of well classified images on Caltech-101 for SP-pLSA. The percentage

is the correct classification rate for each class.

Gerenuk (27.2 %) Lobster (26.8 %)

Ant (25.4 %) Seahorse (25.2 %)

Figure 5.10: Some of not so well classified images on Caltech-101 for SP-pLSA. The

percentage is the correct classification rate for each class.

provided by SP-pLSA to automatically detect visually similar categories. The results

are interesting because the resulting clusters had a semantic meaning such as fields with

mountains at the back, fields with flowers, coasts with rocks, sunshine coast, highway

with cars and without cars etc. Nevertheless, the images with semantic transition between

categories are not well clustered (because there are not sufficient ambiguous images). A

solution would be to use EM soft assignment in the clustering.

5.10.2 The object classification task

Figure 5.9 shows a few of the object classes easiest to classify for SP-pLSA. As in [76], the

successful classes are either dominated by rotation artifacts (like minaret), have very little
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Lobster (10.5%)Cray fish (12.3%)

Flamingo (9.2%) Ibis (10.3%)

Crocodile (10.5%) Crocodile head (10%)

Schooner (15.2%)Ketch (22.7%)

Figure 5.11: Most confused images on Caltech-101 for Sp-pLSA. Images on the left are

images confused as class on the right and images on the right are images confused as class

on the left. The percentage is the miss-classification rate.

clutter (like menorah), or represent coherent natural scenes (like leopards or bonsai). Note

that all theses classes have very similar colors for both the objects and the background.

On the other hand, figure 5.10 shows a few of the object classes hardest to classify for

our method. The least successful classes are those with more intra-colour variation and

those where the objects have more translation variation. These two features (colour and

translation) can be appreciated in the categories gerenuk, seahorse, ant and lobster of

figure 5.10.

Figure 5.11 shows the top five of the most confused categories. Images ont he left

show confused images with the category in the right, and images on the right are confused

image with the category on the left. The percentage is the miss-classification rate. For

example, in the first row the four first ketch images are confused as schooner with a miss-

classification rate of 22.7%, and the four schooner images are confused as ketch with a
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Figure 5.12: Appearance or shape features? these images from Caltech-101 show us that

there are some categories which can be better recognized using its shape.

miss-classification rate of 15.2%. All of them are between closely related classes and have

a similar colour: cray fish is confused by lobster and viceversa, crocodile is confused by

crocodile head, flamingo is confused by ibis etc.

Most of the confusions are due to the colour of objects and background. Colour fea-

tures are good for scenes so most of them can easily be recognized by its appearance

(mainly outdoor scenes). However if we have a look to the Caltech-101 categories we

can clearly see that for most of the categories colour does not help. In figure 5.12 we can

see that the yin-yang category or the umbrella category could be easily recognized by its

shape information. This clearly shows that colour is not discriminative to distinguish be-

tween them. However, we can not forget that there are also a few categories (e.g. leopards

and ketch in figure 5.13) for which colour is an important feature.

In next chapter we introduce a new shape descriptor suitable for object classification,

and we propose a new method for merging features. The translation variance amongst

objects will be addressed in chapter 7.

An observation about computational cost needs to be done at this point. For the
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Figure 5.13: Appearance or shape features? these images from Caltech-101 show us that

there are some categories which can be better recognized using its appearance.

Caltech-101 dataset, the time to fit the SP-pLSA model when using the hybrid system

is 46 hours approximately (Matlab implementation on a 1.7 GHz computer). This is very

expensive due to the high-dimensionality of the descriptor and the number of categories.

Hence we need to think about a trade-off between performance and computational cost.

Since the SP-pLSA only increases performance by 0.4% it is useful if we work with few

categories (eg. from 4 to 15) however when working with the 100 categories in Caltech-

101 it is very expensive to use the hybrid system and comparable results can be obtained

when using the PHOW representation with the P-rbf kernel. In the following chapters we

will use this last method (SP with P-rbf) for efficiency.



Chapter 6

A pyramid shape descriptor and

merging features

The objective of this chapter is to introduce a shape descriptor and to study how differ-

ent descriptors can be merged for image classification. There are three areas of novelty.

First, we introduce a descriptor that represents local image shape and its spatial layout,

together with a spatial pyramid kernel. These are designed so that the shape correspon-

dence between two images can be measured by the distance between their descriptors

using the kernel. Second, we generalize the spatial pyramid kernel, and learn its class-

specific level weighting parameters (on a validation set). Third, we show that shape and

appearance kernels may be combined (again by learning parameters on a validation set).

Results are reported for classification on Caltech-101 and Caltech-256 and retrieval

on the TRECVID 2006 data sets. For Caltech-101 it is shown that the class specific

optimization that we introduce exceeds the state of the art performance by more than

10%. For Caltech-256 we outperform the state of the art by 5%

6.1 Introduction

We consider the problem of image classification where our main goal is to explore how the

spatial distribution of shape can benefit recognition. Much recent work has used a “bag of

(visual) words” representation together with an SVM classifier in order to classify images

91
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by the objects they contain [35, 158]. These methods represent local appearance patches,

but not shape directly. However, representations of shape using the spatial distribution

of edges such as [108, 126] often perform as well as or better than local appearance

patches, but recognition involves Hough like accumulators in order to assess geometrical

consistency, losing the simple vector representation of a bag of words. We introduce a new

descriptor which has the advantages of both: it captures the spatial distribution of edges,

but is formulated as a vector representation. Similarity on descriptor vectors between

two images (for example measured using histogram intersection or χ2) then measures the

similarity of their spatial distribution of edges.

Our descriptor is mainly inspired by two sources: (i) the use of the pyramid represen-

tation of Lazebnik et al. [76] and (ii) the Histogram of Orientation Gradients (HOG) of

Dalal and Triggs [36].

In essence, we wish to assess how well an exemplar image matches (the shape of)

another image. As in [76] the intuition is that a strong match goes beyond a “bag of

words” and also involves a spatial correspondence. To this end we extend the method

of [76] in two ways: the first is to represent shape in the form of edges, replacing the

use of quantized appearance patches (visual words). The second extension is to learn a

class specific weighting for the levels of the hierarchical spatial histogram [57, 76]. This

captures the intuition that some classes are very geometrically constrained (such as a stop

sign) whilst others have greater geometric variability (e.g. dolphins, boats). The details

of the descriptor, termed PHOG (for Pyramid of Histograms of Orientation Gradients)

are given in section 6.2, and the idea is illustrated in figure 6.1. We compare the PHOG

descriptor to a standard shape descriptor, Chamfer matching, in section 6.2.3.

The flexibility of the spatial histogram level weighting means that a spectrum of spatial

correspondences between two images can be represented. If only the coarsest level is

used, then the descriptor reduces to a global edge or orientation histogram, such as used

by [66, 138]. If only the finest level is used, then the descriptor enforces correspondence

for tiles (spatial bins) over the image. This extreme is what is captured by [36, 134] where

histograms are computed over local image regions. Other weightings of the spatial levels

capture geometric consistency between these extremes.

Having developed the PHOG descriptor we then introduce kernels, suitable for an

SVM classifier, that combine both appearance (visual words) and edge (PHOG) descrip-



6.2 Spatial shape descriptor – PHOG 93

tors. This is a form of feature combination and selection, but here the selection is at the

kernel level. Again, in a class-specific learning step, the descriptors (appearance or shape

or both) most suitable for a particular class are determined. For example, a category such

as car is best described by shape alone, leopard by appearance alone, and buddha by a

combination of the two. The kernels are described in section 6.3.

Sections 6.4–6.6 describe the datasets used, implementation details, and the experi-

mental procedure and results on classification for Caltech-101 and Caltech-256, and re-

trieval for TRECVID 2006. It is shown that the set of innovations introduced here lead to

a 10% performance improvement over the previous best result on Caltech-101 [157] and

a 5% improvement over Caltech-256 [59].

6.2 Spatial shape descriptor – PHOG

Our objective is to represent an image by its local shape and the spatial layout of the

shape. Here local shape is captured by the distribution over edge orientations within a

region, and spatial layout by tiling the image into regions at multiple resolutions. The

idea is illustrated in figure 6.1. The descriptor consists of a histogram of orientation

gradients over each image subregion at each resolution level – a Pyramid of Histograms

of Orientation Gradients (PHOG). The distance between two PHOG image descriptors

then reflects the extent to which the images contain similar shapes and the extent to which

the shapes correspond in their spatial layout.

The following sub-sections describe these two aspects (local shape and spatial layout

correspondence) in more detail.

6.2.1 Local shape

Local shape is represented by a histogram of edge orientations within an image subre-

gion quantized into K bins. The contribution of each edge is weighted according to its

magnitude, with a soft assignment to neighboring bins in a manner similar to SIFT [84].

Implementation details are given in section 6.5.

Each bin in the histogram represents the number of edges that have orientations within
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l = 0 l = 1 l = 2

Figure 6.1: Shape spatial pyramid representation. Top row: an image and grids for levels

l = 0 to l = 2; Below: histogram representations corresponding to each level. The

final PHOG vector is a weighted concatenation of vectors (histograms) for all levels.

Remaining rows: images from the same and from different categories, together with their

histogram representations.
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a certain angular range. This representation can be compared to the traditional “bag of

(visual) words”, where here each visual word is a quantization on edge orientations. A

similar representation is used in [15]. We will refer to the representation of each region

as a Histogram of Orientated Gradients [36] (HOG).

6.2.2 Spatial layout

In order to introduce spatial information we follow the scheme proposed by Lazebnik

et al. [76]. In our case, a HOG vector is computed for each grid cell at each pyramid

resolution level. So the visual words in chapter 5 are replaced by visual words for a

particular orientation. The final PHOG descriptor for the image is a concatenation of

all the HOG vectors. In forming the pyramid the grid at level l has 2l cells along each

dimension. Consequently, level 0 is represented by a K-vector corresponding to the K

bins of the histogram, level 1 by a 4K-vector etc, and the PHOG descriptor of the entire

image is a vector with dimensionality K
∑

lεL 4l. For example, for levels up to L = 1 and

K = 20 bins it will be a 100-vector. In the implementation we limit the number of levels

to L = 3 to prevent over fitting.

The PHOG is normalized to sum to unity. This normalization ensures that images with

more edges, for example those that are texture rich or are larger, are not weighted more

strongly than others.

Figure 6.1 shows that images from the same category have a similar PHOG representa-

tion and that this representation is discriminative between categories. Note, PHOG is not

the same as a scale space pyramid representation of edges [82] as there is no smoothing

between levels of the pyramid, and all edges are computed on the high resolution image.

Similarity between a pair of PHOGs is computed using a distance function, with ap-

propriate weightings for each level of the pyramid. In previous work [57, 76], the distance

function was histogram intersection and the weightings were fixed and data independent.

In this paper we learn the weightings for the levels, and show that a χ2 distance has supe-

rior performance to histogram intersection.



Figure 6.2: A comparison of difference in PHOG descriptors using χ2 (gray bars) to

Chamfer distance (dark green bars). Note, the y-axis shows 1−distance, so that a perfect

match corresponds to unity, and a poor match to zero. (a) shows a synthetic model image

and (b) its matching to the synthetic images (arranged on the x-axis). Similarly, (c) shows

a real model image and (d) its matching to images from Caltech-101.

6.2.3 What is being represented?

In order to gain an intuition into what is represented by a difference between PHOG

descriptors, we show here its relation to Chamfer distance between the edge maps. Com-

paring boundaries using Chamfer [19] has proven to be a reliable and efficient method for

object recognition e.g. the pedestrian detector of Gavrila & Philomen [52] and the hand

tracking of [131]. The chamfer distance between two curves measures the average over

the closest distance between them. If the model and target curves are represented by the

point sets {xm} and {xt} then the Chamfer distance can be computed as:

Chamfer =
1

Nm

∑
m

minxt ||(xm − xt)|| (6.1)

In addition for curves, rather than point sets, edges are only matched if they have similar

orientations, and also distance is capped to reduce sensitivity to “outliers”, such as missed

edges through detector drop out [131].

