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ABSTRACT

This thesis consists of five chapters, based on four different articles. All of
them are devoted to different aspects of spatial heterogeneity and its impact
on economic equilibrium in space. The concept of heterogeneous continuous
space is discussed in the introductory chapter.

The first model ”Equilibrium in Continuous Space under Decentralized
Production” addresses the issue of the impact of differences across locations
in exogeneous productivity on the structure of equilibrium prices, produc-
tion and trade. The goal is to describe the general equilibrium in a spatially
decentralized economy, when production, consumption and markets are dis-
tributed in continuous space and transportation costs are essentially linear.
It is shown that an autarky equilibrium can exist only if transport costs
are high enough. In the general case, the general equilibrium in this model
includes some endogeneously determined trade areas, with flows of goods
across space, and autarky areas where production and consumption activ-
ities take place only at the same point. An analytical solution in explicit
functions is obtained; it contains equilibrium prices, labor supply and flows
of goods as functions of the spatial variable. The model can be applied to a
set of practical questions in regional economics. In particular, it is able to de-
scribe persistent price differentials across regions and non-local consequences
of road construction and transportation cost shocks for the economy. The
differences across locations in population density may have either historical
or economic reasons.

The second model "Hotelling’s Revival” extends a well-known research
of H.Hotelling (1929) to the two-dimensional case with spatially heteroge-
neous demand density, preserving the rest of his classical assumptions. It
is shown that the problem of demand discontinuity in the one-dimensional
model, which was discovered by d’Aspremont, Gabszewich and Thisse (1979),
disappears in this case. This also holds for any bounded distribution of con-
sumers on any compact set on a plane, which can describe real geographical
situations. Demand continuity still holds for any transport costs, strictly
increasing in distance and not necessarily linear. Although this is sufficient
for the existence of Nash equilibrium in mixed strategies, in pure strategies
it exists only for some subset of cases. Examples of both existence and non-
existence are constructed, and for some family of densities the separation



point between the two cases is found.

The third model addresses locational choice of heterogeneous consumers,
when land is also heterogeneous in quality. It is based on two articles. The
first, "Dacha Pricing”, is presented in chapter 4 and studies the problem of
locational rent in a city-neighbourhood when utility includes both the im-
pact of transport costs and time for transportation. For the case of identical
agents the problem is solved explicitly and comparative statics with respect
to exogeneous changes in transport cost and speed is studied. For the case
of agents who are heterogeneous with respect to their income, a solution is
also obtained. The model explains some evidence about dacha pricing in
Russia and its dynamics during the transition period. The second article
related to this model is ”Location and Land Size Choice by Heterogeneous
Agents”. It generalizes the first one and form a separate chapter 5. A new
approach about the general equilibrium allocation of heterogeneous divisible
good (like land) among a continuum of heterogeneous consumers is proposed.
The model is based on continuity of primitives which allow not only to find
a general equilibrium solution in a class of continuous functions, but also to
treat the solution to a continuous problem as the limit of the correspond-
ing sequence of discrete problems. This solves one of Berliant’s paradoxes,
related to spatial economics. The multiplicity of equilibria is shown to take
place.
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Chapter 1

Introduction

1.1 The Link between Chapters

1. The real economic world contains space as a structural element. The first
economic paper related to spatial aspect of economy appeared almost two
centuries ago (Von Thiinen’s “An Isolated State” (1828)), and many authors
have made significant contributions to this topic since that time. Although
modern microeconomic theory neglects the spatial aspects to a large extent,
in the real economy they play quite a significant role. This role emerges from
the existence of transport costs, which make different locations asymmetric
with respect to each other. This is the first source of spatial heterogeneity.
The second source is exogeneous heterogeneity, determined outside the econ-
omy: geographical and historical factors.

2. This spatial heterogeneity includes at least the following three aspects,
which will be adressed in this research.

a) Differences across locations in exogeneous productivity factors for the
same economic inputs (like different agricultural productivity of land in dif-
ferent locations, for given labor and capital, optimally invested in these lo-
cations).

b) Differences across locations in population density. It is defined either
by historical factors (for example, nobody would reoptimize the location of
Paris, for example, even if everybody would agree to move it, let say 200
km to the south - too high fixed costs) or by endogeneous agglomeration
(something like Silicon Valley phenomenon).

7



8 CHAPTER 1. INTRODUCTION

c¢) Differences in land quality used for residential purposes. There are
at least two factors here: different land quality per se, and difference with
respect to location to some center (Central Business District model).

3. Three chapters of my thesis are addressing these three questions. While
each model has its own economic interest and circle of covered questions (as
well as its place inside economic literature), both in pure and applied the-
ory, they are linked together through this framework of spatial heterogeneity.

4. The approach used everywhere is either a general equilibrium frame-
work for a particular choice of primitives (the 2-nd and the 4-th chapters) or
locational games of the Hotelling type (chapter 3). The choice of primitives
involves different levels of deepness of reasoning, but is always based on some
reasonable approximations to the real economic world.

While in migration models, wage differentials are often exogeneously
given, but mobility is free, in the model of chapter 2 mobility of consumers
is prohibited. Instead incomes are endogeneously determined by producers’
choice, who have not only the freedom to choose the labor supply, but also
to deliver goods to the markets of their neighbours.

The second model deals with two-dimensional Hotelling competition. Here
agents are also immobile and exogeneously distributed with some density in
a two-dimensional space with FEuclidean metric and some transport costs,
strictly increasing in distance.

In the third model agents can choose locations, either taking into account
some already existing center (a version of CBD model, with application to
dacha pricing in Russia), or basing it on a given distribution of land quality
in space. This model deals also with heterogeneous agents with respect to
their income, and the properties of the general equilibrium mapping from the
space of types into the space of locations with endogeneous choice of land
size makes it an interesting exercise of general equilibrium modelling.

5. All densities in my models have some properties of continuity and
differentiability. This enables to construct an exact solution by solving an
array (infinite in chapters 2 and 4, and finite in chapter 3) of the first or-
der conditions for the optimization problems, using differentiability and the
method of differential equations. The models with a continuum of agents
are viewed as the limits of their discrete approximations, which are used for
intuition about interaction.
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6. All the models are computable, i.e. the solution is constructed in the
form of compact formulae which can be calibrated on real data and used for
the solution of real economic problems, which may include such issues as:
a) the impact of integration on regional employment and welfare;

b) two-dimensional geographical competition between real firms taking into
account real spatial demand density;

¢) the impact of technological advancements and oil price shocks on locational
rental prices of land.

1.2 The Philosophy of Continuous Space

Why spatial heterogeneity is important? First, it exists in the real world.
Second, it is a potential source of disequilibrium. In physics, for example,
spatial gradients becomes driving forces for wave motion. In geography, re-
lief of mountains is relatively stable, but for sand piles it can be unstable.
Thus, the existence of spatial equilibrium is not a trivial question in natu-
ral sciences. Why it should be trivial in economics? There is an intuition
from natural sciences, that equilibrium may be consistent with spatial het-
erogeneity when either different spatial parts are not interacting, or when
there exists some sort of friction, neutralizing the forces of interaction. In
economics, this concept becomes wider, since different bundles can bring the
same utility. This concept will be exploited in chapter 4 (Dacha Pricing). No
interaction becomes a basic characteristic feature when autarky economies
are studied (see the beginning of chapter 2, about equilibrium in continu-
ous space when trade is forbidden). But in most cases some sort of friction
makes a spatially heterogeneous system stable. In economics the role of fric-
tion is played by transport costs, which are viewed here as a sort of tax
paid to nature. Due to friction existing in physics there is no way to run
any transportation at zero cost. This minimal cost emerges from technol-
ogy, and thus the question of competition between transportation firms is
neglected. It does not matter whether the transport sector is operated by
the central planner or is perfectly competitive - in both cases at zero profit
level it exhibits non-zero costs. And these costs result in a special topology
of interaction between different agents through their location. This will be
the main idea of modelling spatial economic systems in this thesis.
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While the idea of space is the essential part of all physical models, in the
majority of economic papers it is either taken in a very simple way, like few
isolated points, or not considered at all. Thus something should be said in
favour of my selection of continuous space to be a structural element of all
models considered here. Continuous space should be viewed here as geomet-
ric, or geographical space. It has a natural order of points (elements) and
the idea of a neighbourhood is already inside the concept. Transportation
costs, which are proportional to distance in almost all of the models here,
bring additional economic properties to this topological concept of neighbou-
hood !. Economic agents in different locations become asymmetric to each
other, since they have to pay different transport cost. These transport costs
are not derived from any optimal economic activity, they should be taken
as given. Although economists think that economic activity is completely
self-dependent, it is not true, since economic structures can exist only on the
basis of some physical and biological structures, which are more simple forms
of organization of materia. For the current economic decisions the existing
geographical structure should be taken as given: economy is still too weak
to change it significantly. And this structure has these properties, discussed
above, which should become an essential part of economic models.

Now, why the space should be treated continuously, and not discretely.
There is some sense in discrete approximation. If you look at any map, it
is easy to discover that the majority of population is living in cities, where
most of economic activity is taking place now, and city size is usually much
smaller than the distance between cities. So, why not take cities as discrete
points? Here the issue of complexity arises. Yes, we can consider formally
a discrete model with thousands of cities. But such models can be solved
only with superpowerfull computers, if they can be solved at all. On the
other hand, when the number of elements goes to infinity, many of such dis-
crete models have their continuous analogies, which are the limits of discrete
approximations. In this limit, the solution is decribed by well behaved an-

!Transportation costs cannot be eliminated by the competitive structure of the econ-
omy, since they capture the cost structure of transport firms. Under any competition
policy, transport costs for economic agents would at least include costs of transport firms,
like costs of petrol and competitive wage of drivers, which should be proportional to dis-
tance under optimal exploitation of transport vehicles. Clearly, transport costs might also
include non-linear terms and fixed cost. But what is important is that linear terms should
also be there, and often their role is dominant
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alytical functions, which allow for further analysis, like comparative statics,
etc. When one deals with thousands of numbers, which appear in any com-
puter solution, it is very difficult to see the economic properties of it and and
economic intuition behind. That is why my choice was an analytical study
of economies in continuous space.

1.3 The Goals

The objectives of research are different for different chapters, and they are
discussed separately there. Because the literature related to each chapter
is quite different, its surveys can be found inside introductions to chapters.
Here I would like to formulate some general goals, which are aimed by this
dissertation as a whole.

First of all, the models considered here bring some new contributions to
economic theory. They try to capture the effects emerging in spatially decen-
tralized economy, when spatial topology is taken into account. A significant
amount of economic effects are discovered; they are discussed in the conclu-
sive part of each chapter. Here I will stress only some important technical
points.

One of them is the concept of competition in a continuous space, which
becomes significantly different from a discrete one. While in the discrete
case we can have “atomic markets”, with an infinity of buyers and sellers in
a point, leading to the case of perfect competition, in the continuous case
the situation becomes different. Let us zoom the space with an imaginary
microscope. There always exist so small pieces of space, that no economic
activity can be discovered there. Changing the scale a bit, it is possible
to cover space with a set of neighbourhoods that each would contain zero
or one agent (which can be a producer or a consumer). In this space each
producer can be surrounded by two closest consumers, and should compete
for them. How to escape a trap of emerging monopoly or oligopoly? It is
possible to introduce a market which is the neighbourhood of a point. In real
life there are usually more consumers then producers. What is formally done
in chapter 2, is an aggregation of all consumers from the neighbourhood of
a producer in their location in a demand, emerging at this location. Then a
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flow of goods may occur via the border between neighbourhoods as a result
of the optimizing activity of different producers. Note that continuity is an
important property to be able to construct such a model.

A similar concept of local market aggregation via neighbourhood is used
in chapter 5 (Location Choice). But there also the issue of mobility is added.

Secondly, all models can be applied to the solution of real economic prob-
lems. The reason why the thesis is completely theoretical and does not in-
clude econometric calculations is not because this is pure theory, but mainly
because its requires very tiny data for its verification, which either are not
available or not made public because of their strategic importance for firms.
For example, the calibration of “Equilibrium in continuous space” on some
agricultural example would require the maps with land fertility for a partic-
ular good, or at least database with hundreds or thousands of values related
to different geographical points. The data on trade flows are also usually
aggregated, at least on regional level; here the flow between villages is of
importance. As for prices, I have discovered prices for a particular fruit in
a particular day in 5 spanish cities, but this is too small a database to talk
about any reasonable econometric work. Moreover, if somebody would do
such work in future, its volume might be easily comparable with the volume
of this dissertation. For the model “Dacha pricing” I did some calibration
on the aggregate database (in form of maps) about land price in different
locations.

The third goal is philosophical. Like any science, economics in its child-
hood used mainly words to describe its ideas. Later, with maturity more
words were replaced by formulae and abstract mathematical concepts. How-
ever, probably for historical reasons, mathematicians had higher influence
on economic theory than physicists. Thus, economics still has less ideas
and concepts from natural sciences. If it aims to describe the real world, it
should make realistic assumptions about its physical properties or at least
argue that their importance is negligible. Under the philosophy of physicists,
models should be built asymptotically, so that the exactness of solutions and
exactness of assumptions should be of the same order of magnitude. In these
models I argue that neglection of the spatial structure can bring higher errors
to economic models than it is usually believed. Also, these models may serve
as a tool to find the range of parameters (like transport costs, the level of
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heterogeneity, etc) where we can safely operate with traditional, spaceless,
economic models. All the models developed here are essentially quantative.
This means that if we have good data, we can test their precision. It is not
only the sign of derivative which is important, but also the relative value of
different derivatives in comparing opposite effects. The trouble of economics
is that utility is not observable and that the main data sets have very high
variance. This decreases the possibility to test those tiny quantative effects,
which can be predicted by these models. As for qualitative effects, they are
formulated and discussed in chapters.

1.4 Further Directions of Research

The concept of equilibrium in heterogeneous space, which was elaborated in
this dissertation, opens several directions of further research. In fact, each of
the chapters can be considered not as an ended story, but just as a window
to a particular direction of research.

In “Equilibrium in continuous space” a one-dimensional model is solved.
Its generalization to two-dimensions is demanding. Another generalization
of this model can be an attempt to see how the trade areas were growing
along with technological development. Comparative statics with respect to
the value of transport cost in this case is like a film: the whole spatial pattern
reacts non-linearly to its change, and the film is quite different for different
initial conditions.

The chapter on “Hotelling’s revival” contains practically all potential gen-
eralizations in a two-dimensional euclidean space. However, more dimensions
can be considered. But the addition of non-geographical dimensions would
require the introduction of a new topology; the euclidean structure might be
not very realistic in this case, and some hybrid version of it might be better.

“Dacha pricing” has already an extension in the chapter on “Location
choice”. But both of these chapters can be extended further. In “Dacha”
paper the equilibrium is unique, and this allows for computation, calibra-
tion and practical applications of the model. There are too many restrictive
assumptions, and the extension may go in the direction to eliminate them.
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For example, allowing the frequency of travelling to dacha is an interesting
extension. It is only partially considered in this chapter.

On contrast, in “Location” paper, an additional assumption about land
size choice gives rise to multiplicity of equilibria. It is not clear, whether this
result holds for all utility functions, or for some utilities the solution may be
unique. The Pareto optimality of these equilibria was not investigated. An
interesting link may come from the study of the relationship between these
equilibria and those obtained by auction mechanism.



Chapter 2

Equilibrium in Continuous
Space

The goal of this paper is to describe the general equilibrium of a spatially
decentralized economy, when production, consumption and markets are dis-
tributed in a continuous space and transportation costs are essentially linear.
It is shown that an autarky equilibrium can exist only if transportation costs
are high enough. If transportation is cheap, it forces local interaction and
destroys local monopoly power. In the general case, the general equilibrium
includes some endogeneously determined trade areas, with flows of goods
across space, and autarky areas where production and consumption activi-
ties take place at the same point. I obtain an analytical solution in explicit
functions, which contains equilibrium prices, labor supply and flows of goods
in a continuous one-dimensional space. The model can be applied to a set
of practical questions in regional economics. In particular, it is able to de-
scribe persistent price differentials across regions and non-local consequences
of road construction and transportation cost shocks for the economy.

JEL classification: C68; D58; R13.
KEYWORDS: general equilibrium, spatial economy, transportation cost.
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2.1 Introduction

2.1.1 Evidence and Applications

The prices for physically identical goods may vary across regions. For exam-
ple, Fig.2.1, taken from [18,20], shows the isoprice lines for potatoes in the
USA. The range of spatial price variation is comparable with their average
value. It is also easy to see that prices were higher in the southern regions of
the USA. Can this be explained in a general equilibrium framework? Before
going into modelling, it is useful to consider the possible reasons for this
effect. The USA is a country with well-developed market mechanisms. It is
unlikely that tastes can differ so much across regions. Neither is it purely an
income effect, which is likely to be smaller and to have the reverse direction
1 That is why a potential explanation should include regional differences in
geographic conditions (land productivity) and also the possibility to trans-
port physically identical goods across regions for resale.

Another example comes from Russia which is on its way to transition to a
market economy. Table 1 shows the price variation across regions for several
basic consumption goods (data are taken from [19]). Before transition, in
the 1980-ies, all these prices were almost identical across regions, because
they were fixed by the state. It is surprising that after price liberalization
they did not move all together to new equilibrium, but instead have moved
to a spatially heterogeneous pattern. The shortages have disappeared, which
suggests that prices in each region stayed at least in autarky equilibrium.
But, according to classical microeconomics, if there are arbitrage opportuni-
ties, then all prices should move to the same value which corresponds to an
equilibrium. These arbitrage opportunities could be blocked by either trans-
portation costs or tariffs. Both play similar roles, and hence only transporta-
tion costs will be considered further on. Therefore an interesting question
arises: when can autarky equilibrium exist so that no trade between regions
occurs, and when does the equilibrium imply trade flows?

The existing literature on spatial economics has provided insights only on

1For many years the South was poorer than the North of the USA. As the demand
for a normal good (here potatoes are likely to be a normal good) rises with income, for a
fixed supply the prices in high-income areas should be higher. However, the picture shows
higher prices for potatoes in southern regions, where income is lower.
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Table 2.1: Price Dispersion over Regions in Russia in 1993. Source: [19]

17

Good Average | Min Max | Ratio Max/min
Beef 597.85 | 143.03 | 1026.00 7.17
Boiled sausage 829.84 | 350.00 | 1700.00 4.86
Butter 1221.59 | 98.91 | 2580.00 26.08
Cheese (brine) 1279.25 | 350.00 | 3000.00 8.57
Bggs (per 10) | 211.53 | 59.24 | 515.00 8.60
Bread black (loaf) | 34.06 4.70 93.00 19.79
Bread white (loaf) | 43.02 1.18 113.78 96.42

very partial aspects of this question, but it has approached it from different
sides. For the sake of mathematical simplicity, an autarky model will be
presented first and a model with trade afterwards.

The model presented here addresses the question of price variation in
space, and thus it has applications for regional economics and interregional
trade. But it also presents an interesting example of how local interaction
can establish competitive markets in an environment with a continuous het-
erogeneous space populated by a continuum of immobile agents. The general
equilibrium solution has an interesting mathematical structure which en-
riches the results obtained before.

The model has several practical applications. Despite its one-dimensionality,
it may describe real-world price patterns quite well. The first application is
the spatial price microstructure for agricultural goods. Land productivity for
a given good depends on geographic conditions, mainly on latitude. For equal
capital and labor investment, banana crops will be much lower in Canada
than in Equador. The case of potato prices in the USA is a more realis-
tic example, because potato growing is worthwhile everywhere in the USA,
while nobody would grow bananas in Canada: the crop will be so low that
it is much cheaper to import them from Equador. The model can be also
applied to the use of natural resources - such as mining, forestry, hunting. In
some sense, this example is similar to the previous one, because the differ-
ence in regional land productivity is even more pronounced in this case. A
third application is the possibility of forecasting the economic consequences
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of road construction, or the provision of other infrastructure, affecting trans-
portation costs. For example, bananas in remote areas of Central Africa or
Amagzonia could be quite cheap, when these areas stay in natural autarky
as a consequence of the technical impossibility to transport them to other
regions. Road construction can influence banana prices, trade flows and em-
ployment in banana industry in these regions. The fourth application is the
historical path of trade and autarky areas in the world, as the consequence
of a gradual decrease in transport costs due to technological progress. The
model shows that the patterns of production and trade are highly sensitive to
changes in productivity parameters and transportation costs. This might be
one of the possible explanations of high instability of rural regional economies
which is an effect, mentioned in [8]. There are also several potential policy
applications for the impacts of regional taxation policy and price regulation
on the equilibrium in spatial markets.

The model also has a theoretical impact. While there were models with a
continuum of agents in a continuous space, they did not address the question
of exogeneous spatial heterogeneity. Also, the mechanism of local interaction
was not applied for this type of models.

Finally, a few words about the structure of this article. A brief literature
survey is provided in the next subsection. Then, the formal assumptions and
definitions are introduced. Further on, the model is derived. Some examples,
providing additional intuition and interesting results, which cannot be seen
from the solution directly, are considered. Finally, conclusions and applica-
tions are discussed. Some proofs are transferred to the appendix.

2.1.2 Survey of the Literature

A literature survey is not an easy task since all existing models have some
significant differences from it. The literature relating to this problem can be
divided into three groups: the classical papers on regional economics, recent
surveys about current problems in this area and general equilibrium models
with a spatial consideration. I would like to make a particular accent on the
literature related to the basic particular features of the model: price varia-
tion, continuous space with a continuum of agents and transport costs, and
local interaction.
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The classical literature starts from the pioneering work of Von Thiinen
[7], which has a very significant impact upon modern research in this area
(see [1], for example). Von Thiinen describes a single town, surrounded by a
continuous agricultural plane. Because of transportation costs, agricultural
activity takes place not further away than a certain distance from the city,
and the equilibrium wage also depends on the distance. Thus, von Thiinen
shows the impact of spatial heterogeneity on price variation. Though there is
no given center in my model, its philosophy is not very far from Von Thiinen.

Hotelling [3] describes an oligopoly between two producers, who have dif-
ferent spatial locations and compete for a continuum of consumers. Actually,
this model has had a number of applications in the theory of industrial or-
ganization and political science. His model has been generalized by many
authors (see [9], for example). Losch [21] extended Hotelling’s model to a
two-dimensional space, and found a hexagon structure there being optimal.
However, he did not show the emergence of this structure from a decen-
tralized process (Krugman [23]). Alonso [15] mentions that the difficulties
encounted in trying to solve the problem of interaction of several producers
might have deep mathematical grounding. In this paper I show that with
a continuum of producers having a “chain interaction”, this problem can be
solved analytically.

Kantorovich [5] and Beckmann [6] considered the problem of optimal
transportation of masses in a continuous space. However, they have treated
it basically as a central planner’s problem. Samuelson’s model [4] is essen-
tially discrete. He puts buyers and sellers of a good at nodes of a transport
network, assigns demand and supply function to each node and defines the
transportation costs between each pair of nodes. Then he finds equilibrium
prices and flows of goods. The model to be presented has two basic differ-
ences with [4]: first, it is generalized to a continuous space; second, it deals
only with one good and a numeraire. This enables studying spatial patterns
theoretically.

The second strand of literature consists of recent surveys and papers in
regional economics 2. The incorporation of space in a general equilibrium

2The state of the art in this area is presented in “Handbook of Regional and Urban
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model is still absent, as has been noted recently (Nijkamp, [13]). Though the
present model is far from being a full answer to this question, it intends to
provide a step in this direction.

Susan Scotchmer and Jacques Thisse [1] provide a survey of the current
problems in the economics of space. I will touch upon only one of the is-
sues. The idea of Arrow and Debreu [25] about commodities may explain
the persistent price difference for physically identical goods by naming them
different commodities, with the only difference in location. The concept of
convexity in preferences is crucial for the construction of general equilibrium.
But if we use it for these commodities, a rational consumer should buy a bun-
dle of small quantities of good in all places instead of buying one unit of that
good in one place, which normally does not happen [1].

Paul Krugman and Anthony Venables [22] "are not aware of any formal
models of world trade” where regions are not discrete points and believe that
such continuous models "will be entirely untractable”. Their own solution,
however, is based on ”extremely unrealistic assumptions about both natu-
ral geography and the motives for trade” [22]. Only in his last book [23]
Krugman has started to treat space continuously, before it consisted of two
points. He also used Dixit-Stiglitz preferences which do not allow for the
same variety to be produced in two different points. But there are many
examples (especially raw materials) in which consumers cannot distinguish
between the place of origin of a particular good.

The third group is related to the general equilibrium in space. William
Alonso [17] derives the demand for housing, manufacture and agriculture,
and then finds the equilibrium rental price. In his model the rental price
depends on location, and particularly on the distance to a city center. The
issue is that land is almost the only good with a fixed supply which is also
immobile, and hence his model cannot be used for the case considered here,
when supply depends on producers’ decisions and the output can be trans-
ported in space.

Walter Isard in a series of of influential articles [14] considers such phe-
nomena as agglomeration of industrial location, models of transition pro-

Economics” 2]
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cesses in space, interregional trade theory and general equilibrium in multi-
regional setting. In his general equilibrium approach, he introduces several
regions with production functions, input-output specification and transporta-
tion costs between each pair of regions. However, he reaches such a high level
of complexity that only some abstract equilibrium equations can be formu-
lated. As is mentioned by Andreu Mas-Colell and William Zame in [11], the
cost of this abstract approach is that ”much interesting economics lies in the
details of particular models”. All results depend on the specification of the
model, and quite little intuition about its behaviour can thus be obtained.
This seems to be a particular feature of discrete models, which normally re-
quire computer use and some specific input data in order to gain any further
intuition about the results.

Andreu Mas-Colell [12] considers an equilibrium model with differentiated
commodities. Hugo Sonnenschein [10] has developed the general equilibrium
model in an abstract space of product differentiation. Like William Alonso,
his treatment is also continuous, and all the continuum of agents, who have
fixed locations over a circle, have free choice to produce and to buy what they
want. Still they have one dimension of freedom: to buy one unit of good of
the variety that maximizes their utility. In the model presented here, the
good is physically identical, but production and consumption takes place in
a continuum of locations. But this is not the only and the main difference.
In order to achieve price equalization, Sonnenschein relies strongly on trans-
portation costs that are quadratic in distance.

This structure of transportation costs is a rather important issue and
deserves a separate discussion. Harold Hotelling [3] considers oligopolistic
competition in space with a continuum of consumers and linear transporta-
tion costs, which is a realistic assumption. Later on, his followers used his
model for the space of product differentiation and introduced quadratic costs
to avoid the demand discontinuity [9], which led in some cases to equilibrium
non-existence. However, this cost structure does not seem to be in line with
reality in spatial models. In this paper, the demand discontinuity problem
does not appear, because the production is also distributed continuously.
Also, it is shown that a combination of a linear and quadratic term (where
quadratic can be infinitely small - see appendix) makes it possible to have
both convexity and realism.
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Beckmann and Puu [18] have created the theory of densities and flows in
spatial economics - the tools that are used throughout this model as well.
But they consider an optimal transportation flow for the whole economy, and
this approach is not necessarily consistent with the decentralized optimizing
behaviour of producers.

Despite this quite heterogenous description of the existing relevant liter-
ature (which nevertheless seems to be necessary), it is possible to establish
a methodological dimension to find the relative position of this study. There
are two basic models in continuous space which are close to this one. The
model of Alonso [17] is related to land rent and is based on the idea of a
central business district (CBD). In his model, commuting (transportation)
costs are linear, in this model they are asymptotically linear for small dis-
tances. In Alonso’s CBD model, each of the continuum of agents commutes
with one CBD; thus, there is a continuum of possible communications. The
model of Sonnenschein [10] has quadratic transportation costs, and hence
agents are induced to interact locally. Because there is not a single center,
but a continuum of centers (all points are equal), this reduces the number of
possible interactions to continuum ®. Therefore, the levels of complexity of
Alonso’s and Sonnenshein’s models are similar. To the author’s knowledge,
nobody tried to consider a continuum of interactions for the continuum of
points in spatial economics yet. The basic difference of this model from Son-
nenschein, as was already mentioned, is that transportation costs have not
only a quadratic, but also a linear term. This enables having both local in-
teraction (as optimal choice) and different prices in different locations (like
in Alonso’s model).

2.2 The Structure of the Model

The traditional general equilibrium approach considers the market as a cen-
tral clearing house, with costless access of all producers and consumers to it.
The historical grounding for this concept might be a central market square
in a medieval town. At that time the world was composed of many local
autarky economies. The great geographical discoveries opened America, In-
dia and China to Europe, and all the advantages of international trade were
exploited. This was the basis for international trade theory. In fact, initially

3from the squared continuum
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trade only took place with goods not producible in the domestic economy
(tea or coffee in Europe, for example). Only since the middle of the XIX-th
century, after globalization of trade, did competition among physically iden-
tical goods became a reality, but taxes, imposed by the government, could
easily protect domestic producers. Free trade agreements, economic integra-
tion processes and technological achievements in transportation technologies
work in the direction of decreasing trade costs - and hence erode autarky
economies. Tariff elimination brings up the concept of a continuous space.
This idea is not new, and to some extent was developed starting from Von
Thiinen [7] and Hotelling [3]. Both have shown that the price which con-
sumers in different points are willing to pay for a good which is physically
the same might be different. However, general equilibrium theorists (see [10],
for example) beleived that in the long run prices would finally be equalized.
However, empirical evidence shows persistent price differentials across re-
gions, which do not converge to zero.

