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Preface

Recent technological improvements and the corresponding explosion in
data generation and collection are expanding the knowledge base of traditional
isolated disciplines and transforming life sciences into a continuum integrated
domain. In particular, the application of integrative approaches in chemical
biology and drug discovery is having a major impact on the identification of
chemical probes for biological systems and the design and optimization of safer,

more efficient drugs.

With this vision, the main objective of the present thesis was the
development of new methods and tools that contribute to the advancement of
integrative approaches to life sciences. The document has been divided in six
parts. The first part provides an overview of current trends in integrative
biomedical sciences and describes the different areas that have been the focus of
our research, namely, the chemical space defined by small molecules, the
biological space defined by proteins of therapeutic relevance, and the
phenotypical space defined by drug side effects. The next two parts introduce
the primary objectives pursued and discuss the main results obtained,
respectively. The final three parts compile the six publications that have resulted
from this thesis, the main conclusions derived, and the general list of relevant

references, respectively.
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Part I — Introduction






Introduction

Chapter 1.1 — Integrative approach to biomedical sciences

I.1.1 Relevant entities in biomedical sciences

The ultimate goal of biomedical sciences could be defined as the holistic
understanding of the mechanisms behind all our body processes at all levels in
order to be able to reverse damaged or malfunctioning systems to a normalized
state. Huge economic resources are dedicated to this vast and heterogeneous
field worldwide every year both by public administrations and by some of the
more powerful transnational companies from the pharmaceutical industry.

Diseases have significant social or demographic impact on human
populations and thus, different interests put it under the focus of biomedical
research in academic institutions and private corporations to start looking for
therapeutic remedies at different levels. Individuals suffering from the
anomalous set of characteristics associated with the disease are the first study
cases in the path to understand the causes of the problem with the objective of
experimentally apply the scientific method in search of a treatment and cure.

But at this starting point, an endless list of questions emerges. Which are
the observable effects of the disease beyond individual specificities and
environmental heterogeneities? Are there any organic malfunctions behind
those effects? In which specific tissues reside the main alterations? Which
altered metabolic processes cause those abnormal biological behaviors? What is
the new set of characteristics that affected cells show and how many elements
of the cellular machinery are implied in the non standard processes? Are there
any foreign chemicals related with the development of the disease or is it
possible to design drugs for its treatment? None of these questions is easy to
answer because each of them involves different disciplines and experimental
procedures as they cover different biomedical entities from metabolites to
synthetic small molecules, from ADN and ARN to multiple proteins and
pathways, from cells to tissues and organs, from individual phenotypes to
statistics in populations, and so on.
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When we consider each facet of the problem at a time, specific issues
can be studied separately and successfully addressed, but the complete solution
is far beyond the reaches of any single involved discipline and integrative
approaches are required [1]. Human diseases have genetic, pharmacological and
environmental parameters that interrelate in an intricate network that presents
an altered state and needs to be reconverted to the basal situation. Beyond the
study of the single perturbations in the system, the whole network needs to be
considered as the fundamental unit of the analysis [2], if an ultimate solution is
to be found.

The final years of the last century witnessed the emergence and
evolution of many disciplines around this issue. Systems biology is the more
general term that includes all approaches based on a holistic point of view, in
contrast to the traditional reductionism, and has been applied in different fields
in the “omics” area relaying on mathematical and computational tools [3].
Another non specific widely employed term is bioinformatics, referring to the
conceptualization of relevant entities in biomedical sciences and the
information technologies applied to their analysis [4]. In between the cohesive
approach of systems biology and the focused points of view of each single basic
domain, many disciplines are found at different integration levels. For instance
chemogenomics is one of them, integrating the fields of informatics, chemistry,

and pharmacology to address drug discovery at a protein family level.

Recent advancements in the various experimental disciplines, alongside
with the development of modern integrative knowledge-based computational
approaches may one day make possible the ultimate paradigm of biomedical
sciences: the establishment of a computational model of a complete living
organism at all levels of organization so that the effects of any genetic,
environmental or chemical perturbation can be predicted and the most optimal
therapeutic solution proposed. Advanced mathematics have already allowed the
development of simple models for certain metabolic and signal transduction
processes [5] but the progress in this area is still limited by currently available
computing capacities [6].
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1.1.2 Emergent synergy of data integration

Data derived from the measurement of the relevant features for
abovementioned entities 1s the sap of the knowledge tree of
biochemoinformatics. From an applied point of view, this information is also
considered the basis of drug discovery [7], a process that requires expertise in
multiple interrelated disciplines.

Although the size of accessible data increases at an exponentially
growing rate, the computational capacities available to researchers are, in most
cases, sufficient to deal with such amount of data. In fact, while the theoretic
quantity of information encoded in nature has cosmic proportions, the amount
of real information that researchers in this field manage is much lower than in
other scientific domains. Then, far from being overwhelmed by the quantity of
information, the actual difficulty comes from the diversity of scientific domains
covered and the number of attributes that have to be considered at the time.
Accordingly, from the raw unprocessed data obtained in numerous unrelated
experimental assays, researchers are in need to derive high level integrated
information systems that can be interrogated in search for complex answers to
cross-domain questions. Obviously the efforts dedicated to this process will
need to be multiplied as the diversity and richness of primary data increases.

In this respect, several steps will have to be taken in order to achieve this
ambitious goal. First of all, data has to be normalized by specific weighting and
scaling protocols to become comparable. Then the connectivity networks
between the distinct sources of data need to be defined in order to establish
links between the same elements across domains. Finally, this derived data
needs to be presented and visualized in such a way that high level analyses can
be easily performed, with specific representations being more appropriate
depending on the nature of the source [8]. The web application iPhace is a good
example of a tool designed and implemented as a specialized visualization tool
at the interface of chemistry and biology (see chapter IV.3 for further details).

One of the main obstacles in this process is the identification of the same

entities and processes across the different domains involved, and sometimes
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even within the same research area, to avoid connectivity problems. Some
researchers have proposed that this should be the main focus of biomedical
sciences as of today [9]. To solve this problem we need to go beyond format
issues and take into account the deep meanings or semantics that lay behind the
different syntaxes used. This can be accomplished by the design and application
of directed controlled vocabularies, aggregations of precisely defined unique
terms relevant to a certain field that are unambiguously identified and can be
systematically organized into highly curated ontologies which have already
proven to be of utmost importance in this area [10] given that higher levels of
logic relational organization open the path for a deeper analysis. From the first
initiatives in this field, like GO (Gene Ontology) [11], these have grown in
number and diversity in the recent years at the same time that interest from
researches has focused on them because of their promising applications [12].
The web application FCP is a good example of a tool designed to provide a
functional classification of all experimentally determined structures currently
deposited in the Protein Data Bank (see chapter IV.2 for further details).

While in the last years the scientific community has devoted huge efforts
to this issue, disappointment has raised when even a priory successful
approaches have not been able to be reflected in, for instance, significant
increases of the success rates in the drug discovery process [13]. However,
these success expectations were optimistic because when different systems of
information are related, a new more complex meta-system is revealed, hence
requiring more complex approaches for its analysis. The development of these
new methodologies can cover, on their own, the scope of non-negligible
projects and hence the fruits of this work are likely to be revealed after some
time.

Network-based approaches have extensively proven their utility at this
high-level analysis [14] and, for instance, the use of “intelligent” symbolic
systems [15] able to make new suggestions by the computational analysis of
well designed knowledge bases has been proposed. Therefore, beyond
traditional data extraction and browsing of databases, data needs to be
organized in flexible but specific architectures from which meta-data and

6
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unseen correlations may be inferred.

In summary, we could state that the complexity of a living organism
cannot be expected to be easily understood with partial, limited, and isolated
views, but integrative approaches need to be developed instead. When data
coming from different domains that refers to the same semantic entity are
combined, the true signals may be synergistically reinforced while the
background noise will tend to be inherently corrected. Furthermore, new
characteristics might be expected to become apparent at the systems level,
whereas they could not be perceived from the isolated components [16]. Many
examples of the utility of this wider approach can be found in recent literature
across all domains of biomedical sciences to different extents [17-21]. Along
this view, the main purpose of this thesis is to contribute to the path of
integrating domains and by doing so provide new methods and tools that can be

used to advance in the fields of chemical biology and drug discovery.
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Chapter 1.2 - The chemical space

1.2.1 Definition and scope

An almost infinite number of molecules are expected to populate the
vast chemical space with the number 107100 posited as a limit [22]. However,
in biomedical sciences, the biologically relevant fraction of this space is
considered to contain mainly small molecules of biological origin and designed
synthetic chemicals that are able to interact with some biological elements in
living systems. Different attempts have been made to draw the borders of the
chemical space of pharmacological interest, and some authors have assessed a
number around 10760 molecules considering only those with less than thirty
atoms different from hydrogen [23]. Additional filters, such as the Lipinski's
rule-of-five for oral bioavailability [24], reduce this set of biologically relevant
molecules by several orders of magnitude. Although those are the theoretical
numbers, the reality is that only several thousands of molecules have been
actually marketed as drugs and that the number of small molecules present in
our bodies with any function is also within that order of magnitude [25]. This
emphasizes the fact that the characterization of this space is an issue of utmost
importance in this field as in its vast majority is entirely unexplored.

Lipophilic GPCR
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Cartoon representation of the relationship between the continuum of chemical space
(light blue) and the discrete areas of chemical space that are occupied by compounds with
specific affinity for biological molecules. Extracted from [26].
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The chemical space must be then structured and organized in order to be
efficiently explored because a random approach would be not very effective due
to its size. In the discovery process, for instance, molecules with certain
physicochemical properties need to be located so efforts need to be focused in
the appropriate portion of the space. Characterization of the molecules is the
first step in this process, and it is achieved by employing several types of
descriptors based on molecular structural and physiochemical features.

One-dimensional descriptors capture specific properties of a molecule in
a single value and are fast and easily computable. Molecular weight, number of
hydrogen bond donors and acceptors or octanol-water partition coefficient and
aqueous solubility belong to this group and some of them are usually combined
to delimit the space of interest like in the above mentioned Lipinsky’s rule-of-
five. In a level above, two-dimensional descriptors are based on the topology of
a molecule given by the atoms it contains and their connectivity. Substructure
methodologies are used to compare molecules looking for common fragments
[27] while fingerprint-based methods codify the molecular features into strings
called fingerprints which are designed to be easy to generate and compare [28].
Finally, three-dimensional descriptors capture additional molecular information
on the relative position of atoms or features in three-dimensional space. An
optimal balance between computational cost and prediction performance finally
determines the ultimate choice of descriptors for the particular property to be
modeled [29].

Beyond these numerical descriptors, other structural approaches have
been successfully applied to the mapping of the chemical space by looking for
common elements across predefined sets of compounds. Recursive
simplification of chemical structures by applying simple rules, like removing all
side chains or turning all bonds to single bonds, will reveal different levels of
structural complexity, up to the atomic framework level [30]. The organization
of these emerging structures in a simple-to-complex hierarchy will allow
researchers to locate recurrent atomic organizations fulfilling specific interests,
serving as basis for the design of new compounds [31]. Furthermore, the
application of structure-based clustering methodologies has been successfully

9
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applied to the mapping of large chemical databases [32]. However, as
emphasized above, an optimal combination of different types of methodologies
offers often a better option that any of the individual methodologies applied in
isolation [33].

Two main sources have been historically used to populate the fraction of
the chemical space of potential biological interest. First studied were molecules
naturally present in living systems, which are part of the system itself so have
intrinsic biological significance, and are widely used as basic components for
further structural optimization in the drug discovery process [34]. Despite a
reduction of about 30% in the number of drugs based on natural products in
clinical or preclinical stages in this decade [35], they are still considered
cornerstones in the drug discovery process and many more are likely to be
revealed when new universes, like marine life or traditional Chinese medicinal
products will be studied [36] through the application of the improvements in
related technical proceedings [26]. The second group is composed by those
structures designed de novo by the pharmaceutical industry with therapeutic
objectives, to try to emulate the actions of natural ligands over specific proteins.
These designed novel chemical entities may be modifications of natural
products or synthetic molecules. If we consider drugs marketed in the last thirty
years almost a half of them come from each group [29].

1.2.2 Sources of information

There are different kinds of databases storing information related with
the chemical space defined above, but all of them specify the structures of the
chemicals they contain which may have been gathered with different purposes.
Beyond this, most of these sources also contain additional information about the
compounds, and some of them also have valuable data related to the
interactions these molecules are known to have over specific biological
systems. We will now give a brief overview on the two main types of
repositories of chemical and pharmacological data relevant to our purposes, in
this order, plain chemical libraries and annotated chemical libraries.

10
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1.2.2.1 Chemical libraries

Plain chemical libraries are collections of chemicals with associated
information related to their intrinsic properties or marketing data. They are
generated based on organic and medicinal chemistry and designed with specific
purposes so the molecules they contain will have certain characteristics that
fulfill their expected requirements. The main uses of these collections are to
improve efficiency of drug discovery, to computationally describe drug-like
molecular properties, to identify promising target candidates (biomolecules,
proteins, enzymes, receptors) or promising ligand candidates (small organic

synthetic or biosynthetic compounds) among others [37].

