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Abstract

This dissertation is about expressivity-aware tempo transformations of monophonic audio

recordings of saxophone jazz performances. It is a contribution to content-based audio

processing, a field of technology that has recently emerged as an answer to the increased

need to deal intelligently with the ever growing amount of digital multimedia information

available nowadays. Content-based audio processing applications may for example search

a data base for music that has a particular instrumentation, or musical form, rather than

just searching for music based on meta-data such as the artist, or title of the piece.

Content-based audio processing also includes making changes to the audio to meet spe-

cific musical needs. The work presented here is an example of such content-based transfor-

mation. We have investigated the problem of how a musical performance played at a par-

ticular tempo can be rendered automatically at another tempo, while preserving naturally

sounding expressivity. Or, differently stated, how does expressiveness change with global

tempo. Changing the tempo of a given melody is a problem that cannot be reduced to just

applying a uniform transformation to all the notes of the melody. The expressive resources

for emphasizing the musical structure of the melody and the affective content differ de-

pending on the performance tempo. We present a case based reasoning system to address

this problem. It automatically performs melodic and expressive analysis, and it contains

a set of examples of tempo-transformations, and when a new musical performance must

be tempo-transformed, it uses the most similar example tempo-transformation to infer the

changes of expressivity that are necessary to make the result sound natural.

We have validated the system experimentally, and show that expressivity-aware tempo-

transformation are more similar to human performances than tempo transformations ob-

tained by uniform time stretching, the current standard technique for tempo transforma-

tion. Apart from this contribution as an intelligent audio processing application proto-

type, several other contributions have been made in this dissertation. Firstly, we present a

representation scheme of musical expressivity that is substantially more elaborate than

existing representations, and we describe a technique to automatically annotate music
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ii Abstract

performances using this representation scheme. This is an important step towards fully-

automatic case acquisition for musical CBR applications. Secondly, our method reusing

past cases provides an example of solving synthetic tasks with multi-layered sequential

data, a kind of task that has not been explored much in case based reasoning research.

Thirdly, we introduce a similarity measure for melodies that computes similarity based on

an semi-abstract musical level. In a comparison with other state-of-the-art melodic simi-

larity techniques, this similarity measure gave the best results. Lastly, a novel evaluation

methodology is presented to assess the quality of predictive models of musical expressiv-

ity.

This research was performed at the Artificial Intelligence Research Institute (IIIA), Barcelona,

Spain, and was funded by the Spanish Ministry of Science and Technology through the

projects TIC 2000-1094-C02 TABASCO and TIC 2003-07776-C02 PROMUSIC.
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and Ramon López de Mántaras have given me the opportunity to work at the Artificial

Intelligence Research Institute (IIIA) and suggested that I took up the Ph.D. in the first

place. They have helped me a lot by suggesting or evaluating new ideas, tirelessly revising

texts, having me participate in conferences, and expressing their faith in me. However, I

wouldn’t even have known them without Rineke Verbrugge, my M.Sc. supervisor who

inspired me to work at the IIIA. The three of them were definitely vital in sense 1.

I am also indebted to Xavier Serra, who has generously given me a place to work as a

collaborator at the Music Technology Group. It’s a great place to be, like a second home.

Furthermore I wish to thank colleagues, fellow researchers, co-authors and (anony-

mous) paper reviewers who contributed to my work by their work, by giving feedback, by

iii

http://wordnet.princeton.edu/


iv Acknowledgments
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Chapter 1

Introduction

This dissertation is an investigation into the use of case based reasoning for expressivity-

aware tempo transformation of audio recorded performances of melodies. This specific

task is illustrative of a wider application domain of science and technology that has emerged

during the past decade, and the impact and importance of which is only recently being re-

alized: content-based multimedia processing. Large scale access to the world wide web,

and the omnipresence of computers have lead to a strong increase of image, video, and

audio information available in digital format, and it is only realistic to assume that in the

future the majority of information will be distributed in the form of multimedia. This shift

toward non-text media asks for new ways of managing information. In parallel with the

technology that aims at automatic semantic description of image, video, and audio infor-

mation to make its content accessible, there is a need for technology that enables us to

handle such information according to its content. This includes for example content based

information retrieval, but also content based transformation, where previous information

is reused for new purposes, often requiring non-trivial adaptations of the information to

its new context.

Both in content extraction and manipulation progress has been made (see Aigrain [1999]

for an overview). Nowadays high-quality audio time stretching algorithms exist (e.g.

[Röbel, 2003; Bonada, 2000]), making pitch-invariant temporal expansion and compression

of audio possible without significant loss in sound quality. Such algorithms perform low

level content based transformation, i.e. by segmenting the audio signal into transient and

stationary parts based on spectro-temporal content and stretching the audio selectively.

The main goal of those algorithms is to maintain sound quality, rather than the musical

quality of the audio (in the case of recorded musical performances). But as such, they can

1
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be used as tools to build higher level content based audio transformation applications.

A recent example of this is an application that allows the user to change the swing-ratio

of recorded musical performances [Gouyon et al., 2003]. Such audio applications can be

valuable especially in the context of audio and video post-production, where recorded

performances must commonly be tailored to fit specific requirements. For instance, for a

recorded musical performance to accompany video, it must usually meet tight constraints

imposed by the video with respect to the timing or the duration of the recording, often

requiring a tempo transformation.

In order to realize a tempo transformation that maintains the musical quality of the

musical performance, higher level content of the audio must be taken into account (as we

will argue in the next section). Content based transformation of music performances in-

evitably demands a thorough grip on musical expressivity, a vital aspect of any performed

music. We use the term musical expressivity to refer to the deviations of the music as it

is performed with respect to some norm, for example the score. This phenomenon is no-

toriously complex. Changes in the musical setting (for instance changes of tempo), often

lead to subtle changes in expressivity that may nevertheless be indispensable to maintain a

feeling of musical correctness. Through the use of case based reasoning as a state-of-the-art

AI problem-solving methodology that has proved its merits in a variety of tasks, we try to

realize tempo transformations of musical performances that are expressivity-aware. This

means that apart from changing the rate at which the performance is being reproduced,

changes to the expressive character of the performance are made to the extent that a hu-

man musician would change her way of performing to make the performance sound good

at the new tempo.

The task and chosen approach raise a number of challenging topics. First there is

the question of data modeling. It is an open issue how expressivity information can be

extracted from the performance and appropriately represented, and what aspects of the

melody should be explicitly described for content based manipulation of performed music.

Secondly, from the case based reasoning perspective tempo-transformation of performed

melodies is an interesting problem domain, since the problem and solution data are com-

posite structures of temporal nature, and the domain expertise (expressively performing

music) is almost entirely a tacit skill. Thirdly, since problem solving in case based reasoning

is based on the reuse of previous problems, similarity measures for melodies and perfor-

mances play a central role. This creates an overlap with the field of music information

retrieval. Lastly, this research raises the question of how the quality of transformed perfor-

mances can be evaluated. The evaluation of models for expressive music performance is

an important unsettled issue, that deserves broad attention.
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In the remainder of this chapter, we explain the problem of expressivity-aware tempo-

transformation in more detail (section 1.1). Then we will outline the scope and the specific

problems addressed in this dissertation (section 1.2). Finally, we give a brief overview of

the structure of the dissertation (section 1.3).

1.1 Musical Expressivity and Tempo

It has been long established that when humans perform music from score, the result is

never a literal, mechanical rendering of the score (the so called nominal performance). Even

when musicians intentionally play in a mechanical manner, noticeable differences from

the nominal performance occur [Seashore, 1938; Bengtsson and Gabrielsson, 1980]. Fur-

thermore, different performances of the same piece, by the same performer, or even by

different performers, have been observed to have a large number of commonalities [Hen-

derson, 1937; Seashore, 1938]. Repp [1995b] showed that graduate piano students were

capable just as well as professional piano players, of repeatedly producing highly similar

performances of the same piece.

Given that expressivity is a vital part of performed music, an important issue is the

effect of tempo on expressivity. It has been argued that temporal aspects of performance

scale uniformly when tempo changes [Repp, 1994]. That is, the durations of all performed

notes maintain their relative proportions. This hypothesis is called relational invariance (of

timing under tempo changes). Counter-evidence for this hypothesis has also been pro-

vided however [Desain and Honing, 1994; Friberg and Sundström, 2002; Timmers et al.,

2002], and a recent study shows that listeners are able to determine above chance-level

whether audio-recordings of jazz and classical performances are uniformly time stretched

or original recordings, based solely on expressive aspects of the performances [Honing,

2006].

A brief look at the corpus of recorded performances we will use in this study (details

about the corpus are given in subsection 3.2) reveals indeed that the expressive content of

the performances varies with tempo. Figure 1.1 shows the frequency of occurrence of vari-

ous types of expressivity, such as ornamentation and consolidation, as a function of the nomi-

nal tempo of the performances (the tempo that is notated in the score). In subsection 4.3 we

will introduce the various types of performance events as manifestations of musical expres-

sivity in detail. Note that this figure shows the occurrence of discrete events, rather than

continuous numerical aspects of expressivity such as timing, or dynamics deviations. The

figure clearly shows that the occurrence of certain types of expressivity (such as ornamen-
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Figure 1.1: The frequency of occurrence of several kinds of performance events as a func-
tion of global performance tempo

tation) decreases with increasing tempo, whereas the occurrence of others (consolidation

most notably) increases with increasing tempo.

Figure 1.2 shows how various expressive parameters change systematically with tempo.

The points in the figure represent comparisons of performances of the same phrase at dif-

ferent tempos (tempos are specified in the number of beats per minute, or BPM). The x-axis

shows the difference in tempo between the two performance. In the top left figure, the

y-axis shows the root mean square (RMS) value of the pairwise absolute difference in note

onset. The top right figure shows the RMS value of the pairwise duration difference (pro-

portion). The bottom left figure shows the RMS value of the pairwise energy difference

(proportion). The bottom right figure shows the distance value between the performances

as sequences of performance events. The distance increases when the sequences contain

different performance events. In all four expressive parameters, values tend to differ more

when the tempos of the compared phrases increases. In some parameters the change as

a function of tempo seems only small, but it must be kept in mind that the actual per-

formances are a result of the combination of all parameters. The effects in the individual

parameters are therefore cumulative.
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The above observations amount to the belief that although in some circumstances re-

lational invariance may hold for some aspects of expressivity, in general it cannot be as-

sumed that all aspects of expressivity remain constant (or scale proportionally) when the

tempo of the performance is changed. In other words, tempo transformation of musical

performances involves more than uniform time stretching (UTS).

Throughout this dissertation, we will use the term UTS to refer to the scaling of the

temporal aspects of a performance by a constant factor. For example, dynamics, and pitch

will be left unchanged, and also no notes will be inserted or removed. Only the duration

and onsets of notes the will be affected. Furthermore, we will use the term UTS in an

abstract sense. Depending on the data under consideration it involves different methods

to realize it. For example, it requires non-trivial signal-processing techniques to apply

pitch-invariant UTS to the audio recording of the performance. In symbolic descriptions of

the performance on the other hand, UTS consists in a multiplication of all temporal values

by a constant. Note that this holds if the descriptions measure time in absolute units (e.g.

seconds). When time is measured in score units (e.g. beats) UTS makes no sense, since

changing the tempo of the performance only changes the translation of score time units to

absolute units of time.

1.2 Problem Definition, Scope and Research Objectives

In this section we describe the main problem we address in this dissertation. We define

the scope of the project with regard to the type of musical data and the level of processing.

After that we will list the secondary objectives that derive from the main problem.

1.2.1 A System for High-level Content-Based Tempo Transformation

As mentioned at the beginning of this chapter, the primary objective of this research is to

develop an expressivity-aware system for musical tempo transformations of audio recorded

performances, that maintains not only the sound quality of the recording, but also musical

quality of the performance. There are several ways to concretize the criteria for success of

the system. For instance, we can say the tempo-transformation of a recorded performance

is successful if:

• its expressive characteristics (statistically speaking) are in accordance with human

performances at that tempo (more than with human performances at other tempos);

• it is preferred by human listeners over a tempo-transformed performance that was
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obtained by UTS;

• it is not recognized by human listeners as being a manipulated performance; they

regard it as an original recording of a human performance;

Although there is not a strictly logical relation between the above criteria, we feel that

in practice, each former criterion is implied by the subsequent criteria. That is, they are

ordered from weak to strong. In subsection 2.4.6 we review evaluation paradigms for

expressive music prediction models in general, and in subsection 6.3 we propose a hybrid

evaluation approach that combines human judgment with a quantitative assessment of

tempo-transformed performances.

1.2.2 Scope

In order to optimize the conditions for investigation of expressivity aware tempo transfor-

mation and to make the problem feasible as a project, the scope of research must be chosen

appropriately. We work with a corpus of recorded performances that has some rather

specific characteristics, that make it suitable for this research. Firstly, the recordings are

performances of jazz standards, taken from The Real Book [2004]. Jazz is a good genre for

studying expressivity because of its emphasis on liberal and expressive performance rather

than precise reproductions of notated melodies. Secondly, the performances are played by

a saxophone, an instrument that offers a very broad range of sound-qualities that allow a

skilled performer to perform expressively in an elaborate manner. Thirdly, the melodies

are monophonic, which relieves the need for voice separation, and lets us focus directly

on the expressivity in the performance. Finally, the type of expressivity in the recording is

what we call ‘natural’: the melodies are performed as the performer (a professional musi-

cian) thinks they should without any explicit intentions of expressing a particular mood or

affection. See section 3.2 for more details on the musical corpus.

In addition to the focus on a specific type of musical data, we focus on a particular

level of data processing. As explained before, we will work within the paradigm that

separates content extraction from content analysis/manipulation, as opposed to for exam-

ple purely signal processing approaches to audio-transformation1. The research presented

in this dissertation exclusively addresses content analysis/manipulation. For the content

extraction (audio analysis) and reconstruction of audio from content descriptions (audio

re-synthesis), we rely on an external system for melodic content extraction from audio,

developed by Gómez et al. [2003b,a].

1This two-level paradigm has been argued for by e.g. Scheirer [1995]
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1.2.3 Representation of Expressivity

One of the secondary objectives is the development of a suitable representation scheme for

the expressivity in the data that we work with. This will require a study of the expressive

phenomena encountered in the musical corpus.

1.2.4 Melodic Retrieval Mechanisms

The case based approach to the tempo transformation problem implies the need for a re-

trieval mechanism for cases that is based on the melodic material contained in the cases.

We will investigate and compare several approaches to melodic similarity.

1.2.5 Performance Model Evaluation

In order to evaluate the proposed tempo transformation approach we need an evaluation

methodology that assesses the quality of tempo transformed performances. We will dis-

cuss common evaluation paradigms.

1.3 Outline of the Dissertation

In chapter 2, we provide the relevant background of the work presented in this disser-

tation. We discuss the principal concepts involved, notably musical expressivity, perfor-

mance models and their evaluation, melodic similarity, and case based reasoning. Along

with this survey we will review related research, methodologies, and notable findings.

In chapter 3 we propose a system architecture for the tempo transformation system. We

define the terms that will be used, and summarize the goal and functionality of the differ-

ent components. Furthermore, we detail the musical corpus used for experimentation, we

present various representation schemes of the musical data, and discuss their value for the

current application.

In chapter 4 we explain in detail the methods we have developed to process the input

data, in order to form cases that contain not just the raw input data, but provide higher

level knowledge-enriched data descriptions that interpret and interrelate the input data,

and are used at various stages throughout the case based reasoning process.

Chapter 5 is devoted to the problem solving process, that consists in applying case

based reasoning to construct a tempo transformed performance of the input phrase.

Chapter 6 describes a set of experiments that validate the different components of the

system, notably knowledge acquisition (performance annotation), and abstract melody
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representation, and melody retrieval. The final section of the chapter describes an experi-

mental validation of the system as a whole.

In chapter 7 we summarize the research presented in the dissertation. We list the main

contributions of our work, and identify future work.

The appendices respectively contain abbreviations/notational conventions, annotated

scores of the phrases used as musical corpus to form the case base, a list of songs used for

a melodic similarity comparison experiment, and a list of publications by the author.
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Chapter 2

Preliminaries and Related Work

In this chapter we provide the context in which the present research is situated. The first

part of the chapter is dedicated to musical expressivity, providing a description of the phe-

nomenon of expressivity, its communicational functions, and alternative definitions (sec-

tions 2.1, 2.2, and 2.3). Then, we discuss various methodologies for developing computa-

tional models of expressivity, and alternative ways of evaluating such models (section 2.4).

After that, we briefly survey research on melodic similarity and different computational

approaches to assess melodic similarity (section 2.5). In section 2.6 we introduce case based

reasoning and give a characterization of CBR with respect to other learning approaches.

We conclude the chapter with some observations and concluding remarks on the reviewed

work (section 2.7).

2.1 Expressivity in Musical Performances

Investigations into the performance of music dates from at least the end of the nineteenth

century and early twentieth century. For example, around 1896, Binet and Courtier [1896]

prepared a grand piano to display the dynamics of the keys pressed on a paper. In 1913,

Johnstone [1913], observed that in piano performances, the notes that belong to the melody

are often played slightly earlier than chord notes at the same metrical position. Around

1930, extensive research on music performance was carried out and reported by a group

of researchers led by Seashore [1938]. This research was mainly concerned with singing,

violin, and piano performances.

The performance of a musical piece is determined by several factors. Firstly, physical

conditions of the musician and her instrument are of influence. Obviously, the type of in-

11
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strument determines to a large extent the character of the performance. Also, physiological

conditions of the musician (such as fatigue, or state of health) can play a role. Secondly, the

motor skills of the musician are of importance. This becomes clear when comparing the

performances of a novice to those of a skilled musician. With practice, the musician trains

her motor speed and accuracy, reducing the amount of unintentional deviation from per-

formance to score. A third factor consists of the cognitive, and affective aspects of the musi-

cian. It has been shown by Sloboda [1983] that performers deviate systematically from the

score when they play variations of the same score that consist of exactly the same sequence

of notes (only their placement within the meter was changed). This result rules out the

possibility of deviations due to motor incapacities and shows the influence of meter on the

performance of a score. Other studies have shown systematic deviations in performances

that were played with different moods or expressive intentions [Rigg, 1964; Gabrielsson,

1995; De Poli et al., 2001].

2.2 Functions of Expressivity

As far as performance deviations are intentional (that is, they originate from cognitive

and affective sources as opposed to e.g. motor sources), they are commonly thought of as

conveying musical expressivity. But what is it that is being expressed? Two main functions

of musical expressivity are generally recognized. We will address both functions.

2.2.1 Expressivity and Musical Structure

Firstly, expressivity serves to clarify the musical structure (in the broad sense of the word:

this includes metrical structure, but also the phrasing of a musical piece, harmonic struc-

ture etc.). Sloboda [1983] showed the influence of metrical structure on performances by

having pianists perform the identical sequences of notes, differing in the position of the bar

lines. For instance, the pianists varied their performances such that the notes at the begin-

ning of measures were played louder and more legato than other notes. Furthermore, he

observed that the more advanced the performers were, the more they utilized this kind of

expressivity, and the better listeners were able to transcribe the performed music correctly.

This is a clear indication that expressivity clarifies metrical structure.

Phrase structure also has a salient effect on performance. Phrases were found to start

and end slow, and be faster in the middle [Henderson, 1937]. Moreover, Todd [1985, 1989]

invented a model that predicts the level of rubato of a given musical piece, given a hier-

archical grouping structure of the piece. The predictions of this model are similar to the
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rubato patterns in professional performances of the piece. Gabrielsson [1987] found that

pianists performing Mozart’s Piano Sonata K. 331, tended to lengthen note durations con-

siderably at the end of phrases. Similarly, he found the tones to be relatively loud in the

middle of the phrases and relatively soft at the beginning and end of the phrase.

Another form of structure that influences performance is harmonic and melodic ten-

sion. Harmonic and melodic tension are commonly defined by reference to the circle of

fifths (where the tension is low for notes or chords that are close together on the circle of

fifths and high for those that are far apart) [Lerdahl, 1996]. Palmer [1996] calculated a pos-

itive correlation between note lengthening and tension. Contrastingly, no correlation was

found between note intensity and tension. In the same article, Palmer showed that melodic

expectancy, the extent to which an implied continuation of a melody is actually realized,

did correlate with note intensity (unexpected notes were played louder), but not with note

lengthening. As an explanation of the fact that the expression of tension-relaxation and

melodic expectancy are realized in unrelated ways, Palmer observes that the two phenom-

ena manifest themselves on different time scales; tension-relaxation is a phenomenon at the

level of phrases and sub phrases (that is, a large time scale), whereas melodic expectancy

is manifested from note to note, i.e. on a smaller time scale.

In a general survey of the relation between expressivity and musical structure, Clarke

[1988] proposes the interesting view that expressivity is tied to structure by a limited set of

rules (like the rules proposed by Sundberg et al. [1991]; Friberg [1991], see subsection 2.4.3).

Hence, the diversity of ways in which a piece can be played is not due to ambiguous rules

for expressivity, but due to the diversity of ways in which the music can be structurally

interpreted (i.e. ambiguous musical structure). In this context, Clarke notes the practice of

the live performances of jazz standards. In this practice, the music that is played belongs

to a widely known and fixed repertoire. Therefore the audience is usually acquainted with

the music, and the expressiveness of the performance is not constrained by the requirement

that it should clarify the basic musical structure to the listeners. The musicians can thus

freely vary their expressiveness to surprise the audience through an unexpected musical

interpretation of the piece.

Another structural aspect of music that has been found to influence musical expres-

sivity is the melody. In ensemble performance (but also polyphonic piano performances),

the voice that plays the melody tends to be slightly (by around 20–30 ms.) ahead of the

accompaniment [Rasch, 1979; Palmer, 1988]. The purpose of melody lead is presumed to

be the avoidance of masking of the melody by the accompaniment, and to facilitate voice

separation in human perception.

In a study of performances of jazz melodies by well-known jazz musicians, Ashley
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[2002] has shown that the patterns of rubato tend to be related to motivic structure. He

also found that note displacement was related to the underlying harmony (chord tones are

more displaced than non-chord tones).

For more extensive surveys of music performance research in relation to structural as-

pects see [Friberg and Battel, 2002; Clarke, 1991; Palmer, 1997].

2.2.2 Expressivity and Emotional Content

Secondly, expressivity serves as a way of communicating, or accentuating affective content.

Langer [1953] proposed the view that the structure of music and the structure of moods or

feelings are isomorphic. Langer observes that similar properties are ascribed to music and

emotional life (such as ‘excitation’ and ‘relief’). Another influential theory about music

and meaning (which subsumes emotion) is from Meyer [1956]. He states that meaning (be

it emotional, or aesthetic) arises in music when expectations raised by the music are not

realized. Early work investigating the relation between emotional character and musical

structure is reviewed by Rigg [1964]. Some typical regularities were found, e.g.: solemn

music is often played slow, low pitched and avoiding irregular rhythms and dissonant

harmonies; happy music is played fast, high pitched, it contains little dissonance and is

in major mode; exciting music is performed fast and loud and apt to contain dissonance

[Gabrielsson, 1995] (another mapping between emotional characters and musical cues can

be found in [Juslin, 2001]). Gabrielsson [1995]; Lindström [1992] have studied the rela-

tion between emotional intentions and micro structure in music (e.g. timing deviations,

intensity changes and articulation). They compared versions of “Oh, my darling Clemen-

tine”, played with emphasis on different emotional characters (‘happy’, ‘sad’, ‘solemn’,

‘angry’, ‘soft’, ‘expressionless’). Their results with regard to the overall properties tempo

and loudness were mainly in accord with previous results: angry and happy versions were

played faster than sad, soft, and solemn versions; angry versions were played loudest.

With respect to the micro structure they also found clear differentiation between the dif-

ferent versions, Notably the variance of articulation and loudness. Duration ratios in the

rhythm were also different for different emotional characters (the performers were given

great freedom of performance, only the pitch sequence was to be kept intact).

Similar results have been found by Canazza et al. [1997a], who have studied how phys-

ical parameters of recorded performances (e.g. timbre, and temporal parameters like ar-

ticulation and global tempo) affected by varying expressive intentions of the musician.

The performer was told to communicate a particular mood through his performance, that

was described by a sensorial term, e.g. ‘heavy’,‘light‘,‘bright’, or ‘dark’. The sonological
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analysis of the recordings made it possible to tie particular parametric values to particular

moods (for instance a light performance turned out to be in fast tempo, with shortened

note durations and soft attacks). The results were validated by performing listening tests

on synthetic performances that were generated with the physical parameter values corre-

sponding to particular moods. The subjects were able to recognize the intended mood in

the synthesized performances.

In a related perceptual analysis of listener judgments of expressed moods in musical

performances [Canazza et al., 1997b], Canazza et al. found that there is a large degree of

consistency between the mood ratings of the listeners. They concluded that tempo and

note attack time are two important factors by which listeners rank the sensorial terms (as

those mentioned above). Moods like ‘heavy’ were opposed to ‘light’ and ‘bright’ on the

scale of tempo, whereas ‘soft’, ‘dark’ and ‘hard’ were distinguished from each other on the

scale of attack time.

See [Gabrielsson, 1999, 2003] for more general reviews on music performance research,

including the role of expressivity in the communication of emotions.

2.3 Definitions of Expressivity

Until now, we have used the term expressivity in performances loosely as deviations or

irregularities that occur when a score is performed by a musician. But deviations or ir-

regularities with respect to what? Several definitions have been proposed [Timmers and

Honing, 2002]:

Expressivity as Microstructure (EM) Firstly, there is the definition of ‘expressivity as mi-

cro structure’ [Repp, 1990; Clynes, 1983]. This definition conceives of expression as

everything that is left unspecified in the score. This definition does not view expres-

sivity strictly as deviations from a standard. Rather, it holds that the score only speci-

fies the macro structure of the music, leaving undecided how the low level attributes

of the macro elements should be realized. To quantify this microstructure however,

at least with regard to the timing of notes, the difference with nominal values is com-

puted [Repp, 1995a]. As a result, although conceptually different, this definition is in

practice equivalent to the following definition of expressivity.

Expressivity as Deviation from the Score (EDS) The second, and most common defini-

tion is ‘expressivity as deviation from a musical score’. This definition was employed

already in early music performance research [Seashore, 1938], and was stated more
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explicitly by Gabrielsson [1987]. In this definition expressivity is regarded as the de-

viation from the norm dictated by notation, in terms of intrinsic note attributes like

pitch, timbre, timing, and dynamics.

In spite of its intuitive appeal, this definition has been criticized [Huron, 1988] for

stemming from a exaggerated distinction1 between content and form. Another criti-

cism is that knowing the score is not indispensable for listeners to appreciate expres-

siveness [Desain and Honing, 1991].

Expressivity as Deviation within the Performance (EDP) As an alternative to the EDS def-

inition Desain and Honing proposed to define expressivity as deviation within a per-

formance [Desain and Honing, 1991]. More precisely, ‘expression is the deviation of a

lower order unit from the norm as set by a higher order unit’ [Timmers and Honing,

2002]. This definition thus assumes a hierarchical description of the musical piece.

For example, the deviation of a beat duration can be related to the deviation of the

duration of the enveloping bar.

Although we do acknowledge the problems with EDS, we believe their impact is lim-

ited. For example, many popular and jazz music has a fixed tempo accompaniment, that

steadily marks the beat. This means that the timing deviations in the melody will be per-

ceived with respect to this beat, and effectively, with respect to the nominal score. In other

words, in restricted contexts, particularly where the melody has a regular background, and

the (performance) style is familiar to the listener, the listener’s conception of the melody

she hears may correspond closely to the score. As a consequence, the definition of expres-

sivity as deviations from the score may (in such contexts) be an acceptable approximation

of a more sophisticated definition of expressivity.

However, we signal another problem with the usual interpretation of EDS in the re-

search that we have encountered. The problem is that the deviations with respect to the

score are defined on a note-to-note basis. We have found this interpretation of expressivity

to be too limited to accurately represent the deviations encountered in actual musical per-

formances that we use in the research presented in chapters 3 to 6. Therefore, we propose

an extension to the standard note-to-note fashion of computing performance deviations

from the score (section 3.6).

1Huron argues that this strict separation may arise from the Western tradition of division of labors between
composers and performers.
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2.4 Computational Models of Expressivity

A natural step in the study of expressive music performance research is the development

of computational models of expressivity. In a general manner of speaking such models are

intended to express and clarify the structure and regularities that occur in musical expres-

sivity. In particular, they seek to establish a relation between the form that expressivity

takes and the musical context. These aspects include characteristics of the melody such

as phrase structure and meter. A number of such models have been proposed in the past

decades. Due to the richness and complexity of the subject, the proposed models are typ-

ically limited to a few aspects of expressivity, or to a particular musical style. Apart from

differences in area of focus, there is also divergence in methodologies. In the rest of this sec-

tion we briefly discuss various methodologies, and highlight their corresponding research

and models.

2.4.1 Common Prerequisites

Every methodology for constructing models of expressivity has certain requirements, es-

pecially with regard to data:

Recordings of Performances The most essential part of nearly all methodologies is the

availability of recorded performances. Such data are commonly gathered through

one of the following methods:

Audio Recording The most straight-forward approach to gathering performance data

is to record the acoustical signal that the instrument emits when the musician

plays. The result is a (discretized) continuous audio signal.

MIDI Recording Performance data can also be gathered in MIDI format, when the

musician plays a MIDI instrument. The output of the digital instrument is a non-

continuous series of events symbolically describing the states of the instrument.

Recording of Augmented Instruments When there is no satisfactory MIDI imple-

mentation of the instrument, a solution is to augment the acoustical instrument

with sensors that capture for example finger or lip pressure (depending on the

type of instrument). In this way, detailed and multi-channel information can be

gathered in a non-intrusive way2.

2Very few professional musicians feel comfortable with a MIDI implementation of their instrument, since the
tactile characteristics, the ‘feel’ of the instrument is very distinct. This holds notably for grand piano vs. MIDI
keyboard.
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Recorded performances are not strictly necessary for the analysis by synthesis ap-

proach, which in turn relies strongly on synthesis of performances. See [Goebl et al.,

2005] for a more complete survey of performance data acquisition methods.

Annotation / Extraction of Expressivity It is uncommon that recorded performances are

used directly for the modeling of expressivity. Usually, an extensive and often man-

ual processing of the data is necessary to annotate the performed data so that the

information of interest (e.g. dynamics and timing deviations per note) is easily acces-

sible. This step requires most effort when the performance is recorded as audio. Au-

tomatic pitch and onset detection algorithms (e.g. [Goto, 2004; Gómez et al., 2003b;

Klapuri, 1999]) can be of help to obtain a description of the performed melody, after

which a symbolic performance-to-score alignment can be performed [Desain et al.,

1997; Arcos et al., 2003]. Integrated melodic extraction and score alignment are also

common (e.g. [Dannenberg and Hu, 2003; Orio and Schwarz, 2001]).

Musical Expertise Especially the analysis by synthesis relies on the a priori postulation of

hypotheses in the form of rules for applying expressivity based on the score. Since

the space of possible hypothesis is so large, musical intuition and experience is in-

dispensable to guide the generation of hypothesis. In other approaches the role of

musical expertise is less explicit, but the choice of representation schemes for score

and performance/expressivity is critical for a successful model and requires a certain

degree of musical knowledge as well.

2.4.2 Analysis by Measurement

The analysis by measurement approach in essence tries to construct models for expressive

phenomena that are revealed by measuring the expressivity from a set of recorded musical

performances. A common way to construct models is to hypothesize a particular relation

between some aspects of the score and some type of deviation (in for example the timing

of the notes) and test the statistical significance of the hypothesis on the data.

Many expressive effects have been addressed individually. Perhaps most widely stud-

ied are expressive deviations of performed notes in terms of timing3, dynamics, and to

a slightly lesser degree articulation. Todd has proposed a simple model for the relation

between timing and dynamics stating that notes are played ‘the faster, the louder’ and

vice versa [Todd, 1992]. Subsequent research has proved that this relation is too simplistic

to account for a wider range of observations [Windsor and Clarke, 1997]. In [Drake and
3It should be noted that the term timing in some studies is used to refer either to incidental changes of the

onset/offset of individual notes, to the local tempo at which the melody is performed, or to both.
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Palmer, 1993], timing, dynamics and articulation were found to accentuate melodic turns

(peaks or valleys in the melodic contour), and rhythmic grouping. Accentuation through

these variables is obtained by playing louder, delaying notes, and playing staccato, respec-

tively. In a study of Beethoven Minuet performances by 19 famous pianists, Repp found

a large amount of common variation in expressive timing, in part as a response to phrase

ending, and melodic inflections [Repp, 1990]. He provided (weak) counter-evidence for

the existence of a ‘composer’s pulse’ [Clynes, 1983] (see next subsection).

Special attention has been paid to the timing of musical ornaments (that is, notated

ornaments in classical music). It was shown that the timing of ornaments is of a different

nature than the timing of regular notes [Timmers et al., 2002]. In particular, the timing of

grace notes scales to a lesser degree with tempo than ordinary notes.

