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Introduction

Introduction

This work presents some contributions to the design and study of large and faul-tolerant
interconnection networks within the framework of Graph theory.

One of the main issues to take into account when designing a multicomputer system
is the choice of a suitable interconnection network. The so-called network topology
affects the performance of the system to a large extent and has a decisive influence
on its overall cost. It is mainly for these reasons that the design and study of large
and fault-tolerant interconnection networks has received a great deal of attention in the
last decades, especially since the advent of very large scale integration (VLSI) circuit
technology (see [16, 19, 20, 57, 139]).

It is well known that (point-to-point) interconnection networks are usually modelled
by graphs, either directed or not, in which the vertices represent the switching points
or nodes. Communication links are depicted by edges if they are bidirectional or arcs
if they are unidirectional.

When designing a multicomputer system or a large telecommunication system, some
of the main requirements related to the topology of the interconnection network are:

1. A large number of switching points.

2. A limited number of nodes directly connected to a given node. Moreover, one can
demand this number to have the same value d for every node.

3. Communication between every pair of nodes. Furthermore, the communication
delays between nodes must be short. In other words, the minimum number of
nodes that should be traversed to send a message from any switching point to
any other one must be bounded.

4. Certainly, the larger a network is the proner it is to be faulty. For this reason,
the network must be fault-tolerant. This means that if some nodes or links cease
to function, it is important that the remaining nodes can still intercommunicate
with reasonable efficiency. Two of the most significant issues to evaluate the
reliability or fault-tolerance of a network are:

(a) Evaluation of the minimum number k of nodes (or links) needed to disrupt
the network. This means that in case of failure of less than k nodes (or
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links), there is communication between every pair of still working nodes.
Certainly, it is highly desirable that the value of k be as large as possible,
and in this case one can approach the study of the so-called disconnecting
sets of nodes (or links).

(b) In case of failure of a fixed number s < k of nodes or links, the remaining
network still satisfies condition 3.

Stated in terms of the (di)graph G used to model the network, these requirements are
(see Chapter 1):

1. High value of the order n(G).

2. Small value of the maximum degree A(C?). Moreover, one can demand the graph
G to be d-regular.

3. The (di)graph G is (strongly) connected. Furthermore, its diameter D (G) should
be rather small.

4. (a) Analysis of the connectedness of G, starting with the evaluation of the con-
nectivity parameters n(G) and A(G). For example, a 'reliable' network should be
modelled by a maximally connected (di)graph, and going one step further, by a
superconnected (di)graph.

4.(b) Small diameter vulnerability for a certain value s lower than the connectivity

«(G).

The three first requirements are, however, in conflict (see Section 1.2). Indeed, the
order of any (di)graph belonging to a certain family Ji with a fixed maximum degree A
and diameter D is limited by the so called Moore bound .A/(-ft(A,-D) (see Section 1.2).
On the other hand, this theoretical upper-bound is, in most cases, not attainable. For
this reason, the optimization problem of finding (di)graphs of given maximum degree
and diameter with an order as large as possible has deserved much attention in the
literature (see Section 2.1). Some new contributions to the table of largest graphs are
presented in Chapter 2.

As for the analysis of the connectedness on a certain graph or digraph family Ti.,
the usual way of starting the study of this topic consists in finding some sufficient
condition to assure any digraph G G "H to be maximally connected; that is to say, to be
connected after the deletion of any set of vertices (or arcs) with a cardinality lower than
its minimum degree <5(G). Next, a similar work can be carried out on the maximally
connected (di)graphs in H by considering some further conditional connectivity, as for
example the so-called Superconnectivity (see Sections 1.7.1, 4.1 and 5.1 for more details).
The two last chapters of this work are mainly devoted to the study of connectedness
properties in a number of digraph families, by using the aforementioned methodology.
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Apart from the connectedness, another important issue to be considered when eval-
uating the vertex (or arc) fault-tolerance of an interconnection work modelled by a
(di)graph G with diameter D and connectivity K is certainly the so-called diameter-
vulnerability. The question to be approached (in terms of vertex removal) consists in
studying how much the diameter of G can increase after the deletion of a fixed number
s of vertices (or edges), s being of course less than K (see Section 1.7.2). In Chapter 2,
this study has been carried out on several graph families in the case s = 1.

This work is structured into five Chapters. In the first one, a review of known results,
which will be referred to afterwards, is provided, where the notation and terminology
used here is also introduced.

The second Chapter is devoted to the design of new large graphs of diameter six,
by means of a certain variant of the so-called compounding technique, starting from
the Moore bipartite graphs with this same diameter (see Sections 1.4 and 1.5.1). As
a matter of fact, this specific technique is a generalization of a method introduced by
Quisquater in [1.27].

In Chapter 3, the 1-vertex-vulnerability of the so-called generalized compound graphs
(7(7 is studied; it is proved there that, in most cases, it is quasi optimal (see Section 3.1).
The GC graphs were introduced by J. Gómez in [75] by proposing several constructions,
all of them inspired both in the compounding of graphs and in the design of graphs on
alphabet, joining the advantages of both methods. It is mainly for this reason that they
yield large graphs when the diameter is rather small. Apart from the aforementioned
vulnerability study, a new and global reformulation of these class of graphs is given by
means of the line digraph technique, the conjunction of digraphs and the compounding
of graphs.

In Chapter 4, a connectedness study on the family of generalized p-cycles is pre-
sented. Starting from the works on this subject carried out by Balbuena, Carmona,
Fàbrega and Fiol for bipartite digraphs (see [5, 9, 11, 55, 66]); that is, for generalized
2-cycles, a similar list of results for any p > 3 has been obtained.

The parameter £, introduced by Fàbrega and Fiol in [54], has proved to be an ex-
cellent tool to study connectedness properties (see Sections 1.6 and 1.7.1). For this
reason, a new family of digraph parameters defined by generalizing in different ways
the previous one has been proposed in Chapter 5. On the other hand, with the pur-
pose of unifying different methods used to prove constructively a number of results on
connectedness involving the parameter i and the diameter D, a unique framework of
algorithmical or constructive proof is also put forward in this Chapter. Finally, starting
from these formal contributions, a list of new results on connectedness is shown.
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Chapter 1

Graph theory

1.1 Basic definitions

Graphs and digraphs

A graph G = (V, E) consists of a nonempty set F of n elements called vertices, and a
set of m unordered pairs of vertices called edges. The parameters n = \V\ and m = \E\
are named the order and size of G respectively. Il e = {x, y} is an edge of G, we say
that x and y are adjacent, or simply x ~ y. It is also said that x and y are incident to
e. A /oop is an edge {x,y} such that x = y. A simple graph is a graph without loops 1.
The set of vertices [edges] adjacent [incident] to a vertex x is called the neighbourhood

[edge-neighbourhood] of x, denoted by T(x) [w(x)], and o(x) = |F(x)| = \w(x)\ is said
to be the degree of x. The minimum degree of the vertices of G is denoted by o(G) = 6

and the maximum degree by A(G) = A, A graph G is k-regular if ¿(G) = A(G) = fc.

A digraph G = (V, A) consists of a nonempty set F of n elements called vertices, and
a set of m ordered pairs of vertices called arcs. The parameters n = \V\ and m = |A|
are the order and size of G respectively. If e = (x, y) is an arc of G, we say that x is
adjacent to y, or y is adjacent from i, or simply x —* y. A /oop is an arc (x,y) such
that x = y. A (simple) digraph is a digraph without loops. The set of vertices adjacent
from [to] a vertex x is called the out-neighbourhood [in-neighbourhood] of x, denoted by
r+(x) [r~(a;)], and similarly is defined the out-arc-neighbourhood [in-arc-neighbourhood]

w+(x] [ur(x)]. The integer 6+(x) = \T+(x}[ = \w+(x)\ [6~(x) = \T~(x)\ = \w~(x)\] is
said to be the out-degree [in-degree] of x. The minimum out-degree [minimum in-degree]

of the vertices of G is denoted by <5+(G) = 6+ [S~(G) = S~] and the maximum out-
degree [maximum in-degree] is denoted by A+(G) = A+ [A~(G) = A~~]. The minimum

degree [m.axim,um degree] of G is <5 = min{6~, 0+} [A = maa:{A~, A+}].

Let F be a subset of vertices of a (di)graph G = (V,A). The out-neighbourhood

The simple graphs are often called graphs, whereas the graphs with loops are called pseudographs
(see [39],[90]).
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r+(F) and positive, boundary ¿H~(F) of F are defined as follows:

r+(F) = (J r+(x), d+(F) = r+(F) \ F.

The in-neighbourhood T~(F) and negative boundary d~(F) are defined similarly. As
for the arc case, the positive arc-boundary w+(F) and negative arc-boundary w~(F) of
F are defined in the following way:

w+(F) = {(x,y) e A : x e F and y e V \ F},

w~(F) = {(x,y)eA : x E V \ F and y e F}.

In the definition of a graph [digraph], if more than one edge [arc in the same
direction] is permitted to join two vertices, the resulted structure is called a multigraph
[multidigraph]. A symmetric digraph is a digraph such that for every pair of vertices
x,y: (X,T/) e A «=> (y,x) € A. Observe that every graph G = (V,E) can be identified
with a unique symmetric digraph G = (V, A), and notice that \A\ = 2\E\. In the rest
of this work, we will use the following definition: A (di)graph G = (V, A) is either a
simple digraph or graph (considered, if necessary, as a symmetric digraph).

Distance in (di)graphs

Let x, y be two vertices of a (di)graph G. A walk of length h from a; to y is a sequence
of vertices x = XQX\ . . . x/t = y, where (x¿,x,+i) is an arc. It is called a trail if all its
arcs are distinct, and a path, or an x — > y path, if all its internal vertices (and thus
necessarily all its arcs) are different. A circuit is a closed walk; that is to say, a walk
from a vertex x to itself. A cycle 2 is a closed path (if G is a graph, of length at least
3). A digon is a closed path of length 2 (observe that if G is a graph, an digon is not a
cycle). The distance from x to y, denoted by d(x,y), is the length of a shortest x — > y
path (if there are no x — •» y paths, then we put d ( x , y ) = oo). Certainly, if G is a graph,
then for every pair of vertices: d(x,y) = d ( y , x ) . If F is a subset of vertices of G, the
distance from a vertex a: to F [from F to a vertex x] is defined as follows:

d(x,F) = min{d(z,/)} [d(F,x)

Similarly, if F is a subset of arcs, the distance from x to F [from F to x] is defined in
this way:

d(x,F)= min {d(x,u)} [d(F,x)= min

A (di)graph is called strongly connected, or simply connected, if for every pair of vertices
x,y there is an x — > y path. The diameter of a, connected (di)graph is defined as follows:

D = D (G) = max{d(x, y ) : x, y e V}.
2Also called a directed cycle, if G is a digraph.
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The girth g = g (G) of a (di)graph G is the minimum length of a cycle (if there are no
cycles in G, then we put g(G) = oo). A (A, D)-(di)graph is a connected (di)graph with
maximum degree A and diameter D.

Sub(di)graphs

Let G = (V,A) and GÌ = (V^, AI) two (di)graphs. The (di)graph GI is said to be a
sub(di)graph of G if FI C F and AI C A. In particular, if Vi = V [Ai = A D (Vi x Vi)],
then GÌ is called a spanning [induced] sub(di)graph of G.

If G is a maximal connected sub(di)graph of G, then G is said to be a (strongly)
connected component or simply a component of G. A component G of a non-connected
digraph G is said to be a source component, or simply a source, ifw~C = 0. Similarly,
a component G of G is called a sink if w+C = 0. Otherwise, G is said to be a
transmittance component.

For any set S of vertices of a (di)graph G, the induced sub (di) graph < S > is the
maximal sub(di)graph of G with vertex set S. Observe that two vertices of S axe
adjacent in < S > if and only if they are adjacent in G. If A' C A(G) then G — A'
denotes the (di)graph resulting from G when the edges belonging to A' are removed,
i.e. G-Ä = (V,A\ A'). Similarly, if V C V(G) then G -Vis the (di)graph obtained
from G by the removal of the vertices belonging to V.

Other definitions

A set of vertices S of a (di)graph is called stable if no arc joins two vertices (not
necessarily distinct) in S. The complete graph JQ is the graph of order n without
stable sets of vertices. The (simple) complete graph Kn is the graph obtained from fi*
by the deletion of all its loops. A (di)graph is bipartite if its vertices can be partitioned
into two stable sets V\ and V¿. The complete bipartite graph Kh,k is the bipartite graph
with | I/j = h, |1/2| = k, and such that every vertex a; € Vi is adjacent to all the vertices
of 1/2.

Two (di)graphs G = (V, A) and G' = (V , A'} are said to be isomorphic, denoted by
G = G', if there exists a one-to-one correspondence (f> between their vertex sets which
preserves adjacency; that is, such that for every pair of vertices x,y 6 G: ( x , y ) € A &

A [connected] graph without cycles is called a forest [tree]. Similarly, a non-
connected digraph that contains no directed cycles is said to be an acyclic digraph.
An oriented tree is an acyclic digraph whose underlying graph is a tree. An oriented
tree T2 is called out-rooted [in-rooted] with root z, if for each v 6 V(TZ) there is a unique
z — > v path [v — » z path]. The level number of a, vertex v is the length of this unique
z — > v [v — > z] path, and the maximum of the level numbers of Tz is called its height.

The converse digraph G= (I/, A) of a digraph G = (I/ A) has the same vertex set,
whereas its arcs are obtained by reversing the orientation of every arc in A. To be more
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precise: Vx,y e V, (x, y) £A^ (y, x) G A.
The underlying graph UG = (V, E) of G = (V, A) is the graph with the same vertex

set, and whose edge set is defined as follows 3:

Vx,y e V, {x,y} 6 £7 o (x,y) e 4 or (y,x) e A.

The condensation G* of a non-connected digraph G has the (strong) components as
its vertices, with an arc from a component C¿ to another C j whenever there is at least
one arc in G from a vertex of GÌ to a vertex in Cj. Notice that, from the maximality
of strong components, it follows immediately that the condensation G* of any digraph
is acyclic (see Figure 1.1).

G

Figure 1.1: Condensation of a disconnected digraph obtained by deleting three vertices
in a 2-regular digraph of diameter 3.

1.2 The (A, £>)-problem

A question of special interest in Graph theory is the construction of connected graphs
and digraphs with an order n(A,i?) as large as possible for a given maximum degree A
and diameter D. It is the so-called (A,D)-problem, and any of its 'solutions' is referred
to as a large (di)graph.

Definition 1.2.1 Let Ti. be a family of connected (di)graphs. A Moore bound of Ti.
is a function Afft(A, D) such that the order of every (A,D)-(di)graph G € H. is at

The condition x ^ y is sometimes added.
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most M-H(/\,D). A Moore (di)graph in H is a (A,D)-(di)graph G such that n(G) =

Different Moore bounds have been obtained for a wide range of families of connected
graphs and digraphs. Let us show some of them:

Proposition 1.2.1 Let Ti. be a family of connected (di)graphs.

. f 2D + 1 if A = 2
1. H={G: G is a graph }: M·H(AÍD) = < A / A _I \ JD_ 2

I A-2— ¿/ A > 2

, í 2D if A = 2
2. rri=\G: G is a bipartite graph }: M-H(A,D) = { ofA-nO-o

1 \ i if A ^> 9
1. A-2 1J ^ > ¿

{ D + l ¿/ A = 1
3. T~Î={G: G is a digraph}: M-n(A.,D)= < AD+I_J .,. A

4- T~L={G: G is a bipartite digraph, D odd }: Ai-H(A,jD)= < 2A
z?+1-2

I A2-l ï/ A > 1

5. H={G: G is a bipartite digraph, D even }: M-n(A,D)= < 2AD+1-2A A
AT ï î j /A > 1

Proof.

1 . Let v be any vertex of G and let Fj(v) denote the set of vertices at distance i of
u. It is clear that the set {FQ(V), T\ (v), . . . , F£)(V)} is a partition of the vertex set
V, and |r¿(u)| < A(A - I)*-1 for all t € {1, . . . , D}. Hence,

n = \V\ = |r0(u)| + E iFiiv)! < 1 + 2 A(A - I)*-1,
¿=i ¿=i

and the proposed upper bound is obtained.

2. The proof of this case is similar to the previous one with the only difference that,
taking into account that G is bipartite, the set FD(V) is stable and therefore,

3. Let v be any vertex of G and let rf(v) denote the set of vertices at distance i

from v. Certainly, the set {ro"(v),r^(u), . . . ,r¿(u)} is a partition of the vertex
set V, and for every i € {0, 1, . . . , D}: \T^(v)\ < A*. Hence,

i-O i=0
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4. Let G = (Vi U V2, E) a bipartite digraph with odd diameter D and suppose that
I Vi| < |V2|. If f i s any vertex of V2, it is clear that the set {r^"(t;),r^(u), . . . ,T¿_1 (
is a partition of the stable vertex set ¥2, and for any i 6 (0, 2, . . . , D — 1 }:

| < A4. Hence,

l < 2 E A^
¿=0 ¿=0

5. Let G = (Vi U V2,E) be a bipartite digraph with even diameter D and suppose
that |Vi| < |V"2|. If v is any vertex of Vi, the set {r^(u), T%(v), . . . , F£_, (u)} is
crtainly a partition of the stable vertex set V^, and for any i 6 {1, 3, . . . , D — l }:

< A'. Hence,
D/2 D/2

n = \V\ = |Vi| + |V2| < 2|V2| = 2 ¿ |r2i-i(«)| < 2
¿=1

The only Moore graphs are: the complete graphs K&+\, the odd cycles
the Petersen (3,2)-graph P (see Figure 2.2), the Hoffmann-Singleton (7,2)-graph, and
perhaps, a (57, 2)-graph (see [22]). There are five families of Moore bipartite graphs:
for A = 2 the even cycles C^D-, for D = 2 the complete equi-bipartite graphs I^A.A) arjd
for D = 3, 4 or 6 with maximum degree a prime power q plus one, the graphs denoted
by Pq, Q q and Hq respectively (see Section 1.5.1).

As for the directed case, Bridges and Toueg proved in [33] that the unique Moore
digraphs are the complete graphs /ÍA+I and the directed cycles Cn. The even directed
cycles (?2/i (that are the only connected bipartite digraphs with A = 1) and the complete
equi-bipartite graphs ÄA,A are Moore bipartite digraphs. In [67], Fiol and Yebra proved
that for any A > 1 and D = 3 or 4 there are Moore bipartite digraphs, and such
digraphs do not exist for D > 5 (see Remark 1.5.1).

Due to the non-attainability, in most cases, of the Moore bounds obtained for
different families of (di)graphs, the study of the (A, £>)-problem in a certain (di)graph
family H mainly consists in finding (A, £>)-(di)graphs with order, on the one hand, as
close as possible to the corresponding Moore bound M^(/^, D), and on the other hand,
larger than the rest of the known (A, D)-(di)graphs of "H.

1.3 The line digraph technique

The line digraph technique was introduced by Harary and Norman in [92], and has
proved to be very useful in the design of digraphs with 'good' properties. For instance,
by means of this technique a wide range of large digraphs have been designed (see
Section 1.5.2).

Let G — (V",^4) be a (6, A,D, n, m)-digraph. In the line digraph of G, denoted by
LG, each vertex represents an arc of G; that is to say, V(LG) = {xy : (x,y) G A}. The
arc set of LG is defined by means of the following adjacency rule:
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uv — > xy <3- v = x

For every h > 0, the h-iterated line digraph LhG is defined recursively by LhG =
L(Lh~lG). Observe that the vertices of LhG represent the walks of length h in G
and can be denoted by 'words' with h + I letters. Notice also that for every vertex

r+(x]X2 . . .x/ l + i) = {x2...xh+ia : a € r+(xh+i)}

As a direct consequence of the definitions the following list of properties is obtained
(see Figure 1.3).

Proposition 1.3.1 ([68], [93]) Let LG be the line digraph of a digraph G. Then,

1. n(LG) = m.

2. uv 6 V(LG) =» 6~(uv) = 5-(u), 5+(uv) = o+(v).

3. ¿(LG) = S(G), A(LG) = A(G).

4- G is k-regular 4=> LG is k-regular, and n(LG] = kn.

5. G is k-regular O LhG is k-regular, and n(LhG) — khn.

6. G = Cn c$ LG = On-

7. G bipartite =$• LG bipartite.

8. G connected: LG bipartite => G bipartite.

9. G and LG have the same girth: g(LG] = g(G).

10. For every T C A(G): L(G - T)=LG - T.

11. If G is disconnected and \A(G)\ > 2, then LG is disconnected.

In addition to these ones, this technique satisfies other interesting properties (see [93]),
and next we show two of them. The first one states the relation between the diameter
of a connected digraph G and that of LG, and the second is the so-called Heuchenne
adjacency condition, which is a characterization of the line digraphs.

Proposition 1.3.2 ([2]) Let G be a connected digraph different from a directed cycle.
Then LG is a connected digraph of diameter: D(LG) = D(G) + 1.

Proposition 1.3.3 ([94]) In every simple digraph G the following conditions are equi-
valent:

1. G is the line digraph of a simple multidigraph 4.

2. For any u, v e V (G), either F+(u) n T+(v) = 0 or

3. For anyu,v € V(G), either T~(u] n F" (v) = 0 or F~(u) = T~(v).
4 To guarantee that G is the line digraph of a simple digraph some more restriction must be added,

see [93] for details.
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1.4 Operations on (di)graphs

There are many ways of combining (simple) (di)graphs to produce new (di)graphs (see
[90]). For instance, the complement G of a graph G has the same set of vertices V(G),
two vertices being adjacent in G if and only if they are not adjacent in G. in this
section, we describe several binary operations on two (di)graphs GÌ = (y\,A\) and
G-2 = (VziAz), which result in a (di)graph G whose vertex set is the cartesian product
Vl X V-2.

Cartesian product

In the cartesian product GÌ x G? = (Vi x V^, A), a vèrtex (ui, ̂ 2) is adjacent to another
vertex (^1,^2) if and only if either

til = v\ and u-2 —» «2

or

u<2 = f2 and HI —* v\.

In the next proposition we show some properties of this operation.

Proposition 1.4.1 ([37])

1. GÌ x G2 has order n\n-2 and size n\mi 4- n-j.m\.

2. 6(Gi x G2) = ¿i + 02, A(Gi x G2) = AI + A2.

3. GI xG 2 = G2 x Gì.

4- If GI and G<2 are connected, then GÌ x G2 is also connected.

5. If GI and GI are, bipartite, then GI x G2 is also bipartite.

6. In general, GI x G2 ̂  GT x G^.

Lexicographic product

In the lexicographic product Gi(G\) = (V-¿ x Vi,A), a vertex (11%,u\) is adjacent to

another vertex (1*2, t>i) if and only if either

t»2 —> ^2

or

U2 = ^2 and ui —> vi.

Next, we show some properties involving this operation.

Proposition 1.4.2 ([37])

1. 02(Gì) has order nin% and size nymi +
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2. ö(Gl x G2) = ôi + Ô2- ni, A(Gi x G2) = AI + A2 • m

3. In general, G2(Gi) ̂  Gi(G2).

4- If G} and G2 are connected, then G2(Gi) is also connected.

5. If G] and G2 are bipartite, then, in general, G2(Gi) is not bipartite.

6.

Both the cartesian product G2 x GÌ and the lexicographic product G2(Gi) can be
defined in the following way. If GÌ and G2 are two (di)graphs, the new (di)graph G
is obtained by replacing in G2 each vertex x by one copy Gf of GÌ. The difference
between the two constructions lies in the so-called intercopy arcs. So, in the cartesian
product G2 x GÌ each arc (x,y) of G2 is replaced by exactly n\ arcs from Gf to G\,

whereas in the construction of the lexicographic product G2[Gi] each arc of G2 gives
rise to ri] arcs. As expected, these operations have been generalized by several authors
(see [1.8, 47, 48, 77]) in different ways. Most of these generalizations consist basically
in replacing each vertex of a (di)graph G2 by a (di)graph GÌ and each arc of G2 by a
certain number ß of 'intercopy arcs'. When the value of ß is rather small (for instance 1

or 2) the corresponding construction is called a compounding of (di)graphs (see section
1.5.3), whereas such a construction is called a product of (di)graphs if ß is rather large

(for instance nj) .

Conjunction

In the conjunction 5 GÌ ® G2 = (Vi x F2,^4), a vertex (ui,u2) is adjacent to another

vertex (fi,i>2) if and only if u\ —> v\ and u2 —> i>2. As in the previous cases, let us see
some properties involving this operation.

Proposition 1.4.3 ([37])

1. GÌ ® G2 has order nin2 and size 2mim2.

2. S(Gi ® G2) = Si • 62, A(Gi <g> G2) = AI • A2

3. G, ®G2 = G2®Gi.

4- If GÌ and G2 are connected, then G\ ® G2 is connected if and only if either GÌ
or G<2 is not bipartite.

5. If either G\ or G2 is bipartite, then GÌ <8> G2 is also bipartite.

3lt is also known as tensor product and Kronecker product.
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lc 2c

16 26

K-y

la 16 2c

la 26 1c

[ft] le.
a2 62

al 61

Figure 1.2: Some binary operations from the graphs K^ and PS.

6. If GI and G% are connected, then G\ <8> G^ consists of exactly two bipartite com-
ponents if and only if GI and GI are both bipartite.

7. In general, GI ® G2 ' 02-

The conjunction of (di)graphs satisfies another property, which reveals the excellent
behaviour of the line digraph technique with respect to this operation (see [84]).

Proposition 1.4.4 For any given two (di)graphs GI and G2 it follows that

L(Gi

Proof. Let u\v\ and «2^2 be arcs of A(G\) and A(G2) respectively. Let us con-
sider a one-to-one mapping <f> from V(L(G\ <8> ^3)) onto V(LG\ ® LG^}; namely,
<^((iti ,it2)(^i)^2)) = ("1^1,142^2)- It follows that (f) is an isomorphism, because it pre-
serves adjacency. Indeed, (tii,^)^!)^) is adjacent to another vertex (a\,a-2)(b\}b'2)
of L(G\ <8> G2) if and only if (^1,1*2) — (ois^)) which is equivalent to saying that

is adjacent to (0161,0262) in LG\ ® LG<¿. •
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1.5 Some families of (di) graphs

1.5.1 Moore bipartite graphs

The terms Moore graph and Moore bipartite graph introduced in Section 1.2 are also
used for a certain class of graphs whose members are the so-called cages. A (A, §)-cage
is a A-regular graph of girth g having the minimum possible order n(A,g). In the
following result, we find the reason for this apparent contradiction.

Proposition 1.5.1 ([22])
1 . The order of a graph with A > 3 and odd girth g = 2d + 1 is at least

// there is such a graph, having exactly no(A,g) vertices, then it has diameter
D = d.

2. The order of a graph with A > 3 and even girth g = 2d is at least

no(A,ff) = 2(A¿JT2

// there is such a graph, having exactly no(A,</) vertices, then it is bipartite and
has diameter D = d.

Observe that these lower bounds coincide with the Moore upper bounds for graphs and
bipartite graphs obtained in Proposition 1.2.1. Note also that for A = 2, the cycles
Cg are Moore (2, 2y^-)-graphs if g is odd and Moore bipartite (2, |)-graphs if g is even,
and in both cases, they are (2, <?)-cages. Therefore, taking into account that the girth
of any Moore graph [Moore bipartite graph] has to be odd [even], we conclude that
a graph [bipartite graph] G of maximum degree A and diameter D is a Moore graph
[Moore bipartite graph] if and only if it is a (A, ID + l)-cage [(A, 2£>)-cage] of order
n0(A,2D + l) [n0(A,2D)].

Let us consider the family of Moore bipartite graphs; that is to say, the family of
(A,p)-cages of even girth having order no(A,(?). As we have already noticed, when
A = 2 the even cycles provide the complete answer to the problem. For A > 2, Feit
and Higman proved in [58] that Moore bipartite graphs with a girth greater than 12
do not exist. For g = 4, it is easy to see that the complete bipartite graph AA,A is the
unique Moore bipartite graph for all A > 2 (see [39]). In [14], C. T. Benson proved
that, for g = 2D € {6,8, 12}, there exist Moore bipartite (A,£>)-graphs if and only if
q = A — 1 is a prime power.

For g — 2D = 6, Singleton in [131] noted that the so-called generalized triangles Pq

are Moore bipartite (q + 1 , 3)-graphs. In fact, Pq is the incidence graph of the projective
plane PG(2,q); that is to say, it is the bipartite graph whose stable sets are, on the one
hand, the points of PG(2,^), and on the other, its lines, being a point a and a line 6
adjacent if and only if a 6 6.

In the mentioned work [14], the author also constructed the so-called generalized
quadrangles Qq and generalized hexagons Hq, and proved that they are Moore bipartite
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(q + 1, D)-graphs of girth g = 2D = 8 and 12 respectively. In both cases, these graphs
are defined in a similar way as the generalizad triangles Pn; that is to say, as incidence
graphs of certain projective geometries. For instance, the stable sets of Hq are, on the
one hand, the points of the 5-dimensional projective space PG(5,g), and on the other,
some lines of a non-degenerate quadric surface in PG(5,q).

1.5.2 De Bruijn and Kautz (di)graphs

As Fiol, Yebra and Alegre proved in [68], the line digraph technique is an excellent
method to obtain large digraphs with other good properties. Two of the most important
line digraph families are the so-called De Bruijn and Kautz digraphs.

Let K¿ be the complete graph of order d > 2. The De Bruijn digraph B(d,D) is
defined as the (D — l)-iterated line digraph of K¿\ that is to say, B(d,D) = LD~1K¿.
As a direct consequence of the properties of the line digraph technique, it is derived
that B(d, D) is a d-regular digraph of diameter D and order dD . Observe that B(d, D)
has d loops (incident to the vertices of the form aa . . . a) and í * J digons (between
each pair of vertices of the form abab . . . and baba . . .).

The De Bruijn digraphs, which were introduced in [34], were originally defined
as digraphs on alphabet in the following way. The vertices of B(d, D) are the words
of length D constructed from an alphabet X of cardinality ci, being a vertex x =
x\X2 . • . xrj adjacent to a vertex y = yij/2 • • -VD if and only if the last D — 1 letters of
x are the same as the first D — I letters of y. In other words,

r+(xiX2 . . .XD) = {x2 . . .xrjot : a E X}

Let Kd+\ be the simple complete graph of order d + \ > 3. The Kautz digraph
K(d, D) is defined as the (D— l)-iterated line digraph of Kj+i ', that is to say, K(d, D) =
LD~iKd.+\. As a direct consequence of the properties of the line digraph technique,
it is derived that K(d,D) is a d-regular digraph of diameter D and order dD + dD~} .
Observe that K(d,D) has í d\ 1 j digons (between each pair of vertices of the form
0606 . . . and baba . . .), and it has no loops. For example, the digraph G of Figure 1 .1 is
K(2, 3), and it is a regular and simple digraph with 12 vertices and 3 digons.

This family of digraphs contains, in almost all cases (see Fig. 3 of [68], for a
counterexample), the larger known digraphs. Indeed, the order of the Kautz digraph
K(d,D) is very close to the unattainable (except in the case D = 1) Moore bound for
digraphs. To be more precise,

n(K(d, D)) = dD + dD-i > _ - ^- = - - M(d, D)

The Kautz digraphs, which were introduced in [104], were originally defined in the
same way as the De Bruijn digraphs, taking another vertex set. In this case, the vertices
of K(d, D) are the words of length D from an alphabet X of cardinal number d + 1 , in
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which any two consecutive letters have to be different. In other words, K(diD) is the
subgraph of B(d + 1, D) induced by

V(K(d, £>)) = {a:ix2 . . . XD € V(B(d +1,0)) : *< + xi+1, i = 1, . . . , D - 1}

The De Bruijn graph UB(d,D) is defined as the simple 6 underlying graph of
B(d, D). Observe that, for D > 2, UB(d, D) is a graph with minimum degree ô = 2d— 2,
maximum degree A = 2d, diameter D and order n — (^)D • In a similar way, the
Kautz graph UK(d,D) is defined as the underlying graph of K(d; D). Notice also that
UK(d, D) is, for D > 2, a graph with minimum degree 6 = 2d — I , maximum degree

A = 2d, diameter D and order n = (f )D + (%)D~Í.
Due mainly to the fact that both the De Bruijn and Kautz graphs have even maxi-

mum degree, several authors have designed different families of dense graphs on alphabet
(see [79] and its references). Nevertheless, in all the cases the order of these graphs
is n KÍ k(j-)D with k 6 {1,2,3}, that is far away from the Moore bound for graphs

Generalized De Bruijn and Kautz digraphs

The De Bruijn digraph B(d,D] can also be arithmetically defined as the digraph with
vertex set Zn, n = dD , whose adjacency rule is:

x e V(B(d, D)) => r+(aO = {dx + t : t € Zd}

Starting from this definition, Reddy, Pradham and Kühl defined in [129] (see also
[99]) the so-called generalized De Bruijn digraphs 7 GB(d,n), by replacing the n = dD

condition by the more general one: 2 < d < n. Certainly, the De Bruijn digraph B(d, D)
coincides with GB(d,dD). It is also well known that GB(d,n) is a d-regular digraph
of order n, diameter D = [logora], and it has loops. Another interesting property of
GB(d, n) is that its line digraph is another generalized De Bruijn digraph. To be more
precise: LGB(d,n) = GB(d,dn).

In a similar way, the Kautz digraph K(d,D] can also be arithmetically defined as
the digraph with vertex set Zn, n — dD + dD~l, whose adjacency rule is:

x e V(B(d,D)) =» r+(x) = {-dx -t : l<t<d}

I mase and Itoh introduced in [100] the so-called generalized Kautz digraphs 8 GK(d, n),
by using the foregoing definition and replacing the n = dD + dD~l condition by this
other: 2 < d < n. Obviously, K(d,D) = GK(d,dD + dD~l). It is also well known

that GK(d,n) is a d-regular digraph of order n, diameter D € {UogdnJî n°ëdnl}i
and it only has loops when n is not a multiple of d + 1. As in De Bruijn case, this
family also reveal a good behaviour with respect to the line digraph technique, since
LGK(d,n) = GK(d,dn).