Targeted chemical libraries are built around a specific concept and have
molecules with delimited characteristics that are related with certain properties,
for instance, having affinity for a protein target or a family of targets like
kinases or G protein-coupled receptors [38] or passing the brain-blood barrier
[39]. There are different methodologies used in the design of such libraries that
explore the borders of the chemical space of interest, generating diverse sets of
molecules inside the stated property ranges based on biochemical and
proteomical knowledge [40]. Moreover, in silico profiling of compounds has
also been posited as a promising way of assessing the potential scope of a
targeted library [41].

On the other hand, diverse chemical libraries are used to scan big
portions of the chemical space in search of compounds with the required
characteristics. In combinatorial libraries, for instance, compounds include
modifications of a common scaffold with the addition of selected functional
groups in different positions in order to maximize diversity while covering
several properties of interest [42]. As the chemical space is so huge and the
costs of experiments are high, having a well represented chemical library is also
a key issue in the drug discovery process and different methodologies are used
to design them, for instance, based on natural products modification [43].
Nowadays many strategies for counting the diversity of a chemical library are
being developed and scaffold analysis is emerging as one of the most intuitive
and successful [44], alongside with other graph-based methodologies [45].

11
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Schema of the different strategies used in chemical library design. Extracted from [46].

Larger libraries emerge from the union of smaller more specific ones so
most of these collections do not fully cover the chemical space and are biased
for historical reasons. Although there are dozens of commercial suppliers of
such libraries, an analysis showed that the overlap between them is small,
meaning that none of them is able to cover a big fraction of the chemical space
[47]. Independent from commercial purposes, several huge molecular
repositories exist from the academic side. Chemical Entities of Biological
Interest (ChEBI) [48], developed by the European Bioinformatics Institute in
Cambridge, is a freely available dictionary of molecular entities focused on
‘small’ chemical compounds [49]. Another of these repositories is PubChem
[50], a component of the NIH’s Molecular Libraries Roadmap Initiative,
hosting  two  large  databases named  PubChemSubstance  and
PubChemCompound with 62 million and 26 million records each as of today.
Furthemore, PubChem presents a wide number of features and has recently
started another database named PubChemBioAssay to store activity screens of
chemical substances from PubChemSubstance [51].

In the ambit of drug discovery, compounds in these libraries may be
screened to select those fitting the expected requirements to go into further
optimization steps, so they use to avoid structures or functional groups that are
known to be reactive or to have undesired ADMET (absorption, distribution,
metabolism, excretion and toxicity) properties that could be a handicap in later
stages of the process. Because there are many different computational

12
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methodologies available to do this screening in silico with a sufficient success
rate, this has become a convincing way of lowering costs on the overall drug
discovery process [52].

1.2.2.2 Annotated chemical libraries

These sources play a key role in the integration of the chemical space
with the other spaces involved in biomedical sciences and drug design [53]
given that beyond the detailed structures and other intrinsic data, they contain
information on how small molecules interact with macromolecules. The most
usual contents are the response data obtained in experimental assays about the
effect of a determined compound over an organism, tissue, cell line or specific
protein, as well as information about the ADMET properties of the compounds
or other functional data. We will call annotation to any piece of information that
relates the compound with medical data or specific entities from any other
space relevant to biomedical sciences. This information is usually published in
peer reviewed journals and then collected into large databases but in some cases
it comes directly from series of assays, the results of which are available to the
public. In this thesis, we focused on the chemical libraries relating compounds
to the protein targets they bind because they play a key role in current drug
discovery, allowing researches to detect the relevant features enabling specific
interactions. Once these are recognized, new compounds with similar
characteristics may be explored in silico to predict their theoretical binding
affinities, as we further analyze in chapter IV.4. Then, the power and weakness
of these chemical libraries is that they usually contain sparse data, as it comes
from different original sources, giving place to diverse collections of
compounds covering dissimilar targets with highly incomplete activity data.
Due to this diversity, researchers can build models based on the known
interaction data which may cover many targets with unrelated active ligands,
giving them a positive prediction success average rate. However, the lack of
completeness does not lead to exhaustive models, generating errors caused by
the presence of abundant unknown response data.

13
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Among the annotated libraries relating molecules with different protein
targets we can find examples with a specific scope like [UPHARAD [54] which,
containing more than 2000 ligands, is the official database of the IUPHAR
Committee on Receptor Nomenclature and Drug Classification and is devoted
to the study of compounds interacting with G protein-coupled receptors and ion
channels. Also with a specific approach, in this thesis we collaborated on the
generation of a nuclear receptor directed annotated library, as will be further
elaborated in chapter IV.1. On the other hand we have huge chemical libraries
like ChEMbldb, an initiative of the European Bioinformatics Institute (EMBL-
EBI), which is part of the European Molecular Biology Laboratory (EMBL)
[55]. With more than half a million compounds, this is the biggest publicly
available resource of quantitative and bioactivity data on the interaction
between proteins, cells, organisms and small molecules as it collects more than
2.5 million annotations [56].

There are other models of annotated libraries like the represented by
PDSP. This public database is focused on novel psychoactive compounds for
which pharmacological and functional activity data is provided through
screening on cloned human CNS proteins. Its most important characteristic is
that new data, mostly binding affinities coming from biochemical assays, is

generated and only a small amount are taken from literature [57].

The biggest annotated compound libraries are however proprietary and
some of them, like Wombat [58] or MDDR [59] contain huge amounts of data
collected from literature. Wombat is, for instance, a proprietary database
developed at Sunset Molecular Discovery that as of January 2009 contains
almost three hundred thousand chemicals interacting with nearly two thousand
proteins. All that information has been extracted from more than fifteen
thousand papers published in the last thirty years in peer reviewed journals of
the field. Besides this, the new data generated via high-throughput inside the
pharmaceutical industry is also proprietary, and the major resources of response
and functional data for small compounds are encapsulated in private data
libraries of leader companies.

14
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1.2.3 Data integration

To have a complete overview of the data contained in several chemical
libraries it is mandatory to deal with the standardization of the different formats
that those libraries will present and also to identify compounds in all libraries to
know if they are present in the rest of them.

First of all, the compound structures can be specified in different
formats, namely, smiles, sdf, mol2, rdf, to name a few. All these formats provide
information about the atoms present in a specific molecule and the bonds that
link them, but not all of them give the coordinates of these atoms. Furthermore,
some chemical libraries will specify the 3D structure of the compound, whereas
others will just rely on the 2D topology, an aspect worth considering depending
on the descriptors one needs to compute. Of course, something we need to have
in mind is that the more information we encode in the way we describe the
structures, the bigger storage capacity and more time consuming processes we
will have to deal with, so an optimal balance between detail and management is
required. One could use more specific descriptions like the sdf coding for
annotated chemical libraries, which are smaller and used in processes like
modeling which could require much more detail, while other much compact
formats like smiles could be used for commercial chemical libraries containing
millions of compounds to be screened every once in a while.

A decade ago, few methodologies were available to uniquely identify
chemical structures in large databases. Today, different approaches have been
taken to solve this problem. The IUPAC, International Union of Pure and
Applied Chemistry, was working from 2000 to 2005 on the IUPAC Chemical
Identifier Project to establish a unique label, the IUPAC Chemical Identifier,
which would be a non-proprietary identifier for chemical substances. To get the
InChI of a compound, the process starts with the normalization of its structure,
removing redundant information, and then it follows with the canonicalization
into a unique form, such that any representations of this compound would
collide into a single unique graph representation. This canonical representation
is serialized into a textual form called InChl containing six different layers of
information related with the structure, the charges, the stereo chemistry and
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other chemical features of the compound. When this InChl was found to be too
long to be efficiently searched and stored, the InChl keys were developed. For
their calculation, InChl string is hashed into a 25 characters length
alphanumeric code were 14 of this characters result from the connectivity
information of the InChl, followed consecutively by a hyphen and 8 more
characters resulting from the remaining layers of the InChl. After this, a single
character indicating the version of InChl used and a single checksum character
are found. The chance for two different compounds to have the same InChl key
is estimated in 1.3 for every 10° compounds, meaning a single collision into 75
databases of 10° compounds each [60].

At the same time, the chemical structure code (CSC) was developed in
our lab. Based in structural hierarchy, this code consists on a unique six-level
code for each molecule where each level encodes for a sub-structural
characteristic, going from the most generic one to the final unique identifier of
the molecule. The first, second and third levels are integers specifying the
number of rings in the largest ring system present in the molecule, the number
of bonds in the longest path and the number of branching points in the longest
path, respectively. The fourth, fifth and sixth levels are unique eight-character
hash codes for the molecular framework, scaffold, and the complete molecular
structure, respectively.

When any of these codes is calculated for all the molecules in several
chemical libraries, information on how many common compounds they have is
revealed when previously it was hidden behind the different compound
identifiers and structural representations. Once we are able to collapse all
repetitions of a compound into a single chemical graph entity, the work
continues with the standardization of the information that each source may
contain related to the physiochemical and pharmacological characteristics of
that compound. In this step, the pieces of information coming from different
sources need to be converted into the same units when possible, and when these
data are being collected, one has to be aware that errors occur and has to apply a
methodology that removes wrong specific data once it is observed to be non
reliable or represent an outlier point in a set of data.
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Several software solutions are available to translate compound libraries
from one format to another and to write additional information when the format
allows that to be done. Some of these programs like OpenBabel [61] also allow
the user to calculate compound identifiers and simple chemical descriptors. In
this respect, of mention is also the open policy to the academic community
adopted by ChemAxon [62], which provides a good list of useful applets for
developing tools in chemoinformatics and life science research.
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Chapter 1.3 - The biological space

1.3.1 Definition and scope

For the sake of simplicity, we define the biological space as being
composed of all proteins present in any living or extinct organism on earth [63],
the union of all specific proteomes. The study of proteins is of utmost
importance for biomedical sciences as they are the machinery of living systems.
Some of them perform mechanical and structural functions, like in the muscles
and the cytoskeleton, while others are specialized in catalyzing reactions that by
natural means would occur at a much lower rate and are called enzymes. A third
group of proteins would be involved in regulating cell signaling and cell cycle
processes and would include transporting proteins and channels, along with
different kinds of receptors. All these proteins are then characterized by their
function and those with similar functions will wusually tend to be
phylogenetically related.

Amongst all this wide biological space we focused our work on the
druggable portion as this is the one that will allow us to link it with the
chemical space of small molecules. These proteins, not related with structural or
mechanical functions are regulated by endogenous ligands that bind them in a
specialized pocket that is generated when protein is folded to a 3D structure.
The modulation of the behavior of a certain protein may have a great
significance on the cell function and this can be achieved by designing
chemicals with the features required to fit in the protein active site. To be able
to do that, we need to gather as many information as possible about the proteins
inside our scope, including sequence, functional, phylogenetic and
physicochemical data as well as data about their known interactions with
ligands or the large scale effects that arise from the modification of their
behavior.

There are several families of proteins that are included into this
biological space. The biggest and most well known belongs to the enzymes
group, which has been classically the most studied, while other families such as
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the nuclear receptors, the cytochromes, the G-protein coupled receptors and the
different kinds of channels and transporters have attracted researchers' interest
for specific reasons. While the complete human proteome is currently estimated
to have more than twenty thousand [64] different proteins, we will focus only in
the small portion that has been successfully characterized. More than 5000
enzymes, 5000 channels and transporters, about 1000 G-protein coupled
receptors and a hundred nuclear receptors have been detailed at different levels
and organized in several classifications.

In terms of their interaction with the chemical space, proteins need to be
characterized depending on the chemical features they expose to the compounds
they bind but this is difficult to achieve due to the complexity of this issue.
However, as it is expected that proteins with similar functions or with common
phylogenetic origins will probably have similar features in their activity
pockets, some classification systems based on different data, either functional

and/or structural, have been successful to a certain extent.

1.3.2 Sources of information

Proteins may be the most studied entities in biomedical sciences, as they
are the elemental machineries involved in all biological processes. In this
section we will have a quick glance at the different types of information
available about them and their storing repositories. Although we have divided
this data in functional, structural and phylogenetic, these three elements are

intrinsically related and one may be used to infer or study the others.

1.3.2.1 Functional data

The classical way to characterize a protein is based on the function it
develops in nature although the definition of what is considered as such is not
clear because protein capabilities are related to actual molecular functions, cell
processes and cellular location [65]. Behaving as functional and structural
units, domains are conserved portions of proteins that have specific function
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and fold independently from the rest of the protein. They can be combined as
basic pieces to generate new proteins, hence being considered the units for
protein evolution with around 150 domain families present in all kingdoms of
live [66].

