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Chapter 1

Introduction

Over the last three decades, international trade has been a major driver of economic growth

and development (UNESCAP, 2007). The rise of globalization – whereby geographically

distant economic activities become closely intertwined – has been an essential driver of

the increase in living standards that the world has witnessed during recent years (Wolf,

2004). Today, complex supply chains connect raw materials and manufacturers to rapidly

expanding and increasingly sophisticated consumer markets.

There are many critics of globalization, and we would not presume to dismiss their

claims. On the contrary, we recognize the gravity of the social and environmental chal-

lenges posed by globalization. For instance, rampant consumerism, which has been an

important component of economic growth in the West, is rapidly spreading to Eastern

countries. The voracious appetite – of developed and developing economies alike – for raw

materials has placed enormous pressure on the natural environment, and has resulted in the

overexploitation of forests, fisheries, and arable land. The increased utilization of fossil fuels

and livestock has been a major driver of global warming, which will in turn have a dispro-

portionate effect on the poor. Dismal employment conditions in many of the countries that

supply the cheap goods we consume in Europe and North America cast a dark shadow over

the manufacturers in question. Furthermore, the ethical values of the large corporations,

which appear to derive great benefits from globalization, are often questionable.
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While remaining keenly cognizant of the arguments on both sides of the debate on

globalization, it is not our place to address such concerns here. Rather, we believe that

globalization is a powerful force that will move forward – perhaps inevitably – over the

next several decades. Whether this force is used for the general benefit of humankind and

the environment around us, or rather, to the detriment of both, is entirely up to us. To a

large extent, it will be the responsibility of leaders in the spheres of politics, business, and

academia to determine the policies that will lead us to sustainable and fair growth.

Maritime transport is the backbone of international trade and globalization. Today,

over 80% of global trade (by volume) is transported by ship (DNV Research and Inno-

vation, 2007). Consequently, the shipping industry is closely linked to the challenges and

opportunities posed by globalization – maritime transport is both a cause and a consequence

of globalization.

On one hand, inexpensive, efficient, and reliable maritime transportation is a prerequisite

to global trade at the scale we witness today. Indeed, spatial and economic proximity to

large shipping ports has become a definitive competitive factor for manufacturers. Ocean-

based transportation has become so inexpensive that it is now economically practical to

import lemons from Argentina into Spain, where locally grown lemons rot on the ground

(Rosenthal, 2008). It is less expensive to ship a bottle of wine from France to New York than

it is to transport it overland from California. It is commonplace to ship semi-manufactured

goods several times, throughout the manufacturing process, between plants that exploit

tremendous economies of scale and specific technological capabilities. For a large category

of products, the benefits derived from lower wages and economies of scale far outweigh the

associated transportation and inventory holding costs.

On the other hand, maritime transportation as we know it today depends to a large

extent on the presence of open markets and international cooperation treaties. Shipping is a

truly global business. Not only are the main tangible assets of shipping companies generally

in international waters, but suppliers and workers from a large number of nationalities are

involved in a ship’s daily operation. For instance, the ship’s top officers may be from

a Northern European country, while the crew are Filipino or Indian. The ship is likely
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to be managed in Greece, insured in England, flagged out to Panama or Liberia, and

trade between Japan and the West Coast of the United States. The ship hull will have

been manufactured in South Korea or Japan, based on engineering drawings produced in

Scandinavia, and fitted with a German engine.

In recent years, we have also seen the rise of global stevedoring conglomerates, such

as Hutchison Port Holdings, PSA, A.P. Moller Terminals, or Dubai Ports World (DPW),

which operate terminals in dozens of countries. The ability of these companies to operate

internationally is critically dependent upon a degree of cooperation and openness, as was

illustrated in 2006 when the Congress of the United States voted to block DPW – which

is based in the United Arab Emirates – from operating maritime terminals in the United

States.

There is a widespread sentiment among academics and practitioners that the maritime

industry lags behind other business sectors in its ability to develop and apply advanced

quantitative methods to its management practices. In particular, as will be shown in Section

2.1, it appears that the maritime transportation sector has fallen behind other modes of

transportation in this respect. Christiansen, Fagerholt, Nygreen, and Ronen (2007) list

several factors that have contributed to the scarcity of research into maritime planning

problems: low visibility, lack of a standardized structure to the problems in the sector, an

unusually high degree of uncertainty, deeply rooted traditions, and fragmentation of the

sector into many small players.

We believe that there is another element which has contributed significantly to the lack

of advanced and innovative managerial practices in the maritime sector. It appears that

many companies have a policy of promoting former seafarers to top managerial posts. This

observation is informally supported by an examination of the requirements posted by the

main recruiting agencies and job boards in this sector (Spinnaker Consulting, 2008; Lloyd’s

List, 2008; Faststream UK, 2008). We believe that this practice limits the flow of fresh

ideas into the industry, discourages top professional managers from considering a career in

the sector, and is unlikely to result in merit-based and transparent hiring and promotion

processes.
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To advance in the global market, maritime companies will need to develop core com-

petencies in supply chain management, logistics and information technology. We are not

about to contest the importance of leveraging the knowledge of seasoned seafarers and ter-

minal planners. On the other hand, it is not clear that a career as a vessel officer prepares

the individual to implement the most effective managerial principles onshore. In the fu-

ture, an important competitive advantage will be obtained by companies that can attract

top managerial talent with a priviledged understanding of the aforementioned fields. A

key issue will be the establishment of productive relationships between these managers and

experienced seafarers.

The shipping sector is now at a critical junction. The impact of the sector on the envi-

ronment will fall under closer scrutiny as additional emphasis is placed on reducing vessel

emissions and spills, as well as improving safety and labor standards. On the other hand,

sophisticated shipping customers, who have embraced advanced supply chain management

strategies themselves, will increasingly look for transport companies with correspondingly

advanced capabilities. While demand for ocean-based transport is forecast to continue in-

creasing for decades, and vessel supply is expected to remain generally tight (DNV Research

and Innovation, 2007), the shipping sector will remain fiercely competitive. We believe that

sophisticated mathematical modeling tools, such as those presented in this research, will

confer a strong competitive advantage to companies that embrace them.

The three papers contained in this dissertation address important questions faced by

liner and stevedoring companies. We have intentionally covered both types of companies

in an effort to provide a broader view of the maritime sector. Similarly, we have addressed

tactical as well as operational problems.

The research presented in Chapter 2 addresses a key question faced by liner companies.

Given a forecast of transportation demand over a tactical planning horizon, how should

the company design its services and allocate vessels to these services, in such a way that

its costs are minimized, while fulfilling the expected demand? Clearly, this is an extremely

important question. A large portion of the liners’ operational expenditures arise from

fuel consumption and terminal fees. These costs are in turn determined by the choice of
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routes and transhipment points and volumes. The question is also extremely complex due

to the vast number of possible routes, and the interaction between vessel routing, fleet

deployment, vessel speeds, and transhipment volumes. We believe that any attempt to

resolve this problem manually would result in a significantly suboptimal operation and

unnecessarily high costs. We therefore propose a mixed integer programming model of the

problem and an algorithm to resolve it. The proposed algorithm decomposes the problem

into two tiers. The top tier generates new routes and deploys vessels using a heuristic search

mechanism and based on reduced costs obtained from the lower tier. The lower tier, which

is solved exactly, determines the container flows along the different routes, as well as ideal

transhipment points and volumes.

In Chapter 3, we present a mathematical model of the vessel planning problem. The

model considers disutility from the travel of container handling equipment (CHE) in the

yard; rehandling; and vessel instability. The presence of a large number of binary variables

makes this problem intractable even for instances that are two orders of magnitude smaller

than those encountered in practice. We propose a Lagrangean relaxation of the problem,

which results in three subproblems: a shortest path problem, an assignment problem, and

a trivial minimization problem. The resulting algorithm solves problems of relevant di-

mensions very quickly. This speed can be attributed to two factors. The first factor is

the efficiency of the network algorithms used to solve the three subproblems. The second

factor is the generation of a large number of high quality primal feasible solutions that are

easily derived from the subgradient optimization algorithm used to coordinate the three

subproblems.

In Chapter 4, we address the vessel planning problem using tabu search. This research

predates a more sophisticated heuristic algorithm that was developed for a terminal oper-

ating software vendor, and which is protected by an intellectual property agreement. The

algorithm presented in this dissertation is found to produce adequate solutions very quickly.

Each of the aforementioned chapters include sections on conclusions and directions for

further research. Rather than reiterating these points, Chapter 5 provides an outlook for

how optimization may evolve within the maritime sector over the next decade. Our focus
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is on ascertaining the type of problems that will be relevant, as well as the challenges that

we will face when implementing new models and algorithms in a business environment.
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Chapter 2

Joint Routing and Deployment of a Fleet

of Container Vessels

Large liner companies operate scores of vessels and provide regular transportation between

distant markets using a complex array of services. The cost of operating the vessel fleet

is a central concern of the liner companies, and the liner’s ability to control these costs

constitutes a major competitive advantage. At the tactical level, the key decisions that

the company makes in this sense are the determination of the routes that will be served

and the number and types of vessels that will be assigned to each route. The complexity

of these decisions cannot be overstated. A comprehensive solution to the problem should

consider, among other factors: the demand for and pricing of transportation between dif-

ferent ports and geographic regions; the different operational characteristics (speed, fuel

consumption, crew requirements, and carrying capacity) of each vessel in the fleet; level of

service requirements; conference agreements; and transhipment ports and costs.

A vast body of scientific literature has been devoted to fleet sizing, deployment, and

routing problems in air (e.g. Gopalan and Talluri, 1998; Rushmeier and Kontogiorgis, 1997),

truck (e.g. Simchi-Levi, Chen, and Braca, 2005), and rail (e.g. Sherali and Maguire, 2000)

transportation. By comparison, little research is available regarding the methods employed

by maritime vessel operators in making the corresponding decisions. The recent work by

Fagerholt and Lindstad (2007) in tramp and industrial shipping constitutes a welcome
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advance in the application of sophisticated algorithms to the vessel scheduling problem. In

the case of liner shipping, however, little progress has been made in recent years.

The fact that the liner shipping sector has not more thoroughly embraced the use of

advanced mathematical programming algorithms is perplexing, given the success reported

in other complex and capital intensive transportation sectors. For instance, Sherali and

Maguire (2000) report benefits of over half a billion dollars to railroad companies using a

fleet sizing algorithm. Armacost, Barnhart, Ware, and Wilson (2004) describe a network

planning tool that generated savings of more than $87 million at UPS over a two year

period. Mason, McKenney, Carlson, and Copeland (1997) describe the essential role of

mathematical programming models at FedEx. Rushmeier and Kontogiorgis (1997) reported

annual savings of $15 million from the use of their models at USAir. Abara (1989) describes

the use of mathematical programming models for fleet assignment at American Airlines.

Closer to the liner sector, Fagerholt and Lindstad (2000) reported annual savings of US$7

million following the implementation of a vessel scheduling algorithm for a tramp shipping

operation along the Norwegian Coast. Today, it would be unthinkable to operate a large

airline or ground logistics company in the absence of advanced mathematical programming

tools for fleet sizing and scheduling.

In this paper we present a mixed integer programming (MIP) formulation for the joint

optimization of vessel routing and deployment. As will be seen in Section 2.1, most previous

research has treated the routing and deployment problems separately. In most cases, the

fleet sizing models assume that a set of good candidate routes has been obtained, either

from past experience or through a separate process. One of the central goals of this research

is to demonstrate a model that can consider the routing and deployment aspects concomi-

tantly. The proposed model permits the representation of multiple vessel types, each with

a particular profile of fuel consumption, daily running costs, and carrying capacity. The

model can represent the transhipment of containers, either at specific ports selected by the

user, or at ports suggested by the model. The determination of target vessel speeds for each

service is also considered within the model.

The remainder of this paper is organized as follows. The next section provides a brief
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overview of related scientific literature. Section 2.2 presents a mathematical model of the

vessel routing and deployment problem that captures the principal tactical-level decisions

and costs faced by a global container carrier. Section 2.3 presents an algorithm to solve

large instances of the proposed model. Section 2.4 provides a case study, where we apply the

model to a putative liner company, and examine the effects of changes in bunker prices to

the routing strategy of this company. The final section presents conclusions and directions

for further research.

2.1 Literature review

Notteboom (2006) provides a descriptive discussion of the parameters considered by liner

companies when designing a service schedule, as well as the methods used to correct delays

when they do occur.

Christiansen et al. (2004, 2007) provide a review of recent research in ship routing

and scheduling. They classify the literature according to the type of shipping operation

(industrial, tramp, or liner shipping) and the planning level addressed (strategic, tactical,

or operational). The authors point out several key differences between five modes of freight

transportation, namely: ship, air, truck, pipeline, and rail. An important observation made

by the authors is that research of routing and scheduling methods in the maritime sector has

lagged far behind corresponding research in the air- and land-based modes. In particular,

they note the paucity of research in liner vessel routing, an observation that is also made

by Sherali and Al-Yakoob (2006)

Rana and Vickson (1991) present an arc-flow formulation of the vessel routing and

deployment problem. Inasmuch as the model simultaneously addresses the routing and

deployment problems for a fleet of heterogeneous liner vessels, this model is possibly the

closest precursor to the one we propose. A large number of integer variables is required for

a general arc-flow formulation, which generally poses a significant computational challenge.

The authors mitigate this complexity by imposing restrictions on the type of routes that

can be constructed by the model. The resulting network structure is not representative of

liner business practice today. Furthermore, the authors use several nonlinear constraints
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in their formulation, which constitute an additional difficulty. The authors resolve these

difficulties using decomposition techniques, and arrive at near-optimal solutions.

Cho and Perakis (1996) propose a linear programming formulation for the vessel deploy-

ment problem. The model assumes that the number of vessels available to the company is

fixed over the planning horizon. An explicit enumeration of the routes that may be employed

is required – the model cannot generate new routes. A separate MIP model is proposed to

address the liner company’s capital investment decisions over longer time periods.

Powell and Perakis (1997) develop an integer programming model for optimal liner fleet

deployment. The model captures operating costs for each vessel-route combination, lay-up

costs, vessel-route incompatibilities, and required service frequencies. An enumeration of

all potential routes is required. The model determines the number and type of vessels to

serve each route, as well as the number of vessels that are laid up.

Fagerholt (1999) presents a fleet sizing algorithm for a shipping operation along the

Norwegian Coast. The transportation operation is naturally divided into a feeder portion

and a distribution portion, which are in turn connected through a single depot. The problem

is solved by generating a list of feasible routes, and then assigning vessels to routes using a

set partitioning formulation.

Fagerholt and Lindstad (2000) address the problem of finding an efficient fleet compo-

sition and schedule for delivering supplies from a single onshore depot to multiple offshore

installations in the North Sea. Cargoes of different types are segregated into different com-

partments and the deck. Limited deck space creates a constraint on the number of facilities

that can be served during a single sailing of a vessel. There are additional constraints on the

times at which a vessel can unload its cargo at the different offshore facilities. The proposed

algorithm operates in two phases. The first phase generates a list of feasible schedules for

each vessel. Given the small dimension of the instances addressed, it is possible to generate

all feasible schedules for every vessel in the fleet. The second step of the solution procedure

uses the aforementioned schedules to generate the constraint matrix of a mixed integer pro-

gram. This program obtains the fleet composition and schedules that minimize operating

costs and total sailing time.
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Song, Zhang, Carter, Field, Marshall, Polak, Schumacher, Sinha-Ray, and Woods (2005)

examine the cost-efficiency of the global container shipping network. Their heuristic algo-

rithm assigns trade volumes to the actual set of liner services available worldwide as of the

year 2002. The vessel routing and deployment decisions are part of the input data, so the

methodology focuses on solving the multicommodity flow problem with transhipment costs.