The idea of Arrow and Debreu about commodities may explain this differ-
ence by introducing different commodities, whose only difference is location.
However, this contradicts with the concept of preference convexity as no con-
sumer would optimally prefer to give up one loaf of bread from the nearest
bakery for a bundle (of the same weight) of bread from all bakeries in the
world! The existence of simple transportation technology makes it possible
for both producers and consumers to convert different commodities into the
same just by paying some transportation fee. The introduction of a trans-
portation technology is a formal difference between autarky and non-autarky
economies. But this technology would not always be optimally utilized. The
idea of this chapter is to describe one particular example of a continuum
of spatially separated autarkies. In the next chapter it will be shown, un-
der what conditions the equilibrium in an integrated economy will coincide
with autarky equilibrium. In other words, when firms will optimally choose
no-action in transportation activity. The next chapters will deal with the
description of other possible equilibria in an integrated economy. The par-
ticular preferences and technologies (though of rather general and typical
macroeconomic form) are chosen in order to obtain an explicit solution, to
study comparative statics between an autarky and an integrated economy
and to obtain important economic conclusions.

The model has some elements which are not very common in the economic
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literature. That is why it is useful to introduce several definitions in order
to clarify some further ideas and conclusions.

2.2.1 Some Useful Definitions

The first three definitions give names to some subsets of the whole economy.
They will play an important role for the mathematical structure of the solu-
tion.

Definition 2.1 A supereconomy is the whole object in the considered model.
Mathematically, it is represented by an interval [0, 1] (or another one-dimensional
topological object in continuous space like a ray or a circle)).

Definition 2.2 A subeconomy is any subset of the supereconomy, defined by
some common properties of the points inside it. In most cases it is represented
by a subinterval [a,b] C [0, 1].

Definition 2.3 A microeconomy is any point inside a supereconomy, x €
[0,1]. We assume that each microeconomy has one producer with a measure
zero output capacity. Intuitively, it may be thought of as a village with some
production and consumption inside it, but with an infinitely small impact on
the whole supereconomy, and even on any subeconomy.

Autarky-1 and autarky-2 are two new concepts. Index 1 is related to the
assumption, while index 2 to the result. Thus, autarky-1 is exogeneously
postulated, while autarky-2 emerges endogeneously. The same word “au-
tarky” should not be misleading; it is kept to stress the similarity of the
mathematical form of the solution. Empirically, these two autarkies might
be undistinguishable. One should see the reason why trade is not going on.

Definition 2.4 The supereconomy is said to stay in autarky-1, if all of its
maicroeconomies have no technical possibility to access the market of their
neighbours. In autarky-1 a microproducer enjoys monopolistic power over
the local market.

Definition 2.5 A subeconomy (supereconomy) is said to stay in autarky-2,
if there exists a technical possibility to access other spatial markets, but any
producer rationally chooses to sell all the output locally, because transporta-
tion costs are too high.
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Note that the local monopoly power emerging in autarky-2 is not a usual
one, since all producers are facing competition. The chance to behave like a
local monopolist in a small neighbourhood of a general equilibrium solution
is imposed by the structure of transport costs and price-taking behaviour of
all participants of the economy.

These definitions are mathematical and some of the economic intuition be-
hind them is as follows. An interval is a good approximation for an economy,
which either has a geographical structure, close to one-dimensional (Chile or
the US western coast) or when there is an obvious symmetry with respect to
the second coordinate (for example, climatic conditions, which are essential
for agricultural crops, usually depend on latitude, but in some cases their
dependence on longitute can be neglected). A subeconomy can be thought
of as some part of the whole economy with the spatial borders determined
endogeneously.

A microeconomy can be thought of as a very small location. Assuming
that there is essentially one producer in each microeconomy is a matter of
convenience, for it allows us to abstract from competition within each lo-
cation, which would only complicate the analysis without providing deeper
results. Another reason for doing this is related to the link between the
continuous and the discrete versions of the model which will be discussed
subsequently.

2.2.2 Basic Assumptions

In this model there is a continuum of producers and continuum of consumers.
All are immobile and distributed in space with some density. There are two
goods: a composite good without transportation costs, and a commodity
which can be moved from one place to another with some transportation
costs. Producers have an access to transport the goods. All consumers have
identical preferences, but may be facing different prices. Producers are differ-
ent from consumers. They use their own labor and location-specific capital
to produce a specific good. Consumers’ utility depends on this specific and
composite good. Producers consume only this composite good (remember
the joke: a shoemaker without shoes), but leisure also enters their utility.
Formally, the assumptions of this model are as follows.
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Assumption 1. There is a continuum of microeconomies on a line with
a Cobb-Douglas function in production: Y (z) = A(z)K (x)'~*L(z)*, where
xz € [0,1] is a point, A(z) - technological productivity in this point, K(x) -
capital endowment, L(z) - labor?. The supereconomy [0, 1] is a composition
of these microeconomies, together with the topological links between them.
Further, it will be assumed that the capital is fixed at every point (land en-
dowment, for example) and the decision about labor is taken by producer,
who is considered to be self-employed (farmer). Hence, Y (z) = v(x)L(x)*.

Assumption 2. There is a continuum of consumers (different from pro-
ducers) with the demand density D(z) = d(x)p(x)~¢, where p(x) is the local

price °.

Assumption 3. All producers have Cobb-Douglas preferences about
their income C', which is the price multiplied by output, and leisure: U =

CP(1 — L)%

Assumption 4. Producers choose the labor supply so as to maximize
their utility.

For the purpose of the next section we will need:

Assumption 5. There is no possibility of transportation, i.e. goods can
be sold only on the local market.

In the model with trade this assumption will be relaxed.

In order to bring about more intuition about these assumptions, several
pictures are introduced. Fig. 2.2 shows the output curves as the function of
labor input for two different microeconomies x; o, which are some arbitrary
points of the productivity parameter as a function of the spatial coordinate
z (Fig. 2.3). The demand density is also an arbitrary continuous function of
z (Fig. 2.5), and it generates the family of demand curves (Fig. 2.4).

4As a point has measure zero, productivity, capital and labor should be thought of as
densities.

5This demand can be derived from the consumer’s utility, which is additive and linear
in the numeraire.
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The continuous structure of this economy is essential for getting mathe-
matical results. It is a good approximation of a real economy when the num-
ber of agents is very large, and when population density and productivity
factors change slowly between locations. Producers and consumers are actu-
ally different agents here. The whole economy, which produces thousands of
goods, can be decomposed into the economy producing one particular good
(which is studied here) and the rest of economy, so that the impact of this
one-good economy on the rest is negligible. Consumers in this model might
be the producers in the rest of the sectors, but they are represented here just
by their demand.

2.2.3 A Discrete Analog of the Model

Before going further, it is useful to introduce the discrete analog of this
model. The discussion in [24] about the problems arising from the difference
in the structure of set of equilibria in a continuous model and its discrete ap-
proximation in models with location and a transportation technology, is not
relevant here for the following reasons. First, in the examples of Berliant and
ten Raa [24] agents themselves are spaceless, but demand some land, while
here the locations are fixed and land endowments are equal. Second, in dif-
ferent metric spaces the transition between the sequence of discrete models
and their continuous limits may occur differently. In this paper the limits
for the densities are considered in the class of continuous functions of space,
while in [24] the wider space L; (of functions for which Lebesgue integrals
exist) is considered.

Imagine that the number of firms is finite, and they are located equidis-
tantly on an interval. If the differences in productivity and demand coeffi-
cients between any two neighbours are much smaller than the values of these
coefficients, then the differences can be replaced with differentials, and the
continuous model is a natural limit of such a sequence of discrete models.
The structure of the interaction has to be kept when a continuous model is
considered. Here, like in all the models of classical physics, first the structure
is considered for a discrete case, and then all discrete-valued functions are
replaced by their continuous limits. For all the models it is crucial to assume
that the spatial structure is locally homogeneous, so that if we look at it
with a microscope, we discover that all functions are locally constant. Thus,
the transition to formally continuous models occurs via a sequence of grids
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(chains), the difference between the solutions for these chains is small, when
the distance between elements vanishes to zero, and the continuous model is
claimed to be the limit of the Cauchy sequence of these discrete models ©.

While speaking about continuous models, one has to bear in mind their
discrete analogs. This is useful in order to understand why the autarky
producer in a continuous economy should be a local monopolist, and why
the spatial competition turns out to be oligopolistic. Another reason for
referring to discrete analog is the practical use of the model. In reality only
discrete producers exist, but studying discrete models will end up with quite
big matrices of data, where one can hardly catch some regularity. Going
from discrete to continuous data can be done via interpolation (it is always
possible to construct polynomial functions, for example, which have any set
of values in any finite set of fixed points).

2.3 Autarky-1

Now we consider the solution for an autarky-1 economy. Each producer is a
monopolist here, because in the discrete analog he is a monopolist 7. That
is why he takes into account the impact of the quantity sold on price. As he
is a producer at the same time, he plans his optimal labor supply to reach
the highest utility, taking into account its impact both on output and price.
In autarky-1, the supply of this particular good in any microeconomy should
be equal to demand. The market clearing condition for this model is given
by:

(@) L(x)* = 6(x)p(x) " (2.1)

Proposition 2.1 In the autarky-1 case producers behave as local monopo-
lists, i.e. they choose the optimal output, which is the function of their labor
supply, taking into account that prices depend on the quantity that they pro-
duce.

Tn the space where each discrete solution corresponds to some continuous function,
which can be uniquely associated to it, according to some interpolation algorythm

"That is why he is a monopolist in his point. He also avoids spatial competition from
neighbours because of Assumption 5.
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PROOF:
Producers are monopolists because there is only one producer in each microe-
conomy (see Definition 2.3) and there is no access of other producers to this
market (Definition 2.4, Assumption 5). Utility is a function of C(p(x),d(x),v(x))
and L. The parameters 6(x),~y(x) are exogeneous for the producer, but he can
decide optimally on prices and labor supply.

The price can be expressed as a function of labor and densities:

p(x) = (=) L(z)" <. (2.2)
The utility of a producer, after the substitution of the market clearing

condition, can be expressed in the terms of his labor only:

U=hL"(1-L)", (2.3)
hzégyﬂ’g,uzaﬁ(l—l/e),yz1—5. (2.4)

The solution to his maximization problem is given by the formula:

1 -8+ ab(l—1/e)
Note that the labor supply appears to be dependent only on the parame-
ters of Cobb-Douglas functions and the elasticity of demand, but not on the
density of producers and consumers. Thus, the production level is propor-
tional to the productivity parameter v (which is a function of spatial point x).

(2.5)

However, the price will also depend on these densities:

i o(z) *) -2
pola) = (Cp) (L)% 26)

The results obtained for the autarky-1 economy are summarized in the fol-
lowing Proposition.

o=

Proposition 2.2 In the autarky-1 model, under given assumptions 1-5, the
optimal labor supply is the same in all microeconomies. It does not depend
on production and consumption densities and depends only on Cobb-Douglas
and elasticity parameters a, 3, €. The equilibrium price depends on the spatial
point and is given by the formula (2.6).
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Lemma 2.1 If the production and consumption densities are continuous and
differentiable functions and if the production density is positive in all of the
points, then the equilibrium price is also a continuous and differentiable func-
tion of a spatial point x.

PROOF:
The price is given by an algebraic function of two differentiable functions.
Thus, its derivative can be calculated explicitely. It exists in all points, except
for those where y(z) = 0.

Thus, for any continuous functions y(x), §(x) the autarky-1 equilibrium price
function pg(x) and labor supply can be constructed. The solution is given
by the price function, continuously depending on the spatial coordinate, and
the constant labor supply over space (Fig. 2.6).

2.4 Autarky-2

The assumption of no trade due to no transportation possibilities seems to
be unrealistic and plays mainly the role of analytical device 8. Starting from
this section, assumption 5 is replaced by assumption ba:

Assumption 5a. There exists a possibility to transport the good to
spatially different markets. The marginal transportation cost is equal to ¢ 9.

Therefore, transportation now is possible and the cost of transportation
of one unit of good per one unit of distance costs ¢ monetary units.

If the transportation cost is higher than the price differential, nobody will
find it optimal to use transportation, and the system will stay in autarky,
despite the possibility of transportation. Thus, the global condition for stay-
ing in autarky is, using (2.6):

8 Although, in some particular cases (trade legally prohibited, producer is surrounded
by mountains and has no access to air transport, etc) it becomes realistic, they do not
play an important role in modern trade.

9This means that the transportation cost of one unit of good between two locations with
infinitely small distance dx is equal to tdz. The more detailed structure of transportation
costs will be specified subsequently.
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dp(x)
dx

0(x) 148" (x)y(x) — 0(x)y'(x)
V() V(x)?
Proposition 2.3 If the assumptions 1-4 and 5a hold, the functions §(x),vy(x)

are such that for the whole supereconomy the inequality (2.7) holds, then this
supereconomy will stay in autarky-2. All producers are still local monopolists.

| < t. (2.7)

)

L*
max | | = max |—(
x x €

PROOF:
The inequality (2.7) guarantees the absence of any two points with a price
differential less than transportation costs. Any transportation procedure can
only decrease this price differential. Hence, nobody finds it optimal to utilize
this transportation possibility, and all the supereconomy stays in autarky-2.
FEvery producer knows that it happens in equilibrium, and thus he can behave
as a monopolist on his local market.

It is very important to discuss the autarky concept of this model and
to make the distinction from similar concepts, studied in literature. The
analogy of autarky-1, discussed above, would be the short-run equilibrium
allocation of producers and consumers in the paper of Sonnenschein [10],
which results in some equilibrium price as the function of the point in a com-
modity space. There, in the short run, every market is cleared only locally,
without taking into account the possibility to adjust production. In order to
proceed with this analogy, we should think about this model in a dynamic
way. Initially, nobody realizes that transportation is possible: we have the
autarky-1 price function as a result. Then producers start utilizing arbitrage
opportunities, if they exist, by transporting their goods to the neighbouring
markets. Condition (2.7) shows under what conditions these arbitrage op-
portunities will never arise. The general equilibrium with trade, which will
be discussed in the next section, is an analogy of the long-run equilibrium
in [10]. Actually, in [10] this short-run price function can be any continuous
function (which can be uniquely derived from the initial density of firms).
In this model the autarky price function may also be an arbitrary function
(which is derived from the densities of demand coefficients and productivity
coefficients). Though consumers in this model cannot choose the location
of consumption (as they do in [10]), instead they can choose its level, and
producers can do it also (even in the short run), for each point in space.
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The described differences are not conceptually crucial in the sense that
they lead to a similar equilibrium structure. The basic distinction between
these models, which brings new conceptual ideas, is the following. When
Sonnenschein [10] speaks about price dynamics, he means the specification
of some adjustment rule on the way of transition from the short-run to long-
run equilibrium. In his framework, the only feasible long-run equilibrium is
full price equalization. It is useful to determine which of his assumptions
leads to this outcome. The first is topological - he considers only a circle. It
is possible to show that for an interval the result may be different (it depends
on how the boundary condition is chosen). What is more important, and this
will be shown later, is the local price of transportation between points. In his
model it is just quadratic (and thus vanishes for an infinitesimal move). The
analogy in a spatial context is how the unit transportation price depends on
distance. Is it realistic to assume it quadratic? Yes, but not just quadratic;
it is necessary to add a linear term. Then for infinitesimally small move the
price of transportation will be infinitesimally small of the same order. The
quadratic term eliminates the benefits from long-distance trade, and forces
the producer to sell only on the neighboring market.

The main consequence from the assumption about linear transport cost is
the possibility to stay in autarky in the long run also, given that the short-run
equilibrium price gradient is not sufficiently high (see formula (2.7)). The
structure of all possible long-run equilibria in this model is essentially richer
and will be described in the next section.

2.5 Local Trade and Endogeneous Integra-
tion

In this section the possibility of market integration will be introduced via
the access of all producers to all markets. The basic difference from the
autarky-2 case is that now the autarky-1 price function is assumed to violate
the restriction (2.7), at least at some points. Hence, after the ”opening of
autarky-1” the arbitrage possibilities will emerge, and the whole superecon-
omy will move to a new equilibrium. Since the structure of equilibrium will
become more complicated, it is useful to introduce new definitions.

Definition 2.6 An integrated economy-1 is the supereconomy with the po-
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tential access of all producers to all markets.

This definition is related to new formulation of the model in its extended
version (roads are constructed). In order to distinguish the type of solution
where trade is possible but not chosen from the case when it is chosen, it is
useful to introduce the concept of integrated economy-2.

Definition 2.7 An integrated economy-2 is a general equilibrium solution
for an integrated economy-1, in which trade actually occurs across locations.
This name will be used for both the description of the solution for sube-
conomies, but if no subeconomy has autarky-2 solution, then it can be used
also for the solution of supereconomy.

It is important to see the link between two types of autarkies and two
types of integrated economy. There are two possible points of view on
the question. Mathematically, autarky-1 and autarky-2 are analogies, be-
cause mathematically they are described by the same formulae, but they are
the solutions to different economic problems. Economically, an integrated
economy-1 and integrated economy-2 are analogies, because they are the so-
lutions to the same economic problem. However, the solution of integrated
economy-2 type is conceptually simpler, and thus it can be used as a brick
for the description of solutions to integrated economy-1 model, along with
autarky-2, which might be a solution for a complementary subeconomy.

Formally, in order to go to an integrated economy-1 model, we have As-
sumption 5a instead of 5, and restriction (2.7) is no longer valid. Though
consumers remain immobile in this model, this is not a crucial assumption.
It is easy to show that their mobility will not alter this model in any way
under the assumption that their transportation costs are higher than those
of producers for all distances.

Assume that local trade is profitable, i.e. there exists at least one point
with a price gradient above transportation costs. In this case, the producer
at this point (who is assumed to start from autarky-1 prices) might be better
off by selling some of the output on the neighboring market. It is clear that
this opportunity will immediately blow up the autarky equilibrium in all the
economy (or at least, in some parts of it). The reason is that as trade will
change the price in both the original and the neighbouring market, there
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might be an incentive for the other neighbour to ship the good to the market
of the trade initiator, and so on. If we allow for the possibility to trade in
higher distances, the complexity of such a system will increase dramatically
10 However, there exists a simple and rather realistic way to eliminate this
possibility. If we assume that marginal transportation costs are increasing
functions of distance, then for a given price gradient the local trade in the
infinitesimal distance will be the cheapest option. Formally, the following
transportation unit cost can be considered: T(z,y) = t|lz — y| + R(z — y)?,
where M can be a small positive constant; R = F(d(z),v(z)) (see the Ap-
pendix for details). This is not an unrealistic assumption, if not only the
ticket price (which is likely to be about linear in distance), but also the op-
portunity cost of forgiven transportation time is taken into account. From
now on, we shall make we shall make this assumption to ensure the optimal-
ity of local trade.!!

This assumption seems to be consistent with stylized facts. Some evi-
dence on the volume of transportation as a function of distance is given in
[16]. According to [16], railroad shipment volume drops about 4 times as
the distance doubles. This means that most of the transportation is short-
distant. It seems that the statistical data for transportation of similar goods
might be even more impressive, as some long-distance transportation occurs
for the goods that are not produced in the region of destination.

If all initial densities are continuous and differentiable functions, the au-
tarky (short-run) solution is described also by a continuous and differentiable
function. Without loss of generality, the interval where this function is de-
fined, might be divided into a finite number of subintervals, where the sign
of a derivative is constant. The boundaries between these intervals will have
zero derivative. Some of them are price maxima. But there the producers
would be unable to extract any profit from trade at any distance, because of
the specification of the transportation cost structure. So, a producer having
any arbitrage opportunity would be able to exploit it at a marginally small
distance and only in one direction.

10This has been discussed already in the literature survey

HNote that another possibility to support the obtained general equilibrium might be the
assumption of local interaction: all producers know only the information about equilibrium
price derivative at their point, and can sell their goods only in the neighbouring markets.
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Inside each of these subintervals there might be some other subintervals,
where the absolute value of the price derivative is above t. When the pos-
sibility of transportation is introduced, only these intervals are a source of
non-stability. If they do not exist, the system will stay in autarky:.

Further on, the equations will be derived for this representative subinter-
val, which is characterized by a constant sign (take it as positive) of the price
spatial derivative in autarky. All functions in this model are assumed to be
continuous and differentiable. Hence, it is possible to consider a small part of
the economy, centered at a point x, with total length dx: [z —dz /2, x+dz/2].
As dzx can be chosen as arbitrarily small, all continuous functions inside this
economy can be approximated by constants (with any precision). The pro-
duction of this part is Y (x)dz, demand D(z)dz, where Y and D are given by
the same formulae as in the autarky model. Let ®(x) be the flow of good at
point x. The idea of flows is taken originally from physics; it was developped
for economics by Beckmann and Puu [18]. The intuition behind the flow is
as follows. Suppose that [z — dz/2,x 4+ dx/2] is a small economy. The flow
of good ®(x — dx/2) is the quantity of good which arrives to this economy
by crossing its left border, and ®(x + dz/2) is the flow, which this economy
"exports” through its right border x 4+ dx/2. When the good moves in the
other direction, the flow is assumed to be negative. The feasibility constraint
(which becomes a sort of law of account) implies that the net outflow should
be equal to the difference between production and consumption of this good
in the economy:

Y (z)dr — D(z)dx = ®(x + dx/2) — ®(x — dx/2) = ®'(x)dx(1 + o(dx))(2.8)
(o(dx) is an infinitely small number of the order dz). Hence, in the limit,
Y(z) — D(x) = ®'(z). (2.9)

Now the objective function of each producer is to maximize his utility with
respect to the optimal labor and optimal trade flow. His consumption now is
given by the revenue at the local market, revenue at the neighboring market
(with different price) minus transportation costs:

C(x)dr = p(x)[Y (z)dx — ()] + p(x + dz)®(x) — O(z)td. (2.10)

Because dx is infinitely small, the linear part of the Taylor expansion can be
used, giving:

Clz) = p@)Y (z) + (¢ (x) — 1) 2(x). (2.11)
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The infinitely small terms are neglected in this expression. So, in the limit
dz — 0 this formula becomes exact.

Substituting C(z) into utility function, we get:
U= (p(2)Y (z) + (¢ (x) — t)®(x)) (1 — L(x))"". (2.12)

Now consider the case, when p'(x) < 0. In this case the producer will choose
the same volume of trade flow, but it will go in the opposite direction. Sum-
marizing this, we find that almost each producer '? maximizes the value of
his utility with respect to the labor supply and the absolute value of trade
flow |®(x)|, taking the price function as given. For the output there is a di-
rect equation Y (z) = y(x)L(x)®. Substituting this expression into the utility
function leads to the following maximization problem:

max M (z) = max(p(z)y(x) L(2)* + (| (z)| = )|@(2)))*(1 — L(x))'7*(2.13)

A rational agent, indexed by x, maximizes the value of M with respect to
his control variables L(z), |®(x)|, taking all other parameters, including price
p(x), as given 3. The price is implicitly determined by the market clearing
condition which is obtained by substituting assumptions 1 and 2 into the
equation (2.9):

0(x)p(z)™ = ~(x)L*(x) — P'(z). (2.14)

The derivative ®'(z) is determined by the collective action of the producer
and his neighbours. For each x, the first order conditions have the following
form:

aaj\g = BlpyL* + (Ip| — t)|®)P ' pyal® (1 — L)7
—[pyL® + (9] — OB — B)(1 - L) =0, (2.15)
gﬂé — Bl L+ (Ip/] — @) (o] - 1) = 0. (2.16)

12There may exist a finite number of points (total measure zero), where the derivative
of the price function does not exist. Particularly, the right- and left-side derivatives may
exist and be equal to 4+t or —t, in equilibrium.

3The producer is a price-taker here. He can not decide about the price himself, but
has to take into account the behaviour of his neighbours. While in a discrete analog of
the model there may be is a chain of oligopolists, in a continuous model they become
price-takers. The structure of transport costs implies that producers trade only locally,
but the prices and flows propagate over space through this mechanism of local interaction.
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Because the expression in square brackets has the meaning of producer’s
consumption, it can not be equal to zero at the optimum. Formally, it can be
shown that the substitution of C' = 0 into the first F.O.C. gives either L = 0,
or L = 1 (both are minima). Hence, the second Kuhn-Tucker condition
reduces to the form:

(Ip'(x)] = t)|®(z)[ = 0. (2.17)

The meaning is the following: For all points where |p'(z)| < t, the flow is
zero: ®(z) = 0. Non-zero flows can be consistent only with p'(z) = t.

Lemma 2.2 The case |p'(z)| >t is not consistent with equilibrium.

PROOF:
Let 3y : p'(y) > t. Let p'(y) =t + 0. Then the producer in y can make
additional profit by transporting and selling a very small amount of output
additionally to the neighbouring market. This additional flow can be made
so small, that the price derivative will change by less than o. By this activity
this producer will be better off, which is not consistent with equilibrium.

If p’ = +t, then L can be determined, giving:

" of

L(z)=1L 1 5+a8 (2.18)
The comparison of this result with formula (2.5) shows that:
1) in the local trade model the labor supply is also constant (this is an inter-
esting result; later (see subsection 2.7.3) it will be exploited as an indicator
of different degrees of competitiveness);
2) it is higher in comparison with the autarky model (the difference depends
on the demand elasticity, as well as on the parameters of the Cobb-Douglas
functions).

Now the price is determined up to a constant, and the market clearing
condition, which gives the expression for ®’(z), enables us to reconstruct the
function ®(z) by integration:

p(z) = p(0)+tz, (2.19)
o(z) = ®(0) +/0 dx[y(x)(L™)* = 6(z)(p(0) + tx)~]. (2.20)
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Proposition 2.4 The whole supereconomy is endogeneously decomposed into
two subeconomies: “autarky-2" and "trade”. Formulae (2.18)-(2.20) describe
the structure of solutions inside the trade part of the supereconomy.

PROOF:
From the equation (2.17) it follows, that either p'(x) = +t, or ®(z) = 0.
The first case gives the subset of points, where the flow is non-zero, i.e.
trade occurs. The second case gives the subset of points with zero flow, which
corresponds to autarky-2.

Lemma 2.3 The trade flow is a continuous function on the whole supere-
conomy. At the boundary s of the trade subeconomy the following condition
should hold: ®(s) = 0.

PROOF:

1) ®(x) is a continuous function, because it is given by the integral (2.20) of a
function with a limited variation (here the possibility of discontinuous changes
in labor supply is also taken into account, and the property of the Stieltjes-
Riemann integral is used). Hence, the flow is continuous inside the trade
subeconomy. In the autarky subeconomy it is continuous, because it is zero.
Now it is enough to prove the continuity on the border of two subeconomies.
2) From Gauss theorem, the variation of the flow at a point is equal to excess
demand at this point. In the case of continuous densities this excess demand
is infinitely small. Hence, the flow is continuous in all "non-atomic” points.
4" This is the reason why there is a zero border condition: ®(s) = 0.

Considering the whole supereconomy, it is also necessary to add the out-
side border conditions, in a and b:

®(a) = 0, d(b) = 0, (s) = 0. (2.21)

Here a is the left border of the economy, b is its right border, and s is a border
between an ”autarky” part of the economy (with optimally zero transporta-
tion) and a "non-autarky” part. The guess for the sign can be inferred from
the sign of the spatial derivative of py(x) - the autarky model solution. To
find the borders between different parts might be a more difficult problem.
Some examples will be considered later.

4 Atomic point is a point with positive measure.
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Consider the example of economy [0,1] which, without the possibility of
transportation, has pj, > t at all points. Such an economy will not have any
parts which will stay in autarky after the opening of trade. Hence, the prices
will be given by:

p(z) = p(0) + ta. (2.22)
For the flows the following is valid:

O’ (x) =L — dp~°, (2.23)
®(0) = 0, B(1) = 0. (2.24)

Integration gives the following result:

0(z) = [ daly(@)(L™)" = 8(x)(p(0) + t) ). (2:25)
This expression has only one free parameter p(0), which has to be deter-
mined from the second border condition ®(1) = 0. The obtained result may
be formulated as a Proposition:

Proposition 2.5 When the equilibrium prices in the corresponding autarky-
1 economies are such that the price spatial derivatives are above the unit
transportation costs at all points, then the opening of a possibility to trade
will bring this system to a new equilibrium, which is characterized by the for-
mulae (2.18), (2.22), (2.25) and has the following properties:

i) the equilibrium labor supply is different from the autarky case (it is con-
stant and higher for e > 1);

ii) the price spatial derivative decreases in absolute value to the value of trans-
portation costs;

ii1) the trade flows are represented by a function, depending on a spatial point,
which s different from zero, in the general case.