6 For D > 2, the loops are removed.
7Also known as Reddy- Pradham- Kühl digraphs.
8Also known as Imase-Itoh digraphs.
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1.5.3 Compound graphs

Compounding of graphs has proved to be an excellent method for obtaining large graphs
when the diameter is not too large. The first compound graphs were introduced by
Bermond, Delorme, and Quisquater in [18], and since then this operation has been
used by several authors in order to obtain new designs of compound graphs. We have
noticed that all these constructions can be unified according to one of the following
definitions 9:

Definition 1.5.1 Let G% = (V^E^), GÌ. — (Vi, EI) be two graphs. It is denoted by
= (V,E) any graph obtained in the following way:

InG-2, each vertex x € V<¿ is replaced by one copy ofGi represented by Gf. Hence,

V = V(G2[Gi]) = (J V(Gf) = U {(*>*') : *' e M = V2 x yt
xeV2 xeV2

In G2, each edge xy 6 E<¿ is replaced by, at least, one edge that joins one vertex
of G f with another one o/G|; that is,

xy e EI 4=> 3x', y' e Vi such that (x, x')(y, y') € E

Definition 1.5.2 Let G2 = (í/2 U V^E^) be a bipartite graph, and let GI = (Vi,E\),
G'i = (V{,E'i) be two graphs. It is denoted by G^G^G^] = (V,E) any graph obtained
in the following way:

• In G%, each vertex x € U% is replaced by one copy Gf of G\, and each vertex
V 6 ^2 by one copy G'\ of G[ . Hence,

V - F(G2[G1,G'1]) = ( (J F(Gf)) U ( (J V(G'\}} = (C/2 x Vi) U (F2 x V{]
xef/2

• In GÌ, each edge xy e EI is replaced by, at least, one intercopy edge, that is,

xy e EI <!=> 3z' 6 Ft, y' 6 V{ such that (x, x')(y, y') e E,

in such a way that every vertex of the new graph must be the endvertex of at least
one intercopy edge.

The first definition corresponds to three known constructions. In the first one (see
[18]), each edge of GI is replaced by exactly one intercopy edge, and the graphs so
obtained are the so-called basic compound graphs. The second construction, proposed
by Delorme in [47], yields to the so-called bipartite compound graphs. In it, the graph G\
is bipartite, and each edge of GI is replaced by one or two edges between copies10 (see

9In this section, an edge {x, y} is denoted by xy.
10In fact, in [47] the author only considered the case of two intercopy edges.
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Figures 3.1 and 3.2). Finally, a third design of this kind, the so-called FF compound
graphs, was proposed by Fiol and Fàbrega in [64]. As in the previous case, the graph
GÌ is bipartite, but now each edge of £2 is replaced by four intercopy edges, and the
resulting graph is not bipartite (see Figure 3.3).

Two types of known compound graphs which correspond to the second definition
are the so-called DQ^ and BoVBi graphs, introduced in [50] and [77] respectively11. In
the design of a DQ\ compound graph, GÌ is bipartite, and each edge of G% is replaced
by two intercopy edges (see Figure 3.4). The BoVBi (bipartite) graphs are similarly
obtained, but in this case both GÌ and G( have to be bipartite, and each edge of G% is
replaced by two (case bipartite) or four intercopy edges (see Figures 3.5 and 3.6).

Observe that the order of any compound graph follows directly from the orders
of the original graphs. For instance: n(G2[Gi]) = n(G2)n(Gi). However, both the
maximum degree A and the diameter D depend on the number of intercopy edges and
how they are placed in each case. In any case, the following proposition provides a list
of upper bounds for the diameter D of the different compound graphs that have just

been presented.

Proposition 1.5.2 Let G-¿, G\, G( be three graphs of diameters DI, DI and D( res-

pectively.

1. ([18]) If D is the diameter of a basic compound graph: D < (Di + 1)D2 + DI.

2. ([47]) If D is the diameter of a bipartite compound graph: D < D\D>¿ + DI.

3. (f64j) If D is the diameter of a FF compound graph: D < DiD<2 + DI — 1.

4. ([50]u) If D is the diameter of a DQ^ compound graph and D% is even:
n ,
u

5. (\T/\1'2) If D is the diameter of a BoVBi compound graph with four intercopy
i 7 n • r> ^ D-2<D]+D()edges and D^ is even: D < — —^ - L··.

6. ([T/\n) If D is the diameter of a BoVB\ bipartite compound graph with two
j j n • n ^ D2(Di+D',)+2 _intercopy edges and DI ts even: D < — s — ̂  — — • B

1.5.4 Generalized p-cycles

A generalized p-cycle is a digraph G in which its set of vertices can be partitioned into
p subsets,

V(G) = (J Va,

11 In both definitions only the case Gì = K>t,k was considered.
12These proofs have been carried out in the particular case G2 = Kh,k, being very similar when

is an arbitrary bipartite graph.
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in such a way that the vertices in the partite set Va are only adjacent to vertices in
Va+i, where the sum is in Zp. Observe that any digraph can be shown as a generalized
p-cycle with p = 1, whereas the bipartite digraphs are generalized 2-cycles.

In the next proposition, proved by Gómez, Padró and Perennes in [81], we show
some properties that are satisfied by this kind of digraphs. Observe that, for p = 1 and
p = 2 (see [67]), all of them are known results about digraphs and bipartite digraphs.

Proposition 1.5.3 ([81])

1. A digraph G is a generalized p-cycle if and only if for any pair of vertices x,y,
the lengths of all paths from x to y are congruent modulo p.

2. The diameter D of a connected generalized p-cycle is the minimum integer such
that for any vertex x , all the vertices of one of the partite sets of G are at distance
of at most D — (p — l ) from x.

3. Let G be a generalized p-cycle different from a directed cycle, with minimum degree
&, maximum degree A and diameter D. Then, LG is a generalized p-cycle with
minimum degree S, maximum degree A and diameter D + 1 .

4- If G is a regular generalized p-cycle of order n, then LG is a regular generalized
p-cycle of order An.

5. For any digraph G, the conjunction Cp ® G is a generalized p-cycle.

6. The Moore upper-bound of a generalized p-cycle with maximum degree A > 2 and
diameter D is

, ,

where r e {0, l, . . . ,p — l } is the residue of (D — (p — 1)) modulo p.

7. If r e {O, . . . , p - 2}, then Mp(&, D + 1) = AAíp(A, D)

8. If r = p- l, thenMp(&,D + l} = AMp(&,D)+p

9. If A > 2, the Moore bound is attained if and only if p < D < 3p — 2.

Possibly the most important kind of generalized p-cycles designed and studied in last
years, are those constructed by taking into account the fifth property of the foregoing
list. Among them, let us first point out the so-called complete generalized p-cycle of
degree d > 2, which is defined as the conjunction Cp <8> K*d. In [81], Gómez, Padró
and Perennes generalized in different ways these digraphs. Firstly, they introduced
the so-called De Bruijn generalized p-cycles BGC(p,d,n), which were defined as the
conjuntions Cp®GB(d,ri), where GB(d,n) is the generalized De Bruijn digraph of
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degree d and order n. Notice that for n = dD , BGC(p,d,n) is isomorphic to the
(D — l)-iterated line digraph of Cp <8> K¿:

LD-l(Cp®K*d) = Cp®LD~lK*d = Cp®B(d,D) = Cp®GB(d,dD) = BGC(p,d,dD).

Secondly, the aforementioned authors, after realizing that for p even the digraphs Cp ®
GB(d,n) and Cp<8>GK(d,n) are isomorphic 13, defined the so-called Kautz generalized
p-cydes KGC(p,d,n) as follows (see Remark 1.5.1):

KGC(p d n)= p > ì *f P is odd

\ Cp®(t,GB(d,n) if p is even,

where the <£>,/, symbol denotes a new binary operation on digraphs also defined in the
same article by generalizing in a certain way the standard conjunction <8> (see [81]
for details). Observe finally that, if p is odd and n = d° + dD~l, Cp <gi GK(d,ri) is
isomorphic to the (D — l)-iterated line digraph of Cp <g> K¿+I.

After proving by algebraical methods the non-existence of Moore generalized p-
cycles of diameter greater than 3p— 2, the authors of [81], taking into account properties
4 and 7 of the foregoing list, realized that to conclude the proof of the property 9
it suffices to design, for every A > 2, two A-regular generalized p-cycles of orders
pA and p(Ap + 1) respectively. As expected, the case n = pA was easily solved by
considering the complete generalized p-cycle Cp® A^. The problem of finding a Moore
generalized p-cycle of diameter D = 2p — I and order p(Ap + 1) was solved for p
odd in a similar way as in the previous case, by taking the generalized Kautz p-cycle
Cp <g> GK(A, Ap + 1). Unfortunately, for p even, the previous digraph was proven to
be of diameter D = 2p, and therefore the problem could not be solved in this way.
Nevertheless, after introducing the family of generalized Kautz p-cycles KGC(p,A,n),
they proved that for every A > 2, KGC(p,A,Ap + 1) is a generalized p-cycle of order
p(Ap + 1.) and diameter D = 2p - 1.

Remark 1.5.1 In fact, the Kautz generalized p-cycles KGC(p,d,n) are a generaliza-
tion 14 of the family of dense bipartite digraphs BD(din) introduced by Fiol and Yebra
in [67] as follows. For any positive integers d, n, with d < n, the bipartite digraph
BD(d,n] has set of vertices V = Z<i x Zn = {(a,i); a € Zi,i € Zn}, and for every
vertex (a, i) its out-neighbourhood is:

r+(a, ¿) = {(1 - a, (-l)ad(i + a) + f ); í = 0, 1, . . . , d - 1}.

The digraph BD(d, n) is d-regular, has order 2n and, when n = dD~l + dD~3, it has
diameter D. Moreover, the digraphs BD(d,dD~l + dD~3} are, for D = 3 and D = 4,
Moore bipartite digraphs, and when D > 5, the order of these digraphs is larger than
(d4 — 1 )/d4 times the Moore bound.

13 Where GK(d,n) is the generalized Kautz digraph of degree d and order n.
14ln other words, BD(d,n) = KGC(2,d,n).
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1.6 The parameter i

Fàbrega and Fiol introduced in [54] the so-called parameter £ of a simple connected
(di)graph, which, as is pointed out in the mentioned paper, 'can be thought of as a
generalization of the girth of a graph'. This parameter, whose value depends basically
on the number of short paths, has proved to be an excellent tool for studying some
fault tolerance topics in graphs and digraphs, especially their connectedness (see Section
1.7.1).

Definition 1.6.1 Let G = (V,Ä) be a simple connected (di)graph with diameter D.
The parameter t = ¿(G) of G is defined as the greatest integer belonging to {l , . . . , D}
such that for any x,y € V:

, J 1. There is a unique x —» y path of length d.
~ ' ~ \ 2. If d < i, there are no x —> y paths of length d + 1..

In the following proposition, we show some properties which reveal, on the one hand,
the close relation between the parameter £ of a graph and its girth, and on the other,
the behaviour of this parameter with respect to the operations presented in Sections
1.3 and 1.4. All these results can be easily proved from the definitions involved.

L

Figure 1.3: G is a digraph with 5 — 1, D = 3 and í = 1, whereas the values of these
parameters for LG are: ô = 1, D = 4 and 1 = 4.

Proposition 1.6.1 Let G and H be two simple connected (di)graphs with parameters
£ and (.' respectively.

1. If G is a generalized p-cycle with p > 2, then the second condition of the previous
definition is satisfied for any d, and can therefore be omitted.

2. If G is a graph with girth g, then I =
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3. ([54])™ If ¿(G) > 2, then Í(LG] = t(G) + 1.

4- The parameter I of the cartesian product G x H is min{£,£'}.

5. The parameter t of the lexicographic product G[H] is 1.

6. The parameter i of the conjunction G <S> H is at least min{E,£'}.

Examples.

1. e(Kn)=i.

2. t(CD+})=D.

, f(r }-
( n> D - 1 if 4 < n = 2D is even.

4.

5. e(K(d,D))=D, since K(d,D) = LD~lKd+l.

6. In any Moore graph t = D, since in all of them the girth is g = 2D + 1.

7. In any Moore bipartite graph i = D — 1, since in all of them the girth is g = 2D.

8. From the definition of a Moore bipartite digraph, and bearing in mind that in
any bipartite (di)graph the second condition of the foregoing definition is always
satisfied, it is easily derived that, for A > 2, its parameter í is D — ï.

9. In [81], it was implicitely proved that the diameter D of a Moore generalized
p-cycle can be defined as the minimum integer such that between every pair of
vertices, at most one path of length D — (p — 1) exists. As a consequence 16 we
conclude that the parameter I in such digraphs is D — (p — 1) .

1.7 Fault tolerance

As it was said in the Introduction of this work, one of the most important considerations
in the design and analysis of graphs and digraphs, is the so-called fault-tolerance or
reliability. Two important topics in the study of the fault tolerance of a (di)graph are
connectedness and diameter vulnerability (see [16], [20], [108]).

15Scc Figure 1.3.
1GNoticc that, for p € {1, 2}, this statement is also true.
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1.7.1 Connectedness

Disconnecting sets

A subset of vertices T of a (di)graph G is said to be a vertex-cutset, or simply a cutset,
if G — T is a disconnected (di)graph. Likewise, a subset T of arcs is an arc-cutset17 of
G if G — T is a disconnected (di)graph. A cutset [arc-cutset] T is said to be minimal
18 if there are no cutsets [arc-cutsets] contained in T. A cutset [arc-cutset] T with
k vertices [arcs] is said to be minimum if there are no cutsets [arc-cutsets] in G with
cardinality lower than k.

A set of vertices T is said to be trivial if it contains either the out-neighbourhood
or the in-neighbourhood of some vertex not belonging to T. The trivial sets of arcs are
defined in a similar way. Certainly, every subset of a nontrivial cutset [arc-cutset] is
also nontrivial. A nontrivial cutset [arc-cutset] T is said to be minimal if every cutset
[arc-cutset] of G contained in T, if any, is trivial. Observe that the previous definition
is equivalent to saying that T is a nontrivial minimal cutset. A nontrivial cutset [arc-
cutset] T is said to be minimum if every cutset [arc-cutset] of G with cardinality lower
than |T|, if any, is trivial. Notice that, unlike the 'minimal' case, a minimum nontrivial
cutset [arc-cutset] needs not be a nontrivial minimum cutset (this issue will be dealt
with in detail at the end of this section).

A positive fragment [a-fragment] of G is a subset of vertices F whose positive
boundary d+(F) [arc-boundary w+(F)] is a minimum cutset [arc-cutset] (the negative
fragments [a-fragments] are similarly defined ). Likewise, a positive 1-fragment [ai-
fragment] of G is a subset of vertices F whose positive boundary <9+(F) [arc-boundary
w+(F}] is a minimum nontrivial cutset [arc-cutset] (in the same way, the negative 1-
fragments [ai-fragments] are defined). Observe that a vertex set F is a positive fragment
[1-fragment] if and only if F = V\(F(J d+F) is a negative fragment [1-fragment] and
d+F = d~F. Similarly, it is also clear that F is a positive a-fragment [ai-fragment] if
and only if V \ F is a negative a-fragment [aj-fragment] and w+F = w~(V \ F).

Starting from the so-called Hamidoune terminology19 for cutsets and arc-cutsets
('boundaries and fragments') just put forward, some more definitions were introduced
in [10]. The deepness of a positive fragment F is ß ( F ) = maxxe^d(x,9+F). Similarly,
the deepness of a negative fragment F is ß(F] = maxxe_p d(d~F, x). With respect to a-
fragments, the deepness of a positive a-fragment F is i'(F) = maxie^ d(x,LJ+F). The
deepness of a negative a-fragment F is defined analogously, v(F) = max^gf d(u>~Fi x).
If F is a positive fragment of deepness ¿í, then the set {x € F : d(xìd

+F) = /z)} is
called the valley of F. The valley of a negative fragment, a positive a-fragment and a
negative a-fragment are similarly defined.

A vertex subset T is called a positive [negative] vertex-cut if there exists a proper

17The vertex-cutsets [arc-cutsets] are also called vertex-disconnecting [arc-disconnecting } sets.
18The minimal arc-cutsets are often called cocycles (see [40, 90]).
19See [86, 87].
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subset of vertices F C V \ T such that d+(F) = T [d~(F) = T}. In a similar way, an
arc subset T is called a positive [negative] arc-cut, or simply a cut 20, if there exists
a proper subset of vertices F such that w+(F) = T [w~(F) = T}. Certainly, every
vertex-cut [arc-cut] is a vertex-cutset [arc-cutset], but the converse is, in general, not
true 21 (see [40]). However, when the minimallity condition is required, both definitions
coincide. This is the main result shown in the following two lemmas (the second one
treats the nontrivial case).

Figure 1.4: In this graph, {61,62} is an arc-cutset, but it is not a cut.

Lemma 1.7.1 Let T be a subset of vertices [arcs] of a (di)graph G = (V,Ä). Then,

1. if T is a vertex-cutset [arc-cutset], then there exists a proper vertex subset F C
V \ T [F C V] such that d+F C T [w+F C T].

2. T is a minimal arc-cutset if and only if it is a minimal arc-cut. Moreover,

• if G is a graph, there exist exactly two components in G — T.

• if G is a digraph, there exists a unique sink component S in G — T, which
can be obtained as follows:

S = {v € V : There exists a t —» v path in G — T for some t € XT},

where XT = (x € V : w+(x) n T ¿ 0}.

3. T is a minimal vertex-cutset if and only if it is a minimal vertex-cut.

4- T is a minimum cutset [arc-cutset] if and only if there exists a fragment la-
fragment] F such that T = d+F fT = w+F].

20Also known as coboundary.
21 In fact, it is well known that every cut is a disjoint union of minimal arc-cutsets.



22 1.7 Fault tolerance

Proof.

1. Let T and (G —T)* be a vertex-cutset and the condensation of G — T respectively.
Since T is a cutset, then (G — T)* has at least one source and one sink and each
of which must be different. Finally, if F denotes any sink of G — T, then, as a
consequence of the acyclicity of (G — T)*, it is deduced that all the paths from F
to F go through T, and hence, d+F Ç T. The arc case is proved similarly.

2. Assume that T C A is a minimal arc-cutset of a digraph G. From the minimality
of T is it deduced that the digraph G — T has a unique sink component F. A s a
consequence, w+F = T. Finally, since every arc-cut is an arc-cutset, we conclude
that T is a minimal arc-cut.

Suppose now that T is a minimal arc-cut of a digraph G. Clearly, T is an arc-
cutset. On the other hand, let T" be the minimal arc-cutset contained in T. As
it has just been proved, T' is a minimal arc-cut. Therefore, T' — T.

To conclude, taking into account that S is connected and that all the paths from
S to V \ S go through T, the indicated characterization of 5 is immediately
deduced.

The undirected case is proved similarly.

3. If T C V is a minimal vertex-cutset, then it is the positive boundary in G of
every sink component S of G — T. The minimality of T and the converse are
immediately deduced as in the arc case.

4. This point is an immediate consequence of the previous ones. •

Lemma 1.7.2 Let T be a nontrivial vertex [arc] subset of a digraph G = (V, A}. Then,

1. T is a minimal nontrivial vertex-cutset [arc-cutset] {vertex-cut} (arc-cut) if and
only if it is a nontrivial minimal vertex-cutset [arc-cutset] [vertex-cut] (arc-cut).

2. T is a minimal nontrivial vertex-cutset [arc-cutset] if and only if it is a minimal
nontrivial vertex-cut [arc-cut].

3. T is a minimum nontrivial vertex-cutset [arc-cutset] if and only if there exists a
1-fragment [a\-fragment] F such that T = d+F ¡T = w+Fj.

Proof.

1. Suppose that T is a minimal nontrivial vertex-cutset. As every subset of a non-
trivial set is also nontrivial, then T does not contain any vertex-cutset, and hence
it is a minimal vertex-cutset. Conversely, if T is a nontrivial minimal vertex-
cutset, then it does not contain any vertex-cutset, and in particular, any nontrivial
vertex-cutset. The rest of the cases are proved in the same way.
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2. Assume again that T is a minimal nontrivial cutset. Then, it is a nontrivial
minimal cutset, and hence, according to Lemma 1.7.1, it is a nontrivial minimal
vertex-cut. Therefore, it is a minimal nontrivial vertex-cut. The converse and
the arc case are proved similarly.

3. if T is a minimum nontrivial cutset, then it is a minimal nontrivial cutset; that
is, it is a nontrivial minimal vertex-cut. The converse is obvious, and the arc case
is proved similarly. •

Finally, an interesting proposition with some results involving the line digraph tech-
nique is now put forward.

Proposition 1.7.1 Let LG be the line digraph of a connected digraph G = (V, A). Let
T G A be a subset of arcs of the digraph G. Then,

1. If \A\T\ >1, then G — T is a disconnected digraph if and only if LG — T is a
disconnected digraph.

2. T is a trivial subset of arcs of G if and only if T is a trivial subset of vertices of
LG.

Proof.

1. Suppose that G - T is disconnected. Since LG - T = L(G - T) and \A \ T| > 2,
from Proposition 1.3.1 we conclude that LG — T is also a disconnected digraph.
Assume now that G —T is a connected digraph. From Proposition 1.3.2 and again
noticing that LG — T = L(G — T), we obtain that LG — T is a connected digraph
too.

2. If T is a trivial subset of arcs of G, then there exists a vertex x G V such that
either w~(x) or w+(x) is contained in T. Suppose, for instance, that w+(x) C T,
and consider a vertex o belonging to the in-neighbourhood of x: a € P~(z). It
is clear that ax is a vertex of LG whose out-neighbourhood is contained in T.
Therefore, T is a trivial subset of vertices in LG. The converse is proved similarly.

Connectivity

Let G be a (strongly) connected (di)graph of minimum degree 0 and diameter D. The
vertex-connectivity index or simply the connectivity of G, denoted by «=re(G), is defined
as the minimum number of vertices whose removal results in a (di)graph that is either
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disconnected (that is, not (strongly) connected) or trivial (that is, an isolated vertex).
To be more precise 22:

KÍG) = min UFI : G — F is disconnected or trivial)v ' FcV(G)l<

Observe that the minimum cutsets defined in Section 1.1 are precisely those having
cardinality n(G). It is also clear that a nontrivial (di)graph has connectivity 0 if and
only if it is disconnected. Purthemore, the complete graph Kn is the only connected
(di)graph with no cutsets, and thus its connectivity is «(G) = n — 1. A (di)graph G is
said to be k-connected if «(G) > k.

Similarly, the arc-connectivity A = A(G) is defined as the smallest number of arcs
whose removal results in a disconnected or trivial (di)graph:

A(G) = min ÍIFI : G — F is disconnected or trivial)
V ' FCA(G)U '

As in the previous case, the minimum arc-cutsets are those having cardinality A(G),
and A(G) = 0 if and only if G is disconnected or trivial. Likewise, a (di)graph G is said
to be k-arc-connected if A(G) > k.

Certainly, the value of both ft(G) and A(G) is at most the minimum degree of G.
In fact, it is not difficult to prove (see [70], [138]) that, for every (di)graph G the so-
called Whitney inequality sequence, «(G) < A(G) < 5(G), is always verified. It is also
well known that if LG is the line digraph of a digraph G, then the following equality
holds: K(LG) = A(G). Actually, this result is only a corollary of the first statement of
Proposition 1.7.1.

A (di)graph G is said to be maximally connected [arc-connected] if it is ¿-connected;
that is, if K(G) = ö [A(G) = 6], One of the most important problems on connectedness
approached in recent years has been to find sufficient conditions for a (di)graph to
be maximally connected and maximally arc-connected. Some of the main results, for
graphs and digraphs, are presented next, in chronological order.

Proposition 1.7.2 Let G be a (6, A, D,n)-graph such that S > 3.

1. ([38]) If 6 > |_f J , then G is maximally edge-connected.

2. ([105]) If o(u) + o(v) > n — l for all pairs u, v of nonadjacent vertices of G, then
G is maximally edge-connected.

3. ([122]) If D < 2, then G is maximally edge-connected.

4- ([135]) If D < It — 1, then G is maximally connected.

5. ([136]) Ifn>(6- 1)(A - I)0"1 + 1, then G is maximally connected.

22This formulation of «(G) was introduced by Harary in [89], although there are of course earlier
definitions (see for instance [137, 138]).
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6. ([136]) If n > (<5-l)((A~1^I1
2

+A~3)+A-l, then G is maximally edge-connected.

7. ([136]) If D < li, then G is maximally edge-connected.

Proposition 1.7.3 Let G be a (6, A, D,n)-digraph such that ô > 2.

1- (Í4]) If 9 > 3 and S > L^f^J; then G is maximally arc-connected.

2. ([103]) If D <2, then G is maximally arc-connected.

3. ([101]) Ifn> (ò'~l·)iA^+A2~A~1), then G is maximally connected.

4. ([101]) Ifn> (¿'-1XA
A~1

]+
A -2); ihen Q is maximally arc-connected.

5. ([54]) If D < 21 — 1, then G is maximally connected.

6. ([54]) If D < 2£, then G is maximally arc-connected.

7. ([62]) Ifn> Í¿-1)(AÜ
A^|+A£-2A) + A* + 1, then G is maximally connected.

8. ([62]) Ifn> (<*-1)(A^<
1
+A*~2) + A€, then G is maximally arc-connected.

Observe that the different sufficient conditions that we have presented can be cla-
ssified in three types: degree23, order and diameter conditions, in the first case, the
different results obtained so far consist always in finding a lower bound for a certain
additive function which depends only on the vertex degrees of the (di)graph (see [26,
44, 4.5, 46, 72, 73, 141]). in the second case, the problem of finding a lower bound on
the order n which guarantees maximal connectivity is equivalent to obtaining a Moore
upper bound for a certain family of (di)graphs. For instance, the authors of [101] proved
that the order of any digraph of maximum degree A, diameter D and connectivity K
is at most K( A¿rr + A) (see also [9, 53, 60, 135]). Finally, the third type of sufficient
conditions that has been studied consists in finding an upper bound on the diameter for
a certain class of (di)graphs in order to assure maximal connectivity (see also [55, 125]).

Superconnectivity

In addition of the connectivity and arc-connectivity, other parameters have been de-
fined in order to study concrete aspects of connectedness on graphs and digraphs. For
instance, F. Boesch and R. Tindell introduced24 in [24] (see also [13]) the so-called
Superconnectivity and arc-Superconnectivity as follows. A (di)graph is said to be su-
perconnected [arc-superconnected] 25 if and only if every minimum cutset [arc-cutset]
F is trivial; that is to say, G — F has at least one component with a single vertex of

23Also known as Chartrand conditions.
24Jn fact, both definitions were given for graphs, being generalized for (di)graphs by J. Fàbrega and

M.A. Fiol in [54].
25Also known as super-K [super-\] (di)graph.



26 1.7 Fault tolerance

minimum degree 0 in G — F. Notice that every superconnected [arc-superconnected]
(di)graph is maximally connected [arc-connected] but the converse is not true 26. Some
general results on arc-superconnectivity are shown in the following proposition (see also
[11, 55, 60, 66]).

Proposition 1.7.4 Let G be a (6, A, D,n)- (di) graph such that 0 > 3. Then G is arc-
superconnected if any of the following conditions hold:

1. ([126]) G 6 {Kn : n > 4} U {Knim : max{n, m] > 3}.

2. ([54]) D < It -I.

3.

4- ([61]) D = 2 and it contains no Kg with all its vertices of out-degree 6 or all its
vertices of in- degree o.

5. ([61]) S+(u) + <5~(f) > n + 1 for all pairs u,v of nonadjacent vertices.

6. ([61]) g > 3 and 6+ + 5~ > [f j + 1.

7. '

In a similar way as in the case of the connectivity, in order to study the superconnec-
tivity of graphs and digraphs, J. Fàbrega and M. A. Fiol introduced in [55] (see also [5])
the so-called vertex-superconnectivity and arc-superconnectivity parameters, denoted by
KI and AI respectively, as follows:

Ki(G) = min {\F\ : F nontrivial , G — F is disconnected }
FC.V(G)

Ai(G?) = min f \ F \ : F nontrivial, G — F is disconnected }
V ' U '

Certainly, if a digraph G is not maximally connected [arc-connected], then K-\ = K
[Ai = A]. It is also clear that G is superconnected [arc-superconnected] if and only
if either every cutset [arc-cutset] in G is trivial 27 or n\(G) > 6(G) [\i(G) > S(G)}.
Another interesting property, obtained as an immediate consequence of Proposition
1.7.1, is the following.

Corollary 1.7.1 If LG is the line digraph of a connected digraph G, then K\(LG) =

Finally, both connectivity and Superconnectivity can be considered as particular
cases of the so-called conditional connectivity introduced by Harary in [91]. This ques-
tion is discussed in detail in Chapter 5.

26<?3 x I<3 is both maximally connected and arc-connected, but it is neither superconnected nor
arc-superconnected.

27see Section 5.4.
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1.7.2 Diameter vulnerability

Let G be a fc-connected [fc-are-conneeted] (A, £>)-(di)graph of order n. For any integer
s 6 {1,..., k — 1} the s-vertex vulnerability [s-edge vulnerability] of G is defined as the
maximum diameter of all the sub(di)graphs obtained from G by deleting at most s
vertices [arcs]:

K(s; G) = max{D(G - F] : F C V (G), \F\ < s}

A(s; G) = max{D(G - F) : F C A(G), \F\ < s}

A connected (di)graph G is said to be a (A, D', s)-(di) graph if it has maximum
degree A and s-vertex vulnerability K(s;G) < D'. Similarly, a connected (di)graph
G is a (&,D,D',s)-(di)graph 28 if it is a (A,D)-(di)graph with s-vertex vulnerability
K(s;G) <D'.

The diameter vulnerability of graphs and digraphs have been studied from different
points of view: Moore bounds ([30, 80, 101, 111, 142]), lower and upper bounds of
K(s;G) and A(s;G) ([30, 43, 59, 113, 114, 120, 132]), diameter vulnerability of known
families of (di)graphs ([31, 59, 76, 80, 101, 113, 133, 142]), design of (di)graphs with
vertex or arc vulnerabilities close to its diameter ([30, 74, 76, 112]), etc. One of the
oldest results in this area was obtained by Plesnik in [123]. In this paper it was proved
that the 1-edge vulnerability of every 2-edge-connected graph of diameter D is at most
2D, This result was generalized by Chung and Garey in [43], where it was proved that
the s-edge vulnerability of any (s+l)-edge-connected graph G of diameter D is both
lower and upper bounded in terms of s and D:

(s + 1 )(£> - 2) < K(s; G) < (s + l)D + s.

In the same paper [43] the case of deletion of vertices was also studied, showing that
the s-vertex vulnerability K(s; G) is unbounded in terms of s and D. More recently,
Bond and Peirat showed in [30] that K(s; G) remains small if the degree is bounded or
the number of vertices is large enough. For instance, it was proved that the 1-vertex
vulnerability of any 2-connected (A, D)-graph is at most A(2(_^J — 1) + D.

Both connectivity and diameter vulnerability can be characterized by means of
Menger-type conditions. In 1927 ([110]), Karl Menger proved that for any pair u,v of
uonadjacent vertices of a graph G, the minimum number of vertices whose deletion
disconnects u and v is equal to the maximum number of internally disjoint u — v paths.
As a direct consequence of this theorem H. Whitney showed in [138] that a nontrivial
graph G is /c-connected if and only if for each pair u,v of distinct vertices there are at
least k internally disjoint u — v paths in G. Both Monger's Theorem and Whitney's
characterization have been proved to be true for edge deletion and for digraphs (see
[39], [109]). The analysis of the diameter vulnerability in graphs and digraphs is in

The case of edge deletion is similarly defined.
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most cases carried out in terms of the following Menger-type condition: for any pair
u, v of distinct vertices such that v is not adjacent from u there are s + l disjoint u —» v
paths of length at most D'. Certainly, if a (A,D)-(di)graph G satisfies this condition,
then it is a (A, D,D', s)-(di)graph with connectivity at least s + 1. Nevertheless, it
is important to realize that the converse of this statement is not true if D' > 5 (see
[16, 32, 106]).
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Chapter 2

New large graphs

2.1 Introduction

A question of special interest in Graph theory is the construction of graphs with an
order as large as possible for a given degree and diameter or (A,D)-problem. This
matter deserves a lot of attention due to its implications in the design of topologies for
interconnection networks and other questions such as the data alignment problem and
the description of some cryptographic protocols.

The (A,D)-problem for undirected graphs has been approached in different ways.
First of all, it has been proved that the order of any (undirected) graph G of maximum
degree A and diameter D is at most (see Section 1.2):

As this theoretical bound, known as Moore bound for graphs, is unattainable if G
has diameter and/or maximum degree greater than 2 (see Section 1.2), most of the
work deals with the construction of large graphs which, for this given diameter and
degree, have a number of vertices as close as possible to the theoretical bounds (see
[19] for a review).

Various techniques which depend on the way graphs are generated and how their
parameters are calculated have been developed. Many large graphs correspond to
Cayley graphs (see [35], [36], [51], [130]) and have been found by computer research.
However, the use of computers is only efficient when both the degree and diameter are
not too large. Compounding is another technique that has been proved to be useful and
consists in replacing one or more vertices of a given graph by another graph or copies
of a graph and rearranging the edges suitably (see, for instance, [77], [78]). Compound
graphs and Cayley graphs make up most of the large (A,D)-graphs described in the
literature for small diameter.

In this work compounding is used to construct new large (A, Digraphs that improve
some known results for diameter 6. This technique is a generalization of a method
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introduced by Quisquater in [127], based on the replacement by a complete graph
of a single vertex from a Moore bipartite graph. In [42], [78] the authors used this
method, although modified in order to replace several vertices. This work presents a
new technique for working out a general rule for the replacement of a large number of
vertices by means of a special diameter 2 graph.

In Section 1.2, it was proved that the maximum order of any (A, D)-bipartite graph

with A > 2 is: M(A,D} = 2(A^^~2. In Section 1.5.1 the different families of Moore
bipartite graphs were presented; that is, the bipartite graphs whose order reaches the
previous bound: the complete bipartite graphs AA,A> the generalized triangles Pq, the
generalized quadrangles Qq, and finally, the generalized hexagons Hq. The construction
proposed in [42] consists in expanding the generalized hexagon Hq by replacing several
vertices by complete graphs and creating some new adjacencies. In it, some vertices
Xijk (see Figure 2.1) are replaced by copies of the complete graph K h (h < A) whose
vertex set is denoted by Kijk- These replacements must verify some conditions. In this
work, we will use the same notation for the replaced vertices but our conditions are
changed. To be more precise, these conditions have become only one, which is simpler
and easier to verify.