A notable case of analysis by measurement is a mathematical model for rubato [Todd,

1985, 1989]. In accordance with other studies [Palmer, 1989; Repp, 1995a], Todd argues

that rubato, the pattern of speeding up and slowing down during a performance, is at least

partly determined by the phrase structure of the music. To demonstrate this, he designed

a model that predicts a rubato curve based on the time-span reduction of a musical piece

[Lerdahl and Jackendoff, 1983] (see subsection 3.4.1). The system maps parabolic functions

to the different subtrees of the global time-span reduction tree, and adds these functions

to obtain a final rubato curve. Apart from phrase structure, other contextual factors of the

music also have an effect on rubato, such as metrical structure and the presence of a second

melody [Timmers et al., 2000].

A specific form of rubato is the final ritard, the slowing down that frequently occurs

at the end of a piece. Several studies [Todd, 1995; Friberg and Sundberg, 1999] establish

an analogy between the final ritard and the motion of physical bodies, arguing that their

dynamics is very similar. This kinematic model of the final ritard has been criticized for

not taking into account any musical context, in particular rhythm [Honing, 2003]. Honing

et al. argue that a model for the final ritard might rather take the form of a set of constraints

than that of a mechanical model, despite its elegance.

Timmers has fit a regression model to predict the subjective quality ratings of contin-

ued performances based on factors including the rubato, dynamics, and articulation of the

initial part of the performance [Timmers, 2003].

2.4.3 Analysis by Synthesis

One approach to automatic performance of music is to construct a set of performance prin-

ciples allowing for the reconstruction of real expressive performances. That is, a grammar
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that describes the structure of musical expression in terms of the musical score. This ap-

proach has been taken by Friberg [1991]; Sundberg et al. [1991]. They have defined a set of

context-dependent rules. These rules prescribe small deviations for timing and dynamics

of notes, based on their musical context. They can act in ensemble to sequentially process a

sequence of notes, to synthesize an expressive performance. In this way, the validity of the

rules can be checked, either by judging the musical acceptability of the synthesized perfor-

mance, or by rating the quantitative difference of expressive deviations from a human per-

formance of the same piece of music. This approach is called analysis-by-synthesis, referring

to the procedure of analyzing musical expressivity by synthetically mimicking it. In this

approach, the factors contributing to musical expressivity are validated by judging their ef-

fects on performances. The rules have been incorporated into a software application called

Director Musices (DM), which processes MIDI files to generate expressive performances.

The rules were developed with the help of a musical expert (L. Frydén, a music per-

former and music teacher). The method of rule development is as follows: An intuition by

the expert about the effect of a particular aspect of a musical score on the performance of

that score, is translated into an initial rule. This rule is used to synthesize an ‘expressive’

MIDI performance of the score. The expert judges the result and adjusts his instructions

if the result is unsatisfactory. Thus, performance rules evolve in an iterative process of

synthesis, judgment, and adjustment. The rules affect the duration, overall sound level

(dynamics), time envelope of the sound level (articulation), vibrato speed and depth, and

fine tuning of the pitch. The rules have a conditional part that specifies the target notes to

which the rule applies. Furthermore, each rule has a corresponding quantity parameter,

specifying how large the effect of the rule should be (i.e. a scaling factor for the deviations

prescribed by the rule).

An interesting hypothesis that has lead to further experimentation is that emotional

colorings of performances may correspond to specific parameter settings for the rule set.

Subjects were able to recognize intended emotions by listening performances that were

generated with a specific ‘rule palette’ to suggest a particular emotion (e.g. anger, tender-

ness, sadness etc) [Bresin and Friberg, 2000].

Clynes has argued that timing of classical pieces is in part dependent on the com-

poser. For a number of famous composers from the Classical and Romantic periods (e.g.

Beethoven and Mozart), he established a ‘composer’s pulse’, a pattern of timing and dy-

namics deviations that was characteristic for authentic performances of the works of that

composer [Clynes, 1983, 1995]. He applied an analysis by synthesis approach to evaluate

different combinations of pulses and composers.
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2.4.4 Automatic Rule Induction

The development of machine learning techniques for discovery of knowledge from data

[Mitchell, 1997] has also had an impact on expressive music performance research. Tech-

niques such as inductive logic programming [Muggleton, 1991; Quinlan, 1990], and decision

tree learning [Quinlan, 1986; Mitchell, 1997] have proved useful for deriving predictive,

and to some extent explanatory, models for music performance [Widmer, 2000]. Widmer

has derived a number of performance principles from a large set of piano performances of

Mozart sonatas. The models are typically in the form of rules that predict expressive devia-

tions based on local score context. An advantage of this method over analysis by synthesis

is that no prior hypotheses have to be specified, rather the hypotheses are extracted from

the data. This circumvents a possible bias in the generation of hypotheses due to limita-

tions in the ability of musical experts to verbalize their musical knowledge. On the other

hand, another kind of bias may arise, namely bias due to the form of representing the mu-

sical data, and the representation language of extracted hypothesis. Another drawback of

this method is that score/expressivity regularities are only detected if they are statistically

significant, although infrequent (and thus statistically insignificant) expressive phenomena

may still be meaningful4.

Model generation using inductive algorithms is subject to a trade-off: on the one hand

predictive models can be derived to maximize predictive power. Such models provide a

high predictive accuracy due to the induction of a large set of highly complex rules, that

are generally unintelligible. On the other hand, the induction of descriptive models involves

a conservative approach to the introduction of rules, trying to keep the complexity of rules

as low as possible, at the cost of reduced accuracy.

A specialized algorithm for learning rules from data, PLCG, was proposed by Widmer

[2003]. This algorithm is oriented towards finding simple and robust classification rules

in complex and noisy data. This is achieved by first learning many rules that cover a

subset of the data, and clustering the learned rules so that similar rules (syntactically and

semantically) are in the same cluster; then for each cluster of rules a new rule is formed,

generalizing the rules in the cluster. From the resulting set of rules, the rules that have

the highest percentage of correct predictions are selected. In this way the obtained rule set

consists of a modest number of rules with a reasonable degree of generality.

Ramirez and Hazan [2004] have compared k-nearest neighbor, support vector machines,

and tree-learning (C4.5) techniques for predicting the durations of notes in jazz perfor-

4This limitation of inductive approaches in the context of expressive music performance research was men-
tioned by Johann Sundberg, during the Music Performance panel, held at the MOSART workshop, Barcelona,
2001
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mances (using the classes ‘lengthen’, ‘shorten’, and ‘same’). They used the same set of

performances as used in this dissertation, and also included the Implication-Realization

analysis of the melody (see subsection 3.4.2) as part of the data instance representation.

Some rules with general validity were induced that linked the timing of notes to the I-R

structures. Structural descriptions of the melodic surface as part of the instance represen-

tation were also used for rule induction by Widmer [1996]. In another study, Hazan et al.

[2006a,b] have proposed an evolutionary generative regression tree model for expressive

rendering of melodies. The model is learned by an evolutionary process over a population

of candidate models. The quality of rendered melodies was computed both as the root

mean square error and tuned edit-distance to a human target performance of the melody.

A machine learning approach has also been adopted in an attempt to classify the ex-

pressive style of various professional pianists [Goebl et al., 2004; Widmer, 2002]. Perfor-

mances were first represented as curves in the local tempo/dynamics plane. Those curves

were segmented and the segments were clustered. The curve segments of the most impor-

tant clusters were collapsed into prototype curve-segments. This yielded an alphabet of

characteristic curve-forms that was used to represent a performance as a string of symbols

from the alphabet. Standard pattern matching techniques are employed subsequently to

discover commonalities in the performances of the same pianist.

2.4.5 Case Based Reasoning

An alternative technique to the automatic rule induction technique described above is case

based reasoning (CBR). It has in common with rule induction that it uses example data

to predict expressivity for unseen melodic material, but CBR employs a different strategy:

Instead of generating a set of rules in an analysis phase, it uses the most similar examples

(called cases) directly to process new melodic material. We explain the case based reason-

ing process in more detail in section 2.6. Here we present related case based reasoning

approaches to the generation of musical expressivity.

SaxEx [Arcos et al., 1998] is a CBR system that generates expressive music performances

by using previously performed melodies as examples. The work presented in this docu-

ment springs from and extends this previous work. Hence, we will address some of the

topics involved (especially CBR and musical models) in more detail in subsequent sections,

and in the following overview of SaxEx, we will mention those topics only briefly, referring

to the relevant sections for further details.

The goal of SaxEx was to transform inexpressive performances into expressive perfor-

mances, allowing user control over the nature of the expressivity, in terms of expressive
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labels like ‘tender’, ‘aggressive’, ‘sad’, and ‘joyful’. The input to the system is a musical

phrase in MIDI format, and the audio recording of inexpressive performance of the phrase

to be played expressively. To obtain appropriate values for the expressive features of the

performance, case based reasoning (see section 2.6) is used. Thus, a case base is employed,

containing examples of expressively played phrases. For each note of the input phrase, a

set of similar notes is retrieved from the case base. This retrieval step employs different

perspectives on the phrases. One perspective used in SaxEx refers to the musical analysis

of the phrase, using music theories such as the Implication-Realization model and GTTM

(see subsection 3.4.2). Such analyses are useful to determine the role of notes in their mu-

sical contexts and can be used to assess similarities between notes. Another perspective

is constructed using the desired expressive character of the output performance. This re-

quirement is specified in advance by the user, on three bipolar scales (tender-aggressive,

sad-joyful, and calm-restless, respectively). Each pole on these scales is associated with

particular expressive values. In this way, the affective requirement perspective is used to

bias the performances in the case base that meet those requirements.

This inexpressive performance sound file is analyzed using spectral modeling synthesis

techniques (SMS) [Serra, 1997] yielding a parametric description of the audio. The param-

eters, that correspond to expressive features like note-onsets, dynamics, and vibrato, are

changed according to the expressive feature values derived from earlier examples by CBR

and the sound is re-synthesized with the new parameter-values using SMS, resulting in an

expressive performance.

Note that although strictly speaking, SaxExperforms a transformation of a performance,

it uses the input performance only as a basis for the re-synthesis. The CBR process does

include expressive features as a part of the case descriptions. On the expressive level the

task of SaxExis therefore performance generation rather than transformation.

Another example of a CBR system for expressive music performance is Kagurame, pro-

posed by Suzuki [2003]. This system renders expressive performances of MIDI scores,

given performance conditions that specify the desired characteristics of the performance.

Kagurame employs the edit-distance for performance-score alignment, but it discards dele-

tions/insertions and retains just the matched elements, in order to build a list of tim-

ing/dynamics deviations that represent the performance. Furthermore, its score segmen-

tation approach is a hierarchical binary division of the piece into equal parts. The obtained

segments thus do not reflect melodic structure. Kagurame operates on polyphonic MIDI,

and the expressive parameters it manipulates are local tempo, durations, dynamics, and

chord-spread.

Tobudic and Widmer have taken a k-nearest neighbor approach (akin to CBR) in order
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to predict timing and dynamics deviations for Mozart sonatas [Tobudic and Widmer, 2003].

They constructed a hierarchical phrase analysis for every melody and, for every level in the

hierarchy, a polynomial function is fitted to the timing and dynamics curves. The lower

level polynomials are fit to the residual curves of fitting higher level polynomials. Training

instances are defined to contain phrase constituents of the melody, with attributes describ-

ing overall attributes of the melody fragment, for example the phrase length and start-end

pitch interval. The distance between a training and a target instance is defined as the in-

verse of Euclidean distance between the attribute vectors, and the solution (the parameters

of the polynomial tempo and dynamics curve). The initially poor prediction results could

be improved by averaging the solutions over 10 nearest neighbors instead of adopting the

solution from the single nearest instance as is. The results were also improved by taking

into account only the lowest three levels. Finally, results were improved by additionally

employing the PLCG (see subsection 2.4.4) algorithm to derive rules that account for the

residual dynamics and timing curves after subtracting all polynomials. Tobudic and Wid-

mer have extended this approach by replacing the attribute-value instance representation

scheme to a first order predicate representation scheme [Tobudic and Widmer, 2004]. The

distance measure for instances was a maximal matching set distance. In particular, the dis-

tance between two literals was computed as before (i.e. the Euclidean distance between the

arguments of a predicate), and sets of literals were compared by computing the maximal

match between literals and adding a constant cost for each unmatched literal in either of

the sets.

2.4.6 Evaluation of Expressive Models

An important question in computational modeling of musical expressivity is how models

should be evaluated. Clearly, the evaluation depends on the aims of the model.

Descriptive or explanatory models are intended to explain expressive variations of the

performance by hypothesized principles. In accordance with the criteria for evaluating sci-

entific theories in general, they should have explanatory power (account for as much varia-

tion as possible) and be parsimonious at the same time. As mentioned before, expressivity

is thought to arise from many different factors, such as communication/expression of emo-

tions/affects, and various forms of musical structure. Many existing models cover only a

single aspect. This has lead Desain and Honing to propose an evaluation technique that

consists in fitting complementary partial models for expressivity jointly to performance

data [Desain and Honing, 1997]. Alternative (sets of) models can then be compared by the

amount of variation in the performance data they explain after optimization. Although
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theoretically appealing, this approach relies on some strong assumptions, like the assump-

tion that the partial models jointly represent all sources of expressivity, and that a poor

explanation of variance by a model is not caused by sub-optimal parameter settings.

Perceptual or cognitive models, on the other hand, describe the cognitive processes

involved in listening to expressive performances, such as the emergence of perceptual cat-

egories, for example in rhythm perception, or the mental association of rubato to physical

motion. Such models may be validated by testing hypotheses derived from the model. Hy-

potheses could for example predict subject response times to recognition tasks or particular

phenomena in EEG signals.

Most relevant for this dissertation however is the evaluation of predictive models, that

predict deviations of note attributes such as timing and/or dynamics, and rubato, given

the score. The evaluation of such models is most naturally based on the prediction result

of the model. Generally two distinct evaluation approaches can be identified. Firstly, one

can measure how different the predicted performance is quantitatively from a target per-

formance. The prediction accuracy is thus used as an indicator of the model quality. In this

apparently simple approach, some issues must be addressed:

What is the right target performance? Although expressive performance research through-

out the years has revealed some clear regularities in the form of expressivity, it is generally

acknowledged that musical expressivity is not completely determined by such regularities,

and that there is a considerable degree of freedom for the performer to play a melody in a

variety of musically acceptable ways, that can differ substantially in quantitative terms. To

evaluate a predicted performance for a given score by comparing it to just a single target

performance can therefore be overly restrictive. An accurate prediction for this particular

target performance is of course a satisfactory result, but when the prediction is not accu-

rate, there may still be another (unknown) target performance that it resembles.

How to evaluate partial models? Another problem when assessing models by compar-

ing their results to a real performance is that most models of expressivity only model a

small subset of the possible sources of expressivity. That is, the predicted performance

contains only the expressive deviations that arise from the modeled sources (e.g. metrical

structure). However, any performance played by a human musician is bound to contain

expressive deviations that arise from a much wider range of sources. The resulting pattern

of expressive deviations is constituted by overlaying the patterns due to the individual

sources.

A second approach to evaluating predictive expressive performance models is to rate

how well generated performances sound in itself. The advantages of such an approach

are that the arbitrariness of choosing a target-performance is avoided, and also that the
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evaluation does not depend on a numerical comparison between expressive performances

that may not be representative for human perception. It does introduce new questions

however:

Subjectivity The rating of the ‘quality’ of a performance is inherently a subjective task.

The rating subjects may have different notions of the concept of quality, and it is unclear

how to interpret lack of consensus in the ratings of different subjects. A panel of subjects

who discuss their opinions to form consensus may resolve the latter problem.

Which subjects? A related question is which subjects should be chosen. There is evidence

that at least for some musical listening tasks, results diverge for trained and untrained mu-

sical listeners [Lamont and Dibben, 2001; Canazza et al., 1997b; Granot and Donchin, 2002].

Differences in rating may arise from different levels of musical background knowledge, or

differences in selectivity of perception.

The Rendering Contest (Rencon) [Hiraga et al., 2004] is an annual event started in 2002

that strives to evaluate computer generated performances by human judgment. Contes-

tants participate by rendering a given musical piece (semi) automatically using a predic-

tive performance model. In a loose sense the contest employs a Turing test paradigm. That

is, a successful system is one that renders performances in such a way that it is believed to

be a human performance. In practice, since most automatically rendered performances are

still easily discerned from human performances, the contestant performances are ranked

according to listener preference. The judgments are made by the audience of the event. The

ranking of the contestant performances is established by voting. The contest has a compul-

sory section, where a small number of fixed musical pieces (piano pieces by Mozart and

Chopin) must be performed. The rendered expressive performance is delivered in MIDI

format, which is synthesized to audio using a high quality sampled piano instrument. An

open section was also added to the contest to allow for the participation of a wider range of

models, for example models that focus on the rendering of monophonic melodies, or that

render expressivity for other instruments than piano, e.g. human voice or wind instru-

ments. The comparison of contestant performances of different pieces may be problematic

because the listener’s aesthetic perception of the performance is likely to be influenced

mainly by the piece rather than the way it is performed.

To summarize, the evaluation of expressive performance models is a complex topic,

that allows for different perspectives. We have pointed out two major evaluation strategies

and some problems that they must address. In part these are practical problems such as

the problem of gathering reference data, and the incompleteness of models. Although

rendering systems exist for diverse types of music and instrumentation, the number of

participating systems in the Rendering Contest is not yet large enough to establish fixed
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compulsory sections for different musical styles and instruments. Other problems are more

conceptual. For example, should models be quantitatively or qualitatively assessed, and if

they are assessed quantitatively, what is the point of reference for comparison?

2.5 Melodic Similarity

The assessment of similarity between melodies is a topic that has wide interest, partly due

to its commercially relevant applications such as music recommender systems, composer

attribution, and plagiarism detection. In music analysis, and music processing systems

that involve comparison of musical material, such as the one presented in this dissertation,

melodic similarity is also an important issue.

Despite its acknowledged importance, the concept of melodic similarity is hard to

pinpoint, firstly because it is of an intrinsically subjective nature, and secondly because

melodic similarity is strongly multi-faceted, implying that two melodies can be similar in

one respect, but dissimilar in another. Because of this it is difficult to speak of melodic

similarity in a universal and unambiguous manner.

Nevertheless, useful research has been done on the topic, including theoretical, em-

pirical, and computational studies. For example, Deliège [1997] proposed a theory of the

cognitive processes underlying human similarity judgments of music. She states that when

humans hear music, they abstract from what they hear by means of emphcues. She defines

a clue as ‘a salient element that is prominent at the musical surface’ (Deliège [2001], page

237). This concept is akin to Gestalt psychology, since it conceives of the perception of mu-

sic as having a background (the normal flow of music) and a foreground (salient elements

in this flow). Memorization is realized through the cues, which are the parts of the music

that are stored in the listener’s long-term memory. The cues serve as a ‘summary’ of the

music.

The similarity judgment between two fragments of music, according to Deliège, is

based on the similarity (or identity) of clues. This is implied by the fact that music is

memorized as clues, since similarity judgments involve the listeners memory of the music

(the fragments of music compared are not heard at the same time, and may not be heard

at the moment of judgment at all). In particular, the perception of different musical frag-

ments as variations of each other, is thought to be caused by the fact that the fragments give

rise to identical clues. In this way, the concept of clues can form the basis of a theory of

categorization of music, where musical motifs can belong to the same category based on

the perceptual cues they provide, with varying degrees of prototypicality.
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Lamont and Dibben [2001] have performed listening experiments to investigate melodic

similarity from a perceptual point of view. They are interested in questions such as: Do lis-

teners perceive similarity while listening? Is perceived similarity based on deep, thematic

relations between the musical fragments, or rather on shared surface attributes of the mu-

sic? Do listeners employ the same similarity criteria across different styles of music? Are

the employed criteria the same for listeners with different levels of musical experience?

The listening experiments involved both trained musicians and non-musicians as subjects.

They were asked to rate the similarity of pairs of musical extracts. Based on the results,

Lamont and Dibben concluded that similarity perceptions in general (i.e. across musical

styles) are based on surface features such as contour, rhythmic organization, texture, and

orchestration. Remarkably, they concluded that ‘deep’ structural relationships, that are of-

ten regarded as determining for the similarity of musical motifs, do not seem to have a

significant impact on listeners judgments on similarity of musical motifs.

Scheirer [2000] has measured perceived similarity for short polyphonic audio frag-

ments. He uses a multiple regression model to predict listeners’ similarity ratings based

on psycho-acoustic features of the audio. In contrast to the previous experiment, this ex-

periment also takes into account non-melodic features of the music, such as orchestration.

A variety of computational methods exist to quantify the degree of similarity between

two melodies. We will summarize a selection of methods:

Edit-Distance A method based on string-matching techniques used in other fields such

as genetics, and text-mining (see section 4.2). The edit-distance has proved useful in a

variety of computer music applications such as score-following [Dannenberg, 1984], per-

formance error-detection [Large, 1993], and pattern-detection [Rolland, 1998]. It has also

been used to compute melodic similarity, e.g. for melody retrieval or melodic clustering

[Mongeau and Sankoff, 1990; Smith et al., 1998; Lemström and Ukkonen, 2000; Grachten

et al., 2005a, 2004b].

Earth-Mover-Distance Typke et al. [2003] apply the Earth-Mover-Distance (EMD) [Rub-

ner et al., 1998] to compare melodies. The EMD can be understood metaphorically as

conceiving the notes of two melodies under comparison as heaps of earth and holes re-

spectively, where the size of the heaps and holes represents note attributes like duration

and pitch. The distance is proportional to the minimal effort it takes to move the heaps of

earth into the holes.
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n-Grams n-Grams based melody comparison rates the distance between melodies by

segmenting both of the melodies under comparison into overlapping segments of n notes

(n-grams), and counting the number of segments the two melodies have in common. The

distance is proportional to this number [Doraisamy and Rüger, 2003; Orio, 2005; Suyoto

and Uitdenbogerd, 2005].

Compression Cilibrasi et al. [2003] have introduced a distance measure to the area of

musical similarity that is based on compression. The core idea is that two musical frag-

ments are similar to the extent that one fragment can be efficiently compressed by using

the other fragment. Ideally, the efficiency of compression would be measured by the Kol-

mogorov complexity of the fragments. This quantity is equal to the length of the smallest

string of bits that allows exact reconstruction of one melody from the other. Because it is

effectively uncomputable, existing compression algorithms such as ‘bzip2’ are used as an

approximation.

Hybrid Approaches Different existing melodic similarity algorithms can be employed

in ensemble to form a final distance measure. Frieler and Müllensiefen [2005] linearly

combine over 50 melodic distances, and tune the linear weights of each of the distances

according to ground truth data.

2.6 Case Based Reasoning

Case based reasoning (CBR) is the process of problem solving using the solutions of pre-

viously solved problems. It refers both to the cognitive process of problem solving, and to

a formal method that can be used for a variety of tasks such as supervised learning (e.g.

classification, or regression tasks), design, and planning. The basis for CBR as a formal

method is a model of dynamic memory by Schank [1982]. Henceforth, we will use the

term CBR in the latter sense, unless otherwise specified.

Problem solving by CBR is achieved by retrieving a problem similar to the problem

that is to be solved from a case base of previously solved problems (the cases), and using

the corresponding solution to obtain the solution for the current problem. From this it

becomes clear that CBR is based on the general assumption that if two problems are similar,

their solutions will also be similar. In many domains this is a reasonable assumption,

since solutions are often related to the characteristics of problems in some systematic way.

Of course this does not imply that the relation between problem and solution is easily

captured explicitly e.g. in terms of rules.
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CBR can be regarded as a special form of instance based learning (IBL), a ‘lazy’ machine

learning technique where the problem solving task is performed by using individual in-

stances of training data, as opposed to ‘eager’ learning techniques that induce general

knowledge from the complete set of training data and use that knowledge to solve prob-

lems [Mitchell, 1997]. We will go into this distinction in more detail in subsection 2.6.2.

Instance based learning is typically used for classification and regression tasks, and

in such applications, instances are usually represented as a vector of numerical features,

where the distance between instances is often the (weighted) sum of differences between

features. CBR on the other hand is characterized by the use of a richer representation of

the instances. Features may have non-numeric attributes, such as symbols, text, or refer-

ences to other cases, and cases may contain more than just the information that defines a

problem and its solution. Meta-information may also be included, for example an indica-

tion of the quality of the solution, time-stamps (in case the domain is dynamic, and valid

solutions to problems at one time are not necessarily valid at another), a description of the

steps that were taken to arrive at the solution, or a justification of the solution in terms of

domain-knowledge. As a result, similarity computation between cases can involve com-

plex comparisons. In this comparison, general domain-knowledge may also be used (for

example in the form of rules). Due to its representational richness, CBR lends itself for

other tasks than classification, such as query/answer systems [Kolodner, 1983], structural

design [Hinrichs, 1992], diagnosis [Koton, 1988], and legal reasoning [Ashley, 1990].

CBR systems can be categorized according to the type of problem solving task they

address: analytical, or synthetical tasks [Plaza and Arcos, 2002]. In analytical tasks there

is a limited number of solutions and solutions are simple, non-aggregate entities (clas-

sification/diagnosis is a typical analytical task). In synthetic tasks, the solutions have a

composite structure, and as a result the number of possible solutions is usually very large.

A typical example of a synthetic task is structural design.

The concept of problem solving using CBR is illustrated in figure 2.1, where problem

solving is conceived of as mapping points on a problem plane to points on a solution

plane. The transition from problem to solution plane is made via a (possibly multiple)

neighboring problem, for which the solution is known. Relating the unsolved problem to

a nearby solved problem is referred to as retrieval, and proposing a solution based on the

nearby solution is referred to as reuse, as explained in the next subsection.
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Figure 2.1: Problem solving in CBR.

2.6.1 The CBR Cycle

The CBR problem solving process is commonly described as a cycle of four principal steps

[Aamodt and Plaza, 1994]:

Retrieve Pick earlier solved problems from the case base, that are similar to the problem

to be solved currently.

Reuse Adapt (or construct) an initial solution for the current problem, based on the solu-

tions of the retrieved problems.

Revise Test the proposed solution for adequacy (typically by user feedback) and if neces-

sary revise the solution to meet the requirements.

Retain Store the problem, together with its revised solution, in the case base for future

use.

Figure 2.2 shows how the four CBR tasks are organized within the problem solving

process. For generating a solution, a CBR system must at least provide methods for the

Retrieve and Reuse tasks.

In the retrieve step the input problem is compared to the cases in the case base (which

contain a problem and a solution). This requires a distance measure that ranks cases ac-

cording to their similarity to the input problem. Typically a similarity threshold is estab-

lished in advance to filter out all cases that are not similar enough to serve as examples for
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solving the input problem. The distance measure is a crucial component of the CBR sys-

tem, because it should ensure that the ‘similar problems have similar solutions’ assumption

holds. To achieve this, a distance measure can be chosen and/or optimized in order to fit a

known ‘real’ similarity relation between cases, or alternatively, to fit a utility function that

expresses how well one case serves to solve another case [Smyth and Keane, 1998; Stahl,

2004]. Both the distance measure and the threshold value usually require domain-specific

knowledge. The sensitivity of the distance measure to problem features should be pro-

portional to the influence of the features on the form of the solution. The threshold value

comprises knowledge of the range of variation that is tolerable between cases without their

solutions becoming incomparable.

The objective of the reuse step is to propose a solution for the input problem based on

the solutions of one or more retrieved problems. More specifically, the task is to deter-

mine how the solution changes as a function of (relatively small) changes in the problem.

Like the retrieve step, the reuse step usually involves knowledge of the problem domain.

Depending on the problem solving task, adaptation can range from very simple to very

elaborate operations. CBR systems for classification usually employ a simple reuse strat-

egy, such as a majority voting among the retrieved cases to predict the class of the input

problem. In synthetical tasks on the other hand, the solution is not a nominal value, but

rather a composite structure. Reuse in such tasks may consist in adjustment of parameters

in the structure, or substitution of sub-structures. Like the retrieve step, reusing retrieved

cases typically requires domain knowledge, for example in the form of adaptation rules

that specify how to modify a solution given certain conditions of the input problem and

the retrieved problem.

The solution derived by the CBR system through retrieval and reuse is suggested as an

initial solution to the input problem. This solution is then assessed for its effectiveness,

normally by the user that queried the CBR system with the input problem. Testing effec-

tiveness can be done by trying out the solution in the real world, although in some domains

this may be too dangerous or costly (e.g. in decision support for oil well drilling [Skalle

and Aamodt, 2004]). Based on this feedback, revisions are made to the case to improve the

quality of the solution. This is the revise step.

Finally, in the retain step, if the revision of the solution is successful, that is the revised

solution is of sufficient quality, the solution is stored together with the input problem as a

new case in the case base. In this way the case can be used for solving future problems. One

aspect of case retention is the actual storage of the case, possibly including case indexing

for faster retrieval. Another aspect is case base maintenance. Depending on the actual and

desired characteristics of the case base, a case may be either stored or not. For example,
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if the case base size must be minimized due to memory constraints, a case that introduces

redundancy will be left out, implying that the solution must be derived again if the system

is queried with same problem. If the cost of adaptation is high (e.g. due to computational

complexity or time constraints), the case base redundancy introduced by the new case may

be an acceptable trade-off.

The revise and retain steps enable the CBR system to learn incrementally. That is, the

system can learn to solve new problems one at the time, without the need to have all

training data available at the same time.

2.6.2 CBR Characterization

As mentioned before in this section, CBR is a special form of IBL. This approach, which

is called lazy learning, is different from eager learning approaches such as inductive logic

programming or decision-tree learning, in that the induction step from seen instances to

unseen instances is postponed until a new unseen instance is presented, whereas eager-

learning approaches generalize from the training data without regard to any particular

problems to be solved. The advantage of postponing generalization is that the training

data remains accessible with all of its detail. If a new problem must be solved that is very

different from the seen data, inevitably a strong generalization must be made that may

result in a low accuracy, but if on the other hand a problem similar to the seen data must

be solved, little generalization is required and the system may benefit from the detailed

data. Contrastingly, an eager learning system a priori determines a single generalization

of the data. In order for this generalization to be broad enough to cover problems that are

different from the seen data, accuracy is sacrificed for problems that are similar to the seen

data. Stated otherwise, lazy learning approaches construct many local approximations of

the target function5, rather than a single global approximation. This generally allows for

more complex target functions to be learned.

Aamodt and Plaza [1994] note that in CBR, as opposed to most other problem solving

approaches, it is possible to employ both specific knowledge about individual cases, and

general knowledge. The degree to which general domain knowledge is employed may

vary, leading to a scale of knowledge-intensiveness on which CBR approaches can be lo-

cated [Aamodt, 2004]. Characterizations of the low and high ends of the scale are given in

table 2.1.

A common critique is that problem solving using CBR is opaque, that it does not explain

the obtained solution to the user. It is argued that learning techniques that build general

5the function that maps problems into solutions
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Knowledge Intensiveness
Low High

No explicit general knowledge Substantial general knowledge
Many cases Few cases

Cases are data records Cases are user experiences
Simple case structures Complex case structures

Global similarity metric Sim. assessment is explanation
No adaptation Knowledge-based adaptation

Table 2.1: Characterization of IBL/CBR systems in terms of knowledge intensiveness
(adapted from Aamodt [2004])

models on the other hand do explain the solution, since the model (e.g. a decision tree),

allows the user to trace how the solution was obtained. We feel that this argument is not

convincing. Firstly, we believe that like induced general models, cases can provide the user

with an intuition of why a particular solution is predicted. Just like learning a new task is

often easier when examples are given than when just the rules are summed up, providing a

case to the user that is known to be related to the input problem, may give her insight into

which aspects of the problem (by comparing input and retrieved problem) are relevant for

the solution, and where the solution differs as a function of the differences between the

problems. Secondly, the level of insight the user gets from a model is likely to be related

to the complexity of the model, rather than the type of model. Tracing how an expressive

performance was obtained through a decision tree that has thousands of branches will

not in any way clarify the principles that underlie expressive performance. Neither will a

CBR system with overly specific cases. On the other hand, models that have an adequate

instance representation, and are not over-specified, can be transparent both as eager and

as lazy learners.

2.7 Conclusions

From the review of the different types of models of expressivity in music performance

we observe that most modeling approaches belong to either of two opposed approaches.

One approach can be roughly described as top-down. It starts from the concepts that are

assumed to (partly) determine the expressivity (like phrase structure, or emotions/affects),

and investigates how these concepts manifest themselves through expressivity. The other

approach can be called bottom-up. It does not interpret expressive information primarily

as conveying underlying concepts, but rather takes it as data of which the syntactical form

is to be discovered. Both approaches have their merits and limitations. The top-down

approach, although it may give more insight to the nature of expressivity, is unlikely to
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account for detailed and low level aspects of expressivity. It typically derives more general

rules such as: ‘Sadness is conveyed by playing softly and legato’ [Juslin, 2001]. On the

other hand, the bottom-up approach typically accounts for detailed forms of expressivity

without putting them in an interpretative framework (e.g. ‘Ascending melodic lines are

played faster than descending lines’ [Friberg, 1991]). In order to provide a more complete

picture of expressivity, existing models may have to be integrated into a general model.

