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 ABSTRACT 

 

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal 

cancers. To improve early diagnosis, research efforts are focused in 

characterising early events of cancer formation like preneoplastic lesions 

and deciphering the cell origin of the malignancy. Polycomb proteins 

constitute a family of epigenetic silencers found in a variety of solid 

tumours. The main hypothesis is that Polycomb might play a role in 

preneoplastic states in the pancreas and in tumour development and 

progression. The expression of Bmi1 and Ring1B was analysed during 

pancreatic development, in pancreatic tissue from mouse models of 

disease and in human pancreatic tissue samples. Mechanistic insights of 

Bmi1 were performed using in vitro models and with induced Bmi1 

depletion. Bmi1 and Ring1B were expressed in pancreatic exocrine 

precursors during early development and in ductal and islet cells, but not 

in acinar cells, in the adult pancreas. Bmi1 was induced in acinar cells 

during acute injury, in acinar–ductal metaplastic lesions, in pancreatic 

intraepithelial neoplasia (PanIN) and PDAC. In contrast, Ring1B was 

significantly increased in high-grade PanINs and in PDAC. Bmi1 

knockdown in acinar cell line changed the expression of pancreatic 

digestive enzymes.  

The results of this project suggest that Bmi1 and Ring1B contribute 

differently to tumour development in the pancreas. 
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L’adenocarcinoma ductal pancreàtic (PDAC) és un dels càncers més 

letals. Per tal de millorar el diagnòstic precoç, s’estan investigant les 

etapes inicials de la formació del càncer, com és el cas de les lesions 

preneoplàstiques, i es vol desxifrar l’origen cel·lular de la malaltia. Les 

proteïnes Polycomb constitueixen una família de silenciadors epigenètics 

que es troben en una varietat de tumors sòlids. La hipòtesi principal és 

que Polycomb pot estar participant en els processos preneoplàstics del 

pàncreas i en l’aparició i progressió del tumor. La expressió de Bmi1 i 

Ring1B fou analitzada durant el desenvolupament del pàncreas, en teixit 

pancreàtic de diferents models murins de la malaltia i en mostres 

humans de teixit pancreàtic. Es va dur a terme l’anàlisi del mecanisme de 

Bmi1 mitjançant models in vitro i induint la depleció de Bmi1. Bmi1 i 

Ring1B s’expressaren en precursors pancreàtics durant etapes 

primerenques del desenvolupament i en cèl·lules ductals i dels illots, 

però no en els acins, en el pàncrees adult. Bmi1 s’induí en cèl·lules 

acinars durant lesió aguda, en lesions metaplàstiques acinoductals, en 

neoplàsies intraepitelials pancreàtiques (PanIN) i en PDAC. Ring1B 

s’incrementà significativament en PanINs de grau alt i en PDAC. La 

disminució dels nivells de Bmi1 en la línia cel·lular acinar canvià 

l’expressió dels enzims digestius pancreàtics.  

Els resultats d’aquest projecte suggereixen que Bmi1 i Ring1B 

contribueixen de maneres distintes en la progressió tumoral pancreàtica. 
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1. Cancer 

1.1 Definition of cancer and the cancer stem cell 

theory 

The current definition of cancer, or malignant neoplasia, describes a class 

of diseases in which a group of cells display uncontrolled growth, ability 

to invade adjacent tissues and sometimes metastatic properties. A 

common misconception is to consider cancer and neoplasia – the latter 

commonly known as tumour – as synonyms. Indeed, malignant 

neoplasias differ from benign neoplasias, which do not possess neither 

invasive nor metastatic capabilities. In addition to different tumour 

subtypes, cancers present different types of cells within, which exhibit 

distinct proliferative and differentiative capacities, interacting between 

each other and also with their niche to promote stromal affinity and 

angiogenesis.  

Pioneering studies in acute myeloid leukaemia in mice reported a minor 

subpopulation of tumour cells which had self-renewal capacity and was 

responsible of sustaining tumour growth [1]. Thus, a “cancer stem cell” 

(CSC) hypothesis was proposed, in which a small group of self-renewing, 

undifferentiated and pluripotent tumour cells is in charge of maintaining 

the neoplastic lesion by replenishing every cell type found in the lesion 

[2]. The existence of CSCs became evident in liquid tumours when a 

subpopulation of leukaemic cells was reported to have self-renewal and 

tumorigenic capacities [3]. Later on, evidence of CSCs was found in a 

wide range of  epithelial tumours: colon [4], lung [5], breast [6], pancreas 

[7] and prostate [8] among others.  
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Normal stem cells are relatively quiescent, resistant to drugs and toxins, 

bearing an active DNA-repair capacity and resistance to apoptosis [9]. 

CSCs are thought to be sharing many of these properties, thus 

conventional chemotherapy and radiotherapy treatments, which target 

rapidly cycling cells, will lead to tumour reduction but the CSCs 

themselves will remain unaffected, allowing the tumour to relapse. The 

efficiency of cancer treatments is often measured by means of the 

reduction of tumour mass. However, as the proportion of CSCs is very 

small compared to total cancer cells, relapse of the tumour may happen 

even there is a considerable reduction of its mass. Therefore, there is a 

consensus to find specific treatments against CSCs to improve the 

outcome of cancer patients, especially those with recurrent cancer or 

with metastasis. 

Many questions are still to be answered about CSCs. For example, there 

is an ongoing debate regarding the origin of these cells, whether they 

might come from altered stem cells which cannot control proliferation, 

or they may represent a differentiated population of cells which gained 

self-renewal characteristics.  

1.2 Genes involved in tumorigenesis 

There is a group of genes which have been reported to be altered in 

several types of cancers, possibly due to their crucial role in important 

signalling pathways [10]. These genes are usually distributed in two 

groups depending on their role: oncogenes and tumour-suppressor 

genes. 
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1.2.1. Oncogenes commonly involved in cancer 

An oncogene is defined as a gene which, when mutated or 

overexpressed, induces tumorigenesis. In normal conditions, proto-

oncogenes are involved in signalling transduction pathways controlling 

cell growth, differentiation and apoptosis. A mutation in the DNA 

sequence, an increase in protein concentration or any chromosomal 

abnormality can induce a proto-oncogene to become an oncogene. As a 

result, oncogenes allow the transformation of a normal cell into a cancer 

cell.  

Paradigms of oncogenes are the KRAS and the CMYC genes.  

1.2.1.1. KRAS 

The v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) is a 

member of the RAS superfamily of guanine-nucleotide binding proteins, 

which is involved in cell growth, differentiation and survival. Along with 

KRAS, two more members of the RAS family – HRAS and NRAS – have 

been found to be working as a binary signal switch in pathways related to 

cell growth. In a resting cell, inactive RAS protein is bound to GDP.  

Upon binding of growth factors like EGF to receptor tyrosine kinases 

(RTK), RTK become phosphorylated and activated. Consequently, adaptor 

molecules localize to RTKs followed by recruitment and activation of 

guanine nucleotide-exchange factors (GEFs). GEFs catalyse the transition 

from GDP-bound, inactive RAS to GTP-bound, active RAS. RAS-GTP 

interacts with more than a dozen effector molecules to regulate a variety 

of biological processes. GTPase-activating proteins (GAPs) allosterically 

stimulate the intrinsic GTPase activity of RAS, leading to GTP hydrolysis 

and RAS inactivation. To activate the MAPK signalling cascade, RAS 

recruits Raf to the cell membrane, where Raf is activated and 
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subsequently forms complexes with MEK, ERK and scaffolding proteins. 

Raf then phosphorylates MEK, which in turn phosphorylates ERK. ERK 

both activates cytosolic substrates and translocates to the nucleus to 

stimulate diverse gene expression programs through transcription factors 

such as JUN and ELK1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.1. The MAPK/ERK pathway. Ras has a crucial role in the 

phosphorylation cascade of the pathway which culminates in the 

regulation of several transcription factors, like CREB and CMyc. 

It is well documented that oncogenic forms of H, K and NRAS are 

preferentially detected in certain tumor types. For instance, more than 

80% of pancreatic adenocarcinomas harbor a mutated KRAS gene [11], 

whereas in myeloid leukemia, the NRAS gene is most frequently mutated 



INTRODUCTION 

20 
 

[12]. Nevertheless, while some neoplasias do not show specificity in any 

mutated RAS gene, differences in the function of RAS proteins still 

remain elusive. 

As mentioned above, KRAS possesses an intrinsic inactivating enzymatic 

activity that cleaves bound GTP converting it to GDP. Point mutations in 

the codifying sequence usually disrupt the GTP/GDP switch which 

renders KRAS constitutively active, acquiring oncogenic properties. 

Indeed, activating mutations of KRAS have been reported in thyroid, 

colorectal, lung and pancreatic carcinomas among others [13]. 

1.2.1.2. CMYC 

One of the quintessential oncogenes, CMYC, is a basic helix–loop–helix 

leucine zipper (bHLH-Zip) transcription factor which induces the 

expression of around 15% of all known genes [14] through consensus 

sequences like E-boxes and by recruiting histone acetyltransferases 

(HATs).  Different signalling pathways like Wnt, Shh or the MAPK/ERK 

induce CMYC expression, which has been reported to promote cell 

proliferation but at the same time it also has a role in regulating cell 

growth [15], apoptosis [16] and stem cell self-renewal [17]. 

Abnormal expression of CMYC is thought to be necessary for 

tumorigenesis, as it has been reported in almost 70% of human cancers 

[18]. Overexpression of CMYC is achieved through translocations, 

amplifications, or enhanced translation or protein stability [19-23]. This 

highly abnormal expression has been reported to promote tumour 

angiogenesis, which is crucial for cancer development [24-26]. 

Nevertheless, expression of CMYC can also be increased by altered 

signalling pathways that induce or repress its transcription. Indeed, 

CMYC expression is persistently induced as a primary response of 
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virtually all signal transduction pathways known to be altered in cancer, 

like those associated to tyrosine kinase growth factor receptors such as 

the MAPK/ERK pathway [18] among others [27-28]. 

1.2.2. Tumour-suppressor genes involved in cancer 

Tumour-suppressor genes exert a protective activity upon tumorigenesis, 

normally, although not exclusively, limiting the growth of tumours. 

Tumour-suppressor genes generally codify for proteins which repress cell 

cycle progression and promote cell death. Thus, they act as brakes to the 

cycle of cell growth, DNA replication and cell division, collaborating with 

the DNA damage repair machinery to ensure that only those cells with no 

errors in the DNA sequence proliferate. If DNA damage is irreparable, 

programmed cell death is initiated to remove possible threats from the 

organism [29]. Further insights have unveiled proteins with tumour-

suppressor abilities which repress cancer cell motility by inhibiting 

metastasis [30]. 

1.2.2.1. TP53 

Among the most significant tumour suppressors, tumour protein 53 (p53) 

was the first to be reported [31-32]. Codified by the TP53 gene, p53 is  a 

transcription factor considered to be the master tumour-suppressor 

protein, which acts in response to diverse cellular stresses, regulating 

target genes involved in cell cycle arrest, apoptosis, senescence, DNA 

repair or changes in metabolism [33]. The tumour-suppressor activity of 

p53 entangles different mechanisms, like activation of DNA repair 

machinery when damage is detected, stopping the cell cycle at G1/S 

checkpoint to allow DNA to be repaired and induction of apoptosis if 

damage is beyond repair. Apart from DNA damage, activation of p53 is 
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induced by an extensive range of extracellular stimuli like osmotic shock, 

oxidative stress and oncogenic signals among others. 

The classical model for p53 activation generally consists of three 

sequential activating steps: stress-induced stabilization mediated by 

phosphorylation, DNA binding and recruitment of the general 

transcriptional machinery. 

P53 has a tight relationship with its direct inhibitor MDM2. The p53–

MDM2 paradigm represents the best-studied relationship between a 

tumor suppressor gene which functions as a transcription factor and an 

oncogene, which functions primarily as an E3 protein ligase. In normal 

conditions, MDM2 couples with p53 preventing its translocation to the 

nucleus, whereas p53 induces transcription of MDM2. Important 

components that affect this auto-regulatory feedback loop include the 

tumor suppressor protein p14ARF (p19ARF in mice) [34]. The p14ARF 

protein binds the MDM2 protein, and inhibits the E3 activity of MDM2 

[35], in addition to sequestering MDM2 into the nucleolus [36]. 

Consequently, p14ARF disrupts the negative feedback inhibition of p53 

by the binding to MDM2 [37].   

In unstressed conditions, low levels of p53 are continuously maintained 

due to the ubiquitin ligase activity of MDM2, which places post-

translational ubiquitin modifications at lysine residues in p53 C-terminus. 

Ubiquitination of the p53-MDM2 complex is a target for degradation by 

the proteasome, thus maintaining low levels of p53. However, stress 

signal-induced p53 phosphorylation by ATM, ATR, and other kinases 

stabilizes p53 and promotes its binding to DNA. DNA-bound p53 then 



INTRODUCTION 

23 
 

recruits the transcriptional machinery to activate transcription of p53 

target genes [38]. 

 

 

 

 

 

 

 

 

 

 

 

Figure I.2. The p53 pathway. Activation of the master regulator p53 is triggered by 

several stress stimuli through specific mediators. Induction of p53 and repression of 

mdm2 allows active p53 to act upon different mechanisms like angiogenesis, 

apoptosis, DNA repair or growth arrest. Figure adapted from [39].  

The overwhelming list of reported p53 target genes encloses several 

ways of tumour suppression [33, 39]. Point mutations of TP53 gene 

affect its DNA binding domain region, thus inactivating DNA binding 

capacity of p53. As a result, tumour-suppressor mechanisms driven by 

p53 cannot be accomplished, favoring cancer progression of different 
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types of tumours [32]. Moreover, expression of mutant p53 has been 

recently been describe to be critical for TGFβ-induced metastasis [40]. 

1.2.2.2. CDKN2A 

The cyclin-dependent kinase inhibitor 2A (CDKN2A), also known as the 

INK4a/ARF gene, encodes for two very important tumour-suppressor 

proteins: p16INK4a and p14ARF [41-42].  

 

 

 

 

 

 

 

 

 

 

 

Figure I.3: p16
INK4a

 and p14
ARF

 proteins. The unusual 
structure of the CDKN2A locus codifies for 2 overlapping but 
very distinct translated proteins: p16

INK4a
 and p14

ARF
. Both 

proteins act as negative regulators of cell cycle progression 
and alteration in their expression is very common in a wide 
variety of cancers. Figure apdated from [42]. 
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The p16INK4a protein has been reported to accumulate in several tissues 

as a function of advancing age [43-44]. Moreover, it is involved in 

senescence mechanisms [45] and acts as a strong inhibitor of Cdk4 [46], 

which is in charge of the phosphorylation of the Retinoblastoma (pRb) 

protein, which interacts with E2F, thus leading to cell cycle arrest [47-48]. 

The INK4A gene harbours a restricted pattern of expression during 

normal homeostasis and development [49] but INK4A transcription is 

increased in a stress-response manner to act as a tumour suppressor 

[50]. Mutations in the CDKN2A locus can disrupt both pRb and p53 

pathways at the same time [51-52], which is a common feature in a wide 

range of human cancers [41]. 

1.3 Pathways involved in development and self-

renewal 

Recent studies regarding stem-cell machinery, cell fate decisions and 

embryogenesis have contributed to consolidate a broad knowledge 

about the signalling pathways involved in stem cell self-renewal and 

development. Due to their inferred importance in tissue homeostasis, 

alterations in these pathways have also been related to tumorigenesis.  

1.3.1. Notch signalling pathway 

The Notch signalling pathway is a highly conserved cascade in metazoans 

which participates in the development of multicellular organisms by 

maintaining the self-renewal potential of some tissues while inducing the 

differentiation of others [53]. Characterisation of the Notch pathway 

began with the analysis of the Notch gene in Drosophila, which encoded 

for a heterodimeric receptor with a large extracellular region, a single 

transmembrane domain and a small intracellular part.  
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Induction of the Notch pathway is accomplished by interaction of ligand 

proteins with the Notch extracellular domain. While in Drosophila there 

are only one Notch protein and two ligands – Delta (Dl) and Serrate (Ser), 

vertebrates possess four Notch proteins (NOTCH1-4) and five ligands, 

named Delta-like-1, -3 and -4 (DLL1, DLL3 and DLL4) and Jagged 1 and 2 

(JAG1 and JAG2).  

 

 

 

 

 

 

 

 

 

 

 

Figure I.4: Notch signalling pathway. Interaction of Notch 
receptors with their ligands (like Jagged) activates liberation of 
Notch intracellular domain (NIC), which enters the nucleus and 
binds to the transcripition factor CSL. Then, repressing machinery is 
displaced and co-activators (CoA) are recruited leading to 
transcriptional activation of target genes. Figure adapted from [53]. 
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Interaction of Notch receptors with their ligands leads to a cascade of 

cleavages that detach the Notch intracellular domain. The liberated 

domain enters the cell nucleus and binds to transcription factor CSL, 

which recruits co-activators to induce transcriptional activation of 

downstream target genes. 

Notch signalling affects several cellular processes, such as maintenance 

of stem cells, specification of cell fate, differentiation, proliferation and 

apoptosis. As a consequence, alterations in these functions can lead to 

cancer formation. Notch is in charge of maintaining the undifferentiated 

state in adult stem cells of different tissues, such as the vertebrate 

nervous system [54-55], the haematopoietic compartment [56] and the 

mammary gland [57]. Notch signalling also participates in binary cell-fate 

decisions to preserve the undifferentiated state of a group of cells while 

inducing differentiation in the other. Furthermore, DLL1-induced Notch 

signalling can initiate or enhance terminal differentiation [58]. 