Here we have some known properties that will be used in the rest of sections:

• If G = (Vi U V2i E) is any bipartite graph of even [odd] diameter D, the distance
between x G Vi and any y € Va [y G Vi] is at most D — l.

• If G is a (A,£>)-Moore bipartite graph, for any x,y G V(G) with d(x,y) = D,
there exist A disjoint paths between x and y of length D.

• The girth of any Moore bipartite graph with diameter D is g = 2D.

The rest of this chapter consists of three sections. In the next one we introduce the
so-called [l,Xj-cliques, and we present some examples that will be used later. In Section
2.3 we describe a general technique for the construction of large diameter 6 graphs.
Finally, in Section 2.4 some new large graphs are proposed.

2.2 [/,A]-cliques

Definition 2.2.1 A graph G=(V,E) is an fl,X]-clique if it is possible to partition
V into X partite sets V i , - - - , V \ , whose induced subgraphs are cliques and such that

Observe that if G = (W, E) is an [l,A]-clique, then \W\ < l.X, and it is also a [k,p]-
clique, for each k < I and for some ß > X. Next, some examples of [l,A]-cliques are
given. Most of them will be used to construct new large graphs in Section 2.4.
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XQ

Figure 2.1: The subgraph of Hq to be modified.
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Examples 2.2.1

1. Every graph is a [2,A]-clique, but for the graphs without edges.

2. The complete graph Kh is a [/i,l]-clique and it is also a [fc,2]-clique for every

3. Every graph G that contains a clique KI is an [l,A]-clique with A at most
n(G) -1 + Ì,

4. The Petersen graph P isa [2,5]-clique. A partition is {{(0, z), (l ,z ')},z = 0, 1,2,3,4}
(see Figure 2.2).

(0,0)

(0,3)

Figure 2.2: Petersen graph.

5. The largest known graph with degree 6 and diameter 2 is K¿i*X%. It is constructed
by means of joining 4 copies of X& (see[1.7]). Figure 2.3 shows that X$ is a [2,4]-
clique. Thus, K$ * X& is a [2,16]-clique.

Figure 2.3: X$ and its partition.

6. The Moore bipartite graph Pq is, for D = 3 and A = q + 1, the incident graph
of the projective plane PG(2,q) (see Section 1.5.1). The points of PG(2,q) are
the 1-dimensional vector subspaces of the 3-dimensional vector space K3 over
a finite field K with q elements. This fact enables us to define the so called
graph P'q as follows: the vertex set is PG(2, q) and the adjacency rule is: for each
a, 6 € P(2,g), a and b are adjacent if and only if they are orthogonal. It is easy
to see that P'q is a regular graph with order n = q2 + q + 1, degree A = q + 1 and
diameter D = 2. For q = 9,1.1 and 13, the graph P' is the largest known graph
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and, moreover, it is a [3,A]-clique. In fact, according to Corollary 3 of Theorem
4.3.6 of [95], Pg can be partitioned into 7 P^. Besides, P% is a [3,6]-clique for a
partition with I K% and 5 K% (see Section 2.5). As a consequence, Pg is a [3,42]-
clique with 7 K% and 35 K<¿. The same theorem can not be applied to the graphs
Pf] and P{3. However, a study by computer shows that P{1 is a [3,55]-clique
(see Section 2.5). The partition obtained has 32 KS, 14 K<¿ and 9 K\. Another
analogous study shows that P{3 is a [3,72]-clique with 44 KS, 23 KI and 5 K\
(see Section 2.5).

7. Let I be a positive integer less than or equal to q2+q + l. Let us choose a partition
into A parts of the vertex set of P'q so that

• Each part has, at most, I vertices.

• There exists a part with I vertices.

Starting from a copy of Pq, the so called P'ql graph is designed by adding new
edges between nonadjacent vertices of the same part so that in each part all the
vertices are then adjacent among themselves. So, any graph P'ql is composed by
the union of A complete graphs. As a consequence, the degree of Pql is at most
q + 1. Furthermore, it is an [l,A]-clique for the previous partition.

2.3 Hq(Kh) graphs

Let us consider the subgraph of the Moore bipartite graph Hq = (V U W, E) showed in
Figure 2.1, and consider a vertex x G V. According to this figure:

l , . . .Xq} C W,

í ) = {xi0,xií,...xig-1}U{x}cV, Vi 6 {O,. ..,9-1} (2.1)
jj) = {xyo, xyi, -Xijg-i} U [xi] C W, Vj e {O, ..., q - 2}.

Hence, the subset W of W, called set of replaceable vertices, has the following
expression:

q-l g-2

W'=(J (J r(^)\{*i, *«,-!>
¿=0 j=0

The set of incident edges to vertex x^ is denoted by -Bjjfc.
With the notation Wij = T(XÍJ) \ {x,,x,j9_i}, the set {W¿j, i = l ,2 , . . . ,g — 1,

j = 1, 2, ... ,g — 2} is a partition of W that we call standard partition, it consists of
q(q ~ 1 •) parts with q — 1 elements in each one.

Definition 2.3.1 Let q be a prime power and let h be an integer so that 1 < h < q-\- 1.
Let us denote Hq(Kh) any graph obtained from Hq by carrying out the following steps:

1. Let us choose a subset W of W.
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G W is replaced by a complete graph Kh, whose vertex set is
= {yLfc, • •·)í/íjfc}· The set of added vertices is called W(Kh).

W(Kh) = (J Kijk.

2. Each vertex
denoted by
Thus,

3. The incident edges to each Xijk € W are joined to the vertices of K^k so that
each vertex y\^, I € {1,2,..., h}, is incident at least to one of them.

4- Some new edges may be added between vertices ofW(Kh) so that the constructed
graph has degree A = q + 1. The set of these additional edges is denoted by E^.

Example 2.3.1 Consider the Moore bipartite (6, 6)-graph HS whose order is n = 7812.
The subset chosen is W = {XQOO}- This vertex is replaced by a complete graph KQ.
The edges of EQQQ are now incident to vertices of KQQQ according to Figure 2.4.

20 £00 TOCIO

\

ZOO

Figure 2.4: An expansion of H$.

The graph so constructed is not bipartite anymore. However, it is still 6-regular and
its order is greater than the original one (in five vertices). This example, put forward by
Quisquater in [127], corresponds to a particular case of our construction. The author
also showed that this graph has still diameter 6.

Observe that any Hq(Kh) graph verifies the following properties:

1. After making the first three steps, each vertex of W(Kh) has degree not greater
than q+1.

2. If h > 1, then Hq(Kh) is not bipartite.

3. ^ |<(A-l .)(A-2)2 = g(9-1)2.

4. n(Hq(Kh)) = n(Hq)+ \ W (h - 1).
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The next proposition provides an upper bound to the diameter of any Hq(Kh)
graph.

Proposition 2.3.1 The diameter of any Hq(Kh) graph is at most 7.

Proof. After the replacement of the vertices x^ of W by complete graphs Kh, we
observe the following:

1. Any path of maximum length 6 in Hq without Xijk vertices is unaltered in Hq(Kh)-

2. The shortest path between any two vertices will increase its length by at most
two (the maximum number of X{jk vertices that might be contained in this path);
see Figure 2.1 and remember that g = 2D,

3. The maximum distance between two vertices of type y = y^j. and y' = y°st is 7.
In fact, since Hq is bipartite, the distance between Zyfc and xrst has to be 0, 2, 4
or 6. if it is less than or equal to 4, then by the previous observation, the distance
between y and y' is at most 6. Otherwise, since Hq contains A disjoint paths of
length 6 between Xijk and xrst, at least a path of the same length runs between
y and y' or between y and a vertex y™t of Krst in Hq(Kh), which is adjacent to
vertex y'.

Therefore, we have only to examine the following case. Let two vertices be at distance
6 in such a way that at least one of them is not of the form y\ -k. Then, as A disjoint
paths of length 6 run between these vertices, from condition 3. of Definition 2.3.1
and Figure 2.1, it follows that there exists one path between these vertices, which is
unaffected by the replacements. •

To put forward in an easy way more complicated expansions of the Hq graphs than
the ones presented by Quisquater in [127] and F. Comellas and J. Gómez in [42], we
need to introduce the following definition:

Definition 2.3.2 The Margin M of an H^Kh) graph is the number of edges needed
to add in step 4 °f ^s construction to vertices of Kijk, so that each vertex has degree
A = 9 + 1.

Example 2.3.2 The vertex ZQOO is replaced by a copy of ÄS in H 3 (see Figure 2.5). It
is easy to see that it is necessary to add two edges (drawn in broken line) so that each
vertex has degree 4. Thus, M = 2 in this case.

Proposition 2.3.2 Given an Hq(Kh) graph, if h < A = q + I, then

M = (A-/i)( / i - l ) . (2.2)

Proof. After making the first three steps in order to construct the Hq(Kh) graph, we
have:
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x
•—

KOOO

Figure 2.5: Margin of H3(K3) is 2.

and the desired result is obtained by isolating M from this equation. •

When a subset W of W is chosen, the standard partition of W' leads to a new
partition, which we call standard partition of W:

W = (2.3)

where A is the number of non-empty parts. Note that A < q(q — 1.) and for each
¿€{1 ,2 , . . . ,A} , \Wi\<q-l.

As said above, to construct an Hq(Kh) graph, each vertex x^ € W is replaced by
a complete graph Kh- Then, the edges of Eijk are joined to the vertices of Kijk so
that each vertex of Kijk is adjacent at least to some not-replaced vertex of Hq. Finally,
some new edges are added, joining vertices of the copies Kijk in such a way that every
new vertex has degree less than or equal to A — q + 1. Observe that this last set E^k
of added edges has at most M elements.

As a consequence of Proposition 1, the diameter of any Hq(Kh} graph is C or 7.
As a matter of fact, it is easy to check that there are a lot of them with diameter 7.
However, not all of them have this diameter (remember the construction proposed by
Quisquater). To present a family of large Hq(Kh) graphs with diameter 6, a new graph
is required. This is denoted by G = (W, E), where W is presented in (2.3) and E is
defined as follows:

ijk, xrat) € È «-> Bat, 7 e (1,2. . . , h] I (yfík, y?at) 6 Éijk H Ërst (2.4)

The graph so constructed has degree not greater than M. Additionally, the parame-
ters of the standard partition of W verify that
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= max

\<q(q-l)

Theorem 2.3.1 // the graph G = (W, E) has diameter 2 and it is an ¡l,\]-clique for
the standard partition of W , then Hq(K^) is a graph of (maximum) degree A = q + I,
diameter D = 6, and order n(Hq(Kh)) = n(Hq) + \W\.(h - 1)

Proof. According to Proposition 2.3.1, it is sufficient to consider the three following
cases:

Let us consider two vertices in Hq, say y and z, at distance 5 joined by the path:
y , X i j k , X i j , X i j r , t , z . Since Xijk and XÍJT belong to the same part of the standard
partition of W, they are adjacent in G. Therefore, according to (2.4), there exist
a, 7 € {], 2 . . . , h] so that vertices yf-k and y^r are adjacent in Hq(Kh). Thus, a

path of length at most 6 between y and z in Hq(Kh) is: y , y , - , y , 2 / , i , z.
See Figure 2.6, where this is illustrated for h = 4.

Hg(K4)

Figure 2.6: A path of length 6 between y and z in Hq(K4).

2. Let us consider these two vertices, y = y^k and z, in Hq(Kh), where Xijk and z are
at distance 5 in Hq and the shortest path between them is: x^, Xij,Xi, x,s, x^, z.
Since Xjj/c is at distance less than or equal to 2 of x¿sr in G, there exist 0,7 6
{1, 2...,h} such that the vertices yf-k and y?r are at most at distance 3 in
Hq(Kh). See Figure 2.7, where this is shown for h = 4. So, a path of length at
most 6 between y = yfjk and z is: yfjk,yfjk,p,q,ylr,y¡sriz.
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Hq(K4)

Figure 2.7: A path of length 6 between y and z.

Figure 2.8: A path of length 5 between yf,k and
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3. Let us consider these two vertices, yg-fc and y^sti with i ^ r. Since x^ and xrst

are at distance at most 2 in G, by using the same reasoning as in the previous
case, we find that the distance between yf,/, and y^st is at most 5. (Figure 2.8
shows the path for h = 4.)

2.4 New large graphs of diameter 6

Theorem 2.3.1 provides a method to construct some Hq(Kh) graphs of diameter 6. To
be more precise, we take a copy of a graph Hq and we choose a complete graph Kh
with h < q + I. Next, we take an [l,A]-clique G = (W,Ë) with diameter D = 2 and

degree A¿,, where
\<q(q-l) (2.5)

I < q - 1 (2.6)

- 1). (2.7)

In the following subsections, some of the examples of an [l,A]-clique with diameter
D = 2 are used in order to obtain new large graphs of diameter 6.

2.4.1 Large graphs from 7-graphs

All the largest known graphs with diameter 2 are called in this work j-graphs. Five
of them are used in this subsection in order to obtain new large graphs. To be more
precise, we use the graphs: Petersen, K4 * X%, Pg, P^ and P{3, which correspond to
those already mentioned in Examples 2.2.1.4, 2.2.1.5 and 2.2.1.6, to obtain five new

large graphs (see Table 2.1).

A

5
6

8
9

1.0

h

4
4

6
7
8

M

3
6

10
12
14

G

P
K4*X8

p'- f g
p'Ml
P'
•^13

n(G)

10
32

91
133
183

1

2

2
3

3
3

A

5
16

42
55
72

n

2760

7908

39671

75696

134141

Table 2.1: New values of large graphs from 7-graphs.
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A || h

10
12
14

6
8
9

M

20
28
40

G

P[#
P^
P^

n(G)

307
553
1057

1

5
6
7

A

72
110
151

n

134395
358183
812924

Table 2.2: New values of large graphs from ¿-graphs.

2.4.2 Large graphs from 5-graphs

From the family presented in Example 2.2.1.7, which we call S-graphs, three new large
graphs are obtained (see Table 2.2). The ¿-graphs used are constructed as follows:

Graph Hg(Kß) is constructed by using a graph P{75. This is done by means of a
partition of P{7 with A = 72 parts (see Section 2.5). It consists of 50 65, 8 /^i,3, 1
KS, 9 KZ, and 4 K\. Observe that to obtain complete graphs from them it is enough
to increase their degree by at most two units. So, P{75 has degree 20 which coincides
with the margin in this case.

Graph H\i(K%) is constructed by using a graph PfóG. This is done by means of a
partition of P^a with A = 110 parts. It consists of 107 sets with order 5 each and 3 sets
containing 2 KS each (see Section 2.5). Observe that to obtain complete graphs from
them it is enough to increase their degree by at most four units. So, P^G has degree
28 which again coincides with the margin in this case.

Graph His(Kg) is constructed by using a graph Py¿l. This is made by means of a
partition of P'y¿ with A = 151 parts. It consists of 151 sets with 7 arbitrary vertices. In
this case, to obtain 151 complete graphs KT, the degree of each vertex is increased by
at most 6 units. So, P^7 has degree 39 which is less than the margin in this case.

Table 2.3 shows the best values obtained in this work for degree less than or equal
to 14, all of them improving the previous values (see [143]).

A

5

6

8

9

10

12

14

x — graph

7

7

7

7
6

6
6

G

H4(K4)

-í/5 (#4)

H7(KQ)

H8(K7)

Hg(Ke)

HM(KS)

Hi3(Kg)

n(G]

2760

7908

39671

75696

134395

358 183

812924

Table 2.3: New large graphs.
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The method put forward in this work enables one to improve a lot of values for

diameter 6 and degree A greater than 14, by means of the corresponding family of

[l,A]-cliques, For instance, using ¿-graphs for degree A = q + 1 (with q a prime power),

this method yields graphs on order about: n = n(Hq) + -^T.

2.5 Appendix

In this appendix, some properties of the graphs P3, P(lt P{3, P(-¡, P¡¿3 are shown. The vertex
and arc sets of the graph P'q = (V, E) can be defined as follows.

V = {(0,0,1} U {(0, l,a) : 0 < a < q - 1} U {(1,/J.Ä) : O < ß,ö < q - 1}

V x = (x0,x1,x·2),y = (yo,yi,y2)£V :{x,y}&E •& ZQÏ/O + xiyi + x2t/2 = O (mod q)

1. About P3. This graph is shown to be an K3-graph, composed by the union of 1 K3, 5

K2:

(1,0,0), (0,1,0), (0,0,1);

(0,1,1), (0,1,2); (1,1,1), (1,2,0); (1,1,2), (1,0,1); (1,2,1), (1,0,2); (1,2,2), (1,1,0);

2. About PÍJ. This graph is an !R3-graph, composed by the union of 32 triangles, 14 couples
and 9 vertices:

(1,0,0), (0,1,0), (0,0,1); (1,0,1), (1,1,10), (1,9,10); (1,0,2), (1,1,5), (1,7,5); (1,0,3), (1,1,7), (1,5,7); (1,0,4),

(0,2,8), (1,6,8); (1,0,5), (1,1,2), (1,6,2); (1,0,6), (1,1,9), (1,6,9); (1,0,7), (1,2,3), (1,6,3); (1,0,8), (1,1,4),

(1,5,4); (1,0,9), (1,1,6), (1,7,6); (1,0,10), (1,1,1), (1,9,1); (1,1,0), (1,10,1), (1,10,9); (1,2,0), (1,5,2), (1,5,9);

(1,2,1), (1,2,6), (1,5,0); (1,2,2), (1,4,1), (1,9,7); (1,2,4), (1,4,6), (1,6,5); (1,2,5), (1,6,4), (0,1,4); (1,2,7),

(1,4,5), (1,6,6); (1,2,9), (1,4,10), (1,9,4); (1,2,10), (1,4,9), (0,1,2); (1,3,0), (1,7,2), (1,7,8); (1,3,2), (1,3,6),

(1,7,0); (1,3,3), (1,9,9), (0,1,10); (1,3,5), (1,5,10), (1,10,7); (1,3,7), (1,10,5), (0,1,9); (1,3,8), (1,9,2),

(0,1,1); (1,3,9), (1,9,3), (1,10,10); (1,4,0), (1,8,2), (1,8,6); (1,4,2), (1,4,8), (1,8,0); (1,4,3), (1,6,10), (0,1,6);

(1,5,8), (1,7,1), (1,10,6); (1,6,1), (1,6,7), (1,9,0);

(1,1,3), (1,8,8); (1,1,8), (1,7,10); (1,3,1), (1,5,6); (1,3,10), (1,5,5); (1,4,4), (1,5,3); (1,4,7), (1,10,2); (1,5,1),

(1,8,3); (1,6,0), (1,9,5); (1,7,3), (1,7,9); (1,7,4), (1,8,5); (1,7,7), (1,10,4); (1,8,1), (0,1,3); (1,8,10), (0,1,8);

(1,10,8), (0,1,7);

(0,1,5); (1,8,7); (1,9,8); (1,3,4); (1,8,9); (1,10,0); (1,8,4); (1,9,6); (1,10,3);

3. About Pj3. The following list shows that P[3 is an 5?3-graph composed by the union of
44 triangles,,23 couples and 5 vertices:

(1,8,5), (0,1,1), (1,4,9); (1,8,6), (0,1,3), (1,2,8); (1,8,7), (1,2,5), (0,1,10); (1,8,8), (1,2,6), (1,9,12); (0,8,9),

(0,1,2), (1,9,2); (0,1,0), (0,0,1), (1,0,0); (0,1,4), (1,6,5), (1,8,11); (0,1,6), (1,2,4), (1,9,5); (1,1,9), (1,7,2),

(1,5,8); (1,1,10), (1,2,1), (1,5,2); (1,1,11), (1,3,2), (1,6,10); (1,1,12), (1,2,3), (1,7,8); (1,2,0), (1,6,1),

(1,6,2); (1,2,2), (1,3,3), (0,1,12); (1,2,7), (1,3,12), (1,7,9); (1,2,9), (1,2,11), (1,6,0); (1,2,10), (1,7,5),

(1,1,1); (1,2,12), (1,3,7), (1,11,10); (1,3,0), (1,4,2), (1,4,11); (1,3,1), (1,5,10), (1,9,11); (1,3,5), (1,3,11),

(1,4,0); (1,3,6), (1,10,10), (1,1,8); (1,3,8), (1,5,11), (1,6,9); (1,3,10), (1,7,3), (1,5,1); (1,4,1), (1,11,7),

(1,5,5); (1,4,4), (1,12,4), (1,0,3); (1,4,5), (1,11,4), (0,1,7); (1,4,6), (1,7,6), (1,0,2); (1,4,7), (1,7,7), (1,0,11);

(1,5,9), (1,6,11), (1,11,1); (1,5,12), (1,9,7), (1,1,6); (1,6,3), (1,12,6), (0,1,11); (1,6,4), (1,9,9), (1,12,11);

(1,6,7), (1,12,10), (1,5,3); (1,6,8), (1,8,2), (0,1,9); (1,6,12), (1,7,4), (1,12,8); (1,7,0), (1,11,5), (1,11,12);

(1,7,1), (1,9,1), (1,0,12); (1,7,11), (1,7,12), (1,11,0); (1,8,4), (1,12,5), (1,5,6); (1,9,0), (1,10,1), (1,10,3);
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(1,9,6), (1,9,8), (1,10,0); (1,10,5), (1,11,9), (1,1,3); (1,12,2), (1,12,12), (1,1,0);

(0,1,5), (1,8,1); (1,3,4), (1,8,10); (1,3,9), (1,8,3); (1,4,3), (1,10,8); (1,6,6), (1,12,3); (1,7,10), (1,9,4);

(1,8,0), (1,8,12); (1,9,3), (1,12,7); (1,9,10), (1,11,3); (1,10,2), (0,1,8); (1,10,4), (1,11,8); (1,10,6), (1,10,7);

(1,10,9), (1,12,1); (1,10,11), (1,0,7); (1,10,12), (1,0,1); (1,11,2), (1,0,6); (1,11,6), (1,4,12); (1,12,0), (1,1,2);

(1,12,9), (1,0,10); (1,0,5), (1,1,5); (1,0,8), (1,4,8); (1,0,9), (1,4,10); (1,5,0), (1,5,4);

(1,0,4); (1,1,4); (1,1,7); (1,5,7); (1,11,11);

4. About graph P[7. The following list shows P{7 as composed by the union of 50 C5, 8
#1,3, 1 P4, 1 K3, 6 Ä2, and 6 KI:

(1,12,1), (1,12,8), (1,2,16), (1,0,1), (1,0,16); (1,12,2), (1,12,4), (1,2,15), (1,4,13), (1,9,5); (1,12,3), (1,1,7),

(1,2,2), (1,3,5), (0,1,13); (1,12,5), (1,2,12), (1,3,15), (1,4,15), (1,1,11); (1,12,6), (1,12,7), (1,2,11), (1,2,4),

(1,8,15); (1,1,4), (1,1,8), (1,0,2), (1,4,8), (1,9,6); (1,1,5), (1,2,13), (1,2,14), (1,3,8), (1,15,7); (1,1,6),

(1,2,8), (1,2,10), (1,3,1), (0,1,14); (1,1,13), (1,2,5), (1,5,8), (1,9,7), (1,12,16); (1,1,14), (1,2,1), (1,3,10),

(1,4,14), (1,0,6); (1,2,7), (1,2,9), (1,3,3), (1,4,7), (1,0,12); (1,2,0), (1,8,1), (1,9,12), (1,15,0), (0,0,1);

(1,2,3), (1,3,14), (1,4,10), (1,3,9), (1,14,13); (1,3,2), (1,3,12), (1,4,6), (1,5,5), (1,13,14); (1,3,6), (1,4,12),

(1,5,11), (1,7,6), (1,0,14); (1,3,7), (1,4,3), (1,5,10), (1,6,2), (1,6,7); (1,3,11), (1,3,13), (1,2,6), (1,5,1),

(1,7,15); (1,3,16), (1,5,16), (1,6,14), (1,8,5), (1,16,15); (1,4,1), (1,5,13), (1,5,15), (1,8,12), (1,1,12); (1,4,2),

(1,2,4), (1,6,1), (1,7,8), (1,11,3); (1,4,4), (1,6,15), (1,7,13), (1,8,10), (1,12,9); (1,4,5), (1,1,16), (1,8,9),

(1,12,10), (1,13,3); (1,4,9), (1,5,9), (1,6,6), (1,6,8), (1,10,3); (1,4,11), (1,1,15), (1,5,3), (1,5,14), (1,14,1);

(1,4,16), (1,5,4), (1,6,5), (1,6,13), (1,15,10); (1,5,2), (1,6,10), (1,7,11), (1,10,9), (1,14,7); (1,5,6), (1,5,7),

(1,7,7), (1,9,3), (1,13,6); (1,5,12), (1,7,14), (1,9,2), (1,14,3), (0,1,1); (1,6,3), (1,6,16), (1,7,9), (1,10,11),

(1,13,2); (1,6,4), (1,6,12), (1,7,12), (1,10,4), (1,0,4); (1,6,9), (1,6,11), (1,7,10), (1,10,15), (0,1,5); (1,7,1),

(1,8,11), (1,9,15), (1,11,16), (1,15,13); (1,7,2), (1,8,14), (1,8,16), (1,11,4), (1,11,12); (1,7,3), (1,10,16),

(1,11,9), (1,13,1), (1,1,3); (1,7,4), (1,9,1), (1,11,2), (1,11,7), (1,13,11); (1,7,5), (1,9,11), (1,10,11), (1,11,8),

(1,14,4); (1,7,16), (1,8,6), (1,9,2), (1,9,10), (1,16,11); (1,8,3), (1,9,4), (1,12,11), (1,0,3), (1,0,11); (1,8,4),

(1,12,14), (1,14,11), (0,1,8), (1,1,2); (1,8,7), (1,9,9), (1,10,5), (1,15,14), (1,16,1); (1,8,13), (1,9,14), (1,9,16),

(1,13,16), (1,15,9); (1,9,8), (1,11,13), (1,12,12), (1,14,10), (1,14,16); (1,9,13), (1,10,10), (1,13,9), (1,15,16),

(0,1,15); (1,10,2), (1,14,6), (1,16,5), (0,1,7), (0,1,12); (1,10,6), (1,14,2), (1,14,12), (1,15,15), (1,16,10);

(1,10,8), (1,11,1), (1,14,15), (1,15,12), (0,1,3); (1,10,12), (1,15,3), (1,15,4), (1,16,12), (1,0,7); (1,11,5),

(1,16,2), (1,16,16), (1,1,16), (1,1,1); (1,11,6), (1,13,10), (1,15,11), (1,16,9), (1,16,13); (1,11,10), (1,11,15),

(1,13,4), (1,15,2), (1,1,9);

(1,0,0), (0,1,0), (0,1,2), (0,1,4); (1,3,0), (1,11,0), (1,11,11), (1,11,14); (1,5,0), (1,10,0), (1,10,7), (1,10,7);

(1,6,0), (1,14,0), (1,14,0), (1,14,8); (1,7,0), (1,12,0), (1,12,13), (1,12,15); (1,9,0), (1,15,1), (1,15,5), (1,15,6);

(1,13,0), (1,13,5), (1,13,7), (1,13,8); (1,14,9), (1,14,14), (1,1,6), (1,0,15);

(0,1,9), (1,10,14), (1,16,14), (0,1,11);

(1,16,4), (1,16,8), (1,1,0);

(1,8,8), (1,16,3); (1,13,13), (1,0,13); (1,13,15), (1,0,9); (1,15,8), (1,16,6); (1,16,0), (1,1,10); (1,0,5),

(1,0,10);

(0,1,10); (1,0,8); (1,4,0); (1,8,0); (1,13,12); (1,16,7);

5. About Py,3. Finally, 6 K¡ are shown to be in P^.

(1,0,0), (0,1,0), (0,0,1); (1,0,1), (1,1,22), (1,21,22); (1,0,2), (1,1,11), (1,16,11); (1,0,3), (1,1,15), (1,4,15);

(1,0,4), (1,1,17), (1,9,17); (1,0,5), (1,1,9), (1,10,9);
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Chapter 3

1-vertex vulnerability of
generalized compound graphs

3.1 Introduction

Concern over fault tolerance in the design of interconnection networks has stimulated
interest in finding large graphs with maximum degree A and diameter D such that the
subgraphs obtained by deleting any set of s vertices have diameter at most D', this
value being close to D or even equal to it. This is the so-called (A, £*,£)', s)-problem
(see Section 1.7.2). The study of the 1-vertex vulnerability; that is, the (A,D,D', 1)-
problem, is probably the most interesting case, and in fact, it has deserved so far the
greatest attention in the literature on this subject.

A technique that has been proved to be useful for obtaining large (A,.D)-graphs
is the compounding of graphs (see Sections 1.4, 1.5.3). The 1-vertex vulnerability
of different families of compound graphs have been studied by several authors (see
[29, 30, 74, 121]), and the obtained result is that, in most cases, they are (A, D, D+j, 1)-
graphs with j = 1, 2.

Another useful method for obtaining large (A, £))-graphs is the design of graphs
on alphabet (see [3, 29, 34, 49, 69, 74, 79, 104]). These graphs are constructed by
labelling the vertices with words of a given alphabet, together with a rule that relates
pairs of different words to define the edges. One usual procedure of obtaining graphs on
alphabet consists in taking the underlying graph of a line digraph. For instance, the De
Bruijn and Kautz graphs were designed in this way (see Section 1.5.2). The 1-vertex
vulnerability of these two families of graphs was studied by J. Bond and C. Peyrat
in [31]. They proved that both De Bruijn and Kautz graphs have optimal 1-vertex
vulnerability; that is, they are (A, £>,£>,!) graphs.

Generalized compound graphs, also called GC graphs, were introduced in [75] by J.
Gómez by proposing several constructions, all of them inspired both in the compoun-
ding of graphs and in the design of graphs on alphabet. The so-called GCG technique
joins together the advantages of these two methods, in general, compounding of graphs
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yields large graphs when the diameter D is rather small (see [77, 143]), but each time the
procedure is iterated in order to obtain large graphs with greater diameters, the degree
of the resulting graph increases. On the other hand, the design of graphs on alphabet,
and particularly the line digraph technique, provides large graphs for high values of
the diameter. Moreover, in these graphs the design of algorithms which provide paths
between pairs of vertices is fairly simple. As was shown in [75], generalized compound
graphs, which can be seen both as compound graphs and graphs on alphabet, have,
in general, an order greater than those of compound graphs. In addition, they are
generally larger than the known graphs on alphabet. The 1-vertex vulnerability of the
GC graphs, whose study is presented in this work (see also [84]) is quasi optimal; that
is, they are in almost all the cases (A,D,D + 1, l)-graphs.

This chapter consists of three more sections. In the next one, three families of
line digraphs are defined, being proved that the corresponding families of underlying
graphs have, in most cases, optimal 1-vertex vulnerability. Section 3.3 is devoted
to characterizing the GC graphs as compound graphs by using the previous families.
Finally, in Section 3.4 we make use of this characterization in order to study the 1-vertex
vulnerability of the GC graphs.

3.2 Three families of line digraphs

In the rest of this chapter Jm denote the set of the first m natural numbers; that is,
Jm = (1, 2, ... ,m}. In this section we introduce three families of digraphs on alphabet
which will be shown to be families of iterated line digraphs. The first of them, whose
members are isomorphic to De Bruijn digraphs, is defined as follows.

Definition 3.2.1 Let m, n, h be three positive integers such that mn > 2. Let us define
the digraph G1 (m,n,h) in the following way:
Its vertex set is: V = [Jm x Jn]

h = { ( ß \ , x i ) ( ß 2 , X 2 ) . . . (ßh,Xh), ßi e Jm, %i € Jn}.
The adjacency rule is:

, xi)...(ßh,xh}) = {(/fo,:co)(A,œi)."(/3/i-l,a:A-i), /% € Jm, x0 € J„}

Corollary 3.2.1 The digraph G^(m,n, h) satisfies the following properties:

1. It is isomorphic to the line digraph L i(K^nn). Hence, it is a regular digrapli
with degree and diameter: (A,D) = (mn,h).

2. Its underlying graph has diameter h and, for h > 2, maximum degree 2mn.

Definition 3.2.2 Let m,n,h be three positive integers. Let us define the digraph
Gn(m, n, h) in the following way:
Its vertex set is: V = {(ß\ , zi)(/32, x2) . . . (ßh, xh), ßi 6 Jm, Xi e Jn+i,Xi ^ %i+\ }• The
adjacency rule is:

r+ ((ft, Si) . . . (ßh,Xh)) = {(ßo,X0)(ßl,Xi) . . . (ßh-l,Xh-li, ßo € Jm, XQ € J„+1 \ {z'] }}
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It is easy to see that GJI(l, n, ti) is isomorphic to the Kautz digraph -fi(n, h). Taking
into account known properties of Kautz digraphs we obtain the following corollary.

Corollary 3.2.2 The digraph 0^(1, n, h), n>2, satisfies the following properties:

1. It is isomorphic to the iterated line digraph Lh~1(Kn+i)· Hence, it is a regular
digraph with degree and diameter: (A,L>) = (n, h).

2. Its underlying graph has diameter h and, for h>3, maximum degree In.

In the case m > 1, the digraph G^(m, n, h) is also isomorphic to an iterated line
digraph obtained by conjunction of a De Bruijn digraph with a Kautz digraph, as we
show in the following proposition.

Proposition 3.2.1 If m > 1, then the digraph G (m,n, h) satisfies the following
properties:

1. It is isomorphic to the digraph B(m, h) ® K (n, h).

2. It is isomorphic to the digraph Lh~l(K^n <8> Kn+i)-

3. It is a regular digraph with degree and diameter: (A, D) = (mn,h+ 1).

4- The diameter of its underlying graph is h + 1 and, if h > 3, then its maximum
degree is 2mn.

Proof. The one-to-one mapping from V[G/7(m, n, h)] onto F[J9(m, h) <g> K(n, h)} de-
fined by:

...xh

induces clearly an isomorphism between both digraphs.
Point two follows immediately from Proposition 1.4.4, together with the fact that

the digraphs B(m,h) and /i(n, h) are isomorphic to Lh~l(Km] and Lh~l(Kn+i) res-
pectively.