The general equilibrium for the economy with trade can be uniquely con-
structed, and algebraic formulae can be written for any initial densities of
production and consumption factors.

Note that the description of the space topology was essential for obtaining
a solution. Two boundary conditions were used to define a unique solution
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for an interval. The case of a circle will be considered later. Other possible
one-dimensional objects are: a) a line and b) a ray. A line has no ends, but it
is of no economic interest. A ray may be a model ”city-countryside”, in the
style of Von Thiinen [7]. The introduction of an atomic point (city) makes is
possible to imitate the supply of the city with agricultural goods. Let the city
be located at = 0 and has a price p(0) = a. The city may have a positive
inflow of goods. The spatial price derivative will be equal to —¢ in some
neighbourhood. But as it cannot be negative, at some point z = b,b € (0, 1)
there should be a border point with an autarky area. This is exactly in
line with Von Thiinen’s arguments. But this is a more general conclusion,
because it allows the existence of local markets at all points (villages).

2.6 Simple Examples

This section will present a simple model which shows the discontinuous be-
havior of an economy as a response to a marginal change in transportation
costs. This example illustrates the possibility of high output volatility in
rural areas as a response to small changes in economic variables.

Consider the case of an interval [0,1] with a constant productivity factor
(7 = 7 = const) and a growing demand density:

0(x) = 0t (L") (x — z0)° (2.26)

As was shown in the sections about autarky-1 and autarky-2, when the spatial
price gradient is below or equal to ¢, the labor supply is fixed at the level L*.
It is easy to see that for this case the price gradient is exactly equal to t at
each point, in autarky equilibrium. Let xzq = 0, for simplicity. Now assume
that the transportation costs have decreased marginally, thus allowing for an
opening of the possibility to exploit spatial price arbitrage. All producers will
immediately start selling part of their output to a neighbour with a higher
price. Finally, a new equilibrium, described in the section about local trade,
will occur. It may correspond to the same spatial form of price function, but
the trade flows will be non-zero and the labor supply, L**, will be higher than
before. There is a possibility for many equilibria to occur. The point x = 1
represents the accumulation point of trade flows. One solution arises with
the same prices. In this case the trade flow function is given by the formula

O(x) = [ dalio(L™)" = o) (p(0) + tx) ], (2.27)
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and ®(1) > 0. Hence, if prices stay the same, there should be additional
consumption of the good at the point = 1 at the same price. Imagine that
there is a city with price control. Before it imported this good, but now the
flow from the rural neighbourhood will substitute this import.

Another case assumes no additional consumption. Therefore, by defini-
tion, ®(1) = 0. As production is higher now, this can be sustainable only
with a general price drop. Hence, a marginal shift in transportation costs
might give rise to new equilibria with very significant differences from the
initial autarky, corresponding to slighly higher .

The question of Pareto optimality might also be studied. In general, de-
viating from autarky does not necessarily improve the welfare of all agents.
For example, in the second case producers will work more and sell their out-
put at a lower price. Whether their utility will go up or down depends on
parameters «, 3,€. It may also go up for some group of agents and down
for other groups. For example, producers in the area may win and in others
- loose from the opening of trade possibility. Note that in this model the
possibility of trade is endogeneous and depends not only on transportation
costs, but also on the spatial distribution of productivity and demand factors.

Another example also considers an interval [0,1] with constant productiv-
ity, equal to 1, and the demand density:

§(z) = (L*)*(1 + z?)". (2.28)

This demand density is also growing non-linearly. But in this case it leads to
a non-constant price derivative in autarky-1 equilibrium. It is easy to show
that the autarky-1 equilibrium price will be py(z) = 1+ 22, and pj(z) = 2.
In this case for any ¢ € [0,2] there exists a point zy € [0, 1], such that
py(zo) = t (it is xo = t/2). If trade is allowed in such an economy, the
interval [z, 1] would definitely have some trade flows and new prices. But
the rest of the economy would not necessarily stay in autarky. In the general
case, only the part [0, y], where y € [0, zo], will stay without trade flows. The
equilibrium prices and flows will be:

px)=1+220<z<y; (2.29)
pe) =14y +tr—yy<e<l  (230)
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O(z)=0,0 <z <y; (2.31)
O(z) = /y do[L™ — §(x) 1+ +ta—y) Jy<z <1l  (2.32)

Note that these equations define two areas in the economy. The interval [0, y)
is characterized by autarky-2 (trade flows are zero), while the zone (y, 1] is
characterized by local trade everywhere. The point y itself has a mixed prop-
erty: it is influenced by trade flows only from one side. The producer there
faces one-side competition, and thus cannot enjoy local monopoly power.

The point y is determined by the equation ®(1) = 0. For example, in the
case €e = 2, = # = 1/2 the point y is determined by the equation

1 1 1 (1 + 22)?

|, # AT —ap = 239
This equation also defines y as the function of parameter ¢. So, a one- para-
metric family of general equilibria is constructed. With the change of ¢ the
following occurs:
a) the point y, which separates the ”autarky-2” and the ”trade” parts of
economy, also moves;
b) the labor supply inside the region, belonging to different states (autarky-2,
non-autarky) for these two values of ¢ has a shock (discontinuous change);
c) prices in the "trade” part of the economy move, but in the autarky-2 part
stay the same.

These results can be combined in the following proposition.

Proposition 2.6 In the general case, the supereconomy, staying in autarky-
1, after the introduction of transportation technology, breaks into two sube-
conomies: the autarky-2 subeconomy and the trade subeconomy. In principle,
there may be no spatial links between some parts of these subeconomies, but
autarky-2 always has a border with the trade subeconomy.

The border (it may consist of several disconnected points) between these two
subeconomies is characterized by a spatial discontinuity in labor supply, but
prices remain continuous.

When the price of transportation mowves, the border moves, and prices inside
the trade subeconomy move also. But some microeconomies near this border
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would have a discontinuous shock in labor supply as the result from the shift
from spatial monopoly to spatial oligopoly, and visa versa.

Other examples, with spatially disconnected trade zones, can also be
easily constructed. The general behaviour of the solution (equilibrium price,
labor supply and trade flow as the functions of spatial coordinate) is shown
in Fig. 2.7. The price and trade flow are always continuous functions of z,
while the equilibrium labor supply takes only two values, and the shift occurs
discontinuously. The spatial derivative of the equilibrium price function is
bounded above and below, and the trade flow is different from zero only
where p/(z) = +£t.

2.7 Extensions

The model described above can be extended in different directions. Replacing
utility or production functions by different families of functions is not likely
to change crucially the results if concavity properties are preserved. Replac-
ing the transport cost function by a more general form is more interesting,
and this will be discussed subsequently. Another extention is related to the
possibility of two-dimensional generalizations. The third subsection consid-
ers the extension to perfectly competitive markets in every microeconomy.
It discusses the erosion of local monopoly power through local interaction,
the limit when transport costs are zero and some particular features of trans-
portation technology.

2.7.1 More General Form of Transport Cost Function

Suppose that the transportation cost function is essentially linear for small
distances (this is always valid for differentiable functions with a strictly
positive derivative, because of Taylor’s formula), but with marginal trans-
port costs different in different locations: ¢ = #(x). This problem can also
be solved with the method discussed above. Consider the transformation
y(x) = [ t(x)dz, where y defines a new coordinate. It is strictly monotonous
in x and thus is a one-to-one map from x into y. This mapping preserves all
topological links between neighbourhoods and thus the initial model can be
expressed in this new variable y. Note that dy(z)/dx = t(x). It is easy to
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check that the new densities

correspond to the same problem, but in the new coordinate y, where the
transport cost per distance dy is always dy, and thus #(y) = 1. Since all
functions are differentiable, the new densities would be also differentiable,
and the method used before can also be applied. Thus, replacing constant
transport cost ¢t by a function of location does not change any qualitative
results of the model.

2.7.2 Problems Related to Two-Dimensional General-
izations

Although there exists a well-developed theory of flows in a two-dimensional
space [18], it cannot be easily applied to this model. Briefly speaking, Beck-
mann and Puu [18] have written the equations for flows in a two-dimensional
space which can solve the problem of finding flows which minimize the overall
flow (and thus, total transport cost) of the supereconomy for any given excess
demand as a function of a spatial point. However, this excess demand can-
not be easily calculated when both production in a point and transportation
decisions are taken by producers at each point independently. The borders
between trade and autarky areas have to be endogeneously determined. In
a general two-dimensional case this seems to become a rather sophisticated
mathematical problem. However, some symmetric two-dimensional problems
can be solved.

The first trivial generalization is adding the second coordinate y, while
keeping v and ¢ as functions of only one coordinate x. Then the whole solu-
tion will also depend only on z, all transportation flows would go along x and
all borders between autarky and trade zones would be intervals, correspond-
ing to some level of = (the same as in one-dimensional model!), covering all
values of y.

Another solvable generalization is a radially symmetric model (in Von
Thiinen’ style). Here production and consumption densities would become
the functions of the radial variable r only, keeping constant values with the
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change of the angular variable ¢. If they are initially expressed as functions
of Cartesian coordinates, the transformation of variables should be provided
which will make them some different functions. However, they may become
singular in a point » = 0, and thus either the problem should be studied on
a disc with a hole (excluding the neighbourhood of r = 0) or some special
boundary conditions should be formulated in » = 0. The intuition obtained
from the solution of the one-dimensional problem, suggests that autarky
zones would emerge as rings a < r < b, where a, b are constants, and trade
flows would have a radial direction either towards the center or away from it
(possible both ways, but in different trade rings). The price gradient would
also have a radial direction, limited by ¢ in absolute value.

2.7.3 Local Monopoly Power and Competition through
Local Interaction

This model is an example of local interaction. In autarky-1 we have a contin-
uum of microeconomies. The unique producer in each microeconomy enjoys
a local monopoly power. He chooses lower level of labor supply and pro-
duces lower output than he would do in a competitive microeconomy. Road
construction allows for transportation technology and links these microe-
conomies into a chain. Then each producer is facing a potential competition
from two of his neighbours on both sides. While prices for the physically
identical good are different in each location, transportation cost limits the
competition. For high transportation costs nothing happens, competitors
rationally choose not to enter to neighbouring markets, and autarky-1 be-
comes autarky-2. The case of low transportation costs is of higher interest,
since it creates the possibility of a competitive behaviour. The chain of lo-
cal monopolies does not behave as an oligopoly, it behaves competitively.
Each producer takes prices as given. Given by the aggregate behaviour of a
chain, where each producer and each consumer are maximizing their utilities.

In order to see to what extent competitive behaviour can be ensured by
local interaction, it is useful to compare this model and one with perfect
competition. There are two possible benchmark models. The spatial struc-
ture of the economy creates several differences with a spaceless economy: a)
differences in productivity and demand parameters; b) existence of a chain
of neighbours; ¢) necessity to pay transport cost.
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Consider the first benchmark model, which difference is in the existence of
competitive behaviour in microeconomy. Suppose that we have a continuum
of producers and consumers in each point. They are replacing a subecon-
omy in such a way, that all consumers and producers are having now some
average characteristics y(z),d(x) and no longer pay transport cost. Hence,
we abstract from their heterogeneity (which was one of the conditions for
trade to exist) and concentrate on elimination of chain and the necessity
to pay transport cost. Each of them would choose labor supply taking the
price as given. The producer optimization problem in autarky-1 with perfect
competition, its solution L., and the equilibrium price p,, are given by the
following formulae:

mgxpﬁfyﬁ[/aﬁ(l — L)'P (2.35)
Loo(2) = 7= 05 gi b (2.36)

4
Poo = (7((2)1/%;3/6. (2.37)

Note that for such a model labor supply increases and the price becomes lower
than in the microeconomy with the same parameters. The main observation
is that the labor supply coincides with the one given by the formula (2.18):
Lo, = L**. It means that the equilibrium labor supply (hence, the output of
each producer) is exactly the same as in integrated economy-2. Prices and
consumption are different in these models, because paying transport costs
perturbs optimal choices.

Proposition 2.7 Under considered assumptions about preferences, technolo-
gies and sufficiently low transport costs the local interaction of a chain of mi-
croeconomies creates the same production decisions as in a benchmark model,
where the same producers and consumers are put together in a point to form
a perfectly competitive microeconomy.

It is not important that agents in the first benchmark model became
homogeneous: we can always consider a very small subeconomy in a neigh-
bourhood of some point, so that the preferences and productivity parameters
are asymptotically the same (because of continuity). The first benchmark
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model concentrates on local interaction and abstracts from global interac-
tion. It was shown that local interaction in a chain can ensure competition.

Consider another benchmark model: with zero transport costs and het-
erogeneity. Formally, we put ¢ = 0 in the original model, keeping its spatial
structure. It is the same as to have a spaceless economy with heterogeneous
preferences and technologies. Producers will take their decisions competi-
tively, but now they take the price determined by the aggregate demand and
supply as given. As before, the labor supply would be L., but the price will
take into account global interaction:

f[)1 ’Y(x)dego —1/e
Iy 6(x)da '

When t — 0, then spatial supereconomy converges to a usual perfectly com-
petitive economy, where all producers and consumers are in the same point.
This limit eliminates the effect of transport cost, but brings global interac-
tion. As we have seen, there is no difference in the choice of labor supply: in
all three cases (integrated economy-2 and two benchmarks) producers behave
competitively, choosing high level of labor supply and output. It is important
to note that this competitive behaviour occurs not only in the limit ¢t — 0,
but also in the whole range of transport costs, below some threshold point.

po = ( (2.38)

It is possible to mention the analogy between transport costs and trans-
action cost. Integrated economy can be viewed as an example of a market,
where heterogeneous producers and consumers can enter the common market
after paying transaction cost (which depends on their relative location). The
results of this model suggest that there might be conditions when sufficiently
small transaction costs do not perturb the competitiveness of the market.

2.8 Summary

Existing general equilibrium theory clearly has some uncompleteness, which
limits its application to the spatial analysis. That is why a new theory
should be developed. The demand for such a theory clearly arises from the
integration processes which occur to greater extent in the world. Not only
globalization takes place, regions also loose economic boundaries.
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The method of spatial general equilibrium opens the possibility to study
such effects as:

1) the impact of a change in transportation costs for the equilibrium
structure of production, regional differences in prices and employment;
2) the comparison of regional welfare analysis for different transportation
networks and different transportation costs;
3) the comparison of the optimal solution for the Central Planner problem
with the market solution,
4) the change in locational structure of production and transportation flows
under the transition from a planned to a market economy.
The local transportation model developed here shows also the technical diffi-
culties which may arise in the process of solution. Here the discrete approach
which creates enormous complexity is given up in favor of a continuous model,
which might have explicit analytical solutions. The advantage of having an
analytical solution even for some special cases is the possibility to study com-
parative statics, which is quite difficult to do by computer, especially when
the number of parameters is not small.

The main results of this paper are the following:

a) The introduction of transportation technologies, converting spatially
different commodities into each other, is the main tool for constructing the
general equilibrium in space.

b) The construction of autarky equilibria in space shows that identical phys-
ical goods differentiated only by location might have different prices. This is
consistent with the theory of commodities.

c¢) Transportation technologies link all autarkies into an integrated economy,
formally by the possibility to convert some commodities into each other. The
optimization choice of a producer thus becomes more dimensional, as he takes
into account the possibility of an access to spatially different markets. The
general equilibrium of an integrated economy includes all local productions,
all local consumptions, all local trade flows and all local prices. In autarky-1
general equilibrium all trade flows are zero, by definition. In an integrated
economy they might be or might not be zero.

d) If the transportation cost function has a strictly positive derivative at the
point zero, the general equilibrium of an integrated economy, in the general
case, will not imply price equalization across space.
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e) Despite the price difference across locations in equilibrium, this model
can be viewed as an example of a competitive equilibrium. Following the
traditions of Arrow and Debreu, it is possible to think of a good in different
locations as being a different commodity, and of transporting as a transfor-
mation function, converting one commodity into another. Then producers
have access to certain technologies and take prices as given. Here the price
vector is replaced by a function p(x), which is an infinite-dimensional vector.
f) Another way to think about this model is to consider it as a chain oligopoly,
where each producer faces the competition with his neighbours, but he is in-
finitely small and cannot do anything better than to accept the price in his
location as given.

g) In each point there is only one producer, but not one seller. The number
of sellers is determined endogeneously, and in equilibrium there might be 1,
2 or 3 sellers. If there is only one seller, he is a local monopolist, if two or
three - there is an oligopoly. Nobody has the power to decide about being a
local monopolist, unless this decision is suggested by the whole outcome of
this network interaction through space.

2.9 Appendix

The following Lemma formally proves that there exists constant R in the
formula for the transportation costs as the function of distance (see section
4) makes only local trade (in the small neighbourhood of a point) an optimal
decision for any producer. It is useful to note that for negative R the trade
with distant neighbours becomes optimal. For R = 0 the following situation
may occur. If pj(z) = t, for some subinterval, any producer becomes indif-
ferent at what distance to trade. Formally, a game between a continuum of
producers will take place, with coordination of actions being the main prob-
lem. It may have an infinite number of solutions, with rather complicated
structure. In order to escape this possibility, the assumption of positive R is
used in this model.

Lemma 2.4 Suppose that §(x),v(x) are continuous and differentiable func-
tions. Then ¥ (z),Vy(x)IR*, such that VR, R > R*, the transportation costs
T(z,y) = tlx — y| + R(x — y)* would make it unprofitable for any producer to
trade at any positive distance, except for infinitely small.
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PROOF.

1) Note first, that any |dp/dz| > t is not consistent with general equilibrium,
as it enables for the producer at x to resell more output and to gain more
profits. Hence, it always should be the case: |dp/dx| < t.

2) For any function p(x),x € [a,b], such that |dp/dx| < t, and Vx,y € [a,b],

Ip(z) —p(y)| <tz —y| < T(z,y). (2.39)

The equality holds only in the limit y — x. Hence, the trade may occur in
equilibrium only for infinitely small distances. (In reality, they would be the
distances between neighbouring producers).
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Chapter 3

Hotelling’s Revival

The problem of demand discontinuity in the original Hotelling (1929) model
with linear transport costs and a uniform distribution of consumers on an in-
terval can be solved by either introducing quadratic transport costs (d’Aspremont
et al, 1979) or by going to a two-dimensional space (Economides, 1986). In
the present paper the two-dimensional results are generalized for any bounded
distribution of consumers on any compact set on a plane, which can describe
real geographical situations. These results still hold for any transport costs
strictly increasing in distance. However, continuity does not guarantee the
existence of a Nash equilibrium in pure strategies for all cases. Examples
of both existence and non-existence are constructed, and for some family of
densities the separation point between the two cases is found.

JEL Classification: L13, R10, R30.

KEYWORDS: Two-dimensional Hotelling model, demand continuity, exis-
tence of Nash equilibrium.
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3.1 Introduction

Harold Hotelling’s paper [1] had a big impact on different branches of eco-
nomic theory, specially on spatial economics and industrial organization. In
fact, he accomplished several things. First, he introduced linear transporta-
tion costs along with spatially dispersed consumers. Second, he considered
oligopolistic competition in space. And last, he mentioned the possibility of
using his model not only for real space, but also for other abstract spaces,
like in the product differentation literature.

The first idea was developed later by spatial economists, while the last
two had an impact on the theory of industrial organization. Starting from
the late 70’s, critisism of Hotelling’s approach from the position of game the-
ory has been raised [2,3,4] based on the non-existence of Nash equilibria in
pure strategies. One of them was about the assumption of a linear transport
cost function. D’Aspremont et al [3] proposed to replace the linear function
by a quadratic one. Under these assumption a Nash equilibrium was shown
to exist. There was a further development of this idea [5] with the result that
under quadratic transport costs (or, equivalently, quadratic consumers’ pref-
erences for product variety) a Nash equilibrium exists in a two-stage game,
where first firms choose locations, and later prices.

This approach reoriented the development of economic research and mod-
els with linear transportation costs were basically neglected. Most of the lit-
erature from the early 80’s up to the present is based on quadratic transport
costs 1. Since the assumption of quadratic costs is counter-intuitive in the
real space, research focused mainly on the space of product differentiation,
where distances are not measurable, and everybody can be equally happy
with any structure of transport cost.

Veendorp and Majeed [17] studied a two-dimensional generalization of
Hotelling’s model with quadratic transport costs. They considered a two-
stage locational game and found that maximal differentiation in one dimen-
sion along with minimal differentiation in another is an optimal solution.
The result was obtained by computation. They explain it as a tendency to

! Although, one should mention [4], where a mixture of linear and quadratic transport
costs was introduced. A paper of d’Aspremont and Motta [19] is another example of
current research related to linear transport costs.
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minimize the length of a curve with indifferent consumers, in order to reduce
the severeness of competition.

With quadratic costs the indifferent consumers are always located in a
straight line. With linear costs they are located in hyperbolas. This makes
all computations more complicated. In this paper we show that, with linear
costs, in any Nash equilibrium we will get maximal differentiation in one
dimension. But in this case the existence of a Nash equilibrum becomes a
non-trivial question. It will be also shown, that the decrease in the measure
of indifferent consumers tends to lead to a failure in the existence of a Nash
equilibrium. Thus the intuition obtained from models with quadratic costs
cannot be applied to models with linear costs. In a similar vein, Irmen and
Thisse [16] proved equilibria to display maximal differentiation in one dimen-
sion only for a multidimensional model with quadratic cost. However, they
assumed different weights for distances in different dimensions.

Beath and Katsoulacos [2, p.24] mention that the difficulties with Hotelling’s
model arise from his ”special assumptions of infinitely inelastic demands and
constant marginal transport costs”. As we know, to assume quadratic trans-
port costs is a way to avoid these difficulties. Even though the literature
on industrial organization was very concerned about this demand disconti-
nuity, the paper of Economides [8] received little attention. He proves that
in a two-dimensional space, with linear transport costs and different metric
spaces (including the Euclidean space), demand is continuous and a Nash
equilibrium always exists. He proves it? for a uniform distribution of con-
sumers over a disc in R2.

In this paper I try to obtain more general results. The disc can be re-
placed first by a square, which is more attractive for the problem of product
differentiation. This will be done in Lemma 3.2. I later extend this result
to any compact set in a two-dimensional space, with any bounded density of
consumers, not necessarily uniform. This is much more realistic for spatial
competition with real geography. The existence of an equilibrium in this case
is also proved.

ZKlein [10] goes in other direction and studies the existence of a symmetric equilibrium
on a disc for elastic demand from each consumer
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It is interesting to mention that this agenda was already set by Hotelling
himself, who wrote that “instead of a uniform distribution of consumers along
a line we might have assumed varying density... instead of linear market we
might suppose the buyers spread out in a plane... if transportation is in
straight lines at a cost proportional to the distance, the boundary will be
a hyperbola... if cost is given by such a complicated function as a railroad
freight schedule, the boundaries will be of another kind...” [1]. This paper
is called “Hotelling’s Revival”, because it revives the initial direction of re-
search proposed by Hotelling. The main goal is to see to what extent we
can get rid of the problems that have been discovered fifty years after the
publication of the original paper.

Several examples of the non-existence of a Nash equilibrium in pure strate-
gies in Hotelling-type models have been constructed in [20]. At the same time,
sufficient conditions for its existence have also been obtained [18]. Hence, in
some cases a Nash equilibrium in pure strategies will exist, while in other
cases it will not. This study shows that both things might take place in
two-dimemsional Hotelling model with the original assumptions . The main
tool for proving Nash equilibrium existence is the theorem of Maskin and
Dasgupta [12]. It requires the upper semicontinuity and quasiconcavity of
profit functions. It will be shown later that continuity can be obtained for
many two-dimensional generalizations of Hotelling’s model. This gives Nash
existence in mixed strategies. However, as Economides notes, quasiconcavity
may fail even for a disc area with uniformly distributed consumers. He man-
ages to prove Nash existence in pure strategies, but the standard methods
are no longer useful here. Hence, less ambitious methods based on particular
functional forms of the profit function should be applied.

This paper has several goals. First, it aims to explore the potential of the
original Hotelling model by extending it to a two-dimensional space. This
is the reason why I keep the assumption of linear transport costs in the be-
ginning. Second, it studies the impact of the structure of transport cost on
the continuity of the demand function in the two-dimensional case with a
euclidean metric. The main result of this paper is to show the continuity of
demand in a two-dimensional Hotelling model with Euclidean metric, contin-

3Many authors have realtered these assumptions, keeping Hotelling’s name. This may
be a reason for some confusions
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uous density of consumers and monotonously increasing transport cost. This
guarantees the existence of a Nash equilibrium at least in mixed strategies.
But in pure strategies it fails to exist in many cases. The construction of
examples of both Nash existence and non-existence and the determination of
sufficient conditions for its existence can be considered as the third goal of
this research.

The paper is organized as follows. Section 2 is about demand continuity
in the two-dimensional case. It starts from basic assumptions of the model,
and then continuity is proved for a sequence of problems with increasing gen-
erality. In section 3 the question of existence of a Nash equilibrium is studied.
The problem turns out to be non-trivial, since continuity of demand does not
guarantee its existence. For some particular class of functions the threshold
point, separating the two possible cases (existence and non-existence) is found
explicitely. It is also possible to establish some sufficient conditions for the
existence of a Nash equilibrium. Later, in section 4, the cases of quadratic
and more general transport costs are also considered in R?. It is shown that
continuity of demand can be proved for a quite general structure of transport
costs. Conclusions are drawn in section 5. Most of the proofs are done in
the appendix, which consists of three subsections. The first part of appendix
contains the proofs related to the continuity of demand. The second part of
the appendix proves that maximal differentiation in one dimension is the so-
lution for a model with a two-dimensional square uniformly populated with
consumers, linear transport costs and a Euclidean metric. The third part
of the appendix formulates the problem in elliptic coordinates, relates the
two-dimensional density to a one-dimensional density and formulates three
lemmas about sufficient conditions for the existence of a Nash equilibrium in
pure strategies.

3.2 Demand Continuity in a Two-Dimensional
Model

In a model of Cournot competition among two firms on an interval, Nash
equilibrium may fail to exist when demand is not continuous|[6, p.393]. In this
section it will be proved that in a two-dimensional extension of Hotelling’s
model of Cournot competition among two firms with fixed locations, the to-
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tal demand of a firm is a continuous function of its pricing strategy. I keep
the same assumptions as Hotelling [1], except for space dimensionality. I
will start with a set of restrictive assumptions on the structure of the spatial
primitives, which will be relaxed later (see Theorem 3.1 below).

ASSUMPTIONS.

1. Consumers are located with uniform density 1 over the finite square
S={(r,y) € R®*| - L<x<Land — L <y < L}. (This assumption
will be relaxed later).

2. There are two firms, which are symmetrically located at points (—c¢, 0)
and (c,0) of the plane (z,y) with ¢ < L, so that firms are located in
the interior of the square S.

3. Each consumer inelastically demands one unit of the good from the
closest firm.

4. A consumer has to pay the price p; and the transport cost, which is
linear in distance and equal to tr, where ¢ is the given unit cost and

r= \/(x —2¢)% + (y — yy)? is the distance (in Euclidean metric) to the
firm located at (x¢,yy).

5. Firms have zero production costs. Their locations are fixed. They set
their prices, p;, trying to maximize their profits.

For any pair of pricing policies, (pi,p2), there exists a separating bor-
der between the demand areas of the firms. By assumption 2, the eu-
clidean distance between the consumer at (z,y) and the firms is given by

ri = 1/y? + (x £ ¢)?. Then the line of "border consumers”, who are indiffer-

ent between the two firms is given by the equation *

P14 try = pa 4 tro. (3.1)

Let a = %. Then we get the hyperbola equation for this border: ro—r; =
2a. The border is represented by the right branch of a hyperbola, if firm 1
charges lower price, and vice versa.

4Strictly speaking, by the intersection of the set of solutions with the square where
consumers are located
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Lemma 3.1 The border between consumers buying from different firms, is
described by the hyperbola equation

513'2 y2

where the coefficients a = |p22—7tp1\ and b = +/c? — a? depend parametrically
on prices.

The equation of a hyperbola has a standard mathematical form and can
be found in any elementary geometry textbook. The points (¢, 0), (—c,0) are
focuses, and a is the point where the hyperbola intersects the horizontal axis.
Obviously, a is a linear decreasing function of p;, when py is fixed. Thus,
this intersection moves continuously to the right when the price of the left
firm, py, is decreasing. The upper branch of the hyperbola is given by the
equation y(x) = v —a?\/x?/a? — 1, which shows that for any o’ > a for
all sets of feasible z, |y(z,a’)| < |y(x,a)|. This means that the hyperbolas
are “inside one another” and never intersect.