To illustrate the similarity, in figure 6.2 we compare Chamfer distance to the dif-

ference between PHOG descriptors computed using χ2. It can be seen in (b) that both

have similar behaviors: both can tolerate missed edges to some extent (second and third

examples where an edge is missing) and background clutter (fourth example where an

edge is added). PHOG copes better with rotated images due to the additional slack given
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by computing orientation histograms over regions, whereas Chamfer will cease to find

a matching edge that has the same orientation. Figure 6.2(d) shows that for real images

(Caltech-101), Chamfer and PHOG again have similar behavior for the most part.

This raises the question of why it is necessary to introduce a new descriptor at all.

The answer is that PHOG has three advantages over Chamfer: (i) insensitivity to small

rotation (mentioned above). More significantly, (ii) PHOG is a compact vector descriptor

suitable for use in standard learning algorithms with kernels. Chamfer matching can be

reformulated as a distance between vectors as shown by Felzenswalb [43] (and similarly

for Hausdorff matching). However, the vector has the dimension of the number of pix-

els in the image and will not be particularly sparse; (iii) the principal advantage is that

Chamfer matching requires strict spatial correspondence whereas PHOG is flexible, since

it builds in spatial pyramid matching, and is able to cope with varying degrees of spatial

correspondence by design.

6.3 Modelling shape and appearance

6.3.1 Class specific Level-Weights – CLW

The same P-rbf kernel (section 5.2) is used in an SVM classifier for classifying and retriev-

ing images according to their class (e.g. containing a motorbike or a road). In previous

chapter we globally learnt the weights αl which give the best classification performance

over all categories. We propose here to learn the specific level weights for each class.

This captures the intuition that some classes are very geometrically constrained (such as a

stop sign) whilst others have greater geometric variability (e.g. dolphins, boats). We refer

it as CLW – Class specific Level-Weights.

Instead of learning weights common across all classes, the weights αl are learnt for

each class separately by optimizing classification performance for that class using one vs

the rest classification. This means that for the 100 categories of Caltech-101 it is necessary

to learn 400 parameters values (for L=3 levels) instead of only 4 for GLW.

The advantage of learning class-specific level-weights is that classes then have the

freedom to adapt if there is more or less intra-class spatial variation, for example. The

disadvantage is that the solution is sub-optimal since performance is not optimized over
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all categories simultaneously. Details and results are given in section 6.6.1.

6.3.2 Merging features

It was shown in section 6.2 that shape represented by PHOG is a good measure of image

similarity and thus for image classification. However, shape features alone are not suffi-

cient to distinguish all types of images, as is shown for example by the strawberry and

brain examples in figure 6.2b. In this case, appearance [21, 76] is a better feature to dis-

tinguish them. Consequently, we investigate here kernels to combine these two features

(shape & appearance). The implementation details are given in section 6.5.

We consider two kernel combinations. The first is a simple linear blend, the second

involves a hard choice between the feature types using a max operation.

The first merging kernel that we propose is based on the weighted sum of appearance

and shape information:

K(x, y) = αKA(xApp, yApp) + βKS(xShp, yShp) (6.2)

where α and β are the weights for the appearance and shape kernel (5.2) respectively. It

has the capacity to give higher weights to the more discriminative features during learn-

ing. Moreover it also has the capability to ignore features which do not match well if

α = 0 or β = 0. It is a Mercer kernel [61]. Previous authors have considered similar

merging kernels, but the optimization differs. We optimize performance over a valida-

tion set directly whereas in [6, 80] the interest is in efficient optimization of a proxy for

classification performance.

The second merging kernel is based on taking the maximum value of the appearance

or shape kernel:

K(x, y) = max[KA(xApp, yApp), KS(xShp, yShp)] (6.3)

This kernel has the ability to ignore the appearance or edges features if those features do

not match well for a particular exemplar. Note that it is not a Mercer kernel, but this has

not proven to be a problem in practice.

For kernel in ( 6.2) we again consider two learning situations:
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• GFW – Global Feature-Weights. Optimize weights α and β in (6.2) over all

categories together, so that all the categories will have the same weights for the

kernel features used.

• CFW – Class specific Feature-Weights. Optimize weights α and β in (6.2) for

each class separately. Again, these weights are learnt by classifying that class

against all others.

6.4 Datasets and methodology

Datasets

We provide results for object classification on Caltech-101 and Caltech-256 and video

shot retrieval on TRECVID 2006. See chapter 3 for a complete description.

Figure 6.3 shows examples of what is being represented by the spatial shape descriptor

for Caltech-101 dataset. From the average image (averaged over 25 training images) it is

evident that images from the same category are very well centered and do not suffer

from much rotation. The average gradient and edge images show the strong alignment

of the principal object edges within a class – note in particular the alignment of the cup

and metronome boundaries. The gradient magnitude weighting of the histogram bins is

particularly beneficial here as the strong gradients that are common within a class score

highly in the HOG, in turn reinforcing the similarity of PHOGs for images of the same

class. It is clear from the averaged orientation histograms for two levels that more local

spatial-shape (l = 3) is able to distinguish between classes better than global (l = 0).

Methodology

Following standard procedures, the Caltech-101 data is split into 30 (25 for training and 5

for the validation set) training images (chosen randomly) per category and 50 for testing

– disjoint from the training images. For Caltech-256, 30 images are used for training (25

training and 5 for the validation set) and 25 for testing. For a comparison with [59] for

Caltech-256, we report experiments without the last 6 categories and without clutter, this

is 250 categories. The final performance score is computed as the mean recognition rate
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.3: Caltech-101 training set: (a) representative image for the class; (b) average

over images; (c) average over gradient images; (d) average over edge images; (e-f) orien-

tation histograms at l = 0 and at l = 3. Note: (i) the gradient and edge images illustrate

that a spatial orientation histogram with some tolerance to translation will capture these

classes well; (ii) the classes have quite similar global (level l = 0) orientation histograms,

but differ in their finer spatial layout (level l = 3).

per class. The classification process is repeated 10 times, (changing the training and test

sets), and the average performance score and its standard deviation are reported.

The validation set is used to optimize all the parameters (e.g. K, αl). The final per-

formance score is computed as the mean recognition rate per class, so that more popu-

lous (and easier) classes are not favored. The classification process is repeated 10 times,

(changing the training, validation and test sets), and the average performance score and

its standard deviation are reported.
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6.5 Implementation

For image classification we use the kernels defined in section 6.3 in a SVM classifier [31].

Multi-class classification is done using one-versus-all SVM: a classifier is learnt to sepa-

rate each class from the rest, and a test image is assigned the label of the classifier with

the highest response. For the retrieval results in TRECVID 2006 we use the probability

estimated provided by [31] to rank the representative keyframes (shots).

Shape implementation

Edge contours are extracted using the Canny edge detector. The orientation gradients

are then computed using a 3 × 3 Sobel mask without Gaussian smoothing. It has been

shown previously [36] that smoothing the image significantly decreases classification per-

formance. The HOG descriptor is discretized into K orientation bins. The vote from each

contour point depends on its gradient magnitude, and is distributed across neighboring

orientation bins according to the difference between the measured and actual bin orienta-

tion. Histograms with K ranging between 10 and 80 bins are tested.

In the experiments two HOG descriptors are compared: one with orientations in the

range [0, 180] (where the contrast sign of the gradient is ignored) and the other with range

[0, 360] using all orientation as in the original SIFT descriptor [84]. We refer to these as

Shape180 and Shape360 respectively.

Appearance implementation

For the appearance experiments both gray level and colour representations are tested

(termed AppGray and AppColour respectively). We follow the approach in chapter 4. SIFT

descriptors are computed at points on a regular grid with spacing M pixels, here M = 10.

At each grid point the descriptors are computed over circular support patches with radii

r = 4, 8, 12 and 16 pixels. Consequently each point is represented by four SIFT de-

scriptors. Multiple descriptors are computed to allow for scale variation between images.

The patches with radii 4 do not overlap and the other radii do. For AppColour the SIFT

descriptors are computed for each HSV component. This gives a 128×3 D-SIFT descrip-

tor for each point. In the case of AppGray SIFT descriptors are computed over the gray
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Figure 6.4: (a) Caltech-101 validation set performance for different distance measures

over pyramid Levels L = 0 to L = 3; and (b) over the number of bins (K).

image (with intensity I = 0.3R + 0.59G + 0.11B) and the resulting SIFT descriptor is a

128 vector. Note that the descriptors are rotation invariant. The dense features are vec-

tor quantized into visual words using K-means clustering. The K-means clustering was

performed over 5 training images per category selected at random. A vocabulary of 300

words is used here. Each image is then represented by a histogram of word occurrences

(AI). This forms the feature vector for an SVM classifier, here using the spatial pyramid

kernel (5.2).

6.6 Classification results

6.6.1 Parameter optimization

Parameter optimization is carried out on the validation set (disjoint from the training and

test set). For example the weights αl, (5.2) are learnt by maximizing the performance

score on the validation set. The optimization is carried out by an exhaustive search over a

range of values with granularity 0.1 for αl, α and β and granularity 10 for K.
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Distance measures

We explore here three distance measures: histogram intersection, χ2, and the normalized

scalar product (cosine of angle). For this experiment αl = 1 and K = 20 using Shape180.

The best results are obtained with χ2 (figure 6.4a), and consequently this distance is used

for the rest of this section.

Number of bins – K

We change the value of K in a range [10 . . . 40] for Shape180 and [20 . . . 80] for Shape360.

Note that the range for Shape360 is doubled, so as to preserve the original orientation

resolution. Performance is optimal with K = 20 orientations bins for Shape180, and

K = 40 for Shape360 as shown in figure 6.4b. However, as can be seen, the performance

is not very sensitive to the number of bins used.

Level-Weight – αl

Since the final PHOG is normalized there are only three independent parameters which

represent three of the ratios in: α0:α1:α2:α3. For GLW we optimize the ratios varying

them in a range [0, 2]. Best performance is achieved with α0 : α3 = 0.2, α1 : α3 = 0.4 and

α2 : α3 = 0.4. For CLW we optimize the same ratios and vary their value independently

for each category. For the most part more weight is given to l = 3, however for accordion

and inline-skate (and some others) more importance is given to l = 2 or l = 1. This is

because at the higher levels regions are smaller and may miss the object entirely (capturing

background) as the object position varies in the image (there is more intra-class spatial

variation). An example is shown in figure 6.5 with the accordion category.

Kernel features – α & β

For the GFW we learn the kernel weights in (6.2) by varying the ratio α : β in the range

[0 . . . 2]. In this case best performance is obtained with α:β = 1.5. This means that

appearance has more influence. For CFW optimization there exist categories for which

appearance works better (e.g. leopards, barrel, sail boat) and others for which shape is
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l= 0 l= 1 l= 2

Figure 6.5: Object level overfitting for the accordion category, in this case more weight is

given to lower pyramid levels (l = 0 and l = 1) than to the higher ones (l = 2 or l = 3)

best (e.g. scissors, lamp, yin-yang, umbrella). Figure 6.6 shows some examples.

6.6.2 Caltech-101

Shape alone

The first four rows in table 6.1 summarize the performances achieved using just the HOGs

at one level of the pyramid (single level) as well as the performances when using the

PHOG for GLW optimization. As can be seen in this table (and in figure 6.4a), very poor

performance is obtained for the lowest level (L = 0). In this case we are representing

the images with just one orientation histogram and this is not very discriminative between

classes (see figure 6.3e). However performance increases by around 40% when introduc-

ing spatial information, so the PHOG becomes far more discriminative (see figure 6.3f).

This means that objects can be more easily differentiated by their spatially local orienta-

tions than by global measures. Though matching at the highest pyramid level seems to

account for most of the improvement, using all the levels together confers a statistically

significant benefit.

Using Shape360 we obtain the best result (69.0%). Including contrast sign information

helps substantially for recognition tasks in Caltech-101, because this sign information is
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(a) (b)

Figure 6.6: Intra-colour variability for a few different categories on Caltech-101. (a) some

images for which shape is better; (b) some images for which colour works better.

