
U N I V E R S I T A T

PO M P E U FA B RA

Real-time Multimedia Computing on

Off-The-Shelf Operating Systems:

From Timeliness Dataflow Models

to Pattern Languages

Pau Arumı́ Albó

Director: Dr. Vicente Lopez

Co-director: Dr. Xavier Amatriain

Department of Technology

Universitat Pompeu Fabra

Doctorate in Computer Science and Digital Communication

Barcelona, 2009

Abstract

Software-based multimedia systems that deal with real-time audio, video and

graphics processing are pervasive today, not only in desktop workstations but

also in ultra-light devices such as smart-phones. The fact that most of the pro-

cessing is done in software, using the high-level hardware abstractions and services

offered by the underlying operating systems and library stacks, enables for quick

application development. Added to this flexibility and immediacy (compared to

hardware oriented platforms), such platforms also offer soft real-time capabilities

with appropriate latency bounds. Nevertheless, experts in the multimedia do-

main face a serious challenge: the features and complexity of their applications

are growing rapidly; meanwhile, real-time requirements (such as low latency) and

reliability standards increase.

This thesis focus on providing multimedia domain experts with workbench of

tools they can use to model and prototype multimedia processing systems. Such

tools contain platforms and constructs that reflect the requirements of the domain

and application, and not accidental properties of the implementation (such as

thread synchronization and buffers management). In this context, we address

two distinct but related problems: the lack of models of computation that can

deal with continuous multimedia streams processing in real-time, and the lack of

appropriate abstractions and systematic development methods that support such

models.

Many actor-oriented models of computation exist and they offer better abstrac-

tions than prevailing software engineering techniques (such as object-orientation)

for building real-time multimedia systems. The family of Process Networks and

i

ii Abstract

Dataflow models —based on networks of connected processing actors— are the

most suited for continuous stream processing. Such models allow to express de-

signs close to the problem domain (instead of focusing in implementation details

such as threads synchronization), and enable better modularization and hierarchi-

cal composition. This is possible because the model does not over-specify how the

actors must run, but only imposes data dependencies in a declarative language

fashion.

These models deal with multi-rate processing and hence complex periodic ac-

tor’s execution schedulings. The problem is that the models do not incorporate the

concept of time in a useful way and, hence, the periodic schedules do not guar-

antee real-time and low latency requirements. This dissertation overcomes this

shortcoming by formally describing a new model that we named Time-Triggered

Synchronous Dataflow (TTSDF), whose periodic schedules can be interleaved by

several time-triggered “activations” so that inputs and outputs of the processing

graph are regularly serviced. The TTSDF model has the same expressiveness (or

equivalent computability) than the Synchronous Dataflow (SDF) model, with the

advantage that it guarantees minimum latency and absence of gaps and jitter in

the output. Additionally, it enables run-time load balancing between callback

activations and parallelization.

Actor-oriented models are not off-the-shelf solutions and do not suffice for

building multimedia systems in a systematic and engineering approach. We ad-

dress this problem by proposing a catalog of domain-specific design patterns orga-

nized in a pattern language. This pattern language provides design reuse paying

special attention to the context in which a design solution is applicable, the com-

peting forces it needs to balance and the implications of its application.

The proposed patterns focus on how to: organize different kinds of actors

connections, transfer tokens between actors, enable human interaction with the

dataflow engine, and finally, rapid prototype user interfaces on top of the dataflow

engine, creating complete and extensible applications.

As a case study, we present an object-oriented framework (CLAM), and specific

applications built upon it, that makes extensive use of the contributed TTSDF

model and patterns.

Resum

Els sistemes multimèdia basats en programari capaços de processar àudio, v́ıdeo

i gràfics a temps-real són omnipresents avui en dia. Els trobem no només a les

estacions de treball de sobre-taula sinó també als dispositius ultra-lleugers com els

telèfons mòbils. Degut a que la majoria de processament es realitza mitjançant

programari, usant abstraccions del maquinari i els serveis oferts pel sistema oper-

atiu i les piles de llibreries que hi ha per sota, el desenvolupament ràpid d’aplica-

cions esdevé possible. A més d’aquesta immediatesa i flexibilitat (comparat amb

les plataformes orientades al maquinari), aquests plataformes també ofereixen ca-

pacitats d’operar en temps-real amb uns ĺımits de latència apropiats. Malgrat tot

això, els experts en el domini dels multimèdia s’enfronten a un desafiament seriós:

les funcionalitats i complexitat de les seves aplicacions creixen ràpidament; men-

trestant, els requeriments de temps-real (com ara la baixa latència) i els estàndards

de fiabilitat augmenten.

La present tesis es centra en l’objectiu de proporcionar una caixa d’eines als

experts en el domini que els permeti modelar i prototipar sistemes de processament

multimèdia. Aquestes eines contenen plataformes i construccions que reflecteixen

els requeriments del domini i de l’aplicació, i no de propietats accidentals de la

implementació (com ara la sincronització entre threads i manegament de buffers).

En aquest context ataquem dos problemes diferents però relacionats: la man-

ca de models de computació adequats pel processament de fluxos multimèdia en

temps-real, i la manca d’abstraccions apropiades i mètodes sistemàtics de desen-

volupament de programari que suportin els esmentats models.

Existeixen molts models de computació orientats-a-l’actor i ofereixen millors

iii

iv Resum

abstraccions que les tècniques d’enginyeria del programari dominants, per constru-

ir sistemes multimèdia de temps-real. La famı́lia de les Process Networks i els mod-

els Dataflow —basades en xarxes d’actors de processat del senyal interconnectats—

són els més adequats pel processament de fluxos continus. Aquests models perme-

ten expressar els dissenys de forma propera al domini del problema (en comptes de

centrar-se en detalls de la implementació), i possibiliten una millor modularització

i composició jeràrquica del sistema. Això és possible perquè el model no sobre-

especifica com els actors s’han d’executar, sinó que només imposa dependències

de dades en un estil de llenguatge declaratiu.

Aquests models admeten el processat multi-freqüència i, per tant, planifica-

cions complexes de les execucions dels actors. Però tenen un problema: els models

no incorporen el concepte de temps d’una forma útil i, en conseqüència, les plan-

ificacions periòdiques no garanteixen un comportament de temps-real i de baixa

latència. Aquesta dissertació soluciona aquesta limitació a base de descriure for-

malment un nou model que hem anomenat Time-Triggered Synchronous Dataflow

(TTSDF). En aquest nou model les planificacions periòdiques són intercalades

per vàries “activacions” temporalment-disparades (time-triggered) de forma que

les entrades i sortides de la xarxa de processat poden ser servides de forma regu-

lar. El model TTSDF té la mateixa expressivitat (o, en altres paraules, té com-

putabilitat equivalent) que el model Synchronous Dataflow (SDF). Però a més,

té l’avantatge que garanteix la operativitat en temps-real, amb mı́nima latència i

absència de forats i des-sincronitzacions a la sortida. Finalment, permet el bal-

ancejat de la càrrega en temps d’execució entre diferents activacions de callbacks

i la paralel·lització dels actors.

Els models orientats-a-l’actor no són solucions directament aplicables; no són

suficients per construir sistemes multimèdia amb una metodologia sistemàtica i

pròpia d’una enginyeria. També afrontem aquest problema i, per solucionar-lo,

proposem un catàleg de patrons de disseny espećıfics del domini organitzats en un

llenguatge de patrons. Aquest llenguatge de patrons permet el re-ús del disseny,

posant una especial atenció al context en el qual el disseny-solució és aplicable, les

forces enfrontades que necessita balancejar i les implicacions de la seva aplicació.

Els patrons proposats es centren en com: organitzar diferents tipus de con-

nexions entre els actors, transferir dades entre els actors, habilitar la comunicació

dels humans amb l’enginy del dataflow, i finalment, prototipar de forma ràpida

interf́ıcies gràfiques d’usuari per sobre de l’enginy del dataflow, creant aplicacions

Resum v

completes i extensibles.

Com a cas d’estudi, presentem un entorn de desenvolupament (framework)

orientat-a-objectes (CLAM), i aplicacions espećıfiques constrüıdes al seu damunt,

que fan ús extensiu del model TTSDF i els patrons contribüıts en aquesta tesis.

Acknowledgements

I would like to thank my supervisor Vicente López for giving me the chance and

support to work on the research topic of real-time multimedia, and providing the

great environment of Fundació Barcelona Media.

I specially thank Xavier Amatriain who has been my advisor, mentor and

friend. He has always been open-minded and consistent supporter. His vision and

guidance helped me learn a lot, as well as find and focus on an exciting research

topic.

I am very grateful to my friend and long-term co-worker David Garćıa for being

always ready for a fruitful discussion. Indeed these uncountable discussions have

been the source for many of the results presented in this thesis.

I also thanks to all the people who have contributed to the development of the

CLAM framework. Beyond Xavier Amatriain and David Garćıa, a non-exhaustive

list should at least include Maarten de Boer, Ismael Mosquera, Miguel Ramı́rez,

Xavi Rubio, Xavier Oliver and Enrique Robledo. And of course, the students of

the Google Summer of Code program: Hernan Hordiales, Natanael Olaiz, Greg

Kellum, Andreas Calvo and Yushen Han.

I’d also like to thank our acoustics team in Fundació Barcelona Media, who

make it such a great place to work. Including Toni Mateos, Adan Garriga, Jaume

Durany, Jordi Arqués, Carles Spa and Giulio Cengarle.

I would like to thank Xavier Serra, for giving me the opportunity to start

the doctorate program and work on audio technology in the very creative Music

Technology Group. Working there with Maarten de Boer and Oscar Celma has

been always fun and rewarding. The members of the Music Technology Group

vii

viii Acknowledgements

have provided a first-class environment for discussing and exploring research ideas.

Jordi Bonada, Alex Loscos, Emilia Gomez, Bram de Jong, Lars Fabig, Jordi Janer,

and many other researches, they all provided positive feedback during the first part

of my research.

Thanks to Dietmar Schetz, from Siemens, who was my “shepherd” during the

months prior to presenting the patterns catalog to the PLoP 2006 conference. He

revised early drafts and gave insights from his experience writing patterns, causing

lots of rewritings; all of them worth. Dietmar comments provided a reality check

for our ideas.

I am very grateful to Ralph Johnson, a member of the almost mythic “Gang

of Four”, It was absolutely great to discover that Ralph had many years of profes-

sional experience with dataflow-related software. During the three day’s workshop

sessions at PLoP 2006, Ralph provided insightful feedback and courage to keep

our effort on dataflow patterns.

I’m also indebted to the Linux audio community, the Trolltech crew, and to

all open-source developers in general to give me the chance to build upon their

work. Examining existing code of many multimedia systems, and sharing insight

on mailing-lists and IRC discussions was an invaluable source of ideas for this

work.

The credit for some of the contributions of this thesis should be clearly shared.

The CLAM framework has been a collaborative effort of many developers during

the last 8 years. Among those, the credit for CLAM should be shared specially

with the other two long-term developers David Garcia and Xavier Amatriain. The

credit for the multimedia dataflow pattern language should be shared specially

with David Garcia.

Thanks to the chairs of the 2006 ACM Multimedia Contest who gave CLAM

the prize to the best Open-Source Multimedia software. This provided a fantastic

boost of energy.

Special thanks goes to Martin Gasset, from OFAI, Austria. I provided Martin

with a draft of the thesis and he gave me an awesome surprise weeks later, when

he come back not only with very useful comments, but also with a finished imple-

mentation of the TTSDF model (one of the thesis contributions) for integration

into “StreamCatcher”, a system for real-time generative computer graphics based

on live audio features. I cannot think on a better encouragement than this!

Thanks to George Tzanetakis who carefully reviewed drafts of the thesis and

Acknowledgements ix

provided many valuable insights that helped improving the thesis a great deal.

I’d also like to thank Josep Blat and his GTI group, who provided a great

support to my research. The CLAM project has been supported by the Univer-

sitat Pompeu Fabra, the STSI division of the Catalan Government, the Fundació

Barcelona Media and by Google —through the Summer of Code program. This re-

search has been partially funded by a scholarship from Universitat Pompeu Fabra

and by financial support from the STSI division of the Catalan Government, and

by the European Union (FP7 project 2020 3D Media ICT 2007).

Lastly, my partner Matilda, provided tons of encouragement, patience, and

love.

Table of Contents

1 Introduction 1

1.1 The Problem . 6

1.1.1 The Problem of Timeliness and Synchronous Dataflow . . . 6

1.1.2 The Lack of Systematic Design Methods for Actor-Oriented

Systems . 9

1.2 The Proposed Solution . 12

1.2.1 The Time-Triggered Synchronous Dataflow 13

1.2.2 A Pattern Language for Dataflow-Based Multimedia Pro-

cessing Systems . 15

1.3 The Method . 19

1.3.1 The Systems Engineering Approach 19

1.3.2 The Software Engineering Approach 20

1.4 Contributions . 23

1.4.1 List of Specific Contributions 23

1.5 Thesis Organization . 26

2 Background 29

2.1 The Multimedia Operating System 30

2.1.1 Multimedia Processing Systems Requirements 31

2.1.2 Soft vs. Hard Real-Time . 33

2.1.3 Operating Systems Real-Time Facilities 36

2.1.4 Operating-System Scheduling vs. Dataflow Scheduling . . . 38

2.1.5 From Hardware Interrupt to User-Space Response 39

xi

xii TABLE OF CONTENTS

2.1.6 The Standard 2.6 Linux Kernel 40

2.1.7 Real-time programming styles: Callbacks vs. Blocking I/O . 42

2.2 Actor-Oriented Design . 43

2.2.1 Actor-Oriented Models of Computation 44

2.2.2 Dataflow Models of Computation 47

2.2.3 Synchronous Dataflow Networks 49

2.2.4 Static Scheduling of Dataflow Graphs 51

2.2.5 Boolean-controlled Dataflow 53

2.2.6 Dynamic Dataflow . 54

2.2.7 Process Networks . 55

2.2.8 Context-aware Process Networks 56

2.2.9 Petri Nets . 57

2.3 Object Oriented Technologies . 58

2.3.1 Frameworks . 59

2.4 Design Patterns . 60

2.4.1 A Brief History of Design Patterns 61

2.4.2 Pattern Misconceptions . 62

2.4.3 Patterns, Frameworks and Architectures 63

2.4.4 Empirical Studies . 65

2.4.5 Pattern Languages . 67

2.5 Summary . 67

3 State of the Art 71

3.1 Timeliness Dataflow Models . 72

3.1.1 Timeliness extensions to Synchronous Dataflow 72

3.1.2 Related Timeliness Models of Computation 73

3.2 Object-Oriented Meta-Model for Multimedia Processing Systems . . 75

3.3 Previous Efforts in Multimedia Design Patterns 80

3.4 General Dataflow Patterns . 81

3.4.1 Pattern: Data flow architecture 82

3.4.2 Pattern: Payloads . 84

3.4.3 Pattern: Module data protocol 85

3.4.4 Pattern: Out-of-band and in-band partitions 87

3.5 Summary . 88

TABLE OF CONTENTS xiii

4 Time-Triggered Synchronous Dataflow 91

4.1 The Problem of Timeliness in Dataflows 92

4.2 The TTSDF Computation Model 96

4.2.1 Callback-based Coordination Language 98

4.2.2 Formal Computation Model 99

4.3 Static Scheduling of TTSDF Graphs 102

4.4 The TTSDF Scheduling Algorithm 110

4.4.1 Cost Analysis of the Scheduling Algorithm 112

4.4.2 TTSDF Scheduling Example 112

4.5 The Parallel TTSDF Scheduling . 115

4.6 Applying the Time-Triggered Scheduling to Other Dataflows 116

4.7 Summary . 117

4.7.1 Applicability and Future Work 119

5 A Multimedia Dataflow Pattern Language 121

5.1 Chosen Pattern Structure . 123

5.2 General Dataflow Patterns . 124

5.2.1 Pattern: Semantic Ports . 124

5.2.2 Pattern: Driver Ports . 127

5.2.3 Pattern: Stream and Event Ports 132

5.2.4 Pattern: Typed Connections 137

5.3 Flow Implementation Patterns . 141

5.3.1 Pattern: Propagating Event Ports 141

5.3.2 Pattern: Multi-rate Stream Ports 144

5.3.3 Pattern: Multiple Window Circular Buffer 150

5.3.4 Pattern: Phantom Buffer . 155

5.4 Network Usability Patterns . 159

5.4.1 Pattern: Recursive networks 159

5.4.2 Pattern: Port Monitor . 162

5.5 Visual Prototyping Patterns . 165

5.5.1 Pattern: Visual Prototyper 165

5.6 Patterns as a Language . 173

5.6.1 Patterns Applicability . 174

5.7 Summary . 176

5.7.1 Summary of Usage Examples 177

5.7.2 Patterns as Elements of Design Communication 179

xiv TABLE OF CONTENTS

6 Case Studies 181

6.1 CLAM: A Framework for Rapid Development of Cross-platform

Audio Applications . 182

6.1.1 CLAM Components . 183

6.1.2 CLAM as a Visual Prototyping Environment 189

6.2 Real-Time Room Acoustics Simulation in 3D-Audio 190

6.2.1 Introduction . 190

6.2.2 The “Testbed” Integrated System 191

6.2.3 A 3D-Audio Dataflow Case Study 193

6.2.4 Applying the TTSDF Model to the B-Format Rendering

Network . 197

6.2.5 Applying the Dataflow Patterns to the B-Format Rendering

Network . 201

6.3 Visualization of audio streams in Streamcatcher 204

6.3.1 Context . 204

6.3.2 Application of the TTSDF model and Port Monitor pattern

in Streamcatcher . 205

6.4 Summary . 206

7 Conclusions 209

7.1 Summary of Contributions . 210

7.2 Detailed Contributions . 212

7.3 Open Issues and Future Work . 215

7.3.1 Future Work in Time-Triggered Dataflows 215

7.3.2 Future Work in Multimedia Dataflow Patterns 216

7.4 Additional Insights . 219

A Related Publications 221

A.1 Published Open-Source Software . 224

B TTSDF Scheduling Examples 225

B.0.1 Simple TTSDF Pipeline . 225

B.0.2 Split and Reunify . 226

B.0.3 Dense Graph . 227

B.0.4 Graph with Optimum Between Bounds 228

B.0.5 Audio and Video Multi-Rate Pipelines 230

B.0.6 Simplified Modem . 232

TABLE OF CONTENTS xv

Bibliography 246

List of Figures

1.1 Object-oriented versus actor-oriented 3

1.2 Technologies and tools for developing multimedia processing sys-

tems with increasing level of abstraction. 5

1.3 A Synchronous Dataflow multi-rate scheduling 8

1.4 A callback activation with two inputs and two outputs 14

1.5 Multiple callback activations forming a dataflow cycle scheduling . . 14

1.6 Dataflow Architecture . 16

1.7 Pattern instantiation methodology 18

1.8 Pattern Mining: abstracting a general solution out of different cases,

capturing the trade-offs to be optimized. 22

1.9 The contributed solution in the big picture of multimedia processing

technologies. 24

2.1 Examples of multimedia processing systems. 32

2.2 Interrupt response time in a preemptable OS. 39

2.3 Periodic task scheduling of a real-time task on a preemptable OS

in heavy load. 40

2.4 The standard 2.6 Linux kernel with preemption 41

2.5 A visual representation of the actor interface specified in C++ in

listing 2.1 . 45

2.6 Examples of actor-oriented frameworks with visual syntax and tools 48

2.7 Runnability of Synchronous Dataflows 50

2.8 A simple SDF graph with its token rates. 51

xvii

xviii LIST OF FIGURES

2.9 A simple SDF graph performing sampling-rate conversions, its

topology matrix and its non-trivial scheduling 53

2.10 The “Switch” and “Select” actors of Boolean-controlled Dataflows . 54

2.11 A Boolean-controlled Dataflow model 55

3.1 Graphical model of a 4MPS processing network 76

3.2 4MPS Processing object detailed representation 77

3.3 Participant classes in a 4MPS Network 79

3.4 Dataflow architecture . 83

3.5 Different payloads and their components 84

3.6 The pull model for inter-module communication. 86

3.7 The push model for inter-module communication. 86

3.8 The indirect model for inter-module communication. 86

3.9 Out-of-band and in-band partitions within an application. 87

4.1 A simple SDF graph and scheduling. It is problematic to run such

graph within real-time constrains 93

4.2 A chronogram showing the problems of adapting an SDF schedule

on a callback architecture. 94

4.3 The desired way of running an SDF schedule on a callback archi-

tecture. 96

4.4 A TTSDF graph with a non-input source and a non-output sink . . 97

4.5 A callback activation with two inputs and two outputs 98

4.6 Multiple callback activations forming a dataflow cycle scheduling . . 99

4.7 A sequence of executions in an SDF graph 101

4.8 In-phase and out-of-phase callback activations. 105

4.9 Finding the (n+1)th element to schedule, assuming that a schedul-

ing exist. 106

4.10 Pushing sources towards the beginning and sinks towards the end

does not affect the scheduling runnability 107

4.11 Adding two schedule periods and splitting them to create a new

schedule period. 108

4.12 Steps to convert an SDF-style scheduling to a TTSDF-style schedul-

ing. 109

5.1 A use case for audio dataflow: the Spectral Modeling Synthesis. . . 122

5.2 A directed graph of components forming a network 125

5.3 A network of components with multiple ports 126

LIST OF FIGURES xix

5.4 A representation of a module with different types of in-ports and

out-ports . 128

5.5 Separated Module and ConcreteModule classes, to reuse behaviour

among modules . 129

5.6 Screenshot of CLAM visual builder (NetworkEditor) performing

spectral analysis and synthesis . 130

5.7 Screenshot of Open Sound World visual builder 131

5.8 Chronogram of the arrival (and departure) time of stream and event

tokens . 132

5.9 Alignment of incoming tokens in multiple executions 133

5.10 Class diagram of a cannonical solution of Typed Connections 138

5.11 A scenario with propagating event ports and its sequence diagram. . 143

5.12 Two modules consuming and producing different numbers of tokens 145

5.13 Each in-port having its own buffer. 148

5.14 A buffer at the out-port is shared with two in-ports. 148

5.15 Layered design of port windows. 153

5.16 A phantom buffer of (logical) size 246, with 256 allocated elements

and phantom zone of size 10. 157

5.17 A network acting as a module. 160

5.18 A port monitor with its switching two buffers 163

5.19 An example of an audio analysis application: Tonal analysis with

chord extraction . 167

5.20 An example of a rapid-prototyped audio effect application: Pitch

transposition . 168

5.21 Visual prototyping architecture. The CLAM components that en-

able the user to visually build applications. 169

5.22 Qt Designer tool editing the interface of an audio application. . . . 170

5.23 The processing core of an application built with the CLAM Network

Editor . 170

5.24 The multimedia dataflow pattern language. High-level patterns are

on the top and the arrows represent the order in which design prob-

lems are being addressed by developers. 175

6.1 CLAM development process and related activities 183

6.2 CLAM framework components . 184

xx LIST OF FIGURES

6.3 The SpectralTools graphical user interface. This application can

be used not only to inspect and analyze audio files but also to

transform them in the spectral domain. 187

6.4 Editing low-level descriptors and segments with the CLAM Annotator188

6.5 The IP-RACINE “testbed” setup: The shooting of an augmente-

reality scene . 192

6.6 CLAM network that renders the audio in B-Format 194

6.7 A simplification of the partitioned-convolution algorithm performed

by the CLAM’s “Convolution” processing. 196

6.8 A CLAM network that decodes first order Ambisonics (B-Format)

to Surround 5.0. 197

6.9 CLAM network that converts 3D-audio in B-Format to 2 channels

binaural . 198

6.10 A simplified B-Format audio renderer graph its with port rates . . . 200

6.11 Streamcatcher general processing graph and its MFCC (mel-

frequency cepstral coefficients) sub graph. Note that multi-rate

is caused by audio windowing of the MFCC graph 205

CHAPTER 1

Introduction

Off-the-shelf operating systems with real-time multimedia processing capabilities

are deployed today in all kinds of hardware, ranging from desktop workstations to

ultra-light portable devices such as ipods and smart-phones. The fact that most

processing is done in software, added to the high-level services offered by such

operating systems and the availability of rich reusable libraries stacks enables

for relatively quick application development. The software based applications

developed for these platforms can fulfill the soft real-time1 with relatively low-

latency2 requirements needed in tasks such as interactive video, audio and graphics

streams processing. Because of the flexibility and immediacy of these solutions,

software-based architectures are often preferred to system-on-chip or embedded

software written for a specific hardware.

Nevertheless, experts in the domain of multimedia processing systems face a

serious challenge. The features and complexity of their applications are growing

rapidly. Meanwhile, real-time requirements (such as low latency) and reliability

1Soft real-time refers to a system that acts deterministically and guarantees that is able to
execute its workload on time. “Soft” means that the consequences of not meeting a deadline are
undesirable but not critical. These concepts are discussed in section 2.1.2.

2Latency means the time span between the instant when data is ready to the system’s input
and the instant the processed data is presented to the user. Refer to section 2.1.2 for details.

1

2 Chapter 1. Introduction

standards increase.

The General Goal

Unlike most software computing domains, multimedia computing heavily relies

in the concept of time and concurrency. The problem is that prevailing software

engineering techniques like object-orientation say little or nothing about time, and

concurrency is typically expressed in low-level constructs like threads and mutexes

which do not scale well [Lee, 2002]. And worst, many high-level languages tend

to make timing of operations totally unpredictable because of services such as

implicit memory allocation and garbage collection. Therefore, today, application

developers in this field need to be experts in unrelated disciplines: multimedia

signal processing in the one hand, and system-level design and real-time techniques

on the other.

The general goal of this thesis is to provide multimedia domain experts with

a workbench of tools they can use to describe and communicate multimedia pro-

cessing problems in languages and constructs close to their domain, while hiding

the details referring to the implementation. Most importantly, such tools should

not only allow to “model” the problem, but to “run” it efficiently, guaranteeing

soft real-time requirements.

The artifacts generated with rapid prototyping tools should not be toy pro-

totypes but robust applications allowing for iterative enrichments until they are

ready to ship to the final users. Specifically, they should be designed to fulfill the

requirements of soft real-time applications (see section 2.1.2 for an analysis of soft

and hard real-time) and the interaction with humans or networked systems during

the real-time processing of multimedia streams.

Useful Technologies

To reach the previous goal we need platforms with modeling properties that re-

flect the domain and application requirements, not accidental properties of the

implementation. Fortunately, we can take advantage of the emergence of tech-

nologies that synergistically combine domain-specific languages, design patterns,

actor-oriented models of computation and frameworks into an agile software de-

velopment process.

3

class name

data

methods

call return

1
2

3

(a) Object Orientation

ports

actor name

state (data)

parameters

input stream output stream

(b) Actor Orientation

Figure 1.1: Object versus Actor Orientation. In Object Orientation what
flows is sequential control, whereas in Actor Orientation what flows through
an object is streams of data, leaving the decision of when (and where) to
execute them to the Model of Computation.

Before outlining the concrete issues this thesis addresses we need to briefly

introduce the aforementioned concepts.

• A Domain-specific language (described in section 3.2) is a corpus of a gram-

mar, syntax and semantics that instead of being focused on a particular

computation problem (such as those of procedural programming or data

storage and interchange) is designed so that can more directly represent the

problem domain which is being addressed. Domain-specific languages often

have an explicit domain-specific meta-model that gives the semantics of the

language defining its concepts and their relations.

• In actor-oriented design (described in section 2.2) the components define

data dependencies without over-specifying implementation details like the

execution control. In this paradigm, the building blocks do not transforms

a body of input data into a body of output data and then return, but con-

tinuously operate on potentially infinite stream of data. See figure 1.1 for

a comparison between object-orientation and actor-orientation. An actor-

oriented model of computation defines how components interact, how they

run, and the exact semantics of components composition.

• A framework (described in section 2.3.1) is the body of code that implements

the aspects that are common across an entire domain, and exposes as exten-

sion points those elements in the domain that vary between one application

4 Chapter 1. Introduction

and another. More or less explicitly, multimedia processing frameworks im-

plement one model of computation, and may have domain-specific languages

implemented on top.

• A design pattern (described in section 2.4) is a general reusable solution

to a commonly occurring problem in software design. Design patterns do

not provide code, but a description of how to solve the (design) problem.

Design patterns can have many different scopes ranging from architecture

to implementation.

Figure 1.2 disposes these technologies in a stack layout indicating their relative

level of abstraction and their relations of “use”. It also shows how design patterns

are useful to leverage one level of abstraction to the next, using a given set of tools

and mechanisms.

This figure represents the “big picture” of our goal, and it is worth noting

that the maturity or completion of the layers varies heavily. Specifically, the three

upper layers (namely: actor-oriented models of computation, frameworks, and

domain-specific languages and meta-models) and their associated patterns, are in

permanent evolution and offer good research opportunities.

Outline of the Problem and the Proposed Solution

The goal of providing multimedia domain experts with useful workbench of tools

is very general. In this thesis we do some steps in this direction narrowing the

scope and addressing issues related to actor-oriented models, design patterns and

frameworks.

Unfortunately, among all the existing actor-oriented models of computation,

those most suited for continuous streams (such as video and audio) processing do

not deal well with the concept of time. This is problematic because, with those

models, real-time processing with fixed and predictable latencies is not possible.

We propose a new actor-oriented model of computation that falls in the family of

the Static Schedulable Dataflows (see section 2.2.4) that overcomes this problem,

while retaining the same expressiveness and decidability properties of the original

models.

But having proper models of computation is not enough. Building complete

applications on top of the proposed (or similar) model of computation involves tak-

ing many design and implementation decisions, each of which leads to non-trivial

5

Hardware

Assembly Language

Machine Language

Intel P4 ARM 1176Intel CoreDuo

C

C++

Java

Python

Fortran

Actor Oriented Models of Computation

Multimedia Processing Frameworks

Process Networks

Synchronous Dataflow

Simulink Model Giotto Model Quasi−static Dataflow

Dynamic Dataflow

Synchronous/Reactive

Ptolomey II

Time−Triggered Dataflow

Simulink

GStreamer

CLAMMarsyas

Mutexes

Threads

Semaphores

Procedures

Memory Labels

GOTOs

Strongly Typed

Systems

A
 B

 S
 T

 R
 A

 C
 T

 I
 O

 N

Framework Usage Patterns

Framework Design Patterns

Actor−Oriented Design Patterns

Object−Oriented Design Patterns

Procedural Programming Languages

Object Oriented Languages

Encapsulation

InheritancePolymorphism

Pascal

i086 Assembly

Language−Specific Patterns/Idiom

Domain−Specific Lang. Pattern

Active objects

FAUST

4MP

Domain−Specific Languages

Meta−Models&

Figure 1.2: The “big picture” of technologies and tools for developing multi-
media processing systems, organized in increasing level of abstraction. The
upper layers use elements of the layer below. Inside the layers, normal font
denotes tools, and italic denotes mechanisms contained in those tools. In
the right side of the diagram, different kinds of patterns are listed, which
provide means for reaching higher abstraction levels based on specific layers.

6 Chapter 1. Introduction

consequences. Thus, the potential of failing is huge. We provide a systematic,

predictable, engineering approach to such design and implementation using a de-

sign patterns language (introduced in section 2.4.5). Finally, we show a (software)

framework that implements the model and the patterns, and show how it is useful

to rapid-prototype our target multimedia processing systems.

In the next sections of the introduction we expose the problem in more detail

and explain why it is worth solving it (in section 1.1), outline the given solution

(in section 1.2) and the used research method (in section 1.3), and list the main

contributions of the thesis (in section 1.4).

1.1

The Problem

As outlined above, this thesis addresses two related problems: the lack of

appropriate models of computation in the family of dataflow models that supports

real-time operation (and thus, can be time-triggered); and the lack of abstractions

and systematic development methods that enable both the implementation of such

models of computation, and the enrichment of the models with domain-specific

requirements.

In the next two sections we discuss both problems.

1.1.1 The Problem of Timeliness and Synchronous

Dataflow

The Mutimedia Processing Systems Domain

In this thesis we are interested in the domain of Multimedia Processing Systems as

defined in [Amatriain, 2007a]. Applications in this domain are signal processing

1.1. The Problem 7

intensive (leaving out, for instance, static multimedia authoring systems), are

software based; stream oriented, in that they work on continuous data, but also

support events to control the processing carried out; allow multiple data types (e.g.

audio frames, video, graphics, features): and are interactive, in that the user can

monitor and modify the streams processing reacting to their content.

Timeliness in Process Networks and Dataflow Models

All actor-oriented models of computation offer modularity, composition and han-

dle parallelism. Although these properties are very desirable, not all available

models of computations are useful for continuous streams processing in software;

only Process Networks (discussed in section 2.2.7), Dataflow models (discussed

in section 2.2.2), and all their multiple variants are. Such models are very well

suited for our domain because they provide excellent abstractions for expressing

a signal-processing system in a natural way for humans.

Process Networks and Dataflow models have an important problem related

with real-time requirements: The models cannot guarantee operating with opti-

mum latency while avoiding jitter 3 (section 2.1.2 discusses these two concepts)

The underlying problem is that the computation semantics of such models lacks

the notion of time. They only deal with sequentiality and causality of consumed

and produced data. Ideally we’d like to specify that certain actors are to be

triggered by timed hardware interrupts, and therefore, they should be able to

consume and produce their data before given deadlines.

To overcome this problem we are interested in new models that guarantee a

given operational latency, which ideally should be optimum. Because of this re-

quirement, models based on Process Networks are discarded. In Process Networks

actors are not restricted in any way about the number of tokens they can produce

on each execution. Thus, the model provides no means for dealing with latency.

As we further explain in section 2.2, the main difference between Process Net-

works and Dataflow models is that Dataflow have explicit firing rules while Process

Networks do not. Such explicit firing rules specify how many tokens an actor needs

in each of its inputs in order to execute. This kind of rules are a useful mechanism

to define a computational model with bounded latency.

3Latency is the difference between the time a piece of input enters into the system and the
time when the corresponding processed output is presented to the user. Jitter is the variation
of latency. Jitter is allowed only before the data reaches its presentation deadline not after.
[Steinmetz, 1995]

8 Chapter 1. Introduction

However, within the family of Dataflow models, only the Synchronous Dataflow

enforces firing rules to remain constant during the model execution. This is why

we take this model as the more promising one in respect to the timeliness problem

—though it still remains unsuited for the wanted real-time use. Having fixed firing

rules enables this model to be a statically schedulable dataflow and to have strong

formal properties that makes questions, like computability and needed buffer sizes,

decidable.

To be specific about the problem with Synchronous Dataflow and real-time we

have to refer to their scheduling algorithm. In section 2.2.4 we review the static

scheduling algorithm. And in section 4.1 we detail how Synchronous Dataflow

periodic schedules do not cope well with real-time. Simply stated, this is because

actors that collect input and send output, from and to the outside world are not

executed with the needed regularity.

Schedules of Multi-Rate Graphs

While simple Synchronous Dataflow graphs with actors running with the same rate

have trivial schedulings —each scheduling period consisting in a sorted, unrepeated

list of the actors— and hence do not suffer of the mentioned problem. Graphs

that exhibit multi-rate can potentially have long execution periods, with many

instances of the same actor. The (multiple) rates in which actors run depends on

the defined firing rules or ports rates, the number of tokens consumed or produced

in each actor execution. In figure 1.3 we show a multi-rate graph with 5 actors,

connected in pipeline, and a possible periodic scheduling. We can see that “input”

and “output” nodes do not execute regularly, and thus, buffering in the connection

pipes is necessary.

In OutA B C

1 2 3 2 1 2 8 3

In, In, A, B, In, In, A, B, C, In, Out, B, In, Out, A, B, C, In, Out, Out, In, A, B, Out, B, C, Out, Out, Out

Periodic schedule:

Figure 1.3: An example of Synchronous Dataflow graph exhibiting multi-
rate, with a possible scheduling period. Numbers at each end of an arc
indicates the port rate, or number of tokens consumed or produced by the
port in each actor execution.

1.1. The Problem 9

At this point is important to underline that multi-rate capability is a require-

ment in our domain. We deal with mixed types of streaming data and they

typically correspond to different time lapses. Thus, they need to be processed

by the graph at different rates. Examples of data types the domain deals with

are: frames of audio samples, audio spectra, video frames, audio/video features

associated to a time windows, 3D graphics representations, and so on.

Interestingly, this problem was already made explicit in the article that origi-

nally formalized the Synchronous Dataflow model, by Lee and Messerschmitt :

The SDF model does not adequately address the possible real-time

nature of connections to the outside world. [. . .]. It may be desirable

to schedule a node that collects inputs as regularly as possible, to

minimize the amount of buffering required on the inputs. As it stands

now, the model cannot reflect this, so buffering of input data is likely

to be required. [Lee and Messerschmitt, 1987a]

In the state-of-the-art chapter of the thesis (chapter 3) we show that the current

state of the art have not given a proper solution to this problem yet.

As a conclusion, we believe that there is a need in the multimedia processing

systems domain for new dataflow models that combine the capability of multi-rate

computation with time-triggered hardware interrupts, without introducing jitter,

extra latency or run-time inefficiencies.

1.1.2 The Lack of Systematic Design Methods for Actor-

Oriented Systems

The availability of appropriate actor-oriented models of computation for multime-

dia processing systems is fundamental for building reliable, efficient and flexible

applications in an agile process. Actor-oriented models provide also the core build-

ing blocks for high-level tools such as frameworks, or domain-specific languages.

Therefore, models of computation are key abstractions that can be thought as the

“law of physics” that govern how component interacts and gives the semantics of

components composition. They allow engineers to handle the computing complex-

ity because many details —such as: how components can be parallelized, how they

synchronize or when they can run— are abstracted away from the engineer. Lee

argues [Lee, 2002] that without such abstractions, relying only to low-level mecha-

10 Chapter 1. Introduction

nisms such as threads, mutexes and semaphores, non-trivial real-time systems are

impossible for humans to understand and implement.

However, actor-oriented models are not off-the-shelf solutions and do not suffice

for building multimedia processing systems in a systematic and engineering driven

approach. We also address this problem in the present thesis.

The problem lies on the fact that there is still a big gap between an instance

of an actor-oriented model and the actual realization of a full-featured multimedia

application using the model. Actor-oriented models of computation say nothing

about how they are to be designed and implemented, or how complete applications

can be designed on top of them. Therefore we deal with two related problems:

• The problem of translating the actor-oriented model of computation into an

actual design and implementation on a specific software-based platform.

• The problem of enriching the processing core (defined by an instance of

an actor-oriented model) to obtain a full-featured application that allows

users to interact with the processing core, while keeping consistency with

the underlying actor-oriented model.

The Patterns Technology

Software engineering technologies exists that address design reuse in a systematic

way. Such technologies are domain-specific design patterns organized in pattern

languages. Pattern languages, are able to guide the development process in a spe-

cific domain, answering the following questions for each significant design problem

found in the development path:

• What are the forces that restrict the present design problem? What is the

solution?

• Which is the solution that optimizes the tension between forces?

• What are the consequences of the solution?

The problem, therefore, can be rephrased as the lack of suited pattern lan-

guages in our domain. In section 3.4 we support this affirmation by reviewing the

literature on multimedia related design patterns.

1.1. The Problem 11

Limitations of Frameworks and Code Reuse

The above-mentioned need for design reuse starts from the observation that

reusing existing domain-specific function libraries and programming frameworks

is not possible, or insufficient, most of the times.

Reusable functions available in libraries leverages specific tasks such as disc

access, mathematical operations or audio/video driver access. While useful, alone

they do not solve the design problems presented by actor-oriented based designs.

Frameworks have a much broader scope than function libraries. They allow the

creation (or instantiation) of complete applications with little effort. Frameworks

also provide mechanisms for extension and parametrisation. Actually, frameworks

provide not only code reuse but a both code and design reuse. Frameworks are

further discussed in section 2.4.3.

In the multimedia processing systems domain, frameworks provide the run-

time environment to actor-oriented models of computation and ease the task of

developing specific applications. Therefore, frameworks play a key role in the

general goal of the thesis, which is providing domain experts with a workbench

of tools that allows them to express their systems using constructs close to their

domain.

However, a great disadvantage of frameworks is that, in order to be easily in-

stantiable, they also must be narrowly tailored. Thus, the set of design decisions

that make a framework useful also limits the framework. Such design decisions,

for example, might impose a certain balance between generality and efficiency,

preventing to optimize certain functionalities or extending the framework in spe-

cific ways. Other decisions impose limitations on the platforms it can run, its

programming language, the availability of its code, its license conditions, and so

on.

Additionally, developing high quality frameworks is a hard task that needs

extensive design experience, and this problem is basically equivalent to the problem

stated-above about bridging the gap between models and implementations.

Compared to code reuse (e.g. by using frameworks), design patterns languages

encompasses a much broader land, and often provide alternative solutions depend-

ing on the desired requirements, or a given tension of forces, to put it in patterns

terminology.

12 Chapter 1. Introduction

The Lack of a Common Design Vocabulary

A related problem to the lack of design reuse is the lack of a common vocabulary

to express designs ideas contained in frameworks. A framework can be viewed as

the implementation of a system of design patterns, thus, design patterns can be

easily used to boost frameworks documentation [Appleton, 1997], and high-level

design ideas among developers.

In consequence, if appropriate pattern languages should exist for the

multimedia processing systems domain, existing frameworks (e.g., Super-

collider, CSL, GStreamer) [McCartney, 2002, Pope and Ramakrishnan, 2003,

Taymans et al., 2008] would be easy to compare in terms of their design decisions

and its consequences. Today, this it is a hard task.

Interestingly, most of these frameworks already incorporate “general, object-

oriented” patterns (e.g., the ones found in the “Gang of Four” book

[Gamma et al., 1995]) in their documentation, but the fundamental domain-

specific aspects remain undocumented.

1.2

The Proposed Solution

This thesis addresses two specific and related problems: First, the lack of

appropriate dataflow models of computation with real-time capabilities (that is,

that incorporates the concept of time in a useful way). And second, the lack of

abstractions for systematic development that enables the implementation of such

models to realize full-featured applications.

The first problem is addressed with a new actor-oriented model in the family

of synchronous dataflows, that schedules its actors in a way that input and output

data from and to the outside world is collected and produced in a time-regular

1.2. The Proposed Solution 13

basis. The second problem is addressed with a new catalog of domain-specific

design patterns organized in a pattern language. Next sections gives an overview

of both solutions.

1.2.1 The Time-Triggered Synchronous Dataflow

We propose a new actor-oriented model of computation, which we have named

Time-Triggered Synchronous Dataflow (TTSDF) that belongs the category of

statically schedulable datatflows. In section 4.2 we formalize the model, give a

scheduling algorithm and prove their properties.

Unlike its inspiration source —the Synchronous Dataflow (SDF) model— our

TTSDF model is suited for real-time processing because it ensures a fixed and

optimal latency. At the same time, the TTSDF keeps the fundamental features of

SDF’s, namely:

• It is static schedulable, which enables run-time optimizations. This is pos-

sible because ports rates are fixed, or specified a priori;

• Its computability is decidable; that is: it is possible to know whether or

not a given dataflow graph can process arbitrarily long streams in bounded

memory.

• And it is is equally powerful in the sense that all graphs runnable by the

SDF model also run by the TTSDF model.

As the “time-triggered” name suggests, the execution of the dataflow graph

is driven by regular time interrupts (e.g., from audio or video hardware). The

fundamental characteristic of TTSDF is that it distinguishes timed actors —the

ones that collects input from the outside, and the ones that sends data out; and

are linked to the driver clock— from untimed actors, which are all the rest.

Compared to SDF, the periodic schedule of TTSDF imposes new restrictions

about the valid orderings of timed and untimed actors. The main one is the

following: a valid periodic schedule sequence should always be partitioned in one or

more time-triggered callback-activated subsequences, while maintaining the token

causality restrictions of dataflows. See figure 1.4 and 1.4.

Taking a dynamic point of view on the model, the run-time first sets the needed

delays (in the ports buffers), thus, setting the operative latency, and then executes

inputs and outputs regularly placed in each timed trigger.

14 Chapter 1. Introduction

...i oi o

trigger

(IRQ/timer)

trigger

(IRQ/timer)

deadline

callback run−time

Figure 1.4: A callback activation with two inputs and two outputs. Arrows
represents execution dependencies between nodes imposed by the dataflow
graph.

trigger

i o i o i o

trigger
trigger

callback activations

complete dataflow scheduling cycle

i o i o i o

trigger

Figure 1.5: Multiple callback activations forming a dataflow cycle schedul-
ing. For clarity, here i and o represents a sequence of all inputs and outputs.

1.2. The Proposed Solution 15

1.2.2 A Pattern Language for Dataflow-Based Multimedia

Processing Systems

Our contribution to the problem of the lack of systematic development methods to

implement dataflow-based systems is a catalog of domain-specific design patterns

that form a pattern language.

A pattern is a proven solution to a recurring generic design problem. A pattern

is a literary construct (as opposed to a “code” construct) and it pays special

attention to the context in which is applicable, to the competing forces it needs

to balance, and to the positive and negative consequences of its application.

A pattern language, as described in [Borchers, 2000], is a comprehensive col-

lection of patterns organized in a hierarchical structure. Each pattern references

higher-level patterns describing the context in which it can be applied, and lower-

level patterns that could be used after the current one to further refine the solution.

Patterns and pattern languages are discussed in sections 2.4 and 2.4.5 respectively.

Our proposed pattern language is presented in chapter 5.

All the patterns presented in this thesis fit within the generic actor-oriented

design paradigm (see section 2.2), in which programs are defined in a declarative

style by “connecting” components that operate on infinite data streams.

This paradigm can be easily translated to a software architecture. A software

architecture is defined by a configuration of architectural elements —components,

connectors, and data— constrained in their relationships in order to achieve a de-

sired set of architectural properties [Fielding, 2000]. In many cases, architectural

style descriptions have been recast as architectural patterns [Shaw, 1996], because

patterns can describe relatively complex protocols of interactions between com-

ponents (or objects) as a single abstraction, thus including both constraints on

behavior and specifics of the implementation.

This is precisely the case of the Dataflow Architecture pattern formalized by

Manolescu [Manolescu, 1997] (refer to section 3.4 for a summary of the pattern).

The key point of the Dataflow Architecture pattern is that it addresses the problem

of designing systems with components that perform a number of sorted operations

on similar data elements in a flexible way so they can dynamically change the

overall functionality without compromising performance. Figure 1.6 represents a

simple example of such architecture.

The pattern language presented in this thesis is related to design decisions

16 Chapter 1. Introduction

on actor-oriented systems. Therefore, it fit well with the Dataflow Architecture

pattern, which acts as the higher-level pattern in the pattern language.

The word “dataflow” (also written “data-flow” or “data flow”) is often used

with loose semantics. In many occasions, like in the Manolescu’s pattern, it is

used as a synonym for the general actor-oriented paradigm. In this thesis, unless

explicitly stated, we will adhere to the precise definition given in section 2.2.2.

Figure 1.6: Dataflow Architecture

The Dataflow Architecture pattern does not impose any restrictions on issues

such as message passing protocol, actors execution scheduling or data manage-

ment. All these aspects should be addressed in other lower-level and orthogonal

design patterns.

The proposed pattern language in this thesis is not the first effort in the field.