Fagerholt and Lindstad (2007) present a decision support system (DSS) for ship routing

and scheduling in industrial and tramp shipping. The DSS allows for detailed consideration

of business requirements, including representation of different vessel types; compatibility

between products and vessels; port and canal fees and operating hours; multiple possible

objective functions; and spot charter rates. The DSS can be used as a manual planning tool

to evaluate different scenarios, or it can generate schedules automatically using a multi-start

local search heuristic. This heuristic generates a large number of initial solutions, and then

improves them using intra-route and inter-route cargo-vessel reassignments. The proposed

DSS has been deployed to several shipping companies, which have in turn derived significant

benefits from its use. Unfortunately, the proposed formulation is specifically adapted to

industrial or tramp shipping, where the business model differs substantially from the one

considered in the present research.

2.2 Mathematical model

The purpose of the model is to minimize the operating expenses of a liner company over

a tactical planning horizon. Our model does not consider the strategic question of vessel

purchase and retirement, as the planning horizon for these decisions is typically between

twenty and thirty years. Furthermore, vessel acquisitions and sales are governed by ex-

tremely volatile market forces (Stopford, 1997), which have the potential to generate large

distortions inside a tactical-level model. Vessel demolition should be considered a strategic-

level decision, and this alternative is similarly excluded from the model. Therefore, we

assume that the liner company already owns a fleet of vessels, and is bound to a schedule of

payments on the principal price of the vessels. These payments must be made regardless of

whether the vessels are in service or laid up, and are therefore not included in our model.
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Another plausible alternative, that of chartering out some vessels temporarily, is readily

represented in the proposed model.

Rather than represent the operational characteristics of every possible vessel, we group

similar vessels using a small number of generic vessel types. The relevant characteristics

of each vessel type include carrying capacity in TEU1 ; fuel consumption as a function of

speed; and daily running costs (DRC) – crew, repairs and maintenance, oil and lubricants,

protection and indemnity, and stores (Alderton, 2005). Each vessel type has a small set

of possible operating speeds. The model selects a speed for each vessel, and it is assumed

that the vessel maintains this speed throughout all segments of its service. It should be

noted that cruising speed selection is generally considered an operational-level problem.

We propose an evaluation of speed selection at the tactical level, since this parameter has

a direct impact on the number of TEU-miles each service can provide. Naturally, speed

corrections will always occur at the operational level, based on immediate circumstances.

We assume that the liner company has manifest demand for transportation between

ports worldwide. This demand appears at a constant rate throughout the planning period.

In practice, liner companies will be subject to seasonal variations in demand. We therefore

assume that the planning horizon considered in the model is restricted to a period where

demand for transportation is indeed fairly stable.

Rather than considering the true origin and destination of the merchandise in the hinter-

land, we aggregate all demand for transportation at the maritime port serving the associated

hinterland. We assume that the liner company can choose not to transport any portion of

the demand, but incurs lost revenue and perhaps an additional monetary penalty (as a

proxy to loss of goodwill) for each unit of manifest demand that it fails to transport. In

order to support some heuristic search mechanisms, we group the ports into a small num-

ber of regions (e.g. Western Mediterranean, North America West Coast, etc.). The cost of

loading and unloading a TEU at every port in the model is known.

1A TEU, or twenty-foot equivalent unit, is a standard container: 20 ft long, 8 ft wide, and 8.5 ft tall.
The TEU is the universally accepted unit for measuring the capacity of container ships and the activity of
container terminals. The 40-ft container, which is also widely used, is counted as two TEUs, and is also
referred to as a FEU.
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The travel time between any two ports is assumed to be deterministic. The amount of

time that each type of vessel spends at each port can be estimated with reasonable accuracy

and is independent of the number of containers being lifted during the call. This assumption

is satisfactory in the presence of a significant fixed time component to each port call (due

to the vessel approach, mooring, etc.) and when vessels of similar capacity lift a similar

number of containers each time they call at a particular port.

The model can accommodate routes that are proposed externally by a planner, as well

as routes that are generated by the solution algorithm. We impose no restrictions on the

routes that are added by the planner, and only minimal restrictions on the types of routes

that the algorithm can generate. In the latter case, every route generated by the algorithm

must be a loop, in the sense that every vessel assigned to that route will visit the same

ordered sequence of ports during each voyage. We also limit the duration of each voyage

in order to comply with crewing regulations or agreements. Beyond these two limitations,

we allow the model to utilize any route that would result in a reduction of operational

costs. In contrast to the work of Bendall and Stent (2001), a hub-and-spoke network will

be employed only if and where it results in reduced overall costs.

By default, it is assumed that an unlimited number of containers can be transhipped at

any port. The model will select the transhipment locations that result in lower costs overall.

When a liner company has existing agreements at specific transhipment hubs, the lower lift

costs and port times at those locations should naturally induce the model to tranship at

these locations. If needed, the transhipment volumes at any port can be controlled by

imposing upper bounds on the appropriate flow variables.

Draft, length, and width restrictions at ports, canals, or route segments can be repre-

sented in the model by disabling any vessel type-arc combination as needed. Land bridges

and transportation to land-locked countries can be represented using the entities in the

proposed model.

Some of the modeling assumptions presented above are appropriate at the tactical level,

but are unrealistic within an operational timeframe. It is understood that the liner company

must also develop operational-level policies to address temporary variations in its business
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environment.

2.2.1 MIP formulation

In this section, the tactical fleet sizing and routing problem is formulated as a MIP. In

the maritime sector, a service is defined as a sequence of ports to be visited following a

published schedule. While we adhere to this convention, the core entity of our model must

be more specific in order to capture all transhipment costs properly. We therefore define

a run as a particular vessel type-speed-service combination. The following sets are used in

the formulation:

Π All ports in the model.

Λ All regions in the model.

Ξ All runs in the model.

Ξi,j Set of all runs incident upon arc (i, j).

∆ Set of all possible arcs in the model, Π×Π. All arcs are directed and

uncapacitated.

∆r Set of arcs used in run r.

Υ Vessel types in the model.

The following parameters represent the known data for the problem:

vr Vessel type used in run r.

sr Speed of all vessels used in run r.

cv Capacity (in TEU) of vessels of type v.

fv Daily running costs (DRC) for vessels of type v over the entire plan-

ning horizon.

f̃v Cost or revenue of excluding a vessel of type v from operations. This

can be the revenue obtained from chartering the vessel out over the

entire planning horizon, or the cost of laying up the vessel, depending

on transportation market conditions.
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gvs Fuel consumption (tons per mile) for vessels of type v steaming at

speed s.

hv Fuel consumption (tons per day) for vessels of type v when idle at

port.

e Fuel price per ton.

zv Number of vessels of type v available.

lvij Length in nautical miles of a direct sailing from port i to port j using

vessel type v.

br Length (nautical miles) of run r; br =
∑
{(i,j)∈∆r} l

vr
ij .

mr Number of round trips performed by a vessel on run r during the

planning period. We do not impose an integrality restriction on this

parameter, as we assume that a fractional portion of the voyage can

be completed at the beginning of the following planning period.

pvj Time at port j for vessels of type v.

wr Total port time for run r; wr =
∑

(i,j)∈∆r
pvr
j .

uj Cost of lifting a TEU at port j.

kod Total demand (in TEU) to the liner company for transport from o to

d over the planning period.

qod Revenue from transport of one TEU from o to d.

q̃od Penalty for failing to transport one TEU from o to d.

Finally, the decision variables used in the MIP are:

Xr
ijd Number of containers traveling to their final destination at port d

along arc (i, j) on run r.

Lrid Number of containers to be transported to port d that are loaded onto

run r at port i. This includes containers that are entering the network

for the first time, as well as containers that are reloaded to run r after

being transhipped from another run.
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U rid Number of containers traveling to port d which are unloaded from run

r for transhipment at port i.

W r
d Number of containers traveling to port d reaching their final destina-

tion using run r.

Vod Demand from port o to port d that is serviced by the liner company.

Ood Demand from port o to port d that will not be serviced by the liner

company.

Y r Number of vessels assigned to run r.

The MIP model is presented below, followed by an explanation of the objective function

and all the constraints.

(VRD) Minimize

ZMP =
∑
r∈Ξ

Y rfvr +
∑
v∈Υ

f̃v

(
zv −

∑
r∈Ξ:vr=v

Y r

)
+

∑
r∈Ξ

Y r · e ·mr (gvrsrbr + hvrwr) +

∑
o∈Π

∑
d∈Π

q̃odOod − qodVod+

∑
i∈Π

∑
r∈Ξ

ui ·

(
W r
i +

∑
d∈Π

(Lrid + U rid)

)
(1)

subject to:∑
j:(j,n)∈∆r

Xr
jnd + Lrnd =

∑
j:(n,j)∈∆r

Xr
njd + U rnd ∀n, d ∈ Π n 6= d r ∈ Ξ (2)

∑
j:(j,n)∈∆r

Xr
jnn = W r

n ∀n ∈ Π r ∈ Ξ (3)

∑
n∈Π

Ond +
∑
r∈Ξ

W r
d =

∑
n∈Π

knd ∀d ∈ Π (4)

∑
r∈Ξ

Lrnd =
∑
r∈Ξ

U rnd + Vnd ∀n, d ∈ Π n 6= d (5)

Ond + Vnd = knd ∀n, d ∈ Π (6)∑
d∈Π

Xr
ijd ≤ cvr · Y rmr ∀r ∈ Ξ (i, j) ∈ ∆r (7)
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∑
r∈Ξ:vr=v

Y r ≤ zv ∀v ∈ Υ (8)

Xr
ijd, L

r
id, U

r
id,W

r
d ∈ R+ ∀r ∈ Ξ (i, j) ∈ ∆r d ∈ Π (9)

Ond, Vnd ∈ R+ ∀n, d ∈ Π (10)

Y r ∈ Z+ ∀r ∈ Ξ (11)

The first line on the objective function captures the fixed costs of operating the fleet,

including laying up vessels that are not assigned to any run. The second line in the objective

function obtains the fuel costs for all active vessels, which includes consumption both during

steaming and while idling at ports. The third line in the objective function obtains the total

revenues from transporting units as requested, and the penalties incurred when rejecting

carriage requests. The final term in the objective function computes charges from loading

and unloading containers, both at their origin and destination, and at transhipment points.

Constraints (2) balance the flow of containers loaded and unloaded from each run at

points other than their final destination. Every container not destined for the port in

question must either continue along in the same run or be unloaded for transhipment to

a different run. Constraints (3) represent the flow of containers that were accepted for

carriage arriving at their final destination. Every container arriving at its final destination

is unloaded and grounded.

Adding the variables Ood to the model allows us to obtain a feasible solution for any fleet

configuration. When there is not a sufficient number of vessels to transport all the demand,

or when it is not economically convenient to transport all containers, the variables Ood are

set to a positive value, indicating that some traffic demand has been forfeited. Constraints

(4) tally traffic arriving at each port. This ensures that the amount of forfeited traffic, plus

the traffic actually carried to the port, add up to the manifest demand for traffic into each

port.

Constraints (5) represent the flow of containers originating and transhipped at each

port. The total number of containers leaving the port must equal the traffic that enters the

network from the hinterland of this port, plus any containers that were previously unloaded
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for transhipment. Constraints (6) are analogous to constraints (4), but tally traffic from

the perspective of the originating hinterland.

Constraints (7) impose restrictions on the total number of containers that can be trans-

ported by each run on each one of its arcs. The total that can be transported is limited by

the number of vessels assigned to the run, the capacity of those vessels, and the number of

trips the vessels perform over the planning horizon.

Constraints (8) ensure that the number of vessels that are deployed does not exceed the

available vessels of each type.

Finally, constraints (9), (10), and (11) impose non-negativity and integrality restrictions

on the corresponding variables.

2.3 Solution technique

Realistic instances of problem VRD pose a challenging computational problem. The diffi-

culty in solving this problem centers on the presence of variables and constraints indexed

over the set Ξ. In problems of relevant size, the number of possible runs (more specifically,

the number of possible routes) will be so high that it may not be practical to list them,

much less include them in a MIP. Secondly, given that larger vessels are more cost effective

on a per-TEU basis, the linear programming relaxations of problem VRD will favor the

use of fractions of the largest vessel available, and will not use any smaller vessels. These

relaxations will therefore constitute very poor approximations of actual solutions, which

detracts from the efficiency of traditional solution techniques such as branch and bound.

In order to solve problem VRD, we begin by noting that, if we fix the values of all

variables Y r to feasible values, we can eliminate constraints (8) and (11) from problem

VRD. Additionally, by fixing the values of all variables Y r, we fix the right-hand side

of constraints (7). With these changes, problem VRD becomes a pure multicommodity

flow problem (MCFP) (Ahuja, Magnanti, and Orlin, 1993). State of the art interior-point

optimization codes can quickly solve very large instances of problem MCFP.

The preceding discussion suggests a two-tier solution approach whereby, at each iteration

t, a set of runs Ξ(t) and the corresponding vessel deployment Y r
(t) are established at the higher
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tier using tabu search (Glover and Laguna, 1997). The tabu mechanism identifies each run

by concatenating, in alphabetical order, the names of the ports that are visited by the run2.

A run that has been recently modified can’t be modified again as long as it is appears in

the tabu list. A run is considered to be modified by the following operations: creation,

deletion, change in vessel type, change in vessel speed.

Using tabu search to control variables Y r allows us to reinterpret the latter as parameters

to the lower tier, problem MCFP(Ξ(t), Y
r

(t)). Using information obtained from the solution

of each problem MCFP(Ξ(t), Y
r

(t)), we can then obtain an improved set of runs Ξ(t+1) and

vessel deployments Y r
(t+1) at the higher tier. Figure (1) provides a schematic representation

of the two-tier solution approach.

For the purposes of the case study presented in Section 2.4, we obtain an initial solution

Ξ(0) and Y r
(0) by assigning small vessels to simple loops in each region λ ∈ Λ. We then

connect the intra-region loops using large vessels on long-haul routes. In practice, it would

be advantageous to set Ξ(0) and Y r
(0) to the actual configuration of the liner company, which

would provide an initial solution of much higher quality.

At each iteration t of the algorithm, we solve problem MCFP(Ξ(t), Y
r

(t)) and carefully

analyze two sets of results derived from the solution: the load factors on each arc, and the

shadow prices on constraints (7).

The total flow of containers using run r on arc (i, j) is given by
∑

d∈ΠX
r
ijd – the utilized

capacity on arc (i, j). Similarly, the installed capacity of run r on each one of its constituent

arcs is given by cvr · Y r · mr. By observing the ratio between the used capacity and the

installed capacity, we can determine which runs are over- or under-utilized. Underutilized

runs are good candidates for a reduction in the number of vessels deployed to them or for

elimination from the set Ξ(t+1). Alternatively, we can decrease the size or speed of some of

the vessels employed in that run. Overutilized runs are good candidates for an increase in

the number, size, or speed of vessels deployed to them.

The shadow prices ρrij associated with each constraint (7) indicate the potential impact

2By sorting the ports of the restricted run in alphabetical order, we extend the tabu restriction to any
runs that consist of a permutation of the same ports.
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to the objective function from a unit increase on the right-hand side of the constraint. If we

were to add a new vessel to run r, the right-hand side of every constraint (7) associated to

the links incident upon r would increase by cvr ·mr. The potential benefits derived from this

additional capacity are approximated by
∑

(i,j)∈∆r
ρrij · cvr ·mr. We can therefore estimate

the overall benefit of adding this vessel to the run by comparing the latter quantity to the

costs required to deploy a vessel vr.

