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Abstract

This dissertation is about musical rhythm. More precisely, it is concerned with computer programs

that automatically extract rhythmic descriptions from musical audio signals.

New algorithms are presented for tempo induction, tatum estimation, time signature determi-

nation, swing estimation, swing transformations and classification of ballroom dance music styles.

These algorithms directly process digitized recordings of acoustic musical signals. The backbones of

these algorithms are rhythm periodicity functions: functions measuring the salience of a rhythmic

pulse as a function of the period (or frequency) of the pulse, calculated from selected instantaneous

physical attributes (henceforth features) emphasizing rhythmic aspects of sound. These features are

computed at a constant time rate on small chunks (frames) of audio signal waveforms.

Our algorithms determine tempo and tatum of different genres of music, with almost constant

tempo, with over 80% accuracy if we do not insist on finding a specific metrical level. They identify

time signature with around 90% accuracy, assuming lower metrical levels are known. They classify

ballroom dance music in 8 categories with around 80% accuracy when taking nothing but rhythmic

aspects of the music into account. Finally they add (or remove) swing to musical audio signals in a

fully-automatic fashion, while conserving very good sound quality.

From a more general standpoint, this dissertation substantially contributes to the field of com-

putational rhythm description a) by proposing an unifying functional framework; b) by reviewing

the architecture of many existing systems with respect to individual blocks of this framework; c) by

organizing the first public evaluation of tempo induction algorithms; and d) by identifying promis-

ing research directions, particularly with respect to the selection of instantaneous features which are

best suited to the computation of useful rhythm periodicity functions and the strategy to combine

and parse multiple sources of rhythmic information.

This research was performed at the Music Technology Group of Pompeu Fabra University in Barcelona.

Primary support was provided by the EU projects FP6-507142 SIMAC (http://www.semanticaudio.org)

and IST-1999-20194 CUIDADO.
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for his thorough and inspiring review of this document), Mark Sandler, Juan-Pablo Bello, George

Tzanetakis, Tristan Jehan, Daniel Pressnitzer, Peter Desain, Martin McKinney, Douglas Eck, Robert

Zatorre, Barbara Tillmann, Sofia Dahl and Guy Madison. More closely related to this document, I

also want to thank the coauthors of my papers who all contributed an important part of the work

presented here and anonymous reviewers of these papers who (usually) helped in improving them.

For being great friends, making Barcelona a place where it is so difficult to work and (for some of

them) being able to cope with my moody behavior in the last months of writing my thesis, I would

like to thank Pedro Cano, Chiara Capuccio, Martin Kaltenbrunner, Lars Fabig, Jordi Janer, Marie-

Florence Deruffi, Daniele Bertolucci, Günter Geiger, Nadine Alber, Álvaro Barbosa, Cristina Alves
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Chapter 1

Introduction

Musical signals convey rhythm and when listening to music, or even barely hearing it, people ex-

perience rhythm. People without musical training (other than having been exposed to music since

childhood) as well as trained musicians (trained to play Jazz, Pop or Baroque music for instance)

hear rhythm in musical audio signals. Activities as whistling on the way to the office, tapping or

swinging along some music in the background, synchronizing with other musicians while playing,

dancing, or simply enjoying a piece of music (in fact, any activity linked to music) involve a sense

of rhythm that seems to be constantly encountered in human beings.

Computers, on the other hand, have no sense of rhythm. Involving a machine in music (in

any of the musical activities mentioned above) requires the implementation of software or hardware

components that explicitly handle rhythm. Yet, in spite of the fact that rhythm is ubiquitous in

our lives, we still do not possess a complete understanding of what it really is and which are the

processes involved in our perception of it.

In this dissertation, we address the definition of rhythmic representations of audio signals which,

we argue, make up a central element in the handling of musical rhythm by computer systems. We

call these representations rhythm periodicity functions. This dissertation describes and evaluates

several strategies to compute rhythm periodicity functions and demonstrates the usefulness of such

functions in several situations where the computer is asked to make human-like musical responses to

music as for instance “perceiving” tempo and beats, estimating rhythmic similarity or recognizing

diverse musical genres.

1.1 Rhythm periodicity functions

Rhythm is about recurring musical events occurring roughly periodically. We do not yet know what

“musical events” are to our perceptual system, how similar two events must be to be categorized as

the same event, nor how we actually measure their recurrences, which are acceptable deviations for

1
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perfect periodicity and which processes further lead to the perception of rhythm. A cornerstone of

this dissertation lies in the assumption that the computational modeling of rhythm perception can

be broken down into several functional modules. We argue that the first such module consists in the

parsing of musical signals into low-level continuous temporal features emphasizing rhythmic aspects.

The second functional module then seeks feature periodicity in time. We argue that a convenient

way to do this is to generate continuous functions representing the salience of feature periodicity

versus period (or inversely frequency): rhythm periodicity functions.

1.2 Methodology

Rhythmic aspects of music have been studied for many years, within many disciplines and by means

of different methodologies, among which the following ones:

Theoretical: Theoretical analyses of music formulate theories about the syntactic structure of

music and ways to notate it. Rhythmic aspects have been widely studied via this research

paradigm (Cooper and Meyer, 1960; Yeston, 1976; London, 2005).

Behavioral: Some researchers point out that rhythm should not refer to properties of the musical

notation system but rather to the experience aspects of listeners. Music psychology method-

ologies are usually empirical: a hypothesis is formulated, stimuli are generated in accordance

with this hypothesis (usually a single dimension of interest is carefully controlled), listeners

are selected, a procedure is defined (apparatus, indications to listeners, etc.), data is collected

and finally analyzed in order to accept or reject the hypothesis. See e.g. (Fraisse, 1982) and

(Desain and Windsor, 2000, Part III).

The production of rhythmic sequences, and their physiological and cognitive aspects, are also

usually studied via experimental settings (e.g. synchronization or continuation tasks). Timing

deviations in rhythm production are of first interest here (Madison, 2000), especially intentional

expressive deviations produced by music performers (Palmer, 1997; Clarke, 1999). The study of

performer gestures in the production of rhythmic sequences, and the associated communication

of emotional features, also often implies empirical studies (Dahl, 2005).

Computational: Since the beginning of the computer age, people have been trying to build systems

that could analyze and perform music. Along this engineering line of research, an important

goal is the design of systems that can perform automatically, and reliably, a task normally

suited to humans. Many references of computational approaches to rhythm understanding

will be given in this rest of this dissertation.

Neurophysiological: In the neurophysiological approach, the aim is the analysis of the brain

anatomical structures involved in auditory processes (Zatorre, 2005). This entails issues of
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localization of such structures (often tackled by brain imaging methods (Levitin and Menon,

2005)) as well as observation of temporal coordinations between different functional modules

(Desain, 2004).

The computational approach to neuroscience (the design of artificial models of neurons and

neural networks) provides additional insights in the understanding of cerebral structures and

processes involved in audition (Husain et al., 2004), (Tillmann et al., in press).

Our approach is only computational. We acknowledge that rhythm is a perceptual entity, yet

this dissertation does not propose a theory of rhythm perception, nor a principled model of audi-

tory processes involved in rhythm perception. We argue however that computational models should

not necessarily be seen as posterior implementations of established perceptual theories. Designing

machines that can perform certain tasks “similarly” to humans has always been a motivation to

science, even if the processes implemented are not grounded perceptually or cognitively; and engi-

neering working systems often leads to the development of hypotheses regarding human capabilities.

As Scheirer argues, “computational models and psychoacoustic experiments play overlapping and

complementary roles in advancing our knowledge about the world” (2000, p.66).

On the other hand, a key point in a computational approach lies in the measure of this “similarity”

between machine and human behaviors. In this dissertation, this similarity is defined directly by

the difference between algorithm outputs and reference annotations put manually by humans (the

“ground-truth”). This is arguable, indeed, the definition of a methodology, metrics and even ground-

truth data for the evaluation of computational models of music cognition in general (and automatic

rhythm description in particular) is currently an active (and controversial) topic.1 Nevertheless, it is

our belief that the design of computational models must not necessarily wait for a consensus on the

way to evaluate them (and thus wait for a complete understanding of the very problem they address).

On the contrary, as we already argued in (Gouyon et al., 2006), the design of a computational model

is often a way to better define the very problem under study; and the requirement of a sound

evaluation of the model enforces the emergence of an agreement on the manner of representing

and annotating relevant information about musical data, reference (publicly-available) examples of

correct analyses and agreed evaluation metrics, hence a better understanding of the problem itself.

As Desain et al. (1998) argue, a computational model should not be seen as “an aim unto itself”

but rather as a “starting point of analysis” and “a means to compare and communicate theories

between different research communities.”

In sum, we acknowledge that the relatively good performances of the computer programs pro-

posed in this dissertation are not a sufficient condition to make claims about human perception of

1For instance, Desain et al. (1998) argue that evaluating computational models by comparing their global output
behaviors to that of humans “is too coarse to make substantial claims about the psychological validity of the model,”
and that we should “open up” the model and compare models and humans at the finer scale of subprocesses responsible
for parts of the global behavior. For a critical discussion of this argument, see (Scheirer, 2000, pp.63-67).
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rhythm. We hope, however, that the diverse elements of discussion raised while proposing imple-

mentation choices for these programs can provide insights for theories of rhythm perception.

1.3 Aims and dissertation outline

General aims for this dissertation are the following:

1. Submit a general framework for the qualitative comparison of rhythm description systems.

2. Provide an exhaustive review of existing computational attempts to rhythm description.

3. Highlight current promising research directions in computational rhythm description.

4. Determine which low-level audio features are best suited to the computation of useful rhythm

periodicity functions.

5. Illustrate what rhythm periodicity functions are useful for via the design of algorithms for

tempo induction, tatum estimation, time signature determination, swing estimation and mu-

sical genre classification.

The remainder of this dissertation is organized as follows.

Chapter 2 covers the background. We present rhythmic concepts of first relevance to the un-

derstanding of this dissertation, namely the metrical structure, tempo and timing. We propose a

unifying framework for computational approaches to rhythm description and review existing systems

(including systems for tempo induction, beat tracking, quantization and many others) with respect

to the functional units of the proposed framework. In addition to this qualitative survey, we propose

a quantitative comparison of state-of-the-art audio tempo induction algorithms. In the end of this

chapter, we highlight recent achievements in automatic rhythm description and submit (on page 56)

a list of open issues (with a special focus on tempo induction issues) which we believe make up the

main promising current research directions.

Chapter 3 addresses one of the current research topics highlighted in Chapter 2: the determina-

tion of the low-level features of musical audio signal that convey best the predominant information

relevant to rhythmic analyses. We make the assumption that the low-level audio features that are

adequate for the computational identification of beat positions are also promising features for the

computation of useful periodicity functions. The method used in Chapter 3 is based on this assump-

tion: we analyze beat-labeled audio data and seek features whose temporal behavior would best

indicate the presence and localization of beats.

In Chapter 4, we illustrate the usefulness of the features selected in Chapter 3 in the task of

tempo induction. We also address several current open issues in the area of tempo induction, as the

choice of periodicity function, the strategy for combining and parsing multiple information sources

and whether the joint estimation of several metrical levels helps the determination of tempo.
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In Chapter 5, we shortly introduce the research area of music content processing and music

information retrieval and illustrate the use of rhythm periodicity functions and descriptors derived

from such functions for music content processing: on the one hand in genre classification experiments

and on the other hand in content-based transformations.

Finally, Chapter 6 summarizes the contributions of this dissertation and proposes paths for future

research.
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Chapter 2

Survey of existing approaches to

rhythm description

In this chapter, we first present rhythmic concepts of first relevance to the understanding of this

dissertation, namely the metrical structure, tempo and timing. In Section 2.2, we propose an

unifying framework for computational approaches to rhythm description and review existing systems

(including systems for tempo induction, beat tracking, quantization and many others) with respect to

the functional units of the proposed framework. In addition to this qualitative survey, we propose in

Section 2.3 a quantitative comparison of state-of-the-art audio tempo induction algorithms. Finally,

the last section of this chapter concludes on recent achievements in automatic rhythm description

and submits a list of open issues (with a special focus on tempo induction issues) which we believe

make up the main promising current research directions.1

2.1 Representing musical rhythm

According to Fraisse (1982, p.149), “a precise, generally accepted definition of rhythm does not

exist.” The same consideration can be found in the very introduction of (London, 2005). In this

dissertation, “rhythm” is another term for “musical time,” we will not provide a more specific

definition. Just as it has a melodic dimension, music has a rhythmic dimension. Here, the word

“rhythmic” implicitly encompasses small- and large-scale temporal phenomena.

It is indeed difficult to draw a clear line regarding the temporal scope of rhythm. Some use this

word when referring to the duration of a note, expressed relatively to a reference pulse, as in “this

note is an eighth-note” (see Section 2.2.5). Others refer to rhythm as a pattern of notes, as e.g. a

1Part of the material in this chapter was previously published as stand-alone papers (Gouyon and Meudic, 2003;
Gouyon and Dixon, 2005; Gouyon et al., 2006) and an academic report (Gouyon, 2003). Coauthors of the papers are
thanked for their collaboration.

7
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typical Waltz pattern. For Cooper and Meyer (1960), prosody defines the possible rhythmic patterns

(iamb, anapest, trochee, dactyl and amphibrach). Others use the related adjective —“rhythmic”—

to describe somehow a percept that leads (or not) to dance to the music. Rhythm is commonly

defined indirectly. For instance, when stating that rhythm involves regularity (or organization)

and also differentiation (Fraisse, 1982, p.151), it is often opposed to the “meter” (defined in more

details below) and the “form.” The three terms involve regularity and differentiation, yet, the

distinction lies in the concept of “perceptual present,” introduced by Fraisse (1982): “the temporal

extent of stimulations that can be perceived at a given time, without the intervention of rehearsal

during or after the stimulation.” (Clarke, 1999, p.474). For London (2005), “rhythm involves the

pattern of durations that is phenomenally present in the music, while meter involves our perception

and anticipation of such patterns.” He also puts it differently: “meter [is] a mode of attending,

while rhythm is that to which we attend.” London considers that rhythm’s proper meaning refers

to the “smaller-scale features of musical experience.” The reason for this would be that rhythm

“is apprehended within the span of the perceptual present,” unlike the form and the meter that

would “engage one’s long-term memory of the piece at hand as well as one’s musical background

and knowledge.” Similarly, Clarke (1999) makes the distinction between “small- to medium- scale

temporal phenomena” (rhythm) and “large-scale temporal phenomena” (form). However, according

to Cooper and Meyer (1960, p.6) rhythm extends to all scales of temporal phenomena (from single

note to entire movement). Confusion abounds. But even if it seems futile to seek a more accurate

definition of rhythm than the broad “musical time,” it is possible to define concepts that are related

to it. This is what we intend to do in the rest of this section.

Now, imagine the following musical scene. Somebody (or some machine) is making music: musical

events are generated at given instants. A naive approach to describe the rhythm of this musical

data (whether audio or symbolic) is to specify an exhaustive and accurate list of onset times, maybe

together with some other musical features characterizing those events (e.g., durations, pitches and

intensities in the MIDI representation). However, such a representation lacks abstraction. There

is more to rhythm than the absolute timings of successive musical events. There seems to be

agreement on the fact that, in addition, one must also take into account the metrical structure,

tempo and timing (Honing, 2001). However, there is no consensus regarding explicit representations

of these three rhythmic concepts.

A first reason for this lack of consensus is that different rhythmic features are relevant at each step

in the musical communication chain, at each step where rhythmic content is produced, transmitted

and/or received. As we illustrate in the next sections, metrical structure, tempo and timing take

slightly different meanings for composers, performers and listeners. Indeed, even if a goal in the field

of music psychology is to seek representational elements, or processes, that would stand as “universal”

or “innate” (i.e. functioning at birth, independent of environmental influence) (Drake and Bertrand,

2001), a more widespread objective is to determine differences in perception according to listeners’
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Figure 2.1: Representation of a four level metrical structure corresponding to an audio file.

culture, musical background, age or sex (Drake, 1993; Lapidaki, 1996, 2000; Gabrielsson, 1973a,b;

Drake et al., 2000b).

A second reason is that the diverse media used for rhythm transmission suffer a trade-off between

the level of abstraction and the comprehensiveness of the representation. Standard Western music

notation provides an accepted method for communicating a composition to a performer, but it has

little value in representing the interpretation of a work as played in a concert. On the other hand,

a MIDI file might be able to represent important aspects of a performance, but it does not provide

the same level of abstraction as the score. At the extreme end, an acoustic signal implicitly contains

all rhythmic aspects but provides no abstraction whatsoever. In an application context, the choice

of a suitable representation is based on the levels of detail (respectively abstraction) of the various

aspects of music which are provided by the representation (Gouyon and Meudic, 2003).

2.1.1 Metrical structure

Western music notation provides an objective regular temporal structure underlying musical event

occurrences and organizing them into a hierarchical metrical structure. This is independent of the

hierarchical phrase structure which may be explicit in the notation or implicit in the composer’s,

the performer’s and/or the listener’s conceptualization of the music.

The Generative Theory of Tonal Music (GTTM) formalizes this distinction by defining rules for a

“musical grammar” which deals separately with grouping structure (phrasing) and metrical structure

(Lerdahl and Jackendoff, 1983). While the grouping structure deals with time spans (durations),

the metrical structure deals with durationless points in time, the beats.

Pulse — Beat Cooper and Meyer (1960) define a pulse as “one of a series of regularly recurring,

precisely equivalent stimuli. [...] Pulses mark off equal units in the temporal continuum.” Commonly,

“pulse” and “beat” are often used indistinctly and refer both to one element in such a series and

to the whole series itself. Unlike Cooper and Meyer (1960), in this dissertation, we use the term

“pulse” to refer to a metrical level (that is, the whole series of beats at any metrical level) while the

term “beat” refers to a single element of a pulse.2

2Further, “beat positions” or “beat indexes” will have the same meaning as “beats.”
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Beats can be grouped together according to their respective accentuation (Cooper and Meyer,

1960; Lerdahl and Jackendoff, 1983). “Accentuation” commonly refers to the human ability to per-

ceptually apply a mark on some events in the musical flow, in opposition to other such events. The

way we actually carry out this marking process is still not well understood. Pitch, intensity, duration

(Dixon and Cambouropoulos, 2000; Snyder and Krumhansl, 2001), harmony (Lerdahl and Jackendoff,

1983) and timbre perception certainly have an influence on our way to hear rhythm in music

(Thiemel, 2005). But one cannot state unequivocally that one of these factors prevails, nor that

these are the sole factors of rhythm perception. London (2005) defines an accent as a “means of

differentiating events and thus giving them a sense of shape or organization.”3

According to the GTTM (Lerdahl and Jackendoff, 1983), beats obey the following rules. Beats

must be equally spaced. A division according to a specific duration corresponds to a metrical level.

Several levels coexist, from low levels (small time divisions) to high levels (longer time divisions).

There must be a beat of the metrical structure for every note in a musical sequence. A beat at a high

level must also be a beat at each lower level. At any metrical level, a beat which is also a beat at

the next higher level is called a downbeat, and other beats are called upbeats. Beats obey a discrete

time grid, with time intervals all being multiples of a common duration, the smallest metrical level.

See Figure 2.1.

Pulse period and phase A pulse is characterized by a period and a phase. Its period is the

distance between two consecutive beats (also called the inter-beat interval, IBI, it is inversely pro-

portional to the tempo of the metrical level it defines, see on page 11) and its phase is specified by

the temporal location of one beat (usually the first beat).

Non-beat For the purpose of this dissertation, especially Section 3, we define the term “non-beat”

as any point in time that is not a beat at any metrical level.4

Tatum The metrical structure smallest level lacks a commonly accepted name. Schloss (1985)

refers to the “attack-point.” Bilmes (1993) uses the term “tatum.” In our understanding, Parncutt’s

“basic time unit” (1994) and Hofmann-Engl’s “chronota” (2002) refer to the same concept. In

(Gouyon et al., 2002) we used the term “tick.” In this dissertation, we will use the term “tatum.”

The tatum is better defined as “the regular time division that most highly coincides with all note

onsets” (Bilmes, 1993, p.22) than as the shortest interval between notes. Indeed, in syncopated

musical excerpt for example, the tatum may not be explicit in the list of successive note intervals, it

may rather be implied by the relationships between those intervals, see (Gouyon et al., 2002, p.397)

and Figure 5.1.

3See http://www.music.indiana.edu/som/courses/rhythm/illustrations/accent.html for related definitions of
accentuation.

4Note that non-beats do not necessarily coincide with notes.

http://www.music.indiana.edu/som/courses/rhythm/illustrations/accent.html
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Time signature — Measure Restricting the notion of meter to two levels, Yeston (1976) defines

it as “an outgrowth of the interaction of two distinct levels (two differently-rated strata), the faster

of which provides the elements and the slower of which groups them.” This definition seems close

to the usual description found in a score, given by the time signature and the bar lines. The bar

lines define the slower of the two levels (the “measure”) and the time signature defines the number

of faster beats that make up one measure. For instance, a 6
8 time signature indicates that the basic

temporal unit is an eighth-note (a “note” referring to a “whole,” or “semi-breve”) and that between

two bar lines there is room for six of them. Two categories of meter are generally distinguished:

duple and triple. This notion is contained in the numerator of the time signature: if the numerator

is a multiple of two, then the meter is duple, if not a multiple of two but of three, the meter is triple.

For instance, 2
4 and 4

4 signatures are duple, 3
4 and 9

8 are triple.

Quantized duration The GTTM specifies that there must be a beat of the metrical structure

for every note. Accordingly, given a list of note onsets, the quantization (or “rhythm parsing,” see

Section 2.2.5) task aims at making it fit into Western music notation. Viable time points (metrical

points) are those defined by the different coexisting pulses. Quantized durations are then rational

numbers (e.g. 1, 1
4 , 1

6 ) relative to a chosen time interval: the time signature denominator. However,

quantized durations can always be the object of controversy. For this reason, Cemgil et al. (2000)

define quantization as “the extraction of an acceptable description (music notation) from a music

performance” (original emphasis), “acceptable” meaning easy to read while representing the timing

information accurately.

Dynamic Attending Theory Music psychology research asserts that humans perceive part of

the metrical structure. Drake and Bertrand (2001) advocate a universal “predisposition toward

simple duration ratio,” and claim that “we tend to hear a time interval as twice as long or short as

previous intervals.” The Dynamic Attending Theory (Jones and Boltz, 1989; Drake et al., 2000a)

proposes that humans spontaneously focus on a “referent level” of periodicity, and they can later

switch to other levels to track events occurring at different time spans (for instance, longer-span

harmony changes, or a particular shorter-span fast motive). However, metrical structure perception

is strongly dependent on musical training (Drake et al., 2000b).

2.1.2 Tempo — Tactus

The tempo refers to the pace of a musical excerpt (how fast or slow it is). Given a metrical structure,

tempo is defined as the rate of the beats at a given metrical level, for example the quarter note level

in the score. It is inversely proportional to the pulse period. Here, the pulse can correspond to

the score temporal unit, in this case, one refers to M.M. tempo (Maelzel metronome); Drake et al.

(1999) refer to the “musical tempo.” There is usually a preferred or primary metrical level, which
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corresponds to the rate at which most people would tap or clap in time with the music, and this is

commonly used to define the tempo, expressed either as a number of beats per minute (BPM), or as

the inter-beat interval. In many cases the primary metrical level corresponds to the denominator of

the time signature, and the next one or two higher levels are specified by the numerator of the time

signature. In this dissertation, we use the term “tactus” to refer to the tempo of the perceptually

most prominent pulse, (Lerdahl and Jackendoff, 1983).

However, it is not always correct to assume that the denominator of the time signature corre-

sponds to the “foot-tapping” rate, nor to the “physical tempo” that would be an inherent property of

musical flows (Drake et al., 1999). Human anatomy and motor-behavior naturally account for pulses

(walking, heartbeat, breathing, brain waves, etc.). It is commonly thought that there is an intimate

connection between these physiological properties and human perception of rhythm (Fraisse, 1982,

pp.151-155), (Lapidaki, 1996, pp.40-47). We tend to perceive them as regular (Large and Palmer,

2002). Even when the sequences are not regular (Madison and Merker, 2002), or do not have rhyth-

mic “intentions” (Iyer, 1998), as e.g. ocean waves (see the concept of “subjective rhythmisation”

(Fraisse, 1982, p.155)). Drake and Bertrand (2001) argue that our “predisposition towards regular-

ity” should be regarded as an universal of music temporal processing. They argue that “processing

is better for regular than irregular sequences. We tend to hear as regular sequences that are not

really regular.” We would also “spontaneously search for temporal regularity and organize events

around the perceived regularity.” Some researchers propose that this regularity perception would be

consistent over time (Clynes and Walker, 1986), (Clynes and Walker, 1982, p.188) and also indepen-

dent of musical training (Levitin and Cook, 1996), arguing that our memory would store absolute

tempo. Others rather consider that this would be true for few special cases (as when the sequences

are well-known, or for a relatively restricted number of persons, as e.g. professional musicians), the

general case being that regularity perception would be an unstable feature, relative to many factors:

age, musical training, musical preferences, general listening context (as e.g. tempo of a previously

heard sequence, subject’s activity, instant of the day), etc. (Lapidaki, 1996, 2000; Drake et al.,

2000a; Drake, 1993; Drake et al., 2000a; McAuley and Semple, 1999).

Nevertheless, differences in tempo perception are far from random; they most often correspond

to a focus on a different metrical level, e.g. differences of half or twice the inter-beat interval (when

hearing duple meter music) or one-third or three times the inter-beat interval (when hearing triple

or compound meter music).

Preferred tempo and perceived tempo Regularity perception necessarily has upper and lower

boundaries (e.g. Moelants (2002) proposes 1500 and 200 ms, respectively). They are imposed by

the mechanical capacities of our perceptual apparatus and our short-term memory limits. Parncutt

(1994, p.424) refers to an “existence region of pulse sensation.” In between the boundaries, durations

are all possible candidates to a perceived regularity, but with different probabilities. That is, we

consider tempi with some “a priori” preference, this, independently of the auditory stimulus. Tempo
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preference distributions are commonly modeled as unimodal distributions (e.g. a Gaussian) with

a maximum, for Fraisse (1982) and Parncutt (1994, p.438), at 600 ms. Moelants (2002) proposes

a resonance curve (as that of a physical resonator) with a resonance period of 480 ms. Some also

propose to consider multimodal distributions (Drake et al., 1999, p.201). Drake and Bertrand (2001)

argue that a “temporal zone of optimal processing” around 600 ms may be considered as another

universal feature.

Furthermore, when hearing a musical excerpt, one can give an appreciation whether it is fast

or slow without referring explicitly to a specific pulse (Drake et al. (1999) refer to the “perceived

tempo”); in addition to the perception of a specific pulse, the rapidity of an excerpt relies on the

perception of “event density.”

2.1.3 Timing

Although it is supposed to model the listener’s intuitions, a major weakness of the GTTM is that it

does not deal with the departures from strict metrical timing which are apparent in almost all styles

of music. Thus it is only really suitable for representing the timing structures of musical scores, or

as an abstract representation of a performance, where the expressive timing is not represented.

There are conceptually two types of non-metrical timing, which come under the headings tempo

and timing respectively. These are illustrated in Figure 2.2, which shows a strictly metrical (iso-

chronous) pulse (A), followed by three variations on this pulse. There are two types of timing

changes: in the first case (B), just one beat in the pulse is displaced, whereas in the second case

(C), all beats from a particular time onwards are displaced, as when a pause occurs in the music.

In both of these cases, the change is in the timing; there is a discontinuity in the pulse, but the rate

of the pulse on both sides of the discontinuity is the same. In this sense we can associate timing

changes with short term changes in the pulse. On the other hand, a tempo change is a change in

the rate of the pulse (D), which is a long term change in the pulse.

It is important to note that at the time of the first change (the 4th beat), it is impossible to

distinguish cases (B), (C) and (D). This makes causal analysis impossible (i.e. algorithms which do

not use information about future events in analyzing present events, as, for example, any real-time

algorithm), since with no knowledge of the future, a single “out of time” beat could be due to either

a tempo or timing change (Cambouropoulos et al., 2001).

One of the greatest difficulties in analyzing performance data is that the two dimensions of

tempo and timing are projected onto the single dimension of time. Mathematically, it is possible to

represent any tempo change as a series of timing changes and any timing change as a series of tempo

changes, but these descriptions are somewhat counterintuitive (Honing, 2001). The parsimony of

the representation is an important factor in its psychological plausibility (Tanguiane, 1993).
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A

B

C

D

Figure 2.2: Four time-lines, marked with onsets, illustrating the difference between tempo and timing
changes: (A) an isochronous pulse; (B) a local timing change; (C) a global timing change; and (D)
a tempo change.

Tempo curves In order to represent changing tempi, various approaches can be used. If tempo

is considered as an instantaneous value, it can be calculated as the inter-beat interval measured

between each pair of successive beats. A more perceptually plausible approach is to take an average

tempo measured over a longer period of time. A measure of central tendency of tempo over a

complete musical excerpt is called the basic tempo (Repp, 1994), which is the implied tempo around

which the expressive tempo varies. The end result of any of these approaches is a value of tempo as

a function of time, which is called a tempo curve. Often, timing is also modeled by the tempo curve

representation, an approach which is sharply criticized by Desain and Honing (1991) and Honing

(2001) for failing to separate the dimensions of tempo and timing. This criticism is well supported by

examples where transformations applied to a tempo curve representation do not preserve musically

important features (Honing, 2005).

Recent research indicates that perceived beats do not necessarily line up exactly with onsets of

musical tones, our perception rather favoring smooth tempo curves (Dixon, 2005).

Systematic deviations Among others, Bilmes (1993) and Baggi (1991) propose to represent

timing deviations as systematic event shifts occurring within the span of the fastest pulse, while

keeping a constant execution speed. They found evidence of the suitability of such a representation

in analyzing respectively Latin percussion music and Jazz music. Friberg and Sundström (1999,

2002) propose to focus on the swing.

The term “swing” originates in jazz music. For Friberg and Sundström (2002), one characteristic

aspect of the swing is that “consecutive eighth-notes are performed as long-short patterns.” Laroche

(2001) defines it as a “slight delay of the second and fourth quarter-beats” (in his article, “beats”

refers to beats at the half-note level). The swing ratio refers to the ratio of the first eighth-note
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duration divided by that of the second.

The term “groove” resists precise definitions, but, as the “feel,” it usually refers to a rhythmic

phenomenon, resulting from the conflict between a fixed pulse and various timing accents played

against it; or resulting from the “musician moving in non-metronomical ways” (Waadeland, 2001).

The swing (as defined above) is a particular case of groove.

Categorical perception of deviations Music psychology research presents evidence that lis-

teners perceive performers’ intentional timing deviations. Clarke (1987) shows that “categorical

perception” differentiates expressive timing from rhythmic structure: a small number of categories

are used to characterize the continuously variable temporal transformation of the discrete (integer

ratio) structure. Further, timing and structure are tightly linked. Repp (1992) confirms listeners’

sensitivity to timing deviations, but, most importantly, also shows that this sensitivity is a variable of

the position in the metrical structure. Complementary to this finding, there is strong evidence that

performers do not produce timing deviations at arbitrary points in time (Palmer, 1997). They rather

deviate from pure mechanical performance in specific ways. The metrical structure provides “anchor

points” for timing deviations, and “every aspect of musical structure contributes to the specification

of an expressive profile for a piece” (Clarke, 1999, p.492). Expressive timing is also systematic; the

timing in repeated performances can be very stable over a period of years (Clynes and Walker, 1982,

pp.181-187).

2.2 Computational rhythm description

The chief goal in automatic rhythm description is the parsing of acoustic events that occur in time

into the more abstract notions of metrical structure, tempo and timing, as illustrated in Figure 2.3,

where the goal is to derive a representation like (B) from (A) or (A’). A major difficulty is the

inherent ambiguity of rhythm, as discussed in the previous section. This concern is also expressed

by Parncutt (1994, p.423), Chung (1989, p.19) and Rosenthal (1992, p.12). This is a problem

because computer implementations demand precise definitions, and any systematic comparison of

program performances must be based on some “ground truth.” For instance, it is difficult to compare

programs that extract the tempo if their definitions of tempo do not explicitly refer to the same

metrical level. Indeed, tempo induction systems typically make errors of simple integer ratios, such

as 60 BPM instead of 120 (Goto and Muraoka, 1997; Dixon, 2001a; Gouyon et al., 2006). Also,

even if existing scores can be taken as ground-truth references to the quantization or time signature

determination tasks, “correct” time signatures or quantized durations can always be the object of

controversy (see on page 11).

The ambiguity of rhythm representations becomes apparent when we consider the following ques-

tions: Given a musical signal, how many metrical levels are relevant? Is there one most important
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Figure 2.3: Example of an audio signal, examples of feature lists (onsets, short-term energy), corre-
sponding metrical structure and timing features, showing a gradually decreasing tempo.
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level? Is there solely one correct tactus? Which metrical level defines the M.M. tempo of the music?

Which metrical levels define the time signature? What are the relevant categories of timing devia-

tions? In terms of Figure 2.3, what elements of (B) are relevant, and how can they be named and

clearly defined? Are the answers to these questions common to all listeners?

These questions have no simple answers. There is no canonical form for representing rhythm,

and lacking this ground truth, it is difficult, if not impossible, to provide a meaningful quantitative

comparison of the various computer systems which each have different answers to these questions.

Further, until recently, there were no common database on which systems could be tested (see

Section 2.3 for more details on systematic evaluations).

Some systems derive the beats and the tempo of just one metrical level, where this level is

somewhat arbitrarily chosen. Others aim at deriving complete rhythmic transcriptions (i.e. score

rhythm representations) from musical performances. Still other programs aim at determining some

timing features from musical performances, such as tempo changes, event shifts (timing changes)

and swing factors.

These computer programs share some functional aspects. For instance, a prevalent aspect is

the handling of symbolic or parametric data derived from (or instead of) raw audio data. These

feature lists are usually made up of onset times (see (A’) in Figure 2.3), which are sometimes used

in conjunction with other features (temporal, timbral, harmonic or melodic). We define feature

lists somewhat broadly, to include frame-based feature vectors as well as lists of parameterized

events, since the algorithms subsequently used to process the lists are similar for both cases, even

though the time scales differ by an order of magnitude. The distinction between high-level and

low-level representations, although conceptually important, does not necessarily play a large role in

determining the suitability of algorithms for the discovery of temporal patterns.

This section provides a qualitative comparison of systems with respect to the functional units of

the general model illustrated in Figure 2.4, consisting of feature list creation (e.g., onset detection),

pulse induction (including periodicity computation, pulse selection, handling of event shifts and

strategies for combining and parsing multiple information sources), pulse tracking, time signature,

quantized duration and rhythm pattern determination, estimation of short term timing features and

extraction of periodicity features via parameterization of periodicity functions. In the remainder of

this section, we discuss each of these functional units in turn.

2.2.1 Feature list creation

Some computer systems deal with symbolic or parametric data, such as manually parsed scores

or MIDI data containing solely onset times and durations (Brown, 1993; Longuet-Higgins and Lee,

1982). Recent systems tend to deal directly with acoustic signals or with compressed audio (Wang

and Vilermo, 2001),although some early systems also used audio input (Chowning et al., 1984;

Schloss, 1985). No matter what input data is used, the first analysis step is the creation of a feature
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list, i.e. the parsing, or “filtering,” of the data at hand into a sequence of features. These features

range from note onset features (as time, duration and amplitude) to frame-based signal features,

and they are assumed to convey the predominant information relevant to rhythmic analysis.

In this step, monophonic excerpts are often parsed into sequences that resemble note features

(e.g. onset time, duration and pitch). For polyphonic music, Allen and Dannenberg (1990) propose

separating instrumental streams (a very challenging goal) and building a feature list for each mono-

phonic stream, which is merged with other streams after some rhythmic analysis steps. Another

possibility is to describe a polyphonic excerpt by a single feature list, giving a global (homophonic)

view where features (“summary events” in (Rosenthal, 1992, p.29)) represent musical chunks such

as chords or energy components.

2.2.1.1 Event-wise features

Onset time The extraction of note onset times for rhythmic analysis is ubiquitous in the liter-

ature. Musical event occurrence instants are very important cues for rhythm perception. Onsets

can be extracted (with more or less reliability) from virtually any musical format. For instance,

Longuet-Higgins (1987) and Brown (1993) process onsets manually parsed from scores. They can also

be easily parsed from MIDI data (Cemgil et al., 2000; Raphael, 2002; Dixon and Cambouropoulos,

2000; Cemgil et al., 2001). More complex is their automatic extraction from audio signals, the details

of which are out of the scope of this dissertation. Early systems for musical onset detection include

(Chowning et al., 1984), more recent systems include (Klapuri, 1999) and (Thornburg and Gouyon,

2000). Bello (2003) provides an exhaustive overview of musical onset detection.

Duration In addition to onset times, some systems also handle durations, or alternatively inter-

onset intervals (IOIs), which can be considered as roughly equivalent to durations (Brown, 1993),

and are easier to compute for audio data. Like onsets, durations can be easily parsed from MIDI

or scores, but cannot be computed reliably from audio data (especially polyphonic music). Du-

rations are extracted from scores by Brown (1993) and Brown (1993); Longuet-Higgins and Lee

(1982), whereas Mont-Reynaud and Goldstein (1985), Dannenberg and Mont-Reynaud (1987) and

Allen and Dannenberg (1990) use durations derived from MIDI data to filter out “weak” onsets,

being those onsets whose duration is either shorter than some fixed threshold (20 to 50 ms for

Allen and Dannenberg (1990) or much shorter than the preceding one. Chung’s “note impor-

tance agencies” (1989, pp.61-62) and Temperley and Sleator model (1999) also parse MIDI data

into note onsets and durations. Parncutt (1994, p.426-432) weights onsets proportionally to their

subsequent IOI, using a perceptually justified “saturation function.” Perceptual experiments by

Snyder and Krumhansl (2001) show that timing information alone (onsets and durations) is suffi-

cient for the perception of a pulse in Ragtime music.
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Timing patterns Mont-Reynaud and Goldstein (1985) focus on repetitions of note timing pat-

terns. Dealing with scores, Mont-Reynaud and Goldstein (1985) demonstrate the difficulty of the

pattern elaboration process and its inherent multiplicity of solutions. Lartillot’s technique (2004)

for discovering recurrent patterns in symbolic music sequences could be used here. However, it is

difficult to envisage this rationale when using audio signals (all the more if polyphonic).

Relative Amplitude Relative amplitude is a factor which contributes to perceptual accentuation,

and is easily computable from MIDI or audio data, but it is largely absent from score notation. Var-

ious systems use relative amplitude for weighting onsets derived from symbolic (Smith and Kovesi,

1996; Smith, 1996; Dixon and Cambouropoulos, 2000; Gasser et al., 1999) or audio data (Dixon,

2001a; Dixon et al., 2003; Gouyon et al., 2002).

Pitch Pitch is easily obtained from scores and MIDI data, but still cannot be reliably extracted

from polyphonic audio (Gómez et al., 2003; Klapuri, 2004). Pitch is rarely used in automatic rhyth-

mic analysis. Chowning et al. (1984) extract from audio signals of simple melodic lines played on

a piano note onsets, durations and pitches. This data makes up the “acoustic maps” that are sub-

sequently processed in order to determine complete score transcriptions of musical performances.

Dixon and Cambouropoulos (2000) extract duration, amplitude and pitch from MIDI data in order

to calculate the “salience” of musical events, which is shown to improve the performance of their

beat tracking system (when events are made up of several notes, the longest duration, the amplitude

summation and the lowest pitch are kept as representative).

Chords Chords are used in two ways in rhythmic analysis: by counting the number of simultaneous

notes as a measure of accentuation (Dixon, 2001a; Rosenthal, 1992), and by detecting harmonic

change as evidence of a downbeat (Goto and Muraoka, 1999) and (Temperley and Sleator, 1999,

p.25). Just like pitch, chords are easily readable in scores and MIDI data, but much harder to derive

from audio data (Gómez, 2005).

Percussive instrument classes Percussive events can be extracted from MIDI (MIDI channel

10 is normally used for such events). Their extraction from audio data is still ongoing research.

Schloss (1985) differentiates between “high drums” and “low drums.” Similarly, Bilmes (1993)

proposes to automatically differentiate several conga sounds. As of today, isolated percussion samples

can be automatically classified with a high reliability (Herrera et al., 2003).

In the more complex task of transcribing audio drum tracks,5 recent research have seen some

progress (Gouyon and Herrera, 2001; FitzGerald et al., 2002; Paulus and Klapuri, 2003; Gillet and

Richard; 2004).

5a drum track is an audio signal containing solely drum samples
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However, the state-of-the-art in percussive events recognition in polyphonic mixtures leaves room

for improvement. Goto and Muraoka (1995) deals with audio signals whose tactus is maintained by

specific drum sounds and in addition to onset detection, a discrimination is made between bass

drums and snare drums. The classification is based on template-matching of the spectrum of short

regions surrounding onsets. Instead of addressing drum classification with models (or templates)

built in a training phase, recent research tends to adapt such models to the characteristics of each

audio signal at hand in order to match closely, in an iterative process, the actual recurrent percussive

timbre of the audio signal (Gouyon, 2000; Gouyon et al., 2000; Zils et al., 2002; Yoshii et al., 2004;

Sandvold et al., 2004).