Several members of the Notch pathway have been reported to be altered 

in different human diseases and types of cancer. The first oncogenic role 

of Notch to be reported was in T-cell acute lymphoblastic leukaemia (T-

ALL). Later on, experiments performed in mouse models also involved 

Notch signalling in breast and salivary-gland cancer [59]. Interestingly, 

human breast cancers show increased levels of Notch proteins, but in 

this case Notch signalling is not inducing cancer formation but is 

necessary for tumorigenesis to take place [60]. 

1.3.2. Hedgehog signalling pathway 

Another highly conserved pathway involved in embryonic development is 

the hedgehog signalling pathway [61-62]. The pathway is named after 

the Hedgehog gene (Hh) discovered in Drosophila, which is involved in 
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establishing the basis of the body plan. In mammals, three homologues 

for Hh have been characterised: Indian (Ihh), Desert (Dhh) and Sonic 

(Shh), being the latter the most studied of them.  

Each mammalian hedgehog gene encodes transmembrane signalling 

ligands. When no ligand is present, hedgehog receptors Patched1 and 

Patched2 (Ptch) repress the hedgehog signalling molecule Smoothened 

(Smo) [63]. When hedgehog ligands bind to Ptch, Smo is freed from the 

inhibition, translocating Gli transcription factors to the cell nucleus, thus 

regulating hedgehog responsive genes such as cell cycle regulators Cyclin 

D1, p21 and Wnt proteins among others [64-65]. 

 

 

 

 

 

 

 

Figure I.5: The Hedgehog signalling pathway. Hedgehog (Hh) ligand binds to Patched 
(PTC), thus repressing the inhibition activity over Smoothened (SMO). As a consequence, 
activated Smoothened inhibits phosphorylation of GLI (Ci) proteins, thereby preventing 
degradation of the repressor form and allowing nuclear translocation of GLI 
transcriptional activators, thus inducing the expression of target genes. Figure adapted 
from [66]. 

Mammalian hedgehog signalling is involved in the maintenance of adult-

cell populations [67-69] and is also controlling appropriate patterning of 

several epitheliums, such as lung, skin [70] and digestive tract [71]. 
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Differentiation [72], survival [73] and proliferation of different cell 

populations are promoted by Sonic hedgehog in the ectoderm, 

mesoderm and endoderm-derived tissues [74]. This function is confirmed 

by analysing mice deficient in members of the hedgehog pathway, which 

show severe defects in different organs like skeleton, brain, muscle, 

gastrointestinal tract and lung [75-78]. 

Members of the hedgehog signalling pathway are found to be 

misexpressed in several human cancers, including small cell lung 

carcinomas, medulloblastomas, basal cell carcinomas, pancreatic 

adenocarcinoma [79-80], breast cancer [81], prostate cancer [82] and 

digestive tract tumours [71].  

1.3.3. Wnt signalling pathway 

Another pathway which has a central role in embryogenesis and adult 

tissue homeostasis is the Wnt/β-catenin signalling pathway [83]. It is a 

highly conserved pathway in which Wnt proteins activate a signalling 

cascade in the cell membrane that results in the modulation of β-catenin 

protein, which enters the nucleus to promote specific gene expression. 

Although the effects of Wnt signalling depend on the ligand, the cell type 

and the organism, several members of the pathway are strikingly 

conserved throughout evolution. In the absence of Wnt proteins, the 

axin/GSK-3/APC proteolytic complex recruits and degrades free β-catenin 

in the cytosol. When Wnt proteins are bound to receptors of the Frizzled 

family, Dishevelled proteins become active and inhibit the axin/GSK-

3/APC complex, thus changing the amount of β-catenin in the cytoplasm. 

As a consequence, a pool of β-catenin enters the nucleus, interacting 

with TCF/LEF family transcription factors to promote specific gene 

expression.  
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Figure I.6: The Wnt signalling pathway. In the absence of Wnt ligands, the axin/GSK-
3/APC complex phosphorylates free β-catenin, which is targeted for degradation by 
the proteasome. In the presence of Wnt ligands, the Frizzled(Fz)/LRP coreceptor 
complex interacts with Axin, leading to the stabilization of β-catenin in the 
cytoplasm, which allows its nuclear translocation. In the nucleus, β-catenin displaces 
Groucho from Tcf/Lef to promote the transcription of Wnt target genes. Figure 
adapted from [84]. 

Members of the Wnt signalling pathway have been related to many 

human diseases, including cancers like colorectal cancer, hepatocellular 

tumours, pilomatricomas and melanomas among others [85-86]. 

Interestingly, all three signalling pathways here described – Notch, Hh 

and Wnt – are thought to crosstalk between each other. For instance, 

Notch acts as a tumour suppressor by inhibiting Hh and Wnt signalling 

pathways [53]. Moreover, Shh and Wnt are usually overexpressed in 

tumours, due to their requirement for tumour growth and they seem to 

be induced co-ordinately [87].  
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1.4 Epigenetics in cancer 

With the constantly expanding knowledge in tumorigenesis, epigenetic 

machinery has found its place as a player in cancer formation and 

progression [88]. The term ‘‘epigenetics’’ was first mentioned by Conrad 

Hal Waddington in 1942, and originally meant to describe the process by 

which genotype gives rise to phenotype, for instance, through causal 

interactions among genes and their products [89]. The modern definition 

of “epigenetics” has more specific meaning, referring to heritable traits 

over cell division, and sometimes over generation, which do not involve 

changes to the underlying DNA sequence [90-91], but are related to the 

chromatin.  

The chromatin is a complex system that includes DNA, RNA and proteins, 

by which the whole genome is stored inside the nuclei of every 

eukaryotic cell to create a compact but dynamic structure. Chromatin 

presents several levels of compaction based on consecutive folding of the 

DNA sequence around a basic repeat element, the nucleosome, which 

consists of DNA wrapped around a scaffold of histone proteins. 

Epigenetic regulation has a very important role in initiating and 

modulating cellular differentiation and development, controlling the 

activation of proto-oncogenes and inactivation of tumour-suppressor 

genes, thus having a crucial role in cancer development and progression 

[92]. Inappropriate changes in chromatin structure due to epigenetic 

events can result in genomic instability, thus causing cellular 

transformation and malignant outgrowth. Besides the classical genetic 

changes found in cancer, like inactivation of tumour-suppressor genes, 

amplification of oncogenes  and loss of heterozygosity or gene mutations 

in tumour associated genes, epigenetic machinery is also altered in 
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different types of tumour, which display altered DNA methylation, 

misregulation of histone modifications or aberrant expression of PcG 

proteins [93-98]. 

Two predominant mechanisms have been reported to be epigenetic: 

DNA methylation and histone modifications. These mechanisms 

collaborate with chromatin remodelling complexes, nuclear architecture 

and microRNAs to establish the chromatin structure of the genome and 

its transcriptional activity. 

 

 

 

 

 

 

 

 

Figure I.7: Chromatin compaction and histone modifications. Storage of DNA 
presents several levels of compaction which culminates in the chromatin structure. 
Although chromatin culminates in very tight levels of compaction, the whole 
structure presents dynamic interactions with different layers of posttranscriptional 
modifiers of the N-terminal regions of histones, which extend from the nucleosome 
core. Proper organisation of the chromatin is crucial for transcription, replication, 
DNA repair and chromosome segregation. Specific point modifications in different 
aminoacids of histone tails alter chromatin conformation, thus allowing repression or 
activation. Figure adapted from [99]. 
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1.4.1 DNA methylation 

DNA methylation constitutes a stable epigenetic mark [100], being 

involved in processes such as X chromosome inactivation, imprinting, 

embryogenesis and silencing of repetitive DNA elements [101]. DNA 

methylation consists of covalent chemical modifications of the DNA 

sequence at cytosine residues of CpG sites. In mammals, DNA 

methyltransferases (DNMTs) are responsible for adding methyl groups to 

the cytosine residues at CpGs, converting cytosine to 5-methylcytosine 

and consequently silencing transcription of the region. CpG sites are 

clustered throughout the genome in regions referred to as CpG islands 

[102], which are usually found in the vicinity of mammalian gene 

promoters [103]. It has been reported that unmethylated CpG islands in 

promoter regions correlate with gene activation. On the other hand, 

methylation in CpGs at the gene promoters inhibits transcription. 

Methylation of CpG sites allow anchoring of methyl-CpG binding domain 

(MBD) proteins to DNA [104]. Then, MDBs interact with a large group of 

histone deacetylases, histone methyltransferases and chromatin 

remodelling enzymes, rendering methylated DNA into a compacted 

chromatin state which is refractive to transcription [105]. 

1.4.2. Histone modifications 

The histones are proteins that possess long tails which protrude from the 

nucleosome and are prone to suffer posttranslational modifications, 

which include acetylation, citrullination, methylation, phosphorylation, 

ADP-ribosylation, sumoylation and ubiquitination [92, 106-107]. These 

modifications in histone tails alter nucleosome spatial disposition, 

altering chromatin structure and eventually affecting DNA transcription. 

Histone modifications allow different patterns of gene expression, 
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changing from transcriptionally active to transcriptionally silent states, or 

vice versa.  

 

 

 

 

 

 

 

 

 

 

 

Figure I.8: Classical epigenetic mechanisms. DNA 
methylation and some histone modifications are the most 
studied epigenetic mechanisms, both acting as activators 
and repressors of gene transcription. Figure adapted from 
[108]. 

For instance, there are regions of chromatin exhibiting an open, 

permissive state for transcription which usually displays tri-methylation 

of histone H3 at lysine 4 and hyperacetylation of histones H3 and H4 

[109]. On the other hand, transcriptionally repressed regions exhibit a 

compact chromatin structure that lacks H3/H4 acetylation and H3K4 

methylation, but instead are enriched in di- and tri-methylations of H3K9 



INTRODUCTION 

35 
 

(H3K9me2/3), tri-methylation of H3K27 (H3K27me3), and tri-methylation 

of H4K20 (H4K20me3) [109-110]. These modifications have been 

hypothesized to work as an epigenetic mechanism directing specific and 

distinct modifications to the DNA sequence, but this hypothesis still has 

to be proven [111-112]. 

1.4.3. Polycomb group proteins 

One important protein family involved in chromatin modification is the 

Polycomb group of proteins (PcG), which are epigenetic silencers that 

repress specific sets of genes by modulation of the chromatin structure 

[99, 113-114]. 

PcG proteins were initially identified in Drosophila as repressors of the 

HOX genes, which specify the anterior-posterior axis and segment 

identity during early embryonic development [115]. Preliminary 

characterisation showed that PcG complexes worked in combination with 

the Trithorax group of proteins (trxG) as members of a binary regulation 

switch of the same target genes, with antagonistic effects. Thus, while 

PcG proteins are related to repression, members of TrxG dictate an 

active state of transcription. Nevertheless, further insight expanded the 

list of target genes of PcG and the initial hypothesis was questioned by 

the fact that some genes remain functionally active even in the presence 

of PcG complexes [114]. 

PcG-mediated gene silencing mainly relies on two principal types of 

multimeric complexes called Polycomb repressive complex 1 (PRC1) and 

2 (PRC2), which interact with the chromatin and modulate the 

transcriptional repression of specific regions of the genome [116]. PRCs 

were initially considered as static multimeric complexes. However, 
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further insights revealed the variability and dynamics of these complexes 

[117]. 

 

 

 

 

Figure I.9: Core of Polycomb repressive complexes. Figure 
adapted from [117]. 

The human PRC2 complex has a core of four members: Enhancer of Zeste 

(EZH2), Suppressor of Zeste 12 (SuZ12), Embryonic Ectoderm 

Development (EED) and RbAp48. EZH2 has a histone methyltransferase 

activity that catalyses the tri-methylation of lysine 27 at the histone H3 

tail (H3K27me3) [118]. Furthermore, EZH2 can also recruit DNA 

methyltransferases (DNMT), which are also involved in gene repression 

[119].  

On the other hand, the PRC1 complex includes a more variable core of 

proteins, such as Human Polyhomeotic (HPH), Human Polycomb (HPC), 

Ring1B and Bmi1 polycomb ring finger oncogene (Bmi1). PRC1 is able to 

recognise the H3K27me3 mark through the chromodomain of HPC [118] 

and triggers a transcriptional silencing state of the chromatin region by 

means of different mechanisms, like inhibition of transcriptional 

machinery, nucleosome compaction and ubiquitylation of lysine 199 of 

histone H2A tail (H2AK119) by the ligase activity of Ring1B [99, 120-122]. 
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Figure I.10: Silencing mechanisms by Polycomb group proteins. PRC2 
complex triggers the initiation of gene silencing by placing a mark with the 
trimethylation of H3K27. PRC1 recognises this mark and activates a wide 
range of mechanisms, directly inhibiting transcriptional machinery, PRC1-
mediated ubiquitylation of H2AK119, chromatin compaction and recruitment 
of DNA methyltransferases (DNMTs) by PRC2. Figure adapted from [99]. 

PcG protein family has been highly conserved throughout evolution. 

Indeed, members of the PRC2 are consistently involved in developmental 

patterning. However, PRC1 components seem to have arisen in later 

evolution stages, as they are absent in nematodes and plants. 

Accordingly, knock-out mice for each core PRC2 components are 

embryonic lethal due to severe defects at the implantation and early 

post-implantation stages, while homozygous null mutant mice for PRC1 

genes, except for Ring1B, survive to birth but display homeotic 

transformations and die perinatally [123].  

These milder phenotypes of the PRC1 null mice could also be explained 

due to functional redundancy and compensation by the wide range of 

PRC1 genes that are found in vertebrates, with homologues exhibiting 
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partial divergence of tissue-specific expression patterns [124]. This 

divergence may affect the activity of PcG complexes, as in vitro 

experiments showed that while Bmi1 greatly stimulates the E3 ubiquitin 

ligase activity of Ring1B, Polycomb group ring finger protein 2 (Mel-18), a 

homologue that can substitute for Bmi1 in PRC1 complex assembly, does 

not fulfil this function [125]. Unlike Bmi1, which is overexpressed in 

various human tumors and generally accepted as a proto-oncogene, Mel-

18 is shown to be either oncogenic or tumor suppressive, depending on 

the cancer system [126-127]. These findings may help to understand the 

prominent role of Bmi1 in tumorigenesis and at the same time find an 

explanation for the hypothetical tumor-suppressor properties of Mel18 

[128].  

Several PcG proteins have been reported to be involved in different 

cellular processes: cell cycle progression [129], cell memory and identity 

[130-131], stem cell maintenance [132] and neoplasia [133]. For instance, 

embryonic differentiation and development require the proper function 

of PcG proteins and of the DNA methylation machinery [134-135]. 

Interestingly, PRCs are not static complexes, but their protein members 

change depending on the cell type, tissue and stage [136].  

Bmi1 was the first PcG protein reported to be involved in tumorigenesis, 

working as a proto-oncogene cooperating with CMYC to promote mouse 

B- and T-cell lymphomas by repressing the CDKN2A locus [137]. Later on, 

different reports showed that Bmi1 is involved in many types of human 

neoplasia, such as lung cancer [138], leukemia [139], brain tumour [140], 

prostate cancer [141] and breast cancer [142]. Bmi1 has also been 

reported to be involved in many other processes, like adult stem cell 

maintenance [143], axial skeletal development [144] and cell cycle 
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regulation [145], which may explain the prominent figure of Bmi-1 in 

tumorigenesis.  

Even though Bmi1 was the first and still is the most frequently reported 

PcG protein to be involved in cancer development, other PcG members 

have been implicated in tumorigenesis [99]. For instance, EZH2 has been 

found to be upregulated in several human tumours, such as mantle cell 

lymphoma [146], prostate cancer [147-148], breast carcinoma [149] and 

bladder carcinoma [150] among others.  Moreover, EZH2 expression has 

been hypothesised to be an indicative of metastasis and therefore a 

marker of low prognosis [151], despite this hypothesis needs further 

insight [152]. 

1.5 Epithelial cancers 

Due to the heterogeneity of the different types of cancers, classifying the 

whole range of neoplasias can be approached from different levels – site 

of origin, histological characteristics or molecular features– and novel 

characterisation may obtain more specific treatments for each patient 

[153].  

When tumours are classified following their site of origin, a wide range of 

cancers fits into a group called carcinomas, all coming from epithelial 

cells. Carcinomas, or malignant epithelial cancers, constitute the majority 

of human malignant neoplasias with higher incidence [154]. Interestingly, 

epithelial cancers seem to require more altered pathways for their 

progression than other tumours with higher motility [10, 155-156]. 

The International Classification of Diseases for Oncology (ICD-O) of the 

World Health Organisation (WHO) mainly distributes epithelial cancers in 

two subgroups [157-158]: cancers originating from the epithelium of the 
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skin,  like basal cell carcinoma and melanoma, and those appearing in 

glands, like hepatocellular carcinoma, renal cell carcinoma and the family 

of  adenocarcinomas. One of the human cancer with worse prognosis is 

the pancreatic adenocarcinoma, accounting for a 5-year survival rate of 

less than 5% since the diagnosis, while a total recovery is yet seldom 

achieved [159]. 

2. The pancreas 

2.1 Physiology of the pancreas 

The pancreas is an organ of the vertebrates, located near the stomach 

and the small intestine. Being the second largest gland involved in the 

digestive system, the pancreas displays both exocrine and endocrine 

functions. It is involved in regulating two major physiological processes: 

digestion and glucose metabolism [160]. 