Lemma 3.2 The total demand from one firm in a square-Hotelling model is
a continuous function of its own and its rival’s prices.

PROOF: See Appendiz 1.

Note that, in contrast to what happened in the one-dimensional model,
demand is also continuous at point p; — po = 2tc. The intuition is that,
in a one-dimensional framework, when the consumers located behind a firm
are captured by the rival firm, they add up to a positive measure. But in a
two-dimensional case they have a zero measure.

Finally, let us consider the general case of any compact subset in a two-
dimensional space.

Theorem 3.1 With a uniform density of consumers on any compact subset
of a two-dimensional space, the aggregate demand from one firm is still a
continuous function of its and its rival prices.

PROOF: See Appendiz 1.
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Now we can consider a further generalization of Hotelling’s model, namely,
the case of a non uniform density of consumers. The conclusion of the pre-
vious theorem will still hold, unless this density has no atomic points, i.e. as
long as the integral of the density over any zero-measure subset is zero.

Theorem 3.2 Aggregate demand is a continuous function, when two firms
are located in any two separated points, even when the consumers are dis-
tributed with any continuous density over any compact set on a plane.

PROOF: See Appendiz.

In fact, the continuity of demand density is not a necessary condition for the
continuity of the total demand and can be replaced by boundedness.

Theorem 3.3 Total demand is still a continuous function for any upper-
bounded demand density function defined on any compact set on a plane.

PROOF: See Appendiz.

The last theorem makes it possible to consider problems with real geographi-
cal data. Indeed, usually maps do not contain continuous densities, but their
approximations in step functions.

3.3 Nash Equilibrium

In Hotelling-type games the existence of pure strategy Nash equilibria is
not a trivial question. The sufficient conditions formulated by Dasgupta
and Maskin [12] very often do not hold. Roberts and Sonnenschein [14]
have constructed examples of Nash existence failure due to the possibility of
non-concave profit functions generated by standard economic assumptions.
H.Dierker and Grodal [20] have given other examples of non-existence: it
arises from the multiplicity of market clearing prices which leads to dis-
continuous price selections. E.Dierker [21] stressed the essential role of the
quasiconcavity of profit functions for the existence of a Nash equilibrium in
pure strategies and proved some results related to log-concavity of market
shares.

This section is organized as follows. First the case of uniform square is
studied: a symmetric Nash equilibrium is explicitly constructed and maxi-
mal differentiation in one dimension is obtained. Then we discuss cases in
which cornering the market is an inferior strategy and how the nonexistence
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of Nash equilibria may emerge even when profit is a continous function of
both prices. Later the modified Hotelling model with a non-uniform density
of consumers is studied. In the beginning a particular example of Nash fail-
ure is constructed for a non-uniform density of consumers. Then for a uni-
parametric family of densities the threshold point between Nash existence
and non-existence is discovered. It is important to note that in some cases a
Nash equilibrium exists despite the non-concavity of profit functions. Finally,
the comparison of one-dimensional and two-dimensional Hotelling models is
provided. A sufficient condition for Nash existence in the case of logarithmic
one-dimensional densities, generated by aggregation of consumers in elliptic
coordinates, is formulated and proved in Appendix 3.

3.3.1 The Uniform Square Case

For simplicity, in this subsection we consider the case of a uniform distribu-
tion of consumers over a square. The profits of the firms are given by the
functions:

T :plsh T2 :p252a (33)

where 5; denotes the area served by firm ¢. Let us take p, as a parameter
and express S as a function of both prices for all possible cases. Let g;(p2) be
a function such that when p; is equal to it, the separating hyperbola passes
through the corners of the square (left for g; and right for g,). Then

S1=0 if p;>pe+2t
S1 =8 if gi(p2) <p1 <p2+2ct
Sy =2L*—-5, if py<pi <gi(p2)
Sy =2L*+S, if go(p2) <p1 <po
Sy =4L* =S, if py—2ct <p1 < ga(p2)
Sy =4L? if 0<p <py—2ct

Here S, for i € {a, b} is given by the algebraic expressions obtained in the
proof of lemma 2 in Appendix 1. Note that Sy = 4L? — 5.
A Nash equilibrium satisfies the following system of equations:
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87’(’1

[ 07

Iop1

87’(’2

— =0 3.4
s (3.4)

Profits are continuous functions, differentiable almost everywhere (except
for the points linking different formulas for S;). For the range of possible
prices, both profits start from 0 and end in 0, , thus having at least a maxi-
mum in between. Consider the family of profit curves for firm 1 as a function
of its own price, depending parametricaly on the rival’s price (which picks an
element from this family). If all the elements of the family have a maximum,
then the function corresponding to the optimal rival’s policy also has it. We
take this curve and find its maximum. This pair of prices will correspond to
a Nash equilibrium.

Usually the simpler case of a symmetric location is considered. Then
it is possible to find the solution explicitly. Economides [8] does it for a
disc area. We extend his results for other areas. It is important to stress
here that it is also possible to consider problems with an asymmetric geom-
etry of consumers (the theorems can be used), for which only asymmetric
location makes sense. In this case, a Nash equilibrium is also asymmetric.
The system of nonlinear algebraic equations can be solved only numerically,
but these algorithms may solve applied problems in the real geographic space.

I also want to stress the difference between the initial Hotelling model,
formulated for the real space, and a mathematically equivalent formulation
in a product space, where the shape of corresponding transport costs can be
derived from the shape of the utility function. First of all, it is possible to
modify consumer’s utility in the real space model, and then we deal with two
separate effects - the shape of individual demand and the shape of transport
cost, which makes the problem in real space mathematically richer. Second,
disjoint areas with a non-uniform consumer density, which are typical in the
real space, might be rather counterintuitive in the product space.

Economides [8] has proved the existence of a symmetric Nash equilibrium
on a disc uniformly populated by consumers, by finding an explicit solution.
In the case of a square it is possible to show (see Appendix 2 for details)
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that the Nash equilibrium price for a square with side 2L and locations at a
distance ¢ from the center is given by the following formula:

212

LV IL2+c2 + e L+VI24c2
2ct 2t n c

P*(c) =

(3.5)

In the general case, symmetric reply is not necessarily optimal ®, and it is
necessary to calculate other local maxima and to compare payoffs there with
the payoff in the symmetric Nash equilibrium. In the case of a square, the
payoff for cornering market is equal to # = 4L?(p, —2ct), while the symmetric
Nash payoff is equal to m = 2L%p,. It is easy to see that cornering is inferior,
if py < 4et. In symmetric Nash py = P*(¢) < 2¢t, and thus a symmetric
Nash strategy dominates cornering for all c.

This result is very much similar to those of [8] and suggests that not very
much depends on the shape of the market, at least in the symmetric case.
As ¢ — 0, the prices also approach zero in a linear way, and for the infinite
increase in ¢ they converge to a finite limit. It is possible to show that this
optimal price strictly increases with the increase of parameter c¢. Thus, the
maximum is reached for the maximal possible value (location at the edge of
the square). This suggests that the maximal differentiation principle is valid
in 2-dimensional Euclidean space.

Proposition 3.1 In a two-dimensional two-stage locational game on a uni-
form square the principle of maximal differentiation is valid, i.e. firms prefer
to locate first at the highest possible distance, in order to be able to set highest
prices in the symmetrical Nash equilibrium.

PROOF: See Appendiz 2.

3.3.2 The General Case

The question of equilibrium existence can be approached by different math-
ematical methods: direct maximization, the proof by continuity along with
convexity, and algebraic topology. The first method is useful only when all
functions are specified, and can be applied in some particular cases (e.g.
a square). The existing theorems for general functional forms [12] require

5Although there is a tradition in the industrial organization literature to consider sym-
metric Nash for symmetric problems
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too many conditions (continuity, convexity, etc), which very often are not
satisfied even for quite regular geometrical shapes. In the case of the origi-
nal Hotelling model with linear transport cost and a uniform distribution of
consumers, both continuity and convexity fail and this leads to Nash non-
existence. In the two-dimensional case continuity can be easily recovered,
as has been shown above. But non-convexity of payoffs can exist even for
very regular geometrical shapes (even for a disc [8]). That is why we have
existence theorems for mixed strategy Nash equilibria, while the proof of ex-
istence in pure strategies remains quite a painstaking task even for particular
geometric forms.

It is interesting to consider an asymmetric case, which has received little
attention in the literature (except for [13]). For the case of an arbitrary
compact set with any density of consumers there is no reason to expect the
existence of a symmetric equilibrium. In the case of a disc, Economides [8]
shows that the aggregate demand can be represented by a continuous function
with two local maxima, and not differentiable at some points. This suggests
that in a more general case of asymmetric equilibria, which is studied here,
it is natural to expect several local maxima. What is the reason for this?
Although the aggregate demand from one firm is a continuous non-increasing
function of its own price, the product of demand and price which represents
profits may have several maxima. Everything depends on the relative location
of the curves D(p)/D(py), where pg is “cornering price” (the price at which
one firm wins all consumers), and the curve py/p (here the rival’s price is
taken as a parameter, fixed for each curve).

Proposition 3.2 1. If d(pD(p))/dp > 0 at p = pg, then cornering the mar-
ket is mever an optimal strategy.

2. If in addition D(p) is concave for p > po, then the profit function is also
concave and has a unique mazximum.

3. If the problem is symmetric, then there exists symmetric Nash equilibrium.
If not, a Nash equilibrium may be asymmetric in prices.

PROOF:
1) Since the right derivative of profit is positive at py, the cornering price is
not profit-mazximizing.
2) Recall that D'(p) < 0 always in Hotelling-type competition, since any
price increase may only lead to shift of some consumers to the other firm.
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Since concavity implies D" (p) < 0, the second derivative of profits " (p) =
pD"” 4+ 2D" < 0. Thus the profit function is concave. Because profits are
continuous, their own price derwative at py is positive, and since they vanish
to zero at py + 4ct (rival’s cornering), their exists a unique mazimum.

3) As this happens for all rival’s prices, for some price, which is optimal
for rival, it will also occur. In the symmetric case this will give a unique
symmetric Nash equilibrium, while in asymmetric case this equilibrium may
be asymmetric.

Note that this proposition gives only some very specific sufficient condi-
tions for Nash equilibrium existence. As it was shown in [8], Nash equilibrium
may exist despite the presence of several local maxima. The phenomenon of
several local maxima (at least two) in aggregation problems was mentioned
also in [15].

Before proceeding with a theorem, let us consider a simple example, which
suggests what we should expect in the general case.

Consider a function with two local maxima. Let each function be a
member of a family of functions, so that the dependence on the parame-
ter, characterizing the element of the family, is continuous. Then for almost
all the values of this parameter this function has unique global maximum.
However,as the parameter changes the global maximizer shifts continuosly
except at a point where the two local maximum values are equal: there the
global maximizer can jump to a strategy which is not necessarily close as
a consequence of an arbitrarily small change in parameter. If we allow for
mixed strategies only at the point where this jump occurs, then there exists
a continuous path between all optimal replies to the rival’s strategy. This
path consists of some curves x = F(y), which are linked through the space
of mixed strategies between each other. Note that the payoff remains a con-
tinuous function of the rival’s strategy (the firm is indifferent to choose any
probability to play a strategy mix at this point). Similarly, an optimal rival’s
reply y = G(z) can be constructed. Suppose for a moment that the maxi-
mum is a continuous function of pure strategies for both firms, and mixed
are not necessary. Then we can substitute one equation into another, and
get the fixed point problem: x = F(G(z)). The composition of F and G is a
continuous function, the set of strategies [0,1] is compact, and by Brouwer’s
theorem, there exists a fixed point z* € [0,1]. Then (z*, G(z*)) is a Nash
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equilibrium in pure strategies.

Note that the continuous dependence of maximum on the rival’s strategy
is indeed a condition for the existence of Nash equilibrium in pure strategies
that cannot be dispensed with. There exist several theorems about Nash
existence in the case of a continuum of strategies [11,12]. One of them claims
that although continuity may be replaced by upper semicontinuity, continu-
ity of the maximum and quasiconcavity of payoff with respect to strategy is
required for the existence of Nash in pure strategies. The theorems provide
some sufficient conditions, and the examples with adisc [8] and a square show
that the existence of several maxima, which violates the quasiconcavity of
payoffs, may still be consistent with the the existence of a Nash equilibrium
in pure strategies. In the case of a continuous demand the quasiconcavity
of payoffs is not necessary, if the maximum depends continuously on both
strategies.

It is possible to show that in the generic case the shift between several
maxima may occur discontinuously in rival’s strategy papameter, and thus
Nash equilibrium in pure strategies might fail to exist. There is another
theorem about the existence of a Nash equilibrium in mixed strategies. Its
conditions might be satisfied in a more general case. But what is mixed
equilibrium with a continuum of strategies from a practical point of view?
Observing time series, we may observe complicated sequences of pricing poli-
cies, which is not distinguishable from chaos. Calculating statistics, one may
find distributions and relate them to probabilities to play particular strategies
in a Nash equilibrium in mixed strategies. Thus, depending on the configura-
tion, only in some cases with an asymmetric consumer location we can have
a Nash equilibrium in pure strategies. Often it exists in mixed strategies.

Lemma 3.3 In a 2-dimensional generalization of Hotelling’s model with a
nonuniform distribution of consumers over a compact set in space and linear
transport costs, a Nash equilibrium does not necessarily exist in pure strate-
gies, despite the continuity of profits in both prices.

PROOF:
Consider the family of payoffs for the first firm, f(x,y),as a function of its
own strategy x € [0,1], parametrically dependent on the strategy of its rival
y € [0,1]. Let f(z,y) be a continuous function of both variables. Assume also,
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that f(0,y) = f(1,y) =0,y € (0,1) and f(x,y) > 0,Vx € (0,1),Vy € [0, 1].
Assume similar conditions for the payoff of the second firm g(z,y), which
might have a completely different shape. As the range of price variation
can always be normalized to 1, with zero payoffs for both firms on both ends
(either due to zero pricing or due to the complete capture of the market by
the rival firm), this insures the ezistence of internal maximum, because of
continuity. But in a quite general case each of these functions has a finite
number of local mazima (in the firm’s own strategy), which in the generic
case have the identical values only for a set of parameters of measure zero.
This gives rise to the potential possibility for the discontinuity of the global
maximum with respect to rival’s price. Although this does not necessarily
imply the absence of Nash equilibrium in pure strategies, in some particular
cases this may occur.

3.3.3 A particular Example

Here an example of a function with two maxima will be provided. Consider
a one-dimensional modified Hotelling model in which two firms are located
at the points © = —1 and x = 1, while consumers are located with the pos-
itive density 1/2a only inside the following intervals: [—2a, —a] and [a, 2a],
where a is an arbitrary parameter. Note that it is possible to arrange in-
finitely many specifications of the two-dimensional Hotelling model, which
are mathematically described by the same demand functions that will arise
in this one-dimensional case.

Theorem 3.4 FEvery one-dimensional Hotelling model with a bounded de-
mand density defined on the interval connecting the fixed locations of thetwo
firms, can be represented as a mathematically equivalent two-dimensional
model with some bounded demand density over some compact set. This can
be done in infinitely many ways. If in the one-dimensional model some con-
sumers are located behind the firms then there is no mathematically equivalent
two-dimensional representation via bounded demand density functions.

PROOF:
In the two-dimensional case, any price shift dp will generate the shift of in-
different consumers between two corresponding hyperbolas. Their location de-
pends only on the price differential. If we set the density function along each
hyperbola in such a way that the integral of this density along the intersection
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with the bounded set of consumers is always equal to the one-dimensional de-
mand density at a point, then the arising demand functions in the two cases
will be the same. This can be done in infinitely many ways, as we have only
one constraint via the value of each integral in the space of functions. But
the tmage of the interval behind the firm is also the interval behind the firm,
and thus no equivalent correspondence in the class of bounded measures is
possible.

The most natural way to calculate the corresponding one-dimensional
demand density is to use elliptic coordinates (see Appendix 3). Due to the
above theorem, this one-dimensional example is mathematically equivalent
to the corresponding two-dimensional examples. Direct calculations show
that the profits of the first firm are given by the following function of its own
price p; and the price of its rival ps:

T=p for 0<p <ps—4a;

™= p1p2 Z;Lpl for py—4da < py < ps — 2a;
m=0.5py for ps—2a<p <py+ 2a;
W=p1(1—%) for  ps+2a < p; < pa + 4a;

=0 for p; > ps+4a.

Consider the maxima of the function m(p;), taking the dependence on po
and a as parametrical. It is easy to show that this function always has a
maximum in the point p; = ps + 2a, equal to Max2 = 0.5py + a. Another
maximum may exist in a point p; = py — 4a, if po > 8a, and is equal to
Mazxl = py — 4a. If py < 8a, this maximum shifts to a point p; = 0.5p, and
is equal to Max1 = p3/16a. Direct calculations show that Maxl > Max2,
for py > 10a, and Max1l < Max2 for ps < 10a. When Max1 is not located
at the point where the first firm corners the market (cornering occurs for
p1 = p2 — 4a; py > 8a), we always have Max2 > Max1. This result implies
the following optimal replies pi[pj]:

p1lpe] = p2 —4a  for py > 5; (3.6)
pilpe] = p2+2a  for py <5

] =p1—4a for p;>5;
po[p1l =p1+2a for p; <5. (3.7)
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The minimal pricing policy is zero, and though the maximal is theoret-
ically not limited, nothing interesting or relevant to equilibrium occurs at
very high prices. Fig. 3.11 shows the graphs of optimal replies for a = 1/2
(in this case firms are located just behind two disjoint sets of consumers).
A Nash equilibrium in pure strategies fails to exist in this case (and also
in the corresponding family of two-dimensional problems). This shows that
demand continuity is still not sufficient to guarantee the existence of a Nash
equilibrium in Hotelling-type games.

3.3.4 An example with a Non-Uniform Density of Con-
sumers

The example that we discuss here may be of some help in understanding
why a Nash equilibrium in pure strategies may fail to exist and when one
can be sure about its existence. It turns out that not much depends on
the particular shape of the two-dimensional area, in the sense that regular
shapes do not guarantee the existence of a Nash equilibrium in pure strate-
gies, while it may nevertheless exist for less regular shapes. The issue is that
only the behaviour of the aggregate demand from a firm matters ¢, and this
demand depends on the behaviour of an integral of the demand density over
some area on a plane. Thus, as it was shown in the previous subsection,
any two-dimensional problem is mathematically equivalent to a correspond-
ing one-dimensional problem with firms at the ends of an interval and a
non-uniform density of consumers inside. Thus, the study of such problems
with different densities gives the key to the solution of the two-dimensional
problems.

It is well known that a Nash equilibrium exists for a uniform density,
when firms are located at the end of an interval and transportation costs
are linear in distance. In the previous example it was shown that a Nash
equilibrium fails to exist when consumers are concentrated in two disjoint
clusters. An interesting question arises: What is crucial for the existence of
a Nash equilibrium? Can it fail to exist when the demand density is contin-
uous? The example described below shows that the answer to this question

6Not in the sense of continuity, which was already proved, but in the sense of belonging
to some class of smooth functions, with derivatives between some bounds, which guarantee
the continuous behaviour of the global maximum of the profit function.
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is positive.
Consider an interval [—1, 1] with the demand density (Fig. 3.10a,b)

p(x) =a+blz|,xz € [-1,1]. (3.8)

It is easy to show that in this case the profit function of the first firm (located
at x = —1) is given by the formula:

MI=pi(2a+b) for 0<p <py—2;

b b —
Hzpl[a+§+ay+§y2] for y5p12p2;p2—2<p1<p2;
b b,
H:pl[a+§+ay—§y] for po < p1 < po+2;
[MI=0;p; > ps+2. (3.9)

Consider the case p; € [p2 — 2, ps], which corresponds to the location of the
indifferent consumer in the right half of the interval (y € [0,1]). Then the
critical points of the profit function can be found from dIl/dp; = 0, which
leads to the equation:

b

b a b a
at s+ —p)+ g —p) —pl; - 2 —p)] =0 (3.10)

In this case the second firm’s profit is Iy = pa(2a + b — D;), where Dy is the
demand from the first firm. Thus, its profit maximization condition is given
by

b a b a b

a+ 5 5(172 —p1) — g(p2 —P1)2 —P2[§ + Z(pQ — )] =0. (3.11)

The system of the last two equations determines all possible Nash equilibria
and deserves further study. The easiest way to proceed with it is to transform
this system, first adding and then substracting these equations from each
other. After some calculations it can be reduced to the system:

(p2 — p1)[Ba + b(pz — p1)] = 0; (3.12)
2a+b=(p +p1)[;+2(pz—p1)]. (3.13)

From the first equation it follows that either (a) p; = po, or (b) p1 —ps = 3a/b
should hold.
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The case (a) represents symmetric Nash equilibrium, while the case (b)
the asymmetric one. First consider the symmetric case. Then,

b
P1 =p2=2+a- (3.14)

Since the profit function is not differentiable at the corner point, which occurs
for firm 1 at price p® = b/a, it is necessary to compare the candidate solution
for the symmetric Nash with the profits when the market is cornered by the
first firm, to be sure that Nash dominates. Otherwise, a pure strategy Nash
equilibrium may not exist 7. In this case the profit of the first firm at the
corner II¢ and its profit at the symmetric candidate-for-Nash price II°V are
given by the formulas:

b

b a
[1¢ = —(2a + b): I1°N = = (2 + 2)2. 1
—(2a+b); 52+ ) (3.15)

Thus, symmetric Nash dominates cornering when b/a € [—2;2]. But the
problem considered makes no economic sense for b/a < —1, since p(x) be-
comes negative at some points. Hence, the following lemma can be formu-
lated.

Lemma 3.4 If a > 0;b/a € [—1;2], then the problem with the density
p(x) = a+ blzl;z € [—1,1] has an economic meaning, and a symmetric
Nash equilibrium exists. It is given by the formula p; = py = 2+ b/a. If
b/a > 2, a symmetric Nash equilibrium fails to exist since cornering the
market dominates it.

Consider now the asymmetric Nash equilibrium. Since p; = ps + 3a/b,
and for y > 0 we need p; < po, the ratio a/b can take only negative values.
As it was shown before, the problem in this case has an economic sense only
if b € [—a;0]. The solution for the prices is given by the formulas

3a 2b 3a

2 a P2 = P1 b ( )
It is easy to check that, in the given interval of parameter b, prices are always
positive.

b1

Lemma 3.5 When consumers are more concentrated to the center of the
market, i.e. p(xr) = a+blz];a > 0,b € [—1;0], an asymmetric Nash equilib-
rium also exists.

"One should also check whether an asymmetric Nash can exist before coming to a final
conclusion about Nash existence in pure strategies
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3.3.5 Comparison of One- and Two-Dimensional Hotelling
Models

The one-dimensional Hotelling model with linear transport cost has several
shortcomings. The first is that in the real world geography is two-dimensional
with a heterogeneous density of consumers across space and Euclidean dis-
tance. The second is more technical: the aggregate demand from on firm is
discontinuous in price, which leads to the non-existence of a Nash equilib-
rium in many cases.

We have shown that the two-dimensional generalization of Hotelling’s
model not only makes it more realistic, and thus the results can be applied
in economic geography, but also eliminates the main technical problem of de-
mand discontinuity. However, it still cannot guarantee the existence of Nash
equilibrium in pure strategies for all cases. The most that can be done is
to provide sufficient conditions. However, numerical calculations may prove
Nash existence in very tiny cases. The natural question arises: Why it is
so? Generically, the demand function can be any continuous function with
a non-positive derivative. It is possible to generate any downward sloping
continuous function by an appropriate choice of densities and areas, and for
any function there exists an infinite quantity of possibilies to do it. But this
demand, being multiplied by price, can have any number of maxima, and the
problem of Nash non-existence is due to the possibility of shifts across these
local maxima.

Nevertheless, some gains from going to two-dimensional models can be
obtained even in the question of Nash equilibrium existence in pure strate-
gies. First of all, it is useful to note that all two-dimensional problems can be
represented as some equivalent one dimensional problem with the location of
firms at the ends of the interval. It is well known that there is no discontinu-
ity in this case, since price undercutting cannot gain a positive measure of the
market. However, a Nash equilibrium in pure strategies can fail to exist even
in this one-dimensional problem for an appropriate choice of densities. An
example is given above. Note that density discontinuity is not the reason of
failure: a similar example can be provided with a continuous density. The re-
markable thing is that for any location of two firms in two-dimensional space
the problem is mathematically equivalent to a one-dimensional problem with
a non-uniform density, but with firms always located at the endpoints of the
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interval! This is very interesting, since in many cases such one-dimensional
problem has a Nash equilibrium, and each corresponding density generates
an infinite amount of corresponding two-dimensional problems, which also
have Nash existence!

There exists also another property of the two-dimensional model. If the
two-dimensional demand density is given by a continuous function, then the
corresponding one-dimensional density would be also a continuous function.
And if it is given by a bounded function, in a one-dimensional model the
density will be bounded in all interior points of the interval (—1,1). This
issue is discussed with more detail in Appendix 3.

3.4 Other Transport Cost Structures

3.4.1 Quadratic Transport Cost

Consider first a quadratic transport cost function T'(r) = tr?. The border
between consumers buying from different firms will now be described by the
following equation: py —p; = t[(x+c)*+y? — (x—c)?> —y?], or, po — p1 = 4ctx.
Here, isolines are vertical. Demand also shifts continuously with any price
change, and thus Lemma 3.2 and Theorems 3.1, 3.2, 3.3 hold as well. In
fact, the generalization of Hotelling’s model with quadratic transport cost,
introduced in [3], from one to two dimensions is a trivial one, as it does not
bring any new geometrical structure.

3.4.2 The General Case

Let us consider the role of different transport cost structures for demand con-
tinuity. In the one-dimensional Hotelling model, a linear transport cost leads
to a demand discontinuity, while for quadratic cost the problem disappears
[3]. Is linearity pathological in some sense, or does a quadratic structure have
some specially good topological properties? Consider the general case of any
strictly increasing cost T'(x) in distance: T'(z) > 0;T(—x) = T(z). Here x
has the meaning of a distance in any metric space.

Consider the one-dimensional model first. Let two firms be located at the
points 0 and y. The equation which describes the set of indifferent consumers
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at given prices is:

AT(z;y) = p2—pu;
AT(z;y) = T(|z]) = T(|z — yl). (3.17)

A simple example (Fig. 3.3) shows, that this equation might have several
solutions, and thus the demand area from one firm might be a set of disjoint
intervals. This happens, for example, if 7'(x) has a concave-convex form.
Intuitively, if y is located in the area of concavity, AT (x;y) is decreasing for
y<x<y+a,a>0,and then starts to increase, when = enters the convex
part of the graph T'(z).

Lemma 3.6 If the transport cost function is twice differentiable, and if its
graph as a function of distance is strictly convez, i.e. T'(x) > 0,7"(x) > 0,
then the set of indifferent consumers in not wider than a point for any pric-
ing policies and any location y,y # 0. When one of the prices moves in a
direction, the separating border between consumers also moves in a direction.

PROOF:

Consider the function AT(x) (Fig. 3.4). For x € [0,y] it is always increas-
ing, because both terms have positive derivative. Forx >y, T'(x) > T'(x—y)
and T(z) > T(x —y). Hence, AT'(x) > 0. For x < 0, both arguments are
negative, T'(|z|) > T(|x — y|), and T'(x) > T'(x — y), being negative. Then,
again, AT'(x) > 0. So, for the whole set of y and x, AT (x) is an increasing
function of its argument, and equation (3.17) has a unique solution for any
set of prices on the real line. This solution depends monotonously on each
price, and thus the separating border moves in one direction.

The following theorem is a simple corollary of this lemma.

Theorem 3.5 Total demand of a firm is a continuous function of its price
for any different locations (y # 0), when transport cost is strictly convex in
distance.

In particular, demand is continuous for the original Hotelling model if we
add any positive quadratic term to the linear transport cost (even very small).
Howewver, a pure strategy Nash equilibrium does not always exist.

PROOF:
First of all, a linear-quadratic transport cost guarantees demand continuity
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in a one-dimensional Hotelling’s model. This quarantees the existence of a
Nash equilibrium at least in mixed strategies. To insure its existence in pure
strategies it 1s necessary to check whether the maximum depends continuously
on both strategies. As it was shown in [4], for small distances between firms,
a Nash equilibrium in pure strategies may not exist.

It is easy to see that if we require concavity (instead of convexity), the so-
lution of equation (3.17) is no longer unique. Depending on the price dif-
ferential, we may have 2, 1 or 0 solutions (Fig. 3.5). Thus, when the price
changes, these borders may move in different directions and collapse at some
point. Nevertheless, demand can be shown to be continuous even in this case.
What really matters is the number of solutions to the equation AT (z) = 0.
If it is finite for every x, demand is still continuous. It looses continuity (in
the one-dimensional case) if this set of solutions has a positive measure, at
least for some x. It is easy to see, for example, that if transport cost behaves
linearly at least at some subinterval, this case may occur.