Prom Definition 3.2.2 it follows immediately that A = mn. Moreover, K^ ® Kn+i
has no loops and its diameter is 2. Hence, by the previous point and Proposition 1.3.2,
D = 2 + h — l = / i + l, and thus point three also holds.

Finally, from Definition 3.2.2, it immediately follows that the maximum degree
of the underlying graph UGn(m,n,h) is 2mn, since h > 3. It is also clear that
the diameter of this graph is at most h + 1. To see the equality it is enough to
find two vertices at distance h+l in Gu(m, n, /i), which remain at distance h + 1 in
UGn(m, n, h). Let us consider the following two vertices:

U = ß
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Notice that, if ß\ 7¿ 7^ and ßh ^ 7i, then d(u,v) = d(v,u) = h + I in the original
digraph and so d(u,v) = h + l in the underlying graph as well. •

Definition 3.2.3 Let mo,no,rni,ni,h be positive integers, h being an odd number. It
is defined Gin(mo,no,mi,ni,h) as the bipartite digraph with partite sets:

u = {(7i,yi)(Â,a>2).• • (7/1,y/i), ßi e Jm0, 7? e Jmi, x* e Jno, y¡ e Jni}

V = {(ßi,xi}(i2,yi) • • • (ßh,xh), ßi e Jmo, 7j € Jmi, Xi e Jno, y j e Jni}

The adjacency rules are:

r+((7i,yi)(/32,a;2)...(7/i,y/i)) = {(ßo,xo)(/ji,yi)---(ßh-i,xh-i), ßo e Jmo, %o e Jn0);

• • (jh-i,yh-i), 70 e Jmi, yo e Jm}-

As in the above two cases, this third family of bipartite digraphs is an iterated line
digraph family as well, as it is shown in the following proposition,

Proposition 3.2.2 If either mono > 2 or mini > 2, then Gin(mo,no,mi,n\,h)
satisfies the following properties:

1. It is isomorphic to the bipartite line digraph Lh~1(Kmono>m¡ni'). Hence, its mi-
nimum degree is min{mono,mini} and its maximum degree and diameter are:
(A,Z)) = (max {mono, mini}, h + l).

2. The diameter of its underlying graph is h + 1 and, if h > 3, then its maximum

degree is mono + mini.

Proof. The line digraph of a bipartite digraph is also bipartite. Furthermore, it is clear
that GIII(mo,no,miìniìh) = Lh~l(Kmon0ìmini). Hence, its maximum degree is equal
to max{mono,mini} and by means of Proposition 1.3.2, we derive that the diameter
is h -f 1. Finally, the proof of the third property is similar to that of Proposition 3.2.1 .

Let us finalize this section by studying the extent to which the diameter of the
underlying graphs of the line digraph families just presented increases when one vertex
is deleted. J. Bond and C. Peyrat proved in [31] the following result.

Proposition 3.2.3 Let G be a (strongly) connected digraph such that:

Vx,yeV[G\: \T+(x) n P+(y)| ^ l, \T~(x) n r~(y)| + 1 .

Then,
Vv e V\UG\ : D(UG - {v}) < D(G]
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As a consequence of the Heuchenne condition (see Proposition 1.3.3) together with
this result, it was proved in the same reference that, if G is a Kautz digraph or a De
Bruijn digraph (with D and A not equal together to 2), then D(UG — {v}) = D(G)
for any vertex v of G. From these ideas we get the following result.

Theorem 3.2.1 Let G = LH be a (strongly) connected line digraph with minimum
degree 0>2, for which D(UG) = D(G). Then, UG is a (A,D,D, l)-graph.

Proof. As a consequence of the Heuchenne condition, it follows that G satisfies the
hypothesis of Proposition 3.2.3, since ô > 2. Hence, for every vertex v of G, D(UG —
{v}) < D(G). Moreover, there exists some vertex w for which D(UG — {w}} > D(UG)
because <5 > 2, and since D(G) = D(UG), we obtain that D(UG - {w}} = D, and
hence UG is a (A, D, D, l)-graph. •

As a direct consequence of the above results we have the following theorem.

Theorem 3.2.2 Let m,n,h be positive integers with mn > 2 and h > 2. Then,
UG^m.n^h) and UGn(m,n,h) are (A',L>,D, l)-graphs where A' < 2A = 2mn. Be-
sides, if h > 3 is an odd number and mono > 2, mini > 2, then UGnI(moìnQìmi,ni,h)
is a (A', D, D, l)-graph as well, where A' — mono + mini.

3.3 Generalized compound graphs

The different families of generalized compound graphs were introduced by J. Gómez
in [75]. In order not to increase excessively this work we refer to this paper for details
about these families. In this section we present these graphs from another point of view;
more specifically, we characterize any GC graph as a compound graph, either G2[Gi]
or G2[Go,G]], G2 being the underlying graph of one of the line digraphs introduced in
the previous section. In this way, we will be able to study the 1-vertex vulnerability of
all of these graphs, a subject which is presented in the next section. Since the proofs
of the different propositions that are put forward can be obtained directly from the
definitions involved, they are omitted.

3.3.1 GC graphs of type I

Next, we are going to define from another point of view the so-called GC graphs of
type I put forward in [75]. They were denoted by Gi{m, fc}G, and Bi{m, k}G in the
bipartite case. These constructions were inspired by De Bruijn graphs because, as we
will show, they are isomorphic to compound graphs G%[Gì], where G% is the underlying
graph of the digraph G'^n, k - 1) ̂  L^K^ (see Corollary 3.2.1).

Proposition 3.3.1 Let GÌ = (Jn,Ei) be a (Ai, DI)-graph on n vertices, and let m,k
be two positive integers, with k > 2. Then, the graph Gi{m,k}G is isomorphic to the
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compound graph G^Gi] where
yields an intercopy edge is:

= í/G^m, n, /c — 1), and the adjacency rule which

where (/?i,a:i)(/?2>Z2) • • • (ßk-i,Xk-i) is any vertex ofG2, Zfc 6 Jn and ßo e Jm.
Its maximum degree, diameter and order are: (¿\,D,N) = (Ai + 2m, kD) + k —
l,mk~1nk) whenever k>3, and A = AI + m if k = 2.

Figure 3.1: Bipartite compound graphs with two intercopy edges.

Figure 3.2: Bipartite compound graphs with one intercopy edge.

Proposition 3.3.2 Let B\ be a bipartite (Ai, D\)-graph with partite sets U\ = {0} x Jn

and V\ = {].} x Jn, and let m, k be two positive integers with k > 3. Then, B\ (m, k}G
is isomorphic to the bipartite compound graph G^Bi], where G% = UG^m^n^k — 1)
and, according to the parity of DI, the intercopy adjacency rules are:

• If D\ is odd, then the adjacency rule produces two intercopy edges (see Figure
3.1):

where (ßi,xi)(ß2,X2) . . . (ßk-i,Xk-i) is a vertex ofG2, ä = a+ 1. in Z2, ßo € Jm

and(a,xk^l),(a,xk) € i / iUVi.

In this case the maximum degree is A = AI + 2m.



3 1-vertex vulnerability of generalized compound graphs 49

// DI is even, then the adjacency rule produces one intercopy edge (see Figure
3.2):

... (ßk-l,Xk-i)(0, Xk) ~ (/3b, ZfcX/01, Zl) . . . (ßh-2, Zjfc-2)(l,

(ßi,xi)(ß2, x2)... (/3fc_i, x fc_i)(l, xk) ~ (/32, z2) . . . (ßk-i,Xk-i)(ßk, xk)(Q

where (ßi,xi)(ß2,x2) . . .(ßk-i,xk-i) ^ a veriez o/G2, (0,zfc) € t/i, (l,x fe) € Vi
and ßo,ßk e Jm.

In this case the maximum degree is A = AI + m.

in both cases the diameter and order are (D,N) = (kDi,2m n ).

3.3.2 GC graphs of type II

Generalized compound graphs of type //were denoted in [75] by G\(m, k)G, Bi(m, k)G
and FF(m, k)G. These constructions were inspired by Kautz graphs, since any of these
graphs is isomorphic to a certain compound graph G2[Gi], where G2 is the underlying
graph of Gn(m,n,k - 1) = Lk~2(K^ ® Ä„+i) if m > 2, and Gn(l,n,k - 1) -
Lfc-2(/in+i) (see Corollary 3.2.2 and Proposition 3.2.1). The main differences among
them lie, on the one hand, in the type of graph GÌ used and, on the other, in the
adjacency rules producing intercopy edges. Before showing the three characterizations
of GC graphs of type II, and in order to define suitably the adjacency rules, we need
firstly to put forward the following definition.

Definition 3.3.1 Given I € Jn+i, let fi denote the only increasing bijection from
Jn+i \ {/} onto Jn.

Proposition 3.3.3 Let m,k be two positive integers, k > 3, and GÌ = (Jn,Ei) a
(A],D\)-graph on n vertices. The graph Gi(m, k)G is isomorphic to the compound
graph G2[Gi], where G2 = UGn(m,n,k — 1), and the adjacency rule producing one
intercopy edge is:

where (ßi,xi) . . . (ßk-i,xk-i) G V(G2), xk e /¿j (,/„), x'k = (f^fx^fa), and
ßo e Jm.
Its maximum, degree, diameter and order are:

Proposition 3.3.4 Let m, k be two positive integers with k > 3, and B\ a bipar-
tite. (AI,DI)-graph on 2n vertices, with partite sets U\ = {0} x Jn, Vi — {1} x Jn.
Then, B\(m,k)G is isomorphic to the bipartite compound graph G2[5i] where G2 =
UGir(m,n, k— 1) and, according to the parity of DI, the intercopy adjacency rules are:
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If DI is odd, the adjacency rule produces two intercopy edges (see Figure 3.1):

where (/?i,zi) . . . (/3 fc_i,Zfc-i) & V[G2\, (a,xk) € {0,1} x f~^ ( Jn), a = a + l in
Z2, /u(Zfe) = fxk^(xk), and ß0 E Jm.

In this case the maximum degree is A = AI + 2m.

If DI is even, the adjacency rule yields one intercopy edge (see Figure 3.2):

where (ft, xi) ...(ßk-i, Xfc-i) 6 V[G2], xk e /^(Jn),
o,A e Jm.

/n ítós case i/ie maximum degree is A = AI + m.

/n 6oí/i cases í/ie diameter and order are (D, N) = (kDi,2(n + l)(mn) f e~1).

Proposition 3.3.5 Let m, fc òe íwo positive integers with k > 3, and B\ a bipartite
(Ai, D i) -graph on 2n vertices, with partite sets U\ = {0} x Jn, V\ = {1 } x Jn. Then, the
not bipartite graph FF(m, k)G is isomorphic to G^lBi] where G% = í/G//(m, n, k — 1 ),
and the adjacency rule producing four intercopy edges (see Figure 3. 3) is:

where ( ß l i X l ) . . . (/3fc-i,xfc_i) € V(G2), (a,x fc) G {0, ̂ x/^^Jn), A) £ Jm, /x, (4) =
fxk-i(

xk), anda' e {0,1}.
/is maximum degree, diameter and order are (A,D,N) = (Ai + 4m,kD\ — l ,2(n +
I m n * - 1 .

Figure 3.3: Intercopy edges of compound graphs FF.

Using the previous ideas it is possible to design a FF(m, k)G graph with maximum
degree A = A] + 2m, the same diameter and, however, an smaller order (see [75]).
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3.3.3 GC graphs of type III

Both GC graphs of type I and II can be seen as compounds graphs C?2[Gi], where G-¿
is a certain non-bipartite graph. In other words, all of them are compound graphs
constructed according to Definition 1.5.1. In a similar way, the so-called generalized
compound graphs of type HI are compound graphs G2[Go,Gi] in which G^ is a cer-
tain bipartite graph, and therefore, they are compound graphs designed according
to definition 1.5.2. This class of graphs corresponds to the DQfl{mi,mo, k}G and
£?oV.Bi{mi, TOO, k}G graphs put forward in [75]. Next, we are going to characterize the
different families of designed GC graphs of type III by showing that in all of them C?2 is
isomorphic to the underlying graph of Gm(mo,no,mi,ni, k — 1) = Lk~2(Kmon0}Tnini)
(see Proposition 3.2.2). Moreover, we see that the main differences among them lie in
the type of graphs GO and GÌ used, and in the adjacency rules producing intercopy
edges.

y2

Figure 3.4: Intercopy edges of compound graphs

Proposition 3.3.6 Let BQ be a bipartite (Ao, DO) -graph of order 2no, whose partite
sets are {0} x Jno and {1} x Jno, and let GÌ = (Jni , E\) be a (Ai, -Di)-grap/i of order n\.
Let mo, mi, k be three positive integers such that k > 4 is an even number. The (non-
bipartite) DQk{mi,mo,k}G graph is isomorphic to the compound graph G2[-BojGi],
where GÌ = UGni(mQ,riQ,mi,ni,k — 1); that is, G2 is bipartite with partite sets U2

and V2, and the adjacency rules which produce two intercopy edges (see Figure 3.4) are:

(71 , yi )(/%, ^2) • • • (7fc-i> 2/fc-i )(«, E/O ~ (A), zfc)(7i) yi) • • • (ßk-2,xk-2)y

for any (/?i.zi)(72,y2) . . . (ßh_i,Xk-i) € U2, (a,xk) € {0, 1} X J„0, ß0 e Jmo.

}yk ~ (70,

for any (A,^.l)(72,y2) • • • (Ä-l^fc-i) € V2, yk 6 Jm, 7o € Jmi, a € (0, 1}.
Its maximum degree, diameter and order are:

(A, D) = (maz{A0 + 2m0, A! + 4mi}),

N = (mo + 2mi)(moTOi)2-1(n0ni)2),
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Figure 3.5: Intercopy edges of compound graphs

Figure 3.6: Intercopy edges of compound graphs

(non-bipartite case).

(bipartite case).

Proposition 3.3.7 LetBi, i € {0, 1}, be two bipartite (&i,Di)-graphs of order 2n¿ with
partite sets {0} x Jnj and {1} x Jní. Let mQ,mi,k be three positive integers such that
k > 4 is an even number. The (non-bipartite) graph J5oV5i{mi,mo, k}G is isomorphic
to the compound graph GZ[BQ, BI}, where G<¿ = UGin(rriQ, no, mi, n j , k — l); that is, G?
is bipartite with partite sets C/2 and V-¿, and the adjacency rules producing four intercopy
edges (see Figure 3.5) are:

(71,

/or any (7i,yi)(/?2,Z2) • • • (7fc-i.yfc-l) ^ ^2, (a,o;fc) € {0,1} x Jno, /30 6 J"m0, a' 6

/or any (/3i,a;i)(72,y2) • • • (ßk-i,Xk-l) € T^2, Ky/c) e
{0,1}.
/is maximum degree, diameter and order are:

(A, D) = (max{A0 + 4m0, A! -f 4mi},

(7o,yfc)(/?l,a;i) • • • (7fc-2)yfc-2)(a/,a;A:-i.)

, Ky/c) e {0,1} x Jni, 70 € Jmi , a'

N = 2(mo + mi)(momi)2~1(n0ni)2 ).

Proposition 3.3.8 £eí B¿, ¿ € {0,1}, be two bipartite (A¿, D{)-graphs of order 2n¿;

wz¿/i partite sets {0} x Jn¿ and {1} x Jn¿. Leí mQ,mi,k be three positive integers such
that k > 4 is an even number. The bipartite graph Bo\7B\{mi,mo,k}G is isomorphic
to the compound graph f?2[.Bo, BI], where G^ = UGni(mo, no, mi,ni , k — l); that is, G%
is bipartite with partite sets U^ and V¿, and the adjacency rules producing two intercopy
edges (see Figure 3.6) are:

(71, 2
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for any (7l,yi)(A>,z2) • • • (7fc-i,yfc-i) S U2, (a,xk) € {0, 1} x Jno, ß0 e Jmo,
ö = a + 1 in Z%;

/or ant/ (/3i,zi)(72,y2) • • • (A-l,Zfc-l) € V2, (a,2/fc) e {0,1} x Jm, 70 € Jmi,
a = a + 1. in Zz-
Its degree, diameter and order are:

(A, D) = (maz{A0 + 2m0) AI + 2m!}, fc(A)
¿t

3.4 The (A, £>, D', l)-problem in the GC graphs

In this section, the 1-vertex vulnerability of the GC graphs is studied. As it has been
shown in the foregoing section, any GC graph can be regarded either as a compound
graph £2[Gì] if it is of type I or II, or as a compound graph G^G^Gi] if it is of
type III. Tn both cases the graph G<2 will be referred as to be the main graph of the
compounding, whereas the graphs GO and GÌ will be called auxiliary graphs.

Remark 3.4.1 In what follows, we will only consider, on the one hand, main graphs
satisfying the hypotheses of Theorem 4.3.1, and on the other, auxiliary graphs with
minimum degree 5 at least two.

Lemma 3.4.1 Let u,v,w be three vertices belonging to the same copy of a GC graph
G. Let DI denote the diameter of any copy if G is of type I or II, and the maximum
diameter of both copies if G is of type III. Then there exists au —v path avoiding w,
whose length is less than or equal to:

1. DI + 6, if G is of type I or II [resp. Ill] with m = 1 [resp. mo = 1 or mi = I/;

2. DI + 4, otherwise.

Proof. Taking into account that both in 1. and 2. all the proofs are very similar, we
shall show in each case one of them.

1. Let us assume that G ~ G2[-ßoi-Bi] (non-bipartite case), where the main graph
is GÌ — t/Gn/(l,no,mi,ni,fc - 1) (see Proposition 3.3.7). Suppose that D(B\) =
DI > D(BO) and that u,v,w belong to a certain copy Bf in G; that is, u = x(0,yk),
v = x(i,y'k) and w = x(j, y£), where i,j £ {0,1} and

x = (ß, xi)(72, y2)(/?, 0:3)... (7fc_2, y/c-2)(A Sfc-i) 6 G2.

Since the minimum degree of any copy is at least two, we may take in BO a vertex
(l ,xfc-l . ) adjacent to (0,x k- i) such that xk-i ^ ¿fc-i- Besides, we may consider in B\
a short path n — (0, yk)...(Q,y'k). Then, we can take in G the following path joining u
and v:
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u = xi(72,y2)x3...(7fc_2,yfc-2)xfc-i(0,y f c)

(efe, yfc)xi(72, y2) • • • (7fc-2,yfc-2)(0, Xfc_i

21(72, y2)z3 . . . (7fc-2,yfc-2)zfc-i(0,yfc)

v = xi(72,y2)x3...(7fc_2,yfc-2)xfc_i(i,yfc)

Since £fc_i T¿ Xfc-i, this path avoids w and its length is at most DI + 6.
2. Suppose that G = Bi(m,k)G = G2[ßi] is a bipartite compound graph of type

II such that m > 2 and D\ = D(B\) is even (see Proposition 3.3.4). Since u,v,w
belong to the same copy Bf in G, we can denote them by u = x ( 0 , X k ) , v = x(a,y/t)
and u; = x(j,zk), where a, j 6 {0,1} and x = ( /Ö1,xi)(/52,x2) . . . (/3fc_i,xfc_1) is a vertex

of 02- Let fi = (0,Xfc)...(o:,Xfc)(a:,yfc) be a short path in BI joining (0, x/J to (a,yfe)
(notice that d((0,Xfc), (a,Xfc)) < -Di — 1). Let us consider in G the following path rj
joining u and v:

U =

(ßi, xi)(/?2, ̂ 2) ... (ejb-i, xjk-i)(0, x*)
........................................................
(/3l, Xi)(/?2, X2) • • • (Cfe-1, Xfc_i)(0, Xfc)

(/?1,x1)(/32,x2)...(/3 fc-i,x fe_1)(0,x fc)
u = (/5i,xi)(/32,x2)...(/?fe_ l!XA :-i)(Q:,yfc)

where x^ = y/; if a = 0, and x^ = x^ if a = 1. Notice that, if e¿ ^ ß\ and efc_i ^ ßk-i,
then the path ry avoids w and its length is at most D\ + 4 since m > 2. •

Lemma 3.4.2 Let u,v,w be three vertices belonging to three different copies of a GG
graph G with diameter D. Then, there exists a u — v path avoiding w, whose length is
less than or equal to:

1. D, if G i {Bi{m,k}G} U {Bi(m,k)G : DI even}.

2. D + 1 , otherwise.

Proof. The proof is based on the fact that the graph G is isomorphic to G2[C?i] or
C?2[Go, GÌ], where G2 is isomorphic to the underlying graph of an iterated line digraph
which is a (&2,D2,D2, l)-graph (see Theorem 4.3.1).

Let us assume that G ^ {Bi{m, k}G, Bi(m, k)G : D\ even}. To see point 1, we
consider two cases:
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(1 .a) Let G be a graph of type I, type // with m = 1 or type III. The proof for
any of these graphs is similar, and they are based on the following facts:

(i) The diameter of G attains the upper bound given in Proposition 1.5.2.

(ii) If at least one copy is a bipartite graph, then there are two or more intercopy
edges placed appropriately between two copies corresponding to adjacent vertices
in C?2, because DI is odd (see Figures 3.1, 3.4, 3.5, 3.6).

For the sake of simplicity, let us assume that G = GÌ {m, k}G. Every path p in G^
induces in G a path r/p, whose length depends on the length of p, on the diameter of
GÌ and on the intercopy edges (see Figure 3.7). If we denote u = xx^, v = yy^ and
w = zzk, then it follows that there exists in G-i a path p joining x and y which does
not go through z, whose length is at most DI = k — 1. Therefore, and keeping in mind
(i), r\p is a path between u and v avoiding w, whose length is at most D.

Notice that if G is a GG graph whose copies are bipartite graphs, then there exists
an intercopy edge from each partite set. Starting from this fact, it follows that the
contribution of the subpath contained in any copy of B"' to the length of rjp is less than
or equal to D\ — 1.

G?1

Figure 3.7: Path r¡p induced in G by a path p : xa\... a¡y of Gy-

(l.b) Suppose now that G is a GG graph of type II with m > 2. Notice that for
such a graph the condition (ii) of the above case still holds, but not (i). For instance,
the diameter of the GG graph FF(m, k}G is D = kD\ — 1, which is less than the upper
bound obtained in Proposition 1.5.2 for this case; namely, D\D-¿+D\ — l = (k+l)Di — 1.
The proofs for the three families of type // are very similar, and for this reason we will
only show one of them. Let G be the graph GÌ (m, k)G where G2 = t/G^m, n, k — 1).
Observe that, according to Propositions 3.2.1 and 3.3.3, the graph G2 has diameter
£>2 = k and G is isomorphic to the compound graph <J2[Gi]. Let u = xx^, v = yyk and
w = zzk be three vertices placed in three different copies, where:

y = (7i,yi)(72,!/2)---(7A;-i,yfc-i)
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are vertices of G^. We distinguish four cases:
(bl) If x\ T¿ y/c-i and x^-i =¿ yi, then the digraph Gn(m,n,k — 1) must contain

two paths of length at most k — 1, one from a; to y and the other from y to x:

Pxy : rcoi . . . ary, P^ : y & i . . . osx

which induce two paths in G joining u and v, of length at most kD\ + k — 1 = D.
Suppose that an internal vertex z lies in both Pxy and Pyx:

Since G^(m, n, /c— 1) is a A-regular line digraph with A > 2, by applying the Heuchenne
condition, we obtain that F+(a¿_i) = r+(òj_i), r~(aj+i) = r~(6J+i). So, we can
consider z\ € r+(a¡_i) \ {z}, z% E r~(oj+i) \ {z}. Hence, G% has the following two
paths:

xai . . . cii-izibj-i . . . òiy, xbs . .

which do not contain the vertex z, and at least one of them is of length less than or
equal to k — 1, because r + s < 2k — 2. Therefore, its corresponding induced path in G
avoids w and its length is at most D.

(b2) If xi=yk-i and xk-i ^ yi, then Gn(m, n, fc — 1) contains a path Pyx of length
k — 1. Moreover, if ßi—Jk-ii then there exists a path Pxy in Gn(m, n, k — 1 ) of length
at most k — 2 and the reasoning is the same as in (bl). If ßi ^ 7jt— 1> then we consider
the following path in G:

u = xxk =
Ù = xx{ =
û = xxk =

choosing e/t in such a way that x ^ z. Therefore, we can find in Gn(m, n, k — l ) another
path Pxy of length at most k — 2. These two directed paths Pyx and Pxy induce two
paths in the graph G between u and u, of length at most D. If the vertex z lies in both
of them, then, reasoning as in case (bl), two paths in G-¿ are obtained :

. . di-izibj-i . . . biy, xbs . . . bj+iz^di+i . . . ary

So, the length of one of them is at most k — 1 , which induces a path in G avoiding w
of length at most D.

(b3) If x\ T¿ y¿t_i and Xfc_i=i/i, then the proof is as in (b2).
(b4) Suppose that x\=yk-\ and Xk-\=yi- If ß\ =7fc-i or ßk-\=~l\ then the reasoning

is as in (b2). If ß\ ^ 7fe-i and ßk-i ^ 71, we consider in G the following u — û and
v — v paths:

u = xxk = (ßi,yk-i)(ß2ix2')...(ßk-i,xk-i)xk
ü = xx = 2 , 2 3 , 3 . . . k , k i
Û = XXk = (jk-l,yk-i)(ß2,X2)...(ßk-liXk-])xk
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v =

= (7i,a;fc-i)(72,y2)---(7fc-i,yfc-i)y/c
= (72,y2)(73,y3)---(eo,yfc)yi
= (/5fc-i,a;fc-i)(72,y2)---(7fe-i.yfc-i)yfc

chossing efc and CQ in such a way that z ^ {í, y}. Thus, Gn(m, n, k — 1) must contain
two paths of length at most k — 2, one from x to y and the other from y to x:

: £03 . . . ary, . . . bsx

which induce two paths in G of length at most D joining u and v. If P^j, and P$x

have a vertex z in common (see Figure 3.8), reasoning as in (bl), two paths of GÌ are
obtained:

pi : xxxa3 . j-i . . . b^yyy, pi : xbs . . . ary

If the length of pi is at most k — 1, then this path induces in G a path avoiding w
of length at most D. Finally, if the length of pi is greater than or equal to k, then
the length of the subpath pi between x and y must be less than or equal to k — 4 and
therefore, pi induces in G a path avoiding w, of length at most:

- 1 = D.

Figure 3.8: Two paths in Gn(m,n,k — 1) intersecting in z.

2. The two families of GG graphs considered in this point have an essential diffe-
rence with respect to the other families studied before: there are copies corresponding to
adjacent vertices in GÌ which are joined by one only edge (see Figure 3.2). Actually, the
proof for G = BI {m, k}G is similar to that of case (a), and the proof for G = B\ (m, k)G
is similar to that exposed in (b). But now DI is even, and so it happens the following:
Let u = z(0, zfc), u = y(l, yjt) and w — z(i, zfc) be vertices of G such that d(x, y) = k — 1
in the graph GÌ = UGn(m,n,k — 1). Let p : xx\ ...Xk-iy be a shortest path avoiding
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z, and let us consider its induced path r¡p in G (see Figure 3.9). Notice that the length
of rip is at most:

Di + 1 + Di (A - 2) + Di = fcDi + 1 = D + 1

since the vertices of different partite sets are at distance at most D\ — I because DI is
even. Hence, the result of this point holds. •

Figure 3.9: Path r/p between u = x(0, x^} and v = y(l, yjt) induced by p : xx\ ... x^-zy
in 02-

Lemma 3.4.3 Let Gf and G\ be two copies of a GG graph G with diameter D. Let u
be a vertex of G f and v, w two vertices ofG\. Then, there exists au — v path avoiding
w, whose length is less than or equal to:

1. D + l,ifG^{Gi{l,k}G}U{Bì{],k}G}u{Bi(lìk)G,Dl even}.

2. D + 2, otherwise.

Proof. 1. To prove this point we will distinguish two cases:

(La) Assume that G £ {Bi{m,k}G,Bi(m,k)G : DI even}. Let v be a vertex not
belonging to the copy G\ adjacent to v. From Lemma 3.4.2 it follows that there exists
a path between u and v avoiding w, of length less than or equal to D. Hence, by adding
the edge vv, we obtain a path linking u and v of length at most D + 1, which does not
contain w.

(l.b) Suppose now that G € {B\{m,k}G,B\(m,k)G : D\ even, m > 2}. Since
the proof is similar for both families of graphs, we will just show one of them. Let G
be the bipartite compound graph of type // Bi(m,k)G where m > 2 and DI = D(B\]
is even (see Proposition 3.3.4). Let u = x ( l , X k ) , v = y(i,yk) and w = y(j,Zk). If i = 0
then the proof is the same as in case (a). If i = 1, then we can take the following path
p€

uv joining u and v :
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u = (A, zi) (#2,

(72,2/2) (73,

= (71, yi) (72,02) (7fc-i,yfc-i)(i,yfc)
Notice that the length of pf

uv is at most kD\ = D, because DI is even. If m > k,
then, taking e ^ (71, . . . ,7fc_i}, pe

uv is a, u — v path avoiding tu. If m < k, then
we can consider in the digraph G^(m,n, k — 1) the path p : xa\ . . . a^-\y -, which
induces in G the path pf

uv. If y ^ {oi, . . . ,afc_i}, then pe
uv is a u — v path avoiding

u;. Finally, if y € {ai, . . . ,afc_i}, taking e 7^ 7^-2» then y 6 {«i, . . . ,0^-3}. Let us

x ai afc_4 y djt-2

/

Figure 3.10: Paths p and // in G7/(m,n, A; —1)-

assume that y = a^_3 (the proof in any other case is similar). Thus, it follows that
y e r+(ofc_4)nr+(a¡t_] ) and, from Heuchenne conditions, we conclude that there exists
another vertex b € P+(afc_4) nF+(a¿_i) (see Figure 3.10). Let us consider the path i?M

induced by the path p, : xa\... ak-^bak-\y of GZ = C/G//(m,n, k — 1). Clearly rjß is a
u — v path avoiding w, whose length is at most k(D\ — 1) + D\ + 1 = D + I .

2. Suppose first that G = Gi{l,A;}G and v = (ß,a)(ß,a)...(ß,a)a. This vertex
has just adjacent vertices inside its own copy G\, say v = (ß,a)(ß,a)... (ß,a)b, b ̂  a.
Since the minimum degree of any copy is at least two, we can suppose that v ^ w.
Now we can take a vertex v not belonging to the copy G\ adjacent to v. From Lemma
3.4.2, it follows that there exists a path between u and v of length less than or equal
to D, avoiding w. Hence, by adding the path vvv, we obtain a path linking u and v
of length at most D + 2, which does not contain w. Finally, if G — B\(l,k}G with D\
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even, then the reasoning is similar to that of case (l.b), but now D\ is even and so we
lose one unit. •

The main result of this work is put forward in the following theorem, whose proof
is a direct consequence of the above lemmas.

Theorem 3.4.1 If G is a GG graph with diameter D satisfying the restrictions imposed
in Remark 3-4-1, then it is a (A,D,-D', l)-graph where:

1. D' = D + l,ifG#{Gi{l,k}G}\J{Bi{l,k}G}U{Bi(l,k)G, DI even}.

2. D' = D + 2, otherwise.
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Chapter 4

Connectivity and
Superconnectivity of generalized
p-cycles

4.1 Introduction

One of the most important topics in the study of the fault tolerance or reliability of a
certain family T of digraphs is connectedness. One usual procedure of approaching this
study is as follows. First of all, finding sufficient conditions to assure maximal connec-
tivitity. Going one step further, the following goal is to obtain sufficient conditions
for a maximally connected digraph of T to be superconnected. Finally, the study is
completed by carrying out a similar work starting from the superconnected digraphs
of T; that is, by searching sufficient conditions for a superconnected digraph to have
minimum nontrivial cutsets large enough.

Moreover, as it was indicated in Section 1.7.1, there are three main types of sufficient
conditions: degree, order and diameter conditions. This means that the aforementioned
procedure can be implemented one or more times. For instance, the whole work can
be reduced to find both diameter and order conditions to assure maximal connectivity,
Superconnectivity and 'good' Superconnectivity respectively. Apart from the consider-
ations indicated so far, two more questions have to be taken into account. The first
of them is to choose the type of disconnecting sets which we are interested in; namely,
vertex- or arc-cutsets. In fact, it is well known that both for graphs and digraphs the
arc-connectivity has historically been the first and main subject of study, as is shown in
Propositions 1.7.2 and 1.7.3. The second and last question to consider is the selection
of suitable digraph parameters to be used. For instance, the parameter t (see Section
1.6) has proved to be an excellent tool to study connectedness properties in digraphs.

The first work on connectedness in digraphs carried out by following the steps
previously put forward is credited to J. Fàbrega and M. A. Fiol. As is shown in the
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following proposition, the study was done, on the one hand, by using the parameter I,
and on the other, both under diameter and order conditions.

Proposition 4.1.1 Let G be a (5,A,D,n,C)-digraph such that ô > 3.1

2. ([54, 62]) A = 5 if either D < U orn > &

3. ([5, 54, 63]) KI > 0 if either D < li - 2 orn > ¿(AD-^-A*-2A) +

4. ([54, 63]) AI > 6 if either D < It - 1 or n > á^D'^+^e-2) + A0^.

Similar results were derived for bipartite digraphs by C. Balbuena, A. Cannona, J.
Fàbrega and M. A. Fiol, as the next proposition states.

Proposition 4.1.2 Let G be a (5,A,D,n,C)-bipartite digraph such that ó > 3.2

1. (¡9, 55, 65]) K = 6 if either D < li orn > (¿-l)(AD-g+At+1-2A) + 2

2. ([9, 55, 65]) A = S if either D < It + 1 orn >

3. ([11, 55]) Ki>5 if either D < It - 1 orn >

4. ([11, 55]) \i>5 if either D < It orn > ̂

As it was indicated in Section 1.5.4, every digraph can be seen as a generalized p-
cycle with p — 1, whereas the bipartite digraphs coincide with the generalized 2-cycles.
This chapter is devoted to generalizing similar results to the previous ones for the
family of generalized p-cycles (see Section 1.5.4) for p > 3, following the aforementioned
procedure. As for the terminology and notation employed, we have made use of the
Hamidoune terminology presented in Section 1.7.1 (see also [10, 61]).