Several initiatives also consider these domains as the units for functional
annotation and, as most eukaryotic proteins have multiple domains, they can be
related with different functions at the same time [67]. However, this approach is
limited by the consideration that the researcher has to decide when a certain
domain belongs to a specific type, and that is easy for very similar domains but
becomes more and more difficult the more different they are, for instance in the
case of proteins with a distant common ancestor. Depending on the
methodology used to cluster the proteins on basis of the domains they contain,
different classifications account from one thousand to several thousand different
families [68]. CATH, for instance, is a well known curated classification of
protein domain structures containing 14.500 domains divided in 1.150 sequence
families grouped in 226 superfamilies for a total of 124 defined different
foldings [69]. With a sequence based approach to the same issue, pFam, an
initiative of the Sanger Institute, specifies as of today almost 12.000 families
grouped in clans by sequence similarity or structural similarity [70].

The prediction of the function of a protein is a key issue in the genomic
era and is mainly based in two methodologies emerging from the idea that
sequence, structure and function are intrinsically related. First one is sequence
comparison of its encoding gene with those of other proteins of known function.
An approach that, while simple as an idea, has resulted in a proliferation of
genetic sequence alignment methods because of its complexity [71]. The second
group comprises structure based approaches that compare the final 3D protein
foldings instead of the genetic sequences and have also given place to a
multitude of methodologies [72]. Moreover, the combination of several

techniques on a certain prediction is likely to increase the success rate.
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Schematic overview of in silico-based protein function prediction methods. Extracted from [73]

Once the protein has been annotated to a set of functions, it has to be
organized along with other members of its functional class. This was addressed
by different initiatives that worked on specific families of proteins, giving place
to well defined but not homogeneous classification systems. The Enzyme
Nomenclature Committee developed the Enzyme Commission number (EC
number) [74], a standardizing and hierarchical classification scheme for
enzymes based on the reactions they catalyze. Although EC numbers are
associated with a recommended name for the respective enzyme, EC numbers
do not specify enzymes but catalyzed reactions. This means that different
enzymes that catalyze the same reaction will receive the same EC number. Up
to now, this classification accounts for 4150 different entries which represent a
slightly bigger number of real enzymes.

Another well known classification system is the one stated by the
IUPHAR, today called International Union of Basic and Clinical Pharmacology.
Centred on channels and transporters, divides almost 400 of them in three main
classes depending on its function and morphology and then hierarchically
classifies proteins of this type in sublevels under each of these classes. These
proteins cover up to a third of the targets of marketed drugs as they are highly

21



Introduction

relevant because of their key role in cell to cell signal transduction at nervous
system, acting over a wide range of signalling pathways. The elaboration of a
classification system for such a diverse family of proteins has taken more than
15 years of official reports in the journal Pharmacological Reviews [75].

As both of this classifications give proteins a hierarchical code, we can
collapse the groups of proteins at different points so that their properties at each
level can be characterized hence allowing us to detect common features.
However, some of the classifications are very specific in the definition of the
groups while others are much less detailed, depending on the number of
proteins they are dealing with, and this is something to have into account when

integrating data from different sources.

Recently, a new approach to the functional classification of proteins
based on GO (Gene Ontology) is gaining adepts, being the main difference that
instead of a hierarchical organization tree, different semantic terms related with
biological processes, molecular functions and cellular components are linked
with the protein in a networked fashion. With this extensive annotation process
requiring expert curation, researches can increase the detail of specification of
the characteristics for each entity they define and may infer new functional
annotations for genes and proteins [76] although sometimes this complexity
will lead to inconsistencies [77].
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All these methodologies have generated several functional classification
schemes which are summarized in web repositories like PIR (Protein
information resource) [79] or KEGG (Kyoto Encyclopedia of Genes and
Genomes) [80].

1.3.2.2 Structural data

The properties of a protein and the actions it is able to perform depend
on its 3D structure resulting from the processing and folding of its specific
amino acids sequence. In principle it is possible to say that knowing which gene
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codes for a protein we should be able to know which postrancriptional
processes it would suffer and how the final structure would look like. However,
the complexity of the mechanisms that lead to the final three-dimensional shape
of the protein make that objective very difficult to achieve through the different
modeling methodologies we have nowadays, like DNA based comparative
modeling or amino acid based fold recognition [78] also called homology
modeling. Other template independent methodologies for the prediction of
protein structures have been reported to achieve lower accuracy levels but are
promising techniques for a near future [81]. However, the need to relay on
experimentally determined structures is unavoidable in most cases but, as we
cannot have them for all existing proteins, we need to solve as many and
diverse as possible in order to be able to model the remaining ones [82].

Actually, it has been observed that although the number of genetic
sequences may be almost infinite, the number of different 3D foldings is
estimated under 10.000, having that a few of them comprise the vast majority of
sequences while most of them have few representatives [83]. For instance, an
analysis of 250 proteins not belonging to any known group revealed that two
thirds of them had 3D structures fitting already known foldings [84].
Furthermore, having access to these three-dimensional structures of proteins has
given place to the development of different computational methodologies
capable of modeling with reasonable accuracy the binding of ligands into

protein cavities at a low cost [85].
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3D folding of three structurally similar proteins and detail of their active pockets. Extracted
from [86]

In the last years, there has been an exponential increment in the number
of structures detailed due to the advances in different techniques for protein
synthesis at large scale as well as in X-ray crystallography, NMR spectroscopy
and lately electron microscopy. X-ray crystallography is the first developed and
most used method, and all steps have achieved a high level of automatism
except from protein expression and crystallization which seem to be in need for
the implementation of new tools and protocols [87]. These improvements
generated a lot of information and raised the need of properly storing and
organizing all this new data in a standardized and easily accessible manner
which was the main objective for the development of the PDB, the protein data
bank, an initiative of the Brookhaven National Laboratories.

Although the PDB started as a closed project for experts in structure
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research in the early 70s [88], the exponential increase on the number of
structures in the 80s and changes in the view of the issue of data privacy inside
the community, gave this initiative the shape it has today [89]. With more than
sixty thousand structures as of January 2010 and more than seven thousand new
ones deposited each year, including DNA, RNA, proteins and mixed
complexes, this is the reference repository for protein structures. Beyond this
information, which is encoded in PDB files that have become a standard for the
representation of this kind of data, this resource contains also chemical,
biological and bibliographical related information.

Assuming that this data is of high need and utility for biomedical
sciences one would expect to have a normalized representation of the different
protein families in repositories like PDB although this is not even by far close
to reality. The population of structures is strongly biased towards targets with
classical known therapeutic interests, mostly enzymes including kinases and
proteases, in detriment of others that have recently emerged as relevant families
like the aforementioned nuclear receptors, transporters, channels or G-protein
coupled receptors. The web application FCP presented in this thesis is a tool
dedicated to the analysis of the current distribution of solved structures among
different target families, including graphic and numeric data on the coverage
and bias of the different groups of proteins at all levels. The systematic
approach of FCP is based in the organization of the proteins in hierarchical
nomenclature systems in order to analyze the number and distribution of the

structures at each level. This will be discussed in detail in chapter I'V.2.

As this web tool shows, it is clear that this bias is trying to be corrected
as new methodologies try to cover empty areas of the biological space [90].
However, the bias of the structural coverage across different groups of proteins
is remaining constant while the number of new groups characterized grows
almost exponentially, meaning that even when structures are being solved for
previously empty groups, more are being accumulated for those that are already
well known because they are easier to crystallize [91].
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1.3.2.3 Phylogenetic data

In the evolutive history of every species, protein families are populated
with the addition of new proteins as a result of two different processes. The first
one, that gives place to paralogous proteins, consists in a duplication of the
initial gene inside the genome of the species resulting in a copy that keeps its
prior function while the other may diverge by accumulating random mutations.
In the other hand, orthology occurs when a species differentiates in two and the
proteins of the common ancestor evolve independently to derived proteins.
Beyond the use of this knowledge in the mapping of the genome for the
discovery of new unknown genes [92], the phylogenetic relationships between
proteins are the basis for sequence homology comparative modeling and hence
for structural and functional similarity annotation, given that the more related
two proteins are, the more similar their sequences, three-dimensional foldings
and active sites will tend to be [93]. Furthermore, structure based phylogenies
have proven to be very useful because structures are more conserved than
genetic sequences [94] so there is an extra margin for success and, in
combination with the comparison of related sets of proteins from different
proteomes, this may enable the functional annotation of uncharacterized groups
[95] as well as the development of several evolutionary analysis methodologies
[96,97,93].

A successful initiative in this field is the characterization of the human
kinome achieved by Manning et al. in 2002 [98]. Kinases are specialized
enzymes that modify the behavior of other enzymes by means of
phosphorilation and are considered potential targets of research in biomedical
sciences with the idea to indirectly regulate other therapeutically relevant
proteins involved in critical cellular processes. About 500 known human
kinases were clustered into 9 main related groups characterized by the different
domains they present.
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Representation of the human kinome. Extracted from [98]

Other researches focus their work on the nuclear hormone receptors, the
main class of transcriptional regulators in animals with high clinical
significance due to their involvement in different physiological processes at the
DNA transcription level. A natural functional classification of this group of
proteins would specify four groups depending on their DNA-binding properties
and dimerisation preferences [99]. Instead of that approach, in 1.999 the
Nuclear Receptors Nomenclature Committee established a compilation of the
48 known human nuclear receptors [100] classifying them hierarchically by
sequence homology into seven main subfamilies.

Bridging functional and phylogenetic information, TCDB is an initiative
of the University of California San Diego aiming to establish a classification
scheme for membrane transport proteins known as the Transport Classification
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(TC) system. Defining a five levels classification hierarchy, this system is
analogous to the previously mentioned for enzymes, being the main difference
that the definition of the groups combines information related with the specific
function of the transporters and the phylogenetic relations they have [101].
Currently this database contains 3000 protein sequences divided into 550
different groups where orthologues and paralogues collapse [102].

As we can see, the characterization of the phylogenetic trees behind the
therapeutically relevant protein families may bring light to some key aspects of
the protein function and its interaction with the chemical space and, because of
this, all of these initiatives focusing in different portions of the proteome need
to be integrated to have a complete and comprehensive overview of the

biological space.

1.3.3 Data integration

The key issue at this point is linking the information coming from
different sources that refers to the same entity in the biological space in order to
have a complete view of its properties and features. This is not an easy job as
different synonyms or denomination formats are used in literature and by the
different classification systems to refer to a certain protein or group of proteins.
Moreover, before the existence of any even vague guidelines for protein
nomenclature, scientists referred to the proteins assigning unrelated names,
contributing then to arriving at the present situation where not only a protein
can have up to thirty different names but also a single name can refer to
different proteins inside a specie or in different species [103]. On top of that,
scientists face the problem of how to identify isoforms, mutations or other kinds
of variations of the same initial protein and how to identify related proteins

across species.

In an ideal situation when a new protein is described, the name given by
the author should be addressed to a nomenclature expert to be reviewed in order
to assure that it is syntactically correct and unambiguous. Nevertheless, since
the development and optimization of high throughput methodologies for
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functional annotation of proteins, the manual revision of the names has become
an unaffordable task and as a result of that there has been a proliferation on
nomenclature guiding initiatives that could lead researchers to give in first place
an already correct name for the proteins they are describing. This used to be a
hard task but recently new tools have been released to assess scientists in the

application of the existing rules and guidelines to generate standardized names
[104].

An outstanding initiative in this field is The Universal Protein Resource
(UniProt) project, an effort from groups of the European Bioinformatics
Institute (EBI), the Swiss Institute of Bioinformatics (SIB) and the Protein
Information Resource (PIR) which main mission is developing and maintaining
a protein knowledge database with integrated and standardized information
including the unique identification of individual proteins. Stable and carefully
curated with in silico methods first and then by experts in a second phase, the
data is freely available on the web through a very complete site with a simple
user friendly interface. Researchers can browse the proteome of different
species including three eukaryotic complete proteomes, like the human, and
retrieve useful information related with each protein such as sequence, clusters
of similar proteins around it or a list of synonyms [105].
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Once we are able to identify a single protein with a specific name and
we have available a list of synonyms that are known to refer to the same entity,
we can start mining the different databases and information resources to
annotate all related information. iProClass, linking UniProt entries with
valuable information from more than 90 biological databases of diverse content,
is another initiative of the Protein Information Resource group and an
outstanding example of this approach [106].

With important implications in the drug discovery process, the
combination of structural information with functional data, allows researchers
to define the motifs of the activity sites and their three dimensional disposition
for proteins of interest, hence enabling the modeling of their possible
interactions with ligands [107].
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Furthermore, phylogenetic data from sequence homology analysis is
used to make predictions on the function of proteins coded by new identified
genes [109] and also to compare the amino acids sequences of a given protein
with others of known three dimensional structure in order to predict the actual
folding of the uncharacterized protein [110, 111, 112]. However, despite all
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these efforts, there are yet many problems to solve in this field for instance
when proteins with high sequence similarity have been found having different
foldings and functions at the same time that promiscuous structures have been
detected to be useful for different functions [113] and genes with no sequence
similarity have been found to produce proteins with the same 3D foldings [114].