Manolescu collected and reshaped existing patterns and proposed new ones that

fit under the umbrella of the Dataflow Architecture pattern (which can be re-

garded as the actor-oriented paradigm captured as a software architectural pat-

tern) [Manolescu, 1997]. Some of those patterns —the ones more related to our

work— are described in section 3.4. Manolescu’s patterns are very high-level

compared to ours, and does not address the issues related with the design and im-

plementation of real-time capable models of computation. Both catalogs integrate

synergistically and we explicitly relate them.

The patterns proposed in our pattern language (see section 2.4) focus on the

four following aspects:

1. How to organize different kinds of actors connections.

2. How to transfer tokens between actors allowing in a flexible and convenient

way.

1.2. The Proposed Solution 17

3. How to enable human interaction with the dataflow engine while it is run-

ning.

4. How to rapid prototype user interfaces on top of a dataflow engine, cre-

ating complete applications without the need for coding —while allowing

extensibility by coding.

The patterns are organized hierarchically, specifying their “use” relationships

and making explicit the order in which they can be “instantiated” in the code.

See figure 1.7 for an illustration of the instantiation process.

The main limitation of our patten language is that it is not comprehensive, in

that it does not cover all the design space in the Multimedia Processing Systems

domain. However, this is an expected limitation because only small (i.e. very

specific) domains have a well-defined design space and allow comprehensive pattern

languages. In such ideal conditions, all applications belonging to the domain could

be completely derived from instantiations of patterns in the pattern language.

Luckily, such incompleteness by no means implies little utility.

We regard the pattern language as something in permanent evolution, expect-

ing new patterns being incorporated to match new trends and requirements in the

domain.

Related technologies

The proposed pattern language uses and relates to well established technologies

such as Object-orientation (see section 2.3), actor-oriented design and system en-

gineering (see section 2.2); and also to newer technologies such as domain-specific

meta-models and languages (see section 3.2) such as the Meta-Model for Multi-

media Processin Systems (4MPS) [Amatriain, 2004]. 4MPS facilitates the trans-

lation of models into object-oriented designs, by giving names and semantics to

those design elements that are common in many actor-oriented applications and

frameworks. This nomenclature and semantics is also valuable when writing de-

sign patterns. Finally, the metamodel explicitly relates actor-oriented design with

object-oriented design.

18 Chapter 1. Introduction

Figure 1.7: Pattern Instantiation: applying generic design solutions to con-
crete systems under development. The canonical solution given by the pat-
tern must be adapted to concrete situation by relating existing classes with
the roles of the solution classes.

1.3. The Method 19

1.3

The Method

The two problems addressed by this thesis, though related, need different

approaches. The first problem —the real-time static schedulable computation

model— is addressed formally, using algebraic methods and formal algorithms to

prove all the significant properties of the model. The second problem —the sys-

tematic methodology to develop real-time interactive systems on top of dataflow

models— cannot be addressed in a similar way. Instead of “calculating” the so-

lution, we capture design experience and insight from many analyzed examples,

abstract the commonalities and encapsulate this insight in a proper formalism.

These two methods are commonly used within different disciplines as table 1.1

shows.

Problem Methodology Discipline

Real-time statically schedu-
lable model.

Formal methods (linear alge-
bra, formal languages and algo-
rithms).

Systems Engineering
(also Embedded Sys-
tems).

Systematic methodology to
develop dataflow-based sys-
tems.

Successful examples analysis,
commonality abstraction and
formal encapsulation of reusable
designs.

Software Engineering.

Table 1.1: The two problems addressed by this thesis, the methodology used
in each case, and the discipline where the methodology belongs.

1.3.1 The Systems Engineering Approach

In systems engineering, formal, mathematical-oriented methods are used to model

a system and then derive interesting properties from that model.

We formalize our Time-Triggered Synchronous Dataflow model using a directed

graph with some added information. Each arc has an associated queue of tokens.

20 Chapter 1. Introduction

Each node represents an actor which consumes tokens from the ingoing arcs and

produces tokens to the outgoing arcs. The model is not concerned with the actual

processing that an actor does —this is why a computation model is an abstractions,

we disregard some aspects of the system. But it is interested in the semantics of

the coordination language, therefore we define exactly how actors interact among

them.

The most important properties of the model are its computability and its

input-to-output latency. These properties depend on how the graph is executed.

Therefore we need a proper notation (using formal languages, to describe execution

sequences) and techniques to reason about it’s schedulability. These techniques

include linear algebra and computing algorithms. We define a class of scheduling

algorithms and prove that they have the desired properties —namely, they can

run statically or before run-time, and have a fixed and minimum latency while

retaining the expressiveness that Static Dataflows have.

1.3.2 The Software Engineering Approach

Software engineering methodologies are quite different to other engineering and

scientific disciplines in that many of their abstractions and constructs cannot be

formally proved, and empirical proofs are often impossible. In such cases, the soft-

ware engineering methods emphasise on evaluating, capturing and communicating

insight. Szypersky speculates [Szyperski, 1998] that software engineers don’t “cal-

culate” their designs because software engineering has a much shorter history than

other engineering fields that have large bodies of theory accumulated behind them.

Software engineers, instead, follow guidelines and good examples of working de-

signs and architectures that help to make successful decisions. Therefore in the

context of software engineering, communicating experience, insight, and providing

good examples are central activities.

Vlissides, it his “Pattern Hatching” book [Vlissides, 1998] points out that the

methodology for growing a collection of highly-related patterns, while keeping

them independent, involves many iterations and rewritings. He also identifies

the most important part of a pattern: “The difficulties of creating new patterns

should not be underestimated. The teaching component of patterns —mostly

corresponding to the description and resolution of forces and the consequences of

application— is the most important and also the hardest part. ”

Beck remarks [Beck et al., 1996] that is their experience that the time-

1.3. The Method 21

consuming effort of writing patterns pays off because “the availability of a catalog

of design patterns can help both the experienced and the novice designer recognize

situations in which design reuse could or should occur.” The pattern community

is sufficiently enthused about the prospective advantages to be gained by making

this design knowledge explicit in the form of patterns, that hundreds of patterns

have been written, discussed and distributed.

Patten Mining

Our research provides elements of reusable design for building object-oriented

real-time multimedia systems. Consequently we have taken an approach that is

appropriate for this objective. The process of creating new design patterns starts

by obtaining in-depth experience on a particular domain. The trade-off of forces

(quality-of-services) to be optimized in a particular area have to be understood.

But also sufficient breadth is needed to understand the general aspects of the

solutions and to abstract them into a generalized solution. This process is called

pattern mining. See figure 1.8 for an illustration of that process. The diagram

shows how pattern mining can be regarded as the inverse of pattern instantiation

(depicted in figure 1.7).

As Douglass states in his “Real-Time Patterns” book [Douglass, 2003] “pat-

tern mining is not so much a matter of invention as it is of discovery —seeing

that this solution in some context is similar to that solution in another context

and abstracting away the specifics of the solutions.” He also remarks that to be

considered a useful pattern it must occur in different contexts and perform a useful

optimization of one or more qualities-of-service.

Our patterns have been mined studying several open-source mul-

timedia (mostly audio and/or video) frameworks or environments for

application building. The list includes: Aura, SndObj, OSW, STK,

CSL, Supercollider, Marsyas, PureData, Max/MSP and GStreamer

[Dannenberg and Brandt, 1996a, Lazzarini, 2001, Chaudhary et al., 1999,

Cook and Scavone, 1999, Pope and Ramakrishnan, 2003, McCartney, 2002,

Tzanetakis and Cook, 2002, Puckette, 1997, Taymans et al., 2008]

However, the main source of experience comes from building and evolving

the CLAM framework during the last 8 years. The best methodology to de-

velop a frameworks is by “application-driven development” which means that

the framework emerges as the commonalities of the developed applications in

22 Chapter 1. Introduction

Figure 1.8: Pattern Mining: abstracting a general solution out of different
cases, capturing the trade-offs to be optimized.

a domain.[Roberts and Johnson, 1996]. The process of adapting new appli-

cations into the framework commonalities, includes many design refactorings

[Fowler et al., 1999] and a thoughtful analysis of trade-offs for each design de-

cision. CLAM development has gone though this path, and therefore has been a

fruitful source of design experience for pattern mining.

Patterns Evaluation

The patterns are evaluated assessing their usefulness in several use cases in dif-

ferent real-world applications. We show that most of the patterns can be found

in different systems, while few other patterns are only found in the CLAM frame-

work. However, we show that the CLAM framework, with it’s related applications,

has demonstrated its adaptability to several scenarios within the multimedia do-

main such as real-time spectral audio processing, and 3D-audio rendering based

on animated 3D audio scenes and camera tracking metadata.

1.4. Contributions 23

1.4

Contributions

In the first part of this introduction we have shown a diagram (figure 1.2)

depicting the technologies involved in developing multimedia processing systems,

in which our research is circumscribed. Now that we have outlined the concrete

problems this thesis addresses and the proposed solutions, we recap and show

how the addressed problems fit in this general picture of tools and technologies.

Figure 1.9 shows the thesis contributions in the big picture of our domain. Main

contributions are: the new TTSDF model in the actor-oriented models of compu-

tation; the design patterns —which are organized in two category: Actor-Oriented

Design Patterns (to implement actor-oriented models) and Framework Design Pat-

terns (to implement dataflow-based frameworks and applications); and the CLAM

pattern which uses the aforementioned technologies.

1.4.1 List of Specific Contributions

1. An actor-oriented model of computation, in the family of dataflow,

that we have named Time-Triggered Synchronous Dataflow (TTSDF). This

model overcomes the timeliness limitations of existing dataflow models, and

hence, adds real-time capabilities.

The TTSDF model have the following properties:

(a) It combines actors associated with time with untimed actors

(b) It retains token causality and dataflow semantics.

(c) It is statically (before run-time) schedulable.

(d) It avoid jitter and uses optimum amount of latency. A superior bound

for the latency is given by the model.

(e) It naturally fits in callback-based architectures.

24 Chapter 1. Introduction

Hardware

Assembly Language

Machine Language

Intel P4 ARM 1176Intel CoreDuo

C

C++

Java

Python

Fortran

Actor Oriented Models of Computation

Multimedia Processing Frameworks

Process Networks

Synchronous Dataflow

Simulink Model Giotto Model Quasi−static Dataflow

Dynamic Dataflow

Synchronous/Reactive

Ptolomey II

Time−Triggered Dataflow

Simulink

GStreamer

CLAMMarsyas

Mutexes

Threads

Semaphores

Procedures

Memory Labels

GOTOs

Strongly Typed

Systems

Framework Usage Patterns

Framework Design Patterns

Actor−Oriented Design Patterns

Object−Oriented Design Patterns

Procedural Programming Languages

Object Oriented Languages

Encapsulation

InheritancePolymorphism

Pascal

i086 Assembly

Language−Specific Patterns / Idiom

Domain−Specific Lang. Pattern

Active objects

FAUST

4MP

Domain−Specific Languages

Meta−Models&

A
 B

 S
 T

 R
 A

 C
 T

 I
 O

 N

Figure 1.9: The “big picture” of technologies and tools for developing multi-
media processing systems, presented before (figure 1.2), now underlining the
contributed solutions in dashed circles: The Time-Triggered Synchronous
Dataflow model, Actor-oriented and Framework-level design pattern lan-
guage, and the CLAM framework that provides an example of implemen-
tation of the previous technologies. Arrows in dashes denote a relation of
“use”.

1.4. Contributions 25

(f) It enables static analysis for optimum distribution of run-time load

among callbacks

(g) The scheduling is parallelizable in multiple processors using well known

techniques.

(h) The callback-based scheduling algorithm is easily adaptable to other

dataflow models (BDF, DDF)

2. Precise semantics for dataflow schedulings in callback-triggered architec-

tures, which can be used in different models of computation.

3. A formal notation for the callback-triggered semantics, based on formal lan-

guages. This notation is useful to reason about schedulability of dataflow

models.

4. A design pattern language for dataflow-based multimedia processing sys-

tems. It enables software developers to reuse tested design solutions into

their systems, and thus, applying systematic solutions to domain problems

with predictable trade-offs to efficiently communicate and document design

ideas.

These characteristics represent a significant departure from other approaches

that focus on “code” reuse (such as libraries and frameworks).

The pattern language, though not comprehensive in all the multimedia pro-

cessing domain, focuses and is organized in the following four aspects :

(a) General Dataflow Patterns: they address problems about how to orga-

nize high-level aspects of the dataflow architecture, by having different

types of modules connections.

(b) Flow Implementation Patterns: they address how to physically transfer

tokens from one module to another, according to the types of flow

defined by the general dataflow patterns. Tokens life-cycle, ownership

and memory management are recurrent issues in those patterns.

(c) Network Usability Patterns: they address how humans can interact

with dataflow networks without compromising the network processing

efficiency.

26 Chapter 1. Introduction

(d) Visual Prototyping Patterns: they address how domain experts can

generate applications on top of a dataflow network, with interactive

GUI, without needing programming skills.

5. Showing that design patterns provide useful design reuse in the domain of

multimedia computing.

6. Showing that all the patterns can be found in different applications and

contexts.

7. Showing how design patterns are useful to communicate, document and com-

pare designs of audio systems.

8. An open-source framework —CLAM— that implements all the concepts

and constructs presented in the thesis: the TTSDF model of computation

and all the proposed design patterns. CLAM enables multimedia domain

experts to quickly prototype (that is: with visual tools, without coding)

real-time applications. CLAM is not only a test-bed for theoretic concepts

of this thesis, but a tool actually used for real-world multimedia systems

(especially in the music and audio sub-domain).

1.5

Thesis Organization

This thesis is structured as follows. Chapter 2 gives the necessary background

knowledge on the areas of multimedia-capable operating systems, real-time, actor-

oriented design, and object-orientation and design patterns. Chapter 3 introduces

the state-of-the-art found in the literature related to the addressed problems. This

1.5. Thesis Organization 27

chapter discusses extensions the synchronous dataflow model and existing actor-

oriented models that support timeliness; it reviews a meta-model for multimedia

processing systems that provides semantics for our pattern language; and presents

existing patterns and frameworks in our target domain. For each of these state-of-

the-art technologies we explain how this thesis innovates upon them or how they

address a slightly different problem. Chapter 4 contributes a new actor-oriented

model of computation, strongly based on Synchronous Dataflow but suited for

real-time processing; its validity is proved and it is related to similar models.

Chapter 5 contributes a design pattern language for dataflow-based multimedia

processing systems; with use-case studies for qualitative evaluation of the pat-

terns. Chapter 6 presents case studies using the contributed model and pattern

language; including the CLAM framework with its rapid prototyping of multime-

dia applications capabilities. Finally, Chapter 7 draws conclusions and discusses

open issues and future lines.

CHAPTER 2

Background

This chapter sets the ground for all the techniques we will use and develop to

address the goals and problems before-mentioned in the introduction. Specifi-

cally, the work in this thesis is based on the following well-established —though

evolving— technologies: operating systems, system-level design and real-time pro-

gramming, actor-oriented design, design patterns and frameworks.

To start, section 2.1 explains the services offered by off-the-shelf operating

systems, and how they enable multimedia requirements. We show that these

requirements are basically those to process multimedia streams in soft real-time.

We also discuss how operating systems and programs deal with such real-time

requirements. Key concepts like hard and soft real-time are also presented in this

section.

In section 2.2 we present actor-oriented design, which can be thought as the

“laws of physics” that govern the components (actors) interaction. Actor-oriented

design is the conceptual framework within which larger designs are constructed by

composing elements. Actor-oriented models abstract (or hide) the complexity of

communication, data management, scheduling and hardware resource assignation

(such as multiprocessors).

29

30 Chapter 2. Background

Section 2.3 is about object-oriented design; a mainstream programming

paradigm in which we later base our design patterns, design examples and code

framework. In this section we also introduce the related concept of frameworks

(see section 2.4.3).

In the following section 2.4, we present design patterns, a technique that allows

reusing design in an effective way. Design patterns describe an infinite set of similar

problems with it’s solution. We emphasise the delineation of what is a pattern

and what is not. This section also introduces pattern languages (see section 2.4.5),

a technique to compose individual patterns into a path of design decisions that,

used effectively, enables development of complex software systems in a predictable

engineering discipline.

2.1

The Multimedia Operating System

Today’s operating systems installed in workstations and personal computers

(being desktops or laptops) must cope with continuous-media processing. Fortu-

nately, such multimedia systems are outside of traditional (hard) real-time scenar-

ios and have more favorable (soft) real-time requirements.

Though it is fair to say that roughly all modern off-the-shelf operating systems

cope with such kind of processing, different operating systems differ greatly on

the soft real-time capabilities they offer. It is interesting to note that multime-

dia processing capabilities are relatively new in off-the-shelf operating systems.

The concepts employed by such operating systems were initially developed for

embedded real-time systems.

A multimedia processing system (defined in section 1.1.1) reacts to the real

world through its hardware components. In the context of an operating system, the

2.1. The Multimedia Operating System 31

interaction between hardware and software happens through hardware interrupts.

Therefore, interrupt requests (IRQ’s) handling, and process scheduling concerns

are paramount in multimedia systems. Other aspects such as resources, files and

memory also have a great impact on the ability to deliver continuous media on

time.

2.1.1 Multimedia Processing Systems Requirements

The main characteristic of real-time systems is the need for correctness, including

both the result of the computation and the time at which the result is presented

to the user. Thus, a real-time system can fail because the system is unable to

execute its critical work in time [Stankovic, 1988].

A real-time system adheres to pre-defined time spans for processed data re-

sponse times. Speed and efficiency are not, as often assumed, the main character-

istics of a real-time system. Deterministically timed computation is.

Multimedia must consider timing and logical dependencies among different

tasks processed at the same time. In processing of audio and video data the

timing relation between the two media has to be considered.

Audio and video streams consist in periodically changing values of continuous

media-data such as audio samples or video frames. Each data unit must be pre-

sented at a specific deadline. Jitter —which is the variation on the time interval

at which a periodic task takes place— is allowed only before, not during the final

presentation [Steinmetz, 1995]. For example, a piece of music must be played with

constant speed or it will be noticed by the human ear. However, users may not

perceive a slight jitter at some media presentation, depending on the medium and

the application. The human eye is less sensitive to video jitter that the ear is to

audio jitter [Steinmetz, 1996].

Latency Bounds

Latency or delay is the time span between the instant when a piece of data is

made ready to the system’s input and the instant when the system makes the

result available. Latency can be given in time or in number of sample data or

periodic events, provided that the sampling or period rate are known.

When human users are involved just in the input or output of continuous

media, delay bounds are more flexible. Consider the playback of video streamed

32 Chapter 2. Background

(a) A laptop-based music per-
formance setup

(b) The Ap-
ple’s iPhone

(c) A video jockey perfor-
mance

Figure 2.1: Examples of multimedia processing systems.

from a remote Internet server. The delay of a single video frame transferred is

unimportant if all frames arrive in a regular fashion. Users will only notice an

initial delay in response to their “start play” commands.

On the other hand, when humans are involved in both the input and the output,

the initial delay or latency is important. One example is a software synthesizer

in live music performance. Music played by one musician must be made available

to all other members of the band within a few milliseconds, or the underlying

knowledge of a global unique time is disturbed.

Real-time Requirements

To fulfill the timing requirements of multimedia processing systems, the operat-

ing system must use real-time scheduling techniques. Traditional hard real-time

for command and control systems used, for example, in areas such as aircraft

piloting, demand high security and fault tolerance. Fortunately, the real-time de-

mands of multimedia processing systems are more favorable than hard real-time

requirements:

• Fault-tolerance is usually less strict: A short-time failure of a continuous-

media system, such as a delay in delivering video-on-demand will not directly

lead to critical consequences.

• Missing a deadline, for many applications in multimedia systems is, though

regrettable, not a severe failure. It may even go unnoticed. If a video frame

is not prepared on time, it can simply be omitted, assuming this does not

2.1. The Multimedia Operating System 33

happen for a contiguous sequence of frames. Audio requirements are more

stringent.

• Most of the time-critical operations are periodic: A sequence of digital

continuous-media data results from periodically sampling sound or image

signal. Hence, in processing the data units of such a data sequence, all time-

critical operations are periodic. Scheduling periodic tasks is much easier

than scheduling sporadic ones [Mok, 1983].

2.1.2 Soft vs. Hard Real-Time

Several definitions for real-time systems can be found in the literature. Here

we will assume the following definition, which is accordant to the IEEE POSIX

Standard [Walli, 1995] :

A real-time system is one in which the correctness of a result not

only depend on the logical correctness of the calculation but also upon

the time at which the result is made available.

Therefore there are timing constrains associated to system tasks. Such tasks

have normally to control or react to events that take place in the outside world,

happening in “real-time”.

It is important to note that real-time computing is not equivalent to fast com-

puting. Fast computing aims at getting the results as quick as possible, while

real-time computing aims at getting the results at a prescribed point of time

within defined time tolerances. Thus, a deadline can be associated with the task

that has to satisfy this timing constrain.

If the task has to meet the deadline because otherwise it will cause fatal errors

or undesirable consequences, the task is said to be hard real-time. On the contrary,

if the meeting of the deadline is desirable but not mandatory, the task is soft real-

time [Steinmetz, 1995].

Given the aforementioned requirements of multimedia processing systems, in

the context of such systems we are interested in soft real-time.

Expanding on the question of whether hard real-time is needed, the important

point is to ask what is the impact of failure in the case at hand. Will somebody

die? Will costly machines or products be destroyed? Will something just require

human maintenance? Will some mass-produced product have a slightly higher

34 Chapter 2. Background

defect rate? In other words, we deal with levels of criticality. “Hard” is not

an absolute term, just an indication that, unlike “soft”, somebody thinks “late”

means “unacceptable” as opposed to just “undesirable”. But that means that

“hard” and “soft” do not express absolute values.

It is interesting to note that time is not a central part of today’s computing

science and, thus, it is hard to exactly predict how long an operation will take.

Lee and Zhao argue in [Lee and Zhao, 2007] that prevailing modern hardware and

software techniques play against the very tight constraints required for hard real-

time:

Performance gain in modern processors comes from the statistical

speedups such as elaborate caching schemes, speculative instruction ex-

ecution, dynamic dispatch, and branch prediction. These techniques

compromise the reliability of embedded systems. In fact, most embed-

ded processors such as programmable DSP’s and microcontrollers do

not use these techniques.

[...] Despite considerable progress in software and hardware tech-

niques, when embedded computing systems absolutely must meet tight

timing constraints, many of the advances in computing become part

of the problem, not part of the solution. Although synchronous dig-

ital logic delivers precise timing determinacy, advances in computer

architecture and software have made it difficult or impossible to esti-

mate or predict the execution time of software. Moreover, networking

techniques introduce variability and stochastic behavior, and operating

systems rely on best effort techniques. Worse, programming languages

lack time in their semantics, so timing requirements are only specified

indirectly.

Real-Time and Multi-Threading Concepts

The following table defines concepts related to real-time operating systems and

multi-threading, that are used throughout this chapter.

2.1. The Multimedia Operating System 35

Term Definition

Real-time system A system that can fail not only because of hardware

or software failure, but because the system is unable to

execute its workload in time. The system must act de-

terministically, adhering to previously defined time span

for data manipulation: that is, it guarantees a response

time.

Jitter Variation on the time interval at which a periodic task

takes place.

Latency Time span between the instant when a piece of data is

made ready to the system’s input and the instant when

the processed data is presented to the user. Latency

can be given in time or in number of sample data or

periodic events, provided that the sampling or period

rate are known.

Race condition Situation where simultaneous manipulation of a resource

by two or more threads causes inconsistent results.

Critical section Segment of code that coordinates access to a shared re-

source.

Mutual exclusion Property of software that ensures exclusive access to a

shared resource.

Deadlock Special condition created by two or more processes and

two or more resource locks that keep processes from do-

ing productive work.

Preemption The act of temporarily interrupting a task being carried

out by an operating system, without requiring its coop-

eration, and with the intention of resuming the task at

a later time.

Priority inversion The scenario where a low priority task holds a shared

resource that is required by a high priority task. This

causes the execution of the high priority task to be

blocked until the low priority task has released the re-

source.

Interrupt response time The time between the arrival of the interrupt and the

dispatching of the required task, assuming it is the

highest-priority task to be dispatched.

36 Chapter 2. Background

2.1.3 Operating Systems Real-Time Facilities

Real-time systems and real-time operating systems are not equivalent concepts.

A real-time operating system provides facilities like multitasking scheduling, in-

ter process communication mechanism, etc., for implementing real-time systems.

Therefore, although relying on a real-time operating system, there is still a huge

potential for applications to fail on fulfilling real-time restrictions.

Such applications have a real-time thread that is typically programmed in a

callback scheme. The real-time thread must satisfy the imposed timing constrains.

Therefore, real-time programming techniques and specific operating system con-

figurations should be used. The prominent rule is to not allow operations more

expensive than O(n), where n is the size of the input data. Hence, threads must

be synchronized using lock-free operations, most system calls —such as requesting

for memory allocation– should be avoided, memory page faults should be avoided

by locking enough RAM memory on initialization, and last, task priority must be

risen over all non real-time tasks.

Modern multimedia capable operating systems include in general the following

real-time features: fast switch context, small size, preemptive scheduling based

on priorities, multitasking and multi-threading, real-time timers, and intertask

communication and synchronization mechanisms (such as semaphores, signals,

events, shared memory, etc.) [Gambier, 2004].

The active community around Usenet’s “comp/realtime” newsgoup define the

following requirements that make an OS a real-time OS (RTOS)1 :

1. A RTOS (Real-Time Operating System) has to be multi-threaded and pre-

emptable.

2. The notion of thread priority has to exist as there is for the moment no

deadline driven OS.

3. The OS has to support predictable thread synchronisation mechanisms

4. A system of priority inheritance has to exist

5. OS Behaviour should be known

So the following figures should be clearly given by the RTOS manufacturer:

1http://www.faqs.org/faqs/realtime-computing/faq/

http://www.faqs.org/faqs/realtime-computing/faq/

2.1. The Multimedia Operating System 37

1. the interrupt latency (i.e. time from interrupt to task run) : this has to be

compatible with application requirements and has to be predictable. This

value depends on the number of simultaneous pending interrupts.

2. for every system call, the maximum time it takes. It should be predictable

and independent from the number of objects in the system;

3. the maximum time the OS and drivers mask the interrupts.

The following points should also be known by the developer:

1. System Interrupt Levels.

2. Device driver IRQ Levels, maximum time they take, etc.

Real-time scheduling

A fundamental part of a multimedia operating system is the task manager. It

is composed by the dispatcher and the scheduler. The dispatcher carries out the

context switch, that is, the context saving for the outgoing task and the context

loading for the incoming task, and the CPU handling to change the active task.

The scheduler selects the next task that will obtain the CPU. This choice is given

by means of scheduling algorithms, and this is the point where real-time OS’s and

non-real-time OS’s are mostly distinguished. Such algorithms are an active area

of research (see [Liu, 2000] and [Stallings, 1998] for an overview of the field).

The multimedia systems in which we are interested must cope with unpre-

dictable workload. That is, the complete information about the scheduling prob-

lem (number of tasks, deadlines, priorities, periods, etc.) is not known a priori.

Therefore, the scheduling must be dynamic —done at run-time.

The guarantee that all deadlines are met can be taken as measure of the ef-

fectiveness of a real-time scheduling algorithm . If any deadline is not met, the

system is said to be overloaded. The total processor utilization for a set of n tasks

is given by

U =
n∑

j=1

Ci

min(Di, Tj)

can be used as schedulability test [Liu and Layland, 1973]. C is the execution

time, D the deadline and T the task period. If the task is aperiodic or the deadline

is smaller than the period, then the deadline is used in the equation.

38 Chapter 2. Background

Among the most popular algorithms for scheduling tasks with real-time re-

quirements we find the Rate Monotonic Scheduling (RMS) and Earliest Deadline

First (EDF).

In the RMS approach [Liu and Layland, 1973], each task has a fixed static

priority which is computed pre-runtime. The runnable tasks are executed in order

determined by their priorities. If all tasks are periodic, a simple priority assignment

is done as follows: the shorter the period, the higher the priority. This scheduling

assumes that all tasks are pre-emptive, periodic, with deadlines equal to the period

and independent (that is, there is no task precedence restriction). In this case the

total CPU utilization has an upper bound given by

U ≤ n(2
1
n − 1)

The RMS algorithm is easy to implement and if the system becomes overloaded,

deadlines are missed predictably. The most important drawbacks are its low CPU

utilization (under 70%) and the fixed priorities, which can lead to starvation and

deadlocks.

The EDF algorithm is based on assigning priorities according to their deadline.

The task with the earliest deadline has the highest priority. Thus, the resulting

priorities are naturally dynamic. This algorithm was also presented by Liu and

Layland and they showed that if all tasks are periodic and preemptive, then the

algorithm is optimal [Liu and Layland, 1973]. A disadvantage of this algorithm is

that the execution time is not taken into account in the priority assignment.

2.1.4 Operating-System Scheduling vs. Dataflow Schedul-

ing

In this thesis we address the problem of how to schedule Dataflow models of

computation in a timed manner. Though this problem resembles and relates to

the problem of scheduling OS tasks, they differ considerably. In Dataflows models

(see section 2.2.2), actors do not need to run separately in individual threads. In

fact, it is typical to run a whole model of computation in a single thread. Or

partition the model in as many threads as processors available.

The reason behind this is that dataflow actors are not defined with an asso-

ciated periodic time, but with data precedences declared in the dataflow graph.

In order to cope with data dependencies and multi-rate ports, specific schedul-

2.1. The Multimedia Operating System 39

Other activity

(preempted)

Task response

to IRQ

Response

Time

Interrupt Request

(IRQ)

Response

Time

Figure 2.2: Interrupt response time in a preemptable OS.

ing algorithms are needed (see section 2.2.4). Unlike OS scheduling algorithms,

dataflow scheduling does not deal with task priorities because equal priority is

assumed to all the graph.

In some models, such as the Synchronous Dataflow (see section 2.2.3), the

scheduling can be done statically before runtime. Another reason to group multiple

actors in a single (or few) thread is efficiency since context switching, inter-process

communication, and process synchronization take CPU time.

In the proposed Time-Triggered Synchronous Dataflow model (in section 4) we

relate two different concepts: a periodic real-time task with a deadline (driven by a

hardware device IRQ’s), with the dataflow scheduling. As a result, the new model

provides real-time capabilities and optimal latency to the dataflow execution. In

this model, the dataflow scheduling period is interleaved by multiple real-time task

executions.

Unlike Dataflow models, the Process Network model (see section 2.2.7) uses a

more dynamic, nondeterministic approach. Thus, it can benefit form relying on a

normal OS scheduler to run each actor as a separate task. In such case, Process

Network model copes with its data dependencies (specified by its graph) by means

of blocking reads on queues shared between actors.

2.1.5 From Hardware Interrupt to User-Space Response

Off-the-shelf operating systems such as Mac OS X/BSD, standard Linux or Win-

dows Vista, clearly separates the kernel space and user space. Hardware interrupts

requests (IRQ’s) generated, for example, by audio and video devices and high

precision clocks, are first handled by the kernel, but the actual processing must

happen in the user space —thus, ensuring the reliability of the system in case of

40 Chapter 2. Background

Proc. time Proc. time Proc. time

Deadline Deadline Deadline

Period Period Period

RT task RT task RT task
A

(preemp)

B

(preemp)
AB

IRQ IRQ IRQ

Response time Response timeResponse time

Figure 2.3: Periodic task scheduling of a real-time task on a preemptable
OS in heavy load.

application failure.

Figure 2.2 shows that when a IRQ arrives, the CPU is interrupted and enters

interrupt handling in the kernel. Some small amount of work is done to deter-

mine what event occurred and, after that, the required task in the user space is

dispatched (via a context switch). The time between the arrival of the interrupt

and the dispatching of the required task, assuming it is the highest-priority task

to be dispatch, is called interrupt response time. For real-time, the response time

should be deterministic and operate within a known worst-case time.

In addition to deterministic interrupt processing, task scheduling supporting

periodic intervals is also needed for real-time processing. Figure 2.3 shows a pe-

riodic task scheduling. Real-time audio and video require periodic sampling and

processing. Consider a low-latency audio system that must process samples in pe-

riods of 5 ms. Assume that processing those 5 ms of samples takes 3 ms of CPU.

The deadline for the processing task is 4 ms (since the audio hardware needs 1 ms

to service the internal buffers). For this system to work, the audio processing task

must be performed at periodic intervals in the desired deadlines. This means that

other tasks must be preempted and the interrupt latency cannot exceed 1 ms.

2.1.6 The Standard 2.6 Linux Kernel

The open-source Linux operating system offers many versions and alternatives

on how to achieve real-time. Linux is also attractive because it is easily ported

2.1. The Multimedia Operating System 41

Hardware

Linux kernel

(preemptable)

Real−time

task
Non real−time

task

Real−time

process
Non real−time

process
User space

Figure 2.4: The standard 2.6 Linux kernel with preemption

to many architectures including ultra-portable devices such as ipods and smart-

phones. This section explores the solution available today in the standard off-the-

shelf 2.6 kernel.

The 2.6 Linux kernel is fully preemptable. In previous versions, when a user

space process made a call into the kernel (though a system call), it could not

be preempted. This means that if a low-priority process made a system call, a

high-priority process had to wait until that call was complete before it could gain

access to the CPU. Version 2.6 of the kernel changes this behavior by allowing

kernel processes to be preempted if high-priority work is available (even if the

process is in the middle of a system call). Figure 2.4 depicts the standard 2.6

Linux kernel with real-time and non-real-time process in both kernel and user

space.

This preemptable kernel feature has a trade-off. It enables soft real-time per-

formance even under heavy load, but it does so at a cost: slightly lower throughput

and small reduction in kernel performance. Therefore, the kernel can be configured

(at compile time) to better fit multimedia desktops or servers.

The 2.6 Linux kernel also provides high-resolution timers and a O(1) sched-

uler. This scheduler operate in constant time regardless of the number of tasks to

execute.

42 Chapter 2. Background

A hard real-time support is possible by applying the PREEMPT RT patch

—this version is actually also available off-the-shelf in some popular Linux dis-

tributions. The real-time patch provides reimplementation of some of the kernel

locking primitives to be fully preemptable, implements priority inheritance for in-

kernel mutexes, and converts interrupt handlers into kernel threads so that they

are fully preemptable.

2.1.7 Real-time programming styles: Callbacks vs. Block-

ing I/O

In computer science a callback is executable code of a layer that is passed as an

argument to another layer. It allows generic components such an operating-system

or a device driver to trigger the needed specific behavior, in a decoupled way (the

generic component does not know the specific component).

An interrupt handler, also known as an interrupt service routine (ISR), is

a callback subroutine in an operating system or device driver whose execution is

triggered by the reception of an interrupt. In a multimedia processing environment

an interrupt is generated when new input data is ready to be processed, and output

data needs to be serviced. The interrupt causes a call to a callback function

that the user has previously registered, Such interrupt handlers are also useful

for dealing with the transitions between protected modes of operation such as

hardware interrupt calls and user-space processes.

In the blocking input/ouput style of programming adds an extra layer. The

user real-time processing code is not triggered by a callback, but is organized in a

main loop provided by the user. In this style, the communication with the input

and output data is done through blocking read and write calls —that is, when

such call is done the multimedia process will stall till the hardware is ready to

service the input or output.

The callback style is preferred to the blocking IO style, for real-time applica-

tions [Bencina and Burk, 2001]. However, blocking IO might be simpler to un-

derstand, and so, useful for pedagogical purposes. The main benefit of callback

versus blocking I/O is that the multimedia processing automatically takes place

in a high-priority thread (an interrupt-triggered thread), and, in respect to the

main application, this thread runs in background.

In the blocking I/O approach, on the contrary, strong multi-tasking support

2.2. Actor-Oriented Design 43

is needed in order to run the multimedia process in high-priority. Even when this

support is available, the run-time performance is penalized by the extra context-

switching among threads, inter-process communication and I/O buffers manage-

ment. Thus, it is not strange that most of the multimedia API’s are callback-based

only.

2.2

Actor-Oriented Design

The term “actors” was introduced in the 1970’s by Carl Hewitt and others at

MIT to describe autonomous reasoning agents. They developed basic techniques

for constructing systems based on asynchronous message passing, instead of ap-

plicative evaluation, as in lambda calculus [Hewit, 1977, Hewitt and Baker, 1977].

The term evolved through the work of Gul Agha and others to refer to a family

of concurrent models of computation, independently of whether they were being

used to realize autonomous reasoning agents [Agha, 1986].

The term “actor” has also been used since 1974 in the dataflow community

in the same way, to represent a concurrent model of computation. More recent

work by Eker, Lee and others at UC Berkeley [Eker et al., 2003] focuses on the

use of patterns of message passing between actors. These are called models of

computation, and provide interesting modeling properties.

The term “actor” also has some pitfalls: the most prominent is that actor col-

lides with the Unified Modeling Language (UML) “actor”, with a totally different

meaning (a prototypical user in UML use cases) [Larman, 2002].

44 Chapter 2. Background

2.2.1 Actor-Oriented Models of Computation

An actor is a unit of functionality. Actors have a well-defined interface that ab-

stracts internal state and execution, and restricts how an actor interacts with its

environment. This interface includes ports that represent points of data commu-

nication between actors, and configuration parameters which are used to configure

the behavior of an actor.

An important concept in actor-oriented design is that internal behavior and

state are hidden behind the actor interface and not visible externally. This strong

encapsulation separates the behavior of a component from the interaction of that

component with other components.

Connections between actor ports represent communication channels that pass

data tokens from one port to another. Actors are composed with other actors

to form composite actors or models. The exact semantics of the composition and

the communication style is determined by a model of computation. Since the

processing system can be modeled with a mathematical graph —with nodes being

actors and arcs communication channels—, actor-oriented models of computation

are also known as graphical models of computations.

One of the most flexible ways to specify actor behavior is to embed the spec-

ification within a traditional programming language, such as C or C++, and

use special purpose object-oriented programming interfaces for specifying ports

and sending and receiving data. The C++ code in listing 2.1 gives an exam-

ple of such specification in an object-oriented language. The external interface is

often drawn as a box with inlets and outlets. Figure 2.5 is the visual represen-

tation of the same interface. This technique (i.e. actor behavior defined with a

standard programming language) has been widely used in actor-oriented design

[Buck and Vaidyanathan, 2000], since it allows for existing code to be reused, and

for programmers to quickly start using actor-oriented methodologies.

Many actor-oriented models of computation exist for different purposes and

with different features. Examples of such models are: Queuing Models, Finite

State Machines, State Charts, Petri Nets, Processing Networks and Dataflow Net-

works. Each of these has many variants. The Ptolemy project2 is interesting

in this context because it defines and implements many of these actor-oriented

2The Ptolemy project include the following actor-oriented models of computation: Com-
ponent Interaction, Communicating Sequential Processes, Continuous Time, Discrete Events,
Distributed Discrete Events, Discrete Time, Synchronous Reactive, and Timed Multitasking.

2.2. Actor-Oriented Design 45

class MyProcessing : CLAM:: Processing

{

InPort <TokenType > _input1;

InPort <TokenType > _input2;

OutPort <TokenType > _output;

public:

MyProcessing () : _input1("Input 1",this), _input2("Input 2", this),

_output("Output", this)

{

}

void Do() // just add inputs

{

_output.produce(_input1.consume () + _input2.consume ());

}

...

};

Listing 2.1: Actor interface and functionality specification in C++, using
the CLAM framework (simplified for clarity sake)

Input 1

Input 2

Output

MyProcessing

Figure 2.5: A visual representation of the actor interface specified in C++
in listing 2.1

46 Chapter 2. Background

models [Hylands et al., 2003].

The selection of an actor-oriented model of computation (or set of heteroge-

neous models) depends on the purpose and requirements of the system to be devel-

oped. This requirements are generally constrained by the application domain. The

multimedia processing systems domain, for example, will generally benefit from

Dataflow and Process Network models — while, for example, control-intensive

applications will benefit from Finite State Machine models.

An essential difference between models of computation is their modeling of

time. Some are very explicit by taking time to be a real number that advances

uniformly. Others are more abstract and take time to be discrete. Others take

time to be merely a constraint imposed by causality (or data dependency).

Many actor-oriented frameworks and description languages exist. Exam-

ples include hardware design languages (like VHDL [Perry, 1993] and Verilog

[Lawrence, 2003]), coordination languages [Papadopoulos and Arbab, 1998],

synchronous languages [Benveniste et al., 2003] and frameworks like

Giotto [Henzinger et al., 2003]; the system description language SystemC

[Aynsley and Long, 2005]; SHIM [Edwards and Tardieu, 2005]; Simulink

[Dabney and Harman, 2001] and Real-Time Workshop by MathWorks; the

LabView [Johnson and Jennings, 2001] graphical development platform from

National Instruments; Ptolemy II [Hylands et al., 2003] heterogeneous model

framework from University of California, Berkeley; the Generic Modeling

Environment [Ledeczi et al., 2001]; Lucid, a dataflow programming language

[Wadge and Ashcroft, 1985], where variables and expressions denotes streams;

Erlan, a general purpose concurrent and functional programming language devel-

oped in Ericsson [Armstrong et al., 1996] to support soft real-time applications;

and many more.

Examples of actor-oriented specific to multimedia, that allows developers to

(sometimes visually) build audio and/or video processing systems are: in the

proprietary arena: Microsoft’s Filter Graph [Gray, 2003], and the Java Media

Framework [Gordon and Talley, 1999]; and in the open-source arent: GStreamer

[Taymans et al., 2008], Marsyas [Tzanetakis, 2008], CLAM (presented in sec-

tion 6.1), CSound, developed originally from MIT, that uses the orchestra and

score paradigm for defining both the sound synthesis and the score of a music

piece [Boulanger et al., 2000], and Faust, a functional programming language for

audio [Orlarey et al., 2004].

2.2. Actor-Oriented Design 47

Many actor-oriented frameworks offer a visual syntax and tools to manipulate

models. Such visual tools are not necessary to specify a model, since textual

based approaches exist, but they have the benefit of clearly showing the departure

from sequential control (or imperative) programming paradigm. In actor-oriented

diagrams concurrency, for instance, is made explicit, which does not happen in

textual specifications. Figure 2.6 shows screen-shots of a couple of such visual

tools.

For the purpose of this thesis, we now focus on Dataflow models of computa-

tions, and the closely related Process Networks model.

2.2.2 Dataflow Models of Computation

The term dataflow —equivalent to dataflow network— has been and still is often

used with loose semantics. We will adhere to the precise definition given by Lee

and Parks [Lee and Parks, 1995], who formalized the semantics outlined by Dennis

in [Dennis, 1974].

Dataflow denotes not a single model of computation but a family of models.

They all share the following properties: the model consists in a directed graph

whose nodes are actors that communicate exclusively through the channels repre-

sented by the graph arcs. Conceptually, each channel consist of a first-in-first-out

(FIFO) queue of tokens. Actors expose how many tokens they need to consume

and produce to each channel on the next execution. This number of tokens is

represented by an integer value associated to each port and is known as port rate

(but also token rate in some literature). A dataflow actor is only allowed to run

when tokens stored in the input channels queues are sufficient.

These message queues desynchronize the communication between actors, al-

lowing the sending actor to continue concurrently without waiting for the message

to be received. At the same time, message queues ensures that messages are

received in order of transmission with no message loss.

As a consequence, dataflow actors can be executed in any order —provided

that it does not result in negative buffer sizes— and the produced result will not

be affected.

Dataflow models of computation are appealing since they closely match a de-

signer’s conceptualization of a multimedia processing system as a block diagram.

Additionally, they offer opportunities for efficient implementation both in con-

current or sequential schedulings. This is specially true for statically schedulable

48 Chapter 2. Background

(a) The Ptolemy II framework supporting heterogeneous models of computa-
tion, from UC Berkeley

(b) The LabView development platform, from National Instruments

Figure 2.6: Examples of actor-oriented frameworks with visual syntax and
tools

2.2. Actor-Oriented Design 49

dataflows, which allow efficient code generation or synthesis for a whole scheduling

cycle.

Given that actors only communicate through ports and do not share state,

system parallelism is explicitly exposed by the graph. However, parallel imple-

mentation is not required.

Firing Rules

In general, a dataflow actor may have more than one firing rule. The evaluation

of the firing rules is sequential in the sense that rules are sequentially evaluated

until at least one of them is satisfied. Thus, an actor can only fire if one or more

of its firing rules are satisfied. In the most typical models, though, actors have a

single firing rule of the same kind: a number of tokens that must be available at

each of the inputs. For example, an adder with two inputs has a single firing rule

saying that each input must at least have one token.

The constrains on the firing rules is what differentiates different dataflow mod-

els. For example, in Dynamic Dataflows (DDF), token rates related to an actor are

allowed to change after each execution. In Static Dataflows token rates are spec-

ified a priori and cannot change during run-time. Boolean-controlled Dataflows

take a middle ground and allow changing certain token rates in special actors.

As pointed out by [Parks, 1995] breaking down processes into smaller units

such as dataflow actor firings, makes efficient implementations possible, allowing

better scheduling and parallelization. Moreover, restricting the type of dataflow

actors to those that have a predictable, or fixed, token rates makes it possible to

perform static, off-line analysis to bound the memory usage.

Dataflow graphs have data-driven semantics. The availability of operands en-

ables the operator and hence sequencing constraints follow only from data avail-

ability. The principal strength of dataflow networks is that they do not over-specify

an algorithm by imposing unnecessary sequencing constraints between operators

[Buck and Lee, 1994].

2.2.3 Synchronous Dataflow Networks

Synchronous Dataflow Networks (SDF) is a special case of Dataflow Network in

which the number of tokens consumed and produced by an actor (token rates)

is known a priori, before the execution begins. Therefore, the consuming and

50 Chapter 2. Background

1

2

1

1

1

1

(a) Rate-
inconsistent
but can run
with unbounded
memory

1

2

1

1

1

1

(b) Rate-
inconsistent
—cannot run

1

21

1

1
1

(c) Rate-
consistent —can
run in bounded
(buffers) memory

1 12 2

(d) Deadlock —cannot
run

1 12 2

(e) Not deadlocking —
can run

Figure 2.7: Runnability of Synchronous Dataflows. Rate-inconsistency can
lead to non runnable or runnable with unbounded memory. Feedback loops
can lead to deadlock if not enough initial delays.

produced rates of each actor repeat every time the actor is fired.

Since token rates are known a priori, the SDF model is statically (before run-

time) schedulable. For that reason the SDF is also known as Static Dataflow. Here

we will adhere to the “Synchronous Dataflow” term given by Lee in its original

formalization [Lee and Messerschmitt, 1987b]. “Synchronous” refers to the fact

that each node firing in a fixed rate.

Formally, an SDF graph has its arcs tagged with two values: the consuming and

producing token rates. Arcs can have initial tokens. Every initial token represents

an offset between the token produced and the token consumed at the other end.

Each unit delay (or token) is represented by a diamond in the middle of the arc,

or a similar notation.

The SDF model suits many multimedia and signal-processing domains, which

are fixed-rate by nature. —where “fixed” rate does not imply “single” rate. More-

over, more dynamic and complex system can be achieved by composing efficient

SDF subsystems using Process Networks or Dynamic Dataflow models as a coor-

dinating model.