At the histological level, the pancreas has two different types of 

parenchymal tissue. The microscopic appearance of the organ displays a 

series of cell-packed sphere-shaped structures called islets of 

Langerhans, surrounded by less dense and much larger acinar cells. The 

islets of Langerhans are responsible of the endocrine function while the 

acinar cells are in charge of the exocrine activity of the pancreas. 
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Figure I.11: Anatomy of the pancreas. The pancreas comprises an endocrine and an 
exocrine part. The function of the exocrine pancreas is to produce digestive enzymes, 
which are secreted by acinar cells and transported to the gut by the ductal system. The 
endocrine pancreas has four hormone-producing cell types: α-, β-, δ- and pancreatic 
polypeptide (PP) cells. α-cells and β-cells are in charge of glucose regulation, as they 
secrete glucagon and insulin, respectively. δ-cells secrete somatostatin and PP cells 
secrete pancreatic polypeptide. a | Gross anatomy of the pancreas. b | The exocrine 
pancreas. c | A single acinus. d | An Islet of Langerhans embedded in exocrine tissue. 
Figure adapted from [161]. 

2.1.1. Endocrine pancreas 

The islets of Langerhans account for approximately 1-2% of total human 

pancreas, that is, around one million islets cells in healthy conditions. A  

The islets comprise different cell types, each one of them secreting 

specific hormones to the bloodstream [162-165]. The α-cells account for 

approximately 30% of total islet cells and are in charge of producing 

glucagon, which is released in presence of hypoglycaemia to increase 

glucose levels. The β-cells represent the majority in the islets, accounting 

for around 60% of the total islet cells. They are responsible of insulin 

production and secretion, which activates glycogenesis in the context of 
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hyperglycaemia. The β-cells also produce amylin, which is also involved in 

glycemic control. 

 

 

 

 

 

 

 

 

 

Figure I.12: Endocrine pancreas. The islets of Langerhans are complex spherical 
structures which contain several cell types which interact with the bloodstream 
through the capillaries. Figure adapted from [166]. 

Other less abundant cell types are found in the islets, such as δ, PP and ε-

cells. The δ-cells constitute 3-10% of total islet cells and secrete 

somatostatin, which is responsible of suppressing the release of several 

gastrointestinal hormones.. The PP-cells (around 3-5% of total cells) 

secrete the pancreatic polypeptide (PP), whichregulates pancreatic and 

gastrointestinal secretions. Finally, the rare ε-cells account for less than 

1% of total islet cells and produces ghrelin, a hormone which stimulates 

hunger [167]. 
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Islets cells can influence each other through paracrine and autocrine 

communication. For instance, somatostatin inhibits both glucagon and 

insulin secretions at the paracrine level and also acinar and ductal 

secretions, whereas the pancreatic polypeptide acts in a paracrine 

manner inhibiting secretion of digestive enzymes from the acini. 

2.1.2. Exocrine pancreas 

The exocrine part of the pancreas comprises the bulk of the organ tissue. 

This fraction displays three main cell types: acinar, ductal and 

centroacinar cells. The acinar cells are arranged in grape-like structures 

at the smallest termini of the branching duct system, which covers the 

main area of the pancreatic tissue.  

 

 

 

 

 

 

Figure I.13: Exocrine pancreas. Acinar cells constitute 
structures at the termini of the ducts. Figure adapted from 
[166]. 

Acinar cells possess large deposits of zymogen granules in the cytoplasm, 

which contain inactive forms of different digestive enzymes (trypsin, 

chymotrypsin, elastase, carboxypeptidase, lipase, amylase...). The acinar 

cells produce, store and secrete the digestive enzymes which are 

emptied to the ducts by exocytosis. Some proteases are the most 
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abundant enzymes in the pancreatic juice and in order to avoid self-

digestion of the pancreatic tissue, acinar cells store inactive forms of 

these enzymes inside the zymogen granules of their cytoplasm. Then, 

they are secreted from the acini and emptied in the duodenal lumen.  

The duct cells are organized in a network of increasing size culminating in 

main and accessory ducts. Their mission is to produce mucin and 

bicarbonate, which are added to the secreted digestive enzymes, thus 

obtaining the pancreatic juice. The enzyme mixture is then transported 

through the ducts and eventually emptied into the duodenum. 

Finally, the centroacinar cells lie at the interface of the acinar structure 

and the ductal system, being continuous between both acinar and ductal 

lumens [168]. Both duct cells as well as centroacinar cells produce mucin 

and bicarbonate..  

The exocrine secretion to the pancreatic duct is mediated by the 

hormone cholecystokinin (CCK), which is secreted by the duodenal and 

intestinal cells [169-170].. Once outside the pancreatic ducts, trypsinogen 

is activated by enteropeptidase, the latter which is produced by the 

duodenal mucous [171]. Trypsinogen is activated into trypsin, which 

activates the rest of inactive forms of proteases into carboxypeptidase, 

chymotrypsin, elastase and trypsin itself. Therefore, once the pancreatic 

juice is in the duodenum, the inactive enzymes are activated and ready 

to digest proteins, fat, carbohydrates and nucleic acids. 
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Figure I.14: Secretion of pancreatic digestive enzymes from 
acinar cells. Figure adapted from [166]. 

Pancreatic juice contains water, digestive enzymes (secreted by acinar 

cells) and electrolytes (secreted by ductal and centroacinar cells). The 

pancreatic juice is isotonic, and abundant in levels of HCO3
-, Na+, K+, Cl- 

and scarce in Ca2+ and Mg2+. Pancreatic juice is alkaline due to high levels 

of bicarbonate [172], and not only transports the digestive enzymes to 

the intestinal tract but also neutralises the acid juices from the stomach. 

This neutralisation is very important because pancreatic enzymes need a 

neutral or slightly basic pH for their activity. Fat absorption is depending 

on the formation of micellae in the intestinal lumen, which needs a 

neutral or slightly basic pH as well. Finally, pancreatic juice protects the 

intestinal mucosa from ulcer formation by an excess of acid from the 

stomach. 
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PANCREATIC DIGESTIVE ENZYMES 

Hydrolases Nucleases 

Amylase Ribonucleases 

 Deoxyribonucleases 

Lipases Proteases 

Colipase Chymotrypsinogen 

Lipase Trypsinogen 

Prophospholipase A2 Proelastase 

Steapsin Proprotease E 

 Procarboxypeptidase A and B 

Table I.1: Digestive enzymes produced and secreted in 
acinar cells. 

2.2 Pancreatogenesis 

The first evidence of the pancreas during mouse development is a 

condensation of the mesenchyme of the endodermal gut tube in the 

duodenal primordium of the foregut. Two separate buds (dorsal and 

ventral) appear shortly after this condensation, around embryonic day  

9.5 (E9.5) through evagination of the early gut endoderm into the 

mesenchyme [173-174]. 

Then, pancreatic buds undergo an increase in size and a spatial 

reorganization with the rotation of the stomach. A branching process 

initiates, sending epithelial protrusions into the mesenchyme, leading to 

a three dimensional structure with a tree-like epithelial network 

surrounding the mesenchyme. Meanwhile, the ventral bud is 

dramatically displaced towards the dorsal bud, becoming in contact with 

each other. This contact and the subsequent fusion of the pancreatic 

buds occur between E12 and E13. The dorsal bud will constitute the tail, 

the body and part of the head of the organ, while the ventral bud will 

become the rest of the head of pancreas. 



INTRODUCTION 

47 
 

Around E9 and E10, epithelial differentiation initiates and “early” 

endocrine cells can be found. Later on, the first acinar cells can be 

detected around E12 and E13. 

During pancreatic formation, important signalling pathways are induced 

or silenced to promote differentiation of progenitor cells to an adult 

lineage, such as the case of the Hedgehog or the Notch pathway.  

In this respect, several members like Sonic hedgehog (Shh) and Indian 

hedgehog (Ihh) induce growth, differentiation and function of many 

organs in embryogenesis and in adults [175]. However, increased 

Hedgehog signalling in the pancreas antagonises correct organogenesis 

[176-178], and inhibition of Hedgehog expression in the pre-pancreatic 

dorsal mesoderm induces the expression of transcription factor 

Pancreatic and duodenal homeobox 1 (PDX1), which is necessary for 

pancreas formation [179-181]. In addition, ectopic expression of Shh 

under the PDX1 promoter induces pancreatic mesoderm conversion to 

intestinal mesenchyme [178]. 

Another signalling pathway which has been reported to be involved in 

pancreatic formation is the Notch pathway. Indeed, analysis of pancreas 

development in mice genetically altered at several steps in the Notch 

signalling pathway showed that Notch signalling is crucial for the decision 

between the endocrine/exocrine progenitor fates in the developing 

pancreas [182]. Downregulation of several Notch pathway genes, like 

Hes1, Dll1 or RBPJ, leads to an increase of the transcription factor ngn3 

which consequently triggers an increase in the formation of the 

endocrine compartment [183].  
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Moreover, recent discoveries have confirmed that Notch signalling is also 

involved in lateral specification of the pancreas and, similarly to other 

developing organ systems, in suppressing the differentiation and 

maintenance of the progenitors in an undifferentiated state [182-186]. 

2.3 Transcription factors involved in pancreatic 

development 

Pancreatic development involves a complex combination of several 

signalling pathways and different transcription factors specifically 

expressed during time and in space. A subset of these transcription 

factors has a dual role: first, they are involved in differentiation and cell 

fate decision of the pancreatic progenitors during development. Later on, 

in the adult organ, they are related to functionality and the maintenance 

of the differentiated phenotype. 

2.3.1. Pancreatic and duodenal homeobox 1 (Pdx1) 

As mentioned above, one of the most important transcription factors in 

pancreatic development is Pdx1 which, in combination with Ptf1a, is 

crucial for proper pancreatogenesis and exocrine/endocrine progenitor 

differentiation [179-180, 187]. 

During mouse embryogenesis, Pdx1 is expressed by a subset of cells in 

the posterior foregut region of the definitive endoderm around E8.5-9, 

and it is present until around E12 [188]. Pdx1-expressing cells are 

multipotent progenitors which give rise to the developing pancreatic bud 

and subsequently to the exocrine, endocrine and ductal cell populations 

[181, 189]. Around E14-15, Pdx1 expression is localized in the endocrine 

tissue. Finally, Pdx1 is detected in the endocrine pancreas, mainly in -

cells [179] and to a lesser extent in other endocrine cell types [190-191].  
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Pdx1 has been found to be regulating the expression of many secretions 

from the endocrine pancreas, such as insulin and pancreatic polypeptide 

among others [192-194]. It has been also involved in the activation of the 

promoter of the elastase gene by means of constituting a trimer with 

Pbx1b and Meis2b which interacts with the Ptf1 complex [195-196]. 

Furthermore, interaction between Pdx1 and Pbx1 has been reported to 

be essential for pancreas development [197].  

Homozygous Pdx1 knockout mice survive after birth but their lifespan is 

very short as they completely fail to develop an adult pancreas despite of 

developing pancreatic buds [179]. On the other hand, ectopic expression 

of Pdx1 expands the distribution of pancreatic progenitor cells in the 

dorsal domain of the embryo [198]. 

2.3.2. Pancreas specific transcription factor 1 alpha (Ptf1α)  

In several organs, like the pancreas, a wide range of developmental and 

differentiation processes are regulated by the basic helix-loop-helix 

(bHLH) family of transcriptional regulatory proteins. bHLH proteins in 

mammals are classified in two groups, class B and class A. Class B bHLH 

transcription factors display a restricted pattern of expression, 

heterodimerising with class A bHLH molecules. Some of the class B 

members are muscle-specific factors like MyoD, NeuroD and the 

Pancreas specific transcription factor 1 alpha (Ptf1a), also known as p48 

[199]. 

Ptf1a (henceforth p48) was initially identified as an exocrine specific 

transcription factor [200], constituting the PTF1 complex with two more 

molecules: E12/47, also called HEB, and Rbp-l [201].  



INTRODUCTION 

50 
 

However, this pancreatic specificity was questioned when p48 expression 

was also described in specific regions of the spinal cord and in the central 

nervous system (CNS) [202-203]. In addition, p48 expression was also 

found at early mouse embryonic stages (E9.5) in the developing exocrine 

and endocrine pancreas, rather than being exocrine restricted as 

previously described [187]. In the adult pancreas, p48 expression is 

restricted to acinar cells. Furthermore, overexpression of p48 in 

pancreatic acinar cell lines has an antiproliferative effect independent 

from the PTF1 complex [204].  

Studies with knockout mice showed that the p48-/- null phenotype is 

postnatally lethal with associated below-average birth weight and 

complete failure of normal pancreatic development [200], while the 

ventral bud adopts an intestinal fate [187]. Moreover, p48 is a key 

regulator in cerebellar neurogenesis, as p48 -/- null mice showed 

cerebellar agenesis at birth [205].  

2.4 Pathologies of the pancreas 

The main pancreatic pathologies reported in human patients have an 

effect on both exocrine and endocrine pancreas, like different congenital 

anomalies [206-208] or the formation of cysts [209]. The most common 

pathology in the endocrine pancreas is diabetes mellitus. However, our 

work is focused into pancreatic exocrine diseases, like pancreatitis and 

pancreatic cancer. 

2.4.1. Acute pancreatitis 

Acute pancreatitis is a sudden inflammation of the pancreas due to 

enzymatic necrosis, followed by an acute onset of abdominal pain. World 

deaths for acute pancreatitis are counted by 17,000 per year. The most 
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common causes of acute pancreatitis are pancreatic juice obstruction by 

gallstones, viral infections (paramyxovirus, Epstein-Barr virus), 

autoimmune diseases, excessive alcohol and drugs consumption, and 

duodenal ulcers. 

As explained above, the exocrine pancreas produces a variety of enzymes 

that contribute to food digestion by breaking down food tissues. In acute 

pancreatitis, the main alteration is the auto-digestion of the tissue due to 

intrapancreatic activation of digestive enzymes such as the protease 

trypsinogen, and not in the intestinal lumen, thus leading to proteolysis, 

inflammation, destruction of pancreatic blood vessels, haemorrhage, 

tissue necrosis and pain. 

Treatment for acute pancreatitis is based on pain relieving and blocking 

the pancreatic secretion until pancreas normalization is achieved. 

2.4.2. Chronic pancreatitis 

Chronic pancreatitis is a light or mild long-standing inflammation of the 

pancreas that alters its normal structure and functions, as the pancreatic 

parenchyma is progressively lost. Episodes of acute inflammation in a 

previously injured pancreas can also lead to a chronic pancreatitis, as 

well as chronic damage with persistent pain or absorption problems. At 

the histological level, chronic pancreatitis lesions show reduction of the 

acini, proliferation of ductal complexes and fibrosis with calcification.  

Chronic pancreatitis shares many possible causes with acute pancreatitis, 

thus around 70% of adult patients with chronic pancreatitis presented 

chronic high alcohol consumption [210]. Gallstone-associated 

pancreatitis can become chronic after many acute inflammation and 

necrosis-fibrosis transition. Moreover, recent publications have unveiled 
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a hereditary chronic pancreatitis with an autosomal dominant pattern 

due to mutations in the serine protease inhibitor, Kazal type 1 (SPINK1), a 

pancreatic trypsin inhibitor [211]. However, several cases of chronic 

pancreatitis have an idiopathic origin. 

Many studies have linked chronic pancreatitis with pancreatic cancer, 

pointing out a chronic, long-standing inflammation as a prelude of 

tumorigenesis [161, 212-214]. 

 

Palliative treatments for chronic pancreatitis include pain relieving and 

oral administration of digestive enzymes when the pancreas no longer 

secretes them. 

2.4.3. Pancreatic cancer 

Worldwide, over 200,000 people die annually of pancreatic cancer. The 

highest incidence and mortality rates of pancreatic cancer are found in 

developed countries. In the United States, pancreatic cancer is the 4th 

leading cause of cancer death, and in Europe it is the 6th [215]. Because 

of high fatality rates, pancreatic cancer incidence rates are almost equal 

to mortality rates. Patients with pancreatic cancer present a high 

mortality rate as the disease becomes clinically apparent during late 

stages, when it is refractory to conventional chemotherapy [216]. 

Therefore, there is a dismal prognosis of survival rate, while a total 

recovery is yet seldom achieved [159]. 

Several genetic and epidemiologic studies have been performed to 

understand the pathogenesis of the disease, and new insights are 

expanding the knowledge of pancreatic cancer. The incidence of the 

cancer increases in advanced age and environmental factors have an 

influence. The most common factors for pancreatic cancer are high 
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alcohol consumption, smoking habit [217], diets low in vegetables and 

fruits [218], chronic pancreatitis, inherited predisposition [219] and 

diabetes. Regarding familial pancreatic cancers, 10% of pancreatic 

cancers are inherited, but with a lower penetrance compared to other 

familial cancer syndromes [220]. 

The only efficient treatment at the moment is a partial 

pancreatoduodenectomy called the “Whipple procedure”. Despite its 

aggressiveness, this treatment rarely achieves a complete recovery of the 

patient [221]. Chemotherapy and radiotherapy are an alternative to 

increase life expectancy. However, they are not as efficient as in other 

tumours at least in part due to the late diagnosis in advanced stages of 

tumorigenesis. 

Pancreatic tumours are generally classified in two classes: endocrine and 

exocrine. 

2.4.3.1. Pancreatic endocrine tumours 

Pancreatic endocrine tumours (PETs) are very rare, with an incidence of 

approximately 1:100,000 and they represent around 1–2% of all 

pancreatic neoplasms [222-223]. Regarding the cellular origin of PETs, 

while they were thought to be arising from the islets, new insights have 

suggested a pluripotent stem cell population in the ductal epithelium as 

their origin [223-224]. 

PETs are classified according to their secretion pattern, functional or non-

functional. Functional PETs are associated with a clinical syndrome 

caused by inappropriate secretion of hormones. They were accounted for 

70-80% of the diagnosed cases, but recent data has doubled the 

incidence of non-functional PETs [225-226]. The most common functional 
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PETs are insulinomas, followed by gastrinomas, glucagonomas, 

somatostatinomas, vasoactive intestinal polypeptide secreting tumours 

and other less frequent tumours [223, 227].  