Current Opinion in Structural Biology

Similar 3D structures of two novel monooxygenases with no sequence similarity. Extracted
from [114]

All this studies can be taken to a higher level by applying the different
classification systems to study the common properties and characteristics of
proteins at different levels inside protein families. It is clear why an integrative
and synergetic approach is necessary to have standardized annotation and
nomenclatural organizations for a systematic and complete view of the
biological space and its interactions with other spaces.
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Chapter 1.4 - The phenotypical space

1.4.1 Definition and scope

The word phenotype refers to the observable physicochemical or
biological characteristics of an organism. For the sake of simplicity, we well
define the phenotypic space as being composed of the different variations
among individuals produced by the alteration of the normal phenotype. In the
scope of our work we studied the set of variations that are originated by the
alteration of the normal functions or processes of the molecular machineries by
different means, focusing in the addition of compounds that are known to
interfere with the behavior of specific target proteins.

When the alteration appears due to the abnormal function of one or more
proteins and is detected as a disease, drugs are administered for its treatment
with the idea of reverting the wrong processes to the normal state. However,
one of the problems we may encounter is that this compounds or their derived
metabolites usually bind more than one target protein, the computed average is
expected to be around six [115,116], giving place to the desired effect but often
to other secondary alterations which are called adverse drug reactions or side
effects. The differences with the classic “toxic effects” of chemicals or with
allergic responses to drugs are that here there is no dependence on the
concentration of the compound and that the effects are pharmacologically
mediated by proteins not related with the immune system. Furthermore, the
main characteristic of these side effects is that they do not appear on every
patient but they are related to certain risk factors like age, gender, multi-drug
administration, concurring diseases, ethnic and genetic differences and other
pharmacokinetic factors [117]. Despite the fact that no drug is free to cause
harm, there are some groups of drugs which have been classically related with
adverse drug reactions like antibiotics, diuretics or opiates [118].

In a broad sense, side effects produced by drugs are complex
phenomenological observations that can be attributed to a diverse set of causes.
The above mentioned polypharmacology is one of them but researchers also
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consider drug-drug interactions, protein aggregation and other pharmakokynetic
problems [119]. The effects of this drug toxicity can be grouped in three main
categories including cell death or tissue injury, functional alteration and cancer
[120]. As large scale phenotypic responses mediated by drugs we can consider
from hepatotoxicity, maybe the most studied in toxicogenomics because of the
critical detoxifying functions of the liver [121], to ventricular arrhythmia or
aplastic anemia [122]. Adverse reactions related with already marketed drugs
increased 2.7 fold from 1998 to 2005 as stated by FDA medical reports [123]
and are the main causes for market drug withdrawal [124] hence being of

utmost economical relevance from the point of view of pharmaceutical industry.

Being the drug discovery process so long, complex and expensive, the
need to asses as early as possible the actual dangers behind drug candidates has
become of primary interest and many efforts from different approaches are
exploring this issue at the moment. This can be considered at first level by
looking for repetitive structures across the chemicals or their metabolites that
are known to have associated toxicity [125] or the possibility of covalent
binding [126, 127]. Beyond that, other valid approaches not ligand centered are
the study of toxicity propagation through the effects over metabolic pathways
[128], and recently, also transcriptomics and metabolomics based studies.
Indeed, a recently emerging field called toxicoproteomics or computational
toxicology aims at the elucidation of toxicity mechanisms and other related
issues by the implementation of quantitative proteomics technologies [129],
genomic based approaches [130], organ specific toxicity studies [131] and
different computational methodologies [132, 133] which try to predict drug
related toxicity and adverse reactions. As an example of this, a methodology
aimed to analyze the intricate mechanisms behind protein mediated adverse
drug reactions was developed within the scope of this thesis; see further details
in chapter IV.5.

But until the moment when predicting algorithms and models are ready
with full capabilities, the search for adverse drug reactions relays on data
generated experimentally either in in-vivo or in-vitro assays. Furthermore, these

assays may be performed in other species than human and when data is
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extrapolated to the real administration circumstances, scientists have to deal
with the fact that those in-vitro and/or non-human models cannot be completely
relied, as many cases of misleading results have been discovered when the drug
was tested with humans. For instance, the success rate of prediction protocols
based in animal testing in reproductive toxicity experiments has been posited to
be of about 60% with a 40% rate of false positives, so the search for new
pharmacologic testing methodologies adapted to the current state of the art is,

for some experts, of high need for different reasons [134].

1.4.2 Sources of information

As we have just stated, several toxicity testing methodologies including
animal tests, cellular assays, microarray studies and other experimental
procedures, are the main original sources of preclinical toxicological data at
different scales. On the other hand, medical reports contain very interesting
information, the side effects detected across the population when the drug is
already marketed and administered. However, being this information so varied
and disperse, there is a need to rely on other sources that store and structure this
raw data in higher semantic levels, more suitable to our purposes. Again, the
implementation of new computational methodologies and the integration of
different disciplines have been required and more than 50 repositories have
appeared containing some kind of elaborated toxicological data [135,136]. One
of these is the Therapeutic Target Database (TTD), developed at the University
of Singapore with the objective of gathering information from literature into an
interrelated database with clinical, metabolic and drug data for almost two
thousand target proteins [137]. This information is, in addition, referenced and
linked to other trusted databases as an example of an integrative approach.

Scientific literature, is however one of the main resources of drug
related toxicity, for instance with the study of the relation of certain proteins
with specific diseases. This is a key piece of the pharmaceutical knowledge as
identifying the element which abnormal function is causing a disease or side
effect is the first step towards the correction of that deviation to the desired
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state. In the case of drug adverse reactions, this kind of data is nevertheless too
incomplete to account for the totality of the lately observed alterations due to
the simple reason that many side effects are not expected or even detected in
preclinical stages. Despite those limitations, a relevant initiative in this field is
HSDB, the Hazardous Substances Data Bank from the National Library of
Medicine [138], which retrieves information from literature as well as technical
documents and books to organize it in an integrated database. In the end, the
information is reviewed by experts and opened to the public in a web site where
a compound can be searched to find related clinical and toxicological
information. From the point of view of the study on the impact of genetic
variations in humans based on the differences in drug response phenotypic data,
PharmGKB links drugs with diseases either by reviewing literature or by the

study of the metabolic pathway interferences the drug is known to cause [139

The other main source of information is found in drug leaflets and is
freely available in different web repositories as well as in the manufacturers’
websites. This data, in opposition to the previous, is an overrepresentation of
the possible adverse drug reactions that may be related with the compound. This
happens because companies tend to overestimate the problems that could arise
from a given drug in order to increase security for both the patient and the
company. The details on this leaflets also depend on the country were the drug

has been marketed and variations will exist due to legal and social issues.

Some of the more relevant repositories of package inserts, besides the
manufacturers’ websites, are Dailymed [140] and Medlineplus [141] both from
the National Library of Medicine. The first is focused in storing and organizing
them in a searchable web database and the second one, with a wider approach,
includes also other health topics as well as medical and clinical information.
Other web repositories like Medscape [142] or Drugs.com [143] give reviewed
advice to the open public on the use of therapeutic drugs but also contain
information on their prescription and the possible secondary effects they may
induce according to the details of the leaflets.

Working with this material, Campillos et al. collected data relative to the
side effects of almost 900 drugs and used this information to predict and
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confirm new interactions of those compounds with targets that had not been
stated before [144]. Manual revision was needed to work with this kind of data
and statistical analysis were performed to differentiate which side effects were
significantly annotated to a certain drug from those that were appearing either
because they were very common effects from many disorders or because they
were artifacts generated by the overrepresentation in the package inserts. The
final compilation of side effect profiles is freely available on the SIDER web
site [145].

1.4.3 Data integration

Useful information coming from the different aforementioned sources
needs to be gathered to make a deep analysis of this field but that is not the
scope of this thesis which is focused in linking large scale effects to compounds

and proteins.
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From the proteins point of view, merging of literature relevant
information with other structural, functional and pharmacological data is a hard
task but when accomplished is a perfect example of the synergy expected to
arise from an integrating systematic approach. As an example of this, Cases &
Mestres collected a list of more than two hundred cardiovascular related targets
from literature, and applying a chemogenomic approach, they were able to link
them with a set of almost 45.000 compounds. Further exploration of the
pharmacological profile of these ligands lead to the identification of another
four hundred target proteins that extended the previously described biological
space either as main cardiovascular targets or drug related secondary off-targets
[146].

On the other hand, when researchers try to integrate drug centered
information, two main difficulties arise. The first obvious task is related with
linking the compounds in marketed drugs and their characteristics across the
different formulations and brand names, and the second problem resides on the
identification of the adverse drug events that refer to the same phenotypic

variation but are named with a diverse set of medical terms.

Several resources on this field have tried to tackle these issues along
with the integration of different data into centralized database architectures.
Drugbank is the most cited repository for drug related information [147] joining
chemical, pharmacological and pharmaceutical data for about 4.500 drugs
including target information such as protein sequence, structure and involving
pathways. Inside the drug cards displaying this data, a list of synonyms and
brand names is given for each drug. A yet more extensive list is available in
PharmDB, another initiative that by mining the recent literature relates drugs,
targets and diseases based on an integrated pathway network [148].

Once researchers know which phenotypic responses are assigned to each
compound, their synonyms and nomenclatural variations with the same
meaning have to be resolved into a unique entity. Given that the wide medical
vocabulary is subject to interpretation, it is complex to link related terms
because some of them include others or are partial synonyms. Because of its
completeness and accuracy, the Unified Medical Language System (UMLS)
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developed by the National Library of Medicine, is the most used resource of
biomedical and health related terminology. Thousands of terms including drug
names, diseases and medical tools and techniques are extracted from medical
literature and then collected into a huge metathesaurus where they are classified
and their relations with other terms are pointed [149]. Moreover, the semantic
and lexical relations among these terms are studied and described to assess
researchers in this field.

From another point of view, medical terms can be hierarchically
organized so that they can be studied at different levels of specificity. This is the
objective of The Medical Subject Headings (MeSH) initiative, also developed
within the NLM, that establishes a set of general categories like “Anatomy” or
“Mental disorders” and then organizes related terms into sub levels up to those
that are very specific [150]. Although much more informative, this approach
lacks from the completeness and exhaustivity of the previously cited UMLS

system, as not all medical terms are stored but only those more representative.

As we can see here again, an integrative approach to these subjects, such
as mapping the vast amount of terms of the UMLS metathesaurus to the
hierarchical MeSH system, may give place to a powerful characterization of the
phenotypic space based on the relations between the composing entities.
Furthermore, if this approach is taken at the moment of linking these entities
with those in other spaces, like proteins or drugs, hidden information will
emerge for the better understanding of the mechanistic undergoing processes in
this field.
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Objectives

The list of concrete objectives pursued in this thesis are:

1. The establishment of a protocol to extract, normalize and integrate
multiple types of chemical, biological, and phenotypical data available

from various public resources.

2. The exploitation of these data for the development of ligand-based target
models for in silico pharmacology.

3. The construction of an annotated and structured repository of adverse
drug reactions and its use to anticipate drug side effects.

4. The development of new integrative biochemoinformatic tools for the
analysis and visualization of pharmacological data.

The first objective was accomplished by contributing to the creation of an
annotated chemical library directed to nuclear receptors (see Chapter IV.1) and
the implementation of an automated protocol for the integration of this internal
resource with other publicly available annotated chemical libraries that was
ultimately used to discuss the adequacy of the criteria for qualifying small
molecules as chemical probes for biological systems (see Chapter IV.6). The
construction of a general integrated repository of ligand-target interaction data
tackled the sequent objective of developing novel ligand-based approaches to in
silico target profiling (see Chapter IV.4). The third objective was addressed
with the specification of a series of standardized strategies to solve the different
issues involved in the generation of a drug side effects database connected with
the previous one and its posterior analysis (see Chapter IV.5). Finally, the
fourth objective was accomplished with the development of two web based
tools, one to assess the functional coverage of the proteome by structures and
the other one to navigate on ligand-target interaction data from highly curated
public resources (see Chapters I'V.2 and IV.3).
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Results and discussion

This thesis is centered on the study of some of the more relevant
elements, data sources and computational methodologies currently used in
biomedical sciences, focusing on those more closely related with the
computational approaches to chemical biology and drug discovery. The word
integration 1is, for sure, the most repeated term throughout this work, as it
encloses the essence of the current trends in these fields and is the basis of
future knowledge-based technologies to be developed in the future. Then,
although different entities are involved in this study, all of them are interrelated
and newly developed integrative tools have given rise to an important cross-

fertilization across different fields.