This fixed-rate restriction limits the model expressiveness but, on the other

hand, many questions are decidable, like its calculability —that is, the ability

2.2. Actor-Oriented Design 51

to run— and a bound for the memory usage —in the connections buffers. The

periodic or cyclic scheduling can be found statically, before run-time; therefore, all

the scheduling overhead evaporates. Furthermore, it enables optimized embedded

software synthesis [Edwards et al., 2001].

It is important to note that we are interested in cyclic schedulings that operate

with bounded memory. Therefore, the scheduling analysis should detect when the

graph is defective. Defects are related either to being rate-inconsistent, causing

an ever-increasing (unbounded) memory, or inability to run; or to deadlock (star-

vation) caused by lack of initial buffering. Examples of each defect type are given

in figure 2.7.

A static schedule consists of a finite list of actors, in the case of a sequential

schedule, and N finite lists —with additional synchronization information— in the

case of a N parallel schedule. In any case the schedule is periodic. An important

property of an admissible schedule is that the buffering state (that is, the size of

each FIFO queue) after a whole period has been executed exactly matches the

initial state.

2.2.4 Static Scheduling of Dataflow Graphs

1 2

3
f

d

c e

i

g

1

2 3

Figure 2.8: An SDF graph showing the amount of tokens consumed and
produced for each node and the nodes and arcs numbering.

The static scheduler algorithm has two phases: the first one consists on finding

how many times each actor must run in one period, and the second one consists

on simulating an execution of a period.

The next paragraphs detail these two phases taking the graphs in Figure 2.8

and 2.9 as examples.

As noted above, buffer sizes must reach the initial state after executing a whole

period. As a consequence we can write that, within a cycle, the total number of

52 Chapter 2. Background

tokens produced into any queue must balance the total number of tokens consumed

from that queue; and this is precisely captured by the balance equations.

Let ~q={x, y, z} be the number of executions per period of nodes in a three

node graph like the one depicted in figure 2.8. We can write the following balance

equations:

x ∗ c = y ∗ e

x ∗ d = z ∗ f

y ∗ i = z ∗ g

(2.1)

If a non-zero solution for x, y, z exists (that is, none of the variables is zero),

we say that the SDF is rate-consistent. Else, it is rate-inconsistent and a schedule

does not exist. Such inconsistency is easy to grasp intuitively, as we can think of

it as the problem of balancing the incoming flow and outgoing flow for each queue.

See examples of rate-inconsistent graphs in figure 2.7.

It can be easily proved that if a non-zero solution exists, an integer solution

also exists (and not only one but an infinite number of them). Solving the balance

equations is equivalent to finding a vector in the null-space of the graph topology

matrix. The topology matrix is similar to the incidence matrix in graph theory

and is constructed as follows: all node and arcs are first enumerated, the (i, j)th

entry in the matrix is the amount of data produced by node j on arc i each time

it is invoked. If node j consumes data from arc i, the number is negative, and if it

is a connected to arc i, the number is zero. Therefore we assign a column to each

node and a row to each arc. The SDF graph depicted in figure 1 has the following

topology matrix:

Γ =

c −e 0

d 0 −f
0 i −g

 (2.2)

The second phase of the static scheduling algorithm consists on simulating a

cycle execution. Iteratively, all nodes are checked for their runnability (that is,

whether they have enough tokens in their inputs), and, if runnable, they are sched-

uled. This goes on until the number of executions ~q found in the previous phase

are completed. It is proved [Lee and Messerschmitt, 1987a] that if an admissible

schedule exists, this straightforward strategy will find such a schedule. It is inter-

esting to note that any rate-consistent graph will have a schedule unless the graph

2.2. Actor-Oriented Design 53

has loops, and there is a lack of initial delays in the looping arcs.

i a2
1

b2
3

c2
1

o3
8

Γ =

−2 0 0 1 0
3 −2 0 0 0
0 1 −2 0 0
0 0 8 0 −3

• Period executions: ~q={8,4,6,3,8}. Nodes order: i, a, b, c, o

• SDF periodic schedule: i0, i1, a0, b0, i2, i3, a1, b1, c0, i4, o0, b2, i5, o1, a2, b3,
c1, i6, o2, o3, i7, a3, b4, o4, b5, c2, o5, o6, o7

Figure 2.9: A simple SDF graph performing sampling-rate conversions, its
topology matrix and its non-trivial scheduling

Figure 2.9 shows the result of an SDF scheduling. It can be noted how using

different port-rates implies having a longer cyclic scheduling. Also note how exe-

cution of inputs and outputs (nodes i and o) runs in bursts and not in constant

frequency. This is problematic for real-time requirements, and we have solved this

issue in the proposed Time-Triggered SDF model, described in chapter 4.

The SDF can be generalized with an additional parameter T (threshold) as-

sociated with each arc, that specifies the number of tokens needed in the arc

before the node can be fired. Of course, T ≥ W where W is the port-rate. This

type of SDF is also known as Computation Graph. Questions of termination and

boundedness are solvable for Computation Graphs.

2.2.5 Boolean-controlled Dataflow

Although SDF is adequate for representing large parts of systems, sometimes it

does not fit for representing an entire program. A more general model is needed to

represent data-dependent iteration, conditionals and recursion. We can generalize

synchronous dataflow to allow conditional, data-dependent execution and still

use the balance equations. Boolean-controlled Dataflow (BDF) is an extension of

Synchronous Dataflow that allows conditional token consumption and production.

54 Chapter 2. Background

T

F

Boolean Switch

T

F

Boolean Select

Switch

Select

1

n

1

n

Figure 2.10: The “Switch” and “Select” actors of Boolean-controlled
Dataflows

By adding two simple control actors —Switch and Select— we can build condi-

tional constructs like if-then-else and do-while loops. In the Ptolemy II framework,

the Switch and Select actors are represented as shown in figure 2.10. The Switch

actor gets a control token and then copies a token from the input to the appro-

priate output, determined by the boolean value of the control token. The Select

actor gets a control token and then copies a token from the appropriate input,

determined by the boolean value of the control token, to the output. These actors

are not SDF actors because the number of produced/consumed tokens is not fixed

and depends on an input boolean control [Buck and Lee, 1994].

Switch and Select actors are usually used in well-behaved patterns or schemas,

such as conditionals and loops. Using these patterns, finite execution schedules

can be found and complete cycles are guaranteed to execute in bounded memory

[Gao et al., 1992]. However, in general, models are not guaranteed to execute

in bounded memory, or in finite time —that is, a cyclic scheduling cannot be

found—[Buck, 1993]. For example, figure 2.11 depicts a model that might require

unbounded memory and unbounded time.

It is interesting to note that the general problem of determining whether a BDF

graph can be scheduled with bounded memory is undecidable (equivalent to the

halting problem); this is because BDF graphs are Turing-equivalent [Buck, 1993].

2.2.6 Dynamic Dataflow

Dynamic Dataflows are Dataflows with actors for which the number of tokens

consumed and produced by a firing cannot be specified statically (before run-

2.2. Actor-Oriented Design 55

Boolean Switch Boolean Select

T

F

T

F

Control Source

1

1

1 1

1
22

Figure 2.11: A Boolean-controlled Dataflow model where a complete cycle
might require unbounded memory and unbounded time. In an execution
where ControlSource produces a single true followed by many false tokens,
the output of the middle-bottom actor will accumulate at the input to the
Select actor.

time). This definition imply that Boolean-controlled Dataflows are a subclass of

Dynamic Dataflows.

Unlike Boolean-controlled Dataflows, the general Dynamic Dataflow model of

computation only uses run-time (dynamic) analysis. Thus, it makes no attempt

to statically answer questions about deadlock and boundedness [Parks, 1995].

2.2.7 Process Networks

The Process Networks (PN) —also known as Kahn Process Networks—

[Kahn and MacQueen, 1977, Geilen and Basten, 2003] is very much related to

Dataflows. Process Networks, however, do not need to expose the token rate

of their processing blocks. Each actor (in this context also known as “process”)

runs in a separate process (at least conceptually) which is orchestrated by a sched-

uler similar to those found in general purpose operating systems. Each process

communicates through unidirectional FIFO channels, where writes to the channel

are non-blocking, and reads are blocking.

Dataflows are a special case of PN where explicit fire rules exists. Compared

to PN, Dynamic Dataflows consists of repeated “firings” of dataflow actors. An

actor defines a (often functional) quantum of computation. By dividing processes

into actor firings, the considerable overhead of context switching incurred in most

implementations of Process Networks is avoided [Lee and Parks, 1995]. This sug-

gests that the granularity of the processes in PN’s should be relatively large. For

56 Chapter 2. Background

Dataflows, on the contrary, the cost can be much lower since no context switch is

required in general, and hence the granularity can be smaller.

Kahn and MacQueen propose an implementation of Process Networks using

multitasking with a primarily demand-driven style [Kahn and MacQueen, 1977].

A single “driver” process (one with no outputs) demands inputs. When it suspends

due to an input being unavailable, the input channel is marked “hungry” and the

source process is activated. It may in turn suspend, if its inputs are not available.

Any process that issues a “put” command to a hungry channel will be suspended

and the destination process restarted where it left off, thus injecting also a data-

driven phase to the computation. If a “get” operation suspends a process, and

the source process is already suspended waiting for an input, then deadlock has

been detected.

Scheduling can be classified as data-driven (eager execution), demand-driven

(lazy execution) or a combination of the two. In eager execution a process is

activated as soon as it has enough data as required by any of its firing rules. In

lazy execution a process is activated only if the consumer process does not have

enough data tokens. When using bounded scheduling (see [Parks, 1995]) three

rules must be applied: (a) a process is suspended when trying to read from an

empty input, (b) a process is suspended when trying to write onto a full queue

and (c) on artificial deadlock, increase the capacity of the smallest full queue until

its producer can fire.

2.2.8 Context-aware Process Networks

A special kind of Process Network introduced as an extension to the basic model

that is interesting for our purposes is that of Context-aware Process Networks

[van Dijk et al., 2002]. This new model emerges from the addition of asynchronous

coordination to basic Kahn Process Networks so processes can immediately re-

spond to changes in their context. This situation is very common in embedded

systems.

In Context-aware Process Networks, stream oriented communication of data is

done through regular channels but context information is sent through unidirec-

tional register links (REG). These links have destructive and replicative behavior:

writing to a full register overwrites the previous value and reading from a register

returns the last value regardless if it has been read before or not. Thus, register

links are an event-driven asynchronous mechanism. As a consequence, the be-

2.2. Actor-Oriented Design 57

havior of a Context-aware Process Network depends on the applied schedule or

context.

A simple example of a system that can be effectively modeled by a Context-

aware Network is a transmitter/receiver scheme in which the receiver needs to send

information about its consumption rate to the transmitter so transmission speed

can be optimized. The basic transmitter/receiver scheme can be implemented

with a Kahn Process Network but in order to implement feedback coordination

we need to use the register link provided by Context-ware process networks.

Context-aware Network systems are indeterminate by nature. Unless the in-

determinate behavior can be isolated, a composition of indeterminate components

becomes a non-deterministic system, which is possible but not practical. Nev-

ertheless as mentioned in [van Dijk et al., 2002] some techniques can be used in

order to limit indetermination.

The “Context-aware” property is not only applicable to Process Networks, but

also applicable to Dataflow models.

2.2.9 Petri Nets

Prior to the development of the actor-oriented models, Petri Nets were widely

used to model concurrent computation [Murata, 1989]. However, they were ac-

knowledged to have an important limitation: they modeled control flow but not

data flow. Consequently they were not readily composable, and hence, limiting

their modularity.

Hewitt pointed out another difficulty with Petri Nets: simultaneous action.

That is, the atomic step of computation in Petri Nets is a transition in which

tokens simultaneously disappear from the input places of a transition and appear

in the output places. The physical basis of using a primitive with this kind of

simultaneity seemed questionable to him. Despite these apparent difficulties, Petri

Nets continue to be a popular approach to modelling concurrency, and are still

the subject of active research.

58 Chapter 2. Background

2.3

Object Oriented Technologies

Booch defines Object-oriented programming as “a method of implementation

in which programs are organized as cooperative collections of objects, each of

which represents an instance of some class, and whose classes are all members of

a hierarchy of classes united via inheritance relationships.” [Booch, 1994]

Objects act on each other, as opposed to a traditional view in which a program

may be seen as a collection of functions, or a list of instructions. Each object is

able to receive messages, process data and send messages to other objects. It is

interesting to note that this definition of object is similar with the given defini-

tion of actor. However, a fundamental difference exist: in an object-orientated

collaboration what flows is sequential control (thus the sequence of executed code

is make explicit by the program), whereas in an actor-oriented collaboration what

flows is streams of data, leaving the decision of when to execute actors to the

(actor-oriented) model of computation.

An object is a real-world or abstract entity made up of an identity, a state, and

a behavior. A class is an abstraction of a set of objects that have the same behavior

and represent the same kind of instances. The object-oriented paradigm can be

deployed in the different phases of a software life-cycle and the UML language

supports most of the activities contained in them.

An object-oriented language supports two characteristic features: encapsula-

tion and inheritance. Abstraction is the process of identifying relevant objects in

the application and ignoring the irrelevant background. Abstraction delivers re-

usability and information hiding through encapsulation. Encapsulation consists

in hiding the implementation of objects and declaring publicly the specification

of their behavior through a set of attributes and operations. The data structures

and methods that implements these are private to the objects.

Object types or classes are similar to data types and to entity types with

encapsulated methods. Data and methods are encapsulated and hidden by objects.

2.3. Object Oriented Technologies 59

Classes may have concrete instances, also known as objects.

Inheritance is the ability to deal with generalization and specialization or clas-

sification. Subclasses inherit attributes and methods from their super-classes and

may add others of their own or override those inherited. In most object-oriented

programming languages, instances inherit all and only the properties of their base

class. Inheritance delivers extensibility, but can compromise re-usability.

Polymorphism —having many forms— is a fundamental capability of

object-orientation. In dynamic polymorphism —the more common form of

polymorphism— variables can refer to instances of different classes during run-

time.

The benefits arising from the use of objects technology are summarized by

Graham in [Graham, 1991]

Reusability, extensibility and semantic richness. Top-down decomposi-

ton can lead to application-specific modules and compromise reuse.

The bottom-up approach and the principle of information hiding max-

imize reuse potential. Encapsulation delivers reuse.

Polymorphism and inheritance make handling variation and exceptions

easier and therefore lead to more extensible systems. The open-closed

principle is supported by inheritance. Inheritance elivers extensibility

but may compromise reuse.

Semantic reichness is provided by inheritance and other natural struc-

tures, together with constraints and rules concerning the meaning of

objects in context. This also compromises reuse and must be carefully

managed.

2.3.1 Frameworks

Frameworks are reusable designs of all or part of a software system described by

a set of abstract classes and the way instances of those classes collaborate. A

good framework can reduce the cost of developing an application by an order

of magnitude because it lets the developer reuse both design and code. They

do not require new technology, because they can be implemented with existing

object-oriented programming languages.

Apart from implementing the aspects that are common across an entire do-

main, frameworks must expose those elements in the domain that vary between

60 Chapter 2. Background

one application and another, as extension points.

Developing good frameworks is expensive. A framework must be simple enough

to be learned, yet must provide enough features so that it can be used quickly and

hooks for features that are likely to change. It must embody a theory of the

problem domain, and is always the result of domain analysis, whether explicit and

formal, or hidden and informal [Roberts and Johnson, 1996].

Therefore, frameworks should be developed only when many applications are

going to be developed within a specific problem domain, allowing the time savings

of reuse to recoup the time invested to develop them.

In multimedia processing, frameworks typically implement a single actor-

oriented model of computation. In some cases, they have domain-specific lan-

guages implemented on top.

2.4

Design Patterns

When code reuse is not feasible engineers have no choice but to fall back to

ad-hoc or creative solutions. In such cases engineers tend to reuse similar solutions

that worked well for them in the past, and, as they gain more experience, their

repertoire of design experience grows and they become more proficient. Tradition-

ally, this design reuse was usually restricted to personal experience and there was

little sharing of design knowledge among developers [Beck et al., 1996].

Instead of reusing code, engineers might take advantage of reusing design. De-

sign patterns, introduced by [Gamma et al., 1995] is a software engineering tech-

nique that allows effectively recording best design practices.

A popular definition for patterns is the one given by Christopher Alexander

“A pattern is a solution to a problem in a context.”. However, Vlissides points

2.4. Design Patterns 61

out [Vlissides, 1998] three relevant things are missing from this definition:

1. Recurrence, which makes the solution relevant in situations outside the im-

mediate one.

2. Teaching, which gives you the understanding to tailor the solution to a vari-

ant of the problem. (Most of the teaching in real patterns lies in the descrip-

tion and resolution of forces, and/or the consequences of its application.)

3. A name by which to refer to the pattern.

2.4.1 A Brief History of Design Patterns

In the 1960’s, building architects were investigating automated, computerized

building design. The mainstream of this movement was known as modular con-

struction, which tries to transform requirements into a configuration of build-

ing modules using computerized rules and algorithms. The architect Christopher

Alexander broke with this movement, noting that the great architectures of his-

tory where not made from rigorous, planned designs, but that their pieces were

custom-fit to each other and to the building’s surroundings. He also noted that

some buildings were more aesthetically pleasing than others, and that these aes-

thetics were often attuned to human needs and comforts. He found recurring

themes in architecture, and captured them into descriptions (and instructions)

that he called patterns and pattern languages [Alexander, 1977]. The term “pat-

tern” appeals to the replicated similarity in a design, and in particular to similarity

that makes room for variability and customization in each of the elements. “Thus

Window on Two Sides of Every Room is a pattern, yet it prescribes neither the

size of the windows, the distance between them, their height from the floor, nor

their framing (though there are other patterns that may refine these properties).”

[Coplien, 1998]

Over the decade of the 1990’s, software designers discovered analogies be-

tween Alexander patterns and software architectures. The first work on design

pattern had their origin in the late 1980’s when Ward Cunningham (the fa-

ther of the wiki) and Kent Beck (best known for its extreme programming ag-

ile methodology) documented a set of patterns for developing elegant user inter-

faces in Smalltalk[Beck, 1988]. Few years later, Jim Coplien developed a cata-

log of language-specific C++ patterns called idioms. Meanwhile, Erich Gamma

62 Chapter 2. Background

collected recurring design structures while working on the ET++ framework

[Weinand et al., 1989] and his doctoral dissertation on object-oriented sofware

development. These people and others met at a series of OOPSLA workshops

starting in 1991. Draft versions of the first pattern catalog were matured during 4

years and eventually formed the basis for the first book on design patterns called

Design Patterns [Gamma et al., 1995] that appeared in 1995. It was received with

enthusiasm and the authors were given the name of Gang-of-Four. In the summer

of 1993, a small group of pattern enthusiasts formed the “Hillside Generative Pat-

terns Group” and subsequently organized the first conference on patterns called

the “Pattern Languages of Programming” (PLoP) in 1994.

Patterns have been used for many different domains: development processes

and organizations, testing, architecture, etc. Apart from Design Patterns, other

important pattern books include Pattern-Oriented Software Architecture: A Sys-

tem of Patterns [Buschman et al., 1996a] —also called the POSA book, authored

by five engineers at Siemens; and the book series entitled Pattern Languages of

Program Design with five volumes to the date.

2.4.2 Pattern Misconceptions

One of the most recurring misconceptions about patterns is trying to reduce them

to something known, like rules, programming tricks, data structures. . .

John Vlissides, one of the Gang of Four, comments in his book Pattern Hatch-

ing [Vlissides, 1998]:

Patterns are not rules you can apply mindlessly (the teaching compo-

nent works against that) nor are they limited to programming tricks,

even the “idioms” branch of the discipline focuses on patterns that

are programming language-specific. “Tricks” is a tad pejorative to my

ear as well, and it overemphasizes solution at the expense of problem,

context, teaching, and naming.

Since software patterns grew inside the object-oriented community to record

object-oriented design principles, they are often seen as limited to object-oriented

design. However, patterns capture expertise and the nature of that expertise is

left open to the pattern writer. Certainly there’s expertise worth capturing in

object-oriented design — and not just design but analysis, maintenance, testing,

documentation, organizational structure, and on and on. As Vlissides recognises:

2.4. Design Patterns 63

“the highly structured style the GoF used in Design Patterns is very biased to

its domain (object technology), and it doesn’t work for other areas of expertise.

Clearly, one pattern format does not fit all. What does fit all is the general concept

of pattern as a vehicle for capturing and conveying expertise, whatever the field.”

Not every solution, algorithm, best practice, maxim, or heuristic constitutes a

pattern; one or more key pattern ingredients may be absent. Even if something

appears to have all the requisite pattern elements, it should not be considered a

pattern until it has been verified to be a recurring phenomenon. Some feel it is

inappropriate to call something a pattern until it has undergone some degree of

scrutiny or review by others [Appleton, 1997].

Documenting good patterns can be an extremely difficult task. To quote Jim

Coplien [Coplien, 1998], good patterns do the following:

• It solves a problem: Patterns capture solutions, not just abstract principles

or strategies.

• It is a proven concept: Patterns capture solutions with a track record, not

theories or speculation.

• The solution isn’t obvious: Many problem-solving techniques (such as soft-

ware design paradigms or methods) try to derive solution from first prin-

ciples. The best patterns generate a solution to a problem indirectly — a

necessary approach for the most difficult problems of design.

• It describes a relationship: Patterns don’t just describe modules, but de-

scribe deeper system structures and mechanisms.

• The pattern has a significant human component: All software serves human

comfort or quality of life; the best patterns explicitly appeal to aesthetics

and utility.

2.4.3 Patterns, Frameworks and Architectures

The practical nature of patterns themselves should not be underestimated. Ralph

Johnson published a famous critique for computer people “going meta” too often,

and stating the need for obtaining design experience [Beck et al., 1996]:

One of the distinguishing characteristics of computer people is the

tendency to go “meta” at the slightest provocation. Instead of writ-

ing programs, we want to invent programming languages, we want to

64 Chapter 2. Background

create systems for specifying programming languages. There are many

good reasons for this tendency, since good theory makes it a lot easier

to solve particular instances of the problem. But if you try to build

a theory without having enough experience in the problem, you are

unlikely to find a good solution. Moreover, much of the information in

design is not derived from first principles, but obtained by experience.

Kent Beck and Ralph Johnson points to the reasons why patterns are powerful

tools in the design process [Beck and Johnson, 1994]. Their argumentation goes

like follows: Design is hard. One way to avoid the act of design is to reuse existing

designs. But reusing designs requires learning them, or at least some parts of

them, and communicating complex designs is hard too. One reason for this is

that existing design notations focus on communicating the “what” of designs, but

almost completely ignore the “why”. However, the “why” of a design is crucial

for customizing it to a particular problem. Therefore we need ways (and this is

what design patterns do) of describing designs that communicate the reasons for

our design decisions, not just the results.

A closely related idea inside the object-oriented community is that of frame-

work. A framework is the reusable design of a system or a part of a system

expressed as a set of abstract classes and a way instances of (subclasses of) those

classes collaborate.

Beck and Johnson were pioneers of object-oriented frameworks. They observed

that frameworks, could be explained as a set of interrelated patterns. Thus, frame-

works are a good source for pattern mining [Beck and Johnson, 1994]. They ex-

emplify this with the HotDraw framework: explaining its architecture in terms of

generic “Gang of Four” patterns [Gamma et al., 1995] plus new domain specific

patterns such as Drawing, Figure, Tool and Handle, puts each of its classes in

perspective. It explains exactly why each was created and what problem it solves.

Therefore, presented this way, HotDraw becomes much easier to re-implement, or

to modify. This is a completely different approach to describing the design of a

framework than more formal approaches like Contracts. The more formal results

only explain what the design is, but a pattern-based derivation explains why. This

is similar to the proof process in mathematics, where the presentation of a proof

hides most of its history, and where advances in mathematics are often caused by

break-downs in proofs. Catalogs of design patterns will mature as people try to

explain designs in terms of patterns, and find patterns that are missing from the

2.4. Design Patterns 65

catalogs.

In parallel with the object-oriented programming community research on de-

sign patterns and pattern languages, other software engineering communities have

been exploring architectural styles.

A software architecture is an abstraction of the run-time elements of a software

system during some phase of its operation. A system may be composed of many

levels of abstraction and many phases of operation, each with its own software

architecture. A software architecture is defined by a configuration of architectural

elements —components, connectors, and data— constrained in their relationships

in order to achieve a desired set of architectural properties [Fielding, 2000]. The

principle of abstraction via encapsulation is central in software architecture. A

complex system contains many levels of abstraction, each one with its own archi-

tecture. The architecture represents an abstraction of the system behavior at that

level.

We have seen how frameworks are well described using patterns (and are source

for pattern mining). Frameworks are as well a way to “implement” architectures.

Nevertheless, the ideas of patterns (and pattern languages) and architectures over-

lap. Both are attempts to reuse design, and examples of one are sometimes used

as examples of the other. Moreover, the object-oriented programming commu-

nity has taken the lead in producing catalogs of design patterns, as exempli-

fied by the “Gang of Fou” book and the essays edited by Coplien and Schmidt

[Coplien and Schmidt, 1995].

2.4.4 Empirical Studies

The need for reliable software has made software engineering an important as-

pect for industry in the last decades. The steady progress recently produced an

enormous number of different approaches, concepts and techniques: the object

oriented paradigm, agile software development, the open source movement, com-

ponent based systems, frameworks and software patterns, just to name a few. All

these approaches claim to be superior, more effective or more appropriate in some

area than their predecessors. However, to prove that these claims indeed hold and

generate benefits in a real-world setting is often very hard due to missing data

and a lack of control over the environment conditions of the setting.

In the joint paper Industrial Experiences with Design Patterns

[Beck et al., 1996] authored together by Kent Beck (First Class Software),

66 Chapter 2. Background

James O. Coplien (AT&T), Ron Crocker (Motorola), John Vlissides (IBM)

and other 3 experts, authors describe the efforts and experiences they and

their companies had with design patterns. The paper contains a table of the

most important observations ordered by the number of experts who mentioned

them. This can be interpreted as the results of interviewing experts. The top 3

observations mentioned by all experts where:

1. Patterns are a good communication medium.

2. Patterns are extracted from working designs.

3. Patterns capture design essentials.

The first observation is, indeed, the most prominent benefit of design patterns:

in the Design Pattern book [Gamma et al., 1995] by the Gang of Four two of the

expected benefits are made explicit: first, the design patterns provide “a common

design vocabulary” and, second, design patterns provide a “documentation and

learning aid”, which also focus on the communication process.

In [Prechelt et al., 1998] two controlled experiments using deign patterns for

maintenance exercises are presented. For one experiment students were used to

compare the speed and correctness maintenance work with and without design

patterns used for the documentation of the original program. The result of this

experiment was that using patterns in the documentation increases either the

speed or decreases the number of errors for the maintenance task and thus seems

to improve communication between the original developer and the maintainer via

the documentation.

Another quantitative experiment is presented in [Hahsler, 2004]. They ana-

lyzed historic data describing the software development process of over 1000 open

source projects in Java. They found out that only a very small fraction of projects

used design patterns for documenting changes in the source code. Though the

study had many limitations, e.g., the information on the quality of the produced

code is not included. the results show a correlation between use of patterns and

project activity, and that design patterns are adopted for documenting changes

and thus for communicating in practice by many of the most active open source

developers.

2.5. Summary 67

2.4.5 Pattern Languages

Christopher Alexander, coined the term pattern language. He used it to refer

to common problems of civil and architectural design, from how cities should be

laid out to where windows should be placed in a room. The idea was initially

popularized in his book “A Pattern Language”[Alexander, 1977]. The pattern

language technique has been used in many fields of design such as software design,

human computer interaction, architecture, education, etc.

When a software engineer is designing a system, he must make many decisions

about how to solve design problems. A single problem, documented with a generic

approach, with its best solution, is a single design pattern. Each pattern has a

name, a descriptive entry, and some cross-references to other patterns. The allowed

sequences of pattern applications form a pattern language.

Just as words must have grammatical and semantic relationships to each other

in order to make a spoken language useful, design patterns must be related to

each other in order to form a pattern language. Alexander suggests that patterns

should be organized so that they make intuitive sense to the designer. The actual

organizational structure (hierarchical, iterative, etc. is left to the discretion of

the pattern author, depending on the topic. Each pattern should indicate its

relationship to other patterns and to the language as a whole. This gives the

designer using the patterns some guidance about the order in which problems

should be solved.

2.5

Summary

In this chapter we have reviewed several technologies upon which real-time

multimedia systems can be built. Multimedia systems do not run in isolation

68 Chapter 2. Background

but needs the support of an operating system. We reviewed how the interaction

between a multimedia system and the real-world takes place. Operating systems

must provide certain capabilities in order to process multimedia streams in real-

time. For example, it must be multi-threaded and preemptable; threads must have

priorities; and predictable thread synchronisation mechanisms must exist.

Some operating system process scheduling algorithms have been reviewed and

compared to dataflow schedulings. In one hand, processes can be scheduled freely

(and they can freely terminate the execution), On the other hand, dataflow ac-

tors must obey restrictions imposed by the data dependencies specified by its

graph, and actor’s executions are atomic. Also, dataflow models often allow static

scheduling analysis which calculates the cyclic scheduling prior to the running

time.

Time plays a fundamental role in correctness of real-time multimedia com-

puting. Real-time is not fast computing. Each data unit must be presented at

a specific deadline, and jitter should not be allowed because the human ear is

very sensitive to it. The effects of latency depends on the type of multimedia

application.

We have shown that multimedia systems need soft real-time because missing a

deadline, though undesirable, is not totally unacceptable. We have also reviewed

how an operating system transmits hardware stimuli to a user-space process using

interrupts, and kernel-space processes.

Actor-oriented design is based on hiding the internal behavior and state of an

actor behind the actor interface. This strong encapsulation separates the behavior

of a component from the interaction of that component with other components.

A model of computation provides the exact semantics of the composition and

communication style of the components. Many actor-oriented frameworks and

languages in different fields have been shown.

The selection of an actor-oriented model of computation depends on the pur-

pose of the system. The multimedia processing domain generally benefits from

Dataflow and Process Network models. Dataflow actors communicate exclusively

through FIFO queues. Actors expose their token rates —the number of tokes to be

consumed and produced in each execution. An actor is only allowed to run when

tokens stored in the input channels are sufficient. The message queues desyn-

chronize the communication between actors, and system parallelism is explicitly

exposed by the graph. Dataflow models of computation are appealing since they

2.5. Summary 69

closely match a designer’s conceptualization of a system as a block diagram. Addi-

tionally, they offer opportunities for efficient implementation both in concurrent or

sequential schedulings. This is specially true for statically schedulable dataflows,

like the Synchronous Dataflow, which allow efficient code generation or synthesis

for a whole scheduling cycle.

The algorithms for static scheduling of dataflow models have also been re-

viewed. Such algorithms begin solving the balance equations of the graph which

gives the number of executions of each actor to complete a scheduling cycle. Next,

they simulate a cycle execution which builds the scheduling. In Synchronous

Dataflows, the runnability of a graph using finite memory is a decidable question.

Other sub-types of Dataflow models have been reviewed: The Boolean-

controlled Dataflow adds conditional constructs with varying token rates. This

model of computation does not guarantee to execute in bounded memory or finite

cycles. Dynamic Dataflow allow token rates to change after an actor execution.

Process Networks are even more dynamic and do not need to expose token rates.

Process Networks must be run with a scheduler similar to the ones offered by oper-

ating systems. Context-aware Process Networks or Dataflows adds asynchronous

message passing to the previous models. Such systems are indeterminate by na-

ture.

We are interested in object-oriented design because it allow implementing

actor-oriented models and complete dataflow-based multimedia systems. Object-

oriented languages supports three characteristics: encapsulation, inheritance and

polymorphism. Proponents of object-oriented programming claim that is easier

to learn, to develop and to maintain, lending itself to more direct analysis and

coding of complex systems.

Frameworks implement the aspects that are common across an entire domain

describing a set of abstract classes and the way instances collaborate. A good

framework can reduce the cost of developing an application by an order of mag-

nitude because it reuses both code and design.

Lastly, this chapter has reviewed design patterns, a software engineering tech-

nique that allows effectively recording best design practices. A set of related

patterns that can be applied in sequence form a pattern language. The domain of

real-time multimedia systems remains quite impermeable to these techniques and,

hence, offers good opportunities for research.

Now that the ground knowledge of our field has been introduced, the next

70 Chapter 2. Background

chapter reviews the state-of-the art and side-knowledge related to the specific

problems formulated in the introduction. For each technology we specify why it

does not effectively address the formulated problems —which typically is because

it addresses other specific problems.

CHAPTER 3

State of the Art

This chapter discusses the previous work found in the literature related to the

problems this thesis addresses. We outline, for each related work, whether it

focuses on a slightly different problem, or is a valid, though incomplete, approxi-

mation to the same problem. When it is the latter case, we explain how our thesis

builds upon it.

As stated in the introduction, one of the concrete problems this thesis ad-

dresses is the lack of timeliness in dataflow models of computation, in order to

allow the hardware to regularly trigger the dataflow actors execution. Therefore,

in section 3.1 we explore existing extensions, and related models, of Synchronous

Dataflow. Most of the extensions deal with enhancing expressiveness by allowing

the ports rates (the number of tokens consumed or produced in each execution)

to change (see for example the Boolean-controlled Synchronous Dataflow in sec-

tion 2.2.5), but this kind of extensions do not address the real-time limitations

of dataflows. Some other extensions add the concept of time, and so are more

promising. However, they do not deal with the needed time-triggered semantics.

Meta-models have been defined that allows modeling any computing system

in the multimedia domain. In section 3.2 we review the Meta-model for Multime-

71

72 Chapter 3. State of the Art

dia Systems. It is relevant to our problem because it links actor-oriented design

with object-oriented technology. It generalizes concepts found in many reviewed

actor-oriented multimedia systems and specifies those concepts in object-oriented

terminology. We will later use the names and semantics of the meta-model in our

design pattern language, which allows to translate our dataflow model into actual

(object-oriented) designs and runnable code.

We have introduced the concept of design pattern in chapter 2. Now, in sec-

tion 3.4 we present existing patterns related to the problem of developing com-

plex dataflow systems in a predicable way. Most of these existing patterns have

been collected and harmonized in a Dataflow Pattern Language [Manolescu, 1997].

Though its name suggest that it already solves our stated problem we show that it

does not. Some of its patterns are not suited for the real-time multimedia domain.

Others are, but they all are very coarse level patterns, that are insufficient for de-

riving complete designs on top of actor-oriented models. Our proposed patterns

(in chapter 5) combine well with those ones collected by Manolescu.

3.1

Timeliness Dataflow Models

Some extensions of the SDF model exist. Some use a less constrained model

allowing rate parameters to change during run-time; and a few others, like our

TTSDF model (see chapter 4, introduce the concept of time). Here, we are inter-

ested in reviewing the models belonging to the second category.

3.1.1 Timeliness extensions to Synchronous Dataflow

In the category of timeliness extensions to Synchronous Dataflow (SDF) we find

Discrete Time (DT) [Fong, 2000], which adds the concept of time progression to

3.1. Timeliness Dataflow Models 73

SDF. In the DT model all tokens have uniform token flow in the sense that tokens

get produced and consumed at regular and unchanging time intervals. Compared

to TTSDF, both models use added latency, thus slightly breaking the SDF se-

mantics for the initial resulting tokens (e.g. silence audio samples). However, the

DT model is not useful in time-triggered callback-based architectures. In such

architectures inputs nodes need to be triggered in regular times. Though this is

similar to DT, the actual processing following the inputs nodes (executed inside

the callback) needs to happen as quickly as possible. Therefore, uniform token

flow in each actor connection is not desirable.

In DT all tokens flow in regular intervals. In time-triggered callback-based

systems, tokens needs to flow on regular bursts of tokens driven by a hardware

interrupt. Each burst must be quick enough to finish before the real-time deadline.

A similar approach to DT is SDF-for-VLSI (VSDF) [Kerihuel et al., 1994].

The VSDF model eases the transition between a synchronous dataflow and a

hardware based implementation using specialized VLSI synchronous circuits. It

introduces a time-aware notation that allows to specify a model and statically

verify correct synchronization at Register-transfer Level. Like DT, VLSI is not

suited for callback-based systems either.

Other time-related extensions to SDF have been designed to improve the par-

allelization into multiprocessors using accurate predictions of the execution times

for dynamic work-loads [Pastrnak et al., 2004]. However, this approach is very

problem-specific —the case presented is specific for a MPEG-4 video shape-texture

decoding system—, and it is restricted to homogeneous SDF’s, that is: all port

rates are one, and actors run at the same rate.

3.1.2 Related Timeliness Models of Computation

Other models and architectures match more closely the concepts of time-triggered

callbacks and hardware interrupt that are the base of our TTSDF model. We will

show how they do not completely match our stated problem —which is: adapting

a dataflow model to real-time performance. However, the reasons are subtle;

therefore we encourage the reader to come back again to this section once being

familiar with the TTSDF model presented in chapter 4.

Giotto [Henzinger et al., 2001] and Simulink with Real-Time Workshop from

MathWorks, define and implement time-triggered models that allow the combina-

tion of fast running components with slow running components. These components

74 Chapter 3. State of the Art

can run at different rates and communicate data between them. The technique

exploits an underlying multitasking operating system with preemptive priority-

driven multitasking. The two components are executed in different threads, en-

suring that the slow running code cannot block the fast running code. In order

to allow the two components to pass data, the model needs explicit blocks at the

point of the rate conversion or extra delays. Although these time-triggered mod-

els can specify different execution rates for their components they do not have

dataflow semantics because they lack queues on each arc, and so, execution order

independence.

Another related model is Discrete Events (DE) model [Lee, 1999]. In DE

components interact with one another via events that are placed on a time line. We

find an interesting example of DE in ChucK [Wang and Cook, 2004], a concurrent

programming language for multimedia.

The Discrete-Event Runtime Framework [Lee and Zhao, 2007] implemented in

the Ptolemy II framework [Eker et al., 2003] combines time-triggered models and

architectures with Discrete Events on one hand, and dataflow untimed compu-

tation on the other hand. Therefore a time-triggered actor execution can acti-

vate further down-stream executions. This very much resembles our technique

of assigning schedules to callback activations. However, there is an essential dif-

ference: in TTSDF (see chapter 4) the requirement is to have only one kind of

time-triggered event, which corresponds to the execution of all input nodes at

the same instant, and have to finish with the execution of all output nodes. In

Discrete-Event Runtime Framework, on the other hand, this restriction does not

exist: time-triggered actors can activate other untimed actors but these activa-

tions do not necessarily finish with output nodes execution. Therefore, this model

does not address our problem of fitting a dataflow scheduling in a time-triggered,

callback-based architecture. It lacks the concepts of callback activations and also

the concept of optimum initial latency to avoid jitter.

3.2. Object-Oriented Meta-Model for Multimedia Processing Systems75

3.2

Object-Oriented Meta-Model for

Multimedia Processing Systems

The Object-Oriented Meta-Model1 for Multimedia Processing Systems, 4MPS

for short, provides the conceptual framework (meta-model) for a hierarchy of mod-

els of media processing systems in an effective and general way. The meta-model

is not only an abstraction of many ideas found in the CLAM framework (see sec-

tion 6.1) but also the result of an extensive review of similar frameworks (see

[Amatriain, 2004]) and collaborations with their authors. Therefore the meta-

model reflects ideas and concepts that are not only present in CLAM but in

many similar environments. Although initially derived for the audio and music

domains, it presents a comprehensive conceptual framework for media signal pro-

cessing applications. In this section we provide a brief outline of the meta-model,

see [Amatriain, 2007a] for a more detailed description.

The 4MPS meta-model is based on a classification of signal processing objects

into two categories: Processing objects that operate on data and control, and

Data objects that passively hold media content. Processing objects encapsulate

a process or algorithm; they include support for synchronous data processing and

asynchronous event-driven control as well as a configuration mechanism and an

explicit life cycle state model. On the other hand, Data objects offer a homoge-

neous interface to media data, and support for metaobject-like facilities such as

reflection and serialization.

Although the meta-model clearly distinguishes between two different kinds of

objects the managing of Data constructs can be almost transparent for the user.

Therefore, we can describe a 4MPS system as a set of Processing objects connected

in graphs called Networks (see figure 3.1).

1The word meta-model is here understood as a “model of a family of related models”, see
[Amatriain, 2004] for a thorough discussion on the use of meta-models and how frameworks
generate them.

76 Chapter 3. State of the Art

Figure 3.1: Graphical model of a 4MPS processing network. Processing
objects are connected through ports and controls. Horizontal left-to-right
connections represents the synchronous signal flow while vertical top-to-
bottom connections represent asynchronous control connections. Diagram
taken with permission from [Amatriain, 2004]

3.2. Object-Oriented Meta-Model for Multimedia Processing Systems77

Figure 3.2: 4MPS Processing object detailed representation. A Process-
ing object has input and output ports and incoming and outgoing con-
trols. It receives/sends synchronous data to process through the ports
and receives/sends control events that can influence the process through
its controls. A Processing object also has a configuration that can be
set when the object is not running. Diagram taken with permission from
[Amatriain, 2004]

Because of this, the meta-model can be expressed in the language of actor-

oriented (or graphical) models of computation as a Context-aware Dataflow Net-

work (see section 2.2.8) and different properties of the systems can be derived in

this way.

Figure 3.2 is a representation of a 4MPS processing object. Processing objects

are connected through channels. Channels are usually transparent to the user that

should manage Networks by simply connecting ports. However they are more than

a simple communication mechanism as they act as FIFO queues in which messages

are enqueued (produced) and dequeued (consumed).

The meta-model offers two kinds of connection mechanisms: ports and con-

trols. Ports transmit data and have a synchronous dataflow nature while controls

transmit events and have an asynchronous nature. By synchronous, we mean that

messages are produced and consumed at a predictable —if not fixed— rate.

A processing object could, for example, perform a low frequency cut-off on

an audio stream. The object will have an in-port and an out-port for receiving

and delivering the audio stream. To make it useful, a user might want to control

the cut-off frequency using a GUI slider. Unlike the audio stream, control events

arrive sparsely or in bursts. A processing object receives that kind of events

through controls.

78 Chapter 3. State of the Art

The data flows through the ports when a processing is triggered (by receiving a

Do() message). Processing objects can consume and produce at different rates and

consume an arbitrary number of tokens at each firing. Connecting these processing

objects is not a problem as long as the ports are of the same data type (see the

Typed Connections pattern in section 5.2.4). Connections are handled by the

FlowControl. This entity is also responsible for scheduling the processing firings in

a way that avoids firing a processing with not enough data in its input ports or not

enough space into its output ports. Minimizing latency and securing performance

conditions that guarantee correct output (avoiding underruns or deadlocks, for

instance) are other responsibilities of the FlowControl.

Life-cycle and Configurations

A 4MPS Processing object has an explicit lifecycle made of the following states:

unconfigured, ready, and running. The processing object can receive controls and

data only when running. Before getting to that state though, it needs to go

through the ready, having received a valid configuration.

Configurations are another kind of parameters that can be input to Process-

ing objects and that, unlike controls, produce expensive or structural changes in

the processing object. For instance, a configuration parameter may include the

number of ports that a processing will have or the numbers of tokens that will

be produced in each firing. Therefore, and as opposed to controls that can be

received at any time, configurations can only be set into a processing object when

this is not in running state.

Static vs. Dynamic processing compositions

When working with large systems we need to be able to group a number of inde-

pendent processing objects into a larger functional unit that may be treated as a

new processing object in itself.

This process, known as composition, can be done in two different ways: stat-

ically at compile time, and dynamically at run-time (see [Dannenberg, 2004]).

Static compositions in the 4MPS meta-model are called Processing Composites

while dynamic compositions are called Networks.

Choosing between Processing Composites and Networks is a trade-off between

efficiency versus understandability and flexibility. In Processing Composites the

developer is in charge of deciding the behavior of the objects at compile time

3.2. Object-Oriented Meta-Model for Multimedia Processing Systems79

Figure 3.3: Participant classes in a 4MPS Network. Note that a 4MPS Net-
work is a dynamic run-time composition of Processing objects that contains
not only Processing instances but also a list of connected Ports and Controls
and a Flow Control. Diagram taken with permission from [Amatriain, 2004]

and can therefore fine-tune their efficiency. On the other hand Networks offer an

automatic flow and data management that is much more convenient but might

result in reduced efficiency in some particular cases.

Processing Networks

Nevertheless, Processing Networks in 4MPS are in fact much more than a compo-

sition strategy. The Network metaclass acts as the glue that holds the meta-model

together. Figure 3.3 depicts a simplified diagram of the main 4MPS metaclasses.

Networks offer an interface to instantiate new processing objects given a string

with its class name using a processing object factory and a plug-in loader. They

also offer interface for connecting the processing objects and, most important, they

80 Chapter 3. State of the Art

automatically control their firing.

This firing scheduling can follow different strategies by either having a static

scheduling decided before run-time (if the model of computation is a static schedu-

lable dataflows. See section 2.2.4 for static scheduling algorithms) or implement-

ing a dynamic scheduling policy (see dynamic dataflows and process networks

in section 2.2.2) such as a push strategy starting firing the up-source process-

ings, or a pull strategy where we start querying for data to the most down-stream

processings. As a matter of fact, these different strategies depend on the given

actor-oriented model of computation for dataflow processing. In any case, to ac-

commodate all this variability the meta-model provides for different FlowControl

sub-classes which are in charge of the firing strategy, and are pluggable to the

Network processing container.

3.3

Previous Efforts in Multimedia

Design Patterns

General design patterns —like the ones from the Gang of Four

[Gamma et al., 1995], and the POSA [Buschman et al., 1996b] catalogs— are be-

ing more and more widely used in multimedia computing. This can be appreciated,

for instance, in academic papers describing multimedia systems, where there is a

growing tendency of documenting the overall system design in terms of general

design patterns. But also in open-source projects, both in discussions on projects

mailing-lists and in code documentation.

Nevertheless, the fact is that there is not any published catalog of design

pattern in the multimedia computing domain. The present work is an attempt

to change this situation and goes in the same direction as other very recent ef-

3.4. General Dataflow Patterns 81

forts: Aucouturier presented several patterns for Music Information Retrieval in

his thesis [Aucouturier, 2006]. Roger B. Dannenberg and Ross Bencina presented

several patterns on audio and real-time in a ICMC 2005 workshop2. In the bor-

der line of the domain we find music composition patterns [Borchers, 2000] and,

finally, a pattern language for designing patches for modular digital synthesisers

[Judkins and Gill, 2000].

Apart from spreading design best practices, collecting multimedia patterns can

serve to another goal: record innovative software designs for critical examination

which might, eventually, become new best practices.

3.4

General Dataflow Patterns

Many pattern catalogs have been written on different domains. Some of them

relates to general aspects of actor-oriented models of computation, dataflow and

process network models —though not restricted to the multimedia processing

domain— [Buschman et al., 1996b, Shaw, 1996], others covers specific aspects of

dataflow [Meunier, 1995, Edwards, 1995]; and some of them are specialized pat-

terns for a particular domain [Posnak and M., 1996].