It also becomes clear from the survey of related work is that most studies are devoted

to expressive performance generation rather than performance transformation. In generation

the focus is on how expressive deviations are related to the score alone (or other forms of

musical structure), whereas performance transformation deals with an initial performance

that already contains expressive deviations. These deviations may play a role when decid-

ing how to play the new performance.

Furthermore, although research on jazz music performance exists, many of the pre-

dictive models are based on classical music rather than jazz. This, together with the per-

formance practice in classical music that tends to follow the score more strictly than jazz

performance, may account for the fact that many predictive models are restricted to pre-

dicting dynamics and tempo curves. In jazz performance practice it is common that the

score is interpreted loosely, as an outline of the melody rather than a complete specifica-

tion of it. Even in performances of melodies that would not be classified as improvisations

or variations on the melody (which depart even more from the score), phenomena like

note ornamentations, fragmentations, and consolidations frequently occur, as pointed out

in section 1.1. To deal with such forms of expressivity, a richer representation of expres-

sivity is required. In section 3.6 we propose a representation scheme for these forms of

expressivity.

We have also concluded that the evaluation of predictive models is a complex topic

and that both of the approaches explained have their drawbacks. Although we do not

pretend to solve all evaluation questions, in this dissertation we present a novel hybrid

approach to evaluating performance models that combines human subject ratings with a

computational distance measure between performances (see section 6.3).

As for the method of modeling expressivity, we consider case based reasoning a promis-

ing approach for application for several reasons. Firstly, expressive music performance ap-

parently involves a large amount of background knowledge, but musicians hardly employ

the knowledge in an explicit form (e.g. as rules). CBR is an appropriate problem solv-

ing method for such domains as it applies cases directly, without the need to infer explicit

knowledge from them. Secondly, an advantage over analysis-by-synthesis that CBR shares

with inductive learning approaches is that the range of expressive effects is not limited to
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a set of rules that human musical experts can verbalize (as discussed in subsection 2.4.4) .

Rather it will use the expressive effects that actually occur in the training data. The other

side of the coin is that for inductive learning approaches to pick up a certain expressive

regularity, it must be statistically significant in the training data, whereas Sundberg (see

footnote 4) argued that this is not a necessary condition for an expressive effect to be mu-

sically significant. CBR on the other hand does not suffer from this drawback.
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Chapter 3

The TempoExpress System

Architecture and Data Modeling

In this chapter we present TempoExpress, a case based reasoning system for applying global

tempo transformations to monophonic audio recordings of saxophone jazz recordings. The

system deals with tempo transformations as problems to be solved using a set of previously

solved tempo transformations. In line with the case based reasoning process discussed in

the previous chapter, the previously solved problems are not used to learn a general model

for applying tempo transformations, but rather they are stored as cases in a case base and

only relevant cases are retrieved and used to solve particular problems.

The focus of the problem solving is on the musical aspects involved in the tempo

transformation, as opposed to the signal processing aspects required to render the tempo-

transformed performance into audio.

In chapters 4 and 5 we will present the main components of TempoExpress in more

detail. The present chapter is intended to give an overview of the system, introduce the

key concepts involved, motivate design decisions, and present the models to represent

the input data, such as scores and performances. The chapter also includes a section that

provides details about the musical corpus we used to construct cases.

3.1 A Global View of the System

The structure of the system is shown schematically in figure 3.1. The complete process of

tempo-transformation of audio is divided into an audio analysis/synthesis part and a con-

tent manipulation part. The audio analysis/synthesis part is responsible for the derivation

39
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Figure 3.1: Diagram of the major components of TempoExpress

of a melodic content description from audio, and vice versa. This part falls outside the

scope of this dissertation. The content-manipulation part is the part that is embodied by

the CBR system we have named TempoExpress. Its task is to revise the content description

of the source audio in such a way that the audio, when resynthesized according to this

revised description, will be at the target tempo and have expressive features that are in

accordance with that tempo.

The input data of TempoExpress consists of:

1. a melodic description of the input audio recording of which the tempo is to be trans-

formed;

2. a MIDI score with the nominal melody that is played;

3. a target tempo, the tempo (in BPM) at which the recorded performance should be

rendered;

The melodic description (MD) is a formatted description of the melody as it is detected

in the input audio recording, containing both a frame-by-frame description of the audio

(with descriptors like fundamental frequency candidates, and energy), and a segment-by-

segment description of the audio. The audio segment descriptions correspond to the indi-

vidual notes detected in the audio, and apart from their begin and end time (i.e. note onset
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and offset) they include mean energy (dynamics), and estimated fundamental frequency

(pitch) as descriptors. The method for deriving MD’s from monophonic audio recordings

is described in more detail in [Gómez et al., 2003a; Maestre and Gómez, 2005].

The result of transformation is a revised MD of the output audio recording to be gener-

ated. The difference between the revised MD and the original MD define the changes that

must be made to the original audio to obtain the output audio.

3.1.1 Problem Analysis

This subsection provides an overview of the topics that will be covered in more depth in

chapter 4.

Within TempoExpress, again two major sub tasks can be identified, in the figure indi-

cated by the boxes ‘problem analysis’, and ‘problem solving’. The first task is to build

a phrase problem specification from the given input data. This is a data structure that con-

tains all information necessary to define a tempo transformation task for a musical phrase,

and additional information that will improve or facilitate the problem solving. A phrase

problem specification contains the following information:

1. a MIDI score, the score as a sequence of notes;

2. a musical analysis, an abstract description of the melody;

3. a source tempo, the tempo (in BPM) of the input performance;

4. a target tempo;

5. an input performance, the performance as a sequence of performed notes;

6. a performance annotation, a description of the expressivity in the performance; and

7. a list of segment boundaries, that indicates how the score of the phrase is divided into

segments.

As figure 3.1 shows, only items (1) and (4) of this list are directly provided by the user.

The musical analysis (2) is derived from the MIDI score and contains information about

various kinds of structural aspects of the score, like metrical structure, an analysis of the

melodic surface, and note grouping. The phrase segmentation (7) is also derived from the

MIDI score, and is intended to capture the musical groupings inherent in the phrase.

The performance annotation module takes the MIDI score and the MD of the input au-

dio recording as input and provides the source tempo (3), the input performance (5), and
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the performance annotation (6). The source tempo (3) is estimated by comparing the to-

tal duration of the audio (time in the MD is specified in seconds) and the duration of the

MIDI score (which specifies time in musical beats). Although this way of estimating the

global tempo is simple, it works well for the data we used 1. The input performance (5) is a

symbolic representation of the performed notes, with MIDI pitch numbers (estimated from

the fundamental frequency), duration, onset, and dynamics information. This information

is readily available from the MD. To facilitate comparison between the performed notes

and the MIDI score notes, the duration and onset values of the performed notes are con-

verted from seconds to beats, using the computed source tempo. Finally, the performance

annotation (6) is computed by comparing the MIDI score and the input performance.

We will refer to the phrase problem specification that was built from the input data

as the phrase input problem, being the problem specification for which a solution should

be found. The solution of a tempo transformation will consist in a performance annota-

tion. The performance annotation can be interpreted as a sequence of changes that must

be applied to the score in order to render the score expressively. The result of applying

these transformations is a sequence of performed notes, the output performance, which can

be directly translated to an MD at the target tempo, suitable to be used as a directive to

synthesize audio for the transformed performance.

3.1.2 Problem Solving

This subsection provides an overview of the topics that will be covered in more depth in

chapter 5.

In a typical CBR setup, the input problem is used to query the case base, where the cases

contain problem specifications similar in form to the input problem, together with a solu-

tion. The solution of the most similar case is then used to generate a solution for the input

problem as a whole. In the current setting of music performance transformation however,

this approach does not seem the most suitable. Firstly, the solution is not a single numeric

or nominal value, as in e.g. classification, or numeric prediction tasks, but it rather takes

the form of a performance annotation, which is a composite structure. Secondly, melodies

are usually composed of parts that form wholes in themselves (a phrase is typically com-

posed of various motifs). The first observation implies that solving a problem as a whole

would require a huge case base, since the space of possible solutions is so vast. The second

observation on the other hand suggests that a solution may be regarded as a concatenation

1Tempo estimates computed for 170 performances have a mean error of 0.2 BPM and a standard deviation of
1.1 BPM
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Figure 3.2: The problem solving process from phrase input problem to phrase solution

of separate (not necessarily independent)2 partial solutions, which somewhat alleviates the

need for a very large case base, since the partial solutions are less complex than complete

solutions.

This has lead us to the design of the problem solving process that is illustrated in fig-

ure 3.2. The phrase input problem is broken down into phrase segment problems (called

segment input problems, or simply input problems henceforward), which are then solved in-

dividually. The solutions found for the individual segments are concatenated to obtain

the solution for the phrase input problem. However, a preliminary retrieval action is per-

formed using the problem at the phrase level. The goal of this preliminary retrieval is to

set up the case base for the segment-level problem solving, from what we will call proto

cases. Proto cases are information units that contain phrase related information like the

MIDI score, the musical analysis, the segmentation boundaries, and all performances (with

varying global tempos) available for that phrase. The case base is formed by pooling the

segments of the selected proto cases, hence the number of cases M it will contain depends

on the selectivity of the preliminary retrieval, and the number of segments per phrase: If

C is the subset of proto cases that were selected during preliminary retrieval, and si the

number of segments in the ith proto case from C, then the case base size is:

M =
|C|

∑
i=1

si

2For example, the way of performing one motif in a phrase may affect the (in)appropriateness of particular
ways of playing other (adjacent, or repeated) motifs. Although such constraints are currently not defined in
TempoExpress, we will explain in section 5.3 how the reuse infrastructure can easily accommodate for this.
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The case base obtained in this way contains cases, consisting of a segment problem

specification and a solution at the segment level. The cases contain the same type of infor-

mation as the input problem specifications and solutions at the phrase level, but they span

a smaller number of notes. Solving the phrase input problem is achieved by searching the

space of partially solved phrase input problems. A partially solved phrase input problem

corresponds to a state where zero or more segment input problems have a solution. A

complete solution is a state where all segment input problems have a solution. Solutions

for the segment input problems are generated by adapting retrieved (segment) cases. This

technique for case reuse is called constructive adaptation [Plaza and Arcos, 2002].

The expansion of a state is realized by generating a solution for a segment input prob-

lem. To achieve this, the retrieve step ranks the cases according to similarity between the

MIDI scores of the segment input problem and the cases. The reuse step consists of map-

ping the score notes of the retrieved case to the score notes of the input problem, and using

this mapping to ‘transfer’ the performance annotation of the case solution to the input

problem.

3.2 Musical Corpus

In this section we present the musical material that was used for the tempo-transformation

experiments reported in this dissertation. We had at our disposal a set of monophonic sax-

ophone recordings, which were made in the context of Ta[asco3, a research project focusing

on content-based audio transformation.

Four different songs were recorded using professional recording equipment. The per-

forming artist was a professional jazz saxophone player. Every song was performed and

recorded at various tempos. One of these tempos was the nominal tempo. That is, the

tempo at which the song is intended to be played. This is usually notated in the score. If

the nominal tempo was not notated, the musician would determine the nominal tempo as

the one that occurred most natural to him. The other tempos were chosen to be around

the nominal tempo, increasing and decreasing in steps of 5 (in slow tempo ranges) or 10

BPM (in faster tempo ranges). About 12 tempos per song were recorded. The musician

performed on his own, accompanied by a metronome indicating the global tempo of the

piece. In total 170 interpretations of phrases were recorded, amounting to 4256 performed

notes. Table 3.1 shows the top level phrase structure of the songs (determined manually

from the score) and the tempo range per song.

3CICYT Grant TIC 2000-1094-C02 28-12-2000/27-12-2003
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Title Composer Song Structure Tempo Range (BPM)

Body and Soul J. Green A A B1 B2 A 35 – 100
Like Someone in Love Van Heusen/Burke A B1 B2 65 – 260

Once I Loved A.C. Jobim A B C D 55 – 220
Up Jumped Spring F. Hubbard A1 A2 B 90 – 270

Table 3.1: Songs used to populate the case base

The musician was instructed to perform the music in a way that seemed natural to him,

and appropriate for the tempo at which he was performing. Note that the word natural

does not imply the instruction play in-expressively, or to achieve ‘dead-pan’ interpretations

of the score (that is, to imitate machine renderings of the score). Rather, the musician was

asked not to strongly color his interpretation by a particular mood of playing.

The songs were manually split up into phrases 4 (in the case of jazz standards, the

phrase structure of a song is often easily determined by looking at the score, if not anno-

tated explicitly), and the recordings of each song were accordingly split up into phrases.

3.3 Melody Representation

The history of computer music comprises a wealth of melody representation schemes [Selfridge-

Field, 1997], some being oriented towards graphical notation, others to for example effi-

cient data storage, or real-time usability. According to their purpose, they represent dif-

ferent aspects of the music. For example, they may or may not convey information about

timbre, dynamics, or articulation. The bare minimum of information that will always be

present in some way or another (it can be considered as the essence of the melody), is

the information conveyed by piano-roll notation: pitch, duration, and temporal position of

the notes. The temporal position may sometimes be implicitly defined as the summed

duration of the previous notes/rests. This is also the principal information present in tra-

ditional Western music notation, where pitch is conveyed by the vertical position of the

note heads on the staff, and duration by the graphical form of the note. Another aspect

of the melody that is represented in traditionally notated music is meter. The melody is

normally preceded by a time signature, and the notes of the melody are accordingly sep-

arated by barlines indicating the beginning/end of each bar. Because time signatures by

convention have a fixed pattern of accents, this implicitly defines the metrical strength of

each note in the melody.

The notation of classical music usually contains additional hints for performance. For

4see appendix B for score representations of the individual phrases
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example, crescendo/decrescendo signs may indicate dynamical evolution, and articulation

may be indicated by slurs and dots. In jazz however (notably in The Real Book [2004],

the primary resource of notated jazz music), such expressive directions are usually ab-

sent. Another difference with the notation of classical music is that the melody is typically

transcribed monophonically, and harmony is not notated using notes on the staff, but is

instead annotated using chord-labels that describe the degree and tension of the chords.

This alleviates the problem of defining/separating melody and harmony in polyphoni-

cally transcribed music.

Our focus in this dissertation will be on jazz music. Hence, given the above obser-

vations, we will assume that a melody representation in the form of a sequence of note

elements that includes pitch, duration, onset, and metrical information for each note cap-

tures all essential of the score. The reason for not including further expressive hints into

our melody representation scheme is that the task of the system we propose is performance

transformation rather than performance generation. That is, the aim of the system is not to

generate an expressive performance from a nominal melody representation, but rather to

manipulate expressive effects present in one performance, in order to obtain a performance

with different characteristics (in our case a different tempo). The source of the expressivity

is therefore the input performance rather than expressive hints in the score.

3.4 Musical Models

The melody representation presented above is commonly used in computational systems

dealing with music, probably because it is the most obvious and straight-forward scheme.

Although this representation conveys the most essential melodic information, it leaves im-

plicit a number of aspects of melody that will be of importance in musical tasks, such as

melody comparison, pattern finding, and segmentation of melodies. Aspects not present

in the note sequence representation are for example: metrical structure, (sub) phrase struc-

ture, and the development of harmonic tension. These aspects are all emergent properties

of melody as a perceived whole, rather than a sequence of notes.

3.4.1 GTTM

A number of theories exist that describe how such higher level constructs arise from se-

quences of notes. The most well-known of these is GTTM [Lerdahl and Jackendoff, 1983],

a theory that models the evolution of harmonic tension (prolongational reduction) and the

relative importance of notes (time-span reduction) within a melody. This theory is based on
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systematic musicology rather than cognitive studies. A more recent approach provides a

framework for extracting a variety of musical structures like meter, phrase structure, and

key [Temperley, 2001]. The theory is accompanied by Melisma5, a set of algorithms that

implement the theoretical framework.

3.4.2 The Implication-Realization Model

Another, strongly cognitively motivated model for musical structure is the Implication-

Realization (I-R) Model [Narmour, 1990, 1992]. This model tries to explicitly describe the

patterns of expectations generated in the listener with respect to the continuation of the

melody. It applies the principles of Gestalt Theory to the melody perception, an approach

introduced by Meyer [1956]. The model describes both the continuation implied by par-

ticular melodic intervals, and the extent to which this (expected) continuation is actually

realized by the following interval.

According to the I-R model, the sources of the listeners’ expectations about the contin-

uation of a melody are two-fold: both innate and learned. The innate sources are ‘hard-

wired’ into our brain and peripheral nervous system, according to Narmour, whereas

learned factors are due to exposure to music as a cultural phenomenon, and familiarity

with musical styles and pieces in particular. The innate expectation mechanism is closely

related to the gestalt theory for visual perception [Koffka, 1935; Köhler, 1947]. Gestalt the-

ory states that perceptual elements are (in the process of perception) grouped together to

form a single perceived whole (a ‘gestalt’). This grouping follows certain principles (gestalt

principles). The most important principles are proximity (two elements are perceived as a

whole when they are perceptually close), similarity (two elements are perceived as a whole

when they have similar perceptual features, e.g. color or form, in visual perception), and

good continuation (two elements are perceived as a whole if one is a ‘good’ or ‘natural’ con-

tinuation of the other). Narmour claims that similar principles hold for the perception

of melodic sequences. In his theory, these principles take the form of implications: Any

two consecutively perceived notes constitute a melodic interval, and if this interval is not

conceived as complete, or closed, it is an implicative interval, an interval that implies a sub-

sequent interval with certain characteristics. In other words, some notes are more likely

to follow the two heard notes than others. Two main principles concern registral direction

and intervallic difference. The principle of registral direction (PRD) states that small inter-

vals imply an interval in the same registral direction (a small upward interval implies an-

other upward interval, and analogous for downward intervals), and large intervals imply

5URL: http://www.link.cs.cmu.edu/melisma/

http://www.link.cs.cmu.edu/melisma/
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Figure 3.3: Eight of the basic structures of the I/R model
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Figure 3.4: First measures of All of Me, annotated with I/R structures

a change in registral direction (a large upward interval implies a downward interval and

analogous for downward intervals). The principle of intervallic difference (PID) states that

a small (five semitones or less) interval implies a similarly-sized interval (plus or minus

two semitones), and a large intervals (seven semitones or more) implies a smaller interval.

Based on these two principles, melodic patterns can be identified that either satisfy or

violate the implication as predicted by the principles. Such patterns are called structures

and labeled to denote characteristics in terms of registral direction and intervallic differ-

ence. Eight such structures are shown in figure 3.3. For example, the P structure (‘Process’)

is a small interval followed by another small interval (of similar size), thus satisfying both

the registral direction principle and the intervallic difference principle. Similarly the IP

(‘Intervallic Process’) structure satisfies intervallic difference, but violates registral direc-

tion.

Another principle that is assumed to hold concerns the concept of closure. Closure refers

to the situation where a perceived interval does not imply a following interval, that is the

listener’s expectation is inhibited. Occurrences of this kind of closure might coincide with

those of a different, more commonly used concept of closure in music theory that refers

to the finalization, or completion of a musical whole, such as a phrase. In the I-R model,

closure, that is the inhibition of expectations, can be evoked in several dimensions of the

music: when the melody changes in direction, or when a small interval is followed by a

large interval. Additional factors that can add to the effect of closure are metrical position

(strong metrical positions contribute to closure), rhythm (notes with a long duration con-

tribute to closure), and harmony (resolution of dissonance into consonance contributes to

closure). The degree to which the listener’s expectations are inhibited is dependent on the

accumulated degrees of closure in each dimension. Points of closure mark the boundaries

of I-R structures. When there is closure, but only to a slight degree (weak closure), the

end-note of one I-R structure also marks the beginning of the next I-R structure, causing
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Structure
Interval

sizes
Same

direction?
PID

satisfied?
PRD

satisfied?

P S S yes yes yes
D 0 0 yes yes yes
ID S S (eq) no yes no
IP S S no yes no
VP S L yes no yes
R L S no yes yes
IR L S yes yes no
VR L L no no yes

Table 3.2: Characterization of eight basic I/R structures; In the second column,‘S’ denotes small, ‘L’
large, and ‘0’ a prime interval

the structures to share one note. When strong closure occurs, the next I-R structure begins

on the note after the strong closure point. On the other hand, at the notes where no closure

occurs, or where closure in some dimensions is overruled by continuing processes (such as

repeated syncopation, or ritardando) in other dimensions, linked I-R structures occur. That

is, the middle note of one I-R structure is the first note of the next I-R structure, causing

the structures to share an interval. In this way two or more I-R structures maybe chained

together. An example of this are the combined ID and P structure in figure 3.4.

3.5 Melody Segmentation

As we argued in section 3.1, working with musical chunks smaller than complete phrases

is a natural step, because melodies by their nature are composed of several smaller note

groups. Furthermore, segmentation likely to improve the utility of the case base, since it

relaxes the constraint that in order to reuse the solution of a case, the complete phrases of

the input problem and the retrieved case must match. Rather, it allows for partial reuse

of the musical examples in the case base, so that only the parts of the retrieved case that

match the problem are reused (and only for the part of the problem that matches).

Given that cases should contain subphrase chunks of musical information, the next

question is how the musical material should be segmented. In this section we will present

some melody segmentation strategies, and discuss their characteristics and advantages/dis-

advantages.

We use the term melody segmentation to refer to a partition of a phrase as a sequence

of notes into subsequences. Most automatic melody segmentation approaches are situ-

ated in the context of modeling note grouping according to human perception, and there-

fore conceive of melody segmentations as a complete and non-overlapping partitioning of

the sequence of notes. Here however, there is no a priori reason to limit the concept to
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overlapping non-overlapping

musical I-R (weak closure)
Melisma, LBDM,

I-R (strong-closure)

non-musical n-grams, binary (hierarchical) binary (flat)

Table 3.3: Classification of melodic segmentation strategies

non-overlapping segments, since the aim of segmentation is not primarily to identify seg-

ments as ‘perceptual wholes’, but just to extract melodic material at a short time scale from

phrases.

In order to clarify how different segmentation methods relate to each other we pro-

pose to classify melodic segmentations along two major dichotomies: overlapping vs.

non-overlapping, and musical (that is, reflecting musical structure) vs. non-musical seg-

mentations. In the following subsections, we will review various melodic segmentation

techniques, exemplifying the various approaches we have discussed above. They can be

classified as shown in table 3.3.

3.5.1 Melisma

The Melisma Music Analyzer [Temperley, 2001] provides a set of tools for various types

of musical analysis. One of its components, the Grouper, is a tool that segments melodies

into smaller units. It is flexible in the sense that it can operate on various time scales. For

example, it can segment melodies into phrases, but also into smaller segments like motifs.

It works in a straight-forward way: First it calculates a gap-score for every consecutive pair

of notes. This gap-score is the sum of the interonset interval and the offset to onset interval.

The score for a group of notes is proportional to the gap-scores at its boundaries. A penalty

is applied proportionally to the difference between the length of the group and a specified

optimal length. Additionally, a penalty is applied if the metrical position of its beginning

is different from the metrical position of the beginning of the previous group.

3.5.2 Local Boundary Detection Model

The Local Boundary Detection Model (LBDM) [Cambouropoulos, 2001] is based on two

Gestalt-related principles: identity/change and proximity. The model focuses on the degree

of change in several parameters of melody, such as pitch, IOI, and rests. The change in

these parameters is represented by taking the intervals (absolute differences) between the

values for consecutive notes. Based in this, a boundary strength is calculated per interval
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that is proportional to the change in consecutive intervals. The model thus computes the

second order derivative of the parameter sequence. Local maxima in the (weighted sum

of the) second order derivatives are postulated by the model as local group boundaries in

the melody. Like Melisma the LBDM model has several parameters to control its behavior.

The most important of these is a threshold for the local maxima values to be recognized as

a boundary. By increasing the threshold, longer segments are found.

3.5.3 I-R based Segmentation

Since I-R structure boundaries are determined by the level of perceived closure, it is not

surprising that the boundaries of musical constructs like motifs often coincide with bound-

aries of I-R structures. This is not to say the converse, that every I-R structure boundary

corresponds to a motif boundary. A motif may for example contain a weak closure (in-

ducing an I-R structure boundary). If no closure occurs within a motif, the motif may be

formed by multiple chained I-R structures.

Several melodic segmentation strategies can be based on the I-R analysis, depending

on the ‘closure threshold’ that is adopted. For example, one can define a segment as the

sequence of I-R structures that occur between two strong closure points. As mentioned in

sub section 3.4.2, no overlap between I-R structures occurs on strong closure points, so this

approach yields non-overlapping segmentations. When weak closure points are also taken

to define segment boundaries, the segments may overlap by at most one note. A third, and

less musically meaningful alternative is to define a segment for each I-R structure, even

when they are chained. This may result in segments that overlap by two notes.

A drawback of I-R segmentation is that the above mentioned parameter to control

segment-overlap provides only moderate control over the resulting segment length. Es-

pecially segmentation into non-overlapping segments may result in segments that vary

greatly in length, depending of the melody. This can be seen in appendix B. Non-overlapping

I-R segmentation results in segments that correspond to the joined horizontal brackets

above the I-R labels. For example, Up Jumped Spring, phrase B would result in a sin-

gle segment containing all 19 notes in the phrase, whereas phrases A1 and A2 of the same

song contain segments of only 3 notes. Choosing weakly overlapping segments leads to

segments of more constant length.

3.5.4 n-Grams Segmentation

n-Grams segmentation is commonly used in melody retrieval [Melucci and Orio, 2002;

Uitdenbogerd and Zobel, 2002; Doraisamy and Rüger, 2003]. An n-gram is a subsequence
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of n items from a given sequence of items. By an n-gram segmentation of a melody we

refer to the ordered set of all n-grams that can be extracted from that melody. This is a very

simple overlapping segmentation technique that employs no musical knowledge at all.

3.5.5 Binary Segmentation

In Kagurame Phase-II [Suzuki, 2003] Suzuki employs a form of binary segmentation of

the melody that recursively divides the phrase into two parts of equal duration, to a de-

sired level of granularity, for example measures, or beats. Because this method refers to

measures and beats to divide the melody, it is not clear how situations should be han-

dled where the number of measures, or beat is uneven. However, we can easily define a

variation of Suzuki’s method for binary segmentation that circumvents this problem, by

dividing the melody by duration (rather than the number of measures). In this setup, the

melody is recursively split in two, by finding its middle position (the position that is the

average of the onset of the first note and the offset of the last note), and defining the first

group as all notes whose onsets are before the middle position, and the second group as all

notes whose onsets are after the middle position. The depth of the recursion can be used

as a parameter to control the number of segments.

A notable difference with n-grams segmentation is that n-grams defines segments of

equal numbers of notes whereas binary segmentation defines segments of (approximately)

equal duration.

When the higher level segments of the recursive segmentation are included in the seg-

mentation, obviously those segments will overlap with their child segments. When only

the lowest level of segments is retained, a non-overlapping segmentation is obtained.

3.5.6 Characterization Segmentation Methods

Each segmentation method has advantages and disadvantages. Depending on the appli-

cation context of the segmentation, these (dis)advantages may be relevant or less relevant.

We discuss the different methods in the light of our current context, melody retrieval for

tempo transformation.

The main advantage of non-overlapping segmentations for reuse of performance seg-

ments to transform an input performance in the current setting of tempo transformation, is

that the final phrase result can be obtained straightforwardly, by concatenating the results

of consecutive segments. If the problem solving would be done segment-wise using over-

lapping segments, the solutions (performances) to each segment could not be concatenated

because the notes belonging to overlapping segments would have multiple solutions. In
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this case, an additional strategy is needed to decide which solution is preferred for these

notes.

However, this apparent drawback of overlapping segments can also be regarded as an

opportunity to evaluate the continuity of two consecutive segment performances. Since

the performances are in part performances of the same notes, the similarity between these

two performances can be taken as an indicator of continuity of the performance across

segments.

Another advantage of overlapping segmentations is that it potentially allows for the

creation of larger sets of segments from the original data set. Of course this introduces

redundancy between segments, but the number of non-identical melodic segments in the

case base is larger, and therefore case retrieval may offer useful results for a wider range of

input problems, than with non-overlapping segmentations.

Taking into account the empirical fact that a melodic phrase is usually composed of

short motifs, and that part of what defines musical styles is the length and melodic form

of motifs (this seems to hold at least for jazz music), motifs of melodies that belong to the

same style are likely to show recurring patterns. This means that segments that coincide

with musical motifs are more likely to be found in other melodies of the same style than

segments that intersect musical grouping boundaries, and are thus more useful as cases.

To clarify this, a loose analogy might be made to spectral analysis of signals: by using an

adaptive basis, wavelet analysis may yield both more accurate and more sparse represen-

tations of the spectral content of the signal than traditional Fourier analysis.

Suzuki [2003] argues that when the melodic segmentation is used just for case retrieval,

it is not necessary that the segmentation reflects the musical structure. Even segments that

contain musical boundaries may be useful, although the expected utility of such segments

is lower, requiring a larger case base.

An additional observation regarding the class of musical grouping-aware segmentation

strategies is that musical (grouping) structure can be intrinsically ambiguous, and due to its

perceptual motivation is partially a subjective matter. Different segmentation approaches,

even if they all intend to capture musical structure, may therefore yield different results.

We can summarize the above as follows: 1) The expected utility is higher for seg-

ments that correspond to musical groups, than for segments that do not correspond to such

groups. This reduces the need for a large case base. 2) For a given set of melodies, overlap-

ping segments result in a larger case base than non-overlapping segments. However join-

ing the tempo-transformation results of overlapping segments into a tempo-transformation

of the entire phrase is non-trivial. Although this creates an opportunity for deriving more

consistent expressivity at the phrase level, exploiting this opportunity requires expressiv-
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ity comparison criteria that we do not have at present. In conclusion, the most appropriate

segmentation approach in our current situation seems to be non-overlapping segmentation

that coincides with musical grouping. Therefore we employ Melisma as a segmentation al-

gorithm in our current setup. Note that the LBDM and I-R (weak-closure) algorithms may

be used as valid alternatives.

3.6 Performance Representation

It has been widely acknowledged that human performances of musical material are virtu-

ally always quite different from mechanical renderings of the music. These differences are

thought to be vital for the aesthetic quality of the performance. Although it is not the only

proposed definition of musical expressivity (see section 1.1), it is common to define expres-

sivity as the deviations of the performance from the (mechanical rendering of) the score.

This is a rather general definition in the sense that it does not specify the dimensions in

which the difference should be measured. Most studies on expressive performance how-

ever focus on two or three dimensions, typically a subset of dynamics, timing (in onset

and duration of notes), and local tempo changes (rubato) [Canazza et al., 1997a; Desain

and Honing, 1994; Repp, 1995c; Widmer, 2000]. The paradigmatic representation of the

expressivity is a list of expressive values for each note, and for each dimension, where

the values represent the deviation between the nominal values as notated in the score,

and the observed values of the corresponding note in the performance. In this setting,

spontaneous insertions or deletions of notes by the performer are often discarded as ar-

tifacts, or performance errors. This may be due to the fact that most of this research is

focused on the performance practice of classical music, where the interpretation of notated

music is rather strict. Contrastingly, in jazz music performers often favor a more liberal

interpretation of the score, and as a consequence expressive variation is not limited to vari-

ations in timing of score notes, but also comes in the form of e.g. deliberately inserted

and deleted notes. Thus, research concerning expressivity in jazz music should pay heed

to these phenomena and in addition to capturing the temporal/dynamical variations of

score notes, the expressive behavior of the performer should be described in terms of note

insertions/deletions/ornamentations etcetera.

In this section we propose an annotation scheme for performances that provides such

a deliberate representation of expressive phenomena. In the next chapter (section 4.2) we

describe how such an annotation can be automatically derived using the edit-distance, and

in chapter 6 (section 6.1), we show how this mechanism can be tuned to reduce annotation
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Figure 3.5: A taxonomy of performance events for performance annotation

errors.

3.6.1 Describing Expressivity through Performance Events

In the present context, we use the word ‘performance’ to refer to a sequence of performed

notes, the notes that are played by the musician when she interprets a musical score. The

expressivity, defined as the deviations of the performance from the score (see section 1.1 on

page 3), can be conceived of as a sequence of events (we will call them performance events)

that describe how the notes in the score are translated to the notes present in the perfor-

mance. The first question that must be addressed is which types of performance events we

distinguish. On a very abstract level, performance events are reference events: they refer ei-

ther to notes in the performance, or to notes in the score, or both. When viewing reference

events as a class, we can thus distinguish two sub-classes: the events that refer to score

elements (score reference events), and the events that refer to performance elements (perfor-

mance reference events). Events that refer to both are called correspondence events, forming a

sub-class of both score reference event and performance reference event. This taxonomy

of performance events provides a framework in which more specific kinds of performance

events can be defined. Figure 3.5 shows this hierarchy, including more specific types of

performance events that will be discussed below.