Use dual values for 
column generation

Use each run's utilization 
rates to increase or 
decrease vessel size

Use service utilization rates to 
eliminate or duplicate runs

Initial values for  Y(0)
r and Ξ(0) 

Control Y(t)
r and Ξ(t) using Tabu search

Solve multicommodity flow problem 
using Simplex or IP engine

Fix RHS in Constraints (7)
Eliminate Constraints (8)
Eliminate Constraints (11)

Figure 1: Schematic representation of the two-tier solution approach.

In fact, we can use a similar idea to estimate the benefit of adding an altogether new

run r′. In order to do this, we imagine adding a dummy run a to each problem MCFP.

This dummy run has zero units of capacity along every arc in the network, but serves as a
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placeholder for the shadow prices of arcs where no service currently exists. We then design

the route ∆r′ of the new service, and estimate the benefits derived from the capacity of the

new run by
∑

(i,j)∈∆r′
ρaij · cvr′ ·mr′ .

We use this method to generate a multitude of possibly beneficial new runs, in what is

known as a column generation procedure. Formally, for each vessel type v and speed s, we

seek to solve problem AUX(vs), which determines the composition of a column with negative

reduced cost in problem MCFP(Ξ(t), Y
r

(t)). There are several difficulties that prevent us from

addressing this problem directly. First, given that the route to be followed in run r′ is not

known, the value of parameter mr′ (the number of round trips that a vessel will perform

on this run) is not known either. Introducing this parameter as a decision variable in the

problem would add an unwelcome non-linearity. We can circumvent this problem by looking

for new columns that have negative reduced cost per trip. By changing the focus of the

column generation procedure from total impact on the objective function to impact per

trip, we do not exclude any valid columns.

The second difficulty follows from our intention to construct services that are loops.

Unfortunately, this introduces the possibility that many of the columns generated by the

model would contain disjoint subtours. The elimination of these subtours from the proposed

solutions poses a significant computational challenge, akin to the elimination of subtours in

the traveling salesman problem.

We propose a simple heuristic to discard solutions containing disjoint subtours. We

start by setting a limit ivs on the savings to be obtained from each newly proposed run

that uses a vessel of type v steaming at speed s. Initially, we set ivs = −∞. After solving

AUX(vs), if the resulting solution does not contain subtours, we accept the candidate run.

Otherwise, we set ivs = ZAUX(vs) + δ, with δ ≥ 0, and solve the problem again. The effect

of this adjustment is to prevent the most recent solution from appearing again. We proceed

in this manner until a valid run is obtained, or until the magnitude of ivs becomes very

small, indicating that no worthwhile new runs using this vessel-speed combination can be

found.

The auxiliary problem AUX(vs) is now presented. We start by defining some additional
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parameters:

ivs Lower bound on the financial benefit obtained from the addition of the

new run.

ρij Dual value associated to constraint (7) for arc (i, j) in the most recent

solution to problem MCFP. Where there is no run incident on arc (i, j)

at iteration t, we use ρaij . Otherwise, we use min
r∈Ξ(t):vr=v,sr=s

ρrij , as several

runs may be incident on arc (i, j).

mmin Minimum number of voyages required over the planning horizon.

T Length of the planning horizon.

Problem AUX (vs) has the following decision variables:

Avsij Binary variable, indicates whether arc (i, j) forms part of the new run.

µvs Inverse of the number of trips to be completed on the new run over the

entire planning horizon.

ωvs Estimated per-trip cost of the new run on the objective function of prob-

lem MCFP(Ξ(t), Y
r

(t)).

The auxiliary column generation model is then given by:

AUX(vs) Minimize

ZAUX(vs) = ωvs (12)

subject to:

ωvs = µvs(fv − f̃v) +
∑

(i,j)∈∆

Avsij
(
e · hvpvj + e · gvslvij − ρijcv

)
(13)

T · µvs =
∑

(i,j)∈∆

Avsij

(
pvj +

lvij
s

)
(14)

∑
j∈∆

Avsjn =
∑
j∈∆

Avsnj ∀n ∈ Π (15)

ivs ≤ ωvs (16)

µvs ≤ 1
mmin

(17)

Avsij ∈ {0, 1} ∀(i, j) ∈ ∆ (18)
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Constraints (13) and (14) serve to define the values of ωvs and µvs. Constraints (15)

require that each candidate route be composed of closed loops. For the purposes of the

subtour elimination heuristic, constraint (16) imposes a limit on the benefit that can be

obtained from the new service. Constraint (17) limits the duration of each voyage of the

new service to comply with crewing requirements.

A key feature of this column generation scheme is that it has the potential to generate

routes of any type: triangle services, pendulum services, butterfly services, conveyor belt

services, and combinations thereof. It should be noted that problem AUX(v, s) could be

supplemented by purely heuristic or rules-based column generation methods, which can

generally embody more sophisticated restrictions on the types of routes that are deemed

acceptable.

2.4 Case study

We propose a study of the sensitivity of routing and deployment policies to bunker prices.

This analysis is particularly relevant at present, when oil prices have surged to record prices

(c.f. Figure 2 ), placing a tremendous burden on the transportation industry.

Figure 2: Crude oil prices 2007- 2008 (The Wall Street Journal, 2008)
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Although the data we use in the case study are realistic, they do not describe any liner

company in particular. We now comment briefly on the assumptions and methods used to

generate the case data.

We created a short list of prototypical vessels based on the web site of Hapag-Lloyd

(2007), which provides a catalog of vessel classes used by the company. For each vessel

class, the web site lists the vessel’s capacity, design speed, and engine power at the design

speed. We generated cost and fuel consumption profiles for each vessel using formulas and

data provided by Alderton (2005). We estimated fuel consumption at the service speed

based on the power generated by each vessel’s engine, and assuming a specific consumption

of 125 grams per brake horsepower (bhp) per hour. We calculated fuel consumption at a

lower speed (80% of the design speed) using the cube law:

Consumption80 = Consumptiondesign · (speed80/speeddesign)3 (19)

The main characteristics of the fleet used in the case study are listed in Table 1.

Vessel Cap. idle cons Low Speed Design Speed Nb
type [TEU] [t/dy] Sp[kn] Cons[t/dy] Sp[kn] Cons[t/dy] Avail

SuperPPmx 8,400 2.5 20.0 157 25.4 305 20
PostPmx 4,900 2.0 19.2 97 24.0 188 20
Panamax 3,200 1.7 16.8 59 21.6 114 20
feeder2 2,100 1.3 15.2 33 19.7 64 20
feeder1 1,000 1.0 14.8 26 18.5 51 20

Table 1: Available vessel types

We obtained a list of the top 120 container ports from Container Management Magazine

(2007). We generated a matrix of optimal sailing distances between these ports using data

from the National Imagery and Mapping Agency (NIMA, 2001). The source data lists

distances from each port to the most important ports in its vicinity, as well as distances to

major routing junction points (e.g. the Panama Canal, the Straits of Malacca, etc.). We ran

a many-to-many shortest path algorithm to determine the best routes between each pair of

ports in our top 120 list. We disabled several routes that would require ice strengthening,

or that would not meet the draft requirements of large container vessels.
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We generated the port-to-port transportation demand matrix using a logit model. We

started with a total yearly demand for transportation of 5 million TEU, corresponding to a

fairly large liner company. In order to create a realistic geographic distribution of demand,

we allocated this demand among countries in proportion to each country’s gross domestic

product (GDP). Next, we allocated the demand for each country among that country’s

top ports in proportion to each port’s ranking in the list of the top 120 container ports.

Finally, we determined the demand for transportation between each pair of ports using a

logit model:

kod = ko · exp(−lPmxod )/
∑
j∈Π

exp(−lPmxoj ), ∀o, d ∈ Π (20)

where ko is the total demand for transportation generated in the hinterland of port o, and

lPmxij represents the sailing distance between ports i and j for a Panamax vessel. Figure 3

depicts the demand for transportation that is generated by the hinterland of each port in

this model. In the figure, the size of the circle that indicates each port is proportional to

ko.

Figure 3: Transportation demand at each port
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We implemented the multicommodity and column generation portions of the algo-

rithm using AMPL 10 (Fourer, Gay, and Kernighan, 2003) and CPLEX 10.0 (ILOG S.A.,

2006). The master algorithm, which controls the tabu metaheuristic and the calls to the

AMPL/CPLEX codes, was implemented in C++. All experiments were carried out on a

2.1 MHz Pentium computer with 2GB of RAM.

First, we ran a base scenario with bunker prices at US$400 per ton and very high

penalties for rejecting traffic. The algorithm produced 85 services and deployed 91 vessels.

At most three vessels were deployed on any service. The services that used multiple vessels

generally employed vessels of different types. The algorithm used all available Feeder1,

Feeder2, Panamax, and PostPanamax vessels. Overall, fewer than 12% of the vessels were

deployed at their design speed. In this solution, a total of 2.6 million TEU-miles was

provided by the fleet.

The second scenario was identical to the first, except for a higher bunker price of US$600

per ton. In this scenario, the algorithm deployed 87 vessels on 83 services. Relative to

the base case, four services were cancelled and 13 were modified to cover different routes.

Furthermore, two Feeder2 vessels were redeployed at the lower speed. Three PostPanamax

and one SuperPostPanamax vessels were docked. The total TEU-miles provided by the

fleet went down by 10%, while the number of rehandled containers increased by 9.5%. The

amount of fuel consumed decreased by 7% due to the route adjustments.

In the third scenario, the cost of fuel was set at US$800 per ton. As before, the algorithm

suggested the deployment of 87 vessels on 83 services. However, relative to the second

scenario, five routes were changed. Furthermore, one SuperPostPanamax vessel was docked,

while one PostPanamax vessel was placed in service. The number of rehandles increased

slightly, while the total TEU-miles provided by the fleet decreased slightly. The total fuel

consumed decreased by 3%.

In all three scenarios, over 70% of ports received a vessel at least once a week, and 90%

of ports received a vessel at least every ten days. However, some important ports were

served infrequently. It is therefore likely that some additional level-of-service constraints

would be required in the proposed model.
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2.5 Conclusions

We have presented a mathematical programming formulation for the joint routing and

deployment of a fleet of container vessels. This problem is quite complex from the mathe-

matical, business, and computational perspectives, and there exist abundant opportunities

for further research and enhancements. We outline the most pressing questions below.

The methodology proposed here combines exact mathematical programming algorithms

and a meta-heuristic guidance mechanism. As is generally the case, the heuristic component

offers some speed enhancements, but does not guarantee termination at an optimal point.

Rather, the algorithm may terminate at a local optimum. Vanderbeck and Wolsey (1996)

propose an exact algorithm for integer formulations that require column generation. The

implementation of such an algorithm for problem VRD is an interesting direction for further

research. However, given that the branch and bound methods generally require column

generation at each node, it can be anticipated that the computational requirements of this

approach would be substantial.

The implementation presented here uses a generic interior point algorithm to solve the

multicommodity flow subproblems. For instances of relevant dimensions, the interior point

algorithm appears superior to primal and dual simplex codes. This is likely due to the

sparsity in the columns of problem MCFP. It remains to be seen whether this advantage

is sufficient to overcome the benefits of an advanced basis initialization in the simplex

implementations. Additionally, the use of specially tailored interior point algorithms to solve

the multicommodity flow subproblems could provide a significant increase in performance

(Castro, 2003).

In the proposed model, a major source of computational complexity arises from the

joint treatment of fleet deployment and route design. With few exceptions, research in the

maritime sector has thus far treated these two problems separately. A natural direction for

future research consists of assessing the benefits of the joint treatment when compared to

the more common, and significantly more tractable, approach.

One final line of work, from the mathematical perspective, is the derivation of lower

bounds for problem VRD, which would allow us to retain the heuristic approach, while
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providing an estimate of the optimality gap.

From the business perspective, we should stress that the proposed model is best em-

ployed in the context of a specific liner company. Many of the actual business aspects of

the vessel routing and deployment problem can be readily represented using the proposed

model. However, each company will have specific guidelines for the design of its services.

The models and algorithms proposed here will need to be tailored accordingly.

Transhipment points in the model serve to decouple the transit times of vessels and

containers. This generates an opportunity to devise, and bring to market, service levels

differentiated by transit times, a step in the direction of revenue management (Ting and

Tzeng, 2004). On the other hand, this generates the operational challenge of ensuring that

the promised transit times can be achieved using the vessel deployments that result from

the model proposed here. The formulation of such a model, as well as the inclusion of more

precise measures of level of service, are interesting directions for future research.

The proposed model constitutes a valuable tool for performing what-if analyses. One

such exercise was presented as a case study, where the sensitivity of vessel routing patterns

to bunker price fluctuations was studied. The model could be readily employed to analyze

the impact of entering new markets, vessel acquisitions, fleet mergers, variations in demand

for transportation, and delays at specific ports, among others.
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Chapter 3

A Langrangean Relaxation Approach to

the Vessel Planning Problem

Due to the high cost of stevedoring services and equipment, competition amongst terminals,

and the high congestion at many major ports (White and Earnest, 2005), maritime terminal

operations must be carried out with the utmost efficiency (Alderton, 2005). One of the most

important duties of the terminal staff is directing the timely loading of outbound containers

on to the ship. Although most modern terminals employ information systems to assist the

ship planners in the generation of the vessel loading plan, optimization algorithms are still

not in widespread use in this application.

The existing literature provides several exact and approximate algorithms that permit

greater automation of ship load planning (Böse et al., 2000; Steenken et al., 2001; Kim

et al., 2004; Imai et al., 2006). However, most previous research has focused on terminals

that utilize rubber tired gantry cranes (RTGs), rail mounted gantry cranes (RMGs), and

straddle carriers (SCs) to store and retrieve containers (Steenken et al., 2004; Stahlbock

and Voß, 2007). The present chapter focuses on container terminals that use reach stackers,

which have received scarce attention in the scientific literature.

In terminals that utilize SCs, containers are stacked in single rows, three or four tiers

high (Montfort et al., 2001). Adjacent rows are separated by corridors where the SCs travel.

One drawback of this layout is that the travel paths take up a significant portion of the
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yard’s valuable floor space. On the other hand, any outbound container in the yard can be

reached after removing at most three containers.

In terminals that utilize reach stackers, RTGs, or RMGs, containers are stored in dense

blocks, up to five tiers high, several dozen containers wide, and six to twelve containers

deep. RTGs and RMGs access the stacks from above, so the potential number of rehandles

is again limited. On the other hand, reach stackers access containers from the sides of the

block, so it may be necessary to remove and then restack (i.e. rehandle) a large number of

containers to reach a needed container.

Container rehandling is costly to the terminal, as it reduces operational efficiency and

results in extended ship berthing times – a key performance indicator for terminals. Fur-

thermore, many stevedoring unions charge a fee per container moved, whether the container

is loaded on the ship or not. Clearly, it is essential to sequence the loading of outbound

containers in such a way as to minimize rehandles.

Generating the loading plan by hand is tedious and extremely time consuming. The

central contribution of this chapter is an efficient algorithm for automated vessel planning

in container terminals employing reach stackers.

The remainder of the chapter is organized as follows. Section 3.1 provides a detailed

description of the ship load planning problem. Section 3.2 presents a review of relevant

literature in this area. In Section 3.3 the vessel planning problem is formulated as a MIP

model and decomposed into three simpler problems using Lagrangean relaxation. Section

3.3.2 presents an exact algorithm to resolve the vessel planning problem as well as sev-

eral implementation issues that are essential to the performance of the algorithm. Section

3.5 provides results from computational experiments using data from a Spanish container

terminal. Conclusions are presented in Section 3.6.