Most of the state of the art work on dataflow-oriented design patterns has

been harmonized and cataloged by Manolescu in a single well crafted catalog

[Manolescu, 1997], which can also be seen as a pattern language. It is important

to note here that the definition of “dataflow” in that work does not adhere to the

definition given in section 2.2.2, but is more generic and encompasses any type of

dataflows and process networks (see section 2.2.7).

2This very interesting pattern catalog made of 6 patterns can be found in the web: http:
//www.cs.cmu.edu/~rbd/doc/icmc2005workshop/. But we are not aware that they have been
published in a formal academic publication.

http://www.cs.cmu.edu/~rbd/doc/icmc2005workshop/
http://www.cs.cmu.edu/~rbd/doc/icmc2005workshop/

82 Chapter 3. State of the Art

Compared to the systems engineering approach (see 2.2), these patterns are not

a theoretical approach to dataflow models but rather the result of an exhaustive

analysis of existing software solutions. Therefore, they represent a key element to

translate the model requirements into the software domain.

The dataflow paradigm (in Manolescu’s generic definition) is a very broad area,

thus it is not strange that we find different systems with conflicting quality-of-

service requirements. The applicability of the pattern language to the multimedia

processing domain varies depending on the pattern. The most architectural and

high-level ones apply well, but other more specific patterns have forces that are in

conflict with those in the multimedia processing domain, and are more oriented

to offline or batch processing. The pattern language is composed by the following

four patterns: Dataflow architecture, Payloads, Module data protocol, and Out-

of-band and in-band partitions. Though some of them offer several variants, the

pattern language cannot be considered a complete language (it does not cover a

domain). Our contributed pattern language (see chapter 5) extends this initial

pattern language focusing on the multimedia processing domain. Therefore, we

summarise here these four patterns to give the necessary context.

3.4.1 Pattern: Data flow architecture

A variety of applications apply a series of transformations to a data stream. The

architectures emphasize data flow, and control flow is not represented explicitly.

These applications consist of a set of modules that interconnect forming a new

module or network. The modules are self-contained entities that perform generic

operations that can be used in a variety of contexts. A module is a computa-

tional unit while a network is an operational unit. The application functionality

is determined by: types of modules and interconnections between modules. The

application could also be required to adapt dynamically to new requirements.

In this context, sometimes a high-performance toolkit applicable to a wide

range of problems is required. The application may need to adapt dynamically or

at run-time. In complex applications it is not possible to construct a set of com-

ponents that cover all potential combinations. The loose coupling associated with

the black-box paradigm usually has performance penalties: generic context-free

efficient algorithms are difficult to obtain. Software modules could have different

incompatible interfaces, share state, or need global variables.

The Solution is to highlight the data flow such that the application’s architec-

3.4. General Dataflow Patterns 83

ture can be seen as a network of modules. Inter-module communication is done

by passing messages (sometimes called tokens) through unidirectional input and

output ports (replacing direct calls). Depending on the number and types of ports,

modules can be classified into sources (only have output ports and interface with

an input device), sinks (only have input ports and interface with output devices),

and filters (have both input and output ports).

Filter 1 Filter 2

Filter 3

Filter 4 Filter 5

Filter 45

Source 1

Source 2

Sink

Static composit ion
(to improve performance)

Figure 3.4: Dataflow architecture

Unidirectional input and output ports are not a limitation. Rather, they in-

crease a component’s autonomy, such that, provided that there are no feed-back

loops, processing of a component is unaffected by the presence or absence of con-

nections at the output ports. For two modules to be connected the output port

of the upstream module and the input port of the downstream module must be

plug-compatible. Having more than one data type means that some modules

perform specialized processing. Filters that do not have internal state could be re-

placed while the system is running. The network usually triggers re-computations

whenever a filter output changes.

In a network, adjacent performance-critical modules could be regarded as a

larger filter and replaced with an optimized version, using the Adaptive Pipeline

pattern [Posnak and M., 1996] which trades flexibility for performance. Modules

that use static composition cannot be dynamically configured.

84 Chapter 3. State of the Art

3.4.2 Pattern: Payloads

In dataflow-oriented software systems separate components need to exchange infor-

mation either by sending messages (payloads) through a communication channel

or with direct calls. If it is restricted to message passing, payloads will encapsulate

all kinds of information but components need a way to distinguish the type as well

as other message attributes such as asynchronousity, priority... Some overhead is

associated with every message transfer. Depending on the kind of communication,

the mechanism must be optimized.

Type

Asynchronous

Priority

Descriptor

Control Message

Type

Asynchronous

Priority

Descriptor

Control Message

Image Name

Image Size

Format

Data

Image Data

Type-specific
Parameters

Figure 3.5: Different payloads and their components

Payloads give a solution to this problem. Payloads are self-identifying, dy-

namically typed objects such that the type of information can be easily identified.

Payloads have two components: a descriptor component and a data component.

In the case where different components are on different machines, payloads need

to offer serialization in order to be transmitted over the channel.

Payload copying should be avoided as much as possible using references when-

ever possible. If the fan out is larger than one, the payload has to be cloned. In

order to reduce copies even in that case, the cloned copies can be references of the

same entities and only perform the actual copy if a downstream receiver has to

modify its input. If it is not possible to avoid copying there are two possibilities:

shallow copy (copy just the descriptor and share the data component) and deep

copy (copy the data component as well maybe implementing copy-on-write).

The greatest disadvantage of the payload pattern compared to direct call is its

inefficiency, associated with the message passing mechanism. One way to minimize

3.4. General Dataflow Patterns 85

it is by grouping different messages and sending them in a single package.

A consequence of this pattern is that new message types can be added without

having to modify existing entities. If a component receives an unknown token, it

just passes it downstream.

3.4.3 Pattern: Module data protocol

Collaborating modules pass data-blocks (payloads) but depending on the applica-

tion, the requirements for these payloads could be very different: some may need

asynchronous user events, some may have different priority levels, some may con-

tain large amounts of data. On the other hand, sometimes the receiving module

operates at a slower rate than the transmitter, to avoid data loss the receiver must

be able to determine the flow control.

Besides, we must take into account a number of possible problems. Large

payloads make buffering very difficult. Payloads with time-sensitive data have

to be transferred in such a way that no deadlines are violated. Asynchronous or

priorized events are sent from one module to another- Shared resources for inter-

module communication might not be available or the synchronization overhead

not acceptable. And flow control has to be determined by receiving module.

There are three basic ways to assign flow control among modules that exchange

Payloads:

• Pull (functional): The downstream module requests information from the

upstream module with a method call that returns the values as result. This

mechanism can be implemented via a sequential protocol, may be multi-

threaded and may process in-place. The receiving module determines flow

control. It is applicable in systems where the sender operates faster than

the receiver. This mechanism cannot deal with asynchronous or high-priority

events.

• Push (event driven): The upstream module issues a message whenever new

values are available. The mechanism can be implemented: as procedure calls

containing new data as arguments; as non-returning point to point messages

or broadcast; as high-priority interrupts; or as continuation-style program

jumps. Usually the sending module does not know whether the receiver is

ready or not. To prevent data loss the receiver can have a queue. If there

86 Chapter 3. State of the Art

Module 1 Module 2

Request (1)

Return (2)

Data Flow

Token

Figure 3.6: The pull model for inter-module communication.

are asynchronous or high-priority events, the queue must let them pass, else

a simple queue can do.

Module 1 Module 2
Message

Data Flow

QueueToken

Figure 3.7: The push model for inter-module communication.

• Indirect (shared resources): Requires a shared repository accessible to both

modules. When the sender is ready to pass a payload to the receiver, it

writes in the shared repository. When ready to process, the receiver takes

a payload from the repository. The sender and the receiver can process

at different rates. If not all the payloads are required by the receiver, the

upstream module can overwrite data.

Module 1 Module 2

Transfer (1) Transfer (2)

Data Flow

Token Token

Shared
Repository

Figure 3.8: The indirect model for inter-module communication.

3.4. General Dataflow Patterns 87

It must be noted though that having more than one input port complicates

flow control and requires additional policies.

3.4.4 Pattern: Out-of-band and in-band partitions

An interactive application has a dual functionality: first it interfaces with the

user handling event-driven programming associated with the user interface and

the response times have to be in the order of hundreds of milliseconds; second it

handles the data processing according to the domain requirements

User actions are non-deterministic so user interface code has to cover many

possibilities. Data processing has strict requirements and the sequence of oper-

ations (algorithm) is known before hand. Human users require response in the

order of hundreds of milliseconds but applications emphasize performance that is

irrelevant for the user interface. Generally, a large fraction of the running time

is spent waiting for user input. The user interface code and data processing code

are part of the same application and they collaborate with each other.

The solution is to organize the application into two different partitions:

• Out-of-band partition: typically responsible for user interaction.

• In-band partition: it contains the code that performs data processing. This

partition does not take into account any aspects of user interaction

Interpartition
communication

In-band code
(high performance)

Out-of-band code

Out-of-band partition

In-band partition

Events

Media tokens

Figure 3.9: Out-of-band and in-band partitions within an application.

88 Chapter 3. State of the Art

3.5

Summary

This chapter has reviewed previous art related to the problems this thesis

address. We have started analysing extensions of the Synchronous Dataflow model

that support the concept of time. In the Discrete Time model , all tokens flow at

regular time intervals. Though promising, it does not address our problem. This

is because we are interested in adapting dataflows in a time-triggered callback-

based architecture. For accomplishing that, only the input nodes must be time-

triggered. Once a callback execution is triggered, all actors must execute as quickly

as possible in order to finish before the real-time deadline. Discrete Time, on the

contrary, execute all actors in regular intervals. SDF-for-VLSI is a model similar to

Discrete Time that addresses hardware implementation with synchronous circuits.

Other time-related SDF extensions have been used to improve the parallelization

of dataflow systems, but their solution is too restrictive: multi-rate is not allowed.

We have reviewed timeliness actor-oriented models that do not belong to the

Dataflow family. Simulink and Giotto systems implement time-triggered models

exploiting an underlying multitasking and preemptive operating system. These

models do not address our problem because they lack queues on each arc, and so,

dataflow semantics and execution order independence. The same happen with the

Discrete Events model.

The Discrete-Event Runtime Framework combines time-triggered models with

dataflow untimed computation. This resembles very much our requirements. How-

ever it does not have output nodes that close the time-triggered callback activation.

Hence, it is not suited for time-triggered callback-based architectures.

This chapter has also reviewed an Object-Oriented Meta-Model for Multimedia

Processing Systems (4MPS). Meta-model analysis is a technology related to our

stated goals because it facilitates the translation of models into object-orientation

designs. It gives names and semantics to elements common in many reviewed

actor-oriented models and frameworks, which can be used in the design patterns.

3.5. Summary 89

The 4MPS meta-model is based on a classification of signal processing objects

into two categories: Processing objects that operate on data and control, and

Data objects that passively hold media content.

While 4MPS offers a valid high-level meta-model for most dataflow-based

frameworks and environments, it is sometimes more useful to present a lower-level

architecture in the language of design patterns, where recurring and non-obvious

design solutions can be shared (such the ones presented in chapter 5). Thus, such

pattern language bridges the gap between an abstract meta-model such as 4MPS

and the concrete implementation given a set of constraints.

The multimedia domain has not given much attention regarding domain-

specific patterns. They are actually hard to find. Some catalogs exist on mul-

timedia sub-domains such as Music Information Retrieval and real-time audio

processing —unfortunately, the later doesn’t cover dataflow-based systems.

Outside (or not restricted to) the multimedia domain, we find some catalogs

of dataflow patterns. Fortunately, most of them have been collected in a single

and well crafted catalog. We have reviewed the patterns more relevant to our

purposes.

Most patterns from this catalog are quite high-level (thus, not implementation

oriented) and valid for our domain. Others are not. Some requirements imposed

by the multimedia processing systems tends to be quite restrictive —for instance,

real-time constrains. Thus, specific patterns for our domain are required.

Next chapter contributes the Time-Triggered Synchronous Dataflow model that

overcomes the problems of dataflow models and real-time.

CHAPTER 4

Time-Triggered Synchronous

Dataflow

In the previous chapter we established the grounds of Dataflow models of compu-

tation (in section 2.2.2). And static scheduling of Synchronous Dataflow (SDF)

was reviewed in section 2.2.4.

Building upon this, the present chapter contributes a new actor-oriented model

of computation, within the Dataflow models family: the Time-Triggered Syn-

chronous Dataflow (TTSDF). This model is inspired on the Synchronous Dataflow

(SDF) but, differently from SDF, it is suited for real-time processing. Specifically,

it adds the advantage of enabling the model to be driven by time-triggered inter-

rupts while preserving correct computation. TTSDF models can be run efficiently

because no extra operating-system threads are required, they operate with the

optimum latency, and jitter is totally avoided.

We start in section 4.1 specifying the issues that Synchronous Dataflow have in

real-time systems —specifically, when integrating a SDF model in a time-triggered

callback-based architecture—, and give a detailed scenario experimenting such

issues.

91

92 Chapter 4. Time-Triggered Synchronous Dataflow

The TTSDF model is formally described in section 4.2. Next, a scheduling

algorithm is proposed and proved valid in section 4.3. To further demonstrate the

behaviour of the model, a scheduling example is presented in section 4.4.2 and

more examples are presented in appendix B.

Finally, we recap and draw conclusions in section 4.7.

4.1

The Problem of Timeliness in

Dataflows

As we have stressed in section 2.1.7, the “callback” style of programming is

prefered over the “blocking I/O” style for real-time multimedia processing. How-

ever, an SDF schedule, like the one in figure 4.1, does not fit well in a timed

callback-based architecture. On one hand, in such architectures, callbacks driven

by the hardware are triggered in regular timings. On each trigger, inputs have to be

read and outputs have to be produced, within the established real-time deadlines

(see section 2.1.2). On the other hand, the SDF model is an untimed abstraction

because timing constrains are not captured by the model —only indirectly by the

flowing token ordering.

Ideally we would like to combine regularly timed executions with SDF data

dependencies. Specifically, some dataflow actors should be timed —the ones linked

with callback inputs and outputs—, and they should be interleaved by sequences

of the other untimed actors, while respecting the graph data dependencies. How-

ever, a periodic SDF scheduling may contain many instances of each —timed or

untimed— actor, therefore constructing such combination is not obvious.

A different, and simpler, approach consists on relying on buffering done in

another thread. We will devote the next paragraphs in this section to show that

4.1. The Problem of Timeliness in Dataflows 93

i a2
1

b2
3

c2
1

o3
8

Γ =

−2 0 0 1 0
3 −2 0 0 0
0 1 −2 0 0
0 0 8 0 −3

• Period executions: ~q={8,4,6,3,8}. Nodes order: i, a, b, c, o

• SDF periodic schedule: i0, i1, a0, b0, i2, i3, a1, b1, c0, i4, o0, b2, i5, o1, a2, b3,
c1, i6, o2, o3, i7, a3, b4, o4, b5, c2, o5, o6, o7

Figure 4.1: A simple SDF graph and scheduling. It is problematic to run
such graph within real-time constrains

this approach is flawed and not usable in the general case.

It is actually easy to find examples of this buffering technique in audio (pro-

gramming) libraries that offer access to the audio device —for example, the Linux’s

Alsa, and the cross-platform PortAudio [Bencina and Burk, 2001]. The technique

is often called callback to blocking interface adaptation and is implemented having

a user’s processing thread that synchronises with the callback thread, exclusively

dedicated to buffering. While this works for audio device access using a fixed

buffer size, it is not appropriate for running multi-rate dataflows. To illustrate

the exact problems we will use the example of SDF scheduling in figure 4.1. We

are interested on the latency and jitter issues, thus we assume that the callback

real-time deadlines are always met.

Chronogram Analysis of the Naive Solution

The chronogram in figure 4.1 shows the result of executing the SDF schedule —as

provided by the static scheduler algorithm—, by means of the described callback

to blocking interface adaptation. The chronogram requires a detailed analysis.

Communication with the outside world happens through buffers provided by the

callback process. These buffers also act as thread boundaries using mutexes and

semaphores between the callback and the SDF threads —using lock-free techniques

from the callback thread.-

94 Chapter 4. Time-Triggered Synchronous Dataflow

i i a b i i a b c i o b i a b c i o o i o a b o b c o o o

i i a b i i a b c i o b i a b c i o o i o a b o b c o o o

in buffers

SDF thread

callback

GAP!

0

1

2

3

4

5

6

0

1

2

3

4

5

6

0

1

2

3

0

1

2

3

First schedule cicle

Second and successive schedulie cycle

time

time

in buffers

out buffers

SDF thread

callback

out buffers

clock/IRQ/driver

...

...

...

...

Figure 4.2: A sequence diagram (chronogram) showing the problematic
adaptation of an SDF schedule (from figure 4.1) on top of a callback archi-
tecture. The line on the top shows the callback process that deals with input
and output buffering. The second line shows the SDF execution thread, with
blocking executions of actor i (input). Next two lines show the size of output
and input buffers. Points marked with GAP indicate a lack of output buffer
to be served by the callback. This will produce a gap in the output stream.

4.1. The Problem of Timeliness in Dataflows 95

The first observation on this example is that all input (actor i) executions are

blocking —because it have to wait for new data to be available— while output

(actor o) executions are not blocking —because output buffers are always ready.

But this is not the general norm: one could reduce the total size of output buffers

so that output executions would need to block until some space is freed. In the

chronogram it is easy to see that each blocking input causes a unitary increase of

the output buffers, while each blocking output would cause a unitary increase of

input buffers.

The second observation is that this technique adds excessive latency. The

first output goes out at the 6th callback activation. And this is not necessary:

executions order could be arranged differently to obtain half that latency. To

make matters worse, latency is not stable but increases during the first schedule

cycle: in the 7th callback activation, output is not sent out, causing a gap in the

output stream, and it is deferred until the 8th callback. This gap increases latency.

Such variation on the latency in which a continuous stream is presented to the

user is called jitter.

The third observation is that the second cycle starts with enough buffering,

therefore no more gaps are introduced. We also observe that the second cycle

ends with the same buffer sizes as it starts, therefore next iterations will follow

the same sequence.

Summing up, running an SDF schedule in a callback-based architecture is

problematic because in general:

• it introduces more latency than necessary.

• it introduces jitter. At least during the first cycle execution, but also in

successive cycles depending on how buffering is managed.

• it introduces run-time overhead because of the context switching of threads.

Moreover, in some of our target architectures (e.g., some audio plug-in ar-

chitectures), spawning threads is not allowed. In other cases it is allowed,

but they run at lower priority than the callback process.

The Time-Triggered Approach

Therefore we need a new approach that combines regularly triggered actors that

consume the external inputs with other untimed actors. We would also like to en-

96 Chapter 4. Time-Triggered Synchronous Dataflow

able the scheduling to run inside the callback process, avoiding jitter and guaran-

teeing optimum latency. Such a wish list is realized in the chronogram in figure 4.1,

for the same SDF example.

Periodic schedule cicle
time

clock/IRQ/driver

i a b a b c o i b o i a b c o i o i a b o i b c o i o i o

Figure 4.3: The desired way of running the same SDF periodic schedule
(defined in figure 4.1). Now processing blocks are run inside the callback
and no buffering is required nor blocking reads/writes. The reason why this
is possible is that inputs and outputs are well distributed. However, before
running the periodic schedule, the following prologue is needed to initialize
the internal dataflow queues: (i,o), (i,o), (i,o)

Although the example in figure 4.1 shows a sequential computation —all actors

are executed in the callback process—, it is still possible to optimize the run-time

by parallelizing on multiple processors in a similar way that is done for SDF graphs

(see section 4.5.

Now that the problem and a possible solution have been illustrated we are

ready to precisely define a new model of computation that suites that purpose.

4.2

The TTSDF Computation Model

Our goal is to find a systematic methodology or algorithm for obtaining se-

quential schedules of actors in a way that can be run in the real-time callback

4.2. The TTSDF Computation Model 97

1 2 12

2

2

2

1

i o

non−input source non−output sink

Figure 4.4: A TTSDF graph with a non-input source and a non-output
sink. Note that such source and sink can run at different rates, while inputs
and outputs must run at the same rate.

function, avoiding jitter and optimizing the latency. Additionally we want to

prove that all graphs that have an SDF schedule also have an schedule that fulfils

these conditions.

This work follows a similar development than the one found in

[Lee and Messerschmitt, 1987a], on statical scheduling of synchronous dataflows

and builds upon some of its definitions, lemmas, and theorems.

Definition 1. A Time-Triggered Synchronous Data Flow (TTSDF) is a connected

and directed graph with each arc labeled with two integers, one corresponding to

the amount of samples being produced to that arc and the other corresponding to

the amount of samples being consumed from that arc, a subset of source nodes I

or inputs, a subset of sink nodes O or outputs, and ~b(0) a vector containing the

initial buffer sizes of all arcs.

Note that all input nodes are sources and all output nodes are sinks but the

opposite is not true. Figure 4.4 shows a graph with a source node tagged as

“input” a sink node tagged as “output” and an additional source and sink.

The only difference with an SDF graph is that a TTSDF comes with some

sources tagged as inputs and some sinks tagged as outputs. Like in SDF, the

number of tokens consumed and produced for each block execution is known a

priori. Note that any SDF model can be interpreted as a TTSDF model with no

sink or source tagged as input or output.

Dataflow models, and SDF and TTSDF in particular, are coordination lan-

guages as defined in [Halbwachs, 1998] and [Lee and Parks, 1995]. Coordination

languages permit nodes in a graph to contain arbitrary subprograms, but define

a precise semantic for the interaction between nodes. We call host languages

those languages used to define the subprograms, which are usually conventional

98 Chapter 4. Time-Triggered Synchronous Dataflow

...i oi o

trigger

(IRQ/timer)

trigger

(IRQ/timer)

deadline

callback run−time

Figure 4.5: A callback activation with two inputs and two outputs. Arrows
represents execution dependencies between nodes imposed by the dataflow
graph.

languages such as C or C++.

We give the semantics of the TTSDF coordination language by defining the

interaction between time-triggered callbacks, timed (input/output) actors and un-

timed actors. Furthermore, we use a mathematical computation model to reason

about the admissible schedules of the dataflow.

4.2.1 Callback-based Coordination Language

Three types of actors are distinguished: inputs, outputs and untimed actors. Inputs

are time-triggered, that is, their execution is driven by the time-triggered callback.

Each input is associated to a callback buffer, each of them may consist in different

number of tokens. All inputs run together sequentially in an arbitrary order.

An input execution consists on reading its callback input buffer and sending out

tokens to its dataflow queues. Immediately after the inputs, zero or more untimed

nodes are run. Note that untimed actors can be either filters, sources or sinks.

Outputs close the execution sequence triggered by the callback. As the inputs,

they run together in an arbitrary order. Termination of outputs execution finishes

the callback function. Conversely to inputs, each output writes tokens from its

queues into its callback output buffer. Outputs are not time-triggered but are

time-restricted because they must run before the deadline —which often coincides

with the next callback.

Each execution sequence triggered by a callback is called callback activation.

The dataflow semantics are preserved by an important restriction: the concate-

nation of one or more callbacks activations must form a periodic scheduling. Fig-

4.2. The TTSDF Computation Model 99

trigger

i o i o i o

trigger
trigger

callback activations

complete dataflow scheduling cycle

i o i o i o

trigger

Figure 4.6: Multiple callback activations forming a dataflow cycle schedul-
ing. For clarity, here i and o represents a sequence of all inputs and outputs
(or ℘(I) and ℘(O))

ure 4.5 shows a graphical example of a callback activation with dependencies

between node executions. Figure 4.6 shows how one or more callback activations

form a complete dataflow scheduling cycle (or period).

A first consequence of this model is that jitter cannot exist because no input

or output buffer can be missed. When a callback activation finishes, the outputs

are always filled with new data1.

Finally, note that we always refer to the “callback function”, but a “function”

is not technically necessary. It could also be a similar —and equivalent— scheme

like a thread that is awaken by a time-trigger. However, defining callback functions

is the typical solution used in open architectures to allow developers to plug in

their processing algorithm.

4.2.2 Formal Computation Model

Definition 2. ℘(A) indicates an arbitrary sequence of all elements in the set A.

Definition 3. A callback activation is any a sequence in the following language:

C = {℘(I)(V − (I ∪O)∗)℘(O)}. And l callback activations is any sequence in C l,

where V is the set of nodes in the graph, and I and O are the nodes labeled as

inputs and outputs respectively.

1which can either be a transformation of the input buffers provided in the same callback or
a transformation of inputs in previous callbacks.

100 Chapter 4. Time-Triggered Synchronous Dataflow

Definition 4. A callback order is any prefix of the language C∗

The following sequences A and B are examples of a callback order —and all

their sub-sequences as well— while C is not in callback order. Assume that the

inputs and ouputs are I = {ia, ib, ic}, O = {od, oe} and the rest of nodes V − (I ∪
O) = {m,n}. Parenthesis are used to indicate complete callback activations

A = [(ia, ib, ic,m, n, od, oe), (ia, ib, ic, n, n, od, oe)]

B = [(ia, ib, ic, od, oe), ia, ib]

C = [ia, ib,m, ia]

(4.1)

As the SDF, this computational model consists on a graph with a FIFO queue

on each arc that gets tokens from its producer processing node and passes them

on to its consumer processing node. Such queues will be called buffers and their

size after n executions (or firings) can be computed as follows:

~b(n+ 1) = ~b(n)Γ~v(n) (4.2)

where ~v(n) represents the processing node being executed in nth place. Each

~v(n) is a vector with a 1 at the position corresponding to the node to be executed

and zeros all the rest.

Taking this simple graph as example,

3
1 2 2 1

21

it needs two executions of nodes 1 and 3 and one execution of node 2 to complete

a period. This is the execution rate per period and is given by the vector ~q which

is the smallest integer vector in the nullspace of the graph topology matrix Γ:

Γ =

[
2 −1 0

0 1 −2

]
Γ~q = ~0; ~q =

1

2

1

 (4.3)

An execution is valid if it fulfils two conditions: the buffer size ~b(n) remains

a non-negative vector, and the sequence of firings remains in callback order. This

second condition is what makes TTSDF a different model than SDF.

This condition means that any allowed sequence of executions begins with

all inputs, then any number of non input/outputs, then all outputs, and then it

4.2. The TTSDF Computation Model 101

3
1 2 2 1

21

3
1 2 2 1

21

3
1 2 2 1

21

3
1 2 2 1

21

3
1 2 2 1

21

3
1 2 2 1

21

step 0

step 1

step 2

step 3

step 4

step 5

Figure 4.7: A sequence of executions in a simple graph. For each step n,
nodes in bold represent the last fired node, which corresponds to vector
~v(n); and the tokens in the two arcs correspond to vector ~b(n). For example

~v(1) = {1, 0, 0} and ~b(1) = {1, 0}.

starts with the inputs again. Note that non-input sources and non-output sinks

can exist and, regarding the callback order, are considered exactly as other non

input/output nodes.

In our example, assuming that node 1 is an input and node 3 an output,

figure 4.7 shows a valid TTSDF scheduling.

102 Chapter 4. Time-Triggered Synchronous Dataflow

4.3

Static Scheduling of TTSDF

Graphs

Definition 5. (From [Lee and Messerschmitt, 1987a]) A periodic admissible

sequential schedule (PASS) is a sequence including all nodes in the graph

such that if the nodes are executed in that order the amount of tokens in the

buffers (or buffer sizes) will remain non-negative and bounded.

Definition 6. A callback periodic admissible sequential schedule

(CPASS) is a periodic and infinite admissible sequential schedule in callback

order. It is specified by a list φ that represents one execution period. The period

of a CPASS is the number of nodes in one execution period.

Definition 7. An l-latency CPASS is an infinite admissible sequential schedule

in callback order consisting in two parts (σ, φ):

• the first part is a finite prologue σ made of l empty callback activations, that

is (℘(I)℘(O))l.

• the second part is an infinite schedule specified by one execution period φ.

The scheduled TTSDF graph is a modified version of the given process graph

in which buffers (delays) are added to the incoming arcs of the output nodes. The

amount of delay tokens added to an output arc is rl, where r is the consuming

rate of the arc and l the given latency.

This means that, in terms of communication with the outside world, the first l

callback activations (the prologue) will only buffer in new tokens and buffer out the

added delays. Starting from the (l+ 1)th execution the output nodes will produce

tokens that have actually been processed by the graph. In typical situations these

correspond to transformations of tokens from the input nodes.

4.3. Static Scheduling of TTSDF Graphs 103

Adding delays enables the schedule to do buffering while respecting the callback

order restriction. As we will see, this buffering is necessary in order to reach a

(buffering) state in which a periodic execution schedule in callback order exists.

Theorem 1. Necessary conditions Given a TTSDF with topology matrix Γ,

the two following conditions are necessary for the existence of a CPASS:

• rank(Γ) = s− 1, where s is the number of nodes

• for any non-zero ~q such that Γ~q = ~0 it is true that ∀i ∈ I ∪O,~qi = r for

some integer r

In other words, if these two conditions are not fulfilled a CPASS will not exist.

Compared to the SDF model the TTSDF just adds the second condition. This

second condition means that all nodes marked as input and output must have the

same rate in terms of number of executions per period.

We will now prove the theorem validity.

Proof. The proof for the first condition can be found in

[Lee and Messerschmitt, 1987a] and it is valid for both SDF and TTSDF).

But we sketch the proof here for completion sake:

We need to prove that the existence of a CPASS implies rank(Γ) = s − 1 By

definition of the computation model, the size of the buffers is given by: ~b(n+ 1) =
~b(n) + Γ~v(n) Let p be period of the schedule and q =

∑p−1
n=0 ~v(n). Therefore

we can write ~b(p) = ~b(0) + Γ~q. And since the CPASS is periodic, we can write
~b(np) = ~b(0) + nΓ~q. Since the CPASS is admissible, the buffers must remain

bounded by Definition 1. Buffers remain bounded if and only if Γ~q = ~0. Therefore

if a CPASS exists then rank(Γ) < s, and rank(Γ) can only be s or s − 1, thus

rank(Γ) = s− 1

The second condition will be proved by contraposition: we have to see that if

two input/output nodes are to be executed a different number of times per cycle

then a CPASS does not exist.

Let be i and j indices such that ~qi > ~qj and let n = ~qi − ~qj. After running m

complete periods, node i will run exactly mn more times than node j. A CPASS,

on the other hand, imposes that after each cycle terminates, all input/output

nodes have been executed the same number of times. So a CPASS does not exist

for such ~q.

104 Chapter 4. Time-Triggered Synchronous Dataflow

Our algorithm for finding a CPASS will begin by checking these two necessary

conditions. We now need a sufficient condition that asserts that a CPASS exists for

a given TTSDF graph. To that purpose we will characterize a class of algorithms

and prove that if a CPASS exists the algorithm will find it, and return failure if

not.

Definition 8. Class C algorithms (“C” for callback) : An ith node is said to

be runnable at a given position if it has not been run ~qi times and running it will

not cause any buffer size to go negative.

Given a latency l, a positive integer vector ~q such that Γ~q = ~0 and an initial

state for the buffers ~b(0), a class C algorithm is any algorithm that

1. First, initialises ~b(0) adding delays to the incoming arcs of output nodes

(as many delays as l executions of the outputs will consume), defines the

prologue σ as any sequence in (℘(I)℘(O))l, and updates ~b accordingly.

2. And second, schedules the period φ with the given ~q: schedules any node if it

is runnable and does not break the callback order, and updates ~b, and stops

only when no more nodes are runnable. If the periodic schedule terminates

before it has scheduled each node i qi times it is said to be deadlocked, else

it terminates successfully.

Lemma 1. To determine whether a node x in an SDF graph can be scheduled at

time i, it is sufficient to know how many times x and its predecessors have been

scheduled, and to know b(0), the initial state of the buffers. That is, we need not

know in what order the predecessors where scheduled nor what other nodes have

been scheduled in between.

Proof. To schedule a node α, each of its input buffer must have sufficient data.

The size of the input buffer j at time i is given by the jth entry in the vector ~b(i).

And by definition of the computation model we know that

~b(i) = ~b(0) + Γ~q(i)

~q(i) =
i−1∑
n=0

~v(n)

The vector ~q(i) only contains information about how many times each node has

been invoked before iteration i, and not the order.

4.3. Static Scheduling of TTSDF Graphs 105

i o o

ooi

i

i

i o

oi

i

i

(a) Pairs of “in-phase” callback-order sequences.

ii o

oi

i

i

i o

oi

i

i

o

o

o

o

i

(b) Pairs of “out-of-phase callback-order sequences.”

Figure 4.8: In-phase and out-of-phase callback activations. (Here i and
o represent ℘(I) and ℘(O)). This diagram makes intuitive the proof of
lemma 2 “Sequence permutations are in callback-activation phase”. Note
that sequences not in callback activations cannot be permutations since they
have different number of non-input/output nodes.

Lemma 2. Sequence permutations are in “callback-activation phase”:

Two sequences φ and χ in callback order such that one is a permutation of the

other, either both end with a node in V −(I∪O) (that is, not necessarily the same)

or both end with the same node in I ∪ O (and so, both ends with the same prefix

of ℘(I) or ℘(O))

Figure 4.8 shows callback-order sequences both in-phase and out-of-phase, and

illustrates the lemma’s proof.

Proof. By contraposition: Assume that a sequence, say φ, ends with a ℘(I) or

℘(O) sub-sequence and χ ends with a node different than the last node in φ. Then,

the ending ℘(I) or ℘(O) sub-sequence of φ is different than the ending sequence

of χ. But incomplete sub-sequences of ℘(I) and ℘(O) are only allowed at the end

of the sequence, by callback order definition. Therefore, φ and χ differ in the total

number of nodes in I or O, and they cannot be permutations.

The following theorem builds upon the previous lemas and is the heart of our

scheduling algorithm proof.

Theorem 2. Sufficient condition: Given a TTSDF with topology matrix Γ such

that rank(Γ) = s − 1 and given a positive integer vector ~q such that Γ~q = 0, and

all input/output node i have equal ~qi (the “necessary conditions”); If a latency-l

CPASS of period p = ~1T~q exists, any class C algorithm will find such a CPASS.

106 Chapter 4. Time-Triggered Synchronous Dataflow

a

1, 2, ... n+1n

?

(a) χ(n) and φ(n) are per-
mutations, then the n + 1th
element in φ can be sched-
uled.

a

1, 2, ... nj

?

(b) χ(n) and φ(n) are not
permutations, then an ele-
ment a exists that is not
input and can be sched-
uled.

Figure 4.9: Finding the (n + 1)th element to schedule, assuming that a
scheduling exist.

In other words: successful completion of any class C algorithm is a sufficient

condition for the existence of the CPASS.

Proof. It is sufficient to prove that if an l-latency TTSDF scheduling (σ, φ) of

latency l and period p exists, a class C algorithm will find such scheduling. That

is, it will not deadlock before the termination condition is satisfied.

Trivially, any class C algorithm will find a prologue equivalent to σ, since

the different permutations ℘(I) and ℘(O) do not affect the runnability of further

nodes.

Let’s now demonstrate that such an algorithm will find the periodic part of

the scheduling. We need to show that if the algorithm schedules χ(n) for the first

n executions, where 0 ≤ n < p, it will not deadlock for its (n + 1)th execution

before n = p.

Lets proceed doing a case analysis of the nth element in χ(n) (that is the last

element scheduled).

1. If the nth element in χ(n) is an input but its ℘(I) sub-sequence has not been

completed then the next input in ℘(I) will be scheduled.

2. If the nth element in χ(n) is an output but its ℘(O) sub-sequence has not

been completed then the next output in ℘(O) will be scheduled.

3. If the nth element in χ(n) is an output that closes a complete ℘(O) sequence,

the first element in ℘(I) will be scheduled. This will happen because the

callback order of χ(n) guarantees that, given that n < p (that is, we have

not reached the end), at least another callback activation is to be scheduled.

4.3. Static Scheduling of TTSDF Graphs 107

i o io

Figure 4.10: Pushing sources towards the beginning and sinks towards the
end does not affect the scheduling runnability. Here i and o represents any
source and sink, not just inputs and outputs.

4. The remaining cases —the non trivial ones— are that the nth element sched-

uled is either the last of a ℘(I) sub-sequence or is a node in V − (I ∪O) (a

non input/output).

Since an l-latency CPASS exists, assume that φ(n) are the n first entries of

the periodic part of such CPASS.

(a) If χ(n) is a permutation of φ(n) then the (n + 1)th element in φ is

runnable by lemma 1 and 2. —in a nutshell, lemma 1 says that the

runnability of a node depends on how many times its predecessors have

run, but not their order, and lemma 2 says that permutations end at

the same part of a callback activation, and hence the (n+ 1)th element

in φ will not break the callback order. See figure 4.9a.

(b) If χ(n) is not a permutation of φ(n) then at least one node appears

more times in φ(n) than in χ(n). See figure 4.9b.

Let α be the first such node. We can prove that α /∈ I. This can be seen

by contraposition: Let’s assume that α ∈ I. Let j be the position that

α takes in φ. φ(j− 1) and χ(j− 1) are clearly permutations. Since φ is

in callback order, α is preceded by ℘(O) and zero or more inputs. But

lemma 2 states that two permutations in callback order must end at

the same phase of the callback activation. That means that the whole

℘(O)℘(I) sub-sequence will remain in permutation order, and α cannot

be the first different node.

(c) In the other cases, α ∈ O or α ∈ V − (I ∪O), α can be scheduled as

the (n + 1)th element in φ because it is runnable by lemma 1 and it

will not break the callback order.

Therefore, we know fore sure that the if a graph is schedulable, any algorithm

in the class C algorithms will find such a schedule. Next we proof that any TTSDF

108 Chapter 4. Time-Triggered Synchronous Dataflow

Sch. period

New sch. period

Sch. period

Figure 4.11: Adding two schedule periods and splitting them to create a new
schedule period.

graph that has an SDF-style scheduling will also have a TTSDF-style scheduling.

Therefore, both models have equivalent computability.

Theorem 3. TTSDF and SDF have equivalent computability: If a TTSDF

has a PASS, then it also has an l-latency CPASS for some l < c, where c (for

“callback activations”) is the number of inputs/outputs in a period (formally, c =

~q(i) where i is any index of an input or output)

Proof. We can prove it by constructing a p-latency CPASS out of a PASS. Let Γ

be the topology matrix of the graph, and assume that the PASS is characterised

by a period of executions φ, and has been calculated with a given ~q such that

Γ~q = ~0

First, note that on any synchronous dataflow scheduling, source nodes can be

pushed towards the beginning and sink nodes can be pushed toward the end. Such

modifications of the scheduling sequence result in increased buffer sizes, but they

do not change the runnability of any successor node. See figure 4.10.

Also note that we can transform a periodic schedule φ into a prologue and

periodic part, by spanning two periods and slicing it with the same period size.

To be precise, for any given n the new prologue is the n first elements in φ, and

the new period is the last elements in φ starting from the n + 1th concatenated,

again, with the first n elements in φ. See figure 4.11.

With the previous observations, we will now show how to transform a PASS

into a p-latency CPASS.

1. Push all input nodes in φ to the beginning, forming sub-sequences of ℘(I).

And push all output nodes to the end, forming sub-sequences of ℘(O).

φ′ = (℘(I)℘(I)...℘(O)℘(O))

4.3. Static Scheduling of TTSDF Graphs 109

i,i,i,... ...,o,o,o

i,i,i,... ...,o,o,o i,i,i... ...,o,o,o

i,... ...,o,i,o,i,oi,o,i,o TTSDF Scheduling

Prologue Period

i,... ...,o,o,o,i,ii,i

i,... ...,o,i,o,i,oi,i

...,i,...,o,...,i,...,i,...,o,...,o SDF Scheduling1.

2.

3.

4.

5.

6.

Figure 4.12: Steps to convert an SDF-style scheduling to a TTSDF-style
scheduling. The result, however, is not optimal neither in latency nor in
run-time load between callback activations. But it proofs that if an SDF-
scheduling exists for a graph a TTSDF-scheduling also exists. And, in that
case, the TTSDF scheduling (class C) algorithm will find an optimal schedul-
ing in terms of latency (by means of testing the algorithm with different
latencies from 0 to p) .

2. Let n be the number of ℘(I)s in φ′. We define the prologue σ as ℘(I)n−1,

and the new period φ′′ as φ′ taking out the prologue and concatenating it

to the end, applying the aforementioned technique of slicing two spanned

periods.

3. Modify φ′′ by pushing the n− 1 ℘(I) sub-sequences towards the beginning,

next to each ℘(O).

4. Add n − 1 ℘(O)s at the prologue which will be executed with the added

delays of the CPASS.

These steps that convert an SDF-style scheduling to a TTSDF-style scheduling

are illustrated in figure 4.12.

Corollary 1. We can choose the smallest ~q in the null-space of Γ to find the

schedule.

110 Chapter 4. Time-Triggered Synchronous Dataflow

Proof. We can choose the smallest ~q for finding a PASS (a SDF scheduling) as

proved in [Lee and Messerschmitt, 1987a]. Theorem 3 (equivalent computability)

guarantees that with the same ~q a CPASS exist.

In other words, the SDF model have the nice property for which the smallest

vector in the nullspace of Γ is as good as any other in order to find a scheduling.

By using this smallest vector in the algorithm we have the guaranty of obtaining

the smallest scheduling cycle. Corollary 1 says that, given that this is true for

SDF, it is also true for TTSDF.

4.4

The TTSDF Scheduling Algorithm

Given the theorems and proofs in the previous section, we now propose a

specific scheduling algorithm that falls into the defined class C algorithms, and

therefore, will find an l-latency CPASS, if one exists. The algorithm takes the

following inputs: Topology matrix Γ, number of nodes s, added latency l, initial

delays ~b0

The algorithm, using pseudo-code in Python-like syntax:

def t t s d f s c h e d u l e :

necessary c o n d i t i o n s :

i f rank (Γ) != s−1:

return ”Rate mismatch”

~q = s m a l l e s t i n t e g e r i n n u l l −space (Γ)

I = a r b i t r a r y l i s t o f input nodes

O = a r b i t r a r y l i s t o f output nodes

L = a r b i t . l i s t o f non input / output nodes

for n in O+I : i f ~q(n) != ~q(O0) :

4.4. The TTSDF Scheduling Algorithm 111

return ” In / outs should have same ra t e ”

~vinputs = sum(~vi for each i in I }
~voutputs = sum(~vo for each o in O}
pro logue schd = (IO)l

s e t added l a t e n c y b u f f e r i n g
~b = ~b0 + Γ ∗ ~vinputs ∗ l
~x = ~0 # the curren t number o f e x e c u t i o n s

a c t i v a t i o n c l o s e d=True

while ~x != ~q :

found any runnable = False

i f a c t i v a t i o n c l o s e d :

c y c l e s c h d += I
~b += Γ ∗ ~vinputs

a c t i v a t i o n c l o s e d = False

for n in L :

run node n i f runnab le

i f min (~b+ Γ ∗ ~v(n))>=0 and ~x(n)<~q(n) :

c y c l e s c h d += [n]

~x(n) += 1
~b += Γ ∗ ~v(n)

found runnable = True

run a l l output nodes i f runnab le

i f min (~b+ Γ ∗ ~voutputs)>=0 and ~x(O0)<~q(O0) :

c y c l e s c h d += O

for o in O : ~x(o) += 1

~x += Γ ∗ ~voutputs

found runnable = True

a c t i v a t i o n c l o s e d = True

i f not found runnable :

#l a c k s i n i t i a l b u f f e r i n g

return ”DEADLOCK”

return pro logue schd , c y c l e s c h d

Finding the minimum l for an l-CPASS using the previous function is easy. We

begin testing for l = 0 and increase l until found, or its upper bound c is reached.

c, is the number of callback activations, or the number of times each input/output

appears in a period (c = ~q(i), where i is any input or output position).

112 Chapter 4. Time-Triggered Synchronous Dataflow

for l in [0 , c] :

r e s u l t = t t s d f s c h e d u l e (l)

i f r e s u l t i s not deadlock :

return r e s u l t

return ”DEADLOCK”

4.4.1 Cost Analysis of the Scheduling Algorithm

The ttsdf schedule function finds an schedule —if it exists— given a latency l.

It first computes the smallest integer vector ~q in the nullspace of the topology

matrix Γ. This is quadratic with respect to the number of nodes n, so O(n2). The

second phase of the ttsdf schedule function constructs a cyclic scheduling of length

p. Each scheduled node is, basically, found by a simple iteration on the nodes list.

Therefore, its maximum cost is O(pn). Given that p > n in general, the final cost

of the function is O(n2 + pn) = O(pn).

The optimal scheduling is found by repeated calls to ttsdf schedule giving l

values from 0 to c. The upper bound c, is number of callback activations in a

period. Therefore, the total cost of the optimal scheduling algorithm is O(cpn).

Since c is bounded by p, the final expression can be reduced to O(p2n).

Finally, note that p and n are totally independent values (apart form the

restriction p ≥ n), because p depends on the token rates values specified on the

graph.

4.4.2 TTSDF Scheduling Example

This section shows a scheduling example that results from executing the previous

algorithm on a TTSDF graph. Six more examples can be found in appendix B —

namely: “Simple TTSDF Pipeline”, “Split and Reunify”, “Dense Graph”, “Graph

with Optimum Between Bounds”, “Audio and Video Multi-Rate Pipelines”, “Sim-

plified Modem”. Another example can be found as part of the 3D-Audio Dataflow

case study, in section 6.2.4.

Graph with Optimum Between Bounds

Callback activations in the resulting scheduling are separated using parentheses

“()”. The prologue and periodic parts are separated with a “+”. We also give

4.4. The TTSDF Scheduling Algorithm 113

a non-time-triggered scheduling obtained with an SDF scheduling algorithm, in

order to compare TTSDF and SDF schedulings, Finally, we also give a diagram

with the evolution of buffering during the periodic cycle. This diagram shows the

total amount of tokens (that is, summing all the FIFO queues in the graph).

This example graph (and its name) is taken from [Ade et al., 1997].

a

b7

1

d

21

c
17

e
3

3

1

2

h

12
f

2

1

g
71

1

7

Γ =

266666666666666664

1 −7 0 0 0 0 0 0

1 0 0 −2 0 0 0 0

0 7 −1 0 0 0 0 0

0 0 0 3 −3 0 0 0

0 0 −1 0 2 0 0 0

0 0 0 0 2 0 0 −1

0 0 0 −2 0 1 0 0

0 0 0 0 0 1 −7 0

0 0 0 0 0 0 7 −1

377777777777777775
• Executions per period ~q = {14, 2, 14, 7, 7, 14, 2, 14} corresponding to nodes:

a, b, c, d, e, f, g, h

• Time-Triggered scheduling. Prologue + period: (a0, f0, c0, h0), (a1, f1, c1, h1), (a2,

f2, c2, h2), (a3, f3, c3, h3), (a4, f4, c4), h4), (a5, f5, c5), h5) + (a0, f0, b0, d0, e0, g0, c0), h0), (a1, f1,

d1, e1, c1, h1), (a2, f2, d2, e2, c2, h2), (a3, f3, d3, e3, c3, h3), (a4, f4, d4, e4, c4, h4), (a5, f5, d5, e5,

c5, h5), (a6, f6, c6, h6), (a7, f7, b1, d6, e6, g1, c7, h7), (a8, f8, c8, h8), (a9, f9, c9, h9), (a10, f10, c10,

h10), (a11, f11, c11, h11), (a12, f12, c12, h12), (a13, f13, c13, h13)

• Optimal latency added by the TTSDF schedule prologue: 6 callback activa-

tions.