Note that the choice of performance events is an important, but fundamentally sub-

jective decision. Since the performance of a melody by a human musician is not a causal
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process, there is no way to systematically deduce which performance elements are the

manifestation of a particular score element. There may be situations where there is am-

biguity as to the way of representing a particular part of the musician’s interpretation

through performance events. In practice the majority of notes in a performance resem-

ble their score counterparts close enough in terms of pitch, metrical position, and duration

in order to unambiguously establish the association6. Such occurrences of performed notes

that clearly correspond to a score note are interpreted as instances of the class of correspon-

dence events mentioned above. Within a certain range of perceivable sameness, the onset

timing, pitch, duration of the performed note may deviate from the score note. These de-

viations are respectively stored in the attributes onset deviation, pitch deviation, and duration

deviation, of correspondence events. When a correspondence occurs between a single score

note and a single performance note, we represent this by a sub-class of correspondence

events, transformation events (the attributes of the score note are transformed in the perfor-

mance).

The necessity of the various sub-classes of the correspondence event class to represent

the musician’s performance behavior is trivial, but it is less obvious what other kinds of

performance events will be necessary for a complete account of the performance. We have

analyzed the musical material that used to populate our case base (see section 3.2), focus-

ing on the situations where a one-to-one correspondence could not be made between score

and performance notes. In the following paragraphs, we will define various classes of

performance events that account for the different situations we encountered where trans-

formation events cannot describe the performance, and illustrate each performance event

class with an example found in the real performances.

The first situation is where a performance note occurs without a clear counterpart in

the score, whereas the score counterparts of surrounding notes are unambiguous. In other

words, the musician inserts a note that is not present in the score. We account for this

situation with an insertion event, which is a sub-class of performance reference event. It is

not a sub-class of score reference event, since the inserted note has no counterpart in the

score. An example of an insertion event from the real performances described in section 3.2

is shown in figure 3.6a. The figure shows the score that was performed, together with the

notes that were performed, shown as boxes. The vertical positions correspond to the pitch

of the performed notes (the higher the pitch, the higher the position). The widths of the

boxes are proportional to the durations of the notes, and their horizontal positions are

6One can argue that in cases where it is very difficult to recognize the score melody in the performance, the
performance should be conceived of as a variation, or improvisation on the melody, rather than an expressive
interpretation of it
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Figure 3.6: Examples of performance event classes encountered in real performances. The
boxes below the score represent the performance in piano roll notation. The letters denote
performance events (T = Transformation; I = Insertion; D = Deletion; O = Ornamentation;
F = Fragmentation; C = Consolidation)

proportional to onset times of the notes. This way of representing melodies is common

in MIDI editing software and is usually called piano roll notation. The letters in between

the score and the performance represent the performance events that establish the relation

between score and performance elements.

The second situation is the opposite of insertion: deletion. This occurs when a note in

the score is not played by the performer, and consequently has no counterpart in the per-

formance. Hence, deletion events are a sub-class of score reference events only. An example

case of deletion is shown in figure 3.6b (denoted by the letter ‘D’).
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Thirdly, a special kind of insertion that occurs very frequently, is ornamentation. Al-

though ornamentation also involves performed notes that have no counterpart in the score,

ornamentation events are different from ordinary insertion events in several respects: Firstly,

the inserted notes are usually very short (typically about one tenth of a second). Secondly,

they often come as a duple or triple of very short notes. Thirdly, the inserted notes virtu-

ally always form a chromatic (occasionally diatonic) ascending progression with the note

that follows the ornamentation notes. Ornamentation event are as such a sub-class of in-

sertion events. An example is shown in figure 3.6c. Note that the triple of ornamentation

notes in the example are treated as a single ornamentation event. We argue that this is a

more appropriate conception of ornamentation events than viewing each inserted note as

a separate ornamentation. Because of their pitch relationship, and closeness in time, the

ornamentation notes form a very strong perceptual whole. They are perceived as a sin-

gle musical gesture. Annotating this situation with three distinct ornamentation events

suggests that each of them could have occurred individually, which is clearly not the case.

The fourth kind of performance event occurs when several consecutive notes from the

score are played as a single long note. The notes typically have the same pitch, and the

duration of the performed note is close to the total duration of the score notes. This many-

to-one mapping of notes was described in [Mongeau and Sankoff, 1990] as consolidation in

the context of comparison of melodies (that is, theme and variations). It is interesting to

observe that consolidation of notes is a phenomenon that occurs both as a matter of melody

variation (at the level of composition), and in music performance (at the level of musical

expressivity). An example is shown in figure 3.6d.

The last kind of performance event described here is fragmentation. This is the converse

of consolidation, and involves the performance of a single score note as multiple notes of

the same pitch, with a total duration that is close to the duration of the score note. This

situation (which was also described in [Mongeau and Sankoff, 1990] to relate variations to

a thematic melody), was found to occur in a number of performances as well. Figure 3.6e

shows such a situation.

The kinds of performance events introduced above were adequate to cover the situ-

ations where no obvious one-to-one correspondence could be established between score

and performance elements. Once the events have been defined and have been found to oc-

cur in particular performances, it is interesting to see the frequency of occurrence of each

type of event as a function of the tempo at which the performance was played. Figure 3.7

shows these numbers for each type of performance event (transformation events have been

left out, since their mere occurrence does not convey expressivity; rather it is the kind and

amount of transformation that bears expressive significance). The tempo is denoted as a
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Figure 3.7: The frequency of occurrence of several kinds of performance events as a func-
tion of nominal tempo

proportion of the nominal tempo (see section 3.2), that is, the average of all tempos avail-

able for a given phrase. The frequency of occurrence of a given kind of performance event

is given as the proportion of that kind of event with respect to the total number of per-

formance events (including transformation events), for that tempo. The curves have been

slightly smoothed to improve the legibility of the graph.

Some systematic trends can be observed from the figure. The most salient of these is

that ornamentation events are by far the most frequent type of event. Furthermore, they oc-

cur most frequently at low tempos, and their occurrence steadily diminishes with increas-

ing tempo. This is in accordance with the intuition that since the density of notes is lower

at slow tempos, the musician has more opportunity to add detailed forms of expressivity

like ornamentation. For the same reason, the general trend that the number of consolida-

tions increases with tempo is not surprising. Consolidation of notes decreases note density

and thus compensates for the increased note-density due to the tempo increase. Similarly,

insertion events are more frequent at low tempos than at high tempos, and vice versa for

deletion event. Only fragmentation events behave contrary to expectation. One would ex-

pect that fragmentations (increasing note density) would be more frequent at low tempos
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event type slow fast

deletion 0.18 0.82
insertion 0.60 0.40
ornamentation 0.67 0.33
fragmentation 0.12 0.88
consolidation 0.39 0.61

Table 3.4: Distribution of kinds of performance events over slow and fast performances
(slow = slower than the nominal tempo; fast = faster than the nominal tempo). The num-
bers express the proportion of events per tempo category for each kind of event

than at high tempos, but the opposite is the case. Table 3.4 makes these trends explicit. It

shows per event type how the occurrence of that event type is distributed over slow (< 1)

and fast (> 1) tempos. The numbers in the second and third columns are proportions of

the total occurrence of the event types.

We don’t want to derive any quantitative conclusion from these numbers, since mak-

ing robust claims about the occurrence of specific types of events as a function of tempo

would likely require more data. However, we do think the figures presented here are

strong evidence that expressive phenomena such as ornamentation, and consolidation do

not remain constant throughout different tempos. And this justifies our claim that in ad-

dition to widely recognized expressive features such as note timing, and dynamics, more

complex features like ornamentation, consolidation etcetera, should be taken into account

when dealing with expressivity in the context of tempo transformation of performances.



Chapter 4

Knowledge Acquisition

This chapter is devoted to the knowledge acquisition aspects of TempoExpress. Knowl-

edge acquisition refers to the process of obtaining knowledge enriched representations of

raw input data. Such representations are in some cases unavoidable (for example, perfor-

mances must be aligned to their corresponding scores in a knowledgeable way in order to

arrive at an adequate description of the performance expressivity). In other cases they form

part of the particular strategy we apply to solve tempo transformation problems. For ex-

ample, we use Implication-Realization analysis to compare melodies during case retrieval.

The motivation for this approach is that it is widely recognized that expressivity in music

performance is strongly related to musical structure in the melody, (as discussed in chap-

ter 2). Widmer [1996] has shown that structural representations of the melody improve the

prediction of expressive performance prediction over simple note-level representations.

This suggests that a proper grasping of expressive aspects of music performance involves

at least some abstraction from the note-level perspective on the melody.

Knowledge acquisition occurs at two stages that are very much related: case acquisi-

tion and input problem specification. Case acquisition refers to the construction of cases to

populate the case base, which is done before the CBR system becomes operational. Input

problem specification is done at the time of problem solving, and consists in building a

problem description containing all the information needed to solve the problem. Because

a case is essentially a problem description together with its solution, the task of input prob-

lem analysis is in fact subsumed by the task of case acquisition.

Figure 4.1 on the next page shows the TempoExpress system components that will be

addressed. Section 4.1 on the following page describes the musical analysis component, in

particular, the procedure we developed to obtain the I-R analysis of a melody. In section 4.2

61
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Figure 4.1: The data preparation part of TempoExpress

we review the edit-distance, a distance measure and alignment technique for sequential

data that we use extensively in this work. Section 4.3 deals with performance annotation.

The last section describes how these representations are stored together as cases.

4.1 The Implication-Realization Parser

The Implication-Realization model provides a way to describe the pattern of implied and

realized expectations that a melody generates through its surface form. As such, the model

is hypothesized to describe the cognitive processes that constitute the listener’s auditory

experience of the melody. Typical I-R structures span three notes and may be chained across

two or three structures (i.e. consecutive structures overlap by one or two notes), depending

on particular form of the melody. Rather than reducing the melody as a whole to a single

construct (such as a tree), the I-R analysis primarily expresses local structure of the melody.

It reflects the temporal and streaming nature of melody, and the sizes of the structures are

in accordance with current knowledge of the character human short term memory. This

adds to the cognitive plausibility of the model.

The character of the I-R analysis as outlined above, makes it a good candidate repre-

sentation for melody processing applications. In this dissertation, its major application

is melodic similarity computation, a step that is crucial for case retrieval. An empirical
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study showed that human subjects tend to base similarity judgments of melodic motifs on

surface features (like contour, and rhythmic organization), rather than on deep structure

[Lamont and Dibben, 2001]. This result implies that for melodic similarity computation,

the I-R analysis as a melody representation is favorable over deep structure analyses such

as GTTM’s time-span reduction trees.

In order to employ the I-R model in TempoExpress, we have implemented a parser for

monophonic melodies that generates the corresponding I-R analyses. In this section, we

will subsequently describe the features and limitations of the I-R parser (subsection 4.1.1),

and explain the parsing steps involved to derive the I-R analysis from the melody (subsec-

tion 4.1.2).

4.1.1 Scope and Limitations

The I-R model has high degree of complexity, and although the core part of the theory

is stated explicitly and in great detail, not all aspects of the theory are very amenable to

computational modeling. Therefore, it is hard to achieve fully automatic derivation of I-

R analysis of melodies, so that they incorporate to all of the aspects the I-R model. In this

sense, the I-R parser that we present here is only a partial implementation of the I-R model.

Firstly, the parser implements bottom-up rather than top-down processes. Thus, ac-

cording to the theory, it captures innate factors that govern expectation, not learned fac-

tors. In effect, the parser has no way to identify exceptions to the expectation generation

mechanism, as imposed by familiarity with the particularities of the musical piece being

parsed (intra opus style) and by the embedding in a particular musical culture (extra opus

style). The I-R model does not specify top-down processes in as much detail as the bottom-

up processes, supposedly because they are harder to identify and formalize. Moreover,

since the bottom-up processes are claimed to be style, culture, and training independent

[Narmour, 1990; Cuddy and Lunney, 1995; Schellenberg, 1996], it seems justified to focus

on that part of the model.

The parser can identify 17 different types of I-R structures, namely the basic structures

P, D, R, ID, their derivatives VR, IR, VP, and IP, the retrospective structures (P), (ID), (R),

(VR), (IR), (VP), (IP), dyadic, and monadic structures. Combinations (two structures linked

together) and chains (more than two linked structures) of these structures are also identi-

fied.

We designed the parser to operate on monophonic melodies that are represented as se-

quences of notes having only pitch, onset, and duration attributes. As a consequence, the

concept of closure/ non closure is implemented for the parameters meter, and rhythm. Clo-
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sure (and its inhibition) induced by harmony, melodic consonance/dissonance, dynamics,

and ritardando/accelerando effects are not taken into account since the necessary informa-

tion is not present in the representation of the melody.

Lastly, the parser analyzes only the melodic surface. That is, no higher level structures

are obtained.

4.1.2 Implementation

In this sub-section we present a parser for constructing I-R analyses from melodies. Melody,

rhythm, and meter are processed to produce the I-R analysis as a sequence of I-R structures.

The parser takes as input a melody, represented as a sequence of notes, having pitch,

duration and position attributes. Additionally, the meter is known (that is, the metrical

strength of each beat can be inferred). The strategy applied to obtain the analysis is roughly

to first determine the boundary notes of structures (or chains of structures) by computing

the level of (non) closure in various dimensions, and then identify the I-R structures be-

tween those boundaries, based on pitch and interval information. Determining non clo-

sure is not entirely independent of the I-R structure identification, but this dependency can

be solved by ‘peeking forward’ to determine the I-R structure at the position in question,

and does not create a bootstrapping problem. More concretely, the parsing process can be

divided into the following steps:

1. Gather interval information;

2. Mark level closure at each note position;

3. Mark inhibition of closure;

4. Identify structures between points of strong; closure based on interval information;

and

5. Aggregate chained D and P structures.

In the following sub-sections, we will explain these steps in more detail.

Gather Interval Information

The first step is to compute the interval sizes and their directions (‘up’, ‘down’, and ‘lat-

eral’). In addition to the numerical interval values (measured in semitones), we apply the

so-called syntactic parametric scale to the intervals, in order to categorize their size as either

small (‘S’) or large (‘L’). In general, the I-R model assumes that intervals smaller than 6
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Figure 4.2: Interval information for the first measures of All Of Me

semitones are perceived as small intervals, and those larger than 6 semitones as large in-

tervals. Intervals of 6 semitones are ambiguous (and may therefore give rise to multiple

I-R analyses of the same melody). To avoid this additional complexity, the syntactic para-

metric scale in the parser defines intervals of 6 semitones to be large as well. Figure 4.2

illustrates this for the first measures of All of Me.

Additionally, the difference in size between pairs of consecutive intervals are com-

puted, and the pairs are labeled with two Boolean labels: intervallic similarity, and registral

sameness. These two features are of primary importance in the classification of a sequence

of notes as a particular I-R structure.

Two consecutive intervals are said to be intervallically similar whenever their intervallic

differentiation (i.e. the difference between these intervals) is less or equal to a minor third.

The registral sameness predicate holds if subsequent intervals have the same registral di-

rection, which can be either upward, downward, or lateral (in the case of a prime interval).

Mark Closure

In the I-R model, the term closure is used for the inhibition of implication. This inhibition

can be established by several conditions. The most prominent are rests, durational cumula-

tion (this occurs where a note has significantly longer duration than its predecessor), met-

rical accents, and resolution of dissonance into consonance. These conditions can occur in

any combination. Depending on the number of dimensions in which closure occurs and

the degree of closure in each dimension, the overall degree of closure will differ.

The closure detection step in the parser here presented detects four conditions for clo-

sure, all related to meter and rhythm:

1. durational cumulation (the duration of a note is substantially longer than its prede-
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Figure 4.3: Closure information for the first measures of All Of Me

cessor);

2. the onset of a note falls on a metrical accent;

3. the occurrence of a rest after a note; and

4. a metrical accent occurs while the note is sounding.

For each note in the melody, every condition is evaluated as, illustrated in figure 4.3. The

total degree of closure depends on the conditions that are satisfied. Weak closure occurs

when any of the closure conditions occur. Strong closure occurs either when condition (3)

holds, or when condition (1), and (3) hold, and (1) doesn’t hold for the next position.

But in order to determine the final positions where strong or weak closure occurs, one

must also take into account factors that may inhibit closure.

Mark Inhibition of Closure

The conditions mentioned in the previous sub section in themselves imply closure. How-

ever there are other factors that may inhibit such closure. This causes I-R structures to chain

and combine. There are eight conditions that inhibit closure in other parameters. Four of

them deal with harmony, melodic consonance/dissonance, dynamics and accelerando/ritardando,

respectively. As mentioned before, those factors are ignored in the parser. The remaining

factors are:

1. The absence of metrical emphasis;

2. The envelopment of a metric accent by a P process in the context of additive (equally

long) or counter-cumulative (long to short) durations;

3. The envelopment of a metric accent by a D process in the context of additive (equally

long) durations; and
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4. The occurrence of repeated syncopation.

When any of these conditions are satisfied, any metrical closure that was detected in the

previous step, is canceled. Notice that conditions (2) and (3) require that the I-R structure is

known for the intervals surrounding the note which is investigated for closure inhibition.

Although the final I-R structures can only be calculated after the structure boundaries have

been identified, we compute the I-R structure of the relevant interval pair regardless of the

boundary positions, in order to evaluate the conditions. In the example shown in figures

4.2, and 4.3, the last two triplet notes at the end of the second bar satisfy condition (1), and

in addition the last triplet note satisfies condition (3), and as a result, there is no boundary

on any of these notes.

Identify I-R Structures

When the final degree of closure is established for each point in the sequence, the next step

is the categorization of the interval pairs, based on the information gathered during the

first step. The notes on which weak closure occurs will be the terminal note of one I-R

structure and the initial note of its successor. The notes where strong closure occurs will be

the terminal note of an I-R structure, but its successor structure will begin on the next note.

The fact that the interval between these two notes is not part of any I-R structure expresses

the fact that this interval is not implied nor implies anything. In between two points of

closure, combining and chaining occurs (i.e. consecutive structures share one interval),

due to the lack of closure.

The I-R structures are identified by taking every consecutive pair of intervals between

closure points, and traversing the decision tree depicted in figure 4.4, based on the interval

information that was gathered earlier. Two special situations deserve attention. Firstly,

the case were two successive notes both have strong closure. In this situation, a dyadic

structure applies, which spans only one interval, and is denoted by a number indicating

the size of the interval in semitones. The second case occurs when a note occurs in isolation

(e.g. separated from the melody by rests). This leads to a monadic structure, denoted with

the letter M.

Aggregate Chained P and D Structures

In the I-R model, there are two of the basic structures that can span more than three notes,

viz. P and D structures. the latter occur when three or more notes form a ascending or

descending sequence of similar intervals; The former occurs when three or more notes
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continue in lateral direction, that is, have the same pitch. A further condition is the absence

of closure, for example by durational cumulation.

In the previous step, only structures of three notes have been identified. Yet, possible

instantiations of longer P and D structures in this way manifest themselves necessarily

as combined or chained P and D structures, respectively, Thus, to arrive at a correct I-R

analysis, any combined or chained repetition of P or D structures is replaced by a single P

or D structure, spanning all of the notes that were spanned by the original structures.

4.1.3 I-R Analysis Representation

The final I-R analysis for the example is shown in figure 4.5. At the bottom, the figure

shows the concrete representation of the analysis, as output of the parser. The analysis is a

sequence of I-R structure objects, that have as attributes:
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• the name of the I-R structure (e.g. P, VP)

• the number of notes the structure spans

• the registral direction (defined as the sign of pitchLastNote − pitchFirstNote; if zero then

sign of pitchLastNote − pitchMiddleNote)

• the number of notes shared with successor structure

In section 5.2.2, we will propose a method for computing melodic similarity that is

based on the I-R analysis. This method compares sequences of I-R structures using the edit-

distance. In the next section we will give a general overview of the edit-distance and show

how it can be extended to allow for context sensitive comparison of sequence elements.

4.2 Flexible Sequence Alignment/Comparison:

the Edit-Distance

The Edit-distance, or Levenshtein-distance [Levenshtein, 1966], is a measure for comparing

sequences (or strings) commonly used in a variety of fields and applications that deal with

sequential data. Common application domains are for example spell-checking of text, and

bio-computing, where it has been used to solve pattern finding, and information retrieval

problems. In the domain of music, the edit-distance has been used for computing melodic

similarity [Mongeau and Sankoff, 1990; Smith et al., 1998], score following/automatic ac-

companiment [Dannenberg, 1984; Puckette and Lippe, 1992] and performance transcrip-

tion [Large, 1993; Pardo and Birmingham, 2002].

The edit-distance is defined as the minimal cost of a sequence of editions needed to

transform a source sequence into a target sequence, given a predefined set of edit-operations.

The canonical set of operations consists of insertion, deletion and replacement of sequence

elements. The cost of a particular edit-operation is defined through a cost function w for

that operation, that computes the cost of applying that operation to the notes of the source

and target sequences that were given as parameters to w. Let A be the alphabet, i.e. the

set of possible symbols occurring in sequences, and let s and t be finite sequences over A ,

of length M and N respectively. Then the typical cost functions associated to insertion,

deletion, and replacement are respectively:
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w(∅, t j) = 1 insertion (4.1)

w(si,∅) = 1 deletion (4.2)

w(si, t j) =

 0 if si = t j

1 otherwise
replacement (4.3)

where si (0 ≤ i < M) and t j (0 ≤ j < N) are the elements of s and t, respectively. In case

M 6= N, insertion and deletion operations are used to accommodate the superfluous ele-

ments in the longer of the sequences. The above edit cost scenario is called the unit cost

model: the cost of edit-operations does not depend on any characteristic of the elements

under consideration, apart from their equality or inequality, in the case of replacement.

More specialized cost models can be defined that take into account the semantic rela-

tions between the symbols of the alphabet. The sequences may also consist of composite

structures, such as attribute-value pairs, rather than symbols. Moreover, the set of edit-

operations for computing the edit-distance is not necessarily limited to insertion, deletion,

and replacement. Edit-operations may operate on subsequences of arbitrary size from the

source and the target sequences. The edit-distance can be defined to deal with any set of

edit-operations. To do this, we write wK,L to denote that a cost function w takes a subse-

quence of length K of the source sequence as its first input parameter, and a subsequence

of length L of the target sequence as its second input parameter. The numbers K and L

correspond to the number of elements from the source and target sequence w operates on,

respectively. For example, a deletion operation would have a cost function w1,0. For a

given set of edit-operations, let W be the set of corresponding cost functions, and let

Vi, j = {wK,L | K ≤ i ∧ L ≤ j} ⊆ W

be the subset of cost functions that accept subsequences with maximal lengths of i and

j, respectively. Furthermore, let s1:i = 〈s1, · · · , si〉 and t1: j = 〈t1, · · · , t j〉 be the source and

target sequences respectively. Then the edit-distance di, j between s1:i and t1: j is defined

recursively as1:

di, j = min
w∈Vi, j

(
di−K, j−L + w(si−K+1:i, t j−L+1: j)

)
(4.4)

where the initial condition is: d0,0 = 0.

1See appendix A for notational conventions on denoting sequences
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Using equation (4.4), a M + 1× N + 1 matrix can be filled with distance values di, j for

0 ≤ i ≤ M and 0 ≤ j ≤ N. The edit-distance value dM,N for the entire source and target

sequences appears in lower right corner of the matrix, and the optimal alignment is found

by tracing back from cell (M, N) to (0,0) and recording which was the last applied opera-

tion operation that led to the distance value in each visited cell (i, j). This yields (in reverse

order) the optimal sequence of edit operations, called the optimal alignment between s and

t.

The edit-distance has proved to be a versatile tool in the research presented in this dis-

sertation. Since the musical data we deal with is mainly of sequential form (e.g. melody,

performance, I/R analyses), comparison of sequences is a common task, both for distance

estimation (as in case retrieval, for example), and sequence alignment (as in performance

annotation, and case reuse). We will briefly point out the key advantages of the edit-

distance.

Firstly, the edit-distance is informative, in the sense that computing the edit-distance

yields not only a distance value, but also the optimal alignment between two sequences,

that displays which parts of the sequences are resembling. In case the primary interest is in

the alignment, the distance value is still useful, as it reflects the quality of the alignment.

Secondly, a fundamental characteristic of the edit-distance is that it is tolerant: it puts

no restrictions on the length of the sequences: sequences of unequal (and arbitrary) length

can be compared. Of course, with non-zero insertion and deletion costs, distance values

will increase with increasing difference in sequence length.

Thirdly, the set of edit-operations is by no means limited to the canonical set of inser-

tion, deletion, and replacement. Arbitrary edit-operations may be defined. Depending on

the domain, or interpretation of the sequences, other edit-operations may be appropriate,

such as order inversion, permutation, consolidation, or fragmentation of elements. In this

way, the edit-distance can be customized to fit the application domain.

Fourthly, through the adaptation of the costs of edit-operations, the distance measure

can be optimized to fit a particular (partly) known distance (examples of this can be found

in sections 6.1 and 6.2.2). Finding the desired edit-operation costs can be done manually,

or by local search methods, like genetic algorithms [Grachten et al., 2004a], or probabilistic

methods [Ristad and Yianilos, 1998].

Finally, the use of edit-distance for comparing sequences is not limited to sequences

of symbols, nor to sequences of elements of the same type. As long as the cost functions

properly define the cost of an edit-operation, the elements of the sequences can be of any

type. This feature is of crucial importance in our method of performance annotation, that

we will present in detail in section 4.3 on page 73.
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4.2.1 Context-Sensitive Cost Functions

An edit-operation always accounts for (or operates on) zero or more elements in the source

sequence, and zero or more elements in the target sequence. A complete alignment ac-

counts for every element in the sequences, and each element is accounted for by precisely

one operation (e.g. an element cannot be both deleted and replaced). The number of ele-

ments an edit-operation accounts for in the source and target sequences is implicitly spec-

ified in the definition of d (equation (4.4)). For example, the term di−1, j + w(si,∅) (being the

cost of the optimal alignment di−1, j plus the cost of deleting element si), specifies that the

deletion operation accounts for one element in the source sequence, and zero in the target

sequence, since the deletion extends the alignment from sequences (s0, · · · , si−1), (t0, · · · , t j),

to (s0, · · · , si), (t0, · · · , t j).

In equation (4.4), the number of elements passed to w coincides with the size of the

operation range (i.e. the number of elements accounted for by the edit-distance). Thus,

only the elements accounted for by the edit-operation can figure in the cost function. In

this sense, the cost function is not context-sensitive. But there is no reason why the number

of arguments to w should coincide with the size of the operation range. In addition to the

operation range itself, preceding and succeeding ranges can be included, to determine the

cost of the operation based on the elements accounted for inside their context. Figure 4.6

illustrates this. Note that the elements that serve as context for one operation, will be

accounted for by neighboring operations in the alignment. Note also that in this more

general way of defining cost functions, the cost functions w must be indexed, since the

functions for the various edit-operations cannot be distinguished anymore based on their

signature, like the functions (4.1), (4.2), (4.3).

Taking this into account, and using the letters A, B, C, D, E, and F to denote the sizes

of the operation ranges and contexts as in figure 4.6, we can redefine the edit-distance

recursion equation in a more general way like this:

di, j = min
w∈Vi, j

(
di−K, j−L + w(si−K−Kpre+1:i+Kpost , t j−L−Lpre+1: j+Lpost )

)
(4.5)

where 0 ≤ i− Ak, 0 ≤ j− Bk, i + Bk + Ck ≤ M, and j + Ek + Fk ≤ N (0 ≤ k ≤ n, and M, and

N are the sizes of the sequences s and t respectively).

It can be easily seen that equation (4.5) subsumes the earlier recurrence equation (4.4),

since the terms in the latter equation can be obtained by choosing the appropriate values

for the operation range and context sizes. For example, the deletion term has an operation

range of size one in the source (B), an operation range of size zero in the target (D), and all
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Figure 4.6: An alignment of elements using a hypothetical context-sensitive edit-operation
with pre-context sizes Kpre, Lpre, operation ranges K, L, and post-context sizes Kpost, Kpost,
respectively for the source and target sequences

context sizes zero (A, C, D, and F). In the insertion term, D is equal to one and the other

values to zero.

An earlier report of the use of context-sensitivity of cost functions was made by [Lem-

ström and Ukkonen, 2000]. They applied context-sensitive cost functions to enable trans-

position independent melody comparison using the edit-distance without the need for a

preprocessing step to obtain interval encodings of the melodies. We will show in sec-

tion 4.3.1 how the context-sensitivity of cost functions is employed in the process of per-

formance annotation to detect ornamentations in the performance.

4.3 Automatic Performance Annotation

In subsection 3.6.1, we have described a representation scheme for annotating perfor-

mances, with the goal of having an explicit description of the performer’s behavior in

terms of the changes that she applied to the nominal score information to obtain a per-

formance. We will now describe how such performance annotations can be automatically

derived from a performance and its corresponding score using the edit-distance.

Although the use of the edit-distance is well established in related fields like melodic

similarity [Mongeau and Sankoff, 1990; Smith et al., 1998], score following/automatic ac-

companiment [Dannenberg, 1984; Puckette and Lippe, 1992] and performance transcrip-

tion [Large, 1993; Pardo and Birmingham, 2002], not much attention has been paid to its

value for the expressive analysis and annotation of musical performances. We will argue
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that the edit-distance is a very appropriate tool for performance annotation, and show that

how a set of parametrized edit-operations can be optimized to bring error rates of auto-

matic performance annotation down to 2–4%.

An advantage of the edit-distance that explains why it is commonly used in compar-

isons between scores, or between scores and performances, is that in addition to express-

ing a distance, it provides an optimal alignment between the sequences to be compared.

The alignment provides a detailed account of which element in the source sequence re-

sembles which element in the target sequence (both in terms of similarity and relative

sequential order). This information is obviously of interest in score-following where the

score-performance correspondence is needed to keep track of the performer in real-time,

or in performance-transcription, where it is used to detect the errors in the performance.

Another advantage is that the edit-distance is robust in the sense that its base-line per-

formance is very good. That is, when the source and target sequences have a reasonable

degree of similarity, that is, when a human subject would find it easy to establish an intu-

itive alignment, the edit-distance will be able to align the sequences in that intuitive way,

even with a very simplistic cost model like the unit cost model (see subsection 4.2). Still, in

specific cases it is possible to improve the alignment quality well beyond the base-line (as

we will show in section 6.1 for the case of performance-annotation).

For use in automatic performance annotation, the primary virtue of the edit-distance

is that it is generic enough to work with arbitrary sets of (user-defined) edit-operations.

This allows us to define a set of performance events that we consider adequate to cover

all the types of expressive events occurring in musical performances (as we did in the

previous subsection), and define edit-operations for each type of performance event. Using

context-sensitive cost functions for edit-operations (subsection 4.2.1), even more complex

performance-events such as ornamentation events can be accommodated for by the edit-

operations, as will be shown shortly.

In the following subsection we will propose a cost model for the performance annota-

tion scheme. In particular, we will define cost functions for of the edit-operations corre-

sponding to each of the performance events.

4.3.1 Proposed Edit Cost Model

Through the functions that define the cost model, one can control what the optimal align-

ment between the sequences will be like, and therefore how the performance will be an-

notated. The performance annotation for a particular performance and score is far from

arbitrary, since often listening to the performance while reading the score gives an unam-
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Figure 4.7: A note deletion event in the case of repeated notes with the same pitch forms
a problem for mapping, if note positions are not taken into account (left). When note
positions are known, the performed notes can be mapped to the nearest score note

biguous impression of the performance events involved. Of course human listeners will

not be able to quantify in detail the deviations from the score, but it is generally easy to

determine for example when an ornamentation occurs, or when two notes are contracted

(consolidation). In this sense, it is generally unproblematic to speak of ‘correct’ annota-

tions. Obviously, the aim of the automatic performance annotation process is to derive

this correct annotation, and thus, the cost-model should be set up so as to minimize the

difference between the generated annotation and the correct annotation.

The main factors that determine which of all the possible alignments between score and

performance is optimal, will be on the one hand the features of the score and performance

notes that are involved in calculating the cost of applying an operation, and on the other

hand the relative costs of the operations with respect to each other.

Perhaps unsurprisingly, most transformation events (simple matches between one score

note and one performance note) are identified correctly even with a relatively simple cost-

model, such as presented by [Mongeau and Sankoff, 1990], that measures the difference in

pitch and duration when considering a transformation operation, called ‘replacement’ in

the context of comparing scores to scores. In more complicated situations, where e.g. dele-

tions or consolidations occur, this simple model is not always adequate. Improvements

can be made by incorporating the difference in position in the costs of the correspondence

operations (transformation, consolidation and fragmentation). One situation where the

alignment benefits from position information is when one note in a row of notes with the

same pitch and duration is omitted in the performance, as illustrated in figure 4.7. Without

taking into account positions, the optimal alignment will delete an arbitrary note of the se-

quence, since the deletions of each of these notes are equivalent when the cost of mapping

is based on pitch and duration information only. When position is taken into account, the

remaining notes of the performance will all be mapped to the nearest notes in the score, so

the deletion operation will be performed on the score note that remains unmapped, which

is often the desired result.
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It is important to note that when combining different features, like pitch, duration and

onset into a cost-value for an operation, the relative contribution of each term is rather

arbitrary. For example when the cost of transforming one note into another would be

defined as the difference in pitch plus the difference in duration, the outcome depends on

the units of measure for each feature. The relative weight of duration and pitch is different

if duration is measured in seconds, than if it is measured in beats. Similarly, pitch could

be measured in frequency, semitones, scale steps, etcetera. Therefore, we have chosen

a parametrized approach, in which the relative contribution of each attribute in the cost

function is weighted by a constant parameter value (γ for pitch, δ for duration, and ε for

position).