Small molecules are the basic element in the drug discovery process,
being designed and studied by the pharmaceutical industry with the intention to
evolve into compounds that produce large scale beneficial effects on treated
patients. The design and analysis procedures are evolving from their
experimental basis with the incorporation of computational assessment tools at
all levels of the process. Moreover, the revolution of high-throughput “omics”
gave the community a considerable amount of data of all kinds, including larger
molecular libraries with richer and more diverse information. The response data
on the activity of compounds over druggable protein targets, for instance, holds
the key to open the path for more accurate ligand-target interaction modeling
technologies with a wide range of applications. However, it is difficult to study
because most of this information is spread across articles published in peer
reviewed journals in the last decades. As an example of how to overcome this
issue, compounds having known binding affinities over nuclear receptors were
collected and integrated into an annotated chemical library. The targets were
then sorted into a functional classification and information on the privileged
chemical structures binding specific protein groups was revealed. This library
was later added to a knowledge-based architecture that collects information
from public repositories of drug-target response data and organizes present
proteins into hierarchical classifications. The resulting integrated database was
then used as basic data framework for virtual profiling methodologies, allowing
us to validate the combination of three two-dimensional descriptors defined
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inside the laboratory as a useful virtual profiling methodology. Among these,
SHED and FPD belong to the family of atom-pair molecular descriptors and are
derived from distributions of atom-centered feature pairs extracted from the
topology of molecules, whereas PHRAG is a pharmacophoric-based descriptor
derived from a direct fragmentation of the molecular graph into overlapping
segments of a fixed length.

Beyond this, the study of the target profiles of compounds in the
database, including more than 3000 drugs, enabled the detection of putative
chemical probes along with the proposal of a polypharmacology-based
redefinition of this term. While the classic idea of a chemical probe
comprehends compounds with high affinity and selectivity for a specific target
protein, the proposal was to consider compounds accomplishing those rules for
two or more targets as multiple probes. These new probes may be useful in the
study of protein targets in the context of biological systems, robust biological
networks were several nodes need to be attacked in order to produce an overall
alteration of the system. Finally, a visualization architecture called iPhace was
designed and implemented as a web site incorporating state of the art analysis
tools to enable a high level overview of data present in annotated chemical
libraries. The system organizes both ligands and proteins in hierarchical
classifications and is able to answer complex questions with the analysis of the
properties at the different levels of these hierarchies and the study of the activity
profiles of compounds.

On the other hand, these aforementioned druggable proteins account for
some of the most studied entities in biomedical sciences over the last fifty years
because of their crucial involvement in all cellular processes. Their study is also
of utmost importance from the point of view of drug discovery because drugs
need to be active on proteins with specific functions and to achieve that they
need to have a chemical structure capable of interacting with the target protein
pocket. The detection of putative proteins from genetic sequences and the
proteome wide specification of structure and function hold the focus of
combined efforts of laboratories all around the world. In most cases, genetic
sequences with concurring ancestors will codify for structurally related
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proteins. Furthermore, proteins with similar three-dimensional foldings and
active sites will tend to be involved in related activities. Hence, the study of
protein phylogeny, the efforts for solving new uncharacterized structures and
the implementation of functional annotation schemes, are expected to
synergistically improve the results in all three fields with the use of novel
technologies developed either for sequence analysis, structure solving and
modeling or functional classification. In relation with this, the web tool FCP
was designed and implemented for the analysis of the distribution of solved
protein structures across the more relevant protein families, enabling a
comprehensive overview of the current trends and historical evolution of this
field. In the last version, information can be browsed through several functional
classifications including schemes for kinases, nuclear receptors or G protein-
coupled receptors among others. Beyond this, the user can also browse the
database from the point of view of the cocrystallized ligands present in solved

protein structures.

Despite the impact of all these integrative approaches, the alteration of
such a complex system as the human body cannot be expected to be carried
with complete success relying in current knowledge. As a result of this, when a
drug is administered to a patient, several undesired side effects, not related with
chemical toxicity or drug related allergies, may appear due to a combination of
factors including age, gender, ethnic group and other individual specificities
like genetic variations. These adverse drug events are actually the main reason
for market drug withdrawal with a high economic impact on the pharmaceutical
industry. Hence, the development of new methodologies to better assess drug
safety and possible adverse reactions in the early stages of the drug discovery
process is a relevant issue in biomedical sciences. As a basis of the development
of such methodologies, a database relating marketed drugs with their reported
side effects was collected and analyzed. Through the linkage of that database
with the annotated chemical library previously generated, we could study the
relations between the target profiles of those drugs and the side effects they
produce. A network based approach showed how compounds annotated to

similar adverse reactions were found to have affinity over related sets of targets
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suggesting that comparative polypharmacology in preclinical stages on the drug
discovery process could be a strong tool to overcome this issue.

So, how can all this knowledge improve the success rates in drug
discovery? In silico target profiling, with the aim of predicting potential binding
affinities of given molecules across the entire target space, is the key point were
all the aforementioned fields may collide to produce synergetic advances.
Applied at the initial steps of drug development, these computational
methodologies enable researchers to browse the chemical space in search of
compounds able to bind the desired protein profile. Most virtual profiling
strategies are usually based on models created from experimental data so, in
order to improve efficiency, we have to study available information to analyze
the limitations it could present. As soon as we do this, we will see that any
analysis we perform will be biased by the overall lack of data completeness.

Given that any compound may be highly active over one or several
specific proteins and may also present residual affinities for other secondary
targets, it is crucial to have highly populated ligand binding profiles to
understand the mechanisms behind successful interactions. However, in our
integrated database, the situation is that 52% of the compounds only have
information related with 1 target, 41% with 2 to 5 targets, 6% with 6 to 15
targets and only 1.5% of them have known interaction values for more than 15
targets. Moreover, this information is highly biased towards active interactions,
as inactivity data is not usually reported in literature. These problems generate a
loss of accuracy in the study on how the features on those compounds enable
them to bind some targets while not others, even within closely related groups.
Finally, incomplete data also narrows the applicability domain of ligand-based
virtual profiling methodologies that can only be used on compounds falling
inside pre-established similarity ranges to the reference compounds. This
suggests that there is a need to cover the portion of the chemical space of
interest for each target protein with as many representative ligands as possible.

From the point of view of the proteins the situation is very similar. Even
though the average number of ligands annotated to each target in our database is
around 143, proteins which have been classically considered of interest in drug
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discovery have available data for thousands of compounds while 59% of the
other targets have known interaction values for 5 ligands or less. Again, this
means that for most of the targets it will be very difficult to have a good
representation of the chemical space populated by compounds with high
binding affinities, so the acquisition of an accurate understanding of what
characteristics these ligands should present will be beyond our reaches.
Additionally, an analysis of the different sets of targets with known binding
affinities over coincident ligands showed that very few combinations of proteins
have been explored and that this number decreases exponentially when the
number of involved targets grows. This absence of cross-pharmacological data,
relating proteins inside groups or across families by their binding affinities with
the same sets of ligands, is also a major obstacle for the study of secondary
interactions. In this situation, it is difficult to successfully predict the possible
off-targets a drug may bind beyond its main target, causing a loss of efficiency
in the drug design process. To overcome this situation we need to compare
ligands independently annotated to the targets of interest relaying again in

ligand-based similarity methods with the aforementioned limitations they carry.
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depending on the number of targets. Darker bar colour means higher number of ligands with
information for combinations in that category.
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As we can see, some protein families account for more studied target
combinations than others, although that also depends on the number of elements
inside each group. Anyway, the number of targets sets from different families
with data for the same ligands is small if we consider that this category
accounts for the greatest number of possible combinations, meaning that ligands
tested for proteins in a given family are not usually tested for representatives of
the others.

These analyses suggest that current efforts should be focused on the
determination of binding affinities of compounds with medium sized known
activity profiles over mixed sets of targets containing representatives of
different families. With this, we could provide complete binding profiles
covering the same targets for a good set of compounds, achieving one of the
possible solutions to the completeness issue: the elaboration of complete data
matrices where all interaction values between the chosen sets of ligands and
targets is known. These complete matrices could then be used to study the
binding profiles of the specific compounds, in cross-pharmacology analyses and
as benchmarks for virtual profiling methodologies. Within this thesis project,
we analyzed the composition of all matrices we could build in basis of cross-
pharmacology information extracted from public data, confirming that biggest
matrix sizes account for a lower number of representatives and, in average,
have lower completeness levels. A precise analysis of the detailed composition
of these matrices suggests that a modest experimental effort in this direction

would suppose a giant step towards the correction of this problem.

52



Results and discussion

700

|
I

1

number of
targets

number of
ligands

Distribution of matrices depending on the number of ligands and targets they contain.
Darker color means higher completeness for matrices in that range.

On the other hand, in order to extract maximum knowledge from the
available data, there is a need to go beyond ligand-similarity based approaches.
As we said before, side effect based methodologies, not considering the
chemical structure of the compounds but only the adverse reactions they might
produce after being administered, are currently emerging as one of the possible
complements. For a successful integration of this approach in a virtual profiling
workflow we need to understand which are the relevant adverse reactions
related with each drug and how they should be combined in the profiles of two
drugs to support the transferring of one or more targets present in the target
profile of one of these drugs to the other. Although these methods have only
been successfully tested for compounds binding protein families with high
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known cross-pharmacology, like g-protein coupled receptors, the robustness of
this approach suggests that it may have a much wider application scope.
However, the fact that this information is only available for several hundreds of
well known drugs implies that we need to gather all available knowledge in
order to expand as much as possible the applicability domain of this approach.

Beyond the drug discovery field, we have seen that the improvement of
the current knowledge in all these disciplines is expected to come through the
gathering of information coming from different fields into cohesive knowledge
based schemes. New mechanistic explications for a diversity of unanswered
questions are expected to emerge from evolving integrative approaches but
beyond the cross relation and organization of all these data, a new landscape of
methodologies and visualization tools has to be developed. This last step, going
beyond the creation of high level databases, will enable researchers to extract
useful knowledge with the detection of the relevant characteristics of the

individual elements that become apparent only at the systems level.
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Summary of activity in FCP website between 01-May-09 and 01-June-10

Number of visits per day in this period

More than 350 unique users have visited the site, which has been accessed
almost one thousand times with over six thousand pages viewed in total. The day
with more visits was November the 16™ with 28.

Visits

1 Pl [ ES

Number of visits per country in this period

Visitors came from 146 cities in 38 different countries. Among the 10 most
repeated countries we find Spain, EEUU, Ireland, France, India, Germany, Italy,
UK, Portugal and Denmark. If we look at statistics by cities we will find
Barcelona, Dublin, San Francisco, Lyon, Madrid and Bangalore with more than 10
visits each. Finally, these are the companies or research groups responsible for
most of the visits:

Entity Visits

Institut Municipal d'Investigacio Medica 323

Universitat Pompeu Fabra 121

Trinity College Dublin 43

Ecole Normale Superieure de Lyon 31
Universit degli Studi g. d'Annunzio 16
Parc de Recerca Biomedica de Barcelona 14
University of California san Francisco 14
Danish network for research and education 11
Freie Universitaet Berlin 8
Organon laboratories Itd 5
Universite d'Angers 5
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Summary of activity in iPhace website between 01-January-10 and 01-June-10

7 ar Apr S

Number of visits per day in this period

Almost four hundred unique users have visited the site, which has been
accessed more than 750 times with over two thousand pages viewed in total. The
day with more visits was February the 17" with 43.

L
w -

Visits

-

Number of visits per country in this period

Visitors came from 146 cities in 33 different countries. Among the 10 most
repeated countries we find Spain, EEUU, Germany, UK, Italy, Netherlands,
Belgium, Denmark, Israel and France. If we look at statistics by cities we will find
Barcelona, Albuquerque, Madrid, Edimburgh, Oss, Dortmund, Perugia and
Copenhagen with more than 10 visits each. Finally, these are the companies or
research groups responsible for most of the visits:

Entity Visits
Universitat Pompeu Fabra 120
Institut Municipal d’Investigacié Médica 118
University of New Mexico Healthsciences Center 44
Edinburgh University 18
Danish Network for Research and Education 16
Organon Biosciences 15
Abbott Laboratories 12
The Hebrew University of Jerusalem 11
Universit degli Studi di Perugia 10
Universitat de Barcelona 10
Hoffmann Laroche inc. 9
Pfizer inc. 7
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Anticipating drug side effects by

comparative pharmacology

Ricard Garcia-Serna & Jordi Mestres

Chemogenomics Laboratory, Research Program on Biomedical Informatics (GRIB), Institut Municipal d’Investigacio
Meédica and Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain

Drugs having similar side-effect profiles were successfully shown recently to
have also affinity for a common target. Going one step further, this review
highlights the fact that drugs connected by side-effect similarity have also
similar affinity profiles over multiple targets. Given the current low levels of
completeness of drug-target interaction data, one may expect that the number
of common targets for which drug neighbours in a side-effect network have
some level of affinity is likely to increase in the near future. This observation
suggests that preclinical comparative pharmacology, based on in vitro data but
supported strongly by modern in silico methods for drug metabolite prediction
and affinity profiling, represents an attractive strategy to anticipate clinical drug

side effects.