Single level

l=0 l=1 l=2 l=3

S180 23.2 ± 0.5 47.3 ± 0.7 61.7 ± 0.5 64.3 ± 0.8

S360 25.0 ± 0.4 49.4 ± 0.7 62.1 ± 0.7 66.9 ± 0.9

Pyramid – PHOG

L=0 L=1 L=2 L=3

S180 23.2 ± 0.4 49.3 ± 0.6 64.1 ± 0.6 67.2 ± 0.5

S360 25.0 ± 0.5 51.4 ± 0.8 64.2 ± 0.7 69.0 ± 0.6

AG 55.3 ± 0.4 64.6 ± 0.3 67.0 ± 0.5 68.1 ± 0.6

AC 52.2 ± 0.5 63.1 ± 0.7 65.3 ± 0.9 66.5 ± 0.8

Table 6.1: Caltech-101 performance using appearance and shape separately with a χ2

kernel. Single level means that only a HOG from level l is used. For PHOG, GLW is used

to find the αl. Note that S360 has slightly better performance than AG.

useful for the majority of objects in the dataset, like motorbikes or cars. This is in contrast

to [36] where better results were obtained if the contrast sign of the gradient was ignored.

This is because [36] is detecting pedestrians, and in this case the wide range of clothing

and background colors presumably makes the contrast sign uninformative. If we use the

CLW (class specific level-weight optimization) the score increases as far as 69.8% for

Shape180 and, to 70.6% for Shape360.

Figure 6.7 samples some examples of class confusions, and it is evident that the con-

fusion is understandable, and arises here (and in others we have looked at, but have not

included) from shape similarity, for example the soccer ball and watch in figure 6.7a are
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(a)

(b)

(c)

Images confused as…

(d)

(e)

Figure 6.7: Examples of categories that are confused using shape alone: (a) images con-

fused with a guitar; (b) images confused with a mandolin; (c) images confused with an

accordion; (c) images confused with a bonsai; (d) images confused with an emu.

both confused with a guitar. This is because all three images have a circular part to the

left of the image, and two straight lines to the right. Figure 6.7c shows the pagoda and

trilobite being confused with an accordion (due to the rotation and the small lines in the

image), and in figure 6.7d the lamp and the emu are confused with a bonsai.

Figure 6.8 samples the contour image and PHOG descriptor of some confused images

with accordion category. Note that all the contour images have lots of edges with the same

direction and consequently they have very similar edge orientation histograms. Figure 6.9

samples some images confused with bonsai category. Again all the contour images have

very similar edges (with the same orientations) and the PHOG for all these images is also

very similar. Images in figure 6.10 are some images confused with emu category. Note

that in the contour images the shape of the objects can not be appreciated and in this case

the background edges are causing the confusions. All these images have vegetation at the

background and this is what is captured by the PHOG descriptor.
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l=0 l=1 l=2

Figure 6.8: PHOG of some confused images with accordion.
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l=0 l=1 l=2

Figure 6.9: PHOG of some confused images with bonsai.
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l=0 l=1 l=2

Figure 6.10: PHOG of some confused images with emu.



110 Chapter 6. A pyramid shape descriptor and merging features

The best classified classes are octopus, metronome and inline skate with a score of

100% and the worst are brontosaurus and cannon, with 25.0% and 25.7% respectively.

Appearance alone

The last two rows of table 6.1 summarize the appearance performance for GLW opti-

mization. For Caltech-101 AppGray works better than AppColour (68.1% vs 66.5%). If

we use CLW then the score increases to 71.6% for AppGray and to 68.2% for AppColour.

However, it is not a true rule for all the categories. In some individual categories colour

information is very relevant – and are less confused when using it – (e.g. ketch, leopards)

whilst for others it is not (e.g yin-yang, umbrella). Figure 6.6 shows examples of each

case.

Shape & Appearance

We first use the kernel in (6.2) with GLW and GFW. When merging AppGray and Shape180

the performance is 70.7%, and this increases to 71.5% when merging AppGray and Shape360.

For GLW and CFW performances increase to 72.8% for AppGray and Shape180, and to

73.5% for AppGray and Shape360. The best results are obtained using both class-specific

optimizations (CLW & CFW): 76.2% for AppGray and Shape180, and 76.6% for AppGray

and Shape360. That merging with Shape360 is better than with Shape180 is expected, since

Shape360 alone performs better. Using the kernel in (6.3) and class-specific optimization,

performances are slightly improved at 76.6% and 76.7%.

We have at our disposal two kind of appearances cues (AppGray and AppColour) and

two kinds of shape representation (Shape180 and Shape360). If we merge all the ker-

nels representing these cues using CLW and CFW, then we obtain the best performance

overall: 77.8%. Table 6.2 gives a summary of the performances using different feature

combinations. For just one feature CLW is used. Both class-specific optimizations (CLW

& CFW) are used for merging cues. If we use the kernel defined in (6.3) to merge all

the appearance and shape features, then a slightly worse result of 77.5% is obtained. The

conclusion is that the kernel in (6.2) works better than the kernel in (6.3) when a large

number of kernel features are used.
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Shape180 Shape360 AppGray AppColour Perform

� 69.8 ± 0.5

� 70.6 ± 0.6

� 71.6 ± 0.6

� 68.2 ± 0.8

� � 75.3 ± 0.6

� � 76.2 ± 0.6

� � 76.6 ± 0.8

� � � � 77.8 ± 0.8

Table 6.2: Comparison rates when using different cues on Caltech-101 dataset: � means

the cue is used. Feature selection is carried out using the optimization process CLW and

CFW. The kernel defined in (6.2) is used for merging cues.

[100] [58] [151] [76] [157] Ours

56.0 58.23 63.0 64.6 66.0 77.8 ± 0.8

Table 6.3: Classification of Caltech-101 with 30 training images per class.

Comparison to previous results

Table 6.3 compares our results to those reported by other authors. Our best performance is

77.8%. This outperforms the results reported by Zhang et al. [157] that to our knowledge

were the best until now. The merging appearance and shape features together with the

optimizations process improves performance by 10% compared to the results obtained in

previous chapter.

6.6.3 Caltech-256

Performances for this dataset with the two class-specific optimizations (CLW & CFW) are

summarized in table 6.4. These results are for the first 250 categories in this dataset and

our best result is when merging all the appearance and shape features obtaining an score

of 40.1% of correctly classified images. For the whole dataset, without clutter category,

our performance is 39.6% using both class-specific optimizations and all the appearance

and shape cues. Note that performance on Caltech-256 is roughly half the performance
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Shape180 Shape360 AppGray AppColour Perform

� 34.9 ± 0.6

� 37.1 ± 0.8

� 37.5 ± 0.8

� 32.3 ± 0.7

� � � � 40.1 ± 0.8

Table 6.4: Comparison rates when using different cues on Caltech-256 dataset: � means

the cue is used. Feature selection is carried out using the optimization process CLW and

CFW. The kernel defined in (6.2) is used for merging cues.

achieved on Caltech-101: for 30 training images our performance on Caltech-101 and

Caltech-256 are 77.8 ± 0.8 and 40.1 ± 0.8 respectively.

Some of the most confused categories in Caltech-256 are those which are closely

related. For example tennis shoes and sneakers, frog and toad. Figure 6.11 shows some

examples. Images on the left show confused images with the category on the right, and

images on the right are confused images with the category on the left. The percentage is

the miss-classification rate of Class A as Class B and viceversa. For example in the first

row, the three first sneakers images are confused as tennis shoes with a miss-classification

rate of 32%, and the three tennis shoes images are confused as sneakers with a miss-

classification rate of 35%. Note that all of them are related classes with very similar

shape and appearance.

Comparison to previous results

Griffin et al [59] have a performance of 34.1% using the PHOW descriptor with the

method in [76]. We increase the performance up to 40.1% that to our knowledge is the

best until now for this dataset.
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Sneakers (32%) tennis shoes (35%)

greyhound (15%) dog (34%)

canoe (17%) kayak (29%)

duck (15%) goose (20%)

Figure 6.11: Related confused images on Caltech-256 using both appearance and shape

descriptors and both class-specific optimizations CLW and CFW. Images on the left are

images confused as class on the right and images on the right are images confused as class

on the left. The percentage is the miss-classification rate.

6.7 Retrieval results – TRECVID

Methodology on the training data

For the TRECVID data we used the most representative keyframe of each video shot

(43907 keyframes). This data is also split into three disjoint sets: 27093 keyframes for

training, 3900 (100 per category) keyframes for the validation set and 12914 keyframes

for testing. In this case precision vs. recall graphs are computed and the average precision

is reported as a performance measure, following the TRECVID guidelines.
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Figure 6.12: Spatial information used for the scene representation on TRECVid 2006

dataset. Each dimension of the image is divided by two obtaining 4 bins.

Methodology on the test data

For each class, we used all the positive training shots and 10000 randomly selected shots

as negative examples from the training data supplied by MediaMill. However some cate-

gories were given special treatment:

• Snow: We also used shots which have a large amount of white colour as negative

examples.

• Airplanes: We also used golf shots as negative examples. Some scenes with small

airplanes in the sky are very similar and often confused with golf scenes with a

small ball in the middle of the grass.

Implementation

The appearance representation is computed in a similar manner to that described in sec-

tion 6.5. A vocabulary of 1500 words is used for AppColour. The number of bins for

PHOG is set to K = 40 using Shape360 (we have not optimized K here, as it is demon-

strated in section 6.6.1 that it does not have much affect on the final results). Level weights

(αl) and kernel weights (α and β) are learnt on the validation set. We used χ2 distance

together with a spatial pyramid kernel with L = 1, which means that the inputs for the

discriminative classifiers have a dimension of 1500 × 5 + 20 × 5. In TRECVID spatial
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Figure 6.13: Examples of scene matching for the topic “corporate leaders”. Spatial layout

is important for such cases as people are often framed in a common manner/pose for

single individuals, pairs, small groups etc.

distribution is very variable between images of the same category. Consequently we only

used up to L = 1 for this data set. The spatial layout is illustrated in figure 6.12.

Results on training data

We learn the appearance and shape classifiers for all 39 required topics. In general, most

of the categories are best retrieved when using AppColor features alone (e.g face – AvPr

= 99.4%, Weather – AvPr = 95.3%, Sky – AvPr = 91.6%). However, there are some cate-

gories like truck or screen where Shape360 works better. Concretely there is a significant

increase on performance over AppColour for building (from 7.8% for AppColour to 44.5%

for Shape360) and road (from 5.4% to 18.6%). Best results are obtained when using the

appearance and shape merging kernel (6.2) with both class-specific optimizations (CLW

& CFW). In this case there is a significant performance improvement when retrieving:
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Figure 6.14: This graph represents the average precision of our retrieved shots run score

(dot) versus median (–) versus best (box) by topic. See chapter 3 for a correspondence

topic–feature number.

crowd – 84.2%, entertainment – 74.9%, people walking – 65.4%, sports – 61.1%, moun-

tain – 59.3% and military – 49.9%.

Results on test data

Test data is not annotated and we can not provide quantitative results. We participated

on the TRECVid workshop 2006 [114] and we had the first position when retrieving

the corporate leader category (using only appearance information). Figure 6.13 shows

9 matched shots for the corporate leader category, retrieved from the entire TRECVID

2006 test collection when using only appearance information. These scenes have a similar

layout. For example: a person centred in the middle of the image, or a two person meeting

with a background wall containing some pictures. In all these cases if the image is divided

into four bins (as shown in figure 6.12), the similarity of the information in each of them

is evident. This shows, somewhat surprisingly, that spatial information is an important

feature for such categories.

Figure 6.14 shows the average precision of our retrieved shots (dot) versus median (—

) versus best (box) by topic. Note that not all the topics were evaluated for the TRECVid.

We can see that our result for topic 22 (corporate leader) matches with the best result

and in general we are over the median. Our results are above the median for topics 24

(military), 28 (flag-US) and 38 (maps) and under the median for topics 1 (sports), 27

(TV-screen). Sports category include all kind of sports (basket, tennis, football) and they
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Shape descriptor single level

PHOG & GLW

PHOG & CLW

PHOG & PHOW & CLW

+ 2%

+ 4%

+ 7%

Figure 6.15: This graphs shows how much each representational and feature increment

contributes to the overall performance.

do not follow the same spatial layout. The same happens with the tv-screen category:

screens are not situated in the same position over the images, thus the spatial layout is

neither useful for this topic.