The other aspect of designing cost functions is the relative cost of each operation. After

establishing the formula for calculating the costs of each operation, it may be that some

operations should be systematically preferred to others. This independence of costs can be

achieved by multiplying the cost of each operation by a factor (α) and adding a constant

(β).

The cost functions w for the edit-operations are described below. The expressions P (x),

D(x), O(x) respectively represent the pitch (as a MIDI number), duration and onset time of

a score or performance element x.

Insertion/Deletion The costs of insertion (4.6) and deletion (4.7) operations both depend

only on (and are proportional to) the duration of the inserted or deleted notes, as in [Mon-

geau and Sankoff, 1990]. This reflects the fact that insertions or deletions usually involve

notes of short duration.

wi(∅, p j) = αi ·D(p j) + β i (4.6)

wd(si,∅) = αd ·D(si) + βd (4.7)

Transformation Transformation events involve a score and a performance note. The cost

of the corresponding operation should be proportional to the sum of the difference in the

note attributes. When a score note and a performance note have very similar attributes,

it is very probable that the performance note is a (transformed) version of the score note.

When the difference increases, the probability that the performance note is actually a trans-

formation of the score note decreases. As explained earlier, (pairwise differences of) pitch,

duration, and position are used to compute the cost of transformation operations (4.8).
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Figure 4.8: Cost values for insertion and ornamentation operations as a function of note
duration

wt(si, p j) = αt ·


γ· |P (si)− P (p j) | +

δ· |D(si)−D(p j) | +

ε· |O(si)−O(p j) |


+ βt (4.8)

Ornamentation The cost of ornamentation (4.9) is determined by the pitch relation of the

ornamentation elements and the ornamented element (chromatically ascending sequences

are preferred), and the total duration of the ornamentation elements.

Note the competitive relationship of the insertion and ornamentation operations, since

they both account for performance elements that have no corresponding score element. We

want very short notes with a certain pitch relationship to subsequent notes to be matched

as ornamentations. If the duration of the notes exceeds a certain limit, or the pitch relation

is not satisfied, the notes should be matched as insertions instead. This can be achieved

by setting β i higher than βo and αi lower than αo. Figure 4.8 shows how the cost values

of insertion and ornamentation vary with note duration. Before the point where the lines

intersect (shorter durations), the notes will be accounted for as ornamentations; after this

point (longer durations) the notes will be accounted for as insertions.

wo(∅, p j, · · · , p j+L+1) = αo ·

 γ ·∑
L
l=1 |1 + P (p j+l)− P (p j+l−1) |+

δ ·∑
L
l=0 D(p j+l)

 + βo (4.9)
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Fragmentation/Consolidation Fragmentations and consolidations are similar to trans-

formations since they all map score notes to performance notes. In fragmentation, a large

score note is performed as several shorter notes. The pitch of the performed notes should

thus be the same as that of the score note (c.q. the summed difference should be zero), and

the summed duration of the performance notes should be close to the duration of the score

note. Furthermore, the onset of the first performance note should be close to the onset of

the score note. This is reflected in the cost function (4.10). The cost of consolidation (4.11)

is defined conversely, but completely analogous.

w f (si, p j, ..., p j+L) = α f ·



γ ·∑
L
l=0 |P (si)− P (p j+l) | +

δ· |D(si)−∑
L
l=0 D(p j+l) | +

ε· |O(si)−O(p j) |


+ β f (4.10)

wc(si, ..., si+K, p j) = αc ·



γ ·∑
K
k=0 |P (si+k)− P (p j) | +

δ· |D(p j)−∑
K
k=0 D(si+k) | +

ε· |O(si)−O(p j) |


+ βc (4.11)

The costs of transformation (4.8), consolidation (4.11), and fragmentation (4.10), are

principally constituted by the differences in pitch, duration and onset times between the

compared elements. In the case of one-to-many matching (fragmentation) or many-to-one

(consolidation), the difference in pitch is calculated as the sum of the differences between

the pitch of the single element and the pitches of the multiple elements. The difference

in duration is computed between the duration of the single element and the sum of the

durations of the multiple elements. The difference in onset is computed between the on-

set of the single element and the onset of the first of the multiple elements. The cost of

insertion (4.6) and deletion (4.7) is determined by the duration of the deleted element.

From a musical perspective, it can be argued that the cost of matching two elements

with different pitches should not depend on the difference of the absolute pitches, but

rather on the different roles the pitches play with respect to the underlying harmonies, or

their scale degree, as these features have more perceptual relevance than absolute pitch

difference. This would certainly be essential in order to make good alignments between
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scores and performances that very liberally paraphrase the score (e.g. improvisations on

a melody) and also in the case where alignment is constructed for assessing the similar-

ity between different scores. In our case however, we currently deal with performances

that are relatively ‘clean’ interpretations of the score (rather than improvisations). As such,

changes of pitch are very uncommon in our data. Still, it is desirable to have a more so-

phisticated pitch comparison approach, to accommodate more liberal performances in the

future.

4.4 Connection of the Musical Data

In the previous sections we have shown how two secondary representations of the score

and the performance can be derived, respectively the I-R analysis and the performance

annotation. Together, the primary representations (score, and performance) and the sec-

ondary representations (I-R analysis, and performance-annotation) form an enriched de-

scription of the musical data. In order to employ the representations to their full extent,

it is essential that they are linked together, so as to make clear the structural relations that

exist between them.

The linking between the representations will be used for example when deriving cases

from proto-cases, based on the melodic segmentations. The constructive adaptation step

also depends on links between score and performance-events.

In chapter 3, we discussed the models we use to represent the different kinds of data.

In all models, the data representation is of sequential nature, although there is not a one-

to-one mapping between the elements of every sequence. For example, a note may belong

to two I-R structures at the same time, and inserted notes in the performance have no

counterpart in the score. To represent such facts, we define relations between the elements

of the various sequences. The result is a vertically layered structure.

Figure 4.9 shows an example of such a structure, for the beginning of a (fictitious) mu-

sical phrase. It involves representations of five different kinds of data: the melody, its

I-R analysis as produced by the I-R parser described in section 4.1, a performance of the

melody, and the annotation of that performance. The sequential nature of the representa-

tions is expressed by the next predicate that connects subsequent elements of sequences.

The relation between notes and I-R structures is expressed by the belongs-to predicate

from notes to I-R structures, and the predicates first-note, middle-note, and last-note, that

specify which note plays which role in the I-R structure. These relations serve for example

to segment the melody by I-R groups, or to identify the melodic context of a note.
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Lastly, the performance and the score melody are connected. But rather than connect-

ing them directly through predicates, the performance annotation serves to express the

relations between score elements and performance elements. Figure 4.9 illustrates the dif-

ferences between the various abstract types of performance events (shown in figure 3.5):

Score reference events and performance reference events are identified by their relations

to score elements, and performance elements, respectively. Correspondence events have

both the score-reference and the performance-reference relations. Note that between the first

transformation event and the ornamentation event that precedes it, a relation ornamented-

by exists, which expresses the dependence between ornamentations and their successor

notes (ornamentation notes do not occur in isolation; moreover, the pitches of ornamenta-

tion notes are usually related to the successor note pitch).

The vertical interconnections between the sequences serve to retrieve the ‘vertical mu-

sical context’ of any element. For example, the context of a particular score note n can be

defined to be the set of all sequence elements that are directly or indirectly connected to

n, through any relation except the next relation. This yields the I-R structure n belongs to,

the performance event that refers to n, and (depending on the type of performance-event)

the performed-note that represents n in the performance. Any ornamentation events that

occur before the performance event corresponding to n will also be included, due to the

ornamented-by relation.
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Chapter 5

Problem Solving

In the previous chapter we have described the knowledge acquisition aspects of Tempo-

Express. This included the process of deriving knowledge-rich representations of melodies

and performances, to be used as a specification of the input problem, as well as forming

cases that can be used to solve tempo transformation problems.

In this chapter we explain how this musical information is stored in proto cases and

cases (see chapter 3, section 3.1), and we will address the part of the system that uses the

obtained cases in order to solve new tempo-transformation problems (see figure 5.1). In

particular, we will focus on the retrieval and reuse processes of the CBR approach that is

employed.

In chapter 3, section 3.1, we also outlined the problem solving process, illustrated in

figure 3.2. It involves an initial retrieval step at the phrase level. In this step, proto cases

are selected from the proto case base. The selected proto cases are segmented to form a

set of cases that are used in a combined retrieval and adaptation step called constructive

adaptation. In this step solutions are constructed for every segment of the input problem

and those solutions are concatenated to form a solution for the phrase input problem.

In the following subsections, we will address each of the steps. First we will look at

the concept of cases and proto cases in more detail, and how the data is organized in proto

cases and cases (section 5.1). Proto case retrieval is explained in section 5.2, and section 5.3

is devoted to the use of constructive adaptation and the transfer of expressive features from

retrieved cases to the input problem segments.

83
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Figure 5.1: The problem solving part of TempoExpress

5.1 Cases and Proto Cases

Cases in a case based reasoning system are composite units of information that embody the

knowledge to solve problems. They describe a particular problem and contain a solution

to that problem. Additionally, meta-information of different kinds may be present (see

section 2.6). The problem description part of the cases is used for indexing/retrieving

cases from a case base, given a problem description for which the CBR system should

find a solution (the input problem). The solutions of the retrieved cases are employed

in the adaptation step to form a solution to the input problem, either by transforming

a retrieved solution (transformational reuse) or by constructing a new solution where the

retrieved solution is used as a guide (generative reuse). The meta-information can be used

for example to guide the retrieval (e.g. in the case of time-stamps), or the adaptation step.

As mentioned above, TempoExpress deals with two different types of cases. The tempo

transformation knowledge is stored in the system in a permanent way as proto cases in a

proto case base. When the system receives the input that is necessary to perform a tempo

transformation, an actual case base is created dynamically from the proto cases.
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5.1.1 Proto Cases

One particular characteristic of the problem domain we are considering is that a single

musical phrase has several performances, as discussed in section 3.2. Given that many

performances pertain to a single phrase, it makes sense intuitively to store them together

in a single case. But from the point of view of tempo-transformation this doesn’t yield

useful cases. Since the tempo-transformation task is to change a performance at one tempo

to a performance at another tempo, only performances at (or close to) those tempos will

actually serve as precedents for a particular problem. This implies firstly that not all per-

formances for a given phrase will be used for a particular problem. Secondly, many tempo-

transformation cases can be constructed using the performances of a single phrase. since

any of the available performances is potentially part of a problem description, or a solu-

tion, as long as the source and target tempos have not been specified. Thus, a proto case

holds the information for more than just one tempo transformation. More precisely, when

the proto case contains performances at n different tempos, any of them may occur as an

input performance paired with any other as output performance. If we exclude identity

tempo transformations (where the same performance serves both as input and output per-

formance), this yields n(n− 1) possible tempo transformations.

To store the cases for all possible tempo transformations explicitly is inefficient. Firstly

because it would involve a vast multiplication of problem description data like the musical

phrase and its musical analysis, that are identical for many cases. Secondly, it is known a

priori that the usability of a particular case excludes the usability of many other cases,

namely all cases that solve tempo-transformations of the same phrase as the usable case,

but for source and target tempos that are very different from the source and target tempo

of the usable case. For example, when a case with a tempo transformation from 50 to

120 BPM is useful for a particular problem (because these tempos are close to the source

and target tempos in the input problem description), it is clear that the inverse tempo

transformation, from 120 to 50 BPM will not be relevant, nor other any tempo combinations

where the source and target tempos are very different from 50 and 120 BPM respectively.

In other words, the case base would be cluttered with many cases of which only a very

small number can possibly be used per problem solving episode.

To deal with this problem, the musical information is stored in the system in the form

of proto cases. The proto cases are not used directly to solve tempo transformation prob-

lems; Instead, they form the material from which a case base is constructed dynamically.

Figure 5.2 shows a schematic view of a proto case, with the information that is contained in

it. Note that there is no explicit labeling of any data as being part of the problem descrip-
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Figure 5.2: The information contained in a proto case

tion or the solution. Rather, the performance information at all available tempos (T1 · · ·T4)

is present. The items of the left side, the tempo-specifications and the I-R analysis, will be

used as primary and secondary indices for retrieval, respectively (explained in section 5.2).

5.1.2 Cases

Cases, as opposed to proto cases, correspond to a specific tempo-transformation problem,

mentioning a source and a target tempo, and contain a solution for that problem, in the

form of a performance, and performance annotation at the target tempo.

Another difference with proto cases is that cases provide solutions to tempo-transformations

of phrase segments instead of complete phrases.

This case layout is illustrated in figure 5.3. The solid boxes represent information that

is provided as input; the dashed boxes represent knowledge that is derived from the input

information; arrows denote the presence of structural relations between elements. The

names tagged with the superscript s pertain to the source tempo, and the names tagged

with t pertain to the target tempo.

Note that the I-R analysis, although present in the proto cases, is not present in the

actual cases, because it is used only in the proto case retrieval, not in the retrieval of cases.

5.2 Proto Case Retrieval

In the case retrieval phase, those cases that are expected to be for solving the current prob-

lem are retrieved from the case base. Using the retrieved cases, in the reuse phase a solution

is constructed for the input problem. The retrieval phase in TempoExpress can be divided
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into three steps: tempo filtering, melodic phrase comparison, and phrase segment com-

parison. The motivation for these steps follows from the basic assumption in CBR that

similar problems have similar solutions (see section 2.6). This implies that to solve a new

problem, the retrieval step should return the cases with the most similar problems to the

input problem, since their solutions are assumed to be closest to the desired solution. Input

problem specifications in TempoExpress comprise primarily the source and target tempos

for the tempo-transformation, and the melody (and its analysis) of the performance to be

transformed. Comparing input performances (which are also part of the problem specifi-

cation) is not useful, since apart from the tempo, the cases do not exemplify any explicitly

described way of performing the melodies. Input performances do play a crucial role in

the reuse phase however.

Note that retrieval, when it is taken to refer to functional aspects of the CBR process,

is not necessarily a single processing phase that is carried out once. Case retrieval may

happen in several non-consecutive steps (possibly interleaved with case reuse). Of the

three retrieval steps mentioned above, only the first two steps, tempo filtering and melodic

phrase comparison, are executed prior to case reuse, and only once per problem solving

cycle (i.e. once per tempo transformation). The last step, phrase segment comparison, is

done once for every input segment, and precedes the reuse of that segment.

5.2.1 Tempo Filtering

The most straight-forward step in the case retrieval is selecting the cases with performances

at the relevant tempos. It follows logically from the claim that lies at the heart of this work,

namely, that performances of the same melody are increasingly dissimilar with increas-
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ingly different tempos (see section 1.1 for a more elaborate discussion). It can be concluded

that in order for a case to be relevant, it must have an input performance at approximately

the source tempo, and an output performance at approximately the target tempo. We will

allow for a certain mismatch between the tempos because requiring the tempos to be iden-

tical is likely to be overly restrictive: the expressivity of a performance that sound good

at a particular tempo will probably also sound good for a tempo about 5 BPM faster or

slower. We have defined the tempo tolerance window to be 10 BPM in both upward and

downward directions. For example, a tempo transformation from 80 BPM to 140 BPM may

serve as a precedent for tempo transformation from 70 BPM to 150 BPM. This particular

tolerance range (which we feel may be too nonrestrictive), is mainly pragmatically moti-

vated: In our corpus, different performances of the same phrase are often at 10 BPM apart

from each other. Therefore, a <10 BPM tempo tolerance will severely reduce the number

of available precedents, compared to a ≥10 BPM tempo tolerance.

The tempo filtering procedure is applied before the proto-cases (see section 5.1.1) are

converted into actual cases. If a proto-case, which contains the performances at every

available tempo for a particular phrase, does not have performances within the tolerance

region of both the source and the target tempo, it is considered as irrelevant for solving

the current problem. That is, no actual case can be constructed from that proto-case, as

it should contain a performance close to the source tempo as input-performance and a

performance close to the target tempo as output-performance. This procedure is illustrated

in figure 5.4. Vertical bars under the phrases represent performances of that phrase, at a

tempo that is proportional to the vertical position of the bars.

5.2.2 Melodic Phrase Comparison

After filtering the proto case base by the source and the target tempos of the input problem,

a melodic similarity value is calculated between the input phrase and the phrases in the

proto cases. The purpose of this rating is to make a rough assessment of the similarity on

the phrase level, so as to prevent the reuse of segments that coincidentally match well with

an input segment, but belong to a phrase that is radically different from the input phrase as

a whole. For example, one can imagine that a very short fragment of a slow ballad might

be similar to a fragment of a bebop style melody, but the expressive performance of the

fragment will likely be rather different, so the ballad will not make a good precedent for

the bebop phrase.

Note that the purpose of making rough and global similarity measurements (e.g. for

clustering) requires different characteristics from a melodic similarity measure than for
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example the typical music information retrieval task of finding the single most similar

melody to a given query. For the latter application, the main concern is that the discrimina-

tive power of the measure is good in the highest similarity regions (e.g. when the compared

melodies are almost identical). On the other hand, for an overall similarity assessment of

a set of melodies, the similarity measure should also be discriminative when the melodies

are not very much alike (melodies within the same style can be rather different and may

share only some global features).

In section 6.2.1 we present a comparison of melodic similarity measures using melody

representations with different levels of abstraction. It turns out that there is roughly a
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trade-off between the two capabilities mentioned in the previous paragraph, and that

more abstract melody representations (like the I-R analysis and pitch contour) are more

discriminative on a wide range of divergent melodies than concrete representations such

as absolute pitch with duration. We have therefore chosen to use a similarity measure that

compares I-R analyses rather than the melodies at the note level. Since the I-R analyses are

of a sequential nature, the similarity between them can be assessed using the edit-distance.

To do this it is necessary to define the edit operations that can be applied to the individ-

ual I-R structures, and the functions that compute the costs of such operations. Although

specialized operations such as consolidation and fragmentation have been proposed for

computing the edit-distance between note sequences [Mongeau and Sankoff, 1990], we de-

cided to use the three canonical edit operations, insertion, deletion, and replacement. Costs

of deletion and insertion of I-R structures are proportional to the number of notes spanned

by the I-R structure, and replacement is a weighted sum of differences between attributes

of the I-R structures, plus an additional cost if the I-R structures under replacement do not

have the same label. The latter cost is reduced if the labels are semantically related, that is,

one of the structures is the retrospective counterpart of the other.

The cost functions of the edit-operations are parametrized to allow for control and fine-

tuning of the edit-distance. They are defined as follows:

w(si,∅) = αdSize(si) (5.1)

w(∅, s j) = αiSize(s j) (5.2)

w(si, s j) = αr


βLabelDiff (si, s j)+

γ |Size(si )− Size(sj ) | +
δ |Dir (si )−Dir (sj ) | +
ε |Overlap(si )−Overlap(sj ) |

 (5.3)

LabelDiff (si, s j) =


0 Label (si ) = Label (sj )

ζ Label (si ) = −Label (sj )

1 otherwise

where w(si,∅) is the cost of deleting I-R structure si from the source sequence; w(∅, s j) is the

cost of inserting I-R structure s j into the target sequence; and w(si, s j) is the cost of replacing

element si from the source sequence by s j from the target sequence.

Label, Size, Dir, and Overlap are functions that, given an I-R structure, respectively re-

turn its I-R label (encoded as an integer), its size (number of notes spanned), its melodic

direction, and its overlap (the number of notes belonging to both the current I-R struc-
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ture and its successor). LabelDiff is an additional function that determines the part of the

replacement cost due to difference/equality of I-R labels. The I-R labels are mapped to in-

teger values in such a way that the integer for the retrospective counterpart of a particular

label is always the negative of the integer of that label.

The parameters come in two kinds: Firstly there are the parameters that are used to

control the relative costs of the operations, αi, αd, and αr. For example by setting αi and

αd to relatively low values, the optimal alignment is more likely to include insertions and

deletions of elements than replacements. The second kind of parameters, including β, γ,

δ, ε, and ζ , regulate impact of differences in attributes. For example, a relatively high γ

value will make the replacement cost function more sensitive to size differences (leading

to higher a cost if the sizes differ).

The parameter values of the cost functions were determined experimentally, by opti-

mizing them to make the edit-distance measure mimic human similarity judgments. This

is reported in section 6.2.2.

With this distance measure, the distance to the I-R analysis of the input problem is as-

sessed for the I-R analyses of every proto case. The proto cases closest to the input problem

are selected as the basis to form the case base. A parameter defines the proportion of most

similar proto cases that is retrieved. The parameter value used by default is 0.5.

5.2.3 Case Creation from Proto Cases

From the final set of proto cases that has been selected, the actual case base is constructed.

This consists in partitioning the music representations present in the proto cases, and stor-

ing the segments in separate cases. In section 3.5 we have discussed various melody

segmentation strategies, and argued that non-overlapping, musical grouping (using the

Melisma Grouper) is the most appropriate strategy in our application. The melody seg-

mentation has been performed in the proto case construction/problem description phase,

and is stored in the proto case (in the form of note indices that represent the segment

boundaries).

The melody segmentation is used as the primary segmentation, from which the seg-

mentations of other representations are derived. These secondary segmentations are de-

rived by employing the structural relations defined between the elements of different rep-

resentations, as outlined in section 4.4. For example, the performance annotation segment

corresponding to a given melodic segment is found by taking the first note and the last

note ni and n j from a given segment, and finding the corresponding performance-events,

that is, the events ek and el for which scoreReference(ek ,ni ) and scoreReference(el ,nj ) holds,
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Figure 5.6: Two examples of the derivation of performance annotation and performance
segments from melody segments

respectively. The performance annotation segment is defined as the subsequence ek:l of the

performance annotation e of the complete phrase. The corresponding performance seg-

ment is delimited by the performed notes pm and pn for which scoreReference(ek ,pm ) and

scoreReference(el ,pn ) holds, respectively.

Segmentation of Performance and Performance Annotation

Due to the fact that the performance events that constitute the performance annotation are

not necessarily one-one correspondences between the melody and the performance, some

non-trivial situations may occur. For example, in case the first performance event of the

segment ek is preceded by any non-score-reference events (ornamentation, or insertion),

the first of these events will mark the beginning of the performance annotation segment

rather than ek. This situation is shown in figure 5.6 (left). The reason for joining those

events at the beginning of the segment rather than at the end of the previous segment is

that from a perceptual point of view, they are normally connected to the note that follows

(especially in the case of ornamentation events).

Figure 5.6(right) shows another situation, where the last note of the segment in the per-

formance is played as a consolidation with the first note of the next segment. In such cases,

the latter consolidated note will be included in the melody segment, since otherwise, an

inconsistent situation would occur, where a single note is performed as a consolidation.

Note that with melodic segmentations that follow musical grouping, this situation is very

unlikely, since the musician usually expresses the musical structure of the melody to some

extent, e.g. by a short silence. On the other hand, a consolidation event that bridges the

segment boundaries effectively masks the musical grouping structure, and thus is improb-

able.
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5.3 Constructive Adaptation

In this step a performance of the input score is generated at the target tempo, based on

the input performance and the set of matching cases. Constructive adaptation (CA) [Plaza

and Arcos, 2002] is a technique for case reuse that constructs a solution by a search process

through the space of partial solutions of the problem. Partial solutions are represented

as states. Furthermore, a ‘hypothesis generation’ function is defined for generating a set

of successor states for a given state. The search process is started by defining an initial

state that corresponds to the empty solution, the state where no part of the solution is

configured. The state space is constructed by applying the hypothesis generation function

exhaustively to the initial state and its (direct and indirect) successors. A state is a goal

state when it satisfies the constraints defined by the input problem, tested by a ‘goal test’

function. The order of expansion of states is controlled by a ‘hypothesis ordering’ func-

tion, that orders the states in a best-first manner. The constructive adaptation process is

expressed in pseudo code below (adapted from [Plaza and Arcos, 2002]):

Initialize OS = (list (Initial-State P))
Function CA(OS)

Case (null OS) then No-Solution

Case (Goal-Test (first OS)) then (S2C (first OS))
Case else

Let SS = (HG (first OS))
Let OS = (HO (append SS (rest OS)))

(CA OS)

The functions HG and HO realize hypothesis generation and hypothesis ordering, respec-

tively. Domain knowledge, as provided by past cases, is typically employed inside these

two functions. For example, given the input problem, cases can be retrieved and reused to

propose a solution to a part of the problem. They may also be used to determine the order

of expansion of states. But the employment of domain knowledge is not limited to cases.

Domain-knowledge may also be stated in the form of rules, or otherwise.

The variables OS and SS are the lists of open states (yet to be expanded) and successor

states (the states resulting from the current expansion). The function Initial-State maps

the input problem description P into a state. The function S2C maps the solution state

(the state for which Goal-Test succeeded) into the configuration of the solution. Although

the use of domain knowledge is normally most prominent in the functions HG and HO, the

functions S2C, Initial-State, and Goal-Test are also domain-specific.

In TempoExpress states have three components: A list of input problems and a list of
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corresponding solutions (the input problems and solutions are of the kind that cases con-

tain, see figure 5.3), and lastly, a list of quality values for every solution. The quality values

are numbers in the range [0,1] that indicate the estimated quality of the corresponding

solutions. A partial solution to a phrase input problem is defined as a state where zero or

more of the (segment) input problems have a corresponding solution and quality. In the

initial state, none of the input problems have a solution (and hence no quality estimate).

To expand this state into successor states, an input problem is selected from the set

of unconfigured input problems, and solutions are generated for this problem. Different

solutions can be generated, using different retrieved cases. The procedure is expressed as

pseudo-code below:

Function HypothesisGeneration(State)
NewStates = emptySet

Problem = (selectUnconfiguredInputProblem State)
Cases = (retrieveRelevantCases Problem)

For each Case in Cases

Let Solution = (solve Problem Case)
Let Quality = (quality S)
NewStates = (append (makeState Problem Solution Quality) NewStates)

NewStates

The function selectUnconfiguredInputProblem picks the input problem for which solu-

tions will be constructed. The current implementation of the function picks the first uncon-

figured input problem it encounters in the list. The retrieveRelevantCases function uses

the case base that was constructed based on the filtered set of proto cases, to find the cases

with phrase segments that best match the phrase segment of the input problem. Each of

the retrieved cases are then used in the solve function to construct a new solution for the

current input problem. Section 5.4 explains the functionality of retrieveRelevantCases

and solve in more detail.

The process of state expansion/hypothesis generation is illustrated in figure 5.7. The

figure shows states with three input problems (the score fragments), where different states

provide different solutions to the problems (the solutions being the performed notes, rep-

resented by the bars underneath the score).

When a state is reached that satisfies the goal state criteria, the solutions are concate-

nated to form the solution for the phrase problem specification. Otherwise, the state ex-

pansion is repeated, by solving one of the remaining unsolved input problems.

The goal state criteria require that a state has a solution for every input problem, and

that the overall estimated solution quality of the solutions is maximal. The quality of a
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Figure 5.7: Constructive adaptation: The segment-wise construction of the solution
through state expansion

solution is estimated as the proportion of notes in the problem score segment for which

performance events could be inferred based on the retrieved case. This proportion de-

pends on the matching quality between problem score and retrieved score segment, and

the availability of a matching adaptation rule, given the performance annotations in the

problem and the case.

Independence is assumed between the solution qualities of the input problems, and

thus the solution quality of the solution to a phrase input problem is defined as the average

quality of the segment solutions, weighted by the segment length. Therefore, a best first

search that expands states in the order of their solution quality is guaranteed to find the

solution with maximal quality.

Although as of now no constraints have been defined for regulating interdependence

of segment solutions, note that such constraints can easily be incorporated through CA. A

constraint can take the form of a rule that prescribes a decrease or increase of the overall

solution quality, based on some (probably high level) description of two or more segment

solutions. Of course this may introduce local maxima in the search space, and the search

strategy employed will become more crucial.

5.4 Case Adaptation at Phrase Segment Level

In this section we will explain in detail how a solution is obtained for a segment input

problem. This is the process that constitutes the state expansion mentioned before. Fig-

ure 5.8 shows an example of the reuse of a retrieved case for a particular input segment.

We will explain the numbered boxes in the figure one by one.
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5.4.1 Melody Segment Retrieval/Alignment

Box 1 denotes the comparison of the input score segment to those of the cases in the case

base in order to find the case that is most similar to the input problem. The similarity is

assessed by calculating the edit-distance between the score segments. The edit-distance

now operates on notes rather than on I-R structures, to have a finer grained similarity

assessment.

In box 2, a mapping between the input segment and the best matching retrieved seg-

ment is made, using the optimal alignment found through the calculation of the edit-

distance that was used in box 1 to compute the similarity. The purpose of the edit-distance

is thus twofold: To compute the distance between the problem and the cases, and to derive

a mapping between the score segment and the retrieved segment. There is a clear relation

between the two. The mapping is of prime importance, since the more correspondences

can be established between the notes of the input segment and the notes of the retrieved

segment, the more likely it is that the case can be reused (the correspondences are neces-

sary, not sufficient conditions for reuse). By configuring the cost of edit-operations in such

a way that correspondences are preferred over insertions/deletions, at the same time one

ensures that the most reusable cases are rated as closest to the problem.

Of course there is a trade-off between the number of correspondences in the mapping,

and the effectivity of reuse, since not all cases are expected to provide good solutions for

the current problem (e.g. cases with melodies that are radically different from the input

segment). Ideally, correspondences between problem segment notes and retrieved seg-

ment notes should only be established when it benefits the solution. Therefore, an edit cost

scenario that facilitates replacements too much is not a good option either.

5.4.2 Linking of Performance Events

In box 3, the performance annotations corresponding to the relevant tempos are extracted

from the retrieved segment case and the input problem specification (both the source

tempo Ts and the target tempo Tt for the retrieved segment case, and only Ts from the

input problem specification).

Box 4 shows the linking of the performance events of the retrieved segment at T s and

T t to the performance events of the input segment at T s . From the way the performance

event scheme was defined it follows that the general form of a performance of a score

m = (m0, · · · , mt) is:

(P0,S0, · · · ,Pt,St) (5.4)
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where Pi ∈ {O, I,∅}, and Si ∈ {D, T, C, F}, 0≤ i ≤ t. This is convenient because it allows us

to group performance events per score note. The performance events corresponding to a

note mi are thus (Pi,Si). That is, a note is always represented in the performance annotation

by zero or one (non-correspondence) performance reference event, followed by exactly one

score reference event1.

Let (mi, · · · , m j) be the subsequence of a score m = (m0, · · · , mt), and PT(m) = (p0, · · · , pv)

be the performance of m at tempo T, then we define:

Definition 1 The slice PT((mi, · · · , m j)) of m is the unique subsequence (pk, · · · , pl) of PT(m),

having the form (Pi,Si, · · · ,P j,S j) where Si is the score reference event referring to mi, and Pi is

any performance reference event that precedes Si or null in case Si is not preceded by a performance

reference event.

The mapping between the input segment and the retrieved segment is used to de-

termine which performance events from the retrieved case belong to which performance

event from the input problem, as shown in box 4 from the figure. This is done as follows:

Suppose that the alignment of the input score m and the retrieved score n determines that

the elements (mi, · · · , m j) correspond to (nk, · · · , nl). The mapping be either one-to-one

(i = j, k = l), one-to-many (i = j, k < l), or many-to-one (i < j, k = l). Given a performance

of m at tempo Ts, and two performances of n at tempos Ts and Tt respectively, we define:

Definition 2 The annotation triple of (mi, · · · , m j) and (nk, · · · , nl) for tempos Ts and Tt is the

triple of slices (PTs ((mi, · · · , m j)), PTs ((nk, · · · , nl)), PTt ((nk, · · · , nl)).

An annotation triple 〈PTs (m), PTs (n), PTt (n)〉 can be read intuitively as saying: a score

fragment (usually just a single note) n was played as PTs (n) at tempo T s , and played as

PTt (n) at tempo T t , while a melodically similar score fragment m was played as PTs (m)

at tempo T s . In order to infer from this how to play m at tempo T t , i.e. PTt (m), two

potential difficulties must be overcome. Firstly, it is possible that although n and m were

similar enough to be matched, the number of notes in n and m differs (as occurs in the

example in figure 5.8). Secondly, even when n and m would be identical, it still may occur

that PTs (n) and PTs (m) are very different. For example, in one performance a note may

be prolonged, and preceded by an ornamentation, whereas it is deleted in the other. This

suggests that although the input problem and case are similar with respect to their score,

their performances are very different.