2.2.1.2 Frame-wise features

Honing (1993) comments that “there seems to be a general consensus on the notion of discrete

elements (e.g. notes, sound events or objects) as the primitives of music ... but a detailed discussion

and argument for this assumption is missing from the literature.” Further, Scheirer (2000) argues

that solely well-trained musicians hear the music in terms of its conventional musicological structures,

and he criticizes the “transcriptive metaphor,” maintaining that the modeling of the perceptual

mechanism should not be based upon abstract symbols such as durations, pitches, and chords. For

example, he showed in an informal experiment that replacing the harmonic content of a musical

signal with modulated noise did not change the sensation of tempo (Scheirer, 1998).

Based on this rationale, some systems do not focus on note onsets and their features, but refer

to a data granularity of a lower level of abstraction: frames. A frame is a short chunk (typically

20 ms) of audio, from which both time and frequency domain features can be computed. Consecutive

frames are usually considered with some overlap for smoother analyses. The analysis step, the hop

size (typically 10 ms), equals the frame size minus the overlap.

Energy The simplest feature is energy, which can be calculated for the whole frame or for fre-

quency subbands of the frame. Assuming that low-frequency instruments communicate much of the

rhythmic information, Alghoniemy and Tewfik (1999) and Blum et al. (1999) focus on the energy

in low-frequency components, as a simple alternative to the percussion detection methods men-

tioned previously. Others decompose the signal into several subbands, compute energy in each

subband, postprocess them (e.g. assign them different weights) and then sum them back (Vercoe,

1997; Tzanetakis and Cook, 2002). Finally, another procedure is to compute one feature list per fre-

quency subband, yielding e.g. 6 feature lists for Herre et al. (2002) and Wang and Vilermo (2001)

(in the latter, MP3 bitstreams are processed, hence frames are 13 ms-long and there is no overlap,

the correspondence between subband frequency interval and MDCT coefficients depends on whether

short or long windows have been used in the MP3 coding), 20 for Pampalk et al. (2002) and 23 for

Sethares and Staley (2001).
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Energy variation Rather than focusing on frame energy values, some systems measure the vari-

ation of the energy between consecutive frames. For instance, Foote and Uchihashi (2001) use the

cosine distance between the magnitude spectra of consecutive frames (11 ms-long, no overlap). In

(Laroche, 2003), frame magnitude spectrum (10 ms frames, no overlap) is transformed by a compres-

sion function (e.g. a hyperbolic sinus) to give higher weights to high frequencies than low frequencies,

and then a first-order difference is computed. Scheirer (1998) also computes the first-order difference

of frame energy values in 6 frequency bands.6 In (Klapuri et al., 2005), the computation of “registral

accents” entails the aggregation of the energy values computed in 36 frequency bands in a smaller

set of feature lists (e.g. 4). Here also, a first-order difference replaces the frame energy value.

One might note that these procedures resemble the first stages of an onset detector. The main

difference is that there is no discretization of frame energy values, nor any explicit thresholding and

peak-picking. Further rhythm description stages deal with a data granularity defined by the hop

size.

Other low-level features Low-level features other than energy (e.g. spectral flatness, temporal

centroid) have also been recently advocated (Gouyon and Herrera, 2003b).

2.2.1.3 IBI-wise features

Several authors propose to compute low-level features over the time span defined by two consecutive

beats at a given metrical level. For instance, Seppänen (2001) and Gouyon and Herrera (2003a)

compute beat indexes from low level features computed on segments of audio defined by the smallest

metrical level, the tatum. Also, Goto and Muraoka (1999), Meudic (2002) and Gouyon and Herrera

(2003b) derive downbeat indexes from descriptors of inter-beat segments. The latter points out

the relevance of a specific feature for downbeat computation: the temporal centroid of inter-beat

segments.

2.2.2 Pulse induction and rhythm periodicity function computation

A pulse is defined as the periodic recurrence of a feature in time. Therefore, computer programs

generally seek periodic behaviors in feature lists in order to select pulse periods and possibly also

their phases (hence beats). The process of pulse induction aims at highlighting intrinsic periodicities

of feature lists, and thus it is central to any form of rhythm understanding (see Figure 2.4).

The resulting beats often serve as input to a pulse tracker (see page 32). This division in

the processing is motivated in Desain’s “(de)composable theory of rhythm perception” (1992) that

6It may be noted that Scheirer (1998) does not explicitly refer to a frame-by-frame analysis. However, in our
understanding, the signal envelope extraction (by convolution with a half-Hanning window) and downsampling is
similar to a framing of the signal (with a frame-size equal the window size, i.e. 200 ms) and a step of analysis (hop
size) of 5 ms (if the downsampling frequency is 200 Hz; 13.3 ms when downsampling at 75 Hz, value advocated by
Scheirer for reaching real-time performances, see on page 79).
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highlights the need to consider events with respect to the rhythmic context. This context can be

defined mathematically as an expectancy curve, a function of past IOIs. Further, Desain and Honing

(1999) argue that human perception of pulse exhibits two dichotomic processes: a bottom-up process

that forms a pulse percept very rapidly from scratch, and a top-down process (a persistent mental

framework) that lets this induced percept guide the organization of incoming events.

In pulse induction, a fundamental assumption is made: the pulse period (and phase) is stable

over the data used for its computation. That is, there is no significant speed variation during the

excerpt used for inducing a pulse. In that part of the data, remaining timing deviations (if any) are

assumed to be short term (considered as either errors or expressiveness features). They are either

“smoothed out” (see page 28) or cautiously handled within the pulse induction process so as to

derive patterns of short term timing deviations as e.g. the swing (see page 37).

For pulse induction, computer programs either proceed by

• pulse selection, evaluating the importance, or salience (Parncutt, 1994), of a restricted number

of possible periodicities (see page 24), or by

• periodicity function computation, generating a continuous function plotting pulse salience ver-

sus pulse period (or frequency) (see page 25).

The former procedure is simpler, and is typically used for processing symbolic data, where pulse

selection is usually considered jointly with subsequent tracking. Systems handling finer-grained data

(e.g. frame features) often implement a periodicity function computation.

Inducing the pulse with part of the data In many cases, a hypothesis is made on the maximum

duration over which the pulse period can be considered stable (e.g. 5 s). In this case, the induction

process serves as a front-end to a tracking process. The resulting pulse (there also might be several

candidates) is propagated over the remaining data (i.e. for t > 5 s) and a process of comparison

between predicted beats and actual musical events produces all the beat positions and a tempo curve

(see page 32). Most systems resorting to the pulse selection method (page 24) process a small amount

of data for pulse induction and rather translate the overall difficulty onto the subsequent tracking

process; e.g. reporting on potential problems of their induction technique, Allen and Dannenberg

(1990) argue that it does not seem to be a problem since their tracking model “incorporates a great

deal of flexibility.” Some systems relying on the computation of a periodicity function also consider

it as a first processing stage, previous to the pulse tracking (Dixon, 2001a; Rosenthal, 1992). Those

typically use around 5 s of data for pulse induction; additionally, in some cases, some emphasis can

also be given to most recent samples (e.g. by multiplying the data with an exponentially decreasing

window, or by the intrinsic exponential behavior of a comb filter impulse response (Scheirer, 1998);

the “tempogram” of Cemgil et al. (2001) also implements this feature in its parameter α).

This rationale is suitable for streaming application where one does not know a priori the amount

of data to process.
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Inducing the pulse with the whole data If the pulse induction process is achieved on the

whole data (e.g. an entire audio recording, or MIDI file), a strong assumption is made, namely that

the tempo is constant all over. Pulse tracking is simply not addressed in this case. This is suitable

to some musical excerpts, but much music violate this assumption. This is typically done by systems

that rely on a periodicity function computation.

This rationale is not suitable for streaming applications, but it may be relevant for specific off-line

applications, where one knows that the the tempo stability assumption makes sense.

2.2.2.1 Pulse selection

The first approach to pulse selection is an instance-based approach, where each IOI defines a possible

pulse period, and the corresponding events define the phase. For example, Longuet-Higgins and Lee

(1982) simply consider the first two events as the first two beats, whereas Dannenberg and Mont-

Reynaud (1982) take the first two agreeing IOIs as defining the pulse (they refer to this process

as “creating a predictor”). In the system by Allen and Dannenberg (1990), the metrical value of

the first event must be given, and the pulse is derived from this value and the first IOI. Chung

(1989) derives a number of pulse periods and phases from the event list in a sequential manner. Like

Longuet-Higgins and Lee (1982), Chung considers the first two events as potential beats. Subsequent

events are considered in the light of this potential pulse: if they do not coincide with the pulse (after

allowing some tolerance), a new potential pulse is created, its period being set to the most recent

IOI, and the phase being specified by the current event. Limiting the number of pulses is achieved by

assigning to each pulse a score depending on: the “importances” (i.e. durations) of its constituent

events, the timing deviations of beats from expected beat positions and the number of syncopations.

Solely the two or three highest-scoring pulses are selected. Chung (1989, p.77) reports that the

system usually finds all relevant pulses within the first few bars. In sum, Chung’s selection of

pulse resembles that of Dannenberg and Mont-Reynaud (1987), improvements being that it is not

restricted to two agreeing IOIs, and that more than one pulse are considered.7

It is also possible to seek periodic behaviors in the feature list by computing a similarity mea-

sure between the list and several pulses. This procedure is foreshadowed by the “clock model” of

Povel and Essens (1985), where “people perceive, remember and reproduce temporal patterns by

structuring their representation according to an internal clock” (McAuley and Semple, 1999, p.178)

with a period corresponding to the smallest IOI. This rationale is only suitable for parsed scores and

artificially created sequences where IOIs are exact integer multiples of the clock period. In this case,

goodness of fit between a pulse and an event list can be estimated by positive evidence (the number of

7This sequential pulse induction mechanism could be thought of as some kind of tracking (see page 32). But, in
Chung’s words, there is no beat tracking (1989, pp.61 and 87), the tempo is considered constant. Chung argues that
if there were some tempo or time signature changes, his model would eventually discover it, as the pulse induction
process is always running (previous “winning pulse” scores would diminish), but “there is no mechanism for expecting
repeated changes” (p.88). This would finally result in a some switching of “agents” (and “agencies”) rather than in
a proper evolution of a single agent.
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events that coincide with beats), or by negative evidence (the number of beats with no corresponding

event), or by combining these two counts (McAuley and Semple, 1999). Similarly, Parncutt (1994,

pp.433-436) considers pulse induction on cyclically repeating impulse patterns, by expressing pulse

period and phase with respect to the shortest IOI, and determining the “pulse-match salience” based

on positive evidence rather than negative evidence.

2.2.2.2 Computing a periodicity function

The alternative to pulse selection is the computation of a periodicity function: a magnitude (or

salience) corresponds to each period (or frequency) in the periodicity continuum. In practice, the

range of periods is not continuous but sampled, with typical intervals being 5 or 10 ms. Some systems

process several feature lists separately, for example by calculating periodicities in each frequency

subband and then integrating the results (Scheirer, 1998; Paulus and Klapuri, 2002; Dixon et al.,

2003; Gouyon and Herrera, 2003a).

The periodicity function may also be multiplied by a tempo preference (probability) distribution,

e.g. (Parncutt, 1994, p.439, equation 7), implementing the fact that humans consider tempi with

some a priori preference (see page 12).

Some methods also let slow periodicities affect faster, rationally-related, periodicities (e.g. a

τ -periodicity in the feature list contributing to the raising of several peak magnitudes: naturally at

τ , but also τ/2, etc.), thus encoding aspects of the metrical hierarchy.

In some cases, an emphasis is given to the most recent samples, e.g. by multiplying the data

with a decreasing window (Desain and de Vos, 1990),(Goto, 2001, equation 7), or by the intrin-

sic exponential behavior of a comb filter impulse response (Scheirer, 1998). The “tempogram” of

Cemgil et al. (2001) also implements this feature in its parameter α.

Fourier transform Periodicity functions are often calculated with standard signal processing

algorithms, such as the Fourier transform, which Blum et al. (1999) applies to onset lists and

Pampalk et al. (2002) uses on 20 frequency subbands of the audio signal.

Wavelets Smith (1996) and Smith and Kovesi (1996) argue that wavelet analysis is well-adapted

to capture temporal organizations at different scales and visualize the hierarchies between the dif-

ferent organizational levels. The choice of wavelet representation is not made to suggest that human

perception actually proceeds by means of such signal representation; rather, “the intention is to

make explicit that information which is inherent in the rhythm.”

Auto-Correlation Function (ACF) The most common signal processing technique for period-

icity computation is the autocorrelation function (ACF), which has been applied to subband signals

and to onset lists represented as Dirac delta functions (for scores or mechanical performances) or
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smoothed using e.g. a Gaussian function (to cater for small changes in timing and tempo; see

Paragraph 2.2.2.3).

Brown (1993) computes a sample-by-sample ACF of a sequence of onsets sampled at 200 Hz,

weighted by their durations. Her results are best for longer values of the integration time (the

time span for the estimation of one correlation coefficient). The integration time is also impor-

tant because it determines the statistical reliability of the estimate (Desain and de Vos, 1990).

Scheirer and Slaney (1997) also compute the ACF of onset trains, and Scheirer (1997) advocates

summing ACFs computed over several frequency channels.

The “Narrowed ACF” (NACF) was introduced by Brown and Puckette (1989): the coefficient at

lag k is computed as the weighted sum of the ACF coefficients at lags which are integer multiples of

k, where the weights decrease for larger multiples of k. The NACF implicitly encodes aspects of the

metrical hierarchy (a 2k-periodicity has an effect on the correlation coefficient of lag k) and gives

better period precision at the expense of worse time resolution. Improved precision is a useful feature

for signals that contain close periodicities, but this is an unlikely situation in the context of pulse

induction. It may be noted that Brown (1993, p.1955) recognizes that the NACF is not necessary.

Vercoe (1997) proposes the use of the “Phase-Preserving Narrowed Autocorrelation” in order to

keep time localization normally lost in computing an ACF. The computation involves a simplified

NACF, i.e. with a very short integration time, which reduces the stability of the estimate.8

Foote and Uchihashi (2001) propose two ways to compute periodicities (“self similarity”) in fea-

ture lists: they build a similarity matrix and perform either sums or correlations of the matrix

diagonal elements. The first of these two options resembles the computation of an ACF: the sum

over the ith diagonal is similar to the (normalized) autocorrelation of the signal frame parameters

with a lag i. The latter option is similar to the NACF, in that it goes further and accounts for

aspects of the metrical hierarchy.

ACFs are also implemented by Gouyon et al. (2000), Goto (2001), Herre et al. (2002), Tzanetakis

et al. (2002),Gouyon and Herrera (2003a), Gouyon and Herrera (2003b) and Dixon et al. (2003).

Comb filterbank An alternative approach uses a bank of resonators, each tuned to a possible

periodicity, where the output of the resonator indicates the strength of that particular periodicity.

This technique is foreshadowed by the “clock model” of Povel and Essens (1985) in that it seeks the

series of periodically-spaced clock beats that best matches the feature list (the implementation in the

form of a bank of comb filters introduces an exponential decay on the clock beat amplitudes). Scheirer

(1998) uses comb filters as resonators, and performs periodicity analysis separately on 6 frequency

subbands of the signal, and then sums the filterbank outputs across the subbands. 150 resonators

are used to cover a logarithmically spaced frequency range from 1 Hz to 3 Hz (i.e. 60 to 180

BPM). Klapuri et al. (2005) also use a comb filterbank. Scheirer (1997, 1998) details similarities

8Interested readers should check the CSound implementation of the “Phase-Preserving Narrowed Autocorrelation”
in the “tempest” method for tempo estimation (see http://www.lakewoodsound.com/csound/hypertext/manual.htm).

http://www.lakewoodsound.com/csound/hypertext/manual.htm
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and differences between the NACF and comb filter approaches. This method also “encodes implicitly

aspects of the rhythmic hierarchy” (Scheirer, 2000, p.91).

Time interval histogram The use of histograms of time intervals between similar events is

also widespread. These are typically IOI histograms, although Mont-Reynaud and Goldstein (1985)

build histograms of time intervals between temporal patterns (see page 19), resembling somewhat

an ACF. Chowning et al. (1984, pp.17-19) and Schloss (1985, p.90) generate a smoothed histogram

by associating a Dirac delta function with each IOI, assigning it a weight proportional to its value

(i.e. longer IOIs are emphasized) and convolving them with a “bell shaped curve of appropriate

bandwidth.” Similarly, Rosenthal (1992, p.40) builds a discrete IOI histogram and smears it with

a Gaussian curve. The IOI clustering scheme of Dixon (2001a, 1999) is essentially similar to the

building of an IOI histogram where the bins are not fixed. Clusters of similar IOIs are given scores

based on the number of elements in the cluster and the amplitudes of their onsets. An adjustment of

the scores (and cluster representative interval) then favors rationally-related clusters, thus encoding

aspects of the metrical hierarchy. Seppänen (2001) and Gouyon et al. (2002) also implement IOI

histograms. In the former, the computation is sequential and updated at each new event, emphasis

being given to the most recent ones.

Periodicity transform Sethares and Staley (2001) propose the “periodicity transform,” which

projects the signal (here made up of frame energy in a subband) onto a set of basis vectors. Unlike

the Fourier and wavelet transforms, the basis vectors are not specified a priori, the transform rather

finds the basis vectors which best match the signal.

Tempogram Cemgil et al. (2001) define the “tempogram” which induces a probability distribu-

tion over the pairs {pulse period, pulse phase} given the onsets. Using a Bayesian framework, this

probability (posterior distribution) is proportional to the likelihood of the observed onsets under

given period and phase hypotheses, weighted by a prior distribution (which in this case is flat, as

they consider all tempi to be initially equiprobable). For given periods and phases, the likelihood is

computed as the integral, over all the onsets, of the product of a constant pulse (with appropriate

period and phase) and a continuous representation of the onsets (onsets are smeared with a Gaus-

sian curve). It implements the assumption that a good pulse is one which matches all the onsets

well. The tempogram marginal probability function p(w|t) (integral of the tempogram with respect

to phase) provides a 1-dimensional representation of periodicities resembling those aforementioned

(Cemgil et al., 2001, Figure 4).

Pulse matching Recall that the pulse selection method used by Parncutt (1994) and McAuley

and Semple (1999) (see on page 24) is based the computation of a similarity measure between event

lists and pulse templates. It can be generalized to deal with musical patterns which are not strictly
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metronomical and not cyclically repeating. In this case, the “basic time unit” is not known, but it

is possible to enumerate all possible pulse periods and phases, as do Gouyon et al. (2002), who use

both positive and negative evidence in the matching of onset lists and pulses (see on page 124).

If the feature representation is continuous (e.g. when adding some degree of tolerance for onset

times by smearing, or when using frame energies), it is no longer meaningful to speak of positive

and negative evidence. However, computing the inner product between pulses and the continuous

feature list is possible (Laroche, 2003, equation 5). This resembles the aforementioned tempogram,

the main differences are that the tempogram accounts for weights on beats and considers all phase

candidates simultaneously.

2.2.2.3 Handling short-term deviations

Short-term timing deviations always exist in any musical data other than parsed scores and arti-

ficial sequences. Feature periodicities are always approximate. This is a problem especially when

processing discrete event lists represented as a sum of Dirac delta functions.

One solution is to consider events as having a “tolerance interval” (Longuet-Higgins, 1987). Dixon

(2001a) uses a fixed tolerance interval of 25 ms (the “cluster width”) for IOIs, whereas Dixon et al.

(2003) and Chung (1989, p.65) employ tolerance intervals proportional to the IOIs, so that longer

IOIs allow for greater variations. Seppänen (2001) quantizes the IOI histogram into a specific number

of bins, giving a fixed tolerance interval, but does not state the number of bins. A tolerance interval

can also be considered in the creation of the feature list, such as the “summary events” of Rosenthal

(1992, p.29) which merge note events into chords if their onset times are within a timing tolerance

of 10 ms. Similarly, Dixon and Cambouropoulos (2000) use a tolerance of 70 ms to define onset

simultaneity.

The previous procedures can be interpreted as convolving the event list with a rectangular win-

dow. This helps in processing music with short-term timing deviations, but the resulting representa-

tion is still discontinuous (the sum of Dirac functions has been transformed into a step function). This

can be improved by using smoother curves for smearing, such as a Gaussian window (Chowning et al.,

1984; Schloss, 1985; Rosenthal, 1992; Cemgil et al., 2001; Gouyon et al., 2002), an exponential win-

dow (Dannenberg and Mont-Reynaud, 1987, p.245), or a triangular window (Tanguiane, 1994).

Some expressiveness timing features lie in short-term timing deviations. Therefore, instead of

“smoothing them out,” one may think of handling them cautiously to derive patterns such as the

swing for instance (see page 37).

2.2.2.4 Combining multiple information sources

We highlighted in the previous sections different ways to compute periodicity functions and different

low-level features of interest. In case several features are computed, the combination of these pro-

cessing blocks into a pulse induction algorithm requires to make decisions regarding the following
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lines:

1. One may first integrate features and then compute a periodicity function on the resulting

representation, or, inversely, compute a periodicity function for each feature and then integrate

these functions.

2. One may evaluate features and put different emphasis on them, or even select some features

and discard some others.

3. One may also normalize features.

Regarding the first point, Scheirer (1998) claims that “a rhythmic processing algorithm should

treat frequency bands separately, combining results at the end, rather than attempting to perform

beat tracking on the sum of filterbank outputs.”

Regarding the second point, it is possible to evaluate feature goodness, select some and discard

some others before combining them; different criteria can be considered for the task, the most

common being the periodic, or non-periodic behavior of features, which can be estimated from e.g.

the ACF of a given feature by several approaches:

• The peakedness of the ACF. Intuitively, peaky ACFs should correspond to valuable features.

This can be estimated via, for instance:

– The variance of the ACF with respect to its linear fit.

– The ratio of the maximum value and the mean value of the ACF (possibly after removing

its linear fit)

• The periodicity of the ACF itself. Intuitively, periodic ACFs should correspond to valuable

features.

In case one chooses to integrate information before periodicity function computation, the process,

illustrated in Figure 2.5(a), becomes: feature normalization (optional) — feature evaluation and

weighting/selection (optional) — combination of features — periodicity function computation.

In case one chooses to integrate information after periodicity function computation, the process,

illustrated in Figure 2.5(b), becomes: feature normalization (optional) — periodicity function com-

putation — periodicity function evaluation and weighting/selection (optional) — combination of

periodicity functions.

The meaning of the word “combination” above may be the mathematical sum or product. Op-

tionally, a weighted sum or product could be envisaged, however this would require an additional

strategy for estimating the weights. Combining periodicity functions may also include broader con-

cepts, and be considered together with periodicity function parsing (detailed in Paragraph 2.2.2.5).

For instance, it is possible to select several prominent peaks of diverse periodicity functions and
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Figure 2.5: Different ways to combine multiple information sources: combining features before
computing periodicity function (2.5(a)) or combining periodicity functions (2.5(b)).
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accumulate them in a histogram whose highest peak can be selected ((Tzanetakis and Cook, 2002),

see also on page 42) or parse these peaks using some musical heuristics as detailed in the next

paragraph.

2.2.2.5 Parsing the periodicity function

The desired output of the pulse induction process is a discrete pulse period (and optionally its

phase) for each periodicity, rather than a continuous periodicity function. Therefore another step

is needed in order to produce useful rhythmic information. Usually, this is achieved by a peak-

picking algorithm such as an N -point running window method, which defines local maxima as

points whose values are higher than those of their direct neighbors (N/2 on the left and N/2 on

the right). Peaks must be subsequently interpreted with respect to their musical meaning, e.g. the

tatum, tactus and measure periods, which can be identified using heuristics (Goto, 2001; Smith,

1996; Smith and Kovesi, 1996). As Smith and Kovesi (1996) put it, “while it is tempting to draw

hypotheses for methods of derivation of the tactus by ‘ridge-tracing’ or the well-formedness of the

global continuation of a voice, further research is required to build a model of tactus in respect of

perceptual issues.”

Chowning et al. (1984, pp.17-19) and Schloss (1985, p.90) perform peak-picking on a smoothed

IOI histogram, and keep the highest peak, qualifying it as the “important duration.” Likewise,

Rosenthal (1992, p.41) takes the maximum peak as being the tactus, using a peak-picking algorithm

with a bias towards smaller IOIs. In (Foote and Uchihashi, 2001) “beat spectrum,” the pulse period

is determined as the maximal peak, also by peak-picking. In (Brown, 1993), the pulse of interest is

the measure. All the peaks in the ACF are detected and the measure period is taken from the peak

whose height is greater than those of all previous peaks and all subsequent peaks up to twice its

period. Goto and Muraoka (1995) consider the maximum peak in a restricted region (between 61

and 120 BPM). Multiplying the periodicity function by a tempo preference (probability) distribution

(see page 12) may also help the selection among prominent peaks.

We have seen that in some cases (e.g. comb filterbanks), the computation of the periodicity

function itself accounts implicitly for the fact that the periods of metrical levels are related with

simple integer ratios: major periodicities contribute to the raising of several peak magnitudes at

rationally-related periods. Some systems also account explicitly for the constraints posed by the

metrical hierarchy in the parsing of periodicity function peaks (e.g. the period of any metrical level

is an integer multiple of the smallest level period). For instance, in addition to their salience, peaks

can be selected by their alignment with a periodic grid (e.g. computing the autocorrelation function

of the periodicity function itself, (Gouyon and Herrera, 2003a)). Another way to account for the

constraints posed by the metrical hierarchy is to seek periodicities in feature lists computed at the

scale of a lower metrical level as the tatum (Gouyon and Herrera, 2003a; Uhle et al., 2004), instead

of frame features. Dixon et al. (2003) collect peaks from several periodicity functions, consider
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exhaustively all pairs of peaks as possible tactus/measure combinations, and compute the fit of

all peaks to each hypothesis (see more details on page 41). Another method is to express the

constraints posed by the metrical hierarchy in a probabilistic framework (Klapuri et al., 2005) (see

more details on page 41). This is somehow complementary to Desain’s “(de)composable theory of

rhythm perception” (1992) that highlights the need to consider events with respect to a rhythmic

context. Here, the context amounts to the notion of metrical hierarchy rather than the notion of

temporal expectancy at a single level.

Some systems postpone the parsing of the periodicity function to the tracking phase: several

prominent periodicity peaks are selected and considered by a pulse tracking algorithm that will

eventually favor one tempo hypothesis over the others.

Some systems (e.g. comb filter, tempogram) compute the pulse phase (hence all beat positions)

jointly with the period. In other cases (e.g. ACF), the computation of the period entails the loss

of time localization, and the phase has to be computed subsequently, either during pulse tracking,

e.g. (Dixon, 2001a), or by enumerating possible phases once the period is known, and calculating

the best match (Gouyon et al., 2002), see on page 124.

2.2.3 Pulse tracking

Pulse tracking and pulse induction often occur as complementary processes. Pulse induction models

consider short-term timing deviations as noise, assuming a relatively stable tempo, whereas a pulse

tracker handles the short-term timing deviations and attempts to determine changes in the pulse

period and phase, without assuming that the tempo remains constant. Another difference is that

induction models work bottom-up, whereas tracking models tend to follow top-down approaches, for

example, driven by the pulse period computed by the pulse induction module.

Pulse tracking is often implemented with online algorithms, making real-time implementations

possible. Previous data is used to compute pulse period and phase that are used as predictions

propagated onto incoming data, and tracking is then a process of reconciliation between these pre-

dictions and the observed data. An important part of this process is entrainment, adapting the pulse

period and phase based on the observations, which must find a good balance between reactiveness

and inertia. Reactiveness determines how quickly the system responds to a change, and reflects

the importance given to the incoming data, while inertia determines the stability of the system and

reflects the importance attached to the context given by past data.

Diverse formalisms and techniques have been used in the design of pulse trackers: rule-based,

problem-solving, agents, adaptive oscillators, dynamical systems, Bayesian statistics and particle

filtering. The framework of state models is general enough to describe and compare pulse trackers:

they can all be defined by

• a set of state variables,
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• an initial situation (initial values for these variables),

• observations (incoming data),

• a goal situation (finding the best explanation for the observations),

• a set of actions (adapting the state variables in order to reach the goal situation) and

• methods to discriminate good and bad actions.

In the remainder of this section, we review how diverse models deal with the adaptation of state

variables to the observations.

2.2.3.1 Observations and state variables

Observed musical events are usually onset features: onset times, durations (or IOIs) and dynamics.

Tracking models follow two different rationales regarding observations: they either consider events

sequentially (i.e. each incoming event is processed and influences the tracker) or they consider pre-

dicted beat positions (i.e. only events around predicted beats are processed; others are disregarded).

State variables usually account for the pulse period, or tempo, and the pulse phase, expressed as

either the current beat position or the first beat. Some models also include other variables, such as

the estimated metrical position or a performance measure indicating the tracker’s self-evaluation,

e.g. Dixon (2001a).

2.2.3.2 Actions

Oscillators Adaptive oscillators predict the next beat position as the current beat position plus

the pulse period, and then choose the closest event to this predicted position and adapt the state

variables accordingly (McAuley, 1995; Large and Kolen, 1994). For instance in (Large and Kolen,

1994) a simple oscillator, called the “driven” unit, embodies the period and phase variables and

adapts to incoming events emitted by the “driver” unit. Each event from the driver perturbs the

phase of the driven unit by an amount determined by the coupling strength, which in turn determines

the balance between reactiveness and inertia of the model. The resulting instantaneous period of

the driven unit eventually differs slightly from its preferred period without coupling. However, in

this “phase-pulling” scheme, if the driver stops (i.e. no more input to the driven unit), then the

driven unit recovers its previous instantaneous period. The stability of such a system is function of

the driven/driver period ratio and the coupling strength (Large and Kolen (1994) provide insightful

diagram illustrations). In order to prevent the driven unit from returning to its former period if the

driver stops, a “frequency-locking” procedure is also needed. Phase and frequency locking is achieved

by minimizing the gap between the current beat prediction and the subsequent event of the driver,

according to the method of gradient descent. If this gap is too big, the new event will not be taken
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into account. Several coupling values are tested and results are detailed in (Large and Kolen, 1994).

Large and Kolen (1994) and McAuley (1995) suggest connecting several oscillators in a network

so that they can interact, in order to model several metrical levels jointly, see also (Eck, 2001;

Gasser et al., 1999) on this issue.

Rule-based approach In the rule-based approach, e.g. (Desain and Honing, 1999) and (Longuet-

Higgins and Lee, 1982), the state variables are the pulse period and the first and current beats. A

set of “if-then” rules adapts these variables as each event is observed, and predicts the next beat.

For instance, in (Longuet-Higgins and Lee, 1982), a beat is predicted at the current beat position

plus the pulse period, and the pulse period is then adapted by two rules: “conflate” and “stretch.”

The former achieves a doubling of the pulse period when an onset is observed on the predicted beat,

the latter changes the period if an onset is observed before the predicted beat (then the period is set

to the distance between this new onset and the penultimate beat). Pulse phase is adapted by the

rule “update”: if no onset is observed at the predicted beat (nor before it), the first beat is shifted

to the current beat and the current beat to the predicted beat (regardless of the fact that there is

no onset there). This approach seems biased towards reactiveness rather than inertia.

Multiple hypotheses In (Dannenberg and Mont-Reynaud, 1987), incoming events are consid-

ered sequentially and the pulse period is updated as follows. An integer divisor (or multiple) of the

pulse period is assigned to the next observation (e.g. 1, 1/2, 1/3, 2, etc.) as the closest metrical

position to the actual event position. The resulting deviation then serves to update the pulse period.

This updating mechanism depends also on the event position in the metrical hierarchy: events close

to multiples of the expected pulse period have a greater impact on the updating mechanism than

other events, e.g. half-periods, see (Dannenberg and Mont-Reynaud, 1987, “Confidence” parame-

ter). Finally, the balance between reactiveness and inertia is explicitly monitored by the “Decay”

parameter.

Allen and Dannenberg (1990) propose to add some flexibility to the previous model by fine-tuning

the “Decay” and “Confidence” parameters, depending on the musical style. However, observing that

this model does not possess the capability to recover after an error, they introduce the notion of

concurrent hypotheses, where a hypothesis is a sequence of states. Incoming events are also consid-

ered sequentially in this model, but the system does not commit to a decision at each observation.

Rather, the evolutions of several concurrent hypotheses are evaluated with some delay with respect

to real-time, so that decisions are not taken on the basis of a given state, but on the basis of a

sequence of states. In addition to the period and phase variables, a metrical position and a “credi-

bility” (performance measure) are also state variables. In this framework, the number of hypotheses

increases with each observation, resulting in a search tree. The tree is pruned to an acceptable

size by discarding some hypotheses based on heuristics which implement simple aspects of musical

knowledge (e.g. “quarter-notes must start on the downbeat or the upbeat”). Other techniques to
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reduce the number of hypotheses are by using best-first search,9 discarding hypotheses which du-

plicate the current state of other hypotheses, and limiting the number of likely metrical positions.

Temperley and Sleator (1999) use dynamic programming to search the solution space of possible

mappings of events to a pulse, where the search is guided by a set of preference rules based on

GTTM.

Agents Dixon (2001a) presents another multiple hypothesis search approach, using an agent

paradigm, where each agent has a state (state variables are period and phase of a pulse) and a

history (“the sequence of beat times selected to date by the agent”). These agents are comparable

to the hypotheses of Allen and Dannenberg (1990), except that observations are only processed if

they occur around the predicted beats, i.e. “within a window whose width depends on the pulse

period.”

Dynamical system Cemgil et al. (2001) address pulse tracking through the use of a dynamical

system, a “metronome model” that updates state variables at each inferred beat. The system is

defined with two hidden state variables: the period and the phase of a metronome. Transition

from one metronome beat to the next is modeled by a simple set of state equations. The model

is fully determined if the initial state variables are given. To this deterministic model, they add a

noise term (a Gaussian random vector whose covariance matrix will be estimated through a training

phase) that models the likely tempo variations. Observations to the dynamical system (“noisy

metronome beats”) are given by the computation of a “tempogram” from incoming onsets. The

hidden state variables are estimated by means of a Kalman filter and extensions to the Kalman filter

are proposed.

2.2.3.3 Tracking as repeated induction

Some systems address pulse tracking by repeated pulse induction, e.g. (Chung, 1989; Scheirer, 1998;

Foote and Uchihashi, 2001; Goto, 2001; Klapuri et al., 2005). A pulse is induced on a short analysis

window (usually around 5 s of data), then the window is shifted in time to include the next event

and another induction step takes place. (If the feature list consists of frame features, the hop size

is constant.) In this framework, observations to the tracking process are no longer events as used

above, but the period and phase of a pulse. Determining the tempo evolution is then reduced to

connecting the observations at each step.

In addition to computational overload (in comparison to other tracking strategies), one problem

that arises with this approach to tracking is the lack of continuity between successive observations.

Each induction stage produces pulse period and phase estimations that are usually independent. A

9expanding the best hypotheses first: setting a maximum number of concurrent hypotheses and, when this number
is reached, use a heuristic function to determine how well each hypothesis performed so far (e.g. sum of state
credibilities in that hypothesis), and keep the best ones.
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subsequent process must connect successive estimations. A continuity constraint is implicitly present

in the fact that the analysis hop size is usually much smaller than the window size but this results

in a strong bias towards inertia rather than reactiveness and an impossibility to model sharp tempo

changes.

If each induction step yields several pulse period and phase hypotheses, finding the final tempo

curve and beat locations sums up to finding the “best” path that connects successive hypotheses,

e.g. by dynamic programming (Laroche, 2003). “Best” can be formalized, here again, by costs

assigned to the several ways of adapting state variables (i.e. pulse periods and phases and measures

of self-evaluation). For Goto (2001) and Laroche (2003), this entails continuity and non-syncopation

constraints.

2.2.4 Time signature determination

Few algorithms for time signature determination exist. The simplest approach is based on parsing

the peaks of the periodicity function to find two significant peaks, which correspond respectively to

a fast pulse, the time signature denominator, and a slower pulse, the numerator (Brown, 1993). The

ratio between the pulse periods defines the time signature.

Another approach is to consider all pairs of peaks as possible tactus/measure combinations, and

compute the fit of all periodicity peaks to each hypothesis, using a weighted sum, where the weights

represent the likelihood of each metrical unit appearing as a strong periodicity, given the meter

(Dixon et al., 2003).

The time signature is implicitly calculated by systems that induce a complete metrical structure,

e.g., (Temperley and Sleator, 1999).

Another strategy is to break the problem into several stages: the determination of the time signa-

ture denominator (e.g. by tempo induction and tracking), the segmentation of the musical data with

respect to this pulse, the definition of features at this temporal scope and subsequently the detec-

tion of periodicities in feature lists (Meudic, 2002; Gouyon and Herrera, 2003b). Goto and Muraoka

(1999) detect chord changes as indicators of higher level metrical boundaries such as bar lines;

however their work is restricted to music with a 4
4 time signature.

2.2.5 Rhythm parsing

Rhythm parsing, or quantization, is the process aiming at making a list of note onsets fit into

Western music notation, see page 11. It can be seen as a by-product of the induction of several

metrical levels, which together define the metrical structure, e.g., for Chung (1989, p.21), “obtaining

the correct metric and rhythmic interpretation are part of the same process.” Onset times of a

given sequence can be parsed by assigning each onset (independently of its neighbors) to the closest

element in this metrical structure. The weaknesses of such an approach are that it fails to account

for musical context (e.g. a triplet note is usually followed by 2 more) and tempo changes.
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Models by Desain and Honing (1989) and Cemgil et al. (2000) do account for musical context

and possible distortions of the metrical structure. However such distortions would in turn be easier to

determine if the quantized durations were known (Allen and Dannenberg, 1990). Therefore, rhythm

parsing is often considered as a process simultaneous with beat tracking,10 rather than subsequent

to it (hence the bi-directional arrow between these two modules in Figure 2.4 on page 18).

Here also, as for beat tracking on page 32, the joint estimation of tempo and quantized durations

can be seen as a process of reconciliation between predicted values for state variables and incoming

observations. The main difference with beat tracking lies in the fact that the state variables explicitly

specify the interdependency between tempo and quantized durations.

For instance, in (Rosenthal, 1992) the state variables account for three metrical levels simultane-

ously and observations are not defined by events considered sequentially, but only by events which

are close to beats at one of the metrical levels. The pruning techniques are comparable to those used

by Allen and Dannenberg (1990), but adapted to the fact that states (and therefore hypotheses) are

more complex (Rosenthal, 1992, pp.57-68).

In (Raphael, 2002) and (Cemgil and Kappen, 2003), events are considered sequentially. Con-

current hypotheses are expressed as posterior probabilities of a probabilistic model whose hidden

layers (i.e. state variables) account for score notation and ideal timing in addition to tempo. They

implement different strategies for parsing the tree of hypotheses and keeping it from growing expo-

nentially. For instance, particle filters are suitable (see also (Hainsworth and Macleod, 2003, 2004),

for a similar approach using audio data). Temperley and Sleator (1999) also process events sequen-

tially, using dynamic programming and a simple set of preference rules to infer up to 5 metrical

levels.

Thornburg (2001a) also follows the same rationale, however he includes audio segmentation (onset

detection) as a third interdependent process (Thornburg, 2001b), rather than a preprocessing step

before rhythm parsing and beat tracking. He argues that these tasks should be considered jointly:

polyphonic audio segmentation is necessary to provide data to the rhythm tracker, but rhythm

tracking should also orient (i.e. provide prior probabilities to) the segmentation task. This helps

to ensure robustness against spurious onsets, which are a common problem in polyphonic audio

segmentation. The systems based on MIDI input (Temperley and Sleator, 1999; Raphael, 2002;

Cemgil and Kappen, 2003) account inherently for noise in onset timing, but not for spurious onsets.

2.2.6 Systematic deviation estimation

In the pulse induction process, short term-timing deviations can be “smoothed out” (see page 28)

or cautiously handled so as to derive patterns of short-term timing deviations such as swing.

Foote and Uchihashi (2001) suggest that swing could be measured by inspection of a periodicity

function (there, the “beat spectrum”) within the pulse induction process. This is illustrated by

10Hence the expression “rhythm tracking,” occasionally found in the literature.
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the positions of secondary peaks with respect to some higher ones in (Foote and Uchihashi, 2001,

Figure 3) but they do not suggest any extraction procedure. Another problem is that periodicity

functions do not distinguish the order of events, e.g., the difference between a long-short pattern

and a short-long pattern, which is critical.

Laroche (2001) proposes to estimate the swing jointly with tempo and beats at the half-note

level, assuming constant tempo. The procedure is conceptually similar to pulse induction using a

pulse matching function (see page 27), but enumerating all possible pulse periods and phases, like

Cemgil et al.’s Tempogram (see page 27), and searching for the one which best matches the onsets.

The number of candidate pulses (the search space) is in fact even larger, as tracks have a third

parameter to be estimated (the swing) in addition to the tempo and phase parameters. In this case

the pulses are no longer isochronous, but correspond to the long-short timing pattern that we wish

to find in the data. The amount of deviation from an isochronous track defines the swing ratio.