6.8 Summary

We have introduced a new descriptor, PHOG, which flexibly represents the spatial layout

of local image shape. We can attribute how much each representational and feature in-

crement contributes to the overall performance. Compared to using a single level (l = 3)

shape representation, PHOG increases performance by 2% using weightings common

across all classes. This increase rises to 4% using class-specific level weighting. The

combination of the PHOG and appearance descriptors achieves an 11% improvement

(compared to the single level shape representation) using the class-specific feature ker-

nel. This demonstrates that the shape and appearance descriptors are complementary.

Figure 6.15 shows graphically how much each improvement contributes to the final per-

formance. We conclude that complementary spatial pyramid based descriptors, together

with class-specific optimization of pyramid weights and class-specific kernel selection for

merging are all important for good performance.
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We outperform the state of the art for Caltech-101 and Caltech-256 datasets by 11%

and 6% respectively.

6.9 Discussion

Obtained results are very encouraging, however there is still some things to take into ac-

count. If we have a look to images from Caltech-256 we can see that there is some trans-

lation, scale-variance and background-variance amongst objects from the same category.

If we apply the pyramid kernel to the whole image we fail for three reasons: (i) we are not

capturing only the object information but the object information and the background as

well, so if two objects have a similar background they can be confused; (ii) the classifier

relies not just on the presence of individual parts but also on their relationship, if the ob-

jects are translated the classifier is not capturing the same object parts and consequently

is not capturing the same relationship; and (iii) the classifier has limited scale-invariance:

objects or pieces of objects are no longer recognized if their size changes by an order of

magnitude, because the pyramid representation is not the same.

Figure 6.16 shows some examples of the three mentioned problems. Figure 6.16a

shows three images from different categories whit a similar background. The pyramid

descriptor captures the background information and the final histogram is very similar for

both images causing a confusion between them. Figure 6.16b shows two images with

the same translated object category. Due to this translation the same parts of the object

fall in different pyramid bins, and this causes a different descriptor for the same object

class. Figure 6.16c shows two images with the same object in different scales. Again the

descriptor is capturing different information for the same pyramid bins causing a different

descriptor for the same object class.

A way to solve this is using a sliding window classifier. These methods involve train-

ing a classifier, which for a small image patch, decides whether the desired object is

present. Given a test image, such a classifier is then applied within a “sliding window”,

over a range of translations and scales. Extracted image features (image measurements),

and the form of the classifier, vary considerably. Training the classifier usually requires

many tightly cropped training images (with both object present and absent). The task of

the classifier is to capture the intra-class variations present in the training data. Some
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(a) (b) (c)

Figure 6.16: This figure shows some problems about using the pyramid descriptor to

the whole image. (a) objects with similar background can be confused; (b) objects at

different location have different descriptors; (c) objects at different scales have different

descriptors.

Figure 6.17: The red patch represents the part of the image which contains the objects.

Using only this patch to compute the pyramid descriptor will provide a better representa-

tion for the objects without taking the background into account. In this case translations

and scale variances can be avoided.

examples of sliding window approaches can be found in [93, 122, 139, 148]. Then the

descriptor will be computed only for the patch representing the objects and the problems

above mentioned will be solved because the same objects parts will be captured for the

same bins. This is illustrated in figure 6.17 and explained in detail in the following chap-

ter.

Another aspect to tackle is the expensiveness of the method. Now, to recognize-256

objects our system takes around 60 hours to run the M-SVM classifier. If we increase the

number of object categories to classify the computational cost is also increasing. An ideal

computer vision system should be able to recognize the same number of objects that exist

in the real world and it is believed that humans can recognize between 5000 and 30000

object categories [14, 40]. This is without the feature extraction and weight optimization
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which can be done off-line. So that we also need to think about faster techniques without

losing accuracy [90].



Chapter 7

Image classification using random

forests and ROIs

In this chapter, we explore the problem of representing the object categories when high

translation is presented looking for a trade-off between accuracy and computational time.

To this end we combine four ingredients: (i) shape and appearance representations that

support spatial pyramid matching over a region of interest. This is a representation com-

mon across all classes. It generalizes the PHOW and PHOG representations introduced

in chapter 5 and chapter 6 from an image to a region of interest (ROI); (ii) automatic

selection of the regions of interest in training. This provides a method of inhibiting back-

ground clutter and adding invariance to the object instance’s position; (iii) we use some

extra training information generated synthetically by rotating, translating and scaling the

ROI in the original training data. In this way a more robust training set is obtained; and

(iv) the use of random forests (and random ferns) as a multi-way classifier. The advantage

of such classifiers (over multi-way SVM for example) is the ease of training and testing.

Results are reported for classification of the Caltech-101 and Caltech-256 data sets.

It is shown that selecting the ROI adds about 5% to the performance. Together with the

extra training data generation the result is about a 13% improvement over the state of the

art for Caltech-101 and a 10% improvement over the state of the art for Caltech-256. We

also compare performance with a benchmark multi-way SVM classifier.

121
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7.1 Introduction

The release of challenging data sets with ever increasing numbers of object categories,

such as the recent Caltech-256 [59], is forcing the development of image representations

that can cope with multiple classes and of algorithms that are efficient in training and

testing. In this chapter we build on both ideas: the image representation and an efficient

classifier.

First the image representation: we improve on the PHOW (see chapter 5) and PHOG

(see chapter 6) representations in two ways. For training sets that are not as constrained in

pose as Caltech-101 or that have significant background clutter, treating image classifica-

tion as scene matching is not sufficient. Instead it is necessary to “home in” on the object

instance in order to learn its visual description [33]. To this end we automatically learn a

Region Of Interest (ROI) in each of the training images. The idea is that between a subset

of the training images for a particular class there will be regions with high visual similar-

ity (the object instances). These regions can be identified from the clutter by measuring

similarity using the spatial pyramid representation, but here defined over a ROI rather

than over the entire image. The result is that “clean” visual exemplars [12] are obtained

from the pose varying and cluttered training images. We represent both the appearance

(using dense vector quantized SIFT descriptors) and also local shape (using a distribution

over edges). These features are applied to a spatial pyramid over a ROI, rather than over

the image as in previous chapters. This idea is illustrated in figure 7.1.

Turning to the classifier, we employ here a random forest classifier. These classi-

fiers were first introduced in [4] and developed further in [23]. Their recent popularity is

largely due to the tracking application of [78]. They have been applied to object recog-

nition in [97, 153] but only for a relatively small number of classes. Here we increase

the number of object categories by an order of magnitude (from 10 to 256). The research

question is how to choose the node tests so that they are suited to spatial pyramid rep-

resentations and matching. The advantage of randomized trees, as has been noted by

previous authors [154], is that they are much faster in training and testing than traditional

classifiers (such as an SVM). They also enable different cues (such as appearance and

shape) to be “effortlessly combined” [153]. The novelty is that at each test node the clas-

sifier has the ability to choose the weight given to shape, appearance and the levels of the

pyramids without an optimization process over the validation set. This facilitates repre-
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Figure 7.1: Appearance and shape spatial representation. (a,c) Grids for levels l = 0 to

l = 2 for appearance and shape representation over the automatic detected ROI; (b,d)

appearance and shape histogram representations corresponding to each ROI level.

sentations and classification suited to the class and is much faster than the weight learning

introduced in previous chapter.

In section 7.2 we describe how the ROIs are automatically learnt, and in section 7.3

and section 7.4 how they are used together with random forests (and ferns) to train a

classifier. A description of datasets and the experimental evaluation procedure is given in

section 7.6. Implementation details are given in 7.7. section 7.8 reports the performance

on Caltech-101 and Caltech 256, as well as a comparison with the state of the art. The

paper concludes with a discussion and conclusions in section 7.10.
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7.2 Selecting the Regions of Interest – ROI

Caltech-256 (and several other datasets used for object recognition, such as PASCAL) has

a significant variation in the position of the object instances within images of the same

category, and also different background clutter between images (see figure 7.2). Instead of

using the entire image to learn the model, an alternative is to focus on the object instance

in order to learn its visual description as it is shown in figure. To this end we describe

here a method of automatically learning a rectangular ROI in each of the training images.

The intuition is that between a subset of the training images for a particular class there

will be regions with high visual similarity (the object instances). It is a subset due to the

variability in the training images – one instance may only be similar to a few others, not

to all the other training images. These “corresponding” regions can be identified from the

clutter by measuring their similarity using the PHOW and PHOG described in chapters 5

and 6 but here defined over a ROI rather than over the entire image.

Suppose we know the ROI ri in image i and the subset of s other images j that have

“corresponding” object instances amongst the set of training images for that class. Then

we could determine the corresponding ROIs rj of images j by optimizing the following

cost function:

Li = max
{rj}

s∑
j=1

K(D(ri), D(rj)) (7.1)

where D(ri) and D(rj) are the descriptors for the ROIs ri and rj respectively, and their

similarity is measured using the kernel defined by (5.2). Here we use a descriptor formed

by concatenating the PHOG and PHOW vectors. As we do not know ri or the subset of

other images we also need to search over these, i.e. over all rectangles ri and all subsets

of size s (not containing i). This is too expensive to optimize exhaustively, so we find

a sub-optimal solution by alternation: for each image i, fix rj for all other images and

search over all subsets of size s and in image i search over all regions ri. Then cycle

through each image i in turn. The value for the parameter s depends on the intra-class

variation and we explore its affect on performance in section 7.8.

In practice this sub-optimal scheme produces useful ROIs and leads to an improve-

ment in classification performance when the model is learnt from the ROI in each training

image. Figure 7.2 shows examples of the learnt ROIs for a number of classes.
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Figure 7.2: Automatic ROI detection. Examples from Caltech-256 for s = 3 for cactus,

bathtub, watermelon, camel and windmill.

7.3 Random forests classifier

A random forest multi-way classifier consists of a number of trees, with each tree grown

using some form of randomization. The leaf nodes of each tree are labelled by estimates

of the posterior distribution over the image classes. Each internal node contains a test

that best splits the space of data to be classified. An image is then classified by sending

it down every tree and aggregating the reached leaf distributions. Randomness can be

injected at two points during training: in subsampling the training data so that each tree

is grown using a different subset; and in selecting the node tests.
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Growing the trees

The trees here are binary and are constructed in a top-down manner. The binary test at

each node can be chosen in one of two ways: (i) randomly, i.e. data independent; or (ii)

by a greedy algorithm which picks the test that best separates the given training examples.

“Best” here is measured by the information gain

ΔE = −Σi
| Si |
| S | E(Si) (7.2)

caused by partitioning the set S of examples into two subsets Si according the given

test. Here E(s) is the entropy −∑N
j=1 pjlog2(pj) with pj the proportion of examples in

s belonging to class j, N the number of classes, and | . | the size of the set. The process

of selecting a test is repeated for each nonterminal node, using only the training examples

falling in that node. The recursion is stopped when the node receives too few examples,

or when it reaches a given depth.

Learning posteriors

Suppose that T is the set of all trees, C is the set of all classes and L is the set of all leaves

for a given tree. During the training stage the posterior probabilities (Pt,l(Y (I) = c))

for each class c ∈ C at each leaf node l ∈ L, are found for each tree t ∈ T . These

probabilities are calculated as the ratio of the number of images I of class c that reach l

to the total number of images that reach l. Y(I) is the class-label c for image I.

Classification

Figure 7.3 shows a schematic example of classifying with a random forest. The test image

is passed down each random tree until it reaches a leaf node. All the posterior probabilities

are then averaged and the arg max is taken as the classification of the input image.

7.3.1 Node tests for PHOG and PHOW

Recent implementations of random forests [78, 153] have used quite simple pixel level

tests at the nodes (for reasons of speed). Here we want to design a test that is suitable
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Figure 7.3: Schematic example of classification for Random Forests

for the representations of shape, appearance and pyramid spatial correspondence, that we

have at our disposal.