1Actually the scheme does not prohibit multiple insertion events to occur subsequently or after the last score
reference event. But since this never occurred in the corpus, we eliminated these possibilities by imposing that an
insertion event must always precede a score reference, the constraint that also holds for ornamentation events.
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In case the mapping is not perfect and a note of the input segment is not matched to

any notes of the retrieved segment, that note has no corresponding annotation triple. Such

gaps are filled up by resorting to UTS. That is, PTt (m) is constructed from PTs (m) by scaling

the duration (in seconds) of the events in PTs (m) by the proportion T s

T t , leaving all other

expressive features unchanged.

5.4.3 Adaptation Rules for Establishing Analogies

To deal with these situations, we have defined a set of adaptation rules (exemplified in box

5), that given an annotation triple 〈PTs (m), PTs (n), PTt (n)〉, determine PTt (m). The rules

are intended to establish analogies between the tempo transformations of two matched

melodic fragments, based on the perceptual similarity of the performances. We will illus-

trate this using the example adaptation rules that are shown in figure 5.8.

The lower rule infers the fragmentation event (F). This rule states that if you have an

annotation triple 〈T, C, TT〉, you may infer F. The motivation for this is that from a percep-

tual point of view (ignoring the score), changing a performance from a consolidation event

(C) to two transformation events (T) amounts to changing from one performed note to two

performed notes. To obtain this effect when the initial performance is a single performed

note (T), a fragmentation event (F) is needed, so that two notes occur in the performance.

The upper rule infers OT, based on the annotation triple 〈T, TT, OTT〉. The annotation

triple indicates that in the retrieved case two notes were performed as two transformation

events at tempo T s and similarly at tempo T t , but with an ornamentation preceding the

first transformation event. The net result is thus the introduction of an ornamentation in

front. Since the performance of the input problem at tempo T s is T, the inferred perfor-

mance at tempo T t is therefore OT.

The examples provided above are actually instantiations of abstract rules. The abstract

rule system is defined as follows: First, a symmetric and reflexive perceptually-similar-

relation PS on performance event sequences is defined on the alphabet of score reference

events A = {T, C, F, D}. We defined PS to be:

PS = {(T, C), (C, T)(TT, F), (F, TT)} ∪ {(X,X) | X ∈ A} (5.5)

This relation is then used to specify three abstract adaptation rules that infer an output

performance from an annotation triple:
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〈X,Y, OY〉 → OX ⇔ {X,Y} ∈ PS (5.6)

〈X,Y, IY〉 → IX ⇔ {X,Y} ∈ PS (5.7)

〈X,Y,Z〉 → V ⇔ {X,Y} ∈ PS∧ {Z,V} ∈ PS (5.8)

The first rule governs the introduction of ornamentation events, henceforth called Or-

namentation Introduction (OI). The second rule governs the introduction of insertion events,

henceforth called Insertion Introduction (II). The last rule allows the substitution of PTs (m)

for any correspondence event that is perceptually similar to PTt (n), whenever PTs (m) and

PTs (n) are perceptually similar. We will call this rule Analogy Transfer (AT). Since the rules

are based on a general and theoretic conception of perceptual similarity, we believe them

to be general, that is, not specific to the domain of jazz music we currently deal with.

When an annotation triple matches none of the adaptation rules, this implies that the

performances of the retrieved case is too different from the performance of the input prob-

lem to be reused. In this case, UTS will be applied as a default transformation.

The quality of the solution found in this way, is defined as the proportion of notes in

the input segment for which a matching adaptation rule was found.

5.4.4 Transfer of Expressive Values

Until now we have focused only on the derivation of the type of performance event to form

the performance annotation for the output performance. To construct the actual output

performance from this performance annotation it is not sufficient to determine the type of

the event; Concrete values must also be derived for the attributes of the events, like onset-

deviation and duration deviation (in the case of correspondence events), and the dynamics

of the performed notes.

The score, performances, and their annotations of the input and retrieved segment are

divided into smaller parts by the score alignment between the two segments, leading to a

sequence of annotation triples as explained in subsection 5.4.2. If a given annotation triple

(PTs (m), PTs (n), PTt (n)) has matched an adaptation rule, this implies that PTs (m) and PTs (n)

are perceptually similar. The process of determining PTt (m) depends on the adaptation

rule that matched. Nevertheless, all three adaptation rules are based on the transfer of

expressive features from PTt (n) to PTt (m). We first specify how the transfer is realized for

the pairs of performance event sequences that belong to the PS relation. Note that these

are all instantiations of the general form specified in equation (5.4), where the performance
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reference parts (P0, · · · ,Pt) are all empty.

Let m = (m0, · · · , mt) be the sequence of score notes of input slice PTt (m) = (p0, · · · , pv),

and let n = (n0, · · · , nu) be the sequence of score notes of retrieved slice PTt (n) = (q0, · · · , qw).

Whenever the context implies that either m, n, PTt (m) or PTt (n) consists of a single per-

formed note we refer to that note by m, n, p, and q (without subscripts) respectively. The

transfer of respective onset, duration, and dynamics values are given for each pair of slices

in PS:

(T, T) When both PTt (m) and PTt (n) are single transformation events, implying m = (m)

and n = (n), the transfers of onset, duration, and energy are respectively defined as:

O(p) = O(m) + O(q)−O(n) (5.9)

D(p) = D(m) · D(q)
D(n)

(5.10)

E(p) = E(q) (5.11)

(T, C) When PTt (m) is a consolidation event and PTt (n) is a transformation event, the

transfers of onset, duration, and energy are defined as:

O(p) = O(m0) + O(q)−O(n) (5.12)

D(p) = ∑
m∈m

D(m) · D(q)
D(n)

(5.13)

E(p) = E(q) (5.14)

(C, T) When PTt (m) is a transformation event and PTt (n) is a consolidation event, the

transfers of onset, duration, and energy are defined as:

O(p) = O(m) + O(q)−O(n0) (5.15)

D(p) = D(m) · D(q)
∑n∈n D(n)

(5.16)

E(p) = E(q) (5.17)

(F, TT) When PTt (m) is a pair of transformation events and PTt (n) is a fragmentation

event, the transfers of onset, duration, and energy of each played note are defined as:
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O(pi) = O(m) + O(qi)−O(n0) 0 ≤ i ≤ 1 (5.18)

D(pi) = ∑
m∈m

D(m) · D(qi)
D(mi)D(n)

0 ≤ i ≤ 1 (5.19)

E(pi) = E(qi) 0 ≤ i ≤ 1 (5.20)

(TT, F) When PTt (m) is a fragmentation event, and PTt (n) is a pair of transformation

events, the transfers of onset, duration, and energy of each played note are defined as:

O(pi) = O(mi) + O(qi)−O(n) 0 ≤ i ≤ 1 (5.21)

D(pi) = D(m) · D(qi)
∑n∈n D(n)

0 ≤ i ≤ 1 (5.22)

E(pi) = E(qi) 0 ≤ i ≤ 1 (5.23)

(D, D) When PTt (m) and PTt (n) are both deletion events, no transfer of expressive values

is necessary, since the score note will not be performed.

(F, F) When PTt (m) and PTt (n) are both fragmentation events, the transfer is:

O(pi) = O(m) + O(qi)−O(n) 0 ≤ i ≤ 1 (5.24)

D(pi) = D(m) · D(qi)
∑q∈PTt (n) D(q)

0 ≤ i ≤ 1 (5.25)

E(pi) = E(qi) 0 ≤ i ≤ 1 (5.26)

(C, C) When PTt (m) and PTt (n) are both consolidation events, the transfer is:

O(p) = O(m0) + O(q)−O(n0) (5.27)

D(p) = ∑
m∈m

D(m) · D(q)
∑n∈n D(n)

(5.28)

E(p) = E(q) (5.29)
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Ornamentation Introduction

The matching of the OI rule conditions that PTt (n) = (Pn,Sn) where Pn = O, and Sn ∈
{D, T, TT, C, F}. The consequent of the rule states that PTt (m) = (O,Sm), where Sm ∈
{D, TT, C, F} is determined by the input performance at the source tempo PTs (m) = (Pm,Sm).

Furthermore, the rule conditions that (Sm,Sn) ∈ PS, hence the transfer of expressive values

from Sn to Sm can be realized through the corresponding formulae described above.

The ornamentation event is introduced before the score reference event Sm. The expres-

sive values for the ornamentation are adapted from the ornamentation Pn in PTt (n). The

number of notes that form the ornamentation k is equal to the number of notes in Pn. Since

the ornamentation is not a score reference event, there is no score note to compute the on-

sets based on the onset deviations from the score note. To solve this problem we compute

the onset deviations of the ornamentation notes relative to the next score note (m0 and n0

respectively for the input and the retrieved slices). Just as the onsets, the pitches of the or-

namentation note cannot be transferred as absolute values, hence we take same approach

to determine the pitches of the ornamentation notes.

O(pi) = O(m0) + O(qi)−O(n0) 0 ≤ i ≤ k (5.30)

P (pi) = P (m0)− P (qi) + P (n0) 0 ≤ i ≤ k (5.31)

D(pi) = D(qi) 0 ≤ i ≤ k (5.32)

E(pi) = E(qi) 0 ≤ i ≤ k (5.33)

Insertion Introduction

The transfer of expressive values for a matching II rule is analogous to that of OI. The

difference is that an insertion only refers to a single performance note. Since the II rule

conditions that only one insertion event occurs, the transfer functions (5.30), (5.31), (5.32),

(5.33) for onset, pitch, duration, and energy can be used, setting k = 0.

Analogy Transfer

The AT rule conditions that (PTt (m), PTt (n)) ∈ PS. The transfer of expressive values can

therefore be done as in the OI and II rules, by using the appropriate transfer functions (5.9)–

(5.29).

Note that, depending on the specific form of PTt (n), multiple instantiations may be

derived for PTt (m) based on PS. For example, if PTt (n) = (T), both PTt (m) = (T) and
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PTt (m) = (C) follow from PS. The choice for one of the two instantiations is determined

by the alignment between the input score and the retrieved score. In a 1-1 alignment for

example, m = (m), so it is not consistent to derive a consolidation event in that situation,

because that would require more than one input score notes.

Preservation of Monophony

The lengthening and displacement of performed notes, as well as the introduction of orna-

mentation and insertion events may lead to temporal overlap between consecutive notes in

the performance. Such situations cannot be rendered by saxophone, as it is a monophonic

instrument. Therefore, note overlap is eliminated by shortening the duration of the former

of two overlapping notes by the amount of overlap.

This approach is partly justified by findings of Timmers et al. [2002], that ornamental

notes tend to steal their time from the previous notes.

Concluding Remarks

We want to make some final remarks on the expressive transfer approach explained above,

especially on its current limitations, and possible enhancements and elaborations.

For simplicity fragmentations and consolidations have been limited to two notes. In

principle fragmentations and consolidations may involve more than two notes. It is easy to

generalize the expressive transfer approach to k notes for consolidation and fragmentation

events.

The formalization of the ‘perceptually similar’ concept by the PS relation is defined on

the event level, where events are treated as nominal values. This relation obviously cap-

tures perceptual similarity only roughly. For example, it states that any two transforma-

tions events (T) are perceptually similar. In reality the perceived similarity greatly depends

on the actual deviations in onset, duration, and energy. A more refined interpretation of

the concept can be envisioned that also includes a ‘perceptually similar’ relationship for

note attributes. Since the comparison of such quantitative attributes is not a crisp matter,

this will add a fuzzy component to the relationship. As a consequence, PS membership

will be graded. Case adaptations that were made based on low-valued PS memberships

are obviously less trustworthy than those based on high-valued PS memberships. This

difference can be taken into account by making adaptation quality (see subsection 5.4.3)

proportional to PS membership.



Chapter 6

Experimentation

This chapter describes an experimental analysis and evaluation of the different compo-

nents of TempoExpress. Section 6.1 deals with the knowledge acquisition component, and

describes the results of optimizing of the performance annotation model we have proposed

in chapter 3. Section 6.2 covers two experiments on melodic similarity, the most important

aspect of the case retrieval step. Firstly, it provides an empirical comparison of several

melodic similarity measures that may be used for case-retrieval. Secondly, the results of the

MIREX 2005 contest for symbolic melodic similarity are discussed, where our edit-distance

based comparison of I-R analyses is compared to several different approaches to melodic

similarity computation. Finally, in section 6.3 a systematic test of the proposed problem-

solving procedure is carried out in order to assess the quality of the tempo-transformations

performed by TempoExpress.

6.1 Optimization of Automatic Performance Annotation

In this section we report experiments done in order maximize the accuracy of the automatic

derivation of performance annotations for performances that we proposed in section 4.3.

The performance annotation method can be fine-tuned by adjusting the parameters in the

definition of the edit-operation cost functions.

We remark that even without optimization (that is, with arbitrary parameter settings),

the resulting performance annotations are not wholly incorrect in general. This indicates

that the cost model is essentially adequate, in the sense that the terms that figure in the

cost functions, like the absolute differences of pitch, and duration, are terms that, when

minimized, lead to an intuitive alignment between performed notes and score notes. The

105
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parameters in the cost model balance the relative importance of the terms. When the per-

formance is close to the score, the balance is not crucial, and many parameter settings will

yield the correct result (a sequence of transformation events). The parts where the balance

is of importance, are where for example ornamentations or consolidations occur. In such

situations, random parameter settings often interpret the performance wrongly, e.g. an or-

namentation is interpreted as several insertion events, or consolidations are interpreted as

combinations of deletion and transformation events.

Manually tuning the parameters is possible for a small set of performances, but this

becomes unfeasible for larger sets (adjustments that improve the annotation of one perfor-

mance lead to incorrect annotations of other performances). Therefore, we have employed

an evolutionary approach to obtain a good parameter setting. The idea of the evolutionary

optimization of the parameter values is simple: an array of the parameter values can be

treated as a chromosome. The number of errors produced in the annotation of a set of per-

formances using that set of parameter values, is inversely related to the fitness of the chro-

mosome. By evolving an initial population of (random) chromosomes through crossover,

mutation and selection, we expect to find a set of parameter values that minimizes the

number of annotation errors, and thus improves automatic performance annotation.

We are interested in two main questions. The first is whether it is possible to find a

parameter setting that works well in general. That is, can we expect a parameter setting

that worked well for a training set to perform well on unseen performances? The second

question is whether there is a single setting of parameter values that optimizes the anno-

tations. It is also conceivable that good annotations can be achieved by several different

parameter settings.

6.1.1 Experiment Setup

We have run the genetic algorithm with two different (non-overlapping) training sets, both

containing twenty performances from the musical corpus described in section 3.2. The

performances were phrases from the songs (Body and Soul, and Once I Loved), performed

at different tempos. For each of the performances, the correct annotation was available

(all annotations were manually checked and where necessary corrected). The fitness of the

populations was assessed using these annotations as a reference.

The fitness evaluation of a population (consisting of 20 chromosomes) on the training

set is a rather time consuming operation. Therefore, it can take a long time before a good

solution is obtained, starting the evolution with a randomly initialized population. In

an attempt to solve this problem, we initialized the population with solutions that were
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trained on the individual phrases of the training set (which is a much faster procedure).

Assuming that the solution optimized for one phrase may in some cases work for other

phrases, this speeds up the time needed to find a good solution for the whole training set.

A new generation is generated from an old generation as follows: From the old gen-

eration (consisting of N chromosomes), the k best chromosomes are selected (where k is

dependent on the distribution of the fitness across the population); Then, N − k new chro-

mosomes are created by a cross-over of the selected chromosomes; The newly generated

chromosomes are mutated (multiplying each parameter value by a random value), and the

N− k mutated chromosomes, together with the n (unchanged) chromosomes from the old

generation, form the new generation.

6.1.2 Fitness Calculation

The fitness of the chromosomes is calculated by counting the number of annotation errors

using the parameter values in the chromosome. For example, assume that the correct an-

notation of a melodic fragment is (T, T, C, T), and the annotation of that fragment obtained

by using the parameter values of the chromosome is (T, T, T, D, T) (that is, a consolida-

tion operation is mistaken for a transformation and a deletion operation). The C does not

match to an element in the second sequence, and the T and D don’t match to elements

in the first sequence and thus three errors occur. To count the errors between the correct

and the predicted annotations (which are represented as sequences of symbols), we use

the edit-distance (don’t confuse this use of the edit-distance to compare annotations with

the use of the edit-distance to generate annotations).

For a given set S of performances (for which the correct annotations are known), we

define the fitness of a chromosome c as:

fit(c) =
1

E(c, S) + 1

where E(c, S) is the total number of errors in the predicted annotations for S using the

parameter values in c. The fitness function fit ranges from zero to one. Obviously, a fitness

value of one is the most desirable, since it corresponds to zero annotation errors.

6.1.3 Results

The training sets Tr1 and Tr2 both consist of 20 annotated performances, amounting to a

total 488 performance events for Tr1 and 479 for Tr2. For each of the two training sets

the evolution algorithm was run three times. The resulting parameter settings are shown
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Figure 6.1: Estimated parameter values for two different training sets (Tr1 and Tr2). Three
runs were done for each set (a, b, and c). The x-axis shows the nine different parameters of
the cost functions (see section 4.3.1). For each parameter the values are shown for each run
on both training sets

Tr1a Tr1b Tr1c Tr2a Tr2b Tr2c

Errors on Train 19 (3.89) 9 (1.84) 10 (2.05) 11 (2.30) 12 (2.51) 11 (2.30)
Errors on Test 19 (2.17) 26 (2.97) 30 (3.43) 19 (2.17) 32 (3.66) 65 (7.43)

Table 6.1: Annotation errors produced by the obtained solutions for three different runs
(denoted by the letters a, b, and c) on two different training sets (Tr1 and Tr2) and a test set.

in figure 6.1. Table 6.1 shows the number of annotation errors each of the parameter set-

tings produced on the training sets, and on a test set of 35 performances (875 performance

events), none of which occurred in Tr1 or Tr2. The first table row shows the number of

errors on the set that the solutions were trained on. The second row shows the number of

errors on the test set. The values in parentheses are the errors as a percentage of the total

number of performance events in the data set.

The average number of annotation errors on the test set is about 32 on a total of 875 an-

notation elements in the test set, an error-percentage of 3.66%. This is only slightly higher

than the error-percentages on the training sets: 2,60% for Tr1, and 2,37% for Tr2 (averaged

over three runs), and substantially lower than the average error-percentage of random pa-

rameter settings on the test set, which is 13.70%.

Table 6.2 shows the pair-wise correlations of the parameter values found in each of the

runs. As can be seen from the cross-correlations in the table, the parameter settings did not

all converge to the same values. Nevertheless, there were some cases in which the param-
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Tr1a Tr1b Tr1c Tr2a Tr2b Tr2c

Tr1a
Tr1b -0.32
Tr1c -0.70 0.17
Tr2a 0.92 -0.02 -0.61
Tr2b -0.32 -0.33 0.76 -0.33
Tr2c -0.28 0.68 0.07 -0.12 -0.47

Table 6.2: Cross-correlations of the parameter values that were optimized using two differ-
ent training sets (Tr1 and Tr2), and three runs for each set (a, b, and c)

eters were highly correlated. In particular the solutions found in runs Tr1a, and Tr2a are

highly similar (this can be easily verified by eye in figure 6.1). A rather strong correlation

is also observed between the solutions found in Tr1c and Tr2b, and those in Tr1b, and Tr2c.

It is interesting that the correlated solutions were obtained using non-overlapping sets of

performances. This is evidence that the solutions found are approximations of a single

parameter setting that is valid for the performances in both training sets. In the case of

the solutions of Tr1a and Tr2a, the approximated parameter setting may also have a more

general validity, since both solutions have a low error number of annotations on the test

set as well (see table 6.1).

6.1.4 Conclusions

The two questions we wanted to answer through this experiment were whether it is possi-

ble to find a parameter setting that has a broader validity than just the set of performances

it was optimized for, and whether there is a single parameter setting that optimizes the an-

notations. All solutions from different trials on two non-overlapping sets of performances

substantially improved the quality of annotation of a test set over random parameter set-

tings. In particular, whereas random parameter settings have an annotation accuracy of

around 87% on average, the average accuracy of optimized parameter settings is 96% on

the test set. Affirming the first question, we conclude that it is indeed possible to improve

the accuracy of the automatic performance annotation mechanism, and that the tuned cost

functions also show improved accuracy on unseen performances.

Moreover, some cross-correlations were found between some parameter settings that

were optimized for different training sets. This suggests that they are approximations of a

parameter setting that works well for a larger group of performances. In general however,

the solutions did not all converge to a single set of parameter values, implying that there

are different, equally valid, parameter settings.
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6.2 Melodic Similarity

This section is devoted to experiments on melodic similarity. It consists of two main parts.

The first part is a mostly qualitative comparison of different melody representations for

computing melodic similarity. In particular, we investigate how melodic similarity based

on I-R representations relates to traditional melody representations such as pitch intervals

and melody contour in terms of abstraction. In the second part we report how the I-R

based melodic similarity measure was tuned to predict human similarity ratings on a set

of queries from a database of melodic incipits, and discuss the results of this measure in

the MIREX 2005 contest for symbolic melodic similarity.

6.2.1 Looking for a Good Abstraction Level

It has been argued that adequate comparison of melodies requires abstraction from the

surface of the melodies (the melody as a sequence of notes). For example, in applications

such as pattern discovery in musical sequences [Cope, 1991], [Hörnel and Menzel, 1998], or

style recognition [Hörnel and Menzel, 1998], it has been established that melodic compari-

son should take into account not only the individual notes but also structural information

of the melody based on music theory and music cognition [Rolland, 1999].

Common ways to view a melody in a more abstract way are by representing its pitch

contour, either as a sequence of pitch intervals, or as a sequence of registral directions

(taking only the sign of the pitch intervals). Pitch intervals eliminate the absolute pitch

of the melody, so that for example the interval representation of a transposed variant of

a melody will be identical to the original melody. Registral direction representations not

only eliminate absolute pitch, but also the differentiation between pitch intervals.

The I-R analysis of a melody can also be regarded as an abstract representation of the

melody. The I-R structures that correspond to particular melodic fragments convey both

relations between subsequent pitch intervals, and the patterns of implication and realiza-

tion of melodic expectations formed by those intervals. In addition, rhythmic and metric

structure is reflected in the chaining and combining of I-R structures. As such, it is inter-

esting to see how the I-R analysis as a basis for assessing melodic similarity compares to

the more common representations for melody similarity.

In the present experiment we compare a similarity measure based on the I-R represen-

tation against similarity measures based on interval and registral direction contours, and

based on the note representation. We use the edit-distance as a method of comparison for

all of the representations.
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Comparison Criteria

The focus of the experiment is on the discriminatory power of the measures. We use this

term informally to refer to the degree to which a similarity measure is informative about

the inherent structure of a set of data. Even if the structure is unknown, a similarity mea-

sure whose pairwise similarity values on a set of melodies are diverse can be said to have a

higher discriminatory power than a measure whose pairwise similarity values are all iden-

tical or near-identical, in the sense that the former is more ‘in focus’ for the data at hand.

This illustrates that the term discriminatory power is relative to the data set under inspec-

tion, and more generally, to a desired range of similarity. A geometric example may clarify

this point. To express the distances between points in a plane, we commonly compute the

Euclidean distance between the points. Another distance measure is obtained by taking

the square of the Euclidean distance. It will be clear that, compared to the unsquared Eu-

clidean distance, this measure is not as discriminative for points that are close together as

for points that are further apart, because small distance values are compressed, and large

distance values are stretched further apart by the square function. Conversely, taking the

logarithm of the Euclidean distance yields a measure that is more sensitive in the range

of small values, and less in the range of large values. This shows that the discriminatory

power of a measure may be localized in a certain range.

We will look at the discriminatory power of the measures both globally, and within the

range of nearly identical phrases. We define the global discriminatory power of a measure

as the diversity of the pairwise similarity values for a given data set. This can be measured

as the entropy of the similarity value distribution: Let p(x), x ∈ [0,1] be the normalized

value distribution of a distance measure D on a set of phrases S, discretized into K bins,

then the entropy of D on S is:

H(D) = −
K

∑
k=0

p(k) ln p(k)

where p(k), is the probability that the distance between a pair of phrases is in bin k.

To measure the discriminatory power for near-identical phrases we employ the label-

ing that is available in the used data set (see the next subsection) that allows us to identify

which phrases are very similar to each other. We define the discriminatory power as the

difference between the similarity value distribution of pairwise comparisons between near-

identical phrases to that of pairwise comparisons between non-related phrases. In other

words, the discriminatory power according to this criterion is the ability of the measure to

systematically assign lower distance values to near-identical phrases than to phrases that
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are not near-identical. The distributions are compared using the Kullback-Leibler (K-L) di-

vergence, a measure of distance between two distributions. In particular, when computing

the distance measure D over a set of phrases S, let

P = { {s1, s2} | s1, s2 ∈ S∧ s1 6= s2 ∧ nearIdentical (s1, s2) }

be the set of pairs of near-identical phrases from S, and let

Q = {(s1, s2) | s1, s2 ∈ S∧ s1 6= s2}− P

be the set of remaining pairs from S. Furthermore, let p(x), x ∈ [0,1] and q(x), x ∈ [0,1]

be the jointly normalized discretized value distributions of D over P and Q respectively.

Then the K-L divergence is defined as:

KLD(P ||Q) =
K

∑
k=0

p(k) log
p(k)
q(k)

Experiment Setup

The comparison of the different similarity measures was performed using 124 different

musical phrases from 40 different jazz songs from the Real Book [The Real Book, 2004](see

appendix C). The musical phrases have a mean duration of eight bars. Among them are

jazz ballads like ‘How High the Moon’ with around 20 notes, many of them with long

duration, and Bebop themes like ‘Donna Lee’ with around 55 notes of short duration. Jazz

standards typically contain some phrases that are slight variations of each other (e.g. only

different beginning or ending) and some that are more distinct. This is why the structure

of the song is often denoted by a sequence of labels such as A1, A2 and B, where labels

with the same letters denote that those phrases are similar. We will call such variations of

the same phrase phrase variants henceforward.

The similarity measures were implemented as edit-distances, each one using special-

ized cost functions for the type of melody representation. The note distance operates on

sequences of notes, having the attributes pitch, duration, and onset. The cost functions of

the note distance are:

w(si,∅) = D(si) (6.1)

w(∅, t j) = D(t j) (6.2)
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(6.3)

w(si, t j) =


|P (si)− P (t j) | +

|D(si)−D(t j) | +

|O(si)−O(t j) |

 (6.4)

w(si−K:i, t j) =


∑

K
k=0 |P (si−k)− P (t j) | +

|D(t j)−∑
K
k=0 D(si−k) | +

|O(si−K)−O(t j) |

 (6.5)

w(si, t j−L: j) =


∑

L
l=0 |P (si)− P (t j−l) | +

|D(si)−∑
L
l=0 D(t j−l) | +

|O(si)−O(t j−L) |

 (6.6)

In this experiment, we wish to test not only pure interval and direction contour rep-

resentations, but also hybrid contour representations that contain both interval/direction

and duration information. We form this representation as a list of pairs where each pair is

a pitch interval and the corresponding interonset interval (IOI). The cost functions of the

interval contour distance take into account both values, where the IOI value is weighted

by a factor k:

w(si,∅) = I (si) + kI OI(si) (6.7)

w(∅, t j) = I (t j) + kI OI(si) (6.8)

w(si, t j) =

 |I (si)− I (t j) | +

k |I OI(si)− I OI(t j) |

 (6.9)

(6.10)

Obviously, when k = 0 the distance measures only differences in pitch interval contours.

The direction contour representation is defined analogously, replacing the pitch interval

values by the sign of the interval (that is, -1, 0, and +1). The cost functions of the direction

contour distance are:
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w(si,∅) = C (si) + kI OI(si) (6.11)

w(∅, t j) = C (t j) + kI OI(si) (6.12)

w(si, t j) =

 |R (si)−R (t j) | +

k |I OI(si)− I OI(t j) |

 (6.13)

The cost functions of the I-R distance defined similarly to the definitions given in sec-

tion 5.2.2, but without the weighting parameters:

w(si,∅) = Size(si) (6.14)

w(∅, s j) = Size(s j) (6.15)

w(si, s j) =


LabelDiff (si, s j)+

|Size(si )− Size(sj ) | +
|Dir (si )−Dir (sj ) | +
|Overlap(si )−Overlap(sj ) |

 (6.16)

LabelDiff (si, s j) =


0 Label (si ) = Label (sj )

0.5 Label (si ) = −Label (sj )

1 otherwise

Results

With the 124 jazz phrases we performed all the possible pair-wise comparisons (7626) using

the four different distances. The resulting values were normalized per distance. Figure 6.2

shows the distribution of values for each distance. The results for the interval and direction

distances were obtained by leaving IOI information out of the cost functions (i.e. setting

the k parameter to 0).

Table 6.3 summarizes some statistical relations between the distances. The top row

show the expected value of the difference between each pair of distances; The distances

closest together on average are the direction and I-R distances, and furthest apart are the

direction and note distances. The bottom row shows the correlation coefficients. There is

a strong correlation between the interval, direction, and I-R distances, and only moderate

correlation between the note distance and the other three distances.

Figure 6.2 reinforces the impression from table 6.3, that there is a clear difference in
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X1:
X2:

note
int.

note
dir.

note
I-R

int.
dir.

int.
I-R

dir.
I-R

E(X2− X1) −0.19 −0.31 −0.26 −0.11 −0.06 0.05
rX2,X1 0.15 0.19 0.25 0.77 0.74 0.84

Table 6.3: The distances compared pairwise. The distances are shown in the uppermost
row. In the left column, X1 and X2 respectively refer to the two measures under compari-
son
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Figure 6.2: Distribution of distances for four melodic similarity measures. The x axis represents the
normalized values for the distances between pairs of phrases. The y axis represents the number of
pairs that have the distance shown on the x axis

similarity assessments at the note-level on the one hand, and the interval, direction and

I-R-levels on the other hand. Whereas the distance distributions of the last three distances

are more spread across the spectrum with several peaks, the note distance has its values

concentrated around one value. This means that roughly speaking, the note distance rates

the majority of the phrases from the set equally similar, whereas the other distances rate

some phrases more similar than others. This indicates a difference in overall discriminative

power, as we described in the previous subsection. The entropy values for each measure

are shown in figure 6.3(left). It can be seen that the discriminatory power is substantially

higher for the interval, direction, and I-R measures than for the note measure.

Next to the main peak in the note distance distribution a very small peak can be ob-

served in the distance range between 0.0 and 0.2, which comprises the comparisons be-
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Figure 6.3: Left: Discriminatory power (measured as entropy); Right: KL-Divergence be-
tween within-song distance distribution and between-song distance distribution. The In-
terval+IOI and Direction+IOI measures were computed with k = 2.0

tween phrase variants. This peak is also present in the I-R distance, in the range 0.0− .05.

In the interval and direction distance distributions this peak is not visible. In these two

distributions, the phrase-variant comparisons are ‘masked’ by the main peak of the dis-

tribution, that comprises the non-phrase-variant comparisons (e.g. comparisons between

phrases from different songs). This means that the note and I-R distances are better at

identifying which phrases are very similar than the interval and direction measures, sug-

gesting that the note and I-R distances have a relatively good discriminatory power at the

low distance range.

The K-L divergence (KLD) between the distance distribution of phrase-variant compar-

isons and the distance distribution of non-phrase-variant comparisons supports this. The

KLD is a measure for comparing distributions. High values indicate a low overlap between

distributions and vice versa. Figure 6.3(right) shows the KLD values per distance. Note

that the values for the interval and direction distances are slightly lower than those of the

note and I-R measures.

The interval and direction measures do not include any kind of rhythmical/temporal

information. Contour representations that ignore rhythmical information are sometimes

regarded as too abstract, since this information may be regarded as an essential aspect of

melody [Schlichte, 1990; Typke et al., 2003]. Therefore, we tested the effect of weighing

the interonset time intervals (IOI) on the behavior of the interval and distance. Increasing

the impact of IOI, through the parameter k in equations (6.7–6.13), improved the ability to

separate phrase-variant comparisons from the non-phrase-variant comparisons. However,

it decreased the discriminatory power of the measures (see figure 6.3). In figure 6.4, the

distance distributions of the direction distance are shown for different weights of IOI. Note

that, as the IOI weight increases, the form of the distribution smoothly transforms from a
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Figure 6.4: Distributions of distances of the direction measure for various weights of in-
teronset intervals.

multi-peak form (like those of the interval, direction and I-R measures in figure 6.2), to

a single-peak form (like the note-level measure in figure 6.2). That is, the direction level

assessments with IOI tend to resemble the more concrete note level assessment.

Conclusions

In this experiment we have compared various edit-distance based melodic distances. We

were especially interested in the distance that was based on the I-R analysis of the melody,

since this is a novel way of computing melodic similarity. As a representation of melodic

material, the I-R analysis provides an intermediate level of abstraction from the melodic

surface, between a note representation as a less abstract representation, and the pitch con-

tour (up/down patterns) representation as being more abstract. Although the labels given

to the I-R structures merely represent pitch interval relations, the overlap and boundaries

of the structures convey information about meter and rhythm, be it in an implicit way.