What happens in the two-dimensional case? Can total demand be dis-
continuous for some transport cost which is monotonously increasing? ® To
study this question, we should first investigate whether the set of solutions to
the equation T'(r) —T'(r,q) = a (here r, q are elements of a metric space, and
a is a scalar parameter denoting a price differential) has the local structure
of a one-dimensional manifold.

Theorem 3.6 If the transport cost function is differentiable and strictly in-
creasing in distance, (T'(r) > 0), where r is the Euclidean distance in the
two-dimensional space, then for any point away from the line connecting the
locations of two firms, there is only one curve, AT (r;q) = a, passing through
any solution of this equation. Thus, the set of solutions to this equation on
any compact subset of the two-dimensional plane has measure zero.
PROOF: See Appendiz 1.

Consider now a square with a uniform distribution of consumers in a space
with the Euclidean metric and any transport cost function, monotonously
increasing in distance.

81f not, for sure this may happen. Consider, for example, a transport cost which is
the same for some interval of distances. Then on a plane the solution to (3.17) is the
intersection of two rings, which may have positive measure.



78 CHAPTER 3. HOTELLING’S REVIVAL

Theorem 3.7 Given any strictly increasing transport cost function, and for
all firms, located at different points, the total demand from consumers, uni-
formly distributed on a square, is a continuous function of the price of any

firm.
PROOF: See Appendiz 1.

It is also easy to show that replacing the square by any compact set on a
plane and the demand density by any bounded function, cannot lead to the
demand discontinuity. Thus,

Theorem 3.8 The total demand of any firm in a two-dimensional Hotelling’s
model with any bounded density of consumers on any compact set and any
strictly increasing transport cost is still a continuous function of prices, if
firms are located at any two different points.

PROOF: See Appendiz 1.

3.5 Conclusions

The main results of this paper can be summarized as follows.

1. The original Hotelling model is extended to any compact area in two-
dimensional space. Demand continuity is proved for any bounded density of
consumers.

2. The general case of transport cost functions strictly increasing in dis-
tance is considered. First, it is shown that in the strictly convex case the
separating border between consumers has a unique point even on the line
which connects firms. This reveals the reason for discontinuity in the origi-
nal Hotelling’s model and the ways to recover it. Secondly, it is shown that
in a very general case the set of indifferent consumers has two-dimensional
measure zero, and this insures the continuity of aggregate demand.

3. Finally, total demand from any firm is a continuous function of both
prices in the whole range of their potential variation for a quite general set-
ting: any bounded consumer density on any compact set on a plane, in the
environment of a quite general class of strictly monotonous differentiable
transport cost functions.
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4. The Nash equilibrium, which can be also asymmetric, always exists at
least in mixed strategies. Its existence in pure strategies depends crucially
on the fact whether the maximum of the profit function of one firm with
respect to its own strategy is a continuous function of its rival’s strategy. In
some particular cases there may be several local maxima, and the transition
between them may occur in a discontinuous way. This also suggests that the
observed time sequences of prices by rival firms in real space may be of two

types:
a) fixed on equal or different level (the case of symmetric or asymmetric

Nash),
b) appearing as a random sequence, close to chaotic, which nevertheless may
represent Nash equilibrium in mixed strategies.

5. All the results can also be translated into the language of product dif-
ferentiation models, where the role of transport cost is played by the shape
of individual utility functions, defined on the continuous space of varieties.
For example, the case of strictly increasing transport cost corresponds to the
case of utility which strictly decreases with the distance from the optimal
point in variety space (but neither concave or convex). The “islands” and
nonuniform densities of consumers are much less intuitive in product differ-
entiation spaces, but they also can be introduced, and all the results of this
paper are valid for those cases.

3.6 Appendix 1

PROOF OF LEMMA 3.2.

For an infinitely small price differential the separating hyperbola is close to
the vertical axis, and thus intersects the upper and lower borders of the
square y = +L. Let us consider separately two cases: a) when the hyperbola
intersects y = £L, and b) when it intersects © = L (see Fig. 3.1). For equal
prices the separating hyperbola transforms into a vertical line, and for a
small price differential it is useful to express the equation of the hyperbola as
z(y) = £ay/1 + y2/b%. If the price of the left firm is lower, the hyperbola lies
inside the right hemi-square. Let S, denote the area between the vertical line
x = 0 and this hyperbola, which represents the additional demand attracted
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by the left firm by pricing below equal prices. We have:
L 2a L
Sa=2 [ wl)dy =5 [y + vy =
| 2y)dy = |y by
L+ VL% +b?
LIV E 48 ln(+b+)) (3.18)
b:\/C2— (pl_p2)2

A2

(3.19)

Note that b is a continuous function of both prices on the whole area where
it is defined. S, is a continuous function of b, except for b = 0. The case of b
close to zero will be considered separately because it corresponds to the case
where the hyperbola is almost horizontal and in this case it cannot intersect
y = +L. Thus, we have proved that in the case a) total demand is a contin-
uous function of both prices.

Consider now the case b) in which this hyperbola intersects x = L. Total
demand of the right firm in this case is given by the area inside the hyperbola:

/T2 _ 2
Sp = Qab/L Va?—aldr = Z(L\/L2 —a? —a ln(“—f—a)), (3.20)
a

where a = %. Here it is important to check continuity for a — c¢. In
this case, transport cost between 2 firms is exactly equal to the price dif-
ference. This was precisely the reason of total demand discontinuity in the
one-dimensional Hotelling model. In a two-dimensional space, on contrary,
there is no discontinuity at this point, as can be easily shown. If the square
covers firms’ locations, i.e. L > ¢, then also L > a, and the square root is
defined. When |p; — pa| — 2ct, prices cannot be close to equal, and thus
a # 0. This eliminates the potential discontinuity due to the presence of a
zero in denominator of the expression 5,. Finally, the whole expression is
proportional to b, which vanishes to zero in this case, and thus the demand
from the right firm goes to zero continuously. This eliminates the price un-
dercutting effect when one firm captures all the customers behind the second
firm just by a marginal decrease in price.

PROOF OF THEOREM 3.1.
Consider any compact area D in R? with a homogeneous demand distribution
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(See Fig. 3.2). In a metric space, a compact set is always bounded. Thus
there exists an L high enough to cover this compact set by a square. The
border between the consumers buying from the left or right firm will lie on the
intersection of the hyperbola (see the previous lemmas) with this compact
set. This hyperbola moves continuously with changes in any price. The
additional demand due to a change in prices is given by the measure of the
intersection of the area between the two hyperbolas corresponding to the two
pricesand the compact set. additional demand is the . Denote by 1p(z,y)
the support of the set D, that is,the function which takes the value 1 on the
set, and zero otherwise. When the price moves from p to p/, the demand
increase is given by the formula:

S(p') — = 2/ / (z,y)dzdy < 2/ —xz(y))dy < €,(3.21)

where € can be any small number (the same, which is used in Lemma 2,
when |p — p/| < 8). The first inequality follows from the fact that the sup-
port of D is smaller than the support function of the square. The second is
the continuity of total demand from one firm, which was proved in Lemma
2. Hence,in a two-dimensional Hotelling competition between firms at fixed
locations, total demand of a firm is a continuous function of both prices.

PROOF OF THEOREM 3.2.
A continuous function on a compact set takes its maximal value at some
point. Thus, there exists some maximal density of consumers (atomic points
with positive mass in a point are thus excluded). Consider a corresponding
problem, where the density function is replaced by its maximal value on its
support. By Theorem 3.1, the resulting demand for such a problem is a
continuous function. Note now that the integrals which enter the expression
for additional demand, arising from marginal shift in prices for the original
density of consumers, can be majorated with the integrals with this uniform
distribution, and continuity can be proved in a way, similar to Theorem 3.1.

PROOF OF THEOREM 3.3.

In the proof of Theorem 3.2, continuity was used only to prove the existence
of a maximum of this density function on a compact set. When continuity is
replaced by boundedness, the corresponding integrals can be majorated in a
similar way:.
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PROOF OF THEOREM 3.6.

Consider the neighbourhood of any solution to the equation (3.17) outside
the line, which connects two firms (Fig. 3.6). Let T'(r) = ¢;, and T'(r, q) = ¢2
in this point. Each of these equations defines some circle with the center
in the location of the corresponding firm. If transport costs are strictly in-
creasing in distance, then any circle with greater radius will correspond to
a higher cost of transportation. Let us increase both parameters c; 2 by a
small § > 0. This will not change equation (3.17). If circles have different
tangency lines in their point of intersection (and this always happens, if we
stay away from the straight line, connecting the locations of firms), then for
each parameter J there exists a unique solution to the equation (3.17) in the
neighbourhood of the initial point. It depends continuously on § (Fig. 3.7).
Thus, we have a unique curve, passing through the point r and describing
the solutions to (3.17) in the neighbourhood of r (Fig. 3.9). Except for the
very pathological case, when the set of these solutions is not measurable (in
Lebesgue sense), its two-dimensional measure is zero, if we take their inter-
setion with any compact area in R?. As the measure of an interval is zero,
the local behaviour on a straight line which passes through firms’ locations
does not matter.

PROOF OF THEOREM 3.7.

Let us change one of the prices marginally. Consider again any point r, as in
the previous theorem. We can easily find two solutions of the new equation
in the neighbourhood of r (one on the first circle, when we move the second,
and one on the second). Both points move continuously with price change.
As transport costs are differentiable, for very small shift, the solutions would
lie close to the line, connecting these points. Thus, the curve of solutions
shifts continuously in the neighbourhood of each solution, away from the line
described above. Except for very pathological cases, the total length of this
curve inside any compact set on R? is finite. Hence, the total additional
demand for one firm arises from infinitely small area, if the price shift is in-
finitely small. Thus, the total demand from any firm is a continuous function
of its price.

PROOF OF THEOREM 3.8.

When density function is bounded, we can substitute this upper bound M
instead of density function and find a new upper bound for a demand shift,
which can be done infinitely small for infinitely small price shift. With the
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demand from a compact set we can also do the procedure, similar to the
proof of theorem 3.1.

3.7 Appendix 2

SYMMETRIC NASH EQUILIBRIUM FOR THE UNIFORM SQUARE.
Let p = p1 — pe, and T'(p) be the demand from the first firm, calculated in
the neighbourhood of the symmetric equilibrium, i.e. near p = 0. Proceeding
similarly to [8] (his notations are also kept), it is possible to show that in
this case p*(¢) = —T(0)/7"(0). Direct calculations show the validity of the
formula in the main text. Further on, it is useful to consider normalizations:
L=1;p=1. Then

9
p*(c) = :
B ()

(3.22)

Consider the function ¢(¢) = 4/p*(c¢). It is easy to show that ¢'(c) =
ln(1+‘/cl+7) — @ For all ¢ € [0, o0], it is possible to show that ¢'(¢) < 0.
This statement is not so obvious, and needs several estimations (upper in-
equalities). First of all, for ¢ > 1,

JitTE JitE 1-
I S S S R ) (3.23)
C C C

q'(c) = In(

For ¢ € [0,1] consider f(c) =1+ 2“2+ —Inc. Note that

d(c)=fle)+In(1+V1+e2)—VI+c2< f(o) (3.24)

for ¢ € [0,1] (inequality In(1 + z) < z,Vz > —1 was used). It is enough to
show that f(c) < 0,¢ € (0,1). Note that f(1) = 0. If f’(¢) > 0,Ve € (0,1),
then f(c) < 0 inside this interval. Direct calculations show that

(0 1+ —cVl+¢?
c) = .
2 — 1+ 2
Note that 1+¢® > ¢¥/2,¢# 1, and evV/1 + 2 < 23?2 for2— V3 <c < 2++/3

(the latter can be shown by the solution of the corresponding quadratic
inequality ¢> —4c+1 < 0). For 0 < ¢ < 2—+/3 it is possible to show directly

(3.25)
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that cv/1+c¢2 <1 <1+ ¢ Thus, f/(c) > 0,Vc € [0,1], hence f(c) < 0 and
¢ (c) < 0for 0 < ¢ < 1. Then ¢(c) reaches its minimum at the out-border
of possible locations, and the equilibrium Nash price reaches its maximum
there.

3.8 Appendix 3

3.8.1 Elliptic Coordinates

The most natural way to approach the issue of competition of two firms
with linear transport cost for consumers, distributed over some area in two-
dimensional space, is to introduce elliptic coordinates (Fig. 3.12). These co-
ordinates are locally orthogonal and they are used for the solutions of some
problems in mathematical physics, when the geometry includes ellipses or
hyperbolas. In this problem, the hyperbola is the separating curve between
two sets of consumers, buying from this or that firm. This one-parametic
family of hyperbolas moves as the price moves. If the set of consumers is an
ellipse, then all integrals can be easily calculated, but the solution can be
written at least in the form of integral for any density of consumers over any
two-dimensional set.

Consider the family of hyperbolas and ellipses, given by the following equa-
tions (here 7 € [—1,1] parametrizes the hyperbola, while 0 € [1,00] is a
parameter for the family of ellipses):

x2 y2

ST =1, (3.26)
2 2

SR — (3.27)

o2 o02-1

It is possible to express the Cartesian coordinates x,y via these elliptic 7, o:
r = foT;y = :l:\/(l —72)(02 —1). The Jacobian of this transformation

is J = (02 — 7'2)/\/(02 — 1)(1 — 72). If the firms are located in the focal
points (x = +1,y = 0) (which correspond to (7 = £1,0 = 0) in elliptic
coordinates), then the set of indifferent consumers is located at the hyperbola
7 = pe — pp (here transport cost is normalized to 1/2, and the first firm is
located to the left of the origin). If P = py — py1, p(7,0) is the density of
consumers in new coordinates and ¢ = o4 (7) are the equations of the upper
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and lower border of consumers (Fig. 3.13), then the total demand from the
first firm is given by the formula:

/ dT/ dap T,0)|J(T,0)]. (3.28)

Although this integral can be calculated analytically for many cases, the
simplest case of uniform density p = 1 and elliptic borders 1 < ¢ < R will
be considered here (Fig. 3.13). Then the profit of a firm is given by the
following function:

H(py,p2) = Tpi RVR? — 1,0 < py < py — 1;
IT = RV R? — 1(p1 Arcsin(ps — p1) + 0.57py) +

pi(p2 —pi)y/1— (P2 —p1)?In(R+ VR —1); |pr — po| < 1; (3.29)

H=0;p1 >ps+ 1.

The behaviour of this function is not quite obvious, and computations are
necessary for some conclusions about its shape. Some results are discussed
in the next subsection. But before it is useful to discuss some analytical
properties of the demand densities.

Lemma 3.7 If the two-dimensional density p(x,y) is a continuous function
of both wvariables, then the corresponding one-dimensional density is a con-
tinuous function of its variable.

PROOF:

Since p(1) = [dop(xz(o,7),y(o,7))J(0,T), the only problem which can emerge
15 the singularity of Jacobian in the point o = 1. Note that this point corre-
sponds to the degenerated ellipse (—1 < z < 1;y = 0). But it is easy to show
that this singularity is integrable, i.e. the integral over a small neighbourhood
of o =1 is infinitely small for any bounded two-dimensional density. (Note
that continuity on a compact set insures boundedness.)

Formally, the following chain of inequalities proves the continuity:

i +8) =)= [ f%‘_qmdd <

~rlrol [ = -

max [p(7 + A, 0) Chal. (3.30)

(3.31)
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The constant Ca — 0 for A — 0 because of continuity of the two-dimensional
density, while the integral I is bounded, because in the neighbourhood of o = 1

it can be magjorated by \/2(oc — 1), which goes to zero as o — 1.

3.8.2 The Results of Computations

This subsection provides some results of numerical computations of profit
functions as the functions of both prices for different elliptic areas (see the
previous subsection of the Appendix). Some values of R were fixed, and the
profit function was calculated on a grid of prices with the step 0.1. For any
given ps it is possible to draw a graph of profits as the function of own pricing
policy. For small R, equal to 1.5, the maximum M was unique, at least for
p2 < 1.5, and the symmetric Nash equilibrium was unique: it occurs at the
prices p; = ps = 1.0 (approximately). However, for (p, = 2.5 there were
two maxima (one corresponding to cornering market). With the further rival
price increase, only cornering the market was a local (and global) maximum
for the first firm (it should just set the price below the rival’s).

For high values of R it was possible to observe the dynamics of these maxima
in more details. For R = 15 and py = 2.0 there were two maxima: maxl =
705 (corner at p; = 1) and max2 = 717 (at po = 1.7). For p; = 2.2 the
situation has reversed: the corner maximum (maxl = 846, obtained for
p2 = 1.1) became higher than the non-corner maximum (maz2 = 803, for
po = 1.7) (Fig. 3.12). As the profit function is continuous for both prices, it
is possible to infer that for some intermediate price of the rival two maxima
are equal, and the shift between them occurs discontinuously.

3.8.3 Sufficient Conditions for Nash Existence

This subsection contains several lemmas about sufficient conditions for the
existence of Nash equilibrium in pure strategies for one-dimensional den-
sity with firms located at the ends of an interval [—1,1]. Since every two-
dimensional model is equivalent to this one-dimensional specification, the
results can be applied for that model also. These sufficient conditions ex-
ploit the property of profit concavity and thus describes not all the cases of
existence of Nash equilibrium.

Lemma 3.8 Let the first firm be located in the point x = —1 and the second
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in x = 1. Let transport costs be t and let the consumers be distributed with a
continuous density p(x), satisfying the property of symmetry p(x) = p(—x)
with the total mass of consumers normalized to one. Then if a symmetric
Nash equilibrium ezists, it is given by the formula p; = p3 = t/p(0).

PROOF:
The profits of firms are given by the formulae

1 o D2 — P1
Il = — j:/ =
1,2 p1,2(2 0 ﬂ(f)d@,flfo o
(3.32)
and thus the first-order conditions for Nash equilibrium are:
xo
| plw)dz =2 plag) =0,
-1 2t
! P2
/ p(x)dz — %p(xo) =0. (3.33)
xo

Since density is symmetric, the candidate for a Nash equlibrium should cor-
respond to xo = 0, with equal prices. Substitution py = ps gives the value of

the price p* =t/p(0).
Lemma 3.9 Symmetric Nash equilibrium exists, if p'(0) < 4p*(0).

PROOF:
The second derivative of the first firm’s profit function with respect to its own
price in the point p1 = ps = p* is given by the expression

s p0)  p(0)
S U (3.34)

which is negative if and only if p'(0) < 4p*(0).

However, this condition guarantees only the existence of a local maximum
in the point of a symmetric Nash equilibrium. The condition of concavity
of the profit function is sufficient to guarantee its globality. The following
lemma states this condition.
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Lemma 3.10 If p(x) is such that

2

|;;(lnp(x))] < — Ve e (—1,1), (3.35)

then the profit function is concave, and symmetric Nash equilibrium repre-
sents a global maximium.

PROOF:
Since the second derivative of the first firm’s profit function with respect to
its price is given by the formula

P1 p(xo)
1" = 200 (o) — 522,

it takes negative values iff p1p'(xo) < 4tp(xg). Thus, the condition

d 4t
T pla)) <
would guarantee concavity of the profit function. If the rival firm sets its price
at pa, the set of possible reactions to it is p1 € (0,p + 2t) (it is because for
other prices profits cannot be positive). Since p; is in the denominator of the
upper bound for the logarithmic derivative of the density, the most restrictive
case occurs when this price takes its maximal value. If the second firm plays
the symmetric Nash strategy p* = t/p(0), then 1/py > 1/(p* + 2t) for all
possible py, and thus 2/(1+1/2p(0)) is an upper bound for possible variation
of the logarithmic derivative of the density function over the whole interval
which still guarantees the concavity of the profit function. The absolute value
should be taken, because a similar procedure for the second firm gives the
negative lower bound for the derivative of density.

This lemma gives the following intuition about the concavity of a profit
function. High values of the derivative of the density function may destroy
the concavity of the firms profit functions. And the same effect may arise
from very low densities in the middle: when p(0) is small, the range of
acceptable variations of density derivatives also shrinks.
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Chapter 4

Dacha Pricing

The problem of location rent in a city-neighbourhood is considered on the ba-
sis of the utility surplus due to transportation price and transportation time
simultaneously. For the case of identical agents the problem is solved explic-
itly and comparative statics is studied. For the case of heterogeneous agents
with respect to their income an implicit analytical solution is obtained. The
model explains the evidence about dacha pricing in Russia and its dynamics
during the transition period.

JEL classification: D58; R31.

KEYWORDS: location, rent, general equilibrium, dacha.

91



92 CHAPTER 4. DACHA PRICING

4.1 Introduction

People living in big cities often demand a small country-side house with a
piece of land (”dacha”), where they can enjoy nature. Dachas are used in
Russia both for family recreation and small agricultural activity. In the sum-
mer period some family members have to commute to the city where they
normally have a job. They spend both time and part of their income for
this commuting. The relative importance of these factors for utility loss in
Russia was quite different in pre-transition and post-transition period. To
capture this effect, a special form of utility function will be introduced in this
model. In the case of big Russian centers, like Moscow and St.Petersburg,
the price of land in the neighbourhood was relatively low (because of low
agricultural productivity and state control). Hence, a lot of people could get
these pieces of land and construct a house there. It is necessary to mention
several features of contemporary Russian economy, which make this model
especially useful to explain the available evidence. First, a quick transition
from the planned to a market economy exposed some planned structure of
dacha locations to a persistent shock in transport costs, caused by the signif-
icant increase in fuel prices. Comparative statics of the general equilibrium
model provided below, gives a lot of insights about this issue. Second, the
relative spatial homogeneity of locations around big northern cities in Russia
(Moscow and St.Petersburg) allows to neglect location-specific utility in the
basic model.

The main objective of this article is to derive a highly stylized model
which can explain real effects. The general equilibrium for this model will
be derived: prices of dachas will become a function of the distance to the
city and also will reflect equilibrium between demand and supply, given an
exogeneous wage distribution in the city and some density of land spots for
potential dachas.

The question of residential rent as a function of space is of high practical
importance and thus was studied by many authors (see, for example, [1-8]).
Alonso [6] considers the influence of distance on leisure, commuting time and
commuting costs. He assumes that the utility of households depends on the
distance to the center, the amount of land and on other consumption goods
(numeraire), and solves the utility maximization problem. This model usu-
ally forms the basis of other urban theory models. For example, Beckmann
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[9] and Henderson [10] have reconsidered the distance in terms of leisure loss,
but have omitted monetary costs of transportation. Further attempts to de-
rive the utility function and to apply it for obtaining rent curves can be found
in [7]. Beckmann [8] studies the role of residential density on urban rent. In
his other paper [17] he introduces the idea of mapping of agents from income
to location intervals and finds an analytical solution to the problem of endo-
geneous city size, assuming that richer agents would locate further. Fujita
[14] constructs significant extensions of CBD theory, including comparative
statics with the change in transport costs and the equilibrium location of
different types of household, but does not consider the cumulative effect of
transportation on both disponsible income and leisure losses. This paper
attempts to obtain a closed analytical-form general-equilibrium solution for
a particular utility function which takes into account two basic properties -
loss in leisure and increase in transport expenditures, imposed by the chosen
location.

It is necessary to mention the paper of Brown [15], devoted to the com-
parative statics of Alonso’s model. She considers a utility function, which in-
cludes not only composite good and time, but also housing space, and derives
some analytical results for the demand change emerging from the change in
income, transportation cost and transportation speed. Since the assumptions
of this paper are very similar to [15], it is necessary to stress the differences.
The present paper considers not only demand change, but also the general
equilibrium effect, emerging from the simultaneous behaviour of all hetero-
geneous agents. General equilibrium effects include also the change in prices
as the result of the change of the total extent of the market when transport
speed or price varies. The solution of the present model also allows to see
the effect of a change in wealth distribution on equilibrium prices. Although
the effect of variation in housing space is neglected in the present model, due
to the complexity of the analysis in a general equilibrium framework, it can
be justified by the considered application for the pricing of dachas in Russia
(where there is little variation in size of the major part of private land). Also,
the analysis in [15] relies strongly on the assumption that all cross-derivatives
of the utility function are equal to zero, which is not assumed in the present
model.

As it is shown by Berliant and ten Raa [13], there are theoretical problems
with the correspondence between continuous models of locational choice with
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its discrete analogs. In the model with a continuum of heterogeneous agents,
choosing across heterogeneous locations, every market is formally a point,
having measure zero. Thus, even when a solution is given by a continuous
mapping from the space of agents’ heterogeneity to the space of locations, the
measure of agents in a small neighbourhood of a point may not be preserved
under the mapping. On the other hand, in discrete models it is preserved,
because each agent has a non-zero measure of land. The present model solves
this paradox by requiring a mass-preserving mapping as a part of the general
equilibrium solution concept.

Besides its purely theoretical interest, the model can explain interesting
phenomena about Russian transition, when the relative price of transporta-
tion increased and wealth distribution became much more non-equal (the
inequality coefficient, measured as a ratio of the incomes of top 10th to bot-
tom 10th percentile, has increased from a typical European level of 3-4 in 80s
up to well-above-American level of 10-15 in 90s [16]). This paper addresses
the impact of these two effects and thus neglects some other geographical
effects. I abstract from such effects like pollution and access to nature; all
points out of the city are assumed to bring the same recreative utility. It
also does not take into account the topology of road infrastructure '. The
main goal of the model is to see how the relative rental structure reacts to
changes in transportation time, transportation costs and income distribution.

The change in transportation costs had a negative impact for dachas:
the total extent of the market? collapsed to less distant areas. To isolate
this effect, a simple model with one type of agents is discussed in the sec-
tion 2. The main observation is that while before transition dachas were
available for practically all consumers, after the number of dachas feasible
for consumers (in mathematical sense it can be treated as supply) has en-
dogeneously declined, and the market had to regulate that shortage. The

!The model can be also applied to a complicated road topology; distance from the city
can be calculated along road, with further integration inside equidistant isolines (Fig. 4.1)

2A new concept of the extent of the market is used in this paper to compare different
number of heterogeneous commodities which are owned in the market equilibrium. The
term market size is different, it usually applies to the number of consumers at the market
for a homogeneous good. Here there is an analogy between these two concepts due to
the fact that shrinking of the extent of the market goes together with the decline of the
number of consumers who participate in this market
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increase of a relative richness of the rich in Russia has created high demand
for the best locations, but also has cut the total demand (as more people are
poor now). To study the effect of an impact of income distribution change a
general equilibrium model is developed in section 3, and some examples are
studied in section 4. The analytical solution can be obtained for any income
distribution. The goal of section 5 is to introduce some empirical evidence,
which allows to calibrate the model (section 6). Finally, the conclusions are
formulated in section 7.

4.2 A Simple Model: Identical Agents

The goal of this section is to explain on a simple model the effect of endo-
geneous shrinking of the market for dachas as the consequence of increase
of transport costs in Russia during the transition. The utility includes both
consumption and leisure, since in different periods different effects were de-
termining the market size for dachas in Russia. The model considered here
is similar to that considered in Wheaton [11], in the sense that all points in
space give the same utility to all agents. Later, with consideration of hetero-
geneous agents, this will no longer be valid. The structure of the simple and
general model differs only in the assumptions about wealth distribution.

4.2.1 Assumptions about Preferences. Equilibrium Rental
Price

Consider the following model. There is a two-dimensional radially-symmetric
land. The city occupies the territory between 0 and Ry. Assume that all
agents are identical: they have the same income in the city, w, and their
preferences are the same. The preferences are Cobb-Douglas in consumption
and leisure with equal role of both factors: o = 1/2. The exogeneous income
w can be spent on a composite good C', a rental price of a dacha P(R) and
a transportation cost to get to dacha:

2R
U=vC(Cl C=w-— P —2bR, lElO—V. (4.1)
Here R is the distance to the city, V' is the speed of transportation (in Km/h),
b is the price of 1 km of transportation and [ is the basic endowment of daily
leisure. By assumption, all agents can enjoy their leisure only when it takes
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place on a dacha (like when the head of a household has to work in the city in
the summer period and has to commute to a dacha where his family spends
vacations). All dachas have equal size which is fixed exogeneously. This was
a realistic assumption for Russia, the source of data for model calibration 3.
Including the possibility to choose dacha size leads to a multiplicity of equi-
libria (see, for example, Beckmann [17]), while adds little to the economics
of this model: richer people in Russia always choose dachas closer to the city
(in contrast to a typical pattern of location in western metropolitan areas).

The equilibrium renting price P(R) is determined in such a way that
agents are indifferent (for given w, b, V, ly) across locations. It can be obtained
from the indifference curve in the distance-rent space U = C'(R)I(R):

(4.2)

The obtained indirect utility Uy may be zero or positive in equilibrium. The
rental price can take the values only above some positive constant A, which
corresponds to the daily rent covering just construction cost.