Keywords: adverse drug reactions, affinity profiles, chemogenomics, systems chemical biology, drug

metabolism, robustness, perturbations



1. Introduction

It is widely recognised that any molecule capable of producing beneficial therapeutic
effects has also a potential risk to produce side effects due to unforeseen
pharmacological properties [1]. Unwanted side effects lead often to harmful or
unpleasant reactions to the patient and, depending on its severity, they may ultimately
result in the withdrawal of the drug from the market [2]. This notwithstanding, not all
side effects have negative implications and some might actually reveal interesting
alternative opportunities for the therapeutic repositioning of drugs [3]. Therefore,
anticipating the likely side-effect profile of drugs is an aspect of key importance in
current drug discovery, development, and marketing.

Unfortunately, indicative signals of many side effects are only detected once the
drug is in the market [4]. The relatively limited number of participating patients and
short duration of clinical trials make difficult to detect adverse drug reactions (ADRs) in
patients that occur only rarely, have a long latency, or manifest exclusively in specific
populations [5]. Any ADR inadvertedly missed prior to approval of a drug may
potentially pose serious health threats once released into the general population [6]. In
this respect, the increasing availability of electronic health records, and their integration
with multiple biomedical databases, offers new opportunities for the early detection of
ADRs in the postmarketing phase [7].

In recent years, the discovery of direct links between the interaction with a particular
target and the development of a certain ADR has motivated the systematic testing of
compounds at the early phases of drug discovery using in vitro biochemical and cellular
assays [8-10]. For example, blockade of the hERG potassium channel may result into
QT interval prolongation [11] or agonism for the serotonin 5-HT,g receptor may
translate into the possible occurrence of cardiac valvulopathy [12]. Many associations
between single targets and possible ADRs have been established, meaning that assay
panels for preclinical safety pharmacology covering between 50 and 100 targets are
quite common nowadays. However, the current limited knowledge on both disease-
relevant targets [13] and drug-target interactions [14-16] makes it likely that many more
are still to be determined, implying that even more extensive in vitro safety assays
would perhaps need to be implemented.

Consistently performing in vitro safety profiling of hundreds of compounds over
multiple targets can be logistically complicated and extremely expensive and thus there

is increasing interest in developing in silico methods for the identification of new targets



that could explain some of the side effects known for old drugs [17-20]. Indeed, it was
recently shown that drugs producing similar profiles of side effects tend to share some
targets [21] and viceversa, that drugs with a similar affinity profile over multiple targets
tend to share some side effects [22,23]. Therefore, having the ability to predict in silico
the complete affinity profile of small molecules and comparing it against the in vitro
affinity profiles of known drugs may prove useful to foresee the likely side-effect
profile of drug candidates [24]. Accordingly, the aim of this contribution is to perform a
step-by-step analysis of the links between the affinity profile of a drug and its associated
side-effect profile, form an opinion on the actual applicability of this type of approaches
to anticipate drug side effects, and highlight some of the current limitations and future

trends in this direction.

2. Relating drugs by side-effect similarity

The process of relating drugs by side-effect similarity [21,22] requires some careful, and
in some aspects extremely tedious, prework in three essential areas. First and foremost,
it is key to adopt a side-effect terminology that ideally can be further mapped to
alternative existing terminologies. Subsequently, this side-effect terminology will be
used to identify and parse drug side-effect terms from multiple drug resources. Finally,
comparison of all drug side-effect profiles extracted will be done by means of a
purposely defined similarity metric. The particular implementations of all these aspects
will influence the relationship of drugs from the perspective of side effects.

The ability to recognise and process all side effects caused by drugs reported in
publicly available web resources is very much dependent on the use of a standardised
side-effect terminology and the completeness of its associated thesaurus [25]. In this
respect, Bender et al. [23] used for example the ADR terminology present in the World
Drug Index [26]. In contrast, both Campillos et al. [21] and Fliri et al. [22] used the
concepts of the Coding Symbols for Thesaurus of Adverse Reaction Terms
(COSTART), which are part of the Unified Medical Language System (UMLS)
metathesaurus [27]. Alternatively, we propose to use the Medical Subject Heading
(MeSH) terminology, where the number of terms is much lower than in UMLS but the
categorisation is more specific [28]. However, mapping the two terminologies is not
straightforward as all MeSH terms are included in the UMLS ontology but the reverse is
not true. Accordingly, the strategy adopted was to map each specific MeSH term to its

exact term in UMLS extended to all its related UMLS synonyms. For example, the



MeSH term “chronic periodontitis” will be mapped to the corresponding exact UMLS
term but also to all its synonyms, such as “chronic pericementitis”, “Fauchard’s
disease”, and “Riggs’ disease”, among others. In the end, one should have a side-effect
dictionary composed of a list of unique MeSH side-effect terms linked to a
comprehensive thesaurus covering all possible UMLS synonyms for each term.

Data for drug side effects are available from various public sources, namely,
Dailymed [29], Drug Information Online [30], MedlinePlus [31], Medscape [32], and
ToxNet [33], to name just a few. Unfortunately, drug terminology is not standardised
among them and different resources may refer to the same drug entity using a variety of
country-specific commercial names and identifiers that in some cases may also include
forms of administration. For example, the drug “aripiprazole” can be found in different
sources as “aripiprazole orally disintegrating tablets”, “aripiprazole solution”, “abilify”,
or “abilify oral”, among others. Accordingly, a prerequisite for mining properly all this
information is the adoption of a drug dictionary and associated drug name thesaurus that
allows for collapsing all drug terms found in the various sources to a unique drug entity.
Then, for each drug entry covered by each source, the text related to ADRs is searched
for matches to the side-effect terminology described above.

Finally, different approaches can ultimately be used to translate the drug side-effect
data extracted from all sources into a mathematical representation of the phenotypic
profile of a drug. Usually, side-effect data are first converted into a binary fingerprint
that assigns a value of 1 for any term in the side-effect dictionary that is associated with
the drug and a value of 0 otherwise. Then, Fliri et al. [22] applied for example a
hierarchical clustering method to group drugs having similar side-effect profiles and
measure the similarity between groups using half-square Euclidean distances. Further
refinements can be introduced by taking into consideration that side effects vary greatly
in abundance and that not all side effects are independent of each other. For example,
nausea, emesis, asthenia, and diarrhoea are among the most common side effects and
many drugs causing nausea are also linked to vomiting. In order to correct for these
observations, Campillos et al. [21] weighted side effects accordingly and then calculated
the similarity between the side-effect profiles of two drugs by summing the product of
the weights over all shared side-effect terms. In our implementation, we assign to each
drug side-effect a confidence score depending on the reporting frequency among the
different sources used. For example, a drug side effect reported in all five sources listed

above [29-33] will be assigned a confidence score of 1.0, whereas another drug side



effect being found only in one of those sources will be given at this stage a confidence
score of 0.2. Then, side-effect similarity between a drug pair can be evaluated as the
probability that consulting any source a certain MeSH label is found for both drugs.

The result of all this process is a list of scores that reflect the side-effect profile
similarity between all possible drug pairs. At this stage, one can apply network theory to
visualise and analyse the complexity of drug connections emerging from side-effect
similarities in a simple and compact manner [21]. As an illustrative example, Figure 1
shows the drug network obtained with our own implementation, in which the number of
links to each node in the network was limited to the three most similar nodes. In total,
the network contains 2,733 unique drug entities, covering 1,924 MeSH labels
representing 4,589 UMLS terms. The inset in Figure 1 highlights a particular network
path composed of 14 drugs, 8 of which were also the focus of attention in the previous
work by Campillos et al. [21]. It is worth stressing the therapeutic diversity found along
this path of drugs connected by common side effects. Under the Anatomic Therapeutic
Chemical (ATC) classification [34], one can find five antidepressants (NOGA:
venlafaxine, mirtazapine, nefazodone, fluvoxamine, and fluoxetine), two antipsychotics
(NO5A: ziprasidone and risperidone), two antidementia (NO6D: donepezil and tacrine),
two antihistamines for systemic use (RO6A: cetirizine and levocetirizine), one
antiepilectic (NO3A: gabapentin), one hypnotic and sedative (NOSC: zaleplon), and one
dopaminergic agent (N04B: pergolide). Also, among the 13 connections, only four drug
pairs share a common therapeutic indication up to the fourth level of the ATC code.
This set of drugs will be taken as the framework of reference on which the following

discussion about the links between side-effect and target profiles will be centred.

3. Similar side-effect profiles reveal common targets

Connecting drugs by side-effect similarity was recently proven to be an attractive
strategy to predict novel targets for drugs beyond mere chemical and sequence
similarities [21]. However, in order to be able to analyse the extent by which similar
side-effect profiles may indicate common targets for drugs, one needs to extract and
parse previously all affinity data available at present for drugs from multiple sources,
such as ChREMBLdD [35], PDSP [36], BindingDB [37], and [UPHARdb [38]. Again, a
prerequisite for storing properly all these affinity data for targets is the construction of a
target name thesaurus that allows for collapsing all target terms found in the various

sources to a target dictionary composed of a unique term per target [39]. In our own



implementation of this task [16], of those drugs for which side-effect data are available,
a total of 7,979 interactions were found between 1,153 drugs and 1,867 targets, of
which 5,316 can be considered as “active” (pActivity > 6). Note that the total number of
drug-target interactions for which experimental affinity is publicly known constitutes
only the 0.37% of all possible affinities in the complete drug-target interaction matrix
(1,153 x 1,867) and thus emphasises the fact that currently available drug-target
interaction data are far from being complete [14,15].

Focusing on the selected network path described previously containing 14 drugs
connected by side-effect similarity, one recognises five drug pair links that were
identified earlier to have a probability of sharing a target higher that 25% and side-effect
similarity P value below 0.1 (values in italics in Figure 1) [21]. Four of them were
considered to involve drugs known to share some targets already but the link between
zaleplon and mirtazapine was identified as one of the potentially interesting drug pairs
not known to share any target at the time [21]. In this respect, the strategy followed in
the work by Campillos et al. [21] consisted basically on transferring the primary target
of one of the drugs in the pair to the other drug. This way, since the primary target of
mirtazapine is the histamine H; receptor (pK; = 9.1), zaleplon was tested on that target
and low micromolar affinity was indeed found (pK; = 4.6). Another of the links
identified in that work was between donepezil and venlafaxine, two drugs involved also
in our network path. In this case, the primary target of venlafaxine is the sodium-
dependent serotonin transporter (pK; = 7.4) and testing of donepezil on that target
confirmed low affinity for it (pK;=5.1).

Figure 2 exemplifies how the strategy of transferring primary targets between drug
pairs connected by side-effect similarity is applied to the last four drugs of our network
path. Nefazodone is an antidepressant acting primarily as a potent antagonist of the
serotonin receptor 5-HT»a (pKi = 8.1) and thus it is expected to transfer affinity for this
target to its path neighbours. In the network path (Figure 1), nefazodone is linked to
fluvoxamine which indeed shows low micromolar affinity for 5-HT,a (pKj = 4.9). In
turn, fluvoxamine is also an antidepressant which primarily acts (pK; = 8.4) on the
sodium-dependent serotonin transporter (SERT). Under this transferring approach, its
path neighbours are expected to have some affinity for SERT. Unfortunately, based on
publicly available interaction data, we could only confirm at this stage that nefazodone
shows submicromolar affinity for SERT (pK; = 6.7). Following on the path, the primary
target for the anti-Parkinson drug pergolide is the dopamine D5 receptor (pK; = 8.4) and



thus, its path neighbours should retain some affinity for that target. Most interestingly,
we recover in this case the prediction that fluoxetine should have affinity for D3, another
one of the experimentally confirmed interactions from the work of Campillos et al. (pK;
= 5.7) [21]. Overall, this path analysis illustrates nicely the use of a primary target
transferring strategy to identify common targets between drugs connected by side-effect
similarity with no obvious structural similarity.

Given the currently known polypharmacology of drugs [16], one may argue at this
stage that perhaps the transferring of a single target between neighbours in the side-
effect network is an over simplification of the approach. As pointed out earlier [21], side
effects rarely occur independently and different side effects may be caused through
essentially distinct mechanisms of action. In this respect, an analysis of the publicly
available affinity profiles of the 14 drugs in our network path under study reveals that
those drug pairs share far more than one target. In particular, five targets are identified
to have some level of affinity (<50 uM) for over 50% of the drug set, namely, histamine
H; receptor (10), serotonin receptor 5-HT,a (9), serotonin transporter (9), serotonin
receptor 5-HT; (8), and adrenergic receptor o (8). Acknowledging that publicly
available data on drug-target interactions are far from complete, one may expect that
many more common interactions between those drug pairs are yet to be identified
[14,15].