Non-functional PETs include lesions which have no relation with a 

specific hormonal syndrome because they do not present any secretion 

or because the actual secretion has no specific symptoms, like in the case 

of pancreatic polypeptide, ghrelin and neurotensin among others [227].  

Despite both functional and non-functional PETs are very malignant, they 

are far less aggressive than their exocrine counterparts. Patients with 

PETs can achieve full recovery if the treatment is performed before 

apparition of metastasis [227]. Moreover, some PETs can appear outside 

the pancreas, like in the gastrointestinal tract, in the lungs or in neural 

tissue [227]. 

2.4.3.2. Pancreatic exocrine tumours 

The other group of pancreatic cancers includes pancreatic exocrine 

tumours, which account for around 95% of all cancers in the pancreas. 

Taking into account the histological classification of all types of malignant 

neoplastic lesions in the exocrine pancreas, 80% of the cases are 

classified as pancreatic ductal adenocarcinomas (PDACs), while the rest 

are ductal adenocarcinoma variants (like anaplastic carcinoma, 

adenosquamous carcinoma, mixed ductal-endocrine carcinoma…) and 

other malignancies which differ from the ductal phenotype, like 

mucinous cysticadenocarcinoma, intraductal papillary-mucinous invasive 

carcinoma and acinar cell carcinoma among others. 
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2.5 Pancreatic ductal adenocarcinoma (PDAC) and 

precursor lesions of PDAC 

As mentioned above, pancreatic ductal adenocarcinoma (PDAC) is the 

most common type of malignant neoplasias of the pancreas, hence it is 

the most studied. Exhibiting aberrant ductal structures, three main types 

of non-invasive precursor lesions of PDAC have been reported and are 

being thoroughly studied to improve early diagnostic techniques and 

prognosis of the disease. These non-invasive lesions are pancreatic 

intraepithelial neoplasias (PanINs), mucinous cystic neoplasms (MCNs), 

and intraductal papillary mucinous neoplasms (IPMNs). 

2.5.1. Pancreatic intraepithelial neoplasia (PanIN) 

PanINs present microscopic noninvasive lesions which typically display 

columnar to cuboidal cells with mucin secretions, and cytologic and 

architectural atypia. Due to the variability of these lesions and the lack of 

agreement between researchers, characterising PanINs was very 

complex and chaotic in terms [228]. Therefore, a consensus was 

necessary to unify the histological criteria for grading PanINs [229-230].  

PanINs can be separated in three grades according to the architectural 

and cytonuclear atypias: PanIN-1, PanIN-2, and PanIN-3. PanIN-1 is the 

lowest grade lesion, displaying flat epithelial lesions composed of tall 

columnar cells with abundant supranuclear mucin, with a minimal degree 

of atypias. This lesion is subclassified into PanIN-1A and PanIN-1B, 

according to the absence or the presence of epithelial micropapillary 

infoldings, respectively. PanIN-2 lesions are mostly papillary, with 

moderate atypias like loss of polarity, nuclear crowding, enlarged nuclei, 

pseudostratification, and hyperchromatism. Mitoses are not frequent. 

Finally, PanIN-3 lesions are also called “carcinoma in situ”, due to the 
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resemblance with carcinoma but with no invasive feature. Severe degree 

of atypias can be found, like papillary histology, cribriforming, luminal 

necrosis and atypical mitoses. The prevalence of PanIN lesions increases 

in advanced age. Indeed, low-grade stages are frequent in patients of 60 

years of age while only a 3% show PanIN-3 lesions [231]. 

 

 

 

 

 

 

Figure I.16: Pancreatic intraepithelial neoplasia (PanIN) progression. PanIns 
preneoplastic lesions display progressive histological alterations which culminate into 
adenocarcinoma formation. A common pattern of gene alterations in different PDACs 
includes activation of oncogenes and a loss of function of many tumour-suppressor 
genes. Figure adapted from [161, 229]. 

There is solid evidence that PanINs are noninvasive precursor lesions of 

PDACs. Patients with previous pancreatic resection due to 

adenocarcinomas have been reported to display high-grade, noninvasive 

PanIN lesions which progressed to invasive cancers [232]. Furthermore, 

molecular analyses of PanINs have shown a correlation between the 

genetic alterations found in PanINs and in invasive pancreatic 

adenocarcinomas [233-234].  

Furthermore, there is also a genetic progression in PanINs which fits with 

the histological grades [233, 235-236]. First of all, mutations in the KRAS 

oncogene have been reported in almost every case of PDAC, which 
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render KRAS constitutively active [237]. In PanIN lesions, mutations of 

KRAS are one of the earliest alterations. Moreover, there is a linear 

increase in the incidence of KRAS mutations in advancing PanIN stages 

[238-239]. In addition, loss of telomere integrity is also an early event in 

pancreatic cancer progression and in PanIN lesion. This event is related 

to chromosomal instability which leads to neoplasia [240-241]. Regarding 

PanIN-2 lesions, they display inactivating mutations in the INK4A/p16 

gene, thus decreasing p16 expression. Mutations in this locus are found 

in 90% of the pancreatic cancers [242]. Advance-grade PanIN lesions 

display mutations in different tumour suppressor genes: TP53 [243], 

BRCA2 [244] and SMAD4/DPC4 [245].  

2.5.2. Mucinous cystic neoplasm (MCN) and intraductal 

papillary mucinous neoplasm (IPMN) 

The other two precursor lesions of PDAC, MCNs and IPMNs, are 

macroscopic lesions which present as cysts and sometimes as a dilation 

of the major pancreatic ducts. MCNs are cystic epithelial neoplasms with 

important secretion of mucin. They are usually found histologycally well 

defined and isolated with a surrounding ovarian-like stroma [246]. One 

third of MCNs have an invasive tubular component which has low 

prognosis compared to their non-invasive counterparts [247]. KRAS 

mutations can be detected at early stages of MCNs while inactivation of 

TP53 and SMAD4/DPC4 is usually detected only in invasive regions of 

MCNs [248-249].  

Finally, IPMNs are the third type of precursor lesions, which are usually 

found in the main pancreatic duct. IPMNs are classified in two groups: 

main duct or branch duct, depending on their position in the pancreas. 

Branch-duct IPMNs are usually small, noninvasive lesions with better 
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prognosis than main-duct IPMNs, which are associated with invasion and 

malignancy [250-253]. IPMNs were first related to intestinal adenomas 

due to evident histological resemblances. Furthermore, recent analysis of 

different cases of IPMNs has unveiled a group of MUC-2 positive lesions 

with good prognosis and another group of MUC-1-expressing IPMNs and 

PanINs with associated PDACs and, thus, low prognosis [254-255]. 

Non-invasive IPMNs display a mutational pattern which significantly 

differs from the one of PanINs, probably due to differences of origin and 

histology. KRAS is mutated at early stages and this event increases during 

IPMN progression [256], like in PanINs. However, SMAD4/DPC4 gene is 

rarely inactivated in IPMNs and STK11/LKB1 is found to be mutated, 

which is the opposite in PanIN lesions [257-258]. Interestingly, the 

PI3KCA oncogene has been found to be mutated in IPMNs, which is a 

common alteration of colorectal neoplasia and would correlate with the 

intestinal-like phenotype of the lesion [259-260]. 

2.6 Genetic basis of PDAC 

PDACs have a well-established mutational pattern which is consistent in 

the majority of analysed lesions. If we take into account the suggested 

precursor nature of PanINs, then the pattern should be considered as a 

progressive acquisition of mutations in tumour-suppressor genes, 

oncogenes, as well as telomere alterations [161]. 

One of the first genes to present alterations is the KRAS oncogene, which 

is mutated in almost every PDAC lesion [261]. Epidermal Growth-Factor 

(EGF) and the activated phosphatidylinositol 3-kinase (PI3K) pathway 

have been linked to KRAS in different cell lineages [262]. Consistently, 

EGF receptors (EGFR) and ligands (TGFα and EGF) are overexpressed in 
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pancreatic adenocarcinomas [263] and their knock-down inhibits cell 

growth in different pancreatic cell lines [264]. Moreover, EGF receptors 

are induced in low-grade PanINs, which might indicate EGF-family 

signalling to be active at early stages of neoplasia [265]. Expression of 

other oncogenes like cMyc is altered in around 25% of PDAC lesions 

[266]. 

On the other hand, PDACs show mutations in a wide range of tumour-

suppressor genes. The p16/INK4A gene is the most commonly inactivated 

tumour-suppressor gene in the pancreas, accounting for around 90% of 

the cases [242]. Upon abnormal growth situation, p16/INK4A 

transcription is increased in a stress-response manner [50] to act as a 

tumour suppressor. Furthermore, p16/INK4A has been involved in the 

DNA damage response, thus its inhibition might favour PDAC resistance 

[267]. ARF is spared by sporadic mutations which target INK4A, thus 

suggesting that INK4A has a more important role than ARF in pancreatic 

cancer [268]. 

Another mutated tumour-suppressor in PDAC is TP53, which is found 

mutated in 50% of the cases [268].  

Finally, the deleted in pancreatic carcinoma 4 gene (DPC4), also known as 

SMAD4, is a tumour-suppressor gene found mutated in 50% of PDACs 

[269]. The Smad4 protein has a crucial role in the TGF-β signalling 

pathway, which exerts inhibitory effects in cell growth. Loss of Smad4 in 

PDACs decreases TGF-β signalling, thus providing growth abnormalities 

[270]. 
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2.7 Epigenetic mechanisms involved in pancreatic 

cancer 

Recent studies have reported numerous epigenetic alterations in 

pancreatic cancers that, as describe for some genetic alterations can also 

be found in preneoplastic lesions such as PanINs and IPMNs [271]. It is 

the case of the DNA methylation machinery, which has been found to be 

altered in pancreatic cancers: expression of DNA methyltransferase 1 

(DNMT1), which methylates daughter strands of newly replicated DNA to 

preserve parental methylation pattern [272], increases in advanced 

stages of the disease and may reflect the malignancy of PDAC [273]. 

The aberrant methylation of CpG islands has been frequently reported to 

occur in upstream regulatory regions of classical tumour-suppressor 

genes, thus impairing their normal transcription. Pancreatic cancers and 

precursor lesions (PanINs, IPMNs, MCNs) usually harbour abnormal 

hypermethylation in tumour-suppressor genes or in genes involved in 

important homeostatic pathways, like p16/INK4a [274], TSCL1 [275], 

BNIP3 [276] and preproenkephalin (ppENK) among others [277-278].  

Members of the mucin family have been shown to undergo alterations of 

histone modifications in pancreatic cancer. Regulatory regions of the 5’ 

of MUC1 have been reported to be enriched in H3K9 marks [279]. 

Moreover, MUC2 also shows enrichment in the 5’ region, specifically in 

tri-methylated H3K4, acetylated H3K9 and acetylated H3K27 in 

pancreatic cancer cells [280]. 

Finally, analysis of the expression of Polycomb group genes in various 

human tissues – including the pancreas – at the RNA and protein levels 

unveiled an important variation in the expression among tissues and 
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even among specific cell types [136]. In these preliminary studies, Bmi1 

and Ring1B expression were found to be expressed in both endocrine 

and exocrine compartments of the pancreas, while the signal was 

stronger in endocrine cells. No expression of PRC2 members was found.  

2.8 Animal models for the study of exocrine 

pancreatic pathologies 

There has been a strong interest to generate animal models that 

faithfully recapitulate the events occurring in human pancreatitis and in 

PDAC. A wide range of models have been created so far, involving 

induced expression of transforming growth factor α (TGFα) or 

overexpression of oncogenes CMYC and KRAS, among other strategies. 

2.8.1. Caerulein-induced and duct-ligated-induced 

pancreatitis  

Caerulein is a decapeptide similar in action and composition to 

cholecystokinin, stimulating gastric, biliary, and pancreatic secretion. It is 

used in paralytic ileus and as diagnostic aid in pancreatic malfunction. It 

is also used to induce pancreatitis in rodent models [281]. 

Another way of inducing experimental murine pancreatitis is by means of 

performing a ligation in pancreatic ducts next to the spleen, obstructing 

the exocrine fluid in the region [282]. Seven days later, exocrine 

metaplasia appears in the ligated part of the pancreas leading to 

transdifferentiation of the acinar cells to duct-like cells [283] while the 

unligated part remains intact. These metaplastic cells lose their acinar 

characteristics (decrease or loss of p48/Ptf1a and Mist1 expression) and 

start expressing genes related to development and cell growth, such as 

the embryonic transcription factor PDX1 and Notch receptors [284]. 
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2.8.2. MT- TGFα and Ela-TGFα 

Expression of epidermal growth factor receptor (EGFR) with its ligand 

transforming growth factor α (TGFα) has been linked with a decrease in 

the patient survival with pancreatic cancer [285].  

Based on this observation, different TGFα transgenic mice were 

generated. One of these models uses the metallothionin-1 gene 

promoter to drive TGFα expression (MT-TGFα) [286-287]. This model 

displays high proliferation of fibroblasts and acinar cells in the pancreas, 

with focally altered acinar-to-ductal transdifferentiation. However, TGFα 

overexpression is not specifically directed to the pancreas, therefore this 

model was exceeded by more specific animal models for pancreatic 

diseases.  

Another mouse model with induced TGFα using the elastase-1 promoter 

(Ela-TGFα) was developed, allowing specific induction in the acinar 

fraction of the pancreas [288-289]. About 25% of the animals display 

tumours at one year of age. Nevertheless, the spectrum of events in 

these lesions does not recapitulate those in human PDAC, as Ela-TGFα  

displayed abnormal ductal structures and fibrosis, but lacked many 

features found in human PDAC lesions. 

2.8.3. Ela-myc 

Half of human PDACs displays overexpression of oncogene CMYC both at 

the protein [290] and at RNA level [291]. Moreover, a recent study 

established that out of 31 pancreatic cancer cell lines, more than the half 

showed CMYC amplification [292].  

In addition, the induction of pancreatic cancer in rats by chemical 

carcinogens, like azaserine, leaded to an increase in CMYC levels, thus 
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confirming the role of CMYC in human PDAC [293]. Moreover, a 

transgenic mouse was developed carrying CMYC under the elastase 

promoter (Ela-myc). These animals display pancreatic cancer lesions at 

an early age [294], and the resulting tumours are 50% acinar cell 

carcinomas while the other 50% are ductal or mixed ductal and acinar 

carcinomas. 

2.8.4. KRASG12V 

The first transgenic mouse able to recapitulate the whole spectrum of 

human PDAC events (PanINs and PDAC lesions) was a knock-in mouse 

which has a point mutation in the endogenous KRAS gene, which turns 

into an aminoacid substitution in the translated protein (KRASG12D), thus 

rendering KRAS constitutively active. Using pancreas-specific promoters 

of PDX1 and p48, KRASG12D is specifically expressed in pancreatic lineages 

at E8.5 [295]. However, this mouse model does not provide information 

about the target cell in which KRAS mutation must take place for PDAC to 

develop.  

Recently, a transgenic knock-in mouse was generated with the KRASG12V 

oncogenic allele expressed specifically in acinar and centroacinar cells 

during development under the control of the elastase promoter [296]. 

This model recapitulates the full spectrum of PanINs and invasive PDAC 

found in humans and it can be ascertained that acinar and centroacinar 

cells can lead to ductal-like tumors.  

Moreover, while oncogenic KRAS activation in embryonic stages was 

enough to induce the PanIN formation and PDAC progression, sole 

oncogenic KRAS induction in adult mice does not result in tumours. 

Interestingly, caerulein-induced chronic pancreatitis is needed to allow 
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tumorigenesis [296]. This correlates with the previously reported fact 

that chronic pancreatitis is a risk factor of PDAC [213]. 

2.9 Pancreatic cell plasticity 

Many studies have reported the ability of pancreatic cell types to 

undergo metaplasia or transdifferentiation, thus converting into another 

cell type. In vivo and in vitro experiments have reported 

transdifferentiation between different pancreatic cell types and also into 

other tissue cell types [283]. This apparent pancreatic cell plasticity has 

opened an interesting research field with many implications, both clinical 

and therapeutical. Several in vitro models have been able to obtain a 

wide variety of metaplasias: acinar-to-ductal [284], acinar-to-islet [297-

298], acinar-to-hepatocyte [299]. The studies regarding exocrine to 

endocrine transdifferentiation have meant a huge leap forward in 

pancreatic β-cell regeneration to improve the treatment on patients with 

diabetes mellitus [297]. However, a better understanding of the whole 

system must be achieved before transferring these models to the clinic. 

In vivo models of transdifferentiation use the natural ability of the 

pancreas to spontaneously undergo acinoductal transdifferentiation 

upon tissue injury. As explained above, several experimental animal 

models with acinar-to-ductal metaplasia have been established, in which 

pancreatic lesion is induced, like caerulein-induced pancreatitis [296], 

obstruction or ligation of pancreatic ducts [300-301] and subtotal 

pancreatectomy [302]. Moreover, several transgenic mice with directed 

overexpression to the pancreas also show acinar-to-ductal 

transdifferentiation, like the cases of overexpressing transforming 

growth factor α (TGFα) [288-289], the oncogene CMYC [294] or the 

oncogene KRASG12V [296]. 
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Acinar-to-ductal metaplasia has been reported in human pancreatitis, in 

preneoplastic lesions of the pancreas and in PDACs. Exhaustive studies 

are being performed to understand the cellular origin of tumorigenesis in 

the pancreas, in order to tackle the disease early on its development 

[161, 212-213].  

The identification of a population of “cancer stem cells” may pave the 

way to improve treatments against pancreatic cancer, targeting both 

tumour-initiating cells and differentiated cancer bulk population in order 

to achieve a cure instead of palliative treatments. In addition, it also may 

clarify the origin of the transdifferentiated population found in 

pancreatic lesions and as a consequence the cellular origin of pancreatic 

cancer. Recent evidences may suggest an origin from adult stem cells or 

progenitor cells which acquire self-renewing capacity due to acquisition 

of oncogenic mutations [295].  