4.2 Maximal connectivity

In this section the first two points of Propositions 4.1.1 and 4.1.2 are generalized. To be
more precise, we obtain both diameter and order sufficient conditions for a generalized
p-cycle to be maximally connected [arc-connected].

Joints L and 2. are also verified for 6 = 2. In point 3. [4.], if D < '2Í - 2 [D < 'If. - 1], then
KI > 26 - 2 [Ai > 26 - 2].

2Points ;. and 2. are also verified for 6 = 2. In point 3. [4], if D < It- 1 [D < 2£], then «, > 26 - 2
[Ai >2<5-2].
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4.2.1 Diameter conditions

In [54], it was implicitly shown that the parameter I is related to the deepness of any
fragment or a-fragment. For the sake of convenience we repeat the proof of this useful
fact in the following lemma.

Lemma 4.2.1 Let G be a digraph with parameter i, minimum degree ö > 2, diameter
D and connectivities K and A. Let F denote a positive fragment or a-fragment of G.
Then,

(a) ifn<o, then /¿(F) > t and /z(F) > t;

(b) if\<5, then v(F) > t and i/(F \F)>1.

Proof. Let F be a positive fragment; that is, |<9+F| = K < 6 — 1, and assume that
¿x(F) < £ — 1 . Let x be a vertex of F such that d(x, d+F) = [¿(F) and consider ô of its
out- neighbours, xi, £2, • - •> XS- For each x,, let /, be a vertex in d+(F) at minimum
distance from x¿. Hence, /, = f j for some i ^ j, and then there would be two different
x —* fi paths of length t — 1 or ¿, which contradicts the definition of parameter £.
Considering the converse digraph of G and recalling that F = V \ (F U ô+F), the
assertion p-(F) > £ is immediately proved.

(b) The arc case is similarly proved if v(F] > 1 . So, let us see that the assumption
A = iu+F\ < (5 implies v(F) > 0. To this end, observe firstly that certainly |F| > 1.
Moreover, if we suppose that v(F] = 0, then |F| < ô and the number ß of arcs which
have their initial and final vertices in F satisfies |F|(|F| — 1) > ß = Tlx&F^+(x} ~
|o;+F| > \F\0 — 6. But this means that |F| > <5, which is a contradiction. •

As a consequence of the foregoing result and going one step further, it is easy to
prove that in every part of a not maximally connected generalized p-cycle there are
vertices at distance at least t. This fact is shown in the following lemma.

Lemma 4.2.2 Let G = (U?~QVi,A) be a connected generalized p-cycle with parameter
t, minimum degree 6 > 2 and connectivity K < ô. If F is a positive [negative] fragment
ofG, then, for every i E {O, ...,p—l}, there exists a vertex x 6 V¿ such that d(x,d+F) >
I ¡d(d~F, x) > I].

Proof. Let us suppose that F is a positive fragment of G ( the negative fragment case
is proved similarly), and consider the following subset of vertices:

which, according to the previous lemma, is non-empty. Therefore, we can take, for
some a-, a vertex x0 6 F(£) n Va satisfying d(x0,d

+F) = t. Then, T+(x0) n F(£) jí 0,
since otherwise there would be two distinct paths from XQ to some vertex of <9+F of
length £, which contradicts the definition of this parameter. Hence, we can consider a
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vertex xi € F(£] n Va+\ so that d(xi,d+F) = d(xi,xr) + d(xr,d
+F) = d(x\,xr] + £,

where certainly xr € Va+r for some 1 < r and so F(£) n Va+j 7^ 0 for each 0 < j < r.
Since d(xr,d

+F) = t we find again that r+(xr)nF(£) ^ 0, and thus F(£)nFa+r+) ^ 0.
This shows that in F(£) vertices of every partite set must exist. •

The main result of this section, which guarantees a generalized p-cycle with diameter
small enough to be maximally connected, is shown below.

Theorem 4.2.1 Let G be a connected generalized p-cycle with parameter I, minimum
degree ó > 2, diameter D and connectivities K and A. Then,

(a) K.-8 if D < 2£ + p~2;

(b) \ = S ifD<2£ + p-l.

Proof. Observe that, for p=l, this theorem is a corollary of Lemma 4.2.1. Let us thus
suppose that p > 2.3

(a) Assume that K < ô and let F be a positive fragment (see Lemma 1.7.1). As every
path from F to F = V \ (F U d+F) goes through d+F, we can consider a vertex
x <E F and a vertex y E F so that d(x, y) > d(x,d+F) + d(d+F,y) = /¿(F) + /i(F),
where ¿i(-F) and ß(F) are the deepness of the positive and negative fragment F
and F respectively. As a consequence, we conclude that D > ß ( F ) + fJ-(F).
Furthermore, from Lemma 4.2.1, it follows that £ < ß(F) and £ < t¿(F), and so
we can consider the non-empty sets:

F(t) = {x£ F,d(x,8+F) > £}, F(£) = {y € F,d(d+F,y) > £}.

As G is a p-cycle, its set of vertices can be partitioned into p parts, V = U^eZ,, Kt?
in such a way that the vertices in the partite set Va are only adjacent to vertices
in VQ+i, where the sum is in Zp. From Lemma 4.2.2 we can ensure that for each
0 < a < p - 1, F(£) n Va ¿ 0 and ~F(£) n Va ¿ 0.

Now, let us consider the integer r, 0 < r < p — 1, so that D + l = r(mod p).
If x € F (C) n Va, then, for every vertex y 6 F (() n Va+r, there exists an integer
h > I such that 2£ < d(x,y) = D + l — hp<D—p+l, because the length of
every path from Va to Va+r is congruent with r modulo p. But this means that
D > 2£ + p — 1, which contradicts the hypothesis.

(b) Suppose that there is a generalized p-cycle with <5 > 1, parameter £, arc-connectivity
A < ö and D < 2£ + p — 1. Thus, according to Propositions 1.5.3 and 1.6.1,
its line digraph LG would be a generalized p-cycle with the same minimum
degree, parameter £' — £ + 1, vertex-connectivity K' = A < ô and diameter
D' = D + 1 < 2£ + p = 2£' + p - 2, contradicting (a). •

In fact, this theorem was proved, for p = I and p = 2, in [54] and [55] respectively.
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As a consequence of the above proof, it is easy to see that the deepness of the
fragments increases by at least one unit if the minimum degree is small enough4. This
fact is shown in the following lemma.

Lemma 4.2.3 Let G be a connected generalized p-cycle with parameter i, minimum
degree 6 satisfying p > S > 2, diameter D and connectivities K and A. Let F be a
positive fragment or a-fragment. Then,

(a) ifK<5, then n(F) > £ + 1 and ¿x(F) > I + 1;

(b) if\<6, then v(F] > I + I and v(V \ F) > t + 1.

Proof, (a) Assume that K < S and let F be a positive fragment. Suppose that
//(F) = £ and let F(£), F(£) be as in the proof of Theorem 4.2.1. We know that, for
each 0 < a < p - 1, F(£) n Va jí 0 and F(£) n Va ¿ 0. As K < 0 and p > 6, there
exists some a so that Va n <9+F = 0. Let us now consider a vertex x e F(t~) n Va^¿.
The vertices of d+F at distance £ from x must belong to Va, and then Va n d+F ^ 0,
which is a contradiction, and hence, í + 1 < n(F). Considering the converse digraph
of G, we can also prove ¿t(F) > £ + 1.

(b) Let us assume that A < <5 and let F be a positive a-fragment. From Lemma
4.2.1, it follows that t < f ( F } . Let us consider the non-empty sets FQ = {x 6 F :
(x, y) 6 uj+F} and FO = [y 6 V \ F : (x, y) € u>+F} and define the following sets:

F(£) = {x € F : d(x, FO) > £}, F(i) = {y € V \ F : d(F0) y) > £}.
As in the proof of Theorem 4.2.1, we find that, for each 0 < a < p - 1, F(£) n Va £ 0
and F(t] n Va ^ 0. Hence, reasoning as in case (a), we arrive at the desired result. •

As a direct consequence of the previous lemma, the lower bounds for the diameter
obtained in Theorem 4.2.1 can be slightly improved, as is shown next.

Theorem 4.2.2 Let G be a connected generalized p-cycle with parameter Í, minimum
degree ö satisfying p > ó > 2, diameter D and connectivities K and A. Then,

(b) A = 0 if D < 21 + p.

Proof, (a) Assume that n < 0 and let F be a positive fragment. By Corollary 4.2.3,
we can take a vertex a; € F so that d(x,cH"F) = /¿(F) > t + 1. Suppose that x € Va.
Then, we can consider a vertex y E F(í}r\Va+rj+\ in such a way that 2£ + l < d(x,y) <
D — p + l . This leads to D > It + p, which contradicts the hypothesis.

The proof of (b) is identical as that of previous theorem. •

Finally, from the previous results and taking into account known properties of
generalized p-cycles (see Propositions 1.5.3 and 1.6.1), the following sufficient condition
for a fc-iterated line digraph to be maximally connected is obtained.

4This lemma was implicitly proved, for bipartite digraphs with minimum degree 6 = 2, in [9].
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Corollary 4.2.1 Let G be a connected generalized p-cycle, p > 2, with parameter Í,
minimum degree S > 2, diameter D and connectivities K and A. Then, for every
integer k > 1, LkG is a generalized p-cycle with parameter £ + k, minimum degree S
and diameter D + k, whose connectivities verify:

(a) K(LkG) = 6 ifk>D-2£-p + 2;

\(LkG) = o ifk>D-2l-p+l,

( b ) I f p > 6 ,

K,(LkG} = 6 ifk>D-2£-p+l;

X(LkG) = 6 if k> D-21-p.

4.2.2 Order conditions

This section is devoted to obtaining sufficient conditions which guarantee that a genera-
lized p-cycle with a given maximum degree A and diameter D is maximally connected if
its order is large enough. To begin with, let us consider the case of vertex-connectivity.
First, we compute the minimum and maximum deepness of any positive or negative
fragment.

Lemma 4.2.4 Let G be a generalized p-cycle with minimum degree 0 > 2, connectivity
K < S, diameter D and parameter Í, If F is a positive or negative fragment of G, then

(i) n(F] > t and n(F) <D-l-p+l;

(ii) I f p > S , then /z(F) > í + I and /¿(F) < D - I - p.

Proof. To prove (i), let F be a positive fragment of G; that is, a subset of vertices
such that its positive boundary is a cutset of cardinal \d+F\ — K. From Theorem 4.2.1
and Lemma 4.2.1, it is clear that D > 2C + p — 1 and //,// > í respectively, where
[i — /x(F) and // = //(F). Let us further consider the partition of F [F] induced by the
distance of each one of its vertices to [from] the minimum cutset d+F:

n n
<9+FuF= \jFi = \J{x(=F: d(x,d+F} = i]

i=0 i=0

_ _ t¿ __ M' _
[Ö-FUF = U Fj = \J{x e F : d(Xìd+F) = j}},

j=0 j=0

where FQ = d+F = d~F — FQ. As every path from F to F goes through d+F, the
distance from any vertex in F^ to F/t/ is at least p, + ß' < D. From Lemma 4.2.2, we
have that, for every a 6 {l,...,p — 1}, F(£) n VQ ^ 0. Therefore, we can consider
a set of vertices {xa}^o so that xa € Va n F(l) and d(xa,xa+\} = I . Suppose
that n' > D — i — p + 2 and consider a vertex y 6 Frj-e-p+i- Menee, d(xa,y) >
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l + D-l-p + 2 = D-p+2, for 0 < a<p-l. In particular, d(zp_i, y) = D-p+2+k
for some 0 < k < p — 2, since d(xp-i,y) < D. Hence, we have two paths from Xfc to
y; namely, a shortest path of length d(xfc,y), and the path x^Xk+i, . . . , rrp-i — > y of
length d(xp- i,y)+p—l — k = D + l. Since the length of these two paths are congruent
modulo p and d(xk, y) < D, we find that d(xk, y) = D + l — hpfor some positive integer
h. But this contradicts the fact that d(x¡í,y) > D — p+2. Therefore, /¿' < D — É — p+l.

To prove (ii) notice that, from Lemma 4.2.3, it follows that n — fi(F) > C + l, since
p > 6. Reasoning again as in case (i), we find that // = ¿i(-F) <D — t — p. •

The next two theorems provide a Moore bound for a certain family of generalized
p-cycles, and a sufficient order condition for any digraph of this family to have maximal
connectivity respectively. As a matter of fact, the second theorem is just a restatement
of the first one.

Theorem 4.2.3 Let G be a (<5, A,D,n, K, ¿^-generalized p-cycle with p > 3 and 6 > 2.
Then 5,

(i) K < 6 =*> n < K{n(A, £ + p - 2) + n(A, D - i - p + 1) - l } - 26 + 2.

(ü) If p > S, K < 6 => n < /í{n(A,£ + p - 2) + n(A, D-t-p + l}-l- Ae+2}.

Proof. Let T be a minimum cutset and F a positive fragment of G such that d+F = T.
Observe that |F¿| < A|F¿_i|, l < i < n, and |F,-| < A|Fj_i|, I < j < fi' (see [6]). Notice
also that, without loss of generality, we can suppose that /í < //. Starting from Lemma
4.2.4, we can distinguish two cases:

(a) // < D — £ — p + I (notice that this is the only case in which p > <5.)
(a.l) If £<^<£ + p-2, then:

j=0

< «{n(A, t + p - 2) + n(A, D-£-p

< íc{n(A, £ + p - 2) + n(A, D - t - p + 1) - 1} - 20 + 2,

because in this case t<ß<n'<D — £ — p, hence D > 2£ + p, and then K,AD~e~p+1 >

A«+t > A2 > 2(5 - 1).
Observe that if p > ò, from Lemma 4.2.4 (ii), it follows that £ + l < / ¿ < / / <

D - £ — p. Hence, «;AD~£"~P+1 > /îAf+2, and the point (ii) of this theorem is proved.
(a.2) If n>e + p-l, then:

n= í\Fi\+ E |FJ·|
¿=0 j=0

5From now on the expression E<=o ̂ ' *s denoted by n(d, s).
°See the proof of Lemma 4.2.4 for notation questions.
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< /e{n(A, í + p - 2) + n(A, D-i-p+ 1) - 1} - K

< K{n(A, e + p - 2) + n(A, £ > - £ - p + l ) - l } - 2

since í + p— \<ii<[i'<D — l — p. Hence,

K ^AM+'-A'+P-I _ A0-^1) <

-¿^ ((2 -

(b) // = £) — £ — p+1. From Lemma 4.2.4, it follows that p < ö, and so 6 > 3.
On the other hand, since every path from x € F/t to y 6 F^ goes through d+F, then
£> > d(z,y) > d(x,d+F) + d(d+F,y) = ¿i + p! = fj. + D-1-p+l. Therefore,

t<l*<t + p-l.
(b.l) Suppose that /í = £ + p — 1 and consider two vertices x e F/t and y E F^>.

Certainly, d(x, y) > fi + fJ.' = £ + p— l + D — I — p+l = D. Therefore, if there exists a,
vertex x' € r+(x) r\F(+p-i, then we would have two different paths from x to y, one of
length D and the other, xx' — > y, of length D + 1 , which is impossible in a generalized
p-cycle with p > 2. As a consequence, for all x € Fg+p-i, T+(x) C F^+p_2, which
implies that |F¿+p_i| < — |F¿+p_2|. In a similar way, it is proved that for any vertex
y € Fo-e-p+i, r~(y) C FD-t-p and therefore, |F£)_f_p+l| < ^jF/j-f-pl. In this way
we obtain that

e+p-2 D-l-p _ _
n = E |*ì|+ E iF.-l-lö+Fl + IF^p-il + IF^^p+tl

¿=o j=o
< K{n(A,£ + p - 2) + n(A, D - t - p) - 1} + f {A^-1 +

= «{n(A,¿ + p - 2) + n(A, D - £ - p + 1) - 1} +

KAD-e-p+i < /í^n(A) £ + p _ 2) + „(A, D - í - p + 1 ) - 1} - 26 + 2,

since K(^{AV + A^'} - A"') < K(| - 1)A"' < -2<5 + 2, because 2 < £ + l < £ + p-1 =
/x < /u' and 6 > 3.

(b.2) Suppose that ¿t = ¿ + p — 2, and consider two vertices x 6 F;í and y € F(l>. As
every path from x € F^ to y goes through <9+F, it must be that d(x,y) > d(x,d+F) +
d(d+F, y) = ti + fj,' = e + p-2 + D-£-p+l = D-l.

In addition, either for all a; € F^+p-2, T+(a;) C F^+p_3 or there exists a vertex x €
F¿+p_2 with some out-neighbour x' e T+(x) nF£+p_2. In the first case, we would find
that |F¿+p_2| < — (Ff+p-sl, whereas in the second one, we obtain that d(x', y) > D — 1 .
Notice that in this last case, if d(x,y) = D — 1, then the length of the path xx' — > y
must be ] + d(x',y) = D — I + hp for some integer h > 0. From d(x',y) > D — 1, it
follows that h > 1, and so d(x',y) >D — 2 + p>D + l because p > 3, which is a
contradiction. Hence, the only possibility is that d(x,y) = D, d(x',y) = D — I and
r+(o;') C Fí+p_3. We thus have proved that |F£+p_2j < A|Ff+p_3| - (6-1). Similarly,
it is proved that \F¡j-e-p+\\ < A|Fo_£_p| — (6 — 1). Therefore, the order n of G can
be upper-bounded as follows:
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e+p-3 D-t-p _
n = E |Fi|+ E \Fj\-

i=Q j=0
< /c{n(A, t + p - 2) + n(A, D - £ - p + 1) - 1} - 25 + 2.

(b.3) Finally, i f £ < / ^ < £ + p-3, then
/í D-£-p+l _

n = £ l * i l + E I^-I-IÖ+FI
i=0 j=0

< K{n(A, £ + p - 2) + n(A, D - £ - p + !)-!}-

< K{n(A, ¿ + p - 2) + n(A, D - € - p + 1) - 1} - 2<5 + 2.

Theorem 4.2.4 Lei G be a (o,/\,D,n,K,l~)-generalized p-cycle with p > 3. Then,

K = 5 if

(«; p > 5 and n > (5 - l){n(A, í + p - 2) + n(A, D - £ - p + l ) - l

Recalling that a digraph is a generalized p-cycle if and only if its line digraph is,
we can apply the line digraph technique to the digraphs of Theorem 4.2.3. So, we
obtain a sufficient condition on the size m for a generalized p-cycle to have maximum
arc-connectivity.

Corollary 4.2.2 Let G be a (0, A,D, m, K, X,£) -generalized p-cycle with p > 3. Then,

i A «5=>m< A n A , £ + p-l + n A , D - £ - p + l - l - 2 ¿ + 2.

Proof. Suppose that the result is not true. Then, there would be a generalized p-cycle
G with p > 3, m arcs, parameters 0, A, £, D and arc-connectivity A < ô such that

m > A{n(A, £ + p - 1) + n(A, JD - £ - p + 1) - 1} - 25 + 2.
Therefore, its line digraph LG would have n' = m vertices, minimum and maximum
degree 8 and A, diameter D' = D + l, parameter £' = 1+1, and connectivity K! = A < <5,
satisfying

n' > /í'{n(A, í + p - 2) + n(A, D' - e' - p + 1) - 1} - 15 + 2,
which contradicts Theorem 4.2.3. The case p > ö is similarly proved. •

When the digraph G is d-regular, it has m = dn arcs and we get the following
corollary.

Corollary 4.2.3 If G is ad-regular (D,n, n, X,£) -generalized p-cycle with p > 3, then

_ - í n > dí+P'1 + dD-e-P+* - 3d + 1;
+ d0-'-*** - (d^ + l)(d - 1 ) - 2 and p>d.
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n > dí+p~l + d°~£~p+1 - 3;

From the above results we can deduce the following sufficient condition for a fe-
iterated line d-regular generalized p-cycle to be maximally connected.

Corollary 4.2.4 Let G be a d-regular (D,n, K, X,£)-generalized p-cycle with p > 3.
Then,

= difk> \ogd •
n -

_ 3
(ii)X(LkG) = difk>logd-

Finally, from the foregoing corollary and Corollary 4.2.1 the following result is
directly derived.

Corollary 4.2.5 Let G be a d-regular (D,n, K, \, ^-generalized p-cycle with p > 3.
Then,

(i) K(LkG) = difk> min{D - £ - p + 2 - logd(n - dt+p~l), D - 2£ - p + 2}.

ft»; X(LkG) = difk> min{D - £ - p + 1 - logd(n - d^-1), D - 2£ - p + 1}.

An upper bound on the number of vertices for any generalized p-cycle with p > 3,
6 > 2 and arc-connectivity A < J, similar to that of Theorem 4.2.3, can be obtained by
carrying out the same type of proof. As in the vertex case, we need firstly to bound
the deepness of a-fragments.

Lemma 4.2.5 Let G be a generalized p-cycle with minimum degree ô > 2, arc-connectivity
A < 8, diameter D and parameter t. Then, for every positive or negative a-jragment

F,

(i) i>(F) >Íandv(V\F)<D-í- p;

(ii) v(F) > t + 1 and u(V \F)<D-l-p-l ifp>6.

Proof. To prove (i), let F be a positive a-fragment of G. Then, |w+F| = A, D > 2t+p
and t/, i/ > £ where v = v(F} and v' = f(V \ F). In addition, since every path
from F to V \ F goes through an arc of u+F, it follows that v + 1 + i/ < D. It
is also clear that the two non-empty disjoint sets FO = {x € F : (x, y) 6 u>+F}
and FO = {y € V \ F : (x,y) € uj+F} have cardinal at most |w+F|. On the other
hand, let us consider the sets of vertices F¿ = {x 6 F; d(x, FQ) = i}, O < i < v and
F j — [y 6 V \ F : d(Fo,y) = j}, O < j' < v1. Finally, reasoning in the same way as in
the proof of Lemma 4.2.4, we conclude that v' < D — í — p. Point (ii) is analogously
proved. •
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Theorem 4.2.5 Let G be a (ó, A, D, n, A, £)-generalized p-cycle with p > 3 and 0 > 2.
Then,

(i) A < ó=ïn< A{n(A,£ + p-2) + n(A,£>-£-p)}.

Proof. Although this proof is very similar to that of Theorem 4.2.3, we present it
briefly for the sake of completeness. We make use of the same notation as in Lemma
4.2.5 and assume that v < v' . We distinguish two cases:

(a) i/ < D — t — p (this is the only case in which p > ô).
(a.l) [n<v<£ + p-2, then

n = E |Fi| + E \Fj\ < A{n(A, i/) + n(A, D-t-p- 1)}
¿=o ¿=o
= A{n(A, £ + p - 2) + n(A, D - £ - p)} - AA0"^.

If p > 5, £ + 1 < i / < i / < .D-£ -p - l . As a consequence, AA0"^? > AA£+2, and
the point (ii) is proved.

(a.2) If i / > ¿ + p- 1, then

EIF j - I ^AMA. i / J + n iA.-D-^-p- l )}
j=o

A{
i=e+p-i

< A{n(A, t + p - 2) + n(A, I> - £ - p)} - AAÍ+2

(b) v' = D — t— p. Since all the paths from x € F„ to y €. Fvi go through uj+F, then
D > d(x, y) > d(x, uj+F) + 1+ d(u+F, y) > v + 1 + v' = v + l + D - l - p. Therefore,

v <t + p- 1.
( b . í ) I f ^ = ¿ + p— 1. and we consider two vertices x € Fv and y 6 F^', then

d(x, y)>v-\-\-\-v' = t + p—\ + \ + D — t. — p — D. Therefore, if there exists a vertex
x' € r+(x)nF¿+p_i5 then we would have two different paths from x to y, one of length
D and the other, xx' — > y, of length £> + 1 , which is impossible in a generalized p-cycle
with p > 2. As a consequence, for all x e Ff+p_i, F+(x) C F^+p_2, which implies that
l-F^+p-ij < ^\Fi+p-2\. In a similar way it is proved that for any vertex y e Frj-i-p,
r~(y) C Fo-e-p^i, and therefore |Fß_f_p| < ^-\FD-e-P-i\- In. this way we obtain
that

f+p-2 ü-í-p-1 _ _

n- E |F<|+ E l^j| + l^4-p-i| + I^D-<-p|
t=0 j=0

< A{n(A, í + p - 2) + n(A, D-t-p- 1)} + f {A^-1 +

= A{n(A, t + p - 2) + n(A, D - i - p}} + ̂

(b.2) Finally, i f £ < í / < £ + p-2, then
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K = d

X^d

P

l

2

> 3

1

2

> 3

D<

2l - l [54]

2£ [55], [*]

2£ + p-2 [*]

2£ [54]

2£+l [55], [*]

2£ + p - 1 [*]

n >
dD + d2 - d - Ì [1.01]

d°-<+1 + 2d' - 2d + 1 [62]
2(d°-1 - 1) [1]

¿D-t + dt+i_2d + 2 [9]
dD_£_p+2 + d<+p_! _M+} [„]

(¿ß-i+d2-2 [101]

dD~í + 2d í-2 [62]
2dD~2 [1]

rfö-'-i + d<+i _ 2 [9]

¿D-/-P+1 + d/+p-l _ 3 [^

Table 4.1: Sufficient conditions for a d-regular generalized p-cycle to have maximum
connectivities. The * symbol indicates this work.

i=0 j=0

Finally, the following corollary gives a sufficient condition on the number of vertices
for any generalized p-cycle to have maximum arc-connectivity.

Theorem 4.2.6 Let G be a (o, A,D,n, \,i)-generalized p-cycle with p > 3. Then,

(ii) If p > 5, X = S if n > (S - l){n(A,£ + P ~ 2) + n(A, D - t - p) - A£+2}.

In Table 4.1, we put forward some of the main sufficient conditions that have been
obtained for a ¡¿-regular generalized p-cycle to be maximally connected and/or arc-
connected.

4.3 Superconnectivity

This section is devoted to generalizing the two last points of Propositions 4.1.1 and 4.1.2.
In other words, the aim is to obtain both diameter and order sufficient conditions for
a generalized p-cycle to be superconnected.

4.3.1 Diameter conditions

The first aim of this section is to obtain a diameter sufficient condition that guarantees
any generalized p-cycle to be superconnected. Bearing this in mind, we need firstly to
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study the 1-fragments more deeply (see Section 1.7.1). To be more precise, we are going
to stablish some properties relating the parameter I to the deepness of any l-fragment
when its order is rather small.

Let x be a vertex belonging to a positive [negative] l-fragment F of a connected
digraph G. In what follows, it will be denoted by S+(x) [S~(x)\ the subset of d+F
\d~F\ whose vertices are at minimum distance from [to] x. To be more precise:

S+(x) = {/ € d+F : d(xj) = d(x,d+F}}

\S-(x) = {/ 6 d-F : d(f,x) = d(d-F,x)}}

Lemma 4.3.1 Let F be a positive l-fragment 7 of a connected digraph with parameter
i.

1. If x e F and x{,Xj € F+(z), then S+(xi) n S+(xj) = 0 if one of the following
conditions is satisfied:

(a) /z(F) < I — 1, and x belongs to the valley of F.

(b) d(Xi,d+F) = d(xj,d+F) = d(x,d+F) -!<£-!.

2. If y e T and y¿,y;- 6 F~(y), then S~(yi) n S^(yj) = 0 if one of the following
conditions is satisfied:

(a) /u(F) < t — I , and y belongs to the valley of F.

(b) d(xi,d-T) = d(xj,d-'F) = d(x,d~T) -!<£-!.

Proof. To prove (l)(a), let us first assume that fj,(F) > 2. If / G S+(xi) n S+(xj],
then there are two distinct short paths from the vertex x to /; namely, xxi —> / and
xxj —> /, the lengths of which are ß(F) or ß(F) + 1, contradicting the definition of
parameter £, since n(F) < d(x, /) < ^(F) + !.<£. Suppose now that fJ-(F) = 1 and
Xi,Xj 6 d+F. In this case the result is obvious, since S+(xi) = z¿ and S+(xj) = Xj.
Finally, if n(F) = 1 and either x¿ e F or x j € F, then the results follow directly from
the fact that 2 = ^(F) + 1 < t. Points (l)(b) and (2) are similarly proved. •

Next, we present several results on 1-fragments in generalized p-cycles, which will
allow us to prove the first theorem of this section.

Lemma 4.3.2 Let F be a positive l-fragment of a generalized p-cycle, p > 3, with
parameter Í, minimum degree ó > 2 and vertex-Superconnectivity K\ < 10 — 2. Let
x 6 F, y G F be two vertices belonging to the valley of F and valley of F respectively.

(a) If p.(F) < í — \, then there exists a vertex x¿ € F+(x) into the valley of F;

(b) If p.(F] < £ — ! . , then there exists a vertex y, 6 F~(y) into the valley of F.
7Noticc that this lemma can be generalized for any proper vertex subset F.
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Proof. To prove (a), notice that if /x = /¿(F) = 1, then the valley of F is F. Moreover,
d+F is a nontrivial set because F is a positive 1-fragment, and thus for every x € F
there exists some vertex y € F+(:r) fl F. So, let us assume that ¡JL > 2 and for each
Xi e r+(x), d(xi,d+F) = fj, — I. As a consequence of Lemma 4.3.1, it follows that

\s+(x)\ = ExiGF+Or) |S+(zj)| > a. Furthermore, F+(x) C F because ¿í > 2. Thus,
there exists some y £ T+(x) for which |S+(y)| = 1, since otherwise K\ = |9+F| >
|5+(o;)| > 25, contradicting the hypotheses. Then, there exist S — I out-neighbours of
y, (yi,... ,y<j_i}, for which /x — 1 < d(yj,d+F) < /x. Let /¿ be a vertex of d+F at
minimum distance from y¿. The set B = {/i,... ,/a-i} must have cardinality a — 1;
on the contrary, there would exist two distinct paths; namely, yy¿ —> /¿ and yyj —> /¿,
of lengths ß or p. + 1, contradicting the definition of parameter £, since ^ < t — 1.
Therefore, ß U 5+(x) C ö+F. As KI = |d+F| < 25 - 2, we conclude that some vertex
f j must belong to S+(x). So, we have two distinct paths from x to fj, on the one hand,
the short path x —> f j of length ¿¿, and on the other, a path xyy^ —* f j , whose length
is fi + 1 or /j, + 2. But this fact is impossible because G is a generalized p-cycle with
p > 3. Hence, there exists some z¿ 6 F+ (x) such that d(xi,d+F) = //.

The proof of (b) is similar. •

Lemma 4.3.3 Let G be a generalized p-cycle, p > 3, with parameter É and minimum
degree ô >2. Let F denote a positive 1-fragment of G. If K\ < 25 — 2, then /u(F) > t
and /z(F) > L

Proof. Suppose, for example, that /z = ¿¿(F) < t — 1 . If x is a vertex belonging
to the valley of F, then, according to Lemma 4.3.2, there exists a vertex z € T+(x)
belonging to the valley of F. Notice that F+(x) n P+(z) = 0 because the digraph is
a p-cycle with p > 3. Moreover, we know that each pair of vertices x¿,Xj € F+(x)
satisfies 5+(xj) n S+(xj) = 0 (see Lemma 4.3.1). For the same reason, every pair of
vertices z^Zj € F+(z) satisfies S+(zi) C\S+(zj) = 0. Starting from the fact that p > 3,
it follows that x $. F+(z) and hence,

But KI = \d+F\ < 25-2, which means that there exist at least two vertices, xr e
F+(x) \ {z} and zs 6 F+(z), such that S+(xr) n S+(zs) ¿ 0. This fact implies that
there are two different paths from x to a certain vertex / € S+(xr)r\S+(zs); namely, a
xxr — > / path of length /í or /j, + 1 , and a xzzs — > / path of length p, + 1 or ¿u + 2. But
G is a generalized p-cycle, and hence the length of these two paths must be congruent
modulo p > 3. Therefore, both paths must have length p. + 1 , which contradicts the
definition of parameter I, since /í + 1 < t. Hence, ¡JL = ¿x(F) > t. •
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Lemma 4.3.4 Let G be a generalized p-cycle, p > 3, with parameter i, minimum
degree S > 2 and vertex- Superconnectivity n\ < 2<5 — 2. If F is a positive 1-fragment,
then

(a) for each vertex x E F such that d(x, d+F) > t, there exists a vertex y € F such
that: d(x,y) < 2 and d(y,d+F) > t;

(b) for each vertex x E F such that d(x,d+F) > I, there exists a vertex y E F such
that: d(y,x) < 2 and d(o+F,y) > t.

Proof, (a) If (. = 1, then the lemma is obvious, since d+F is a nontrivial vertex
set. Thus assume that i > 2. In this case, this lemma is also clear if for each x E
F such that d(x,d+F) = £, there exists some y E T+(x) for which d(y,d+F) > i.
Suppose finally that there exists a vertex x E F such that d(x, d+F) = í and for
all y E r+(x), d(y,d+F) = £ — 1. As a consequence of Lemma 4.3.1, it follows that

|S+(x)| = Z^i er+(x) l'S'+(a;i)l — ̂  Therefore, there exists a vertex y € F+(x) for which
|5+(y)| = 1, since otherwise Ki=\d+F\ > \S+(x)\ > 26. Let yi,y2, • • • ,ys-i be 6 - I
out-neighbours of y for which Í— 1 < d(yj,d+F). Let /¿ € d+F be a vertex at minimum
distance from y¿. As K,\ = |c?+F| < 2<5 — 2, we conclude that there exists a vertex fh
such that either f h € S+(x) or f h = f j for some j ^ h. In the first case, there would
exist two distinct paths from x to //¡, the shortest x — > fh path and the path xyy^ — > /^,
of lengths i and 2 + d(yh, fh) > 2 + (Í — 1) = t + 1 respectively. Since both lengths
have to be congruent modulo p, we conclude that d(yh, fh) > £• ln the second case,
there would exist two distinct paths from y to f h of lengths at least t. This means that
either y/t or yj is at distance at least £ to d+F.

(b) To prove this point, it is enough to apply (a) to the converse digraph of G. •

As a consequence of this lemma the following corollary is obtained.