114 Chapter 4. Time-Triggered Synchronous Dataflow

• SDF scheduling (non Time-Triggered) a0, f0, a1, f1, a2, d0, e0, f2, a3, f3, a4, d1, e1, f4,

a5, f5, a6, b0, c0, d2, e2, f6, g0, h0 (completed first output), a7, c1, f7, h1, a8, c2, d3, e3, f8, h2, a9, c3,

f9, h3, a10, c4, d4, e4, f10, h4, a11, c5, f11, h5, a12, c6, d5, e5, f12, h6, a13, b1, c7, f13, g1, h7, c8, d6,

e6, h8, c9, h9, c10, h10, c11, h11, c12, h12, c13, h13

• Initial latency added by the SDF schedule (that is, number of input execu-

tions without a correspondent output execution): 7 callback activations.

This example shows a graph that in spite of being rather small (8 nodes), ex-

hibits multiple port rates and therefore has a long scheduling period (62 executions

per period). The TTSDF-scheduling algorithm predicts that, in order to run the

graph in real-time without gaps or jitter, the first 6 callback activations will be

spent only to buffer inputs into the internal FIFO’s, and from the 7th the graph

will produce output continuously.

Compared to the presented SDF scheduling, the TTSDF scheduling have a

slightly better latency (6 callbacks against 7). But two considerations are in order

here:

• First, in order to run the SDF scheduling in a real-time system some extra

infrastructure is needed: a separate thread that collects inputs and outputs

from the hardware device and manages buffering between the device and

the dataflow graph. This results in a run-time penalty against its real-time

performance, related to extra cost of the inter-process communication and

context-switching needed.

• Second, and more important: although in this example the SDF scheduling

was reasonably good, no guarantee exists that this will be the case with

another algorithm (also in the class of SDF algorithms) or with another

graph. That is, the worst case scenario in terms of maximum latency and

gaps at the outputs (or jitter) is not determined.

4.5. The Parallel TTSDF Scheduling 115

4.5

The Parallel TTSDF Scheduling

Constructing parallel schedules for the TTSDF model is basically equivalent to

the SDF case. Consequently, in this thesis we summarise the existing techniques.

The multiprocessor dataflow scheduling problem can be reduced to a familiar

problem in the well established operations research field, for which good heuristic

methods are available.

The first step is to construct an acyclic precedence graph for j periods of a

CPASS φ. Given an acyclic precedence graph, the problem of constructing a

parallel schedule is identical with parallelizing assembly line problems in operations

research. This problem can be solved for the optimal schedule —that is, a schedule

with optimal CPU usage—, though the solution is combinatorial in complexity.

If the TTSDF graph to be scheduled is small, the solution complexity is not a

problem. For large ones we can use well studied heuristic methods in the critical

path methods family [Adam et al., 1974]. One simple algorithm in this family that

closely approximates an optimal solution for most graphs is known as Hu-level

scheduling algorithm [Kohler, 1975, Yu-Kwong, 1996].

The acyclic precedence graph captures the dependency between nodes exe-

cutions —where “dependency” means that the execution of a particular node is

necessary for the invocation of another node. The algorithm for constructing an

acyclic graph is simple and can be found in [Lee and Messerschmitt, 1987a].

The acyclic precedence graph algorithm needs to be implemented consistently

with the callback-order restrictions of the TTSDF computation model. With such

a precedence graph, the final parallel scheduling computed will also be in callback-

order, and thus easy to run in callback activations.

116 Chapter 4. Time-Triggered Synchronous Dataflow

4.6

Applying the Time-Triggered

Scheduling to Other Dataflows

Other dataflow models could apply the TTSDF scheduling algorithm, thus

gaining real-time capabilities. The obvious target are dataflow models, beyond

SDF’s, that allow for static scheduling, at least in practical cases.

An example is the Boolean-controlled Dataflow (BSDF) model (see sec-

tion 2.2.5), which allows the rates of actors to change in response to external

control inputs. Such relaxation of the SDF constrains makes static scheduling

undecidable. However, algorithms exist for computing static schedules in most

practical cases.

A second approach to port rates reconfiguration is to use each configuration

state as a state of an extended finite state machine or modal model, as in the

*-charts and Heterochronos model [Girault et al., 1999]. A third approach to re-

configuration consists on using parameterized token rates, as in the Parameterized

dataflow model [Bhattacharya and Bhattacharyya, 2001].

In many cases, static scheduling can still be performed by representing

token rates symbolically and generating a symbolic or quasi-static schedule.

In hierarchical heterogeneous dataflow systems, such reconfigurations are al-

lowed to occur at quiescent points in the herarchical execution of the model

[Neuendorffer and Lee, 2004], [Neuendorffer, 2005].

We have shown that any correct SDF with callback semantics —that is, with

some sources and sinks marked as inputs and outputs, all with the same firing

rate, and that do not deadlock— also has a TTSDF schedule —a cyclic schedule

that can be split into several callback activations. Therefore, we can apply the

TTSDF techniques to extend all such less-restricted models to support schedules

that fit in a timed environment with time-triggered callbacks. An open issue here

is that any token rate reconfiguration can change the amount of added latency.

4.7. Summary 117

Since operating with fixed latency should be desirable, some kind of configurations

analysis should be necessary to find the maximum latency.

4.7

Summary

Actor-oriented models of computation offer better abstractions than prevailing

software engineering techniques when the goal is building real-time multimedia

processing systems. The family of Process Networks and Dataflow models are

the most suited for continuous stream processing. Such models allow the devel-

oper to express the designs close to the problem domain —instead of focusing in

implementation details such as threads synchronization—, and enable better mod-

ularization and hierarchical composition. This is possible because the model does

not over-specify how the actors must run, but only imposes data dependencies in

a declarative language fashion.

Process Networks and Dataflows models, however, does not handle time in

a useful way to provide real-time multimedia computation. Specifically, they do

not adapt well to time-triggered callback-based architectures. This chapter has

presented the Time-Triggered SDF (TTSDF), a new model that mends the real-

time limitations of Dataflow models because:

• Combines a set of actors associated to a (single) timed-trigger with a set of

actors which are untimed.

• Retains token causality and dataflow semantics (arguably the added delay

could be considered an exception), without compromising its calculability,

which is equivalent to SDF.

118 Chapter 4. Time-Triggered Synchronous Dataflow

• Avoids jitter and does so by using an optimum amount of latency. A superior

bound for that latency is also given by the model.

• Naturally fits in callback-based architecture: the periodic dataflow schedul-

ing is split into smaller sequences which can efficiently execute within the

callback, avoiding external buffering and further threads.

Apart from introducing real-time capabilities, the TTSDF model offers further

benefits such as:

• It enables static analysis for optimum distribution of run-time load among

callbacks.

• It can be parallelized using well known techniques in the operations research

field [Kohler, 1975] also used in other dataflow models.

• The callback-triggered style of scheduling can be adapted to other dataflow

models with quasi-static token rates, such as Boolean-controlled SDF, or

with dynamic (but explicit) token rates, like Dynamic Dataflow.

Let us now summarize the present chapter: we start underlining the limita-

tions of existing Synchronous Dataflow scheduling algorithms when the application

needs to operate in real-time. Specifically, in such algorithms it is impossible to

avoid gaps and jitter in the output, nor guarantee an optimal latency.

We then define a concrete syntax and semantic for the TTSDF graphs. A

computational model is formalized to allow us stating theorems and to reason

about the model schedulability. These formalizations introduces the key concepts

of sequences in callback-order, and scheduling cycles split in callback activations.

We precisely define what a TTSDF admissible scheduling is, and propose and

prove three theorems —and lemmas on which the theorems build on— about

the model schedulability. The first theorem specifies the necessary conditions

(or preconditions) that a graph must guarantee to be able to run the scheduling

algorithm. Specifically, it needs rate consistency and the same execution rate for

all inputs and outputs. The second theorem gives the sufficient conditions for

the existence of a time-triggered cyclic scheduling. It proves that a generic class

of algorithms defined as class C (“C” for callback) will find a scheduling if such

scheduling exist or will return failure if not. The third and last theorem proves

that the TTSDF and SDF have equivalent computability, meaning that any valid

4.7. Summary 119

TTSDF graph that have an SDF schedule, also have a TTSDF schedule with

minimum latency.

A detailed TTSDF scheduling algorithm with optimal latency is then given.

The computational cost (in the worst case) is O(pn2), where p is the size of the

periodic scheduling, and n the number of nodes. Finally, a parallel scheduling

is summarized. The parallelized scheduling problem is reduced to a well known

problem in operations research where heuristics exist that find the optimal solution

in terms of CPU usage.

4.7.1 Applicability and Future Work

We have recently implemented the TTSDF model in the open-source CLAM frame-

work2 (see section 6.1). Prior to using the TTSDF model, CLAM used an SDF

scheduler that was only able to schedule trivial graphs in a callback-based archi-

tecture. Thus, it could not cope with most multi-rate models. Several real-time

multi-rate applications have been tested in CLAM in the domains of audio features

analysis, spectral audio transformation and virtual-reality 3D audio generation.

See 6.2 for a description of the latter case.

Some of the multimedia sub-domains that we believe might take advantage of

multi-rate dataflows are: video coding and decoding, multi-frame-rate video pro-

cessing, joint video and audio processing, audio processing in the spectral domain,

real-time video and audio feature extraction using arbitrary sized token windows,

and real-time computer graphics.

Many lines are open for future work. Open architectures that leverage paral-

lelism and multiprocessors but are still compatible with callbacks for input and

output should be studied. Such architectures would not see the users callback as

a black-box function, but would have access to the dataflow graph declaration.

Further, techniques for balancing the run-time load, not only between sequential

callbacks, but multiple processors, should be developed.

The next chapter addresses the topic of how to design complete software sys-

tems using Dataflow models of computation —such as the TTSDF model. In next

chapter, the focus is put on a systematic approach to software development based

on interrelated design patterns.

2http://clam-project.org

http://clam-project.org

CHAPTER 5

A Pattern Language for

Dataflow-based Multimedia

Processing Systems

We reviewed (in section 3.4) previous efforts on building pattern languages for

the dataflow paradigm. This chapter offers a pattern language for dataflow-based

multimedia processing systems. All the presented patterns fit within the generic

Dataflow Flow Architecture pattern (reviewed in section 3.4.1).

The Dataflow Architecture pattern solves the problem of designing a system that

performs some number of sorted operations on similar data elements (that we call

tokens) in a flexible way, so they can dynamically change the overall functionality

without compromising performance. The pattern solution is an architecture that

can be seen as a network of modules with strict interfaces at the module boundary,

allowing a large number of possible combinations.

Modules read incoming tokens through their in-ports and writes them through

their out-ports. Module connections are done by connecting out-ports to in-ports,

forming a network.

121

122 Chapter 5. A Multimedia Dataflow Pattern Language

FFT Peak detection Pitch estimation Peak continuation

Spectral sine generatorFFT

Window generation

Window generation BH92

Sine magnitudes,
frequencies,
and phases

Residual spectrum

_

Input
sound

Figure 5.1: A use case for audio dataflow: the Spectral Modeling Synthesis.

In multimedia processing systems, tokens flow through modules in two different

fashions: at regular (or almost regular) rate, which is known as a stream flow; and

without any regularity, which is known as event flow. For example, the flow of

data coming from an audio card is a stream flow, while the flow of note-on and

note-off messages from a MIDI keyboard is an event flow.

Each module in a network is periodically executed, which means a call to the

module’s execution method (also known as module’s algorithm).

It is important to note that the Dataflow Architecture pattern does not im-

pose any restrictions on issues like message passing protocol, module execution

scheduling, or data token implementation. All these aspects imply different prob-

lems that can be addressed in other fine-grained patterns, like the ones in the

present pattern language. This pattern granularity [Vlissides, 1998] proved very

useful because we have been able to incorporate orthogonal patterns that work

synergistically among them and with the existing ones from Manolescu.

The proposed patterns are inspired by our experience in the audio domain.

And some patterns are clearly motivated by the requirements of spectral-domain

processing. A use case that exemplifies its complexity is the analysis-synthesis us-

ing sinusoids plus residual (see figure 5.1), where different Fast Fourier Transforms

are done consuming different number of tokens (audio samples) in parallel.

5.1. Chosen Pattern Structure 123

5.1

Chosen Pattern Structure

The following pattern structure has been chosen for all our patterns. Adherence

to a structure facilitates browsing the catalog and comparing patterns.

Context and Problem Statement Sets the solution space. Defines what is an

“admissible” solution and what is not. Problem statement is just the core

statement of the problem. Should be punchy and easy to remember. But it

is not different from context in essence.

Forces Do not define the solution space but give criteria on what is a good solu-

tion and what is a bad one. In other words, the quality-of-services that we

want to optimize.

Solution The architecture/design/implementation that solves the problem, with-

out giving many justifications. The given solution should make clear that it

belongs to the solution space.

Consequences They justify why the solution is a good one in terms of the stated

forces. That is, why all the forces are optimized (or resolved) or how the

forces are balanced in case they are conflicting.

Related Patterns Reference higher-level patterns describing the context in

which this pattern can be applied, and lower-level patterns that could be

used to further refine the solution, as well as other used or similar patterns.

Examples Give a list of real-life systems where the pattern can be found imple-

mented.

Taking into account the previously introduced background, the patterns con-

tributed in this thesis are presented in the next 3 sections, organized in three

categories:

124 Chapter 5. A Multimedia Dataflow Pattern Language

• General Dataflow Patterns: Address problems about how to organize high-

level aspects of the dataflow architecture, by having different types of mod-

ules connections.

• Flow Implementation Patterns: Address how to physically transfer tokens

from one module to another, according to the types of flow defined by the

general dataflow patterns. Tokens life-cycle, ownership and memory man-

agement are recurrent issues in these patterns.

• Network Usability Patterns: Address how humans can interact with dataflow

networks without compromising the network processing efficiency.

• Visual Prototyping Patterns: Addresses how domain experts can generate

applications on top of a dataflow network, with interactive GUI, without

needing programming skills.

5.2

General Dataflow Patterns

5.2.1 Pattern: Semantic Ports

Context

Applications with a dataflow architecture consist on a directed graph of modules,

like the one shown in figure 5.2. It is a very common case that a module receives

tokens with different semantics. For example, a module that mixes n audio chan-

nels will receive tokens of audio data corresponding to each channel. Identifying

which token corresponds to each channel —the token semantics— is fundamental

to produce output tokens containing the audio mix. The Payloads pattern de-

scribed by Manolescu provides a solution to this problem consisting on adding a

5.2. General Dataflow Patterns 125

descriptor component into each token which provides the semantic information

about the token, as well as type-specific parameters. The implication of applying

Payloads is that incoming tokens needs to be dispatched according to its descriptor

component, before doing any processing.

Figure 5.2: A directed graph of components forming a network

Tokens produced by a module may also have different semantics. One might

want to send to a connected module only tokens with a given semantics and not

all the produced tokens.

Problem

How can a module manage tokens according to their semantics in order to deal

with the incoming ones in different ways and send the produced ones to different

destinations?

Forces

• Module implementation should be as simple as possible, because modules

are developed by different authors while general infrastructure is just imple-

mented once by experienced programmers.

• Dispatching tokens adds complexity to module programming

• Module execution should be efficient in time, often real-time constrains are

imposed.

• Dispatching tokens adds a run-time overhead.

• Token semantics fields on tokens add overhead

• Token semantics should be given by the module and they should not be

restricted.

• Incoming might also have different priorities, and modules should consume

the tokens with greatest priority first.

126 Chapter 5. A Multimedia Dataflow Pattern Language

Solution

Use different ports for every different token semantics in each module, instead

of using the same port for different kind of messages. Modules should have as

many in-ports and out-ports as different input and output semantics are needed.

Instead of connecting modules directly, connect modules by pairing out-ports with

in-ports, as shown in figure 5.3. Module’s execution method knows the semantics

associated to each port, thus, it can obtain tokens of specific semantics just by

picking the proper in-port. Because connections are done among ports instead

of modules, a processed tokens will target the proper destination just by sending

tokens through the proper out-port.

Figure 5.3: A network of components with multiple ports

Consequences

Tokens do not need to incorporate a description component. Module implementa-

tion is simplified because programming a token dispatcher regarding its semantics

is not needed. Also, run-time penalty associated with dispatching is avoided. The

pattern solution implies that token semantics is not defined inside the tokens with

a description component, but semantics is something intrinsic to the ports.

Retaking the audio mixer example; instead of having a “channel” field on each

token arriving to the mixer, using the Semantic Ports pattern, we would have a

mixer with n different in-ports, each one receiving tokens of a single channel.

Tokens with different priorities should be routed to different in-ports. The

module knows the priority of each in-port and so is able —in its execution

method— to consume tokens in the right order.

Related Patterns

Most patterns in this collection build on Semantic Ports: Driver Ports, Stream and

Event Ports, and Propagating Event Ports are clear examples of separation of ports

5.2. General Dataflow Patterns 127

regarding its semantics.

Semantic Ports also relates to Payloads in the sense that the problems they

solve are similar but, since they have different forces, they end up with different

solutions.

Semantic Ports can handle different token types by using the Typed Connection

pattern.

Examples

CLAM uses Semantic Ports to separate different flows. Visual environments

like Pure-Data (PD) [Puckette, 1997] or MAX/MSP [Puckette, 1991] also do.

Their ports separate both audio (“tilde”) streams lower rate streams on their

semantic. We find another good examples in Open Sound World (OSW)

[Chaudhary et al., 1999] and the JACK sound server [Davis et al., 2004].

Anti-examples —systems that do not use Semantic Ports because they

use other approaches— are also interesting to see for this pattern: Marsyas

[Tzanetakis and Cook, 2002] and SndObj [Lazzarini, 2001] do not use separated

ports for their network connections but they do it at module level. SndObj mod-

ules, for instance, keep a pointer to their connected producers and read their input

tokens doing a direct call.

5.2.2 Pattern: Driver Ports

Context

Module execution on dataflow system is driven by the availability of flowing tokens.

But not all token flows drive the execution.

Imagine a module that receives an audio signal and performs a low-pass filter

with a given cutoff frequency. The audio signal is fed into the module with a

constant rate but the cutoff values are seldom fed into the module. These cutoff

values typically come from a sequencer module or a knob in the user interface.

Each execution of the module must wait for the availability of new audio signal

data. But there is not such dependency on the seldom received cutoff values, it

just uses the last value. To summarize, whereas audio stream tokens drive the

modules execution, the frequency event tokens does not.

128 Chapter 5. A Multimedia Dataflow Pattern Language

Problem

How can we make module execution depend on the availability of tokens on certain

in-ports and not on others?

Forces

• Concrete module implementation should be simple.

• Visual programming tools should be able to distinguish the flow that drives

the module execution from the one that does not.

Solution

driver
in-ports

driver
out-port

non-driver in-port

non-driver out-ports

execution-driving f low direction

Figure 5.4: A representation of a module with different types of in-ports and
out-ports

Allow the concrete module developer to define which are the driver in-ports and

which are not. Give the modules a common interface from which external entities

can know which are the drivers and which are not. The module execution will

be enabled by the availability of enough tokens on the driver in-ports. Note that

enabling is not the same as triggering. The network scheduling policy determines

if a module will be executed as soon as it is able —in a pull strategy— or if it will

be postponed until other module executions end.

This solution is rather general and it can be implemented with different strate-

gies. A concrete design is shown in figure 5.5. This class collaboration separates

the general infrastructure in base classes making the concrete classes simpler to

implement —this is actually an example of white box reuse in frameworks. Some

5.2. General Dataflow Patterns 129

module services are implemented in the base class, usually delegating to its ports,

and freeing the concrete module writer from this responsibility.

It is important to note that although concrete modules create their port ob-

jects, the module base class aggregates them to provide a generic interface to all

the ports. Examples of such operations are ableToExecute which can be useful

to a firing manager (or scheduler); and driverPorts/nonDriverPorts that give the

lists of driver and non-driver ports to, say, a GUI client.

Module

+ableToExecute()

+execute()

ConcreteModule

+execute()

InPort

+haveData()

1

*

OutPor t

+canWrite()

1

*

<<Client>>

Client

Port

-isDriver: bool

+isDriver(): bool

<<creates>><<creates>>

Figure 5.5: Separated Module and ConcreteModule classes, to reuse be-
haviour among modules

Other patterns like Stream and Event Ports and Typed Connections also benefit

from using this class structure. However, each pattern enriches the Port and

Module base class interfaces to fit its needs.

Consequences

Separating driver and non-driver ports makes it possible to check whether a module

is ready to be executed or not without relying on the concrete module implemen-

tation which gets simpler and safer to programming errors.

Visual builder tools can distinguish driver and non-driver flows by identifying

driver and non-driver ports and displaying them differently.

130 Chapter 5. A Multimedia Dataflow Pattern Language

As mentioned in [Foote, 1988] module networks are often built with visual

programming tools. Such tools should give the user a clear separation between

stream ports and event ports, else, event connections might hide the main dataflow

—the stream flow that drives the modules execution.

For example, CLAM’s visual builder called Network Editor (see figure 5.6)

uses horizontal connections (left to right) for driver flow, and vertical (top-down)

connections for the non-driver flow.

Figure 5.6: Screenshot of CLAM visual builder (NetworkEditor) performing
spectral analysis and synthesis

Other visual builders takes different approaches. Open Sound World (OSW),

for instance, paints the driver ports in green while the non-driver ports are gray.

This can be appreciated —though if the copy is not colored it can be hard— in

figure 5.7.

Related Patterns

Driver Ports is strongly related to Stream and Event Ports. Driver ports tend to

be stream ports. However, they are better off being separate patterns because

they solve orthogonal problems. Moreover, examples exist where driver ports and

stream ports are totally independent.

Token availability conditions are complex when connected stream ports pro-

duce and consume tokens at different rates. Multi-rate Stream Ports pattern solves

this.

5.2. General Dataflow Patterns 131

Figure 5.7: Screenshot of Open Sound World visual builder

Examples

Pure Data (PD) [Puckette, 1997] and MAX/MSP [Puckette, 1991] are graphical

programming environments for real-time musical applications that are widely used

by composers. Its ports are called inlets and outlets and they are visually arranged

horizontally. With few exceptions (notably the “timer”), objects treat their left-

most inlet as “hot” in the sense that messages to left inlets can result in output

messages. Other inlets are “cold”, they only store the received message and do

not trigger any execution. Thus, the “hot” or leftmost inlets are the driver ports.

However, since modules have only one driver port and modules are executed at

the time a token arrives at the driver port, the following problematic situation

may occur when two modules are connected by more than one connection: the

module might be triggered before receiving all its data because the “hot” inlet was

not the last to receive the data. In order to avoid this output messages are —by

convention— written from right to left and modules connections should be (visu-

ally) done without any crossing lines. Finally, PD and MAX/MSP is important

example where driver ports do not coincide with stream ports.

Open Sound World (OSW) [Chaudhary et al., 1999] has a similar approach to

PD and MAX/MSP but it does not limit the number of driver ports. In the JACK

audio server [Davis et al., 2004] all ports are drivers. CLAM also uses Driver Ports

and restricts its drivers to be constant-rate stream ports.

132 Chapter 5. A Multimedia Dataflow Pattern Language

5.2.3 Pattern: Stream and Event Ports

Context

A module may receive tokens of both kinds —stream and event— coming from

different sources. Moreover, streams may arrive at different rates. For example, a

module may receive two audio samples streams one at 44100 Hz and the other at

22050 Hz. Figure 5.8 shows another example: a module is receiving two streams

at different (though constant) rates and an irregularly distributed flow of events.

Its output stream has the same rate as the second input stream.

0 10 20 30 40 50 60 70 80 90
t ime

stream in 2

stream in 1

in events

stream out

Figure 5.8: Chronogram of the arrival (and departure) time of stream and
event tokens

Such a module consumes its incoming tokens and then calls its execution

method which will take the consumed tokens as its input. When receiving to-

kens at different rates, the module needs to synchronize all the incoming tokens

prior to its processing. This synchronization can also be seen as a time-alignment

of incoming tokens, and it implies knowing the time associated to each token.

Here, is important to differentiate the time associated to the tokens, with the

“real” time where the module is executed. The two kinds of time might be totally

different. Figure 5.9 illustrates the alignment of tokes of different nature.

While incoming stream tokens always needs to be accurately aligned, this is

not always true for incoming event tokens. Some applications requires a precise

alignment of event tokens, while others admit a loose time alignment.

An obvious approach is to use the Payloads pattern, adding a precise time

information —time-stamp— to each token. In real-time systems, this time-stamp

relates to the time when the token is introduced into the system. In non real-time

systems it relates to a virtual time. Transformations on a token should preserve

5.2. General Dataflow Patterns 133

0 10 20 30 40
t ime

stream in 2

stream in 1

in events

stream out

execution

Figure 5.9: Alignment of incoming tokens in each execution. Note that time
corresponds to token’s time-information and does not relate to the module
execution time (though they are equally spaced).

the original time-stamp. However, this Payloads approach can be overkill when

stream tokens flow at a high rate, as it happens with audio samples.

Problem

Syncronizing incoming tokens requires time information. How can we get the time

information of incoming tokens?

Forces

• Time-stamp is an overhead when the data token is relatively small.

• Propagating timestamps from the consumed tokens to the produced tokens

is a run-time overhead and makes concrete module implementation more

complex.

• Concrete module implementation should be simple.

• All stream sources must share the same hardware clock, so that their (token)

rates cannot vary among different streams.

Solution

Calculate time information of incoming stream tokens instead of using time-

stamps. If the application needs accurate timing for events use time-stamps —only

for event tokens—, else do not.

Separate the stream and event flow in different kinds of ports: stream and event

ports. Place the stream timing responsibility into the stream in-port class. Stream

134 Chapter 5. A Multimedia Dataflow Pattern Language

in-ports are initially configured with a “port-rate” and “first-token-time” values,

and they also keep the sequence —with a counter, for example— of consumed

tokens. When a module execution method asks the stream in-port for new tokens

to consume, the in-port provides the time information along with the tokens itself.

Port parameters (“port-rate” and “first-token-time”) configuration is a key

issue to solve. Two main approaches exist: ports handshaking and centralized

management.

Ports handshaking consists in propagating parameters down-stream. In-ports

receives parameters from their connected out-ports, and modules propagate them

from in-ports to out-ports. In most cases, modules only need to copy them from

the in-ports to out-ports. However, in some cases, the module processing may

introduce delay and may change the port-rate; thus, this must be reflected in the

out-port settings. In consequence, modules do not impose port parameters, they

receives it and propagate them. Of course, source modules 1 are the exception to

that rule. They must set the out-port parameters, because they are the source of

the stream.

The second approach —centralized management— consist in incorporating an

entity that orchestrates the configuration —and maybe the modules execution—

of the whole network. This configuration manager is responsible for configuring

all the stream ports in the network.

Alignment of event tokens with stream tokens is done in slightly different ways

depending on whether the application needs accurate event timing or not —that

is, whether they incorporate time-stamps or not. Note that on each execution,

the module may consume not only one stream token but a bunch of them. In

some cases, like with audio samples, even a large number of them like, say, 1000.

If incoming events are time-stamped, the module knows the time information for

all the incoming tokens, thus the module can align each event token with the

stream tokens precisely. If events are not time-stamped, the module should align

all consumed events with the first consumed stream token of each in-port.

Consequences

Making the stream tokens time implicit avoids space overhead. Event tokens

may have time-stamps, but it is not required. Time-stamps do not have as much

1Source modules are that ones that do have stream out-ports but do not have any stream
in-ports

5.2. General Dataflow Patterns 135

overhead in event tokens as in stream tokens, since they flow non continuously, in

much lower frequency than streams.

Events Jitter: Having a big number of stream tokens to be consumed on each

execution and having non time-stamped event tokens at the same time is a com-

mon cause for jitter. That is, unsteadiness or irregular variation on the time the

system responds to incoming events. The amount of jitter is bounded by the time

interval between executions, which is proportional to the number of stream tokens

consumed on each execution. Thus, making modules consume fewer stream tokens

each time, reduces jitter. Of course, when events comes in with time-stamps, jitter

can be eliminated completely. The consequences of having jitter varies enormously

depending on the concrete application. In most cases jitter can be neglected, in

other cases, however reducing it is paramount.

Ports connectivity: The solution forbids time-stamps in the stream tokens

and this restricts how stream ports can be connected. Because time must be

inferred from the incoming stream sequence, in-ports must receive well formed

sequences —without gaps, etc.— of an individual stream. Therefore, in general,

N-to-1 connections of stream ports are to be forbidden by the system. However,

an exception to this rule exists when the in-port is able to implicitly perform a

combining operation prior to keeping track of the incoming sequence. For example,

imagine an in-port of audio samples fed by multiple different streams. Parallel

samples are added, forming an audio mix. Because the mix is a single token,

the in-port assigns time the same way as if the source were unique. Apart from

addition, packing —that is, create a new composite token— is another common

combining operation.

In general, multiple stream combinations is better handled explicitly in specific

modules. It gives the system designer flexibility to choose his or her combining

operation. Moreover, a system can have token types without any valid combining

operation, thus making implicit combinations impossible.

We have seen that, in general, N-to-1 connections of stream ports are to be

forbidden by the system. On the other hand, N-to-1 connections of event ports are

perfectly fine, since there is no need to infer the token time information from the

order of arrival. Time information is either read from the time-stamp or simply

ignored.

136 Chapter 5. A Multimedia Dataflow Pattern Language

Splitting one stream to multiple streams is a different story: 1-to-N connections

of both stream and event ports are allowed. The consideration that has to be done

here is how to duplicate outgoing tokens flowing to multiple destinations. Two

strategies exist: one is making a copy of each outgoing token to every in-port, and

the other is passing a managed reference to each in-port. In the later case, the

in-ports will have to enforce read-only semantics.

Related Patterns

Stream and Event Ports usually goes together with Driver Ports and, in most of the

cases, stream ports are also driver ports.

Systems that use Stream and Event Ports may also use Multi-rate Stream Ports

for designing the stream ports —allowing stream ports to consume and produce

at different cadences—, and may use Propagating Event Ports for its event ports

—allowing event ports to propagate events immediately.

Stream ports designed with the Multi-rate Stream Ports pattern defines the

number of released tokens for each stream port on each execution. This numbers

influence how the ports “port-rate” settings are propagated —in this case, being

re-calculated— from in-ports to out-ports.

Stream and Event Ports can handle different token types by using the Typed

Connection pattern.

Examples

SuperCollider3 [McCartney, 2002] and CSL [Pope and Ramakrishnan, 2003] use

the pattern but events cannot arrive at any time: they have a dual rate system,

control rate and audio rate, with the control rate being a divisor of the audio block

rate.

Marsyas [Tzanetakis and Cook, 2002] uses this pattern though its event ports

do not follow the dataflow architecture because connections are not done explicitly.

It implements the token packing technique (from multiple sources) as mentioned

in the Ports Connectivity section above.

CLAM and OSW [Chaudhary et al., 1999] use this pattern, separating ports

for streams and for events.

5.2. General Dataflow Patterns 137

5.2.4 Pattern: Typed Connections

Context

Most simple audio applications have a single type of token: the sample or the

sample buffer. But more elaborated processing applications must manage some

other kinds of tokens such as spectra, spectral peaks, MFCC’s, MIDI... You may

not even want to limit the supported types. The same applies to events channels,

we could limit them to floating point types but we may use structured events

controls like the ones OSC [Wright, 1998] allows.

Heterogeneous data could be handled in a generic way (common abstract class,

void pointers...) but this adds a dynamic type handling overhead to modules.

Module programmers would have to deal with this complexity and this is not

desirable. It is better to directly provide them the proper token type. Besides

that, coupling the communication channel between modules with the actual token

type is good because this eases the channel internal buffers management.

But using typed connections may imply that the entity that handles the con-

nections should deal with all the possible types. This could imply, at least, that

the connection entity would have a maintainability problem. And it could even be

unfeasible to manage when the set of those token types is not known at compilation

time, but at run-time, for example, when we use plugins.

Problem

Connectable entities communicate typed tokens but there is an unlimited number

of types of tokens. Thus, how can a connection maker do typed connections

without knowing the types?

Forces

• Process needs to be very efficient and avoid dynamic type checking and

handling.

• Connections are done in run-time by the user, so they can mismatch the

token type.

• Dynamic type handling is a complex and error prone programming task,

thus, placing it on the connection infrastructure is preferable than placing

it on concrete modules implementation.

138 Chapter 5. A Multimedia Dataflow Pattern Language

• Token buffering among modules can be implemented in a wiser way by know-

ing the concrete token type rather than just knowing an abstract base class.

• The set of token types evolves and grows.

• A connection maker coupled to the evolving set of types is a maintenance

workhorse.

• A type could be added in run time.

Solution

AbstractFemale

+bind(AbstractMale)

+isCompatible(AbstractMale)

#doTypedBinding(AbstractMale)

 AbstractMale

+TokenType()()

Connect ion Maker

<<Token>>
Female

+isCompatible(AbstractMale)

+doTypedBinding(AbstractMale)

Token:

 Male

+tokenType()

Token:

Figure 5.10: Class diagram of a cannonical solution of Typed Connections

Split complementary ports interfaces into an abstract level, which is indepen-

dent of the token-type, and a derived level that is coupled to the token-type. The

class diagram of this solution is shown in figure 5.10.

Let the connection maker set the connections through the generic interface,

while the actual bind ins done in the subclasses to be type-safe. Also, the con-

nected entities use the token-type coupled interface to communicate with each

other efficiently.

Use run-time type checks when modules get connected (binding time) to get

sure that connected ports types are compatible, and, once they are correctly con-

nected (processing time), rely just on compile-time type checks.

To do that, the generic connection method on the abstract interface

(bind) should delegate the dynamic type checking to the concrete (token-type

coupled) classes using the abstract methods isCompatible, tokenType and

doTypedBinding. The implementation in C++ of listing 5.1 shows two classes

5.2. General Dataflow Patterns 139

that gets connected by a pointer in the concrete female pointing to the concrete

male. Depending on the situation, a pointer is not enough and a (token-type

coupled) “connection” entity is needed.

Consequences

By applying the solution, the connection maker is not coupled to token types.

Just concrete modules are coupled to the token types they use.

Type safety is ensured by checking the dynamic type on binding time and

relying on compile-time type checks during processing time. So this is both efficient

and safe.

Because both sides on the connection know the token type, buffering structures

can deal with tokens efficiently during allocation, initialization, copy, etc.

Concrete modules just access to the static typed tokens. So, no dynamic type

handling is needed.

Besides the static type, connection checking gives the ability to do extra checks

on the connecting entities such as semantic type information. For example, im-

plementations of the bind method could check that the size and scale of audio

spectra match.

Related Patterns

This pattern enriches Multi-rate Stream Ports and Event Ports, and can be also

useful for the binding of the visualization and the Port Monitor.

The proposed implementation of Typed Connections uses the Template Method

[Gamma et al., 1995] to call the concrete binding method from the generic inter-

face.

Examples

OSW [Chaudhary et al., 1999] uses Typed Connections to allow incorporating cus-

tom data types.

The CLAM framework uses this pattern notably on several pluggable pairs

such as in and out ports and in and out controls, which are, in addition, examples

of the Multi-rate Stream Ports and Event Ports patterns.

But the Typed connection pattern in CLAM is not limited to port like pairs.

For example, CLAM implements sound descriptors extractor modules which have

140 Chapter 5. A Multimedia Dataflow Pattern Language

#include <typeinfo >

class AbstractFemale

{

public:

void bind(AbstractMale& male) {

if (isCompatible(male))

doTypedBinding(male);

else

throw InvalidTypes ();

}

virtual void isCompatible(

const AbstractMale& male

) = 0;

protected:

virtual void doTypedBinding(

AbstractMale& male

) = 0;

}

template <class Token > class Female :

public AbstractFemale

{

public:

bool isCompatible(const AbstractMale& male) {

return typeid(Token) == male.tokenType ();

}

void doTypedBinding(AbstractMale& male) {

_male = &dynamic_cast < Male <Token >& >(male);

}

private:

Male <Token >* _male;

};

class AbstractMale

{

public:

const std:: type_info& tokenType () = 0;

};

template <class Token > class Male :

public AbstractMale

{

public:

const std:: type_info& tokenType () {

return typeid(Token);

}

}

Listing 5.1: Sample C++ code for TypedConnections

5.3. Flow Implementation Patterns 141

ports directly connected to a descriptor container which stores them. The extrac-

tor and the container are type coupled but the connections are done as described

in a configuration file, so handling generic typed connections is needed.

The Music Annotator [Amatriain et al., 2005] is a recent application which

provides another example of non-port-like use of Typed Connections. Most of its

views are type coupled and they are mostly plugins. Data to be visualized is

read from an storage like the one before. A design based on the Typed Connection

pattern is used in order to know which data on the schema is available to be

viewed with each vista so that users can attach any view to any type compatible

attribute on the storage.

5.3

Flow Implementation Patterns

5.3.1 Pattern: Propagating Event Ports

Context

Music and audio systems for real-time usage offer users interfaces, such as GUI

slider or MIDI interfaces, to alter the processing while playing. Users should get

fast feedback on their actions, so elapsed time between the event and its effect on

the processing should be as short as possible.

Some modules transform such events and propagate them in a proper way to

other modules. One simple design consists on propagating the incoming events

during the module execution. However modules that receive the event may be

executed before the module that is going to propagate the event, thus the event

propagation can take too long.

142 Chapter 5. A Multimedia Dataflow Pattern Language

Problem

How can we send event tokens and run associated actions on the receiver, including

propagation, so that they get to the destination before other modules are executed?

Forces

• Module execution should be able to send events.

• Event token reception may imply changing the module state.

• Event token reception may imply sending new event tokens to other modules.

• Event token propagation should not be costly in respect to module execution

in order not to break execution cadence and real-time restrictions.

• Coarse event tokens are hard to propagate by copy.

• Feedback loops on event ports should be allowed.

• 1 to N event ports connections should be allowed.

• N to 1 event ports connections should be allowed.

• All modules are executed from a single process.

Solution

Provide the concrete module implementers a way to bind a event in-port with

a callback method to be called on event reception. This callback might change

the module state, or propagate other events through the module event out-ports.

Sending an event through an event out-port implies the immediate cascade exe-

cution of callback methods associated with every connected event in-port.

If event propagation by copy is too expensive, propagate event tokens using

references instead of copies and make them read-only for the receiving modules.

Limit the life of event tokens sent by reference to the cascade propagation and,

forbid the receiving modules to keep references further than the callback execution.

Consequences

Event in-port callback implementers should be careful not to implement costly

operations on them. Events may be sent in bursts; thus, expensive callbacks

could break the real-time restrictions.

5.3. Flow Implementation Patterns 143

in1: EventInPort out1 : EventOutPort

in1

out1

in2 in3

in2: EventInPort in3: EventInPort

newEvent

callback

sendEvent

callback
newEvent

callback
newEvent

Figure 5.11: A scenario with propagating event ports and its sequence dia-
gram.

Propagation of coarse events is something that could add penalty to in-port

callbacks, but, by using references, this is avoided. Sending references could be

dangerous when considering 1 to N connections, as one of the receiving modules

may modify the event token. This is solved by making them read-only for the

receiving modules.

Another danger associated to sending references is that modules might keep

references to such tokens. Because of this, keeping references is forbidden, but we

could loose this restriction by using reference counting on event tokens. The use

of garbage collectors is not a good solution due to real-time restrictions.

The solution allows setting up loops on the event ports connection graph.

Those loops might be harmless but they might be pernicious because the cascade

callback calling enters in a non-ending loop. Harmful loops happen whenever the

144 Chapter 5. A Multimedia Dataflow Pattern Language

call sequence reaches a port that was already involved on the cascade.

Static analysis of the network topology to warn the user about harmful loops

is useless: not every event reception implies propagation on the event out-ports of

the module; it depends on the callbacks methods. Because the sending of events is

a synchronous call, one simple solution is to block sending tokens through a port

which is already sending one. This is implemented just by adding a “sending-on-

progress” flag in each port.

Related Patterns

Event tokens could be restricted to a given set of types, but we could also use the

Typed Connections pattern to a more flexible solution.

Propagating Event Ports provides a flexible way for communicating the two

partitions of the Out-of-band and in-band-partitions pattern (see a summary of this

pattern in section3.4). The user interface partition communicates with the pro-

cessing partition via connected event ports. Since both partitions are in different

threads, a safe thread boundary must be established. Using, for example, the

Message Queuing pattern [Douglass, 2003].

This pattern could be seen as a concrete adaptation of Observer

[Gamma et al., 1995] to a dataflow domain where modules can act both as ob-

servers and subjects, in a way that they can be chained.

Examples

CLAM implements controls as propagating event ports. Multiple control inputs

and outputs are supported. By default, events are copied as part of the module

state but you can add a callback method to process each control in a special way.

In its current version (0.91) event tokens are limited to floating point numbers.

PD [Puckette, 1997], MAX/MSP [Puckette, 1991] they all use propagating

event ports for their non-audio-related modules “hot inlets”.

5.3.2 Pattern: Multi-rate Stream Ports

Context

Many applications in the multimedia domain need to process chunks of consecutive

audio samples in a single step. A common example, in the audio domain, is an

5.3. Flow Implementation Patterns 145

FFT transformation which consumes N audio sample tokens and produces a single

spectrum token. Therefore, the rate of spectrum tokens is 1
N

the sample rate. The

FFT transformation may also need to process overlapping sample windows. That

is, the FFT module reads N samples through an in-port and, after the execution,

the window slides a step of M samples, where M and N are different. In this case,

the rate of spectrum tokens is M
N

the rate of samples.

This example shows two different —though related— problems:

• Streams can flow at different rates. Like, for example, sample and spectrum

streams do.

• Modules may need to process different numbers of tokens on each execution,

regardless of the rate of its incoming streams. For example, an FFT module

may require 512 samples while another FFT module may require 1024.

That means that the number of tokens a module consumes and produces should

be flexible, allowing modules to operate with different consuming and producing

rates.

How to approach this problem is not obvious. Some real-life systems2 perform

multi-rate processing inside their modules while restricting inter-module commu-

nication to a single rate. Since the number of tokens that a module’s algorithm

needs is not the same as the number of tokens consumed on each execution, input

and output buffering inside the module is needed. A side effect of this approach

(hiding multi-rate inside modules) is that the module execution not always implies

its algorithm execution; when not enough tokens are ready for the algorithm, the

module execution just adds incoming tokens to the internal buffers. Of course,

this approach yields complex code in every concrete module.

Figure 5.12: Two modules consuming and producing different numbers of
tokens

2One example is the JACK [Davis et al., 2004] audio server, with the Jamin mastering tool.

146 Chapter 5. A Multimedia Dataflow Pattern Language

Problem

How to allow modules to access a different number of consecutive tokens on every

stream port?

Forces

• The number of accessed tokens and the number of released tokens is inde-

pendent for each port.

• For a given port, the number of accessed tokens and the number of released

tokens are unrelated.

• Modules have to process a sorted sequence of stream data tokens (usually a

time sorted sequence)

• All the stream tokens have the same priority.

• An out-port could be connected to multiple in-ports so that the tokens pro-

duced might be consumed by different modules.

• A module may need access to a number of consecutive tokens for each in-

coming stream to be able to execute.

• A module execution may produce a number of consecutive tokens for each

output stream.

• Arbitrary consuming and producing rates in a network renders static

scheduling of executions impossible.

• Feedback loops should be allowed

• Copy of coarse tokens may be an important overhead to avoid.

• Concrete module implementation should be simple.

• All modules are executed from a single process.

Solution

Design stream ports so that they support consuming and producing at different

rates. This way they can adapt to the rate the module’s algorithm needs, while

keeping the buffering details outside the module. The in-port and out-ports should

give access toN tokens from a queue3 and should releaseM tokens on every module

3By queue we mean the abstract data type with its generic operations without making as-
sumptions on it implementation.

5.3. Flow Implementation Patterns 147

execution. Let the module developer define N and M for each port.

Give the ports an interface for accessing tokens —but only a window of N

tokens at the head of the queue— and for releasing them. Releasing tokens means

that M tokens will be dequeued and put away from the module reach. “Access”

and “release” are operations implemented as port methods and they are to be

called consecutively by the module execution method. Seen as a single operation,

“access-and-release” is equivalent to “consume”, when called on an in port, and

“produce”, when called on an out-port.

Make the ports own the tokens flowing between two modules, and make them

responsible for all necessary buffering between out-ports and in-ports.

Buffers can be either associated with in-ports or with out-ports. In 1-to-N

connections —that is, a single out-port connected to N in-ports— this decision

makes the difference between heaving N different buffers (at the in-ports) or having

a single buffer (at the out-port).

In the following paragraphs we discuss the implications of having buffers at

the in-ports and at the out-ports.

Buffers at the in-ports: This is the simplest solution to implement. Give each

in-port an associated buffer (figure 5.13). Tokens being produced from an out-port

are then passed to the connected in-port buffers. Tokens can be either passed by

reference or by copy. Passing tokens by copy is easy to implement since each

in-port is the owner of its tokens. Passing references, on the other hand, is more

efficient because copies are avoided. This efficiency gain can be very important

when tokens are to be passed to many in-ports or when tokens are coarse objects.

Of course, the efficiency gain associated with passing references instead of

copying comes at a price: it is more difficult to implement. Given that multi-

ple modules receive a reference to the same token, aliasing problems have to be

avoided. In-ports have to be designed in a way that guarantees read-only semantics

—or copy-on-write semantics— on the incoming tokens. The other aspect to be

addressed here is the tokens life-cycle. Since token memory cannot be freed —or

recycled— while references to it exist, we need a reference-counting mechanism.4

However, passing references to the in-ports is not always feasible. Some ap-

plications may require their modules to operate on tokens placed on contiguous

memory —examples of this are very common in the audio domain— as a conse-

4Like C++ smart pointers

148 Chapter 5. A Multimedia Dataflow Pattern Language

Figure 5.13: Each in-port having its own buffer.

quence, such modules need the actual tokens data (not references) placed together

in circular buffers at the in-ports.

This shortcoming can be overcome placing the buffers at the out-ports, which

allows having both reference passing and contiguity. Again, we will see that effi-

ciency comes at a price.

Buffers at the out-ports: Having a single buffer for a 1-to-N connection —

thus, associated to the out-port— allows benefiting from passing tokens by refer-

ence while achieving data contiguity (figure 5.14).

For that, the buffer must be implemented with a circular buffer. Not only the

out-port is accessing the buffer but also the N connected in-ports.

Figure 5.14: A buffer at the out-port is shared with two in-ports.

Allowing a buffer to be written by a producer and read by N different con-

sumers, while allowing each one to produce or consume at a different cadence

needs to done carefully. The following two basic restrictions must be enforced by

design:

• The out-port cannot over-write tokens that still have to be read/consumed

by some in-port.

• The in-ports cannot read/consume tokens that still have to be written/pro-

duced by the out-port.

5.3. Flow Implementation Patterns 149

Though complex to implement, this approach avoids the need for unnecessary

copies of tokens and allows contiguous memory access to all involved modules.