Until now, efforts to elucidate a stem-cell population in the pancreas 

have not yet succeeded. On the other hand, systematic analyses of 

different pancreatic adult cell types have been performed to characterise 

a population capable of initiating tumorigenesis. However, transgenic 

mice with directed expression of mutant KRAS oncogene to the 

pancreatic ducts show neither preneoplastic lesions nor neoplasia, 

suggesting that ductal cells are not capable of originating tumorigenesis 

[51].  

At the moment, two cell types are considered to be as potential 

candidates. The first candidates are the centroacinar cells. Largely 

ignored during many years, interest in centroacinar cells re-emerged 

after findings that Notch signalling remains selectively active in these 
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cells [303]. The Notch signalling pathway has a key role in development 

stages to regulate cell differentiation, and in embryonic pancreas it is 

crucial for maintaining pancreatic progenitor cells in an undifferentiated 

state [182-183, 185-186]. The activated state of Notch in centroacinar 

cells, plus their strategic disposition in the pancreatic tissue, identify this 

pancreatic adult cell population as possible stem cell reservoir for the 

exocrine pancreas and therefore as a potential source for pancreatic 

cancer initiation. 

On the other hand, acinar cells have been reported multiple times to 

acquire a precursor phenotype under pancreatic injury and regeneration. 

For instance, in animal models with caerulein-induced pancreatitis acinar 

cells repress differentiated exocrine characteristics and start expressing 

markers of undifferentiated pancreatic progenitors like Hes1 and PDX1 

[304]. Moreover, strong evidence supporting the role of acinar and 

centroacinar cells in the origin of pancreatic cancer comes from the 

recent study above stated in which targeting a constitutively active 

KRASG12V to elastase-positive acinar cells during development results in 

PanINs and PDAC formation. 

During these last two years, several studies have been published 

regarding specific roles of members of the Polycomb family in pancreatic 

function. For instance, EZH2 was found to regulate the expression and 

regeneration of β-cells by means of repressing the INK4A locus. In aging 

islets, EZH2 expression was declined and p16 and p19 were upregulated. 

Interestingly, young mice with conditionally deleted EZH2 in β-cells had 

reduced β-cell proliferation and growth, hypoinsulinemia and mild 

diabetes. On the other hand, an induced lesion performed in the islets to 

diminish β-cell population was followed by an increase in EZH2 
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expression, by adaptive proliferation and by re-establishment of the β-

cell mass [305]. 

Moreover, similar results were published with Bmi1 in β-cell 

regeneration and growth. Bmi1 was reported to be also regulating the 

INK4a/Arf locus in β-cells, and aging islets showed decreasing levels of 

Bmi1 which resulted in an increase of p16 and p19, leading to 

impairment in β-cell regeneration [306-307].  

Finally, a recently published lineage-tracing study, using BMI1Cre-ER/+; 

Rosa26YFP/+ knock-out mice, reported that Bmi1 can allegedly work as a 

marker for a subpopulation of self-renewing acinar cells. This would 

indicate that self-renewal properties are not an exclusive feature of adult 

undifferentiated stem cells [308].  
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Epigenetic mechanisms are well established inducers of tumorigenesis. 

Their role in cancer formation and progression is incontrovertible. 

Moreover, several members of Polycomb group of proteins have been 

related to cancer formation and progression. 

The main reason and hypothesis of this thesis project is that Polycomb 

members ought to have a role in formation, progression and invasiveness 

of pancreatic ductal adenocarcinoma. Therefore, in order to answer it 

this project has the following objectives: 

 

1. To characterise Polycomb expression pattern in normal mouse 

pancreas. 

 

2. To study the role of Polycomb in pancreatic ductal 

adenocarcinoma by means of analysing possible modulations of its 

members in human pancreatic cancer and in PDAC mouse models in 

vivo and in vitro. 

 

 

3.  To elucidate the consequences of modulating Polycomb 

members in acinar differentiation and in vitro models.  
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1. Immunohistochemistry 

To perform immunohistochemical analysis of organ tissues, 5-μm 

sections were obtained from formalin-fixed, paraffin-embedded tissue 

blocks using a Leica microtome (RM2255). Sections were placed in 

microscope slides and deparaffined with immersion in histology grade 

xylene (3 buckets, 15 minutes each). Once paraffin is off the sample, 

excess of xylene is removed by hydrating samples in ethanol gradient 

battery (2 buckets of absolute ethanol, one at 96%, one at 70% and one 

at 50%, 5 minutes each). Sections are finally immersed in distilled water. 

For the immunohistochemistry, horseradish peroxidase method (HRP) 

was used with the DAKOCYTOMATION Liquid DAB+ Substrate-

Chromogen commercial system. The following protocol was followed: 

 Antigen retrieval: citrate buffer solution at 10 mM (pH 7.3) was 

used at 120°C for 1 minute in an autoclave. Samples were 

allowed to gently cool down.  

 Endogenous peroxidase inhibition: hydrogen peroxide solution 

(H2O2) at 4% in methanol was used for 10 minutes at RT and 

excess was washed with PBS, 3 times, 5 minutes each.  

 Tissue is blocked with 1% bovine serum albumin (BSA) in 

phosphate buffered saline (PBS) solution, for 1 hour.  

 Samples were incubated with the following primary antibodies 

for 12 hours, diluted with blocking solution: 
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Marker Antibody Origin Dilution 

Bmi1 Mouse Millipore 1:50 

Ring1B Mouse MBL 1:50 

EED Rabbit Upstate 1:100 

Amylase-2 Rabbit Sigma 1:100 

Table M.1: antibodies used in immunohistochemical 
assays. 

 Sections were washed with blocking solution, 5 times, 5 minutes 

each.  

 Envision system labelled polymer-HRP anti-mouse and anti-

rabbit (DAKOCYTOMATION) were used as secondary antibodies. 

After washing, reactions were developed using 3,3-

diaminobenzidine tetrahydrochloride plus (DAB+) as 

chromogenic substrate. 

 For sequential horseradish peroxidase/alkaline phosphatase 

(HRP/AP) immunoenzymatic double staining analysis of Bmi1 and 

Amylase 2, primary anti-Bmi1 antibody was used first. Then, 

secondary HRP-conjugated antibody and after extensive washing, 

anti-Amylase 2 primary antibody was used.  

 Finally, incubation with AP-conjugated secondary antibody was 

performed. HRP activity was developed as above, while AP 

detection was obtained by incubating with Envision doublestain 

system (K1395, DAKOCYTOMATION).  

 Sections were counterstained with hematoxylin, dehydrated, and 

mounted. Two negative controls were routinely used, one where 

the primary antibody was substituted with antibody diluents and 

the other with an irrelevant monoclonal antibody. 
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Sections were visualized in a Leica DM6000 Digital microscope, and 

images were acquired using QWin software (Leica) at 20× objective 

magnification.  

2. Cell line culture 

The HEK293 Phoenix cell line was generated by transformation of 

cultures of normal human embryonic kidney cells with sheared 

adenovirus 5 DNA [309]. Two variants of this cell line were used in this 

project. First, the 293T cell line that contains, in addition, the simian virus 

40 (SV40) Large T-antigen, thus allowing for episomal replication of 

transfected plasmids containing the SV40 origin of replication. Therefore, 

the cell line is widely used for amplification of transfected plasmids and 

extended temporal expression of the desired gene products. In this 

study, 293T cells were used to generate lentivirus codifying for cDNA of 

several PcG members. 

Another HEK 293 variant we used in this project was the phoenix 

ecotropic 293 cells, which include constructs capable of producing gag-

pol, and envelope protein for ecotropic viruses. Therefore, the phoenix 

293 cells allowed us to generate retroviral vectors codifying for cDNA or 

iRNA of several PcG members.  

On the other hand, we used pancreatic cell line 266-6 for infection / 

transfection experiments. The 266-6 cell line was derived from a young 

adult mouse with an induced tumour with an Elastase I/SV40 T-antigen 

fusion gene [310]. These cells partially retain a partially differentiated 

phenotype, expressing detectable levels of a number of digestive 

enzymes at the RNA level.  
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All three cell lines were cultured in Dulbecco's Modified Eagle Medium 

(DMEM) with 10% Foetal Bovine Serum (FBS), at 37oC in humid 

atmosphere of 5% CO2 in air. 

3. Retroviral generation and infection 

Production of retroviruses was achieved by transfecting 293 

Phoenix cells in 60 mm petri dishes (150326, NUNC) using FuGENE HD 

transfection reagent (04709705001, Roche Applied Science) in Opti-MEM 

I reduced-serum medium (11058-021, invitrogen), according to 

manufacturer’s protocol. The protocol in use was the following: 

 293 Phoenix cells were plated at 50% of confluence 24 hours 

before transfection. 

 For each condition, 500 μl of Opti-MEM medium were mixed 

with 25 μl of FuGENE HD reagent and incubated at RT for 5 

minutes.  

 The retroviral vectors used were the following: MSCV-hBMI-1-

IRES-eGFP, pBabe-puromycin-Ring1B and pRetroSuper-

puromycin-iGFP. 10 μg were added to the previous mix and left 

at RT for 15 minutes.  

 The resulting solution was finally added to 5 ml of fresh 

DMEM+10% FBS medium, and then added to Phoenix 293 cells in 

culture, which were left at 37oC, 5% CO2.  

 6 hours later, 5 ml of DMEM+10% FBS fresh medium were 

added.  

 24 hours later, medium was renewed. At the same time, 266-6 

cell lines are plated at 50% of confluence. 
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 24 hours later, medium supernatant was filtered through 0.45 

μm filter to discard any cell debris and to obtain filtered 

retroviral particles. Then, medium from 266-6 cells was renewed 

with filtered medium with retroviruses and Polybrene reagent 

was added, which is a retroviral infection enhancer allowing an 

increase in infection rate up to 1000-fold. Cells were stored at 

37oC, 5% CO2. 

 Medium was renewed the following day with fresh DMEM+10% 

FBS with 4 μg/ml of puromycin antibiotic, in order to select the 

cells which had been infected.  

 Once a selected population was achieved, which was in 5 days of 

selection, total RNA extraction was performed. 

4. siRNA oligonucleotide transfection 

266-6 cells were cultured in DMEM + 10% FBS medium. The following 

siRNA oligonucleotides (Dharmacon) were used: Bmi1 

(GTATTGTCCTATTTGTGAT), GFP (GCTGACCCTGAAGTTCATC), both 

reported elsewhere [311]. Dharmafect 4 transfection reagent (T-2004-02, 

Dharmacon) was used like the following: 

 Cells (1x106) were seeded in 60 mm culture dishes and kept in 

culture 16-24h at 37oC, 5% CO2. 

 2 M of siRNA was mixed in 100 l of Opti-MEM reduced-serum 

(invitrogen) and left for 5 minutes at RT. At the same time, 4 l of 

Dharmafect 4 were added to 196 l of Opti-MEM and left for 5 

minutes at RT. Both mixes were pooled in one tube and left for 

20 minutes at RT. 
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 Media was removed from cells and 2.5 ml of Opti-MEM were 

added (invitrogen). The siRNA-Dharmafect 4 mix was added to 

the cells dropwise and kept ON at 37oC, 5% CO2. 

 Media was changed for Fresh DMEM+10% FBS and cells were 

cultured for 24 hours at 37oC, 5% CO2. 

 Protein extraction and total RNA isolation were performed 

afterwards.  

5. Total RNA isolation 

RNA was obtained by using GenElute™ Mammalian Total RNA Miniprep 

Kit (RTN70, SIGMA-ALDRICH). The protocol in use was the one supplied 

by the manufacturer: 

 Medium was thoroughly removed and cells were washed with 

PBS, twice. 

 PBS was removed and 500 μl of Lysis Solution/2-

Mercaptoethanol were added. Culture dish was rocked to 

completely cover the cells and rested for 1 minute at RT.  

 Cell lysate was scraped and pipetted into a GenElute Filtration 

Column to remove cell debris and shear DNA. Column is 

centrifuged at maximum speed (12,000-16,000 x g) for 2 

minutes.  Column was discarded. 

 500 μl of 70% ethanol solution was added to the filtered lysate 

and mixed thoroughly. Solution is loaded into a GenElute Binding 

Column and centrifuged at maximum speed for 30 seconds.  

 Column was retained and returned to a collection tube. 500 μl of 

Wash Solution 1 was added into the column and centrifuged at 

maximum speed for 30 seconds.  
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 Flow-through liquid was discarded and column was applied in a 

new collection tube. 500 μl of Wash Solution 2 were added to 

the column and it was centrifuged at maximum speed for 30 

seconds. 

 Flow-through was discarded and 500 μl of Wash Solution 2 were 

added to the column again and it was centrifuged at maximum 

speed for 2 minutes. 

 Flow-through was again discarded and centrifuged 1 extra 

minute to eliminate residual ethanol. 

 Column was inserted in a new collection tube and 50 μl of Elution 

Buffer were added and centrifuged at maximum speed for 1 

minute.  

 Eluted RNA was quantified with a Nanodrop spectrophotometer 

(Thermo-Scientific) at 260 nm and stored at -80°C.   

6. Semiquantitative two-step RT-PCR  

To perform semiquantitative RT-PCRs, commercial Transcriptor First 

Strand cDNA Synthesis Kit (04 896 866 001, Roche Applied Science) was 

used to obtain cDNA product from RNA extracts. The protocol in use was 

the following: 

 Template-primer mix was prepared after quantifying RNA 

samples: 
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Component Volume Final concentration 

RNA + Elution buffer 11 μl 1 μg RNA 

Random Hexamer Primers (600 pmol/μl) 2 μl 60 Μm 

Total Volume 13 μl  

Table M.2: RNA template-primer mix. 

 Template-primer mix was denatured by heating for 10 minutes at 

65°C in a T1 thermal block cycler (050-901, biometra) with a 

heated lid to minimize evaporation, in order to ensure 

denaturation of secondary structures. Solution was immediately 

cool on ice. 

 The rest of the components were added to the template-primer 

mix tube in the following order: 

Component Volume 
Final 

concentration 

Transcriptor Reverse Transcriptase 

Reaction Buffer (5x) 
4 μl 8 mM MgCl2 

Protector RNase Inhibitor (40 U/μl) 0.5 μl 20 U 

Deoxynucleotide Mix (10 mM each) 2 μl 1 mM each 

Transcriptor Reverse Transcriptase (20 

U/μl) 
0.5 μl 10 U 

Final Volume 20 μl  

Table M.3: Second mix of the RT assay. 
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 The RT reaction was performed in a thermal block cycler: 

o 10 minutes at 25°C. 

o 60 minutes at 50°C. 

o 5 minutes at 85°C. 

Reaction was stopped by placing tubes on ice. 

Standard semiquantitative PCR was performed using cDNA samples, 

which were previously normalised. The following mix was prepared: 

Component Volume Final concentration 

BIOTAQ Buffer (10x) 2.5 μl 1x 

MgCl2 (50 mM) 1 μl 2 mM 

Deoxynucleotide Mix (10 mM each) 0.5 μl 200 μM 

Primer Forward (10 μM) 1.5 μl 0.6 μM 

Primer Reverse (10 μM) 1.5 μl 0.6 μM 

BIOTAQ polymerase (5U/μl) 0.25 1.25 U 

cDNA Variable 100-400 ng 

H2O Variable  

Final Volume 25 μl  

 Table M.4: Semiquantitative RT-PCR mix. 

And the following PCR reaction was designed: 
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PCR Step Temperature Time 

1. Initial denaturation 94°C 5-10 minutes 

2. Denaturation 94°C 30 seconds 

3. Annealing 55-63°C (depending on Tm) 30 seconds 

4. Extension 68-72°C 1-2 minutes 

Number of cycles (from 2. 

to 4.) 

20-35 cycles (depending on abundance of 

transcript) 

5. Last extension 68-72°C 10 minutes 

6. End 4°C ∞ 

Table M.5: PCR conditions for semiquantitative RT-PCR. 

The following pairs of oligonucleotides were used: 

Primer Sequences Length 

HPRT 
F 5’-GGCCAGACTTTGTTGGATTTG-3’ 

R 5’-TGCGCTCATCTTAGGCTTTGT-3’ 
144 

Bmi1 
F 5’-CGTTACTTGGAGACCAGC-3’ 

R 5’-TGCAAGTTGGCCGAACTC-3’ 
520 

Ring1B 
F 5’-CATGAACAGATTACAGCGAGG-3’ 

R 5’-GGATAAGTGATCAACAGTGGC-3’ 
325 

Amylase 
F 5’- GGAGGACTGCTATTGTCCAC-3’ 

F 5’-CCAAGCAGAGTATGGAACTG-3’ 
377 

P48 
F 5’-TGCAGTCCATCAACGACGC-3’ 

R 5’-GGACAGAGTTCTTCCAGTTC-3’ 
1041 

Table M.6: Primers used for semiquantitative RT-PCR experiments. 

 

Products were visualized by ethidium bromide staining using agarose 

electrophoresis. 
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7. Quantitative Real-Time PCR 

Real-Time PCR was performed using SYBR® Green PCR Master Mix 

(4312704, Applied Biosystems), working on a 96-well plate without 

cover. cDNA samples were obtained from RNA extracts of treated cells 

using Transcriptor First Strand cDNA Synthesis Kit (Roche Applied 

Science) and normalised to a specific concentration (25 ng/μl). 

The following mixes were prepared: 

cDNA – SYBR Green mix Volume Concentration 

cDNA 2 μl 5 ng/μl 

SYBR® Green  

PCR Master Mix (2x) 
5 μl 1x 

Table M.7: cDNA-SYBR Green mix. 