The measures we used for discriminatory power, the overall entropy and the K-L di-

vergence, reflected the intermediate level abstraction of the I-R distance, in between the

note distance as the most concrete distance, and the interval and direction distances as the

most abstract.

There appears to be a trade-off between discriminatory power on the short range of

melodic similarity on the one hand, and discriminatory power on the long range of sim-
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ilarity on the other. Similarity measures based on more concrete melody representations

tend to favor the former and those based on more abstract melody representations the

latter. In terms of applications, concrete measures would be more suitable to find the sin-

gle best match for a query (e.g. to implement Google’s “I’m feeling lucky” functionality),

whereas abstract measures would be more useful for multidimensional scaling of a set of

melodies.

6.2.2 Ground Truth Prediction

In this subsection we report an experiment on melodic similarity ground-truth prediction,

based on human similarity judgments. Part of the ground-truth data was made publicly

available as training data for the symbolic melodic similarity contest, held as part of the

1st Annual Music Information Retrieval Evaluation eXchange (MIREX 2005). Using the

training data we optimized our I-R distance, and submitted the algorithm for participation

in the contest. Below we describe the contest setup, the optimization, and the results from

the contest.

The MIREX 2005 Contest for Symbolic Melodic Similarity

The Music Information Retrieval Evaluation eXchange is an annual event with the goal of com-

paring state-of-the-art algorithms and systems relevant for music information retrieval.

Among the contest tasks of MIREX 2005 were for example audio tempo extraction, melody

extraction, genre classification (for audio and symbolic data), and symbolic melodic simi-

larity.

The symbolic melodic similarity contest aimed to evaluate melody retrieval algorithms,

used to retrieve the most relevant melodies from a data base, given a query melody. The

data used in the contest was taken from the RISM A/II database (a database containing

about 476.600 bibliographic records of musical manuscripts written after 1600). Prior to the

contest, Typke and co-workers [Typke et al., 2005b] carried out a survey in which subjects

were asked to rank a set of melodic incipits (shown as in score notation). For eleven query

incipits, the data base was filtered to obtain a set of around 50 candidate incipits per query,

based on a rough filtering method that compared statistics like pitch range, interval his-

tograms etc. In total 35 subjects participated; In majority they had either enjoyed musical

education, or played an instrument, or both. The subjects ranked the 50 candidate incipits

according to their similarity to the corresponding query, as judged by the subject. Candi-

date incipits that were judged entirely unrelated could be left unranked. The final ranking

defined as ground-truth had the form of ranked groups of candidate incipits, where the
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between-group order of incipits was significant and the within-group order was not sig-

nificant. The significance was based on the level of inter-subject agreement measured by a

Wilcoxon rank sum test on the answers of all subjects.

The contest task consisted in ranking a subset of the database according to melodic

similarity against eleven query incipits. The subset was the union of candidate incipits

for all eleven queries (558 incipits in total). The ground-truth for the eleven queries of the

survey were available to participants as training data. The survey was repeated for another

eleven queries that formed the test data. The melody incipits were available as MusicXML.

MIDI versions derived from MusicXML were also available. Grace notes were removed in

the MIDI versions, since including them without altering the durations of surrounding

notes would break the time structure of the melody (the grace notes would incorrectly

consume time).

The ranking computed by the participant algorithms were compared to rankings by

human subjects. The rankings were evaluated using four different evaluation metrics:

average dynamic recall (ADR) The average of recall values after each retrieved incipit,

where the set of relevant incipits is increased group-wise.

normalized recall at group boundaries (NR) A weighted average of the recall at group

boundaries, where the recall value at each group boundary is weighted by the size of

the preceding group.

average precision (AP ) The average of the precision values at every retrieved relevant

incipit.

precision at N incipits (PN ) where N is the number of relevant incipits. The precision

value after retrieving N incipits

The ADR [Typke et al., 2006] metric was defined to compare computed rankings to

ground-truth rankings in such a way that the computed ranking is not penalized for chang-

ing the order of incipits whose order is not significant in the ground-truth ranking. That

is, the order of incipits from the same group in the ground-truth ranking is not taken into

account. Furthermore, the ADR penalizes deviations from the ground truth less towards

the end of the candidate list.

Like ADR, the NR metric measures recall over an incremental list of relevant incipits.

The main difference between the two metrics is that NR is sensitive to group size, whereas

ADR is not.

The AP and PN metrics do not penalize the incorrect order of retrieved relevant docu-

ments, only the retrieval of any irrelevant documents before relevant documents.
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The ADR was chosen as official evaluation metric for the contest (by a vote among the

participants prior to the contest), because it best fitted the format of the ground-truth as

partially ordered lists of relevant incipits.

Optimization of the I-R Measure on Training Data

The melodic similarity ground-truth for eleven queries was available as training data to

optimize the participant algorithms. We used this training data to tune the I-R distance.

The cost functions of the distance for insertion, deletion and replacement are identical to

the ones used in TempoExpress, as given in definitions (5.1)–(5.3) on page 90.

The optimization approach we took is largely identical to the optimization of perfor-

mance annotation, described in section 6.1: A genetic algorithm was applied to search

the space of parameter settings. A random initial population of 30 members was evolved

using an elitist approach, employing mutation and crossover. The fitness function for se-

lection was based on ground-truth training data. More concretely, a particular setting for

the parameters αd, αr, β, γ, δ, ε, and ζ was evaluated by ranking the candidates for each

query using the I-R distance with the given setting. The computed ranking was compared

to the ground-truth ranking. The fitness was defined as the average dynamic recall value

mentioned in the previous subsection, over all queries:

fitness(d) =
1

| Q | ∑
q∈Q

ADR(d, q) (6.17)

where Q = q1, · · · , q11 is the set of queries, and ADR(d, q) is the average dynamic recall for

a distance d on a query q.

A cross-validation setup on the 11 queries was chosen to prevent overfitting of the

parameters to the training data. Sets of three queries were taken per run to optimize a

population, and after 200 runs (which was generally enough for the fitness to stabilize) the

best parameter setting from the population was selected and its ADR value was tested on a

test set that included all the queries (both the three queries that were used for optimizing,

and the eight remaining unseen queries). For each set of three queries (there were four

sets) this procedure was executed twice, amounting to eight runs in total. The normalized

parameter settings with the highest ADR value on the test set are shown in table 6.4.

Results

Seven different algorithms participated in the contest. The methods used are described

in [Typke et al., 2005a], [Orio, 2005], [Suyoto and Uitdenbogerd, 2005], [Lemström et al.,
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parameter operation/attribute value

αi insertion 0.064
αd deletion 0.131
αr replacement 1.000
β labels 0.587
γ size 0.095
δ direction 0.343
ε overlap 0.112
ζ retrospective counterparts 0.801

Table 6.4: Parameter values found by evolutionary optimization, using train data from
RISM A/II database

Participant (Label) Distance Representation

Grachten, Arcos & Mántaras (GAM) Edit-distance I-R analysis

Orio (O) N-grams matching Pitch interval/IOI

Suyoto & Uitdenbogerd (SU) N-grams matching Pitch interval

Typke, Wiering & Veltkamp (TWV) Earth Mover’s Distance Pitch/onset/duration

Lemström, Mikkilä, Mäkinen & Ukkonen
(LMMU-P3)

Geometric Matching Pitch/onset/duration

Lemström, Mikkilä, Mäkinen & Ukkonen
(LMMU-DP)

Edit-distance Pitch/pitch interval

Frieler & Müllensiefen (FM) Hybrid Multi-feature

Table 6.5: MIREX 2005 symbolic melodic similarity contest participants

2005], [Frieler and Müllensiefen, 2005], and [Grachten et al., 2005a], respectively. A rough

characterization of each algorithm is given in table 6.5.

Table 6.6 shows the overall evaluation of each of the algorithms on the eleven test

queries1. The official evaluation metric, the ADR, is shown, along with the additional three

metrics mentioned in the previous subsection, and the runtimes needed to do the candi-

date ranking for the eleven queries. The entries with an asterisk (*) before the runtime were

executed in the M2K evaluation environment2 and thus include the time needed to evalu-

ate the rankings. The evaluation time was approximately five seconds. Figure 6.5 shows

the results in table 6.6 graphically (the left-most bar in each of the four metrics represents

our I-R based distance).

The rating of algorithms is roughly similar for the two recall based metrics, ADR and

1Evaluation results per query are available here:
http://www.music-ir.org/evaluation/mirex-results/sym-melody/

2http://www.music-ir.org/evaluation/m2k/
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Rank Participant

Average
Dynamic

Recall

Normalized
Recall

at group
boundaries

Average
Precision,

non-
interpolated

Precision at
N incipits

Runtime
(seconds)

1 Grachten, Arcos & Mántaras 65.98% 55.24% 51.72% 44.33% ∗80.17

2 Orio 64.96% 53.35% 42.96% 39.86% 24.61

3 Suyoto & Uitdenbogerd 64.18% 51.79% 40.42% 41.72% 48.13

4 Typke, Wiering & Veltkamp 57.09% 48.17% 35.64% 33.46% 51240

5 Lemström, Mikkilä, Mäkinen &
Ukkonen (P3)

55.82% 46.56% 41.40% 39.18% ∗10.01

6 Lemström, Mikkilä, Mäkinen &
Ukkonen (DP)

54.27% 47.26% 39.91% 36.20% ∗10.11

7 Frieler & Müllensiefen 51.81% 45.10% 33.93% 33.71% 54.59

Table 6.6: Results for the MIREX 2005 contest for symbolic melodic similarity, ranked ac-
cording to Average Dynamic Recall

NR. The same holds for the two precision based methods, AP and PN . With respect to

recall, the three best scoring algorithms (GAM, O, and SU) performed substantially bet-

ter than the remaining algorithms. These three algorithms also perform relatively good in

terms of precision. Our I-R based distance even performs best in all four evaluation met-

rics. The good performance on the ADR and NR metrics indicate that it is good at ranking

the relevant candidates in the right order. The high AP and PN values indicate that it

is good at retrieving relevant candidates before retrieving irrelevant candidates (i.e. false

positives, incipits that did not appear in the ground-truth ranking).

It may be tempting to interpret the good results of the I-R based distance as a corrobora-

tion of the I-R Model. However some reservations must be made, Firstly, one should bear

in mind that the I-R analysis of a melody is hypothesized to express patterns of listening

expectations (and their satisfaction/violation) that the melody generates. Evidence that

perceptually similar melodies have similar I-R analyses is not necessarily evidence for this

hypothesis. And secondly, the evaluation results are only partly determined by the choice

of representation (in our case the I-R analysis), the actual distance metric may have a great

impact as well. Nevertheless, the good performance of our algorithm indicates that the I-R

analysis provides a relevant and useful representation of melody.

With respect to runtimes our I-R distance algorithm lags behind. This is hardly sur-

prising, since our focus has not been on computational efficiency. In particular, the prepro-

cessing step that performs the I-R analysis of the MIDI files is currently implemented as an

interpreted Guile/Scheme script, which inevitably runs slower than compiled code. Fur-
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Figure 6.5: MIREX 2005 evaluation results, from table 6.6

thermore, we used a C++ implementation of the edit distance that is very generic. It allows

for an arbitrary number of edit-operations, and supports context-aware edit-operations,

thus trading speed for flexibility.

In an attempt to interpret the results better, we have characterized the participating

algorithms in terms of matching method and the abstraction level of the melody represen-

tation. The matching method can either be global or local. Global matching methods force

the query and the candidate to be compared entirely, whereas local matching methods per-

form (multiple) matches on parts of the query and candidate. Global matching can lead

to an undesirably low matching result especially if the query and candidate are largely

identical but have a very small portion that is very different. Also, in case the query and

candidate have different lengths, the matching quality using global matching may be very

low.

We define the level of abstraction of a melody representation scheme informally as pro-

portional to the number of non-identical melodies (when represented as notes with pitch,

onset, and duration) that lead to identical representations in that scheme. We classify the

level of abstraction as low, medium, or high. By low abstraction we mean the representa-

tion of the melody as a sequence of primary note attributes, like absolute pitch, onset, and

duration. Medium abstraction refers to for example pitch intervals, either with our with-

out IOI information. High abstraction covers any representation that is more abstract than

pitch intervals, e.g. melodic contour (direction), and other global contour representations
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Participant Matching Abstraction Level

GAM global high

O local medium

SU local medium

TWV local low

LMME-P3 local low

LMME-DP global medium/low

FM global hybrid

Table 6.7: Characterization of participating algorithms in terms of matching approach and
abstraction level of the melody representation

like I-R structures.

Table 6.7 shows the characterization of each participating algorithm. With respect to

matching method, note that the local matching algorithms generally performed better than

the global matching algorithms. The exception to this rule is our I-R edit-distance. How-

ever, a look at the optimized parameter values of the edit-distance (table 6.4) reveals that

the parameters αi, αd, and γ, that determine the cost of insertion and deletion are all very

low. This indicates that the distance had to assign low distance values to query/candidate

pairs that had rather different parts, or were different in length. Apparently, to a certain

point the global matching approach can accommodate this, due to optimization of param-

eters. But it is obvious that the cost of insertion and deletion cannot be lowered without

limits, because that would eliminate the influence of the actual melodic content on the

distance computation. Local alignment is more appropriate in such cases.

With regard to the abstraction level of representation, apparently higher abstraction

levels seems to work better than lower abstraction levels. This is evidence for the claim

mentioned at the beginning of subsection 6.2.1, that measuring melodic similarity requires

more than just note-to-note differences of melodies. It is surprising to see the relatively

good results of Suyoto & Uitdenbogerd, as they apparently use only pitch interval rep-

resentations, and discard duration information. This implies that either duration and

other non-pitch information is irrelevant for melodic similarity (which we consider very

unlikely), or that the N-grams counting method they used is very effective. Frieler and

Müllensiefen’s hybrid approach is hard to classify, as it involves both concrete and abstract

melody representations. Moreover, the low ranking of their algorithm is probably due to

the fact that they optimized their distance on melodies from another data set, rather than
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the training data for the MIREX 2005 contest [Frieler and Müllensiefen, 2005].

Conclusions

In the MIREX 2005 contest for symbolic melodic similarity, the I-R based melodic dis-

tance measure outperformed other state-of-the-art melody comparison methods, both in

recall and precision, showing that the I-R representation of melody captures aspects of the

melody that are relevant for similarity judgments.

Analyzing the results of the contest, we conclude that the profile of a promising dis-

tance measure includes local matching, and a relatively high level of abstraction in its

melody representation. Given that our I-R based measure employs a global matching edit-

distance, an interesting question is whether combining I-R representations with other dis-

tance metrics can further improve the results. An obvious possibility is using a distance

metric based on matching N-grams of I-R structures. Such a metric would accomplish lo-

cal matching. This approach seems promising since n-grams based methods of Suyoto,

and Uitdenbogerd, and Orio also give good results. Another possibility is to use a local

alignment version of the edit-distance [Mongeau and Sankoff, 1990].

The computation speed of our distance measure can be improved in various ways. A

major improvement can be made by implementing the I-R parser in a compiled language,

rather than as an interpreted script. Also, loading and processing all MIDI files in a single

run instead of invoking the program for each MIDI file individually will probably save

run-time. Finally, using an edit-distance implementation that is more specialized (where

edit-operations are not context-sensitive, and the set of edit-operations is hard-wired into

the code) will reduce computation cost further. We believe that with this changes, our

algorithm can be highly competitive in terms of runtimes as well, since the number of I-R

structures in the I-R representation of a melody typically is only half the number of notes

in the melody. With an average decrease of 50% of the sequence length of both query and

database incipits, only 25% of the original number of comparisons are necessary, given

that the complexity is of edit-distance sequence comparison is O(mn) in the length of the

sequences m and n.

6.3 Large Scale Evaluation of Tempo Transformations

After describing tests of the annotation and retrieval components of TempoExpress in the

previous sections, we report our evaluation of the TempoExpress system as a whole. The

first question that needs to be addressed is how the tempo transformation results can be
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evaluated. Due to the subjective aspects involved, evaluation of results is not an obvious

issue (see subsection 2.4.6), as is the case with many applications that deal with musical

or other artistic content such as generation, manipulation, or classification of musical con-

tent. Ground truth can not be established analytically in such domains. Instead, user sur-

veys are often held to define the ground truth as the inter-subjective agreement between

subjects. In the case of TempoExpress, the evaluation could take the form of a survey in

which tempo transformed performances are presented to the subjects along with original

(untransformed) performances at the target tempo. If subjects would not be able to distin-

guish the transformed performance from the original performance, that would prove that

the expressivity in the transformed version is not perceived as unnatural.

We have however opted for an alternative evaluation approach, that measures the dif-

ference between the transformed performance and the original (target) performance. This

method has some drawbacks, but also has important advantages. A drawback is that it

evaluates a transformed performance using a single human performance as a reference.

This may be overly restrictive, because the fact that the transformed performance does

not sound like that (natural sounding) human performance does not mean that it does not

sound natural. It is obvious that there may be different performances of the same phrase

that all sound natural. Another drawback is that the results are not directly judged by

human listeners, because the ultimate goal of TempoExpress as an application is that its

transformation results sound natural to users in terms of expressivity.

A major advantage of the system evaluation based on difference to target performances

is that it allows for a much more systematic evaluation of the results. Whereas a di-

rect evaluation of the results by human listeners would only permit the evaluation of a

small selection of results, with target-based evaluation is feasible to evaluate transforma-

tion results for every phrase and tempo for which a human performance is available. An-

other advantage of target-based evaluation is the possibility of experimentation. A feed-

back/experimentation cycle can be set up to test the effect of different settings of the sys-

tem. This is not feasible with listener-based evaluation of results.

6.3.1 Evaluation Setup

As mentioned above, the quality of a tempo transformation is defined as the distance of

the transformed performance of a phrase to a target performance. The target performance

is a performance of the phrase played at the target tempo by a human player. In such an

evaluation setup the distance measure is a crucial issue. For the distance measure to be

of value, it must somehow reflect human perception of difference and similarity between
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performances. To achieve this, we have set up a web-survey to gather human similarity

judgments of performances. An edit-distance measure was then modeled after the results

of the survey in such a way that it predicts the human similarity judgments (described in

subsection 6.3.3).

The distance measure compares the melodic descriptions of the performances, rather

than the audio, for two reasons. Firstly, we are primarily interested in testing the musical

quality of the tempo transformed performance (see subsections 1.2.1 and 1.2.2), whereas

any kind of evaluation of the resynthesized audio would probably be strongly influenced

by the sound quality. The melodic descriptions describe the aspects of the performance that

the system has manipulated (ornamentations, timing and dynamics attributes etcetera),

and therefore provide a more direct way to evaluate the changes the system has made.

Secondly, the audio resynthesis is currently done in a semi-automatic way (that is, tim-

ing and dynamics changes are translated to audio transformations automatically, but for

note insertions and similar extensive changes, manual intervention is still necessary). This

limitation would prevent a large-scale evaluation, if the evaluation was to be done using

re-synthesized audio rather than the transformed melodic descriptions.

The musical unit TempoExpress handles as input data is the phrase. It processes the

phrase by segmenting it, generating solutions for each segment and concatenating the so-

lutions. Since no constraints have yet been defined that deal with inter-dependencies be-

tween segment-solutions, a solution to a phrase level tempo transformation problem can

be regarded as a set of solutions to a set of segment level tempo transformation problems.

An advantage of defining tempo transformation problems at the segment level rather than

at the phrase level is that it increases both the number of possible tempo transformation

problems to solve, and the amount of training data available, given the musical corpus.

As a consequence, the statistical reliability of the system evaluation will be higher with

segment level tempo transformations. Therefore, we defined the tempo transformation

problems used to evaluate the system by segmenting the phrases in the proto case base

into segments (having a typical length of about five notes), and using the performances at

different tempos as problem descriptions and solutions respectively.

In this way, 6661 tempo transformation problems were defined. Each of the problems

is solved and the tempo-transformed performance is compared to the target performance

using the performance distance measure that was modeled after the similarity judgments

gathered from the survey. For reference, the tempo transformation was also performed

using uniform time stretching and the resulting performance is also compared to the target

performance. This permits us to see to what extent TempoExpress improves the quality of

the tempo transformations over uniform time stretching.
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The distance measure for comparing expressive performances was modeled after hu-

man performance similarity judgments, in order to prevent the risk mentioned above, of

measuring difference between performances that are not perceptually relevant (or con-

versely, failing to measure differences that are perceptually relevant). In subsection 6.3.2

we explain the setup of the survey by which we gathered human similarity judgments. In

subsection 6.3.3 we show how the performance distance measure was derived from the

survey results. Subsection 6.3.4 describes the results of tempo transformation evaluation.

6.3.2 Obtaining Ground Truth: a Web Survey on Perceived

Performance Similarity

The human judgments were gathered using a web based survey3. Subjects were presented

a target performance A (the nominal performance, without expressive deviations) of a

short musical fragment, and two different performances B and C of the same score frag-

ment. The task was to indicate which of the two alternative performances was perceived

as most similar to the target performance. Thus, subjects were asked questions of the form:

A is most similar to
B
C

The underlined items could be clicked to play the corresponding performance, and lis-

teners were asked to mark their answer by selecting either B or C, through radio-buttons.

Figure 6.6 shows a screenshot of the web-interface for presenting the questions to the sub-

jects4.

The two alternative performances were systematically varied in the expressive dimen-

sions: fragmentation, consolidation, ornamentation, note onset, note duration, and note

loudness. One category of questions tested the proportionality of the effect quantity to

perceived performance distance. In this category, versions B and C contained variations

in the same expressive dimension, but to a different degree. In the case of numerical pa-

rameters like duration and dynamics, this means that in version C the same notes were

lengthened/shortened, loudened/softened as in version B, but to a lesser degree. In the

case of discrete parameters such as ornamentation or consolidation, version C would have

a smaller number of those events than version B. Another category measured the relative

influence of the type of effect on the perceived performance distance. In this category ver-

3The survey is available on line at: http://musje.iiia.csic.es/survey/introduction.html
4The second part of the question, regarding the naturalness of the fragments was added for a secondary aim

of the survey, namely to study the possible relation between naturalness and the type and degree of expressive
effects; this secondary study has not been included here, as it is not directly relevant for the current system
evaluation experiment.

http://musje.iiia.csic.es/survey/introduction.html
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Figure 6.6: Screenshot of the web survey on performance similarity

sion B contained deviations in a different dimension than version C (e.g. dynamics changes

vs. ornamentation, or fragmentation vs. consolidation) 5.

Ten different score fragments were used for constructing the questions (i.e. triples of

performances). The fragments were manually selected motifs (varying in length from six to

nine notes) from eight different jazz standards (All of Me, Body and Soul, Black Orpheus, Like

Someone in Love, Once I Loved, How High the Moon, Sophisticated Lady, and Autumn Leaves).

More than one score fragment were used, because in initial tests, subjects reported losing

their attention after answering several questions that employed the same score fragment.

Therefore, care was taken to prevent the use of the same score fragment in two subsequent

questions. The three performance variants A, B, and C were rendered into audio using a

sampled saxophone, based on manually generated specifications of the expressive devia-

tions from the score. The deviations were defined so as to comply to the question categories

mentioned above.

A total of 92 subjects responded to the survey, answering on average 8.12 questions

(listeners were asked to answer at least 12 questions, but were allowed to interrupt the sur-

vey). The results were filtered in several ways to discard artifacts and improve reliability.

Firstly, answers to a question were discarded whenever the subject hadn’t listened to each

of the sound-links at least once6. Then, from the total set of questions (66), those questions

were selected that were answered by at least ten subjects. This selection was again fil-

tered to maintain only those questions for which there was significant agreement between

the answers from different subjects (at least 70% of the answers should coincide). This

5In both types of questions, the performances of the labels B and C were interchanged occasionally, to prevent
familiarization.

6The number of times the subject clicked the sound-fragment links was included in the HTML form as hidden
entries
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yielded a set of 20 questions with answers, that is, triples of performances, together with

dichotomous judgments, conveying which of the two alternative performances is closest

to the target performance. The correct answer to a question was defined as the mode of

all answers for that question (the filtering ensures that this is the answer on which at least

70% of the subjects were in agreement). This data formed the ground truth for modeling a

performance distance measure.

6.3.3 Modeling the Ground Truth using a Performance Distance

Measure

An edit-distance metric was chosen as the basis for modeling the ground truth, because the

edit-distance is flexible enough to accommodate for comparison of sequences of different

lengths (in case of e.g. consolidation/fragmentation) and it allows for easy customization

to a particular use by adjusting parameter values of the edit-operation cost functions. In

this subsection we will explain how the distance was fit to the human performance simi-

larity judgments by optimizing parameter values.

The distance is intended to assess the similarity between different performances of the

same score. Notice that this time, we are not interested in the optimal alignment, as in the

performance annotation process, where a score and a performance were matched. More-

over, since one performance is not an interpretation or variation of the other (as in the

case of performance vs. score), it is conceptually inappropriate to speak of the differences

between the performances in terms of e.g. ornamentation, or consolidation. To avoid con-

fusion, we will call the edit-operations in this context by their edit range, e.g. 1-0 or 1-N.

To compute the distance, using equation (4.4), we defined the following cost functions for

1-0, 0-1, 1-1, N-1, and 1-N edit-operations, respectively:

w(si,∅) = α1 ( δD(si) + εE(si) ) + β1 (6.18)

w(∅, t j) = α1
(

δD(t j) + εE(t j)
)
+ β1 (6.19)

w(si, t j) = α2



π |P (si)− P (t j) | +

δ |D(si)−D(t j) | +

o |O(si)−O(t j) | +

ε |E(si)−E(t j) |


+ β2 (6.20)
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w(si−K:i, t j) = α3



π ∑
K
k=0 |P (si−k)− P (t j) | +

δ |D(t j)−∑
K
k=0 D(si−k) | +

o |O(si−K)−O(t j) | +

ε∑
K
k=0 |E(si−k)−E(t j) |


+ β3 (6.21)

w(si, t j−L: j) = α3



π ∑
L
l=0 |P (si)− P (t j−l) | +

δ |D(si)−∑
L
l=0 D(t j−l) | +

o |O(si)−O(t j−L) | +

ε∑
L
l=0 |E(si)−E(t j−l) |


+ β3 (6.22)

Where si = 〈si〉, and P (si), D(si), O(si), and E(si) respectively represent the pitch, duration,

onset, and dynamics attributes of a note si. Each attribute has a corresponding parameter

(π, δ, o, and ε, respectively), that controls the impact of that attribute on operation costs.

The β parameters control the absolute cost of the operations. The α parameters control the

partial cost of the operation due to (differences in) attribute values of the notes. Note that

the same α and β parameters occur in the 1-0 and 0-1 cost functions, and also in the 1-N

and N-1 cost functions. This ensures that the distance will be symmetric.

Fitting the edit-distance to the ground truth is a typical optimization problem, and an

evolutionary optimization was used as a local search method to find good values for the

ten parameters in equations (6.18) – (6.22).

The fitness function for evaluating parameter settings was defined to be the proportion

of questions for which the correct answer was predicted by the edit-distance, using the

parameter settings in question. A correct answer is predicted when the computed distance

between the target performance and the most similar of the two alternative performances

(according to the ground truth) is lower than the computed distance between the target

and the remaining alternative performance. More precisely, let Q = {q1, · · · , qn} be the

questions for which the ground truth is known, where qi is a triple 〈ti, si, ri〉 containing

the target performance ti of question qi, the alternative performance si that was selected

by the subjects as being most similar to ti, and the remaining (less similar) alternative

performance ri for that question. The fitness of a distance d is then defined as:

fitness(d) =
|{ qi ∈ Q | d(ti, si) < d(ti, ri) }|

n
(6.23)

Using this fitness function a random population of parameter settings was evolved
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α1 α2 α3 β1 β2 β3 π δ o ε

0.031 0.875 0.243 0.040 0.330 0.380 0.452 1.000 0.120 0.545

Table 6.8: Optimized values of edit-operation cost parameters

using an elitist method for selection. That is, the fittest portion of the population survives

into the next population unaltered and is also used to breed the remaining part of the

next population by crossover and mutation [Goldberg, 1989]. A fixed population size of

40 members was used. Several runs were performed and the fitness tended to stabilize

after 300 to 400 generations. Typically the percentages of correctly predicted questions by

the best parameter setting found were between 70% and 85%. The best parameter setting

found (shown in table 6.8) was employed in the edit-distance that was subsequently used

to evaluate the tempo transformed performances generated by TempoExpress.

6.3.4 Comparison of TempoExpress and Uniform Time Stretching

In this subsection we report the evaluation results of the TempoExpress system on the task

of tempo transformation, and compare them to the results of uniformly time stretching the

performance. As said before, the evaluation criterion for the tempo transformations was

the computed distance of the transformed performance to an original performance at the

target tempo, using the edit-distance optimized to mimic human similarity judgments on

performances.

A leave-one-out setup was used to evaluate the CBR system where, in turn, each proto

case is removed from the case base, and all tempo transformations that can be derived from

that proto case are performed using the reduced case base. The constraint that restricted

the generation of tempo transformation problems from the proto cases was that there must

be an original human performance available at the source tempo (the performance to be

transformed) and another performance of the same fragment at the target tempo of the

tempo transformation (this performance serves as the target performance to evaluate the

transformation result). Hence the set of tempo transformation problems for a given proto

case is the pairwise combination of all tempos for which a human performance was avail-

able. Note that the pairs are ordered, since a transformation from say 100 BPM to 120

BPM is not the same problem as the transformation from 120 BPM to 100 BPM. Further-

more the tempo transformations were performed on a phrase segment basis, rather than

on complete phrases, since focusing on phrase level transformations is likely to involve

more complex higher level aspects of performance (e.g. interactions between the perfor-

mances of repeated motifs), that have not yet been addressed in this research. Moreover,
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Figure 6.7: Performance of TempoExpress vs. uniform time stretching as a function of tempo
change (measured as the ratio between target tempo and source tempo). The lower plot
shows the probability of incorrectly rejecting H0 (non-directional) for the Wilcoxon signed-
rank tests

measuring the performance of the system on segments will give a finer grained evaluation

than measuring on the phrase level.

Defining the set of tempo transformations for segments yields a considerable amount

of data. Each of the 14 phrases in the case base consists of 3 to 6 motif-like segments, iden-

tified using Temperley’s Melisma Grouper [Temperley, 2001], and has approximately 11

performances at different tempos (see subsection 3.2). In total there are 64 segments, and

6364 transformation problems were generated using all pairwise combinations of perfor-

mances for each segment. For each transformation problem, the performance at the source

tempo was transformed to a performance at the target tempo by TempoExpress, as well

as by uniform time stretching (UTS). Both of the resulting performances were compared to

the human performance at the target tempo by computing the edit-distances. This resulted

in a pair of distance values for every problem. Figure 6.7 shows the average distance to the

target performance for both TempoExpress and UTS, as a function of the amount of tempo

change (measured as the ratio between target tempo and source tempo). Note that lower
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distance values imply better results. The lower graph in the figure shows the probability of

incorrectly rejecting the null hypothesis (H0) that the mean of TempoExpress distance val-

ues is equal to the mean of UTS distance values, for particular amounts of tempo change.

The significance was calculated using a non-directional Wilcoxon signed-rank test.

Firstly, observe that the plot in Figure 6.7 shows an increasing distance to the target

performance with increasing tempo change (both for slowing down and for speeding up),

for both types of transformations. This is evidence against the hypothesis of relational

invariance, which implies that the UTS curve should be horizontal, since under relational

variance, tempo transformations are supposed to be achieved through mere uniform time

stretching.

Secondly, a remarkable effect can be observed in the behavior of TempoExpress with

respect to UTS, which is that TempoExpress improves the result of tempo transformation

specially when slowing performances down. When speeding up, the distance to the target

performance stays around the same level as with UTS. In the case of slowing down, the

improvement with respect to UTS is mostly significant, as can be observed from the lower

part of the plot.

Finally, note that the p-values are rather high for tempo change ratios close to 1, mean-

ing that for those tempo changes, the difference between TempoExpress and UTS is not

significant. This is in accordance with the common sense that slight tempo changes do not

require many changes, in other words, relational invariance approximately holds when the

amount of tempo change is very small.

Another way of visualizing the system performance is by looking at the results as a

function of absolute tempo change (that is, the difference between source and target tempo

in beats per minute), as shown in figure 6.8. The overall forms of the absolute curves

and the relative curves (figure 6.7) are quite similar. Both show that the improvements of

TempoExpress are mainly manifest on tempo decrease problems.

Table 6.9 summarizes the results for both tempo increase and decrease. Columns 2 and

3 show the average distance to the target performance for TempoExpress and UTS, aver-

aged over all tempo increase problems, and tempo decrease problems respectively. The

remaining columns show data from the Wilcoxon signed-rank test. The p-values are the

probability of incorrectly rejecting H0 (that there is no difference between the TempoEx-

press and UTS results). This table also shows that for downward tempo transformations,

the improvement of TempoExpress over UTS is small, but extremely significant (p < .001),

whereas for upward tempo transformations UTS seems to be better, but the results are

slightly less decisive (p < .05).