Summing up: We have seen different strategies for implementing ports buffer-

ing that present a trade-off between simplicity and efficiency. Placing buffers at

the in-ports and passing tokens by copy is the most simple approach. If copies

are to be avoided, token references can be passed, but they have to be managed.

Sometimes this is not enough. Apart from avoiding copies we need memory conti-

guity. Then, a circular buffer must be placed at the out-port and some restrictions

must be enforced.

Consequences

Since all buffers adaptation is done at the ports level by the general infrastructure,

concrete module implementors do not have to deal with buffers adaptation. That

results in simpler, less error-prone code in every module.

Modules with different production and consumption rates can be connected

together, as drawn in figure 5.12. As a result, this increases the number of the

possible networks that can be built out of a set of modules.

The number of tokens stored in each port connection depends on two factors:

In one hand, the requirements given by each port regarding the number of accessed

and released tokens and, on the other hand, the scheduling policy in use.

This solution implies that, in general, the network will need a dynamic sched-

uler of module executions. To facilitate the task of such scheduler, modules may

provide an interface to inform whether they are ready to execute or not. Such

module method could be easily implemented in the module base class by delegat-

ing the question into every driver port, and returning the and combination if its

responses.

Related Patterns

Multi-rate Stream Ports is applied in the context of systems that uses Stream and

Event Ports, it addresses how stream ports can be designed so that they offer a

flexible behavior.

Multiple Window Circular Buffer pattern addresses the low level implementation

of the more complex variant of Multi-rate Stream Ports, that is buffers at the out-

ports.

150 Chapter 5. A Multimedia Dataflow Pattern Language

The design and implementation of buffer at the out-ports is a clear example of

the Multiple Window Circular Buffer pattern.

Examples

In most of the systems reviewed, ports of the same type have all the same window

size, and thus do not need to use this pattern. This is, for example, the case

of the CSL [Pope and Ramakrishnan, 2003] and OSW [Chaudhary et al., 1999]

frameworks and the visual programming tool MAX [Puckette, 2002].

On the other hand the Marsyas [Tzanetakis and Cook, 2002], SuperCollider3

[McCartney, 2002] and CLAM frameworks allow different window sizes, but they

follow different approaches.

SuperCollider3 [McCartney, 2002] features variable block calculation and single

sample calculation. For example, modules corresponding to different voices of a

synthesizer may consume and produce different block sizes. The SuperCollider3

framework permits embedded graphs that have a block size witch is an integer

multiple or division of the parent. This allows parts of a graph which may require

large or single sample buffer sizes to be segregated allowing the rest of the graph

to be performed more efficiently.

Marsyas allows buffer size adaptation using special modules. CLAM —

probably for its bias towards the spectral domain— is the most flexible, allowing

any port connection regardless of its window size. CLAM sets up a buffer at each

out-port.

5.3.3 Pattern: Multiple Window Circular Buffer

Context

As a result of incorporating the Multi-rate Stream Ports pattern, the ports-

connection queues need a complex behaviour, in order to access and release dif-

ferent number of tokens. Besides, such systems often have real-time requirements

and some optimization factors must be taken into account: avoiding unnecessary

copies, totally avoiding allocations and being able to work with contiguous to-

kens. Take for example (again) modules that performs the FFT transformation

—delegating to some external library— upon a chunk of audio sample tokens; in-

put samples must be provided to the library as an array. In the audio domain, not

5.3. Flow Implementation Patterns 151

only FFTs need to operate with arrays, temporal domain processing is typically

done that way too.

A simple implementation of Multi-rate Stream Ports consists in having a buffer

associated to each in-port. But, unfortunately, this means copying tokens. The

copy-saving implementation of Multi-rate Stream Ports requires a single buffer to

be shared by an out-port and many in-ports. A design for this is not obvious at

all. So, this is what this pattern addresses.

Finally, note that though a normal circular buffer is not suited for accommo-

dating the given requirements, what we are seeking may be seen as a “generalized”

circular buffer. Moreover, this can be useful in scenarios other than dataflow ar-

chitectures.

Problem

What design supports a single source of tokens with one writer and multiple

readers, giving each one access to a subsequence of tokens?

Forces

• Each port must give access to a subsequence of N tokens (the window).

• The subsequence of tokens should be in contiguous memory, since many

algorithms or domain tool-kits and libraries works on contiguous memory.

• Windows sizes and steps should all be independent.

• Reading windows can only map tokens that have been already produced

through the writing window.

• Allocation during processing time should be avoided, since (normal) dynamic

memory allocation breaks the real-time requirements.

• All buffer clients executes in the same process.

Solution

Have a contiguous circular buffer with windows that map (contiguous) portions of

the buffer. There will be as many reading windows as needed but only one writing

window. Associate the reading windows with the writing window because, as we

will see they will need to calculate their relative distances. Also, provide them

means for sliding along the circular buffer.

152 Chapter 5. A Multimedia Dataflow Pattern Language

The modules (the buffer clients) executions must be done in the same thread.

Its scheduling can be done either statically —fixed from the beginning— if all

ports consuming and producing rates are known; or dynamically, which is much

simpler to implement.

Windows clients need to follow the following protocol in order to avoid data

inconsistencies:

• The access to windows mapped elements and the subsequent slide of the

window must be done atomically in respect to other window operations. So,

these operations might be regarded as a single read-and-slice (or write-and-

slice) operation. Only when a window has finished the sliding, other clients

can access their own window.

• A reading window can only start a read-and-slice (also known as consume)

operation when it is not overlapping the writing window (overlapping other

reading windows is perfectly fine). This reader-overlapping-writer problem

indicates that the client is reading too fast. This problem should be detected

and, as a response, the reading module should not be executed till more data

has been written into the buffer.

• The writing window can only start a write-and-slice (or produce) operation

when it is not overlapping the furthest reading region. Such overlapping is

possible since regions are circulating over the underlying circular buffer. This

writer-overlapping-reading problem indicates either that a client is reading

too slow or that the buffer size is not large enough. When this is detected,

the writing module should not be executed and should wait for the readers

to advance.

The solution design uses the Layered pattern [Douglass, 2003] for arranging

different semantic concepts at different layers. Concretely, we distinguish three

levels of abstraction (figure 5.15). Starting from the layer that gives direct service

to the clients:

Windows Layer This is the upper or more abstract layer, which gives the

clients a view of the windows advancing on an infinite buffer. It offers, at least,

the following interface :

• Accessing the N contiguous elements mapped by the window.

5.3. Flow Implementation Patterns 153

step

access window

C: ReadingWindow

B: ReadingWindow

A: Writ ingWindow

0
256

A

B

C

1 ...

...

...

Circular Windows
Layer

Phantom Buffer
Layer

Windows
Layer

oldest token to be read

newest token

first element in
physical memory

oldest token

Infinite (abstract) stream buffer.
New tokens are added through the
writ ing window.

free space

...

Figure 5.15: Layered design of port windows.

• Advancing a window its slicing step (not necessarily N) as if the windows

where on an infinite buffer.

• Checking if a window is ready to be accessed-and-slided.

The state of this layer keeps the relative distances between each reading and

the writing window. This layer is in charge of detecting when a reading window

overlaps with the writing window, and delegates other checks to its underlying

layer.

154 Chapter 5. A Multimedia Dataflow Pattern Language

Circular Windows Layer The state of this layer keeps the physical pointers (to

a circular buffer) for each window and also provides physical pointers to the upper

layer. This layer is in charge of detecting —and preventing— circular overlapping

with a reading window. That is, the case when the writer is about to write on a

still not read element.

Phantom Buffer Layer This is the lower layer, which knows nothing about

writing and reading and writing windows and is solely dedicated to provide chunks

of contiguous elements for each window. Therefore, this layer’s goal is to to provide

contiguous elements subsequences of size N or smaller. Where N is the size of the

biggest window.

The main problem this layer has to solve is the discontinuity problem associated

to circular buffers —the next element in a logical sequence of the last physical

element is the first physical element. To idea behind the solution is to replicate

the first N elements at the end of the buffer. This can be implemented using a

data structure that we call “Phantom Buffer” and is presented in this catalog as

the Phantom Buffer pattern.

Consequences

The non-overlapping restrictions might suggest that there always exists a distance

between writing and reading windows and, thus, causing the introduction of cer-

tain latency. But this is not the case, because the non-overlapping restrictions

only apply, at the time of an access-and-slide operation. After a window has been

slided, it is perfectly legal to be in an overlapping state. This allows the reading

windows to consume the same tokens that the writing window has just produced.

The reader-too-slow and writer-too-slow problems can be handled in the con-

text of a dynamic scheduler. Before doing any access-and-slide operation, a can-

Produce() or canConsume() check is done, so that the operation can be safely

aborted.

The consequence of the layered approach is a flexible design that allows chang-

ing the underlying data structure easily, without affecting the windows layer and

its client. It also eases the implementation task since the overall complexity is split

in well balanced layers which can be implemented and tested separately. On the

other hand, those many levels of indirections might carry a performance penalty.

However, it should be note that the implementation does not require polymor-

5.3. Flow Implementation Patterns 155

phism at all. Thus, when implemented in C++, with a modern compiler, most of

the indirections should be converted to in-line code by the compiler, reducing the

function-calls overhead.

In general, setting the window parameters can be done at configuration time;

that is, before the processing or module executions starts.

Related Patterns

This pattern solves the buffer at the out-port approach of the Multi-rate Stream

Ports pattern, which was the optimal one. Multiple Window Circular Buffer uses the

Layered pattern [Douglass, 2003].

Examples

This pattern is maybe a proto-pattern [www-PatternsEssential,] as the authors

only know their own implementation in the CLAM framework [www-CLAM,].

Nevertheless, CLAM is a general purpose framework and several applications with

different requirements have proven the value of the pattern.

5.3.4 Pattern: Phantom Buffer

Context

The goal of Multiple Window Circular Buffer is to design a generalized circular buffer

where, instead of having a writing and a reading pointer, we deal with a writing

window and multiple reading windows. The difference between a window and a

plain pointer is that a window gives access to multiple elements that, moreover,

need to be arranged in contiguous memory. Multiple Window Circular Buffer relies,

for its elements storage, upon some data structure with the following functional-

ities: First, to be able to store a sequence of any size ranging from 0 to MAX

elements. And second, to be able to store each subsequence up to N elements in

contiguous memory.

A normal circular buffer efficiently implements a queue within a fixed block of

memory. But in a normal circular buffer the contiguity guarantee does not hold:

given an arbitrary element in the buffer, chances are that its next element in the

(logical) sequence will be physically stored on the other extreme of the buffer.

156 Chapter 5. A Multimedia Dataflow Pattern Language

Note that here window management is not relevant at all because it is a re-

sponsibility of upper layers. Thus, the only concern of this pattern is how the

low-level memory storage is organized.

Problem

Which data structure holds the benefits of circular buffer while guaranteeing that

each subsequence of N elements sits in contiguous memory?

Forces

• Element copies are an overhead to avoid.

• Buffer reallocations are to be avoided.

• It should be possible for clients to read and write a subsequence of elements

using a pointer to the first element. The rationale is that modules might

want to use existing libraries that typically use pointers as their input and

output data interface.

• All buffer clients execute in the same process.

Solution

The buffer with phantom zone —phantom buffer for short— is a simple data struc-

ture built on top of an array of MAX+N elements. Its main particularity is that

the last N elements are a replication of the first N elements. This guarantees that

starting at any physical position from 0 to MAX − 1, there exists a contiguous

subsequence of size up to N elements. In effect, this is clear considering the worst

case scenario: take the element at position MAX − 1; let it be the first one in

a subsequence; since it is a circular buffer of MAX elements, the next element

is in the position 0, but positions from 0 to N − 1 are also replicated at the end

(starting at position MAX); thus the contiguity condition is guaranteed.

Interface of a PhantomBuffer class should include two methods: one for access-

ing a given window of elements, and the other, for synchronizing a given window

of elements. See figure 5.2 for an example in C++.

A client that wants to read a window should call the access method, and

read elements starting from the returned pointer. If the client wants to write,

the sequence is a little different; first if should call access, write elements, and

finally, call synchronize. This method synchronizes, when needed, a portion of

5.3. Flow Implementation Patterns 157

0
256

1 ...

...

phantom zone
of size 10

10 f irst elements

the two extremit ies
are automatical ly
kept in sync.

last element

9

246

Figure 5.16: A phantom buffer of (logical) size 246, with 256 allocated ele-
ments and phantom zone of size 10.

template <class T> class PhantomBuffer

{

public:

T* access(unsigned pos , unsigned size);

void synchronize(unsigned pos , unsigned size);

...

};

Listing 5.2: PhanomBuffer class definition in C++

the phantom zone with its counterpart in the buffer beginning. To be accurate, a

copy of elements will only be necessary when the window passed as argument to

synchronize has intersection with the phantom or the initial zone.

Summing up, a phantom buffer offers a contiguous array where the last N

elements are a replication of the first N . Each write on the first or last N element

is automatically synchronized in its dual zone. Thus, the client of a phantom

buffer will always have access to chunks of up to N contiguous elements,

Consequences

As a result of this design, clients must be well-behaved. This includes two aspects:

the first is that clients that receive a pointer for a given window should not access

elements beyond that window; the second is that, after a write, a client must

call the synchronize method. Failing to do any of this might result in a serious

run-time failure.

Certainly, this results in a lack of robustness. But this is the price to pay

158 Chapter 5. A Multimedia Dataflow Pattern Language

for the requirement of providing plain pointers to the window, and avoiding un-

necessary copies and reallocations. However, the phantom buffer interface should

not be directly exposed to the concrete module implementation. The port classes

presents a higher level interface to the module while hiding details such as window

parameters and synchronizations.

The circular buffer allocation should be done at configuration time and the

phantom size depends on the maximum window size (in that it must be greater).

Related Patterns

This pattern can be regarded as a part of a more extensive pattern that provides

a generalized circular buffer with many readers. In this context, the windows

management issues are addressed in the more general Multiple Window Circular

Buffer pattern. Phantom Buffer provides a refinement of the lower-level layer drawn

in the general pattern. Therefore, these two patterns collaborate together to give

a complete solution for a generalized circular buffer.

Examples

This pattern can be found implemented in the CLAM framework. Specifically in

the PhantomBuffer class.

5.4. Network Usability Patterns 159

5.4

Network Usability Patterns

5.4.1 Pattern: Recursive networks

Context

The potential of the interconnected modules model is virtually infinite. You can

connect more and more modules to get larger and more complex systems. But

module networks are normally defined by humans and humans have limitations

on the complexity they can handle. So, big networks with a lot of connections are

difficult to handle by the user, and this fact limits the potential of the model.

One of the reasons why audio systems become larger is duplication. Duplica-

tion happens, for example, whenever two audio channels have to be processed the

same way, This duplication is very hard to maintain, because it implies having to

apply repeated changes, and this is a very tedious and error prone process.

Duplication may happen also outside the system boundaries. The same set of

interconnected modules may be present on several systems. Fixes on one of those

systems do not apply to the other one so we have to apply it repeatedly and this

is even more tedious and error prone.

Problem

How to reduce the complexity the user has to handle in order to define large and

complex networks of interconnected modules?

Forces

• User defining big networks maybe too complex

• Human complexity handling is limited on the number of elements and rela-

tions

160 Chapter 5. A Multimedia Dataflow Pattern Language

• Divide and conquer techniques help humans to handle complexity by fo-

cussing on smaller problems instead of the whole problem

• Duplications of sets of modules and connections is hard to maintain

• Reuse of previously designed networks helps on productivity

• Encapsulation hides details that can be useful on tracing the behavior of the

system

Solution

By applying the ’divide & conquer’ idea, we allow the user to define an abstraction

of a set of interconnected modules as a single module that can be used in any

other network. Some of the stream and event ports of the internal modules may

be externalized as the stream and event ports of the container module.

Port proxy

Figure 5.17: A network acting as a module.

Several internal stream in-ports may be merged as a single external one. So

that, incoming stream tokens are read by all the internal stream in-ports. The

same happens with in and out event ports. But it doesn’t happen with the stream

out-ports. The same reasons that forbid to stream out-ports feed a single stream

in-port apply here.

If the system forbids merging ports on externalization, the externalized ports

may be the internal ones. But when port merging is permitted, the user needs

5.4. Network Usability Patterns 161

an abstraction on connecting a single port. This abstraction is given by a Proxy

[Gamma et al., 1995] port.

Depending on the implementation, the proxy port may act as a proxy on con-

nection time or additionally on process time.

A connect time port proxy is a proxy port that delegates binding calls to the

proxied ports. This way, during processing time the communication is done di-

rectly at non-proxy port level.

A processing time port proxy is a proxy port that acts as a the complementary

in/out port for the internal ports. For example, an in proxy port is seen as out

port for the internal ports connected to it. This is similar to have an identity

module that just pipes tokens. The processing time port proxy adds overhead but

it is useful when we need a clear boundary between inwards and outwards.

Also several approaches can be used for the flow control to handle recursive

networks. One approach is to make the inner modules visible to the outer flow

control, so that once all the modules are accessible by the flow control, all happens

the same way it would happen if the recursive network was not there.

A second approach is to hide the inner modules to the flow control. This can

be done by providing an inner flow control to the subnetwork. The subnetwork

execution as module triggers the inner flow control. This approach is useful when

a special flow control is needed, and also when we want to keep control on the

proxied modules while processing.

Related Patterns

This pattern makes direct use of the Composite and Proxy [Gamma et al., 1995].

The flow control approach that hides inner modules to the outer flow control

by providing a inner one, is a Hierarchical Control [Douglass, 2003].

Adjacent performance critical modules can be replaced by an optimized version

as an static composition, trading flexibility by performance, using Adaptive Pipeline

[Posnak and M., 1996].

Examples

Most audio domain frameworks implement Recursive Networks. For

example MAX/MSP [Puckette, 1991], CSL [Pope and Ramakrishnan, 2003],

OSW [Chaudhary et al., 1999], Aura [Dannenberg and Brandt, 1996b], Marsyas

[Tzanetakis and Cook, 2002] and CLAM.

162 Chapter 5. A Multimedia Dataflow Pattern Language

CLAM provides examples of most of the variants explained before. CLAM

Processing Composites are compiled networks that provide their own flow control

and they are seen for the flow control as a single module. Processing Composites ’s

ports are connection proxies so, external modules are actually connected on pro-

cessing time to the inner ports. On the other side, CLAM also provides dynamic

assembled networks, In this case, dummy modules which pipes directly event and

stream tokens, are used as process time port proxies.

5.4.2 Pattern: Port Monitor

Context

Some audio applications need to show a graphical representation of tokens that are

being produced by some module out-port. While the visualization needs just to be

fluid, the processing has real-time requirements. This normally requires splitting

visualization and processing into different threads, where the processing thread

has real-time requirements and is a high priority scheduled thread. But because

the non real-time monitoring should access to the processing thread tokens some

concurrency handling is needed and this often implies locking.

Problem

We need to graphically monitor tokens being processed. How to do it without

locking the real-time processing while keeping the visualization fluid?

Forces

• The processing has real-time requirements (ie. audio)

• Visualizations must be fluid; that means that it should visualize on time and

often but it may skip tokens

• Just the processing is not filling all the computation time

Solution

The solution is to encapsulate concurrency in a special kind of process module, the

Port monitor, that is connected to the monitored out-port. Port monitors offers

the visualization thread an special interface to access tokens in a thread safe way.

5.4. Network Usability Patterns 163

In order to manage the concurrency avoiding the processing to stall, the Port

monitor uses two alternated buffers to copy tokens. In a given time, one of them is

the writing one and the other is the reading one. The Port monitor state includes

a flag that indicates which buffer is the writing one. The Port monitor execution

starts by switching the writing buffer and copying the current token there. Any

access from the visualization thread locks the buffer switching flag. Port execution

uses a try lock to switch the buffer, so, the process thread is not being blocked, it

is just writing on the same buffer while the visualization holds the lock.

Writing
buffer

In-Band Process
(high-priority)

Out-of-Band Process
(low-priority)

(Graphical) Monitor
Monitored port

Flag with mutex
(thread boundary)

Figure 5.18: A port monitor with its switching two buffers

Consequences

Applying this pattern we minimize the blocking effect of concurrent access on two

fronts. On one side, the processing thread never blocks. On the other, the blocking

time of the visualization thread is very reduced, due that it only lasts a single flag

switching.

Anyway, the visualization thread may suffer starvation risk. Not because the

visualization thread will be blocked but because it may be always reading the

same buffer. That may happen when every time the processing thread tries to

switch the buffers, the visualization is blocking. This effect is not critical and can

be avoided by minimizing the time the visualization thread is accessing tokens,

for example, by copying them and release.

When this effect is too notorious, a solution is to use three buffers. This way,

even when the visualization is blocking the buffer, the processing thread may

alternate on the other buffers. The constraints that should apply are:

164 Chapter 5. A Multimedia Dataflow Pattern Language

• Two buffer marks are always kept the reading buffer and the last written

buffer.

• Three mutually exclusive operations may happen:

– The processing thread should choose to write on any buffer that has

none of those marks.

– When the processing thread ends writing it updates the last written

buffer.

– When the visualization thread access, it moves the reading mark to the

current last written mark.

This solution is not as good for real-time requirements as the one based on just

two buffers. The former may block the processing thread, while the latter never

blocks it.

Another issue with this pattern is how to monitor not a single token but a

window of tokens. For example, if we want to visualize a sonogram (a color map

representing spectra along the time) where each token is a single spectrum. The

simplest solution, without any modification on the previous monitor is to do the

buffering on the visualizer and pick samples at monitoring time. This implies that

some tokens will be skipped on the visualization, but, for some uses, this is a valid

solution.

The number of skipped tokens is not fixed, thus, this solution may show time

stretching like artifacts that may not be acceptable for some application. Dou-

ble/triple buffering on the port monitor the full window of tokens solves that. It

is reliable but it affects the performance of the processing thread.

Related Patterns

Port Monitor is a refinement of Out-of-band and In-band Partition pattern (see a

summary of this pattern in section3.4). Data flowing out of a port belongs to the

In-band partition, while the monitoring entity (for example a graphical widget) is

located in the out-of-band partition.

It is very similar to the Ordered Locking real-time pattern [Douglass, 2003].

Ordered Locking ensures that deadlock cannot occur, preventing circular waiting.

The main difference is in their purpose: Port Monitor allows communicate two

band partitions with different requirements.

5.5. Visual Prototyping Patterns 165

Examples

The CLAM Network Editor [Amatriain and Arumı́, 2005] is a visual builder for

CLAM that uses Port Monitor to visualize stream data in patch boxes. The same

approach is used for the companion utility, the Prototyper, which dynamically

binds defined networks with a QT designer interface.

The Music Annotator also uses the concurrency handling aspect of Port Monitor

although it is not based on modules and ports but in sliding window storage.

An example of Port Monitor outside CLAM can be found in Streamcatcher, an

application for visualizing audio streams arranged by similarity, developed at the

Austrian Research Institute for Artificial Intelligence [Gasser and Widmer, 2008].

Streamcatcher uses Port Monitor to visualize waveforms and similarity data on the

GUI thread while keeping the processing thread lock-free and real-time safe. See

section 6.3 for a description of Streamcatcher.

5.5

Visual Prototyping Patterns

5.5.1 Pattern: Visual Prototyper

Context

Many multimedia dataflow-based framework implements the black-box and visual

builder patterns (see [Roberts and Johnson, 1996]). The behavior of a black-box

framework is entirely determined by how processing objects are interconnected.

In such framework, the visual builder enables non programmers to visually design

dataflow compositions, and run them within the same visual builder. However, in

the multimedia processing domain, sometimes it is necessary to build a standalone

166 Chapter 5. A Multimedia Dataflow Pattern Language

application or plugin with an interactive GUI on top of dataflow processing core.

Such standalone application (or plugin) cannot be the visual builder itself because

it shows many details (such as the dataflow network) that are not useful (and

potentially dangerous) to the final user.

Problem

The code for building a GUI with visual components that connects and inter-

act with an underlying dataflow system is complex but similar from application

to application, with only specific objects and parameters being different. What

architecture and methodology enables to avoid the creation of such code?

Forces

• Domain experts are rarely programmers

• Building tools is expensive

• The composition of processing objects with visual components is convoluted

and difficult to understand and generate with code.

• The target applications have a limited application logic (configure, start,

stop), and send asynchronous events to the underlying dataflow while it is

running.

• The GUI of the target application should not expose more details than the

ones considered useful by the domain expert.

• The prototype should be embeddable in a wider application with a minimal

effort

• The final application should allow communication of any kind of data and

control objects between GUI and processing core (not just audio buffers)

• Plugin extensibility should be allowed for processing units, for graphical ele-

ments which provide data visualization and control sending, and for system

connectivity backends (for example, in the audio domain: JACK, ALSA,

PORTAUDIO, LADSPA, VST and AudioUnit)

Solution

Use a GUI framework with a visual builder (such as Qt with Qt Designer). Develop

visual components plugins that extend such visual builder. Use the GUI visual

5.5. Visual Prototyping Patterns 167

builder to compose the target prototype GUI. Also use the GUI visual builder

to add meta-data that specify the links between the visual components and the

dataflow processing objects.

Develop a run-time engine (maybe, but not necessarily, a program) that dy-

namically instantiate definitions coming from both tools —the dataflow visual

builder, and the GUI visual builder— and relates them by inspecting the visual

components meta-data introduced to this purpose. This run-time engine should

also manage the application logic, such as configuring, starting and stopping the

underlying dataflow.

We now give details of such architecture. Though the architecture is generic,

for clarity sake we often refer to the implementation done in the CLAM framework

using the Qt GUI framework

Target Applications The set of applications the architecture is able to visually

build includes real-time audio processing applications, which have a relatively

simple application logic. That is synthesizers, real-time music analyzers (figure

5.19) and audio effects and plugins (figure 5.20).

Figure 5.19: An example of an audio analysis application: Tonal analysis
with chord extraction

168 Chapter 5. A Multimedia Dataflow Pattern Language

Figure 5.20: An example of a rapid-prototyped audio effect application:
Pitch transposition. This application, which can be prototyped in CLAM in
a matter of minutes, performs an spectral analysis, transforms the audio in
the spectral domain, and synthesizes back the result. Note how, apart from
representing different signal components, three sliders control the process
interacting directly with the underlying processing engine.

The only limitation imposed on the target applications is that their logic should

be limited to just starting and stopping the processing algorithm, configuring it,

connecting it to the system streams (audio from devices, audio servers, plugin

hosts, MIDI, files, OSC...), visualizing the inner data and controlling some algo-

rithm parameters while running. Note that these limitations are very much related

to the explicit life-cycle of a 4MPS Processing object outlined in section 3.2.

Given those limitations, the defined architecture does not claim to visually

build every kind of audio application. For example, audio authoring tools, which

have a more complex application logic, would be out of the scope, although the

architecture would help to build important parts of such applications.

Main Architecture

The proposed architecture (figure 5.21) has three main components: A visual tool

to define the audio processing core, a visual tool to define the user interface and

a third element, the run-time engine, that dynamically builds definitions coming

5.5. Visual Prototyping Patterns 169

Widgets
plugins

Processing modules
plugins

Data-flow editor
(CLAM NetworkEditor)

UI editor
(Qt Designer)

Data-flow builder UI builder

Runner

JACK
b/e

LADSPA
b/e

VST
b/e

Portaudio
b/e

 Back-end

Binder

Processing modules
plugins

Widgets
plugins

XML XML

...

Run-time engine

Figure 5.21: Visual prototyping architecture. The CLAM components that
enable the user to visually build applications.

from both tools, relates them and manages the application logic. We implemented

this architecture using some existing tools. We are using CLAM NetworkEditor

as the audio processing visual builder, and Trolltech’s Qt Designer as the user

interface definition tool. Both Qt Designer and CLAM NetworkEditor provide

similar capabilities in each domain, user interface and audio processing, which are

later exploited by the run-time engine.

Qt Designer can be used to define user interfaces by combining several widgets.

The set of widget is not limited; developers may define new ones that can be added

to the visual tool as plugins. Figure 5.22 shows a Qt Designer session designing

the interface for an audio application, which uses some CLAM data objects related

widgets provided by CLAM as a Qt widgets plugin. Note that other CLAM data

related widgets are available on the left panel list. For example to view spectral

peaks, tonal descriptors or spectra.

Interface definitions are stored as XML files with the “.ui” extension. Ui files

can be rendered as source code or directly loaded by the application at run-time.

Applications may also discover the structure of a run-time instantiated user inter-

face by using introspection capabilities.

Analogously, CLAM Network Editor allows to visually combine several process-

ing modules into a processing network definition. The set of processing modules in

the CLAM framework is also extensible with plugin libraries. Processing network

definitions can be stored as XML files that can be loaded later by applications

170 Chapter 5. A Multimedia Dataflow Pattern Language

Figure 5.22: Qt Designer tool editing the interface of an audio application.

Figure 5.23: The processing core of an application built with the CLAM
Network Editor

5.5. Visual Prototyping Patterns 171

in run-time. And finally, the CLAM framework also provides introspection so a

loader application may discover the structure of a run-time loaded network.

Run-time engine If only a dataflow visual builder and a visual interface de-

signer was provided, some programming would still be required to glue it all to-

gether and launch the application. The purpose of the run-time engine, which

is called Prototyper in our implementation, is to automatically provide this glue.

Next, we enumerate the problems that the run-time engine faces and how it solves

them.

Dynamic building

Both component structures, the audio processing network and the user interface,

have to be built up dynamically in run-time from an XML definition. The com-

plexity to be addressed is how to do such task when the elements of such structure

are not known before hand because they are defined by add-on plugins 5

Both CLAM and Qt frameworks provide object factories that can build objects

given a type identifier. Because we want interface and processing components to be

expandable, factories should be able to incorporate new objects defined by plugin

libraries. To enable the creation of a certain type of object, the class provider

must register a creator on the factory at plugin initialization.

In order to build up the components into an structure, both frameworks provide

means for reflection so the builder can discover the properties and structure of

unknown objects. For instance, in the case of processing elements, the builder can

browse the ports, the controls, and the configuration parameters using a generic

interface, and it can guess the type compatibility of a given pair of ports or controls.

Relating processing and user interface The run-time engine must relate

components of both structures. For example, the spectrum view on the Transpo-

sition application (second panel on figure 5.20) needs to periodically access spec-

trum data flowing by a given port of the processing network. The run-time engine

first has to identify which components, are connected. Then decide whether the

connection is feasible. For example, spectrum data cannot be viewed by an spec-

tral peaks view. And then, perform the connection, all that without the run-time

5Note that this is a recurring issue in audio applications where the use of plug-ins is common
practice.

172 Chapter 5. A Multimedia Dataflow Pattern Language

engine knowing anything about spectra and spectral peaks.

The proposed architecture uses properties such the component name to relate

components on each side. Then components are located by using introspection

capabilities on each side framework.

Once located, the run-time engine must assure that the components are com-

patible and connect them. The run-time engine is not aware of the types of data

that connected objects will handle, we deal that by applying the Typed Connec-

tions design pattern introduced in section 5.2.4. In a nutshell, this design pattern

allows to establish a type dependent connection construct between two compo-

nents without the connector maker knowing the types and still be type safe. This

is done by dynamically check the handled type on connection time, and once the

type is checked both sides are connected using statically type checked mechanisms

which will do optimal communication on run-time.

Thread safe communication in real-time One of the main issues that typ-

ically need extra effort while programming is multi-threading. In real-time audio

applications based on a data flow graph, the processing core is executed in a high

priority thread while the rest of the application is executed in a normal priority

one following the Out-of-band and In-band partition pattern (see a summary of the

pattern in section 3.4). Being in different threads, safe communication is needed,

but traditional mechanisms for concurrent access are blocking and the processing

thread cannot be blocked. Thus, new solutions, as the one proposed by the Port

Monitor pattern in section 5.4.2, are needed.

A Port Monitor is a special kind of processing component which does double

buffering of an input data and offers a thread safe data source interface for the

visualization widgets. A flag tells which one is the read and the write buffer. The

processing thread does a try lock to switch the writing buffer. The visualization

thread will block the flag when accessing the data but as the processing thread

just does a ‘try lock’, so it will just overwrite the same buffer but it won’t block,

fulfilling the real-time requirements of the processing thread.

System back-end Most of the application logic is coupled to sinks and sources

for audio data and control events. Audio sources and sinks depend on the context

of the application: JACK, ALSA, ASIO, DirectSound, VST, LADSPA... So the

way of dealing with threading, callbacks, and assigning input and outputs is differ-

5.6. Patterns as a Language 173

ent in each case. The architectural solution for that has been to provide back-end

plugins to deal with this issues.

Back-end plugins address the often complex back-end setup, relate and feed

sources and sinks in a network with real system sources and sinks, control pro-

cessing thread and provide any required callback. Such plugins, hide all that com-

plexity with a simple interface with operations such as setting up the back-end,

binding a network, start and stop the processing, and release the back-end.

The back-end also transcends to the user interface as sometimes the application

may let the user to choose the concrete audio sink or source, and even choose the

audio back-end. Back-end plugin system also provides interface to cover such

functionality.

5.6

Patterns as a Language

The 11 patterns presented in this catalog have different scope. Some are very

high-level, like Semantic Ports and Driver Ports, while other are low-level, focused on

implementation issues, like Phantom Buffer). Although the catalog is not domain-

complete, it could be considered a pattern language because each pattern refer-

ences higher-level patterns describing the context in which it can be applied, and

lower-level patterns that could be used after the current one to further refine

the solution. These relations form a hierarchical structure drawn in figure 5.24.

The arcs between patterns mean “enables” relations: introducing a pattern in the

system enables other patterns to be used.

This pattern catalog shows how to approach the development of a complete

dataflow system for multimedia computing, in an evolutionary fashion without

needing a big up-front design. The patterns at the top of the hierarchy suggest

174 Chapter 5. A Multimedia Dataflow Pattern Language

to start with high level decisions driven by questions like: “do all ports drive the

module execution or not?” and “does the system have to deal only with stream

flow or also with event flow?” Then move on to address issues related to different

token types such as: “do ports need to be strongly typed while connectible by

the user?”, or “do the stream ports need to consume and produce different block

sizes?”, and so on. On each decision, which will introduce more features and

complexity, a recurrent problem is faced and addressed by one pattern in the

language.

At some point, humans might need to interact with the system. Possible

interaction includes building (complex) networks and monitoring the flowing data.

This is what the Network Usability Patterns and Visual Prototyper Pattern do.

They can be introduced in the first stages of the system evolution or later on.

5.6.1 Patterns Applicability

The presented patterns are mainly inspired by our design experience in the audio

domain. But have an immediate applicability in the more general multimedia

processing systems domain.

Typed Connections, Multiple Window Circular Buffer and Phantom Buffer have

applicability beyond dataflow systems. And, regarding the Port Monitor pattern,

though its description is coupled with the dataflow architecture, it can be extrapo-

lated to other environments where a normal priority thread is monitoring changing

data on a real-time one.

Most of the patterns in this catalog can be found in many audio systems. How-

ever, examples of a few others (namely Multi-rate Stream Ports, Multiple Window

Circular Buffer and Phantom Buffer) are hard to find outside of CLAM so they

should be provisionally considered innovative patterns (or proto-patterns).

5.6. Patterns as a Language 175

Dataflow Architecture

Semantic Ports

Driver Ports Stream and Event Ports

Typed Connections

Multi−rate Stream Ports Propagating Event Ports

Multiple Window Circular Buffer

Phantom Buffer

Recursive Networks Port Monitor Visual Prototyper

General Dataflow Patterns

Flow Implementation Patterns

Network Usability Patterns Visual Prototyping Patterns

A B A enables B

A uses BA B

Figure 5.24: The multimedia dataflow pattern language. High-level patterns
are on the top and the arrows represent the order in which design problems
are being addressed by developers.

176 Chapter 5. A Multimedia Dataflow Pattern Language

5.7

Summary

In this chapter we have proposed a pattern language for the multimedia do-

main. The pattern language is made up of 11 interrelated pattern addressing the

following aspects of dataflow-based multimedia processing systems:

General Dataflow Patterns: Address problems about how to organize high-

level aspects of the dataflow architecture, by having different types of modules

connections. Belonging to this category:

• Semantic Ports addresses distinct management of tokens by semantic.

• Driver Ports addresses how to make modules executions independent of the

availability of certain kind of tokens.

• Stream and Event Ports addresses how to synchronize different streams and

events arriving to a module.

• Typed Connections addresses how to deal with typed tokens while allowing

the network connection maker to ignore the concrete types.

Flow Implementation Patterns: Address how to physically transfer tokens from

one module to another, according to the types of flow defined by the general

dataflow patterns. Tokens life-cycle, ownership and memory management are re-

current issues in these patterns.

• Propagating Event Ports addresses the problem of having a high-priority

event-driven flow able to propagate through the network.

• Multi-rate Stream Ports addresses how stream ports can consume and produce

at different rates;

• Multiple Window Circular Buffer addresses how a writer and multiple readers

can share the same tokens buffer.

5.7. Summary 177

• Phantom Buffer addresses how to design a data structure both with the

benefits of a circular buffer and the guarantee of window contiguity.

Network Usability Patterns: Address how humans can interact with dataflow

networks.

• Recursive Networks makes feasible for humans to deal with the definition of

big complex networks;

• Port Monitor addresses how to monitor a flow from a different thread, without

compromising the network processing efficiency.

Visual Prototyping Patterns: Address how domain experts can generate ap-

plications on top of a dataflow network, with interactive GUI, without needing

programming skills.

• Visual Prototyper Addresses how to dynamically build a graphical user inter-

face that interacts with the underlying dataflow model. This pattern enables

rapid applications prototyping using (but not restricted to) visual tools.

The presented design patterns provide useful design reuse in the domain of

multimedia processing systems. They cover the fundamental features of dataflow

systems, and their solutions are general enough to be used in many different con-

texts.

All of them provide a teaching component, mostly found in the “forces” and

“consequences” sections, which provides the fundamental insight that enables the

pattern solution to be reused effectively.

Finally, this chapter shows how the patterns are interrelated forming a pattern

language, enabling developers to follow a path of design decisions. The pattern

language offers options with informed trade-offs on each development stage. The

choice for the next pattern to implement, as well as the specific forces involved in

the pattern, is driven by the requirements of the system under development.

5.7.1 Summary of Usage Examples

For each pattern we show, in the “examples” section, that it can be found in

different well known applications and contexts. When possible we have presented

three or more examples of varied systems. Some other patterns are “innovative”,

in that they address design problems we found during the course of the CLAM

178 Chapter 5. A Multimedia Dataflow Pattern Language

framework development, but not found elsewhere. However, the CLAM framework

has been instantiated in many applications with different purposes and on different

fields.

This section collect all the examples found for each pattern, in order to

give a general picture. The source for the examples are the following 11

systems: Pure-Data (PD) [Puckette, 1997], Max/MSP [Puckette, 1991], Open

Sound World (OSW) [Chaudhary et al., 1999], JACK [Davis et al., 2004],

SuperCollider3 [McCartney, 2002], CSL [Pope and Ramakrishnan, 2003],

Marsyas [Tzanetakis and Cook, 2002], Aura [Dannenberg and Brandt, 1996a],

CLAM (framework) [Amatriain and Arumı́, 2005], CLAM Music Annotator

[Amatriain et al., 2005], and Streamcatcher [Gasser and Widmer, 2008].

• General Dataflow Patterns:

– Semantic Ports addresses distinct management of tokens by semantic.

Found in: PD, Max/MSP, OSW, JACK, CLAM

– Driver Ports addresses how to make modules executions independent of

the availability of certain kind of tokens.

Found in: PD, Max/MSP, OSW, JACK, CLAM

– Stream and Event Ports addresses how to synchronize different streams

and events arriving to a module.

Found in: SuperCollider3, CSL, Marsyas, OSW, CLAM

– Typed Connections addresses how to deal with typed tokens while al-

lowing the network connection maker to ignore the concrete types.

Found in: OSW, Music Annotator, CLAM

• Flow Implementation Patterns:

– Propagating Event Ports addresses the problem of having a high-priority

event-driven flow able to propagate through the network.

Found in: PD, Max/MSP, CLAM

– Multi-rate Stream Ports addresses how stream ports can consume and

produce at different rates;

Found in: Marsyas, SuperCollider3, CLAM

5.7. Summary 179

– Multiple Window Circular Buffer addresses how a writer and multiple

readers can share the same tokens buffer.

Found in: CLAM

– Phantom Buffer addresses how to design a data structure both with the

benefits of a circular buffer and the guarantee of window contiguity.

Found in: CLAM

• Network Usability Patterns:

– Recursive Networks makes feasible for humans to deal with the definition

of big complex networks.

Found in: PD, Max/MSP, CSL, OSW, Aura, Marsyas, CLAM

– Port Monitor addresses how to monitor a flow from a different thread,

without compromising the network processing efficiency.

Found in: CLAM, Music Annotator and Streamcatcher.

• Visual Prototyping Patterns:

– Visual Prototyper addresses Addresses how to dynamically build a

graphical user interface by relating a dataflow network with graphi-

cal monitors and actuators.

Found in: CLAM

5.7.2 Patterns as Elements of Design Communication

Design patterns are useful to communicate, document and compare the designs

of multimedia systems. As an example, consider the following sentence “The

framework X has a Dataflow Architecture. Its module’s ports are Semantic Ports.

Uses Stream and Event Ports. Stream ports are Driver Ports and implement Typed

Connections, with concrete types including Audio, Spectrum, Note or Melody,

event ports are restricted to floats. Event ports are implemented with Propagating

Event Ports while audio stream ports use Multi-rate Stream Ports implemented with

Multiple Window Circular Buffer and a Phantom Buffer.

This paragraph concisely conveys a big amount of design information. It shows

how these patterns enables an efficient communication and documentation of the

design of a multimedia processing system. Of course, this requires that the receptor

180 Chapter 5. A Multimedia Dataflow Pattern Language

is familiar with the cited patterns. This requirement can be alleviate by including

links to a pattern catalog.

Christopher Alexander —the building architect who first introduced the pat-

terns formalism— defined a pattern as both a “thing” —the design— and “in-

structions on how to produce the thing” [Alexander, 1977]. When documenting a

system design we are using the first meaning. When designing and implementing

a system we, of course, interested in the instructions part of a pattern.

These patterns are also efficient tools for comparing different systems. Again,

an example: “Max/MSP uses Driver Ports but unlike CLAM, its event ports can

also be Driver Ports.”. Another example: “While CSL uses Stream and Event

Ports, JACK (in its version 0.100) does not because its network only streams

audio samples. Neither CSL nor JACK use Typed Connections”

Next chapter validates the two main contributions of the thesis —namely:

the Time-Triggered Synchronous Dataflow model and the Multimedia Dataflow

Pattern Language— by presenting case studies that uses them both.

CHAPTER 6

Case Studies

This chapter presents case studies that demonstrates the use of the Time-Triggered

Synchronous Dataflow model and Multimedia Dataflow Pattern Language. We

begin in section 6.1 describing CLAM, a framework we developed, that implements

and uses both (the model, and patterns) abstractions. Some of the applications

build with the framework are also reviewed.

Next, in section 6.2, we present a real-time 3D-audio system integrated in a

digital cinema workflow. In this case study, we emphasize how the time-triggered

model and dataflow patterns are used. This 3D-audio system uses an underlying

dataflow exhibiting multi-rate, and therefore, have an interesting time-triggered

scheduling. Moreover, the whole system involves not only audio, but video and

3D graphics.

181

182 Chapter 6. Case Studies

6.1

CLAM: A Framework for Rapid

Development of Cross-platform

Audio Applications

The history of software frameworks is very much related to the evolution of the

multimedia field itself. Many of the most successful and well-known examples of

software frameworks deal with graphics, image or multimedia1. Although probably

less known, the audio and music fields also have a long tradition of similar devel-

opment tools. And it is in this context where we find CLAM, a framework that

recently received the 2006 ACM Best Open Source Multimedia Software award.

CLAM stands for C++ Library for Audio and Music and it is a full-fledged

software framework for research and application development in the audio and

music domain with applicability also to the broader Multimedia domain. It offers

a conceptual model; algorithms for analyzing, synthesizing and transforming audio

signals; and tools for handling audio and music streams and creating cross-platform

applications.

The CLAM framework is cross-platform. All the code is ANSI C++ and it is

regularly compiled under GNU/Linux, Windows and Mac OSX using FLOSS (Free

Libre Open Source Software) tools, such as automatic integrated building/test-

ing/versioning systems, and agile practices such Test-Driven Development. (see

[Amatriain, 2007b] and [Amatriain et al., 2002b], for instance)

We will explain the different CLAM components and the applications included

in the framework in section 6.1.1. In section 6.1.2 we will also explain the rapid

prototyping features that have been added recently and already constitute one of

its major assets.

1The first object-oriented frameworks to be considered as such are the MVC (Model View
Controller) for Smalltalk [Burbeck, 1987] and the MacApp for Apple applications[Wilson, 1990].
Other important frameworks from this initial phase were ET++[Weinand et al., 1989] and In-
terviews. Most of these seminal frameworks were related to graphics or user interfaces

6.1. CLAM: A Framework for Rapid Development of Cross-platform
Audio Applications 183

Rough
Domain
Analysis

Application-driven
Development

Rough
Metamodel

Identification

Metamodel
Refinement

Almost black-box
Behavior

Metamodel
Formalization

Analysis
Patterns

Application

Design
Patterns

Application

Usage
Patterns

Identification

Pattern
Language

Formalization

Domain
Patterns

Idenfication

Activities at the
Framework Level

Activities at the
Metamodel Level

Activities at the
Pattern Level

Figure 6.1: CLAM development process and related activities

In this sense, the framework is not only valuable for its features but also for

other outputs of the process that can be considered as reusable components and

approaches for the multimedia field. The process of designing CLAM generated

reusable concepts and ideas that are formalized in the form of a general purpose

domain-specific meta-model and a pattern language both of which are outlined in

the next section.

During the CLAM development process several parallel activities have taken

place (see figure 6.1). While some sought the goal of having a more usable frame-

work, others dealt with also coming up with the appropriate abstractions and

reusable constructs.

6.1.1 CLAM Components

As seen in figure 6.2 CLAM offers a processing kernel that includes an infras-

tructure and processing and data repositories. In that sense, CLAM is both a

black-box and a white-box framework [Roberts and Johnson, 1996]. It is black-box

184 Chapter 6. Case Studies

Tools

Platform Abstraction

Devices

Processing Kernel

Infrastructure

Repository

Processing
Infrastructure

Data
Infrastructure

Processing
Repository

Processing Data
Repository

Network
Infrastructure

Serialization Visualization

Application
Skeletons

Multi-
threading

Audio
Devices

Midi
Devices

Files
Devices

Model
Abstraction

Toolkit-dependent
implementations

 XML

User
Application

Figure 6.2: CLAM components. The CLAM framework is made up of a
Processing Kernel and some Tools. The Processing Kernel includes an In-
frastructure that is responsible for the framework white-box behavior and
repositories that offer the black boxes. Tools are usually wrappers around
pre-existing third party libraries. A user application can make use of any or
all of these components.