 

Primer – H2O mix Volume Concentration 

Primer Forward (10 μM) 0.3 μl 300 nM 

Primer Reverse (10 μM) 0.3 μl 300 nM 

H2O 2.4 μl  

Table M.8: Primer-H2O mix. 

 

Both mixes were combined in each well and the following PCR reaction 

was performed in a 7900HT Fast Real-Time PCR System (Applied 

Biosystems): 
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PCR Step Temperature Time 

1. 50°C 2  minutes 

2.  95°C 10 seconds 

3.  95°C 15 seconds 

4.  60°C 1 minute 

Number of cycles  

(from 3. to 4.) 
40 cycles 

Table M.9: PCR program for Real-Time PCR experiments. 

The following pairs of oligonucleotides were used: 

Primer Sequences Length 

HPRT 
F 5’-TCATTATGCCGAGGATTTGGA-3’ 

R 5’-GCCTCCCATCTCCTTCATGAC-3’ 
99 

GAPDH 
F 5’-AGGCCGGTGCTGAGTATGTC-3’ 

F 5’-GGCGGAGATGATGACCCTTT-3’ 
103 

Bmi1 
F 5’-AGTAAATAAAGAGAAGCCTAAGGAAGAG -3’ 

R 5’-TTCTCAAGTGCATCACAGTCATT-3’ 
85 

Ring1B 
F 5’-AGGCCGGTGCTGAGTATGTC-3’ 

F 5’-GGCGGAGATGATGACCCTTT-3’ 
99 

EED 
F 5’-CGGGAGACGAAAATGACGAT-3’ 

R 5’-CTTTTCCTTCCTGGTGCATTTG-3’ 
99 

EZH2 
F 5’-GCTGACCATTGGGACAGTAAAAA-3’ 

R 5’-CCCAGCCTGCCACATCA-3’ 
102 

P48 
F 5’-CCAGGCCCAGAAGGTTATCA-3’ 

R 5’-GGAAAGAGAGTGCCCTGCAA-3’ 
99 

Amylase A2 
F 5’-GCCAAGGAATGTGAGCGATAC-3’ 

R 5’-AAGGTCTTGATGGGTTATGAACTACA-3’ 
100 

Carboxypep

tidase A1 

F 5’-GAGGCTGCTGGTTCTGAGTGT-3’ 

R 5’-TCTGCACCTGGGCTTCGT-3’ 
107 

Chymotryps

inogen B 

F 5’-CATCGTGTCCGAGGCTAAGTG-3’ 

R 5’-GAGTCACCCATGCAGGAAGAG-3’ 
101 

Elastase F 5’-ACCCTCATCCGAAGCAACTG-3’ 102 
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R 5’-CGTCATTCTGGCTCAGGTTGT-3’ 

PDX1 
F 5’-CGCGTCCAGCTCCCTTT-3’ 

R 5’-AGTACGGGTCCTCTTGTTTTCCT-3’ 
113 

HES1 
F 5’-TACCCCAGCCAGTGTCAACA-3’ 

R 5’-TCTTGCCCTTCGCCTCTTC-3’ 
99 

RBPJ 
F 5’-CCAATTTCAGGCCACTCCAT-3’ 

R 5’-CGTGTACTCGGCCTTGTCTGT-3’ 
99 

Table M.10: Primer-H2O mix. 

 

Data was analysed using SDS 2.3 and RQ Manager 1.2 software (Applied 

Biosystems). 

8. Protein extraction 

We treated the cells to obtain nuclear and total protein extracts. The 

following lysing buffers were used: 

Lysis Buffer A Concentration 

Sucrose 0.25 M 

HEPES pH 7.5 10 mM 

CaCl2 3 mM 

NaCl 10 mM 

NP-40 0.25% 

PMSF 1 mM 

DTT 1 mM 

Table M.11: Lysis Buffer A composition. 
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RIPA Buffer Concentration 

Sodium deoxycholate 0.5 % 

Tris-HCl pH 8.0 50 mM 

NaCl 150 mM 

SDS 0.1 % 

NP-40 1.0 % 

EDTA 2 mM 

PMSF 2 mM 

DTT 1 mM 

c0mplete cocktail 1x 

Table M.12: RIPA buffer composition. 

To obtain nuclear protein extracts, the following protocol was used: 

 Medium was removed from cell dish and cells were washed with 

PBS, twice. 1 ml of PBS was added and cells were scraped, 

pipetted into an eppendorf tube on ice and centrifuged at 3,000 

rpm for 5 minutes. 

 Supernatant was discarded and pellet was resuspended with 1 ml 

of buffer A, and was incubated for 10 minutes on ice. Afterwards, 

cells were centrifuged at maximum speed for 1 minute at 4°C. 

This step was repeated twice. 

 After three steps of washing cells with buffer A, a volume of RIPA 

buffer between 50-150 μl was added to the pellet of cells, and it 

was incubated for 30 minutes on ice. Finally, it was centrifuged at 

maximum speed for 15 minutes at 4°C. Supernatant was stored 

as it contained the nuclear protein fraction. 

 To obtain total protein extracts, cells were washed with PBS, 

scraped and centrifuged at 3,000 rpm for 5 minutes as in the 
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above protocol. Supernatant was discarded and a volume of RIPA 

buffer between 50-150 μl was added to the pellet of cells and 

incubated for 30 minutes on ice. Cells were centrifuged at 

maximum speed for 15 minutes at 4°C. 

Protein extracts were stored at -80°C. 

9. Western blot 

Protein extracts were quantified with RD DC Protein Assay Kit (500-0122, 

BIORAD), following provided protocol by the manufacturer. Absorbances 

of samples were read at 750 nm and quantified by setting up a standard 

gradient with BSA. The following buffers were used to perform western 

blot assay: 

 

Separating gel solution Concentration 

Tris-HCl pH 8.8  375 mM 

Bis-acrylamide 8 % 

SDS 0.1 % 

APS 0.1 % 

TEMED  

Table M.13: Separating gel solution composition. 
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Stacking gel solution Concentration 

Tris-HCl pH 6.8  125 mM 

Bis-acrylamide 4 % 

SDS 0.1 % 

APS 0.1 % 

TEMED  

Table M.14: Stacking gel solution composition. 

 

Electrophoresis buffer Concentration 

Tris base  25 mM 

Glycine 190 mM 

SDS 0.1 % 

Table M.15: Electrophoresis buffer composition. 

 

Transference buffer Concentration 

Tris pH 7.5 200 mM 

Glycine 1.5 M 

Methanol 20% 

Table M.16: Transference buffer composition. 

 

Blocking buffer Concentration 

Tween-20 0.1 % 

Milk 5 % 

Table M.17: Blocking buffer composition. 
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Antibody dilution buffer Concentration 

Tween-20 0.1 % 

BSA 0.3 % 

Sodium azide 20% 

Table M.18: Antibody dilution buffer composition. 

Proteins were normalized to a specific quantity and separated by vertical 

SDS-polyacrylamide gel electrophoresis using mini-protean III system 

(BioRad) at 100V for 2 hours at RT. Afterwards, proteins were transferred 

to Westran™ Polyvinylidine Fluoride (PVDF) Clear Signal membranes 

(10485287, Whatman). Blocking buffer was added to the membranes for 

30 minutes to improve the sensitivity of the assay by reducing 

background interference and improving the signal to noise ratio. 

After washing excess of blocking buffer, membranes were 

immunoblotted with the following primary antibodies ON at 4°C: 

Marker Antibody Origin Dilution 

Lamin B1 Rabbit Abcam 1:2000 

Tubulin Mouse SIGMA-ALDRICH 1:10000 

Bmi1 Mouse Millipore 1:500 

Ring1B Mouse MBL 1:500 

Carboxypeptidase A1 Rabbit Biogenesis 1:1000 

Amylase Rabbit SIGMA-ALDRICH 1:1000 

P48 Rabbit F.Real 1:500 

Table M.19: Antibodies used in western blotting assays. Anti-lamin B1 (E398L, 
abcam), anti-tubulin (SIGMA-ALDRICH), a-Bmi1 (05-637, Millipore), anti-Ring1b 
(D139-3, MBL), anti-Cpa1 (Biogenesis) and anti-amylase (SIGMA-ALDRICH).  
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The Ptf1/p48 rabbit antiserum was raised against a synthetic amino acid 

peptide (C-KSFDNIENEPPFEFVS) [312]. Primary antibodies were diluted in 

blocking buffer + 2.5% BSA 

After washing excess of primary antibodies, membranes were 

subsequently incubated with horseradish peroxidase (HRP)-conjugated 

secondary antibodies (anti-rabbit, K4003; anti-mouse, K4001, 

DakoCytomation) for 1 hour at RT.  

Membranes were extensively washed and Pierce ECL Western Blotting 

Substrate (32106, Thermo-Scientific) was used to detect HRP signal. 

10. Isolation of exocrine fraction of mouse 

pancreas 

7-week old male CD1© mice (Crl:CD1, Charles River Laboratories), 

weighting between 33 and 37 g, were used to isolate the exocrine 

fraction of pancreas. The procedure was approved by the ethical 

committee of the institution and animals received humane care as 

outlined in the Guide for the Care and Use of Laboratory Animals.  

To perform the isolation, a modified version of a previously described 

protocol was used [284]: 

 Pancreas was retrieved from the mouse and to start 

disaggregation of the tissue, 2.5 ml of cool collagenase P (11 213 

865 001, Roche Applied Science) at 1.33 mg/ml in Hank’s 

Balanced Salt Solution (HBSS, 14065-04, invitrogen) were 

injected to the pancreatic tissue in different points. Tissue was 
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then immersed in 5 ml of chilled collagenase solution, cut and 

kept on ice to avoid any protease or RNAase activity. 

 Tissue with collagenase was incubated in a shaking water bath at 

37°C for 20 minutes and afterwards collagenase activity was 

stopped on ice and adding 5 ml of chilled HBSS + 5% FBS solution 

and left to sediment for 10 minutes. 

 Supernatant was discarded and pellet was resuspended in 10 ml 

of HBSS + 5% FBS solution on ice and centrifuged at 1000 rpm for 

90 seconds. This step was repeated twice. 

 Supernatant was discarded and pellet was thoroughly 

resuspended with 5 ml of chilled HBSS + 5% FBS solution. 

 Solution was filtered through a 500-μm polypropylene 

SpectraMesh© mesh (145613, SpectrumLabs) and filter was 

washed with 5 ml of HBSS + 5% FBS.  

 10 ml of filtered solution were filtered again through a 100-μm 

nylon SpectraMesh© mesh (145799, SpectrumLabs).  

 Filtered solution was added to 20 ml of prewarmed HBSS + 30% 

FBS drop wise. Solution was centrifuged at 1000 rpm for 90 

seconds and pellet of cells was resuspended in 10 ml of RPMI 

medium (12633-012, invitrogen) + 10% FBS + soy trypsin inhibitor 

+ G418 in a non-treated petri dish to culture exocrine primary 

cultures in suspension. 

 Cells were cultured for 5 days, changing media every 48 hours. 

Cells were harvested and performed RNA extracts. 
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11. Caerulein-induced pancreatitis 

C57BL/6J male mice (Charles River Laboratories), weighting between 22 

and 25 g, were used for the caerulein-induced pancreatitis experiments. 

To induce acute pancreatitis, the following protocol, previously reported 

[281], was used: 

 Intraperitoneal injection of caerulein (C9026, SIGMA-ALDRICH) at 

a concentration of 50μg/kg was administered to the animal. 

 Every hour, one injection was again performed until a total of 

seven.  

 Pancreatic tissues were obtained at different time points and 

processed to obtain sections for immunostaining. 

For chronic caerulein treatment, a modified version of a previously 

described protocol [296] was used: 

 Single intraperitoneal injections of caerulein (0.1 ml of a 50 

μg/ml) in saline solution were administered to one- month old 

mice, 5 days per week. 

 Injections were repeated for four weeks. 

 Animals were sacrificed 12 months later. 

12. Duct ligation of the rat pancreas 

Adult wistar rats were used in a previously reported protocol [284]:  

 A silk thread was used to ligate the exocrine ducts draining the 

splenic part of the rat pancreas. 

 After seven days of the ligation, pancreatic tissue was collected 

and processed to perform immunostaining analysis. 
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13. PDAC and chronic pancreatic injury-

associated PDAC experimental models 

The following mouse strains were used as previously described [296]:  

 K-Ras+/+; Elas-tTA; TetO-Cre. 

 K-Ras+/LSLG12Vgeo; Elas-tTA; TetO-Cre.  

The following protocol was used: 

 Doxycycline was depleted in the intake of mice, thus activating K-

RasG12V oncogene in cells expressing the Elastase gene, starting at 

E16.5. 

 Pancretic tissue was obtained and processed for immunostaining 

analysis. 
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1. Expression of Polycomb group proteins in 

mouse pancreas 

At the beginning of this thesis project, expression of Polycomb group 

proteins was barely characterised in the human pancreas and no articles 

describing PcG expression in the mouse pancreas had been published. 

Therefore, our first goal was to analyse the expression patterns of PRC1 

and PRC2 members by using pancreatic tissue samples of wild-type 

mouse pancreas. 

1.1. Analysing the expression of PcG members in 

normal mouse pancreas 

Immunohistochemical analysis was performed on tissue sections of adult 

mouse pancreas using primary antibodies for PRC1 members Bmi1 and 

Ring1b, and PRC2 member EED to analyse their expression. 

Expression of EED was localised in the cytoplasm of acinar cells, while no 

detectable expression could be found in the nuclei of ducts and 

endocrine cells (Figure R.1A). Despite the unexpected cytoplasmic 

staining for a chromatin-interacting protein, EED has been recently 

reported to be recruited by the HIV-1 Nef protein to the plasma 

membrane [313]. Moreover, another member of the PRC2 complex, 

EZH2, has been found to be collaborating in actin polymerization and 

proliferation in the cytosol [314]. Nevertheless, the nature of EED 

cytoplasmic location in acinar cells was not further analysed. 

Regarding the PRC1 complex, Bmi1 exhibited strong expression in the 

nuclei of endocrine cells (Figure R.1A). In addition, expression of Bmi1 

was found in ductal cells and in some scattered nuclei in the exocrine 

part of the pancreas. 
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Figure R.1: Immunohistochemical analysis of Bmi1, Ring1B and EED expression 
in normal mouse pancreas. (A) Sections from adult mouse pancreas were 
labelled with Bmi1, Ring1B or EED antibodies. Specific nuclear signal of Bmi1 and 
Ring1B is found in the islet compartment (white arrowhead), in the ducts (arrow) 
and in some scattered cells within the exocrine fraction (arrowhead). EED 
expression is absent in endocrine cells (white arrowhead) and also in the ducts 
(arrow), while cytoplasmic signal is detected in the acini (arrowhead). (B) 
Sections of kidney (left panel) and liver (right panel) from normal mouse 
pancreas were used as positive controls. Nuclear specific signal of Bmi1 is found 
in all compartments of the kidney, especially in the glomerules (arrowheads). In 
liver sections, Bmi1 is highly expressed in the nuclei of hepatic duct cells (white 
arrowhead) and in some scattered hepatocytes (arrow).  
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The expression pattern of Ring1B was very similar to the one of Bmi1: it 

was found in nuclei of endocrine and ductal cells, and also in some 

scattered exocrine nuclei (Figure R.1A). In addition, Ring1B showed 

signal in the cytoplasm of the acini which was identified as unspecific 

because samples incubated with a different monoclonal antibody against 

Ring1B [315] did not display any signal in the acinar cytoplasms.  

Kidney and liver sections from adult mouse were initially used as positive 

control for PRC1 expression (Figure R.1B), as both tissues have been 

reported to express Bmi1 and also Ring1B [136]. All kidney cell types 

expressed Bmi1 in their nuclei, especially the glomerules. Liver sections 

showed nuclear staining of Bmi1 in the duct cells and in some scattered 

hepatocytes. 

Bmi1 and Ring1B shared similar patterns of expression, which would be 

in agreement with reported studies that unveiled Ring1B to be 

interacting with Bmi1, thus having a synergistic effect on the Ring1B E3 

ligase activity [316]. 

1.2. Analysing the expression of PcG members in the 

mouse embryo 

After establishing the expression of PRC1 and PRC2 members in the 

pancreas of adult mice, we sought to determine their expression during 

embryonic development. We analysed the expression of different PcG 

members (Bmi1, Ring1B, Phc1 and EED) in E14.5 mouse embryos (Figure 

R.2A) by accessing to the online database Genepaint, which includes 

gene expression patters in mice determined by in situ hybridisation 

[317]. Expression of Bmi1 and Ring1B was localised at the distal tips of 

the pancreatic progenitor branch. Different pancreatic acinar markers 



RESULTS 
 

101 
 

were checked, such as Elastase 3B (Ela3b), Amylase 2 (Amy2) and 

Carboxypeptidase A1 (Cpa1), and all of them were also expressed in the 

same region than Bmi1 and Ring1B (Figure R.2A). In contrast, the trunk 

of the pancreatic branches was largely occupied by Neurogenin 3-

positive endocrine cells. Moreover, Phc1 and EED were almost absent in 

the whole developing pancreas. On the other hand, Neurogenin 3 

(Ngn3), which is an endocrine precursor marker, was expressed in the 

trunk of the branching epithelium. 
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Figure R.2: Expression of PcG in the mouse embryonic 
pancreas. (A) Genepaint in situ hybridisation analysis 
of PcG components Bmi1, Ring1B, Phc1 and EED (left 
panels), exocrine markers Amylase 2, Elastase 3b and 
Carboxypeptidase A1, and endocrine transcription 
factor Neurogenin 3 (right panel). Insets on the right 
correspond to magnified views of expression in the 
sections. Bmi1 and Ring1B probes stain the distal tips 
(arrowheads), which are also labelled by exocrine 
markers Amylase 2 and Carboxypeptidase A1. In 
contrast, the trunk of the pancreatic branches is 
largely occupied by Neurogenin 3-positive endocrine 
cells. Moreover, Phc1 and EED are barely expressed. 
Images obtained from the public database 
http://www.genepaint.org. (B) Immunohistochemical 
analysis of Bmi1 and Ring1B in E15.5 (upper panels) 
and E17.5 (lower panels) mouse embryos. Bmi1 signal 
is detected in the nuclei of acinar cells at E 15.5, while 
Ring1B is barely expressed. E17.5 sections, expression 
of Bmi1 is absent in differentiated acinar cells but it is 
found in the nuclei of islet cells.  