3.1 The load planning process

The yard of a container terminal is organized using four hierarchical levels: blocks, bays,

lanes, and tiers (Zhang et al., 2002). A block has a large rectangular footprint, and is

composed of several bays (distributed along the long axis of the block), which are in turn
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composed of stacks. Loaded containers are stacked up to five tiers high. The exact location

of a container in the yard is thus given by specifying values for the four aforementioned

fields.

Each block in the yard is designated as either an import or export block. Import blocks

accommodate containers that have arrived at the terminal and are awaiting pickup by a

truck or train. The process that assigns import containers to yard locations is known as

decking. The constraints that govern the decking problem differ from those that govern the

loading of containers on to the vessel, and these two problems are typically solved separately.

The decking problem is outside of the scope of the present research.

At each step of the loading process, the reach stacker operator receives instructions

(either through a computer terminal, or through a two-way radio) indicating the yard

location of the next container that is to be loaded. The reach stacker removes this container

from the stacks and loads it on a flat-bed truck. The truck then proceeds to the quayside,

where a quay crane removes the container from the truck and immediately loads it on the

vessel.

Loading the export containers requires extensive planning to ensure an efficient opera-

tion. When generating the load plan, the terminal staff attempts to expedite the loading

operation while satisfying a number of constraints, such as: compliance with the stowage

plan, preservation of ship stability, the availability of stevedoring crews and equipment,

the spatial distribution of the containers in the yard, visibility restrictions of the crane op-

erators, the safety and efficiency of the latching crew1, and interference between multiple

stevedoring teams.

Prior to the arrival of the ship at the terminal, the ship’s operator transmits two sets

of data to the terminal staff: the ship’s bay plan and the stowage plan. The bay plan

describes the nature and position of each container currently on board the vessel, and is

typically transmitted using the EDIFACT BAPLIE (SMDG, 2001) standard. The stowage

plan indicates the ship slots that are to be occupied by the export containers, and the class

of containers each slot can acommodate. The stowage plan is typically transmitted using

1Members of the crew secure the containers that have been loaded using steel rods.
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the EDIFACT MOVINS (SMDG, 2000) standard. The container type2 , destination port,

hazardous materials IMO3 designation, and weight together constitute the container class

(Kim et al., 2004). The yard will likely have several export containers of a given class.

Therefore, the terminal staff must decide which specific container will be loaded in each slot

as well as the sequence in which the containers will be loaded, a process known as vessel

planning.

The vessel planning process will typically consist of the following steps. First, the

staff must decide how many stevedoring teams will work on the ship in question. The

labor laws and agreements relating to stevedoring practice are complex and vary between

localities. The staff at each terminal must be aware of such regulations, as they generally

stipulate the number of hours that a team can work in a shift; the number of workers in

each team; whether and when a team can be assigned to work sequentially on multiple

ships; compensation to the stevedores (including charges for idling, per container moved,

and surcharges for night or holiday shifts); and the composition of each team (typically a

crane operator, a reach stacker operator, one or two truck drivers, a foreman, and one or

more latchers on board the ship). The number of teams assigned to the ship also depends

on the size of the ship, the number of containers to load, and the level of activity at the

terminal.

Once a decision has been made on the number of teams to employ, the ship’s holds must

be allocated amongst them. If all teams are expected to work for the entire shift on the

particular vessel, the goal is to balance the workload of all the teams. Alternatively, the

staff may attempt to reduce the workload of one team, in hopes of later reassigning it to a

different vessel. After the holds have been assigned to the teams, the planner decides the

direction of loading for each hold (fore to aft, or vice versa). In doing so, the planner must

ensure that all quay cranes are able to operate simultaneously without interfering with each

other.

2Commonly used container types are: DC (standard size dry cargo), HC (high cube), OT (open top),
RF (refrigerated), HR (refrigerated high cube), and TA (tank), amongst others.

3IMO, the International Maritime Organization, an agency of the United Nations, aims to improve the
safety and security of international shipping (International Maritime Organization, 2006).
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The quay cranes can load the containers on to each hold using one of several disciplines.

As a general rule, and to ensure adequate visibility for the crane operator, containers are

loaded starting from the water side, and moving towards the quay side. Within the limits

of this restriction, the containers can be loaded vertically by columns, or horizontally by

layers. In either case, once the loading discipline has been chosen, the order in which the

slots of a given hold are loaded is mostly fixed (Steenken et al., 2001). Occasionally, the

planner will allow small deviations from the chosen discipline. However, for the remainder

of the dissertation, we assume that the stowage plan and the loading discipline employed

by each crane uniquely determine a sequence of generic containers to be loaded on the ship.

The role of the planner from this point on is to assign a specific container to each

generic slot in the vessel, which (in light of the previous assumptions) determines the order

in which the containers are to be retrieved from the yard. The planner must also specify

the approach side when removing each container. In most cases, a container can be reached

from either of the two aisles adjacent to the block, which are often referred to as water-side

and land-side. Starting from one such side may result in a lower number of rehandles for

the current step and may reposition the reach stacker favorably for subsequent operations.

In the forthcoming, the focus will be on the approach transitions, which determine how

each reach-stacker is repositioned between two steps of the loading process.

In sequencing the loading of containers, the planner attempts to optimize three com-

peting objectives:

◦ Rehandling of containers. When the reach stacker operator is asked to access a con-

tainer that is covered by others, he must first remove all the containers that are

impeding access to the target container. After removing the target container and

loading it on to the truck that delivers it quayside, the reach stacker operator must

generally restack the containers that were initially removed. This task is complicated

because the reach stacker has limited room to maneuver in the aisles between blocks.

Storing containers in the aisles, even temporarily, is not practical.

◦ Reach stacker displacements. Movement of the reach stacker around the yard must be
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minimized, as this equipment travels slowly, and is subject to costly wear and tear.

◦ Vessel instability. The planner must also be mindful of the correct distribution of

weight on board, which affects the ship’s trim and stability. Here, it must be stressed

that there is no theoretical objection to a heavier container being placed on top

of a lighter one, as long as the overall stability of the vessel remains acceptable.

Nevertheless, most planners place great emphasis in stowing heavier containers at the

bottom of the holds.

At present, the vessel planning process has not been fully automated at many terminals

(this is particularly true for reach stacker terminals, which are typically smaller and not

as technologically advanced as RMG or RTG terminals). In most cases, the process is

performed with the aid of a terminal operating system (TOS), which mainly aids in the

visualization of the yard and ship holds, without adding substantial optimization-based

decision support. In less sophisticated terminals, vessel planning entails working on printed

copies of the preliminary stowage plan and a list of available containers obtained from a

central database. Groups of containers are highlighted in different colors to indicate their

load sequence. Manually generating the plan for a ship loading 500 containers may take

between six and eight hours. There is no generally accepted method to judge the goodness

of a given load plan, and the measures of quality involved are given different priorities by

different terminals and planners.

3.2 Literature review

Steenken et al. (2004) provide an excellent classification of processes in container terminals

that are amenable to optimization techniques. They provide a thorough review of the lit-

erature in this field, with over two hundred references up to 2004. The authors provide

introductory descriptions of the cranes, ground transportation equipment, and information

systems used in modern container terminals. The authors then describe the berth alloca-

tion, stowage planning, crane split, quayside transport, yardside transport, and container

stacking problems. Vis and de Koster (2003) also provide an overview of container terminal

operations and a comprehensive review of the literature in the field.
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Steenken et al. (2001) propose exact and heuristic methods to address the combined

stowage planning and ship loading problem. Their paper focuses on terminals utilizing

straddle carriers for stacking and ground transport. In particular, they present experimental

results from the Port of Hamburg. Their algorithms perform a simple crane split, similar to

the one proposed in the present chapter. Their MIP formulation accounts for the different

transportation times required by containers located in different sectors of the yard, and

attempts to minimize lateness with respect to the quay crane’s load cycle. A ∆-replan

technique is proposed to address the common problem of outbound containers that arrive

at the terminal after the load operation has begun. This technique limits the load planning

horizon to a fixed number of containers ahead of the current operation, thus creating a

partial load plan using containers that are already in the yard.

Kim (1997) proposes exact and approximate formulas to determine the number of rehan-

dles on import blocks. The results are applicable only to blocks operated using transtainers.

The approximate formula is based on a linear regression of the exact result against a range

of different block layouts.

Bish et al. (2005) provide simple greedy heuristics to address the vehicle dispatching

problem given a complete ship loading plan. Their algorithms attempt to minimize the

ship berthing time. The authors assume that a fixed number of vehicles has been assigned

to serve each quay crane. In the single-crane case, they demonstrate the optimality of greedy

and reverse-greedy strategies for the pure unloading and loading problems, respectively. For

the multiple crane scenario, they provide a minor modification to the greedy algorithm that

results in solutions of remarkably high quality. The authors compare the results of their

heuristics to the solutions derived from a MIP formulation.

Kim et al. (2004) propose a beam search algorithm for load sequencing in container

terminals. Their paper focuses on terminals that operate with transtainers. The algorithm

considers many important side constraints, such as the total height and weight of containers

on board, and interference between multiple yard cranes. They provide a mathematical

formulation of the problem, but the resulting model is highly non-linear on integer and

linear variables. The proposed heuristic operates at two levels of granularity. The first level
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selects a module in the yard from which a series of containers will be extracted. The second

level determines the order in which the containers from a given module will be loaded.

Kozan (2000) presents a network model to minimize the total throughput time in a

multimodal container terminal. The model is used to analyze the impact of the quantity

of equipment in operation on throughput time. For a case study in the port of Brisbane,

Australia, the author finds that an increase in the number of quay cranes has the largest

impact on terminal efficiency.

Vis and Harika (2004) created a discrete event simulation to study the effectiveness of

different vehicle types in a container terminal. Their study focuses on automated guided

vehicles and automated lift vehicles. The simulation model is used to determine the number

of vehicles required to provide the desired level of service. A sensitivity analysis examines

the impact of different vehicle speeds, quay-side buffer areas, and quay crane speeds on the

results.

3.3 Mathematical model

We make the following assumptions in developing the mathematical formulation of the

vessel planning problem.

◦ The terminal has a sufficient number of containers of each class to fulfill the require-

ments of the stowage plan. Furthermore, if the terminal has an excess of containers

of a given class, the planner has determined which containers will not sail.

◦ All stevedoring teams working on a vessel will remove containers from the yard at

a similar pace. The model therefore refers to a sequence of discrete time slots, with

each stevedoring team processing one container per time slot.

◦ All containers to be loaded have a known position in the yard. In practice, a substan-

tial number of containers will arrive in the yard at the last moment, as the vessel is

being loaded. Nevertheless, these so-called to come containers will typically be placed

in designated buffer zones, so an approximate position can be established.
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◦ All decisions regarding the number of teams to employ, assignment of vessel holds

to each team, and loading discipline for each hold are made by the planner prior

to launching the proposed algorithm. Therefore, the algorithm receives a unique

sequence of slots (with their corresponding class) to be filled by each reach stacker.

3.3.1 MIP formulation

In this section, the ship load planning problem is formulated as a MIP. The following sets

are used in the formulation:

Ω Set of all reach stackers working on the vessel.

Ξ Set of all containers to be loaded.

Πr Set of all vessel slots to be filled by reach stacker r. |Πr| = Pr.

Π
′
r Set of all but the first slot to be filled by reach stacker r.

Γ Reach stacker approach transitions. Γ = 1, 2, 3, 4. By convention, g = 1

denotes a water-side approach at step p − 1 and a water-side approach at

step p. Similarly, g = 2 denotes a water-land transition, g = 3 denotes a

land-water transition, and g = 4 denotes a land-land transition.

Πrj Set of vessel slots to be filled by reach stacker r compatible with container j.

Ξrp Set of all containers that are compatible with slot p, p ∈ Πr.

The following parameters represent the known data for the problem:

wi Weight of container i.

lrp Instability penalty per unit of weight placed in slot p, p ∈ Πr.

dijg Ground distance between containers i and j when transitioning type is g.

bijg Number of rehandles initially required to remove container j when starting

from the position of container i and transitioning type is g.

vjg Number of containers required to access container j when it is the first con-

tainer in the sequence, and transitioning type is g.
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εkijg Binary, container k initially blocks access from container i to container j

when transitioning type is g.

αs Objective function coefficient for container rehandling disutility.

αd Objective function coefficient for ground travel of the reach stackers.

αw Objective function coefficient for weight distribution on board the vessel.

M A suitably large number.

Finally, the decision variables used in the MIP are:

Xrpj Binary, equal to one iff reach stacker r loads container j into slot p, p ∈ Πr.

Arpg Binary, equal to one iff approach transition of reach stacker r is g at load

step p, p ∈ Πr.

Rrp Number of containers cleared by reach stacker r when filling slot p, p ∈ Πr.

Drp Distance traveled by reach stacker r when loading container for slot p, p ∈ Πr.

Wrp Instability disutility for slot p, p ∈ Πr.

The MIP model is presented below, followed by an explanation of the constraints.

(VPMIP) Minimize

ZMIP = αs
∑
r∈Ω

∑
p∈Πr

Rrp + αd
∑
r∈Ω

∑
p∈Πr

Drp + αw
∑
r∈Ω

∑
p∈Πr

Wrp (21)

subject to: ∑
j∈Ξrp

Xrpj = 1 ∀r ∈ Ω,∀p ∈ Πr (22)

∑
r∈Ω

∑
p∈Πrj

Xrpj = 1 ∀j ∈ Ξ (23)

Rrp ≥ bijg −
∑
q∈Ω

p−1∑
s=1

∑
k∈Ξqs

Xqskεkijg

−M(3−Arpg −Xrpj −Xr,p−1,i) ∀r ∈ Ω,∀p ∈ Π
′
r,∀i ∈ Ξr,p−1

∀j ∈ Ξrp,∀g ∈ Γ (24)

Rr1 ≥
∑
j∈Ξr1

vjgXr1j −M(1−Ar1g) ∀r ∈ Ω,∀g ∈ Γ (25)
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Drp ≥ dijg −M(3−Arpg −Xrpj −Xr,p−1,i) ∀r ∈ Ω,∀p ∈ Π
′
r, ∀i ∈ Ξr,p−1

∀j ∈ Ξrp,∀g ∈ Γ (26)

Wrp =
∑
j∈Ξrp

lrpwjXrpj ∀r ∈ Ω,∀p ∈ Πr (27)

Ar,p−1,1 +Ar,p−1,3 −Arp2 −Arp1 = 0 ∀r ∈ Ω,∀p ∈ Π
′
r (28)

Ar,p−1,2 +Ar,p−1,4 −Arp3 −Arp4 = 0 ∀r ∈ Ω,∀p ∈ Π
′
r (29)

4∑
g=1

Ar,0,g = 1 ∀r ∈ Ω (30)

4∑
g=1

Ar,Pr+1,g = 1 ∀r ∈ Ω (31)

Xrpj , Arpg ∈ {0, 1} ∀r ∈ Ω,∀p ∈ Πr, ∀j ∈ Ξrp,∀g ∈ Γ (32)

Rrp, Drp,Wrp ≥ 0 ∀r ∈ Ω,∀p ∈ Πr (33)

Constraints (22) and (23) require that each container be assigned to exactly one vessel

slot. Constraint (24) serves to compute the number of rehandles at step p. The constraint

starts with bijg, the number of rehandles required to reach the container being loaded in

step p when no containers have been removed from the yard. The triple summation serves

to adjust the initial rehandle count downward, according to the number of containers that

have been already loaded, and that were previously an obstacle to reaching j, the target

container. Constraint (25), a specialized version of constraint (24), serves to compute the

number of shifts at the first step in the loading sequence. Constraint (26) serves to compute

the total ground distance traveled during step p. In constraints (24), (25), and (26), the M

coefficient (often called big-M ) is chosen so that each constraint becomes redundant unless

the quantity being multiplied by M is zero. Constraint (27) serves to compute the weight

distribution penalty generated by the pth container loaded by reach stacker r. Constraints

(28), (29), (30), and (31) ensure the consistency of the attack transitions Arpg. Although

other formulations of these four constraints are possible, this representation is particularly

convenient because the associated portion of the constraint matrix is totally unimodular.