We also use a relatively simple test – a linear classifier on the feature vector – but also

include feature selection at the test level. The tests are represented as:

T =

{
if nTx + b ≤ 0 go to the right child

otherwise go to the left child

where n is a vector with the same dimension as the data vector x. A node test is obtained

by choosing a random number of features nf , choosing a random nf indexes, and filling

those components of n with random numbers in the range [−1, 1] (the remaining compo-

nents are zero). The value of b is obtained as a random number as well. Although this

is a simple linear classifier we will demonstrate in section 7.8 that it increases speed and
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obtains comparable performances when compared with an M-SVM.

Descriptor selection

We wish to enable the classifier to be selective for shape or appearance or pyramid level

– since some classes may be better represented by each of these. For example, airplanes

by their shape, tiger by its appearance, classes with high intra-class variation by lower

pyramid levels, etc.

To combine the features, a test selects the descriptor (shape or appearance). This is the

same as giving weight 1 to one descriptor and weight 0 to the others. In both cases only

one descriptor is used. In a similar manner pyramid levels are selected. A test selects a

level l, and only the indexes corresponding to this level are non-zero in n.

An alternative way to merge the descriptors is to build a forest for each descriptor (eg.

50 trees using only shape information and 50 trees using only appearance information)

and merge them (using the 100 trees) for the classification.

7.4 Random ferns classifier

To increase the speed of the random forests Ozuysal et al. [109] proposed the random

ferns classifiers. In the case of ferns there are an ordered set of nodes, and the node test

is applied to the whole training data set. In contrast, in random forests only the data that

falls in a child node is taken into account in the test. As in random forests leaves store the

posterior probabilities. At each node in the fern set, a test gives a binary result (which in

our case is 0 if nTx+ b > 0 or 1 if ntrx+ b ≤ 0). The result of each test and the ordering

on the set defines a binary code for accessing the leaf node. For example, imagine we

have 2 nodes each one making a partition for the whole training data, and each provides

a binary result 0 or 1 according to the node test. Combining the results we can have 22

combinations: 00, 01, 10 and 11, which correspond to 4 leaves, one for each combination.

So if a fern has N nodes, it will have 2N leaves. To know which leaf a training image

reaches, the process is the following: imagine the first and the second tests give result 0,

the combination of both is 00 which means that the training image has reached leaf 0. If

the first test gives result 1 and second test gives result 1 the combination is 11 meaning
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the training image has reached leaf 3, and so on. The advantage of ferns over forests is

that it is not necessary to store the intermediate nodes (of a tree). As will be demonstrated

in section 7.8, ferns improve on training speed, obtaining comparable results.

Figure 7.4 shows an example of randomized ferns. Again the test image is passed

down all the randomized ferns. Each node in the fern provides a result for the binary test

which is used to access the leaf which contains the posterior probability. The posteriors

are combined over the ferns in the same way as for random forests over trees.

7.5 Image Classification

For the test images a “sliding window” over a range of translations and scales is applied. A

new sub-image WI classified by considering the average of the probabilities Pt,l(Y (I) =

c):

Ŷ (I) = arg max
c

1

T
ΣT

t=1Pt,l(Y (I) = c) (7.3)

where l is the leaf reached by image I in tree t. We classify an image I as the class Ck

provided by the ROI which gives highest probability.

7.6 Datasets and methodology

Datasets

We provide results for object classification on Caltech-101 and Caltech-256 datasets. See

chapter 3 for a complete description.

Methodology

Following standard procedures, the Caltech-101 data is split into 30 training images

(chosen randomly) per category and 50 for testing – disjoint from the training images.

For Caltech-256, 30 images are used for training and 25 for testing. For a comparison
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Figure 7.4: Schematic examples of classification for Random Ferns.
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with [59] for Caltech-256, we report experiments without the last 6 categories and with-

out clutter, this is 250 categories. The final performance score is computed as the mean

recognition rate per class. The classification process is repeated 10 times, (changing the

training and test sets), and the average performance score and its standard deviation are

reported.

7.7 Implementation

Appearance, Shape and Pyramid level weighting

AppGray and AppColour are used for appearance representation and Shape180 and Shape360

are used for shape representation. We follow the same implementation procedure de-

scribed in section 6.5.

The level weights αl from (5.2) are learnt for each class separately by CLW optimiza-

tion. Details are given in section 6.6.1.

ROI detection

The optimization process is done by testing the similarity between a different number

of images s ranging from 1 to 4. The search is over the four parameters specifying the

coordinates of the rectangle: xmin, xmax, ymin and ymax. The search is carried out over

a translation grid with 10 pixel steps. We start the optimization process by fixing the

four parameters to the image size and scaling them in steps of 0.1. At each iteration we

optimize the cost function (7.1) for each training image. We stop when there are no more

changes in the ROIs or when the number of iteration reaches 10. For the descriptor we use

the PHOG and PHOW vectors concatenated. Both the level weights αl, and a weight for

each vector are obtained by optimizing the classification performance of that class against

all others.
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Randomized trees and ferns

At a given node, nf features are randomly selected. The vector n is initialized with zeros

and the nf variables chosen are coefficients that are uniform random numbers on [−1, 1].

b is randomly chosen between 0 and the distance of the further point x from the origin. To

inject randomness into the training set per tree, we randomly choose 10 training images

per category, different for each tree, and the posterior probabilities in the terminal nodes

are estimated from the remaining 20 training images. We then recursively build the trees

by trying r different tests at each node and keeping the best one according to the criterion

of (7.2). As in [78], for the root node we chose r = 10, a very small number, to reduce the

correlation between the resulting trees. For all other nodes, we used r = 100D, where D

is the depth of the node. This heuristic involves randomizing over both tests and training

data. We do it to make our greedy algorithm tractable. When using the simpler approach,

we grow the trees by randomly selecting n and b without measuring the gain of each test.

For the two methods, trees are grown until a maximal depth is reached or until less than

10 instances fall in the node. We test trees for D = 10, 15 and 20. To grow the ferns r = 10

is used for each node.

7.8 Image classification results – Caltech-256

We first study the influence of different parameters using Caltech-256 as our test set, and

then in section 7.9 we provide results for Caltech-101 as well as a comparison with the

state-of-art. For the experiments the following parameters are used unless stated oth-

erwise: 100 randomized trees with D=20, entropy optimization, and all the descriptors.

Parameter optimization is carried out on a validation set (a sub-set of the training set,

disjoint from the test set).

ROI

Table 7.1 shows the performances using all descriptors when changing the number s of

images to optimize in the cost function. Without the optimization process the performance

is 38.7%, and with the optimization this increases by 5%. There is not much difference

between using 1 to 4 images to compute the similarity. Note, that when no ROI optimiza-
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no optimization. s = 1 s = 2 s = 3 s = 4

38.7 ± 1.3 42.5 ± 1.0 42.9 ± 1.0 43.5 ± 1.1 42.8 ± 1.0

Table 7.1: Caltech-256 performances when using 100 randomized trees with D=20, en-

tropy optimization and all descriptors. First column is without ROI optimization and the

rest are for ROI optimization from s = 1 to 4 images.

tion is used (as in previous chapter) very similar results are obtained with random forests

(38.7%) and the M-SVM (40.1%) introduced in chapter 6.

Figure 7.2 shows some images with the detected ROI superimposed. Note that in all

of them the algorithm is able to find the object in the images allowing us to have a more

accurate image representation. However, in some cases the ROI overfits the object. If we

have a look to the 4th and 5th camel images the ROI is smaller than the object, and we miss

the head of the camel. This is because in the first image the camel is looking into the left

side while int he second image the camel is looking into the right side. When computing

the similarity the ROIs without the camel head are more similar than the ROIs including

the camel head. Something similar happens with the 6th and 8th windmill images. If we

have a look to the bathtub images, we are also missing some parts of the object. This can

be due because this category has higher intra-class variation. May be for these categories

(with higher intra-class variation) we need a smaller subset s and for others a bigger subset

is better (e.g. cactus).

Node tests

The first two rows in table 7.2 compare the performances achieved using a random forests

classifier with random node test (first row) and with entropy optimization (second row)

when using Shape180, Shape360, AppColour, AppGray and when merging them. Slightly

better results are obtained for the entropy optimization (around 1.5%). When merging

all the descriptors with entropy optimization performance for random forests is 43.5%.

Very similar results are obtained for appearance and shape descriptors. Taking the tests at

random usually results in a small loss of reliability but considerably reduces the learning

time. The time required to grow the trees drops from 20 hours for entropy optimization to

7 hours for random tests on a 1.7 GHz machine and Matlab implementation. First column
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Randomized Forests

Shp180 Shp360 AppC AppG All

RT 38.5 ± 0.8 39.3 ± 0.9 35.2 ± 0.9 39.3 ± 1.0 41.9 ± 1.2

EO 39.2 ± 0.8 40.5 ± 0.9 36.5 ± 0.8 40.7 ± 0.9 43.5 ± 1.1

Randomized Ferns

RT 37.7 ± 0.8 38.1 ± 0.8 34.7 ± 0.9 38.9 ± 0.9 41.0 ± 0.9

EO 38.9 ± 0.8 39.7 ± 0.9 36.5 ± 0.9 39.2 ± 0.8 42.6 ± 1.0

Table 7.2: Caltech-256 performance using appearance, shape and all the feature descrip-

tors with randomized trees and ferns. 100 trees/ferns with D=20 and ROI with s = 3 are

used. RT = Random Test, EO = Entropy Optimization.

in figure 7.5 shows how the classification performance grows with the number of trees

when using all the descriptors (first row), when using shape descriptors (second row) and

when using appearance descriptors (third row) with entropy optimization.

Forests vs ferns

The last two rows in table 7.2 are performances when using random ferns. Performances

are less than 1% worse than those of random forests (42.6% when using all the descriptors

to grow the ferns). The main advantage of using ferns is that the training time increases

linearly with the depth, while for random forests it increases exponentially. For both,

random forests and ferns the test time increases linearly with the number of trees/ferns.

For random forests we need to store
∑D

d=1 2d nodes and for ferns we need to store

2D + D nodes, so the size in memory to store a tree/fern increases exponentially with the

depth D. The memory to store forests increases linearly with the number of trees/ferns.

Number of trees/ferns and their depth

Second column in figure 7.5 shows performances, as the number of trees increases, when

varying the depth of trees from 10 to 20. First row is when merging all the descriptors,

second row is for shape descriptor and third row for appearance. When merging all the

descriptors performance is 32.4% for D=10, 36.6% for D=15 and 43.5% for D=20. When
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Figure 7.5: First column: Comparing the classification rates obtained using trees (D=20)

grown by selecting tests that maximize the information gain (green line) and by randomly

chosen tests (blue line), as a function of the number of trees. Note that when enough

trees are used, the information gain does not improve the rates anymore. Second column:

Comparing the classification rates obtained using trees with entropy optimization using

D=10, 15 and 20 again as a function of the number of trees. All the descriptors are used

in both graphs. First row: merging features; Second row: shape features; Third row:

appearance features.
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using ferns performances are 30.3%, 35.5 and 42.6 for D=10, 15 and 20 respectively.

Increasing the depth increases performance however it also increase the memory required

to store trees and ferns, as mentioned above.

When building the forests we experimented with assigning lower pyramid levels to

higher nodes in the tree and higher pyramid levels to the bottom nodes. For example for

a tree with D=20, pyramid level l = 0 is used until depth d = 5, l = 1 from d = 6 to

d = 10, l = 2 from d = 11 to d = 15, and l = 3 for the rest. In this case performance

decreases 0.2%. When merging forests by growing 25 trees for each descriptor (100

trees in total) and merging the probability distributions when classifying the performance

increases 0.1%.

Number of features

All results above are when using a random number of features to fill the vector n in the

linear classifier. Here we investigate how important the number of non-zero elements

is. Figure 7.6a shows a graph, for both random and entropy tests, when increasing the

number of features used to split at each node. The number of features is increased from

1 to m where m is the dimension of the vector descriptor x and n. We can see that the

procedure is not overly sensitive to the number of features used, as was also demonstrated

in [23]. Very similar results are obtained using a single randomly chosen input variable

to split on at each node, or using all the variables. This means that we can use a small

number of features increasing the speed of the classifier in both training and testing.