Gouyon et al. (2003) estimate swing ratio in a comparable fashion, see on page 138.

2.2.7 Rhythm pattern determination

The previous section reported on the relevance of systematic short-term timing patterns. In addition,

repetitive patterns covering longer temporal scopes can also be characteristic of some music styles.

For instance, many electronic synthesizers feature templates of prototypical patterns such as Waltz,

Cha Cha and the like. The length of such patterns is typically one bar, or a couple or them. Few

algorithms have been proposed for the automatic extraction of rhythmic patterns; they usually

require the knowledge (or previous extraction) of part of the metrical structure, typically the tactus

and measure beats (Dixon et al., 2004).

2.2.8 Periodicity features

Other rhythmic features, with a musical meaning less explicit than e.g. the tempo or the swing, have

recently been advocated, in particular in the context of designing rhythm similarity distances. Most

of the time, these features are derived from a parameterization of a periodicity function, as e.g. the

salience of several prominent peaks (Gouyon et al., 2004a), their positions (Tzanetakis and Cook,

2002; Dixon et al., 2003), selected statistics (high-order moments, flatness, etc.) of the periodicity

function considered as a probability density function (Gouyon et al., 2004a) or simply the whole

periodicity function itself (Foote et al., 2002).

2.3 Evaluation of tempo induction systems

Among the diverse aspects of automatic rhythm description, most of the effort has been dedicated

to the tempo induction and beat tracking tasks. Section 2.2 provided a review of the diverse
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formalisms that have been used to implement computer systems performing these tasks. Within any

computational modeling endeavor, systematic evaluations of competing models is highly desirable.

They require:

• Reference examples of correct analyses, that is, large and publicly available annotated data

sets

• An agreement on the manner of representing and annotating relevant information about this

data

• Agreed evaluation metrics

Such evaluations have received little attention in pulse induction and tracking. Early models usually

did not present quantitative evaluation of the proposed models, and only recently have researchers

begun to report on the performance of their systems, but they meet with the following difficulties.

First of all, even if a number of papers propose evaluation methodologies, no consensus has

been reached on how to evaluate algorithms, because of the diversity of input and output data

representations as well as the diversity of applications (Gouyon and Meudic, 2003). For instance,

Temperley (2004) convincingly highlights shortcomings of metrics proposed by Goto and Muraoka

(1997) and Cemgil et al. (2001), and proposes an evaluation method that seems suitable for systems

processing MIDI input. However, as this metrics is based on a note-by-note evaluation (not beat-by-

beat), in order for it to be useful for acoustic signal inputs, it would require complete transcriptions

of these signals, an unrealistic requirement from the point of view of manual annotation, and well

beyond the scope of the pulse induction algorithms themselves.

Secondly, the evaluation data sets used by many researchers are usually private and of relatively

small size, which makes it difficult to compare one system with another. Some efforts have been made

to make data public. For example, a collection of score-matched MIDI performance data is available

from the Music, Mind and Machine Group of the University of Nijmegen11 (around 200 performances

of a couple of Beatles songs by 12 pianists performed in several tempo conditions). Results on this

data set were reported by Cemgil et al. (2001) and Dixon (2001b), and the latter argued that more

challenging data was needed. Also, Temperley (2004) provides a publicly available data set12 of

46 pieces with metronomical timing and 16 performed pieces, all taken from the common-practice

Western repertoire. However, in both cases, the data sets are only suitable for evaluating systems

dealing with MIDI input, and not acoustic signal input.

Finally, there are many models, but few open source implementations, and few models are

described completely enough in order to reimplement them.

As a first step towards more systematic evaluations and comparisons, we organized a tempo

induction contest during the International Conference on Music Information Retrieval (ISMIR 2004)

11http://www.nici.kun.nl/mmm/archives/
12ftp://ftp.cs.cmu.edu/usr/ftp/usr/sleator/melisma2003

http://www.nici.kun.nl/mmm/archives/
ftp://ftp.cs.cmu.edu/usr/ftp/usr/sleator/melisma2003
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held at the University Pompeu Fabra in Barcelona in October 2004.13 The task was restricted to

the induction of tempo as a scalar, in beats per minute (and not the individual beat positions or

any other rhythmic description). Researchers were encouraged to participate by several means, the

respondents agreed upon an evaluation benchmark for the competition. In the remainder of this

section, we report on the results of this competition.

2.3.1 Algorithms

Twelve algorithms entered the contest, 11 were submitted by 6 different research teams, and one

open-source algorithm (GPL-licensed) was downloaded from the web. The contest organizer did not

compete. One entrant chose not to participate in the analysis of the competition results, so we report

here on 11 algorithms. Algorithms were submitted in various formats: the open-source entries were

submitted as C, C++ or Matlab source code, and the others as Windows or GNU/Linux binaries or

Matlab pre-parsed pseudocode files. All of the algorithms are based on a common general scheme: a

feature list creation block, that parses the audio data into a temporal series of features which convey

the predominant rhythmic information to the following pulse induction block (see Figure 2.4 and

Section 2.2 for more details). Some algorithms also implement a beat tracking block. However, as

the contest did not address the issues of tracking tempo changes and determining beat positions, the

submitted algorithms either bypassed this block or added a subsequent back-end for the purpose of

the contest, i.e. a parsing of the beat positions into a global tempo estimation.

2.3.1.1 Algorithms by Alonso et al. (2004)

Miguel Alonso from the École Nationale Supérieure des Télécommunications (ENST) in Paris sub-

mitted two algorithms, referred to as AlonsoACF and AlonsoSP, which were submitted in the form

of p-files, i.e. Matlab pre-parsed pseudocode files (source code is not visible).

Both methods are based on the same front-end that extracts onsets of notes. A time-frequency

representation of the audio signal is calculated, and the rate of change of the spectral energy content

is found by filtering this representation with a differentiator FIR filter. The positive contributions

of each spectral line are summed in the frequency domain and an onset train is obtained.

The difference between the systems is found in the pulse induction block. The first method is

based on the autocorrelation of the onset train, while the latter uses the spectral product. Both

algorithms are described in detail in (Alonso et al., 2004). These systems were originally conceived

for beat tracking, but the tracking part was disabled in the versions submitted to the contest.

13The conference webpage is http://ismir2004.ismir.net/

http://ismir2004.ismir.net/


2.3. EVALUATION OF TEMPO INDUCTION SYSTEMS 41

2.3.1.2 Algorithms by Dixon (2001a) and Dixon et al. (2003)

Simon Dixon from the Austrian Research Institute for Artificial Intelligence (ÖFAI) in Vienna sub-

mitted three entries to the contest: DixonI, DixonT and DixonACF.

The first two are GNU/Linux binaries based on the beat tracking system BeatRoot detailed

in (Dixon, 2001a).14 They are both based on a simple energy-based onset detector followed by

an inter-onset interval (IOI) clustering algorithm. DixonI selects a tempo based on the “best”

cluster, where the clusters are assessed by the number of IOIs they contain, the amplitude of the

corresponding notes, and the support of other clusters related by simple integer ratios. DixonT selects

several prominent clusters as tempo hypotheses, performs beat tracking based on these hypotheses,

and outputs the mean of the inter-beat intervals (IBI) from the best beat tracking solution as the

final estimate of tempo.

DixonACF (Matlab source code) is described in (Dixon et al., 2003). This algorithm splits the

signal into 8 frequency bands, and then smooths, downsamples and performs autocorrelation on each

of the frequency bands. From each band, the 3 highest peaks (excluding the zero-lag peak) of the

autocorrelation function are collected. The tempo is derived from this list of peaks by taking into

account influential schemes between metrical levels: the algorithm considers exhaustively all pairs

of peaks as possible tactus/measure combinations, and computes the fit of all periodicity peaks to

each hypothesis, using a weighted sum, where the weights represent the likelihood of each metrical

unit appearing as a strong periodicity, given the meter (Dixon et al., 2003).

2.3.1.3 Algorithm by Klapuri et al. (2005)

Anssi Klapuri from the Tampere University of Technology submitted one algorithm as a GNU/Linux

binary, referred to as Klapuri.

An important aspect of this algorithm lies in the feature list creation block: the differentials of

the loudness in 36 frequency subbands are combined into 4 “accent bands”, measuring the “degree

of musical accentuation as a function of time.” The goal in this procedure is to account for subtle

energy changes that might occur in narrow frequency subbands (e.g. harmonic or melodic changes)

as well as wide-band energy changes (e.g. drum occurrences). The pulse induction block implements

a bank of comb filters comparable to that proposed by Scheirer (1998) (see below).

Another particularity of this algorithm is the joint determination of three metrical levels (the

tatum, the tactus and the measure) through probabilistic modeling of their relationships and tempo-

ral evolutions. After computing the tactus beats of the whole test excerpt, the tempo was computed

as the median of the IBIs of the excerpt’s latter half. See (Klapuri et al., 2005) for a complete

description of the algorithm.

14BeatRoot is available as GPL code at http://www.oefai.at/∼simon/beatroot/index.html

http://www.oefai.at/~simon/beatroot/index.html


42 CHAPTER 2. SURVEY

2.3.1.4 Algorithm by Scheirer (1998)

The source code of Eric Scheirer’s algorithm (formerly MIT Media Lab) was downloaded from the

web (http://sound.media.mit.edu/∼eds/beat/tapping.tar.gz), it was ported to GNU/Linux

(it is referred to as Scheirer).

Scheirer (1998) performs pulse induction with a comb filterbank on a regularly-sampled signal

amplitude envelope separately on 6 frequency bands which are then combined after periodicity

detection. The output of the algorithm is a set of beats rather than an overall tempo estimate, so

we added a small back-end to the code that outputs the state of the filterbank after the analysis of

the whole sound file. Then the tempo is taken to be the resonance frequency of the filter with the

highest instantaneous energy after the whole analysis. The choice of this particular back-end was

based on the observation that this algorithm provides more reliable estimates after some processing

of the sound file than at the beginning. However, note that other methods could also be considered,

as for instance, the total number of beats divided by the duration, or the mean of the IBIs.

2.3.1.5 Algorithms by Tzanetakis and Cook (2002)

George Tzanetakis from Victoria University submitted 3 entries: TzanetakisH, TzanetakisMS and

TzanetakisMM (standing respectively for “Histogram”, “MedianSum” and “MedianMultiband”).

GNU/Linux binaries were compiled from the source code available on the SourceForge web.15

All the three methods are based on the wavelet front-end described in (Tzanetakis and Cook,

2002). The signal is segmented in time into 3 s analysis windows (with an overlap of 1.5 s). In

each window, the signal is decomposed with the help of a wavelet transform into 5 octave-spaced

frequency bands, and the amplitude envelope is extracted in each band.

Regarding the pulse induction block, all three methods use autocorrelation, however, they differ

in some aspects. The default method (TzanetakisMS) sums the diverse subband amplitude envelopes

and computes an autocorrelation of the resulting sum. The maximum peak in the autocorrelation

(a tempo estimate) is computed on each analysis window and the median of the tempo estimates

is chosen as the final tempo. TzanetakisMM makes a separate tempo estimate for each band and

each analysis window, and then selects the median. TzanetakisH sums the subband amplitude

envelopes, computes an autocorrelation of the resulting sum, selects several autocorrelation peaks

and accumulates them in a histogram which summarizes the peaks of all analysis windows. The

tempo is finally set to the highest peak of the histogram.

2.3.1.6 Algorithm by Uhle et al. (2004)

Christian Uhle from Fraunhofer Institute for Digital Media Technology submitted one algorithm

as a Windows binary, referred to as Uhle. This algorithm calculates the rates of three pulses (the

15marsyas-0.2 under http://www.sourceforge.net/projects/marsyas

http://sound.media.mit.edu/~eds/beat/tapping.tar.gz
http://www.sourceforge.net/projects/marsyas
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tatum, the tactus and the measure). The audio signal is segmented into characteristic long-term

segments corresponding for example to a verse or a chorus (Foote, 2000). Amplitude envelopes are

calculated for logarithmically-spaced frequency bands by means of the Discrete Fourier Transform

and smoothed using an FIR low-pass filter. The first-order differential of each band is computed,

and subsequently half-wave rectified. They are then summed across all bands to produce an “accent

signal.” An autocorrelation function is computed for non-overlapping 2.5 s segments inside each long-

term segment. The tatum period is estimated from the ACF by means of the two-way mismatch

error function (Gouyon et al., 2002).

A second periodicity function is derived from the ACF in order to highlight the saliences of

periodicities only at integer multiples of the tatum, among which are the measure and the tactus.

Instead of simply downsampling the ACF by a factor equal to the tatum, this function is computed

by selecting local maxima around the positions of integer multiples of the tatum. This method is

comparable to that proposed by Gouyon and Herrera (2003a), where an ACF is computed on low-

level features computed at the temporal scale of the tatum (instead of the frame). An important

difference is that the phase of the tatum is not required in the method proposed by Uhle.

This second periodicity function is compared (i.e. correlated) with a number of pre-defined metri-

cal templates, which characterize musical knowledge of different meters. The current implementation

has 17 templates. The most highly correlated template determines the value of the segment’s tempo

(and incidentally measure). Tempi are accumulated in a weighted histogram and the maximum

yields the basic tempo of the piece. See (Uhle et al., 2004) for more details.

2.3.2 Experimental framework

2.3.2.1 Infrastructure

Two computers were used: AlonsoACF, AlonsoSP and Uhle were run on Windows OS (XP Professional

edition 2002, version 5.1.2600), the rest on GNU/Linux OS (Debian Sarge), both 1.6 GHz, with

512 MB RAM. The evaluation framework was designed as a set of Matlab16 (version 6.1, Release

12.1 on GNU/Linux and version 6.5, Release 13 on Windows), perl, shell and dos scripts. For a

robustness test (see below), several types of distortion were applied to the signal using the programs

Sox and Matlab. However, it was ensured that the tempo was still clearly perceivable even in the

cases of severe degradation of signal quality. All of the test scripts are available from the contest

webpage.

2.3.2.2 Data

No training data was provided. However, some preparatory data (7 pieces and corresponding tempo

values) was given to the participants in order to compare whether algorithms yield the same output

16http://www.mathworks.com

http://www.mathworks.com
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Figure 2.6: Histograms of ground-truth tempo values in 5 BPM steps
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when run in participants’ labs and on the machines used for the contest, and to check proper

formatting of algorithm input and output.17

The test data consisted of 3199 tempo-annotated pieces in 3 data sets as described below. The

pieces range from 2 to 30 seconds, and from 24 BPM18 to 242 BPM. Figure 2.6 illustrates the

distribution of test excerpts along the tempo axis (these tempo statistics are all available in text

format on the contest webpage and may be used e.g. for setting prior probabilities in Bayesian

approaches). They all have approximately constant tempi, and the format is the same for all: mono,

linear PCM, 44100 Hz sampling frequency, 16 bit resolution. The total duration of the test set is

approximately 45140 s (i.e. around 12 h 36 min). This data was not available to participants before

the competition. Part of the data has now been made available on the contest webpage in order to

stimulate further research.

Loops Many sound libraries are made up of short “loops” to be used in DJ sessions, or for home

recording needs. The loops used here were originally in MP3 format with a relatively low sound

quality, they come from different sound library retailers and are courtesy of the Tape Gallery.19 It is

usual that tempo in BPM (and additional metadata) are sold together with sound files. These an-

notations were not double-checked. We do not distribute these loops for copyright reasons, however,

an exhaustive list of loops and corresponding tempo is available on the contest webpage.20 One can

search by name for, listen to MP3 versions of and buy high audio quality versions of any of these

loops from the webpage of the Tape Gallery.

A loop is often used as a basic short “kernel” to be looped in a composition, that is, to generate

a long audio file by several concatenations. However, the samples used in the analysis were not

looped.

• Total number of pieces: 2036

• Duration: a few bars

• Total duration: around 15170 s

• Tempo range: between 60 and 215 BPM, see Figure 2.6(c)

• Genres: Electronic, Rock, House, Ambient, Techno.

Ballroom BallroomDancers.com21 provides information on ballroom dancing (online lessons, etc.).

Some characteristic excerpts of many dance styles are provided in the low sound quality Real Audio

17This was not considered as “training data” as it would not be possible to properly train a system with so few
pieces and test it on a test set more than 400 times greater.

18Note however that only 15 excerpts have a tempo less than 50 BPM
19http://www.sound-effects-library.com/
20http://www.iua.upf.es/mtg/ismir2004/contest/tempoContest/node4.html
21http://www.ballroomdancers.com/

http://www.sound-effects-library.com/
http://www.iua.upf.es/mtg/ismir2004/contest/tempoContest/node4.html
http://www.ballroomdancers.com/
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format, with a compression factor of almost 22 with respect to the common 44.1 kHz 16 bits mono

WAV format, labeled with a tempo value. Tempo values were double-checked by Simon Dixon.

Data and annotations are available on the contest webpage.

• Total number of pieces: 698

• Duration: around 30 s

• Total duration: around 20940 s

• Genres: see style distribution in Table 2.1.

• Tempo range: between 60 and 224 BPM, see Figure 2.6(b)

Style # pieces

Cha Cha 111
Jive 60
Quickstep 82
Rumba 98
Samba 86
Tango 86
Viennese Waltz 65
Slow Waltz 110

Table 2.1: Style distribution of the ballroom dance music excerpts

Song excerpts A professional musician placed tactus beats on several song excerpts. (These beats

were cross-checked by the author of this dissertation). The ground-truth tempo was computed as

the median of the IBIs; other methods could also be considered, as for instance, the total number

of beats divided by the duration.

Data and annotations are available on the contest webpage.

• Total number of pieces: 465

• Duration: around 20 s

• Total duration: around 9300 s

• Genres: see distribution in Table 2.2.

• Tempo range: between 24 and 242 BPM, see Figure 2.6(d)
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Genre # pieces

Rock 68
Classical 70
Electronica 59
Latin 44
Samba 42
Jazz 12
AfroBeat 3
Flamenco 13
Balkan and Greek 144

Table 2.2: Genre distribution of the song excerpts

2.3.2.3 Evaluation methods

Two evaluation metrics were agreed for the contest:

• Accuracy 1: The percentage of tempo estimates within 4% (the precision window) of the

ground-truth tempo.

• Accuracy 2: The percentage of tempo estimates within 4% of either the ground-truth tempo,

or half, double, three times, or one third of the ground-truth tempo.

The latter evaluation metrics was motivated by the fact that the ground-truth we use for evaluation

does not necessarily represent the metrical level that the majority of human listeners would choose.

However, we assume that discrepancies between ground-truth tempo and human perception corre-

spond to a focus on a different metrical level, i.e., a ratio of 2 or 1
2 for duple meter music and a ratio

of 3 or 1
3 for triple meter music. This assumption is ubiquitous in all previous evaluation attempts;

see on page 47 for further discussion. As we discuss in further details on pages 47 and 51, the width

of the precision window is not a crucial factor.

In addition, the robustness of algorithms to sound distortion was evaluated on a part of the

test data: the 465 Songs excerpts. These pieces were distorted by several processes: downsam-

pling/resampling, GSM encoding/decoding, filtering, volume change and addition of reverberation

and white noise (with a signal-to-noise ratio of 20 dB). The script is available on the contest webpage

and in the appendix on page 187.

2.3.3 Results

2.3.3.1 Accuracy measures and robustness to noise

Figure 2.7 presents the results, on the whole dataset and on each individual subset, for each algo-

rithm, ordered alphabetically: A1 is AlonsoACF, A2 is AlonsoSP, D1 is DixonACF, D2 is DixonI, D3

is DixonT, KL is Klapuri, SC is Scheirer, T1 is TzanetakisH, T2 is TzanetakisMM, T3 is TzanetakisMS
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Figure 2.7: Algorithm accuracies 1 (light) and 2 (dark) on the whole data set –2.7(a)–, the Ballroom
data set –2.7(b)–, the Loops data set –2.7(c)– and the Songs data set –2.7(d).
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Ballroom Loops Songs
acc1 acc2 acc1 acc2 acc1 acc2

AlonsoACF 29.8 64.76 28.09 55.45 23.44 58.28
AlonsoSP 34.1 69.48 36.79 70.14 37.42 68.6
DixonACF 43.12 86.96 42.34 81.93 16.99 76.99
DixonI 25.79 65.76 34.53 78.14 28.6 65.58
DixonT 39.4 79.8 23.82 73.67 19.35 68.82
Klapuri 63.18 90.97 70.71 81.57 58.49 91.18
Scheirer 51.86 75.07 33.06 65.37 37.85 69.46
TzanetakisH 23.78 66.05 26.62 52.36 21.29 47.74
TzanetakisMM 32.81 52.29 32.81 52.41 18.71 41.08
TzanetakisMS 33.81 63.18 31.19 53.59 27.53 52.47
Uhle 56.45 81.09 52.16 75.39 41.94 71.83

Table 2.3: Algorithm accuracies 1 and 2 (in %) on the Ballroom data set, the Loops data set and
the Songs data set
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Figure 2.8: Effect of distortions on accuracy 2, dark bars for clean data, light bars for distorted
data.

and UH is Uhle. For each algorithm, accuracy 1 and 2 are given, in light and dark shadings, respec-

tively, for the whole data set and each of the 3 subsets. Table 2.3 provides the exact numbers for

the individual data sets.

Figure 2.8 illustrates the loss of accuracy for each algorithm when distortion was applied to the

Songs data set as detailed above. Clearly, algorithms AlonsoACF, AlonsoSP, DixonI and DixonT suffer

more from distortions than other algorithms.

The performance measures accuracy 1 and 2 were the criteria used to determine the contest

winner. Klapuri outperforms the other algorithms with respect to both measures on the whole data

set: respectively 67.29% and 85.01%. As can be seen in Figure 2.7, it also outperforms the others

on most of the individual data sets: {70.71%, 81.57%}, {63.18%, 90.97%} and {58.49%, 91.18%} on

the Loops, Ballroom and Songs data sets, respectively. It is also the best algorithm with respect to

noise robustness (loss of 1.72 percentage points in accuracy 2, see Figure 2.8).
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Statistical significance One must keep in mind that, because of the restriction to a specific data

set, the numbers reported in Figure 2.7 are just estimates of the true (but unknown) algorithm

accuracies. Therefore, in addition to providing success rates for each algorithm, it is important

to consider whether the observed differences in performance are statistically significant or arise by

chance.

Different statistical tests can be used to compare algorithms based on their respective predictive

accuracy: e.g. a test for the difference of two proportions, Student’s t test, McNemar’s test, cross-

validation paired differences t tests (Dietterich, 1998). Choosing the appropriate test to a given

problem depends on the suitability of several assumptions, among them independence of algorithm

accuracies (i.e. accuracies on test items are independent for algorithm A and algorithm B) and

error independence between items (i.e. errors made by an algorithm on two separate test items are

independent).22

In our problem, algorithms are all tested on the same pieces, therefore we cannot assume that,

for a given piece, the failures of different algorithms are independent. On the other hand, it seems

reasonable to assume that errors made by a specific algorithm on different pieces are independent. As

mentioned in (Gillick and Cox, 1989, Paragraph 3.2) and (Dietterich, 1998, Question 3), McNemar’s

test is appropriate to this kind of problem.

McNemar’s statistical test tests the hypothesis that the fact that algorithm A classifies an item

correctly while algorithm B classifies it incorrectly is equally likely as the opposite (algorithm B

classifies an item correctly while algorithm A classifies it incorrectly). In other words it tests the

fact that given only one algorithm makes an error, it is equally likely to be either one (this is the “null

hypothesis”). Given a threshold for statistical significance (usually 0.01 or 0.05) the null hypothesis

is tested by applying a two-tailed test with a Normal distribution (see (Gillick and Cox, 1989) for

more details).

According to this statistical test, the observed difference (of around 1%) in accuracy 1 on the

whole data set (see Figure 2.7(a)) between AlonsoACF and DixonT would arise by chance on 19% of

occasions, this difference is therefore not statistically significant (considering a p-value of 0.01 as the

threshold for statistical significance), and it is better to conclude that both algorithm performances

are comparable. Similarly, observed performance differences between AlonsoSP and DixonACF (less

than 3%), AlonsoSP and Scheirer (less than 2%), DixonACF and Scheirer (1%), DixonI and Tzanetak-

isMM (1%), DixonI and TzanetakisMS (less than 2%), DixonT and TzanetakisH (less than 2%) and

TzanetakisMM and TzanetakisMS (less than 1%) are not statistically significant, setting the thresh-

old for significance to a p-value of 0.01.23 The differences between all remaining pairs of algorithms

are representative of genuine performance differences.

Regarding accuracy 2, solely the differences between AlonsoACF and TzanetakisMS (less than

3%), AlonsoSP and Scheirer (less than 2%), DixonI and DixonT (less than 1%), DixonT and Uhle (less

22which does not mean that algorithm accuracy would be independent of the test set
23They correspond respectively to P-values of 0.02, 0.16, 0.46, 0.25, 0.5, 0.13 and 0.5.
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than 2%) and TzanetakisH and TzanetakisMS (less than 1%) are not significant.24 The differences

between all remaining pairs of algorithms are statistically significant.

Computation time Another interesting aspect of the algorithms is the computational resources

they require. It can be expressed as processing time divided by excerpt length:25 DixonI takes

approximately 0.02 times the excerpt length to estimate its tempo, DixonT, Uhle, AlonsoSP and

AlonsoACF approximately 0.1, Scheirer approximately 0.4, Klapuri approximately 0.5, DixonACF

approximately 1 and TzanetakisH, TzanetakisMM and TzanetakisMS approximately 2. (Note that the

participants were not instructed to optimize computational efficiency when submitting the algorithms

and using different operating systems and versions of Matlab may have an influence on computation

time.)

To facilitate comparison of other algorithms with those of the contest, detailed results on each

dataset are available on the contest webpage.26

2.3.3.2 Error analysis
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Figure 2.9: Accuracy 2 vs precision window width, full data set

Accuracy vs precision window width Figure 2.9 plots the relationship of algorithm perfor-

mance to precision window width. The choice of 4% precision in accuracies 1 and 2 is somewhat

arbitrary. In the literature, other values have been advocated; for instance, Klapuri et al. (2005)

propose a precision of 17.5% for IBIs, however they focus on consecutive IBIs rather than on global

24P-values of 0.03, 0.09, 0.18, 0.03 and 0.26
25Algorithm computation times are approximately proportional to excerpt length.
26http://www.iua.upf.es/mtg/ismir2004/contest/tempoContest/Results.htm

http://www.iua.upf.es/mtg/ismir2004/contest/tempoContest/Results.htm
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Figure 2.10: Histogram of ratio between estimated tempo and correct tempo for Klapuri, full test
data set

tempo and deal with excerpts with varying tempo. The amount of tempo variation in the data

is an important factor to consider in setting the precision. Since we are dealing with basically

constant-tempo data, a small precision window seems appropriate.

Tendencies towards integer ratio errors Figure 2.10 shows the type of errors made by the

contest winner (Klapuri). Figure 2.11 shows the same information plotted against tempo. One can

see on the one hand that the most common errors are doubling and halving of tempo, and on the

other hand that it shows a “moderate tempo tendency”, i.e. a tendency to estimate half the tempo

for fast pieces and double for slow pieces. We remark also that it estimates incorrectly (with respect

to accuracy 1) all pieces whose tempi lie outside the rough limits of 60 to 160 BPM. This is due to

the explicit modeling of a prior probability function for the tempo (Klapuri et al., 2005; Parncutt,

1994).

Regarding the other algorithms, inspection of their error histograms also shows clearly that, as

expected, halving and doubling of tempo are the most common errors. On the other hand, Klapuri

seems to be the only algorithm that clearly shows a moderate tempo tendency. With the exception

of Klapuri and Scheirer, all algorithms tend to “tap too fast” rather than too slow. For instance, as

can be seen in Figures 2.12(a) and 2.12(b), DixonT has a very clear tendency towards faster metrical

levels.

Other typical error factors are 4
3 and 2

3 , as seen, for example, in the peaks around -0.58 and 0.41

on the (logarithmically-scaled) X-axis of Figures 2.12(a), 2.12(b) and 2.12(c). An error of 4
3 in the

tempo estimation represents an error of 3
4 in the IBI, that is, a focus on e.g. the dotted quarter-note

instead of the half-note, while a tempo error of 2
3 represents a focus on e.g. the dotted-quarter note

instead of the quarter-note.
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DixonT (dashed), on the Ballroom and Loops data sets —2.12(a) and 2.12(b) respectively— and for
AlonsoACF (solid) and AlonsoSP (dashed), on the Ballroom data set —2.12(c).



54 CHAPTER 2. SURVEY

0 500 1000 1500 2000 2500 3000

0

0.5

1

1.5

2

Instance index

ab
s 

( 
lo

g2
 (

C
om

pu
te

d 
te

m
po

 / 
C

or
re

ct
 te

m
po

 )
 )

Klapuri (solid line) and DixonACF (dots)

Ballroom Loops Songs 

halving and doubling tempo errors 

correct tempo 

Figure 2.13: Comparison of errors made by Klapuri (solid line) and DixonACF (dots)

Algorithms also sometimes estimate 1
3 of the correct tempo. See, for instance, the peak around

-1.58 in Figures 2.12(c) and 2.12(a). This error factor, as well as 3 and 3
2 , are typical of triple and

compound meter pieces (e.g. Waltz in the Ballroom data set). We found relatively few of these

errors, presumably because relatively few such pieces are present in the test data set.

Algorithm performance “niches” It is interesting to consider whether specific algorithms,

regardless of their overall performance, show unique performance on some particular data. Indeed,

an algorithm which performs worse than other algorithms on many problems, but solves a few

problems that no other algorithm solves, would be valuable if these special cases could be identified.

There are 41 pieces (3 ballroom, 35 loops and 3 songs) whose tempi were correctly computed

by all 11 algorithms. On the other hand, 176 pieces (11 ballroom, 162 loops and 3 songs) were

incorrectly processed by all algorithms, with respect to both accuracy 1 and accuracy 2. Finally,

there are 29 pieces whose tempi were correctly computed by a single algorithm. No clear explanations

for these cases have been found.

Another way to thoroughly inspect the results is to compare pairs of algorithms. For instance,

Figure 2.13 shows a comparison between Klapuri and DixonACF. For each data set, pieces have been

ordered with respect to increasing error made by Klapuri, where the error is computed as follows:

e =

∣

∣

∣

∣

log2

(

computedTempo

correctT empo

)
∣

∣

∣

∣

The performance of both algorithms is given for each piece, permitting a visual comparison of
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algorithms on a piece-by-piece basis. Three main trends are apparent: many cases of agreement

between the algorithms, for correct and incorrect tempo estimates; cases where one algorithm is

correct and the other has a halving or doubling error; and cases where both algorithms are incorrect,

and one algorithm has double the tempo of the other.

For example, in the Ballroom data, DixonACF solves quite a few doubling and halving errors

that Klapuri makes (see the cluster of points around the error value of 0 for indexes between 500

and 698), but on this very data it also makes quite a few doubling or halving errors where Klapuri

estimates the correct tempo. This is also true of the Loops data set (indexes between around 2500

to 2734), but not the Songs data set, where DixonACF makes many doubling and halving errors (this

can also be seen in Figure 2.7(d), third bar pair from the left). On the other hand, DixonACF seems

to solve some non-integer ratio errors that Klapuri makes, especially in the Loops data set (indexes

between around 2100 and around 2500, where Klapuri’s error on the Y-axis is between 0 and 1).

Note that the apparent mirroring of error values (reflection in the line y = 0.5) is an artifact of the

representation, which occurs when one algorithm has a log error e, where −1 < e < 0, and the other

algorithm has double this tempo, hence a log error of e′ = e + 1 = 1− |e|.

Figures such as Figure 2.13 can be generated for any pair of algorithms. They show on a piece-

by-piece basis which errors an algorithm makes that another one does not make. We can then track

down single files for which a specific algorithm has a particular advantage over another one. Cases

where several algorithms make the same error could be used to identify interesting (“pathological”)

test cases for further investigation, general weaknesses in current tempo induction systems, and

errors in annotation. However, in order to draw conclusions about error trends, or alternatively,

specific “skills” or “performance niches” of algorithms, much more test data is needed, together

with richer metadata. This is left for future work.

2.4 Conclusions

This chapter defined terms and concepts of interest to the whole dissertation in Section 2.1. It

then provided in Section 2.2 a qualitative comparison of existing computational systems of rhythm

description with respect to the functional units of a general model (Figure 2.4). Finally, it provided a

quantitative comparison of a number of pulse induction algorithms in Section 2.3. We now summarize

main findings in the field of automatic rhythm description and highlight open issues. We first focus

on the first stages of rhythm description, up to the computation of rhythm periodicity functions

and pulse induction. Then, on page 59, we address shortly further aspects of rhythm description

systems.
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2.4.1 Pulse induction

We depicted two procedures for pulse induction: pulse selection and periodicity function computa-

tion, and gave examples of various implementations. Computing a periodicity function is usually

more powerful than just selecting a pulse. However, there is a trade-off between the length of the

induction window and the likelihood that the tempo-stability assumption holds. Using short win-

dows (typical of pulse selection methods) lowers the reliance on a constant tempo but generates

less reliable predictors, whereas using longer windows (typical of periodicity computation methods)

generates more reliable predictors but only when the tempo remains relatively unchanged over this

longer duration.

Quantitative comparisons of tempo induction algorithms are largely absent from the literature.

The evaluation reported in Section 2.3 shows that, for music with almost constant tempo, tempo

induction is feasible with around 80% accuracy and a relatively good robustness to distortion, if

we do not insist on finding a specific metrical level (the most common errors are in the choice of

metrical level, the majority of algorithms tending to tap too fast rather than too slow). Because

of the approximate nature of ground-truth annotations, windows of precision must be used. As

Figure 2.9 shows, there does not seem to be significant difference between the 4% precision used our

evaluation and wider windows, however, 4% is probably the highest precision level that should be

considered as the Just-Noticeable Difference (JND) for tempo differences is approximately 4% for

music (Friberg and Sundberg, 1995). Further, larger precision windows may be required to evaluate

consecutive IBIs rather than global tempo, especially in varying tempo situations (Klapuri et al.,

2005). An important conclusion of this evaluation is that implementing a robust tempo induction

algorithm calls for the computation of low-level frame features rather than that of onset lists as the

first processing block. This can be clearly seen in Figure 2.8, which shows that algorithms based

on onset detection clearly suffer more from distortion of the signal than other algorithms. However,

whether this superiority of frame-based features over onset lists has any perceptual validity, as

proposed by Scheirer (1998), remains to be investigated.

2.4.1.1 Open issues

Emulating the perception of the tactus by humans is still an unsolved problem. Inducing the tactus

from arbitrary audio signals, without accepting alternative metrical levels, is not a solved issue, and

many aspects call for further research, as listed below.

Low-level features

Which low-level features? A common aspect of all computational models is the handling of

feature lists, either as a starting point (for scores or MIDI data) or as a mid-level representation (for

models that process audio). These features (e.g. onsets, amplitudes, pitches, percussive instrument
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classes, frame subband energy) are assumed to convey the predominant information relevant to a

rhythmic analysis. Except in the case of frame-based features, the features have a high level of

abstraction, entailing an “implicit symbolism” (Scheirer, 2000). The first stages of human rhythm

perception achieve a comparable parsing of auditory streams into feature lists, however, the ac-

tual modeling of these perceptual processes (the definition of perceptually relevant features) is still

ongoing research.

Today’s best and most robust models processing audio focus on energy in different frequency

bands computed on successive short signal frames (Klapuri et al., 2005). However, many low-level

features other than energy could be computed on signal frames and the determination of the audio

features that serve best the task of pulse induction and further stages of rhythm description is still

ongoing work. This is the object of Chapter 3.

Which frequency decomposition? Focusing on energy in different frequency bands, one

might wonder how to define the frequency filterbank. Scheirer argues that his algorithm “is not

particularly sensitive to the particular bands” (Scheirer, 1998). That is, the important point would

be to proceed to a frequency decomposition, and not the particular choice of decomposition.

However, let us consider the algorithms that compute periodicities in frequency subbands (Dixon-

ACF, Klapuri, Scheirer and TzanetakisMM). They all use energy (or integrated amplitude) features.

Of course, the performance of each system depends on the overall system, so it is hard to say any-

thing conclusive about the best frequency decomposition (as indeed about any of the submodules).

However, the fact that these systems show non-negligible differences in performance suggests that the

definition of the frequency filterbank could be a significant issue, contrary to Scheirer’s observation.

This is investigated on page 88.

Frame values vs differential values Some pulse induction algorithms focus on energy values

(e.g. TzanetakisMM) while others focus on changes from one frame to the next (e.g. estimating the

derivative of frame energy values, e.g. Klapuri, or of the downsampled amplitude envelope, e.g.

Scheirer). If, as Klapuri et al. (2005) claim, we assume that the difference between the use of the

autocorrelation and that of comb filterbanks for pulse induction is not crucial in the performance of

a tempo induction system, the performance of Scheirer vs that of TzanetakisMM27 seems to indicate

that changes in energy values would be more valuable rhythmic features than the energy values

themselves. However, here also, a solid conclusion would require implementations to differ solely in

this aspect. This issue is investigated further on page 90.

Periodicity functions

27Respectively 37% vs 30% with accuracy 1 and 68% vs 50% with accuracy 2
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Which periodicity function? Based on comparisons between comb filterbanks, autocorrela-

tion and phase-locking resonators, Klapuri et al. (2005) suggest that finding the correct periodicity

function is not a key issue in meter analysis. However, there are significant differences in the ac-

curacies obtained by AlonsoSP and AlonsoACF, which differ solely in the periodicity function block.

The spectral product outperforms the autocorrelation on all data sets and all accuracy measures.28

This finding should be verified on other data sets as the results of Alonso et al. (2004, Tables 2 and

3, p.162) seem to indicate different conclusions (namely that the autocorrelation would be better

than the spectral product). A comparison with a comb filterbank method (used by the ISMIR 2004

contest winner) would also be interesting. See Chapter 4.

Combining and parsing multiple information sources

Periodicity detection before or after the integration of multiple features? Current

literature (Scheirer, 1998; Klapuri et al., 2005) advocates the use of multiband processing and sub-

sequent integration of periodicity estimates, rather than periodicity estimation after the integration

of a signal processed in several frequency bands.

The difference between TzanetakisMS and TzanetakisMM lies precisely in the integration of several

frequency bands respectively before or after periodicity estimation. The algorithms exhibit similar

performance when assessed with accuracy 1, but the former performs around 5% better than the

latter with respect to accuracy 2. It is difficult to make any solid conclusion and confirm or refute

Scheirer’s point from these results. Let us however outline a few aspects of these methods: Estimating

periodicities after feature integration enhances periodicities that are present in all features, while

periodicity estimation before feature integration favors signals whose periodicities appear solely in

some features (e.g. a restricted frequency band). Also, the former method has a bias towards fast

metrical levels; indeed, it accounts for the phase of periodicities while the latter does not. Consider

for example the case where two features have the same periodicity but have a phase difference of half

the period: the former method yields double the tempo of the latter. This is verified on the data

used here: TzanetakisMS makes more double-tempo errors than TzanetakisMM.29 One can argue that

each method is more suitable for different types of data. Further evaluations are required before

more general conclusions can be drawn. See Chapter 4.

Joint estimation of several metrical levels Some pulse induction methods encode (implic-

itly or explicitly) aspects of the metrical hierarchy by letting large time-scale phenomena influence

responses at smaller time scales (and inversely), e.g. comb filters. In fact, this encodes the as-

sumption that the perception of high metrical levels, e.g. the measures, orients the perception of

lower metrical levels from which they are derived. Parncutt (1994, p.434) questions this assumption,

28Note that it is however more sensitive to distortion
29Note that accuracy 2 does not consider them as errors
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writing “each pair of events in a rhythmic sequence initially contributes to the salience of a single

pulse sensation” (emphasis ours), and later that “pulse sensations can enhance the salience of other,

consonant pulse sensations.” One may understand the “initially” above as an indication not to im-

plement influential schemes between metrical levels in the induction process, but indeed to do it in

the tracking process, which is also in agreement with the Dynamic Attending Theory (Drake et al.,

2000a).

Among the algorithms tested in Section 2.3, three (Klapuri, Uhle and DixonACF) implement, in

different ways, explicit influential schemes for the determination of 2 or 3 metrical levels. As they

all perform very well, it seems interesting to evaluate more methodically the effect of this feature.

This is one of the aspects of tempo induction algorithms that Chapter 4 addresses.

Moderate tempo tendency Similarly, the relevance of the “moderate tempo tendency” that

has to be considered when focusing simultaneously on several levels, and often modeled with a prior

tempo probability function, as in (Parncutt, 1994), should also be the object of further research.

Induction versus tracking It is sometimes hypothesized that in order to compute a tempo

value that best reflects human perception of the musical pace, it would be better to consider the whole

tracking process rather than rely solely on tempo induction (Gouyon et al., 2004a). Performance

differences between DixonT and DixonI are not really conclusive in that respect. On this point also,

more research is needed.

Redundant approach to tempo induction Section 2.3 shows several algorithms performing

the same task and exhibiting specific performances on specific parts of the data. This raises an

important question: Can we improve tempo estimation accuracy by combining the outputs of several

algorithms? Insights into a way to address this problem are given in Chapter 6.