Corollary 4.3.1 Let G be a generalized p-cycle, p > 3, with parameter t, minimum
degree S > 2 and vertex-superconnectivity KI < 26 — 2. If F is a positive 1-fragment,
then

(a) for each vertex x € F such that d(x, d+F) > I, there exists a p : x — » z path in F
of length p — I such that for any vertex y of p, d(y, d+F) > í — 1 ;

(b) for each vertex x E F such that d(d+F, x] > Í, there exists a p : z — > x path in F
of length p — 1 such that for any vertex y of p, d(d+F,y) > £ — ] . .

We are now ready to prove a first theorem which provides a diameter sufficient
condition for a generalized p-cycle to be vertex-superconnected.
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Theorem 4.3.1 Let G be a generalized p-cycle, p > 3, with parameter I and minimum
degree 5 > 2. Then, KI > 26 — 1 and thus G is super-K, if D < 2l + p — 3.

Proof. Assume that KI < 26 — 2 and let F be a positive 1 -fragment such that
26 — 2. Without loss of generality we can suppose that ¿x(F) < ¡¿(F) (if not, use
the converse digraph of G). Therefore, according to Lemma 4.3.3, we obtain that
£ < ß(F] < (¿(F) and hence, we can consider the nonempty sets:

F(t - 1) = {z € F,d(x,d+F) > £ - 1}

7(e-l) = {y € F,d(d+F,y) >£-!}.

Notice that, as was proved in Corollary 4.3.1, we can find a path of length p — 1 into
F(t — 1). As G is a generalized p-cycle, we conclude that in F(£ — 1) vertices of
every partite set Va exist. Now, let us consider the integer r, 0 < r < p — l , so that
D + l = r(mod p). Let x e VQ be such that d(x,d+F) = n(F) > I, and consider a
vertex y e Va+rnF(l-l}. Then, D-(p-l) > d(x,y) > d(x,d+F)+d(d+F,y) > 2£-l,
because the length of every path from Va to Va+r is congruent with r modulo p. This
means that D > 2£+p— 2, which contradicts the hypothesis. Therefore, KI > 20— 1 > <5
and so the digraph is super-K. •

For the arc case, a similar result to the previous one is derived.

Theorem 4.3.2 Let G be a generalized p-cycle, p > 3, with parameter í and minimum
degree 5 > 2. Then, At > 2<5 - 1 and thus G is super-\, if D < 21 + p — 2.

Proof. Assume that the result does not hold. Then, there would be a generalized p-
cycle G, p > 3, with parameter I, minimum degree 0 > 2, AI < 26— 2 and D < 2C+p-2.
Thus, according to Propositions 1.5.3(3), 1.6.1(3) and Corollary 1.7.1, its line digraph
LG would also be a generalized p-cycle having the same minimum degree 0, parameter
Í1 = f (LG) = I + 1, K1(IG) = Ai(G) < 2<5 - 2 and diameter D' = D + 1 < 2£' + p - 3,
contradicting Theorem 4.3.1. •

Finally, from Propositions 1.5.3(3), 1.6.1(3) and Corollary 1.7.1 together with The-
orems 4.3.1 and 4.3.2, we obtain the following sufficient condition for the /^-iterated line
digraph of any generalized p-cycle to be superconnected.

Corollary 4.3.2 Let G be a connected generalized p-cycle, p > 3, with parameter t,
minimum degree 0 > 2 and diameter D. Then,

(a) Ki(LkG) >20-} ifk>D~2£-p + 3;

(b) \i(LkG) > 26 - 1 ifk>D-2£-p + 2.
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4.3.2 Order conditions

Lemma 4.3.5 Let G be a generalized p-cycle, p > 3, with minimum degree 5 > 2,
vertex-Superconnectivity K\ < 2<5 — 2, diameter D and parameter £. Then, for every
positive ¡negative] 1-fragment F, fJ.(F) > i and n(F) < D — l — p+ 2.

Proof. If F is a positive 1-fragment of a generalized p-cycle G, then \d+F\ = «i. By
Lemma 4.3.3, ß, // > £, where n = /x(F) and // = (¿(F); and from Corollary 4.3.1,
it follows that F contains a path P : XQ,XI,.. .,Zp_i such that d(xa-,d

+F) > £— 1,
a = 0,1,..., p — 1 (notice that xa € Va). Suppose that [if > D — (.— p+ 3 and consider
a vertex y into the valley of F. Hence, as every path from F to F goes through d+F,
we have that d(xa, y) > d(xa, d

+F) + d(d+F, y) > í -1 + y! > D - p + 2 for all xa e P.
In particular, d(xp-i, y) = D - p + 2 + k, for some 0 < k < p - 2, since d(xp~i,y) < D.
Hence, we have two paths from xk to y; namely, a shortest path of length d(xf¿,y) and
the path X k , X k + \ , . • • ,xp^i —» y of length d(xp-l,y) + p — 1 — fc = D + 1. Since the
lengths of these two paths are congruent modulo p and d(x^iy} < D, we find that
d ( x k , y ) — D + 1 — hp for some positive integer h. But this contradicts the fact that
d(xk, y)>D-p + 2. Therefore, n'<D-£-p + 2. •

Theorem 4.3.3 Let G be a generalized p-cycle with p > 3, order n, maximum and
minimum degrees A and 5 > 3 respectively, diameter D and parameter 1. If KI = 5,
then

n < 5{n(A, £ + p - 4) + n(A, D-t-p + 2)-2} + Ae+P~3 + I.

Proof. Let T be a minimum cutset and F a positive fragment of G such that d+F = T.
Observe that |F¿| < A|F¿_i|, l < z < /z, and \~Fj\ < A|F,_i|, l<j< /x' (see [8]). Notice
also that, without loss of generality, we can suppose that fi < ¡i!. Starting from Lemma
4.2.4, we can distinguish two cases:

(a) // < D - I - p + 2. Then, ¿ </J, < pf < D - £-p+l; that is, D > 2É + p - 1.

(a.l) If t < [i < í + p — 4, then the order of G must satisfy that

n = E |F¿| + E |F,-1 - |Ö+F| < 5{n(A,Ai) + n(A,£> - £-p+l)-l}
¿=0 j=0

< 6{n(A,l + p~4} + n ( A , D - í - p + 2)-1} - 5&D~e-P+2

< <5{n(A, £ + p - 4) + n(A, D - t - p + 2) - 2}.

(a.2) if p, > t + p — 3, then the order of G must satisfy that

n = 5:1*11+ ElFjl- lo+Fl^áHA./iJ + níA.D-í-p+l)-!}
¿=0 j=0

= 6{n(A,e + p-4) + n(AìD-e-p + 2}-l} + ó{ E A'
i-e+p-3

See the proof of Lemma 4.2.4 for notation questions.
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< <J{n(A, t + p - 4) + n(A, D - l - p + 2) - l } - 6Ae+P~3

< <5{n(A, l + p - 4) + n( A, D - £ - p + 2) - 2},

_ 2-A AD-l-p+2 _— - ^

, because

(b) // = D-£-p+2. Then, í< n< i+p-2. Indeed, since all the paths from x € FM

to y e F^ go through <9+F, it must be that D > d(x,y) > d(x,d+F) + d(d+F,y) =
H + li' = H + D-e-p + 2. Therefore, fi < í + p - 2.

(b.l) Suppose that \i = I + p — 2 and consider two vertices x e F¡¿ and y E F/t/.
Certainly, d(x, y)>p, + lJ,' = £ + p-2 + D-£-p + 2 = D. Therefore, if there exists a
vertex x' 6 F+(x) nF¿+p_2, then we would have two different paths from x to y, one of
length D and the other, xx' — > y, of length D + 1, which is impossible in a generalized
p-cycle with p > 3. As a consequence, for all x 6 F¿+p_2, r+(x) c F£+p_3, which
implies that |F£+P_2| < ^-\Ff+p-3\ < Ai+p~2. In a similar way, we prove that for any
vertex y € F£>_£_p+2, T~(y) C Fo-e-p+i, and therefore \FD-e-p+2\ < y|FD_£_p+] | <

we Obtajn tnat

£+p-3 D-t-p+l _
= E \Fi\+ E |F,·|

¿=0 j=0

¿(n(A,£ + p- 3) + n(A,£» - £ - p+ 1) -
<5{n(A, e + p - 4) + n(A, D-£-p + 2)-
< a{n(A, £ + p - 4) + n(A, £> - £ - p -f 2) - 1} + (J + (2 -
< ¿{n(A, £ + p - 4) + n(A, D - £ - p + 2) - 2} + O,

since (á + A)A'i-1 + (l-(5)A'í <
(6 - A)A'Í~1 < O, because ¿¿ < /x' and O > 3.

(b.2) Suppose that fi — i + p — 3, and consider two vertices x € F;í and y € F/t/.
As every path from z to y goes through 9+F, it must be that d(x, y) > d(x,d+F) +
d(d+F, y) = p. + n' = í + p - 3 + D - i - p + 2 = D - 1. Let us see that \Fe+p^ +
\FD-t-r+2\ < A£+P-3 + ô&D~e+P+2 -(Ô- 1). This result is clear when T+(x) c FM_,
and r~(y) C F^'_i for each x 6 Ff¡ and y G F^. So, suppose that there exists a vertex
y S Fji' with some in-neighbour y' 6 T~(y) n F^i. As a consequence, we conclude
that d(x,y') > D — 1. Notice that if d(x,y) = D — 1, then the length of the patii
x -+ y'y must be congruent with D — 1 modulo p; that is, 1 + d(x,y') = D — 1 + hp
for some integer h > 0. As d(x,y') > £) — 1, it follows that h > 1 and therefore,
d(x, y') > D — 2 + p > D - f l because p > 3, which is a contradiction. Hence, the
only possibility is that d(x,y) = D, d(x,y/) = D — I and r~(y') C F;Í'_I. Let us
further see that F+(x) C F^-I. Indeed, if there exists a vertex x' 6 F+(a;) n F;í, then
D — 1 < d(x',y') < D, Hence, the length of the path xx' —> y' is D or D + I , which
is a contradiction with the fact that d(x,y') = D — I and G is a p-cycle with p > 3.
Therefore, we can conclude that |Ff+p_3| < j|F¿+p_,i| < A£+p~3, and |

^ _ ]^ As a consequence, the order of G must satisfy that
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e+p-4 D-e-p+i
n = E \fi\+ E \Fj\

i=0 j=0

< ¿HA, ¿ + p - 4) + n(A, D-¿-

(b.3) Finally, if p < t + p - 4, then
n D-e-p+2 _

n=E\Fi\+ E \Fj\ - \d+F\
¿=o j=o

< a{n(A, t + p - 4) -I- n(A, D - t - p + 2) - 2} + S.

Theorem 4.3.4 Let G be a generalized p-cycle with p > 3, order n, maximum and
minimum degrees A andò > 3 respectively, diameter D and parameter £. I/KI < 25—2,
then

n < K! {n(A, i + p - 4) + n(A, D - t - p + 2) - 1} + 2A*+P~3 - 6 - 1.

Proof. Let T be a minimum cutset and F a positive fragment of G such that d+F = T
and thus satisfying |<9+.F| = «i. As in the above theorem we suppose ^ < ¡JL' and study
the following cases:

(a) ¡í' < D - t - p + 2. Then, £ < / / < / / < D - € - p + l ; that is, D > It + p - 1.

(a. l ) If £ < \JL < í + p — 4, then the order of G must satisfy that

n=
i=0 j=Q

< «i{n( A, £ + p - 4) + n(A, D-£-

(a.2) If /x > í + p — 3, then the order of G must satisfy that

n=

E

< KJ {n(A, £ + p - 4) + n(A,

A>.+i»nice

< ¿^A^-3 = -Ai+P-3, because £ + p - 3 < / z < D - £ - p + l .

(b) n' = D-t~ p + 2. As in case (b) of Theorem 4.3.3 we get t < p, < (. + p - 2.

(b.l) if fj, = £+p — 2, then, reasoning as in case (b.l) of Theorem 4.3.3 we have that
-\ < f A£+P-2, and \~FD^p+2\ < t^&D-e-p+i^ In this

e+p-3 _
E I*VI

j=o
< KJ {n(A, t + p - 3) + n(A, £> -£ -p+ !)-!} + ^-{A£+P~2 +
= /et {n(A, £ + p - 4) + n(A, D-£-

< «i {n(A, i + p - 4) + n(A, D - £ - p + 2) - 1},
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since \{&.P + A^'} - A"' + ̂ ~l < (f - 1)A^ + A""1 < (f - 1)A^ + A^1 =
(2A _ A + i^fí-i < 0) because t + p - 2 = /z < // and 5 > 3.

(b.2) Suppose that ¿í = í + p — 3, and consider two vertices x e FM and y 6 FM/. As
every path from x € F^ to y goes through 9+F, it must be that d ( x , y ) > d(x,d+F) +
d(d+F,y) = n + fi1 = l+p-3 + D-£-p+2 = D-l. As in case (b.2) of Theorem 4.3.3,
we obtain that \Fe+p-3\ + \FD-t-p+.2\ < f-A£+P~3 + KiAD~e+p+2 - (o - 1 ). Therefore,
the order of G must satisfy that

M-p-4 D-l-p+l
n= E \Fi\+ E \Fj\-\d+F\ + \Fe+p^\

i=0 j=0

< Ki{n(A, £ + p - 4) + n(A, £ > - £ - p + 2)-
< Ki{n(A,£ + p - 4) + n(A,D - ¿ - p + 2) -

because ^AÍ+P-3 - <5 + l < 2A¿+P-3 - fA^"3 - <5 + 1 < 2A€+P-3 - o - 1, since
KI < 26 - 2, p > 3, £ > 1 and A > O.

(b.3) Finally, if ¿z < £ + p - 4, then
D-í-p+2

t=0 j=0
m

The following corollary, which is just a restatement of the above theorem, gives a
sufficient condition on the number of vertices for any generalized p-cycle with p > 3 to
have «i > S + 1 and K\ > 25 — 1 respectively.

Corollary 4.3.3 Let G be a generalized p-cycle with p > 3, order n, maximum and
minimum degrees A and S > 3 respectively, diameter D and parameter Í. Then,

(a) K!>6+1 ¿/n><5{n(A,£ + p-4) + n(A,D-£-p + 2)-2}

(b) KI > 25-1 if n > (2<5-2){n(A,^+p-4)+n(A,JD~-£-p+2)-l}+2A£+P-3-5-l.

Recalling that a digraph is a generalized p-cycle if and only if its line digraph is, we
can apply the line digraph technique to the digraphs of Theorem 4.3.3 and Theorem
4.3.4. So, we obtain a sufficient condition on the number of arcs for G to have AI > 6 + 1
and AI > 26 — 1 respectively.

Corollary 4.3.4 Let G be a generalized p-cycle with p > 3, arc-superconnectivity X\,
size m, maximum and minimum degrees A and ö > 3 respectively, diameter D and
parameter I. Then,

(a) AI > ¡5+1 ¿/m>5{n(A J€ + p-3) + n(A,£>-l-p + 2)-2}

(b) A! > 25-1 ifm > (25-2){n(A,£+p-3)+n(A,D-£-p+2)-l}+2A£+P-2-5-l.
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Proof. To prove case (b), suppose that this statement is not true. Then, there would
be a generalized p-cycle G with p > 3, m arcs, parameters ô > 3, A, £, D and AI < 25—2
so that m > (2¿-2){n(A,£ + p-3) + n(A,D-¿-p + 2)- 1} + 2A£+P™2-S- 1. Then,
its line digraph LG would have n' = m vertices, minimum and maximum degree <5 and
A respectively, diameter D' = D + 1, parameter £' = I + 1 and superconnectivities
Ki(LG] = Ai(G) < 2o - 2 (see Corollary 1.7.1) satisfying

n' > KI (LG){n(A, I' + p - 4) + n(A, £>' - I' - p + 2) - 1} + 2A^'+P-3 - 5 - 1,
which contradicts Theorem 4.3.4. The proof of case (a) is similar. •

Upper bounds on the number of vertices for any generalized p-cycle to have AI >
(5+1 and \\ > 20—I respectively, for p > 3, can be obtained by using a direct reasoning.
With this aim, we first need to bound the deepness of the «i-fragments for which we
present the following two lemmas.

Lemma 4.3.6 Let F be a positive a\-fragment of a digraph G. Then, the subset of
vertices of the line digraph LG; namely,

C' = {uv eV(LG) : u,v€F},

is a positive 1 -fragment of LG. Moreover, \uj+F\ = \d+C\.

Proof. Let us consider the set of arcs, denoted by E(F), whose initial and terminal
vertices belong to F. Since F is a positive ai-fragment, E(F) and E(V \ F) are
nonempty arc sets because u>+F is nontrivial. Therefore, C = E(F) is a nonempty
subset of vertices of LG and we have that V(LG) = Cod+C(JC, where C ^ 0 because
it contains the nonempty set E(V \ F). In order to prove that d+C is nontrivial, let
us see that d+C C Lü+F. To this end, consider a vertex uv € d+C, Certainly, there
must exist a vertex wu € C adjacent to uv. But this means that u E F and v £ F
because uv $ C, and so we can conclude that uv 6 u+F. Hence, Ai(G) = |
\d+C\ > Ki(LG). Finally, according to Corollary 1.7.1, we know that Ai(G) =
Therefore, |<9+C| = Ki(LG) and so the result holds. •

Lemma 4.3.7 Let G be a generalized p-cycle, p>3, with minimum degree 6 > 1, arc-
superconnectivity AI < 26 — 2, diameter D and parameter Í. Then, for every positive
[negative] a\-fragment F, v(F} > i and v(V \F) < D — t — p + 1.

Proof. Let F be a positive ai-fragment of G. By Lemma 4.3.6, C = {uv € V(LG], u,v E
F} is an 1-fragment of LG. Thus, AI = \w+F\ = \d+C\ = «i(LG) < 20 - 2. This fact
implies that C must be different from a cycle, for if not, \d+C\ > p(8 — 1) > 3(<S — 1).
Furthemore, by Lemma 4.3.3, we have that p(C),p(C) > i(LG) = i + 1. Now, let
uv e C and 06 e d+C such that d(uv,d+C) = d(uv,ab) = d(v,a) + 1 < i>(F) + 1.
Then, ¿t(G) < v(F) + 1 which implies i/(F) > i. In a similar way, we prove that
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v' — v(y \ F) > ¿. Following the same lines of reasoning as in Corollary 4.3.1, we
can prove that F contains a path P : xo,^i, • • • >^p-i such that d(xQ,w+F) > í — 1,
a. = 0,1,... ,p — 1. (notice that xa € Va). Suppose that i/ > D — l — p + 2 and consider
a vertex y into the valley of V \ F. Hence, as every path from F to V\ F goes through
an arc of w+F, it follows that d(xa,y) > 1-1 + 1 +v' > t + D-t-p + '2 = D-p + 2for
every XQ G P. Reasoning in the same way as in the proof of Lemma 4.3.5, we obtain
that v1 < D-t-p + 1. •

Theorem 4.3.5 Let G be a generalized p-cycle with p > 3, order n, maximum and
minimum degrees A and ô > 3 respectively, diameter D and parameter £. If X\ — 0,
then

n < <5{n(A, t + p - 4) + n(A, D - l - p + 1) - 1} + A£+P~3 + 1.

Proof. Let us consider the two non-empty disjoint sets FQ = {x e F : (x, y) e uj+F}
and FO = {y 6 F \ F : (x,y) € w+F}. It is clear that |F0| < \u+F\ = A t and
l^ol < |o;+jP| = ÀI. Let us now consider the sets FÌ = {x 6 F; d(x,Fo) = z}, 0 < i < v
and F j — {y E V \ F : d(Fo,y) = j}, O < j < v1 ', and assume that i^ < ^'. Starting
from Lemma 4.3.7, we can distinguish the following cases:

(a) v' < D - t - p + 1. Then, i<v<v'<D-í-p; that is, D > 2t + p.

(a.l) If£<v<£ + p — 4, then the order of G must satisfy that

¿=0

< 5{n(A, £ + p - 4) + n(A, D - t - p + 1)} -

< <J{n(A, ̂  + p - 4) + n(A, D - £ - p + 1)}.

(a.2) If v > í + p — 3, then the order of G must satisfy that

n = E |*í| + E |Fj| < ¿{n(A, i/) + n(A,£ - £ - p)}
i=0 j=0

5{ E A*
t=£+p-3

< <S{n( A, £ + p - 4) + n( A, D - t - p + 1)} - ¿A^+P"3

< 5{n(A, £ + p - 4) + n(A, L> - £ - p + 1 )},

_p+í _ 2-A A D-l-v+l
— T ^

< i=AAí+P-3 < -A£+P-3, because £ + p-3 <v <v> < D - t- p and S>2.

(b) v' = D—l—p-\-l. Since every path from x € F» to y € F^/ goes through w+F, it
must be that D > d(x,y) > d(x,u+F} + l+d(u+F,y) > v+l + v' = v + l + D-t-p+l.
Thus, £ < i / < £ + p-2.

(b.l) If i/ = £ + p — 2 and we consider two vertices x 6 F„ and y 6 F¡/, then
d(x, y)>v + l + v' = e + p-2 + l + D-l-p+l = D. As in case (b.l ) of Theorem
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4.3.3, we conclude that |F¿+P_2| < — |F¿+p_i| < A£+p 2. Similarly, we prove that
\FD-e-p+i\ < f \FD-Í-P\ < AD-£~P+1. In this way, we obtain that

e+p-3 D-Í-P _ _
n= E \Fi\+ E \F j + \Ft+r-ï +

¿=o j=o
< ¿{n(A, £ + p - 3) + n(A, D - í - p ) }
= <5{n(A, £ + p - 4) + n(A, D - í - p + 1)} + A£+P-3(á + A) + A^-'-^l - ô)
< <S{n(A, £ + p - 4) + n(A, D - t - p + 1)},

since («5 + A)A^-1 + (l-<S)A'/' < («5+ A) A"-1 + (A -¿AJA"-1 = (á + (2-5)A)Aí/-1 <
(5 - A) A17"1 < 0, because ¿ + p-2 = z / < z

(b. 2) Suppose that ^ = £ + p — 3, and consider two vertices x 6 F,/ and y 6 F„'. As
every path from x e .Fi, to y goes through w+F, it must be that d(x, y) > d(x, ui+F) +
l+d(u+F,y) = i/ + l + i/ = £ + p-3 + l + £ > - £ - p + l = D-l. As in case (b.2) of
Theorem 4.3.3, we obtain that |F/+P_3| + |FD_¿_P+1| < Ai+P~3 + áAD-í+P+1 - (5-1).

Therefore, the order of G must satisfy that

e+p-4 D-t-p _ _
n= E Fi\+ E \Fj\ + \Fe+p-3\ + \FD-

¿=0 j=0
< (5{n(A, £ + p - 4) + n(A, Z > - £ - p + !)-

(b.3) Finally, i f ^ < í / < ¿ + p-4, then
i/ D-€-p+l _

n = E l ^ i | + E |Fj- |<<5{n(A,¿+>-4
i=0 j=0

Theorem 4.3.6 Let G be a generalized p-cycle with p > 3, order n, maximum and
minimum degrees A andò > 3 respectively, diameter D and parameter i. If \\ < 26—2,
then

n < Ai{n(A,€ + p - 4) + n(A, D-l-p+l)} + 2Ae+P~3 -6-1.

Proof. As in Theorem 4.3.5, we can consider the following cases:
(a) i/ < D - I - p + 1. Then, t<v<v' <D-l- p.
(a.l) If £<v<£ + p~ 4, then the order of G must satisfy that

n= E \Fi\+ E|FJ·|
z=0 j=0
< Ai{n(A, £ + p - 4) + n(A, D - £ - p + 1)} - AI
< AI {n(A, i + p - 4) + n(A, D - í - p + 1)}.

(a.2) J.f z/ > £ + p — 3, then the order of G must satisfy that
v'

+ E I
¿=0 j=0

,_E
< Ai{7i(A,£ + p-4) + n(A,£)-¿-p + l)}.
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2-A A£)-l-p+l

< < _ , because £ + p - 3 < í / < i / < £ > - £ - p a n d á > 2 .

(b) i/ = D — £— p+ 1. Since all the paths from x G F„ to y e Fv> go through w+F, it
must be that D > d ( x , y ) > d(x,u+F) + l+d(u>+F,y) > z/+l + z/ = i/+l +D-i-p+l.
Thus, ¿ < z / < € + p-2.

(b.l) If // = í + p — 2 and we consider two vertices x 6 F¡, and y 6 F¡/, then
d(x, y)>v+l + i>' = ¿ + p-2 + l + D-e-p + l = D. As in case (b.l) of Theorem
4.3.3, we conclude that |F¿+P_2| < ^IF^+p-i) < ^-A£+p~2. Similarly, we prove that

-p+il < -flFo-^-pl < ^LAD~^~P+1. In this way, we obtain that
e+p-3 D-i-p _ _

«= E \Fi\+ E |Fy|
z=0 j=0

,¿ + p - 3) + n(A, D - í - p)} +

f )

+

Aí+^3

< Ai{n(A, £ + p - 4) + n(A, D-£-p+ 1)},

since A^-^l + f )+A"'(|-l) < A^l + f )+AI/-1(f -A) <

j - 1))

< O,
because and ò > 3.

(b.2) Suppose that z/ = C+p— 3, and consider two vertices x e Fv and y € Fvi. As ail
the paths from x e .Fj, to y go through w+F, it must be that d(x, y) > d(x, ui+F) + 1 +
d(w+F,y) = i/ + l + z// = £+p-3 + l + D-£-p+l = D-1. As in case (b.2) of Theorem
4.3.3, we obtain that |Ff+p_3| + |Fß_£_p+1| < ^Ae+P~3 + A1A

D-£+P+1 - (5 - 1).
Therefore, the order of G must satisfy that

D-t-p _

n= E \fi\+ E l^l
»=0 j=Q

< Ai{n(A, í + p - 4) + n(A, D - t - p + 1)} +
< Ai{n(A, í + p - 4) + n(A, £» - £ - p + 1)} +

-5

6 + l< - 6 - I , sincebecause -A^+P-3 - 5 + 1 <
AI < 26 - 2, p > 3, l > 1 and A > S.

(b.3) Finally, i f £ < v < £ + p-4, then
i/ D-í-p+l _

n=E\fi\+ E |Fy|
i=0 j=0

It is interesting to note that, since n > m/A, the above theorems also imply the
result of Corollary 4.3.4. The following corollary gives a sufficient condition on the
number of vertices for any generalized p-cycle to have AI > 6 and AI > 26 — I respec-
tively.
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«I > a

A! >S

P

1

2

> 3

1

2

> 3

D<

2£-2 [54]

It - 1 [55]

2Í + P-3 [*]

21 - 1 [54]

2£ [55]

2£ + p-2 [*]

n >

<5{n(A, I) - £) + n(A, £ - 1) - 2} + AD~e+ï [5]

¿{n(A, D - € - 1) + n(A, £ - 1) - 2} + AD^€ + A* [11]

¿{n(A, £>-/ -p + 2) + n(A, £ + p - 4) - 2} + A£+p-3 + 1 [*]

a{n(A,D-2) + l} + A°-1 [134]

J{n(A,D-£-l) + n(A,i-l)} + AD-£ [63]
5{n(A, D - £ - 2) + n(A, £ - 1)} + A1^-1 + A* [11]

<5{n(A, D-e-p+l) + n(A, í + p - 4) - 1} + A£+p-3 + 1 [*]

Table 4.2: Sufficient conditions for a generalized p-cycle to be superconnected. The *
symbol indicates this work.

Corollary 4.3.5 Let G be a generalized p-cycle with p > 3, order n, maximum and
minimum degrees A and ô > 3 respectively, diameter D and parameter i.

(a) Ai >ô z /n><5{n(A,£

(b) Aj > 2<5-l ifn> (25-

In Table 4.2, we put forward some of the main sufficient conditions that have been
obtained for a generalized p-cycle to be superconnected and/or arc-superconnected.

4.4 Good superconnected generalized p-cycles

A generalized p-cycle G is said to be good superconnected if Ki(G) > p(S — 1). In a
similar way, G is said to be good arc-superconnected if Ai(G) > p(S — 1). A reason
for introducing these definitions can be found in the following list of properties of
generalized p-cycles.

Lemma 4.4.1 Let G be a connected generalized p-cycle, p>2, with minimum degree
S >2. If G contains a o-regular directed cycle Cp of order p, then

L \d+Cp\ = \w+Cp\=p(8-lì.

2. d+Cp [w+Cp] is a nontrivial vertex set fare set],

3. AI <p((5- l ) .

4. IfCp U d+Cp ¿ V, then KI < p(8 - 1).
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Proof.

1. It is clear that |tu+C| = p(S — 1), because Cp has p vertices, each of them being of
out-degree <5 — 1 in G — Cp. Furthemore, if x, y are two vertices belonging to Cp,
then they are in two different stable parts of V(G), and hence the same happens
with their respective out-neighbourhoods F+(x) and F+(y). In particular, we can
assure that r+(x) n F+(y) = 0. Therefore, |o+Cp| = p(6 - 1).

2. Certainly, w+Cp is a nontrivial arc set. As for the nontriviality of d+Cp, it directly
follows from the fact that any subset of d+Cp of cardinality ô contains vertices
belonging to at least two partite sets.

Points 3. and 4. are immediately deduced from the previous ones.

The rest of this section is devoted to finding diameter conditions for any generalized
p-cycle to be good superconnected. Actually, we have restricted the study to those
generalized p-cycles satisfying t > p. Next, let us show some properties on generalized
p-cycles which will turn out to be useful for proving the main result.

Lemma 4.4.2 Let G be a generalized p-cycle, p > 2, with parameter £ > p — 1. //
x e V (G) and j < p — 1, then there are at least ¿J vertices at distance j from [to] x.

Proof. Assume, for instance, that there are less than <P vertices at distance j from x.
This means that there must exist two distinct paths from x to some vertex y satisfying
d(x,y) < j, the length of which must be congruent modulo p and at most j. Since
j < p— l, the length of these two paths coincide. But this contradicts the definition of
parameter (, since by hypothesis i > p — l. •

Lemma 4.4.3 Let G be a generalized p-cycle, p > 3, with parameter i>p, minimum
degree 5 > 2 and K\ < p(o — 1) — 1. If F is a positive 1-fragment of G, then

Proof. Let us firstly see that p(F) >i~ \(p- l)/2~). For it, assume that 1 < /¿(F) <
t — \(p — l)/2] — 1. As F is a 1-fragment, d+F is nontrivial, and thus for every
vertex of F we can consider a path P of length p — I in F, starting from this vertex.
Notice that |<9+P| > p(6 — 1) because G is a generalized p-cycle. As a consequence,
there must exist a vertex u in P with out-degree in F at least two, because |o+F| =
«l < p(ß — 1) — 1. Therefore, we can consider in F two paths starting from a vertex
u, each one of length \(p — l)/2], and such that d(u,d+F) = n(F}. Since G is a
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generalized p-cycle, these two paths coincide only in vertex u; that is, they form an
out-rooted tree T with root u and height \(p— 1)/2], and clearly, |9+T| > p(6— 1)+1. In
consequence, there must exist two distinct vertices u;i,u;2 € <9+T and a vertex / € d+F,
satisfying d(w,,9+F) = d(cuj,/), í = 1,2. Therefore, we have two different paths from
u to /; namely, i t — > w ¿ — > / , ¿ = l,2, whose lengths belong to the set of numbers
{/¿(F), ¿t(F) + 1, . . . , ¿t(F) + |"(p- 1)/2] + 1}. Since G is a generalized p-cycle and p > 3,
we conclude that these two paths must have the same length, fact which contradicts
the definition of parameter £, because we are supposing that n(F) < I — \(p— 1)/2] — 1.
Therefore, /z(F) >i-\(p- l)/2].

To end the proof, let us suppose that \\og5p(o - 1)] < \(p - l)/2] and /x(F) <
t - [iog¿p(<5 - 1)]. Since h = |iog¿p(á - 1)] - l < p - l, the result obtained in
Lemma 4.4.2 allows us to consider an out-rooted tree Tz of height h, with root in a
vertex z belonging to the valley of F; that is, verifying d(z,d+F] = ¿i(F), and such
that all their internal vertices have out-degree at least 6 in Tz. Moreover, the tree Tz

is contained in F, since by hypothesis i > p and hence, h = \logsp(ö — !)] — !<
l(p - l)/2] - 1 < t - \(p - l)/2] - l < ¿t(F). Furthermore, as h + l < p - l,
we conclude, again by Lemma 4.4.2, that \d+Tz\ > óh+l = ¿n°gaP(¿-i)l > p(S - 1).
In consequence, there must exist two distinct vertices ui,u>2 6 d+Tz and a vertex
/ 6 <9+F, satisfying d(wj,9+F) = d(w¿,/), i = 1,2. Reasoning as before, we have
two different paths from the root z to f whose lengths belong to the set of numbers
{n(F),n(F) + 1,... ,MF) + h + 1}. Since G is a p-cycle, these two paths must be
congruent modulo p, and hence both paths have the same length, fact which contradicts
the definition of parameter í because we are supposing that ß ( F ) < l—h — l. Therefore,

The same lower bound is obtained for ¿i(F) by considering the converse digraph of
G. •

Lemma 4.4.4 Let G be a generalized p-cycle, p > 3, with parameter £ > p, minimum
degree 6 > 2 and K\ < p(o — 1) — 1. If F is a positive 1-fragment of G, then

(a) for each vertex x E F such that d(x,d+F) = I— [log¿p(<5 —!)] + !, there exists a
p : x —» z path in F of length p — 1 such that for any vertex y of p, d(y,d+F) >
í -2\logsp(6- 1)1+2;

(b) for each vertex x & F such that d(d+F,x) = í — \\ogsp(ö — l)] + 1, there exists a
p : z —> x path in F of length p— l such that for any vertex y of p, d(d+F, y) >

Proof, (a) Let us consider the integer h = \\ogsp(ö — 1)] — 1. It is easy to see that
for every 5 > 2 and p > 3, the inequality 2h + 1 < p is always satisfied 9. Since by

9Observe that it is enough to prove that p2(5 - I)2 < 6p+l [p2(<5 - I)2 < Sp\ if p is odd [even].
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Lemma 4.4.3 we know that n(F) > t— \logs p(S— 1)~| + 1, and by hypothesis we suppose
that £ > p, we conclude that h < p-(F) — 1. This fact allows us to consider in F an
out-rooted tree Tx of height h with root in a vertex verifying d(x, d+F) = í — h, and
such that all their internal vertices have out-degree at least ö in Tx. As h+ I < p— l , by
Lemma 4.4.2, we conclude that \d+Tx\ > oh+l = ¿Hogi p(<5-i)l > p(S-l). Consequently,

there must exist two distinct vertices wi,W2 € d+Tz and a vertex / € 9+F, satisfying
d(u}iid

+F) = d(u>i,f), i = 1,2. As a result, we have two different paths from x to /;
namely, pi : x — > Wi — > /, i=l,2. Observe that, on the one hand, for every y € Tx

d(y, d+F) > ¿ — 2/i, and on the other, \pi\ > t — /i, i = 1, 2. Notice also that to end the
proof it is enough to see that either w\ or w¿ is at a distance of at least (. — h to d+F.
Indeed, if we suppose that d(wi, / ) < £ — /&, then necessarily d(w%, /) > £ — h, because
otherwise there would exist two paths from x to /, the lengths of which belonging to
the set {£ — h, t — h + l, . . . ,1}, which is impossible because G is a generalized p-cycle
of parameter t.