Due to the documented role of different PcG proteins in development, 

we sought to analyse Bmi1 and Ring1B expression during mouse 

pancreatic formation by immunohistochemistry (Figure R.2B). Pancreatic 

sections of E15.5 mouse embryos showed Bmi1 signal in the nuclei of 

acinar cells. However, protein expression of Ring1B was undetectable 

during this stage. In pancreatic sections of E17.5 mouse embryos, when 
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there was an increase in endocrine cells which reorganise to form mature 

islets, Bmi1 expression was restricted to the nuclei of islet cells and in a 

few scattered exocrine cells. 

Taking into account all these findings, we conclude that Bmi1 and Ring1B 

expression undergoes a modulation in exocrine and endocrine cells along 

pancreatic development and differentiation. 

2. Expression of Polycomb group proteins in 

pancreatic exocrine cancer models 

Characterising the expression of Bmi1 and Ring1B in the pancreas of 

wild-type mice showed specific signal of both proteins in the nuclei of 

islet cells and duct cells, while a subset of acinar cells displayed barely 

noticeable signal. In order to study their expression in the context of 

pancreatic ductal adenocarcinoma (PDAC), we used tissue samples from 

different mouse models of pancreatic cancer to accomplish this purpose. 

2.1. MT-TGFα and Ela-myc  

For our first approach in studying PcG expression in PDAC models, we 

used pancreatic sections of the available models at that time. We got 

access to samples from a transgenic mouse strain which bears 

constitutive activation of Transforming Growth Factor alpha by means of 

using the metallothionin-1 promoter gene (MT-TGFα). As TGFα 

expression is not restricted to the pancreatic tissue, this strain presents 

alterations in several tissues, like liver neoplasia, mammary epithelial 

hyperplasia and pancreatic metaplasia [286-287]. For this reason, this 

model has been widely used not only in the study of pancreatic cancer 
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[318], but also in the carcinogenesis of liver [319] and mammary gland 

[320-321]. 

The MT-TGFα mouse displays high proliferation of fibroblasts and acinar 

cells in the pancreas, with focalised areas of acinoductal metaplasia 

[318]. Immunohistochemical analysis of the expression of PRC1 and PRC2 

members using pancreatic sections did not come into any conclusion, as 

no specific signal of Bmi1 could be found in any cell type  and expression 

of EED was found in cytosol of duct cells (Figure R.3A). 

 

 

 

 

 

 

 

 

 

 

Figure R.3: Immunohistochemical analysis of PcG members in 
MT-TGFα (A) and Ela-myc (B) PDAC mouse models. (A) 
Expression of Bmi1 is absent in every cell type in pancreatic 
sections of MT-TGFα mice (left panel) while EED is expressed in 
ductal cells (right panel). (B) Regions of acinar cells display 
increased nuclear signal of Bmi1 (arrowhead). EED signal stains 
the cytoplasm of acinar cells (white arrowhead) and some 
neoplastic ducts (arrow).  
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In parallel, we got access to pancreatic samples of transgenic mice with 

constituve expression of oncogene cMyc driven under the Elastase 

promoter (Ela-myc), allowing specific expression in acinar cells [294]. 

Mice develop pancreatic cancer with 100% penetrance at an early age. 

50% of tumours are acinar cell carcinomas; the remaining half are ductal 

adenocarcinomas or mixed ductal and acinar tumours [294]. 

Pancreas sections from different Ela-myc transgenic mice were used to 

study the expression of Bmi1. Several regions of acinar cells which 

displayed uncontrolled growth showed higher expression of Bmi1 than 

normal acini (Figure R.3B). On the other hand, expression of EED could 

be found in ductal cells, but its specificity could not be assured. 

2.2. KRasG12V mouse model 

We had the opportunity to obtain pancreatic samples from a novel 

mouse model for PDAC: a conditional knock-in mouse strain with an 

inducible expression of endogenous KRasG12V activated by a Cre 

recombinase system under the Elastase promoter, thus specifically 

targeting KRasG12V expression to acinar and centroacinar cells [296]. 

KRasG12V mice display all the spectrum of pancreatic intraepithelial 

neoplasias (PanINs) and regions of acinoductal metaplasia, virtually 

recapitulating all the events of human PDAC. 

Pancreatic sections of 12 month-old mice with induced KRasG12V at E16.5 

were used to analyse the expression of the PRC1 members Bmi1 and 

Ring1B (samples kindly given by Carmen Guerra). Multiple desmoplastic 

PanIN lesions of different stages could be found in 80% of the analysed 

animals. Moreover, some mice also displayed at least one PDAC lesion 

[296].  
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An upregulation of Bmi1 expression was found in preneoplastic lesions, 

as Bmi1 was faintly expressed in acinar cells but showed moderate 

expression in PanINs and PDAC structures (Figure R.4A). On the other 

hand, Ring1B was weakly expressed in PanINs but its expression was 

strengthened in PDAC lesions. This finding revealed a differential pattern 

in the kinetics of the expression of Bmi1 and Ring1B, which led us to the 

hypothesis of Bmi1 being involved in preneoplastic lesions, prior the 

formation of PDAC. 

Therefore, we sought to analyse the expression of Bmi1 in the context of 

chronic pancreatitis, which has been reported to be a risk factor for 

pancreatic cancer [213, 220, 296, 322]. Pancreatic samples were 

extracted from mice with induced KRasG12V and with one-month caerulein 

treatment.  

After a month of caerulein treatment, 5 days per week, administration 

was stopped. Then, when mice were 13 months old, pancreatic samples 

were retrieved, which displayed hyperplastic exocrine regions, 

metaplastic ducts, PanINs and PDAC formation. Expression of Bmi1 was 

found in hyperplastic acinar regions. Moreover, expression of Bmi1 was 

enhanced in late PanIN stages and PDAC lesions (Figure R.4B). To test the 

nature of the Bmi1-positive cells, double staining analysis was performed 

with Bmi1 and the pancreatic acinar marker Amylase A2 (Amy2). Their 

signal exhibited an inverse correlation: normal acinar cells displayed their 

characteristic amylase signal while expression of Bmi1 was very weak 

(Figure R.4C). On the other hand, hyperplastic acinar cells showed 

residual expression of amylase while expressing high levels of Bmi1.  
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Figure R.4: Immunohistochemical analysis of Bmi1 and Ring1B 
expression in murine experimental models for PDAC (A) and in 
chronic pancreatic injury-associated PDAC (B). (A) Bmi1 expression is 
increased in PanIN lesions (left panels) and in PDAC lesions (right 
panels) of K-Ras+/LSLG12Vgeo/Elas-tTA/TetO-Cre mice. On the other 
hand, Ring1B expression is induced later in PDAC lesions rather than in 
early preneoplastic lesions. (B) Pancreatic sections of K-
Ras+/LSLG12Vgeo/ElastTA/TetO-Cre mice chronically treated with 
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caerulein show induction of Bmi1 expression in early PanIN lesions (left 
panel) which is maintained in PDAC lesions (right panel). Expression of 
Ring1B is again induced in PDAC lesions but not in low-grade PanINs.(C) 
Double staining analysis of Bmi1 (brown) and Amylase 2 (red) in normal 
pancreas and in the chronic pancreatic injury-associated PDAC model.   

On the other hand, expression of Ring1B remained weak in early stages 

of preneoplastic lesions but it noticeably increased in late stages (PanIN 2 

and 3) and in PDAC lesions. 

In conclusion, experiments with the KRasG12V mouse model showed an 

increase of Bmi1 expression in the nucleus of acinar cells in early PanIN 

lesions. This increase of Bmi1 expression was sustained throughout all 

PanIN stages and was also found in PDAC lesions. In contrast, Ring1B 

expression was increased well after Bmi1, in late PanIN lesions and it was 

also found in PDAC. 

We hypothesised about Bmi1 being involved in the formation of 

preneoplastic lesions and their progression to malignant PDAC. We 

focused our study on better understanding the pattern of expression of 

Bmi1 in this context. 

2.3. Caerulein-induced pancreatitis models 

After finding a specific increase of Bmi1 expression in preneoplastic 

lesions, our research focused on analysing the expression of Bmi1 in 

pancreatitis and preneoplastic lesions preceding PDAC. Acute and chronic 

pancreatitis mouse models were used to analyse the expression pattern 

of PRC1 members to understand the pancreatic landscape for tumour 

initiation. 
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Figure R.5: Analysis of Bmi1 and Ring1B expression in acutely or chronically 
caerulein-treated mouse. (A) Immunohistochemical analysis of Bmi1 and Ring1B 
expression in pancreatic sections from mice with caerulein-induced acute 
pancreatitis. Pancreatic sections were obtained 1, 2, or 10 days after caerulein 
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administration. Both Bmi1 and Ring1B signals are induced at day 2 and this lasts for 
more than 10 days after treatment. (B) Immunohistochemical analysis of Bmi1 and 
Ring1B expression in pancreas from mice with caerulein-induced chronic 
pancreatitis. Insets on the right correspond to magnified views of expression in the 
sections. Bmi1 expression is increased in metaplastic acini while Ring1B is largely 
absent in them. (C) Double staining of Bmi1 (brown) and Amylase 2 (red) at two 
different magnifications of the same field. Normal acini display high levels of 
Amylase 2 while Bmi1 is barely detected (white arrowhead). Metaplastic ducts show 
strong Bmi1 expression while they have lost signal of Amylase 2 (arrowhead). 
Atrophic acinar cells partially retain Amylase 2 expression while showing strong 
signal of Bmi1 (arrow).  

Regarding acute pancreatitis, a mouse model was used in which an acute 

pancreatic lesion was achieved by means of caerulein administration 

(samples kindly given by Xavier Molero) [281]. Mouse displayed 

pancreatic lesions soon after caerulein injection and both tissue histology 

and function were completely restored in about a week after. One day 

after caerulein treatment, subtle variations in the expression of Bmi1 and 

Ring1B were found (Figure R.5A). However, signal of both proteins 

considerably increased in half of the acinar cell nuclei at day 2. 

Moreover, ten days after caerulein administration the majority of acinar 

cells still showed expression of Bmi1 and Ring1B in the nucleus. 

About chronic pancreatitis, a mouse model was used in which daily 

caerulein administration induced the pancreatic lesion (kindly given by 

Carmen Guerra) [296]. One intraperitoneal low-dose injection of 

caerulein was administered each day to induce chronic pancreatic injury, 

five days a week. Treatment had one month of duration and the outcome 

was a mild injury to the pancreatic tissue, with panlobular lesions 

displaying atrophia in the acinar fraction, limited regions of inflammation 

and acinar-to-ductal transdifferentiation. In this chronic pancreatitis 

mouse model, Bmi1 was detected in the nuclei of atrophic acinar and 

was highly expressed in regions of acinoductal transdifferentiation 
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(Figure R.5B). On the contrary, Ring1B could not be detected or was 

barely expressed in the nuclei of metaplastic acinar cell.  

Double staining of Amy2 and Bmi1 fitted with previous experiments 

using the KRasG12V mouse model: normal acinar cells expressed strong 

levels of Amy2 while Bmi1 was weakly or barely detected, atrophic acini 

displayed high Bmi1 signal and residual Amy2 expression, and 

metaplastic duct showed no expression of Amy2 but strong signal of 

Bmi1 (Figure R.5C). 

Taking into account these findings, induction of Bmi1 in acinar cells is a 

response to pancreatitis and it is sustained after ending caerulein 

treatment. 

3. Expression of Polycomb group proteins in 

acinar metaplasia models 

3.1. Duct ligation in the rat pancreas 

In order to further understand whether the expression of Bmi1 was a 

general feature upon pancreatic injury, a well established model of duct-

ligated pancreatic injury in rats was used (kindly given by Ilse Rooman). 

Animals displayed generalised metaplastic acini in the ligated region, 

which would convert into duct-like structures [282], losing their acinar 

differentiated characteristics (decrease of transcription factor p48 and 

Mist1 expression) and expressing genes related to cell growth and 

development such as Pdx1 and Notch receptors [284]. 



RESULTS 
 

112 
 

In this model, Bmi1 was strongly induced in the nuclei of metaplastic 

acinar cells affected by duct ligation (Figure R.6), while wild-type regions 

displayed weak expression of Bmi1. 

 

 

 

 

Figure R.6: Bmi1 expression in acinoductal metaplasia in duct-
ligated rat pancreas. Immunohitochemical analysis displayed 
increase in Bmi1 expression in the nuclei of metaplastic acinar 
cells (right panel), in comparison to normal acinar regions (left 
panel).  

3.2. Acinar-to-hepatocyte transdifferentiation in a 

pancreatic exocrine cell line 

The first in vitro model of acinar metaplasia that we decided to use to 

study the effect of PcG modulation was treating the commercial 

pancreatic acinar cell line AR42J with glucocorticoid dexamethasone, as 

previously reported [299]. 

AR42J cells were originally derived from a rat pancreatic tumour and they 

bear a partially acinar differentiation although some neuroendocrine 

properties can also be found. The treatment of this cell line with 

dexamethasone triggered an acinar-to-hepatocyte transdifferentiation 

which resulted in a rapid change of the morphology in a subpopulation of 

cells which flattened onto the substratum (Figure R.7). Downregulation 

of different specific acinar markers, such as amylase, was followed by a 

progressive induction of liver-specific markers glucose-6-phosphatase 
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and albumin since day 3 of treatment which culminated after two weeks 

[299]. 

 

 

 

Figure R.7: Dexamethasone treatment in AR42J cell line 
induces and acinar-to-hepatocyte transdifferentiation. 
Treatment with dexamethasone in AR42J cell line triggers 
drastic changes in the phenotype in a few days of culture.  

Nevertheless, we could not obtain conclusive results from this model 

because treatment with dexamethasone considerably inhibited cell 

growth, thus it was very difficult to obtain enough metaplastic cells to 

perform proper extracts. Moreover, while cells suffered an acinar 

metaplasia, a transdifferentiation to liver did not resemble the events in 

PDAC. Therefore, we focused on modulating the expression of PcG 

proteins in different in vitro models to obtain a better approach.  

3.3. Primary culture of the exocrine fraction of 

mouse pancreas 

We also used an in vitro model of exocrine cell metaplasia to study 

alterations in PcG expression during acinoductal transdifferentiation. This 

model is based on culturing the isolated exocrine fraction of the pancreas 

in suspension. During five days of culture, acinar cells spontaneously 

convert into duct-like cells, mimicking the duct ligation model to some 

extent [284].  

As previously reported [284], RNA expression analysis of pancreatic 

acinar genes confirmed loss of the acinar differentiation program since 
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the first day of culture. Expression of amylase, carboxypeptiase A1, 

chymotrypsinogen B and elastase dramatically decreased since day 1 

(Figure R.8A). Two transcription factors involved in acinar differentiation, 

Pdx1 and p48, also decreased since day 1 (Figure R.8C). Moreover, 

expression of Hes1, which is a protein downstream the Notch pathway, 

was induced (Figure R.8D).  
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Figure R.8: Expression analysis of PcG members in primary culture of the exocrine 
fraction of mouse pancreas. (A) Analysis of pancreatic exocrine markers Amylase, 
Carboxypeptidase A1, Chymotrypsinogen B and Elastase show a pronounced decrease 
in all markers since day 1 of culture. (B) Expression of Bmi1, Ring1B and EED are slightly 
decreased while EZH2 expression is increased since day 1. (C) Transcription factors p48 
and PDX1 decrease since day 1. (D) Hes1 is induced since day 1. (E) 
Immunohistochemical analysis in isolated acini shows increase in Bmi1 expression 
since day 1 of culture. On the other hand, Ring1B expression is not induced and 
Amylase2 signal is barely changed. BFC = Before culturing. 

Regarding the analysis of the mRNA levels of PRC1 and PRC2 members, a 

faint impingement on Bmi1 and Ring1B levels could be detected since 

day 1, with a possible increase at day 3 (Figure R.8B). On the other hand, 

PRC2 members EED and EZH2 were found to be slightly increased since 

day 1 (Figure R.8B).  

Nevertheless, statistic analysis of these findings could not be fulfilled 

during the 5 days of culture due to constraints of the model, since 

isolated exocrine cells cease to grow since day 1 of culture. Therefore, at 

day 4 the number of living cells was not enough to obtain conclusive 

results. 
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On the other hand, immunohistochemical analysis of Bmi1 expression in 

cultured acini showed a significant increase (samples kindly provided by 

Ilse Rooman). Before culturing, freshly isolated acini only showed 9% of 

Bmi1-positive cells. At day 1 of culture in suspension, 65% of metaplastic 

exocrine cells expressed Bmi1. At day 5, expression of Bmi1 could be 

found in virtually all cells in culture (Figure R.8E). Moreover, there was 

also an increase in Ring1B expression. However, Amylase2 staining did 

not change over the 5 days of culture. 

In conclusion, induction of Bmi1 may be related to the acinar-to-ductal 

transdifferentiation that undergo isolated acinar cells. 

4. Expression of Polycomb group proteins in 

human PDAC 

In order to correlate our findings from the different animal models with 

human PDAC lesions, Bmi1 and Ring1B expression was analysed in 

pancreatic tissue samples from different patients (n=35) who displayed a 

broad spectrum of prenoplastic and neoplastic lesions.  