4.2.2 Geometry of the Model. Different Types of Equi-
libria
Assume now that the total number of citizens is N, and the number of fea-
sible sites for dachas in the interval of distances [R, R + dR] is given by a
function v(R)dR. It can be obtained from real geographical data (or map)
in a following way. If there are several roads, going out from a city to coun-
tryside, one may divide them into small intervals (let say, 1 km long areas)
and then count all lots which are actually used (or can be used) as dachas
(country-houses). The distribution of quantities in each 1-km interval as the
function of distance in the limit when intervals are going to zero determines
the function v(R) (Fig. 4.1). In a model with radially symmetric homoge-
neous plane with a dense radial network of roads the density of lots is constant

in two-dimensional space, but is proportional to the distance: v(R) = 1pR
(Fig. 4.2).

3Similar assumption can also be justified for Germany, with the flower gardens around
small houses
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The total demand for dachas is given by the quantity of agents N, while
the total supply Nj is

R*
Ny = v(R)dR, (4.3)
Ro
where R* = min{%4:[,V/2}. This endogeneous boundary R* deserves a
2b

special consideration. The budget constraint determines endogeneously the
“maximal budget distance” R, = (w — A)/2b, and the leisure constraint
defines the “maximal leisure distance” R, = [V//2 (Fig. 4.3). The budget
constraint becomes binding at the distance R,,, where it is just sufficient to
cover house construction and transport cost. The time constraint becomes
binding when the distance to dacha is so high (or transport speed is so low)
that all leisure time is spent on transportation. In both cases an agent has
zero utility, which is the minimum in this model. Land is a free good at
distances higher than R*, since nobody can afford the project of its use as a

dacha.

If the supply Ny is higher than demand N, all agents get positive utility
in equilibrium. If it is less, rationing takes place, and this is only consistent
with Uy = 0. If R,, < R;, then

P(R)=w—2bR;  R<R,=(w— A)/2b. (4.4)

If R; < Ry, the “leisure constraint” is binding, and all agents again get zero
utility in equilibrium. For low transportation costs and high speeds it is pos-
sible to show that all agents can get dachas and thus a positive utility.

Consider the case when all of agents can have dachas at distances lower
than critical: R,.: = R < R*. Then N = 0.515(R?*— R2). The fact that land
is a free good at higher distances suggests that at the border only minimal
construction costs A are covered: P(R) = A. Then, equalizing the utilities in
each of locations gives the following equation: UZ = (w—A—2bR)(lo,—2R/V).
For all R, Ry < R < R < R*, the daily rent price for dacha is given by the
formula:

- oV —2R
P(R)=w—2bR — (w— A —2bR)———. 4.
(R)=w R—(w R)ZOV—QR (4.5)
Consider the comparative statics of formula (4.5):
OP(R) ] LV —2R 0. (4.6)

ow WV _-2R
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OP(R)  2(R - R)

Ry 2V Y A~ R 4,
oV LV — 22 R) <0, (4.7)
OP(R) 13V — 2R
5 = 2R+ 2R (4.8)
dP(R) 2(w — A —20R)(loV — 2R)
— 9 4,
iR (oV — 2R)? (49)

Wealth increase will increase dacha prices at each location. The increase
of transportation speed will decrease the prices of dachas at all locations. The
third of partial derivatives may have different signs. For R < Ry = [(V/2—R,
dP/db > 0, and for Ry < R < R, the derivative is negative. It means that
the increase of transportation costs will increase the prices for dachas in
the neighbourhood of the city, but decrease them in more distant areas. The
increase of transportation costs also decreases R*, and thus, after some point,
the total number of affordable dacha sites might become less than N. The
further increase of b will decrease prices, because for zero utility from (4.4)
P depends negatively on b.

Proposition 4.1 The equilibrium number of dachas increases with the in-
crease of wealth and speed of transportation, and this increases public welfare,
giving everybody higher utility. The increase of transport prices decreases the
equilitbrium number of dachas, and thus the public welfare.

4.2.3 The Effect of Variable Frequency of Travelling

An interesting and reasonable extension of the simple model can be to include
the possibility of choosing the frequency of travelling to dacha. Having in
mind, that agents (heads of household) have to commute to the dacha (where
their families live in the summer period) not more often than daily and
assuming that they get zero utility when they are unable to do it, consider
the following utility function *:

2 11—«
Uy = 0w — P(R) - 20R0)" Iy - f) D<a<l:0<Q<l. (4.10)

In a general equilibrium framework, agents are taking prices P(R) as given,
and choose an optimal €2. The first order condition gives the following ex-

4For 2 =1 and o = 1/2 it coincides with one considered above
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pression for it:

._w—P(R)

= QTR (4-11)

when w — P(R) — 2bR < «. Since 2 < 1, we can have a corner solution
O =1,if w— P(R) — 2bR > «a. Because P(R) > A (A - construction cost
of dacha), there always exists so high R;, that for R > R, the solution for
Q2 will be interior. The interior circle around the city will correspond to the
corner solution Q* = 1, surrounded by the zone with a variable frequency
of communicating with dacha. The iso-utility curve can also be constructed.
Thus, we have:

Proposition 4.2 If the frequency of travelling to dacha is considered as a
choice variable, the equilibrium includes two zones. In the closest zone agents
travel to dacha with mazimal possible frequency (every day), while in the outer
zone they travel less often. The border of the second zone can be determined,
either by total demand (then all agents get positive utility), or by the income
or leisure borders.

4.3 General Equilibrium with Heterogeneous
Agents

Now let agents be heterogeneous with respect to their income. The income
distribution is characterized by a density f(w), so that

/OOO f(w)dw = N. (4.12)

For any finite number of agents N the set of wealths w;;7 =1,2,...N is also
finite. It is possible to construct a hystogramm and then to approximate it
by a continuous density function f(w) by a spline method. The continuity
of the density is required in order to work with differential equations, which
will be derived in the process of solving the problem. The wealth distribution
function f(w) is used in this model as a primitive. Let us define what is the
mathematical concept of an equilibrium.

Definition 4.1 A general equilibrium is a mapping of agents of type s with
different endowments w(s) and preferences U(s) into the locations R(s) and
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a set of prices P(R), such that the following requirements are satisfied:

1) each agent of type s mazimizes his/her utility taking the price function
P(R) as given,

2) the supply is equal to demand in any small neighbourhood of each type
(this means that the measure of any small neighbourhood of each agent is
preserved under this transformation).

Note that the equality between supply and demand is important not only
on aggregate and not only in each point, but also in each neighbourhood.
The intuition is explained in Fig. 4.4. Because each type has measure zero,
a one-to-one mapping (here from the income distribution into spatial dis-
tribution) does not necessarily preserve measure. It is well-known result in
mathematics that one-to-one continuous correspondence is possible across
the sets of different measure. When the functions in each point are equal-
ized, this does not imply equalization of integrals. It may happen that the
problem described by Berliant and ten Raa [13] emerges for this reason. That
is why we require that in equilibrium the distribution densities are such that
the total mass of agents in any neighbourhood of a particular type is equal
to the mass of agents in the image of this neighbourhood.

Since here preferences do not depend explicitly on location, but enter
through transportation losses only, for equal prices in space greater distance
implies less utility. Agents with less wealth are willing to give up more leisure
for an additional unit of consumption, and thus any given price schedule
P(R), P'(R) < 0, which will make some agent with intermediate wealth in-
different across locations will imply their choice at higher distance. Note that
P'(R) > 0is impossible since everybody would choose the closest location. It
is possible to construct the price schedule Ps(R;s), which makes each agent
of type s indifferent across locations. His choice in space will be unique if the
equilibrium price schedule lies above his indifference schedule, and is tangent
to it only at one point (Fig. 4.5).

Since in this model it is possible to find a one-to-one correspondence be-
tween income w(s) and location R(s) for each type s, it is possible to exclude
s from consideration, and study the mappings w — R. Hence, equilibrium
is given by a pair of functions (P(R),w(R)), such that every agent maxi-
mizes his utility with respect to the choice of dacha locations at given prices
and the demand and supply clears the market for each location. The wage
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is mapped into R one-to-one, because for higher wages time becomes more
valuable, and agents prefer a closer location even at higher price®. Thus w(R)
is a monotonically decreasing function. We assume that it is differentiable
(it can be proved for any function f(w), smooth enough).

The general equilibrium formulation of the problem includes /N individual
optimizations:

2R
ma(wi — P(R) — 20R)(lg — )], (4.13)
where P(R) is the equilibrium price function which is taken by agents as
given. While for finite N we have also N locations for dachas and a finite set
of prices, it is possible to consider the limit as N — oo, and to define P(R)
as a continuous function.

The market clearing condition for this problem can be written in a dif-
ferential form as:

f(w)dw = £v(R)dR. (4.14)

As a similar approach was used by Beckmann [17] but is rarely used by
economists. This equation says that the number of agents inside income
bracket [w,w + dw] should be the same as their number in the “location
bracket” [R, R + dR]. The density v(R) comes from the supply condition.
The differential equation dw/dR = v(R)/f(w) locally defines the mapping
F : W — R from the space of wealths into the space of locations. The
economic meaning is that every location for a dacha can be chosen by only
one agent. In this model it is clear that richer agents would prefer closer
locations, since the “price” of leisure for them is higher.

Definition 4.2 An individual price schedule P;(R) is a set of prices for dif-
ferent locations, which would make an agent i indifferent across them.

5Suppose that we have 2 agents of different wealth at a point for any given set of prices,
and for the poorer this is an optimal point. It means that the price gradient at this point
equalizes marginal gains in utility from higher leisure and lower consumption, and vice
versa. But at the same point this is no longer true for the richer agent, and he would be
better off by moving towards the city, having a relatively higher valuation of leisure.
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In other words, P;(R) defines an individual indifference curve, correspond-
ing to some fixed level of utility, in the space (R, P). At any point of this
curve, the gradient of utility is tangent to it. It is always oriented towards the
origin (0,0) (for P'(R) < 0), since VR, % < 0 and 9 < 0 (Fig. 4.5). Thus,
an individual would choose such R;, where his individual price schedule has

a tangency point with the equilibrium price function:
db(R;) _ dP(R;),

dR dR

It means that the equilibrium price function can be constructed as an enve-
lope of individual price schedules. From differential geometry we know that
if a family of curves has a form g(z,y;C') = 0, where C' is a parameter of

each curve, then the envelope curve can be found by excluding C' from the
system:

Vi. (4.15)

N dg(z,y,C)
g(x7yuc>_07 dC

Here the role of g is played by utility, z - by R, y - by P and the parameter
C is individual wealth w;. The individual price schedule enters the iso-utility
curve:

= 0. (4.16)

2R
w%—%R—fmeh—xﬂ-wﬁzo. (4.17)
Formally we should differentiate it with respect to the parameter i. Note that
the general equilibrium solution would include also the equilibrium mapping:
t — w; — R;. Thus, it does not matter, whether we differentiate w.r.t. 7 or

R; (the tangency point of the individual curve). Thus, we get:

dP; 2R; 2
—2b — 1[5— ﬂ:i—%&—BRi. 4.18
o= -2 = P () (4.18)
Now we can eliminate the index i, since all points of the curve P(R) are
the points P;(R;) of corresponding individual curves (they are the tangency
points). Finally we get the following system of first-order differential equa-
tions, which defines the general equilibrium:

o—i?%:éU%R%+%R—wU%% (4.19)
v(R)

fw)

(P'(R) + 2b)(1

w'(R) = — (4.20)
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The second equation of this system is the law of mass preserving. It has a
negative sign, because richer agents will always locate closer to the city. The
first equation comes from an infinite sequence of individual optimizations.
It defines implicitly a mapping R — (w, P), which satisfies the envelope
condition (tangency between P,(R) and P(R)). This system of equations
together with the border conditions

P(Rmaa:) = A, w(RO) = Wmaz- (4'21)

determines the general equilibrium.

The solution not only exists, but can also be constructed analytically for
a big class of differentiable distributions. For any given f(w) and v(R) the
condition of putting the wealthiest agent at R, determines w(R) uniquely.
The market size is determined by the outer border R,,... This border is the
solution of the equation w(R) = A 4 2bR. Some conclusions can be drawn
already for this general case. First, the increase in transport prices always
makes the market for dachas smaller. But the change in wealth distribution
has an ambigous impact: all depends on how the perturbation of income dis-
tribution affects the income of the "border” consumer. If dachas are available
for a small fraction of consumers, then the rise in wealth inequality make
them affordable for a higher fraction of consumers. Contrary, if dachas are
available for almost all consumers (which was the case of pre-transition Rus-
sia), then the rise of wealth inequality tends to shrink the number of dachas,
as they become too expensive for a higher fraction of consumers.

4.4 Particular Cases

While the system of differential equations, derived in the previous section,
may have an analytical solution in a general case, it is difficult to identify
some particular effects unless the income distribution is specified. In the
case of Russia the income distribution during transition became much more
uneven (see details in the section devoted to model calibration). Its upper
tail which is most important for this paper was not estimated at all [16].
That is why a case with two types of agents, significantly different in their
wealth, may be of interest for this model. Another interesting example is
the power distribution f(w) = w~®, which was studied by Beckmann [17]
in a model without leisure consideration. Usually wealth distribution has
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a peak, but for contemporary dacha market in Russia only the upper tail
is important (people with wealth below some threshold stay away from the
dacha market now). There are some estimations that for Russia this tail has
power distribution, with a close to one.

4.4.1 An Example with Two Types of Agents

This section presents an example with two types of agents, which differ only
in their incomes (rich and poor). Let ¢ be the share of rich in the society.
Consider a radially symmetrical model with the total number of agents N.
Rich agents will be located at Ry < R < R;, where Ry = \/@ + R3, and
have utility U,., which will be defined on the rent continuity basis. For the
poor, three situations considered in section 2 are possible: a) all can find
a suitable site for dacha, b) the longest distance will be determined by the
leisure constraint; c) the longest distance will be determined by the budget
constraint of the poor. Consider the case c) as the most realistic for post-
transition Russia. The most distant location of poor agents is: Ry = ““2;‘4.
In the interval [Ry, Ry, P(R) = wy—2bR. Then, U? = (lg—2R,/V ) (wy—wy),
from the price continuity condition at R;. Finally, the rental price is given
by the formula:

WV — 2R,
P(R) = wy — 2bR — (wy — wy)——————; Ry < R < Ry; 4.22
(R) 2 (wo I)ZOV—QR 0 1 (4.22)

The price gradient in the poor region is equal —2b everywhere. In the rich

region it is higher in absolute value, having an additional term, proportional
to the income differential and depending on the distance:

dP(R) bV — 2R,

dR (Io0V —2R)*
Proposition 4.3 The price gradient is nonlinear and is higher in absolute
value near the city, where richer agents would locate their dachas.

= —2b— 2(wy — wy) (4.24)

4.4.2 The Case of Power Distribution

Let ¥(R) = R (radial symmetry) and f(w) = w™%w > wp;a > 1 (wp is
the lowest income, so that [ f(w)dw = 1). Then, from the mass preserving



4.5. SOME EMPIRICAL EVIDENCE 105

condition w'(R) = —Rw® and the boundary condition w(Ry) = oo it is

possible to reconstruct the mapping:

a—1
2

1

(R*> — R})]=. (4.25)

w(R) = [

For the price function there is a differential equation

/ _ . — —2 .
P hRIP = 9B h(R)= g
_ 4bR — 2w(R)

g(R) = —2b+ LWV _2R (4.26)

It has a one-dimensional class (with parameter D) on analytical solutions:
P(R) = e~ /MR | / g(R)e MBIRG R (4.27)

The border condition P(R4:) = A, where R, is determined as the solu-
tion to the equation w(Rpaz) = A + 2byas, allows to determine constant D
and hence to find the unique solution.

Consider a particular case a = 2; Ry = 0. Then w(R) = 2/R?, and the
solution to the problem has a form:

2(DR+2)

(IoV —2R)R’
D = (A+2br)(l0V —2r)/2 —2/r,

P(R) = —2bR + (4.28)

where r is the endogenous border of the market. It is easy to show that
P(R) — 400 and P'(R) — —oo, when R — 0. This explains how the high
price gradient near the city emerges from the competition between the rich.

4.5 Some Empirical Evidence

There are two goals of this section. The first is to give some facts about the
role of dachas in Russia and the history of the dacha market structure, start-
ing from the pre-transition period. The second is to capture some stylized
facts about dacha prices nowadays.
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There were several historical reasons why many Russian citizens had
dachas. The first one is the very low opportunity cost of land in north-
ern regions of Russia near big cities (Moscow and St.Petersburg), which has
allowed the central authorities to autorize the construction of dachas near the
city for practically all interested persons. The failure to solve agricultural
problems was another reason to encourage citizens to have small gardens.
Historically these land lots were of fixed size (normally 0.06 or 0.12 hec-
tars), which is another factor which simplifies the estimation of land rent in
the dacha price. Though the legal market for selling land did not exist in
Russia before the transition, the black market almost immediately incorpo-
rated these land rents. The advertisements about dacha sales which were
published before the transition, according to the author’s personal observa-
tions did not incorporate the enormously high price differences related to
the distances which are observed now. During the last few years this land
rent differentiation across regions became so obvious that even maps with
price isolines appeared in journals. One of them was taken by the author
from [3] (Fig. 4.6 (Map 1)). This map contains several points in the Moscow
region with prices for 0.01 hectars of land. Also this map contains the areas
which have exhibited price changes during one year. There was no impact on
prices in very distant areas, the prices in the circle closest to Moscow have
increased (in USD). The transportation price was quite low (even in compar-
ison to wages) ten years ago in Russia, and increased significantly during the
transition both in absolute dollar (to eliminate the inflation effect) terms,
and as a percentage of the average wage . It means that according to this
model, the demand for the closest locations pushed the rents higher, while
the more distant areas (about 100 km from the city) became much less valu-
able, because it means too high a loss of both time and money to go there
very often. The nonlinearity of rent gradients can be clearly seen from this
map.

Another data set was available for the neighbourhood of St.Petersburg
[12] (see Fig. 4.7 (Map 2)). Table 1 gives the land prices as the function of
distance to the city center.

6 After price liberalization in 1992 the wages first dropped in dollar terms, but then
recovered to about 100 dollars per month in one year, and stays at this level for the last
two years. Meanwhile, the petrol prices were increasing from just few cents for liter of
petrol to about quarter of a dollar, which is close to the prices in the USA
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Table 4.1: Land Prices for Dachas near St.Petersburg, in USD per 100 sq.m,
1996

Distance ,R, km | 30 | 50 | 80 | 110 | 140
Direction 1 (Vs) | 800 | 400 | 100 | n/a | n/a
Direction 2 (Pr) | 300 | 280 | 120 | 80 | 70
Direction 3 (Vy) | 400 | 300 | 200 | 100 | 80
Direction 4 (Ga) | 400 | 280 | 100 | 50 | 30
Direction 5 (Lo) | 350 | 200 | 80 | 30 | n/a

The first observation is that different directions differ: this can be ex-
plained in aggregate direction externalities, like pollution, climate, access
to forests and lakes, which are neglected in the model. The second obser-
vation relates to how prices depend on distance in certain directions. It is
immediately obvious that for all directions the price gradient near the city
is essentially non-linear (much higher), which suggests that low valuation of
distant areas occurs not only because of direct transportation costs. The
sharp price gradient near the city cannot be explained in the framework of
Alonso’s model, but it can be explained by the general equilibrium effect of
income differential across agents having different opportunity cost of leisure.
Richer people, who are likely to settle closer to the city (and this is not only a
theoretical prediction, but also a stylized fact for Russian dachas, in contract
to some western evidence) have a higher opportunity cost for leisure. The
high rental gradient nonlinearity suggests that income distribution in "new”
Russia became significantly unequal. The third observation is that at the
distance around 100 km the price gradient becomes very small. It may mean
that the value of this land is no longer determined by the concept of dacha,
with its almost-every-day commuting to the big city. Alternatively, people
may decide to exploit distant dachas in a regime with a low frequency of
communication with the city.

4.6 Calibration of the Model

In order to apply model to Russian data, taking into account radical economic
changes over last years, it is useful to make some preliminary estimations. In
the 1980-s the average wage in Russia was a bit more than 200 roubles per
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month, and in 1993-95 it was about 100 dollars 7. In the 80-ies a bus trip
for 200 km costed about 4 roubles, and 1 liter of petrol - 0.40 rbl. Taking
into account that most of russian cars consumed 10 liters of petrol for 100
km, the fuel cost of travelling of 2 persons in a car was equivalent to their
travelling in bus. It means that a person who has a dacha 50 km away from
the city, spent about 2 rbl. for round-trip per day. The typical price for con-
struction of dacha that time was about 10 000 rbl. (small summer house).
If we convert this into daily rent, assuming that discount and depreciation
factors are such that daily rent is 0.0001 of total cost &, then daily rent would
be about 1 rbl. Taking daily wage as 7 rbl., according to this model, it is
possible to have locational daily rent between 4 rbl. and zero. Travelling
costs were not binding, travelling time was binding before transition. That
is why many people got dachas at distances 100-150 km from St.Petersburg.

Now consider the current situation. In the beginning of 1996 the trans-
portation costs near St.Petersburg were the following ?: petrol price 1600-
1900 rbl/liter, bus - about 2000 rbl. per 10 km, electric train - about 400
rbl. per 1 zone (7-10 km). The exchange rate from May 1995 till May 1996
was fairly stable at the level 4500-5000 rbl./dollar. The average dollar wage
in 1994-95, according to international statistics, in Russia was about 100
dollars/month. On the other hand, income distribution was very unequal,
so that many people had incomes below 50 dollars, and a relatively small
group had about 500-1000 dollars, and higher. This situation was relatively
stable during 1995-98, in the sense that neither income distribution nor trans-
port prices were changing significantly. Assume that the construction price
is 10,000 dollars, and the daily rent is 1 dollar (the same discount rate as
before). Take the transportation costs as 0.04 dollar/km °. Then, a 100 km-
trip (which is round-trip for dacha, located 50 km away) would cost 4 dollars.
Taking into account that the average daily wage is only 3.3 dollars, we can
easily conclude that even these small distances became too expensive for a

"Calculation in dollars is more convinient because of inflation, even despite the fact
that the purchasing power of dollar for domestic goods was declining

8We can always do that, playing with discount rate. In Russia future is very uncertain.
Nevertheless, the ratio of rental and buying prices is such, that renting cost for 20-30 years
might be equal to buying costs. The similar ratio holds for many countries.

9These data were obtained from the citizens directly

10This is good estimation for buses, for electric trains it is cheaper, for cars more ex-
pensive, as costs should include car depreciation as well
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representative citizen. That is why the dachas for every-day trip are used
now only by a small share of population; particularly, the high-income group.
Those from the low-income group, who already have them at moderate dis-
tances, might have a difficulty to sell them, because the high-income group
will demand closer locations. That is why it is likely to expect a change of
patterns of uses of dacha: the low income group with dachas at long distances
will use them for fewer trips, either for vacations or for occasional visits, thus
minimizing transport costs. Taking this into account, it is easy to understand
why the price gradient is so low at distances above 80 km (the same effect
is observed for the Moscow region): transportation is taking place less of-
ten. Thus, we come to the following conclusion: in the 1990-ies the radius
of using dachas for almost-everyday transportation decreased and is deter-
mined not by the leisure loss (as in the 1980-ies), but by transportation costs.

Why is the gradient so high in the closest neighbourhood to the city?
It cannot be explained by additional transportation costs, but by income
distribution. The recent data about income distribution in Russia [16] show
that still 40.9 % of the population has the monthly income below 600 rbl.
(of 1998, when 1 USD = 6.1 rbl), and only 4.5% has it above 2000 rbl (330
USD). There are no official statistical data about the upper tail of the income
distribution (which would be quite interesting for this paper), but the same
article mentions an opinion that 1.5% of the richest russians own 65% of
the total wealth and have a monthly income above 5000 USD. These people
certainly have a very high opportunity cost of leisure. According to the
results of the present article they are likely to select locations close to the
city. Then the sharp price gradient near the city can be easily explained in
the framework of the model with two types of agents considered above.

4.7 Conclusions

1. A sequence of general equilibrium model of renting prices for dachas
has been developed. The simplest model takes into account such factors as
both income and leisure loss during transportation. In the case of Russia,
the leisure factor was more important before transition, while income factor
becomes more important now, when relative prices for transportation have
significantly increased. The effect of the shrinking market for dachas is dis-
cussed in this framework.
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2. The variable frequency of commuting to the dacha is also considered.
In the closer circle to the city it takes its highest value (every day communi-
cation), but in the outer circle it becomes variable. This is consistent with
the observed decline in the price gradient at distances around 100 km from
the city, where commuting to dachas can occur less frequently.

3. The more general model allows to take into account the effect of wealth
distribution. It allows to obtain an analytical expression for renting prices
for any income distribution. The model predicts higher absolute value of
price gradient near the city, because of a higher opportunity cost of leisure
for richer agents. This is consistent with the evidence of dacha prices near
Moscow and St.Petersburg (Russia) in the post-transition period.

4. The model also describes the negative impact of the relative increase of
transport costs for public welfare. In particular, the total number of dachas,
which is exogeneous in this model, has declined, because the previous owners
could not afford to travel to the remote locations often enough to use them
as dachas efficiently. Also, the richer group of people would not buy these
dachas because they prefer and can afford to buy them in closer locations.
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Chapter 5

Location and Land Size Choice

A new approach for the general equilibrium allocation of a heterogeneous
divisible good (like land) among an infinity of heterogeneous consumers is
proposed. Consumers have different initial wealth and choose both qual-
ity and quantity of land; finally they have land in a form of intervals with
endogeneously defined borders. A solution for this problem exists and can
be explicitely constructed, but it involves indeterminacy related to order in
space.

JEL Classification: C68, D58, R33.
KEYWORDS: heterogeneous divisible good, general equilibrium.
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5.1 Introduction

This paper addresses the question of general equilibrium allocation of het-
erogeneous land across heterogeneous agents, when it is possible to choose
both land quality and quantity. This formulation of the problem is a concep-
tual generalization of an equilibrium with differentiated commodities, pro-
posed by Mas-Colell in 1975, where only the possibility to consume integer
quantities was considered. It is also different from the approach developed
later by Mas-Colell and Zame (1991), where different problems with infinite-
dimensional models were discussed. Here the functional classes are restricted
from all measurable functions to continuous functions, in order to eliminate
mathematical problems and still keep economic intuition. The basic differ-
ence between this paper and the product differentiation literature is in the
possibility of having an independent choice of both qualities and quantities
of these qualities, varying continuously. On the other hand, this paper can
also be seen as an extension of the models of Alonso and Fujita from a partial
to a general equilibrium framework.

The assumptions of the model were made so as to solve two puzzles (para-
doxes) in the location literature. The first paradox, studied by Berliant
(1985), is that in a model with a continuum of agents and a continuum of
land, it is impossible to allocate land in such a way that everyone holds land
parcels with positive measure. If land holdings have zero measure, the prob-
lem of quantity selection cannot be studied properly.

Berliant’s own proposed strategy is to concentrate on models where both
agents and land are discrete. Discrete models have been studied in a general
equilibrium framework, e.g. by Schweizer et al (1976). There land is modeled
as a finite number of discrete commodities, and the Arrow-Debreu paradigm
applies. However, in discrete models of land choice the size of land parcels is
restricted exogeneously, while in reality it may be chosen continuously and
therefore emerges endogeneously.

As Berliant and ten Raa (1991) showed, a second paradox is that the
results from discrete modelling do not automatically carry over to contin-
uous models. Considering the traditional approach in general equilibrium
literature, they constructed an example of non-convergence of a sequence of
discrete models to a continuous one. To overcome these difficulties, I adopt
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a slightly different strategy which has not been followed in the literature so
far. I assume that the set of agents is countable but possibly infinite, while
I retain the intuitively appealing assumption about land continuity!.

To ensure the analytical tractability of the problem, I will employ tech-
niques that were developed in urban economics. Alonso (1964) introduced
the concept of a rental bid curve, which can be derived for a particular type of
agent. Originally it was used in central business district theory for deriving a
price function, which makes an agent indifferent across a continuum of loca-
tions. With several types of agents one needs to study the upper envelope of
these curves in order to find an equilibrium price. Fujita (1989) constructed
an equilibrium solution with a finite number of types. However, these models
are more of a partial equilibrium nature. Beckmann (1969) used a technique
which will be called “mass preserving condition” and will play an important
role in this paper.

Heterogeneous land will be treated as a continuum of qualities, with a
continuous dependence on a spatial coordinate. Agents are assumed to have
identical preferences, and to differ only in initial wealth. The utility function
I consider is Cobb-Douglas in preferences for a composite good and land size,
and is a linear functional on the space of qualities. This allows for the possi-
bility of substitution between different quantities of land of different quality,
decreasing marginal utility of land, and also makes an agent indifferent be-
tween having a bundle of commodities (interval of land) of similar quality
and a particular size of land of average quality.