In fact, it will be shown that these constraints can be directly translated into a shortest
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path problem. Constraints (32) and (33) address the integrality and non-negativity of the

respective decision variables.

In order to tighten the formulation, we replace parameter M for bijg and dijg in con-

straints (24) and (26), respectively. We also replace M by v̂g = maxjvjg in constraints (25).

Finally, we remove constraints (27) by adding the weight distribution penalty terms Wrp

directly to the objective function.

3.3.2 Lagrangean relaxation

Given the presence of binary variables in the vessel planning problem, we attempt a solution

using branch and bound. Unfortunately, constraints (24), (25), and (26) are not well suited

for a solution based on a linear programming (LP) relaxation of VPMIP – fractional values

of Xrpj or Arpg are very likely to produce infeasible solutions. On the other hand, given the

special structure of the vessel planning problem, good primal solutions can be obtained by

using Lagrangean relaxation. We start by noting that, in the absence of the complicating

constraints (24), (25), and (26), problem VPMIP can be separated into three independent

subproblems, each of which can be solved using very efficient algorithms:

◦ A bipartite assignment problem on variables Xrpj

◦ A shortest path problem on variables Arpg, and

◦ A trivial problem on variables Rrp and Drp

A natural approach to obtain the Lagrangean relaxation is then to dualize contraints

(24), (25), and (26) by associating to them Lagrange multipliers µ, η, and λ, respectively.

This results in problem VPD, below.

(VPD) Minimize

ZLG(µ, η, λ) = αs
∑
r∈Ω

∑
p∈Πr

Rrp + αd
∑
r∈Ω

∑
p∈Πr

Drp + αw
∑
r∈Ω

∑
p∈Πr

∑
j∈Ξrp

lrpwjXrpj

+
∑
r∈Ω

∑
p∈Π′r

∑
i∈Ξr,p−1

∑
j∈Ξrp

∑
g∈Γ

µrpijgbijg(Arpg +Xrpj +Xr,p−1,i − 2)
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−
∑
r∈Ω

∑
p∈Π′r

∑
i∈Ξr,p−1

∑
j∈Ξrp

∑
g∈Γ

µrpijg(Rrp +
∑
q∈Ω

p−1∑
s=1

∑
k∈Ξqs

Xqskεkijg)

+
∑
r∈Ω

∑
g∈Γ

ηrg(v̂g(Arg1 − 1)−Rr1 +
∑
j∈Ξ

vjgXr1j)

+
∑
r∈Ω

∑
p∈Π′r

∑
i∈Ξr,p−1

∑
j∈Ξrp

∑
g∈Γ

λrpijg (dijg(Arpg +Xrpj +Xr,p−1,i − 2)−Drp) (34)

subject to:

(22), (23), (28), (29), (30), (31), (32)

Rrp, Drp ≥ 0 ∀r ∈ Ω, ∀p ∈ Πr (35)

Any feasible solution to problem VPD provides a lower bound to problem VPMIP. We

therefore seek the tightest bound Z∗D, the optimal solution to problem VPB, which is defined

as follows:

(V PB) Z∗D = max
µ≥0,η≥0,λ≥0

Z∗LG(µ, η, λ) (36)

In order to assess the quality of the bounds that can be obtained from the Lagrangean

relaxation, we denote:

Υ = {(Xrpj , Arpg, Drp, Rrp) s.t. (22), (23), (28), (29), (30), (31)} (37)

ΥINT = {(Xrpj , Arpg, Drp, Rrp) ∈ Υ s.t. (32)} (38)

A = {(Xrpj , Arpg, Drp, Rrp) s.t. (24), (25), (26)} (39)

In general, it can be shown (see for instance Bertsimas and Tsitsiklis (1997)) that

Z∗LP ≤ Z∗D ≤ Z∗MIP , (40)

where Z∗LP denotes the optimal value of the LP relaxation of problem VPMIP. Equality

is obtained on the left of (40) if CH(ΥINT ) = Υ, where CH(.) denotes the convex hull of

a set. This condition applies to the proposed formulation, because constraints (22), (23),

(28), (29), (30), and (31) correspond to a totally unimodular matrix. The same argument
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applies to the subproblems that are formed at each node in the branch and bound tree.

Therefore, any advantage that is obtained from the Lagrangean relaxation will derive from

the ability to obtain good primal solutions quickly.

Equality is obtained on the right of (40) if and only if CH(ΥINT ∩A) = CH(ΥINT )∩A.

For the formulation at hand, this last equality will generally not hold, and a duality gap

will be unavoidable.

3.4 Solution methodology

We propose an algorithm to solve problem VPMIP. This algorithm consists of three tiers:

a branch and bound framework that generates smaller subproblems of VPMIP by assigning

values to some of the Xrpj and Arpg variables; a subgradient optimization algorithm that

obtains lower bounds to the corresponding subproblem; algorithms to solve an assignment

problem, the shortest path problem, and a trivial decision problem. Each tier is now

described in detail.

3.4.1 The branch and bound framework

Exploration of the branch and bound tree can be divided into two phases. The first phase

assigns values to the Xrpj variables, and the second phase assigns values to the Arpg vari-

ables. A sample branch and bound tree is presented in Figure 4. The heavy line joins the

current node to the root node. All assignments that have been made at active nodes (nodes

lying on the heavy line) are retained at the current node.

During the first phase of exploration, the Xrpj variables are ordered by their indexes

r and p, so as to consider the reach stackers in round-robin fashion. Consequently, the

first slot of all reach stackers is examined before proceeding to the second slot of any reach

stacker, and so on. At each node, the algorithm generates an ordering of the containers

that could be assigned to slot p of reach stacker r. This list only includes containers that

have not been assigned to a slot by another active node. The available containers are sorted

according to the minimum number of rehandles required to access them. At the root node,

this number is equal to minjvjg. As the algorithm progresses deeper into the tree, the

minimum number of rehandles required to reach an unassigned container is dynamically
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adjusted to reflect the impact of the assignments performed at other active nodes. This

adjustment of the exploration order is critical to the performance of the algorithm.

A key observation is that it is never necessary to branch on the second portion of the

tree. When the algorithm reaches the last node of the first phase, all containers have been

assigned to a slot. All that remains to be established is the approach side when removing

each container. The optimal value for the subtree to the right of this node is therefore

obtained by solving a shortest path problem for each reach stacker. The nodes in this

shortest path problem consist of two images of each container – one image for the water-

side approach, and one image for the land-side approach. The single arc joining two nodes

has a cost given by hijg + rijg, the distance and rehandling penalties incurred when the

approach transition Arpg is as implied by the two images in question. Each arc in the

shortest path problem can be seen to correspond to a single Arpg variable – if the arc is

used in the shortest path, the corresponding Arpg variable is set to one.

First phase: assign values to X
rpj

   Second phase: assign values to A
rpg

X1,1,3 =1

Root 
Node

X1,1,1 =1

X1,1,2 =1

X1,2,2 =1

X1,2,3 =1 X1,3,2 =1

s t

water

land

. . .
c=0

c=0

c=0

c=0

h1,3,4+ r1,3,4 

h1,3,2+ r1,3,2 

h1,3,1+ r1,3,1 

h1,3,3+ r1,3,3 

initial 
position

final 
position

Figure 4: Sample branch and bound tree for a single reach stacker filling three slots
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We obtain an important gain in computational efficiency by observing that many con-

straints become irrelevant at each node to the right of the root node. When an active node

has set Xrpj = 0, we can eliminate any constraint that includes these variables within a

big M -type term. All nodes to the right of the current node can use this information to

reduce the number of constraints of types (24), (25), and (26) that need to be considered.

Naturally, when the algorithm backtracks in the tree, the assignments made at each node

are nullified, and the corresponding constraints must be reintroduced into the problem.

At each node in the tree, we obtain a subproblem V PMIPn, which consists of finding

optimal values to the subset of variables that have not been fixed, subject to the constraints

that remain active. We obtain a lower bound for the optimal value of this subproblem

by solving (perhaps approximately) the corresponding problem V PBn. When this lower

bound exceeds the objective value of a previously obtained feasible solution to V PMIP ,

we eliminate the current node, and all nodes arising from it, from further consideration.

3.4.1.1 Heuristic exploration of the branch and bound tree

Practical experience with the VPMIP indicates that a large number of optimal or near-

optimal solutions may be found in the branch and bound tree. The bounds provided by

the Lagrangean relaxation typically exhibit a duality gap of between 5% to 30% of the

optimal value. Consequently, it is generally not possible to fathom any portion of the tree

that contains a near-optimal solution. A heuristic backtracking mechanism is therefore

proposed to avoid a time-consuming exploration of every portion of the branch and bound

tree. The algorithm spends a user-specified amount of time seeking an improvement in

the objective function. If no improvement is obtained within this time, the algorithm

backtracks by a set number of nodes, effectively fathoming the branches that failed to yield

an improvement. The number of nodes to backtrack grows with the amount of time spent

since an improvement was last found, so that eventually the algorithm will backtrack to

the root node and terminate. Clearly, this mechanism may prematurely dismiss a portion

of the tree and fail to obtain the optimal solution. In Section 3.5, it will be shown that this

problem is not a cause for great concern.
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3.4.2 The subgradient optimization algorithm

Bertsekas (1999) describes the subgradient optimization algorithm and its use in conjunc-

tion with Lagrangean relaxation. At each iteration t, the algorithm computes a vec-

tor of Lagrangean multipliers (µt, ηt, λt) = max{0, (µt−1, ηt−1, λt−1 + θts
t−1}, where θt =

αt(ẐD − ZD(µt, ηt, λt))/|st|2; 0 < α < 2; st is the difference between the right-hand side

and the left-hand side of the constraints computed at step t; and ẐD is an estimate of the

optimal value of ZD. The algorithm stops when the lower bound ZD converges within a

specified precision, or after a fixed number of iterations.

A significant computational advantage is obtained by noting that a large number of the

dual values (µt, ηt, λt) generally take the value zero. When the dual value of constraint i is

zero at an iteration, and sti ≤ 0, the dual value will retain a value of zero at the following

iteration. The algorithm can then be limited to updating dual values that are currently

positive, or where the corresponding difference sti > 0. The latter condition can be readily

detected, as it can only occur if the corresponding value of Drp or Rrp is set to its lower

bound. By monitoring the values of Drp and Rrp, which can be done very efficiently, it is

possible to predict which dual values will need to be updated.

3.4.3 Network algorithms

At each iteration in the subgradient optimization algorithm, we compute new values for

(µt, ηt, λt), and solve a bipartite assignment problem, a shortest path problem, and a simple

decision problem. The bipartite assignment problem is given by:

Minimize

Z1(µ, η, λ) = αw
∑
r∈Ω

∑
p∈Πr

∑
j∈Ξrp

lrpwjXrpj+

∑
r∈Ω

∑
p∈Π′r

∑
i∈Ξr,p−1

∑
j∈Ξrp

∑
g∈Γ

µrpijg
∑
q∈Ω

p−1∑
s=1

∑
k∈Ξqs

Xqskεkijg + bijg(Xrpj +Xr,p−1,i)+

∑
r∈Ω

∑
g∈Γ

ηrg(
∑
j∈Ξ

vjgXr1j)+

∑
r∈Ω

∑
p∈Π′r

∑
i∈Ξr,p−1

∑
j∈Ξrp

∑
g∈Γ

λrpijgdijg(Xrpj +Xr,p−1,i) (41)
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subject to:

(22), (23)

Xrpj ∈ {0, 1} ∀r ∈ Ω,∀p ∈ Πr, ∀j ∈ Ξrp (42)

This problem is solved using a specialization of the successive shortest path algorithm

which solves the assignment problem in polynomial time (Ahuja et al., 1993).

The shortest path problem arises from our need to define an approach direction for each

reach stacker r at each step p in its loading sequence. The problem solved at each iteration

of the subgradient method is given by:

Minimize

Z2(µ, η, λ) =
∑
r∈Ω

∑
p∈Π′r

∑
i∈Ξr,p−1

∑
j∈Ξrp

∑
g∈Γ

(µrpijgbijgArpg) +

∑
r∈Ω

∑
g∈Γ

(ηrgv̂gArg1) +
∑
r∈Ω

∑
p∈Π′r

∑
i∈Ξr,p−1

∑
j∈Ξrp

∑
g∈Γ

(λrpijgdijgArpg) (43)

(44)

subject to:

(22), (23), (28), (29), (30), (31)

Arpg ∈ {0, 1} ∀r ∈ Ω,∀p ∈ Πr, ∀g ∈ Γ (45)

This problem is equivalent to solving a shortest path problem on a suitably defined

network. We can represent the water-side and land-side attack directions at each step as

nodes in a network, and the variables Arpg as arcs joining these nodes, as in Figure 5. For

a reach stacker loading |Πr| containers, we will have 2|Πr| + 2 nodes, and 4|Πr| arcs. We

insert an artificial node s as the source, and an artificial node t as the sink, as shown in

Figure 5. The source is connected by arcs of cost 0 to two nodes representing the starting

position of the reach stacker. The sink node is connected to the nodes corresponding to the

final position of the reach stacker, again using arcs with 0 cost. All other arcs have a cost

given by the reduced cost carpg of the corresponding variable Arpg.
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final 
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Figure 5: Shortest path problem in variables Arpg

The algorithm of Dijkstra (1959) is used to solve the shortest path problem, given

that the reduced costs of the variables Arpg are non-negative. Note that the shortest path

problem can be solved independently for each reach stacker.

The third, and simplest, problem is given by:

Minimize

Z3(µ, η, λ) = αs
∑
r∈Ω

∑
p∈Π′r

Rrp −
∑
p∈Πr

∑
i∈Ξr,p−1

∑
j∈Ξrp

∑
g∈Γ

µrpijgRrp −
∑
g∈Γ

ηrgRr1+

αd
∑
r∈Ω

∑
p∈Π′r

Drp −
∑
p∈Πr

∑
i∈Ξr,p−1

∑
j∈Ξrp

∑
g∈Γ

λrpijgDrp (46)

subject to:

(35)

If the reduced cost of a variable Rrp or Drp is positive, we set its value to 0. If the

reduced cost is negative, we attempt to make it as large as possible. As stated above,

the problem is unbounded, since we can set any variable with negative reduced cost to an
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arbitrarily large number. Consequently, the following constraints are introduced at each

node in the branch and bound tree, where the tilde notation signifies variables that have

been set by any of the active branch and bound nodes. Note that these constraints are

redundant for the corresponding subproblems V PMIPn.

Rrp ≤ max
i∈Ξr,p−1,j∈Ξrp,g∈Γ

bijg(Ãrpg + X̃rpj + X̃r,p−1,i − 2)

−
∑
q∈Ω

p−1∑
s=1

∑
k∈Ξqs

X̃qskεkijg ∀r ∈ Ω,∀p ∈ Π
′
r (47)

Rr1 ≤ max
g

∑
j∈Ξr1

vjgX̃r1j − v̂g(1− Ãr1g) ∀r ∈ Ω (48)

Drp ≤ max
i∈Ξr,p−1,j∈Ξrp,g∈Γ

dijg(Ãrpg + X̃rpj + X̃r,p−1,i − 2) ∀r ∈ Ω,∀p ∈ Π
′
r (49)

Although the variables Xrpj were decoupled from the variables Arpg, and their values

obtained in separate subproblems, they can be merged back into a solution to V PMIPn

without conflict. On the other hand, the variables Drp and Rrp may not be valid for problem

V PMIPn given the values that were separately obtained for Xrpj and Arpg, because setting

any of the variables Rrp or Drp to zero may result in an infeasible solution overall. A

feasible solution is readily obtained by inspecting all active constraints (24), (25), (26), and

increasing the values of Rrp and Drp as necessary.