To have a glimpse at this assumption, Figure 3 allows for comparing the affinity
profiles on a selected panel of targets for the four drugs presented in Figure 2, including
the five most frequent targets mentioned above complemented with an additional set of
five targets, namely, serotonin receptor 5-HT,¢, adrenergic receptor 04, dopamine Ds
receptor, and the dopamine (DAT) and noepinephrine (NET) transporters, for which
public interaction data on those four drugs was available. Interestingly, five of the
targets in this list (namely, 5-HT4, 5-HT2a, DAT, NET, and SERT) appeared grouped
together in a recent study examining the coinvestigation frequency of medicines [40].
As can be observed, all drugs have biologically active interactions (pActivity > 5.0)
with many targets other than the respective primary targets (grey bars). Note that,
among the different affinity profiles, a few drug-target interactions remain unknown
(marked with an arrow in Figure 3), namely, nefazodone and fluvoxamine with the
dopamine Dj; receptor, and pergolide with the three neurotransmitter transporters DAT,

NET, and SERT. Since the majority of the targets involved in these profiles seem to get



transferred between drugs linked by side-effect similarity, one may anticipate that these
five missing interactions are likely to be confirmed experimentally at some point in the
near future. Therefore, a multiple target transferring strategy between drug neighbours
in a side-effect network could represent an attractive complement to molecular

similarity approaches to complete the affinity profile of drugs.

4. Expert opinion and conclusions

The observation that drugs connected by side-effect similarity share affinities for
multiple targets provides an indication that comparative pharmacology may be used to
identify drugs having similar side-effect profiles and thus help establishing a link
between preclinical and clinical drug-induced effects [21-23,40]. There are however
several limitations to the current approaches to assessing the similarity between drug
side-effect profiles, on one hand, and affinity profiles, on the other hand, that may limit
their scope for anticipating drug side effects.

With respect to assessing the similarity between drug side-effect profiles, refined
methods would need to take into consideration data on the relative risk (a binary
approach is currently being used), drug concentration (all side effects are assumed to
occur at the recommended dose), and side-effect co-incidence (a unique drug side-effect
profile is considered, whereas they represent in fact an ensemble of independent effects
associated to the same drug). Compilation and availability of this type of data are the
main issues at the moment. In this respect, the recent publication of a dedicated resource
that capture drug side effects and their frequency in patients relative to placebo
represents a step forward in this direction [41]. In addition, large coordinated initiatives
aiming at developing techniques for data mining of electronic health records across
different countries are also expected to make available in the public domain some of
these data for a selected list of ADRs [7]. In spite of the assumptions being currently
made, side-effect similarity has emerged as an interesting approach to predict novel
targets for old drugs beyond the applicability domain of methods based on molecular
similarity [21].

With respect to assessing the similarity between affinity profiles, given the current
low levels of completeness of experimental data [14,15], advances in the development
of methods that can reliably perform in silico target profiling of small molecules will be
key to this aspect [42,43]. Providing an estimation of the complete affinity profile of a

drug may become of utmost importance to understand the relative frequency of ADRs



in specific populations [24,44]. For example, an elder population metabolises
substances more slowly than a young population, which might have a direct effect on
the concentration of drug in plasma and thus, become a potential liability for drug side
effects due to affinities to off-targets that would otherwise be considered negligible
assuming normal plasma levels. In this respect, one should also take into consideration
that in some cases drug metabolites can be the actual species responsible for the side
effects produced and thus target profiling of these metabolites should also be performed.
The association of cardiopulmonary side effects to fenfluramine through activation of
the 5-HT,p receptor by its N-deethylated metabolite norfenfluramine represents a good
example of this type of potential scenario [45]. Accordingly, the interest on metabolite
prediction and identification has increased significantly in recent years [46] in
connection with the role of P450 enzyme polymorphisms in the pathogenesis of ADRs
[47].

Biological systems are intrinsically robust [48]. Accordingly, selectively interacting
with one single target might not be the most efficient strategy to have therapeutic
efficacy, as the system may find other ways to compensate for the perturbation
introduced. The alternative is to interact with multiple targets, so making more difficult
for the system to compensate for all. The result is therapeutic efficacy but it does not
come for free, as decompensation in some particular systems may translate into adverse
drug reactions. At present, we can link a certain pattern of interactions to the likely
incidence of some side effects in a relatively small portion of the patient population.
However, this still does not provide an answer to the key question as to why a small
percentage of human systems are less robust than the rest to certain patterns of
interactions. To address this question, one will need to integrate chemical structures,
target affinities, biological pathways, and individual genomic data into a systems
approach to drug action [49,50]. Efforts in this direction might pave the way for

anticipating drug side effects at a personalised level [51].
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FIGURE CAPTIONS

Figure 1. Network of drugs connected by side-effect similarity, with focus on a particular
network path composed of 14 drugs (left). For five drug-pair connections, the probability of
sharing a target higher than 25% and side effect similarity P value below 0.1, as reported in

reference [21], is also shown (values in italics).

Figure 2. The process of transferring the primary target of a drug to its side-effect neighbours in

the network path.
Figure 3. The bioactivity profiles over ten targets of four drugs connected by side-effect

similarity (see Figure 2). The dashed line indicates the activity level of 10 uM. Arrows mark
current missing data for which low micromolar affinity is predicted.
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Abstract

According to the latest definition in use by the NIH Molecular Libraries
Screening Centers Network, a compound to be nominated as a chemical probe
should have, on one hand, an affinity below 100 nM for the primary target and,
on the other hand, at least 10-fold selectivity against related targets. Even
though the main objective of chemical biology initiatives are not to deliver
clinically useful compounds, it is highly expected that the chemical probes
being identified are then optimised by chemists to translate basic research
discoveries into therapeutics. However, a detailed analysis of drugs reveals that
only 14.4% of them would actually qualify as chemical probes. Most
interestingly, it was found that the percentage of drugs that qualify as chemical
probes is severely reduced as more information on the affinity profile over
multiple targets is available. The main conclusion that can be drawn from this
analysis 1s that using the current criteria we might be overlooking many
compounds with potential therapeutic interest. The change from probing a

single biological target to probing an intrinsically robust biological system
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might require adjusting current criteria on affinity and selectivity for qualifying

small molecules as chemical probes.



Defining a chemical probe

The identification of a small-molecule modulator for each individual function
of all human proteins has been proposed as one of the grand challenges for
chemical biology in the years to come [1]. Such an ambitious goal can only be
achieved through large-scale coordinated initiatives involving chemical and
screening centers at a multinational level. Recently, centres from 12 countries
have agreed to join efforts in assembling an European Infrastructure of Open
Screening Platforms for Chemical Biology (EU-Openscreen) that is currently
halfway through its preparatory phase (2009-2011) [2]. In a much more
advanced stage, the US National Institutes of Health (NIH) just completed the
pilot phase (2004-2008) of its Molecular Libraries and Imaging (MLI) initiative
comprising ten high-throughput screening (HTS) centres known as the
Molecular Libraries Screening Centers Network (MLSCN) [3,4]. Within these
five years, a Molecular Libraries Small Molecule Repository (MLSMR) was
created and screened against an impressive total number of 691 assays,
covering 171 targets and 29 phenotypic screens [5]. All the interaction data
between small molecules and biochemical assays generated during this period
has been deposited and made publicly accessible in PubChem [6].

The focus of these chemical biology initiatives is the identification of probe
molecules to be used in basic research of biological systems. In this respect, the
screening centres of the MLSCN have collectively nominated already 64
bioactive small molecules as chemical probes, most of which were considered
to be of medium to high confidence by a panel of medicinal chemistry and drug
discovery experts [5]. However, taking a decision on the exact range of values
for the physicochemical and pharmacological properties that a small molecule
should have to be considered a useful research tool to probe biology is difficult
and, consequently, the definition has evolved naturally over the last few years.

According to the latest definition in use by the MLSCN, compounds to be



nominated as chemical probes should comply with the following criteria:
affinity below 100nM (pAffinity > 7.0) for the primary target and at least 10-
fold selectivity (pSelectivity > 1.0) against related targets [5]. These potency
and selectivity criteria are arguably the optimal ones but they seek to establish a
certain level of confidence that the biological response observed upon using
those chemical probes is due to the interaction with the assigned primary target
rather than additional, often unsuspected, interactions with multiple other
proteins [7].

Even though the aim of chemical biology initiatives is not to deliver
clinically useful compounds, it is highly expected that the chemical probes
being identified are then optimised by chemists to translate basic research
discoveries into therapeutics [3]. With these expectations in mind, it is
important to consider that there is mounting evidence that therapeutic efficacy
is better attained via modulation of multiple proteins rather than through
selective interaction with a single target [8-12]. Therefore, in the context of
drug discovery, current potency and selectivity criteria for the nomination of
chemical probes may need to be reassessed mainly to ensure that compounds

with affinity profiles of potential therapeutic interest are not overlooked.

Do drugs qualify as chemical probes?

Drugs constitute the privileged minute portion of chemical space that has been
thoughtfully optimised to attain therapeutic efficacy and thus, they can be
considered the most representative set of small molecules that act as a chemical
perturbation on a protein target in the context of a biological system.
Accordingly, it would be interesting to explore to which extent currently known
drugs fulfil current potency and selectivity criteria for chemical probes.

To investigate this aspect, a set of 2,548 drugs was compiled from four

major public resources, namely, ChEMBLdb [13], PDSP [14], BindingDB [15],



and I[TUPHARdDb [16], from which 19,250 drug-target interactions covering
1,243 individual targets were extracted. It is worth stressing that these
repositories contain mainly drug-target interaction data originally generated in a
large variety of laboratories that ultimately reported them in multiple
bibliographic sources and thus, heterogeneity and consistency of interaction
data is an issue. In this respect, if a drug had different values of the same
interaction type for exactly the same target interaction (either within the same
database or across databases), an average interaction value was assigned. Four
interaction types were considered, namely, pKi, pKd, pIC50, and pEC50. A
systematic analysis of the variations found in compounds with multiple
interaction data of the same type for the same target revealed an average
standard deviation of ca. 0.5 log units, irrespective of the value range. In the
end, a total of 3,618 drug entries with consistent interaction data over one or
multiple targets were compiled, comprising 1,633 entries with consistent pKi
data, 1,609 with pIC50 data, 331 with pKd data, and 45 with pEC50 data, one
drug having the possibility of being represented by more than one drug entry of
consistent interaction data.

Among the 3,618 entries, 1,365 corresponded to drug entries from 890
drugs (34.9%) for which only interaction data of some type on a single target
was available and thus selectivity criteria could not be applied to them.
Therefore, focus was given to the remaining 2,253 drug entries from 1,658
drugs for which bioactivities for multiple targets were available in the public
domain. From an interaction type perspective, they include 1083 (48.1%), 1030
(45.7%), 126 (5.6%), and 14 (0.6%) entries composed of consistent pKi, pIC50,
pKd, and pEC50 data, respectively; from a target coverage perspective, they
contain 572 (25.4%), 856 (38.0%), and 825 (36.6%) entries with consistent
interaction data for 2, 3 to 5, and more than 5 targets, respectively.

The next step was to filter out all drug entries not having among their

interaction data a value of pAffinity > 7 for at least one target. A total of 1,293



drug entries from 970 drugs remained, with almost 55% of them (706) being
composed entirely of pKi data. With respect to completeness, they contain 273
(21.1%), 440 (34.0%), and 580 (44.9%) entries with consistent interaction data
for 2, 3 to 5, and more than 5 targets, respectively. Finally, applying the filter of
pSelectivity > 1 between their primary target and any other target for which
interaction data is available, one is left with 414 drug entries representative of
368 drugs, with over 57% of them (237) containing pKi data only. From a
completeness perspective, they contain 153 (37.0%), 156 (37.7%), and 105
(25.4%) entries with consistent interaction data for 2, 3 to 5, and more than 5
targets, respectively.

In summary, starting with a total number of 2,548 drugs for which
interaction data was available from public sources, only 1658 drugs (65.1%)
contained data for more than one target, of which 970 drugs (38.1%) fulfilled
current potency criteria and 368 (14.4%) complied with both potency and
selectivity criteria for chemical probes. Most interestingly, it was found that the
percentage of drugs that qualify as chemical probes is severely reduced as more
information on affinity data is available. As can be observed in Figure 1, 26.7%
of drugs with known affinity for 2 targets would be nominated as chemical
probes, whereas this percentage is reduced to just 12.7% for drug with known
affinity for more than 5 targets. In addition, imposing having pAffinity > 7 for
at least on target, 56.0% of drugs with known affinity for 2 targets would then
qualify as chemical probes, whereas this value is drastically reduced to 18.1%
for drugs with known affinity for more than 5 targets. These results emphasise
the relevance of data completeness and thus, the need to perform extensive
screenings on multiple targets for chemical probe nomination [7].

A detailed analysis of the 368 drugs fulfilling the current chemical probe
criteria for potency and selectivity revealed that they can be classified in two
different classes. The largest class is composed of 248 drugs that are

characterised by having pAffinity < 7 for any target other than the primary



target. Escitalopram is a representative example of this class of drug chemical
probes. As illustrated in Figure 2, this antidepressant has a strong affinity
(pKi=8.78) for the sodium-dependent serotonin transporter (SERT) and shows
high selectivity over the rest of targets for which interaction data is available,
the largest affinity among those (pKi=5.91 for the muscarinic acetylcholine
receptor M 1) being clearly below current potency criteria for chemical probes.