Case (b) is proved in the same way. •

The main theorem of this section is put forward next.

Theorem 4.4.1 Let G be a generalized p-cycle with parameter t > p and minimum
degree ô > 2. Then,

(a) K.l>p(o-l)ifD<2l + p+l- 3riog5p(a - I)];

(b) Xi>p(o-l)ifD<2£ + P + 2- 3[iog¿p(á - 1)1-

Proof. Notice that, for p E {1,2}, the theorem holds as a consequence of the results
given in Propositions 4.1.1 and 4.1.2. To prove (a), assume thus that p > 3, KI <
p(6 — 1) — 1 and let us consider a positive 1-fragment F. Without loss of generality, we
can suppose that p.(F} < [¿(F) (if not, use the converse digraph of G). Therefore, as
was proved in Lemma 4.4.3, we can assure that I — \\og¡p(6 - 1 )~| + 1 < //(F) < /¿(F),
and hence, we can consider the nomempty sets:

A = {x e F, d(x, d+F) >£-2 \logs p(6 - 1)] + 2}

B = {y € F, d(d+F,y) > i - 2\\og5p(ô - 1)1 + 2}.

As a consequence of the results obtained in Lemma 4.4.4, we conclude that we can find
both in A and B a path of length p— 1 . As G is a p-cycle, this shows that both in A and B
vertices of every partite set Va exist. Now, let us consider the integer r, 0 < r < p— l, so
that D+l = r(mod p). Let x E Va be such that d(x, d+F) = n(F) and consider a vertex
y € Va+rr}B, Since the length of every path from Va to Va+r must be congruent with r
modulo p, then D-(p-l) > d(x,y) > d(x,d+F) + d(d+F,y) > 2£-3riogd-p(<5-l)l+3.

This means that D>2£ + p + 2 — 3l\oggp(o — 1)1, which contradicts the hypothesis.
Therefore, K\ > p(6 — 1 ).
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Point (b) is easily proved from the previous one, by using the line digraph technique
in the same way as it was carried out in Theorem 4.3.2, and for this reason we omit it.

As in the above section, we can obtain the following corollary, which shows that if
the iteration is large enough, the iterated line digraph of a generalized p-cycle is good
superconnected.

Corollary 4.4.1 Let G be a generalized p-cycle with parameter I > p and minimum
degree 0 > 2. Then,

(a) Kl(L
kG) >p(Ô-l)ifk>D-2l-p-l + 3\loSsp(ô - 1)1;

(b)

Finally, let us apply this new results to the Moore generalized p-cycles (see Section
1.5.4).

Examples 4.4.1

1 . The complete generalized p-cycle Cp <8> K¿ is d-regular, has diameter p and pa-
rameter i = 1. Therefore, it satisfies: K = X = d and AI > Id — 1.

2. The De Bruijn generalized p-cycle BGC(p,d,dk) is isomorphic to the (k — 1)-
iterated line digraph of Cp (g> K¿. This means that this digraph is ¿i-regular, has
diameter p + k — 1 and parameter í = k. As a consequence, we obtain that for
every k > 2, BGC(p,d,dk) verifies: K = A = d, AI > 2d — 1 and KI > 2d — 1.
Moreover, since BGC(p, d, dp) is a d-regular digraph with diameter D = 1p — 1
and parameter í = p, it is good superconnected when 3 \og¿p(d — 1) < p + 2.

3. The Kautz generalized p-cycle KGC(p,d,dp + 1) is d-regular, has diameter D =
2p — 1 and parameter t = p. Therefore, it satisfies: K = X = d, AI > 2d — 1
and KI > 2d — 1. Furthermore, the digraph KGC(p,d,dp+k + dk) is isomorphic
to Lk(KGC(p,d,dp + 1)), and this fact allows us to conclude that it is good
superconnected for k > 3flog¿p(d — 1)] — p — 2.
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Chapter 5

Superconnectivity and
extraConnectivity of digraphs

5.1 Introduction

Graph and digraph connectedness has always been one of the main topics of interest in
graph theory, with a wide range of relevant applications in many different areas. For
instance, in the design of reliable communication or interconnection networks, where
the connectivity properties of the topology used to link the nodes is one of the main
features to be taken into account.

In the design of a good topology for an interconnection network, the first connected-
ness property of interest is the avoidance of small cutsets. If 6 is the minimum number
of links incident from any node, it is convenient that the network should still connect
the surviving elements after the failure of at most <5 — 1 nodes or links. This means
that the graph or digraph used to model the network must be maximally connected.
Proceeding one step further, among the maximally connected networks, the aim is to
maximize the size of a minimum cutset, apart from the 'trivial' cutsets constituted by
the set of nodes or edges incident to some given node v (since the failure of the ele-
ments of such cutset isolates v from the rest of the network). This leads to the study of
superconnected graphs and digraphs. A logical generalization of these ideas can be to
look for interconnection networks having 77 -nontrivial cutsets with as large as possible
cardinality, where rj -nontrivial means that the considered cutsets contain neither the
out-neighbourhood nor the in-neighbourhood of a vertex set formed by a given number
77 of nodes. These are the so-called n-extraconnected digraphs. The following section of
this chapter is devoted to the theoretical analysis of all these connectedness parameters,
starting from the so-called conditional connectivity introduced by Harary.

As has been said several times along this work, the parameter t has proved to be
a suitable tool for studying both connectivity and Superconnectivity, especially under
diameter conditions (see Sections 1.6, 1.7.1 and 4.1). Furthermore, after studying in
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detail the different constructive proofs of the results on connectedness under diameter
sufficient conditions involving these parameters (see Propositions 4.1.1 and 4.1.2), we
realized that all of them were very similar in a certain sense. Section 5.3 is devoted to
presenting in a structured and simpler way the model of constructive proof which has
been repeatedly used.

In Section 5.4, the so-called rj-nontrivial disconnecting sets are introduced and they
are also shown some interesting properties. These results will enable to approach the
study of the extraconnected digraphs under diameter conditions using the aforemen-
tioned model of algorithmical proof. The following section is devoted to generalizing
the definition of the parameter (.. As a consequence, we introduce the so-called FF-
parameters £(0,77,77) which will prove to be very useful in some particular cases.

The last three sections show a list of new results on connectedness under diameter
sufficient conditions, all of them proved by using the so-called PW-algorithm proposed
in Section 5.3. As for the first of them, it is, in our opinion, particularly interesting
the result stated in Theorem 5.6.2, because it shows a fact which had passed unnoticed
so far, and it can be, not only the key point to re-prove in a simpler way the classical
results (this issue is also shown in this section), but also the starting point to obtain
new connectedness results of different kinds, for example, under degree conditions. in
Section 5.7, a new theorem involving the FF-parameter P* = ¿(1,1, TT) is presented,
wich improves a result by Fàbrega and Fiol (see [54]). Moreover, this improvement is
significant because it enables, unlike the classical theorem, to approach the study of
the Superconnectivity in maximally connected digraphs. Finally, Section 5.8 is devoted
to the study of ^-extraconnected digraphs with large girth under diameter conditions,
by using the FF-parameter t^ = £(1,77,0). The section and chapter finish by applying
the obtained results to some families of large iterated line digraphs.

And now, before starting the following section, let us comment some issues related
to the notation and terminology employed.

Remark 5.1.1 Let F be a set of vertices of a connected digraph G = (V, A), and x a
vertex belonging to V \ F such that d(x, F) = d. In the rest of this chapter, we make
use of the following vertex sets related to x:

• For every d > d, the set of vertices in F at distance at most d from x:

Ft(x) = {fcF\d(x,f)<d}. (5.1)

When d(F,x) = d < d, the set F^(x) is similarly defined.

• The set of vertices adjacent from x which are on the shortest paths from x to the
vertices of F:

i/Or -> F) - {y e r+(x) | 3/ € F s.t. d(y, f) = d(x, /)-!}. (5.2)
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When there is a unique path from a; to a vertex / e F, it is denoted by x i— > /.
As expected, the vertex in this path belonging to F+(x) is denoted by v(x H- > /).

The set of vertices adjacent from x which are not on the shortest paths from x
to the vertices of F¿~+l(x):

= F+OT) \ V(x - F++1(z)). (5.3)

5.2 Conditional connectivities

Given a (di)graph G and a (di)graph-theoretic property P, Harary defined in [91] the
(universal) conditional connectivity K,(G; P) [arc- connectivity A(G; P)] as the minimum
cardinality of a set of vertices [arcs], if any, whose deletion disconnects G and every
remaining component has property P. Observe that if <j) represents the empty set of
properties, then of course ft(G; (/>) = K>(G) when G is not complete, and A(G; <£) = A(G)
if G ̂  K\. In the aforementioned article, Harary points out several ways in which this
definition can be meaningfully modified. For example, one can relax the requirement
of every component having property P by demanding this property be satisfied by at
least two of the components, while the remaining need not be so 1. Bearing these ideas
in mind, we propose a new kind of conditional connectivity, which we will use in the
rest of this section.

Definition 5.2.1 Let G be a (di)graph and P a (di) graph-theoretic property. The
S-conditional connectivity KS(G;P) fXs(G;P)] is defined as the minimum cardinality
of a set of vertices [arcs], if any, whose deletion disconnects G and every remaining
non-transmittance component has property P.

Certainly, the previous definition can be alternatively stated by saying that both
source and sink components must satisfy property "P, while the transmittance compo-
nents need not do so. Notice also that every component of a disconnected graph is both
a sink and a source, and hence ns(G;P) = K,(G;P), \S(G;P] = X(G;P).

In a similar way as we have seen that the connectivity 2 can be considered as
a particular case of universal conditional connectivity, it is also easy to verify that
the Superconnectivity KI (G) of a certain (di)graph G coincides with its ¿'-conditional
connectivity Ks(G]Pi), where P\ is the property of having more than one vertex.

Fàbrega and Fiol introduced in [56] the so-called rj- extraConnectivity «^(G) of a
graph G as the universal conditional connectivity /t(G;'P7?), P^ being the property of
having more than 77 vertices. Observe that the 1-extraconnectivity of a graph coincides
with its Superconnectivity. With the aim of generalizing this definition to the case of
digraphs, we present the following definition.

1In [27], Bollobás implicitly defined the cyclic edge-connectivity of a graph G as the smallest cardi-
nality of a disconnecting set S of edges, if any, for which at least two components of G — S contain a
cycle (see p. 113).

2Also called unconditional connectivity by Harary in [91].
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Definition 5.2.2 Let G be a (di)graph and rj > 0 an integer. The r]-extraconnectivi-
ty Kf¡(G) [r] -arc- extraConnectivity A7?(G)/ is defined as the S-conditional connectivity

Certainly, the 0-extraconnectivity «o(G) = /cs(G;Po) — K(G;"Po) and 1-extraconnec-
tivity /ii(G) = KS(G\PI) of a (di)graph G coincide with its connectivity /í(G) and su-
perconnectivity 3 /ti(G) respectively (the same happens in the arc case). Notice also
that if G is a digraph with girth g, then, for every rj < g — 1, the 77-extraconnectivity
KTJ(G) [Ary(G)] can be seen as the minimum cardinality of a set of vertices [arcs], if any,
whose deletion disconnects G, and every remaining component has either at least g
vertices or a single vertex, this last case being a transmittance component.

A digraph G is said to ber¡-extraconnectedif «^(G) >T7] = (rj+l)(o—l). Inasimilar
way, G is said to be r)-arc-extraconnected if Ar?(G) > T^. A good reason for introducing
these definitions can be found in the following lemma, whose proof is similar to that of
Lemma 4.4.1.

Lemma 5.2.1 Let G be a connected digraph with minimum degree 0 > 2 and girth
g < o. If G contains a 0-regular directed cycle Cg of order g, then

L \d+Cg\<\w+Cg\=g(ô-l).

2. vj+Cg is a nontrivial arc set.

3. \1<g(o~l).

4- If d+Cg is a nontrivial vertex set and Cg U d+Cg ^ V, then K\ < g(o — 1).

Observe that for <5 > 3, every 1-extraconnected digraph is superconnected, and
it is possibly for this reason that they are often called optimally superconnected (see
[5]). Notice also that, for r¡ > 1, an (77 + l)-extraconnected digraph needs not be 77-
extraconnected because, for instance, it could verify the following inequality sequence:
5 < KI < 20 — 2 < 35 — 3 < «a (see Section 5.8 for more details).

Finally, another possibility of modifying the original definition of conditional con-
nectivity given by Harary consists in demanding that a certain property P be satisfied
by the cutsets [arc-cutsets], instead of the remaining components. This idea leads us
to put forward the following new kind of conditional connectivity.

Definition 5.2.3 Let G be a (di)graph and P a (di) graph-theoretic property. The
C-conditional connectivity KC(G;P) /Ac(G;7->)/ is defined as the minimum cardinality of
a set of vertices [arcs] satisfying property P, if any, whose deletion disconnects G.

Although the study of certain G-conditional connectivities may be interesting in
itself, we are mainly concerned in this work with some ^-conditional connectivities;

For this reason, we have used the same notation.



5 Superconnectivity and extraConnectivity of digraphs 95

namely, the connectivity, Superconnectivity and extraconnectivity, both in graphs and
digraphs. For this reason, given a (di)graph-theoretic property P, a suitable way of
studying the S-conditional connectivity KS (G; P) for a certain family of (di)graphs is
frequently to look for another property P in such a way that nc(G;P) — KS(G;P).
Indeed, whenever this goal is achieved, what remains to be done afterwards, for the
aforementioned (di)graph family, is to study the nc(G\ P) parameter.

As pointed out in Section 1.7.1, one of the most important connectedness problems
addressed in recent years has been to find sufficient conditions for a (di)graph to be
maximally connected, superconnected, etc. Among the different sufficient conditions
which have been considered (see Propositions 1.7.2, 1.7.3, and 1.7.4), in this work we
are solely concerned with the so-called diameter conditions. As stated in the aforemen-
tioned section, these kinds of sufficient conditions involve finding an upper bound on
the diameter for a certain class of (di)graphs in order to assure maximal connectivity,
Superconnectivity, etc.

in the following section we propose an algorithm; that is, a particular type of
constructive proof, designed for the study of (7-conditional connectivities, starting from
a certain diameter sufficient condition imposed on a particular family of (di)graphs.

5.3 Progressive withdrawal algorithm

Suppose we are interested in proving a theorem such as the following.

Theorem 5.3.1 Let T be a family of connected (di)graphs and G e T. Let P be a
(di)graph-theoretic property and ß,ß>2 two fixed integers. Then

D(G)<2ß-l =» Kc(G;P)>p

First of all, it is clear that the previous result can be seen as a corollary of the
following proposition.

Proposition 5.3.1 Let F be a vertex subset of G satisfying property P, with cardinality
\F\ < p. Then,

D(G)<2ß-l => G - F is connected.

Secondly, this proposition is certainly a corollary of the following lemma (see Figure
5.1).

Lemma 5.3.1 Let F be a vertex subset of G satisfying property P, with cardinality
\F\ < p. Then, for every vertex u € V \ F

1. there exists a u —» v path in V \ F such that: d(v,F) > fi.

2. there exists a w —> u path inV\F such that: d(F,w) > ß.
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Figure 5.1: If G — F is disconnected, then necessarily D > 2/L

Finally, the proof of this lemma can be algorithmically approached by carrying out
the so-called progressive withdrawal algorithm, or simply PW-algorithm, which is put
forward next.

Theorem 5.3.2 Let T be a family of connected (di)graphs and G = (V, A) € T.
Let P be a (di) graph-theoretic property and ß,ß>2 two integers. Let F be a vertex
subset of G satisfying property P, with cardinality \F\ < p. If u e V \ F such that
d(u, F) = d < ß—l, then there exists a u — > v path inV\F satisfying d(v, F) > d and:

\F+(v)\ < |F+(u)|.

[PW1]

[PW2] 2 < |F+(u)| < \F\

[pw3] \F¿(U)\ = 1 =* d(

Remarks 5.3.1

1. The arc case; that is, the study of a certain C-conditional arc-connectivity AC(G;'P),
can be similarly approached by considering the corresponding arc version of the
foregoing theorem.

2. Sometimes, it can be more suitable to prove the first two steps of the algorithm
at the same time. This means that [PW1] and [PH/2] can be replaced by this
single statement:

[PH'l + PW2] : |Fd
+(v)| < 1 (5.4)

3. It is also possible to prove all three steps at once. In other words, it is enough to
prove this single assertion:

[PW1+PW2+PW3]: lfu€V\F such that d(u,F) = d < ß - 1, then there
exists a u — * v path in V \ F satisfying d(v,F} > d and |F¿~(u)| < |F¿"(u)|.
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4. Furthermore, it can be interesting to prove a result similar to those stated in
Theorem 5,3.1, but with the new hypothesis: D(G) < 2/t. In this case, a variant
of this algorithm can be used, which consists of the following four steps:

(a) Tf u e V \ F such that d(u,F) = d < ß, then there exists a u —> v path in
V\F satisfying d(v,F) > d and:

[PWl'j F\Fd»^0.

[PW2'] 2 < \F+(u)\ < \F\ => |F+(t;)| < |F+(«)|.

[PW31] d< A- l , \F$(u)\ = 1 =*• d(v,F) >d+l.

(b) If u e V \ F such that d(u, F) — d> ß and / 6 F, then there exists a u —> t»
path in F \ F satisfying ei(t>, F) > d and:

[PW4'] |FA»| < 1 and / ¿ F¿».

5. In some cases, an extra difficulty may appear when trying to prove the different
steps for d = 1. On such occasions, a solution to this problem should be added
as a first step:

[PWO]: |F/(«)|<2 (5.5)

6. In the last sections of this chapter, different versions of the FW^-algorithm are
used to prove either known results in a more efficient way (see Section 5.6) or
several new results (see Sections 5.7 and 5.8).

5.4 77-nontrivial disconnecting sets

Let G = (V, A) be a (di)graph and F c V [F c A ] a vertex [arc] set. In Section 1.7.1, F
was said to be trivial if it contained either the in-neighbourhood [in-arc-neighbourhood]
or the out-neighbourhood [out-arc-neighbourhood] of some vertex not belonging to F.
Generalizing this definition, we say that a subset of vertices F is 77 -trivial, where 77 > 1
is a fixed integer, if there exists a vertex set S c V \ F, with l < |5| < 77, such that
F contains either d+S or d~S. That is, the deletion of the vertices of F isolates a
subdigraph of G with at most 77 vertices. Analogously, an arc set F C A is called 77-
trivial if there exists a vertex set S C V, with l < [S'l < r], such that F contains either
its positive arc-boundary u+S or its negative arc-boundary u~S. A subset of vertices or
arcs that is not 77-trivial for a certain 77 > 1 is said to be 77-nontrivial. Furthermore, every
vertex or arc set will we supposed to be Q-nontrivial. As an immediate consequence of
this definition, we obtain the following list of properties.

Proposition 5.4.1 Let G = (V,A) be a (di)graph, 77 > 0 an integer, and F C V
[F C A ] a vertex [arc] set. If F is a vertex [arc] set of G, then

1. F is nontrivial if and only if it is l-nontrivial.
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2. If F is (r¡ + l)-nontrivial then it is r¡-nontrivial.

3. F is an rj-nontrivial cutset [arc-cutset] if and only if every non-transmittance

component of G — F has at least r\ + 1 vertices.

4- If T'r] denotes the property of being 77 -nontrivial, then ^(G) — KC(G;'P7)) /Arç(G) =

AC(G;A,)/-

5. KO < KI < • • • < Kr,, /Ac < Al < • • • < A,,/

Observe that as a consequence of the fourth property from the previous list, we
can conclude that the study of the 77-extraconnectivity Krç(G) = Ks(G]Pr)) in a certain
(di)graph G can be approached by means of the PPF-algorithm described in Section

5.3.
There exist some superconnected digraphs in which every disconnecting vertex set is

trivial; that is to say, without nontrivial disconnecting sets. For instance, the complete
symmetric digraphs Kn and the complete symmetric bipartite digraphs Kn,m are of
this type, see [91]. Certainly, in a certain sense, such digraphs can be considered as
optimally superconnected, since they cannot possibly be disconnected unless one vertex
is isolated. Similarly, the complete symmetric digraph K% is a superconnected digraph
without nontrivial arc-disconnecting sets. From now on, we will only deal with digraphs
containing both nontrivial vertex- and arc-disconnecting sets.

5.5 FF-parameters £(o;,77,7r)

As was pointed out in Section 1.6, the parameter í has proved to be an excellent tool
for studying some fault tolerance topics in graphs and digraphs, especially their con-
nectedness. This section is devoted to the introduction of the so-called FF-parameters
¿(a,77,7r), by generalizing the definition of parameter £ (see Definition 1.6.1) as follows.

Definition 5.5.1 Let G = (V,A) be a simple connected (di)graph with diameter D,

and a > l , 7 7 > l , 7 T > 0 three fixed integers. The FF-parameter £(a,r/,7r) of G is
defined as the greatest integer belonging to {!,.. . ,D} such that for any x,y € V, if

0 < d(x,y) = d< £(a,77,7r), then:

1. There exist, at most, a paths from x to y of length d.

2. If d < £(a, 77, TT): There exist, at most, TT paths from x to y of length between d + 1
and min{d + 77, ((a, 77, TT)} .

Certainly, when a = 1, 77 = 1 and TT = 0 we obtain the definitoti of parameter t; that
is, í = £(1,1,0). Apart from this case, we have considered two more particular cases,
which, for the sake of simplicity, are denoted as follows 4:

As a matter of fact, the FF-parameter (7* was introduced by Fàbrega and Fjol in [54].
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Notice that, with this alternative notation, I = 1° = i\. Observe also that, from the
previous definition, this inequality sequence immediately follows :

4, < • • • < ¿2 < 4 = f = P < P < • • • < P

Finally, a proposition showing the good behaviour of the FF-parameters S? and t^
is now put forward (see Proposition 1.6).

Proposition 5.5.1 Let G be a simple connected digraph with minimum degree ô > 2,
diameter D and girth g. If LG denotes the line digraph of G, then

2. 1 < 77 < g - 1 . =» lr,(LG) = ir,(G] + 1.

Proof.

1. Observe first of all that LG is a simple connected digraph whose diameter is
D' = D(LG) = D + 1. Notice also that if x = XQX\ and y = yoyi are two vertices
belonging to LG such that 1 < d(x,y) = d < F (G) + l < D + l = D', then

Suppose that d > 2 and there are two x — > y paths of length d in LG. This
means that there are two x\ — > yo paths of length d — 1 in G, which contradict 5

the hypothesis d < C* (G) + l. Assume now that d < £*(G) + I and there exist
7T + 1 paths from x to y of length d + 1 in LG. This means that there would be
7T + 1 paths from xi to yo of length d in G, which contradict 6 the aforementioned
hypothesis d<£*(G) + l. Hence, we have proved that ¿W(G) + 1 < £*(LG).

Notice that if £*(G) = D, then the obtained inequality K*(G) + 1 < t"(G) must
necessarily be an equality. Thus assume that K*(G) < D and £*(LG) > €7r(G) + 2.
If e*(G} = K* < tv + 1, then there exist two vertices a, ò 6 V such that either

1 . d(a, b) = £n and there exist TT + I paths from a to 6 of length €w + 1, or

2. d(o, 6) = £ff + 1 and there exist two a -> 6 paths of length £"" + !.

As <5 > 2, we can consider a vertex c Ç r~(a)\{ò} and a vertex d e r+(6)\{a}. As
a consequence, we conclude that if case 1. is verified, then d(ca, bd) = €7r -f 1, and
there would be TT + 1 paths from ca to bd of length ¿n + 2, which contradicts the
hypothesis iv(LG] > lr(G} + 2. Analogously, if case 2. occurs, then d(ca,bd) =
P* + 2, and there would be two ca — > bd paths of length t? + 2, again contradicting
the same hypothesis.

5Certainly, for d — 2, this situation is not possible.
6Certainly, for d — Ì , this situation is not possible.
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2. As in the previous case, let us see that for the integer l^ + 1 the conditions of
Definition 5.5.1 hold. To this end, let us consider, first of all, a vertex uu' of
LG. Any uu' — > uu' path in LG different from the trivial one (of length zero) has
length at least equal to the girth g. Therefore, the shortest trivial uu1 — » uu' path
in LG is unique and there are no paths of length d' ', with 1 < d' < min{77, 4,4-1 } <
g — 1. Suppose now that uu' and vv' are two different vertices of LG such that
1 < dLG(uu',vv') < Crj + 1. This means that 0 < dc(u' ,v) < (ni and hence, the
shortest u' — > v path in G is unique and there are no u' — > v paths of length
d', with d + 1 < d' < min{c2 + 77, 4y}, where d = da(u',v). As a consequence,
the shortest uu' — > vv' path in LG is unique and there are no uu' —> vv' paths
of length d', with d + 2 < d' < min{d + 1 + r/,^ + 1}. Hence, we have proved
that £77 (LG) > lr¡ + 1. Moreover, since the digraph G has parameter £^, there
must exist two different vertices u' and v, with do(u',v) = d < i^ + 1, and such
that either the shortest u' — » v path is not unique or there exists at least another
u' — > v path with length d' such that d + 1 < d' < min{cZ + 77,^ + 1}. But, since
5 > 2, this implies that there exist different vertices uu' and vv' of LG, with
dLo(uu' \vv') = d + 1 < £n + 2, and such that either the shortest uu' — > tn/ path
is not unique or there exists at least another uu' — > f u' path with length d' such
that <i + 2 < ci' < min{d + 1 + 77, t^ + 2}. Thus, the parameter l^LG] can not be
greater than en + 1 . - •

In the rest of this chapter, a digraph G with FF-parameter l(a, 77, TT) will be referred
as to be an ¿(a,Tj, ir)-digraph.

5.6 Superconnected ¿-digraphs

This section is mainly devoted to presenting a new result involving ¿-digraphs, which
has been obtained thanks to the PVT-algorithm introduced in Section 5.3. As a matter
of fact, the first objective was to prove the 'classical' result shown in the next theorem
by means of the aforementioned algorithm.

Theorem 5.6.1 ([66]) Let G be a digraph with minimum degree 5 > 3, diameter D
and parameter e > 2. Then, /ti > 26-2 /Ai > 26-2 ] ifD(G] < 21-2 [D(G] < 21-1].

When trying to prove the vertex case of the above statement with the PT'F-algorithm,
we realized that it would not be possible, unless the following result was true.

Theorem 5.6.2 Let G = (V,A) be a (o,£)-digraph such that 6 > 3 and I > 2. Let F
be a nontrivial vertex set with cardinality \F\ < 20 — 3, x E V \ F and f E F. Then,

1. there exists an x — » w path inV\F such that: d(w,F) > i — 1, IF^^IÍ;)! < 1
and f
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2. there exists a w —> x path inV\F such that: d(F,w) > £— 1, |F£_1(î/;)| < 1 and
fïF^w).

Fortunately, we succeeded in proving this statement, and the rest of this section
is devoted to presenting the proof of the different steps of the PVF-algorithm, carried
out under the hypotheses of this theorem. First of all, however, let us consider two
previous lemmas (see Remark 5.1.1).

Lemma 5.6.1 Let F cV and let x be a vertex inV\F such that d(x, F) = d < í— 1.
Then,

1. d(y,F) >d + l,foranyyer+(x)\v(x->F).

2. F¿(y) n F^(y') = 0 for any two different vertices y,y' e T+(x).

3. F+(y) n F+(x) = 0 for any y € F+(z) \ v(x -» Fd
+(x)).

Proof.

1. Let / be a vertex in F. If d(x, /) < £, then the xy —» / path must have length
at least d(x, /) + 2 because the shortest x i—> / path is unique and there are no
x -> / paths of length d ( x , f ) + 1. Hence, d ( y , f ) > d ( x , f ) + 1. If d(xj} = ¿,
then d(y, /) > I, for otherwise the definition of the parameter £ is again contra-
dicted. Finally, if d(x, /) > C, then <i(y, /) > I by the triangular inequality. Since
d(x, F) = min{d(x, /) : / 6 -F}, the lemma holds.

2. We have d(y, F) > d — 1 for any y E T+(x). If either d(y, F) or d(y', F) is greater
than d, then the result trivially holds. Hence, assume that d(y,F) and d(y',F)
are equal to d or d — 1, and suppose that / € F~¿(y) n F¿~(y'). In this case,
we have two x —> f paths; namely, x, y —> / and x, y' —» /, whose lengths are
d + 1 or d according to the value d or d — I of d(y, /) and d(y', /). But this fact
contradicts the definition of the parameter £ because the shortest x H-» / path has
length d(x, /) > d(x, F) = d. Therefore, F^(y) n F/(y') = 0.

3. If y € r+(x)\i/(ar -> F+(x)), then %,F+(z)) > d+1. Hence, F+(y) C F\F+(x)
and the result follows. •

Lemma 5.6.2 Let ô > 3, F C F, |F| < 25 - 3 and x E V \ F. Ifd(x,F) = d<l-l
and 2 < \F^(x)\ < ô+(x} — l, then there exists a vertex y € F+(x) satisfying d(y, F) > d

Proof. Let r = |-F/(x)| < ô+(x) - 1 and let F be a set of <5+(z) - r vertices adjacent
from x that are not in the shortest x —> F¿(x) paths. By Lemma 5.6.1, we have
F^(y) nF/(y') = 0 for any two different vertices y and y' of Y and Fd

+(y) C
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for any y e Y. We are going to show that at least one y € Y satisfies the lemma; that
is, \F+(y)\ < \F+(x)\ = r. On the contrary, if \F+(y)\ > r for any y € Y, we would
have

(6+(x) - r}r < £ |F+(y)| < \F \ F+(x)\ < 20 - 3 - r < 26+ (x) - 3 - r,

which would imply that (r — 2)S+(x) < r2 — r — 3. So, by taking into account that
5+(x) > r + 1 and r2 — r — 3 = (r — 2)(r + 1) — 1, we get a contradiction if r > 2. •

We are now ready to show the proof of Theorem 5.6.2.

Proof of Theorem 5.6.2 As expected, the proofs of both points are identical, and
thus we only show the first. To this end, we make use of the variant of the PW-
algorithm put forward in Remarks 5.3.1.4, but also taking into account the second
point on this list of remarks. To be more precise, we intend to prove the following
assertions:

Let F c F be nontrivial and x e V \ F such that |F| < 2o - 3 and 1 < d(x, F) =
d < £ — 1 respectively. Then,

(a) there exists an x — * x' path in V \ F satisfying d(x',F) > d and:

[PW1'+PW2'] \F+(x')\ < 1.

[PW31] d < í - 2, \F+(x)\ = 1 => d(x', F)>d + 1.

(b) if d = I — 1 and f € F, there exists an x — > x' path in V \ F satisfying d(x' , F) >
£ - 1 and:

[PW4'J IF^!^')! < 1 and

Proof of [PW1 '+PW2']: Let us distinguish the following two cases: i. d = I and
.

L Suppose IF^Z)! > 2. Since F is nontrivial we have |Ft
+(a;)| < S+(x) — I.

Moreover, as d(x,F) = 1 < I — 1, we can apply Lemma 5.6.2. It follows that there is
a vertex y £ T+(x) such that d ( y , F ) > I and ^^(y)] < |Ft

+(o;)|. By iterating this
reasoning at most o+(x) — 2 times, the claimed x — > x' path is obtained.

ii. If there exists a vertex y € F+(:r) such that d(y,F) > d + 1, then the result
trivially holds because F+(y) = 0. Hence, assume that d— 1 < d(y, F) < d for each y e
F+(x). Prom Lemma 5.6.1 (2.), we have F+(y)nF+(y') = 0 for any two different vertices
y,y' € r+(x). It follows that there exists a vertex y* E F+(x) such that |F^"(y*)| = 1,
for otherwise we would have |F| > Hyer+(i) \F+(y)\ > 26, contradicting |F| < 26 — 3.
Hence, let F+(y*) = {/*}. If £%*,/*) = d, then we are finished. Therefore, let us
assume that d(y* ', /*) = d—l. Consider the set Z = r+(y*)\^(y* — » {/*}) that contains
at least <5 — 1 vertices. For any z e Z, we have d ( z , /*) > d (see Lemma 5.6.1(1 .)) and
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d(z,F\ {/*}) > d (by the triangular inequality because d(y*,F\ {/*}) > d + 1). Let
us see that there exists some vertex z* € Z such that \F¿~(z*)\ < 2. On the contrary,
suppose that |F¿~(z)| > 3 for any z & Z. By applying Lemma 5.6.1(2.) to F \ {/*}, we
conclude that F/(z)nF/ (z') C {/*}. That is, we are assuming that |F/(z)\{/*}| > 2

for any z e Z. Hence, |F| > Y^z&Z \^d(z}\{f*}\ — 2(5 — 1), arriving at a contradiction.
Finally, if |F/(z*)| < 1, then we are finished, and if |F/(z*)| = 2 < 0 - 1, then the
result follows from Lemma 5.6.2.