3.5 Computational results

We present three sets of experiments in this section. The first set of experiments provides a

performance benchmark against CPLEX 9.0 (ILOG S.A., 2003). The second set of experi-

ments is designed to estimate the error that is incurred by applying the heuristic described

in Subsection 3.4.1.1. The third set of experiments evaluates the performance of the pro-

posed algorithm using actual vessel plans. The proposed algorithm was implemented in

the C++ programming language. All experiments were performed on a 1.6 MHz Pentium

computer with 512 MB RAM.

For the first set of experiments, problem VPMIP was formulated using AMPL (Fourer
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et al., 2003). The node-arc notation available in AMPL was used to formulate constraints

(22), (23), (28), (29), (30), and (31). This notation signals to CPLEX the presence of

an embedded network structure, triggering the use of the more efficient network simplex

method on portions of the problem.

The data used for the first set of experiments were limited to ten or fifteen containers

(it was not practical to solve larger instances using CPLEX 9.0). The common data for

all experiments specify three classes of containers, with the containers distributed on three

stacks in the yard. The stowage plan called for all containers to be placed in a single hold

of the ship. Each replication of the experiments called for different stowage positions for

each of the three container classes.

penalty LP relax. Root Node Examination DFS time
coefficients time Best primal Time best primal Bound to opt

αd ≈ αs ≈ αw 1.2 s 103% 0.40 s 23% 0.87 s
αd > αs > αw 1.4 s 103% 0.36 s 21% 0.78 s
αd > αw > αs 1.9 s 105% 0.32 s 26% 0.70 s
αs > αd > αw 1.1 s 122% 0.44 s 34% 0.75 s
αs > αw > αd 0.9 s 103% 0.48 s 45% 0.79 s
αw > αd > αs 2.1 s 103% 0.33 s 32% 0.81 s
αw > αs > αd 0.8 s 102% 0.43 s 34% 0.67 s

Table 2: Performance benchmark using ten containers

Different values of αs, αd, and αw were used in the experiments to reflect the different

planning preferences that may be encountered in practice. The replications were further

grouped according to the values of αs, αd, and αw employed. For the scenario with ten

containers, a total of 210 replications were performed, divided into seven such subgroups.

For the scenario with fifteen containers, a total of 21 replications were performed.

The results of these experiments are presented in Tables 2 and 3. The first column

in these tables indicates the relative importance of the rehandling, ground distance, and

weight distribution penalties. The second column indicates the time required by CPLEX

9.0 to obtain an optimal solution. The three columns that follow refer to values obtained

at the root node of the branch and bound tree. These columns indicate the best primal
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solution obtained (as a percentage of the true optimal value), the time required to obtain

this solution, and the best lower bound obtained for the problem (again, as a percentage

of the true optimal value). The last column indicates the time required to obtain the opti-

mal solution using depth-first search following exploration of the root node. The heuristic

mechanism described in Subsection 3.4.1.1 was disabled for these experiments.

penalty LP relax. Root Node Examination DFS time
coefficients time Best primal Time best primal Bound to opt

αd ≈ αs ≈ αw 289 s 113% 1.4 s 13% 6.6 s
αd > αs > αw 555 s 104% 0.3 s 3% 4.2 s
αd > αw > αs 2236 s 105% 1.0 s 4% 13.2 s
αs > αd > αw 296 s 101% 0.5 s 5% 1.9 s
αs > αw > αd 419 s 102% 0.8 s 9% 1.8 s
αw > αd > αs 1393 s 106% 0.7 s 17% 4.1 s
αw > αs > αd 185 s 102% 0.6 s 37% 1.4 s

Table 3: Performance benchmark using fifteen containers

The results indicate that excellent primal solutions are quickly obtained at the root

node. However, it is clear that the lower bounds obtained at the root node are of very

poor quality. As the algorithm moves deeper into the branch and bound tree, however, the

quality of the bounds increases dramatically. For these small experiments, the depth-first

search algorithm performs most of its work at around 25% of the depth of the branch and

bound tree – the bounds obtained at that level are sufficiently accurate to permit pruning

of deeper nodes. For larger problems, the fact that only a fixed percentage of the tree is

explored is of little comfort, as the size of the tree grows exponentially. This motivates the

use of the heuristic proposed in Subsection 3.4.1.1.

The second group of experiments was performed using a data set with twenty containers.

An exhaustive exploration of the branch and bound tree is still possible for problems of

such size. Each replication consists of two parts. The first part obtains a near-optimal

solution using the heuristic described in Subsection 3.4.1.1, with a time limit of two seconds

before backtracking, and an overall limit of ten minutes. The second part of the replication

performs a thorough search of the branch and bound tree without heuristic backtracking in
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order to determine the true optimal solution.

Twenty replications were performed. In 18 instances, the heuristic method found the

optimal solution. In the remaining two instances, the heuristic found, respectively, a solution

within 1% and 15% of the optimal solution. The heuristic took an average of 4.5 minutes to

find the best solution. Each exact exploration of the branch and bound tree took between

two and six hours per replication.

The third set of experiments uses a data set with 172 containers. Obtaining the optimal

solution for instances of this size is not practical. Furthermore, the lower bounds obtained at

the root node do not provide a reliable estimate of the optimality gap. An attempt is made

to estimate the optimality gap in larger instances by solving two simpler problems. The

first problem minimizes only the weight distribution component of the objective function,

ignoring any constraints relating to ground travel or rehandling. This amounts to solving a

bipartite matching problem, which can be done very quickly. The second problem minimizes

ground travel with no regard for rehandling or weight distribution penalties. This problem

is solved without integer variable restrictions. The solutions obtained for these two problems

provide a rough indication of the quality of the solution obtained for problem VPMIP.

Eighteen replications were run, each for a total of twenty minutes. As shown in Table

4, the results are within 5% of the solution for the single-objective relaxation focusing on

weight distribution, and within 16% of the single-objective relaxation focusing on ground

travel. These replications focus on situations where rehandles are given greater importance

than ground travel and vessel stability considerations. When the planner’s priorities em-

phasize vessel stability or ground travel, acceptable solutions can be obtained using a simple

heuristic.

coefficients time Gap to single-obj weight Gap to single-obj travel
αs > αd ≈ αw 10.9 min 105% 116%
αs > αd > αw 9.4 min 105% 114%
αs > αw > αd 19.7 min 105% 115%

Table 4: Estimation of the optimality gap for problems with 172 containers
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3.6 Conclusions

This chapter presented an application of mathematical programming techniques to the

automation of the vessel planning process in maritime terminals using reach stackers. The

models and techniques that have been described can be adapted to other types of stacking

equipment, such as RTGs and RMGs.

The performance of the proposed algorithm depends chiefly on three elements: the speed

with which each iteration of the subgradient algorithm is completed, the quality of primal

solutions uncovered at each node, and the quality of the bounds obtained at each node. The

proposed algorithm exploits the special structure of the problem to great advantage, greatly

limiting the number of constraints that are explored, and using efficient network algorithms

to solve each subproblem. The algorithm can also obtain excellent primal solutions. In small

problems, the algorithm obtains results that are very close to the optimal value simply by

inspecting the root node. In problems of practical size, however, iterations at the root

node can be quite slow due to the large number of constraints that must be examined. It

is therefore advantageous to move along the branch and bound tree, where thousands of

subproblems can be solved in a few seconds.

The quality of the bounds obtained near the root node is quite poor, but improves

considerably as the algorithm progresses into the second quarter of the branch and bound

tree. Nevertheless, the bounds obtained by the proposed algorithm are not strong enough

to permit a sufficiently effective fathoming of the tree. A heuristic ejection mechanism was

proposed to limit the amount of time spent in a given portion of the tree. This mechanism

was seen to accelerate the algorithm, generally at very little cost to the quality of the final

solution.

Given the uncertainty associated to the arrival times of export containers, the vessel

planning algorithm is best applied over limited time horizons, as in the ∆-replan technique

proposed by Steenken et al. (2001). The proposed algorithm is well suited for such an

application.
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Chapter 4

A Heuristic Approach to the Vessel

Planning Problem

The vessel planning problem was described in detail in Chapter 3. In this chapter, we pro-

pose a heuristic algorithm for the vessel planning problem. The heuristic methods described

in the OR literature are particularly well suited to the problems that arise in maritime lo-

gistics and operations. This follows from the highly combinatorial nature of these problems,

and the difficulty of expressing these problems in traditional mathematical modeling lan-

guage. Heuristic methods in OR differ from exact mathematical formulations in that the

former are not guaranteed to reach an optimal solution, although they generally produce

remarkably good solutions very quickly (Glover and Kochenberger, 2003).

The central contribution of this chapter is a metaheuristic for automated load planning in

container terminals with deep blocks. Due to the complexity and variability of the maritime

terminal environment, the participation of the ship planner is essential to ensuring a safe

loading operation. Consequently, this chapter also proposes a decision support tool to

accompany the core metaheuristic algorithm. While the core algorithm automates most of

the processes, the decision support tool allows an experienced planner to refine or overrule

the automated vessel plan as needed.

The remainder of this chapter comprises four sections. Section 4.1 presents a heuristic al-

gorithm to solve the vessel planning problem. Section 4.2 presents a graphical user interface
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and decision support tool to accompany the core algorithm. Section 4.3 presents results

for computational experiments based on actual data from a Spanish container terminal.

Finally, Section 4.4 presents conclusions and directions for further work.

4.1 A heuristic for efficient vessel planning

The proposed heuristic algorithm is based on the tabu search methodology, a technique

that has become popular due to its success in quickly obtaining good solutions to complex

optimization problems (Glover and Laguna, 1997). Tabu search starts by generating an

initial solution, which although feasible, is readily improved upon. Then, the algorithm

iteratively explores alternatives to the current solution by generating neighbors. These are

similar to the current solution, except for generally small modifications. The algorithm

selects the best neighbor, which then becomes the current solution, and begins to explore

the neighborhood of this new solution. Cycling is prevented by disallowing the algorithm

from undoing its most recent actions, which are considered “tabu”. The algorithm keeps a

fixed-length list of the most recent actions, the tabu list. After a fixed number of iterations

are performed, or when no valid neighbors can be found, the algorithm returns the best

plan visited.

This section describes the proposed algorithm using pseudo-code constructs (Cormen,

Leiserson, and Rivest, 1990). The following notation is used in what follows:

η = |Ξ| total number of containers to be loaded; total number of slots to

be filled in the ship.

N = |Ω| number of available stevedoring crews.

firsti number of first slot to be loaded by crew i.

lasti number of last slot to be loaded by crew i.

m number of initial solutions produced by multistart.

sj sequence in which container j will load.

q number of neighbors to retain from the initial, larger list.
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R total number of boxes rehandled.

D total ground distance traveled by reach stackers.

W total instability measure.

High level pseudo-code for algorithm shipP lanOptimization() is presented below. First,

the algorithm inputs all required data from databases or from the user interface. These data

include: the spatial layout of the container yard; a list of containers currently in the yard,

including container ID, type, length, and destination; geometry of the ship and its bays;

general stowage plan, specifying the class of each slot to be loaded on the ship; and number

of stevedoring crews available to load the vessel.

The algorithm checks the feasibility of the problem by ensuring that there are enough

containers in the yard for each of the different types required in the stowage instructions.

Throughout this discussion, it is assumed that, for any container class mentioned in the

stowage plan, the number of containers required is exactly equal to the number of containers

available in the yard.

Algorithm 1 shipPlanOptimization()
yard⇐ DB // includes yard geometry and containers
ship⇐ DB
N ⇐ UI
stowageP lan⇐ DB
if verifyFeasibility(yard, ship, stowageP lan,N) then
firstSolutions⇐ ∅
bestSolutions⇐ ∅
allocHoldsToCranes(N)
autoSequenceSlots(firstSolutions,m)
prioritizeY ard(yard)
best.cost()⇐∞
for i = 1 to m do
firstSolutions[i]⇐ createInitial(i, firstSolutions[i])
bestSolutions[i]⇐ tabuImprove(firstSolutions[i])
if bestSolution[i].cost() < best.cost() then
best⇐ bestSolutions[i]

return best

The proposed algorithm uses a technique known as multistart, whereby a variety of

initial plans are generated and explored. This permits a more thorough investigation of

the solution space. The main algorithm calls three functions to allocate the holds of the
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ship amongst the available crews, and prepare the data structures required for the efficient

generation of multiple initial solutions. The algorithm then calls a tabu search procedure

to improve the quality of each one of the initial solutions generated. The best solution from

the improved plans is selected and presented to the user. The remainder of this section

describes the components of the algorithm in greater detail.

Procedure allocHoldsToCranes() partitions the ship’s holds amongst the available

stevedoring crews. The goal is to distribute the work as evenly as possible amongst the

crews. In its simplest form, the algorithm attempts to assign a similar number of contain-

ers to each crew, with the restrictions that only one crew can work on a given hold, and

the holds assigned to a given crew must be contiguous. Other allocation mechanisms are

readily implemented. For instance, the number of containers can be apportioned to each

crew based on the number of hours the crew will be working on the ship. For each crew i,

procedure allocHoldsToCranes() assigns values to firsti and lasti.

The procedure autoSequenceSlots() assigns a number sj from firsti to lasti to each

slot j that will be loaded by crew i. The number sj indicates the order in which the slot will

be filled by the corresponding crew. Since each position in the sequence can be associated

with a slot in the ship, at this point the algorithm has generated one ordered list of generic

containers for each crew, as illustrated in Figure 6.

Figure 6: Sequence of generic containers for two crews

The procedure prioritizeY ard() assigns priority numbers to all the containers that are

to be loaded, according to their placement in the yard. The goal is to produce sensible

groups of containers on which the crews can focus without interfering with each other.

Three different sorting operators are used in this regard: North-South, East-West, and

attack side (land-side or sea-side). Ties are broken by giving precedence to containers that

are more accessible – that is, containers closer to the aisles and higher up in the stacks. By
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combining these three sort operators and alternating their direction, one can obtain nine1

initial sortings of the containers. Each crew will prioritize the containers according to a

different initial ordering.

Algorithm 2 createInitial (sortMethod, currSol)
for crew = 1 to N do

for j = firstcrew to lastcrew do
class⇐ currSol.slot(j).getClass()
currSol.container(j)⇐ yard.getContainer(class, crew + sortMethod)

currSol.cost()⇐ computeFullCost(currSol)

Algorithm createInitial() constitutes the multistart component of the proposed method-

ology. The procedure generates multiple initial solutions by assigning different initial sort-

ings to each crew. In this manner, the m generic arrays, which are initially identical, are

matched to the containers in the yard in different ways. This results in m distinct initial

load plans.

The procedure assumes that the stevedoring teams work simultaneously, and containers

are removed from the yard according to their sequence number within each crew’s lot2.

This permits a realistic simulation of the clearing of the stacks. Based on the yard sorting

methods described above and the current position of their reach-stacker, each crew uses

the most immediately accessible container of the required class. Initial plans thus typically

contain sequences of adjacent containers being loaded into adjacent positions in the ship.

This method turns out to generate initial plans that are of good quality.