The general equilibrium problem can be formulated in the following way:
there is a big landowner (King) who values only the composite good (gold),
and heterogeneous agents with some initial wealth distribution coming from
endowments in gold with preferences for both gold and land. The land mar-
ket is assumed to have a natural restriction: land can be consumed only in
the form of intervals (connected sets).

The definition of a general equilibrium with an infinite number of agents

IThe idea of land as a continuum in the sense of set power is not important here. In
this paper “land continuity” means two properties: 1) land is an interval; b) the property
(quality) of land depends continuously on the spatial coordinate, which parametrizes this
interval
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is not an easy question. The description of an allocation involves a mapping
of agents from the set of wealths to the space of locations. In a discrete
model, the feasibility condition can be naturally formalized by requiring this
mapping to be a bijection. Excess demand leads necessarily to a congestion
of agents: several agents have to be mapped into the same piece of land.
But in a model with infinitely many agents this is not necessarily the case
because there exist many ways of defining a one-to-one map from the set of
wealths onto the land space. In particular, not every one-to-one correspon-
dence between two intervals can be generated as the limit of a sequence of
one-to-one correspondences between two discrete sets which approximate it
in a grid of points.

In order to design a continuous model that can be represented as the
limit of a discrete model without congestion, we therefore need to restrict
the densities of the continuous model in a suitable way. To do this, the usual
market clearing condition is reformulated here. We require from our contin-
uous model that the measure of agents in any given interval of the wealth
distribution is identical to the measure of agents in the image of this interval
in the land space. This “mass-preserving” condition was used by Beckmann
(1969) in a similar context, and it ensures that the continuous model can
emerge as the limit of a sequence of discrete models without congestion, such
that Berliant’s second paradox cannot arise.

Existence of equilibrium is not a problem in this model, the problem is
uniqueness. Sometimes there are too many solutions, resulting from two
sources of indeterminacy - indeterminacy in the value of a particular land
lot and indeterminacy in the order of agents in the land space. In the case
of a finite number of agents both indeterminacies work, so that neither price
functions nor borders can be uniquely determined. In fact, there exists a
continuum of solutions. However, when the number of agents goes to infin-
ity, the range of variation of individual wealth, resulting from indeterminacy
of prices at which he can possess a particular land lot, goes to zero. In the
limit, there is only one indeterminacy - the order of agents in space. For any
given order in space, the equilibrium price function, the size of chosen land
lots and the quantity of the composite good can be uniquely determined.
However, the general market mechanism studied above does not guarantee a
unique order in space if we start from any particular wealth distribution of
agents. The multiplicity of orders in space, which can take place even for the
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same price set, suggests that the market mechanism adopted here may not
be sufficient for the segregation of agents in space according to their wealth.

Equilibrium existence is shown by computing a solution for a particular
class of functions. For some particular orders in space, the analytical for-
mulae describing the mapping from the space of wealth to location space,
which is consistent with an individual land quality and land size choice, are
obtained.

The article is organized as follows. Section 2 contains the formal assump-
tions of the model. Section 3 elaborates the idea of a general equilibrium for
this model. The case with a finite number of agents (both homogeneous and
heterogeneous case) is considered in Section 4. Section 5 is the central part
of this paper: it is devoted to equilibrium allocations with an infinite number
of agents.

5.2 The Model

5.2.1 Set of Agents and Initial Endowments

There are two fundamentally different types of agents: one King (denoted as
K)? and the integer set I of agents, i € I. I is assumed to be countable, i.e.
either finite or infinite. To each agent ¢ we assign an initial wealth endow-
ment w; in such a way that w; > w;, Vi > j, i.e. we order agents by wealth.

In an environment of differentiated commodities the assumption that the
set of agents is countable and land is a continuum guarantees that we always
have more commodities than agents. Thus, agents can choose more than
one point in a commodity space, and this allows to introduce the choice of
quantity 3. This assumption is not usual in general equilibrium and product

2The necessity to introduce a special type of agents, who hold land, but do not value
it, emerges from the impossibility to assign uniquely wealth from land, owned by a finite
number of “normal” agents, who value both land and composite good. Although one King
will introduce a possibility of monopolistic behaviour, it will not take place here, because
of special preferences of King. It is also possible to replace King by an infinite number of
equal landowners, to ensure competitive bahaviour. However, in the case of finite number
of normal agents this looks a bit asymmetric

3Under a special assumption about the utility function, which is discussed later
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differentiation literature, where the total number of agents is usually higher
or equal to the number of varieties.

The model has very different properties depending on whether this count-
able number of agents is finite or infinite. Both cases will be considered sep-
arately. A special agent (King, landowner) is also introduced to close the
model: he differs in preferences and initial allocation from the rest of the
agents. The King initially holds all the land, but has no positive endowment
of composite good. Agents have heterogeneous initial holdings w; of com-
posite good, which gives rise to the endowment distribution. Generically, all
agents have different endowments; hence, they can be ordered with respect
to their wealth, w;. In the case of an infinite number of agents, for math-
ematical reasons it will also be necessary to represent them with a density
function f(w).

5.2.2 Commodities

There are two commodities: a composite good C' and a differentiated com-
modity L (land). The composite good is assumed to be a numeraire, with
price normalized to one. The supply Cy of the numeraire is fixed by the
initial endowments: Cy = > w;. Land L is the continuous set of locations x
inside the unit interval on the real line, L = {z : z € [0, 1]}. Locations may
also differ by their quality v(x), which is assumed to be a strictly positive
differentiable function on the unit interval. If v(z) = const, land is said to be
homogeneous in quality. Alternatively, land is a continuum of differentiated
commodities.

5.2.3 Land Quality and Preferences

With respect to preferences, we have two types of agents. The King val-
ues only the composite good and derives no positive utility from land (thus
Urx = C)*, while all the other agents value both the consumption good and
land, and do not differ among each other in their preferences.

4We can even impose a small disutility from holding land for him, in order to eliminate
the strategies of not selling all land, which may emerge from his behaviour as a monopolist.
In the case of many kings, behaving competitively, this is not necessary
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An allocation may be described by the quantity of the composite good, C,
and the land interval, [a, b], owned by the agent. The utility of this allocation
is given by

U=Clb— al] /bv(x)da:, (5.1)

a

where v(z) represents the land quality preferences and « is a parameter,
a € (0,1). This utility is linear in qualities (thus proportional to the average
quality), but has the property of a decreasing marginal utility to the volume
of a bundle. If 1) represents land size, 1» = b — a, the utility can be written
as

b

U=0Cy* ! | v(x)de. (5.2)
Denoting the average land quality by v*, the utility is U = Cy*v*. For
v = const it reduces to the usual Cobb-Douglas utility for C' and land size
¥. It has some analogy with the Dixit-Stiglitz preferences which include the
L,-space norm of variety bundle ||v||, = [[ vP(x)dz]*/P. Here p = 1, and this
guarantees linearity. However, because we want a decreasing marginal utility
to the volume of the bundle of closely substitutable commodities, we depart
from considering utility as a linear functional on the whole bundle (see the
examples by Mas-Colell and Zame (1991)). For small land heterogeneity,
||lv(x) —vgl|1 — 0, and this allows for a continuous transition from the prob-
lem with homogeneous land to the problem with heterogeneous land. This
functional form is very useful for the problem of simultaneous selection of
qualities and quantities (the relevant lemma will be proved later).

The problem allows for a simple generalization. Imagine that land is
two-dimensional, heterogeneous along one axis x, but homogeneous along
the second dimension y. Then we can only consider heterogeneous locations,
and pool together all land of the same quality. This gives rise to land density
L(z), which is assumed to be a continuous function. Then the land quantity
inside the interval [a, b] of heterogeneous commodities is equal to [* L(x)dx. If
L(z) = 1, we return to the initial formulation of the model, without different
land densities. Later we will restrict the consumption of land only to the
form of intervals of differentiated commodities: consumption of two varieties
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would automatically require the consumption of all intermediate varieties.
On such bundles the utility can be represented by the Stilties integral

U=Cy*! bv(a:)dl(x), (5.3)

a

where dl(z) = L(z)dz and ¢ = [* L(x)dx.

The utility was chosen of multiplicative (Cobb-Douglas) type in land and
composite good in order to avoid problems with boundary solutions. They
emerge, for example, for the utility additive in land and numeraire. Different
classes of utility might give rise to different properties of the solution.

5.3 The General Equilibrium

The general equilibrium of this model is a competitive equilibrium, i.e. all
agents are taking prices as given. All of them are maximizing their utility
subject to a budget constraint. However, there are several differences with
the general equilibrium problems usually considered in the literature. First,
the market clearing condition takes a special form here, which we will call
“mass preserving condition”. It is necessary to ensure the convergence of
a sequence of models with finite number of agents to the limit model with
an infinity of agents. The advantage of this approach is also shown in one
example in Appendix 2. Second, because of lack of ex post competition at
any market a King is introduced, who initially owns all land but does not
value it. Economically, he is necessary to ensure an objective valuation of
bundles of land with different quality. (The assumption of price-taking be-
haviour in this model is quite natural, because there is no room for ex post
bargaining on land between neighbours after the equilibrium allocations are
obtained). While the King may potentially create monopolistic behaviour,
under certain conditions (discussed later) his utility maximization will coin-
cide with an optimal behaviour as a market regulator. There is no difference
between the models with one King and infinitely many Kings; in this model
monopolistic behaviour cannot perturb a perfectly competitive outcome.

The economic concepts and mathematical tools used for the description
of a general equilibrium allocation are quite different for the case of finite
and infinite number of agents. While in the finite case land ownership is
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represented by intervals, agents can be represented by an ordered sequence
in wealth space and markets can be cleared at every point, the limit transition
to the infinite number of agents would require the introduction of densities,
mappings and a new form of market clearing condition. An appropriate
choice of the limit economy would allow us to escape the second paradox
of Berliant and to have a continuous transition between finite and infinite
models.

5.3.1 Allocations

All the definitions will be given initially for a finite economy. Later the dis-
cussion on how to use them for an economy with an infinite number of agents
will be provided. For the sake of simplicity, we consider L(z) = 1. It is easy
to generalize these definitions for any L(z), just by using ¢; = fé’: L(z)dz.

An allocation of agent i includes a quantity of composite good C; and an
interval of land [a;, b;[. Intersection of land intervals belonging to different
agents is not allowed. Thus, any equilibrium allocation is a partition of the
total land interval X = [0, 1] into U;[a;, b;[, where b; = a;41. The alternative
representation of this interval includes its center z; = (b; + a;)/2 and its
length v; = b; — a;. This can be summarized in:

Definition 5.1 An allocation for agent i is the set A; = {x;,v;, C;}, where
T; € Xﬂ,bz S R+,Ci S R+.

Later it will be shown that an agent is indifferent across a bundle of similar
land qualities and some quantity of the average quality. This allows for
double representation of allocation: by the pair of numbers z;,v;, or the
pair of borders [a;,b;]. The restriction to have land only in the form of
intervals is an important assumption of this paper. It implies a very special
market structure. The notions of individual feasibility and social feasibity
are introduced below.

Definition 5.2 The allocation is called individually feasible if it contains a
connected set (interval of land [a,b] € X ) and some quantity of composite
good, and the budget constraint is satisfied.

Usually the set of allocations is considered in an economy with the num-
ber of dimensions I times higher than the dimensionality of an individual
allocations space.
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Definition 5.3 A set of allocations defines a vector mapping between the
set of agents I and the allocation space (X x R x R)L: {z; = F(w;),¢; =

Now it is useful to reduce the dimensionality of the allocation space, keep-
ing the only “copy” of the location space X. The land quantity is an interval,
symmetrically located around the central point z;: [F'(w;)—®(w;)/2, F(w;) —
®(w;)/2] (the possibility of such a treatment will be discussed later).

Definition 5.4 An allocation A = UA; is called socially feasible, if it con-
tains the union of disjoint intervals |a;, b;[, which correspond to individual
allocations and cover the whole space: Ula;, b= X (Fig. 5.1).

Thus, any socially feasible allocation contains a partition of the land in-
terval into the union of subintervals.

When we consider the limit economy, we usually consider the limit prop-
erties of very large economies. Any economy with any finite number of agents
above some fixed Ny has allocations in the form of intervals, so all definitions
are still valid. But the limit economy itself is better described by densities.
There are two densities to be introduced in this model: the density of con-
sumers in wealth space f(w) and the slot density S(z) (which will be defined
later). It is also possible to introduce these densities for finite N: first we
can construct a hystogramm by dividing the interval into about v/N bands
and calculating the number of consumers inside. Later a spline method can
be used to reconstruct a continuous density on the basis of a hystogramm.
Later the mapping between these two continuous densities can be introduced.

In a model with a finite number of agents the wealth is assigned only to
a finite subset of the wealth interval. Since at equilibrium every point in
land space X is assigned to some agent, we have a correspondence between
wealth space W and location space X, with some points w € W having
many images and the rest having zero. We are interested in the possibility
of constructing a continuous mapping F between the wealth and location
spaces and to assign to it some reasonable meaning for an infinite number
of agents. We will study the properties of the mapping F' : W — X (Fig.
5.2). Up to now, the wealth was defined only on a subset of wealth space,
containing a countable number of points w;. In Appendix 3 it will be shown
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that the wealth distribution allows for double mathematical representation:
as an infinite set w; and as a wealth distribution f(w). We need this double
representation, in order to have a bijection from the wealth space to the set
of chosen locations and to the set of land allocations.

Generally speaking, this mapping may not be a bijection and not preserve
measure of agents. Later it will be shown that these properties are required
by a mass preserving condition. When N is finite, the usual market clearing
condition works well. But for the infinite N (and for big N asymptotically) is
should be replaced by a stronger condition of mass preserving mapping from
the set of agents i € I (or from the wealth space) into the set of locations
x; € X. The mass preservation would require the consistency of location
choice F' with the land size choice, given by the mapping ®. The set of
locations is chosen by agents and it is a countable subset of the unit interval.
It defines a set of land parcels v; in a unique way. In contrast to the set of
locations, the union of the elements of the set of land parcels coincides with
the unit interval X.

5.3.2 Market Clearing and the Mass Preserving Con-
dition

The usual market clearing condition, which requires markets to clear for each
commodity, is not sufficient for the model with an infinite number of agents.
This is due to the congestion problem mentioned in the introduction: what
can be represented in a model with continuous land cannot always be trans-
lated back into a discrete model. While in a continuous model agents of
different types could choose very close points, in its discrete approximation
they may end up with the same slot. This gives rise to the congestion prob-
lem underlying Berliant’s paradox. An example in appendix 2 reveals the
economic intuition about the congestion problem. Its mathematical origin
is in the fact that a point has a measure zero. The market clearing condi-
tion for any particular commodity is an equation in a point. Aggregation of
these conditions can be done in many different ways, and the correct way is
one which is based on the mass preservation of agents under mapping. The
continuity of this mapping (almost everywhere) is an important requirement.

The mass preserving condition can be written as f(w)dw = dxL(x)/S(x).
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Here L(x) is the density function, describing the measure of land in location
x, and S(z) is the land size in z, chosen by agent of type w, where w is
the inverse image of x. Geometrically, it can be thought as a rectangular
[x—S/(2L(x)), x4+ S/(2L(x))] x [0, L(x)]. Thus, the measure preserving con-
dition indicates that the measure of agents in the interval dw of the wealth
distribution should be equal to the measure of the image of this distribution
in the land space. The differential form of market clearing condition, was al-
ready used by Beckmann (1969). It is actually stronger than the traditional
condition of market clearing in each point (which would be of measure zero
here) as it requires market clearing in any neighbourhood.

The mass-preserving condition is a continuous form of a “correct” market
clearing condition, when the number of agents goes to infinity. In the fol-
lowing lemmas it will be shown, that it is not only a correct form of market
clearing for an infinite number of agents, but also is an asymptotic approx-
imation to a discrete, usual form of market clearing condition. For a finite
number of agents the clearing of each market at location x means that land
in this location in equilibrium can belong to only one owner. A solution to
such a problem would include a price function and allocations. Allocations
can be described as a correspondence between the set of agents and intervals
where they locate. When the number of agents goes to infinity, the set of
points which they occupy in wealth space can be approximated by a con-
tinuous wealth distribution function f(z). What we need to prove is that
small perturbations of the wealth distribution (including replacing a discrete
distribution by a continuous one for a finite but large V) have small impact
on the solution as a whole. As it will be shown, there exists indeterminacy
related to order in space. Thus, closeness of solutions would mean a small dif-
ference between 2 solutions of different problems (continuous and discrete),
but generated by the same order in space.

Lemma 5.1 The equilibrium price depends only on average wealth of all
agents and not on its distribution.

PROOF: See Appendiz 1.

Definition 5.5 Let {w;,i = 1,...N} be the set of initial wealths (later: dis-
crete wealth distribution) for a problem with finite number of agents N. We
can construct a hystogramm, dividing the wealth interval into N subinter-
vals, and then smooth this distribution using spline method. As a result we
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get a continuous distribution fx(w), which corresponds to a discrete problem
with N agents.

Definition 5.6 Consider a sequence of discrete models with discrete dis-
tributions of wealth and increasing N in such a way that the total wealth is
preserved: W = SN w; = const, VN . This sequence will be denoted { My y},
and any of its elements as My n.

Definition 5.7 Consider a sequence of discrete models with continuous wealth
distribution fy(w), increasing N and preserved wealth: W = [5° fn(w)dw =
const,YN. This sequence will be denoted as {M.n}, and any of its elements
as M. n.

This fy(w) can be treated as probability distribution of wealth, so that
the agent’s location in wealth space is smoothed between its central posi-
tion w; and the centers of intervals connecting him with his left and right
neighbours in wealth space (see Appendix 3 for more details). We want to
establish asymptotical equivalence of descriptions by discrete and continuous
wealth distributions for big N. For this, we need to show that the difference
between the solutions for any realization {w;(§),i = 1,...N} (£ - random
parameter, fixing realization) is small in an appropriate normed functional
space (the details will be provided later). This allows us to make no distinc-
tion between discrete and continuous distributions already for big finite V.
Then both sequences My y and M.y would generate Cauchy sequences in
the space of norms of the solutions. As it is known from functional analysis,
there exists a limit for such sequences. We will assign the topological proper-
ties of discrete wealth model (allocations as intervals, etc) to this limit, but
we will also use functional properties of the continuous functions. In such a
manner, the mass preserving condition would become a description of market
clearing condition when N — oc.

Lemma 5.2 When N — oo, the difference between the problem with discrete
wealth distribution {w;} and its continuous analog fx(w) becomes infinitely
small. Thus, a model with continuous wealth distribution is an asymptotical
approzimation of the model with discrete wealth distribution.

PROOF: See Appendiz 1.
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Lemma 5.3 Consider all realizations {w;(£)} of a distribution fy(w). For
big N the solutions for all these realizations are close to each other.

PROOF: See Appendiz 1.

Proposition 5.1 All the solutions of any particular realization of the wealth
distribution with some particular order in space are in the e-ball of the solu-
tion to the continuous problem, obtained on the basis of the mass-preserving
condition.

PROOF:
As it was shown in Lemmas 5.2 and 5.3, we can choose Ny such that VN, N >
Ny: |Md,N — Mc,N| < 6/3, Mc,N — Mc7oo| < 6/3 and ‘Md,N,g — Md,N| < 6/3
Using the triangular theorem, we can estimate the difference between solutions
for all realizations of the random wealth distribution: |Mgne — M| < €.
For the problem M, ., we use mass-preserving condition.

Proposition 5.2 1. For a finite number of agents, when we restrict our at-
tention to the class of solutions, preserving order in space, the market clearing
condition can be written also in the form f(w)Aw = (L(z)/S(x))Ax.

2. The mass preserving condition f(w)dw = (L(z)/S(z))dx is equivalent to
social feasibility for a problem with infinite number of agents, and thus rep-
resents a correct form of market clearing condition.

PROOF:
1. For a finite N we choose Aw and Az in such a way, that all agents from
the wealth bracket Aw choose to occupy the land interval Ax. Since f(w)Aw
by construction is the number of agents in this wealth bracket, the same
number should be preserved in the land interval Ax. The market clearing
condition requires to the allocation of only one agent to each land commod-
ity, and it holds here.

2. Now we will proceed with a continuous model, but we will also talk
about asymptotics for high N. Let f(w) and g(x) be continuous functions
describing densities of probability distributions, and let x = x(w) be a con-
tinuous mapping between the sets {X : x € X} and {W : w € W}. The
condition f(w) = g(x(w))dz(w)/dw holds for any differentiable monotonous
function of a random variable (see Korn [20], for example). Consider a dis-
crete model with N sufficiently large (Fig. 5.2). Let w; be a random variable
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with the support [(wi—y + w;)/2; (w; + wiy1)/2]. Then Ve > 0 there exists
so high N(€), that any realization of this wealth over the support would be a
small perturbation of the initial problem. Hence, the difference between the
solution of the problem where f(w) has a continuous distribution or a par-
ticular discrete realization of it, will be infinitely small (See Prop.1).

3. Suppose that we have individual and social feasibility, i.e. all land is
the union of intervals, corresponding to indivial land allocations. Then for
any socially feasible allocation we can construct a mapping x = F(w), first
on a discrete set of points, and then by associating a continuous wealth dis-
tribution f(w) to any discrete wealth distribution w; (see Appendiz 3). The
mass preserving condition should hold as the mathematical theorem about
transformation of densities under continuous monotonous mappings.

4. The mass preserving condition states that the measure of agents in
any neighbourhood of any point in the wealth space and in its image in the
space of locations should coincide. Suppose that a neighbourhood dw ezxists,
such that there are more agents in its image dx, than in itself. Then there
will be at least some points occupied by more than one agent, and this con-
tradicts feasibility. Suppose that there exists a neighbourhood dw, such that
there are more agents in it, than in its image dx. Then some agents from
this neighbourhood will choose to have no land, which is never possible for the
considered utility function (for muliplicative utility we always have in equi-
librium an interior allocation for positive wealth and positive price for any
land with strictly positive quality).

The mass preserving condition is an important instrument to solve the
second paradox of Berliant. As it is shown in the appendix, in a model
with a continuum of agents there may be many solutions in a form of a
one-to-one correspondence, which cannot be generated as the limits of some
sequence of discrete problems with such a property. Although we have only
an infinity of agents here (not a continuum), this infinity can be represented
by a continuous wealth distribution function (see Appendix 3); and this is
already a continuum.
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5.3.3 Price System P(x)

Since we have a continuum of commodities, we need a continuum of prices.
For any commodity the price is a positive number: Vx € X : P(x) € Ry.
Since we assumed v(z) to be continuous, we will require P(z) to be a con-
tinuous function of x°. Any allocation can be supported by some selection
of prices P(x). The price of a land parcel [a,b] is defined as P([a,b]) =
J° P(z)dx. By continuity, for small parcels we have the following fomula:

P(lz,z + dz]) = P(z)dx = P(x)1. (5.4)

5.3.4 Definition of Equilibrium

In the case of a finite number of agents the general equilibrium does not differ
from the one considered in the literature [21]. Tt includes utility maximiza-
tion for every agent subject to the budget constraint and market clearing
condition. For the considered utility function, expenditures on a composite
good would always form a fixed fraction of the wealth of each agent, hence
of the total wealth W. Thus, it is possible to set the price of the composite
good to one (it will be a numeraire), when the total amount of this good
at the market represents this particular fraction of the total wealth. Market
clearing for land should be provided in each location, i.e. each location z can
be assigned to one and only one owner.

Before the formal mathematical definition of the general equilibrium for
the model with an infinite number of agents it is necessary to clarify the
equality S(z;) = ¢¥(w;) used there. While ¢ is the land size chosen by an
agent with wealth w;, in an equilibrium it will lead to occupation of the land
interval of size S: [x; — S/2,x; + S/2] by this agent. The sizes of S and ¥
are equal, and therefore this equality is true. However, these functions have
different arguments. For N = oo it is possible to introduce slot density in
a point . While each agent would formally occupy zero land, it is possible
to keep track of the relative density of agents in land space (after they have
made their choices) p(z). The number of agents in the interval dz is equal to
p(x)dz. It is also equal to all land inside this interval, L(x)dx, divided by the
slot density S(z). Hence, we have: p(x) = L(z)/S(xz). Now we can define
the general equilibrium for the model with an infinite number of agents.

5The continuity of the price system was also required by Mas-Colell and Zame (1991)
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Definition 5.8 The general equilibrium for the model with an infinite num-
ber of heterogeneous agents is a distribution of land slots S(x), a mapping
F(w) of agents with different endowments w into slots S(x) in chosen loca-
tions x(w), and a set of prices P(x) per unit of land in location x, such that
the following requirements are satisfied:

1) each agent of type w maximizes his utility subject to his budget constraint,
taking price schedule P(x) as given;

2) the simultaneous choice of x(w) and (w) generates a mapping x = F(w
and the partition of the interval [0, 1] into slot density S(x), where S(z)
U(w);

3) the supply is equal to demand in any small neighbourhood of any type:
flw)dw = dxL(x)/S(x) (this means that the measure of any small neigh-
bourhood of each agent is preserved under this transformation);

4) the market for the composite good C' clears.

~—

There are two interesting and significantly different cases: with finite
and infinite number of agents. The case with a finite number of agents is
interesting for bringing the intuition for two different indeterminacies into
this model. One of them can be eliminated when we move from the finite to
an infinite case. The next section contains a sequence of small models related
to the finite number of agents. The infinite case will be considered later.

5.4 Finite Number of Agents

5.4.1 Homogeneous Land

We consider first the problem with homogeneous land (v(z) = 1) and a
finite number of consumers. We can assume without loss of generality that
L(z) = 1, since only the total amount of land (and not its geographical
map) matter here. Suppose that we have N agents with different wealths
w;, v = 1,2,...N with preferences U = C¥®, and a King with preferences
U = C, who initially owns the whole land interval [0, 1]. Since locations do
not enter preferences, agents are indifferent across them; they choose only
land volume. King who is willing to get composite good (which is numeraire
with price 1) sets such a price P for land (which does not depend on location),
so that all land can be sold®. It is easy to show that under these preferences

6Tt can be easily shown that he cannot get more revenue by monopolisitc behaviour,
because of unit elasticity of demand for land
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the demand of agents is given by the following formulae:

aw;

Ttap (5.5)

w.
C~ = _r . P
(2 1 _"_ Qa ) ,l/}’L
The price can be determined from the market clearing condition: >, v; = 1.
It is always a constant fraction of the total wealth of agents W = Y, w;:
P =W
We consider land here as one commodity, disregarding location, and thus
equilibrium is unique. If we allow land ownership only in the form of inter-
vals, this equilibrium gives rise to as many different allocations in space as
different orders in space (it is N!, where N is the number of agents). This
will be one of the reasons for indeterminacy.

5.4.2 Heterogeneous Land. Basic Indeterminacy.

Let L(z) = 1. While introducing L(x) makes it possible to consider two-
dimensional geographical maps for land, for any v(x),v'(x) > 0 there always
exist a possibility of a nonlinear transformation of coordinate x into a new
coordinate z = z(z), so that land quality becomes another function ©(z) with
similar properties and L(z) = 1.

The utility function allows for a possibility of a continuous transition be-
tween homogeneous and heterogeneous cases. Although we formally have
a continuum of commodities instead of one, for a small heterogeneity (as a
small norm of differences between homogeneous and heterogeneous quality
in a functional space) the difference in utility is also small. However, het-
erogeneous land brings another sort of indeterminacy into the model. It will
be shown that due to the lack of competition for “inside land” the price
of it cannot be uniquely defined. Hence, the wealth from its possession is
also undetermined, and this leads to a difficulty in defining borders, even if
some order in space is chosen. But with the increase of number of agents
the relative weight (in the sense of functional norm) of this indeterminacy
declines, and in the limit there is no wealth indeterminacy. We can also
talk about the convergence of a sequence of discrete models to one with an
infinity of agents. Although an indeterminacy exists for any finite number
of agents and disappears in the limit, the set of possible solutions for any
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discrete model can be put inside a compact ball, and the sequence of these
balls converges to a solution of the problem with an infinity of agents. There
are still many equilibria (it will be shown in the next section that they can
be classified by the order of agents in space), but the same indeterminacy
exists for discrete models as well. If we separate the balls, which correspond
to each order (taking it for example as wealth preserving), then we can talk
about this convergence.