How can the different results for tempo increase and tempo decrease be explained? A
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Figure 6.8: Performance of TempoExpress vs. UTS as a function of tempo change (measured
in beats per minute). The lower plot shows the probability of incorrectly rejecting H0 (non-
directional) for the Wilcoxon signed-rank tests

practical reason can be found in the characteristics of the case base. Since the range of

tempos at which the performances were played varies per song, it can occur that only one

song is represented in some tempo range. For example, for Up Jumped Spring the tempos

range from 90 BPM to 270 BPM, whereas the highest tempo at which performances of other

songs are available is 220 BPM. That means that in the leave-one-out method, there are no

precedents for tempo transformations to tempos in the range from 220 BPM to 270 BPM.

This may explain the increasing gap in performance in favor of UTS, towards the end of

the spectrum of upward tempo transformations.

6.3.5 Conclusions

With the experiment described in this section we have intended to give an extensive eval-

uation of the TempoExpress system. We have done so by testing the system on all tempo-

transformation problem for which a target performance was available. The transformed

performances are evaluated by measuring the distance to the target performance. This
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mean distance to target Wilcoxon signed-rank test

TempoExpress UTS p <> z d f

tempo ↑ 0.0791 0.0785 0.046 1.992 3181
tempo ↓ 0.0760 0.0786 0.000 9.628 3181

Table 6.9: Overall comparison between TempoExpress and uniform time stretching, for up-
wards and downwards tempo transformations, respectively

approach depends on a distance measure for (melodic descriptions of) performances that

was modeled after human similarity judgments between performances. Note that rather

than testing directly the naturalness of transformed performances in a survey, we have per-

formed a survey on the similarity between excerpts. By using the survey to model human

similarity judgments with a computational distance measure the gathered information has

a broader applicability, because the model may be used to evaluate a much larger set of

performance than is feasible through a survey. Moreover, the model may be used not only

for judging naturalness of performances by computing the distance to naturalness ground

truth (performances that are known to be natural), but for evaluating any descriptive label

for performances (provided that ground truth performances are available for that label).

This approach rests on the intuitively plausible assumption that if a performance P1 is

known to have a perceptual quality Q and another performance P2 is perceptually similar

to P1, then P2 will also have perceptual quality Q.

The results of the evaluation showed that overall, there is a significant improvement

of tempo transformation when realized by TempoExpress, over tempo transformations re-

alized by uniform time stretching. Remarkably, the improvements are most significant

for tempo transformations where the tempo of the original performance is decreased. For

increasing tempo transformation, no significant improvements were observed.



Chapter 7

Conclusions

In this final chapter we first summarize the topic covered in this dissertation (section 7.1).

Secondly, we list the contributions of our work to the field of melody retrieval, expressive

music performance rendering and its evaluation, and content based audio processing (sec-

tion 7.2). Finally, we elaborate on some future directions of work (section 7.3), which we

believe will improve the quality and utility of our current work, as well as they will cover

areas that have not yet been explored extensively.

7.1 Summary

In this dissertation we have explored a case based reasoning approach to deal with the

problem of respecting expressivity in monophonic audio recordings under tempo-transformation.

The problem that arises when changing the tempo of an audio recording is that the expres-

sivity of timing does not scale uniformly with tempo [Honing, 2006]. Other expressive

aspects like dynamics, and also more extensive effects like note ornamentations, do not re-

main constant under tempo change either. This causes the tempo transformed performance

to sound unnatural in terms of expressive quality, when realized through uniform time

stretching, the standard technique for tempo-transformation that is found in most state-

of-the-art audio editing applications. Some existing techniques obtain high sound quality

tempo-transformations employing knowledge of low-level audio-content, for example by

applying the stretching only to stationary parts of the audio, and leaving the transients in-

tact [Bonada, 2000]. However they do not address the musical, or expressive quality of the

recording. We have proposed and implemented a case based reasoning method that em-

ploys knowledge of higher level audio content, like a description of the melody, to derive

137
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a suitable transformation of expressive features. It uses implicit knowledge in the form of

human performed phrases. In the problem description and solving processes it employs

general musical knowledge to segment phrases, to annotate performances, and to transfer

expressive information from one phrase to another. A large scale evaluation of the system

has shown that the quality of tempo transformations by the proposed system improves

compared to uniform time stretching.

7.2 Contributions of this Dissertation

7.2.1 An I-R Parser for Melody

The Implication-Realization model provides a formalization of the cognitive processes of

creation and fulfillment/violation of expectation in melody perception. It employs a num-

ber of principles based on Gestalt-laws that predict to what degree particular continuations

of a melody are expected by human listeners. Computational models exist computing the

degree to which each principle is fulfilled [Toiviainen and Eerola, 2002; Eerola and North,

2000]. However, the next step described in the model, the categorization and grouping

of notes based on such expectancies, to our knowledge, has not been formalized into a

computational model. We present such a model, in the form of an I-R parser that analyses

symbolic monophonic melodies and returns the I-R analysis as a sequence of I-R structures

that describe the melodic surface. The parsing steps are described in section 4.1.

7.2.2 An I-R based Distance Measure for Melody

The I-R analysis of a melody can be regarded as semi-abstract representation of the melodic

surface, that reflects perception related concepts such as grouping and expectancy, as well

as a rough melodic and rhythmic contour. Based on the cognitive theory of melodic similar-

ity by Deliège [1997], and subsequent experiments of perceived melodic similarity [Lamont

and Dibben, 2001], it is plausible that such a representation has a good abstraction level

for assessing similarity between melodies. Hence we defined a set of weight-functions

that enable comparison of sequences of I-R structures using the edit-distance (see sub-

section 5.2.2). In comparison to other state-of-the-art methods for melodic similarity as-

sessment (the MIREX 2005 symbolic melodic similarity contest, see subsection 6.2.2), this

melodic similarity measure was shown to be superior in its ability to predict human simi-

larity judgments.
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7.2.3 Comparison of Melodic Distance Measures

In addition to the comparison of distance measures with respect to melodic similarity

ground truth as mentioned above, we have done a more qualitative comparison of four

edit-distance based melodic similarity measures (subsection 6.2.1). Each of the measures

compared melodies using a different representation. The melodies were represented re-

spectively as sequences of notes, melodic intervals, melodic directions, and I-R structures.

With each of the measures, the pairwise distances were calculated for a set of about 125

phrases from about 35 songs from the Real Book of Jazz. The main conclusions were that

the note representation had a relatively low discriminative power (defined as the entropy

of the distance distribution of the measure) for the whole data set, but was good at rec-

ognizing phrases of the same song that were close variants of each other. The interval,

direction and I-R representations had similar discriminative power, but the I-R representa-

tions gave better results for the recognition of phrases from the same song. Since the inter-

val and direction representations only contain information derived from pitch and do not

capture any rhythmic information (which can be argued to be too abstract), we adapted

the representations to include note durations. This decreased the discriminatory power,

but increased the recognition of phrases from the same song. Using these two criteria, the

interval representation with durational information had slightly better results than the I-R

representation.

These results are useful for the retrieval part of our CBR system, where melodic simi-

larity is assessed as a criterion for retrieval. But the results may also be relevant for music

retrieval in general, as for example in query-by-humming systems, where melodic similarity

is frequently used for retrieval.

7.2.4 A Scheme for Performance Annotation

Due to the complexity of musical expressivity, computational models often are limited to

only a few dimensions of expressivity, typically timing and dynamics curves. Such curves

are constituted of the deviations of performed notes from their corresponding score com-

plement. As such, they discard any relation between score and performance notes that

is not a 1-to-1 correspondence, although such relations are clearly significant manifesta-

tions of expressivity [Arcos et al., 2003] (see sections 1.1 and 3.6). Moreover, interpolated

timing and dynamics curves falsely give the impression of a sampled continuous tim-

ing/dynamics ‘signal’, whereas the performance is more properly regarded as a stream

of events, where the timing and dynamics properties of these events depend on the musi-

cal context of the events Desain and Honing [1993].
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To address these issues, we have presented an annotation scheme to represent expres-

sive information from performances (see section 3.6). The annotation consists of a sequence

of performance events, that describe how the performance relates to the score. These events

capture in some sense the musical behavior of the musician while performing a melody.

For example, if the musician ornamented a certain notes while playing, this is represented

by an Ornamentation Event. Alternatively, changing the timing, dynamics, duration or other

attributes of notes, is reflected by Transformation Events. The events are not just labels, but

complex structures that have references to elements from the score and the performance,

and can hold additional information such as the quantity of timing or duration deviations

(in the case of Transformation Events). Other performance events are Consolidation Events,

Fragmentation Events, Insertion Events, and Deletion Events.

This annotation scheme provides a more extensive description of expressivity in perfor-

mances compared to timing/dynamics curves. Apart from timing/dynamics deviations, it

accounts for various ubiquitous non-1-to-1 relations between score and performance notes

as expressive gestures.

7.2.5 A Technique for Automated Performance Annotation

The performance annotations of the form described above can be constructed automati-

cally given a score and a performance of that score. By mapping each of the performance

event types that may occur in the performance annotation to an edit-operation, the edit-

distance can be used to find the optimal sequence of edit-operations that maps the per-

formance to the score (see subsection 4.3). The corresponding sequence of performance

events forms the performance annotation.

Although many different possible performance annotations may account for the same

performance, usually only one of them is correct, i.e. perceptually plausible. Therefore, the

cost functions of the edit-operations must be well-designed and balanced in order for the

edit-distance to derive the correct annotation. The design of the cost functions is an exten-

sion of the cost functions proposed by Mongeau and Sankoff [1990] (see subsection 4.3.1).

The standard definition of the edit-distance was extended to allow for context-sensitive

cost functions (see subsection 4.2.1), to allow for the proper calculation of note ornamenta-

tions.

The terms that figure in the cost functions (like pitch/timing/duration of score and

performance notes) are weighted by parameters, just as the relative cost of edit-operations

with respect to each other. We observed that untuned cost functions lead to an average

accuracy of about 76% on a test set of 40 performances. Manual parameter tuning can im-



7.2. CONTRIBUTIONS OF THIS DISSERTATION 141

prove the accuracy when annotating individual performances, but is unfeasible for larger

sets of performances. Using a cross-validation setup, a genetic algorithm was used to opti-

mize performance annotations (using hand-corrected performance annotations as training

data). Optimizing parameter settings in this way lead to improved accuracies on the test

sets ranging from 92% to 97%. Although the optimal parameter settings found in differ-

ent runs on different data sets did not all converge, there were some strongly correlated

settings, amounting to the belief that the number of alternative valid parameter settings is

small. Details of this experiment can be found in section 6.1.

In addition to its relevance to expressive performance research, this can be seen as

a contribution to CBR research, as an example of automated case base acquisition. In

knowledge-intensive domains, it is often difficult and cumbersome to gather and analyze

data to form cases. In the domain of music processing, this method automates an impor-

tant part of this task.

7.2.6 A System Architecture for Case Based Tempo-Transformation

We have developed and implemented the system architecture for expressivity aware mu-

sical tempo transformations based on case based reasoning, as described in chapter 3. The

system loads a MIDI file containing a monophonic phrase, and an XML file containing a

melodic description of some performance of that phrase (the tempo of that performance

should be specified – it is not inferred from the performance). Furthermore a desired out-

put specified. The input problem specification is constructed from those data automati-

cally: an I-R analysis of the MIDI score is made, and the performance is annotated. Then,

the CBR system is consulted to solve the problem. The result is a new performance anno-

tation, which is used to convert the old melodic description into to a new one. The XML

file containing the new melodic description can be used as the input to a sound synthesis

module (such as the saxophone synthesizer Salto [Haas, 2001]).

7.2.7 Analogy Based Transfer of Expressivity across Performances

A problem we faced designing the reuse process of the CBR system is that often the most

similar case in the case is a melodic fragment that is not very similar to the melodic frag-

ment of the input problem. Moreover, even if the melodic fragments are similar, it is pos-

sible that the performance of the fragments differs substantially. In such situations it is not

clear how the retrieved case can be reused. To overcome this problem we have designed

a process that infers a tempo transformation for the input fragment based on an analogy

with the tempo transformation of the retrieved fragment. The analogy is established by
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adaptation rules that compare performances of the different fragments. The crucial point

here is that the adaptation rules are defined using the concept of perceptual similarity. That

is, they ignore the melodic scores and their interpretations, but only compare how similar

the results sound. In this way, we take advance of situations where input problem and

retrieved case are different both in melody and interpretation but where these differences

cancel each other out. The result is a reuse method that is relatively robust to imperfect

retrieval. This characteristic becomes more crucial as the input problem to the system is

not similar to the material in the case base in terms of melody.

From the case based reasoning perspective, this contribution is an example of case reuse

in a knowledge-intensive domain. In particular, it performs a synthetic configuration task,

that deals with multi-layered sequential data. In contrast, most current CBR applications

dealing with sequential data perform analytical tasks such as classification or regression.

7.2.8 An Evaluation Methodology for Expressive Performance Models

Finally, we have employed a novel evaluation methodology to test the tempo transforma-

tion system. This is a hybrid methodology, as it employs a computational distance measure

to assess predicted results using target performances, but it also uses human similarity

judgments on performances. By modeling the assessment distance measure after human

judgments of similarity, we obtain a distance measure that can be used as a model of a hu-

man listener to evaluate how similar a predicted performance is to a target performance.

In this way, we avoid the drawback of computational distance measures that they may fail

to correspond to a perceptual notion of similarity. At the same time we avoid the drawback

of evaluating model predictions directly on human judgments that large scale evaluations

become infeasible.

This evaluation methodology is not limited to the evaluation of tempo transformations.

It can be used in any evaluation context where target performances are available that are

known to have desired expressive characteristics. This includes for instance expressive

performance generation from the score. As an example of this, we have employed the

distance measure fitted to human similarity judgments as a fitness function to evaluate

expressive models that were constructed using genetic programming [Hazan et al., 2006a].
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7.3 Future Directions

7.3.1 Finer Grained Performance-Annotations

A vital step for improving musical quality of the transformed performances further is to

extend the performance annotations to include means of expressivity at the sub-note level,

vibrato, timbre, attack-time, and articulation. Maestre and Gómez [2005] proposed an ini-

tial design of an algorithm and model for extracting and describing articulation and dy-

namics at the sub-note level. The model consists of a parametric description of the dy-

namics curve, where parameters characterize the principal stages of the note, like attack,

sustain, and release. The degree of legato and staccato is modeled by another parameter.

A first step in the direction of performance rendering using such features has been made

by Ramirez et al. [2005].

To employ such extended performance annotations in TempoExpress, a more elaborate

retrieval and reuse mechanism may be required. Based on the unconfirmed hypothesis that

finer details of the performance are dependent on a smaller musical context, the results are

likely to benefit from a further hierarchical decomposition of cases. Just as phrases were

decomposed into segments in the current problem solving mechanism, deriving intra-note

features could require a decomposition of the cases into note triples, duples, or even single

notes.

7.3.2 Case Base Quality Evaluation

We have performed initial work for the evaluation of case base quality [Grachten et al.,

2005b] (not covered in this dissertation). This work aims to visualize the problem solving

capabilities (competence) of the case base so that different kinds of regions in the problem

space can be identified. For example, it is possible that certain parts of the problem space

may be covered with high competence by just a few cases, whereas other regions may

need a dense population of diverse cases in order to cover the region sufficiently. It is

also helpful for the maintenance of the case base over time. For example it allows one to

study the effect of including individual cases on the competence of the case base. In a later

stage of development, low competence regions may be analyzed automatically in order

to guide case addition. For example, cases with specific characteristics may be proposed

for addition to populate low density regions of the problem space, or regions where all

available cases are of low quality.
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Figure 7.1: Screenshot of the TempoExpress GUI prototype

7.3.3 User-Interaction

In conjunction with introspective competence-awareness of TempoExpress, a user interface

is required to allow interaction with the user for revision and rentention of proposed so-

lutions. In this dissertation we have focused on data preparation, and storage, retrieval,

and reuse of cases. A prototype GUI was designed to control these subtasks of the system,

as shown in figure 7.1. Future work on the interface includes non-linear control of the re-

trieve and reuse steps, where the user can investigate alternative precedent cases to solve

partial problems and hear the effect of the reuse of different precedents on the final perfor-

mance. This allows for pervasive learning. In the first place, allowing the user to correct

solutions will lead to higher quality cases, that can be stored to improve future problem

solving capabilities. Moreover, the user interference with the choice of precedents to be

reused provides feedback on case retrieval. By adjusting the similarity measure to mimic

the users preferences for certain precedents in certain problem contexts, the quality of the

retrieval step can be improved over time.
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7.3.4 Hybrid Problem Solving

An approach that is bound to improve the capabilities of TempoExpress is the combined

application various problem solving techniques. In particular, a general model for perfor-

mance prediction induced from the available data can be applied in situations where CBR

provides no satisfying outcome.

There are several ways to realize such hybridization in TempoExpress. The most straight-

forward and least intrusive way would be to learn a set of performance rules or decision

trees such as those described by Ramirez and Hazan [2004], and Hazan et al. [2006a], and

apply those rules whenever an unmatched note is encountered, or when no adaptation

rule applies during the reuse of a retrieved segment (see subsection 5.4.3).

A more systematic way would be to experimentally establish the optimal division of

labors between different problem solving approaches, that is, the one that maximizes the

quality of the transformed performances. Alternatively, one could give priority to one of

the problem solving strategies and tune the other strategy to fill the gaps of the primary

strategy. For example, by determining the regions of the problem space where the compe-

tence of TempoExpress’s CBR system is lowest (as described above), one could assemble a

specific data set for an eager inductive learner that tries to derive a predictive model just

for those problem space regions. Such a model is likely to have a higher accuracy on the

target regions than a model that must cover the complete problem space.
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Grachten, M., Arcos, J. L., and López de Mántaras, R. (2005a). Melody retrieval us-

ing the Implication/Realization model. MIREX http://www.music-ir.org/evaluation/

mirex-results/articles/similarity/grachten.pdf.

Grachten, M., Garcı́a, F. A., and Arcos, J. L. (2005b). Navigating through case base compe-

tence. In Proceedings of the Sixth International Conference on Case-Based Reasoning (ICCBR-

05), number 3620 in Lecture Notes in Computer Science, pages 282–295. Springer-Verlag.

Granot, R. and Donchin, E. (2002). Do re mi fa so la ti – constraints, congruity and mu-

sical training: An event-related brain potential study of musical expectancies. Music

Perception, 19(4):487–528.

http://www.music-ir.org/evaluation/mirex-results/articles/similarity/grachten.pdf
http://www.music-ir.org/evaluation/mirex-results/articles/similarity/grachten.pdf


152 BIBLIOGRAPHY

Haas, J. (2001). Salto - a spectral domain saxophone synthesizer. In Proceedings of MOSART

Workshop on Current Research Directions in Computer Music, Barcelona.

Hazan, A., Grachten, M., and Ramirez, R. (2006a). Evolving performance models by per-

formance similarity: Beyond note-to-note transformations. In Proceedings of the Seventh

International Conference on Music Information Retrieval (ISMIR).

Hazan, A., Ramirez, R., Maestre, E., Perez, A., and Pertusa, A. (2006b). Modelling expres-

sive performance: A regression tree approach based on strongly typed genetic program-

ming. In Proceedings on the 4th European Workshop on Evolutionary Music and Art, pages

676–687, Budapest, Hungary.

Henderson, M. T. (1937). Rhythmic organization in artistic piano performance. University

of Iowa studies in the psychology of music, IV:281–305. Univ. Press Iowa.

Hinrichs, T. R. (1992). Problem solving in open worlds : a case study in design. L. Erlbaum

Associates, Hillsdale, N.J.

Hiraga, R., Bresin, R., Hirata, K., and Katayose, H. (2004). Rencon 2004: Turing test for

musical expression. In Proceedings of the 2004 Conference on New Interfaces for Musical

Expression (NIME).

Honing, H. (2003). The final ritard: on music, motion, and kinematic models. Computer

Music Journal, 27(3):66–72.

Honing, H. (2006). Is expressive timing relational invariant under tempo transformation?

Psychology of Music. (in press).

Hörnel, D. and Menzel, W. (1998). Learning musical structure and style with neural net-

works. Computer Music Journal, 22 (4):44–62.

Huron, D. (1988). Alf gabrielsson (ed.): Action and perception in rhythm and music [re-

view of]. Psychology of Music, 16(2):156–162.

Johnstone, J. A. (1913). Phrasing in piano playing. Witmark, New York.

Juslin, P. (2001). Communicating emotion in music performance: a review and a theoretical

framework. In Juslin, P. and Sloboda, J., editors, Music and emotion: theory and research,

pages 309–337. Oxford University Press, New York.

Klapuri, A. (1999). Sound onset detection by applying psychoacoustic knowledge. In

Proceedings of the 1999 International Conference on Acoustics, Speech, and Signal Processing

(ICASSP’99).



BIBLIOGRAPHY 153

Koffka, K. (1935). Principles of Gestalt Psychology. Routledge & Kegan Paul, London.
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Röbel, A. (2003). A new approach to transient processing in the phase vocoder. In Proceed-

ings of the 6th International Conference on Digital Audio Effects.

Rolland, P. (1998). Flexpat: a novel algorithm for musical pattern discovery. In Proceedings

of the 12th Colloquium on Musical Infonnatics (XII CIM), pages 125–128, Italy.



156 BIBLIOGRAPHY

Rolland, P. (1999). Discovering patterns in musical sequences. Journal of New Music Re-

search, 28 (4):334–350.

Rubner, Y., Tomasi, C., and Guibas, L. J. (1998). A metric for distributions with applications

to image databases. In Proceedings of the 1998 IEEE International Conference on Computer

Vision, pages 59–66, Bombay, India.

Schank, R. (1982). Dynamic Memory: a theory of reminding and learning in computers and

people. Cambridge University Press.

Scheirer, E. D. (1995). Extracting expressive performance information from recorded music.

Master’s thesis, MIT Media Laboratory.

Scheirer, E. D. (2000). Music-Listening Systems. PhD thesis, MIT Media Laboratory.

Schellenberg, E. G. (1996). Expectancy in melody: Tests of the implication-realization

model. Cognition, 58:75–125.

Schlichte, J. (1990). Der automatische vergleich von 83.243 musikincipits aus der rism-

datenbank: Ergebnisse - nutzen - perspektiven. Fontes Artis Musicae, 37:35–46.

Seashore, C. E. (1938). Psychology of Music. McGraw-Hill, New York. (Reprinted 1967 by

Dover Publications New York).

Selfridge-Field, E., editor (1997). Beyond MIDI: The Handbook of Musical Codes. MIT Press,

Cambridge, Massachusetts.

Serra, X. (1997). Musical sound modeling with sinusoids plus noise. In Roads, C., Pope,

S. T., Picialli, A., and De Poli, G., editors, Musical Signal Processing, pages 91–122. Swets

and Zeitlinger Publishers.

Skalle, P. and Aamodt, A. (2004). Knowledge-based decision support in oil well drilling.

In Proceedings of the ICIIP 2004, International Conference on Intelligent Information Systems,

Beijing, China.

Sloboda, J. A. (1983). The communication of musical metre in piano performance. Quarterly

Journal of Experimental Psychology, 35A:377–396.

Smith, L. A., McNab, R. J., and Witten, I. H. (1998). Sequence-based melodic compari-

son: A dynamic programming approach. In Hewlett, W. B. and Selfridge-Field, E., edi-

tors, Melodic Similarity. Concepts, Procedures, and Applications, Computing in Musicology,

pages 101–118. MIT Press.



BIBLIOGRAPHY 157

Smyth, B. and Keane, M. (1998). Adaptation-guided retrieval: Questioning the similarity

assumption in reasoning. Artificial Intelligence, 102.

Stahl, A. (2004). Learning of Knowledge-Intensive Similarity-Measures in Case-Based Reasoning.

PhD thesis, Universität Kaiserslautern.

Sundberg, J., Friberg, A., and Frydén, L. (1991). Common secrets of musicians and lis-

teners: an analysis-by-synthesis study of musical performance. In Howell, P., West, R.,

and Cross, I., editors, Representing Musical Structure, Cognitive Science series, chapter 5.

Academic Press Ltd.

Suyoto, I. and Uitdenbogerd, A. (2005). Simple efficient n-gram indexing for effective

melody retrieval. MIREX http://www.music-ir.org/evaluation/mirex-results/articles/

similarity/suyoto.pdf.

Suzuki, T. (2003). The second phase development of case based performance rendering

system “Kagurame”. In Working Notes of the IJCAI-03 Rencon Workshop, pages 23–31.

Temperley, D. (2001). The Cognition of Basic Musical Structures. MIT Press, Cambridge,

Mass.

The Real Book (2004). The Real Book: Sixth Edition. Hal Leonard Corporation.

Timmers, R. (2003). On the contextual appropriateness of expression. Music Perception,

20(3):225–240.

Timmers, R., Ashley, R., Desain, P., and Heijink, H. (2000). The influence of musical context

on tempo rubato. Journal of New Music Research, 29(2):131–158.

Timmers, R. and Honing, H. (2002). On music performance, theories, measurement and

diversity. In M.A. Belardinelli (ed.). Cognitive Processing (International Quarterly of

Cognitive Sciences), 1-2, 1-19.

Timmers, R.and Ashley, R., Desain, P., Honing, H., and Windsor, L. (2002). Timing of

ornaments in the theme of Beethoven’s Paisiello Variations: Empirical data and a model.

Music Perception, 20(1):3–33.

Tobudic, A. and Widmer, G. (2003). Playing Mozart phrase by phrase. In Proceedings of the

Fifth International Conference on Case-Based Reasoning (ICCBR-03), number 2689 in Lecture

Notes in Artificial Intelligence, pages 552–566. Springer-Verlag.

http://www.music-ir.org/evaluation/mirex-results/articles/similarity/suyoto.pdf
http://www.music-ir.org/evaluation/mirex-results/articles/similarity/suyoto.pdf


158 BIBLIOGRAPHY

Tobudic, A. and Widmer, G. (2004). Case-based relational learning of expressive phrasing

in classical music. In Proceedings of the 7th European Conference on Case-based Reasoning

(ECCBR’04), Madrid.

Todd, N. (1989). A computational model of rubato. Contemporary Music Review, 3 (1).

Todd, N. (1992). The dynamics of dynamics: A model of musical expression. Journal of the

Acoustical Society of America, 91:3540–3550.

Todd, N. (1995). The kinematics of musical expression. Journal of the Acoustical Society of

America, 97 (3):1940–1949.

Todd, N. P. (1985). A model of expressive timing in tonal music. Music Perception, 3:33–58.

Toiviainen, P. and Eerola, T. (2002). A computational model of melodic similarity based on

multiple representations and self-organizing maps. In Proceedings of the 7th International

Conference on Music Perception and Cognition, Sydney. Causal Productions.

Typke, R., , Wiering, F., and Veltkamp, R. C. (2005a). Evaluating the earth mover’s dis-

tance for measuring symbolic melodic similarity. MIREX http://www.music-ir.org/

evaluation/mirex-results/articles/similarity/typke.pdf.

Typke, R., Giannopoulos, P., Veltkamp, R. C., Wiering, F., and van Oostrum, R. (2003).

Using transportation distances for measuring melodic similarity. In Proceedings of the

Fourth International Conference on Music Information Retrieval (ISMIR).

Typke, R., Hoed, M., De Nooijer, J., Wiering, F., and Veltkamp, R. (2005b). A ground truth

for half a million musical incipits. In Proceedings of the Fifth Dutch-Belgian Information

Retrieval Workshop, pages 63–70.

Typke, R., Veltkamp, R. C., and Wiering, F. (2006). A measure for evaluating retrieval

techniques based on partially ordered ground truth lists. In Proceedings of ICME.

Uitdenbogerd, A. L. and Zobel, J. (2002). Music ranking techniques evaluated. In Oud-

shoorn, M. J., editor, Twenty-Fifth Australasian Computer Science Conference (ACSC2002),

Melbourne, Australia. ACS.

Widmer, G. (1996). Learning expressive performance: The structure-level approach. Journal

of New Music Research, 25 (2):179–205.

Widmer, G. (2000). Large-scale induction of expressive performance rules: First quantita-

tive results. In Proceedings of the International Computer Music Conference (ICMC2000), San

Francisco, CA.

http://www.music-ir.org/evaluation/mirex-results/articles/similarity/typke.pdf
http://www.music-ir.org/evaluation/mirex-results/articles/similarity/typke.pdf


BIBLIOGRAPHY 159

Widmer, G. (2002). Machine discoveries: A few simple, robust local expression principles.

Journal of New Music Research, 31(1):37–50.

Widmer, G. (2003). Discovering simple rules in complex data: A meta-learning algorithm

and some surprising musical discoveries. Artificial Intelligence, 146(2):129–148.

Windsor, W. L. and Clarke, E. F. (1997). Expressive timing and dynamics in real and arti-

ficial musical performances: using an algorithm as an analytical tool. Music Perception,

15(2):127–152.



160 BIBLIOGRAPHY



Appendix A

Abbreviations and Notational

Conventions

A.1 Abbreviations

MD Melodic Description

I-R Implication Realization

UTS Uniform Time Stretching

BPM Beats per Minute

PRD Principle of Registral Direction (I-R model)

PID Principle of Intervallic Difference (I-R model)

IOI Interonset Interval

OI Ornamentation Introduction (Adaptation)

II Insertion Introduction (Adaptation)

AT Analogy Transfer (Adaptation)

A.2 Names of I-R structures

P Process

VP Vector Process

IP Intervallic Process

R Reversal

IR Intervallic Reversal

VR Vector Reversal

ID Intervallic Duplication

D Duplication

[0-8] Dyadic Structure

(P) Retrospective Process

(VP) Retrospective Vector Process

(IP) Retrospective Intervallic Process
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(R) Retrospective Reversal

(IR) Retrospective Intervallic Reversal

(VR) Retrospective Vector Reversal

(ID) Retrospective Intervallic Duplication

M Monadic Structure

8D Octave Dyad

A.3 Notation

si: j The subsequence (si, · · · , s j) of a sequence s; We adopt the con-

vention that si: j = (si) whenever i = j and si: j = ∅whenever i > j.

si The subsequence (si) of a sequence s.

P (si) The pitch of a note si

D(si) The duration of a note si

O(si) The onset of a note si

S(si) The metrical strength of a note si

E(si) The energy of a note si

I (si) The size in semitones of an interval si

IOI (si) The interonset interval of interval si

C (si) The melodic direction (contour) of interval si

Size(si) The number of notes spanned by an I-R structure si

Overlap(si) The number of notes shared by an I-R structure si with its suc-

cessor I-R structure

Direction(si) The direction of an I-R structure si



Appendix B

I-R Annotated Phrases in Case

Base

Scores with annotated I-R analyses of the phrases used in TempoExpress.
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Appendix C

Songs Used in Melodic Distance

Comparison

Songs used for melodic distance comparison:

A Child Is Born Like Someone In Love

A Fine Romance Misty

A Foggy Day Molten Glass

African Flower My One And Only Love

Afro Blue Naima

Afternoon In Paris Once I Loved

All Of Me Ornithology

A Night In Tunisia Round Midnight

As Time Goes By Search For Peace

Autumn Leaves Sometime Ago

Black Orpheus Song For My Father

Blue Bossa Sophisticated Lady

Body And Soul Straight No Chaser

Confirmation Sugar

Dexterity The Song Is You

Donna Lee Up Jumped Spring

How High The Moon What Is This Thing Called Love

Impressions When I Fall In Love

In A Sentimental Mood When Sunny Gets Blue

Inch Worm Where Are You
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Appendix D

List of Publications/Awards by the

Author

Awards

• First prize in the Symbolic Melodic Similarity Contest of the Music Information Re-

trieval Exchange (MIREX) 2005.

• Best Paper Award, International Conference on Case Based Reasoning (ICCBR) 2003.

Refereed Journal Articles

• Grachten, M., Arcos, J. L., and López de Mántaras, R. (2006a). A case based ap-

proach to expressivity-aware tempo transformation. Machine Learning. In press.

DOI: 0.1007/s10994-006-9025-9.

Refereed Conference Papers

• Hazan, A., Grachten, M., and Ramirez, R. (2006). Evolving performance models

by performance similarity: Beyond note-to-note transformations. In Proceedings of

the 7th International Conference on Music Information Retrieval (ISMIR 2006). Victoria,

Canada.

• Grachten, M., Arcos, J. L., and López de Mántaras, R. (2006). TempoExpress: An

expressivity-preserving musical tempo transformation system. In Proceedings of the

21st National Conference on Artificial Intelligence. AAAI, Boston, MA.

• Grachten, M., Arcos, J. L., and López de Mántaras, R. (2005a). Melody retrieval

using the Implication/Realization model. In Online Proceedings of the 6th International
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Looking for a good abstraction level. In Proceedings of the 5th International Conference
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