Training data

Figure 7.6b shows how the performance changes when varying the number of training

images to compute the posteriors. The training data to grow each tree is kept fixed to

10 and we increase the data to compute the posterior from 10 to 20 per image. Perfor-

mance increases (by 1%) when using more training data meaning that with less data, the

training set is not large enough to estimate the full posterior [5]. Since we do not have

more than 30 images per category and, as noted in the graph, performance increases if

we increase the training data, we populate the training set of positive samples by syn-

thetically generating additional training examples [74]. Given the ROI, for each training
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Figure 7.6: (a) performance when increasing the nf to use at each node; (b) performance

when increasing the number of images to compute the posterior probabilities. 100 trees

with D=20, entropy optimization and all the descriptors are used in both graphs.

image we generate similar ROIs by perturbing the position ([−20, 20] pixels in both x

and y directions), the size of original ROIs (scale ranging between [−0.2, 0.2]) and the

rotation ([−5, 5] degrees). We treat the generated ROIs as new annotations and populate

the training set of positive samples. We generate 10 new images for each original train-

ing example obtaining 300 additional images per category (resulting in a total of 330 per

category) and the performance increases from 43.5% to 45.3%.

7.9 Comparison to previous results

In this section 100 trees with D=20 and entropy optimization to split each node is used. We

use the ROI optimization and we increase the training data by generating 300 extra images

per category. Table 7.3 summarizes the state of the art for Caltech-101 and Caltech-256.

7.9.1 Caltech-101

We first compare here our method with the one of Lazebnik et al. [76]. They use the

pyramid kernel with appearance features and level weights α0 = 0.25, α1 = 0.5 and

α2 = 0.5 with an M-SVM. For Caltech-101 their performance is 64.6%. Random Forests
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[76] [157] [59] Chap. 6 Ours

C-101 64.6 66.0 67.6 77.8 80.0 ± 0.6

C-256 − − 34.1 40.1 45.3 ± 0.8

Table 7.3: Caltech-101 and Caltech-256 performances.

with the same PHOW descriptor improves to 73.7%.

A better comparison including the merging features performance can be obtained with

the method introduced in chapter 6. In this case PHOW and PHOG are the feature vectors

for an M-SVM classifier, using the spatial pyramid kernel (5.2). For merging features the

kernel in (6.2) is used. Both class specific optimizations (CLW & CFW) are used here

for comparison. Previous performance is 77.8%. Using this same features with random

forests increases performance to 80.0%.

Compared to [157] (best state-of-art performance) our performance increases by 13%.

7.9.2 Caltech-256

We first compare our method with Griffin et al. [59]. Their performance is 34.1% using

the PHOW descriptors with a pyramid kernel (5.2) and M-SVM. Random forests with

the same PHOW descriptor improves to 40.7%. Our performance when merging different

descriptors with random forests is 45.3%, outperforming the state-of-art by 11% and out-

performing results in previous chapter by 5%. All the above results are for 250 categories.

For the whole Caltech-256 (not clutter) performance is 44.0%.

Figure 7.7 shows our results and the results obtained by other authors for Caltech-101

and Caltech-256. Following the standard procedures of Caltech datasets we randomly

select Ntrain = 5, 10, 15, 20, 25, 30, 40. Ntest = 50 and Ntest = 25 is used for Caltech-

101 and Caltech-256 respectively. Note that for Caltech-101 adding the ROI optimization

does not increase performance as much as in the case of Caltech-256. This is because

Caltech-101 has less pose variation within the training images for a class.
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Figure 7.7: Performance as a function of the number of training images for Caltech-101

and Caltech-256. We compare our implementation with Random Forests/Ferns with the

published results.

7.10 Summary

We have demonstrated that using random forests/ferns with an appropriate node test in-

creases performance and speed over a multi-way SVM, and we have improved on the state

of the art for Caltech-101 and Caltech-256.

In summary, we can approximately quantify the contributions arising from each of

the principal improvements (summarized in figure 7.8): (i) Using the ROI detection and

sliding window is a significant benefit. It increases performance from 2% to 5% depend-

ing on the degree of object pose variation within the datasets. (ii) Generating extra data

during training increases performance by 2%. (iii) Using random forests/ferns instead of

M-SVM, is less computational expensive, and comparable results are obtained (M-SVM
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M-SVM

Random forests/ferns

ROI

Extra training data

- 1%

+ [2-5]%

+ 2%

Figure 7.8: This graphs shows how much each representational and feature increment

contributes to the overall performance.

is 1% better than Random Forests). More concretely, if using 25 test images per category

for Caltech-256 dataset, it takes 60 hours to classify them when an M-SVM is used, and

around 2 hours when a Random Forest is used.



Chapter 8

Conclusions

In this chapter we briefly summarize the main contributions of this thesis research and

discuss some further work. Finally, publications which are directly related to this thesis

are listed.

8.1 Summary and contributions of the thesis

In this thesis, we have proposed models and methods for image classification. In particu-

lar, we focused on classifying an image by the scene it belongs (e.g. coast, forest, living

room, etc.) and classifying an image by the object it contains (e.g. sail boat, dolphin,

cactus). The major contributions together with the improvement in performance and the

conference/journal publications are summarized in figure 8.1 and explained below:

• An hybrid generative/discriminative model is presented in chapter 4 and published

to the ECCV’06. It is based on discover the “objects” in the images by a gener-

ative learning process (pLSA) and further use these object distribution to classify

the images as an scene category by using a discriminative classifier (SVM). We

proposed to represent the image by using colour sift (appearance) descriptors on a

regular grid and we showed that for natural scene classification this representation

increases performance by 2% compared to SIFT features over gray level images.

• We included spatial information (PHOW) to the hybrid system in chapter 4. The

hybrid system together with the spatial information extension has been published

141
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Figure 8.1: This graphs shows how much each representational and feature increment

contributes to the overall performance on Caltech-101 and Caltech-256.

to the T-PAMI journal. We introduced a P-rbf kernel which increases performance

by 1% compared to the SP kernel proposed in [76]. Moreover we generalized the

original kernel and learn the level weights (GLW optimization on a validation

set), increasing performance a further 1%. We successfully incorporated the spatial

information (PHOW) to the hybrid system (SP-pLSA) and show that it increases

performance by 2.4% respect to the method proposed by Lazebnik et al. [76].

• A new shape descriptor that supports spatial pyramid matching (PHOG) is pre-

sented in chapter 6 and published to CIVR’07. It generalizes the PHOW represen-

tation of Lazebnik et al [76] from appearance (visual words) alone to local shape

(edge distributions). We demonstrated that this descriptor performs as well as local

appearance patches. Moreover we learn a class specific weighting for the levels of
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the hierarchical spatial histogram (CLW optimization on a validation set) showing

that low levels are better for objects with higher intra-class variation. This learning

increases performance by 4%. Finally we demonstrate that shape and appearance

kernels may be combined. We showed that for some categories shape works better

than appearance, while for some others appearance is better, and in some cases a

combination of both is more appropriate. We introduce a kernel for merging fea-

tures and again the best features parameters are learnt on a validation set (CFW op-

timization). The merging features with parameter learning increases performance

by 7%.

• A random forest/fern classifier which combines appearance and shape features over

a ROI is proposed in chapter 7 and submitted to ICCV’07. We show that using

random forests similar performances to an M-SVM are obtained. We propose a

method for automatically select the regions of interest (ROI) in training. This

provides a method of inhibiting background clutter and adding invariance to the

object instance’s position. The PHOW and PHOG over the ROI are used to repre-

sent the images. Using a ROI increases performance by 2 − 5% and if we generate

extra training data we increases performance another 2%. We introduce a node

test which is able to work with different pyramid level representations as well as

different cues (appearance and shape).

All theses contributions achieve superior classification accuracy compared to recent

publications, in all cases using the authors’ own datasets and testing protocols. Specif-

ically for Caltech-101 and Caltech-256 we outperform the state-of-art by 14% and 11%

respectively.

8.2 Discussion

Even we have achieved the highest performances for the Caltech-101 (80%) and Caltech-

256 (45%) datasets, we are still far from the 100% of correct classification rates. If we

have a look at the most confused categories we can see that most of them are very related

categories. For example the schooner and ketch images shown in figure 8.2 are very

related. People who are not into sailing would classify both categories as a sail boat
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Figure 8.2: These images are related confused categories. Note that most of the humans,

if they are not expert, would confuse them as well.
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Figure 8.3: These images are categories which contain very “similar” animals.

because they are not able to distinguish between them. This same happens with the canoe

and kayak, hot-tub and bathtub, airplane and fighter-jet, etc. categories in figure 8.2, all

of them can be easily confused even by humans. Other related confused categories are

the ones shown in figure 5.11 and figure 6.7.

Let’s have a look now at figure 8.3. The first row correspond to a bear category, the

second row correspond to gorilla and the third to chimpanzee. These ones are also images

confused by the system, however in this case humans are able to recognize them, why? We

know that bears can not climb up the trees, we know that gorillas and chimpanzees front

legs are larger than the bear front legs, we know that these three animals have different

“faces”, however our system is not able to think about all these. Even though, note that

chimpanzees and gorillas can sometimes be confused even by humans.

These confusions are not ambiguities like in the scene classification, they are due to

the big similarity between some categories. In the scene classification it is not worth to

try a hard assignment between ambiguous categories, however for object classification a

hard assignment is possible. Humans in general are not able to distinguish between related

categories in figure 8.2, so a general system could group these categories into a single one.

However expert humans in the field could classify and distinguish theses related images.

A solution would be to design an “expert system” able to distinguish amongst only these

related categories.
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8.3 Further work

There are several ways further research could go, but there are also a variety of obvious

extensions to the existing frameworks we have presented here in this thesis. We following

briefly describe them:

• Vocabulary generalization. We have done some preliminary experiments about

vocabulary generalization (see section 4.8). However the two datasets used have

very similar image categories. A further work can be to explore how the vocabu-

lary can be generalized if using datasets with different categories. We can build a

universal vocabulary with better generalization to new unseen objects.

• Texture. We have explored appearance and shape features. A further work would

be to explore how the texture information can help in classification.

• ROI detection. As we discussed in section 7.8 it seems that classes with higher

intra-class variability can work better with lower values of s (number of images

that have “corresponding” object instances). We can improve the ROI detection by

choosing a class-specific subset s of images for each category instead of using the

same number s for all the categories.

• Multiple ROI detection. Another thing to bear in mind is the number of object

instances that appear in the images. At the moment only a single object instance

can be detected, a further work would be to automatically detect the ROIs for all

the object instances in the images.

• Feature weights in random forests. At the moment at each node test only one

feature (shape or appearance) is used. This provides a good representation because

for example leopards are best distinguished by their appearance while cars are best

distinguished by their shape. However there is other categories for which both cues

are useful (e.g. Buddha) and currently we are not taking this into account. We

could do the node test by giving a weight to the features vectors (as we did for

CFW optimization) and consequently use all the information we have. For example

we can choose random weights ranging from 0 to 1 to weight the vector descriptors.

If the weight is 0 or 1 we have the current representation, however if the weight is a
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value between 0 and 1, let’s say 0.3 for shape and 0.7 for appearance, we will take

into account both descriptors. The same happens with the pyramid level. At the

moment we are only using one pyramid level, we could improve it by giving some

weights at each level.

• Invariances. We have shown that the ROI provides some translation and scale

invariances. However due to the nature of the spatial pyramid matching the question

about the rotation invariance is still open. It would be nice to design a system to

deal with rotated object instances.

• Hierarchical model. We have also addressed the question about close related cate-

gories. These categories (e.g. ketch and schooner) are the most confused categories

by our system and also by the humans if we are not experts on the topic. We can

extend our system to automatically learnt a category hierarchy. The highest lev-

els will be able to classify amongst the easiest separable categories, grouping the

related ones as the same category. For example the ketch and schooner category

will be both classified as a sail boat. Then at lower levels we can try to find more

specific features to distinguish amongst these more related categories.

• Unknown categories. The current system is unable to recognize categories which

have not been considered in the learning stage. For example if we train the system

to recognize cars and motorbikes, and the test image contains a bicycle it would

be wrongly classified as car or motorbike. However, the ideal solution would be a

system able to say that it does not know the category in the test image.