Let us consider formally a model with two agents and heterogeneous
land. Let land quality v(z) be a positive monotonously increasing function.
Assume that the first agent is located to the left, between x € [0, z|, and agent
2 - between z € [z, 1], where the border z has to be determined endogeneously.
If v(x) = x, the problem is even simpler, because for a linear quality function
the utility from the bundle of lands of different qualities is exactly equal to
the utility in a central point, multiplied by the power « of land size. Then
the Lagrangians are:

Ly = Cro(2/2)2% + Mw; — Oy — /0 P(x)daz); (5.6)

Ly = Cyu((1 = 2)/2)(1 — 2)* + Agfws — Cy — /: Pz, (57)

Consider an example with v(z) = z. The first order conditions lead to the
following equations:

A = za2+1; P(2)z =Ci(a+1); (5.8)
Ch = wy — /0 CP)dr; (5.9)
U Puoan PO - =Gl 4a):—14a)  (5.10)

Cy = wy — /1 P(x)dz.  (5.11)

While we need to define the whole function P(z), we only have a few algebraic
equations, which allow us to find the border price P(z) if we know P(x) in
the rest of the points. Exclusion of P(z) gives an algebraic equation for z

a+1 1+a)z—14«

i~ [Py = T [w2—/zl P(x)dz].  (5.12)
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which has as many solutions, as many possibilities we have to choose the
function P(x). Adding a market clearing condition does not help much: still
the class of possible price fields includes a continuum of elements. Thus, we
have:

Proposition 5.3 The considered problem has a continuum of solutions, and
the shape of equilibrium price function P(x) cannot be determined uniquely
from the optimization problem.

Note that we have not yet considered the indeterminacy related to order
in space. This issue will be considered in details in the problem with an
infinite number of agents.

5.4.3 The Degree of Indeterminacy. Convergence

The indeterminacy of the problem with a finite number of agents is so high,
that not even individual wealth can be uniquely determined. Is there some
chance to get rid of it when the number of agents grows unboundedly? What
is the reason for this indeterminacy?

Suppose that we have a King who initially owns all land, with a monotonously
increasing and continuous v(x). He can set prices in such a way that the
buyers would be indifferent across locations. With the preferences consid-
ered here he just needs to set P(z) = Av'/*(x).

Will the final allocation be stable after purchases at these prices have
taken place? Not necessarily. Note that we are facing a game theoretical
situation, since the King no longer can be a market maker, having neither
land nor preferences for it. Each agent ¢ would have some bundle of land with
minimal quality v; and maximal quality v,. The prices can be determined
only at the borders at such a level that no agent would be willing to resell
small pieces of land to their neighbours. All prices inside should clearly be
a monotonous function of quality, but there is no market mechanism which
would prevent agents from overvaluation of his internal land while bargaining
with neighbours (Fig. 5.3). Another problem is that prices at which an agent
can buy or sell land may be different, because of hedonic valuation: the less
land of the same quality an agent has, the higher his marginal valuation
will be. All this gives rise to a multiplicity of equilibria, related to the
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indeterminacy of the price function. But some estimates can be made. The
prices of the worst land (left border a;) and the best land (right border b;)
are determined by the market. Thus, the upper bound of the wealth of agent
i in land is P(b;)(b; — a;), while the lower bound is P(a;)(b; — a;). When
N is increasing, the ratio of the land quality variation to an average quality
is vanishing to zero for all agents. Thus, the ratio of price indeterminacy
to the price at each point is also vanishing to zero. The following lemma
summarizes these results.

Lemma 5.4 Let P, (x) be the equilibrium land price for an infinite number
of agents, and let Pn () be one of the price functions at which an equilibrium
can be supported for N agents (there are many possibilities, indezxed by k).
Let en be the degree of indeterminacy of the land price function, formally

defined as
oo - maxy [Py (@) — Poo(2)]]
N — 3
|| Poo ()]
where ||f]| is the L, norm of f. Then ey — 0, when N — oo, and the price

indeterminacy asymptotically disappears (Fig. 5.4).
PROOF: See Appendiz 1.

(5.13)

Note that P, will coincide with the King’s valuation of land, which would
make him indifferent across locations, if he would like to possess land. The
absence of an interest in land makes him a non-strategic player, and he is
actually a market maker, while he wants to get maximal revenue from land
sales. Because of the last lemma, it makes sense to study the problem with
an infinite number of agents.

5.5 Equilibrium Allocations with an Infinite
Number of Agents

5.5.1 Problem Formulation and the Equivalence The-
orem

Before solving the problem of land choice formally, it is useful to employ
the equivalence theorem, which allows to reduce the dimensionality of the
problem (from continuum to infinity) and to have a utility function which
has both quality and quantity in its arguments.
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Lemma 5.5 For N — oo, when an agent changes his choice marginally
moving one of the borders, the impact of land volume change is unboundedly
larger then the impact of quality change.

PROOF: See Appendiz 1.

Theorem 5.1 For N — 00, the problem where each individual chooses a
bundle represented by a land interval [a,b] (and some quantity of a composite
good) for a utility U = Cy* [P v(x)dx with differentiable v(x) is asymptoti-
cally equivalent to a problem with the utility function U = Cy* 'v(x), where
each agent has to choose only x and 1. This allows to reduce the dimen-
sitonality of varieties from a continuum to infinity, and gives the freedom to
specify this infinite (basic) sets of varieties in many possible ways. For the
last problem, agents have to choose locations in space and the quantity of
land of the quality corresponding to these locations.

PROOF:

By Lemma 1, U = U(1 + O(1/N)), and thus both utilities asymptotically
coincide.

For a sequence of agents ordered by wealth, consider the following opti-
mization problem:
Crnax Ul, Ul = Cﬂ)(l’l) Za, (514)
s.t. Ci > 0;4; > 0;

All agents ¢ € I are maximizing their utility taking prices as given. As was
mentioned before, we can introduce an infinite number of Kings, each initially
owning the same land endowments 7. Then a King cannot play strategically
with prices as a monopolist. But even one King, under our assumption about
his utility, cannot do it. If he would deviate from the price P(z) = Bv'/*(x)
(it will be obtained further as an equilibrium price, under which there would
be no secondary trade among agents) by setting lower B, he will get less
revenues. But setting B higher will not allow him to sell all land because of
the unit elastic demand for it. Adding a small disutility from unsold land
(maintainence cost) would make the King choose optimally that particular

"Although this is a standard assumption of perfectly competitive markets, it sounds
not very realistic. However, historical stories with crusaders of conquistadors selling land
to buy weapon might serve as a reasonable background
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B, which would make this equilibrium stable and optimal (there would exist
no Pareto improving trade across agents). Formally, we can forget that the
King is a utility maximizer and think of him as a market maker. We also
add the market clearing condition in its special form of “mass preserving
condition” for the reasons discussed above.

5.5.2 The Solution Method

Consider the array of Lagrangians, formally associated with agents:
Li = OZU(ZL'I)l/JZa + /\Z[w, - Cz - P(ZL‘I)I/JZLZ = 1, 2, (516)

The First order conditions give 4 infinite sequences of equations:

oL;
ac«l ’U(a:l)wz )\l 07 (5 7)
oL; a1 o
90 Civ(x;) s NiP(x;) = 0; (5.18)
L.
0L = G/ () ~ NP (o = 0, (5.19)
oL;
=w; — C; — P(x;)Y; = 0. 2
g =V C; (x); =0 (5.20)
It is easy to show that
w; aWw;
- P — 21

Land expenditure is a constant fraction of wealth for each agent i.

Definition 5.9 The isoutility curve in space (x,1(x)) for any given price
function P(z) (under which an agent would choose the land size ¥(x) in a
location x) is a relation between x and ¥ (x), such that utility from land is
constant: v(z)Y*(x) = const (Fig. 5.5).

The isoutility curve is a compact representation of an indifference curve,
which is a continuum of equalities across bundles [a(y),b(y)];y € X.

Definition 5.10 The isoexpenditure curve P(z)i(x) = const space is a
compact form of a budget line, which includes only constant land expendi-
tures on different bundles of land (Fig. 5.6).
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The new terms are used here because the budget constraint usually in-
cludes all expenditures. Fortunately, for this utility the fraction of expendi-
tures on land does not depend on the bundle, and it allows us to consider
the land subbudget, which gives rise to the isoexpenditure curve.

Lemma 5.6 For the problem considered, the isoutility curves coincide with
the isoexpenditure curves P(x)i(x) = const, for each individual indepen-
dently of wealth.

PROOF:
For Cobb-Douglas preferences in quality and quantity V = v(z)y®, the expen-
itures are fized fraction of an individual wealth. Thus, ¥(x) = yw;/P(z);y =
a/(1 + «). For each individual i, we can find a Pi(x), such that makes his
utility constant at every location, given that he spends a fixed fraction of his
wealth.

The sequence of F.O.C. arising from location choice formally gives the
differential equation, which can be reconstructed from the equalities in an
infinite set of points:

— . (5.22)

Its integral is equal to P(z) = BvY%(z). The parameter B should be a
constant; otherwise it cannot be an equilibrium, by an arbitrage argument.
Note, that since isoutility curves have the same functional form, this price
field would generate the same utility from a small, arbitrary fixed land size
1 in all locations for all agents. It can be used as a candidate for an equilib-
rium price function. The constant B can be selected on the basis of the mass
preserving condition. If the same B would be obtained for different orders
in space, then we have a muliplicity of locational equilibria, associated with
this particular price function. This will later be shown to be the case for our
problem, but for different utility functions it would not necessarily be the
case.

The problem of simultaneous choice of land quality and quantity by an
infinite number of agents can be solved in the following way:
a) isoutility curves (analogies of rental bid curves) are constructed for each
agent 7; they define individual prices at which agent ¢ is indifferent across
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bundles in different locations;

b) for any given order of agents in space the mass-preserving condition is
used to determine corresponding x; and ;; this will uniquely determine en-
dogeneous borders a;, b;;

c¢) chosen locations x; will determine a particular realization of an infinite-
dimensional space of varieties, and then Theorem 1 can be used.

Now consider the sequence of market clearing conditions. For each small
neighbourhood of agent 7 in the wealth and location space the mass preserving
equality should be satisfied. It can be transformed using the already obtained
expressions:

1+«

wf(w)dw = B o

L(z)vY(x)dx. (5.23)

The integration of this differential equation will give a two-parametric fam-
ily of functions G(z,w; A, B) = 0, which are candidates for the continuous
mapping. Now there are two more conditions, related to the correspondence
between the ending points of the intervals in the space of wealths and the
space of locations. There are many possibilities to construct a solution: the
simplest are the order preserving and the order reversing mappings. Each of
them determines uniquely A and B, and thus the mapping. Note that the
condition linking the integral of wealth and the integral of prices will appear
automatically, on the basis of individual choice and the mass preserving con-
dition. Both parts of the equation (20) can be integrated for some ordered
correspondence across wealths and chosen locations. Thus, the mapping be-
comes monotonous and defined for all elements of the set. This generates
the equilibrium price function and the size of chosen land for every agent in
a unique way. Thus, we have:

Theorem 5.2 For any differentiable monotonous function v(x) and any in-
tegrable functions f(w) and L(x) the equilibium ezists. Generically, it is not
unique, since for different classes of orders in space the problem may have a
separate solution.

5.5.3 Multiplicity of Equilibria

In this model we can obtain a family of price functions of a particular shape
related to function v(z): P(z) = Bv'/*(z). Since all agents optimally spend
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a fixed fraction of their income on land, the integral of the price function
over space should always be equal to a constant fraction of the total wealth:
Jo P(x)dx =~ [ f(w)dw. This uniquely determines the constant B, which is
consistent with equilibrium. However, at this price we have as many equilib-
ria as orders in space among agents: N!, where N — oc.

5.5.4 An Example of a Particular Solution

Consider a uniform wealth distribution: f(w) =1, w € [0, 1], and quality lin-
early increasing in location: v(x) = z. Let L(z) = 1, since as was mentioned
earlier, the choice of a non-uniform L(x) is equivalent to some monotonous
perturbation of this land quality function.

First, we will determine the mapping. Suppose that it is order preserving,
i.e. w =0 maps into z =0, and w = 1 maps into x = 1. Then

pleY

r=F(w) =wa. (5.24)

The set of prices and sizes of chosen land, corresponding to this mapping are:

1
P(z) = ixl/a; (5.25)
200 a1
S(z) = T a7 Za (5.26)

We can also construct a solution with the reversed order. It corresponds to
the same price function, but the mapping will be different:
r = F(w) = (1 —w?)e/(eF),

5.6 Summary

This paper extends the locational results of Alonso [5] and Fujita [6] to the
case of an infinity of types of agents, when the difference is in wealth. It also
extends the theory of differentiated commodities for the case when the con-
sumption of different quantities of different qualities may take place. Here
the problem with a countable number of agents heterogeneous in their wealth
is studied. When agents have both freedom to choose location and land size,
the general equilibrium solution involves a mapping from the space of types
into locations and slots of land, supported by a set of prices in such a way,
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that each agent maximizes his utility and the supply is equal to demand in
any small neighbourhood of each type.

In the most general formulation of the utility function the problem can
not be solved explicitely, and it is not clear whether is has a solution. That
is why the preferences were narrowed to a class of utilities multiplicative in
land quality and land size. The existence of a solution was proven by con-
struction. However, this problem has a multiplicity of solutions, different in
the order of agents in space.

The first cause of indeterminacy is the impossibility to price land uniquely
when the number of agents is finite. This indeterminacy is shown to disap-
pear asymptotically when the number of agents becomes infinite. The second
indeterminacy is more fundamental, since it persists with an infinite number
of agents. It is related to the coincidence of isoutility and isoexpenditure
curves, thus allowing for different equilibrium orders of agents in space.

This model explains why in a general equilibrium poor and rich agents
may be mixed in space, although the price function reflecting the land quality
would make them to choose different sizes of land in neighbouring locations.
Some interesting related questions (Pareto optimality of equilibrium alloca-
tions, alternative mechanisms in land markets) deserve further research.

5.7 Appendix

5.7.1 Proofs of Lemmas

PROOF OF LEMMA 5.1.

Consider equation (5.23), obtained as a particular form of the mass-preserving
condition for the model with an infinite number of agents. If we integrate it
over the whole interval for the order-preserving mapping, we get an expres-
sion for B:

a fwmff w f(w)dw

Wmi

T Lt afl Lzt (n)de

(5.27)

Given all primitives for land (L(z),v(z),a,b), the equilibrium price P(z) in
(22) is the same for all problems with [wf(w)dw = const. Thus, for any
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fixed number of agents NN, the problems with different wealth distribution
but the same average wealth give the same equilibrium price function.

Note that the average wealth should not be preserved for a sequence of
models with variable N, but should change inversely proportionally to IV, to
keep the total wealth constant for a sequence of models. On the other hand,
the preservation of average wealth would imply that small perturbations of
continuous wealth distribution have no impact on equilibrium price.

PROOF OF LEMMA 5.2.
1. Let us introduce the Banach space H with elements h = (P(z),z €
[a,b];a;,i = 1,...N) and a norm ||h|| = | [° P(z)dz| + (1/N)[| 2N, ai] +
YL, Cil.
2. A solution to the general equilibrium problem contains consumptions of
the composite good C;, a price function P(z) and the borders a; between
land slots. The solutions for two different problems can be compared by
calculating the norm of their difference. If for any fixed IV the average differ-
ence between prices across space, between borders and consumptions of the
composite good across agents is small, then two solutions are close, and the
norm of their difference is small. If N is variable, it is difficult to compare
the borders and consumptions sets (since the sets of agents are different),
but it is possible to compare prices. Then only the first term of the norm
should be kept.
3. Consider the discrete and continuous wealth distributions fy(w) for suffi-
ciently large N. Although there is price multiplicity, according to Lemma 4,
the difference between equilibrium price functions vanishes to zero. There-
fore, it does not matter what particular price function is chosen for a model
with a finite number of agents. On the other hand, a continuous function
fn(w) gives rise to a unique price function Py(z), as if the number of agents
is infinite. Two price functions are close to each other (see the proof in
Lemma 4). We agreed that it is sufficient to compare only prices to prove
the closeness of solutions for this case. It is obvious that ||[Mgy — M. n|| — 0
as N — oo.

PROOF OF LEMMA 5.3.
1. Consider the order preserving solution (mapping z = F(w) is a strictly
increasing function) for any realization {w;(§),i = 1,...N} of the distribu-
tion fy(w). By construction, any individual wealth may fluctuate in a small
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neighbourhood of w;, corresponding to the initial discrete problem. If the
range of all wealth variation for the whole set of agents is normalized to one,
then these fluctuations will be of order 1/N. Since the fluctuations of each
individual are independent, for a large number of agents the fluctuations of
the total wealth would be of order 1/4/N. Since for a continuous model (we
can always think that a continuous function fxy(w) corresponds to an artifi-
cial problem with an infinite number of agents) the equilibrium price P..(x)
depends continuously on total wealth W, the impact of total wealth fluctu-
ations would have a negligible impact on equilibrium prices for N — oo.

2. Consider now the mapping * = F¢(w), which is defined for any partic-
ular realization £ on a discrete set of points w;(£) into the set of disjoint
intervals in the space of locations. Agent n will have n — 1 previous neigh-
bours in the wealth space, and they will also be his previous neighbours
in the space of locations. As we know, the individual wealth fluctuations
would have an impact of order 1/N on wealth, the indeterminacy related
to the price function Py(x) is also of order 1/N in every point (see Lemma
5.4). Consider now the impact of these fluctuations on the set of borders a;.
Note that for our utility function agents always spend a fixed part of their
wealth on land. Since the quality of land varies continuously in space, the
ratio of price differences to prices at each land slot and across neighbours
would be small (see Lemma 4). The relative shift of the border ay(§) for
any problem with {w;(£)} with respect to the problem with {w;} would be
of order: ay(§) — ay = as(1 + O(1/N)). If we consider the border a;, its
shift would not accumulate less than proportionally to N (the Lemma in
Appendix 3 proves the order of this estimate to be N34 (interplay of inde-
pendency of fluctuations with “slow” variation in space due to continuity).
Hence, a;(¢) —a; = a;(1+ O(N~1/*). This will allow us to estimate the norm
of the difference across solutions for different £ with any small € when N is
high enough. The part of the norm associated with the average difference of
the borders for a; for different realizations will vanish to zero as N~%/4, when
N — oo. This gives an estimation of the speed of the convergence to zero
and also proves convergence.

PROOF OF LEMMA 5.4.
Let W = Y w;. When N — oo, for each i: w;/W — oo. If the land quality is
bounded by positive constants both from below and from above, everybody
can buy only an infinitely small interval |b; — a;| — 0. Because v(z) is a
continuous function, Vi : |v(a;) — v(b;)|/v(a;) — 0. Since Py (z) = Av'/*(z)
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and since Py (a;) = Px(a;), we can also conclude that Vk,Vx € [a;, b;], Vi:
| Py k(2) — Pxo(2)|/Pso(x) — 0. We can integrate this limit over x, getting:

Jy | Py g(2) — Poolda
fol Pdx

Taking the maximium over k, we get finally: ey — 0.

— 0. (5.28)

PROOF OF LEMMA 5.5.
Consider a finite but large number of agents. The utility of an agent owning
an interval [y, 2] is U = CV, where V' = [”v(x)dx - the utility factor derived

from land. Consider the change in V' when the border z moves marginally.
Let z — y = Az. We have:

av.

dz
Now we can use a Taylor expansion for v: v(z) = v(y)+v'(y)(x —y)+O((z—
y)?). Substitution gives an asymptotical expression for the derivative:

v(2)(Az)* + a(Ax)*! /Z v(x)de. (5.29)

Y

Ccl;z/ = [v(2) + av(y)](Az)* + Om;(y)(Aac)aJr1 + O((Ax)*+?). (5.30)

When the number of agents goes to infinity, the last formula represents an
asymptotical series of dV/dz in the powers of Az. The first term describes
the quantity effect, since quality enters it only in border points. It becomes
infinitely times more important, and the quality effect can be asymptotically
neglected in comparison with the quantity effect.

5.7.2 An Example Revealing the Impact of Congestion

The following example aims to reveal the difference between the market clear-
ing condition and the mass preserving condition, and its role for escaping
Berliant’s paradox about the non-convergence of a sequence of discrete mod-
els to a continuous one.

Consider a continuum of agents, indexed by i € [0,1]. Let the set of
differentiated commodities be represented by the same interval and indexed
by j. Let preferences of agents be given by the expression:

Ui(j) =1 (j — )™ (5.31)
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Then every agent would maximize his utility at a point j = 2. The
market clearing condition at every point tells that every variety is chosen by
only one agent. The equilibrium allocation will be represented by a map:
i — i2. This allocation may be supported by a zero price, since there is no
competition in any of the markets.

Consider now a sequence of discrete problems, with agents in a finite
number N of points z; = i/N, and varieties y; = j/N. It is easy to see that
the continuous solution is no longer sustainable, since in the limit half of
agents z; € [0;1/2] would map into a quarter of the total number of varieties
y; € [0;1/4]. We have a congestion property of this mapping. In the discrete
case competition in a congested area can be regulated by higher prices, and
thus agents will not be able to realize their first best choices.

A proper way to deal with such a model will be to introduce a numeraire
C, give agents initial allocations of it, and all land to one big owner, who does
not value it. Then utilities will be U;(j) = C; — (j — i?)? for “small” agents,
and U = C for the big owner. The usual market clearing condition fails to
capture congestion (still every agent is choosing the different point). Thus
it has to be replaced by a mass preserving condition, which is one of the
important parts of the general equilibrium concept throughout this paper.

5.7.3 Two Equivalent Mathematical Representations
of Wealth Distribution

A solution to the considered problem includes the mapping from the space
of individual wealths to locations. This mapping assigns to each individual
with w; some location x; in space. Since the solution is constructed by us-
ing methods of differential calculus, it is necessary to define the mapping
in all intermediate points, i.e. to go from a discrete to a continuous map-
ping. But in the beginning we had an infinity of agents, with a discrete
wealth distribution. It is possible to formally associate a smooth function
with small support around the central point of wealth, and then add these
functions to get a continuous wealth distribution. The possibility to obtain
this equivalence lies in the fact that the space of all continuous functions is
only infinite-dimensional (on contrast to the space of all measurable func-
tions); this can be easily shown by Fourier transformation.
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A formal way to proceed from discrete to continuous wealth distribu-
tions is the following. Assume that agents do not have a certain wealth, but
a wealth distributed with probability density f(w) in the interval (w;—; +
w;)/2, (w; + w;y1)/2. We can start from a uniform f(w) in each of these in-
tervals, but then use the spline method to create a differentiable f(w). It is
important that the difference between all solutions, corresponding to differ-
ent f(w) reconstructed from discrete w;, will be negligibly small as N — oc.

Suppose that we have a set of discrete models with an increasing number
N of agents. Let the set of individual wealths be obtained as a realiza-
tion of the theoretical wealth distribution with smooth properties. When
statisticians work with hystogramms, it is optimal to define the number of
wealth brackets as v/ N, where N is the number of observations. Then the
law of big numbers would push to zero the relative fluctuations inside each
wealth bracket, and the wealth density would also change continuously be-
tween brackets.

The following Lemma proves that the fluctuations of borders between
agents are small for all realizations of discrete wealth distribution, given by a
continuous density function. This is a formal justification of the asymptotical
validity of double representation of wealth distribution (by sequence and
continuous function) for big N.

Lemma 5.7 Let {¢;(£),i = 1,...N} be a set of interval lengths chosen by
agents in any particular order preserving solution for the problem with a
random realization of wealths {w;(€),i = 1,..N}, and let {¢;o} be a “cen-
tral” solution, associated with an initial discrete wealth distribution. Then

for all the borders between agents’ land allocations in equilibrium we get an
estimate: a;¢ = a;(1+ O(N*1/4)),

PROOF: 1. We can represent 1;(§) = ; + w;(§), where u; is a random
variable and & fixes its realization. Since land size in each location depends
continuously on wealth and since land quality also depends continuously on
location leading to price continuity, u; are independently distributed. With-
out large error, we can assume that they are normally distributed with zero
average and standard deviation o; proportional to ¢;/N. This is because the
average interval size is 1/N, and c; is some constant of order 1 for fized i
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and a slowly varying function of 1.

2. Since g1 = Ypoy Yr(§) = L Uro + L ur(§) = ipr0 + Xpeg ur(§), the
difference between borders is small if the sum of uy is small. Let us divide
all sum into several sums of the length /N. For large N, due to continuity,
the variances of each uy are almost the same, and we can use it to apply
the theorem of the sum of independently distributed variables: the variance
of Y4, u will be proportional to the length of the sequence |. Hence, the
standard deviation of this sum will be of order O(N~%/*) (each standard de-
viation is already proportional to 1/N; the term associated with the small
differences in variances of the elements of this sample is of order O(N—3/%)
and thus can be neglected). Since we have not more than /N sequences (each

sequence had less than N elements originally), we finally get an estimate:
Qj¢e — Q; = aiO(N_1/4).
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Fig. 2.1. Producer prices for potatoes in the United states, in cents per bushel on
December 1, for 1906-1915. (From H. Working “Factors Determining the Price 6f
Potatoes in St.Paul and Minneapolis, 1922.)
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Fig. 2.2, The output curves.
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Fig. 2.4. The demand curves. Fig. 2.5. The demand density 8 (x).
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Fig. 2.6. The autarky solution. ‘ |
(a) Equilibrium labor supply. |
(b) Equilibrium price as the function of location x.
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Fig. 2.7. The general behaviour of the solution for the integrated economy.
(a) Equilibrium pricing.
(b) Equilibrium trade flow
(c) equilibrium labor supply
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A

Fig. 3.1. [llustration for the proof of Lemma 2. The shaded areas show consumers
shifting between firms for small price increase/decrease, when:

A - prices are almost equal

B - price difference is near critical

C - an intermediate case

b

Fig. 3.2. Illustration for the proof of Theorem 1. Demand is continuous when consumers
are inside any compact set of R2. Price shift may affect the aggregate demand from one
firm (pl => p2) or may not (p3 = p4).



Fig. 3.3. For different values of parameter a there may be 0, 1 or more solutions.

Fig. 3.4. Convex transport cost. The solution to the equation aT = a is unique.

/ e 74 P
T T >O, [ <O 1 * T(h%):(onjfl

T( r) = (ons'i‘1

Fig. 3.5. Concave transport cost. The solution to the equation 4T = a may be not unique.

Fig. 3.6. Iso-transport cost curves: T(r)= ¢,;; T(r,q)=c,. Firms are located in the
points® and q. - ’
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Fig.3.7. The uniqueness of the solution curve,

passing (hrough any solution. Fig. 3.8. The curve of indifferent consumers

depends continuously on price change.

P

/ /77
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> X
; Fig. 3.10. The density functions, for which.:
~C (a) Symmetric Nash equilibrium exists,
f G0 z=a+ €l »)
Fig. 3.9.
o e
A set of indifferent consumers. aT =ap . -1

(b) Symmetric Nash equilibrium does not exist

(cornering dominates, if b/a>2).
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Firmm2

Fig. 3.11. Nash equilibrium in pure strategies does not exist (a), when the distribution of
consumers p has a form (b).
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Fig. 3.12. Numericaica,l‘culations show the possibility of a discontinuous shift across the
two local maxima A’, B', when the rival’s price takes the critical value p;.

Fig. 3.13. Elliptic coordinates: 6, T . Integration of £ (t, 6) along T = const gives
one-dimensional density f,(t?-



| 159
viehy

Fig. 4.1. Reconstructing density Y(R) from real geographical maps.
(a) Map with a city, roads, dacha lots and equilibrium isolines;
(b) Discrete density: quantity of lots inside distance ranges;
(c) Continuous density, which is the limit of discrete density.

: = R)dR |
?ds V(R) e) 4

2 W
»(R) = F R
Fig. 4.2. Radially symmetric model. Fig. 4.3. Endogeneous dacha area, when:
Derivation of radial density. (a) time is binding (R¢ < Rw );

(b) income is binding (R <R ¢).
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Fig. 4.4. Mapping from the space of types s via income distribution w(s) into
geographical location R(s). The law of mass preserving implies: f(w)dw =y (R)R.

-

A

.‘/ Pz(R P~ g {
AN i

~ x P(R)
P )
v " —
Ry Ry Ry R
Fig. 4.5.Individual price schedules P; (R), =1, 2,3, making agents indifferent across
locations, and equilibrium price schedule P(R).
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Fig. 4.6. Map 1. Moscow district. Prices per 100 sq.m inUSD. Dark color shows the
zone of “elita”, where the prices were growing from 1994 to 1995. Gray color shows
the zone of stable prices. The prices in white color zone have dropped by 20-30% during
one year.
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Fig. 4.7. Map 2. The region of St.Petersburg. White color shows the area of high
demand (concentrated along roads). The graph shows the price per 100 sq.m in USD in
1996 along different directions (shown by color) at different distances from the city
center (in km).
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Fig. 5.1.  Socially feasible allocation.
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Fig. 5.2. Mappings X; = F(wy), i = P(wi), x = F(w).
Mass preserving condition: £ (w)dw = g(x)dx
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Fig. 5.4. The indeterminacy of price function B,(x), supporting a problem with finite N,
can be represented as a “ball” By in functional space. When N goes to infinity , the ball’s
size goes to zero, and all its points stay close to P,o (X). Indeterminacy asymptotically
disappears. .
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Fig. 5.5. Isoutility curves: U (%) q»“(x) = const.
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Fig. 5.6. Isoexpenditure curves: P(x) ¢(x) = const,



	dis1298-UPF-Yegorov.pdf
	Adjunt tesi