In addition, a set of 120 drugs constitutes another class that share the
property of having pAffinity > 7 for one or more secondary targets.
Nortriptyline is a representative example of this second class of drug chemical
probes. As can be observed in Figure 2, this second-generation tricyclic
antidepressant presents strong affinity (pKi=8.85) for the sodium-dependent
norepinephrine transporter (NET) and despite showing over 10-fold selectivity
against the rest of targets for which interaction data is available, the affinities
for SERT (pKi=7.71), serotonin receptor 5-HT,5 (pKi=7.59), and histamine H;
receptor (pKi=7.22) are still above the affinity threshold defined currently as
chemical probe criteria. This example highlights the fact that besides potency
and selectivity criteria, one may need to define additional criteria for the
maximum affinity on secondary targets as, in the context of a biological system,
those affinities can be highly relevant and ultimately influence the biological
response observed.

The distribution of the 414 drug entries qualified as chemical probes in the
space defined by current potency and selectivity criteria is presented in Figure
3. Each circle represents a drug entry and varies with size and color: size is
related to the amount of information available for each drug entry, with small,
medium, and large circles marking drug entries with consistent interaction data
for 2 targets, 3 to 5, and more than 5 targets, respectively; color is associated
with the major protein families of therapeutic relevance, with red, blue, and
yellow identifying drug entries for which the primary target is an enzyme, a G

protein-coupled receptor (GPCR), or neither of both. The dashed line separates



the two different classes of drug chemical probes defined above, those being
below the line corresponding to the 124 drug entries from 120 drugs that,
despite complying with the selectivity criteria, have pAffinity > 7 for a protein
other than the primary target.

With respect to the amount of information available, it is observed that,
while 70.5% of the large circles are located within the range of low pSelectivity
values between 1.0 and 2.0, 83.1% of the circles above a pSelectivity value of
2.0 correspond to small- and medium-sized circles. These results emphasise
again that data completeness and drug selectivity are somehow related. With
respect to protein families, almost half of the drug chemical probes (44.7%)
have as primary target a GPCR protein. However, its distribution across the
affinity-selectivity plane does not follow any particular trend. With the caution
that data completeness imposes, based on information currently available from
public sources one could conclude that the myth that drugs targeting enzymes
are more selective than those targeting GPCRs or proteins from other families
seems not to apply and examples of selective drugs from the different families

can be found.

Beyond probing a single target

The application of the current potency and selectivity criteria for nominating
chemical probes aims at identifying small molecules with high affinity for one
target and clear selectivity over any other protein. Accordingly, such target-
directed chemical probes will be hereafter referred to as single probes (Box 1).
As discussed above, based on currently available public interaction data, a total
of 368 drugs can be qualified as single probes, representing only 14.4% of the
total number of drugs considered in this study. Close inspection of the
remaining 85.6% revealed that 890 drugs (34.9%) have known interaction data

for one target only, 653 drugs (25.6%) have interaction data for more than one



target but none with pAftinity > 7, 385 drugs (15.1%) have interaction data for
more than one target, pAffinity > 7 for at least one target, but could not meet the
selectivity criteria, and a final set of 252 drugs (9.9%) have interaction data for
more than one target, pAffinity > 7 for more than one target as well, do not
meet the selectivity criteria within any of the targets for which pAffinity > 7,
but do meet the selectivity criteria then against any remaining target. This latter
set of drugs will be referred to as multiple probes (Box 1).

An example of a multiple probe drug is triflupromazine. As illustrated in
Figure 4, this antipsychotic has a strong affinity (pKi=8.68) for the dopamine
D2 receptor. For triflupromazine to qualify as a single probe, the interaction
with any other target should be less than 7.68 (dotted line). However, it shows
also high potency (pKi=8.4) for the serotonin receptor 5-HTa (HTR2A) well
within the selectivity window and thus, this target is added to the list of targets
probed by this drug. At this stage, for triflupromazine to qualify as a multiple
probe, the interaction with any remaining target should be less than 7.4 (dashed
line). Indeed, among the additional interaction data known at present, the most
potent affinity for a target is below that threshold (pKi=7.28 for the histamine
H; receptor, HRH1). Therefore, triflupromazine would be finally nominated as
a multiple probe of the probing profile defined by the targets HTR2A and
HRHI1. Since the number of probing targets would be two, triflupromazine
would be referred to as a multiple probe of level 2.

Extending the analysis beyond drugs, our interest turned then into
identifying all chemical probes present in the four major public resources of
interaction data [13-16], as a means to assess the current coverage of probing
profiles. In total, 34,460 small molecules qualified as chemical probes, of which
27,459 are single probes for 527 targets and 7,001 are multiple probes for 959
distinct target profiles. The distribution of the number of target profiles
currently covered at each probe level is illustrated in Figure 5. Contrary to the

expected combinatorial explosion of possible profiles upon increasing the



number of targets, current coverage of probing profiles decreases rapidly as the
probing level increases. Thus, while multiple probes for 439 probing profiles of
2 targets could be identified, only 61 probing profiles of 5 targets are currently
covered. This may emphasise the traditional focus towards
generating/collecting highly potent and selective compounds rather than
pluripotent compounds over combinations of multiple targets.

In addition, probing profiles were assigned to major protein families on the
basis of their constituent targets. In the case that all probing targets are enzymes
or GPCRs, the probing profile is assigned to enzymes or GPCRs, respectively.
All other probing profiles contain probing targets that belong to any of the other
major therapeutic families (e.g., ion channels or nuclear receptors) or are simply
a combination of them. As can be observed, enzyme probing profiles appear to
be more populated than GPCR and other probing profiles at probe levels from 1
to 5, whereas probing profiles containing combinations of targets belonging to
different families seem to be the most common option for probing profiles
composed of more than 5 targets. Again, it should be stressed that the high
degree of incompleteness of public interaction data [7] advices to take the
present conclusions with caution, as improving data completeness may promote

some small molecules to chemical probes but could disqualify others.

Towards a complete probing chemome

The analysis presented above on current coverage of probing profiles points to
the fact that, beyond chemical probes selective for single targets, small
molecules exist that probe multiple targets in a selective manner over the rest
and thus, paving the way towards the systematic probing of biological targets at
a systems level. The coordination of this enormous challenge can be effectively
addressed by focusing on achieving complete probing of segments of biological

systems, such as all members of a protein family or all proteins of a



biochemical pathway. As an illustrative example, Figure 6 contains the current
probing status of the histamine receptor family.

Histamine receptors are a class of GPCRs composed of four members,
namely, H1, H2, H3, and H4 [17]. Accounting for all possible combinations,
complete probing of this entire class would require the identification of 14
chemical probes: 4 single probes, having high affinity for each of the individual
members and selectivity over the rest, and 10 multiple probes, covering all
probing profiles that can be generated from targeting several receptors at a time.
By exploring the current information contents of the major public repositories
of interaction data, small molecules covering 10 out of the 14 probing profiles
could be identified, 5 drugs being among them. The structures and affinity
profiles of these molecules are collected in Figure 6. In the interaction map
provided, each row corresponds to a different combination of probing targets
and the potency of small molecules for each receptor is reflected by a color
gradation, black being highly potent, light grey being weekly potent, and white
indicating interaction data for which no information is currently available in the
public domain.

In all cases for which a representative compound is provided, drugs were
given priority to other small molecules that could fit the potency and selectivity
criteria for probing a given profile. Among them, cyproheptadine, tiotidine,
cipralisant, and histamine were selected as the single probe representatives of
the H1, H2, H3, and H4 probing profiles, respectively. In addition, impromidine
was found to fit the potency and selectivity criteria as multiple probe for the
probing profile defined by the H2, H3, and H4 receptors. It ought to be stressed
that all molecules selected as chemical probes of the respective target profiles
were identified on the basis of their affinities for the histamine receptors. Some
of them were found to have gaps of interaction data for all four receptors (such
as probes 1, 2, and 4 for the interaction on H2, H4, and H4, respectively) and

others may have affinities also for additional proteins other than histamine



receptors. The main purpose of the current selection is to illustrate that it is
conceptually possible to generate a complete set of small molecules that can
either be used directly or as starting points for and optimisation process to fully
probe a particular

segment of a biological system. It was recently shown that the application of in
silico target screening to an academic chemical library allowed for identifying
novel antagonists for all four members of the adenosine receptor family [18]. In
this respect, the development of novel methodologies for the in silico target
screening of molecules [19-21] is expected to have a significant impact towards

assembling a complete probing chemome.

Conclusions

Biological systems are implicitly robust and selectively acting on one particular
target may not be the most efficacious way of modulating or interfering with
that system [22]. Indeed, recent evidences indicate that most drugs attain their
in vivo efficacy through modulation of multiple targets rather than selective
interaction on a single target. In addition, drugs represent the ultimate product
of a long optimisation process in which potency and selectivity, among other
pharmacokinetic and pharmacodynamic properties, are improved. Any chemical
point less advanced in this process will show less optimal potency and
selectivity criteria. Accordingly, if only 14.4% of drugs qualify as chemical
probes, a much lower percentage is expected for the starting chemical points of
drug discovery projects. Therefore, these findings are not only questioning the
relevance of the nominated chemical probes as starting points for drug
discovery but, most importantly, emphasising the fact that those would only be
a low percentage of the number of compounds with therapeutic potential that
may have come out of the screening campaigns.

While in recent years drug discovery has gradually shifted away from the



one chemical — one protein paradigm, chemical biology seems to be still very

much anchored in it. Many therapeutically useful chemical probes could be

missed in the process if polypharmacology is not adequately considered in the

qualification criteria for small molecule tools to probe biological systems.
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ﬁ)x 1. Definitions \

Chemical probe. A small molecule with the ability to perturb one or
multiple components of a protein system giving rise to a unique biological
response. Under a systems perspective, polypharmacology balances the
relevance of potency and selectivity when deciding whether a small molecule
qualifies as a chemical probe. In this respect, multiple pharmacological
profiles may actually converge into the same biological response and thus
they may all be considered redundant chemical probes; in contrast, similar
pharmacological profiles with different relative affinities may result in

essentially distinct biological responses.

Single probe. A small molecule with affinity pA; > a for its primary target
and selectivity pA4; - pA; > s for any other protein i # I, with ideally pA,.; < a.
According to the latest definition in use by the MLSCN, a =7 and s = 1 [5].

Multiple probe. A small molecule with affinity p4,, > a for a set of {n}
targets and selectivity min(pA4,,;) - pA; > s for any other protein i # {n}, with

ideally pA;:s,; < a. To be consistent with the current definition of a single

Qrobe, the values of the parameters are also a =7 and s = 1. /
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The contribution to the construction of an annotated compound
library directed to the family of nuclear receptors and the
integration of hierarchical classification schemes for both ligands
and targets led to the identification of highly promiscuous
scaffolds with activity over specific groups of these proteins.
These scaffolds could be used as the basis for further synthesis of
compound libraries to probe orphan nuclear receptors.

The nuclear receptor chemical library and other public repositories
of ligand-target interaction data have been parsed and added to an
integrated database currently containing 824.000 interaction
values between 240.000 unique ligands and more than 4.000
protein targets. This database has been used as the basis for the
analysis of the polypharmacology of drugs and the development of
ligand-based methods for in silico target profiling.

An analysis of these ligand-target interaction data reveals that the
completeness issue is a key limitation in computational drug
discovery. A strategy to overcome this problem has been posited
and a set of complete interaction matrices from public sources has
been extracted to be used as benchmark sets for in silico target
profiling methodologies.

An analysis of the currently known polypharmacology of drugs
emphasizes that less than 15% of drugs would actually qualify as
chemical probes under the current criteria for potency and
selectivity. If chemical probes are to be used as starting points for

drug discovery process both criteria are proposed to be revised.

Three two-dimensional descriptors, namely, SHED, FPD, and
PHRAG, have been successfully combined in a new ligand based
approach to in silico target profiling that exploits the ligand-
protein interaction data contained in the integrated database.
Recent applications of these approaches to in silico pharmacology

have provided ample evidence of the key impact that these



Conclussions

computational methods are having in both chemical biology and
drug discovery.

The development of FCP was conceived as a web-based tool to
facilitate the graphical and quantitative analysis of the current
state and trends in the functional coverage and bias of the solved
structures deposited in the Protein Data Bank, by making use of
the substantial efforts made by a number of researchers in our
laboratory in developing and curating classification schemes for

proteins belonging to different families.

The development of iPHACE was designed to provide a deeper
understanding on the polypharmacology of drugs and the cross-
pharmacology of targets, through navigation of selected annotated
chemical libraries containing highly curated drug target interaction
data by meas of a purposely designed visualization framework that
integrates all chemical and biological data in a simple and
efficient manner.

The creation of a network linking drugs depending on their
assigned side effects profile, and its integration with the
information contained in the previously generated ligand-target
interaction database, shed light into the relations between drug
adverse reaction profiles and their corresponding target profiles.
The fact that drugs connected in the side effect network are found
to have similar target profiles suggests that preclinical
comparative pharmacology may represent an interesting strategy

for anticipating drug adverse reactions.
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