Algorithm createInitial() then computes the cost of the initial plans. The cost of a plan

is computed following Equation 50, as the weighted sum of four components: travel of the

reach-stacker on the ground, number of containers rehandled in the stacks, disutility due

to interference between multiple crews, and a measure of the vertical weight distribution

on the ship. The travel distances in the yard can be easily computed given the simple

geometry of most yards. The number of rehandles is computed by simulating the work of

the reach-stackers on the blocks. The algorithm keeps track of the containers that have

1Currently, no more than eight quay cranes are assigned to a ship at the busiest terminals in the world:
PSA Singapore and Hong Kong International.

2That is, at sequence step p, crew i will load into slot firsti + p− 1.
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been loaded on the ship at any given point, thus providing an accurate count of the number

of removal and restacking operations needed to retrieve any given container. Interference

between crews is computed whenever two reach-stackers are scheduled to work within a

certain distance of each other. Finally, the algorithm measures the disutility of the vertical

weight distribution on the ship by multiplying the weight of each container by its distance

from the ship’s bottom. This encourages plans where the lighter containers are placed in

the higher slots.

ztabu = αsR+ αdD + αwW (50)

After the initial solutions have been generated, the top-level algorithm calls procedure

tabuImprove() to perform a local search starting from each inital solution. Each iteration

of the search begins with the generation of a list of “neighbors” of the current plan. These

neighbors are generated from the current plan by exchanging two sequences of equivalent

containers, as shown in Figure 7.

Figure 7: Modifying a plan to generate neighbors

Noting the multiple ways in which these permutations could be generated, it becomes

clear that the number of neighbors could be extremely large. Furthermore, evaluating

the cost improvement of each neighbor is computationally expensive, because one must

recalculate the new state of the stacks and its impact on rehandles.

In the interest of computational efficiency, the neighborhood is generated in two steps.

The first step, procedure generateNeighbors(), creates a large number of neighbors, but

computes only a rough (and computationally trivial) approximation of the change in cost

for each neighbor. The neighbors are ranked according to this cost proxy, and only the
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q neighbors at the top of the ranking are retained. A more thorough calculation of the

cost benefits of the q chosen neighbors is performed in procedure getBestV alid(). The best

candidate that is not listed in the tabu list is selected.

Algorithm 3 tabuImprove (currSol)
for i = 1 to m do
tabuList⇐ ∅
nbMoves⇐ 0
validMove⇐ true
while validMove and (nbMoves < maxMoves) do
neighborList⇐ generateNeighbors(currSol)
neighborList⇐ trim(neighborList, q)
bestNeighbor ⇐ getBestV alid(neighborList, tabuList)
if bestNeighbor 6= ∅ then
currSol⇐ bestNeighbor
tabuList⇐ tabuList.append(bestNeighbor)
if currSol.cost() ≤ bestSol.cost() then
bestSol⇐ currSol

else
validMove⇐ false

return bestSol

It is important to note that the quality of the solutions does not increase monotonically.

The search can move out of local optima, allowing a broader exploration of solution alterna-

tives. In any event, the “best-yet” solution is always stored. If the search wanders into less

desirable alternatives, the algorithm can always revert to the best-yet plan. The algorithm

terminates after a preset number of iterations, or when no new admissible neighbors can be

found (this can happen, for instance, if all potential neighbors are represented in the tabu

list). The algorithm outputs the best plan visited.

In forming the first list of neighbors, the algorithm scans the current solution for clusters

of containers. To qualify for a cluster, a group of containers must be of the same class, be

currently assigned to a single crew, and be located in the same module in the yard. In

this way, the algorithm avoids breaking up “least cost” groups of containers that can be

removed from the stack without any unnecessary rehandling, and without any displacement

by the reach-stacker. Clearly, these segments can’t be improved upon, and any disruption

of their continuity would increase the overall cost of the plan. The algorithm creates a list

of clusters of the same size, which are candidates for swapping. Clusters can be swapped
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Algorithm 4 generateNeighbors(sol)
prevClust⇐ 0
currClust⇐ 0
currY ardModule⇐ 0
length⇐ 0
for i = 1 to η do
currClust⇐ concat(sol[i].class(), sol[i].crewNb(), sol[i].yardModule)
if currClust 6= prevClust then
blocksToExplore[length][currClass].push(i− length− 1)
length⇐ 0
prevClust⇐ currClust

else
length⇐ length+ 1

for l ∈ blocksToExplore.keys1() do
for c ∈ blocksToExplore.keys2() do
pairs[l]⇐ blocksToExplore[l][c] · blocksToExplore[l][c]

pairs[l].sortBy(proxyCost)

between different crews.

4.2 A decision support system for vessel planning

Whenever modeling a real-life problem using mathematical and computational methods,

several abstractions are necessary to make the problem tractable. While remaining quite

close to the problem at hand, this chapter has presented a somewhat simplified version

of the problem actually faced by the ship planners. Any number of complications and

variations can arise in practice. For instance, export containers frequently arrive at the

yard at the very last moment; stowage plans may need revision due to violations of IMO

recommendations or structural constraints on the ship; stevedoring crews may be delayed

or altogether unavailable; etc.

The problem described in this chapter is multi-objective, in that the quality of the plan

is judged according to four measures of disutility. The algorithm proposed here is not truly

multi-objective, as it combines the four measures of disutility into a single cost. The trade-

offs implicit in this weighting method are not always the best reflection of the stakeholders’

true preferences. Closer consideration of the alternative plans by an experienced planner

thus becomes necessary.

Experienced terminal staff often use clever shortcuts to expedite work in the yard. These

shortcuts are inconsistent with the procedural assumptions made here. For instance, the
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Figure 8: Initial screen of the DSS

planner may instruct the crane operator to temporarily depart from the established layering

pattern for containers on board. The planner may also ask the reach-stacker operators to

temporarily store containers in unmarked areas. Reach-stacker operators sometimes access

containers from the side, rather than the front of a stack. Representing these “tricks of

the trade” formally within the algorithm could be quite difficult, and would surely be

detrimental to the computational performance of the algorithm.

The proposed metaheuristic does not address the issues discussed in the three preceding

paragraphs. Rather, the algorithm specializes in the solution of a well-defined and slightly

simplified problem. The decision support system (DSS) that calls the metaheuristic, on

the other hand, allows the planner to make last-minute changes to the plan proposed by

the algorithm, while receiving prompt feedback from the tool regarding the feasibility and

estimated cost of those modifications.

When the DSS launches, it obtains some basic information from the user: the ship ID,

the number of crews that are available, and the position of the ship on the quay (starboard or

port). A screenshot of the initial DSS user interface is presented in Figure 8. The DSS then

establishes connections to the relevant databases and retrieves information on the current
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Figure 9: Full-ship solution screen of the DSS

state of the yard, the ship’s geometry, and the stowage plan. The core metaheuristic is

called, and the best solution found is returned. The DSS presents the plan in a graphical

format that is familiar to the planners, as shown in Figure 9. The planner can observe

the plan at the level of the entire ship, or by ship hold. The DSS provides icon-driven

commands to change the loading position of a container. When the planner attempts to

change the proposed solution to one that is deemed to have a higher cost, a warning message

is shown, giving the planner the alternatives of continuing, or cancelling the action. When

the planner is satisfied with the load plan, it is saved to a database. The final plan must

be approved by the ship’s captain, who is ultimately responsible for the stability of the

vessel. The stevedoring foremen use printed and electronic versions of the finalized plan
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while loading the vessel.

4.3 Experimental results and analysis

The algorithm was tested throughout the implementation process using actual data from ten

ships loading a small number of containers (30-100 TEUs) at a Spanish port. This guided

the development effort by shedding light on the benefits and computational requirements of

different variants of the algorithm. Several experienced ship planners reviewed the results

and offered their guidance in this respect.

Having finalized the fundamental design of the algorithm, a second set of experimental

runs was performed. This set of tests fulfilled three objectives. First, it permitted a formal

assessment of the benefits of the multistart technique. Second, it allowed for an understand-

ing of the trajectory of the objective function as the algorithm progresses. Finally, the tests

illustrated the impact of the neighborhood size on the solution quality.

The data for these tests were based on three ships of 2,000, 4,500, and 7,000 TEU,

and loading 74, 407, and 591 containers, respectively. Additional cases were generated by

bootstrapping the three base cases (by exchanging the location of no more than 10% of the

ship’s containers). The tests were run using five multistart plans. These tests were done on

an 800 MHz Pentium III computer.

All runs were completed in one to five minutes. The results indicate that the initial

plans may be quite dissimilar, with objective values differing by up to 15%. The search

algorithm can improve an initial plan by up to 35%, but occasionally the improvement is

as low as 1%. The best initial plan does not always lead to the best final plan, and the

search process can transform similar initial plans into very dissimilar final plans. These

observations indicate that multistart is indeed valuable. For larger ships, the quality of the

solution would likely benefit from a larger number of initial plans.

As is often observed with tabu search, in these experiments the objective function im-

proves rapidly during the initial iterations, and then oscillates within a relatively narrow

range. After a small number of iterations (about 15 for the small ship and 40 for the larger

ships), the algorithm has achieved most of the improvements it would likely ever achieve (as
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Figure 10: Objective function trajectory for 4,500 TEU ship

verified by running the algorithm for a very large number of iterations). This is illustrated

in Figure 10. It is thus plausible to run the algorithm until either convergence is achieved,

or for a problem-specific number of iterations. The speed of convergence will depend on

the size of the neighborhoods. For this problem, generating large neighborhoods is compu-

tationally expensive, and it is therefore preferable to perform a larger number of iterations

on smaller neighborhoods.

As mentioned in Section 4.1, the algorithm chooses the best neighbor using a two-phase

selection process. Since the cost proxy used in the first phase is an approximation, many

low-quality neighbors are initially ranked incorrectly as cost-improving options. If too many

neighbors are generated, these “false positives” displace the truly cost-improving neighbors

from the ranking, and choke the selection process. It is therefore important to provide

sufficient space in the ranking vector to allow for this effect. Other techniques, such as

stochastic selection of neighbors are promising in this regard.
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In a third set of experiments, the MIP formulation presented in Section 2.2 was im-

plemented using AMPL 9 (Fourer et al., 2003), and solved using CPLEX 9.0 (ILOG S.A.,

2003). These experiments were run on a 1600 MHz Pentium M computer with 512 MB of

RAM. An initial set of tests, with 30, 50, and 100 containers was prepared. The results

resonate with the statements of Bish et al. (2005), who found that a MIP formulation of

their problem takes several hours to solve problems with as little as twenty containers. For

the experiments described here, no instance with more than 30 containers was successfully

presolved3 by AMPL. The memory requirements of the presolve phase exceeded the test

machine’s RAM, forcing computations to page to the hard drive. The consequent impact on

performance forced the interruption of these runs after several hours in the presolve phase.

A small example with twenty containers was successfully presolved by AMPL and passed

to CPLEX. This problem was solved by the metaheuristic in less than one second. The

value of the objective function reported by the metaheuristic was compared to the values

reported by CPLEX after 2, 20, and 200 seconds in the solve phase. After 2 seconds, the

MIP’s objective function was twice as high as that reported by the metaheuristic. After

20 seconds, the MIP outperformed the metaheuristic by 5%. At 200 seconds, the MIP

outperformed the metaheuristic by 40%.

In the latter case, the disadvantage of the metaheuristic appears to come from its in-

ability to understand the extended impact of changing attack sides. When forming neigh-

borhoods, the algorithm focuses on creating clusters of containers and sequencing those

clusters. The decision of attacking each block land- or sea-side is subordinate to sequenc-

ing. A comparison against the plan generated using the MIP would suggest increasing the

visibility of the attack-side decision process.

4.4 Conclusions and directions for further research

This chapter presented an application of tabu search and multistart to the automation of the

vessel load planning process in maritime terminals. The proposed algorithm is specifically

3During the presolve phase, AMPL attempts to simplify the original model by removing redundant
constraints and replacing variables that are constrained to a single value.
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tailored to terminals that operate their yards with reach stackers. The core algorithm was

embedded in a decision support system to permit a higher degree of control on the part

of the terminal staff. The resulting DSS has been informally praised by experienced ship

planners based on the results obtained for a set of real-world tests. The algorithm finds

good solutions very quickly, and can solve problems with hundreds of containers in a few

minutes.

Based on the experimental runs, it appears that the neighbor generation mechanism

could be improved to make better decisions regarding the attack direction at each block.

Currently, the algorithm is too myopic in this regard, and consequently fails to generate

solutions with adequate attack-side transitions. A bi-level approach similar to that proposed

by Kim et al. (2004) is attractive in this sense: the high-level component would choose an

area of the block and an attack direction, while the low-level component sequences the

containers in that sector.

There exist numerous directions for further research. First, further comparison of the

plans produced by the algorithm against those produced manually is desirable. A more

tractable definition of what constitutes acceptable tradeoffs between the multiple measures

being minimized in the planning process must be sought and coded into the algorithm. In

this regard, it may be possible to extend the algorithm to a true multi-objective search

(Jones et al., 2002). This approach would allow the decision makers to better understand

the qualities of the different planning options, and guide the algorithm towards the preferred

solution space. At this point, however, this is not a problem in algorithm design – there

is simply no consensus in the maritime world about the relative value of the different

objectives.

The findings in this research indicate that standard MIP formulations are inadequate

for solving actual instances of the vessel load planning problem. The basic MIP formula-

tion is unable to address problems with as little as 35 containers. In order to perform a

plausible calibration of the metaheuristic against established MIP solution software, more

sophisticated modeling techniques will be necessary. In this regard, branch-and-bound and
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cutting plane strategies may prove useful. The combination of traditional mathematical pro-

gramming methods with metaheuristics is also a promising direction of research (Carrotta,

2005).

Currently, the algorithm assumes that multiple crews load containers at the same rate.

Although this is likely to be a good first-degree approximation, this assumption should be

tested with a simulation model. This model would mimic the loading plan indicated by

the metaheuristic, but use actual travel times and introduce random variations in the quay

cranes’ load cycles. The validity of the original assumption can be understood by estimating

the additional congestion in these cases.

The speed of the algorithm is satisfactory, largely due to the use of cost proxies in

neighborhood generation. Further enhancements to the accuracy of the cost proxy are

possible. Regression testing of different proxy formulae would be a straightforward manner

of reaching this goal.

The user interface component can be enhanced in a great variety of ways, without

significant changes to the core algorithm. For instance, the interface may be extended to

better acommodate export containers that arrive late to the yard. Finer control of the crane

split decisions would likely be of great value to terminal planners. Finally, more powerful

methods for moving containers to new positions would enhance the user experience.

Some of the ideas presented in this chapter are applicable to terminals operating with

different types of stacking equipment. Most terminals in the Far East operate mixed fleets of

stacking equipment, with an emphasis on rubber-tired gantry cranes (Alvarez, 2006). There

is currently a manifest demand for algorithms to optimize the utilization of the latter.

At the heart of the vessel planning problem lies a complex problem in combinatorial

mathematics. There is currently a large scope for research into the theoretical and empirical

properties of this most interesting problem.
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Chapter 5

Conclusions and Future Work

Each of the preceding chapters has presented relevant conclusions and directions for further

research. The purpose of this chapter is twofold. First, we explore the type of problems

that will be relevant in the optimization of maritime transport and operations over the next

decade. Secondly, we discuss the challenges that we are likely to face as we implement these

models within a business context.

5.1 Opportunities through 2018

Below we discuss several opportunities that will become increasingly important over the

following decade.

5.1.1 Better integration of maritime transport in the supply chain

Maritime transport plays a key role in the supply chains of several specific goods, such

as automobiles, liquified natural gas, coal, petroleum, and chemicals. These sectors are

particularly dependent on maritime transport because of the large volume or weight of the

goods being transported, the distances involved, and the low value density of the products.

In many of the aforementioned cases, ocean carriage is performed using specialized vessels

that are designed exclusively for use in one industry. Furthermore, some of these products

also require unique and expensive infrastructure at the loading and unloading points.