6.1. CLAM: A Framework for Rapid Development of Cross-platform
Audio Applications 185

because already built-in components included in the repositories can be connected

with minimum or no programmer effort in order to build new applications. And

it is white-box because the abstract classes that make up the infrastructure can be

easily derived to extend the framework components with new processes or data

classes.

Apart from the kernel, CLAM includes a number of tools for services such as

audio input/output or XML serialization and a number of applications that have

served as a testbed and validation of the framework.

In the next paragraphs we will review the CLAM infrastructure, repositories,

and its tools.

The Infrastructure

The CLAM infrastructure is a direct implementation of the 4MPS meta-model,

which has already been reviewed in section 3.2. And the multimedia dataflow

patterns described in chapter 5.

Indeed, the meta-classes illustrated in figure 3.3 are directly mapped to C++

abstract classes in the framework (note that C++ does not accept meta-classes

naturally). These meta-classes are responsible for the white-box or extensible

behavior in the framework. When a user wants to add a new Processing or Data

to the Repository a new concrete class needs to be derived from these classes.

The Repositories

The Processing Repository contains a large set of ready-to-use processing algo-

rithms, and the Data Repository contains all the classes that act as data containers

to be input or output to the processing algorithms.

The Processing Repository includes around 150 different Processing classes,

classified in categories such as Analysis, ArithmeticOperators, or AudioFileIO.

Although the repository has a strong bias toward spectral-domain processing

because of our research group’s background and interests, there are enough encap-

sulated algorithms and tools so as to cover a broad range of possible applications.

On the other hand, in the Data Repository we offer the encapsulated versions

of the most commonly used data types such as Audio, Spectrum, or Segment. It

is interesting to note that all of these classes make use of the data infrastructure

and are therefore able to offer services such as a homogeneous interface or built-in

automatic XML persistence.

186 Chapter 6. Case Studies

Tools

Apart from the infrastructure and the repositories, which together make up the

CLAM processing kernel CLAM also includes a large number of tools that can be

necessary to build an audio application.

All of this tools are possible thanks to the integration of third party open

libraries into the framework. Services offered by these libraries are wrapped and

integrated into the meta-model so they can be used as natural constructs (mostly

Processing objects) from within CLAM. In this sense, one of the benefits of using

CLAM is that it acts as a common point for already existing heterogeneous services

[Amatriain, 2007b].

XML XML is used throughout CLAM as a general purpose storage for-

mat in order to store objects that contain data, descriptors or configurations

[Garcia and Amatrian, 2001]. In CLAM a Spectrum as well as a Network con-

figuration can be transparently stored in XML. This provides for seamless inter-

operability between applications allowing easy built-in data exchange.

GUI Just as many frameworks, CLAM had to think about ways of integrating

the core of the framework tools with a graphical user interface that may be used

as a front-end to the framework functionalities. In CLAM this is accomplished

through the Visualization Module, which includes many already implemented wid-

gets offered for the Qt framework. The more prominent example of such utilities

are the port monitors: Widgets that can be connected to ports of a CLAM network

to show its flowing data. A similar tool called Plots is also available for debugging

data while implementing algorithms.

Platform Abstraction Under this category we include all those CLAM tools

that encapsulate system-level functionalities and allow a CLAM user to access

them transparently from the operating system or platform.

Using these tools a number of services, such as audio input/output, audio file

formats, MIDI input/output, or SDIF file support, can be added to an application

and then used on different operating systems with exactly the same code and

always in observing the 4MPS meta-model.

6.1. CLAM: A Framework for Rapid Development of Cross-platform
Audio Applications 187

Figure 6.3: The SpectralTools graphical user interface. This application can
be used not only to inspect and analyze audio files but also to transform
them in the spectral domain.

CLAM Applications

The framework has been tested on —but also its development has been driven by—

a number of applications. Many of these applications were used in the beginning

to set the domain requirements and they now illustrate the feasibility of the meta-

model, the design patterns and the benefits of the framework. In the following

paragraphs we will present some of these applications.

Spectral Modeling Analysis/Synthesis One of the main goals when starting

CLAM was to develop a replacement for a similar pre-existing tool.

This application (see GUI in figure 6.3) is used to analyze, transform and

synthesize back a given sound. For doing so, it uses the Sinusoidal plus Residual

model [Amatriain et al., 2002a]. The application reads an XML configuration file,

and an audio file (or a previously analyzed SDIF file). The input sound is analyzed,

transformed in the spectral domain according to a transformation score and then

synthesized back.

The Annotator The CLAM Annotator [Amatriain et al., 2005] is a tool for

inspecting and editing audio descriptors (see figure 6.4). The application can be

used as a platform for launching custom extraction algorithms that analyze the

signal and produce different kinds of descriptors. It provides tools for merging and

188 Chapter 6. Case Studies

Figure 6.4: Editing low-level descriptors and segments with the CLAM An-
notator. This tool provides ready-to-use descriptors such as chord extraction
and can also be used to launch custom algorithms

filtering different source of descriptors that can be custom extractor programs or

even remote sources from web services.

Descriptors can be organized at different levels of abstraction: song level, frame

level, but also several segmentations with different semantics and attributes. The

descriptors can be synchronously displayed or auralized to check their correctness.

Merging different extractors and hand edited ground truth has been proved very

useful to evaluate extractors’ performance.

Others Many other sample usages of CLAM exist apart from the main applica-

tions included in the repository and described above.

For instance, SALTO is a software based synthesizer [Haas, 2001] that imple-

ments a general synthesis architecture configured to produce high quality sax and

trumpet sounds. SpectralDelay, also known as CLAM’s Dummy Test, was the first

application implemented in the framework. It was chosen to drive the design in

its first stages. The application implements a delay in the spectral domain: the

input audio signal can be divided with CLAM into three bands and each of these

bands can be delayed separately.

The repository also includes many smaller examples that illustrate how the

6.1. CLAM: A Framework for Rapid Development of Cross-platform
Audio Applications 189

framework can be used to do particular tasks ranging from a simple sound file

playback to a complex MPEG7 descriptor analysis.

6.1.2 CLAM as a Visual Prototyping Environment

So far we have seen that CLAM can be used as a regular application framework

by accessing the source code. Furthermore, ready-to-use applications such as the

ones presented in the previous section provide off-the-self functionality.

But latest developments have brought visual building capabilities into the

framework. These allow the user to concentrate on the research algorithms and not

on application development. Visual building is also valuable for rapid prototyping

of applications and plug-ins.

CLAM’s visual builder is known as the NetworkEditor (see figure 5.23). It

allows to generate an application —or only its processing engine— by graphically

connecting objects in a patch. Another application called Prototyper acts as

the glue between a graphical GUI designing tool (such as Qt Designer) and the

processing engine defined with the NetworkEditor.

Having a proper development environment is something that may in-

crease development productivity. Development frameworks offer system models

that enable system development dealing with concepts of the target domain.

Eventually, they provide visual building tools that also improve productivity

[Green and Petre, 1996].

190 Chapter 6. Case Studies

6.2

Real-Time Room Acoustics

Simulation in 3D-Audio

6.2.1 Introduction

In this section we present a real-time 3D-audio system integrated in a digital

cinema workflow. It is an interesting case study because its dataflow processing

exhibits multi-rate, and whole system involves audio, video and 3D graphics. All

the real-time processing runs on CLAM networks using an implementation of the

TTSDF model presented in section 4.2. Therefore, this system uses and exemplifies

both the TTSDF model an Dataflow Patterns presented in this thesis.

This 3D-audio system was developed within the Audio an Music group of

Barcelona Media technology center. It was demonstrated in the context of the

IP-RACINE project 2.

The role of our specific system, within the general workflow, is to generate im-

mersing 3D-audio using room acoustics simulation techniques. It allows the sound

sources and listener move in the virtual environment. The listener movements is

interactively driven by the tracking system of the shooting camera. The system

renders 3D-audio in real-time and offers a plausible reference with the visual en-

vironment. A nice feature of this system is that it can process multiple moving

sound sources and listeners in a normal CPU.

In our first approach, a database of impulse-responses (IR’s) with directionality

information was computed offline (that is, before the real-time processing) for

2IP-RACINE European Union Integrated Project aims to secure the future of the European
Cinema industry in the change from film to digital, improving the competitiveness of European
Digital Cinema (DC) by developing workflow techniques for integrating the digital process “from
scene to screen”, and advancing the state of the art of digital cameras, virtual cinema studio
production, cinema objects description, processing and post-production, and digital playout and
display of sound and image for better user experience. IP-Racine research project consortium
supported by DG InfSo of the European Commission, 2006.

6.2. Real-Time Room Acoustics Simulation in 3D-Audio 191

each 3D environment. While it works well for small 3D environments and fixed

source positions, the database solution does not scale well because its size grows

exponentially on the density of source/listeners points to be computed. Therefore,

the system was updated to support computing the IR’s on-the-fly. The “quality”

of the IR can be configured, which enables trading-off acoustic quality for IR’s

density and number of sources.

When running, the real-time system retrieves IR’s corresponding to the sources

and target positions, performs low-latency convolution between the IR’s and the

incoming audio, and smoothes IR transitions with cross-fades. Finally, the system

is flexible enough to decode to any surround exhibition setup.

6.2.2 The “Testbed” Integrated System

The IP-RACINE project provided the opportunity for deploying our audio sys-

tem and integrate it with other parts of the digital cinema workflow —being

run by other partners of the consortium. This deployment took place during a

IP-RACINE’s “testbed”, in December 2007. The testbed goal was to demon-

strate how new technologies can be applied and integrated for the production an

augmented-reality short film, involving all the processes from shooting to exhibit-

ing.

The elements of that particular testbed consisted in a chroma shooting set,

with four actors —a flamenco group of three musicians and a dancer—, a high-

definition video camera with position and zoom tracking, several video and moni-

toring systems, and several other systems related to HD video processing, storing

and exhibition.

The flamenco group was filmed while performing in playback over the music,

which was pre-recorded in separate tracks at a studio. The role of our real-time

audio system was to process each individual dry-recorded audio track obtaining

a convincing spatialized sound. The result effectively generated the illusion of

moving around the musicians in a (virtual) architectonic space.

The filming was done with a high-end high-definition prototype Thompson

camera with zoom and position tracking, which enabled the real-time motion of

a subjective listener within the scene. Using the tracking data, both augmented-

reality video and immersive 3D-audio was generated in real-time allowing the

director to not only preview the final scene while shooting but also pre-hear the 5.1

surround audio and HRTF-based binaural (with speakers), thus enabling artistic

192 Chapter 6. Case Studies

Camera monitor Augmented−reality

Previewing

3D audio Pre−hearing

CLAM

(audio rendering)

3D graphics

+ Composite

Green chroma set

with flamencos

HRTF binaural

Figure 6.5: The IP-RACINE “testbed” setup: The shooting of an
augmented-reality scene. The audio system is fed with the zoom and posi-
tion tracking data of the camera, and renders 3D audio using room acoustics
techniques based on ray-tracing and low-latency convolutions. The audio is
exhibited both in 5.1 Surround and HRTF-based binaural format. The di-
rector not only previews the augmented-reality video but also pre-hears the
3D-audio, allowing her to take artistic decisions based on the final result.

6.2. Real-Time Room Acoustics Simulation in 3D-Audio 193

decisions based on the final result. This set up is depicted in figure 6.5

The audio system also allows fine-tunning the audio rendering —for example,

changing the size of the room, or the acoustics material— in a post-production

environment. Additionally, it can run in offline mode enabling final renders with

high quality IR’s.

6.2.3 A 3D-Audio Dataflow Case Study

The processing core of the described system is done within the CLAM framework.

It contains a good example of applicability of the TTSDF model and it’s real-time

capabilities. This application also shows how it takes advantage of the presented

patterns.

Before diving into the details on how the TTSDF model and patterns are ap-

plied we will give some context on the 3D-audio domain and introduce the main

CLAM networks used (which corresponds to the TTSDF graphs). However, this

context is not key to understand how the model and patterns are applied. There-

fore, readers not interested in the 3D-audio domain can safely skip the following

paragraphs and continue in the (next) section 6.2.4.

The network depicted in figure 6.6 shows the processing core of the system.

It produces 3D-audio from an input audio stream, plus the position of a source

and a listener in a given 3D geometry —which can also be an empty geometry.

If the room-simulation mode is enabled, the output audio contains reverberated

sound with directional information for each sound reflection, therefore producing

a sensation of being immersed in a virtual environment to the user.

The format of the output is Ambisonics of a given specified order [Gerzon, 1973,

Malham and Myatt, 1995]. From the Ambisonics format, it is possible to decode

the audio to fit diverse exhibition setups such as HRTF-based audio through head-

phones, standard surround 5.1 or 7.1, or other non-standard loudspeakers setups.

Figure 6.8 shows a CLAM network that decodes first order Ambisonics (B-Format)

to surround 5.0, whereas the network in figure 6.9 decodes B-Format to binaural.

Let us describe in more detail the main audio rendering network, depicted in

figure 6.6. The audio scene to be rendered is animated by a processing which

produces controls of source/listener positions and angles. This processing can be

either an OSC3 receiver or a file-based sequencer. The picture illustrates this

3Open Sound Control is a protocol for communication among computers, sound synthesizer
and other multimedia devices, optimized for networking technologies [Wright, 1998]. It can be

194 Chapter 6. Case Studies

Figure 6.6: CLAM network that renders the audio in B-Format

6.2. Real-Time Room Acoustics Simulation in 3D-Audio 195

second case, where the CameraTracking processing sequences controls from a file

(for instance, exported from Blender) and uses an audio input for synchronization

purposes.

The actual audio rendering process is done in two stages. The first stage

consists on the computation of the acoustic impulse-response (IR) in Ambisonics

format for a virtual room at the given source/listener positions. This process

takes place in the ImpulseResponseCalculatedOnTheFly processing which outputs

the IRs. Since IRs are typically larger than an audio frame they are encoded as a

list of FFT frames.

The second stage consists on convolving the computed IRs, using the overlap-

and-add convolution algorithm, which is depicted in figure 6.7 and explained in

[Torger and Farina, 2001]. This process is implemented in the Convolution pro-

cessing which takes two inputs: a FFT frame of the incoming audio stream and

the aforementioned IR.

The IRs calculation uses acoustic ray-tracing algorithms , which take into

account the characteristics of the materials, such as impedance and diffusion. The

IR calculation is only triggered by the movement of the source or listener, with a

configurable resolution.

First informal real-time tests have been carried out successfully using simpli-

fied scenarios: few sources (3), simple geometries (cube), and few rays (200) and

rebounds (70). We are still in the process of achieving a physically consistent

reverberation by establishing the convergence of our ray-tracer (i.e. making sure

that we compute enough rays and enough rebounds to converge to a fixed RT60).

Another future line is optimize the algorithm for real-time by reusing or modeling

reverberation tails and only compute the early reflections by ray-tracing.

As the diagram shows, each B-Format component (W,X, Y, Z) of the computed

IR is produced in a different port, and then processed in a pipeline. Each branch

performs the convolution between the IR and the input audio, and smoothes the

transitions between different IRs via cross-fades in the time domain. The need for

such cross-fades requires doing two convolutions in each pipe-line.

One last source of complexity: since sources and listener can move freely, cross-

fades are not enough. The result of an overlap-and-add convolution involves two

IR’s which, among other differences, present different delays of arrival in the direct

sound and first reflections. When such differences are present, the overlap-and-add

thought as an improved version of the MIDI protocol.

196 Chapter 6. Case Studies

Slice c1 Slice c2 Slice c3Slice c0

IR

Slice c0 0−Pad

IR 0−Pad

 FFT

mult

Slice c1 0−Pad

IR 0−Pad

 FFT

mult

Slice c2 0−Pad

IR 0−Pad

 FFT

mult

Slice c3 0−Pad

IR 0−Pad

 FFT

mult

IFFTed result

IFFTed result

IFFTed result

IFFTed resultSum

Sum

Sum

Final Convolved Audio

Overlap

and Add

 Conv

G
o
a
l

Im
p
le

m
e
n
ta

ti
o
n

Figure 6.7: A simplification of the partitioned-convolution algorithm per-
formed by the CLAM’s “Convolution” processing.

6.2. Real-Time Room Acoustics Simulation in 3D-Audio 197

Figure 6.8: A CLAM network that decodes first order Ambisonics (B-
Format) to Surround 5.0.

will have a discontinuity or clip, which the user notices as an annoying artifact.

This problem has been solved in this case by taking advantage of the two

branches that were already needed for cross-fading the IR transition. The key

point is to restrict how IRs change, so that only one branch can be clipped at a

time. With this restriction, the problem can be solved by means of the XFade

and Delay processings. The Delay processing produces two IR outputs: the first

is just a copy of the received IR and the second is a copy of the IR received in the

previous execution. To ensure that, at least, one overlap-and-add will be clip-free

this processing will “hold” the same output when a received IR object only lasts

one frame. The XFade reads the IR objects identifiers —and hence, its 4 input

ports— and detects when and which branch is carrying a clipped frame, to decide

which branch to select or to perform a cross-fade between the two.

In the last step, the listener’s orientation is used to rotate the B-Format accord-

ingly. The rotated output is then ready to be streamed to one or more decoders

for exhibition systems.

6.2.4 Applying the TTSDF Model to the B-Format Ren-

dering Network

The most interesting network regarding its processing execution scheduling is the

B-Format renderer shown in figure 6.6. To analyse its TTSDF scheduling we start

by simplifying the graph (figure 6.10) because most of the processings exhibit the

same rate. Specifically, there are three different execution rates in the graph:

198 Chapter 6. Case Studies

Figure 6.9: CLAM network that converts 3D-audio in B-Format to 2 chan-
nels binaural, to be listened with headphones. The technique is based in
simulating how the human head and ears filters the audio frequencies de-
pending on the source direction.

6.2. Real-Time Room Acoustics Simulation in 3D-Audio 199

First, the Input and Output, which have a rate that depends on the fragment size4

the audio driver uses in its callback. Second, the CameraTracking, which must

run at 25 frames per second (that is, when its input port consumes 1920 samples

with sample-rate of 48000 Hz). And third, all the rest: The ImpulseResponseCal-

culatedOnTheFly the AudioWindowing, the FFT etc.

In the simplified graph depicted in figure 6.10 we have removed most of the

processings in the last category, only leaving the main pipeline, namely AudioWin-

dowing, FFT, Convolution, IFFT, OverlapAndAdd. This simplification does not

alter the complexity of the final scheduling but just makes it shorter and more un-

derstandable. It is important to note that though the processings in this pipeline

share the same execution rate, their port rates (that is, the number of tokens con-

sumed and produced per execution) differ. This is clear in the case of the FFT,

which consumes 1280 tokens (audio samples) and produces a single spectrum ob-

ject.

In this application, most of the port-rates are configurable by the domain

expert who designs the network. The exception being the port-rate of the Input

and Output, which are related to the audio driver configuration. In some audio

subsystems architectures —like CoreAudio for Mac OS X and PulseAudio for Linux

and other OS’s— the user can adjust the fragment size of each callback in sample

precision. In other architectures —like Alsa, for Linux or PortAudio, for multiple

platforms— the allowed fragment sizes are much more restricted: the user can

only choose between a power of two.

In the present example we’ve chosen a 256 samples fragment size for the call-

back5 , and hence the Input and Output port rate. Apart from the input and

output processings port rates, the other decisions that have a prominent effect on

the execution rates and scheduling are the port-rate for the AudioWindowing and

CameraTracking processings. In this example they have been set to 640 and 1920

samples respectively.

The following execution rates and scheduling is the result of executing the

TTSDF scheduling algorithm presented in section 4.4. The parenthesis shows the

execution of each callback. This is a sequential scheduling with no parallelization.

• Executions per period ~q = {6, 2, 6, 6, 6, 15, 15, 6} corresponding to nodes:

4The fragment size is the number of samples present in each processing callback. It is also
known as period or just buffer size.

5which, at 48000 Hz, means a 5 milliseconds latency inherent to the callback

200 Chapter 6. Case Studies

Input

AudioWindowing640

256

CameraTracking

1920
256

FFT
1280

1280
Convolution

1

1

IFFT

1

1

OverlapAndAdd
1280

1280
Output

256

640

Figure 6.10: A simplified B-Format audio renderer graph its with port rates.
Note that the CameraTracking node is a graph sink but is is not marked as
output, in terms of the TTSDF model, because it does not relate to the
driving time-triggered callback.

AudioWindowing, CameraTracking, Convolution, FFT, IFFT, Input, Out-

put, OverlapAndAdd

• Time-triggered scheduling. Prologue + period: (Input0, Output0), (Input1,

Output1) + (Input0, AudioWindowing0, FFT0, Convolution0, IFFT0, OverlapAndAdd0, Output0),

(Input1, Output1), (Input2, AudioWindowing1, FFT1, Convolution1, IFFT1, OverlapAndAdd1,

Output2), (Input3, Output3), (Input4, Output4), (Input5, AudioWindowing2, CameraTracking0,

FFT2, Convolution2, IFFT2, OverlapAndAdd2, Output5), (Input6, Output6), (Input7,

AudioWindowing3, FFT3, Convolution3, IFFT3, OverlapAndAdd3, Output7), (Input8, Output8),

(Input9, Output9), (Input10, AudioWindowing4, FFT4, Convolution4, IFFT4, OverlapAndAdd4,

Output10), (Input11, Output11), (Input12, AudioWindowing5, CameraTracking1, FFT5,

Convolution5, IFFT5, OverlapAndAdd5, Output12), (Input13, Output13), (Input14, Output14)

Number of executions

T
o
ta

l
n
u
m

b
e
r

o
f

to
k
e
n
s

• Optimal latency added by the TTSDF schedule prologue: 2 callback execu-

tions (512 samples).

It is interesting to compare the TTSDF scheduling above with a SDF schedul-

ing below. Both have the same number of executions per period. Specific elements

6.2. Real-Time Room Acoustics Simulation in 3D-Audio 201

of the TTSDF scheduling are: first, the separation between a preface and a pe-

riodic scheduling; and second the scheduling split in callback activations. We

observe that the SDF scheduling adds more latency, since it initially execute 3

Input’s without a corresponding Output. Last, though the SDF scheduling could

be adapted to a callback scheme by means of buffering in a separate thread (as

shown in section 4.1), this adaptation does not guarantee the absence of gaps and

jitter in the output.

• SDF scheduling (non Time-triggered) Input0, Input1, Input2, AudioWindowing0,

FFT0, Input3, Convolution0, IFFT0, Input4, OverlapAndAdd0, AudioWindowing1, FFT1,

Input5, Output0, Convolution1, IFFT1, Input6, Output1, OverlapAndAdd1, Input7, Output2,

AudioWindowing2, CameraTracking0, FFT2, Input8, Output3, Convolution2, IFFT2, Input9,

Output4, OverlapAndAdd2, AudioWindowing3, FFT3, Input10, Output5, Convolution3, IFFT3,

Input11, Output6, OverlapAndAdd3, Input12, Output7, AudioWindowing4, FFT4, Input13,

Output8, Convolution4, IFFT4, Input14, Output9, OverlapAndAdd4, AudioWindowing5,

CameraTracking1, FFT5, Output10, Convolution5, IFFT5, Output11, OverlapAndAdd5, Output12,

Output13, Output14

• Initial latency added by the SDF schedule (that is, number of input execu-

tions without a correspondent output execution): 3 callback activations.

Of course we could have chosen other port-rate settings that would have made

the scheduling simpler. Actually, it is a common practice in many dataflow systems

to only let the user choose port-rates that make the scheduling trivial. The main

benefit of the TTSDF model is to overcome this shortcoming. It lets the domain

expert choose any port-rate that makes sense from the signal processing point of

view. If the port-rates are rate-consistent, the model ensures that it will run in

real-time (provided enough processor resources) and with the optimum latency.

6.2.5 Applying the Dataflow Patterns to the B-Format

Rendering Network

The 3D-Audio application analyzed in this section also exemplifies the use of the

presented Pattern Language for Dataflow-Based Multimedia Processing Systems

(“Dataflow Patterns” for short) —see chapter 5.

Though we find implementation examples for all the Dataflow Patterns in

the CLAM framework infrastructure, here we take advantage of the previously

202 Chapter 6. Case Studies

introduced B-Format renderer network (figure 6.6), to analyse how some of the

patterns solve concrete design and implementation problems on this specific pro-

cessing dataflow graph.

Typed Connections

One prominent characteristic of the B-Format renderer CLAM network diagram

is that the ports are colored. The NetworkEditor —the user interface application

for designing CLAM networks— only allows connecting ports with the same color,

and hence, with the same type. Each color corresponds to a port’s token C++

type. Also, the user gets a description of the port, including it’s token type, when

hovering the mouse pointer over the port.

A dataflow designer can extend the used types very easily. A token type can

be any C++ type. Adding a new type to CLAM’s dataflow is just a matter of

declaring the token type of a port6 in a Processing class definition —which usually

is compiled in a dynamic loadable library (or plugin). The key point is that the

framework infrastructure is totally agnostic on the port types it has to manage.

Letting the framework treat ports homogeneously, while letting the processing

access their tokens in a strongly typed manner, and at the same time, letting the

ports be extensible by plugins, is a big design challenge. This design problem is

addressed by the Typed Connections pattern (in section 5.2.4).

Driver Ports

The analyzed network uses both synchronous flow and asynchronous flow. In

CLAM’s NetworEditor synchronous (or stream) ports are represented with circles

at the left and right side of a processing box. Event ports (or controls in CLAM’s

nomenclature) are represented with squares on top or bottom of a processing.

The firing rules of a processing only depends on the stream flow. In other

words, a processing can fire only when the tokens at the synchronous ports inputs

satisfies the established port-rates. On the other hand, the asynchronous flow

made of events does not have any effect on when the processing fires. In this

example, events can be seen as a controlled way to change attribute values in a

target processing.

6The C++ syntax used for an input port is the following: CLAM::InPort<MyClass>
inport;. This construct is typically found as a concrete Processing class attribute declara-

tion.

6.2. Real-Time Room Acoustics Simulation in 3D-Audio 203

The design allowing this duality of flows is addressed by the Driver Ports pattern

(in section 5.2.2).

Multi-rate Stream Ports

The same network have to deal with connections between ports with different

port-rates —that is, number of tokens produced and tokens consumed. For ex-

ample, the AudioInput processing outputs 256 samples on each execution, while

the AudioWindowing processing consumes them at 640 samples per execution.

The Multi-rate Stream Ports pattern (in section 5.3.2) addresses how to design the

necessary buffers to connect such multi-rate ports.

Multiple Window Circular Buffer

In the analyzed network, some out ports are connected to multiple in ports. The

MyFFT processing, for example, is connected to 8 convolution processings. The

design problem here is how to design a buffering data structure that supports a

single source of tokens with one writer and multiple readers, giving each one access

to a contiguous subsequence of tokens. This problem is addressed by the Multiple

Window Circular Buffer (in section 5.3.3).

Port Monitor

During the development process of the B-Format renderer dataflow, debugging

aids were needed (and used) to assess the correctness of the algorithm. A typical

situation consisted on feeding the network with a carefully chose small piece of

audio, usually in loop, and then analyze the stream flowing through some of the

out ports at run-time.

CLAM’s NetworkEditor let the user add visual components like oscilloscopes

and spectrogram connected to any suited out port. This was specially useful to

analyze the B-Format impulse-responses in the spectral domain, the final (con-

volved) B-Format in the time domain, and the 5.1 surround output.

The design problem involved in this situation deals with the real-time pro-

graming restrictions. On one hand the flowing tokens have to be transferred

to the visualization thread and the visualization should be fluid. On the other

hand, the real-time dataflow processing cannot be locked nor preempted by the

204 Chapter 6. Case Studies

visualization thread. This problem is addressed by the Port Monitor pattern (in

section 5.4.2).

6.3

Visualization of audio streams in

Streamcatcher

Though it’s recent publication, the TTSDF model has already been used in

other systems besides CLAM. Specifically, the model has been implemented by

Martin Gasser, a researcher at the Austrian Research Institute for Artificial In-

telligence (OFAI), and integrated it into “Streamcatcher”, an application for vi-

sualizing audio streams arranged by similarity [Gasser and Widmer, 2008]. Addi-

tionally, this application implements one of the most innovative patterns of our

pattern language, the Port Monitor. This application of the TTSDF model and

Port Monitor pattern to a system which is totally independent from the one that

motivated their development (that is, CLAM) gives an additional validation of

the model and pattern language.

6.3.1 Context

Martin approached the CLAM developers in November 2008 explaining he was

currently working on new scheduling strategies for dataflows that could cope better

with real-time. This arrived in perfect timing because at that time the TTSDF

model was just developed and documented, and it targeted the same real-time

problems Martin was facing. Therefore, Martin became an early adopter of the

TTSDF model, and provided a totally independent implementation of the model

run-time and it’s scheduling algorithm, as well as the Port Monitor pattern.

6.3. Visualization of audio streams in Streamcatcher 205

MP3Dec Mixer MFCC

EWM

EWC

Gauss

MP3Dec Mixer MFCC

EWM

EWC

Gauss

MP3Dec Mixer MFCC

EWM

EWC

Gauss

KL Div

Track
Database

GUI

2048 2048 2048 2048 2
1 1

1

12
1 1

1

1

2048 2048 2048 2048 2
1 1

1
1

2
1 1

1

2048 2048 2048 2048 2
1 1

1
1

2
1 1

1

1

1

Gain Window FFT Mel Log DCT

2048 1024 2048 2048 1 1 1 1 1 1

MFCC Sub-Processing

Stream 1:

Stream 2:

Stream N:

Figure 6.11: Streamcatcher general processing graph and its MFCC (mel-
frequency cepstral coefficients) sub graph. Note that multi-rate is caused by
audio windowing of the MFCC graph

6.3.2 Application of the TTSDF model and Port Monitor

pattern in Streamcatcher

Streamcatcher in an application that allows to explore visualizations of online

audio streams (e.g. radio streams). The visualization is defined by prototypical

instances from personal music collections in a content-based approach. Stream-

catcher generates an animated visualization that place similar audio streams to-

gether. The computation of music similarity and the visualization happen in

real-time.

Streamcatcher runs on top of a lightweight dataflow framework called “Flower”.

Figure 6.11 shows the processing TTSDF graph of Streamcatcher. The algorithm

performed by this graph goes like follows: It decodes and analyzes internet MP3

streams, incrementally builds statistical models by using exponentially weighted

206 Chapter 6. Case Studies

estimators for mean (EWM node) and covariance (EWC node), it continuously

calculates a distance measure (KL divergence node) between each MP3 stream and

a set of music clips supplied by the user, and visualizes the result by embedding

stream representations in an animated 2D visualization of the music clip distances.

To calculate the positions of the music clips, a multidimensional scaling algorithm

is used.

Additionally to running the graph in real-time using the TTSDF static schedul-

ing algorithm, Streamcatcher also makes use of one of our design patterns: The

KLDiv and Mixer nodes implement the Port Monitor pattern at their out-ports.

This design allows the application to show waveforms and similarity data in the

visualization module running on the GUI thread, while communicating safely (in

a lock-free way) with the audio-processing (TTSDF) thread.

More complex multi-rate applications are currently being developed with the

Streamcatcher TTSDF framework (Flower). The new applications include a real-

time vocal formant recognizer and a phase vocoder.

6.4

Summary

This chapter has presented three case studies that shows how the proposed

time-triggered model and dataflow pattern language are used in real-life systems.

Both abstractions (the model and the pattern language) are implemented

within the CLAM framework infrastructure. Therefore, CLAM and it’s appli-

cations are presented as the first case study. The presence of successful appli-

cations implemented with the framework validates the abstractions. CLAM is a

framework for rapid development of cross-platform audio and music applications.

It is well described by the 4MPS meta-model reviewed in another chapter (see

6.4. Summary 207

section 3.2). This chapter has reviewed the framework components and its main

applications.

The second case study is a specific multimedia system also developed with

CLAM. It’s underlying dataflow processing exhibits multi-rate, and exhibits an

interesting time-triggered scheduling. Moreover, the whole system involves audio,

video and 3D graphics. In this case study, we thoroughly analyse both the benefits

of the model and the patterns.

The third and last case study is an application for visualizing audio streams

arranged by similarity, built by researchers of the Austrian Research Institute for

Artificial Intelligence (OFAI). The application is called Streamcatcher, and it’s

underlying dataflow framework, implements both the TTSDF model and the Port

Monitor pattern. Interestingly, the OFAI application provides a totally indepen-

dent implementation that gives an additional validation to the model and pattern.

Next chapter concludes this dissertation and gives future lines of research.

CHAPTER 7

Conclusions

The research condensed in this dissertation was motivated by the problems faced

during years of activity building and analysing real-time multi-rate dataflow sys-

tems.

In this dissertation we have addressed two distinct but related problems: the

lack of models of computation that can deal with continuous multimedia streams

processing in real-time, and the lack of appropriate abstractions and systematic

development methods that enables the effective implementation of such models of

computation.

We have reviewed the background technologies upon which real-time multime-

dia systems are built, and the prior art that addresses similar problems. We have

shown how existing abstractions that supports multi-rate dataflow processing fall

short at covering the needs imposed by real-time restrictions, on the one hand; and

neither provide systematic methodologies to build dataflow-based applications, on

the other hand.

Next, we have proposed a solution for each problem: a model of computation

(TTSDF) capable of running dataflow graphs within real-time constrains, and a

pattern language that provides a systematic methodology to reuse design decisions

209

210 Chapter 7. Conclusions

for building multimedia processing applications.

As a case study, we have presented an object-oriented framework for multi-

media processing (CLAM), and specific applications, using the framework, that

we have built. We have also presented a third party application and framework

(Streamcatcher) from an Austrian research institute. All these frameworks and

applications make extensive use of the contributed TTSDF model and pattern

language.

We believe that multi-rate dataflows are still not widely used in multimedia

domains today —with exceptions, like Marsyas [Tzanetakis, 2008] and CLAM

frameworks—, mainly because of the previously stated lack of appropriate ab-

stractions, and run-time frameworks. Leveraging the declarative style of dataflow

combined with multi-rate and real-time capabilities promises more immediate and

efficient systems —for example, by making good use of available multi-processors—

, and, not less important, more expressive and human understandable abstractions.

Some of the multimedia sub-domains that we believe might take advantage

of the contributed abstractions are: video coding and decoding, multi-frame-rate

video processing, joint video and audio processing, audio processing in the spectral

domain, real-time video and audio feature extraction using arbitrary sized token

windows, and real-time computer graphics.

In the next sections we are going to, first, summarise the main contributions

of the thesis, and second, present a detailed list of the contributions.

7.1

Summary of Contributions

This dissertation addresses the shortcoming of dataflow models of computa-

tion regarding real-time capabilities by formally describing a new model that we

7.1. Summary of Contributions 211

named Time-Triggered Synchronous Dataflow (TTSDF) . The main in-

novation beyond the state of the art is that the TTSDF model schedules a dataflow

graph in cyclic schedules that can be interleaved by several time-triggered “acti-

vations” in a way that inputs and outputs of the processing graph are regularly

serviced.

We have shown that the TTSDF model has the same expressiveness (or equiv-

alent computability) as the well known Synchronous Dataflow (SDF) model. We

also have demonstrated that the model guarantees operating with the minimum

latency and absence of gaps or jitter in the output. Finally, we have shown that it

enables run-time load balancing between callback activations and parallelization.

The TTSDF model and the actor-oriented models in general are not and off-

the-shelf solutions and do not suffice for building multimedia systems in a system-

atic and engineering approach. We have addressed this problem by proposing a

catalog of domain-specific design patterns organized in a pattern lan-

guage. A pattern provides design reuse. It is a proven solution to a recurring

generic design problem. It pays special attention to the context in which is ap-

plicable and the competing forces it needs to balance and the consequences of its

application.

The thesis also contributes an open-source framework (CLAM) that im-

plements and exemplifies all the previous abstractions and constructs. This frame-

work is not only a platform for experimenting with models of computation and

software design, but it is actually used in real-life projects in the multimedia

domain, allowing domain experts to rapid prototype their real-time applications,

using high-level and domain-specific abstractions, without needing to worry about

implementation details.

212 Chapter 7. Conclusions

7.2

Detailed Contributions

This thesis has presented a number of novel ideas that address existing lim-

itations of dataflow models in respect of real-time, and the lack of systematic

methods to develop dataflow-based multimedia systems. This section enumerates

them all. The main contributions are emphasized with a bold font-style.

1. An actor-oriented model of computation, in the family of dataflow,

that we have named Time-Triggered Synchronous Dataflow (TTSDF). This

model overcomes the timeliness limitations of existing dataflow models, and

hence, adds real-time capabilities to the dataflow models. The TTSDF

model has been extensively exposed in chapter 4. It’s main properties are:

(a) Combines actors associated with time with untimed actors

(b) Retains token causality and dataflow semantics.

(c) Statically (before run-time) schedulable.

(d) Avoid jitter and uses optimum amount of latency. A superior bound

for the latency is given by the model.

(e) Fits naturally in callback-based architectures.

(f) Enables static analysis for optimum distribution of run-time load among

callbacks

(g) The scheduling is parallelizable in multiple processors using well known

techniques.

(h) The callback-based scheduling algorithm is easily adaptable to other

dataflow models (BDF, DDF)

2. Precise semantics for dataflow schedulings in callback-triggered architec-

tures, which can be used in different models of computation. Presented

in section 4.2.1.

7.2. Detailed Contributions 213

3. A formal notation for the callback-triggered semantics, based on formal lan-

guages. This notation is useful to reason about schedulability of dataflow

models. Presented in section 4.2.2.

4. A design pattern language for dataflow-based multimedia processing sys-

tems. It enables software developers to reuse tested design solutions into

their systems, and thus, applying systematic solutions to domain problems

with predictable trade-offs, and efficiently communicate and document de-

sign ideas.

These characteristics represents a significant departure from other ap-

proaches that focus on reusing code (libraries, frameworks).

The pattern language, has been presented in chapter 5. The pattern lan-

guage, though not comprehensive in all the multimedia processing domain,

focuses and is organized in the following four aspects :

(a) General Dataflow Patterns: Address problems about how to organize

high-level aspects of the dataflow architecture, by having different types

of modules connections. Presented in section 5.2.

i. Semantic Ports addresses distinct management of tokens by seman-

tic.

ii. Driver Ports addresses how to make modules executions indepen-

dent of the availability of certain kind of tokens.

iii. Stream and Event Ports addresses how to synchronize different

streams and events arriving to a module.

iv. Typed Connections addresses how to deal with typed tokens while

allowing the network connection maker to ignore the concrete

types.

(b) Flow Implementation Patterns: Address how to physically transfer to-

kens from one module to another, according to the types of flow defined

by the general dataflow patterns. Tokens life-cycle, ownership and mem-

ory management are recurrent issues in those patterns. Presented in

section 5.3.

i. Propagating Event Ports addresses the problem of having a high-

priority event-driven flow able to propagate through the network.

214 Chapter 7. Conclusions

ii. Multi-rate Stream Ports addresses how stream ports can consume

and produce at different rates;

iii. Multiple Window Circular Buffer addresses how a writer and mul-

tiple readers can share the same tokens buffer.

iv. Phantom Buffer addresses how to design a data structure both

with the benefits of a circular buffer and the guarantee of window

contiguity.

(c) Network Usability Patterns: Address how humans can interact with

dataflow networks without compromising the network processing effi-

ciency. Presented in section 5.4.

i. Recursive Networks makes it feasible for humans to deal with the

definition of big complex networks;

ii. Port Monitor addresses how to monitor a flow from a different

thread, without compromising the network processing efficiency.

(d) Visual Prototyping Patterns: Address how domain experts can gener-

ate applications on top of a dataflow network, with interactive GUI,

without needing programming skills. Presented in section 5.5.

i. Visual Prototyper Addresses how to dynamically build a graphical

user interface that interacts with the underlying dataflow model.

This pattern enables rapid applications prototyping using (but not

restricted to) visual tools.

5. Showing that design patterns provide useful design reuse in the domain of

multimedia processing systems. And showing that all the patterns can be

found in different applications and contexts. The known uses of each pattern

have been summarized in section 5.7.1.

6. Showing how design patterns are useful to communicate, document and com-

pare designs of audio systems. The design communication value of patterns

has been shown in section 5.7.2.

7. An open-source framework —CLAM— that implements all the concepts

and constructs presented in the thesis: the TTSDF model of computation

and all the proposed design patterns. CLAM enables multimedia domain

experts to quickly prototype (that is: with visual tools, without coding)

7.3. Open Issues and Future Work 215

real-time applications. Not all kind of applications but a significant part.

CLAM is not only a test-bed for theoretic concepts of this thesis, but a tool

actually used for real-world multimedia systems (specially in the music and

audio sub-domain). CLAM and its applications have been reviewed as a

case study for the time-triggered model and pattern language.

CLAM is freely available and, since it is free/libre software its source is avail-

able for study and modification. CLAM has been presented in section 6.1.

7.3

Open Issues and Future Work

7.3.1 Future Work in Time-Triggered Dataflows

The scheduling algorithm we have proposed have a lot of room for improvements

and extensions. The most basic of these improvements is balancing the run-time

load among callback activations. The current scheduling algorithm does not at-

tempt to optimize the run-time load, and this is clear in the scheduling examples

presented. Given that we have real-time restrictions, and each time-triggered

callback must end before it’s deadline, the scheduling should optimize for the

worst-case callback activation. If individual actors run-time execution loads are

given, such optimal scheduling should be easy to obtain —with a drawback of

combinational cost.

New algorithms introducing trade-offs between optimizing the latency and the

run-time load should be researched. The more latency we add to the scheduling,

the more freedom the scheduler will have to ordering the firings, and hence, op-

timizing the run-time load. Of course, this trade-off should be left to the system

designer.

216 Chapter 7. Conclusions

The parallel scheduler has been summarized, but it should be implemented,

and the aforementioned run-time balancing optimizations should also be studied

for the parallel case.

Assuming that the run-time of each actor execution is known “a priori” is not

very realistic. Dynamic techniques should be researched to estimate the actor’s

run-time.

Dataflow models execute actors atomically. When a dataflow network com-

bines low-rate actors that performs expensive executions with high-rate actors

that performs inexpensive executions, the run-time load is solely determined by

the low-rate expensive actor. This is the case, for example, of real-time audio

processing systems involving very long Fast Fourier Transforms. To overcome this

problem, new techniques combining preemption of low-rate actors with dataflow

schedulings should be researched.

Open architectures (such as audio or video plugins architectures) that leverage

parallelism and multiprocessors but are still compatible with callbacks for input

and output should be studied. Such architectures would not see the users callback

as a black-box function, but would have access to the dataflow graph declaration.

7.3.2 Future Work in Multimedia Dataflow Patterns

The rich area of actor-oriented models of computation would benefit from the pat-

terns techniques. Choosing between available models is hard. Patterns should be

developed to facilitate this choice, emphasizing the forces and design consequences

of each model. Similar to our pattern catalog for dataflow models, researching pat-

terns to implement and enrich other models of computation would be useful.

Some actor-oriented related techniques such as Neuendorffer’s Reconfiguration

of Actor-oriented Models (see [Neuendorffer, 2005]) should also benefit from being

reworked as a collection of patterns.

Empirical Quantitative Evaluation

Carrying out empirical evaluation of the teaching value of patterns, involves evalu-

ating how individuals perform on technical problems when they know the patterns

and when they do not. Due to the technical and specialized nature of our pat-

terns, we believe that finding a significant sample of individuals would be plainly

impossible.

7.3. Open Issues and Future Work 217

Another kind of empirical study suitable for patterns takes a “Darwinian”

approach. Consists on collecting data from many software projects under devel-

opment: comments in the code, logs of Version Control Systems (such as CVS,

CVS, GIT, etc.), mailing-lists discussions, and the like. Then automatically ana-

lyze and search for traces of pattern usage. Some other metrics can then capture

the activity and “health” of the project. Thus, projects that use patterns and

projects that do not can be compared.

Actually, this approach has been used in several studies on general patterns

in open-source projects [Hahsler, 2004]. Interestingly enough, they detect a clear

correlation between the adoption of patterns and the amount of development ac-

tivity. This kind of quantitative study for the presented patterns would be very

interesting. However, it requires many projects adopting those patterns, and this

takes time.

Growing the Pattern Language

The presented work focuses on dataflow-based infrastructure for multimedia sys-

tems. However, there are many multimedia systems sub-domains where design

patterns should be mined. Collecting a complete pattern catalog is a cumbersome

work far beyond of a single person effort. On the contrary, it is more appropriate

(and fun) to address as a living thing evolved by a community, similarly to the

Wikipedia project.

The presented pattern language could be further refined and completed. It

could be improved, for example, by splitting some of its bigger patterns into

smaller ones. The following is a brief description of possible future patterns that

would fit into the pattern language. It should be assessed that they hold the

needed pattern qualities. Nevertheless, the list gives the directions where the

catalog could grow.

1. Controller Module Addresses how user events from the (low-priority) out-

of-band partition can enter into the (high-priority) in-band partition and

propagated through the event ports connections.

2. Dynamic repository Addresses how applications can incorporate new mod-

ules without needing a rebuild, while keeping all modules organized in hier-

archical structure, using meta-data.

218 Chapter 7. Conclusions

3. Configuration Time Addresses how expensive changes, like memory alloca-

tion, in modules can be done, without effecting the network execution, while

providing error handling.

4. Configuration Object Addresses how modules can be configured by the user

without having to define user interfaces for each module, while allowing

configurations persistence.

5. Enhanced Types Addresses how to separate the type parameters from the

data itself for an efficient processing, while allowing automatic type compat-

ibility checking and rich data representation.

6. Partitioned streaming Addresses how the flow in a network can be parti-

tioned in high-level orchestrated tasks, when big buffers are not viable. For

example, a process needs a large number of consecutive tokens in its input

to start producing its stream. User intervention might be needed to define

the partition points. Outputs of every phase are stored in data pools. (Ex-

amples can be found in Unix pipes, i.e. cat | sed | sort | sert, and the D2K

framework.)

7. Stream time propagation Addresses how stream-tokens associated time can

be propagated though the network given that channels buffers (and possibly

the modules internally) causes latency.

7.4. Additional Insights 219

7.4

Additional Insights

Open-Source

We have found that patterns and open-source work synergystically. Open-source

boosts patterns on three fronts: One, open-source projects give material to pattern

writers for new patterns to mine; two, they are a source of concrete code examples

to people learning and using patterns; and three, they provide the necessary data

for a quantitative evaluation of their effectiveness in real-life projects.

On the other hand, patterns also boost open-source. As [Seen et al., 2000]

observes the design pattern adoption score very high in open-source developers.

Specifically, patterns require no infrastructure investment, they can be adopted

bottom-up and visible pattern adoption advertises competence. All three proper-

ties are certainly more important in an open-source environment than in a tra-

ditional company where the necessary infrastructure is provided and the man-

agement controls the development process. Another important aspect is about

communication efficiency. The channels where communication takes place in open-

source development (mailing lists, chats, forums. . .) are not appropriate for ver-

bose design descriptions and they motivate the use of a concise vocabulary for

communicate design ideas. Finally, our experience is that code documented with

design patterns is many times easier to understand. Patterns are not mere de-

sign solution but they also carry a deeper knowledge in form of “consequences” or

“forces resolution”.