• CBIR. Image categorization is a special case of image retrieval where the query

corresponds to the image category being searched for [150]. We have demonstrated

that we can build a good image representation so our method could easily be used

for image retrieval tasks providing an automatic ranking of scenes.

8.4 Related publications

The following publications are a direct consequence of the research carried out during

the elaboration of the thesis, and give an idea of the progression that has been achieved.

Publications in both fields Image Classification and Medical Image are provided.
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Appendix A

Terminology and abbreviations

A.1 Terminology

Many terms related to image classification are used in a somewhat loose manner in the

literature so to avoid confusion we give definitions of the terms used in the thesis:

• Scene/Object annotation: Also scene object labelling. Consists on manually anno-

tate/label the images as a kind of scene or object it contains.

• Image classification: Is the task to classify an image as the scene/object it contains.

• Image category: Refers to the label for the whole image. Thus we can have coast

image (image representing a coast scene) or a dolphin image (image which contains

a dolphin).

• Category: Refers to a visually consistent set of scenes or objects.

• Supervised learning: A learning method is called supervised if the method needs

the labels of the training images (what kind of scene) and the segmentation and

localization of objects in images.

• Weakly-supervised learning: Weakly supervised means that no information about

the object location in the training images is given. Hence, only the labels of the

training images are provided.
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• Unsupervised learning: An approach is said to learn unsupervised if it gets a pile

of images for training without any hint about the image labels or the object location

in those images.

• Discriminative vs generative learning: Generally the approaches for scene classifi-

cation or object recognition can be split into two groups, discriminative approaches

and generative ones. A discriminative approach learns a decision boundary that sep-

arates the two categories in feature space. That means the learning algorithm tries

to directly model posterior probabilities. The generative approach tries to model

the class-conditional densities and the priors for the class separately. The posterior

probability is then evaluated from these two entities using Bayes Theorem.

• Topic: It has a similar meaning than object. The difference is that we know the

object mountain, and this one can be divided in two topics: mountain with snow

and mountain without snow. It is a term that we will use to denote the ”objects”

that the system recognizes without supervision.

• Visual word: Is the analogy of the term word of the text analysis. It denotes specific

informative parts of an image.

• Visual Vocabulary: It is composed for a set visual words.

• Bag-of-words: Sometimes called bag-of-features or bag-of-visterns. The image is

represented as a ”bag” of representative features. Each image is further encoded by

a binary vector whether it contains certain visual words or not. In a more general

way it refers to the visual word histogram of an image.

A.2 Abbreviations

Here below we summarize the abbreviations used in the thesis.

• CBIR: Content Based Image Retrieval

• CFW: Class-specific Feature Weight optimization

• CLW: Class-specific Level Weight optimization
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• FP: Fei-Fei and Perona [41] dataset

• GFW: Global Feature Weight optimization

• GLW: Global Level Weight optimization

• KNN: K-Nearest Neighbour

• LSP: Lazebnik et al. [76] dataset

• OT: Oliva and Torralba [102] dataset

• PHOG: Pyramid Histogram of Orientation Gradients

• PHOW: Pyramid Histogram Of visual Words

• pLSA: probabilistic Latent Semantic Analysis

• P-rbf: Pyramid-radial basis function kernel

• RF: Relevance Feedback

• ROI: Region Of Interest

• SP: Spatial Pyramid kernel

• SP-pLSA: Spatial Pyramid pLSA

• SVM: Support Vector Machine

• VS: Vogel and Schiele [149] dataset
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Appendix B

A medical image application

In this appendix we present a new approach to model and classify breast parenchymal

tissue by using the method introduced in chapter 4. Given a mammogram, first, we will

discover the distribution of the different tissue densities in an unsupervised manner, and

second, we will use this tissue distribution to perform the classification. We achieve this

using a classifier based on local descriptors and probabilistic Latent Semantic Analysis

(pLSA).

We studied the influence of different descriptors like texture and SIFT features at

the classification stage showing that textons outperform SIFT in all cases. Moreover

we demonstrate that pLSA automatically extracts meaningful latent aspects generating

a compact tissue representation based on their densities, useful for discriminating on

mammogram classification. We show the results of tissue classification over the MIAS

and DDSM datasets. We compare our method with approaches that classified these same

datasets showing a better performance of our proposal.

B.1 Why tissue classification?

Breast cancer is considered a major health problem in western countries. A recent study

from the National Cancer Institute (NCI) estimates that, in the United States, about 1 in

10 women will develop breast cancer during their lifetime [2]. Moreover, in such country,

breast cancer remains the leading cause of death for women in their 40s [26].
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Although manual screening of mammographies remains the key screening tool for the

detection of breast abnormalities, it is widely accepted that automated Computer Aided

Diagnosis (CAD) systems are starting to play an important role in modern medical prac-

tices. Most of the commercially available CAD systems and research efforts in breast

mammography focuses only on the automatic detection of abnormalities. However, from

a medical point of view, it is well-known that there is a strong positive correlation between

high breast parenchymal density and high breast cancer risk [155]. For instance, the rel-

ative risk is estimated to be about 4 to 6 times higher for women whose mammograms

have parenchymal densities over 60% of the breast area, as compared to women with less

than 5% of parenchymal densities [160]. Thus, the development of automatic methods

for classification of breast tissue is justified for an automatic risk assessment framework

in prospective CAD systems. However, developments in this area have been limited.

Several techniques have been proposed for breast density classification [69, 160], but

only a small number of previous works have suggested that texture representation of the

breast might play a significant role. Miller and Astley [95] investigated texture-based

discrimination between fatty and dense breast types applying granulometric techniques

and Laws texture masks. Byng et al. [27] used measures based on fractal dimension. The

work of Bovis and Singh [22] first estimated features from the construction of Spatial

Gray Level Dependency matrices and second, it trains multiple Neural Nets (ANN) to

classify the parenchymal density. Zwiggelaar et al. [161] segmented mammograms into

density regions based on a set of co-occurrence matrices, and density classification used

the size of the density regions as the feature space. Similarly, Oliver et al. [104, 106]

proposed to extract texture features after the segmentation of the breast in two clusters

which represent dense and fatty tissue.

Motivated by the good results in image classification obtained by the hybrid model

introduced in chapter 4, we propose to use it to classify the mammograms tissue. To carry

out the adaption of this method to the medical image domain, we established the follow-

ing analogies: in tissue classification, the images will be the mammogram, the topics will

be the different densities of the tissue and we also will talk about visual words as the ana-

logue of a word. pLSA is appropriate here because it provides the correct statistical model

for clustering in the case of multiple tissues densities per image. We will have to study

which are the best descriptors when classifying parenchymal densities as well as which

is the best representation for this kind of images. Our main contribution in mammogram
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(a) (b) (c) (d)

Figure B.1: Four images belonging to one of each BI-RADS category extracted from

MIAS dataset: from (a) BI-RADS I to (d) BI-RADS IV.

tissue classification is that this algorithm is able to learn relevant intermediate represen-

tation of tissue density automatically and without supervision. The previous approach of

Petroudi et al. [113] which uses histogram models of textons does not provide a strong

statistical model as our and can not differentiate the different densities in a mammogram

automatically.

Nowadays, the American College of Radiology (ACR) Breast Imaging Reporting and

Data System (BI-RADS) [3] is becoming a standard on the assessment of mammographic

images. This standard provides four categories according to breast parenchymal density

(see also figure B.1):

• BI-RADS I: the breast is almost entirely fatty.

• BI-RADS II: there is some fibrogandular tissue.

• BI-RADS III: the breast is heterogeneously dense.

• BI-RADS IV: the breast is extremely dense.

The rest of this annex is described below. Section B.2 presents a detailed overview

of the proposed system. Sections B.2.1 and B.2.2 describe a previous segmentation step

and how we are going to represent the image using local descriptors. Section B.2.3 briefly

reviews the image representation and classification process, here used to classify the mam-

mograms according their parenchymal density. Section B.3 describes the dataset and the
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followed methodology to test the approach. Section B.4 show the results obtained and a

brief comparison. The paper ends with conclusions and outlines possible future work.

B.2 System overview

In this section we will explain the three processes involved on the mammographic tissue

classification: (i) segmentation of the breast profile, (ii) breast tissue representation using

a bag-of-words, and (iii) the use of probabilistic Latent Semantic Analysis (pLSA) to

obtain the tissue classification according to the BI-RADS standard. Figure B.2 shows the

schema of the system.

B.2.1 Pre-processing steps

The initial step of our approach is the segmentation of the profile of the breast. Previous

works on breast tissue classification and abnormalities detection noticed that the feature

extraction process is affected if the region processed is not well focused. Thereby, it is

important to segment the mammogram in order to extract the breast from other objects that

could be present in a mammographic image (background, annotations, pectoral muscle in

MLO images) and to achieve optimal breast parenchyma measurements. We used a two-

phase based method:

• Breast Segmentation. The algorithm computes a global gray histogram for the

image. The gray values are represented by a histogram with 8 bins. We compute

an automatic threshold which is the minimum value over the 8-histogram. This

one is used to threshold the image obtaining a collection of different regions. The

largest region (the union of the breast and the pectoral muscle) is extracted using

a Connected Component Labeling algorithm. As a result we delete the labels and

the information which is not necessary and we obtain an image with the segmented

breast.

• Pectoral Muscle Extraction. This operation is important in mediolateral oblique

view (MLO), where the pectoral muscle, slightly brighter compared to the rest of
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Figure B.2: Schema of the learning and classification process. The first row shows the

learning process while the second one shows the classification process. The figure is

divided in three subparts corresponding to the three main process of our approach: (a)

segmentation; (b) image representation; and (c) use of the latent space for learning and

image classification.

the breast tissue, can appear in the mammogram. We used the approach of Ferrari

et al. [46] who propose a polynomial modeling of the pectoral muscle.

This segmentation results in a minor loss of skin-line pixels in the breast area, but

those pixels are not relevant for tissue estimation.

B.2.2 Image representation

We will represent the images as a co-occurence table (bag-of-words) built from automati-

cally extracted and quantised descriptors. Given the set of training images, local descrip-

tors are computed around the pixels of the tissue (we do not take into account points close

to the border) and a vocabulary of visual words (visual vocabulary) is obtained. In order

to obtain the visual vocabulary, we used two different measures: the first one based on the

appearance (textons) and the second one based on the edge orientation (Scale Invariant

Feature Transform - SIFT).
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• Textons: As in [147], a N × N square neighbourhood is opened around each pixel.

The pixels are row reordered to form a vector in an N 2 dimensional feature space.

The patch size tested are N = 3, 5, 7, 11, 15 and 21. The patches are spaced by M

pixels on a regular grid over the area of the tissue. The patches do not overlap when

M = N , and do overlap when M = 2 (for N = 3, 5, 7) and M = 7 (for N = 11, 15

and 21).

• SIFT: SIFT descriptors [84] are computed at: (i) points on a regular grid with spac-

ing M pixels, here M = 5 and 10. At each grid point SIFT descriptors are computed

over circular support patches with radii r = 8 and 16 pixels; (ii) Affine co-variant

regions are computed for each grey scale image, constructed by elliptical shape

adaptation about an interest point [93]. Consequently each point is represented by

a 128-dim SIFT descriptors. Note, the descriptors are rotation invariant.

The number of descriptors is around 35000 and depends on how big is the area of the

tissue and the parameters N and M . The visual vocabulary (V ) is obtained by vector

quantising the descriptors computed from the training images using k-means.

Once we obtain the vocabulary, we represent the mammogram. Suppose we have a

collection of images (mammograms) D = d1,...,dN with words from a visual vocabulary

W = w1,...,wV . One may summarize the data in a V × N co-occurrence table of counts

Nij = n(wi, dj), where n(wi, dj, ) denotes how often the term wi occurred in an image dj.

B.2.3 Image classification

Once we have built the bag-of-words we will use pLSA [65] to automatically find the

topic (tissue) distribution for each mammogram. These distributions will be further used

by the K-Nearest Neighbour (K-NN) or Support Vector Machines (SVM) to perform the

mammogram classification as it is shown in figure B.2c.