Better benchmarks? Much effort is still needed to design better public benchmarks for tempo

induction algorithms. Chapter 6 proposes different ways to tackle this problem.

2.4.2 Other stages of automatic rhythm description

A number of diverse formalisms have been used to implement pulse tracking models. An important

aspect is the balance between inertia and reactiveness of the model. Models with a sufficient degree of

inertia can be built by accounting for several concurrent hypotheses. This seems a must for keeping

the possibility of recovering after an error (preventing “garden-path errors” (Rosenthal, 1992, p.11)).

Another important aspect lies in the consideration of incoming data on an event by event basis or a

predicted beat by predicted beat basis. Following the former strategy is in fact making a first step

towards quantizing the data, not solely tracking a pulse. AI formalisms have been proposed recently

to enhance beat trackers and address quantization and pulse tracking jointly.
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Very few algorithms for time signature determination exist. They usually entail the computation

and parsing of a periodicity function, as in pulse induction. Apart from swing estimation, systematic

timing deviation estimation is the object of few computational models. The usual rationale behind

swing estimation is to consider that the tempo is constant (i.e. no long term timing deviations) and

to seek predefined patterns of short term timing deviations within a pulse induction process.

Current research in rhythm description addresses all of these aspects, with varying degrees of

success. For instance, recent pulse tracking systems (Dixon, 2001a; Cemgil and Kappen, 2001) reach

high levels of accuracy. On the other hand, accurate quantization, score transcription, determination

of time signature and characterization of intentional timing deviations are still open questions.

Particularly, it remains to be seen how well recently proposed models generalize to different musical

styles.

Music content processing and music information retrieval applications call for rhythmic descrip-

tors that would entail a high level of abstraction. More research should be dedicated to this issue.



Chapter 3

Feature selection for rhythm

periodicity function

In this chapter, we address one of the current research topics highlighted in Chapter 2: the deter-

mination of the low-level features of musical audio signal that convey best the rhythmic aspects of

musical signals. Central to this work is the assumption that such features can be identified with

the low-level features that are the most adequate for the computational identification of beat po-

sitions. In Section 3.1, we present the problem in more details and advocate the use of machine

learning methods. In Section 3.2, we detail the data sets (1360 musical pieces) used in this chapter’s

experiments. In Section 3.3, we provide implementation details of the 274 low-level features consid-

ered. Experiments and results are reported in Section 3.4. Finally, Section 3.5 summarizes the main

findings of this chapter.

3.1 Purpose and method

The purpose of this chapter is to determine which low-level features of musical audio signals are the

most adequate for the computational identification of beat positions. That is, we aim at selecting

among several features computed at a regular sampling rate, those whose temporal behavior would

best indicate the presence and localization of beats, based on evidences observed on audio data

whose beats have been previously annotated manually.

Therefore, we set up a large set of musical pieces (1360 musical pieces), whose beats have been

annotated manually (there is a total of 90643 beats). In between beats, we define “non-beat”

instances as detailed on page 62 —in the following, the term “instance” refers to beat as well as

non-beat instances, while the term “piece” refers to a musical piece, each piece therefore contains

several instances. Instances can be described by many different low-level signal features, we focus

61
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in this chapter on 274 features. Individual features and feature subsets are evaluated and ranked

according to the following criteria: relevant features are those whose values are most similar on

beats and most dissimilar between beats and non-beats, while irrelevant features are those who do

not satisfy this property (for instance, features whose values on beats are randomly distributed, or

those whose values on beats and on non-beats are similar), see Figure 3.1 for an illustration. That

is, considering the two concepts, or classes, “beat” vs “non-beat,” we seek features that have small

within-class variation and great between-class variation. This is done according to machine learning

methods.

As detailed in Section 2.2, the majority of computational systems that describe one of the many

rhythmical aspect of music compute periodicities of feature lists (e.g. for pulse induction, beat

tracking, etc.). This is illustrated in Chapter 5. We make the assumption that features that lead to

a good separability of beat and non-beat classes will also be promising features for computing useful

periodicity functions.

Let us stress here that, contrarily to Seppänen (2001), we do not view the classification ex-

periments presented in this chapter as an actual method for finding beats in new, unknown audio

signals. In our view, these experiments solely aim at providing useful information for actual beat

induction and tracking algorithms, namely which low-level features to focus on (see Chapter 4 for

the application of the selected features in beat induction experiments).

There exist several ways to apply machine learning techniques to the selection of representative

beat features. For instance, Seppänen (2001) considers all instances at once and evaluate features on

the whole data set, this amounts to seeking the best beat and non-beat models. Here, we advocate

a different methodology: feature evaluation is rather done at the scope of individual musical pieces.

Decisions are taken on each individual piece regarding the relevance of given features or feature

subsets and then, results are integrated (averaged) over either the whole set of musical pieces or the

pieces of a specific musical genre to make a final decision. A comparison of both approaches is given

on page 99.

Section 3.1.1 details the method for computing beat and non-beat features from low-level features

and beat annotations. Section 3.1.2 explains thoroughly the machine learning methods used in

the evaluation of features and feature subsets. Section 3.2 details the data set and annotations.

Section 3.3 enumerates the low-level features. Finally, Sections 3.4 and 3.5 propose results and

conclusions regarding diverse feature selection experiments.

3.1.1 Computation of beat and non-beat features

Series of frame feature values can be computed at a regular sampling rate from musical pieces. Given

the pieces’ beat annotations, we wish to process frame features in order to derive beat features and

non-beat features. The simplest way to compute beat features would be to select feature values on

the closest frame of each annotated beat. A reason not to do it is that we cannot assume that beat
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Figure 3.1: Illustration of an audio signal, its annotated beats and the temporal evolution of two
features, relatively good (top, differential of the energy in the frequency band [100-216 Hz]) and bad
(bottom, zero-crossing rate).
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annotations are accurate at the fine time precision of the frame rate (e.g. 10 ms). An improvement

over the previous method would be to define regions of signal containing several frames around each

beat and compute feature averages over these regions. However, because their purpose is to make

sure to retain at least one relevant frame, such regions do contain both relevant and irrelevant frames.

And there is no evidence that the mean (or any other statistics) of such frames would be relevant.

We believe that it is more relevant to select a single frame in such regions (the “beat frame”) and

propose to focus on the frame with the maximal value.

On the other hand, non-beat features are defined on frames chosen randomly between each pair

of beats. The computation of beat and non-beat features is illustrated in Figure 3.2.

Figure 3.2: Example of audio signal and imaginary beat and non-beat features.

Of course, different ways to compute beat and non-beat features could be devised, and assump-

tions underlying our method could be discussed. For instance, is it reasonable to consider that beat

features can be measured on a single signal frame? Should the computation of beat feature focus

on frames with the maximal value in each beat region of a specific piece rather than on frames with

the most similar values among beat regions?1 This is left for future work.

3.1.2 Feature selection methods

In pattern recognition research, feature selection have become the focus of great interest. In many

recent application domains, researchers must now deal with datasets described by huge numbers of

features (e.g from hundreds to tenth of thousands of features in text processing, image processing,

bioinformatics, genomic analysis). Feature selection differs from feature transformation (as e.g.

1Each piece having several beat regions and each such region having several candidate frames, the best path (in
terms of similarity) could be found by applying the Viterbi algorithm.
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Principal Component Analysis). In the latter, new features are created by transforming the original

set of features (by linear or non-linear combinations) while in the former some features are kept

and some others discarded. As Guyon and Elisseeff (2003) illustrate, there are several reasons for

reducing the number of features: getting simpler models (faster and less computationally-expensive

classifiers), improving prediction accuracy (i.e. defying the “curse of dimensionality” (Jain et al.,

2000)) and providing more insights into which aspects are relevant (better understanding of the

processes that generated the data).

Recall that, in our context, the main purpose is not the building of a classifier; it is rather the

selection of the features that yield the best rhythmic periodicity functions. We will not finally build

a “beat model,” i.e. a classifier that would predict the membership of some unknown data to either

the “beat” class or the “non-beat” class. As already mentioned, the main assumption of this work is

that the best features in the classification experiments described in this chapter will also be the most

promising features for computing a periodicity function suitable for pulse induction, pulse tracking

and other rhythmic applications. Therefore, here, feature selection is mostly interesting for reasons

of data understanding and computational cost.

In some cases, feature selection can be driven by our understanding of the feature meanings

and our intuitions regarding their relevances. In addition, automatic attribute selection meth-

ods can be used, reviews of which can be found in (Dash and Liu, 1997; Blum and Langley, 1997;

Kohavi and John, 1997; Guyon and Elisseeff, 2003; Liu and Yu, 2005). Such methods account for

two fundamental processes: feature subset generation and subset evaluation. The most straightfor-

ward approach to subset generation would be to consider the exhaustive list of the possible com-

binations of features into subsets. However, as the number of possible subsets grows exponentially

with the number of features, this is impractical for even moderate numbers of features. Therefore,

subset generation is essentially a heuristic search problem, with each state in the search space spec-

ifying a candidate subset (Blum and Langley, 1997; Kohavi and John, 1997). In the exploration of

the state space, two problems must be addressed: the search direction (growing subset vs shrinking

subsets) and search strategy: complete search (e.g. best-first heuristics), sequential search (consider

one feature at a time, e.g. “greedy” search) or random search (e.g. genetic search) (Liu and Yu,

2005). The search strategy has an impact on the type of output, which can be either a ranked list

of features or a bag of unranked features.

Given a subset generation procedure, different evaluation methods can be used. Subset evaluation

methods can be classified in two families: filters vs wrappers (Kohavi and John, 1997). In the filtering

approach, the relevance of a feature subsets is evaluated from general characteristics of the data,

without implying any classifier. According to Kohavi and John (1997) and Blum and Langley (1997)

there exist various notions of feature relevance. For instance, features can be evaluated with respect

to correlation with the classes and inter-correlation between features. Other relevance measures

include e.g. separability measure and information gain (Hall and Holmes, 2003). In the wrapping
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approach, feature subsets are evaluated according to the prediction accuracy of a given classifier

used as a black box.

In addition to the aspects of subset generation and evaluation, Liu and Yu (2005, p. 494) also

propose to categorize automatic feature selection algorithms with respect to a third aspect, the

learning context: supervised vs non-supervised. The former denotes tasks for which class membership

is known for all instances (e.g. classification) while the latter corresponds to tasks for which class

membership is unknown (e.g. clustering). We will not focus further on this distinction as our context

is restricted to classification.

In the following experiments, feature and feature subset evaluation follow the wrapper approach to

feature selection. We use different classifiers (corresponding to different learning strategies: instance-

based learning, statistical modeling or decision tree building) which are presented in more details

on the facing page.

In most cases, subset generation is manual. There are several reasons for that: we have some

domain knowledge, features can be naturally grouped by “family,” hence the will to evaluate the

goodness of each feature family; and it seems relevant to evaluate and compare features promoted in

the current literature. Some experiments also imply automatic subset generation, the method used

is described on page 69.

Most classification accuracies reported in this chapter are computed as 10-fold cross-validations

(or indicated otherwise): a subset containing 90% randomly selected samples from the data set is

selected for learning and the remaining 10% are used for testing, this is repeated 10 times, the final

accuracy is the average over those 10 runs (see illustration on Figure 3.3). Note that in our case, 10-

fold cross-validations are computed on individual pieces. Each piece contains between 20 to around

300 instances (see the distribution of the number of beats per piece on Figure 3.5). An accuracy

estimation of a given feature subset is obtained for each piece, the final accuracy estimation is then

computed as the average over the whole set of pieces (or the pieces of a specific musical genre, when

indicated).

1
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model1
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Figure 3.3: Illustration of the cross-validation method for accuracy estimation (3-fold cross-
validation shown, adapted from (Kohavi and John, 1997, Figure 6)).
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3.1.2.1 Classifiers

Experiments described in this chapter have been conducted with the free software Weka (Witten

and Frank, 2000), available under GPL license at http://www.cs.waikato.ac.nz/ml/weka.2

An important distinction has to be made between induction algorithms that consider all features

as equally important (as e.g. Naive Bayes) and those that either put different weights to features

or incorporate embedded feature selection schemes (as e.g. decision trees). The former family gives

an estimate of the goodness of selected feature subsets. The latter rather gives an estimate of the

goodness of some features inside a selected subset. While the former seems more relevant to the

evaluation of a subset as a whole, the latter can be relevant in case the subset will be subsequently

postprocessed.

C4.5 Decision trees (see an illustration in Figure 3.4) are hierarchical decision structures made up

of branches, nodes and leafs (Witten and Frank, 2000, p.58). A node involves testing a particular

attribute (as for instance the humidity in Figure 3.4, which can take the values “high” or “normal”).

Leaf nodes give a classification for all instances that reach the leaf. For example, any instance whose

attribute values are “Outlook=sunny” and “Humidity=high” is classified as a member of Class1. In

the case of numeric attributes (which concerns us here), the test at the node determines whether

the value is greater or less than a given constant (determined during the training phase).

See (Witten and Frank, 2000, p.89) for details on the problem of constructing a decision tree

from a set of training examples. Note however that decision trees usually put different weights on

attributes or incorporate embedded attribute selection schemes (as does e.g. C4.5). Note also that

decision trees are usually sensitive to irrelevant features (Kohavi and John, 1997).

Outlook?

Humidity? Windy?

“sunny”
“rain”

“overcast”

“high” “normal” “true” “false”

Class2Class1 Class2Class1

Class2

Figure 3.4: Example of an imaginary decision tree (from (Witten and Frank, 2000, p.92)), with
attributes “Outlook?”, “Humidity?” and “Windy?” and two possible classes, which may correspond
to playing sports or no (respectively Class2 and Class1).

In the experiments detailed below, we used the algorithm j48, which is the Weka implementation

of C4.5 version 8 (Quinlan, 1993), with the default parameter settings (importantly, a confidence

2We used Weka version 3.4.4.

http://www.cs.waikato.ac.nz/ml/weka
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factor of 0.25 and a minimum number of instances per leaf of 2). The minimum number of instances

is relatively small and one may object that it may lead to overfitting. However, as our purpose here

is not to seek good generalization of the beat models,3 this is not an issue. Attributes are normalized

beforehand.

DecisionStump A “decision stump” is a simple decision tree that have only one level, that is,

which makes decision with respect to a single feature (Witten and Frank, 2000, p.257).

k-NN k-Nearest Neighbors is an example of instance-based learning. The basic idea in instance-

based learning is to memorize a set of training instances, the majority class of the k training in-

stances that most strongly resembles a new incoming instance is assigned to this new instance

(Witten and Frank, 2000, p.72). Unlike algorithms that incorporate embedded feature selection

techniques, as decision trees, k-NN accounts by default for all attributes in the computation of the

distance between two instances. This causes this classification scheme to be sensitive to irrelevant

features (Kohavi and John, 1997).

Here, the definition of the distance is the standard Euclidean distance. We used Weka’s imple-

mentation with the following parameter settings: the attributes were normalized, the number of

neighbors was set to 3 (because of the noisy nature of the data) and no distance weighting was used.

NaiveBayes NaiveBayes classifiers are based on the the Bayes rule, which states that given a class

ωi and a set of attributes values x,

p(ωi | x) =
p(x | ωi)p(ωi)

p(x)

The notation p(A) denotes the probability of A and p(A | B) denotes the probability of A given

B. Bayes rule can be also expressed informally as posterior ∝ likelihood× prior. That is, the

probability of class ωi given an instance attribute values is proportional to the probability of these

values when we know the instance pertains to class ωi, multiplied by the posterior probability of

class ωi. Assuming that all attributes are independent, it is possible to write that

p(x | ωi) =

N
∏

k=1

p(xk | ωi)

where N is the number of attributes. Given a specific value for an attribute, its likelihood p(xk | ωi)

given class ωi is observed has to be estimated. The usual way to do that is to assume that attributes

follow Gaussian probability distributions, whose means and variances can be estimated on training

data.

3but rather good description of individual pieces, the subsequent process of averaging over many pieces guarantees
that features that are good only on very particular cases are ruled out
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Note that the NaiveBayes classification scheme computes class membership by considering all

attributes as equally important (they all have the same importance in the numerator multiplication).

This, together with the strong (and usually unrealistic) attribute independence assumption, are the

reason for the name “Naive” Bayes. However, this method has shown to work very well in many

real situations. See (Witten and Frank, 2000, pp.82-89) and (Duda et al., 2001, Chap.2) for more

details on this method.

Note that unlike decision trees and instance-based classifiers, Naive Bayes classifiers are robust

to irrelevant features (but not to correlated features (Kohavi and John, 1997)).

We used Weka’s implementation with default parameter settings and normalized attributes be-

forehand.

3.1.2.2 Automatic subset generation

As already mentioned, feature subset generation is manual in most experiments. A few experiments

however used an automatic subset generation method (see on page 91 and 94). We used the forward

best-first search procedure implemented in Weka (with default parameter settings), that is, growing

subset are considered. Forward search can be justified when the ratio between relevant features and

the total number of features is assumed to be small (Liu and Yu, 2005, p.497).

In these experiments, subset evaluation was done by wrapping with either k-NN or NaiveBayes

(both gave similar results). We used Weka’s algorithm “WrapperSubsetEval.” This algorithm

evaluate the worth of a subset by five-fold cross-validations (see Figure 3.3) that are repeated multiple

times. The number of repetitions is determined by looking at the standard deviation of the accuracy

estimate: if it is higher than 0.01, another cross-validation run is executed (see (Kohavi and John,

1997) and Weka source code documentation).

3.2 Data and associated metadata

In this section, we describe the musical pieces used for the beat feature selection experiments detailed

in this chapter.

The data used in this chapter comes from different sources (personal collections and publicly-

available data) and comes with different types of legacy metadata.4

There is a total of 1360 audio files which together amount 90643 beats (with a minimum of

7 beats per piece and a maximum of 262 beats per piece, see distribution of beats per piece on

Figure 3.5). 89283 non-beats have been defined as detailed on page 62.

CUIDADO excerpts This set is made up of 70 audio files, in .wav format, ripped from commer-

cial CDs. Files are around 20 s each. Some have varying tempo. This data set has been collected

4Here again, we wish to thank those who helped in the recollection of this data and metadata: Anssi Klapuri,
Matthew Davies, Stephen Hainsworth and Giorgos Emmanouil.
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Figure 3.5: Distribution of the number of beats per piece, feature selection dataset.

and annotated during the CUIDADO project5 at the MTG, it has been used by Gouyon and Herrera

(2003b) for Meter induction experiments. It comes with beat annotations at two metrical levels: the

tactus and the measure, only the former has been used here. Annotations have been put by a single

person and have not been cross-checked. Audio data is not publicly available for copyright reasons.

The genre distribution is detailed in Table 3.1.

Genre # pieces

Acoustic 24
Classical 13
Jazz Fusion 4
Rock/Pop 29

Table 3.1: Genre distribution of the CUIDADO excerpts

SIMAC excerpts This set is made up of 595 audio files, in .wav format, ripped from commercial

CDs. Files are around around 20 s each. Some files (a minority) have varying tempo. This data

have been collected and annotated during the SIMAC project (http://www.semanticaudio.org)

at the MTG and was used internally by MTG researchers in different audio description experi-

ments. Among other annotations, this data comes with tempo and beat positions. Beats have been

positioned by a professional musician and cross-checked by the author of this dissertation. The

ground-truth tempo was computed as the median of the IBIs. 465 of these files were used for the

5http://www.upf.edu/ec/proyectoseuropeos/cuidado2.htm

http://www.semanticaudio.org
http://www.upf.edu/ec/proyectoseuropeos/cuidado2.htm
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tempo induction contest reported in (Gouyon et al., 2006) (see also page 43). The remaining 130

files were added after the contest. Part of this data is available on the Internet (see page 43). The

genre distribution is detailed in Table 3.2:

Genre # pieces

AfroBeat 3
Balkan and Greek 144
Classical 84
ClassicalSolo 72
Electronic 59
Fado 10
Flamenco 13
Jazz 56
Latin 44
Rock 68
Samba 42

Table 3.2: Genre distribution of the SIMAC excerpts

Hainsworth’s excerpts This set is made up of 221 audio files, in .wav format, ripped from

commercial CDs. File length are between 11 s and 1 mn 30 s. Some have varying tempo. This

data set has been used by Hainsworth (2004) in beat tracking experiments. It comes with beat

annotations at one metrical level and genre annotations in 11 classes. The genre distribution is

detailed in Table 3.3.6 Annotations have not been cross-checked. Audio data is not publicly available

for copyright reasons.

Genre # pieces

Acoustic Folk 4
Classical 23
ClassicalSolo 7
Choral 21
Dance 40
Folk 18
Jazz 31
Big band Jazz 9
Rock/Pop 30
Pop 60’s 38

Table 3.3: Genre distribution of Hainsworth’s excerpts

6Acoustic Folk was originally “random stuff” and “unused”
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Klapuri’s excerpts This set is made up of 474 audio files, in .wav format, ripped from commer-

cial CDs. File length are between 23 s and 1 mn 56 s. Some have varying tempo. This data set has

been used by Klapuri et al. (2005) in beat tracking experiments. It comes with beat annotations at

one metrical level and genre annotations in 7 classes. The genre distribution is detailed in Table 3.4.

Annotations have not been cross-checked. Audio data is not publicly available for copyright reasons.

Further data statistics are available at http://www.cs.tut.fi/∼klap/iiro/meter/database.html.

Genre # pieces

Acoustic Folk 15
Classical 84
Electronic/Dance 66
Hip-Hop/Rap 37
Jazz/Blues 94
Rock/Pop 122
Soul/RnB/Funk 56

Table 3.4: Genre distribution of Klapuri’s excerpts

3.2.1 Musical genres

Original genres were grouped in 10 genres, mostly with respect to their instrumental or rhythmic

contents:

• Acoustic: Klapuri’s and Hainsworth’s Acoustic Folk, Hainsworth’s Folk, CUIDADO Acoustic

and SIMAC Fado and Flamenco excerpts (84 pieces in total, mostly sung pieces accompanied

with acoustic instrument, as the guitar, presence of some percussion but no loud drums)

• Jazz/Blues: Klapuri’s Jazz/Blues, Hainsworth’s Jazz and Big band Jazz, CUIDADO Jazz Fu-

sion and SIMAC Jazz excerpts (194 pieces in total, quite heterogeneous set, many instrumental

pieces with lots of horns, many jazz-like drum playing style)

• Classical: Hainsworth’s, Klapuri’s, CUIDADO and SIMAC Classical excerpts (204 pieces in

total, mostly orchestral music, symphonies or sonatas, few operas)

• Classical solo: Hainsworth’s and SIMAC Classical solo excerpts (79 pieces in total, pieces for

solo instruments as piano, guitar or organ)

• Choral: solely from Hainsworth (21 pieces, just choirs)

• Electronic: Hainsworth’s Dance, Klapuri’s Electronic/Dance and SIMAC Electronic (165 pieces,

lots of electronic drums, mostly strong beats)

http://www.cs.tut.fi/~klap/iiro/meter/database.html
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• Afro-American: Klapuri’s Hip Hop/Rap and Soul/RnB/Funk (93 pieces, 4
4 time signatures and

clear drum patterns on the great majority of excerpts: low-frequency bass drum on beats 1

and 3 and brighter snare drum on beats 2 and 4)

• Rock/Pop: Hainsworth’s Rock/Pop and Pop60s, Klapuri’s and CUIDADO Rock/Pop and

SIMAC Rock, Latin and AfroBeat (334 pieces, quite heterogeneous set, mostly sung pieces,

with drums)

• Balkan/Greek: solely from SIMAC (144 pieces, sung pieces accompanied by acoustic instru-

ments, typical folklore music from Greece and Balkans)

• Samba: solely from SIMAC (42 pieces, sung pieces accompanied by acoustic instruments, with

typical second and fourth beats marked by a low-frequency percussion, typical folklore music

from Brasil)

3.3 List of features

For all the features, the frame size is set to around 23.2 ms and the hop to around 11.6 ms (respec-

tively 1024 and 512 samples at a sampling frequency fs of 44100 Hz), that is, the overlap is 50%.

Feature sampling rate is therefore 44100/512 = 86.1 Hz.

In this Section, a total of 274 features are described.

3.3.1 Spectral and Cepstral features

On each frame, a total of 33 features are computed with the free software CLAM.7 They are described

below.8 They will be referred to as “CLAM features.”

Audio features From the samples of waveform signal chunks, the following feature is computed:

Zero-Crossing Rate (ZCR) The ZCR is a measure of the number of waveform time-domain

zero-crossings (i.e. sign changes), averaged over the number of samples.

Spectral features These features are computed in the spectral domain. Frame samples are

multiplied with a Hamming window and a discrete Fourier transform is subsequently computed

by means of the FFT. All the following features are computed on the magnitude spectrum X

corresponding to positive frequencies, elements of X are denoted Xi below, with i = 1...N (N is

half the number of samples in a frame, in our settings, N = 512).

7http://www.iua.upf.es/mtg/clam
8Thanks to David Garcia for writing a first version of this subsection on CLAM features.

http://www.iua.upf.es/mtg/clam
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Spectrum mean Considering the magnitude spectrum Xi as a distribution, the arithmetic

mean is computed as

mean(X) =

∑N
i=1 Xi

N

Spectrum spread The definition of the spectrum spread used here is the variance of the

spectrum around its mean value.

spread(X) =

∑N
i=1(Xi −mean(X))2

N

Spectrum geometric mean The geometric mean is the Nth root of the product of N ele-

ments.

gMean(X) =

(

N
∏

i=1

Xi

)1/N

It can also be computed as9

log(gMean(X)) =

∑N
i=1 log Xi

N

Spectrum energy The energy is computed as

e(X) =

N
∑

i=1

X2
i

Spectrum centroid It can be understood as the center of gravity, or barycenter, or again

“equilibrium point” of the spectrum magnitude distribution, it is computed as

centroid(X) =

∑N
i=1 iXi

∑N
i=1 Xi

Spectrum flatness The spectral flatness is the ratio between the geometric mean and the

mean. It gives a measure of the spectrum flatness along frequency.

flatness(X) =
gMean(X)

mean(X)

Spectrum magnitude kurtosis It is based on the spectrum magnitude distribution p(X)

(not the spectrum distribution X , see Figure 3.6), elements of p(X) are denoted pk(X) where

k = 1...Np(X), Np(X) being the number of elements of p(X).

It is a measure of the magnitude distribution flatness, or respectively peakedness, around its mean

value. Distributions whose tails on both sides on the mean are wider than the Normal distribution

9where log can be the logarithm in base e or 10



3.3. LIST OF FEATURES 75

0 500 1000

0

2

4

6

8

10

12

14

16

Frequency (i)
M

ag
ni

tu
de

 (
X i)

b)

0

2

4

6

8

10

12

14

16

050100

M
ag

ni
tu

de
 (

X
)

Magnitude distribution (p(X))

a)

Figure 3.6: Example of magnitude spectrum (b) and spectrum magnitude distribution (a).

(i.e. flat-topped distributions) have a kurtosis smaller than 3. Those with smaller tails (i.e. peaky

distributions) have a kurtosis greater than 3.

kurtosis(p(X)) =

∑Np(X)

k=1

(

(pk(X)−mean(p(X)))
4
)

(

∑N
k=1 (pk(X)−mean(p(X)))

2
)2

Spectrum magnitude skewness It is a measure of the degree of asymmetry of the spectrum

magnitude distribution around its mean. If the distribution tail in the positive direction is longer

than that in the negative direction, the skewness is positive, in the opposite case the skewness is

negative. The Normal distribution has 0 skewness.

skewness(p(X)) =

∑Np(X)

k=1

(

(pk(X)−mean(p(X)))
3
)

(

∑Np(X)

k=1 (pk(X)−mean(p(X)))2
)

3
2

Spectrum maximum magnitude frequency This is the frequency of the highest magnitude

in the spectrum

Spectrum low-frequency energy relation This is the ratio of the spectrum magnitude

energy below 100 Hz to the total energy.
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Spectrum rolloff This is the frequency below which 85% of the signal energy remains. It is

denoted fr in the following equation:

fr
N

fs/2
∑

i=1

X2
i = 0.85

N
∑

i=1

X2
i

Spectrum high frequency content (HFC) This is comparable to the total energy, at the

difference that energies at high frequencies are given more importance than magnitudes at low

frequencies. The weighting is linear along the frequency axis.

HFC =
N
∑

i=1

iX2
i

Spectrum slope This is the slope of the linear regression that best fits the magnitude spec-

trum. A negative slope indicates globally decreasing spectral magnitudes.

Mel-Frequency Cepstral Coefficients (MFCCs) MFCCs are widespread descriptors in speech

research. The Cepstral representation has been shown to be of prime importance in this field, partly

because of its ability to nicely separate the representation of voice excitation (the higher coefficients)

from the subsequent filtering performed by the vocal tract (the lower coefficients). Roughly, lower

coefficients represent spectral envelope (i.e. the formants) while higher ones represent finer details

of the spectrum, among which the pitch (Oppenheim and Schafer, 2004). One way of computing

the Mel-Frequency Cepstrum of a spectrum is as follows:

1. Projection of the frequency axis from linear scale to the Mel scale, of lower dimensionality (i.e.

20, by summing frequency-bin powers within each triangularly-weighted band of a Mel critical

band filterbank)

2. Computation of the logarithm of Mel-band power values

3. Discrete Cosine Transform (DCT)

The number of output coefficients of the DCT is variable. Here, it is set to 13, as in the standard

implementation of the MFCCs detailed in the widely-used speech processing software Hidden Markov

Model Toolkit (HTK, version 3.2.1).10

Spectral peak features The magnitude spectrum is further processed by a peak-picking algo-

rithm and a partial track estimation algorithm (hence accounting for frame-to-frame context) that

parse local maxima of the spectrum into harmonic peaks (corresponding to harmonics of an instru-

ment) and spurious peaks (due e.g. to noise). The algorithm implementation available in CLAM is

10http://htk.eng.cam.ac.uk/

http://htk.eng.cam.ac.uk/
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based on the technique described in (Serra, 1989, pp.42-48). Other descriptors are computed on the

series of spectral peak amplitudes corresponding to each frame (noted ai below, with NP being the

number of peaks.

Spectral peak magnitude mean This is the arithmetic mean of the peak magnitudes. The

formula is similar to that of the spectrum mean above.

Harmonic centroid This is the center of gravity of the peak magnitudes. The formula is

similar to that of the spectrum centroid above.

Harmonic deviation This is the sum of the absolute deviation of peaks with respect to local

spectrum envelopes, normalized by the sum of the peak magnitudes. Local spectrum envelopes (SEi

below) are computed as the mean of the magnitudes of 3 consecutive peaks. It is computed as

deviation =

∑NP

i=1 |ai − SEi|
∑NP

i=1 ai

First tristimulus This is the ratio of the first peak energy to the sum of all peak energies. It

is computed as

first tristimulus =
a2
1

∑NP

i=1 a2
i

Second tristimulus This is the ratio of the sum of the second, third and forth peak energies

to the sum of all peak energies. It is computed as

second tristimulus =
a2
2 + a2

3 + a2
4

∑NP

i=1 a2
i

Third tristimulus This is the ratio of the sum of all peak energies from the fifth to the sum

of all peak energies. It is computed as

third tristimulus =

∑NP

i=5 a2
i

∑NP

i=1 a2
i

3.3.2 Onset detection functions

In this Paragraph, 5 features are described. They are based on onset detection function Matlab code

gently provided by Juan Bello and colleagues from Queen Mary University of London (QMUL).

They will be referred to as “QMUL features.”

As in Paragraph 3.3.1, the audio signal is chunked in frames of 1024 samples, with 50% overlap.

Then frame samples are multiplied with a Hanning window (not Hamming as on page 73) and the
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FFT is computed. Then, features are computed on the magnitude spectrum X corresponding to

positive frequencies, elements of X are denoted Xi below, with i = 1...N (N is half the number of

samples in a frame, in our settings, N = 512).

• Spectral difference (SD): The implementation is based on that of (Duxbury et al., 2002)

SD(X) =

N
∑

i=2

2

√

|X2
i −X2

i−1|

• High-frequency content (HFC): This is the sum of the spectrum magnitudes, with a linear

weighting scheme giving more importance to high frequencies than to lower ones. Contrastingly

with the HFC detailed on page 76, here, the HFC is computed from magnitudes, not energies.

HFC2(X) =

N
∑

i=1

iXi

• Energy: At the difference with the energy computed on page 74, here, the energy is normalized

and more importantly is expressed on the dB scale instead of the linear scale. It is computed

as

e2(X) = 20log10

(

1

N

N
∑

i=1

X2
i

)

• Phase deviation: A measure of the shape of the distribution of phase deviations between

successive frames defines another onset detection function. Unlike the detection function based

on energy, which favors percussive onsets, this detection function favors soft onsets. See

(Bello and Sandler, 2003) for more details.11

• Complex spectral difference: Energy-based and phase-based detection functions are comple-

mentary and focus on different types of onsets, Bello et al. (2004) combine them into another

detection function that computes spectral difference between successive frames directly in the

complex domain.

Note that three of these features account a differentiation operator, they are therefore not further

processed as detailed in Section 3.3.5.

3.3.3 Subband energies

Dixon-like In this Paragraph, a total of 8 features is described.

Dixon et al. (2003) and Paulus and Klapuri (2002) compute eight feature lists (“mid-level repre-

sentation”) representing the audio signal in eight non-overlapping frequency bands. A bank of eight

11Note that it is related to the “group delay” feature proposed by Sethares et al. (2005).



3.3. LIST OF FEATURES 79

6th order Butterworth filters is designed as follows: a first low-pass filter with a cut-off frequency of

100 Hz and 6 band-pass filters and 1 high-pass filter distributed uniformly on a logarithmic frequency

scale (i.e. passbands are approximatively [100 Hz – 216 Hz], [216 Hz – 467 Hz], [467 Hz – 1009 Hz],

[1009 Hz – 2183 Hz], [2183 Hz – 4719 Hz], [4719 Hz – 10200 Hz] and [10200 Hz – 22050 Hz]).

Then, in each band, after group delay has been taken into account,12 the signal is half-wave

rectified, squared, decimated (to a sampling frequency of 980 Hz, i.e. a decimation factor of 45 if

the original sampling frequency is 44100 Hz) and smoothed with a 4th order Butterworth low-pass

filter with a cutoff frequency of 20 Hz (in the downsampled domain). Here also, group delays are

accounted for in each band. Finally, the dynamic range is compressed with a logarithmic function.

This process is not frame-based, however, in our understanding, it is comparable to a frame-based

process: the hop size would be around 1 ms (the inverse of the sampling frequency, i.e. 980 Hz)

and the frame size would depend on the size of the impulse responses of the filters applied on the

original signal.

For the experiments described in this chapter, we use a slightly different version for these features,

with a hop size of around 6 ms (256 samples at 44.1 kHz) and a frame size of around 12 ms (512 sam-

ples at 44.1 kHz). The computation follows the same steps as described above, but with a decimation

factor of 32 (yielding a sampling frequency of around 1380 Hz if the original sampling frequency is

44100 Hz) and the dynamic range is not compressed. Then, the resulting time series is downsam-

pled as follows: each 16 samples ( desiredHopSize
decimationFactor = 512

32 ), the values of 32 ( frameSize
decimationFactor = 1024

32 )

samples are summed.

This is comparable to a frame-based computation, in the time domain, of the energy of half-wave

rectified subband signals.

Scheirer-like In this Paragraph, a total of 6 features is described.

Scheirer (1998) computes feature lists also representing the audio signal in non-overlapping fre-

quency bands. Six sixth-order elliptic filters are designed, the cutoff frequency are the following:

[0 Hz – 200 Hz], [200 Hz – 400 Hz], [400 Hz – 800 Hz], [800 Hz – 1600 Hz], [1600 Hz – 3200 Hz] and

[3200 Hz – 22050 Hz]). They all have 3 dB of ripple in the passband and a stopband 40 dB down

from the peak value in the passband. Elliptic filters show steeper transition bands than Butterworth

filters, as those used on page 78, but have higher ripple in the passband.

Then, in each band, the signal is half-wave rectified and convolved with a 200 ms half-Hanning

window, decimated to a sampling frequency of around 100 Hz, first-order differentiated and finally

half-wave rectified to yield the subband signal amplitude envelope.

This process is not frame-based. However, in our understanding, convolving with a half-Hanning

window and downsampling is similar to a framing of the signal (with a frame-size equal the window

size, i.e. 200 ms) and a hop size of e.g. 10 ms if the downsampling frequency is 100 Hz.13

12by left-shifting the signal to an appropriate amount depending on the specific band
1313.3 ms when downsampling at 75 Hz, value advocated by Scheirer (1998) for reaching real-time performances.



80 CHAPTER 3. FEATURE SELECTION FOR RHYTHM PERIODICITY FUNCTION

We use a slightly different implementation of these features, more similar to those described

on page 78. The subband signals are computed as in the original paper. Then the decimation

process is achieved first. As on page 78, the decimation factor is 32 (yielding a sampling frequency

around 1380 Hz instead of 100 Hz). Then, for reasons of efficiency we use a low-pass filter instead

of the convolution window (a 4th order Butterworth filter with a cutoff frequency of 10 Hz in the

downsampled domain, to emulate the low-pass behavior of the 200 ms half-Hanning window), the

group delays are taken into account. The signal is then half-wave rectified. Finally, the resulting

time series is further downsampled as on page 78 so that the data reduction with respect to the

original subband signal reaches a factor of 512, i.e. the final sampling frequency is around 86.1 Hz.

In contrast to Scheirer’s version, no differentiation is achieved (see Section 3.3.5 for this matter).

Apart from the frequency filterbank definition, the differences with the method described on

page 78 are the following: the half-wave rectification is achieved at the end (not as the first step),

the signal is not squared (the features represent subband amplitude, not energy) and the low-pass

smoothing filter has a cutoff frequency of 10 Hz instead of 20 Hz.

3.3.4 ERB-based features

In this Section, a total of 44 features is described.

Klapuri et al. (2005) defines a set of 4 frame-based features based on the computation of the

signal power in different subbands. At the difference with Section 3.3.3, the processing is done in

the frequency domain. The signal is chopped into frames of 23 ms which are Hanning-windowed and

overlap 50%. After zero-padding to 46 ms, the discrete Fourier transform of each frame is computed

and multiplied with 36 triangular-response overlapping bandpass filters distributed between 50 Hz

and 20 kHz as follows: [50 Hz – 122 Hz], [84 Hz – 166 Hz], [123 Hz – 214 Hz], [165 Hz – 269 Hz],

[214 Hz – 330 Hz], [269 Hz – 398 Hz], [330 Hz – 475 Hz], [398 Hz – 562 Hz], [475 Hz – 659 Hz],

[562 Hz – 768 Hz], [659 Hz – 890 Hz], [768 Hz – 1028 Hz], [890 Hz – 1182 Hz], [1028 Hz – 1355 Hz],

[1182 Hz – 1549 Hz], [1355 Hz – 1768 Hz], [1549 Hz – 2013 Hz], [1768 Hz – 2288 Hz], [2013 Hz –

2597 Hz], [2288 Hz – 2944 Hz], [2597 Hz – 3333 Hz], [2944 Hz – 3771 Hz], [3333 Hz – 4262 Hz],

[3771 Hz – 4813 Hz], [4262 Hz – 5432 Hz], [4813 Hz – 6126 Hz], [5432 Hz – 6907 Hz], [6126 Hz –

7782 Hz], [6907 Hz – 8766 Hz], [7782 Hz – 9870 Hz], [8766 Hz – 11110 Hz], [9879 Hz – 12501 Hz],

[11110 Hz – 14064 Hz], [12501 Hz – 15819 Hz], [14064 Hz – 17788 Hz] and [15819 Hz – 20000 Hz].

Then, in each band, the signal is squared and summed.

To design the filters,14 the linear frequency scale is mapped onto the ERB (Equivalent Rectangu-

lar Bandwidth) critical band scale by the following equation ERB(f) = 21.2655log10(0.004368f +1)

(Moore, 1995, p.176, equation 10), the ERB scale is then uniformly sampled in 36 bins whose

boundaries define filter center frequencies and bandwidths as illustrated in Figure 3.7.15

14no design of filter coefficients takes place here
15Thanks to Anssi Klapuri for the subband decomposition Matlab code.
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Figure 3.7: ERB frequency subbands.

Three feature groups are then computed. First, the energy values in the 36 frequency bands

(36 features). Second, the sum of adjacent bands by groups of 9 (yielding 4 features). Third,

the features proposed by Klapuri et al.: in each band, the degree of change in the energy values is

estimated as the differential of energy normalized with energy and half-wave rectified as detailed

in Section 3.3.5.16 The degree of change is then weighted and averaged with the magnitude (see

(Klapuri et al., 2005, equation 3)).17 Finally, adjacent bands are summed by groups of 9 to get 4

feature vectors (4 features).

3.3.5 Feature differentials

In this Section, a total of 178 features is described.

Some algorithms published in the literature focus on feature values computed on frames, e.g.

energy in subbands (Tzanetakis and Cook, 2002; Paulus and Klapuri, 2002; Dixon et al., 2003) while

others focus on degree of change of feature values over time. This can be computed for instance

as the derivative of feature values, which can be estimated by a first-order differentiator (Scheirer,

1998; Laroche, 2003) or more accurately as proposed in (Alonso et al., 2004).