Consistent with the results obtained using pancreatitis and PDAC 

experimental models, a statistically significant upregulation of Bmi1 in 

regions of chronic pancreatitis versus histologically normal exocrine 

areas were observed (1.5 ± 0.4 versus 0.7 ± 0.4; p < 0.01) (Figure R.9A 

and R.9B). Moreover, aberrant ducts and tumour lesions showed higher 

increase of Bmi1 expression, regardless the level of dysplasia.  
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Figure R.9. Immunohistochemical analysis of Bmi1 and Ring1B 
expression in human pancreas. (A) Analysis of Bmi1 (left panels) and 
Ring1B (right panels) expression in normal, chronic pancreatitis, low-
grade PanIN lesions and PDAC in human pancreatic sections. Bmi1 
nuclear signal is increased in chronic pancreatitis, metaplastic ducts of 
PanIn lesions (+) and in tumour cells in PDAC (arrowhead). In contrast, 
Ring1B expression is later induced in high-grade PanINs and in PDAC 
lesions. (B) Quantification of Bmi1 and Ring1B expression analysis by 
immunohistochemistry in human pancreatic tissues. Numbers inside bars 
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indicate the amount of samples for each condition. The Mann-Whitney 
U-test was used to test the statistical significance of the results. ∗ = p < 
0.05; ∗∗ = p < 0.01; ∗∗∗ = p < 0.001  

Regarding Ring1B, its expression was slightly increased in pancreatitis 

lesions and in early stages of preneoplasia. However, late stages of 

PanINs and PDAC lesions displayed a higher induction of Ring1B (2.0 ± 0.8 

in PanIN2/3 lesions and 2.1 ± 0.9 in PDAC lesions versus 0.5 ± 0.4 in 

normal pancreas; p <0.001 for both situations) (Figure R.9A and R.9B). 

After analysing the recollected data from human PDAC samples, a 

consistency was found between analysing different PDAC mouse models 

and analysing samples from human PDAC patients.  

5. Bmi1 modulates the acinar differentiation 

program 

After determining the pattern of expression of Bmi1 and Ring1B using 

the previous mentioned models, we sought to study if Bmi1 could be 

involved in the acinoductal metaplasia which happened during PDAC 

formation. Our first hypothesis was that Bmi1 would be acting upon the 

transcription factor Ptf1a/p48, which is regarded as the master regulator 

of the acinar differentiation programme [184, 187, 200-201, 204].  

Pancreatitis and acinoductal metaplasia mouse models showed 

downregulation of several pancreatic markers and the transcription 

factor p48. On the contrary, protein expression of Bmi1 dramatically 

increased at the same time. To better understand the data obtained from 

in vivo models, in vitro models were used to analyse the effects of 

modulating Bmi1 expression on the expression of acinar cell 

differentiation markers. 
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5.1. Downregulation of Bmi1 in pancreatic acinar 

cell line 

We mainly used two commercial acinar cell lines – AR42J and 266-6 – to 

study the effects of downregulating Bmi1. While we used both of them in 

parallel for the experiments, we decided to focus on the 266-6 cell line as 

transfection and infection yields were higher. The 266-6 cell line was 

reported to be obtained from a pancreatic tumour induced in a young 

adult mouse with an Elastase I/SV-40 T antigen fusion gene [310]. 

Partially retaining a differentiated phenotype, this cell line expresses 

detectable levels of transcription factor Ptf1/p48 and the exocrine 

digestive enzymes elastase, amylase and trypsin [323].  

5.2. Effects of Bmi1 downregulation 

A first approach was to downregulate Bmi1 by means of infecting 266-6 

cells with retroviral vectors expressing Bmi1 siRNA. 293 Phoenix cells 

were transfected with plasmid vectors to generate these retroviral 

particles. Then, retroviruses were filtered and added to 266-6 cells, which 

were selected by antibiotic resistance. After total RNA isolation, 

quantitative Real-Time PCR was performed to analyse the expression of 

PcG members Bmi1 and Ring1B, the acinar markers amylase, 

carboxypeptidase A1, chymotrypsinogen B, elastase and the pancreatic 

transcription factors Pdx1 and p48 (Figure R.10). 
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Figure R.10: Effects of Bmi1 knockdown in the acinar differentiation programme 
using retroviral vectors in 266-6 acinar tumour cells, analysed by qPCR. Levels of 
Bmi1 and Ring1B (A) were analysed, as well as Amylase 2, Carboxypeptidase A1, 
Chymotrypsinogen B and Elastase (B), and PDX1, Ptf1a/p48, RBPJ and Notch2 (C). 
iGFP = control infected with a lentivirus codifying for irrelevant iRNA. 

Furthermore, the human homolog for the Drosophila Suppressor of 

Hairless, which is called RBPJ, was also analysed, as well as Notch 2 

receptor. RBPJ was reported to be part of the PTF1 complex, directly 

interacting with p48 [201]. On the other hand, activation of the Notch 

signalling pathway is related to self-renewal potential in many tissues 

[53] and it is involved in pancreatic cell differentiation [182]. 

Upon retroviral infection of 266-6 with siRNA of Bmi1, mRNA levels of 

Bmi1 showed a 0.65-fold decrease compared to control (Figure R.10A). 

Ring1B levels remained unchanged or slightly decreased (Figure R.10A). 

On the contrary, amylase mRNA displayed a 1.35-fold increase. Levels of 

Carboxypeptidase A1, chymotrypsinogen B and elastase upon Bmi1 
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depletion barely changed (Figure R.10B). Moreover, p48 and PDX1 

showed a low decrease, while Notch2 expression was induced 1.4-fold 

(Figure R.10C). RPBJ levels remain unchanged. 

In parallel, we worked with a similar protocol using small interference 

siRNA oligonucleotides to induce Bmi1 knock-down, in order to assess 

the study of short-term effects due to depletion of Bmi1 [311].  
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Figure R.11. Effects of Bmi1 knockdown in the acinar differentiation program 
using siRNA transfection and analysed by qPCR. mRNA levels of Bmi1 and Ring1B 
(A) were analysed, as well as Amylase 2, Carboxypeptidase A1, Chymotrypsinogen 
B and Elastase (B), and PDX1 and Ptf1a/p48 (C). iGFP = control transfected with 
irrelevant siRNA oligonucleotide. 

Transfection of 266-6 cells with siRNA oligonucleotides against Bmi1 

resulted in a 0.5-fold knock-down of RNA levels of Bmi1 (Figure R.11A). 

While Ring1B remained unaltered (Figure R.11A), amylase and 

carboxypeptidase showed a 0.25-fold decrease, chymotrypsinogen B 

displayed a 1.5-fold increase and elastase remained unchanged (Figure 

R.11B). Moreover, levels of p48 experienced a slight decrease while PDX1 

expression barely increased (Figure R.11C). 

Protein expression analysis was performed to analyse the effects of Bmi1 

downregulation (Figure R.12A and R.12B). Depletion of Bmi1 protein 

levels was achieved up to a 0.7 of decrease compared to control cells. 

Regarding acinar marker expression, Ptf1a/p48 displayed a modest 
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increase, while amylase was clearly induced with a 2.2-fold increase. 

Carboxypeptidase was also analysed and exhibited a 1.7-fold increase 

compared to control cells.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure R.12. Effects of Bmi1 knockdown in the acinar differentiation program using 
siRNA transfection and analysed by Western Blot. (A) Upon significant Bmi1 knock-
down at the protein level (left panels), several pancreatic markers  are altered (right 
panels). (B) Densitometric quantification of Bmi1, Ptf1a/p48, Amylase 2, and 
Carboxypeptidase A1 normalized to Lamin B or α-Tubulin. Data represent the average 
of at least three experiments and error bars correspond to the standard deviation. 
Statistics were performed by the Student’s T-test. ∗∗∗ = p < 0.001; n.s. = non-
significant difference (p > 0.5). siMock = control with transfected siRNA 
oligonucleotide. 
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In summary, downregulation of Bmi1 alters the expression pattern of the 

analysed exocrine pancreatic markers, modulating their expression levels 

and therefore hinting a possible modulation of acinar differentiation by 

Bmi1. 
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At the beginning of this thesis project, the expression profile of Polycomb 

group proteins in the pancreas was barely characterised. After taking into 

account published reports involving members of the PcG family in crucial 

mechanisms like cell cycle control [145], tumorigenesis [99, 126, 137, 

141, 324] and stem cell maintenance [308, 325-326], our first approach 

was to conduct a proper analysis of PcG expression pattern in adult 

mouse pancreas. This was the first step to understand the role of the 

Polycomb family in the development, tumorigenesis and cell plasticity of 

the pancreas. 

According to our immunohistochemical experiments in wild-type mice, 

expression of several PcG proteins is dependent on the pancreatic cell 

type and also on the developmental stage of the pancreas. Therefore, a 

general approach in analysing PcG expression considering the tissue as a 

whole could be misleading. Different analysis have been made using 

tissue microarrays which analysed expression of PcG members in the 

pancreas without getting into detail on cell types, obtaining questionable 

results [327]. 

Regarding our findings, at E14.5–15.5 Bmi1 expression is found in 

exocrine pancreatic progenitors, specifically at the tips of the branching 

epithelium, a distribution which is reminiscent of the stem 

cell/progenitor compartment at the tip of the acini [328]. This 

distribution is also consistent with recent insights in adult stem cell 

populations, which demonstrated that both mammary and intestinal 

stem cells are dependent on Bmi1 for self-renewal and maintenance of 

the differentiated pool of cells [326, 329].  At E17.5, when endocrine 

progenitor cells proliferate and begin to form mature cells, expression of 

Bmi1 is down-regulated in the majority of exocrine cells, becoming 
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localised in islet cell nuclei and only in a few scattered acinar cells. 

Finally, in the adult pancreas, expression of Bmi1 is restricted to ductal, 

islet and some scattered cells in the exocrine compartment.  

These Bmi1+ isolated exocrine cells could be centroacinar cells, which are 

located at the termini of the duct network. These cells express Notch 

target gene Hes1 in the adult pancreas, the expression of which has been 

involved in keeping an undifferentiated state [168]. Centroacinar cells 

have been proposed as cells of origin for PanINs and PDAC [303, 330]. 

Evidence for this derives from pancreas-specific deletion of 

the Pten tumor suppressor, which causes expansion and transformation 

of Hes1-expressing centroacinar cells, without acinar-ductal 

reprogramming [331]. Although different models have shed light in 

understanding cell origin of PDAC, it has been difficult to reconcile their 

conclusions, or extrapolate to the human form of the disease. Not even 

the most recent mouse models for PDAC, like KRasG12D, can 

discriminate between acinar and centroacinar cells, as the Cre-loxP 

system is functional in both cell types [331] 

Regarding Ring1B, its mRNA levels can be detected at E14.5 in the mouse 

pancreas but the protein could not be detected. This may suggest that 

the protein levels are below the detection threshold or some post-

transcriptional regulation is happening. Recent findings revealed that 

translation of Ring1B protein needs a stable IRES in the 5’UTR region 

[332]. In the adult pancreas, Ring1B protein expression is restricted to 

the nuclei of islet, ductal and some acinar cells, sharing a similar 

distribution with Bmi1. 
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When planning to study members of the Polycomb family in pancreatic 

cancer, we chose to analyse Bmi1 and Ring1B expression in the exocrine 

pancreas because the majority of the human pancreatic tumours possess 

exocrine characteristics. Interestingly, our results in animal models of 

pancreatitis show an induction of Bmi1 expression which is related to 

tissue regeneration associated with acute and chronic pancreatic injury. 

Moreover, acinoductal metaplasia was found in Bmi1-positive chronic 

pancreatic lesions, which have been postulated to be preceding 

malignant tumorigenesis. These lesions may seem to display increased 

cell proliferation, which has been reported in association with repression 

of acinar cell differentiation by means of  Ptf1a/p48 expression [204]. 

The role of Bmi1 in tumorigenesis is mainly considered to entail the 

escape from senescence or quiescence of preneoplastic cells by 

repressing the tumour-suppressor p16INK4A [138, 141, 333-334], which 

is almost universally inactivated by a variety of genetic mechanisms [41, 

335]. Indeed, some PanINs arising in chronic pancreatitis may show loss 

of p16INK4 expression [336-337], suggesting that Bmi1 could play a role 

in this process. 

Moreover, a very Interestingly, a very recent study allegedly reported to 

have found a Bmi1-positive pancreatic acinar cell subpopulation with 

stem-cell capabilities, maintaining tissue homeostasis [308]. However, 

these findings need to be further analysed, since the transgenic construct 

they used truncated the 3’UTR region of Bmi1, which may affect any 

hypothetical post-transcriptional regulation. 

Furthermore, acinar cell proliferation may be induced by Bmi1-mediated 

repression of Ptf1a/p48, whose expression has been reported to have 
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growth inhibitory effects [204]. This would lead to hypothesize that Bmi1 

overexpression in pancreatitis may be increasing the cell population 

sensitive to oncogenic transformation, by preventing terminal 

differentiation and decreasing cell cycle inhibition by p16INK4a and 

Ptf1a/p48.  This hypothesis is consistent with the downregulation of 

Amy2 in Bmi1-positive cells.   

Following this hypothesis, our experiments in Bmi1 knock-down in vitro 

using the 266-6 acinar cell line show modulation of a selection of 

pancreatic markers, hinting that downregulation of Bmi1 may be forcing 

differentiation of the acinar lineage, due to an increase in amylase and 

p48. However, expression of Cpa1 decreases, which has recently been 

reported to be expressed, along with Pdx1, Ptf1a/p48 and cMyc, by 

pancreatic multipotent progenitors at E9.5 during mouse development. 

Due to their high proliferation rate, these progenitor cells are located at 

the tips of the developmental branching of the pancreas, leaving 

differentiated progeny behind. The fact that Cpa1 is present in these 

multipotent cells questions the canonical views of pancreatic markers, as 

it is considered to be a marker for adult acinar cells. 

Very recent findings have reported Bmi1 to be collaborating with HRAS 

to promote increased proliferation, invasion and resistance using in vitro 

models of breast cancer by altering several p16/INK4A-independent 

pathways [338], promoting an increased rate of spontaneous metastases 

from mammary fat pad xenografts including novel metastases to the 

brain [339]. Bmi1 could also be promoting pancreatic tumorigenesis in a 

similar way, as induction of KRAS is one of the first alterations in PDAC. 
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While induction of Bmi1 can be detected at early stages of preneoplastic 

lesions, Ring1B expression is increased in advanced PanIN stages. Despite 

the fact that Bmi1 cooperates with Ring1B in H2A ubiquitylation [340], 

taking into account our findings, both proteins seem to be regulated in 

an independent manner in pancreatitis and neoplastic lesions of the 

pancreas. Induction of Bmi1 expression is maintained throughout 

pancreatitis, preneoplastic lesions and PDAC. However, Ring1B 

expression becomes activated in advanced stages of tumorigenesis, 

hinting that Bmi1 and Ring1B could be cooperating in late PanINs and in 

PDAC. 

One interesting hypothesis involves different barriers which PanINs need 

to overcome to progress into malignant PDAC [341]. Our results indicate 

that increase in Ring1B expression in late PanIN lesions and PDAC could 

be related to bypassing these hypothetical barriers to neoplasia, like 

senescent mechanisms induced by oncogenes [342]. 

In summary, our work suggests an important role for Polycomb in both 

early and late steps of pancreatic carcinogenesis. We conclude that these 

proteins may be crucial for inflammatory preneoplastic conditions. A 

better understanding of the mechanisms involved therein may provide 

clues for PDAC prevention in patients at risk, particularly in individuals 

with sporadic or hereditary pancreatitis. 
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1. In the normal mouse pancreas, Bmi1 and Ring1B are expressed 

at the protein level in the nuclei of endocrine cells, ductal cells 

and in some scattered cells of the exocrine compartment. 

2. During mouse pancreatogenesis, mRNA levels of Bmi1 and 

Ring1B are localised at the distal tips of the pancreatic progenitor 

branch at E14.5. However, at E15.5, while Bmi1 protein 

expression is detected in the nuclei of acinar cells, Ring1B 

expression is undetectable. At E17.5, protein expression of Bmi1 

is only found in the nuclei of islet cells and in a few scattered 

exocrine cells. 

3. In pancreatic samples of KRasG12V mouse model for PDAC, protein 

expression of Bmi1 is upregulated since early PanIN stages and is 

maintained until PDAC lesions. On the contrary, expression of 

Ring1B is increased since late PanIN stages. 

4. In mice with caerulein-induced acute pancreatitis, Bmi1 and 

Ring1B expression is increased in affected regions of the 

pancreas 2 days after treatment and this increase lasts up to 10 

days. In chronic pancreatitis mouse models, Bmi1 is highly 

expressed in regions of acinar metaplasia, while Ring1B is not 

found. 

5. Upon duct ligation in the rat pancreas, Bmi1 is increased in 

regions of acinar metaplasia. 
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6. In primary cultures of the exocrine fraction of mouse pancreas, 

while mRNA levels of Bmi1 and Ring1B barely change during the 

spontaneous acinoductal transdifferentiation of the cells, protein 

expression of Bmi1 highly increases after 1 day of culture and 

lasts until day 5. Ring1B expression is not induced during this 

time. 

7. Human pancreatic samples from PDAC patients show a 

significant upregulation of Bmi1 protein expression in regions of 

chronic pancreatitis, aberrant ducts and tumour lesions. Ring1B 

is found to be induced in later PanIN stages and PDAC. 

8. After knocking down expression of Bmi1 in an acinar tumour cell 

line, several pancreatic markers are altered thus the acinar 

differentiation program, suggesting a possible role of Bmi1 in the 

exocrine cell plasticity and commitment to an adult cell type. 
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