In training stage, the topic specific distributions P (w|z) are learnt from the set of train-

ing images. Each training image is then represented by a Z-vector P (z|dtrain), where Z

is the number of topics learnt. Determining both P (w|z) and P (z|dtrain) simply involves

fitting the pLSA model to the entire set of training images. In particular it is not necessary

to supply the identity of the images (i.e. which category they are in).



B.3 Datasets and methodology 161

Classification of an unseen test image proceeds in two stages. First the document spe-

cific mixing coefficients P (z|dtest) are computed, and following these are used to classify

the test images. In more detail, document specific mixing coefficients P (z|dtest) are com-

puted using the fold-in heuristic described in [64]. The result is that the test image is

represented by a Z-vector. The test image is then classified using a K-NN or SVM on the

Z-vectors of the training images.

B.3 Datasets and methodology

In order to test our method two public and widely known databases have been used: MIAS

-Mammographic Image Analysis Society- database [132] and DDSM -Digital Database

of Screening Mammographies- database [62]. Both are explained following:

• MIAS. This database is composed by the Medio-Lateral Oblique views of both

breasts of 161 women (322 mammographies). The MIAS database provides an-

notations for each mammogram, and one of them is referred to the breast density.

The images are labelled as: (i) fatty (106 images) if the breast is almost entirely

fatty, (ii) glandular (104 images) if the breast contains some fibroglandular tissue,

or (iii) dense (112 images) if the breast is extremely dense. Moreover, two experts

mammographic readers, form the Hospital Universitari Josep Trueta of Girona,

classified the MIAS database according to BI-RADS categories: BI-RADS I (128

images ), BI-RADS II (80 images), BI-RADS III (70 images), and BI-RADS IV

(44 images). Note that although a strong correlation exists between fatty class and

BI-RADS I, glandular and dense tissue are distributed among the rest of BI-RADS

categories.

• DDSM. We use a set which consists of 500 Medio-Lateral Oblique mammograms

from the right breast: BI-RADS I (125 images ), BI-RADS II (125 images), BI-

RADS III (125 images), and BI-RADS IV (125 images). This database provides

for each mammogram additional information, including the density of the breast

determined by an expert according to BIRADS categories.

In order to evaluate the results, we used a leave-one-out method, in which each sample

is analysed by a classifier which is trained using all other samples. However when work-



162 Appendix B. A medical image application

ing with the MIAS dataset, we leave the two images (left and right breast) from the same

woman. This has to be done in order no to bias the results, because both breasts of the

same woman have very similar tissue features. Therefore for the MIAS database we use

320 training images and 2 for testing 161 times, changing the test and train images every

time. For the DDSM database we use 499 training images and 1 for testing 500 times.

The classification task is to assign each test image to one category. In more detail,

when using the K-NN, it selects the K nearest neighbours of the new image within the

training database. Then, it assigns to the new mammogram the label of the category which

is most represented within the K nearest neighbours. An Euclidean distance function is

used. When using the SVM a gaussian kernel is used, and the multi-class classification

is done using the one-versus-all rule: a classifier is learned to separate each class form

the rest, and a test image is assigned the label of the classifier with the highest response.

Overall performance rates are measured by the average value of the diagonal entries of

the confusion table.

B.4 Experimental results

We divided this section in three Subsections. The first one shows the results obtained

when classifying the MIAS dataset using its own annotation: fatty, glandular and dense.

The second one shows the results when BI-RADS annotation is used over both the MIAS

and DDSM databases. Last subsection shows a comparison with other works. We investi-

gated the classification performance when using K-NN and SVM classifiers over P (z|d)

and when changing the value of different parameters: N (size of the patch when using

textons), r (radii of the patch when using SIFT descriptors), M (space between patches),

V (number of of visual words of the vocabulary obtained using k-means), K (number of

neighbours when using K-NN) and the two descriptors explained in section B.2.2.

B.4.1 MIAS annotation

The best results here have been obtained when V = 1600, Z = 20 and K = 6. Note that

K have only sense if K-NN classifier is used. Results increase around 2% when using

overlap between patches (M < N). Figure B.3 shows the results when classifying using



B.4 Experimental results 163

KNN vs SVM (MIAS annotation)

40
50
60
70
80
90

100

T3 T5 T7 T11 T15 T21 SD SS

descriptors

p
er

fo
rm

an
ce

 

KNN

SVM

Figure B.3: Performance according to MIAS annotation when changing the values of

parameters N and r and fixing V = 1600, Z = 20 and M = 2 for K-NN and SVM, and

K = 6 for K-NN. T3 = Textons with N = 3 and so on; SD = SIFT Dense; SS = SIFT

Sparse.

the MIAS annotation and the two tested classifiers K-NN and SVM. Results using differ-

ent descriptors (textons, dense and sparse SIFT) are shown. The best rate classification

is obtained when texton vocabulary is used with N = 7 and M = 2. When using the

K-NN the performance is 80.00% and increases up to 91.39% when using SVM. SVM

always outperforms the K-NN classifier. The percentages drastically decreases to 54.2%

(for K-NN) and to 87.98% (for SVM) when using the vocabulary obtained from the dense

SIFT descriptors with r = 8 and M = 5. This could be due to the nature of this kind

of features: they are local histograms of edge directions computed over different parts of

the local patch. In all kind of tissues provided from the mammograms there are a lot of

edges and changes in the gradient orientation, so in this case, SIFT features are not a good

discriminant to classify the tissue density. Better performances have been obtained with

dense descriptors and high degree of overlap.

B.4.2 BI-RADS annotation

Best results are obtained when V = 1600, Z = 20 and K = 7. Figure B.4 shows the

results when classifying the MIAS and DDSM datasets using BI-RADS annotation, SVM

and different descriptors. This annotation is the one that specialists use when classifying

the tissue density. For MIAS dataset, best result (95.42%) is obtained when using textons

with N = 7 and with overlap (M = 2). More accurate results are obtained when using
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DDSM and MIAS (BIRADS annotation)
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Figure B.4: Performance according to BI-RADS annotation over MIAS and DDSM

datasets when changing the values of parameters N , r, M and fixing V = 1600, Z = 20.

SVM are used. T3 = Textons when N = 3 and so on; SD = SIFT Dense; SS = SIFT

Sparse.

B-I B-II B-III B-IV

B-I 96.06% 3.93% 0% 0%

B-II 5.12% 93.58% 1.28% 0%

B-III 0% 2.85% 94.28% 2.85%

B-IV 0% 0% 2.27% 97.72%

Table B.1: Confusion table when using BI-RADS annotation. Texton vocabulary and

N = 7, M = 2, V = 1600, Z = 20 are used.

dense SIFT descriptors (88.19%) than when using the sparse ones (58.34%). Best results

with DDSM dataset is 84.75% also with N = 7 and M = 2. Results when using K-NN

are around 18% worse.

As can be seen from the confusion matrix of table B.1, the best classified tissue be-

longs to BI-RADS IV and the most difficult to classify and the ones which present most

confusion are BI-RADS II and III. However, following previous works on breast tissue

classification according to BI-RADS categories [22, 104, 113], we can reduce this four-

class classification problem to the following two-class problem: (BI-RADS I and II) vs

(BI-RADS III and IV). In other words, breasts with low density against breast with high

density. With this supposition, a classification accuracy of 99.51% and 98.24% respec-

tively is achieved.
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Figure B.5: Segmentation results of two mammograms of each class: BI-RADS I, BI-

RADS II, BI-RADS III and BI-RADS IV with the histogram of their topic distribution

(P (z|d)). The parameters used are: visual textons to compute the vocabulary, N = 7,

M = 2, V = 1600 and Z = 20.

Figure B.5 shows examples of the spatial distribution of a number of topics (tissue

densities) and their histogram of topic distributions (P (z|d)). Patches are painted ac-

cording to the maximum posterior P (z|w, d) (4.6). For each visual word in the image

we choose the topic with maximum posterior P (z|w, d) and paint the patch with its as-

sociated colour, so each colour represents a different topic (the topic colour is chosen

randomly).

The images of figure B.5 are the segmentation of the parenchymal densities in mam-

mograms. They illustrate that topics are representing consistent density tissues across

images, there is a similar topic distribution (similar colour) for images from the same

BI-RADS category. See for example that images belonging to BI-RADS I are very dark,

while images from BI-RADS IV are lighter, showing that there is a different tissue den-

sity. If we observe the histograms we can see that those from the images of the same

BI-RADS category, have a similar behaviour and topic distribution is consistent across

the four BI-RADS categories.
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B.4.3 A brief comparison

We can compare the obtained results when using the own annotations of the MIAS dataset

with those obtained by Blot and Zwiggelaar [18] and Oliver et al. [104]. The first one

used a subset of the MIAS database (about 100 images per class) and obtained a 50% of

correct classified mammograms. The second one increased this result to 73.00% and used

a subset of 60 images per category. Our proposal outperforms both methods obtaining an

score of 91.39% of correct classification.

When classifying the MIAS dataset using BI-RADS annotation we can compare the

result with [106]. They obtained a 50% of correct classification when classifying the

four categories while our performance is of 95.42%. Moreover we improve their results

when classifying with only two categories (low and high density). In [106] they obtained

80.00% and we obtain 98.88%.

Bovis and Singh [22] and Oliver et al. [105] worked with the DDSM dataset obtain-

ing a 71% and 50% of correct classified images, while working with DDSM we obtain

84.75%. Note that in [105], they only used a subset of 300 images whereas in [22] and

our approach used a subset of 500. Other authors classified the tissue density using other

datasets. For example Petroudi et al. [113] obtained a 76% of correct classified tissues

and also works with BI-RADS annotation. However we can not compare this last result

directly because their approach was developed by using a different database. Table B.2

summarises these results.

B.4.4 Summary and discussion

We have demonstrated the performance of our approach to classify tissue in mammo-

grams. We investigated performances when working with K-NN and SVM and showed

that SVM always outperform the K-NN classifier. We also investigated two kinds of de-

scriptors: textons and SIFT features and our results showed that textons work better over

this kind of images. Even though SIFT features have been stated as very useful for object

and scene classification, they present a worst performance in our work. This is because

SIFT features work with histograms of edge directions and all the tissues in mammograms

have a lot of lines. Thus, we can not disambiguate tissue density with this feature (edges).

We also have demonstrated that the classification process works better with a high degree
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#Ref Database Annot. Author (%) Our (%)

[18] MIAS MIAS 50% 91.39%

[104] MIAS MIAS 73% 91.39%

[106] MIAS BI-RADS 50% 95.42%

[105] DDSM BI-RADS 47% 84.75%

[22] DDSM BI-RADS 71% 84.75%

[113] OXFORD BI-RADS 76% –

Table B.2: Comparison summary of the proposed method with other works that classify

parenchymal density. Note that the approache of Petroudi et al. [113] work with a differ-

ent dataset and we could not give a direct comparison. MIAS annotation is with 3 classes

(fatty, glandular and dense) while BI-RADS annotation is 4 classes (from I to IV).

of overlap between patches.

Best results are obtained with SVM classifier when working with textons vocabulary

and V = 1600, Z = 20, N = 7, M = 2. Specifically, when classifying with MIAS anno-

tation (3 categories) we obtained a 91.39% of correct classified images. When classifying

with the same database with BI-RADS annotation (4 categories) the score obtained is

95.39% and for DDSM dataset the accuracy is 84.75%. We also compared our proposal

with several previous approaches that worked with the same databases, and our results

outperformed all of them. The main drawback of these techniques is they rely on an ini-

tial segmentation of the breast. We think this may be a reason of the superiority of our

results. As it is well known, the segmentation is always a very hard task, and specially

on medical image. Hence, a wrong segmentation can imply errors on the characterisation

and later classification.

B.5 Conclusions

We have demonstrated the successful application of the hybrid system to medical image

domain when classifying breast tissue in mammograms. We have represented the images

according to their tissue densities and we have shown that the distribution for the same

category are similar. Besides, we have studied the influence of various descriptor param-

eters and have shown that using texture descriptors with overlap works better than SIFT
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features when working with mammograms.
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