The degree of change can also be measured as the feature differential normalized with its magni-

tude, e.g. (Klapuri et al., 2005). This is supposed to provide a better emulation of human audition,

16As explained on page 81, implementation slightly differs from (Klapuri et al., 2005).
17At the difference with (Klapuri et al., 2005), both are normalized with respect to their respective maximum values

before averaging.
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indeed, according to Weber’s law, for humans, the just-noticeable-difference in the increment of a

physical attribute depends linearly on its magnitude before incrementing. That is, ∆xt/xt (where

xt is a specific feature and ∆xt is the smallest perceptual increment) would be constant.

In the experiments described below, in addition to the 96 features described between page 73

and page 81, other features have been designed by computing the differential of the 89 features cor-

responding to instantaneous time series (i.e. leaving aside the 7 features that already correspond to

differentials: the 4 features from (Klapuri et al., 2005) and 3 out of the 5 onset detection functions).

This has been done in two ways (therefore yielding 89 × 2 = 178 features). First, as a first-order

differentiation of feature values and half-wave rectification. Second, as Klapuri et al. (2005, equa-

tion 2) propose, as the half-wave rectification of the first-order differential of the µ-law compression

of xt (yt = log(1+µxt)/log(1+µ)), where xt is the time-varying feature at hand, µ is a constant (set

to 100) and log is the natural logarithm (base e). Indeed, (d/dt)[log(xt)] = [(d/dt)(xt)]/xt, and the

µ-law compression behaves like log(xt) except around xt = 0 where it permits to avoid numerical

problems.18

3.4 Results

In order to determine relevant and irrelevant features with respect to the presence and localization

of beats in musical signals, several experiments are conducted. These experiments aim at providing

answers to some open questions in current literature listed in Section 2.4, they are presented in turn

in the following Sections.

As we defined the same number of beats and non-beats for each piece (to be precise, there is

always exactly one less non-beat than beat per musical piece), the baseline is around 50% for each

file (this is the classification rate when always guessing the most probable class). This value should

be kept in mind when assessing the goodness of any feature set. For instance, any feature subset,

associated to a given classifier, yielding an accuracy value lower than 50% would be less effective

than just flipping a coin (accuracy estimation is explained on page 67).

Recall that prediction accuracies are computed on each musical piece and then averaged over

either the whole data set or the pieces of a specific musical genre.

3.4.1 Individual feature accuracies

The full list of features is the following (numbers correspond to indexes on Figure 3.8):

• 1 to 20: Spectral features (page 73)

• 21 to 33: MFCCs (page 76)

18Our approach here differs from Klapuri et al.’s in that we do not upsample nor lowpass yt (yielding zt in
(Klapuri et al., 2005)), neither do we compute a weighted average ut of zt and its differential (Klapuri et al., 2005,
equation 3).



3.4. RESULTS 83

• 34 to 53: First-order differential of spectral features

• 54 to 66: First-order differential of MFCCs

• 67 to 86: Magnitude-normalized first-order differential of spectral features

• 87 to 99: Magnitude-normalized first-order differential of MFCCs

• 100 to 107: Energy in Dixon’s subbands (page 78)

• 108 to 115: First-order differential of energy in Dixon’s subbands

• 116 to 123: Magnitude-normalized first-order differential of energy in Dixon’s subbands

• 124 to 159: Energy in ERB subbands (page 80)

• 160 to 163: Sum of energy in adjacent ERB subbands (page 80)

• 164 to 199: First-order differential of energy in ERB subbands

• 200 to 203: First-order differential of sum of energy in adjacent ERB subbands

• 204 to 239: Magnitude-normalized first-order differential of energy in ERB subbands

• 240 to 243: Magnitude-normalized first-order differential of sum of energy in adjacent ERB

subbands

• 244 to 247: Sum in adjacent bands of the magnitude-normalized first-order differential of energy

in ERB subbands (i.e. our implementation of (Klapuri et al., 2005) features, see page 80)

• 248 to 256: QMUL features (page 77)

• 257 to 262: Energy in Scheirer’s subbands (page 79)

• 263 to 268: First-order differential of the energy in Scheirer’s subbands

• 269 to 274: Magnitude-normalized first-order differential of the energy in Scheirer’s subbands

Figure 3.8 represents the minimum, maximum and mean accuracy of each feature considered

individually with DecisionStump, averaged over all 10 musical genres defined on page 72.

Average relevance On average, the best feature is the first-order differential of the first MFCC

(index 54), with an accuracy of 89.1%. The worst feature is the first-order derivative of the spectrum

slope (index 51) with an accuracy of 47%; note that the spectrum slope itself (index 18) and its

magnitude-normalized first-order differential (index 84) also have low accuracies.

Other individually good features can be found among differentials of spectral features (indexes

from 34 to 53 and from 67 to 86), MFCC differentials (though simple first-order differentials seem bet-

ter than magnitude-normalized ones), many energy features (see dedicated analyses in Section 3.4.3)

and high-frequency content differentials (indexes 253 and 255).
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Figure 3.8: Individual feature accuracy means and ranges. 3.8(a): Features 1 to 124. 3.8(b):
Features 124 to 274.
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Relevance per genre Table 3.5 presents a list of the best and worst features per musical genre.

In accordance with the average results above, the first-order derivative of the spectrum slope is the

worst feature for each genre. On the other hand, there is some variability regarding the best feature.

The best feature on average (first-order differential of the first MFCC) is the best on solely two

genres out of 10. The first-order derivative of the spectrum mean (index 48) is the best feature on 4

genres. Four other features are best on other genres: the magnitude-normalized first-order derivative

of the energy in first ERB subband (index 204), the magnitude-normalized first-order derivative of

the spectrum mean (index 81), the magnitude-normalized first-order differential of the first MFCC

(index 87) and the first-order differential of the high-frequency content (index 253).

Best feature Worst feature
Index Accuracy Index Accuracy

Choral 204 85.5% 51 47.7%
Classical 81 87.5% 51 47%
Classical Solo 87 92.5% 51 45.7%
Acoustic 48 87.2% 51 47.2%
Jazz/Blues 48 88.8% 51 47.8%
Balkan/Greek 54 90.2% 51 45.5%
Samba 253 91.7% 51 45.9%
Rock/Pop 54 92.8% 51 47.4%
Afro-American 48 93.1% 51 48.3%
Electronic 48 92.4% 51 47.4%

Table 3.5: Best and worst feature for each genre.

Relevance per musical piece Let us now consider which is the best feature for each musical

piece. The analysis shows that a total of 196 features (out of 274), considered individually, are the

best feature for (at least) one piece.

3.4.2 Whole feature set accuracy

Using the whole feature set (274 features), NaiveBayes yields an average accuracy of 89.9%, k-NN

an average accuracy of 99.5% and C4.5 and average accuracy of 92.5%. Table 3.6 gives accuracies

by genre.

These prediction accuracies are very good, especially in the case of k-NN. This method being

sensitive to irrelevant features, the very good prediction accuracy achieved with it may indicate that

there are not much irrelevant features among those considered. This is an interesting result which

confirms what has been found on the current page, namely that when considered individually, many

features are the best for at least one musical piece.

However, there is certainly a high degree of correlation between some features (consider energy
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features for instance). These correlations may precisely be the reason for the one NaiveBayes scores

worse than the other two methods, as it is indeed sensitive to correlated features.

C4.5 scores in-between the two other methods. Recall that feature selection is embedded in this

technique, therefore, for each musical piece, C4.5 prediction accuracy is obtained with less than

274 features. This is an interesting result as it shows that it is possible to score very well without

considering the whole feature set.

NaiveBayes k-NN C4.5

Choral 87.7% 99.8% 92.9%
Classical 88.1% 99.6% 91%
Classical Solo 87.7% 99.7% 90.7%
Acoustic 85.1% 99% 92.1%
Jazz/Blues 89.7% 99.5% 93.1%
Balkan/Greek 82.9% 99% 88.7%
Samba 86.8% 99.4% 90.9%
Rock/Pop 93.2% 99.7% 94.1%
Afro-American 94% 99.4% 94.6%
Electronic 94.4% 99.7% 94.7%

Table 3.6: Whole feature set accuracies (274 features) with respect to genres.

Accuracies given in Table 3.6 are averages of musical piece accuracies. Let us now focus on some

results for individual pieces: k-NN reaches its minimum accuracy of 86.5% on an Acoustic piece,

NaiveBayes also on an Acoustic piece (54.5%) and C4.5 on a Jazz piece (58.5%). On the worst

piece for k-NN (86.5%), C4.5 has an accuracy of 89.5%. In fact, there are 12 pieces out of 1360

on which using C4.5 yields a better accuracy than k-NN (2 Acoustic, 1 Electronic, 5 Rock/Pop, 3

Balkan/Greek and 1 Samba). Therefore, not only is it possible to to score very well with a selection

of features instead of the whole feature set but in a few cases, it is also possible to score better.

C4.5 selects a subset of the 274 features for each musical piece, using a particular feature se-

lection technique (see page 67). The selected features may very well change from one piece to the

next. Among others, Kohavi and John (1997, Section 2.1) show that decision trees are sensitive to

irrelevant features, it would therefore be interesting to discard first those features that are never

relevant on any piece and reduce the number of input features to C4.5 by selecting those that have

shown relevance on (at least) some pieces. The rest of this chapter precisely addresses this issue

in trying to determine if there exists a common subset of features that would perform well for any

musical piece. We will come back to this issue in several part of this chapter (3.4.3.3 and 3.4.7).

Prediction accuracies obtained with the whole feature set (best being 99.5%), as well as with

individual features (best being 89.1%, see page 83), should be kept in mind when assessing the

goodness of any feature set in the remainder of this chapter.
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3.4.3 Energy features

Among state-of-the-art beat trackers and beat inducers (Gouyon et al., 2006), many implement a

filterbank decomposition of the audio signal and then focus either on frame energy or amplitude in

several frequency channels, others focus on differential of energy, in the whole frequency range or in

frequency subbands (see Section 2.2.1).

Several frequency decompositions (Sections 3.3.3 and 3.3.4) and two different ways of computing

differentials (Section 3.3.5) have been implemented:

1. Energy in the whole frequency range:

(a) CLAM implementation (page 74): 1 feature

(b) QMUL implementation (page 77): 1 feature

2. Energy in frequency subbands:

(a) Energy in Dixon’s subbands (page 78): 8 features

(b) Energy in ERB subbands (page 80): 36 features

(c) Energy in Scheirer’s subbands (page 79): 6 features

3. Sum of energy in adjacent ERB subbands, by groups of 9 (page 80): 4 features

4. Weighted frequency bins:

(a) Sum of spectral bin magnitude weighted by frequency (page 77): 1 feature

(b) Sum of spectral bin energy weighted by frequency (page 76): 1 feature

5. Differential of the energy in the whole frequency range:

(a) First-order differential of CLAM implementation (page 74): 1 feature

(b) Magnitude-normalized first-order differential19 of CLAM implementation (page 74): 1

feature

(c) First-order differential of QMUL implementation (page 77): 1 feature

(d) Magnitude-normalized first-order differential of QMUL implementation (page 77): 1 fea-

ture

6. Differential of the energy in frequency subbands:

(a) First-order differential of energy in Dixon’s subbands (page 78): 8 features (these are our

implementation of (Dixon et al., 2003) features)

19The meaning of “magnitude-normalized first-order differential” is explicit on page 82
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(b) Magnitude-normalized first-order differential of energy in Dixon’s subbands (page 78): 8

features

(c) First-order differential of energy in ERB subbands (page 80): 36 features

(d) Magnitude-normalized first-order differential of energy in ERB subbands (page 80): 36

features

(e) First-order differential of the energy in Scheirer’s subbands (page 79): 6 features (these

are our implementation of (Scheirer, 1998) features)

(f) Magnitude-normalized first-order differential of the energy in Scheirer’s subbands (page 79):

6 features

7. Differential of the sum of energy in adjacent subbands:

(a) First-order differential of the sum of energy in adjacent ERB subbands (page 80): 4

features

(b) Magnitude-normalized first-order differential of the sum of energy in adjacent ERB sub-

bands (page 80): 4 features

8. Differential of weighted frequency bins:

(a) First-order differential of the sum of spectral bin magnitude weighted by frequency

(page 77): 1 feature

(b) Magnitude-normalized first-order differential of the sum of spectral bin magnitude weighted

by frequency (page 77): 1 feature

(c) First-order differential of the sum of spectral bin energy weighted by frequency (page 76):

1 feature

(d) Magnitude-normalized first-order differential of the sum of spectral bin energy weighted

by frequency (page 76): 1 feature

9. Sum in adjacent bands of the magnitude-normalized first-order differential of energy in ERB

subbands: 4 features (these are our implementation of (Klapuri et al., 2005) features, as de-

tailed on page 81)

3.4.3.1 Frequency decomposition

Focusing solely on frame magnitudes (leaving differentials aside for the moment), this experiment

aims at determining whether it is better to consider the energy on the whole frequency range or to

consider a decomposition of the frequency axis in several bands.

Scheirer (1998, p.591), who advocates the latter option, also argues that his algorithm “is not

particularly sensitive to particular bands used,” that is, that the important point would be to proceed
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to a frequency decomposition, and not the particular filterbank. However, evaluations performed by

Gouyon et al. (2006) suggest that the definition of the frequency filterbank could be a significant

issue. Hence, it seems interesting to address the issue of which frequency decomposition is the most

appropriate, in case one would be.

This experiment concerns 8 energy feature subsets representing the frequency axis as a whole

(1a and 1b), weighted frequency bins (4b and 4a) and decompositions of the frequency axis (2a, 2b,

3 and 2c).20
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Figure 3.9: Accuracy means and ranges for energy feature subsets.

Figure 3.9 shows the mean accuracy and the range (minimum and maximum accuracy) over

the musical genres, according to k-NN (see page 68), for each feature subset. The first conclusion

to make from this figure is that, contrarily to Scheirer’s argument (1998), there are significant

differences between subset accuracies. Subset 2b is the subset with highest mean accuracy and the

highest maximum accuracy (93.5% on the Electronic data set). Subset 3 is the one with smallest

range (i.e. less variance with respect to genres).

All energy subband feature subsets (right of 2a on Figure 3.9) outperform full-band energy

feature subsets (left of 2a). This is in accordance with Scheirer’s argument (1998), and was already

demonstrated (on a much smaller dataset) in (Gouyon and Herrera, 2003a).

The worst accuracy is 49.9%, obtained by subset 4a on the Choral data set.

The Choral data set is the most difficult for all subsets but subset 2b (for which Classical is

20Note that the number of features differ from one subset to another and ranges from 1 to 36 features.
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the most difficult) and subset 2c (for which ClassicalSolo is the most difficult). The Electronic,

Rock/Pop and Afro-American data sets are the easiest for all subsets.

It should be noted that average accuracies are all worse than those obtained with the whole

feature set as well as with the best individual feature, which is not contained in any of these subsets

(as a matter of fact, these subset do not account for any of the the individual features that score

best for a given genre, as detailed on page 85).

3.4.3.2 Differential vs magnitude

In complement to experiment 3.4.3.1, in this experiment we consider the degree of change of the

energy over time, i.e. feature subsets 6a, 6b, 6c, 6d, 7a, 7b, 6e, 6f, 9, 5a, 5b, 5c, 5d, 8c, 8d, 8a and

8b.

We tackle an issue raised in (Gouyon et al., 2006), namely whether energy differential are better

features than the mere energy, and incidentally which is the best way to compute differentials.

5a 5b 5c 5d 8c 8d 8a 8b 6a 6b 6c 6d 7a 7b 6e 6f 9
70

75

80

85

90

95

100

Feature subsets

A
cc

ur
ac

y

Figure 3.10: Accuracy means and ranges for frequency subband energy differential subsets.

Figure 3.10 illustrates the mean accuracy and the range (minimum and maximum accuracy,

representing the variance with respect to genres), according to k-NN (see page 68), for each feature

subset over the musical genres. Subset 6d is the subset with highest mean accuracy (99.4%, similar

to that obtained with the whole feature set, obtaining therefore a reduction of feature dimensionality

of 7.6) and smallest range (0.8 percent points). Note that this subset is better than any individual

feature while it accounts for one of the best individual features, namely that which scores best on
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the Choral data set (see Paragraph 3.4.1).

The worst accuracy is 72.6%, obtained by subset 8c on the Choral data set. The best accuracy

is 99.7%, obtained by subset 6d on the Rock data set; this is the same accuracy as that obtained

when using the whole feature set on this genre (see Table 3.6).

For all subsets, the most difficult data sets are Choral, Classical and Acoustic. Easiest data sets

are Rock, Electronic and Afro-American.

Here also, there are significant accuracy differences among feature subsets. Experiment 3.4.3.1

rankings are not exactly preserved but the overall tendency is similar: energy subband feature subsets

(right side of Figure 3.10 starting from subset 6a) outperform full-band energy feature subsets (left

of subset 6a).

For all energy feature subsets and all data sets, differentials have the clear advantage of increasing

the accuracy and reducing the accuracy range around the mean.

For almost all subsets, the magnitude-normalized first-order differential outperforms the mere

first-order differential. Exceptions are subset 6e and subset 6f that have similar performances and

subset 5c and subset 5d, where normalizing the differential has a negative impact. This is because the

energy as computed on page 77 accounts for a logarithm (i.e. a scaling in dB) and the computation

of the magnitude-normalized first-order differential also accounts for a logarithm. Computing the

logarithm of the logarithm does not make much sense indeed.

Klapuri et al. (2005) argue that “combining [...] adjacent bands [...] is not primarily an issue of

computational complexity, but improves the analysis accuracy,” i.e. that combining adjacent bands

after differentiation would yield better features than individual frequency band differentials. Feature

subset 9 implements the former procedure and feature subset 6d implements the latter. As can be

seen on Figure 3.10, both perform very well but, contrarily to the argument of Klapuri et al., the

latter has a higher average and a much smaller range: feature subset 9 suffers especially on the

Choral data set, where its accuracy is 89.2% (the second worst accuracy being 93.2%, obtained on

the Classical data set).

As observed on page 88, there are significant differences in accuracy between different frequency

decompositions and it is possible to rank the different frequency decompositions advocated by cur-

rent state-of-the-art models: the magnitude-normalized first-order differential of the energy in the

frequency subbands advocated by Dixon et al. (2003) and Klapuri et al. (2005) show comparable

results (with the former having a lower minimum accuracy, on Choral data) and are better than

subbands proposed by Scheirer (1998).

3.4.3.3 Frequency subband rankings

Given a particular decomposition in frequency subbands, one may wonder whether energies in some

particular subbands are, on average, more representative of beats than some other subbands and

may therefore be given relatively more importance in a computational system. For instance, in
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the case of algorithms that compute periodicity functions over several subband energy values, or

amplitude envelopes, or their sum thereof, one may wonder whether some bands should be given a

particular weight a priori. some frequency regions may even be discarded and an algorithm may

focus solely on a restricted region of the spectrum. Indeed, some authors advocate that a particular

emphasis should be put on low frequencies (Blum et al., 1999; Alghoniemy and Tewfik, 1999) or

equivalently low-pitched MIDI events (Dixon and Cambouropoulos, 2000), while others argue that

energy content at high frequencies should be emphasized (Laroche, 2003) or that both low and high

frequencies should be given more importance than mid-range frequencies (Heittola and Klapuri,

2002).

For this experiment, we focus on energy feature subsets 2b, 6c and 6d as they correspond to

the frequency decomposition with the greater number of bands (and are therefore more indicated

for illustration purposes). For each of these 3 sets, we consider for each musical piece the worth of

different subsets, automatically generated and evaluated with the method described on page 69. For

each feature of the particular set considered, we then make a histogram of the number of pieces over

which it is part of the winning subset. Histograms for two feature sets are shown in Figure 3.11.

Feature subset 6c is not represented, but shows similar trends than subset 2b.

Figure 3.11(a) shows that energy in both low and high frequencies (approximately from band 1

to 5, i.e. between 50 and 300 Hz, and from band 27 to 36, i.e. between 5.5 and 20 kHz) are

more relevant than energy in mid-range frequencies when considering energy magnitude (or first-

order differential). On the other hand, Figure 3.11(b) suggests that solely low frequencies (roughly

between band 1 and 7, i.e. between 50 and 500 Hz) are more relevant than others when considering

magnitude-normalized first-order differentials of energy.

Detailed analyses for each musical genre shows the same “U-shape” as that observed on Fig-

ure 3.11(a) for the 3 feature subsets on many genres. A different trend is however typical of some

genres: Subset 6d shows linear trend, where relevance is inversely proportional to frequency (low

frequencies being therefore relatively more relevant), for the following genres: Balkan/Greek, Samba,

Choral, Classical, Classical Solo and Jazz/Blues. Subsets 2b and 6c show the same linear trend solely

on the Classical and Classical Solo data sets.21

It is informative at this point to compare these results with individual feature relevance results,

as shown on Figure 3.8, on page 84. On this figure, one can clearly see similar U-shapes in most of

the energy feature subsets (between indexes 100 and 107, 108 and 115, 116 and 123, 124 and 159,

160 and 163, 164 and 199, 200 and 203, 204 and 239 and finally 240 and 243), indicating that, for

whatever frequency decomposition, mid-range frequency bands are less relevant than low and high

frequency bands.

From all these informations, it seems reasonable to conclude that frequency bands roughly be-

tween 500 to 5000 Hz are relatively less representative of beats than low frequencies (below 500 Hz)

21Note however that for some genres, it is difficult to make solid conclusions as they are not represented by many
musical pieces (e.g. Choral).
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Figure 3.11: Frequency subbands ranking for subset 2b (Figure 3.11(a)) and subset 6d (Fig-
ure 3.11(b))
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and high frequencies (above 5000 Hz).

One may therefore wonder whether this means that we should discard mid-range frequency

bands. Considering solely bands 1 to 7 and 27 to 36, the average accuracy of energy differentials (i.e.

subset 6c) is 93.1%, the minimum accuracy is 87.1% and the maximum accuracy is 95.9% (this should

be compared to accuracies reached when considering all features of subset 6c: 92.8%, 85.9% and

96.4% respectively). Considering now magnitude-normalized differentials (subset 6d), the average

accuracy obtained when using solely these low and high frequency regions is 98.6%, the minimum

accuracy is 97.6% and the maximum accuracy is 99.2% while these accuracies were respectively

99.4%, 98.9% and 99.7% when using all subbands of subset 6d. We can see that focusing solely on

subbands below 500 Hz and above 5 kHz (and obtaining a dimensionality reduction of a factor of

2.1) the results are comparable to those obtained with all the 36 bands. Further, we obtain better

results with this manual selection of features than with the automatic feature selection technique

embedded in C4.5 (using C4.5 and subset 6d yields average, minimum and maximum accuracies

of 92.4%, 88.5% and 94.9%, respectively). Accounting for mid-range frequencies does not damage

results, a conservative implementation may therefore also consider them. But in an implementation

which could not afford to consider many subbands, these should be the first candidates for being

discarded.

3.4.4 Spectral features

Let us now focus on the spectral features whose implementations are detailed in Section 3.3.1.

(Note that we do not include energy features in this experiment as they are the object of previous

experiments.) They are divided in 3 subsets:

1. Spectral feature magnitudes:

(a) Spectral peak first tristimulus

(b) Spectral peak harmonic centroid

(c) Spectral peak harmonic deviation

(d) Spectral peak mean

(e) Spectral peak second tristimulus

(f) Spectral peak third tristimulus

(g) Centroid

(h) Flatness

(i) Geometric mean

(j) Magnitude kurtosis

(k) Low-frequency energy relation
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(l) Maximum magnitude frequency

(m) Mean

(n) Roloff

(o) Magnitude Skewness

(p) Slope

(q) Spread

(r) ZCR

2. Spectral feature first-order differentials (a—r)22

3. Spectral feature magnitude-normalized first-order differentials (a—r)
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Figure 3.12: Accuracy means and ranges for spectral feature subsets.

Figure 3.12 provides a comparison of the performances of the 3 feature subsets. According to

k-NN, average accuracies over genres are 93.1% for subset 1, 98.4% for subset 2 and 98.9% for

subset 3. Accuracy ranges are respectively 5.1, 1.6 and 0.8 percent points. For all subsets, the worst

performance is obtained on the Acoustic data set.

We saw in Section 3.4.2 that the accuracy of the whole feature set is 99.5% with k-NN. Using

solely the magnitude-normalised differentials of spectral features (i.e. lowering the number of features

by a factor of 15.2) yield a comparable result. This feature set, who accounts for one of the best

individual features but does not account for energy features, are therefore very relevant.

22For the sake of simplicity, we do not provide the whole list here; differentials have the same ordering as features 1a
to 1r. For instance, feature 2e refers to the first-order differential of the spectral peak second tristimulus.
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One can see that, as for the energy feature subsets (experiment 3.4.3.2), differentials have the

clear advantage over frame magnitudes of raising the average accuracy and reducing the accuracy

range between genres. Further, here also, the magnitude-normalized first-order differential performs

slightly better than the mere first-order differential.
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Figure 3.13: Spectral features rankings, feature subset 3

The worth of different subsets of feature subset 3 has been considered for each musical piece (sub-

sets being automatically generated and evaluated with the method described on page 69), Figure 3.13

illustrates a histogram of the number of pieces over which each feature of subset 3 is a member of

the winning subset. This ranking of features can be compared to that shown in Figure 3.8 (between

index 67 and index 86), where features were considered individually, it has approximately the same

shape (recall that index 74 and 77 in Figure 3.8 represent energy features that are not considered in

Figure 3.13). Accordingly to previous results, feature 3p (the magnitude-normalized differential of

the spectrum slope) is the worst feature in this subset. Depending on the dimensionality reduction

desired, it is possible to define a threshold at some height on Figure 3.13 in order to select the most

relevant features. For instance, if one wants to keep 6 spectral features, the best are 3b, 3c, 3d, 3h,

3i and 3m, that is, the magnitude-normalized differential of the following features: the spectral peak

harmonic centroid, the spectral peak harmonic deviation, the spectral peak mean, the spectrum

flatness, the spectrum geometric mean and the spectrum mean.

An analysis of feature relevance per genre shows that in addition to the 6 previous features,

features 3j and 3o (magnitude-normalized differentials of the spectrum magnitude kurtosis and

skewness) are relevant for Choral data and feature 3k (the magnitude-normalized differential of the

low-frequency energy relation) is relevant for Jazz/Blues and Balkan/Greek data.
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It is interesting to remark that rhythm description literature accounts for very few references to

spectral features, with the exception of (Goto and Muraoka, 1999), (Seppänen, 2001), (Gouyon and

Herrera, 2003b) and (Sethares et al., 2005), and that these references do not consider the features

selected here.

3.4.5 Cepstral features

Let us consider now MFCCs (page 76) and define the following feature subsets:

1. MFCCs, except the first coefficient (12 features)

2. First-order differential of MFCCs, except the first coefficient (12 features)

3. Magnitude-normalized first-order differential of MFCCs, except the first coefficient (12 fea-

tures)

We have seen in the part related to individual feature accuracies (Section 3.4.1) that the first-

order derivative of the first MFCC is a very relevant feature. However, this MFCC is a measure of

the signal energy, therefore we do not consider it in this experiment.

Figure 3.14 illustrates the minimum, maximum and mean accuracies of the three feature subsets

on the whole data set.
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Figure 3.14: Accuracy means and ranges for MFCC feature subsets.
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According to k-NN, average accuracies over genres are 87.1% for subset 1, 98.7% for subset 2 and

98.4% for subset 3. According to genres, accuracy ranges are respectively 10.4, 5.2 and 1.6 percent

points. Accuracies of subsets 2 and 3 are comparable with that obtained with the whole feature set

(99.4%). These features are therefore very relevant. Figure 3.8(a) (indexes 54 to 66 and 87 to 99)

also illustrates that they are all relevant (with approximately the same relevance) when considered

individually.

Subset 1 obtains its worst performance on the Choral and Classical data sets and its best per-

formances on the Samba, Rock and Electronic data sets. In between, the distribution of accuracies

is approximately uniform. Subsets 2 and 3 behave differently, they both show similar accuracies for

all genres (at the exception of an outlier for subset 2, the Choral data set —91.6%—; considering

the second minimum instead of it, the range raises from 5.2 to 1.8 percent points).

As for the energy feature subsets (experiment 3.4.3.2), differentials have the clear advantage over

frame magnitudes of raising the average accuracy and reducing the accuracy range between genres.

However, unlike for energy features, the first-order differential seems better than the magnitude-

normalized first-order differential.

3.4.6 Onset detection functions

Here, the features of interest are the following:23 (Note that, as in Sections 3.4.4 and 3.4.5, we do

not include energy features in this experiment as they are the object of previous experiments.)

1. Complex spectral difference

2. Phase deviation

3. Spectral difference

When using k-NN, the average accuracy over musical genres is 82.8%, and the range is 30.7

percent points. The worst performance is obtained on Choral data (60.5%) and the best performance

is obtained on Electronic data (91.2%).

Despite the fact that this performance is worse than those already obtained with the whole

feature set, energy features, spectral features or MFCCs, this performance is interesting as it is

better than any of the individual performance of these 3 features (see Figure 3.8(a), indexes 250

to 252, the best individual feature being the phase deviation).

3.4.7 Combining features

The experiments described above focused on “families” of features (as energy features for instance).

Rankings were obtained between families and features of a given family. Let us now consider com-

bining different families of features. Selecting the features that performed best yields the following

23see page 77 for details
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subset of 59 features:

• magnitude-normalized first-order differentials of the energy in ERB bands (36 bands),

• magnitude-normalized first-order differentials of the spectral peak harmonic centroid, spec-

tral peak harmonic deviation, spectral peak mean, flatness, geometric mean, mean, kurtosis,

skewness and low-frequency energy relation (9 features)

• the first-order differentials of the MFCCs (13 coefficients, including MFCC1)

• phase deviation

Using this subset, k-NN yields an average accuracy of 99.6% (and minimum and maximum

accuracies of 99.4% (obtained on Acoustic data) and 99.9% (obtained on Choral data) respectively).

3.4.8 “All instances in a bag” approach

As mentioned in this chapter introduction, other methodologies than ours could be used to seek

the best discriminating features between instances of the two classes “beat” and “non-beat.” For

instance, instead of seeking feature relevance on individual musical pieces and averaging the results,

Seppänen (2001) considers all instances at once and seeks the features that yield the best beat and

non-beat models.

We preferred a “musical piece based” approach over an “all instances in a bag” approach for

several reasons. First, we foresaw that different sets of features would probably be relevant depending

on the musical style. And it is easier to keep track of this information when considering pieces

individually. Second, and more importantly, our intuition led us to doubt of the existence of such

a concept as a beat model. Intuitively, it is hard to believe that specifications of a set of feature

values would be representative of beats on any piece of music. Indeed, a specific feature may have

recurrent values on beats of several musical pieces but the actual (recurrent) value may very well

differ from one piece to the other, consider for instance the differences between a piece whose volume

has been enhanced and its original version. Our approach is rather qualitative than quantitative as

we intend to determine which are the relevant features to focus on and which are the features to

discard, rather than values for such features.

However, we also conducted a few experiments on all instances considered at once. Five beat

and five non-beat instances have been randomly selected from each musical piece, yielding a total of

13598 instances.24 Half of these instances have been considered as training instances (6800 instances)

and the other half as testing instances (6798 instances); special care has been taken so that both

sets cannot contain beats and non-beats of the same musical piece.

24On 2 specific pieces, the number of non-beats was restricted to 4.
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Beat and non-beat models have been designed with the training dataset and evaluated with the

testing dataset. Accuracies in the following paragraphs are accuracies obtained on the testing data

and do not entail cross-validations as in previous experiments.

All features Considering the whole feature set and k-NN as induction algorithm, additional re-

sampling of the training and testing data to 25% of the original number of instances is necessary for

computational reasons (i.e. 1700 beat instances and 1699 non-beat instances remain).

The accuracy reached is 99.7%. This should be compared to the average accuracy over all musical

pieces considered individually (see on page 85): 99.5%.

Best features Considering now solely the 59 features that were scored best on previous experi-

ments (listed in Section 3.4.7), the accuracy is comparable: 99.3%. (Additional resampling was not

necessary here.) Average accuracy over all musical pieces considered individually was comparable

(see on page 98): 99.6%.

Individual feature accuracies Let us now consider whether some single feature(s) among those

59 features produce comparable results when considered individually, or whether we really need a

combination of them.
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Figure 3.15: Individual accuracies of the best features. The plain line represents average accuracies
over all musical pieces (see Figure 3.8), the dashed line represents the accuracies obtained when
grouping the instances of all pieces.
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Figure 3.15 illustrates individual accuracies of the 59 best features. (Indexes 1 to 9 represent

the selected spectral features, indexes 10 to 22 the selected cepstral features, indexes 23 to 58

the selected ERB-based features and index 59 the phase deviation.) The dashed line represents

accuracies obtained when considering all instances at once while the plain line represents average

accuracies obtained on individual musical pieces.

We can observe that no single feature reaches the 99.3% accuracy obtained when considering the

59 features jointly. All features are relevant and combination of them is necessary to obtain the best

results.

We can also observe that for any feature among these 59 features, the average accuracy over

musical pieces is always better than the accuracy obtained over all instances considered jointly. In

our opinion, this is an argument in favor of the “musical piece based” approach over the “all instances

in a bag” approach. One may object that the former method probably induces an overfitting to the

data (beat models are very specialized on particular pieces) that the latter would rule out. However,

as we already mentionned, our purpose is not to seek good generalization of beat models, but rather

good description of individual pieces, then the process of averaging over many pieces guarantees that

features that are good only on very particular cases are ruled out.

3.5 Conclusions

In this chapter, we addressed the determination of the low-level features of musical audio signal that

convey best the rhythmic aspects of musical signals.

The best individual feature is the first-order differential of the first MFCC, which amounts to

the signal’s variation of energy. This is not surprising as the energy differential is correlated with

note onsets, and note onsets are long thought to be of prime importance in rhythm description.

Many existing rhythm description systems are based on a front-end that computes the energy or

its differential. When considered individually, the following features are more accurate than any

other on a specific musical genre (among the 10 genres considered here): first-order derivative and

magnitude-normalized first-order derivative of the spectrum mean, magnitude-normalized first-order

derivative of the energy in first ERB subband, magnitude-normalized first-order differential of the

first MFCC, and the first-order differential of the high-frequency content.

However, an increase of the accuracy is achieved when combining features. Results using the

whole feature set show that many features are relevant but also that many are correlated.

In accordance with a point raised by Scheirer (1998), it is shown that a decomposition of the

frequency axis in several bands provides better features than the energy computed on the whole

frequency range. However, unlike Scheirer proposes, the definition of the frequency decomposition

does have a significant impact, an ERB filterbank being the best choice among those tested here.
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Then, as Gouyon et al. (2006) propose, for all energy feature subsets, the degree of change of fea-

ture magnitudes are better features than mere magnitudes. Normalizing a first-order magnitude

differential by the magnitude seems to be the most accurate implementation for that (it performs

better than the mere differential). Another conclusion is that individual frequency band differentials

seem to be better than combination of adjacent bands into fewer features (contrarily to a point

raised in (Klapuri et al., 2005)). Another conclusion regarding energy values in frequency subbands

is that some frequency regions are more relevant than others, namely low and high frequencies

(approximatively below 500 Hz and above 5 kHz).

Spectral features are also very relevant, but they score differently, the worst is the spectrum slope

(which should be discarded) and the best are the spectral peak harmonic centroid, the spectral peak

harmonic deviation, the spectral peak mean, the spectrum flatness, the spectrum geometric mean,

the spectrum mean, the spectrum magnitude kurtosis and skewness and the low-frequency energy

relation. Here also, computing the magnitude-normalized first-order differential results in an increase

of the accuracy.

Very good accuracy figures can also be achieved with MFCC differentials. This is interest-

ing as, to our knowledge, there exist no references to the use of such features in rhythm descrip-

tion tasks. Unlike for other features, the mere first-order differential outperforms the magnitude-

normalized first-order differential. This can be explained by the fact that an MFCC is computed

as DCT (log(xt)), where DCT is the Discrete Cosine Transform and xt represents the power val-

ues of the signal in a specific Mel band (see on page 76). Hence, the differential of an MFCC can

be written as d
dt (DCT (log(xt))). As DCT and d

dt are linear operations, this can be rewritten as

DCT
(

d
dt (log(xt))

)

, which is equivalent to DCT
(

d
dt xt

xt

)

. Hence we see that, as the MFCC com-

putation entails a logarithm, the computation of its differential is actually already equivalent to a

magnitude-normalized first-order differential.

We propose the following set of 59 features as the best feature set: the magnitude-normalized

first-order differentials of the energy in ERB bands; the magnitude-normalized first-order differentials

of the spectral peak harmonic centroid, spectral peak harmonic deviation, spectral peak mean,

flatness, geometric mean, mean, kurtosis, skewness and low-frequency energy relation; the first-

order differentials of the MFCCs and the phase deviation.



Chapter 4

Selected features in context —

Tempo induction

In Chapter 3, we made the assumption that low-level audio features whose temporal behaviors reflect

beat and non-beat positions (as determined by classification experiments) would also be promising

features for the computation of periodicity functions. Consequently, they should also be useful

features for inducing tempo. One objective of this chapter is to illustrate the relevance of some

feature sets selected in Chapter 3 in an actual tempo induction task. A number of open issues

in tempo induction research were raised on page 56 in addition to the issue of low-level feature

selection. Some are addressed in this chapter, namely, whether a particular periodicity function is

better than other ones, what is the best way to combine and to parse multiple information sources

(e.g. integration before or after periodicity detection) and whether the joint estimation of several

metrical levels helps the determination of tempo.

In this chapter, different combinations of feature sets and tempo induction algorithms are pre-

sented and discussed with the following organization: Section 4.1 details the implementation of the

tempo induction algorithms. Section 4.2 covers experiments conducted with these diverse algorithms

and different feature sets. Section 4.3 provides a comparison with some state-of-the-art algorithms.

Finally, Section 4.4 provides conclusions regarding the best algorithm/features combination.

4.1 Tempo induction algorithms

4.1.1 Features

In the rest of this chapter, we consider the following feature sets:

1. the first-order differential of MFCC1: 1 feature

103
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2. the magnitude-normalized first-order differential of MFCC1: 1 feature

3. the magnitude-normalized first-order differential of energy in Dixon’s subbands: 8 features

4. the energy in ERB subbands: 36 features

5. the first-order differential of energy in ERB subbands: 36 features

6. the magnitude-normalized first-order differential of energy in ERB subbands: 36 features

7. the sum in adjacent bands of the magnitude-normalized first-order differential of energy in

ERB subbands (i.e. our implementation of the features proposed by Klapuri et al. (2005)): 4

features

8. the first-order differential of MFCCs: 13 features

9. the magnitude-normalized first-order differential of MFCCs: 13 features

10. the magnitude-normalized first-order differential of the 9 best spectral features (see page 94):

9 features

11. the magnitude-normalized first-order differential of energy in Dixon’s subbands 1, 2, 7 and 8:

4 features

12. the magnitude-normalized first-order differential of energy in Dixon’s subbands 3, 4, 5 and 6:

4 features

13. the feature set selected on page 98 in Chapter 3: 59 features

14. feature set 13, with the exception of the magnitude-normalized first-order differential of energy

in ERB subbands (only one energy feature is left, the first-order differential of MFCC1): 23

features

4.1.2 Periodicity function computation

We present here the implementation of three periodicity functions among the many possible ones

listed in Paragraph 2.2.2.2.

4.1.2.1 Autocorrelation

The autocorrelation function (ACF) r(τ) of a discrete signal x(n) is computed as follows:

r(τ) =

N−τ−1
∑

n=0

x(n)x(n + m) ∀τ ∈ {0 · · ·U}
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where N is the number of samples of the signal and U is the upper limit for the lag τ .1

We used the Matlab implementation of the ACF that normalizes the function so that r(0) = 1

and used a maximum lag (upper limit U) of 5 s.

4.1.2.2 Fourier transform

The Fourier transform converts a time domain signal x(t) into its frequency spectrum X(f). The

definition of the Fourier transform is the following:

X(f) =

∫

∞

−∞

x(t)e−i2πftdt

where t is the continuous time index (in seconds) and f the continuous frequency index (in Hertz).

As we are dealing with sampled and finite signals, we make use of the Discrete Fourier Transform

(DFT), whose definition is the following:

X(k) =

N−1
∑

n=0

x(nTS)e−i2πknTS

where TS is the sampling period, N is the number of samples of the signal, n is the discrete time

index and k is the discrete frequency index.

We used the Matlab Fast Fourier Transform algorithm for computing the DFT of feature lists.