Final Conclusion

This thesis proposes abstractions taking three different forms: dataflow models,

design pattern languages and frameworks. They all address the general chal-

lenges that experts in multimedia domain face: The features and complexity of

220 Chapter 7. Conclusions

their applications are growing rapidly, while, real-time requirements and reliability

standards increases.

We believe that these new abstractions represents a step forward in addressing

this problems, and contributes to make real-time multimedia computing “grow

up” out of the craftsman state into a genuinely scientific and more mature state.

APPENDIX A

Related Publications

This annex provides a list of published articles and authored open-source software.

1. Olaiz, N. Arumı́, P. Mateos, T. Garćıa, D. 2009. 3D-Audio with

CLAM and Blender’s Game Engine Proceedings of the 7th International

Linux Audio Conference (LAC09); April 2009; Parma, Italy.

2. Arumı́, P and Amatriain, X. 2008. Time-triggered Static Schedula-

ble Dataflows for Multimedia Systems Proceedings of the Sixteenth Annual

Multimedia Computing and Networking (MMCN’09); San Jose, California,

USA.

3. Arumı́, P. Garćıa, D. Mateos, T. Garriga, A and Durany, J. 2008,

Real-time 3D audio cinema for digital cinema, Proceedings of the 2nd joint

ASA-EAA conference Acoustics 08, Paris.

4. Bailer, W. Arumı́, P. Mateos, T. Garriga, A. Durany, J. and

Garćıa, D. 2008 Estimating 3D Camera Motion for Rendering Audio

in Virtual Scenes, 5th European Conference on Visual Media Production

(CVMP 2008).

221

222 Chapter A. Related Publications

5. Amatriain, X. Arumı́, P. Garćıa, D. 2007. A framework for efficient

and rapid development of cross-platform audio applications ACM Multi-

media Systems Journal

6. Garćıa, D. Arumı́, P. 2007. Visual prototyping of audio applications

Proceedings of 5th International Linux Audio Conference; Berlin, Germany

7. Arumı́, P. Sordo, M. Garćıa, D. Amatriain, X. 2006. Testfarm, una

eina per millorar el desenvolupament del programari lliure Proceedings of V

Jornades de Programari Lliure; Barcelona

8. Garćıa, D. Arumı́, P. Amatriain, X. 2006. Extraccio d’acords amb

l’Anotador de Musica de CLAM Proceedings of V Jornades de Programari

Lliure; Barcelona

9. Amatriain, X. Arumı́, P. Garćıa, D. 2006. CLAM: A Framework

for Efficient and Rapid Development of Cross-platform Audio Applications

Proceedings of ACM Multimedia 2006; Santa Barbara, CA

10. Arumı́, P. Garćıa, D. Amatriain, X. 2006. A Dataflow Pattern Lan-

guage for Audio and Music Computing Proceedings of Pattern Languages of

Programs 2006; Portland, Oregon

11. Arumı́, P. 2006. Towards a Pattern Language for Sound and Music Com-

puting Doctoral Pre-Thesis Work. UPF. Barcelona

12. Arumı́, P. Amatriain, X. 2005. CLAM, An Object-Oriented Framework

for Audio and Music Proceedings of 3rd International Linux Audio Confer-

ence; Karlsruhe, Germany

13. Amatriain, X. Arumı́, P. 2005. Developing Cross-platform Audio and

Music Applications with the CLAM Framework Proceedings of International

Computer Music Conference 2005; Barcelona

14. Arumı́, P. Garćıa, D. Amatriain, X. 2003. CLAM, Una llibreria lliure

per Audio i Musica Proceedings of II Jornades de Software Lliure; Barcelona,

Spain

15. Amatriain, X. Arumı́, P. Ramirez, M. 2002. CLAM, Yet Another

Library for Audio and Music Processing? Proceedings of 17th Annual ACM

223

Conference on Object-Oriented Programming, Systems, Languages and Ap-

plications; Seattle (USA)

16. Arumı́, P. 2002. CLAM : C++ Library for Audio and Music Master

Thesis UPC. FIB. Barcelona

224 Chapter A. Related Publications

A.1

Published Open-Source Software

List of authored and co-authored software. All these projects are currently

maintained.

• CLAM, the audio framework (described in section 6.1) —Recipient of the

2006 ACM multimedia open-source award, and participant project of Google

Summer of Code 2007 and 20081.

• TestFarm, the client-server continuous building and testing tool —written

in Python2.

• MiniCppUnit, a simple C++ xUnit testing framework3.

• Wiko, the Wiki Compiler —written in Python 4.

1CLAM web: http://clam-project.org
CLAM statistics: http://www.ohloh.net/projects/8306?p=CLAM
2TestFarm web: http://www.iua.upf.edu/~parumi/testfarm/
3MiniCppUnit web:http://www.iua.upf.edu/~parumi/MiniCppUnit/
4Wiko web: http://www.iua.upf.edu/~dgarcia/wiko/

http://clam-project.org
http://www.ohloh.net/projects/8306?p=CLAM
http://www.iua.upf.edu/~parumi/testfarm/
http://www.iua.upf.edu/~parumi/MiniCppUnit/
http://www.iua.upf.edu/~dgarcia/wiko/

APPENDIX B

TTSDF Scheduling Examples

For each example we use the following conventions: Callback activations in the

resulting scheduling are separated using parentheses “()”. The prologue and

periodic parts are separated with a “+”.

To allow comparing the TTSDF and SDF schedulings, we also give a non-

time-triggered scheduling obtained with a SDF scheduling algorithm. Finally, we

also give a diagram with the evolution of buffering during the periodic cycle. This

diagram shows the total amount of tokens, summing all FIFO queues.

B.0.1 Simple TTSDF Pipeline

i a
2

1
b

2

3
c

2

1
o

3

8

Γ =

26664
−2 0 0 1 0

3 −2 0 0 0

0 1 −2 0 0

0 0 8 0 −3

37775

• Executions per period ~q = {4, 6, 3, 8, 8} corresponding to nodes: a, b, c, i, o

225

226 Chapter B. TTSDF Scheduling Examples

• Time-Triggered scheduling. Prologue + period: (i0, o0), (i1, o1), (i2, o2) + (i0, a0,

b0, a1, b1, c0, o0), (i1, b2, o1), (i2, a2, b3, c1, o2), (i3, o3), (i4, a3, b4, o4), (i5, b5, c2, o5), (i6, o6), (i7,

o7)

• Optimal latency added by the TTSDF schedule prologue: 3 callback activa-

tions.

• SDF scheduling (non Time-Triggered) i0, i1, a0, b0, i2, i3, a1, b1, c0, i4, o0, b2, i5, o1, a2,

b3, c1, i6, o2, i7, o3, a3, b4, o4, b5, c2, o5, o6, o7

• Initial latency added by the SDF schedule (that is, number of input execu-

tions without a correspondent output execution): 4 callback activations.

B.0.2 Split and Reunify

a

b32

4

d
11

c
1

1

e

4
32

1

1

Γ =

26666664
4 −32 0 0 0

0 1 −1 0 0

0 0 32 0 −4

1 0 0 −1 0

0 0 0 1 −1

37777775

• Executions per period ~q = {8, 1, 1, 8, 8} corresponding to nodes: a, b, c, d, e

• Time-Triggered scheduling. Prologue + period: (a0, e0), (a1, e1), (a2, e2), (a3, e3),

(a4, e4), (a5, e5), (a6, e6) + (a0, b0, c0, d0, e0), (a1, d1, e1), (a2, d2, e2), (a3, d3, e3), (a4, d4, e4), (a5,

d5, e5), (a6, d6, e6), (a7, d7, e7)

227

• Optimal latency added by the TTSDF schedule prologue: 7 callback activa-

tions.

• SDF scheduling (non Time-Triggered) a0, d0, a1, d1, a2, d2, a3, d3, a4, d4, a5, d5, a6, d6,

a7, b0, c0, d7, e0, e1, e2, e3, e4, e5, e6, e7

• Initial latency added by the SDF schedule (that is, number of input execu-

tions without a correspondent output execution): 7 callback activations.

B.0.3 Dense Graph

a

b5

1

d
24

c
1

2
10

2
f

5
6

e

2
3

16

g
12

5
5

4

Γ =

266666666666666664

1 −5 0 0 0 0 0

4 0 0 −2 0 0 0

0 2 −1 0 0 0 0

0 0 −10 2 0 0 0

0 0 0 6 0 −5 0

0 0 0 3 −2 0 0

0 0 6 0 0 −1 0

0 0 0 0 4 −5 0

0 0 0 0 0 5 −12

377777777777777775
• Executions per period ~q = {5, 1, 2, 10, 15, 12, 5} corresponding to nodes: a,

b, c, d, e, f, g

• Time-Triggered scheduling. Prologue + period: (a0, g0), (a1, g1), (a2, g2), (a3, g3)

+ (a0, b0, d0, e0, d1, e1, d2, e2, d3, e3, d4, e4, c0, d5, e5, f0, d6, e6, f1, d7, e7, f2, g0), (a1, d8, e8, f3,

d9, e9, f4, g1), (a2, c1, e10, f5, e11, f6, e12, f7, g2), (a3, e13, f8, e14, f9, g3), (a4, f10, f11, g4)

228 Chapter B. TTSDF Scheduling Examples

• Optimal latency added by the TTSDF schedule prologue: 4 callback activa-

tions.

• SDF scheduling (non Time-Triggered) a0, d0, e0, a1, d1, e1, a2, d2, e2, a3, d3, e3, a4, b0,

d4, e4, c0, d5, e5, f0, d6, e6, f1, d7, e7, f2, g0, d8, e8, f3, d9, e9, f4, g1, c1, e10, f5, e11, f6, e12, f7, g2,

e13, f8, e14, f9, g3, f10, f11, g4

• Initial latency added by the SDF schedule (that is, number of input execu-

tions without a correspondent output execution): 4 callback activations.

B.0.4 Graph with Optimum Between Bounds

Example and name taken from [Ade et al., 1997].

a

b7

1

d

21

c
17

e
3

3

1

2

h

12
f

2

1

g
71

1

7

Γ =

266666666666666664

1 −7 0 0 0 0 0 0

1 0 0 −2 0 0 0 0

0 7 −1 0 0 0 0 0

0 0 0 3 −3 0 0 0

0 0 −1 0 2 0 0 0

0 0 0 0 2 0 0 −1

0 0 0 −2 0 1 0 0

0 0 0 0 0 1 −7 0

0 0 0 0 0 0 7 −1

377777777777777775

• Executions per period ~q = {14, 2, 14, 7, 7, 14, 2, 14} corresponding to nodes:

a, b, c, d, e, f, g, h

229

• Time-Triggered scheduling. Prologue + period: (a0, f0, c0, h0), (a1, f1, c1, h1), (a2,

f2, c2, h2), (a3, f3, c3, h3), (a4, f4, c4), h4), (a5, f5, c5), h5) + (a0, f0, b0, d0, e0, g0, c0), h0), (a1, f1,

d1, e1, c1, h1), (a2, f2, d2, e2, c2, h2), (a3, f3, d3, e3, c3, h3), (a4, f4, d4, e4, c4, h4), (a5, f5, d5, e5,

c5, h5), (a6, f6, c6, h6), (a7, f7, b1, d6, e6, g1, c7, h7), (a8, f8, c8, h8), (a9, f9, c9, h9), (a10, f10, c10,

h10), (a11, f11, c11, h11), (a12, f12, c12, h12), (a13, f13, c13, h13)

• Optimal latency added by the TTSDF schedule prologue: 6 callback activa-

tions.

• SDF scheduling (non Time-Triggered) a0, f0, a1, f1, a2, d0, e0, f2, a3, f3, a4, d1, e1, f4,

a5, f5, a6, b0, c0, d2, e2, f6, g0, h0 (completed first output), a7, c1, f7, h1, a8, c2, d3, e3, f8, h2, a9, c3,

f9, h3, a10, c4, d4, e4, f10, h4, a11, c5, f11, h5, a12, c6, d5, e5, f12, h6, a13, b1, c7, f13, g1, h7, c8, d6,

e6, h8, c9, h9, c10, h10, c11, h11, c12, h12, c13, h13

• Initial latency added by the SDF schedule (that is, number of input execu-

tions without a correspondent output execution): 7 callback activations.

230 Chapter B. TTSDF Scheduling Examples

B.0.5 Audio and Video Multi-Rate Pipelines

AudioIn

SpectralAnalysis1

64

128

SpectralAnalysis2

256

128

Filter

1

1

PitchShift

1

1

SpectralSynthesis1

1

1

SpectralSynthesis2

1

1

FrameRenderer

1

2

AudioOut1

128

64

AudioOut2

128

256

Mixer

128

256

VideoFrameOut

1

1

1

1

VideoFrameIn

1

1

Γ =

266666666666666666666666664

128 0 0 0 0 0 0 −64 0 0 0 0 0

128 0 0 0 0 0 0 0 −256 0 0 0 0

0 0 0 −1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 −1 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 1 0 0 0 −1 0 0

0 −128 0 0 0 0 0 0 0 64 0 0 0

0 0 −128 0 0 0 0 0 0 0 256 0 0

0 0 0 0 0 −128 0 0 0 0 256 0 0

0 0 0 0 −1 0 2 0 0 0 0 0 0

0 0 0 0 1 −1 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 0 −1

377777777777777777777777775

• Executions per period ~q = {2, 2, 2, 4, 2, 2, 1, 4, 1, 4, 1, 2, 2} corresponding to

nodes: AudioIn, AudioOut1, AudioOut2, Filter, FrameRenderer, Mixer,

PitchShift, SpectralAnalysis1, SpectralAnalysis2, SpectralSynthesis1, Spec-

tralSynthesis2, VideoFrameIn, VideoFrameOut

• Time-Triggered scheduling. Prologue + period:

231

(AudioIn0, VideoFrameIn0, AudioOut10, AudioOut20, VideoFrameOut0) + (AudioIn0,

VideoFrameIn0, SpectralAnalysis10, SpectralAnalysis20, Filter0, PitchShift0, SpectralAnalysis11,

SpectralSynthesis10, SpectralSynthesis20, Filter1, FrameRenderer0, Mixer0, SpectralAnalysis12,

SpectralSynthesis11, AudioOut10, AudioOut20), VideoFrameOut0), (AudioIn1,

VideoFrameIn1, Filter2, FrameRenderer1, Mixer1, SpectralAnalysis13, SpectralSynthesis12,

Filter3, SpectralSynthesis13, AudioOut11, AudioOut21, VideoFrameOut1)

• Optimal latency added by the TTSDF schedule prologue: 1 callback activa-

tions.

• SDF scheduling (non Time-Triggered) AudioIn0, SpectralAnalysis10, VideoFrameIn0,

AudioIn1, Filter0, SpectralAnalysis11, SpectralAnalysis20, SpectralSynthesis10, VideoFrameIn1,

Filter1, PitchShift0, SpectralAnalysis12, SpectralSynthesis11, SpectralSynthesis20, AudioOut10,

AudioOut20, Filter2, FrameRenderer0, Mixer0, SpectralAnalysis13, SpectralSynthesis12,

VideoFrameOut0, AudioOut21, Filter3, FrameRenderer1, Mixer1, SpectralSynthesis13,

VideoFrameOut1, AudioOut11

• Initial latency added by the SDF schedule (that is, number of input execu-

tions without a correspondent output execution): 2 callback activations.

232 Chapter B. TTSDF Scheduling Examples

B.0.6 Simplified Modem

InputBlock

BandsplittingFilter

1

1

HilbertFilter

4

1

2

PhaseLockedLoop

2

ComplexMultiplyer

2

2

Detector

2

2 D:2

2

D:1
1

1

2

2Decoder

2

2

OutputBlock

1

8

A

B

C

AdaptiveEqualizer

4
2

2

D E

F

G

H

I

Γ =

2666666666666666666664

0 −1 0 0 0 0 1 0 0

0 1 0 0 0 −4 0 0 0

−4 0 0 0 0 2 0 0 0

2 0 0 0 0 0 0 0 −2

0 0 −2 0 0 0 0 0 2

0 0 0 0 −2 0 0 0 2

−2 0 2 0 0 0 0 0 0

0 0 0 0 1 0 0 0 −1

0 0 0 −2 2 0 0 0 0

0 0 −2 0 2 0 0 0 0

0 0 0 8 0 0 0 −1 0

3777777777777777777775

• Executions per period ~q = {1, 8, 1, 1, 1, 2, 8, 8, 1} corresponding to nodes:

AdaptiveEqualizer, BandsplittingFilter, ComplexMultiplyer, Decoder, Detec-

tor, HilbertFilter, InputBlock, OutputBlock, PhaseLockedLoop

• Time-Triggered scheduling. Prologue + period: (InputBlock0, OutputBlock0),

(InputBlock1, OutputBlock1), (InputBlock2, OutputBlock2), (InputBlock3, OutputBlock3),

(InputBlock4, OutputBlock4), (InputBlock5, OutputBlock5), (InputBlock6, OutputBlock6)

+ (InputBlock0, BandsplittingF ilter0, BandsplittingF ilter1, BandsplittingF ilter2,

BandsplittingF ilter3, HilbertF ilter0, BandsplittingF ilter4, BandsplittingF ilter5,

BandsplittingF ilter6, BandsplittingF ilter7, HilbertF ilter1, AdaptiveEqualizer0, PhaseLockedLoop0,

Detector0, ComplexMultiplyer0, Decoder0, OutputBlock0), (InputBlock1, OutputBlock1),

(InputBlock2, OutputBlock2), (InputBlock3, OutputBlock3), (InputBlock4, OutputBlock4),

(InputBlock5, OutputBlock5), (InputBlock6, OutputBlock6), (InputBlock7, OutputBlock7)

233

• Optimal latency added by the TTSDF schedule prologue: 7 callback activa-

tions.

• SDF scheduling (non Time-Triggered) InputBlock0, BandsplittingF ilter0,

InputBlock1, BandsplittingF ilter1, InputBlock2, BandsplittingF ilter2, InputBlock3,

BandsplittingF ilter3, HilbertF ilter0, InputBlock4, BandsplittingF ilter4, InputBlock5,

BandsplittingF ilter5, InputBlock6, BandsplittingF ilter6, InputBlock7, BandsplittingF ilter7,

HilbertF ilter1, AdaptiveEqualizer0, PhaseLockedLoop0, Detector0, ComplexMultiplyer0, Decoder0,

OutputBlock0, OutputBlock1, OutputBlock2, OutputBlock3, OutputBlock4, OutputBlock5,

OutputBlock6, OutputBlock7

• Initial latency added by the SDF schedule (that is, number of input execu-

tions without a correspondent output execution): 8 callback activations.

Bibliography

[Adam et al., 1974] Adam, T., Chandy, K., and Dickson, J. (1974). A Comparison

of List Schedules for Parallel Processing Systems.

[Ade et al., 1997] Ade, M., Lauwereins, R., and Peperstraete, J. A. (1997). Data

memory minimisation for synchronous data flow graphs emulated on dsp-fpga

targets. In DAC ’97: Proceedings of the 34th annual conference on Design

automation, pages 64–69, New York, NY, USA. ACM Press.

[Agha, 1986] Agha, G. (1986). Actors: A model of concurrent computation in

Distributed Systems. MIT Press, Cambridge, MA.

[Alexander, 1977] Alexander, C. (1977). A Pattern Language: Towns, Buildings,

Construction. Oxford University Press, USA.

[Amatriain, 2004] Amatriain, X. (2004). An Object-Oriented Metamodel for Dig-

ital Signal Processing. PhD thesis, Universitat Pompeu Fabra.

[Amatriain, 2007a] Amatriain, X. (2007a). A Domain-Specific Metamodel for

Multimedia Processing Systems. Multimedia, IEEE Transactions on, 9(6):1284–

1298.

[Amatriain, 2007b] Amatriain, X. (2007b). Clam: A framework for audio and

music application development. IEEE Software, 24(1):82–85.

[Amatriain and Arumı́, 2005] Amatriain, X. and Arumı́, P. (2005). Developing

cross-platform audio and music applications with the clam framework. In Pro-

235

236 BIBLIOGRAPHY

ceedings of the 2005 International Computer Music Conferenc (ICMC’05). in

press.

[Amatriain et al., 2002a] Amatriain, X., Bonada, J., Loscos, A., and Serra, X.

(2002a). DAFX: Digital Audio Effects (Udo Zölzer ed.), chapter Spectral Pro-

cessing, pages 373–438. John Wiley and Sons, Ltd.

[Amatriain et al., 2002b] Amatriain, X., de Boer, M., Robledo, E., and Garcia, D.

(2002b). CLAM: An OO Framework for Developing Audio and Music Applica-

tions. In Proceedings of the 2002 Conference on Object Oriented Programming,

Systems and Application (OOPSLA 2002)(Companion Material), Seattle, USA.

ACM.

[Amatriain et al., 2005] Amatriain, X., Massaguer, J., Garcia, D., and Mosquera,

I. (2005). The clam annotator: A cross-platform audio descriptors editing tool.

In Proceedings of 6th International Conference on Music Information Retrieval,

London, UK.

[Appleton, 1997] Appleton, B. (1997). Patterns and software: Essential concepts

and terminology.

[Armstrong et al., 1996] Armstrong, J., Williams, R., Virding, M., and Wik-

stroem, C. (1996). Concurrent Programing in Erlang. Prentice-Hal.

[Aucouturier, 2006] Aucouturier, J. (2006). Ten Experiments on the Modelling of

Polyphonic Timbre. PhD thesis, University of Paris 6/Sony CSL Paris.

[Aynsley and Long, 2005] Aynsley, J. and Long, D. (2005). Draft standard Sys-

temC language reference manual. Technical report, Technical report, Open

SystemC Initiative.

[Beck, 1988] Beck, K. (1988). Using pattern languages for object-oriented pro-

grams. In ACM SIGPLAN.

[Beck et al., 1996] Beck, K., Coplien, J. O., Crocker, R., Dominick, L., Meszaros,

G., Paulisch, F., and Vlissides, J. (1996). Industrial experience with design

patterns. In Proceedings of the 18th International Conference on Software En-

gineering, pages 103–114. IEEE Computer Society Press.

BIBLIOGRAPHY 237

[Beck and Johnson, 1994] Beck, K. and Johnson, R. (1994). Patterns generate

architectures. Lecture Notes in Computer Science, 821:139–149.

[Bencina and Burk, 2001] Bencina, R. and Burk, P. (2001). Port Audio: an Open

Source Cross Platform Audio API. In Proceedings of the 2001 International

Computer Music Conference (ICMC ’01). Computer Music Associaciation.

[Benveniste et al., 2003] Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N.,

Le Guernic, P., and de Simone, R. (2003). The synchronous languages twelve

years later. Proceedings of the IEEE, 91(1):64–83.

[Bhattacharya and Bhattacharyya, 2001] Bhattacharya, B. and Bhattacharyya,

S. (2001). Parameterized dataflow modeling for DSP systems. Signal Process-

ing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing,

IEEE Transactions on], 49(10):2408–2421.

[Booch, 1994] Booch, G. (1994). Object-Oriented Analysis and Design with Ap-

plications. Benjamin/Cummings, second edition edition.

[Borchers, 2000] Borchers, J. O. (2000). A pattern approach to interaction design.

In Symposium on Designing Interactive Systems, pages 369–378.

[Boulanger et al., 2000] Boulanger, R. et al. (2000). The Csound Book. MIT press.

[Buck, 1993] Buck, J. (1993). Scheduling Dynamic Dataflow Graphs with Bounded

Memory Using the Token Flow Model. PhD thesis, University of California.

[Buck and Lee, 1994] Buck, J. and Lee, E. A. (1994). Advanced Topics in Dataflow

Computing and Multithreading, chapter The Token Flow Model. IEEE Com-

puter Society Press.

[Buck and Vaidyanathan, 2000] Buck, J. and Vaidyanathan, R. (2000). Heteroge-

neous modeling and simulation of embedded systems in El Greco. International

Conference on Hardware Software Codesign: Proceedings of the eighth interna-

tional workshop on Hardware/software codesign, 2000:142–146.

[Burbeck, 1987] Burbeck, S. (1987). Application programming in smalltalk-80:

How to use model-view-controller (mvc). Technical report, Xerox PARC.

238 BIBLIOGRAPHY

[Buschman et al., 1996a] Buschman, F., Meunier, R., Rohnert, H., Sommerlad,

P., and Stal, M. (1996a). Pattern-Oriented Software Architecture - A System of

Patterns. John Wiley & Sons.

[Buschman et al., 1996b] Buschman, F., Meunier, R., Rohnert, H., Sommerlad,

P., and Stal, M. (1996b). Pattern-Oriented Software Architecture - A System of

Patterns. John Wiley & Sons.

[Chaudhary et al., 1999] Chaudhary, A., Freed, A., and Wright, M. (1999). An

Open Architecture for Real-Time Audio Processing Software. In Proceedings of

the Audio Engineering Society 107th Convention.

[Cook and Scavone, 1999] Cook, P. and Scavone, G. (1999). The Synthesis

Toolkik (STK). In Proceedings of the 1999 International Computer Music Con-

ference (ICMC99), Beijing, China. Computer Music Association.

[Coplien, 1998] Coplien, J. (1998). Software Design Patterns: Common Questions

and Answers. The Patterns Handbook: Techniques, Strategies, and Applications.

Cambridge University Press, NY, January, pages 311–320.

[Coplien and Schmidt, 1995] Coplien, J. and Schmidt, D. (1995). Pattern lan-

guages of program design. ACM Press/Addison-Wesley Publishing Co. New

York, NY, USA.

[Dabney and Harman, 2001] Dabney, J. and Harman, T. (2001). Mastering

SIMULINK 4.

[Dannenberg, 2004] Dannenberg, R. (2004). Combining visual and textual repre-

sentations for flexible interactive audio signal processing. In Proceedings of the

2004 International Computer Music Conferenc (ICMC’04). in press.

[Dannenberg and Brandt, 1996a] Dannenberg, R. B. and Brandt, E. (1996a). A

Flexible Real-Time Software Synthesis System. In Proceedings of the 1996 In-

ternational Computer Music Conference (ICMC96), pages 270–273.

[Dannenberg and Brandt, 1996b] Dannenberg, R. B. and Brandt, E. (1996b). A

Portable, High-Performance System for Interactive Audio Processing. In Pro-

ceedings of the 1996 International Computer Music Conference (ICMC96),

pages 270–273. International Computer Music Association.

BIBLIOGRAPHY 239

[Davis et al., 2004] Davis, P., Letz, S., D., F., and Orlarey, Y. (2004). Jack Audio

Server: MacOSX port and multi-processor version. In Proceedings of the first

Sound and Music Computing conference - SMC04, pages 177–183.

[Dennis, 1974] Dennis, J. (1974). First version of a data flow procedure language,

Programming Symposium. Proceedings Colloque sur la Programmation, pages

362–376.

[Douglass, 2003] Douglass, B. P. (2003). Real-Time Design Patterns. Addison-

Wesley.

[Edwards, 1995] Edwards, S. (1995). Streams: a Pattern for ”Pull-Driven. In

Coplien, J. O. and Schmidt, D. C., editors, Pattern Languages of Program

Design, volume vol.1, chapter 21. Addison-Wesley.

[Edwards et al., 2001] Edwards, S., Lavagno, L., Lee, E. A., and Sangiovanni-

Vincentelli, A. (2001). Design of Embedded Systems: Formal Models, Valida-

tion, and Synthesis. Readings in Hardware/Software Co-Design.

[Edwards and Tardieu, 2005] Edwards, S. and Tardieu, O. (2005). SHIM: a de-

terministic model for heterogeneous embedded systems. Proceedings of the 5th

ACM international conference on Embedded software, pages 264–272.

[Eker et al., 2003] Eker, J., Janneck, J., Lee, E. A., Liu, J., Liu, X., Ludvig, J.,

Neuendorffer, S., Sachs, S., and Xiong, Y. (2003). Taming heterogeneity-the

Ptolemy approach. Proceedings of the IEEE, 91(1):127–144.

[Fielding, 2000] Fielding, R. (2000). Architectural Styles and the Design of

Network-based Software Architectures. PhD thesis, University of California,

Irvine.

[Fong, 2000] Fong, C. (2000). Discrete-Time Dataflow Models for Visual Simula-

tion in Ptolemy II. Master’s Report, Memorandum UCB/ERL M, 1.

[Foote, 1988] Foote, B. (1988). Designing to Facilitate Change With Object Ori-

ented Frameworks. Master’s thesis, University of Illinois at Urbana Champaign.

[Fowler et al., 1999] Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D.

(1999). Refactoring: Improving the Design of Existing Code. Addison-Wesley.

240 BIBLIOGRAPHY

[Gambier, 2004] Gambier, A. (2004). Real-time Control Systems: A Tutorial.

Control Conference, 2004. 5th Asian, 2.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).

Design Patterns - Elements of Reusable Object-Oriented Software. Addison-

Wesley.

[Gao et al., 1992] Gao, G., Govindarajan, R., and Panangaden, P. (1992). Well-

behaved dataflow programs for DSP computation. Acoustics, Speech, and Signal

Processing, 1992. ICASSP-92., 1992 IEEE International Conference on, 5.

[Garcia and Amatrian, 2001] Garcia, D. and Amatrian, X. (2001). XML as a

means of control for audio processing, synthesis and analysis. In Proceedings of

the MOSART Workshop on Current Research Directions in Computer Music,

Barcelona, Spain.

[Gasser and Widmer, 2008] Gasser, M. and Widmer, G. (2008). Streamcatcher:

Integrated Visualization of Music Clips and Online Audio Streams. In ISMIR

08: Proceedings of the 9th International Conference on Music Information Re-

trieval.

[Geilen and Basten, 2003] Geilen, M. and Basten, T. (2003). Requirements on

the execution of kahn process networks. In Proceedings of the 12th European

Symposium on Programming, ESOP.

[Gerzon, 1973] Gerzon, M. A. (1973). Periphony: With-height sound re-

production. Journal of the Audio Engineering Society, 21:2–10.

[Girault et al., 1999] Girault, A., Lee, B., and Lee, E. A. (1999). Hierarchical finite

state machines with multiple concurrency models. Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, 18(6):742–760.

[Gordon and Talley, 1999] Gordon, R. and Talley, S. (1999). Essential JMF: Java

media framework. Prentice Hall PTR.

[Graham, 1991] Graham, I. (1991). Object Oriented Methods. Addison-Wesley.

[Gray, 2003] Gray, K. (2003). Microsoft DirectX 9 programmable graphics pipeline.

Microsoft Press.

BIBLIOGRAPHY 241

[Green and Petre, 1996] Green, T. R. G. and Petre, M. (1996). Usability analy-

sis of visual programming environments: A ’cognitive dimensions’ framework.

Journal of Visual Languages and Computing, 7(2):131–174.

[Haas, 2001] Haas, J. (2001). SALTO - A Spectral Domain Saxophone Synthe-

sizer. In Proceedings of MOSART Workshop on Current Research Directions in

Computer Music, Barcelona, Spain.

[Hahsler, 2004] Hahsler, M. (2004). A quantitative study of the application of

design patterns in java.

[Halbwachs, 1998] Halbwachs, N. (1998). Synchronous programming of reactive

systems. In Computer Aided Verification, pages 1–16.

[Henzinger et al., 2001] Henzinger, T., Horowitz, B., and Kirsch, C. (2001).

Giotto: A Time-Triggered Language for Embedded Programming. Embed-

ded Software: First International Workshop, EMSOFT 2001, Tahoe City, CA,

USA, October 8-10, 2001: Proceedings.

[Henzinger et al., 2003] Henzinger, T., Horowitz, B., and Kirsch, C. (2003).

Giotto: a time-triggered language for embedded programming. Proceedings

of the IEEE, 91(1):84–99.

[Hewit, 1977] Hewit, C. (1977). Viewing control structures as patterns of passing

messages. Journal of Artificial Intelligence, 8(3):323–363.

[Hewitt and Baker, 1977] Hewitt, C. and Baker, H. (1977). Actors and Continu-

ous Functionals. IFIP Working Conf. on Formal Description of Programming

Concepts, August.

[Hylands et al., 2003] Hylands, C., Lee, E., Liu, J., Liu, X., Neuendorffer, S.,

Xiong, Y., Zhao, Y., and Zheng, H. (2003). Overview of the Ptolemy Project.

Technical report, Department of Electrical Engineering and Computer Science,

University of California, Berkeley, Berklee, California.

[Johnson and Jennings, 2001] Johnson, G. and Jennings, R. (2001). LabVIEW

Graphical Programming. McGraw-Hill Professional.

[Judkins and Gill, 2000] Judkins, T. and Gill, C. (2000). A Pattern Language for

Designing Digital Modular Synthesis Software.

242 BIBLIOGRAPHY

[Kahn and MacQueen, 1977] Kahn, G. and MacQueen, D. (1977). Coroutines and

Networks of Parallel Processes. Information Processing 77, Proceedings of IFIP

Congress, 77(7):993–998.

[Kerihuel et al., 1994] Kerihuel, A., Mcconnell, R., and Rajopadhye, S. (1994).

Vsdf: synchronous data flow for vlsi. In Circuits and Systems, 1994., Proceed-

ings of the 37th Midwest Symposium on, volume 1, pages 389–392vol.1.

[Kohler, 1975] Kohler, W. (1975). A Preliminary Evaluation of the Critical Path

Method for Scheduling Tasks on Multiprocessor Systems. IEEE Transactions

on Computers, 24(12):1235–1238.

[Larman, 2002] Larman, C. (2002). Applying UML and Patterns: An Introduction

to Object-Oriented Analysis and Design and the Unified Process. Prentice-Hall,

second edition.

[Lawrence, 2003] Lawrence, J. (2003). Standards-Orthogonality of verilog data

types and object kinds. IEEE Design & Test of Computers, 20(5):94–96.

[Lazzarini, 2001] Lazzarini, V. (2001). Sound Processing with the SndObj Library:

An Overview. In Proceedings of the 4th International Conference on Digital

Audio Effects (DAFX ’01).

[Ledeczi et al., 2001] Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett,

J., Thomason, C., Nordstrom, G., Sprinkle, J., and Volgyesi, P. (2001). The

Generic Modeling Environment. Workshop on Intelligent Signal Processing,

Budapest, Hungary, May, 17.

[Lee and Zhao, 2007] Lee, E. and Zhao, Y. (2007). Reinventing computing for

real time. Lecture Notes in Computer Science, 4322:1.

[Lee, 1999] Lee, E. A. (1999). Modeling concurrent real-time processes using dis-

crete events. Annals of Software Engineering, 7(1):25–45.

[Lee, 2002] Lee, E. A. (2002). Embedded software. Advances in Computers, 56:56–

97.

[Lee and Messerschmitt, 1987a] Lee, E. A. and Messerschmitt, D. G. (1987a).

Static scheduling of synchronous data flow programs for digital signal process-

ing. IEEE Trans. Comput., 36(1):24–35.

BIBLIOGRAPHY 243

[Lee and Messerschmitt, 1987b] Lee, E. A. and Messerschmitt, D. G. (1987b).

Synchronous data flow. Proc. of the IEEE., 75(9):1235–1245.

[Lee and Parks, 1995] Lee, E. A. and Parks, T. (1995). Dataflow Process Net-

works. Proceedings of the IEEE, 83(5):773–801.

[Liu and Layland, 1973] Liu, C. and Layland, J. (1973). Scheduling Algorithms

for Multiprogramming in a Hard-Real-Time Environment. Journal of the ACM

(JACM), 20(1):46–61.

[Liu, 2000] Liu, J. (2000). Real-Time Systems. Prentice Hall.

[Malham and Myatt, 1995] Malham, D. and Myatt, A. (1995). 3-D sound spatial-

ization using ambisonic techniques. Computer Music Journal, 19(4):58–70.

[Manolescu, 1997] Manolescu, D. A. (1997). A Dataflow Pattern Language. In

Proceedings of the 4th Pattern Languages of Programming Conference.

[McCartney, 2002] McCartney, J. (2002). Rethinking the Computer Music Lan-

guage: SuperCollider. Computer Music Journal, 26(4):61–68.

[Meunier, 1995] Meunier, R. (1995). The Pipes and Filter Architecture. In

Coplien, J. O. and Schmidt, D. C., editors, Pattern Languages of Program

Design, volume vol.1, chapter 22. Addison-Wesley.

[Mok, 1983] Mok, A. K. (1983). Fundamental Design Problems of Distributed Sys-

tems for the Hard-Real-Time Environment. PhD thesis, Massachusetts Institute

of Technology Cambridge, MA, USA.

[Murata, 1989] Murata, T. (1989). Petri Nets: Properties, Analysis and Applica-

tions. In Proceedings of the IEEE, volume 77.

[Neuendorffer and Lee, 2004] Neuendorffer, S. and Lee, E. A. (2004). Hierarchical

Reconfiguration of Dataflow Models. In Conference on Formal Methods and

Models for Codesign (MEMOCODE).

[Neuendorffer, 2005] Neuendorffer, S. A. (2005). Actor-Oriented Metaprogram-

ming. PhD thesis, EECS Department, University of California, Berkeley.

[Orlarey et al., 2004] Orlarey, Y., Fober, D., and Letz, S. (2004). Syntactical

and semantical aspects of Faust. Soft Computing-A Fusion of Foundations,

Methodologies and Applications, 8(9):623–632.

244 BIBLIOGRAPHY

[Papadopoulos and Arbab, 1998] Papadopoulos, G. and Arbab, F. (1998). Coor-

dination models and languages. Advances in Computers, 46(329-400):76.

[Parks, 1995] Parks, T. M. (1995). Bounded Schedule of Process Networks. PhD

thesis, University of California at Berkeley.

[Pastrnak et al., 2004] Pastrnak, M., Poplavko, P., de With, P., and Farin, D.

(2004). Data-flow timing models of dynamic multimedia applications for mul-

tiprocessor systems. In System-on-Chip for Real-Time Applications, 2004.Pro-

ceedings. 4th IEEE International Workshop on, pages 206–209.

[Perry, 1993] Perry, D. (1993). VHDL. Mcgraw-Hill Series On Computer Engi-

neering, page 390.

[Pope and Ramakrishnan, 2003] Pope, S. T. and Ramakrishnan, C. (2003). The

Create Signal Library (”Sizzle”): Design, Issues and Applications. In Proceed-

ings of the 2003 International Computer Music Conference (ICMC ’03).

[Posnak and M., 1996] Posnak, E. J. Lavander, R. G. and M., H. (1996). Adaptive

pipeline: an object structural pattern for adaptive applications. In The 3rd

Pattern Languages of Programming conference, Monticello, IL, USA.

[Prechelt et al., 1998] Prechelt, L., Unger, B., Philippsen, M., and Tichy, W.

(1998). Two controlled experiments assessing the usefulness of design pattern

information during program maintenance.

[Puckette, 1991] Puckette, M. (1991). Combining Event and Signal Processing in

the MAX Graphical Programming Environment. Computer Music Journal.

[Puckette, 1997] Puckette, M. (1997). Pure Data. In Proceedings of the 1997

International Music Conference (ICMC ’97), pages 224–227. Computer Music

Association.

[Puckette, 2002] Puckette, M. (2002). Max at Seventeen. Computer Music Jour-

nal, 26(4):31–43.

[Roberts and Johnson, 1996] Roberts, D. and Johnson, R. (1996). Evolve Frame-

works into Domain-Specific Languages. In Procedings of the 3rd International

Conference on Pattern Languages for Programming, Monticelli, IL, USA.

BIBLIOGRAPHY 245

[Seen et al., 2000] Seen, M., Taylor, P., and Dick, M. (2000). Applying a crystal

ball to design pattern adoption. tools, 00:443.

[Shaw, 1996] Shaw, M. (1996). Some Patterns for Software Architecture. In Vlis-

sides, J. M., Coplien, J. O., and Kerth, N. L., editors, Pattern Languages of

Program Design, volume vol.2, chapter 16. Addison-Wesley.

[Stallings, 1998] Stallings, W. (1998). Operating systems: internals and design

principles. Prentice-Hall, Inc. Upper Saddle River, NJ, USA.

[Stankovic, 1988] Stankovic, J. (1988). Misconceptions About Real-Time Com-

puting: A Serious Problem for Next-Generation Systems. Computer, 21(10):10–

19.

[Steinmetz, 1995] Steinmetz, R. (1995). Analyzing the multimedia operating sys-

tem. IEEE MultiMedia, 2(1):68–84.

[Steinmetz, 1996] Steinmetz, R. (1996). Human perception of jitter and me-

dia synchronization. Selected Areas in Communications, IEEE Journal on,

14(1):61–72.

[Szyperski, 1998] Szyperski, C. (1998). Component Software: Beyond Object-

Oriented Software. ACM/Addison-Wesley.

[Taymans et al., 2008] Taymans, W., Baker, S., Wingo, A., S., B. R., and Kost,

S. (2008). GStreamer application development manual 0.10.19.

[Torger and Farina, 2001] Torger, A. and Farina, A. (2001). Real-time partitioned

convolution for Ambiophonics surround sound. Applications of Signal Processing

to Audio and Acoustics, 2001 IEEE Workshop, pages 195–198.

[Tzanetakis, 2008] Tzanetakis, G. (2008). Intelligent Music Information Systems:

Tools and Methodologies, chapter Marsyas-0.2: a case study in implementing

Music Information Retrieval Systems, pages 31–49.

[Tzanetakis and Cook, 2002] Tzanetakis, G. and Cook, P. (2002). Audio Infor-

mation Retrieval using Marsyas. Kluewe Academic Publisher.

[van Dijk et al., 2002] van Dijk, H. W., Sips, H. J., and Deprettere, E. F. (2002).

On Context-aware Process Networks. In Proceedings of the International Sym-

posium on Mobile Multimedia & Applications (MMSA 2002)).

246 BIBLIOGRAPHY

[Vlissides, 1998] Vlissides, J. (1998). Pattern Hatching, Desing Patterns Applied.

Addison-Wesley.

[Wadge and Ashcroft, 1985] Wadge, W. and Ashcroft, E. (1985). LUCID, the

dataflow programming language. Academic Press Professional, Inc. San Diego,

CA, USA.

[Walli, 1995] Walli, S. (1995). The POSIX family of standards. StandardView,

3(1):11.

[Wang and Cook, 2004] Wang, G. and Cook, P. (2004). ChucK: a programming

language for on-the-fly, real-time audio synthesis and multimedia. Proceedings

of the 12th annual ACM international conference on Multimedia, pages 812–815.

[Weinand et al., 1989] Weinand, A., Gamma, E., and Marty, R. (1989). Design

and Implementation of ET++, a Seamless Object-Oriented Application Frame-

work. Structured Programming, 10(2).

[Wilson, 1990] Wilson, D. A. (1990). Programming With Macapp. Addison-

Wesley.

[Wright, 1998] Wright, M. (1998). Implementation and Performance Issues with

Open Sound Control. In Proceedings of the 1998 International Computer Music

Conference (ICMC ’98). Computer Music Association.

[www-CLAM,] www-CLAM. CLAM website: http://clam-project.org.

[www-PatternsEssential,] www-PatternsEssential. Pattern

and Software: Essential Concepts and Terminology,

http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html.

[Yu-Kwong, 1996] Yu-Kwong, I. (1996). Dynamic Critical-Path Scheduling: An

Effective Technique for Allocating Task Graphs to Multiprocessors.

	Introduction
	The Problem
	The Problem of Timeliness and Synchronous Dataflow
	The Lack of Systematic Design Methods for Actor-Oriented Systems

	The Proposed Solution
	The Time-Triggered Synchronous Dataflow
	A Pattern Language for Dataflow-Based Multimedia Processing Systems

	The Method
	The Systems Engineering Approach
	The Software Engineering Approach

	Contributions
	List of Specific Contributions

	Thesis Organization

	Background
	The Multimedia Operating System
	Multimedia Processing Systems Requirements
	Soft vs. Hard Real-Time
	Operating Systems Real-Time Facilities
	Operating-System Scheduling vs. Dataflow Scheduling
	From Hardware Interrupt to User-Space Response
	The Standard 2.6 Linux Kernel
	Real-time programming styles: Callbacks vs. Blocking I/O

	Actor-Oriented Design
	Actor-Oriented Models of Computation
	Dataflow Models of Computation
	Synchronous Dataflow Networks
	Static Scheduling of Dataflow Graphs
	Boolean-controlled Dataflow
	Dynamic Dataflow
	Process Networks
	Context-aware Process Networks
	Petri Nets

	Object Oriented Technologies
	Frameworks

	Design Patterns
	A Brief History of Design Patterns
	Pattern Misconceptions
	Patterns, Frameworks and Architectures
	Empirical Studies
	Pattern Languages

	Summary

	State of the Art
	Timeliness Dataflow Models
	Timeliness extensions to Synchronous Dataflow
	Related Timeliness Models of Computation

	Object-Oriented Meta-Model for Multimedia Processing Systems
	Previous Efforts in Multimedia Design Patterns
	General Dataflow Patterns
	Pattern: Data flow architecture
	Pattern: Payloads
	Pattern: Module data protocol
	Pattern: Out-of-band and in-band partitions

	Summary

	Time-Triggered Synchronous Dataflow
	The Problem of Timeliness in Dataflows
	The TTSDF Computation Model
	Callback-based Coordination Language
	Formal Computation Model

	Static Scheduling of TTSDF Graphs
	The TTSDF Scheduling Algorithm
	Cost Analysis of the Scheduling Algorithm
	TTSDF Scheduling Example

	The Parallel TTSDF Scheduling
	Applying the Time-Triggered Scheduling to Other Dataflows
	Summary
	Applicability and Future Work

	A Multimedia Dataflow Pattern Language
	Chosen Pattern Structure
	General Dataflow Patterns
	Pattern: Semantic Ports
	Pattern: Driver Ports
	Pattern: Stream and Event Ports
	Pattern: Typed Connections

	Flow Implementation Patterns
	Pattern: Propagating Event Ports
	Pattern: Multi-rate Stream Ports
	Pattern: Multiple Window Circular Buffer
	Pattern: Phantom Buffer

	Network Usability Patterns
	Pattern: Recursive networks
	Pattern: Port Monitor

	 Visual Prototyping Patterns
	Pattern: Visual Prototyper

	Patterns as a Language
	Patterns Applicability

	Summary
	Summary of Usage Examples
	Patterns as Elements of Design Communication

	Case Studies
	CLAM: A Framework for Rapid Development of Cross-platform Audio Applications
	CLAM Components
	CLAM as a Visual Prototyping Environment

	Real-Time Room Acoustics Simulation in 3D-Audio
	Introduction
	The ``Testbed'' Integrated System
	A 3D-Audio Dataflow Case Study
	Applying the TTSDF Model to the B-Format Rendering Network
	Applying the Dataflow Patterns to the B-Format Rendering Network

	Visualization of audio streams in Streamcatcher
	Context
	Application of the TTSDF model and Port Monitor pattern in Streamcatcher

	Summary

	Conclusions
	Summary of Contributions
	Detailed Contributions
	Open Issues and Future Work
	Future Work in Time-Triggered Dataflows
	Future Work in Multimedia Dataflow Patterns

	Additional Insights

	Related Publications
	Published Open-Source Software

	TTSDF Scheduling Examples
	Simple TTSDF Pipeline
	Split and Reunify
	Dense Graph
	Graph with Optimum Between Bounds
	Audio and Video Multi-Rate Pipelines
	Simplified Modem

	Bibliography