We anticipate important monetary benefits from a holistic analysis of the logistic chain
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in each of these industries. One would seek to globally optimize facility location, vessel

deployment, vessel routing, and shipment schedules in the presence of uncertain demand.

Although this would appear to be an overly ambitious formulation, we should emphasize

that the model would apply only to a very specific product, a small number of origin and

destination points, and a fairly elaborate set of business rules, all of which would tend to

make the models more tractable. We are currently aware of one such initiative targeted at

the distribution of LNG.

We believe this idea would be particularly attractive to industrial shippers, as they exert

control over both the production and the transportation components of the supply chain.

Companies that ship their goods using a combination of owned and chartered vessels would

benefit from such an initiative as well. In cases where shipment is made exclusively through

charters, one can think of a consortium of charterers joining forces to adapt their practices

in a way that generates added value to the supply chain as a whole. A key challenge in this

regard is that of discovering the appropriate incentives for all members of the supply chain

to cooperate for a greater good, a complex game-theoretical question which has received

much attention in recent years.

5.1.2 Revenue management

Revenue management has been successfully used in the airline, hotel, rental car, retail, and

energy sectors, amongst others (Talluri and Van Ryzin, 2004). The goal of revenue manage-

ment is to establish pricing, selling quantities, and selling times to maximize revenue in the

presence of uncertain demand and perishable capacity. Although revenue management is

currently in use in some niche sectors within maritime transportation, namely cruise ships

and ferries, we believe that this discipline could have a tremendous impact on the pricing

of terminal services and containerized traffic.

One of the key elements of a revenue management strategy is the ability to segment the

customer base according to their willingness to pay for the goods or services being offered.

Thus far, the shipping industry has generally relied on the value of the merchandise being

shipped as an indicator of willingness to pay. In microeconomic terms, we could consider
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this a form of first degree price discrimination. There is an opportunity to segment the

customer base along a second dimension, namely that of delivery speed. This would be

implemented as second degree price discrimination, where each customer would select the

price-service combination that suits her best. Customers that insist on a fast delivery will

pay a premium for a direct shipment. On the other hand, customers that are not so keen on

delivery speed will pay a lower price for a shipment that may be sent on a slower vessel, or

through a longer chain of transhipment points. Thus far, oil has been relatively inexpensive,

and the additional cost of a fast delivery was of little concern to many manufacturers. With

rapidly increasing fuel costs, the tradeoff between delivery time and cost will gain much

relevance.

Our informal inquiries have found that a few liner companies utilize revenue management

today. However, the veil of secrecy that surrounds their business practice has prevented us

from learning much about the scope of their capabilities. We do know of at least one major

carrier that is actively pursuing a revenue management strategy at present. We believe

these efforts will be redoubled over the next decade. Recall that the competitive advantage

gained by American Airlines through its introduction of yield management around 1985

was sufficient to drive a smaller competitor to bankruptcy within two years. Other major

carriers had to develop yield management competencies quickly in order to remain viable.

We believe that early adopters of revenue management in the liner business will enjoy a

substantial competitive advantage, and this will lead to a race to develop such capabilities

over the next decade.

The doctoral dissertation of Maragos (1994) presents a simplified model of revenue

management for the liner sector. Ting and Tzeng (2004) propose a slot allocation model

for revenue management of container shipping. These two works demonstrate some of the

particularities of the liner business that prevent us from replicating the systems developed

in the airline industry directly.

A container ship is to an airplane what a container yard is to a hotel. Container terminals

currently offer long term pricing contracts with incentives to attract large volumes from

liners. The presence of a small number of clients and such long term contracts may impede
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the introduction of yield management for terminals.

On the other hand, there are at least two important factors that will contribute to the

push for yield management use in maritime terminals:

• As large stevedoring consortia acquire additional terminals, they become providers of

a network service. In this case, the stevedoring companies control the nodes of the

network, whereas a traditional revenue management interpretation focuses on the arc

capacities and prices. A stevedoring company could balance work loads amongst its

multiple terminals by adjusting the lift prices it offers to liner companies.

• The use of advanced terminal operating systems (TOS) at many terminals may facil-

itate the deployment of a yield management system. This is true because the TOS

databases already contain much of the data that would be needed to generate fairly

detailed demand forecasts (e.g. merchandise type, volume, date of shipment, origin

and destination points, etc.). In this regard, the TOS providers stand to create a very

profitable line of business by offering yield management engines as complements to

their core products.

5.1.3 Focus on the environment

Waterborne transportation is, with regards to the emission of greenhouse gases, one of

the most environmentally friendly methods of transport. Consider that 80% of all goods

(by volume) are transported by ship, yet waterborne transportation generates half the

greenhouse emissions generated by air transport (DNV Research and Innovation, 2007). As

new environmental regulations are introduced (Jowit, 2008) and carbon trading schemes

become available, the industry will place emphasis on reducing vessel emissions, both at

port and while in transit.

On one hand, this environmental focus will lead to new engine, fuel, hull, anti-fouling,

and propulsion designs. On the other hand, a new multi-objective approach to vessel routing

and deployment will include the fleet’s emissions in addition to traditional measures of cost

and revenue. Emissions reduction will either be considered as a goal in its own right, or

converted into an additional cost factor to be minimized. This latter approach is obviously
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attractive in the presence of a viable market for carbon offsets. When additional limits for

emissions (notably SOx and NOx) are written into law, our challenge will be to accurately

capture the emissions footprint of the decision variables in our models.

Short sea shipping (SSS) has tremendous potential to reduce emissions and congestion

in port cities by replacing much of the truck traffic that is now utilized to carry merchandise

in and out of these ports. We envision the need for models to coordinate the transhipment

between SSS vessels (consider the equivalent of a cross-docking strategy), as well as a

multimodal component coordinating such vessels with trucks and trains arriving at the

terminals.

In contrast to its relatively low greenhouse footprint, the shipping industry has the

potential to generate extensive damage from oil and chemical spills. We envision new

models to optimize the location and operation of containment crews. These models will

consider the stochastic nature of the location, magnitude, and impact of future spills.

5.1.4 New patterns in world trade

Over the last three decades, China and South East Asia have become the world’s manu-

facturers. As these countries transition to a new economic and political status, they will

witness an increased standard of life, higher wages, and depletion of natural resources. In

turn, these changes may motivate manufacturers to seek new opportunities in other coun-

tries in Asia, Africa, and South America. China and India will become powerful markets

in their own right, and a larger proportion of their production will be targeted towards

internal consumption. The shipping industry will have to adjust to these new patterns

by redeploying vessels to the new trade routes. Initially, we foresee an increase in bulker

traffic from Africa and South America to China and India. As the latter shift away from

cheap manufacturing, the flow of raw materials will be reshaped, and a higher proportion

of shipments will remain within Africa and South America.

It should be noted that the intensity of traffic between the Far East and North America

or Europe has been a key driver of shipping demand over the past decades. These East-West

routes are possibly the longest conceivable between major population blocks. As such, they
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generate enormous demand for ton-miles of transport. If these long East-West routes were

to be replaced with shorter East-West or South-North routes, the world fleet could easily

outsize demand. Current projections of growth for total world tonnage may not consider the

impact of this effect. In the past, an oversupply of vessels has led to a dramatic collapse in

transport prices, which has in turn caused innumerable bankruptcies in the shipping sector

(Stopford, 1997). Additionally, the optimal vessel design for a long East-West route may

be suboptimal on shorter voyages, and many of the vessels that are now being designed

and built for the longer trades may not find profitable employment if conditions change

abruptly. We envision robust fleet sizing and deployment algorithms that would consider

the uncertainties of the shipping market over a strategic planning horizon, and would aid

shipping companies in making the best possible decisions under such circumstances.

5.1.5 Focus on safety

The risk of terrorist attacks will remain high over the next decade. Large maritime ports

are particularly vulnerable to terrorist activity, either as important targets in their own

right, or as entry points for weapons and personnel. This vulnerability follows from the

enormous volume and variety of merchandise that is handled on a daily basis at hundreds

of ports worldwide. Furthermore, many ports employ questionable security practices and

are notorious foci of corruption. It is clearly impossible to check all merchandise against

the presence of a terrorist device. Therefore, the development of statistical techniques and

certification procedures to facilitate this task will become a paramount concern. Whereas

several ports in the United States are already using such analytical tools, we envision

growing demand for increasingly sophisticated statistical solutions.

5.1.6 Arctic exploration and the Northwest Passage

It is believed that the Arctic holds a quarter of the oil and gas reserves in the planet. As the

polar caps recede, new opportunities for exploration will become economically attractive.

The extraction and transportation of oil and gas under extreme weather conditions poses

important problems in engineering and logistics design. Consider, for instance, that the wa-

ters around the extraction facilities are likely to be free of ice only intermittently throughout

73



the year. Transportation out of the facilities will therefore be subject to additional uncer-

tainty, and provisions may be necessary to store production over extended periods of time.

The vessels that operate in the Arctic will be highly specialized and will therefore require

a substantial capital premium over regular oil and gas vessels. In order to operate these

vessels profitably, a combined fleet may be necessary, with the specialized vessels tran-

shipping their load to regular vessels at designated points. The problem of locating and

sizing such transhipment and storage facilities will certainly require an optimization-based

solution approach.

5.1.7 Speculation in the shipping sector

Over the last decade, we have witnessed two major economic crises built, to a large extent,

on exuberant behavior: the dot-com crash of 2001, and the subprime housing crisis of 2007.

In the first instance, telecommunications companies, based on overly optimistic forecasts,

built fiber optic networks that would have acommodated several multiples of the existing

demand. Not surprisingly, bandwidth prices crashed, and several companies were sold, in

industry parlance, at pennies on the dollar. This event appears to have taken most investors

and leaders in the telecommunications sector by surprise.

In the case of the subprime mortgage crisis, homeowners and mortgage lenders assumed

that the double-digit appreciation of home values that was observed in many parts of the

United States and Europe during the first half of the decade would persist. This led con-

sumers to commit to monthly payments that they were unlikely to cover in the absence of

a perpetual mechanism to extract additional funds from the expected appreciation of their

homes. This time, several investors took note of the incoherence of this market, and made

billions of dollars by creating and trading on appropriate financial instruments (Anderson,

2007).

Past behavior does not guarantee future behavior. The fact that the shipping sector

(and in particular, container shipping) has grown at double-digit rates over the last decade

does not mean it can continue to grow at this pace. We must question the fundamental

assumptions behind the forecasts of growth in this sector. We must uncover every factor

74



that could impinge on the forecast before accepting it. Is there enough steel in the world to

build so many vessels? Is there room in the existing ports and canals to handle the implied

traffic? At the rate that oil prices are increasing today, will there be enough bunker fuel

for all these vessels ten years from now? Today we are planning for 16,000 TEU vessels

(Seatrade Asia online, 2007). Perhaps we have forgotten the Jahre Viking and the Batillus

class of supertankers.

Any market that behaves with exuberance opens itself to the influence of short sell-

ers. The shipping market may be prone to such exuberant behavior, given its history and

affinity for risk. We believe that, for a team with the correct set of skills in finance and

transportation management, large economic rewards may become apparent over the next

decade.

5.2 The challenges

The implementation of advanced techniques from management science (and operations re-

search in particular) to the maritime sector poses several significant challenges. In this

section, we discuss some practical challenges that still need to be addressed by the opera-

tions research community.

5.2.1 The complexity of the models impedes their adoption

The models and algorithms employed in operations research are mathematically advanced,

and thus intimidating or bewildering to most stakeholders. Many stakeholders are reluctant

to yield control of their operations to an algorithm they can’t fully understand. One of

the key challenges ahead consists of creating a dialogue that permits all stakeholders to

participate in the development of the tools and become comfortable with their adoption.

Based on our prior experience, it could be argued that the operations research community

would be wise to seek the cooperation of professional communicators in this regard.

5.2.2 User interfaces: less is more

Oftentimes, the developers of operations research-based decision support tools overplay their

hand when designing the software’s user interface. The intention is generally a noble one: to
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provide a system that is as sophisticated as possible. The result is often counterproductive:

the tool is overly complex, has a steep learning curve, and appears alien to all its intended

users. In this sense, we have for several years advocated spreadsheet-driven optimization

tools. To begin with, most of the data that the analysts will handle will come from a

spreadsheet or a database. The model’s output is again likely to be analyzed by the different

stakeholders using spreadsheet software. Given that most analysts are at ease with this

interface, it seems only natural to use it as a platform for the entire application.

5.2.3 The duration and cost of O.R. projects

Another challenge arises from the extended times and large investments that are required

to develop a model from its inception to the point where a working tool can be released.

Often, these times are in excess of eighteen months. It is not uncommon for such efforts to

require several highly paid operations research specialists, as well as significant investments

in computer hardware and software. Most small companies can’t afford such investments.

Few organizations have the patience and commitment to support the operations research

team for the duration of such lengthy projects. The development of commercially available,

off-the-shelf tools to support maritime companies remains an attractive business option.

A key challenge in this regard will be the isolation of each core problem, as well as the

development of components to permit the adaptation of the model to the circumstances of

each company.

Here we run into something of a paradox. If optimization is to provide a unique com-

petitive advantage, surely it can’t be sold as a generic tool that applies equally to all com-

panies. From a (very simplified) game-theoretical perspective, if all companies purchased

such a product, none of them would gain a competitive advantage, yet all would have an

additional business expense. Furthermore, the first customer will pay a high price while

the software is debugged and tuned. The second customer will then acquire the finished

software product, and as a byproduct, the knowledge gained by the software vendor during

the first installation. The cost of this knowledge is unlikely to be properly represented in

the second transaction.
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In view of the above, the shipping companies would expect optimization tools to be

highly customized. However, the cost of such customization is prohibitive for many smaller

companies. We are aware of some software companies that have attempted to create prod-

ucts that can be highly customized at a lower cost. Their success so far is mixed, and

additional insights are needed into this issue.

5.2.4 Uncertainty in the maritime sector

In the context of the strategic-level problems faced by the maritime sector, uncertainty can

be so high as to derail the applicability of most models. Furthermore, there is typically no

way to establish the distribution of underlying stochastic processes. In this sense, a new

theory of robust optimization (Bertsimas and Weismantel, 2005) which does not require

explicit knowledge of such distributions, should be of great interest to the maritime sector.

5.2.5 Underlying mathematical complexity

Finally, many of the problems faced by the maritime industry are extremely complex. The

problems faced by container terminals are typically highly combinatorial and difficult to

solve using commercially available software. Many models that attempt to represent multi-

ple components of a supply chain are likely to become extraordinarily large and intractable.

On the other end of the spectrum, an oversimplified model may lead to inaccurate, or fully

incorrect conclusions. From the perspective of the problem data, Simchi-Levi, Kaminsky,

and Simchi-Levi (2008) comment on the benefits of geographical aggregation to simplify lo-

gistics models. From the perspective of the algorithms, it is essential to attack every model

using a wide variety of tools. We believe that hybrid optimization methods, which leverage

the qualities of exact and heuristic methods, hold tremendous potential in the quest to

address highly complex models.

We stress the need to focus on good, rather than optimal, solutions. The data that

is available is typically subject to considerable uncertainty and inaccuracy. It is therefore

pointless to insist on optimality.

In summary, although new mathematical insights will be essential to the solution of

increasingly complex problems, the most important obstacles to the adoption of operations
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research in the maritime industry are likely to be organizational in nature.

The models and algorithms that were presented in this dissertation are representative of

the problems that are faced today by the maritime industry. As new challenges arise within

the shipping industry, and as the sector becomes more open to advanced mathematical

modeling techniques, we hope to be at the forefront of this exciting field.
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