4.1.2.3 Comb filterbank

We implemented a filterbank of constant half-time comb filter resonators as proposed by Scheirer

(1998). Details of the implementation are based on (Klapuri et al., 2005). Given an input signal

x(t), the output of a comb filter with delay τ and gain ατ is

yτ (t) = ατyτ (t− τ) + (1 − ατ )x(t)

Comb filters have an exponentially-decaying impulse response where the half-time refers to the delay

required for the response to decay to half its initial value. The gain ατ of a filter depends on the

filter’s delay τ . As we want the filters to have equivalent half-time, ατ is set differently for each

filter as ατ = 0.5τ/t0, where t0 is the half-time. We chose a half-time of 2 s (instead of 3 s proposed

in (Klapuri et al., 2005)). As Klapuri et al. (2005, equation 7) propose, the instantaneous energies

1In this definition of the ACF, the integration time is set to the maximum (N − τ) given the length of the signal.
Note that it could be set to smaller values (Brown, 1993).
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of each comb filter are computed as

zτ (t) =
1

τ

t
∑

i=t−τ+1

(yτ (i))2

They are then normalized to obtain

sτ (t) =
1

1− γ(ατ )
(
zτ (t)

w(t)
− γ(ατ ))

where w(t) is the energy of the signal x(t), calculated by squaring x(t) and applying a resonator

with τ = 1 (a leaky integrator) and γ(ατ ) is the overall power of a comb filter with gain ατ . See

(Klapuri et al., 2005) for more details. Given the feature sampling rate used here (86.1 Hz), a total

number of 85 resonators is needed to cover the tempo region between 50 and 250 BPM. The 85

temporal functions sτ (t) are integrated over time to yield the final periodicity function.

4.1.3 Combining and parsing multiple information sources

We saw on page 28 that the rationale for the integration of diverse information sources is an important

design choice in a tempo induction algorithm: either before or after to the computation of periodicity

functions from low-level features. Another design choice stands in the choice of the integration

operation (e.g. sum, product), and other ones stand in the consideration of a feature evaluation

criterion or a normalization of the features.

In the experiments detailed in Section 4.2, we consider the following different combinations:

• Normalizing features, summing or multiplying them, computing a periodicity function on the

resulting function and picking the maximum peak in a specific tempo region (in the following

experiments, we focus on the region between 50 and 250 BPM).

• Summing, or multiplying, the periodicity functions of several features and picking the maxi-

mum peak (e.g. between 50 and 250 BPM).

• Computing a periodicity function for each feature, selecting peaks in each periodicity function

and parsing the peak list accounting explicitly for influential schemes between metrical levels,

as proposed by Dixon et al. (2003) and detailed on page 41 (this method is later referred to

as “musical parsing”).

Different periodicity functions are tested for each combination, namely the ACF, comb filterbank

and Fourier transform.

Note that other parsing methods could also have been considered, as for instance seeking peri-

odicities in periodicity functions themselves, as proposed by Gouyon et al. (2002), or keep several
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candidates (prominent peaks in the periodicity function) and refine them through beat tracking, as

proposed e.g. by Dixon (2001a). Exhaustive evaluations of these methods are left for future work.

In summary, in the rest of this chapter, we will refer to the following algorithms in association

with the diverse feature sets on page 103:

Algorithm-1 Normalizing and summing features, computing an ACF of the resulting function

and picking the maximum peak (this corresponds to the second column in Table 4.2).

Algorithm-2 Normalizing and summing features, using a comb filterbank on the resulting

function and picking the maximum peak (third column in Table 4.2).

Algorithm-3 Normalizing and summing features, computing a Fourier transform of the re-

sulting function and picking the maximum peak (fourth column in Table 4.2).

Algorithm-4 Computing an ACF for each feature, summing these functions and picking the

maximum peak of the resulting function (fifth column in Table 4.2).

Algorithm-5 Using a comb filterbank for each feature, summing the functions and picking

the maximum peak of the resulting function (sixth column in Table 4.2).

Algorithm-6 Computing a Fourier transform for each feature, summing these functions and

picking the maximum peak of the resulting function (seventh column in Table 4.2).

Algorithm-7 Computing an ACF for each feature, multiplying these functions and picking

the maximum peak of the resulting function (eighth column in Table 4.2).

Algorithm-8 Using a comb filterbank for each feature, multiplying the functions and picking

the maximum peak of the resulting function (ninth column in Table 4.2).

Algorithm-9 Computing a Fourier transform for each feature, multiplying these functions

and picking the maximum peak of the resulting function (tenth column in Table 4.2).

Algorithm-10 Normalizing and multiplying features, computing an ACF of the resulting

function and picking the maximum peak.

Algorithm-11 Normalizing and multiplying features, computing a Fourier transform of the

resulting function and picking the maximum peak.

Algorithm-12 Computing an ACF for each feature, applying the parsing and integration

method proposed by Dixon et al. (2003) (see description on page 41, it corresponds to

the eleventh column in Table 4.2)

Algorithm-13 Same as Algorithm 12, but using a comb filterbank instead of the ACF (twelfth

column in Table 4.2).
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Algorithm-14 Same as Algorithm 12, but using the Fourier transform instead of the ACF

(thirteenth column in Table 4.2).

4.2 Experiments

4.2.1 Data

As in Chapter 3, the data used in this chapter comes from different sources (personal collections,

publicly-available data and commercial sound libraries) and comes with different types of legacy

metadata.2 There is a total of 3223 audio files.

Loops This data set is made up of 2036 files, it is described on page 43. It has been used

in (Gouyon et al., 2006) in the ISMIR 2004 tempo induction contest See page 43 for details on

annotations and availability of this data. Figure 2.6(c) illustrates the distribution of the excerpts

along the tempo axis.

Ballroom This data set is made up of 698 files, it is described on page 43. It has been used

in (Gouyon et al., 2006) in the ISMIR 2004 tempo induction contest and in (Gouyon et al., 2004a;

Gouyon and Dixon, 2004; Dixon et al., 2004) in rhythm classification experiments. See page 43 for

details on annotations and availability of this data. Figure 2.6(b) illustrates the distribution of the

excerpts along the tempo axis.

Alonso This data set is made up of 489 files in .wav format, ripped from commercial CDs. These

files were given to us by Miguel Alonso3 with a sampling rate of 16 kHz, and were resampled to

44100 Hz with Sox. File length are around 20 s each and range from 50 BPM to 200 BPM. Figure 4.1

illustrates the distribution of the excerpts along the tempo axis. Some have varying tempo. This

data set has been used by Alonso et al. (2004) in tempo induction experiments. It comes with beat

annotations at one metrical level and genre annotations in 10 classes. We did not cross-checked

the tempo annotations. The genre distribution is detailed in Table 4.1. Audio data is not publicly

available for copyright reasons.

4.2.2 Evaluation metrics

Two evaluation metrics are used in this chapter:

• Accuracy 1 (acc1): The percentage of tempo estimates within 5% of the ground-truth tempo.

2Here also, we wish to thank those who helped in the recollection of this data and metadata: Miguel Alonso, The
Tape Gallery, Pedro Cano and Simon Dixon.

3from the École Nationale Supérieure des Télécommunications (ENST) in Paris
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Genre # pieces

Classical 137
Electronic/Dance 23
Jazz 79
Latin 37
Miscellaneous 55
Pop 40
Rap/Hip-Hop/Trip-Hop 20
Reggae 30
Rock 44
Soul 24

Table 4.1: Genre distribution of Alonso data set
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Figure 4.1: Histograms of Alonso’s data ground-truth tempo values in 5 BPM steps.

• Accuracy 2 (acc2): The percentage of tempo estimates within 5% of either the ground-truth

tempo, or half, twice, three times or one-third of the ground-truth tempo.

They are basically the same accuracy measures as those used in Section 2.3, page 47, except the

precision window is slightly wider (5% instead of 4%).

4.2.3 Results

Results (with respect to accuracy 2) of different algorithms and feature sets associations on Alonso

data are reported in Table 4.2. The performances of some algorithms are given in more details (i.e.

both accuracy measures and the rest of the test data set) in Appendix A on page 177.

We do not report on results obtained by algorithms 10 and 11 (normalizing features, multiplying

them (instead of summing), computing a periodicity function on the resulting function and picking

the maximum peak). Indeed, the performances obtained with these were extremely low for both
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periodicity functions.

In this section we focus on performances on Alonso data only (apart when explicitly stated) in

order to keep a relatively balanced representation of timbral characteristics and musical genres in the

test data. The Loops and Ballroom data sets may induce a bias towards specific timbres or genres.

They will nevertheless be useful for some experiments such as the comparison with state-of-the-art

algorithms.

4.2.3.1 Feature sets

A first observation is that feature set rankings differ with respect to the tempo induction algorithms

they are combined with. As one can see highlighted in bold fonts in Table 4.2, deciding which is

the best feature set depends on the algorithm. Only 6 feature sets (out of 14) are never the best for

any algorithm. On the other hand, the worst feature set is the same for all algorithms: set 9, the

magnitude-normalized first-order differential of MFCCs.

Energy in frequency subbands According to Chapter 3, on page 87, energy computed in several

frequency bands should provide better features than the energy computed on the whole frequency

range. This seems to be verified here, indeed, when used as input of most algorithms, feature sets 1

and 2 score worse than feature sets 3, 6 or 7.

Also according to Chapter 3, on page 88, using energy values (or differential thereof) in a partic-

ular subband decompositions or another should have a significant repercussion on the performances.

Different subband decompositions should score differently. We can verify that, when combined with

Algorithm 12, 5 and 14, the performances of sets 3, 6 and 7 differ significantly. This is however not

true for all algorithms. For specific periodicity functions and combining and parsing strategies (sum-

ming the Fourier transforms of the different features and selecting the maximum peak for instance,

i.e. Algorithm 6), the performances of these feature sets are similar.

According to findings of Chapter 3, the 36 individual magnitude-normalized first-order differential

of energy in ERB subbands (feature set 6) should be better than their sum in 4 adjacent bands

(feature set 7). (For illustration, see the performances of feature sets 6d and 9, respectively, on

Figure 3.10 on page 90.) Here, feature set 6 clearly outperforms feature set 7 only when combined

with Algorithm 12. For other algorithms, either these two sets show similar accuracies or the opposite

is true (e.g. with Algorithm 14).

Further, the ranking of subband decomposition motivated in Chapter 3 on page 90 (that is, that

set 6 should be better than set 3, which in turn should be better than set 7) is not always respected

here. For example, set 3 outperforms the two other sets when combined with Algorithm 12 and

Algorithm 13.

Another finding of Chapter 3 is that magnitude-normalized first-order differential of feature values

should be better than first-order differential, which in turn should be better than mere feature values
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(see on page 90). When considering the energy in ERB bands (feature sets 6, 5 and 4 respectively),

this is confirmed for some algorithms (e.g. Algorithm 3), but not for some others (e.g. Algorithm 12).

One last conclusion of Chapter 3 with respect to energy in frequency subbands concerns their

relative relevance: energy in low and high frequency bands should be better than in mid-frequency

bands (see on page 91). This is verified here, indeed, when used as input to any algorithm, feature

set 11 scores better than feature set 12.

Spectral features and MFCCs According to Chapter 3, relatively good accuracy figures should

be obtained with the set of 9 spectral features promoted on page 94, as well as with the first-order

differential of MFCCs. The results of feature set 10 and 8 confirm this here. Feature set 8 is even

the best set for Algorithm 6.

These experiments also confirm a point raised on page 97: unlike for other features, the first-order

differential of MFCCs (feature set 8) are always better than the magnitude-normalized first-order

differential (feature set 9). This is also true when considering MFCC1 alone: set 1 is always better

than set 2.

“Best” feature set Chapter 3 (page 98) concluded on the special relevance of a set of 59 features,

combining energy features, spectral features and MFCCs (set 13). We can see in Table 4.2 that for

many algorithms, there exists feature sets that perform better than this set. However, this feature

set shows accuracies close to the best feature set when combined with all algorithms and it is the

best set when combined with Algorithm 9. Looking more into details (see Appendix A), we can

also see that it is the best set for the Ballroom data set when associated with Algorithm 12, for the

Loops data set and the overall set when associated with Algorithm 1 or Algorithm 4 and on the

overall data set when associated with Algorithm 9.

4.2.3.2 Periodicity functions

The results of Table 4.2 show that the use of a comb filterbank as periodicity function provides in

most cases better results than that of the autocorrelation, which in turn is better than the Fourier

transform.

Results on the whole data set (and not solely Alonso data) presented in Appendix A also show

that the use of the autocorrelation generally provides better results than the Fourier transform.

4.2.3.3 Combining and parsing multiple information sources

Sum vs product The product of the feature lists before periodicity detection is harmful in all

the cases (Algorithm 10 and Algorithm 11), and leads to performances always below 5%, therefore

we will not discuss it further.
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A comparison of the performances of algorithms implementing sums or products of periodicity

functions (Algorithms 4 and 7 for the ACF, Algorithms 6 and 9 for the Fourier transform and

Algorithms 5 and 8 for the comb filterbank) does not reveal that a specific method would be better

than the other one, this seems to depend on the input feature set.

Integration before or after periodicity detection The performances of Algorithm 4 (imple-

menting the sum of ACFs) are slightly better than those of Algorithm 1 (implementing the ACF of

the sum of feature lists) for the majority of feature sets. On the other hand, no clear trend can be

seen when using the Fourier transform nor a comb filterbank instead of the ACF.

Additivity In this paragraph, we address the question of the performance of combined feature

sets and focus on feature set 13 (selected in Chapter 3 as the most representative of beats), which

is the combination of feature sets 6 and 14. We focus on experiments conducted on the whole data

set, whose full results are given in Appendix A.

An analysis of errors made by feature sets 6 and 14 when combined with Algorithm 12 shows

that 30.7% of the musical pieces (i.e. 161 pieces) whose tempo has been wrongly computed when

using feature set 6 have been correctly processed when using feature set 14; on the other hand, 26.9%

of the musical pieces (i.e. 134 pieces) whose tempo has been badly computed when using feature

set 14 have been correctly processed when using feature set 6 and 364 pieces are badly computed by

both. When combined with Algorithm 1, these figures become respectively 28.2% and 35.4%, 851

pieces being badly computed by both; and when combined with Algorithm 4, these figures become

respectively 19.9% and 19.3%, 936 pieces being badly computed by both.

Therefore, the use of different feature sets seems to imply a significant amount of specific failures.

A more detailed analysis is shown on Figure 4.2 which plots the number of failures (normalized

by the number of pieces in each genre) specific to each set, when combined with Algorithm 4, versus

musical genres.4 The first two bars in this figure should be understood as follows: “around 7% of

errors made by Algorithm 4 on the Cha Cha data set when using feature set 6 were not made when

using feature set 14 and, inversely, around 4% of errors made when using feature set 14 were not

made when using feature set 6.” In this figure, we can see for instance that all the errors made

by set 14 on the Jive and Pop data sets are also made by set 6 but not the other way around, a

significant number of errors that are made by set 6 are not made by set 14. The inverse is true on

the Latin data set. We can also see that both sets make around the same number of specific errors

on e.g. the Classical, Loops, Rock, Soul and Waltz data sets.

As reported in Table 4.2 and in Appendix A, feature sets 6 (made up only of energy features)

and 14 (free of such features but one, the first-order differential of MFCC1) are both relatively

4In this figure, we use the following abbreviations for musical genres: “Ch” stands for ChaCha, “Cl” for Classical,
“El” for Electronic, “Ja” for Jazz, “Ji” for Jive, “Qu” for Quickstep, “La” for Latin, “Lo” for Loops, “Mi” for
Miscellaneous, “Po” for Pop, “Ra” for Rap/Hip-Hop/Trip-Hop, “Re” for Reggae, “Ro” for Rock, “Ru” for Rumba,
“Sa” for Samba, “So” for Soul, “Ta” for Tango, “VW” for Viennese Waltz and finally “Wa” for Waltz.
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Figure 4.2: Specific failures induced on pieces of different musical genres by two feature sets when
combined with Algorithm 4: set 6 (in dark bars, the magnitude-normalized first-order differential
of energy in the 36 ERB subbands) and set 14 (in light bars, the selection of features advocated
on page 98, excluding magnitude-normalized first-order differentials of the energy in the 36 ERB
bands).

good sets; additionally, they are complementary as they make a significant amount of their errors

on different pieces. This observation is true when considering different tempo induction algorithms.

These two feature sets seem to represent different aspects of rhythm and should therefore be

considered jointly. One would expect that the combination of these two feature sets into a single set

(i.e. feature set 13) would result in a significant performance increase. For instance, one may hope

that the errors made by a single set would not occur when considering both sets together, hopefully,

only the errors common to both sets would remain. If this were true, feature set 13 would reach an

accuracy (on the whole data set and with respect to accuracy 2) of around 73.6% when combined

with Algorithm 1. The accuracy actually reached is 63.8%, which is not significantly better than that

obtained with the best individual set (set 14, 63.2%), the accuracy loss with respect to what would

ideally be reached is around 10 percent points, which is considerable.5 Similarly, when combined

with Algorithm 4, the loss is around 6 percent points, when combined with Algorithm 12, the loss

is around 4 percent points and in both cases the combination of sets does not perform significantly

better than the best of the two sets (set 6 in both cases).

Let us consider the errors made by feature set 13. When associated with Algorithm 1, 69.5% of

5remark additionally that this is the best accuracy obtained by Algorithm 1.
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the errors made by the combination of sets 6 and 14 (i.e. set 13) are errors common to both sets.

On the other hand, 20.2% are errors specific to set 6 when considered alone, 8.1% are errors specific

to set 14 and 2.1% are errors that none of these sets makes when considered alone. When associated

with Algorithm 4, these figures become respectively 80.4%, 13.4%, 5.6% and 0.5%. Finally, when

associated with Algorithm 12, these figures become respectively 72.4%, 16.5%, 7.5% and 3.6%.

A conclusion from this analysis is that the strategies for combining features considered in this

section do not yet take full advantage of large sets of good and complementary features. An important

issue still resides in this aspect of tempo induction algorithms.

Joint estimation of several metrical levels As can be observed in Table 4.2 (underlined re-

sults), the musical parsing of periodicity functions proposed by Dixon et al. (2003) is a better strat-

egy than all the other combining and parsing strategies.

This is a strong argument in favor of the consideration of influential schemes between metrical

levels in the implementation of tempo induction algorithms, and this confirms analyses of the ISMIR

2004 contest results (see on page 58).

4.3 Comparison with state-of-the-art tempo induction sys-

tems

In this section, we compare three of the best algorithms proposed above with state-of-the-art algo-

rithms that took part in the ISMIR 2004 tempo induction contest.

In this comparison, we use the whole data set (i.e. 3223 pieces). Recall that 2734 pieces of

this data set have been used for the contest (Loops and Ballroom data sets: 2036 + 698 pieces).

It is therefore possible to extend the comparison presented here to the remaining algorithms that

took part in the contest. As precised in (Gouyon et al., 2006), the 698 Ballroom pieces are publicly

available and the 2036 Loops can be easily obtained, opening the way to researchers to compare

their algorithms to those presented here.

Note that the (slight) differences between the performances reported here and those published

in (Gouyon et al., 2006) are due to a change in the accuracy metrics (namely a slight increase of the

precision windows).

From the pool of contest algorithms, we focus on the following one:

Klapuri: This algorithm, published in (Klapuri et al., 2005), has been described earlier in this dis-

sertation on page 41. We include it in this comparison as it won the ISMIR 2004 tempo

induction contest.

Scheirer: We include Scheirer’s algorithm (1998) in this comparison as it is a very influential al-

gorithm, has represented for a long time the state-of-the-art in tempo induction and is open
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Algorithms
1 2 3 4 5 6 7 8 9 12 13 14

Integration rationale
Integrating features Integrating periodicity functions

Feature sets Sum Sum Product Musical Parsing

set 1 68.1 74.2 68.3 68.1 74.2 68.3 68.1 74.2 68.3 81 77.5 80.1
set 2 64.2 73.2 67.3 64.2 73.2 67.3 64.2 73.2 67.3 77.1 76.7 74.6
set 3 69.7 80.6 69.5 73.2 83.8 70.5 72.6 83.4 70.1 88.5 90 69.9
set 4 67.9 77.7 64.6 71 86.1 53.8 68.1 82.8 63 87.9 87.5 52.1
set 5 61.1 78.1 65.2 67.7 81.4 61.8 64.8 76.3 63.8 84 83 54
set 6 72.2 77.1 67.9 68.9 72.8 70.8 71 74 68.5 85.9 82.6 51.1
set 7 70.7 79.1 69.5 70.5 78.5 70.5 71 78.1 68.7 78.3 85.7 75.1
set 8 61.5 72.4 63.2 68.1 73 70.8 68.3 73.2 65.6 82.4 76.5 36.8
set 9 53 68.3 51.5 60.1 58.3 55 4.1 35.8 56 72.2 54.2 24.1
set 10 60.3 75.3 65 64 74.6 64.4 61.8 72.6 63.6 78.7 73.6 37.6
set 11 73 82.2 71.4 73.4 84.7 69.3 70.8 83.6 71.2 87.1 86.9 70.8
set 12 64.2 78.1 64.8 65 76.9 65 65.4 77.3 65.8 82.6 83.2 69.1
set 13 71.8 78.7 68.5 71.2 73.2 68.1 69.5 74 71.4 86.5 84.9 49.1
set 14 65.8 80 66.5 71.4 76.5 68.1 71.2 74.4 70.1 84.9 83.6 40.7

ACF comb FFT ACF comb FFT ACF comb FFT ACF comb FFT
Periodicity function

Table 4.2: Accuracy 2, in %, of diverse tempo induction algorithms implementing different choices regarding feature sets, integration
rationales (integrating features or periodicity functions), integration operations (sum, product or musical parsing) and periodicity
functions (ACF, comb filterbank or Fourier transform). The evaluation is done over Alonso data. Bold fonts are used to highlight the
best feature set given an algorithm (i.e. best line given a column), underlining is used to indicate the best algorithm given a feature
set (i.e. best column given a line). Performances of Algorithm 10 and Algorithm 11 are not provided here for being clearly below those
of the other algorithms.
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source and available on the web.6 It has been described on page 42. Recall that a back-end

has been added to the original code in order to output a single tempo scalar instead of a series

of beats.

DixonACF: The algorithm by (Dixon et al., 2003) has been described on page 41. The reasons

to include it in this comparison are its very good performance in the contest and the fact

that Algorithm 12, also used in this comparison, implements the same combining and parsing

strategy.

We compare these algorithms to Algorithm 12 associated with three different feature sets: the

59 features selected on page 98 (set 13), the magnitude-normalized first-order differential of energy

in Dixon’s 8 subbands (set 3) and the energy in the 36 ERB subbands (set 4).

Algorithms All Ballroom Loops Alonso
acc1 acc2 acc1 acc2 acc1 acc2 acc1 acc2

Klapuri 68.3 85.9 63.9 91.8 71.1 82.3 63 92.6
Scheirer 38.9 69.7 52.3 75.9 33.2 66.2 43.6 75.7
DixonACF 42.6 85 43.5 87.8 43.3 83.7 38.4 86.7
Algo. 12 & set 13 46.3 84.7 57.9 91.3 44.2 82.1 35.4 86.5
Algo. 12 & set 3 54.7 84.9 63.5 88.1 53.9 82.9 45.8 88.5
Algo. 12 & set 4 63.8 83.4 61.6 83.2 67.3 83.4 51.9 87.9

Table 4.3: Comparison with state-of-the-art tempo induction systems.

Accuracies of the diverse algorithms are reported in Table 4.3. We can observe that our algorithms

perform better than Scheirer on all data sets and with respect to both accuracy measures. They

perform only slightly worse than Klapuri on overall, with respect to accuracy 2. On the other hand,

they perform significantly worse with respect to accuracy 1.

On overall, our algorithms perform similarly to DixonACF when compared with accuracy 2 and

perform better when compared with accuracy 1. This is interesting as it highlights the importance of

the input features (only differences with DixonACF). Interestingly, even if it performs similarly with

respect to accuracy 2, the association of Algorithm 12 with feature set 3 is significantly better than

DixonACF with respect to accuracy 1. This is interesting as they are basically the same algorithm

and use almost the same features, the difference lies (for the former) in the normalization of the

feature differentials by the magnitude.

4.4 Conclusions

This chapter addressed the task of automatic tempo induction. We evaluated several tempo in-

duction algorithms implementing different strategies regarding some open issues among those listed

6http://sound.media.mit.edu/∼eds/beat/tapping.tar.gz

http://sound.media.mit.edu/~eds/beat/tapping.tar.gz
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on page 56, namely the choice of periodicity function and the combination and parsing of multiple

information sources. These algorithms’ inputs are diverse low-level feature sets, ranked in Chap-

ter 3 with respect to their representativeness of beats. Some algorithms show performances that are

comparable to the state-of-the-art. We also demonstrated that a special effort should be dedicated

to the choice of algorithm input features.

In accordance with findings of the previous chapter, energy in several frequency bands are better

features than the energy computed on the whole frequency range, energy in low and high frequency

bands are better features than energy in mid-frequency bands, spectral features and MFCCs are

also relatively good features for tempo induction, first-order differentials of MFCCs are better than

magnitude-normalized first-order differentials (indeed, the magnitude-normalized first-order differ-

ential of MFCCs is the worst feature set is the same for all tempo induction algorithms tested here),

and the feature set selected on page 98 also provides relatively good accuracy figures.

Among many possible strategies for combining and parsing multiple information sources, the

best strategy seemed to be that proposed by Dixon et al. (2003). This is a strong argument in

favor of considering constraints posed by the metrical hierarchy in the design of tempo induction

algorithms (i.e., estimating several metrical levels jointly instead of a single one). Results show that

the Fourier transform is a worse rhythm periodicity function (at least in our use of it) than the

ACF and comb filterbanks. Comb filterbanks seem to perform slightly better than the ACF, but

no clear conclusion could be reached. More research is still required in the design of mathematical

transformations suited to the computation of rhythmic periodicity functions. Integrating periodicity

functions seems to yield slightly better results than the integration of features. Nevertheless, the

slight accuracy gain may not be worth the increase in computation load.

As detailed in this chapter, feature set rankings (from Chapter 3) are not verified for all algo-

rithms. That is, when used as input to some algorithms, feature sets that are highly representative

of beats may provide worse results than less representative feature sets. In our opinion, this indicates

that the tempo induction algorithms used here are still not taking full advantage of the explanatory

power of feature sets and that more research is needed in the design of better algorithms. We have

seen for instance in Paragraph 4.2.3.3 that the combination of good and complementary feature sets

does not necessarily yield significantly better results than their parts. More efforts should there-

fore be dedicated to improving strategies for combining multiple information sources. Indeed, it is

possible that the combining and parsing strategies used here are sensitive to the number of features

and impose a sort of “ceiling” in terms of number of feature they can deal with, hence preventing

the use of high numbers of features. This would explain the fact that the ranking, according to

Chapter 3, of feature sets 6 (36 features), 3 (8 features) and 7 (4 features) are not respected by

many algorithms (see on page 110). This would also explain the fact that the “best” feature set (i.e.

the most representative of beats, set 13, made up of 59 features), even if yielding results close to the

best when combined with most algorithms, does not always outperform other feature sets.
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Rhythm periodicity functions plot salience versus period (or frequency) via processes that em-

phasize self-similarity in a given signal. This is closely related to the process of template matching,

where the template is defined by the data at hand. Viewing template matching as one among several

approaches to pattern recognition (which associated recognition function can be e.g. the correla-

tion, (Jain et al., 2000, Table 2)), a generalization leads to the potentially interesting consideration

of other pattern recognition approaches in the task of seeking periodic behaviors in feature lists.

Pattern recognition techniques would permit a more elegant way to integrate the reduction of the

number of features in this task and may be more effective in dealing with large numbers of features

than the simple techniques used in this chapter.



Chapter 5

Applications of rhythm periodicity

functions for music content

processing

The standardization of personal computers and worldwide low-latency networks, the extensive use of

efficient search engines in everyday life, the continuously growing amount of multimedia information

on the web, in broadcast data streams or in personal and professional databases and the rapid

development of on-line music stores such as Apples iTunes has recently boosted developments in

Music Information Retrieval (MIR) and music content processing.

MIR is a young and very active research area. This is clearly shown in the constantly growing

number and subjects of articles published in the Proceedings of the annual International Confer-

ence on Music Information Retrieval (ISMIR, the first established international scientific forum for

researchers involved in MIR) and also in related conferences and scientific journals such as ACM

Multimedia, IEEE International Conference on Multimedia and Expo or Wedelmusic, to name a few.

Research in MIR addresses the wealth of scenarios for interacting with music posed by the digital

technologies in the last decades. Applications are manifold, consider for instance automated music

analysis, personalized music recommendation, intelligent on-line music access, query-based retrieval

(e.g. “by-humming,” “by-example”) and automatic play-list generation. For Aigrain (1999), in the

near future, content-processing technologies will provide “new aspects of listening, interacting with

music, finding and comparing music, performing it, editing it, exchanging music with others or sell-

ing it, teaching it, analyzing it, and criticizing it.” Along this line of thought, we understand by

“processing music content” both the exploitation and description of music content. That is, as we

argue in (Gouyon et al., in press), “processing” may mean describing a musical database; browsing,

exploring or understanding pieces in such a database; comparing a number of pieces; retrieving any

119
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desired selection of pieces; introducing new pieces to a database; recommending music (Cano et al.,

2005b); transforming pieces; etc. Among the vast number of disciplines and approaches to MIR

(an overview of which can be found in (Downie, 2003)), part of the research is dedicated to the

extraction of musical descriptors from audio signals. Processing, in its diverse meanings (retrieval,

transformation, etc.), is applied on these descriptors. Among these descriptors, rhythm descriptors

are especially relevant. For instance, tempo plays an important role in automatic sequencing of

musical pieces into playlists (for dancing at least) and rhythmic expressiveness transformations. In

addition to tempo, rhythmic descriptors as the swing or the time signature determine partly musical

genres; they are therefore of very first relevance in automatic genre classification, as in many other

MIR applications.

This chapter illustrates the use of rhythm periodicity functions and descriptors derived from

such functions in MIR scenarios: Section 5.1 illustrates the use of tempo, tatum, time signature and

periodicity features in genre classification experiments. Section 5.2 illustrates the use of another

descriptor, the swing, in rhythmic expressiveness transformations.1

5.1 Genre classification

Musical genre is a fundamental kind of metadata for browsing musical collections. Indeed, people

often describe their musical tastes with respect to genre. Musical genre classification has received

much attention from music record retailers and, recently, from audio and music researchers, especially

in the MIR community (Tzanetakis and Cook, 2002). An important direction of research now relates

to the definition of features of musical genres and their automatic extraction from various forms of

musical data (audio, scores, MIDI, MP3, etc.). Even if there is still room for disagreement on explicit

definitions of musical genres (Aucouturier and Pachet, 2003), there is a pervasive belief that this

notion has something to do with fundamental musical dimensions such as melody, instrumentation,

harmony and rhythm. Rhythmic descriptors are therefore very valuable candidates for musical

metadata. For instance, Dixon et al. (2003) claim that very few periodicities (the tempo, the measure

and optionally others as the dotted quarter-note) seem sufficient to classify 8 rhythmic classes

relatively well. Tzanetakis and Cook (2002) and Pampalk et al. (2003) respectively report on genre

classification experiments and definitions of similarity distances using signal descriptors embedding

(somehow) rhythmic aspects. Also, Foote et al. (2002) claim that all aspects of rhythm are captured

by a specific periodicity representation and that such representation is sufficient for the retrieval of

similar pieces of audio. This conclusion is however based on the analysis of solely 15 musical excerpts

(4 songs divided into several 10 s chunks).

In this chapter, we assess the relevance of a set of rhythmic descriptors in automatic musical

1Note that in this chapter we do not use the periodicity functions advocated in previous chapters. This is because
the work reported in this chapter was previous to that reported in Chapters 3 and 4. However, the purpose of this
chapter is to demonstrate the use of periodicity functions in general, not that of the best periodicity function.
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genre classification experiments. The Ballroom data set introduced on Paragraph 2.3.2.2 provides

the necessary ground-truth for our experiments.2 We acknowledge that there actually exists no

ground-truth with respect to genres (Aucouturier and Pachet, 2003). However, some musical genres

are rapidly recognizable by listeners, even with minimal musical training, and on the dance floor,

dancers do recognize instantly what dancing step fits best to the music they hear. Dancing having

much to do with rhythm, we believe that ballroom dance music provides a relatively solid basis for

our experiments.

Sections 5.1.1, 5.1.2, 5.1.3 and 5.1.4 illustrate the use of, respectively, the tempo, the tatum, the

time signature and periodicity features in genre classification experiments.

5.1.1 Tempo

5.1.1.1 Algorithm

Many algorithms exist to compute the tempo of audio signals, they are reviewed in Chapter 2. As

claimed in Chapter 2, they all imply the computation of a periodicity function. We will focus here

on the BeatRoot algorithm from Dixon (2001a), available as GPL code.3 This algorithm is referred

as DixonT and detailed on page 41.

5.1.1.2 Genre classification experiments

As reference, let us consider the correct tempo alone (i.e. measured manually). A 1-NN classifier

using solely this descriptor classifies the 8 ballroom dance classes with an accuracy of 82.3%. A C4.5

decision tree achieves 78.6%. This last result was obtained with a special tweaking of the algorithm:

forcing a relatively high number of instances per leaf,4 which results in smaller trees, with fewer

leaves and guarantees good generalization of the result. The number of leaves is 9. Each class

corresponds to a leaf, except one (Rumba) which corresponds to two leaves. In sum, this technique

highlights a clear ordering of classes with respect to tempi. Therefore, one can assume that, given

a musical genre, the tempo of any instance is among a very limited set of possible tempi, namely,

from slow to fast:5

2Recall that this data consists of 8 classes of ballroom dance music, it is publicly available and the classification
random-guess baseline accuracy is 15.9%.

3at http://www.ofai.at/∼simon.dixon/beatroot/index.html . Different algorithms could be used for the task, as
those detailed in other chapters of this document.

420 instead of default value 2
5Note however that these high levels of accuracy may be due to the relatively small number of instances (698).

The observation that tempo is genre-specific may not hold when considering very large number of musical pieces.

http://www.ofai.at/~simon.dixon/beatroot/index.html
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tempo< 91 ⇒ Slow Waltz

91 <tempo< 96 ⇒ Rumba

96 <tempo< 102 ⇒ Samba

102 <tempo< 104 ⇒ Rumba

104 <tempo< 124 ⇒ Cha Cha

124 <tempo< 141 ⇒ Tango

141 <tempo< 176 ⇒ Jive

176 <tempo< 180 ⇒ Viennese Waltz

tempo> 180 ⇒ Quickstep

Using solely BeatRoot tempo, a 1-NN classifier yields 51.7% correct classification. With C4.5,

an accuracy of 52.5% is achieved. As illustrated in Figure 2.12(a), the algorithm makes systematic

errors by confusing metrical levels. Metrical level errors cause the loss of accuracy with respect

with using the correct tempo. More importantly, this causes decision tree to have too many leaves

(around 15). This means that the tempo axis is divided in small clusters which do not represent

characteristic tempo zones.

5.1.2 Tatum
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Figure 5.1: Onset sequence (a) — IOI histograms (b and c).

5.1.2.1 Algorithm

Fundamental to the tatum induction algorithm is the computation of audio signal Inter-Onset Inter-

vals (IOIs, subsequent to a detection of onsets). In accordance with the tatum definition (page 10),

keeping the shortest IOI would not suffice to determine the tatum. Indeed, in e.g. syncopated

musical excerpt, the tatum may not be explicit in the IOI list, but rather be implied by the rela-

tionships between those intervals (see Figure 5.1 for an illustration). Such cases are better handled
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Figure 5.2: “Piano Roll” and IOI smoothed histogram of a MIDI drum track.
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Figure 5.3: Tatum induction algorithm flow diagram.

when defining an IOI as the time difference between any two onsets (not necessarily successive) than

between successive onsets. Here also, see Figure 5.1 for an illustration: in b) IOIs are computed

taking into account all pairs of onsets, in c) IOIs are computed taking into account solely successive

onsets, the tatum —of 1 time unit— is not explicit. Therefore, the algorithm is based on a measure

of IOI recurrence. As there are integer timing ratios between metrical levels, histograms of IOIs

should show peaks at approximately harmonic positions. If one extracts note-on timing data from

quantized MIDI drum tracks, then the fact that the fastest pulse contributes to the raising of peaks

in the histogram at the exact positions of all of its multiples can be clarified visually on Figure 5.2.

Therefore, herein the tatum is defined as the gap of the IOI histogram harmonic series —one could

make an analogy with the notion of fundamental frequency. The tatum induction algorithm is

divided in the following steps.6

Onset detection The short-time energy is computed over non-overlapping signal frames (e.g. 11 ms).

When the energy value is a certain percentage (e.g. 200%) higher than the energy average of a fixed

number of previous frames (e.g. 8), an onset is detected. It is assumed that there are at least 60 ms

6Part of the material in this section has been previously published in a conference article written with Perfecto
Herrera and Pedro Cano (Gouyon et al., 2002).



124 CHAPTER 5. APPLICATIONS OF RHYTHM PERIODICITY FUNCTIONS

in between two onsets. To each onset is associated a weight (i.e. a degree of confidence), correspond-

ing to the number of after-onset successive frames whose energy is higher than the aforementioned

averaged energy. The weight gives an indication whether the onset should be considered as an actual

one or an artifact of the onset detection scheme, which can be useful for subsequent uses of the onset

list. Optionally, a minimum number of onsets per second (e.g. 2.5) can be imposed to the algorithm.

To reach this requisite, the aforementioned percentage is lowered step by step (step set to e.g. 10%).

IOI computations As mentioned earlier, we take into account the time differences between any

two onsets. A weight is associated to each IOI, corresponding to the smallest weight among the two

onsets used for the IOI computation.

IOI histogram generation In order to handle short-time timing deviations, the histogram is

smoothed by convolution with a Gaussian function whose standard deviation was empirically ad-

justed.

IOI histogram peaks detection Peak positions and heights are detected in the histogram with

a 5-point running window method. A local maximum is detected at index i when the corresponding

value is higher than four others: at indexes i− 2k, i− k, i + k and i + 2k (where k is set to e.g. 4).

Tatum period computation The fundamental aspect of the tatum computation is the use of a

particular pulse matching function (see page 27): the Two-Way Mismatch error function (TWM,

(Maher and Beauchamp, 1993)). According to the previous definition of the tatum, we seek the

IOI that best predicts the harmonicity of the IOI histogram. The basic procedure is to consider

many possible tatum period candidates (all with phase zero) and generate corresponding pulses

and measure their matching with IOI histogram peaks. Candidate periods range e.g. from 80 ms

to 700 ms (750 BPM to 85 BPM). For each tatum candidate, a corresponding pulse is generated

and two error functions are computed. The first one illustrates how well the IOI histogram peaks

explain the beats (resembling the “positive evidence” mentioned on page 24): a global deviation is

computed as depicted in the algorithm on the facing page. The second one illustrates how well the

beats explain the IOI histogram peaks (resembling the “negative evidence” mentioned on page 24);

it is computed as the number of unmatched beats. The TWM error function is a linear combination

of these two functions (e.g. with equal weighting factors). The tatum period is set to the period of

the pulse corresponding to the TWM error function global minimum.

Tatum period adjustment and phase computation The tatum period is refined and its phase

computed by achieving a matching between several pulses and the signal onsets. As in the previous

step, the TWM error function is computed. Differences are that the matching is done on the onsets
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Algorithm 1 TWM first error function.

1: deviation = 0
2: for each candidate pulse period do
3: for each candidate pulse phase do
4: for each IOI histogram peak do
5: deviation ← deviation+distance of the peak to the closest beat
6: end for
7: end for
8: end for

(and not the IOI histogram peaks), that few period candidates are considered around the first tatum

period estimation (e.g. period±15 ms, by 1 ms steps) and that we do seek the best phase.

The reason for achieving the tatum period adjustment is that the first tatum period estimation

is not very accurate because of the histogram smoothing. The smoothing permits to agglomerate

IOIs that should be considered jointly, even if not exactly equal; it necessarily entails a trade-off

between precision and amount of IOI agglomeration. Note that the accuracy of the tatum period

computation is an important issue, even a very small error in this value does propagate in an additive

manner in the prediction of future tatum beats.

5.1.2.2 Algorithm evaluation

The algorithm has been evaluated on drum tracks,7 both artificially generated (1000 instances)

and real ones (57 instances). The algorithm for generating artificial drum tracks is roughly the

following, a primary pulse is first defined at each integer multiple position of which a percussive

sample is added in an empty audio signal. Samples are randomly chosen from a percussive sound

database. Then, a tatum is defined as an integer divisor of the previous pulse, at each position

in the tatum track, either a sample or silence is randomly assigned. To account for more realistic

features, deviations of 1 to 10 ms from the exact tatum track positions are allowed and white noise

with a SNR of 30 dB is subsequently added to the signal. The ground-truth for the tatum period is

an input parameter for this algorithm. On the other hand, the tatum period of 57 real drum tracks

have been manually annotated. Using the accuracy measures detailed on page 47, performance are

summarized in Table 5.1.

Drum tracks Accuracy 1 Accuracy 2

Artificial 77.3 88.4
Real 86 93

Table 5.1: Performances (in %) of the tatum-finding algorithm on drum tracks

7Audio signals of restricted polyphonic complexity, containing specific sets of percussive timbres as acoustic bass
drums, snare drums, hi-hats, toms and cymbals.
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Figure 5.4: Illustration of the two possibilities for beat grouping: duple or triple?

5.1.2.3 Genre classification experiments

Using the tatum as single input feature of a 1-NN classifier yields a classification accuracy of 50.4%,

using a C4.5 tree the accuracy is 51.8% (15 leaves), both accuracies are computed as 10-fold cross-

validations. These accuracies are comparable to those obtained when using the tempo (see on

page 121).

5.1.3 Time signature

In this section we address the problem of classifying polyphonic musical audio signals by their meter:

the number of beats between regularly recurring accents (or downbeats). The problem is simplified

to a ‘duple’ vs ‘triple’ decision (i.e. groupings of two beats vs groupings of three beats), see Figure 5.4

for an illustration).8

5.1.3.1 Algorithm

The approach followed in this algorithm aims to test the hypothesis that acoustic evidences for

downbeats can be measured on signal low-level features; focusing especially on their temporal re-

currences. The algorithm is based on the computation of inter-beat segment features, beat indexes

being extracted in a semi-automatic manner to provide reliable input to the problem of interest here.

Frame feature computation We set a frame size of 20 ms, and a hop size of 10 ms. On each

signal frame, the following low-level features are computed:9

1. f1: Energy

2. f2: Spectral flatness, i.e. ratio geometric mean/arithmetic mean (for this feature, frames are

multiplied by a Hamming window before DFT computation)

8Part of the material in this section has been previously published in a conference article written with Perfecto
Herrera (Gouyon and Herrera, 2003b).

9More details on the determination of the best features (and the inter-beat segment descriptors) by diverse feature
selection experiments can be found in (Gouyon and Herrera, 2003b).
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Figure 5.5: Evolution of the energy over the frames of 20 seconds of “A lo Cubano” (Orishas, Cuban
Hip-Hop)

3. f3: Energy in upper-half of first Bark band (approximately 50-100 Hz)

Tactus induction As previously mentioned, beat indexes are extracted in a semi-automatic man-

ner to provide reliable input to the problem of interest here. (Chapter 2 provides a review of

algorithms that could be used for the task.)

Region definition Beats are matched with frame indexes. For each beat, three regions of interest

are defined:

1. R0: The whole segment between the beat and the next one (the inter-beat segment), recentered

around the beat

2. R1: The 120 ms region surrounding the beat

3. R2: The rest of the inter-beat segment, i.e.
(

R0 ∩R1
)

Inter-beat segment descriptor computation Four descriptors are defined as the standard

deviation of f1 over R0, the average of f2 and f3 over R1, and the temporal centroid over R0 (this

descriptor does not entail frame feature computation). Values of the descriptors are normalized

(mean is subtracted and they are divided by the standard deviation). Each musical excerpt is

then represented by 4 temporal sequences, whose lengths correspond to the number of beats of this

excerpt. Each sequence is the evolution of a specific descriptor over the different inter-beat segments,

see Figure 5.6 for an illustration.
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Figure 5.6: Evolution of the energy standard deviation over R0s (same song, same temporal scale
on the X-axis as on Figure 5.5, but measured in beat indexes).

Periodicity detection The (normalized) autocorrelation r(τ) is computed for each sequence as

follows. Let x be the subsequence corresponding to beat indexes 0 to I, and y the subsequence

corresponding to beat indexes τ to (τ + I).

r (τ) =

∑I
i=0 xiyi

√

∑I
i=0 (xi)

2
√

∑I
i=0 (yi)

2
∀τ ∈ {0 · · ·U}

where U is the upper limit for the lag τ (e.g. 8 beats), and I the integration time (e.g. 10 beats).

High peaks in a descriptor autocorrelation function indicate lags for whose this descriptor reveals

recurrences along the sequence.

Computation of decisional features We specify the criterion M for making decisions regarding

the duple or triple nature of excerpts:

M =

(

(r (2) + r (4) + r (8))

3

)

−

(

(r (3) + r (6))

2

)

M is a real number; the farther from zero in the positive values, the more it is representative of

duple time signatures; the farther from zero in the negative values, the more it represents triple

time signatures. There is one value of M for each descriptor. Henceforth, the relevant features

for the duple/triple decision are the values of M corresponding to each descriptor. In the example

illustrated in Figures 5.5 and 5.6, relative to a single feature (the evolution of the energy standard

deviation over R0s), M = 0.6313, the time signature is effectively duple.

Classification Excerpts are represented by 4 features: the criteria M relative to the 4 inter-

beat segment descriptors. The decision regarding the time signature of a test excerpt shall be taken
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according to the set of values for these features. Deriving a class membership from a set of descriptor

values can be achieved by several pattern recognition techniques. For instance, Discriminant Analysis

(DA) derives regions of class memberships in the 4-dimensional feature space from labeled data —in

our case, by the very definition of M , the region boundaries are around zero. This technique gave

us fairly good results. Even a simple rule, relative to a single feature, seems to give error rates

relatively acceptable. Namely, “For a given excerpt, if Mtemporal centroid(R0) > −0.108046, then this

excerpt has a duple time signature, otherwise its time signature is triple.”

5.1.3.2 Algorithm evaluation

The CUIDADO data set (see Section 3.2) was used for evaluating this algorithm. Recall that it is

made up of 70 sounds, 34 of which are triple and 36 duple. We have tested different approaches

to classification ranging from non-parametric models (kernel density estimation) to parametric ones

(discriminant analysis), and including rule induction, neural networks, 1-Nearest Neighbor (1-NN),

or Support Vector Machines (SVMs). Results are obtained by ten-fold cross-validation. A discrim-

inant analysis with the four features introduced above yields a 5.2% error rate. With 6 different

classifiers (Näıve Bayes, kernel density, 1-NN, SVM, C4.5, PART)10 and a single feature, the feature

M computed from the temporal centroid values over R0s, error rates were found to lie around 10%.

5.1.4 Periodicity features

5.1.4.1 Descriptors

We consider a total of 69 descriptors.11

Periodicity Histogram descriptors Eleven descriptors are based on a first representation of

signal periodicities, the “periodicity histogram” (PH) (Pampalk et al., 2003). This representation

(see Figure 5.7), loosely inspired by (Tzanetakis and Cook, 2002), is the collection in a histogram of

the saliences of different pulses (from 40 BPM to 240 BPM) in successive chunks of signal (12 s long,

with overlap). In each chunk of signal, periodicities are computed via a comb filterbank (Scheirer,

1998). Among relevant differences with previous works stands the fact that the audio data is first

preprocessed by a psychoacoustic model, removing information in the audio signal which is not

critical to our hearing sensation while retaining the important parts. Also, periodicity magnitudes

are weighted with respect to their periods, emphasis being given to tempi around 120 BPM, the

“preferred tempo” region.12

Descriptors are the following:

10Experiments have been done using the commercial software Systat (http://www.systat.com/) and the open-source
software Weka.

11Part of the material in this section has been previously published in a conference article written with Simon
Dixon, Elias Pampalk and Gerhard Widmer (Gouyon et al., 2004a).

12See (Pampalk et al., 2003) for details.

http://www.systat.com/
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Figure 5.7: Periodicity histogram of a Jive excerpt. The tempo is 176 BPM. Gray shadings tell us
the number of analysis chunks for which a certain energy was exceeded. Note the effect of “preferred
tempo” weighting.

• The most salient periodicity: highest peak in the PH.

• The distinctiveness of the most salient periodicity. It is measured as the ratio between the

highest peak and the second highest peak.

• The periodicity power. This is the sum of the energy in the PH.

• The periodic energy in the first three Bark bands. This is the same as the previous, but

considering solely the energy in the 3 lowest frequency bands defined by the Bark scale, below

300 Hz.

• The PH centroid, defined as the tempo for which half of the PH energy is contained in lower

tempi.

• Three measures of the percussiveness. The percussiveness is computed as the central tendency

of the energy in diverse frequency bands, defined by the Bark scale, of the half-wave rectified,

first-order difference filtered, waveform. We use three variations of this descriptor where the

central tendency of the energy is computed in different ways: mean(x), mean(x > mean(x))

and median(x > median(x)).

• Three measures of the percussiveness in low frequencies. This is similar as above but using

only the energy in the 3 lowest Bark bands.

Inter-Onset Interval Histogram descriptors Another pool of 58 descriptors is made up of

quantities computed from a second representation of the signal periodicities, the Inter-Onset Interval

Histogram (IOIH) introduced by Gouyon et al. (2002) and described in Section 5.1.2. Time intervals

(in seconds) are drawn on the X-axis while (normalized) recurrences are drawn on the Y-axis (see

Figure 5.8).
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Figure 5.8: IOI histogram of the same Jive excerpt as Figure 5.7. Recurrence vs time interval. The
tempo is 176 BPM (around 350 ms), which corresponds to the third peak (not to the highest one).
The second highest peak is the measure (44 MPM, around 1.4s).

The IOIH is in many ways similar to the IOI clusters obtained in (Dixon et al., 2003). We

therefore compute descriptors directly inspired by those detailed in (Dixon et al., 2003): selected

prominent periods in the IOIH, together with their saliences.

• The saliences of 10 periodicities whose periods are the 10 first integer multiples of the tatum.

Note that solely the period salience is kept, not the period value. Therefore, those descriptors

are independent of the tempo.

Then, inspired by the analogy between the IOIH and a spectral representation, we define 48 other

descriptors as common “spectral” descriptors (distribution statistics and MFCCs), but computed

on the IOIH, not on a spectrum. In the following {xi}i=1...N are the IOIH samples.

• The mean of the IOIH magnitude distribution

∑N
i=1 xi

N

• The geometric mean of the IOIH magnitude distribution

(
∏

i

xi)
1/N
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• The IOIH total energy
N
∑

i=1

x2
i

• The IOIH centroid
∑N

i=1 ixi
∑N

i=1 xi

• The IOIH flatness

ln (gmean)− ln (mean)

• The kurtosis of the IOIH magnitude distribution. It measures how outlier-prone a distribution

is, i.e. its degree of peakedness.13

µ4

µ2
2

− 3

where µ2 and µ4 are respectively the second and fourth central moments of the IOIH magnitude

distribution.

• The IOIH “high-frequency content”
N
∑

i=1

ix2
i

• The skewness of the IOIH magnitude distribution. This is the degree of asymmetry of a

distribution. A distribution spread out more to the left than to the right of the mean has a

negative skewness. Perfect symmetry (e.g. a Gaussian distribution) results in a null skewness.

µ3

µ
3/2
2

where µ3 is the third central moment of the IOIH magnitude distribution.

• The first 40 coefficients of an analog to the Mel-Frequency Cepstral Coefficients (MFCCs).

MFCCs are widespread descriptors in speech research. The Cepstral representation has been

shown to be of prime importance in this field, partly because of its ability to nicely separate

the representation of voice excitation (the higher coefficients) from the subsequent filtering

performed by the vocal tract (the lower coefficients).14 Roughly, lower coefficients represent the

spectral envelope (i.e. the formants) while higher ones represent finer details of the spectrum.

One way of computing the Mel-Frequency Cepstral representation of a time signal is detailed on

page 76. In our case, we follow the same steps, but starting from the IOIH, not the magnitude

spectrum. Note also that the number of coefficients is different (40 instead of 13).

13http://mathworld.wolfram.com/topics/Moments.html
14http://mi.eng.cam.ac.uk/∼ajr/SA95/

http://mathworld.wolfram.com/topics/Moments.html
http://mi.eng.cam.ac.uk/~ajr/SA95/
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5.1.4.2 Genre classification experiments

All classification accuracies reported below are computed as 10-fold cross-validations.

PH descriptors With the 11 PH descriptors, a 1-NN classifier yields 52.8% correct classification.

The classification rate can be kept around the same value (slightly higher, 56.7%) when discarding

6 descriptors, and keeping solely:

• The most salient periodicity

• The distinctiveness of the most salient periodicity

• The periodicity power

• The PH centroid

• The first measure of the percussiveness in low frequencies

Periodicity saliences We refer here to the magnitudes of the IOIH peaks whose periods are the

ten first integer multiples of the tatum.

When using the 10 IOIH peak amplitudes, keeping therefore solely descriptors that are indepen-

dent of the tempo, we reach 51.2% of correct classification.

Other IOIH descriptors Let us consider the first 8 distribution statistics (i.e. not the MFCC-

like). Using them all yields 46.1% classification accuracy with a 1-NN classifier. Selecting solely 3

yields a slight improvement: 48.7%. “Winning” descriptors are:

• The kurtosis

• The skewness

• The high-frequency content

Let us now consider the MFCC-like descriptors. Also with 1-NN classification, the whole pool

(i.e. 40 descriptors) yields 79.6% accuracy. A very similar classification accuracy can be reached

(79%) when selecting the following 15 coefficients: MFCC1, MFCC2, MFCC3, MFCC6, MFCC7,

MFCC8, MFCC10, MFCC11, MFCC15, MFCC16, MFCC19, MFCC24, MFCC25, MFCC26 and

MFCC28.

Understanding IOIH MFCC-like descriptors When dealing with speech signals, it has

been shown that most of the relevant information occurs near the origin of the cepstral representation

and in a few peaks higher up the cepstrum,these peaks corresponding to multiples of the pitch.

Hence the focusing on the first MFCCs (less than 20), providing a compact representation of the
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spectral envelope while discarding the fine detail pitch information. This is especially true in speech

recognition tasks where researchers precisely seek pitch-independent descriptors.

When dealing with music signals, and when replacing the Fourier transform by an ad-hoc trans-

formation (the IOI histogram), it is less clear that higher coefficients should be discarded. In our

case, higher coefficients provide a representation of finer detail of the IOIH peaks, that is, a closer

look at the harmonic nature of this periodicity representation, its “pitch.”15 Therefore, higher co-

efficients seem to be somehow related to the pace of the piece at hand. On the other hand, lower

coefficients represent the global envelope of the IOIH, which would be the “spectral envelope” of a

proper spectrum. They seem to represent in some way the global structure of the IOIH.16 In our

understanding, they encode some aspects of the metrical hierarchy. Independently of the tempo.

5.1.5 Using expert classifiers

Section 5.1.1 shows that the correct tempo is a very relevant feature for genre classification and

that given a musical genre, the tempo of any instance is among a very limited set of possible tempi.

Moelants (2003) shows on a large amount of data (more than 90000 instances) that different dance

music styles (“trance, Afro-American, house and fast”) show clearly different tempo distributions,

centered around different “typical” tempi.

However, the metrical level errors that are typical of tempo induction algorithms produce a

dramatic decrease in classification accuracy.

In this section, we consider typical tempo induction errors in a domain-specific learning method-

ology, where the computed tempo is used to select an expert classifier which has been specialized on

its own tempo range.17 This enables the eight-class learning task to be reduced to a set of two- and

three-class learning tasks. In this framework, a classifier focuses first on the tempo and then uses

complementary features, as those detailed in Section 5.1.4, to make decisions in possibly ambiguous

situations (i.e. tempo overlaps).

For instance, let us consider the tempo ranges given in Table 5.2 and illustrated in Figure 5.9(a).

We define a Gaussian tempo probability function for each class. The Gaussian standard deviations

are defined so that the probabilities at the limits specified in Table 5.2 are half the value of the

corresponding probability maximum. Put together, these probabilities may overlap in certain tempo

regions (e.g. Samba and Rumba, see dashed-blue and solid-black lines around 100 BPM in Figure

5.9(a)).

We can adapt the tempo probability function of each genre accordingly to typical tempo errors

concatenating several Gaussians whose means are correct tempi and relevant multiples. See an

illustration on Figure 5.9(b).

15Note that the tatum is precisely computed as the “gap of the IOIH harmonic series” (Gouyon et al., 2002).
16For instance, excerpts whose periodicities have very similar saliences, as e.g. many Cha Cha, have a flat envelope.
17Part of the material in this section has been previously published in a conference article written with Simon

Dixon (Gouyon and Dixon, 2004).



5.1. GENRE CLASSIFICATION 135

80 100 120 140 160 180 200

0

0.2

0.4

0.6

0.8

1

(a)

50 100 150 200 250

0

0.5

1

1.5

2

2.5

3

(b)

Figure 5.9: 5.9(a): Tempo probability functions of 8 dance music styles. X-axis in BPM. 5.9(b):
Tempo probability adapted to typical metrical level errors, the solid black line is the sum of all
probability functions and represents overall class overlaps.
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Genre Tempo range

Cha Cha 116− 128
Jive 160− 180
Quickstep 198− 210
Rumba 90− 110
Samba 96− 104
Slow Waltz 78− 98
Tango 120− 140
Viennese Waltz 170− 190

Table 5.2: Dance music tempo ranges, in BPM.

5.1.5.1 Algorithm

Observing the probability functions in Figure 5.9(b), one can see that each tempo value corresponds

usually to two different potential classes, at the exception of three specific tempo regions in which

three classes overlap. These are 95 to 105 BPM and 193 to 209 BPM for Quickstep, Rumba and

Samba, and 117 to 127 BPM for Cha Cha, Tango and Viennese Waltz. Therefore, we propose to

build 30 different classifiers:

•
∑8−1

n=1 n = 28 two-class classifiers, {K1 . . . K28}, each expert in a specific pairwise classification

task.

• 2 three-class classifiers, K29 and K30, each expert in a three-class specific task

When presented with unknown instances, the knowledge available to the system is this set of 30

expert classifiers and the tempo probability functions for all possible classes. Therefore, the overall

classification process is given in the algorithm on the current page.

Algorithm 2 Overall classification process

1: Compute tempo T of the instance to classify
2: Find the classifier Ki whose tempo range includes T
3: Perform classification with Ki

Descriptors In addition to the BeatRoot tempo, we consider the 69 periodicity features computed

on two periodicity functions: the Periodicity Histogram and the Inter-Onset Interval Histogram

detailed in Section 5.1.4.

For each of the 30 classification tasks, we discarded the use of the tempo and we evaluated the

relevances of the remaining low-level descriptors on an individual basis (i.e. Ranker search method

associated to ReliefF attribute evaluator),18 and selected the 10 most relevant features. That is, the

30 classifiers all use 10 low-level features, that may be different in each case.

18Experiments have been conducted with Weka (Witten and Frank, 2000).
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5.1.5.2 Genre classification experiments

For classification, we use Support Vector Machines as it is commonly suggested for problems with

few classes (especially two-class problems). All percentages result from 10-fold cross-validation

procedures.

The majority of the 28 pairwise classifier accuracies, all using 10 descriptors, are above 90%. The

worst classifier is that between Slow Waltz and Viennese Waltz (81.8% accuracy, baseline 63%). The

best is that between Quickstep and Viennese Waltz (100% accuracy, baseline 55.7%). Regarding

the three-class classifiers, also using 10 descriptors, K29 (Quickstep vs Rumba vs Samba) has 84.1%

accuracy (baseline 36.6%) and K30 (Cha Cha vs Tango vs Viennese Waltz) 91.9% accuracy (baseline

42.3%).

To measure the overall accuracy of the 30 classifiers, let us compute a weighted average of their

individual accuracy. The weights are proportional to the number of times a classifier is actually

required (given the tempo estimations of the 698 excerpts). This yields 89.4% accuracy.

Let us now evaluate the whole classification process. Recall that the process involves two steps, it

suffers from tempo estimation errors in addition to misclassifications. In 24.3% of the cases (i.e. 170

excerpts) the tempo estimation step assigns excerpts to pairwise (or three-class) classifiers that do

not account for its true class. There is no way to recover from these errors, whatever the subsequent

classification, the excerpt will be assigned to an incorrect class.

The overall accuracy of the system is therefore the multiplication of both step accuracies, i.e.

0.894×0.757=67.6%.

One might wonder whether considering metrical level errors in the design of the tempo proba-

bilities (i.e. using tempo probabilities as defined in Figure 5.9(b) instead of Figure 5.9(a)) actually

results in any improvement. Recall that considering simple multiples of the correct tempo as errors

BeatRoot tempo induction algorithm has an accuracy of around 50%. The resulting overall accuracy

of the method presented here would therefore be around 0.894×0.5=44.7%. The improvement is

over 20%.

However, we noted that tempo induction is especially bad for Slow Waltz excerpts, yielding

around 75% to be assigned to wrong classifiers. This is because onset detection, in the tempo induc-

tion algorithm, is designed for percussive onsets, which are often lacking from waltzes. Removing

the Slow Waltz excerpts for the database, 587 remain, and the number of excerpts that are assigned

to irrelevant classifiers falls to 13.9%. The overall accuracy rises now to 76.5%.

In conclusion, reducing the problem from an eight-class learning task to several two- or three-

class learning tasks is only pertinent when using an extremely reliable tempo estimation algorithm.

To illustrate this, let us consider using the correct tempo (assigned manually) instead of BeatRoot

tempo (computed automatically). There, the classification accuracy rises to 82.1%. This corresponds

to two factors: misclassifications of the expert classifiers (i.e. 0.109%) and the “cost” of the initial

assumption regarding class tempo probabilities (i.e. instances —outliers— that effectively have a
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tempo outside of their class’s tempo range, i.e. 54 out of 698 instances).

This opens two important avenues for future work: improving the accuracy of the expert classifiers

(for instance in refining the selection of the most relevant descriptors for each classifier) and study

the validity of the limited-tempo-ranges assumption on a database containing more instances of a

larger number of classes.

5.2 Content-based transformations

Transformations of audio signals have a long tradition (Zölzer, 2002). A recent trend in this area of

research is the editing and transformation of musical audio signals triggered by explicit musically-

meaningful representational elements, in contrast to low-level signal descriptors. These recent tech-

niques have been coined content-based audio transformations (Amatriain et al., 2002), or adaptive

digital audio effects (Verfaille et al., in press).

In this section, we describe a system for transformations of audio signals based on a description

of their rhythmic structure.19 The Swing Transformer consists in a content description module and a

transformation module implying a high-quality time-scaling algorithm (Bonada, 2000). The former

achieves an offline pre-analysis which achieves onset detection, determination of tempo and beat

indexes at the quarter-note and eighth-note levels, as well as estimation of the swing ratio, if there is

any. The transformation module consists in time-scaling of the audio in real-time. The time-scaling

is controlled by a “User Swing Ratio.” While playing back the audio file (in a loop), the user can

continuously adjust the swing ratio in real-time: one can either increase or decrease the swing.

5.2.1 Swing estimation algorithm

Focusing on the swing of a musical excerpt requires the determination of two distinct metrical levels,

a fast and a slow one. As swing is applied on eighth-notes, it is necessary to recognize which elements

in the musical flow are eighth-notes. But this is not sufficient, one must also describe the excerpt

at a higher (slower) metrical level. That is, determine the eighth-note “phase:” in a group of two

eighth-notes, determine which is the first one. Indeed, it is not at all the same to perform a long-short

pattern as a short-long pattern. The existing swing ratio (if there is any) must also be estimated.

Onset and transient detection Onsets are detected as on page 123. For later use in the time-

scaling algorithm, transients are also extracted from the audio by an algorithm described in (Bonada,

2000). Here, the distinction “onset” vs “transient” is as follows: as detailed in (Gouyon et al., 2002),

the rhythmic analysis input must consist in reliable note onsets. On the other hand, as explained

in (Bonada, 2000), the time-scaling algorithm apply different processings on stable and transient

19Part of the material in this section has been previously published in a conference article written with Lars Fabig
and Jordi Bonada (Gouyon et al., 2003).
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Figure 5.10: Example of an IOI histogram of an audio signal with a 2.7:1 swing ratio

regions, there, the detection of non-stationarities does not have to be restricted to note onsets. In

one case (rhythmic analysis) the detection of non-stationarities should be rather oriented towards

“no false-alarms”, in the other case (time-scaling) it should rather be oriented towards “no missed.”

IOI histogram computation IOIs are computed, taking into account the time differences be-

tween any two onsets. An IOI histogram is generated as on page 124. As detailed below, the

standard deviation of the Gaussian smoothing window is an important parameter. Then, peak posi-

tions and heights are detected in the histogram with an N-point running window method. One can

verify on Figure 5.10 on this page and on Figure 5.11 on the next page the intuitive idea that peaks

corresponding to shortened and lengthened eighth-notes are closer to the position of the straight

eighth-note for small swing ratio (Figure 5.11) than for bigger ones (Figure 5.10). The estimation

of the swing ratio relies on that observation.

Tatum period estimation The tatum computation implements the assumption that music shows

approximate integer timing ratios between metrical levels. IOI histograms should show peaks at

approximately harmonic positions. Therefore, as on 124, the tatum is computed as the gap of

the IOI histogram peak harmonic series. The use of the TWM procedure purposely filters out the

deviations from exact integer ratios between pulses that occur e.g. in the case of music that swings.

In this stage, the Gaussian standard variation is set to a medium value (e.g. 35 ms) not to be led

astray by small IOIs.

Eighth-note and quarter-note period estimation The quarter-note period is computed pos-

terior to the tatum as the maximum peak in the IOI histogram among four candidates: the tatum,
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Figure 5.11: Example of an IOI histogram of an audio signal with a 1.5:1 swing ratio

twice the tatum, three times the tatum and four times the tatum (with additional boundary restric-

tions: the quarter-note minimum tempo is set to 50 BPM, and the maximum to 270 BPM).

The eighth-note period is then computed as half the quarter-note.

Let us provide a justification of this procedure. The swing concerns the smallest metrical level

present in the signal. As can be seen on Figure 5.10 on the preceding page and on Figure 5.11 on the

current page, the amount of swing has a direct influence on the tatum estimation. Let us consider

the following cases:

• If the audio has a swing ratio of 1:1 (i.e. “no swing”), the computation of the tatum yields

the actual smallest level. That is, the tatum is the eighth-note.

• If the swing ratio is 2:1 (“ternary feel”), the IOI corresponding to the straight eighth-note is

not present in the signal (nor in the histogram), there are solely shortened eighth-notes (whose

durations are 1
3 of that of a quarter-note) and lengthened eighth-notes (whose durations are 2

3

of that of a quarter-note). There, the tatum computation yields 1
3 of the quarter-note length.

• If the swing ratio is higher than 2:1 (above ternary feel), the IOI corresponding to the straight

eighth-note is not present in the signal, there are solely shortened eighth-notes with durations

smaller than 1
3 of that of a straight quarter-note, and lengthened eighth-notes with durations

superior to 2
3 of that of a straight quarter-note. There, as it is restricted to integer ratios, the

computation of the tatum yields either 1
3 or 1

4 of the quarter-note length.

Swing ratio estimation Two different implementations of the swing ratio estimation are still

under tests. They are both based on the computation of a second IOI histogram, with a Gaussian
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Figure 5.12: Distribution of the deviations between IOI histogram peaks and integer multiples of
the eighth-note length.

standard deviation smaller than in the previous step (e.g. 10 ms), in order to account for more peaks

and also a better time precision in the peak positions.

First implementation It is based on the computation of deviations between all peaks in the

IOI histogram and integer multiples of the eight-note length. An important observation is that the

deviation distribution is bimodal : one mode is around 0 (it corresponds to deviations with respect

to quarter-note positions) and the second mode does correspond to relevant deviations for swing

estimation (see Figure 5.12, in this example, the straight eighth-note length is 161ms, the deviation

central tendency of the second mode is 68 ms; this results in a 2.45:1 swing ratio). The central

tendency of the second mode deviations is computed (either as the mean, the median or the mode).

Finally, the swing ratio is computed as:

Swing ratio =
Eighth note period + central tendency

Eighth note period− central tendency

Second implementation The basic concept in this implementation is the seeking of the best

match between IOI histogram peaks and swing templates. As can be seen in Figure 5.13, templates

are built as harmonic comb grids with a gap equal to the quarter-note length and offsets varying

between the eighth-note length for the first template and e.g. 3/4 of the quarter-note length for the

last one (this is directly related to the maximum boundary the user can set for swing ratio seeking).

For each template, the TWM error function is computed between the grid elements and the IOI

histogram peaks (see on page 124), then the best template is chosen as that which yields the smallest

error (i.e. which best matches the peaks). This procedure resembles somehow the method proposed
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Figure 5.13: Illustration of the template-matching approach to swing estimation

by Laroche (2001), the difference being that we do not achieve the matching over the onsets but the

IOI histogram peaks.

Eighth-note and quarter-note position estimation Given the quarter-note period and the au-

dio signal onsets, the quarter-note positions are sought (and quarter-note period is slightly adjusted)

so as to match to the best the onset positions similarly as on page 124. Logically, each quarter-note

position is also an eighth-note position. The remaining eighth-note positions are simply determined

as positions in between each pair of quarter-notes: half-way between two quarter-notes, adjusted

with respect to the detected swing ratio.

5.2.2 Swing transformations

Modifying the swing means moving onsets corresponding to eighth-notes from their original positions

to different ones. In Figure 5.14, an example is shown for an audio file that has no swing (signal in

the upper half of Figure 5.14). Quarter-notes are depicted by a simple number (‘1’, ‘2’, ‘3’ on the

figure top). The eighth-notes are indexed with i (i = 1 means “in a subdivision of a quarter-note in

two eighth-notes, this is the first eighth-note”, and i = 2 means “in a subdivision of a quarter-note

in two eighth-notes, this is the second eighth-note”) and their corresponding sample positions ni.

The detected Swing Ratio (SR) in the example is 1:1 (i.e. “no swing”). When the user chooses a

different swing ratio (for example 2.6:1), the regions between indexes ni=1 and ni=2 are expanded

with the time-scale factor TSEXP while the regions between ni=2 and ni=1 are compressed with

TSCOMP . The scaling factors for expansion and compression are calculated as follows (TS > 1

means signal expansion, and TS < 1, signal compression):

TSEXP =
SRUser + SRDetected · SRUser

SRDetected + SRDetected · SRUser
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Figure 5.14: Adding swing to an audio file by time-scaling

TSCOMP = 1 + SRDetected (1− TSEXP )

When the original audio signal already has swing, the processing is slightly different because the

regions of expansion and compression are not equal-sized anymore. The real onset positions of

eighth-notes indexed by i = 2 deviate from the straight eighth-note grid. Regions to be expanded

and to be compressed are adapted accordingly.

More details on the time-stretch algorithm can be found in (Bonada, 2000).

5.2.3 Evaluation

The system provides very good sound quality for monophonic signals or polyphonic stereo mixes. It

could be also extended to handle multi-channel signals.

Improvements are needed on the time-scale algorithm to reduce phasing and flanging for time-

scale factors above 1.3 (note that this is a very high scaling factor). If we want to apply very drastic

swing ratios, scaling factors higher than 1.3 are very often exceeded and sound quality may decrease.

Although at large time-scale factors an analysis frame is repeated many times until the next frame

is chosen, the resulting signal may sound metallic. This can be improved by interpolation of the

magnitude spectrum between subsequent analysis frames. Another area for improvement is the



144 CHAPTER 5. APPLICATIONS OF RHYTHM PERIODICITY FUNCTIONS

handling of transients lying precisely on eighth-note positions. Probably, when the scaling factor is

switched from expansion to compression (e.g. from 1.3 to 0.7) in a small group of frames belonging

to a transient, this may cause a doubling of the transient (this is problematic especially for drum

sounds).

Finally, it is our belief that the analysis of the deviation distribution should be further pursued.

Indeed, the number of modes, the mode variances and higher moments (skewness and kurtosis)

are probably representative of important information regarding diverse systematic timing deviations

(Bilmes, 1993).

5.3 Conclusions

In this chapter, new algorithms have been presented for the automatic estimation from musical audio

signals of diverse rhythmic descriptors: the tatum, time signature and swing. They are all grounded

on the computation of rhythm periodicity functions. We also introduced other rhythmic descriptors

of lower levels of abstraction, calculated from simple parameterizations of rhythm periodicity func-

tions, such as coefficients inspired from the MFCCs. We illustrated the use of these descriptors in

two music content processing scenarios: genre classification and rhythmic expressiveness transforma-

tions. We showed that tempo and tatum are relevant descriptors for genre classification. But, one

the one hand, usual errors of automatic tempo induction algorithms (confusion of metrical levels)

lower dramatically classification accuracy. And on the other hand, the assumption that tempo is

genre-specific may not hold when considering very large number of musical pieces. This issue is left

for future work. Several parameterizations of rhythm periodicity functions have been introduced in

this chapter. Many, especially MFCC-like coefficients, yield good classification accuracy.

Experiments on the determination of time signature highlighted the relevance of the inter-beat

segment temporal centroid in the determination of downbeats. Assuming that note occurrences

have a direct correlation with increases in the waveform amplitude (and thus with the value of the

temporal centroid), one might hypothesize that evidences for downbeats would be given by patterns

of note timings. That is, the main difference between, on the one hand, a downbeat and the next beat

and, on the other hand, an upbeat and the next beat would reside in the regularity of note timing

patterns: along the musical sequence, patterns of note onset times would show greater similarity

between a downbeat and its consecutive beat than between an upbeat and its consecutive beat.

This hypothesis is an extension of the widespread hypothesis that the frequency of note occurrences

would be greater on strong metrical time points; it would not be really that there are more notes

between a downbeat and the next beat than between an upbeat and the next beat, but rather that

these notes would show more regular patterns.

Finally, we demonstrated the concept of content-based transformation of audio signals by imple-

menting a fully-automatic swing transformation algorithm that conserves sound quality.



Chapter 6

Conclusion

This dissertation addressed several issues that appear when computers are asked to make diverse

rhythmic responses to music as for instance “perceiving” tempo and beats. In this last chapter, we

briefly summarize the contributions we believe this dissertation makes to the research literature in

computational rhythm description. Importantly, we believe that the main contributions are rather

theoretical than practical and that the many questions raised in this dissertation are more important

to the improvement of current state-of-the-art that the algorithms proposed. Then, we embrace a

slightly broader perspective and highlight things we did not try (but might have, if it wasn’t for

time constraints). We also propose lines of research that we believe are of very first interest but

which we did not incorporate in our research either because they implied too distant methodologies

or simply because we did not have a clear idea about how to do it.

6.1 Summary of contributions

Rhythm description functional framework The literature in automatic rhythm description

is very furnished. However, we believe that no attempt had yet been made to provide a big picture

of the functional blocks that existing systems have in common. In Figure 2.4, we depict an unifying

functional framework for automatic rhythm description which we believe permits to explain all

existing systems as different instances of the same general model. In this framework, the computation

of rhythm periodicity function plays a central role.

Comprehensive review of rhythm description systems Another important contribution of

this dissertation is a comprehensive review and a qualitative comparison of the rhythm description

systems proposed in the literature with respect to the functional units of the proposed framework

(Section 2.2).

145
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Evaluation of tempo induction algorithms An important body of the literature is dedicated

to automatic tempo induction. As we have seen, current approaches tend to deal directly with audio

signals rather that symbolic signals or artificial sequences. However, to our knowledge no attempt

had yet been made to compare such algorithms on a consequent data set.

As a first step towards more systematic evaluations and comparisons, we organized a quantitative

evaluation of some state-of-the-art algorithms for tempo induction (Section 2.3) in the form of the

first public benchmark on this topic (ran during the International Conference on Music Information

Retrieval held at the University Pompeu Fabra in Barcelona in October 2004). In order to stimulate

further research, the contest results, annotations, evaluation software and part of the data are

available at http://ismir2004.ismir.net/ISMIR Contest.html.

Current research directions Via the qualitative comparisons of rhythm description systems

and, additionally, the quantitative comparisons of a number of tempo induction systems we provide

a better understanding of recent achievements in automatic rhythm description, especially in tempo

induction, and a clearer viewpoint on current research directions and open issues.

As argued in more details in Section 2.4, one of the main observations is the superiority of

frame-based features over onsets for robust tempo induction.

With respect to open issues, we argue that improvements of tempo induction systems depend on

further research on the low-level features that summarize the rhythmic aspects of musical data that

further rhythmic processing deal with. More research is also needed in the design of rhythm peri-

odicity functions and of methods for the combination and parsing of multiple rhythmic information

sources. We believe that a crucial issue lies in the joint estimation of several metrical levels. Finally,

much more effort should be dedicated to systematic evaluations of algorithms, for instance in the

form of public competitions.

Low-level feature selection One of the open issues raised in this dissertation concerns the

selection of the low-level features that best summarize the rhythmic content of music. In Chapter 3,

we propose an original methodology to address this problem, based on the assumption that low-level

audio features that are adequate to the computational identification of beats are also appropriate

for computing useful rhythmic periodicity functions, and thus for the rhythm description problem

in general.

We conducted a series of experiments that led us to the following conclusions. Among the 274

features considered, on overall, the best individual feature is the variation of the energy. This

confirms findings already found in the literature. However, we also showed that the notion of best

individual feature depends on the musical genre considered. We showed that the association of several

low-level features into feature sets (as for instance the variation of the energy in different frequency

bands) results in a better description of the rhythmic content of music. Among the many possible

http://ismir2004.ismir.net/ISMIR_Contest.html
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combinations of features into sets, we motivated the use of a set of 59 features: the magnitude-

normalized first-order differentials of the energy in ERB bands; the magnitude-normalized first-order

differentials of the spectral peak harmonic centroid, spectral peak harmonic deviation, spectral peak

mean, flatness, geometric mean, mean, kurtosis, skewness and low-frequency energy relation; the

first-order differentials of the MFCCs and the phase deviation.

Echoing some open issues in the literature, we demonstrated the superiority of the ERB frequency

subband decomposition over others (proposed in the literature) as the basis for the computation of

effective energy feature sets. We also demonstrated that, for almost all feature subsets, the degree

of change of feature magnitudes are better features than mere magnitudes. Normalizing a first-

order magnitude differential by the magnitude seems to be the most accurate implementation for

that. Another conclusion is that the energy in frequency regions below 500 Hz and above 5 kHz

(approximatively) are more relevant than in mid-band frequencies.

Finally, we demonstrated the relevance of low-level features that current literature on rhythmic

description does not consider, namely the Mel-Frequency Cepstrum Coefficients and a set of spectral

features listed in Section 3.4.4.

Tempo induction algorithm In Chapter 4, we addressed the specific problem of tempo induction

from audio signals. We build algorithms based on the computation of the low-level feature sets

advocated in a previous chapter. Following low-level feature computation, we considered several

strategies to the computation of periodicity functions and the combination and parsing of multiple

sources of information. Some algorithms show performances that are comparable to the state-of-

the-art. We demonstrated that a special effort should be dedicated to the choice of algorithm input

features. We also concluded on the need to consider constraints posed by the metrical hierarchy in the

design of tempo induction algorithms. Most importantly, we illustrated the fact that the periodicity

functions commonly used in tempo induction cannot fully take advantage of the explanatory power

of large feature sets. More research is needed on this topic.

Also related to tempo induction, an important (and original) conclusion reached in Section 2.3 is

that the implementation of robust tempo induction algorithms calls for the computation of low-level

frame features rather than that of onset lists as the first processing block.

Tatum estimation algorithm Having demonstrated in detail the use of rhythm periodicity func-

tions in the task of tempo induction, we illustrated other applications for these functions, especially

in the context of music content processing and Music Information Retrieval.

First, rhythm periodicity functions are useful for computing other pulses that the tactus. We

implemented a working and reasonably reliable algorithm for tatum estimation based on a particular

rhythm periodicity function (the inter-onset interval histogram) and the use of a pitch detection

technique (the two-way mismatch) and demonstrated the use of the tatum in genre classification

experiments. It should be noted that our tatum estimation algorithm was one of the very first
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published in the literature.

Time signature determination algorithm We also implemented a working and reliable algo-

rithm for the automatic determination of the time signature of audio signals (as “duple” or “triple”).

In this algorithm, the computation of a periodicity function also plays a crucial role. Here also, the

publication of this algorithm represents one of the very first attempts to compute time signature

directly from audio signals.

Swing estimation algorithm Also directly based on the continuous representation of a signal’s

periodicities, we proposed an algorithm for the estimation of swing in musical audio signals. Again,

the algorithm is one the very first on its topic.

Rhythmic features for genre classification In addition to the tempo and the tatum, we

introduced new rhythmic features for musical genre classification based on the parameterization

of rhythmic periodicity functions. We demonstrated the relevance of these features and released the

data sets used in our experiments in order to stimulate further research.1

In our opinion, our most original and valuable contribution to genre classification is the idea to

compute usual spectral descriptors (as e.g. the flatness) and Mel-Frequency Cepstrum Coefficients

on a rhythm periodicity function instead than on the Fourier transform of an audio signal. This had

not been published before and had shown very good results.

Content-based transformation of audio We illustrated the concept of content-based trans-

formation via a software application for rhythmic expressiveness transformations of musical audio

signals. A fully automatic system has been developed, the Swinger, which requires neither manual

editing nor software or hardware sampler and provides very good sound quality, even for relatively

extreme transformations.

6.2 Future work

6.2.1 Low-level rhythmic features

In Chapter 3, we considered many low-level features as front-end for the computation of useful pe-

riodicity functions. However, even if considerably larger than what is usually considered in current

rhythm description literature, the list of features was limited. On the other hand, the literature

on low-level audio features is very furnished. Further experiments could be conducted with for in-

stance features extracted from models of the auditory system (as the low-level features proposed in

1http://www.iua.upf.es/mtg/ismir2004/contest/rhythmContest/

http://www.iua.upf.es/mtg/ismir2004/contest/rhythmContest/
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the IPEM Matlab Toolbox),2 diverse implementations of the loudness or MPEG7 features. Para-

graph 3.4.3.1 concluded on the fact that the definition of the frequency subband decomposition for

the computation of energy features is a sensitive factor. Some subbands perform better than oth-

ers. This indicates that further work may also be dedicated to seeking the best subband definition.

Features of a higher level of abstraction may also be considered in future work. For instance, fea-

tures indicating the global pitch content of frames (Gómez and Herrera, 2004), or the presence of

percussion instruments (Sandvold et al., 2004).

We have seen that robust tempo induction calls for the computation of low-level frame features

rather than that of onset lists. However, whether this superiority of frame-based features over onset

lists has any perceptual validity, as proposed by Scheirer (1998), remains to be investigated. Further,

future work may be dedicated to challenging the perceptual validity of feature set rankings obtained

in Chapter 3.

One might object that the methodology proposed in Chapter 3 may in fact characterize onsets

as opposed to beats. Further work could be dedicated to repeat experiments of Chapter 3 with data

labelled with onsets and non-onsets (instead of beats and non-beats) and compare the results with

those detailed here.

6.2.2 Tempo induction

6.2.2.1 Periodicity functions

Experiments of Chapter 4 indicate that the autocorrelation function and comb filterbanks are better

periodicity functions than the Fourier transform. The latter seems to perform slightly better than

the former, however, no clear conclusion could be reached. Further, the performance of a given

periodicity function also depends heavily on which strategies are used in the other blocks of a tempo

induction algorithm. Therefore, more research should be dedicated to systematic evaluations of

periodicity functions. Also, recall that experiments of Chapter 5 have been conducted with rhythm

periodicity functions computed from audio features that were different from those advocated in

Chapter 3. This is left for future work.

6.2.2.2 Combining and parsing multiple information sources

Chapter 4 detailed several methods for the combination of diverse sources of informations, together

with their evaluations. We argued that an important algorithmic choice lies in information inte-

gration before or after periodicity function computation. That is, one either combines feature lists

or periodicity functions. Future research could explore cross-correlating feature lists. This would

probably emphasize common periodicities to all feature lists. Keeping the most prominent peaks

would yield wining periodicities and (implicitly) winning features, offering a combined strategy for

2http://www.ipem.ugent.be/Toolbox/

http://www.ipem.ugent.be/Toolbox/
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the evaluation of features, the computation of a periodicity function and the integration of multiple

information sources.

We have seen that periodicity functions commonly used in tempo induction cannot fully take

advantage of the explanatory power of large feature sets. A possible solution to this problem would

be to include in the tempo induction algorithm a procedure that would further reduce the number

of features depending on their individual behavior on specific pieces of music under analysis. This

reduction of the number of features should be seen as complementary to the global feature selection

strategy reported in Chapter 3. We proposed in Section 2.2.2.4 several methods for that. For

instance, it is possible to measure the periodic, or non-periodic behavior of features and use this

as a criterion to select among features. Preliminary experiments with the selection criteria exposed

on page 28 have been conducted (they are not reported in this dissertation), and did not give

satisfying results. Another way to deal with this problem could be to consider replacing both

the computation of periodicity functions and their subsequent combination by the use of pattern

recognition techniques that would probably permit a more natural way to deal with both issues

jointly and would probably be more effective in dealing with large numbers of features (see on

page 157).

In Chapter 4, we considered several strategies for parsing multiple sources of information while

others (detailed on page 31) have been left for future work. For instance, we have seen that the

best parsing strategy among those used in Chapter 4 accounts for constraints posed by the metrical

hierarchy (“musical parsing”). Other strategies should also be tested: e.g. seek periodicities in

periodicity functions themselves,3 compute feature lists at the scale of low metrical levels hence

“going up” in the metrical hierarchy or consider rule-based or probabilistic frameworks to represent

these constraints. Another strategy for periodicity function parsing is to keep several candidates

(prominent peaks in the periodicity function) refine them through beat tracking and keep the one

that propagates better, as proposed e.g. by Dixon (2001a). Experiments reported in Section 2.3

could not demonstrate the superiority of this method (implemented in DixonT) on the simpler

highest-peak-picking method (implemented in DixonI). Here also, as in determining the relevance of

multiplying periodicity functions with a tempo preference distribution (see page 12), more research

and evaluations are needed.

6.2.2.3 Redundant approach to tempo induction

Section 2.3 shows several algorithms performing the same task and exhibiting specific performances

on specific parts of the data. This raises an important question: Can we improve tempo estimation

accuracy by combining the outputs of several algorithms?

The answer seems to be “yes,”4 although it should be noted that simply computing e.g. the

3Note that in former research, we concluded that this method leads to the induction of fast metrical levels, as the
tatum, rather than the tactus.

4The original idea of “redundant approach” to tempo induction was originally formulated by Anssi Klapuri who
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median of the tempo estimates of different algorithms does not yield an improvement. This is

because the “too slow” and “too fast” tempo estimates cannot be guaranteed to balance each other

out.

A thorough analysis of algorithm skills and error trends would dictate a set of rules for combining

algorithms. Lacking this information, one can think of a voting mechanism for combining the tempo

estimates of different algorithms. Imagine different ordered lists of algorithms. Algorithms in the

list being considered in turn, for each piece, a given algorithm gets one vote from all the algorithms

that agree with its tempo estimate. An algorithm X is defined to agree with an algorithm Y if the

ratio of their estimates is 1, 0.5, or 2, with 4% precision. The tempo estimate of the algorithm

which gets the largest number of votes among the algorithms is selected as the output. If several

algorithms receive the same number of votes, the order of the algorithms in the list defines which

estimate is selected as the output.

An exhaustive search over all possible combinations of five algorithms (from among the 11) was

conducted to find a combination which performs best using this voting mechanism. Applying the

accuracy measure 1, the algorithms [Klapuri, Uhle, Klapuri, DixonI, DixonACF] achieved a perfor-

mance of 68% and, applying accuracy measure 2, the algorithms [Klapuri, Scheirer, DixonT, DixonI,

DixonACF] achieved a performance of 86%. This does not represent a significant improvement com-

pared to the performance of Klapuri alone (67% and 84% according to the accuracy measures 1

and 2, respectively). However, the situation becomes clearer when Klapuri is excluded. In this case,

the algorithms [Uhle, Scheirer, DixonI, DixonACF, DixonT] together achieve a rate of 57% with accu-

racy 1 and the algorithms [Scheirer, Uhle, DixonT, DixonACF, DixonACF] achieve a rate of 84% with

accuracy 2. Compared to the best individual performances among the remaining algorithms (Uhle

achieves 51% with accuracy 1 and DixonACF achieves 81% with accuracy 2), the voting mechanism

makes a statistically significant improvement to the individual results.

The experiment described above is an example of a “redundant” approach to music content

analysis: instead of designing one very complex algorithm we combine a number of different and

more simple mechanisms. This idea stems from Bregman (1998), who pointed out that human

perception appears to be redundant at many levels: there are several different processing principles

serving the same purpose, and when one of them fails, another succeeds.

The combination of algorithms is an interesting avenue for future work and raises the following

interesting questions: Which commonalities and differences should we implement in the concurring

algorithms? How simple should we keep these algorithms? Is the voting scheme proposed above the

best way to combine algorithms?

An interesting way to tackle this problem could be to embrace a machine learning perspective

and focus on ensemble learning methods. In supervised learning, ensemble learning algorithms take

decisions regarding the membership of a given instance to a class among several possible classes by

did most of the analysis reported in this paragraph.
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considering the “votes” of several classifiers, previously trained on labeled data. Designing several

classifiers for the same task can be done in several manners, for instance it is possible to provide

different subsets of the training data to a base algorithm (as is done e.g. in Bagging and Boosting), it

is also possible to provide the same training data but described with different attributes (Dietterich,

2002). To use these methods for tempo induction, one would need to define training and test data

sets and, possibly, discretize tempo in a number of classes (see on page 158). Then, forcing diversity

in the design of different algorithms could be done by specializing each of them on a restricted set of

signal features (hence meeting the research direction proposed earlier on page 149). Another option

could be to specialize algorithms to be combined on different categories of pieces.

6.2.2.4 Towards better benchmarks for algorithm evaluation

Section 2.3 details the first public large-scale cross-validation of audio tempo induction algorithms.

Nevertheless, much effort is still needed to design better benchmarks for tempo induction algorithms.

Here is a (non-exhaustive) list of issues that, in our opinion, should be addressed.

Beat tracking Tempo induction and beat tracking are part of the same perceptual process (Desain

and Honing, 1999), future evaluation efforts should therefore consider them jointly.

Data More data is needed for future contests. Importantly, a larger amount of data with triple

and other meters is required. However, not all music is suitable. As discussed and exemplified by

Dixon (2001b), pieces can show diverse levels of difficulty. It may be difficult to induce the tempo

or track the beats of specific musical pieces, even from constant-tempo performances, if they have

a complex rhythmic structure (e.g. many events not on beats, or many beats occurring between

musical events), while other pieces may be fundamentally less challenging. Additionally, in the case

of performed music, keeping an almost steady tempo or adding expressive tempo variations is up to

the performer. For instance, in Section 2.3, results are better on Ballroom data; this was predictable

as this music was produced to ease learning of ballroom dances, hence has relatively clear beats and

stable tempo.

Therefore, measuring the level of “rhythmic difficulty” of the pieces in the test set might pro-

vide an additional control for thorough evaluations. Goto and Muraoka (1997) and Dixon (2001b)

propose such metrics.

Note on data annotation Gathering large sets of annotated data can be a time-consuming

process. Further it is also prone to annotation errors. Therefore it is important to consider easing

the task oh human annotators by for instance providing them adequate annotation tools. Few such

tools exist for tempo and beat annotations.5

5The material in this paragraph was previously published in a stand-alone paper (Gouyon et al., 2004b). Coauthors
of the paper are thanked for their collaboration.



6.2. FUTURE WORK 153

Goto and Muraoka (1997) refer to a “beat-position editor.” This is a manual beat annotation

tool that provides waveform visualization and, for accurate annotations, audio feedback in the form

of short bursts of noise added on beats.

To our knowledge, the only publicly available softwares for semi-automatic beat annotation

are BeatRoot (Dixon, 2001a) and the software reported in (Gouyon et al., 2004b). To lower the

annotation effort, BeatRoot provides an automatic beat tracking algorithm in order to start (or

continue) a bootstrapped interactive process of annotation between the user and the algorithm.

Interactivity resides in that the user’s corrections to the algorithm output (the beats) are fed back

as inputs to the very algorithm.

In (Gouyon et al., 2004b), we report on a system built upon BeatRoot as well as other open

source audio processing tools, namely WaveSurfer (Sjölander and Beskow, 2000) and CLAM.6 The

system is also publicly available.7 Improvements upon BeatRoot are the following. The graphical

interface shows important differences with BeatRoot. For instance, it is our belief that WaveSurfer’s

built-in visualization functionalities (e.g. running cursor and scrolling panes synchronized with

audio playback), and its intuitive keyboard shortcuts and general look-and-feel are an enhancement

of BeatRoot’s interface. Also, an important point is that graphical configurations can be defined by

the user. Other relevant differentiating features are the capture of keyboard messages while listening

to the audio (hence permitting to annotate beats in real-time by tapping on a key while listening);

the possibility to instantiate diverse transcription panes in order to annotate several metrical levels

and database connection facilities (annotations can be stored locally and, when correct, they can

easily be uploaded to a distant repository, for instance, a structured musical metadata database

such as the MTG database (Cano et al., 2004)). However, it must be noted that BeatRoot also

permits to annotate beats of MIDI data, which the system reported in (Gouyon et al., 2004b) does

not permit.

Better annotations and evaluation measures It is difficult to evaluate the accuracy of an

algorithm for determining the correct tempo because of the inherent ambiguity of metrical levels:

two listeners might not agree on a metrical level as the “correct” tempo.

Accuracy 2 (defined on page 47) was designed to account for this inherent ambiguity. However,

its drawback (in our use of it) is that it does not take the meter into account. Considering half

and double ground-truth tempo as correct makes sense solely for duple meter pieces. Similarly,

considering three times and one third of ground-truth tempo as correct makes sense solely for pieces

with a triple or compound meter.

In future contests, more accurate evaluations might be obtained by considering the “degree of

ambiguity” of excerpt tempi. This could be done by recruiting several annotators (at least 10 or 15)

for each piece and considering several metrical levels as valid options only in cases where annotators

6http://www.iua.upf.es/mtg/clam
7at http://www.iua.upf.es/∼fgouyon/BeatTrackingPlugin/

http://www.iua.upf.es/mtg/clam
http://www.iua.upf.es/~fgouyon/BeatTrackingPlugin/
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disagree on the tempo. This procedure could also tell us which levels are valid for each piece.

A comparable procedure has been chosen by the organizers of the ISMIR 2005 tempo induction

contest.8 This is however a very time-consuming procedure.

A faster way to proceed to more precise evaluations would be to manually annotate beats of each

piece at 2 different metrical levels instead of one. Pieces would be annotated by a single person.

For each piece, the accuracy measure of an algorithm would be the best match over the annotated

metrical levels.

One might object that, for a given piece, two algorithms might not be evaluated with respect to

the same metrical level. Nevertheless, both levels have been considered valid by the annotator. And

we can assume that, in tempo-ambiguous cases, any two listeners would perceive at least one level in

common, solely the rankings of metrical levels would differ. Consider the following example: a piece

of music whose levels all share duple relationships, to which listener A taps the tempo at 50 BPM.

Being asked to define another level, he chooses 100 BPM (it is highly unlikely that he would choose

25 BPM which is too slow to be a perceptually valid tempo). Say that listener B naturally taps the

tempo at 200 BPM, being asked to define another level, he will most likely choose 100 BPM (not

400 BPM). Even in this extreme case, there exists some agreement. Thus, this procedure would be a

way to measure how close a specific algorithm gets to human agreement regarding tempo perception.

Such annotations could be done with the help of annotation tools as proposed e.g. by Dixon (2001a)

and Gouyon et al. (2004b).

Robustness tests Other robustness tests are needed, for instance, robustness to increasing levels

of noise (decreasing SNR) and robustness to cropping (the effect of the length of the excerpt).

More modular evaluations It is difficult to compare systems that, even if they implement

similar concepts, do not share any piece of code. The performance of each system depends on

the overall implementation and it is often hard to say anything more than “system A performed

better than system B (on this data set).” That is, we are unable to say anything conclusive about

the system submodules (for instance, whether frame differentials are better than absolute values),

without being able to switch the submodules within a single system. On the other hand, it would

be difficult to implement different systems in a common software framework so that they share

simple processing blocks. Indeed, forcing the use of a specific implementation framework would

probably have negative repercussions in terms of the number of entries in a competition. In the

evaluations detailed in Section 2.3, different system variants from the same participant (Alonso,

Dixon or Tzanetakis) give the most reliable information about the effect on the performance of

different solutions for a given submodule of the system. A solution could therefore be to motivate

participants of future competitions to submit several systems, with small, but conceptually relevant,

variations in some submodules.

8http://www.music-ir.org/mirexwiki/index.php/Audio Tempo Extraction

http://www.music-ir.org/mirexwiki/index.php/Audio_Tempo_Extraction
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6.2.3 Rhythm as a tool for research in human audition

Music is present in all human societies and the perception and production of rhythm is ubiquitous

in our lives (Desain and Windsor, 2000). An increasing number of researchers believe that the

development of musical abilities during evolution helped the emergence of human cognitive abilities

(Zatorre, 2005). Further, recent research argue in favor of the special role of musical rhythm in

human evolution (Bispham and Cross, 2005). This leads to the conclusion that studying musical

rhythm is another paradigm to the study of humans: music and rhythm provide excellent tools for

investigating perceptual and cognitive processes involved in human audition.

Many theories and models of rhythm have been developed in diverse research communities (see

on page 2), however, in addition to current open issues (summarized above in this chapter) in

the design of working computational models, many fundamental questions remain. Consider the

following ones for instance. Are there such things as “universal features” in rhythm perception?

Which structures of the human brain are involved in the perception, recognition and memorization

of rhythm patterns? In which balance do they imply high-level cognitive processes and sensory

capabilities of lower level? Are these structures also involved in speech understanding, or motor

control? In which way is rhythm perception linked with harmony, timbre and pitch perception? In

which way does exposure to musical stimuli results in the emergence of internal representations and

what is the influence of such representations in the audition of new stimuli? How do these structures

evolve through life?

From the physics of musical sounds to the formation of abstract representations in the brain

via the physiology of the auditory system, audition involves physical, physiological and cognitive

aspects. Hence, it is our belief that a multidisciplinary approach is needed to reach a complete un-

derstanding of rhythm (Desain et al., 1998). Among the many possible methodologies to the study

of rhythmic aspects of music (see on page 2), the work reported in this dissertation focuses only on a

computational methodology. Rhythm perception was addressed via a modeling approach implying

signal processing and machine learning methods. In addition to improvements of the methods de-

tailed in this dissertation, future work should also be oriented towards complementary approaches,

both analytical (cognitive psychology and neurophysiology) and computational (computational neu-

roscience and robotics). The analytical approach can confirm or refute implementation principles of

artificial auditory systems and can also provide insights for the design of new models (as artificial

neural networks (Husain et al., 2004)).

Final goals of this multidisciplinary research are, on the one hand, a better understanding of the

cognitive processes involved in human audition and on the other hand the design of artificial systems

with cognitive abilities that would participate in a more intuitive integration of technology in most

our daily activities. The remainder of this section details diverse research paths towards these goals.
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6.2.3.1 Networks of rhythmic units

We will follow a computational approach to the study of cerebral functional modules involved in

the perception of rhythm, putting a particular emphasis on the study of large networks of simple

rhythmic units. Different types of simple units will be studied, as e.g. those inspired by physical

oscillators (Large and Kolen, 1994; McAuley, 1995) and spiking neurons (Eck, 2002b). We will

first investigate the properties of single units when fed with simple rhythmic inputs (Eck, 2002a).

We will then study the propagation of patterns of large networks of oscillators decoupled from

musical inputs, explore the properties of different network topologies (Cano et al., 2005a), varying

e.g. the connectivity between units —i.e. who is connected to whom— and explore synchronization

phenomena between them (Strogatz, 2003; Neda et al., 2000, 2003). Such networks will finally be

connected to external musical acoustic stimuli (rather than simplified artificial sequences or MIDI

inputs, as is usual in the literature on oscillator models for rhythm perception) and a special focus

will be put on the computation and selection of relevant acoustic features as inputs to these networks.

A link will be made with results of the work proposed on page 148.

6.2.3.2 Localization of rhythmic areas in the brain

Recent progress has been made on the determination of neural areas related to time estimation

(Coull et al., 2004). We will follow a line of research focused on the estimation of musical time. Under

the hypothesis that there exist areas in our brains responsible for music processing and, at a more

detailed level, for e.g. pitch and rhythm processing (Peretz and Coltheart, 2003; Peretz and Zatorre,

2005), we will begin collaborations with neuroscientists to tackle the problem of localization of

such areas via brain imagery methods (Pfeuty et al., 2003; Janata and Grafton, 2003; Desain, 2004;

Levitin and Menon, 2005).

A first experimental protocol will be based on the detection of modules specialized in tempo

changes rather than in general rhythm processing. Control musical sequences will be generated with

diverse tempo curves (using for instance state-of-the-art time-scaling algorithms (Bonada, 2000))

and transmitted to subjects whose brain activity will be recorded via magnetic resonance imaging

for instance. Correlations will then be sought between the control tempo curves and recordings of

areas activated while listening to the stimuli.

A better knowledge of the brain areas involved in tempo perception would be of interest in the

current debate regarding whether it involves complex high-level cognitive processes and memory

retrieval or whether it rather involves physiological processes of lower levels of cognition (Todd,

1994; Scheirer, 1998). This, in turn, would provide insights to the determination of the required

complexity of computational models.
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6.2.3.3 Active rhythm perception

The perception of rhythm is very much linked to rhythm production: it is common, even for non-

musicians, to produce physical rhythmic responses such as foot tapping, swinging, dancing or even

simply adapting one’s gait, in phase with external acoustic stimuli.

With this argument in mind, we will follow a reactive approach to the modeling of rhythm

perception and embrace Brooks’ “behavior-based” approach to Artificial Intelligence (1991a; 1991b).

Brooks is a researcher in robotics who argued (with others, e.g. (Mataric, 1997; Steels, 1999;

Pfeifer and Scheier, 1999)) in favor of physical embodiment in the modeling of cognitive processes.

He criticizes the “traditional” view of Artificial Intelligence that places high-level reasoning and

symbolic representations as central, and critical, modules where cognition would take place and that

would receive information from sensor systems and send information towards actuation systems. In

his approach, sensors and actuators are directly coupled (i.e. actually wired through a series of

continuous transformational stages), there is no central component dedicated to cognition, cognition

would only be in the eye of the observer who would “attribute cognitive abilities to a system that

works well in the world but has no explicit place where cognition is done.” For Brooks, cognition

emerges from the interaction of a “creature” with its environment. A creature should therefore be

situated in the world (i.e. cope in real-time with the dynamic and “dirty” environment), have a

purpose (do something) and finally be itself part of the world (its actions have immediate effects on

its own sensations.

Applications of this rationale in the rhythm domain can be found in (Eck et al., 2000), (Bryson,

1992) and (Franklin, 2001). Other mentions to this rationale can be found in (Scheirer, 2000, p.74),

(Iyer, 2002) and (Gouyon and Meudic, 2003).

Also following recent sensory-motor theories of perception (Todd et al., 2002; O’Regan and Noë,

2001), we will implement interactive rhythmic systems based on a strong coupling between rhythm

perception and production functional modules. This will provide a good domain for the study of

interactions between the human brain, the body and the environment.

6.2.3.4 Learning by specialization

As early as 1987, Dannenberg and Mont-Reynaud (1987) suggested that procedural approaches

would be better suited to music understanding than declarative approaches: “[...] it seems that

music understanding relies more heavily on pattern recognition capabilities [...] than it does on

logical reasoning and problem-solving techniques. It is possible that an emphasis on the latter is

precisely the privilege of musical experts, who are able to name, and to reason about, entities which

naive listeners also perceive, for the most part, but are unable to put into words.”

We have seen that recent efficient computational models of rhythm description implement prob-

lem solving techniques and probabilistic approaches. State variables (e.g. beats, quantized dura-

tions) are considered hidden variables to be estimated from observations. Efficient models have
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been implemented (e.g. (Rosenthal, 1992; Cemgil and Kappen, 2003; Raphael, 2002)) to search

wide hypothesis spaces. In this powerful framework, knowledge is not declarative in the sense

that it would explicitly be constrained by fixed, deterministic sets of rules (as those reviewed in

(Desain and Honing, 1999)), however, it does lie in probabilistic models learned from measured data

during a supervised training step.

In connection to the reactive approach to rhythm perception advocated above, we will explore

the idea that human categorization of musical stimuli in categories such as tempo classes or rhythm

patterns entails both the retrieval of pre-constructed mental representations as well as a strong

influence of present context.9 In terms of machine learning, this would mean for instance that

general models could first be constructed, via supervised learning strategies using large collections

of musical items, or generic rules could be formulated. These representations would subsequently be

progressively adapted (through unsupervised learning) to each analyzed item.

Consider for instance a general model of tempo induction accounting for diverse low-level features

and procedures to seek temporal recurrences of such features. While analyzing a particular piece

of music, some features may reveal more relevant than others and should therefore be given more

importance. Different features would very likely be relevant for other pieces. An example of rhythm

pattern determination using clustering techniques posterior to a metrical analysis can also be found

in (Dixon et al., 2004).

6.2.3.5 Tempo ambiguity

We have seen that it is common to assign to pieces of music a scalar value, its tempo in BPM,

supposed to be representative of its speed. However, we have also seen in Section 2.1.2 that some

psychological research asserts that the perception of tempo is an ambiguous phenomenon, ambiguity

referring here to the rate of agreement among listeners. There does not seem to exist one objective

tempo to attribute to a piece of music.

Following studies by Moelants and McKinney (2004) and McKinney and Moelants (2004), we

will collect tapping data from a sufficiently large number of subjects and determine in which balance

tempo values are consensual or ambiguous. The goal will then be to investigate which low-level

signal features (i.e. objective features) correlate with the distribution of listeners’ responses. In

sum, we will explore to which extent tempo perception is relative to the signal itself. Hopefully, this

experiment will result in an algorithm to measure tempo ambiguity directly on the signal.

6.2.3.6 Perceptual tempo categories

As already mentioned, the ambiguity of the very concept of tempo makes the evaluation of tempo

induction algorithm difficult, even when using carefully annotated data sets. The design of evaluation

9and therefore follow some of our previous work in this direction (Gouyon, 2000; Sandvold et al., 2004).
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metrics that would take this into account is still the object of current research (see on page 152 and

the ISMIR 2005 tempo induction contest proposal for evaluation metrics).10

It may be interesting to approach the notion of tempo of a piece of music not as a scalar in

BPM, but rather as a category among a discrete set of possible ones as for instance “very slow,”

“slow,” “fast” and “very fast,” or perhaps the most common Italian tempo markings as found on

many scores (“Largo,” “Adagio,” “Lento,” “Andante,” “Moderato,” “Allegretto,” “Allegro” and

“Presto”). The availability of annotated data could favor certain categories over others.

Machine learning methods, fed by signal attributes as periodicity functions, selected peak thereof

or for instance mean IOI, complexity of the metrical hierarchy and event density as proposed by

Drake et al. (1999), could be used in the design of models of tempo categories.

10http://www.music-ir.org/mirexwiki/index.php/Audio Tempo Extraction

http://www.music-ir.org/mirexwiki/index.php/Audio_Tempo_Extraction
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Gómez, E. (2005). Tonal description of polyphonic audio for music content processing. INFORMS

Journal on Computing, in press.



BIBLIOGRAPHY 167
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Appendix A

Detailed results of Chapter 4

In this appendix, we provide details of the performance of some algorithms taking oart in the

experiments of Chapter 4.

All Ballroom Loops Alonso
acc1 acc2 acc1 acc2 acc1 acc2 acc1 acc2

set 1 45.7 75.7 54.6 84.1 43.5 71.6 42.3 81
set 2 42.4 67.1 39.8 66.6 44.4 65 37.8 77.1
set 3 54.7 84.9 63.5 88.1 53.9 82.9 45.8 88.5
set 4 63.8 83.4 61.6 83.2 67.3 83.4 51.9 87.9
set 5 62.6 82.4 62 81.4 66.4 82.4 48 84
set 6 46.4 83.7 56.6 90.5 44.6 80.8 39.1 85.9
set 7 44.2 80.9 55.1 90.1 42.9 78.4 33.7 78.3
set 8 48.5 82 58.4 85.7 48.7 80.6 33.3 82.4
set 9 57.2 75 48 64.2 62.9 79.4 46.6 72.2
set 10 49.7 80.1 57.2 83.2 50.1 79.4 37.6 78.7
set 11 56.7 83.6 69.2 88 54 81.2 50.3 87.1
set 12 53.5 82.3 57 86.5 54.8 80.8 42.9 82.6
set 13 46.3 84.7 57.9 91.3 44.2 82.1 38.6 86.5
set 14 48.4 84.5 60.6 89.4 47.3 82.8 35.4 84.9

Table A.1: Accuracies (in %) of some feature sets associated with algorithm Algorithm 12 for tempo
induction. Bold fonts are used to highlight the best feature set given a data set (i.e. best line given
a column)
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All Ballroom Loops Alonso
acc1 acc2 acc1 acc2 acc1 acc2 acc1 acc2

set 1 29.5 62.3 30.7 66 28.1 59.6 33.3 68.1
set 2 25.2 51.9 17.8 42.5 26.3 52.1 30.9 64.2
set 3 27.4 63 28.2 67.9 25.7 58.9 33.5 73.2
set 4 23.3 61.4 23.1 67.3 21.2 57.1 32.3 71
set 5 24.3 62.4 25.2 70.3 22.4 58.4 30.7 67.7
set 6 28.6 63.7 28.5 68 27.6 61 33.1 68.9
set 7 29 63.7 29.2 68.5 28.2 60.5 32.7 70.5
set 8 26.1 62.9 25.1 68.5 25.1 59.7 31.5 68.1
set 9 22.6 54.4 16.3 47.8 23.8 55 26.2 60.1
set 10 26.5 60.1 25.8 65.6 26.1 57.3 28.8 64
set 11 28.1 62.8 27.5 69.8 26.8 57.9 34.7 73.4
set 12 25.7 59.8 27.1 60.5 24.2 58.4 29.9 65
set 13 28.9 64.5 28.8 69.8 27.4 61.1 35.6 71.2
set 14 28 64 28.2 69.6 26.1 60.1 35.2 71.4

Table A.2: Accuracies (in %) of some feature sets associated with algorithm Algorithm 4 for tempo
induction. Bold fonts are used to highlight the best feature set given a data set (i.e. best line given
a column)

All Ballroom Loops Alonso
acc1 acc2 acc1 acc2 acc1 acc2 acc1 acc2

set 1 29.5 62.3 30.7 66 28.1 59.6 33.3 68.1
set 2 25.2 51.9 17.8 42.5 26.3 52.1 30.9 64.2
set 3 29 60.9 30.1 66 27.6 57.1 33.3 69.7
set 4 24 60.8 25.4 67.8 22.5 56.7 28.2 67.9
set 5 25.7 60.5 27.9 66.8 24.1 58.2 29.6 61.1
set 6 29.8 63.2 30.7 66.8 29.3 59.9 30.7 72.2
set 7 29.8 63.3 29.7 67.2 29.2 60.2 32.5 70.7
set 8 23.4 56.2 19.3 59.2 24.2 53.8 26.2 61.5
set 9 21.4 46.3 13.5 36.5 23.9 48 22.5 53
set 10 26.2 57.2 23.3 61 26.8 55.2 27.4 60.3
set 11 29.4 62.1 27.6 68.6 28.7 57.2 35 73
set 12 25.1 57.9 25.8 59.5 23.5 55.8 30.9 64.2
set 13 30.8 63.8 30.5 68.3 29.9 60.4 34.8 71.8
set 14 27 59.1 23.6 65.2 26.9 55.4 32.1 65.8

Table A.3: Accuracies (in %) of some feature sets associated with algorithm Algorithm 1 for tempo
induction. Bold fonts are used to highlight the best feature set given a data set (i.e. best line given
a column)
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All Ballroom Loops Alonso
acc1 acc2 acc1 acc2 acc1 acc2 acc1 acc2

set 1 16.4 49 38.8 86.1 7.4 31.6 22.3 68.3
set 2 15.2 46.5 35.1 79.7 6.8 30.1 21.9 67.3
set 3 17.8 50.5 43.8 90.5 7 32 25.6 70.5
set 4 15.5 35.6 34.4 76.5 6.3 17.2 27 53.8
set 5 17.3 41.2 42.4 83.5 6.3 21.8 27.4 61.8
set 6 17.2 50.4 41.7 90.7 7.4 31.6 22.7 70.8
set 7 17.7 50.2 41.3 90.5 8 31.5 24.7 70.5
set 8 18.4 50.8 44.4 92.1 7.8 31.9 25.6 70.8
set 9 12.7 44 30.4 74.5 6.6 30.9 13.1 55
set 10 16.9 47.4 41.4 89.3 6.9 29 23.5 64.4
set 11 18.4 48.9 44.7 90.3 7.2 29.8 27.6 69.3
set 12 15.7 47.1 36.2 81.7 7.3 30.9 21.5 65
set 13 17.5 42.8 42.5 85 5.9 22.2 29.9 68.1
set 14 17.4 42.6 42.4 84.8 5.8 22 30.3 68.1

Table A.4: Accuracies (in %) of some feature sets associated with algorithm Algorithm 6 for tempo
induction. Bold fonts are used to highlight the best feature set given a data set (i.e. best line given
a column)

All Ballroom Loops Alonso
acc1 acc2 acc1 acc2 acc1 acc2 acc1 acc2

set 1 16.4 49 38.8 86.1 7.4 31.6 22.3 68.3
set 2 15.2 46.5 35.1 79.7 6.8 30.1 21.9 67.3
set 3 17.1 50.2 41.1 88.8 7.2 32.3 24.1 69.5
set 4 17 42.7 36 80.7 7.8 24.5 28.4 64.6
set 5 17.8 46 40.7 83.4 7.8 27.9 26.8 65.2
set 6 15.8 49.4 38.8 87 6.5 32 22.1 67.9
set 7 16.8 49.5 40 88.1 6.9 31.5 24.7 69.5
set 8 17.6 46.1 44.6 90.3 6.7 26.8 24.1 63.2
set 9 12.8 40.3 29.9 72.6 6.4 26.5 15.1 51.5
set 10 16.8 46.1 43 87.2 6.9 27.4 21.9 65
set 11 17.9 50.9 43.3 90.3 6.9 32.5 27.4 71.4
set 12 15.7 46.3 36 81.2 7.5 29.8 21.1 64.8
set 13 17.1 49.8 42.3 91.4 6.8 31 23.9 68.5
set 14 18.1 47.6 46.6 92.7 6.8 27.6 24.7 66.5

Table A.5: Accuracies (in %) of some feature sets associated with algorithm Algorithm 3 for tempo
induction. Bold fonts are used to highlight the best feature set given a data set (i.e. best line given
a column)
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All Ballroom Loops Alonso
acc1 acc2 acc1 acc2 acc1 acc2 acc1 acc2

set 1 29.5 62.3 30.7 66 28.1 59.6 33.3 68.1
set 2 25.2 51.9 17.8 42.5 26.3 52.1 30.9 64.2
set 3 26.4 60.9 27.2 66.9 24.6 56.1 32.3 72.6
set 4 22.1 58.8 23.5 66.5 19.9 53.9 29.4 68.1
set 5 22.9 59.1 23.9 68.6 21 54.5 29 64.8
set 6 27.6 62.1 28.4 69.3 25.6 57.5 34.8 71
set 7 29.3 63.5 29.4 68.8 28.3 59.9 33.3 71
set 8 26 62.8 24.5 68.3 25.2 59.5 31.5 68.3
set 9 8.2 21.2 0.7 2.7 12.4 31.7 1.2 4.1
set 10 25.4 58 22.1 60 26 56.5 27.8 61.8
set 11 26.8 60.2 25.1 66.5 26.2 55.6 31.5 70.8
set 12 25.1 59.4 26.4 60.5 23.6 57.6 29.6 65.4
set 13 26.6 60.7 25.5 64.2 25.3 57.4 33.5 69.5
set 14 26.5 61.8 23.3 62.7 25.7 59.2 34.4 71.2

Table A.6: Accuracies (in %) of some feature sets associated with algorithm Algorithm 7 for tempo
induction. Bold fonts are used to highlight the best feature set given a data set (i.e. best line given
a column)

All Ballroom Loops Alonso
acc1 acc2 acc1 acc2 acc1 acc2 acc1 acc2

set 1 16.4 49 38.8 86.1 7.4 31.6 22.3 68.3
set 2 15.2 46.5 35.1 79.6 6.8 30.1 21.9 67.3
set 3 17.5 50.4 41 89.4 7.5 32.3 25.8 70.1
set 4 16.8 40.2 33.8 78.9 8 21.5 29.6 63
set 5 17.1 43.4 37.2 83.4 7.8 24.8 26.8 63.8
set 6 16.8 49.1 40.1 88.5 7.2 31 23.7 68.5
set 7 17.1 49.1 40.5 88.8 7.3 30.8 24.3 68.7
set 8 17.9 47.7 44.3 90.8 7.2 28.6 24.9 65.6
set 9 12.7 43.7 30.2 73.5 6.4 30.5 14.1 56
set 10 16.7 45.8 41.3 89 6.7 26.7 23.3 63.6
set 11 18.5 50.6 42.5 90.4 7.9 32.1 28.4 71.2
set 12 15.4 46.8 35.2 80.2 7.1 30.8 21.3 65.8
set 13 18 50.6 42.1 91 7.9 31.7 25.6 71.4
set 14 18.8 49 44.8 92 7.8 29.3 27.6 70.1

Table A.7: Accuracies (in %) of some feature sets associated with algorithm Algorithm 9 for tempo
induction. Bold fonts are used to highlight the best feature set given a data set (i.e. best line given
a column)
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Related publications by the author

In this annex, we provide a list of publications of relevance to this dissertation in which its author

has participated. Abstracts and electronic versions of most of these publications are available from

http://www.iua.upf.es/mtg.

Journal articles

• Authors: Gouyon, F. Klapuri, A. Dixon, S. Alonso, M. Tzanetakis, G. Uhle, C. Cano, P.

Title: An experimental comparison of audio tempo induction algorithms

Journal: IEEE Transactions on Speech and Audio Processing, in press

Year: 2006

Related to Chapter 2

• Authors: Gouyon, F. Dixon, S.

Title: A review of automatic rhythm description systems

Journal: Computer Music Journal, 29(1)

Year: 2005

Related to Chapter 2

• Authors: Gouyon, F. Meudic, B.

Title: Towards Rhythmic Content Processing of Musical Signals: Fostering Complementary

Approaches

Journal: Journal of New Music Research, 32(1)
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Book chapters

• Authors: Gouyon, F. Amatriain, X. Bonada, J. Cano, P. Gómez, E. Herrera, P. Loscos, A.

Title: Content processing of musical audio signals
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Year: in press
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Theses and reports

• Authors: Gouyon, F.

Title: Towards Automatic Rhythm Description of Musical Audio Signals — Representations,

Computational Models and Applications

Type: Pre-doctoral Thesis

Institution: Universitat Pompeu Fabra, Barcelona

Year: 2003
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• Authors: Gouyon, F.

Title: Extraction de descripteurs rythmiques dans des extraits de musiques populaires poly-
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Year: 2000
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• Authors: Gouyon, F.
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Presentations in conferences
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Conference: 28th ACM International Conference on Research and Development in Informa-
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• Authors: Gouyon, F. Dixon, S. Pampalk, E. Widmer, G.

Title: Evaluating rhythmic descriptors for musical genre classification

Conference: 25th International AES Conference
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Conference: International Conference on Music Information Retrieval
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Conference: International Conference on Digital Audio Effects
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Conference: International Conference on Music Information Retrieval

Year: 2004
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Conference: International Conference on Web Delivering of Music
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• Authors: Sandvold, V. Gouyon, F. Herrera, P.
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Conference: International Conference on Music Information Retrieval

Year: 2004
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• Authors: Herrera, P. Sandvold, V. Gouyon, F.
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Conference: 25th International AES Conference

Year: 2004
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• Authors: Celma, O. Gómez, E. Janer, J. Gouyon, F. Herrera, P. Garćıa, D.

Title: Tools for Content-Based Retrieval and Transformation of Audio Using MPEG7: The

SPOffline and the MDTools

Conference:

Year: 25th International AES Conference
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• Authors: Cano, P. Fabig, L. Gouyon, F. Koppenberger, M. Loscos, A. Barbosa, A.
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Conference: 7th International Conference on Digital Audio Effects
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Conference: 4th WIAMIS-Special session on Audio Segmentation and Digital Music

Year: 2003

Related to Chapter 4

• Authors: Gouyon, F. Herrera, P.

Title: Determination of the Meter of musical audio signals: Seeking recurrences in beat

segment descriptors

Conference: Audio Engineering Society, 114th Convention

Year: 2003

Related to Chapter 5
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Title: Rhythmic expressiveness transformations of audio recordings: swing modifications

Conference: 6th International Conference on Digital Audio Effects

Year: 2003

Related to Chapter 5

• Authors: Herrera, P. Dehamel, A. Gouyon, F.

Title: Automatic Labeling of Un-pitched Percussion Sounds

Conference: Audio Engineering Society, 114th Convention

Year: 2003

Related to Chapter 3

• Authors: Gómez, E. Gouyon, F. Herrera, P. Amatriain, X.

Title: MPEG7 for Content-based Music Processing

Conference: 4th WIAMIS-Special session on Audio Segmentation and Digital Music

Year: 2003

Related to Chapter 5

• Authors: Gómez, E. Gouyon, F. Herrera, P. Amatriain, X.

Title: Using and enhancing the current MPEG7 standard for a music content processing tool

Conference: Audio Engineering Society, 114th Convention
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• Authors: Gouyon, F. Herrera, P. Cano, P.

Title: Pulse-dependent analyses of percussive music
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Appendix C

Sound distortion scripts

This appendix details the sound distortion scripts used in Section 2.3, on page 47.

System commands

• Resampling:

$ sox wavfile.wav -r8000 soxedfile0.wav rate

• GSM encoding/decoding and upsampling:

$ sox soxedfile0.wav soxedfile1.gsm

$ sox soxedfile1.gsm -sw -r44100 soxedfile2.wav rate

• Filtering and volume adjustment:

$ sox soxedfile2.wav soxedfile3.wav filter 500-2000

$ sox soxedfile3.wav soxedfile4.wav vol 1.8

• Reverb application:

$ sox soxedfile4.wav soxedfile5.wav reverb 1 2000 1000 700 750 760 880

Matlab commands

• White noise addition:

>> [x,fs,bits] = wavread( soxedfile5.wav);

>> SNR = 20;

>> Px = sum(sum(x.^2));

>> noise = rand(size(x))-.5;

>> Pnoise = sum(sum(noise.^2));

>> noisyX = x + noise*sqrt( (Px/Pnoise) * 10^(-SNR/10) );

>> wavwrite(noisyX, fs, bits, tempwavfile.wav);
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