• Proof of [PW3']: If |F| < ¿, take x' € F+(z) \ i/(x -» F) and by Lemma 5.6.1(1.),
the result holds. Hence, let us suppose that 0 < \F\ < 25 — 3. Let F¿(x] = {/*}
and partition F — f* into two nonempty disjoint subsets F' and F" in such a way that
|F'| = 0 - 2 and 1 < \F"\ < 5 - 2. Let w € r+(x) \ v(x -» {/*} U F'). Since d + 2 < £,
it follows from Lemma 5.6.1(1.) that ¿(tu, /*) > d + 1 and d(w, F') >d + 2. Moreover,
by the triangular inequality, d(w,F") > d(z,F") -l>d. Now, if x1 € T+(w) \ v(w ->
{/*} UF"), we conclude (again by Lemma 5.6.1(1.) and the triangular inequality) that
d(x',f*) >d + 2, d(x',F") >d+l and d(w,F') >d + l. Hence, the path xwx' satisfies
the statement of the lemma.

• Proof of [PW4!]: As a consequence of the previous steps, we conclude that there
is an x — * x" path such that d(x",F) > t — 1 and F¿t1(x") < 1. Let us suppose
that F¿1(x") = {/} (otherwise, the proof is finished by taking x'=x"). Consider the
set of vertices: Y = r+(x") \ v(x — > /), whose cardinality is certainly at least 5 — 1.
It is also clear that, for every y E Y, d(y,F} > í — 1 and d ( y , f ) > t (see Lemma
5.6.1(3.)). To end the prove, it is enough to see that there exists a vertex y € Y
satisfying |F¿1(y)| < 1. To this end, suppose that, for every y 6 Y, |F¿1(y)| > 2.
Then, taking into account Lemma 5.6.1(2.), we obtain the following contradiction:

= (jFe
+_í(y)\<\F\{f}\<2S-4.

Finally, as an immediate consequence of the above statement, Theorem 5.6.1 is
proved.

Proof of Theorem 5.6.1 Let us consider a nontrivial subset of vertices F with
\F\ < 2(5 — 3. Let x, y be two different vertices not belonging to F. From Theorem 5.6.2
there exist in V \Ftwo paths x -» x', y' -> y, such that: d(x',F) > £-1, ^¿^z')! < 1,

d(F,y') > I - I and jF^l^y')! < 1, in such a way that Fjti(z') n F^(y') = 0.
Therefore, every x' — > y' path through F must be of length at least 2£ — 1. Since
d(x',y') < D < 21 — 2, there exists a path from x' to y' which avoids F. In this way,
we find a path from x to y (x — > x' — > y' — » y) which does not go through F. Therefore
«i > |F| + 1 > 25 - 2. . •
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5.7 Superconnected ¿^-digraphs

The first generalization of the parameter t was carried out by Fàbrega and Fiol in [54].
To be more precise, they introduced the FF-parameter C* = ¿(1, I ,TT), whose definition
is presented next (see also Definition 5.5.1):

Definition 5.7.1 Let G = (V, A) be a simple connected digraph with diameter D, and
7T > O a fixed integer. The FF-parameter P* of G is defined as the greatest integer
belonging to {!,... ,D} such that for any x,y e V, i f O < d(x,y} = d < I?, then:

1. There is a unique x —> y path of length d.

2. If d < Í, there are at most TT x —> y paths of length d+l.

In the same paper [54], a first result involving this parameter was shown, which is
put forward next together with a new proof based on the PW-algorithm. But firstly, a
lemma is shown which will be useful for proving the mentioned result in a easier way 7.

Lemma 5.7.1 Let G = (V,A) an i*-digraph, F C V and x <E V \ F such that I <
d(x,F) = d<KK -I. Then, for every y € 6+(z):

1. feF}(x)=*d(y,f)>d.

2. feF\F}(x)=*d(y,f)>d+l.

Proof.

1. Suppose that d ( y , f ) < d. U d ( y , f ) < d - 1, then d ( x , f ) < d(x,y)+d(yj) <
1 + d—l = d = d ( x , f ) , which is certainly a contradiction. If d ( y , f ) = d — 1,
then necessarily y = v(x i—» /), because of condition 1. of Definition 5.7.1. Thus
in this case we also obtain a contradiction.

2. Suppose firstly that / € F¿+l(x) \ F/(x); that is, d ( x , f ) = d + I. This means
that y -£ i>(x >—> /), and thus necessarily d(y, /) > d + 1.

Assume lastly that / e F\F¿+1(x); that is, d ( x , f ) >d+l. Therefore, d(y,/) >
d(x,f)-l>d + 2-l = d + l. •

Theorem 5.7.1 ([54]) Let G = (^^4) be an ln-digraph with minimum degree 0 > 2
and diameter D. 7/0 < TT < ô — 2, then

1. D < 2£n - I => /e(G) > ö - 7T

2. D < 2CW => A(G) > (5 - 7T

7See Remark 5.1.1 for notation questions.
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Proof. Since both proofs are very similar, we are going to show only the first of them.
To this end, we make use of the .FW-algorithm introduced in Section 5.3. Besides, in
this particular case we can reduce the three steps of this algorithm to only one (see
Remark 5.3.1.3):

[PWl + PW2 + PW3}: Let F be a vertex set with cardinality |F| < 6 - IT, and x a
vertex belonging to V \ F such that d(x,F) = d < (? — 1. Then, there exists a vertex
w € r+(z) such that d(w,F) > d and |Fd

+(iu)| < |F/(x)|.
To prove this, consider the set of vertices 6+(x). As was proved in Lemma 5.7.1,

we know that for every y e 0+(x): / € F \ F/ (x) => d(y, /) > d + 1. Furthermore,
it is clear that 0+(x) is a subset of F+(x) with cardinality |6+(x)| > TT + 1. As
a consequence, if / € F¿(x), then there must exist a vertex w e @+(x) such that
d(y,f)>d+l. •

This result provides, for TT = 1, a diameter sufficient condition for any connected
digraph to have a connectivity of at least 5 — 1. Besides, for TT = 0, we obtain again
the classical result by Fàbrega and Fiol (see Proposition 1.7. 3, (4.)). Next, we present
a new result that, in general, improves the previous one.

Theorem 5.7.2 Let G be an £™ -digraph with minimum degree ô > 4, diameter D and

parameter l>2. // 1 < ?r < <5 — 3, then

1. D < 2F - 2 =» fe(G) > 6 - 7T + 1

2, D < 2£w - 1 =^ A(G) > ö - 7T + 1

Proof.

1. As in the previous theorem, we make use again of the PTF-algorithm, but in this
case the variant pointed out in Remarks 5.3.1.4, together with the fifth point of
this same list. To be more precise, we are going to prove the following statements:

Let F C V and x 6 V \ F such that |F| < ó - TT and 1 < d(x, F) = d < t? - 1
respectively. Then,

(a) there exists an x — > w path in V \ F satisfying d(w, F) > d and:

[PWO] d(w,F) > 2.
[PWl'] 2 < d = d(x, F) < t? - 1 => F \ F¿(w] ï 0.
[PW2'1 2 < |F/(x)| < |F| =» IF+HI < |F+(x)|.
[PW31] d<F-2, |Fd

+(o:)i = 1 => d(w, F)>d+l.

(b) if d — lv — 1 and / 6 F, there exists an x — » w path in V \ F satisfying
d(w, F) > I" - 1 and:

Observe that this assertion is 'stronger' than that originally stated (see Remarks 5.3.1.4).
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First of all, observe that the set 0+(x) has cardinality at least TT, and so we can
distinguish the following two cases: (I)|0+(x)| > TT + 1, and (II)|0+(x)| — IT.

(I) In this case, the proof is the same as that of Theorem 5.7.2; that is to say, it can
be reduced to show the step [PWI+PW2+PW3] exhibited in the aforementioned
proof.

(II) Suppose that |0+(x)| = TT. Observe that in this case F¿~+l(x) = F. Notice
also that the following property is verified:

V/i,h e F, /i ^ h =* v(x » /i) ̂  v(x H-» /2) (5.6)

• Proof of [PWO']: Let us consider a vertex w belonging to the set 0+(x) and
/ € F. I f d ( x J ) > 2, then d(w,f) > 2 (see Lemma 5.7.1). Finally, if d(x,f) = 1,
then / must necessarily be at a distance of at least 2 from w, since by hypothesis
¿>2.

• Proof of [PWl']: Suppose that F^(x) = F. Observe that by Lemma 5.7.1,
we know that if y G 0+(x) and f E F, then d(y,f) > d. Let / be a vertex
belonging to F, and consider the vertex z = f(x H-> /). Certainly, d(z, /) >
d — 1 > 1. Furthermore, if we suppose that for every y G Q+(x) and for every
/ 6 F d(y,f) = d, then, taking into account (5.6), we conclude that for every
f e F \ { f } , d ( z , f ) > d + i.
Finally, consider a vertex w belonging to ©+(z). Certainly, for every f ç F\ {/},
d(w,f) > d + 1. Therefore, to conclude the proof it is enough to prove that
d(w} /) > d. But this inequality must be verified; otherwise there would be TT + 1
paths from x to / of length d +1, contradicting the second condition of Definition
5.7.1.

• Proof of [PW2']: Taking into account Lemma 5.7.1, if d(y,f) >d+l for some
pair of vertices y € @+(x) and / € F ¿ ( x ) , then the proof is concluded. Thus
assume that:

Vy € 0+(x), V/ 6 F+(x), d(y, /) = d. (5.7)

Let / be a vertex belonging to F¿+l(x) \ F¿~(x), and consider the vertex w —
v(x i—> /). As a consequence of (5.6) and (5.7), we can conclude that for every
/ € F ¿ ( x ) , d(w,f) > d + 1. On the other hand, let / be a vertex belonging
to F~i"+1(x) different from /. Again taking into account (5.6), we know that
w T¿ í/(x i—> /) and therefore, from the first condition of Definition 5.7.1, we
obtain that d(w, /) > d +1. Hence, we have seen that |-F^(zi;)| = 1, and the proof
of this step is concluded.

• Proof of [PW3']: If Fd
+(x) = {/J, let us suppose that, for every y e 0+(x),

d(y,fi) = d (otherwise, the proof is finished). By Lemma 5.7.1, we know that,
for every vertex y € 0+(x) and for every vertex / € F \ {/]}, d(y, f)>d+ I .
Consequently, we can distinguish these two cases:
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(a) There exists a vertex y e ®+(x) s.t. d(y, /) > ci + 1 for some / 6 F \ { f i } .

(b) For every y e <d+(x) and for every / 6 F \ {/i}, d(y, /) = d + 1.

(a) We know that the vertex y satisfies: d(yiF) = d and F¿(y) = { f i } . Fur-
thermore, from the fact that F\F¿+í(y) ^ 0, we derive that |Q+(y)| > TT + !.
Therefore, we have seen that y satisfies the hypotheses of the previous case
(I).

(b) Let /2 € F be a vertex different from /i, and consider the vertex z =
v(x i— » /2). Firstly, it is clear that d(^, fy) = d. Secondly, we intend to
prove that d(z, /a) > d + 2 for any vertex /3 belonging to the nonempty
set F \ {/i,/2J- Indeed, if d ( z i f ^ ) = d, then it would mean that z =
v(x i— > /a), contradicting (5.6). Furthermore, if the hypothesis d(z,/s) =
d + I is assumed, then there would be TT + 1 paths from x to f 3 of length
d +2 < £7r, which is also a contradiction, because d(x, /a) = d+1. And lastly,
it is clear that d(z, /i) = d + 1, because if we suppose that d(z, /i) = d, then
there would be TT + 1 paths from x to /i of length d + 1 < £" — 1, again
contradicting the second condition of Definition 5.7.1. Therefore, we have
proved that the vertex z satisfies: |0+(i;)| > TT + 1, and this means that this
vertex verifies the hypotheses of case (I).

• Proof of [PW4']: We can assume that d(x,F] = £" - 1 and F^^x) = {h} ^
{/} (if not, either the proof is finished, or we can apply step [PW2']). Certainly,
if d ( y , f i ) > d for some vertex y £ Q+(x), the proof is finished. Thus suppose
that for every y € 0+(x), d ( y , f i ) = d. Finally, as a consequence of all these
hypotheses, it is easy to see that the vertex w = v(x H-> /) satisfies, on the one
hand, d(w, /) = d, and on the other, d(w, /) > d + 1 for every / e F \ {/} (see
Figure 5.2).

2. This case is easily proved by means of the line digraph technique (see proof of
Theorem 4.2.1). •

It is important to notice that, for TT = 1, this theorem provides a new diameter
condition for any digraph with minimum degree <5 > 4 and parameter £ > 2 to be
maximally connected.

Corollary 5.7.1 If G is an I1 -digraph with minimum degree 0 > 4, parameter i > 2
and diameter D < 2ll —2fD< 2£l — 1], then it is a maximally connected [arc-connected]
digraph.

From this last result, we have attempted an approach to the study of superconnected
¿'-digraphs. In fact, we have already obtained a first result, but the proof is too long
and 'complicated'; thus it must be revised. For this reason we have decided to present
it in this work as a conjecture.
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Figure 5.2: In this picture: d(x, F} = d = I" - 1, \F\ = 6 - TT and |0+(x)| = vr.

Conjecture 5.7.1 Let G be a (5,D,e,el)-digraph such that : ô > 4, I > 2 and £l > 3.
Then,

1. D < 2ll - 3 => KI > 2<5 - 2

a. D < 2£l - 2 => A! > 2(5 - 2
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5.8 r]—extraconnected ^-digraphs

This section is devoted to obtaining diameter sufficient conditions for a certain class
of ¿^-digraphs to be 77—extraconnected. As a matter of fact, this is the first work on
connectedness that has been carried out by using the FF-parameter t^. Maybe for this
reason, we have restricted ourselves to digraphs having a 'large' girth g, since extentions
to other cases, such as for example digraphs with digons, pose some additional difficul-
ties which, however, we have the intention of approaching shortly. To begin with, let
us recall the definition of the FF-parameter t^ = £(1,77,0).

Definition 5.8.1 Let G = (V,Ä) be a simple connected (di)graph with diameter D,
and 77 > 1 a fixed integer. The FF-parameter i^ of G is defined as the greatest integer
belonging to {!,...,£>} such that for any x,y E V, ifQ< d(x,y) = d < l^, then:

1. There is a unique path from x to y of length d.

2. Ifd < tr,: There, are no paths from x toy of length between d+1 andmin{ci+T7,£,7}.

Remark 5.8.1 For instance, a class of digraphs with a nontrivial parameter t^ is the
family of s-geodetic digraphs (see [6, 10, 124]). A digraph G is said to be s-geodetic,
1 < s < D, if there exists at most one u —> v path of length less than or equal to s, for
any u,v € V(G). Notice that the girth of an s-geodetic digraph must be at least s + 1.
Moreover, it is easily checked that ln > s for any 77 > 1.

As we have just stated, we are going to approach the problem of finding some
diameter condition to assure a certain ¿,,-digraph with a girth g large enough to be
77-extraconnected. To be more precise, we will only consider those digraphs satisfying
the inequality i^ > rj+1 which means, among other facts, that they have a girth greater
than 77.

Lemma 5.8.1 Let 77 > 1 be a fixed integer, and G an ^-digraph with girth g. Then,

tr,>Tj => g>r] + l (5.8)

Proof. Let u be any vertex belonging to a directed cycle Cg of length g in G. Certainly,
the shortest path from u to itself has length 0. It is also clear that Cg is a u —> u
path of length g. Therefore, lg < g — 1. Finally, if we suppose that g < 77, then
£77 < £<7 < S — 1 < í? — 15 contradicting the main hypothesis. •

Next, let us see a second lemma showing some properties involving out- and in-
rooted oriented trees, wich will be used later on 9.

9For the sake of clearness, only the out-rooted case is stated and proved. Certainly, the in-rooted
case is an immediate consequence of this one by considering the converse digraph.
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Lemma 5.8.2 Let 77 > 1 be a fixed integer, and G a digraph with minimum degree
0 > 2 and FF-parameter i^ > r\ + 1. Let F C V^G) and T an out-rooted tree with root
z and height h < rj — 1 in G. Then,

(a) |o+T|>(a-l)|T| + l .

(b) I f \ F \ < \d+T\, then either d(z,F) > i^-h or there, exists some vertex t 6 TUÖ+T
such that d(t,F) > d(z,F).

(c) If T is contained in G — F and \F\ < |9+T|, then there exists a z — > z' path in
G — F such that d(z',F} > l^ — h. Moreover, the length of this path is at most

Proof, (a) Suppose that T is an out-rooted tree with root z and height h < r¡ — l ,
and assume that, for two distinct vertices ¿i,Í2 6 T, there exists a vertex w 6 F+(ÍI) n
F+(Í2)- Then, there exist two different paths from the root z to vertex w; namely,
z — » t\w and z — > tzw, whose lengths belong to the set of numbers L = { I , . .. , h,h + l}.
However, this contradicts the definition of parameter £?, since h+ 1 < rj < l^, and hence,
h + 1 < min{d(zìw) + 77,^}. Thus, apart from the shortest z — > w path in G, there
cannot exist another z — > w path with length belonging to L. Therefore, for any two
different vertices íi,Í2 € T, F+(ÍI) nF+(¿2) = 0- Moreover, by Lemma 5.8.1, we have
9 > í? + 1, and thus z <£ F+(í) for any í € T.

Hence, |0+T| = |r+(T)\T| > £Í6T (ò - S+(t)) = (S-l}\T\ + l, since Eier^(0 =

|T| — 1 because T is a tree (¿J(i) denotes the out-degree in T of vertex í). This proof
allows us to assure that the subdigraph of G induced by the arcs of T and those from
T to d+T is a new out-rooted tree with root z and height h + 1.

(b) Suppose that h + 1 < r¡ and d(t, F) < d(z, F) < t^ — h - I for each vertex
í G TUô+T. Since |<9+T| > \F\, there must exist two distinct vertices wi,w2 € d+T,
which are both of them at minimum distance to the same vertex / e F; that is,
d(wi,F) = d ( w i , f ) < d(z,F), i = 1,2 (it may happen that wi € F or w% e F; in
this case, w\ = f or W2 = f respectively). Furthermore, the root z of T satisfies
d(z,F) < d ( z , f ) < d(z,Wi) + d(wi,f) < h + 1 + d(z,F). Therefore, we have two
different paths from z to /; namely, z — > u ; ¿ — > /, z = l, 2, whose lengths belong to the
set of numbers L = [ d ( z , F), d(z, F) + 1, . . . , d(z, F) + h + l}. This fact contradicts
again the definition of parameter in because d(z,F) + h + I < l^ and h + 1 < 77 imply
d(z, F) + h + l< min{d(z, f ) + rj, t^}. Therefore, either d(z, F}>tri-hor there exists
some vertex í e T U <9+T satisfying d(t, F) > d ( z , F).

(c) 10 From case (b), it follows that condition |F| < |<9+T| implies that either
d(z,F) > ITJ- h or there exists some vertex zi 6 TUO+T such that d(z\_,F) > d(z,F).
In the first case, the lemma holds by taking z' = z. In the second one, the lemma also
holds if d(zi , F) > £n — h by taking z' = z\ . If d(z\ , F) < l^ - h, let us consider another

"See Figure 5.3.
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out-rooted tree isomorphic to T, say TZ1, with root z\ and the same height /i, which is
contained in G — F. Hence, |9+TZ1| = \d+T\ > \F\, and, again by applying case (b), we
obtain that there exists some vertex z-¿ € TZ1 Uo+T21 such that d(z2, F) > d(zi,F). By
repeating this procedure, we obtain a z —* z' path in G — F such that d(z', F) > in — h.

Moreover, this iterative procedure assures the existence in G — F of a z —* z\ —> • • • —>
zUp = z' path whose length is at most p(h + 1) < (£^ — h — l)(h + 1), since the number

p of steps needed to attain the vertex z' satisfying the lemma is at most (l^ — h — l). •

Figure 5.3: A z — » z1 path of length at most
z' at a distance of at least i — hto F,

— h — l)(/i + 1), with its terminal vertex

And now we are ready to prove the main result of this section by means of the PW

algorithm (see Section 5.3). In this particular case we are going to use the standard
version stated in Theorem 5.3.2 together with the third point of Remarks 5.3.1.

Lemma 5.8.3 Let r\ > 2 be a fixed integer and G a digraph with minimum degree S > 2
and FF -parameter i^ > r¡ + 1. Let F be a nontrivial subset of vertices [arcs] such that
\F\ < TJ, = (r¡ + l)(ô — 1). Then, for every vertex v € V \ F, there exists

(a) a v — > v' path in G — F such that d(v', F) > t^ — |"log¿ r^\ + 1;

(b) a w' — > v path in G — F such that d(F, w') > IT, — [Íog¿ T^ + 1.

Moreover, the length of these paths is at most rj+( [i?/2] + l)(in— [??/2] — 1 + flog^ T^\ ) —

Proof.
(a) Let us prove the vertex case. By Lemma 5.8.1, the girth of G satisfies g > 77 + 1.

Therefore, since F is a nontrivial set, for any vertex v £ V\F, we can consider in G — F
a path P = v -> Urj of length rj starting in v. Notice that \d+P\ > (8 — l)(r/ + 1) = r^.
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Let us see that there must exist a vertex n in P with out-degree in G — F at least
two. Suppose, on the contrary, that any vertex of P has in G — F out-degree at
most one. If the root v is adjacent from the vertex u^, then F D <9+P, and hence
\F\ > \d+P\ > TJJ, contradicting the hypothesis |F| < r^. Furthermore, if v is not
adjacent from u,,, then \d+P\ > rn + 1 and \d+P n (V \ F)\ < 1. So, in this case,
\F\ > |<9+P| — 1 > (77 + 1)(6 — 1) = TTJ, and we arrive at the same contradiction.
Therefore, a vertex u with out-degree in G — F at least two exists.

Now, let us see that there exists in G— F a u — > z path such that d(z, F) > Ir,— [77/2] .
To this end, let us consider in G — F two paths starting in vertex it, each one of length
[?7/2]. Since £,7 > 77 + 1, these two paths coincide only in the vertex u, and hence they
form an out-rooted tree T" with root u. The height of T" is h = [»7/2] , and hence,
h + 1 < 77 because 77 > 2. By Lemma 5.8.2(a), we have \d+T' > (0 - l)|T"| + 1 >
(<5 — 1)(»7+ 1) + 1 > \F\, and thus we can apply Lemma 5.8.2(c). Then, we can conclude
that there exists in G — F au — > z path such that d(z, F}> t^— [»7/2] .

To end the proof, let us see that there exists in G — F a z — » v' path such that
d(v',F) >¿r¡- [logjT,,] + 1. Let h' = [log^] - 1. If [77/2] < tí, then the result holds
for v' = z. Hence, assume that tí < [r?/2]. Since tí + [77/2] < 2 [77/2] < 77 + 1 < l^, and
hence, h' < l^ — [»7/2] < d(z,F), we can consider in G — F an out-rooted tree Tz with
root z and height h', such that their vertices with level number less than h' have all of
them out-degree at least o. Then, we have \d+Tz\ > 6h'+l = O^°^rn1 > T??. Finally, we
can apply Lemma 5.8.2 (c) and the proof of part (a) concludes.

Certainly, point (b) is an immediate consequence of the previous one by considering
the converse digraph. As for the arc case, the proof is similar and for this reason we
omit it.

Finally, it can be easily checked that the length of the v — > u — » z — > v' path is at
most »/ + (£„- [77/2] - 1)([77/2] + 1) + [logir^l ([77/2] + 1 - [logd-r?;]). •

And finally, as a consequence of this lemma we obtain the following results.

Theorem 5.8.1 Let 77 > 1 be a fixed integer, and G a digraph with minimum degree
ô > 2, FF-parameter t^ > 77 + 1 and diameter D, Then

(a) D < 2£„ + 1 - 2[log¿ T„l =>• KI > r„

(b) D<2Cri + 2- 2[log¿ r„l =* A! > r„.

Proof. First of all, notice that, for 77 = l , the theorem holds as a consequence of the
results given in Theorem 5.6.1. So, assume that 77 > 2 is a fixed integer, and let us
prove the arc version of the theorem, the proof of the vertex case being analogous u.

Let us consider a nontrivial set of arcs A such that \A\ < TV,. Take two different
vertices u, v of the digraph G, By Lemma 5.8.3, there exist u — > u' and v' — > v

11 Alternatively, one can prove the vertex case, and then the arc case is immediately obtained by
using the line digraph technique (see proof of Theorem 4.3.2).
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paths in G — A such that d(u',A),d(A,v') > i^ — [log^r,,] + 1. Hence, any u' — » v'

path in G containing an arc of A has length at least 2^ — 2[log(5r77] + 3. Since D <
2¿jj + 2 — 2 [logô- Trç] , a shortest u' — * v' path does not contain any arc of A, Hence,
G — A is still connected and we have AI > r^. . •

Taking into account the result given in Lemma 5.8.3 on the length of the u — * u'
and v' — > v paths, we have the following corollary concerning the diameter vulnerability
of G. We only state the result in the vertex case.

Corollary 5.8.1 Let G be a digraph with minimum degree 5 > 2 and FF-parameter

¿7j > TJ + 1 -> f] > 2, and let F be a nontrivial subset of vertices such that \F\ < r^ =
(77+1) (a- 1). If D < 2^ + 1 — 2 [ìog,j r,/] , then G = G— F is connected and has diameter

D'<D + 1p, where p = r, + ([77/2! + !)(£„ - \r,/T\ - I + Rogiti) - (Rog* T„l)2. •

Another consequence of considering ¿^-digraphs having a girth g > r¡ + 1, is that
in this kind of digraphs the results stated in the previous theorem can be used to
obtain a similar sufficient diameter condition to guarantee r^-extraconnectivity for 77 €
(1, ... ,5 — 1}. As a matter of fact, this new result is a corollary of both Theorem 5.8.1

and the following proposition.

Proposition 5.8.1 Let r¡ be a fixed integer such that I < r¡ < g — 1, G a digraph with
girth g > r¡ + l , and F subset of subset of vertices fares]. Then

1. F is ij-trivial if and only if it is 1-trivial.

2. K\ = K2 = - • • = Kfl-l < Kg < . . . /Al = A2 = - . . = A3_l < Xg < . . .].

3. F is a nontrivial vertex-cutset [arc-cutset] if and only if every component ofG—F
either has at least g vertices or it is a transmittance component with a single

vertex.

Proof.

1. Certainly, if F is trivial, then it is rj-trivial for any r¡ > 1 (see Proposition 5.4.1).
Reciprocally, suppose that F C V is 77-trivial. So, there exists S C V \ F, with
l < |>S| < î?, such that F contains d+S or d~S. Without loss of generality, we can
assume that F D d+S; otherwise we can reason on the converse digraph obtained
from G by reversing the direction of every arc. If F+(s) c¿ F for every s € S,
then S contains at least one cycle. But this is impossible since g > 77 + 1 . This
contradiction proves the existence in 5 of a vertex v such that d+{v} C F, and
hence, F is trivial. The proof for the arc case is analogous.

2. These sequences are an immediate consequence of the previous point.
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3. This result is immediately obtained by considering the third point of Proposition
5.4.1 and the first of this one. •

And now, as a consequence of the results given in Proposition 5.4.1 we can refor-
mulate Theorem 5.8.1 in the following way:

Theorem 5.8.2 Let rj > 1 be a fixed integer, and G a digraph with minimum degree
ö > 2, FF-parameter ¿^ > r\ + 1 and diameter D. Then

(ü) D < "¿í,, + l -

(b) D < 2£„ + 2 -

The excellent behaviour of the FF-parameter i^ with respect to the line digraph
technique (see Proposition 5.5.1) allows us to obtain the following result as a corollary
of the previous theorem.

Corollary 5.8.2 Let G be. a connected digraph with minimum degree 8 > 2, diameter
D, girth g , and parameter C^ , where 1 < r¡ < g — 1. If LkG is the k-iterated line digraph
of G and k > rj + 1 — l^, then

(a) k > JD-2£r,-l+2nogô-r7?l => Ki(LfeG) = . . . = Kr,(LkG) = ... = ng-i(L
kG) > T^

(b) k > J5-2£í7-2+2(logtf T„l => A,.(LfeG) = . . . = \r,(LkG) = ... = \g-i(L
kG) > r„.

Notice that this result means that if the iteration order is large enough, any iterated
line digraph is Ty-extraconnected. Finally, let us apply these results to some families
of large iterated line digraphs which have been considered as good models of inter-
connection networks, such as the dense bipartite digraphs, the De Bruijn and Kautz
generalized p-cycles.

Examples 5.8.1

1. The Moore bipartite digraph G = BD(d,d2 + 1) (see Remark 1.5.1) is d-regular,
has diameter D = 3, girth g = 4 and parameter t — 2. Therefore, £ = £i = £% =
iz = 2. Since the bipartite digraph BD(d,dD'1 + dD~3) is the (D - 3)-iterated
line digraph of G, we derive that e2(L

D~3G} > 3 for D > 4 and 13(L
D-3G) > 4

for D > 5. Applying Theorem 5.8.2 to G = BD(d,dD~l + d°-3) we obtain that
this digraph has At = A2 = AS > 3(d— 1) and KI = «2 = KS > 3(d— 1) for D > 4,
and AI = A2 = AS > 4(d — 1) and KI = «2 = ^3 > 4(d — 1) for D > 5.
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2. The De Bruijn generalized p-cycle BGC(p,d,dp) is isomorphic to the (p — 1)-
iterated line digraph of Cp <8> K¿. This means that this digraph is (¿-regular, has
diameter 2p — 1, girth g = p and FF-parameters £ = ...= ip-\ = p. If we apply
the previous theorem to this graph we obtain that if the iteration order satisfies
k > 2\logdp(d - 1)1 - 2 [k > 2\logdp(d - 1)1 - 3], then BGC(p,d,dp+k} has

KI = «2 = • • • = Kp-i > p(d — 1) [Ai = A2 = • • • = Ap_i > p(d — 1)].

3. The Kautz generalized p-cycle KGC(p, d, dp +1) is d-regular, has diameter 2p— 1,
girth g = p and FF-parameters £ = .., = £p-\ = p. As a consequence, we can
proceed in the same way as in the previous case, and thus we obtain the same
results for KGC(p, d, <P+fc + dk).
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Conclusions and open problems

This work has dealt with some issues related to the design and study of large and
reliable graphs and digraphs. To be more precise, we have carried out four specific
contributions:

• (A, D)-problem: Design of new large graphs (Chapter 2).

• Vulnerability analysis: 1-vertex vulnerability of GC graphs (Chapter 3).

• Specific connectedness study: Connectivity and Superconnectivity of generalized
p-cycles both under diameter and order sufficient conditions (Chapter 4).

• General connectedness study: Connectivity, Superconnectivity and extraconnec-
tivity of digraphs under diameter conditions, by using several FF-parameters and
a unique kind of constructive proof (Chapter 5).

In Chapter 2, a list of new solutions to the (A, Z))-problem is obtained for diameter
D = 6 (see Table 2.3). Each of these graphs has been contructed by compounding a
Moore bipartite graph of diameter six with a family of complete graphs. The main
difficulty has been to find for each case a large enough [I, A]-clique of diameter 2 (see
Section 2.2). We have presented in this work the new large graphs obtained with
a maximum degree A < 14, although the method theoretically allows to yield large
graphs with the sole restriction that A — 1 must be a prime power. The results of this
work were presented in Combinatorix'98 (Palermo, Italy) and they can be found in
[83, 1.43].

In Chapter 3, a ,new reformulation of the generalized compound graphs GC has
been proposed, by using the conjunction of digraphs, the line digraph technique and the
compounding of graphs (see Section 3.3). Starting from this simpler characterization,
the (A, D, D', l )-problem for these graph families has been studied. The result obtained
is that, except for a few cases, every generalized compound graph has a quasi optimal
1-vertex vulnerability (see Theorem 4.4.1). This work was presented in British'99
(Canterbury, Great Britain) and it can be found in [84].

The two last Chapters of this work contain a number of new results on digraph con-
nectedness. In Chapter 4, both the connectivity and Superconnectivity of generalized
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p-cycles has been studied. The methodology used in this work has been inspired in
those carried out by C. Balbuena, A. Carmona, J. Fàbrega and M. A. Fiol on this sub-
ject for digraphs and bipartite digraphs (see Section 4.1). Starting from the parameter
£ and using the so-called Hamidoune terminology (see Section 1.7.1), we have obtained
both diameter and order conditions to assure maximal connectivity and superconnec-
tivity (see Tables 4.1 and 4.2). Furthermore, we have defined the good superconnected
generalized p-cycles and studied this property under diameter conditions (see Section
4.4). Finally, these results have been applied to the Moore generalized p-cycles. The
main results of this work were shown in Combinatorix'98 (Palermo, Italy) and they
can be found in [116, 12].

In Chapter 5, a number of new results involving connectivity, Superconnectivity and
extraConnectivity have been presented (see Sections 5.6, 5.7 and 5.8). It is particularly
interesting the result stated in Theorem 5.6.2, because it shows a fact which had passed
unnoticed so far, and it can be, not only the key point to re-prove in a simpler way
the classical results (this issue is also shown in Section 5.6), but also the starting point
for obtaining new connectedness results of different kinds, for example, under degree
conditions. In Section 5.7, a new theorem involving the FF-parameter f" = £(l, I , T T )
is presented, wich improves a result by Fàbrega and Fiol (see [54]). Moreover, this
improvement is significant because it enables, unlike the classical theorem, to approach
the study of the Superconnectivity in maximally connected digraphs. Finally, in Sec-
tion 5.8 the study of the Ty-extraconnected digraphs has been approached. Certainly,
the main result of this section is Theorem 5.8.2, which provides a diameter sufficient
condition for any digraph with girth large enough to be ^-extraconnected.

Open problems

As it was to be expected, several new unsolved problems, directly related to those
approached in this work, have appeared. In the following list we briefly present some
of them.

• Design of new large graphs with diameter different from six by using a similar
methodology to that presented in Chapter 2.

• Design of new large graphs constructed as GC graphs.

• Study of connectedness properties of the GC graphs, especially its connectivity.
Study of other cases of diameter-vulnerability.

• Study of connectedness properties on the generalized p-cycles with the FF-
parameters and the PW-algorithm. Improvement of the order conditions pre-
sented in this work.

• Behaviour of the FF-parameters with respect to the line digraph technique.
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Analysis of the existence problem related to the r?-nontrivial cutsets and arc-
cutsets. Whitney-like inequality sequence for r\ > 1.

Computational problems of the FF-parameters.

Generalizing the diameter-vulnerability: supervulnerability, extravulnerability,
etc.

Generalizing the cages for the directed case, by using the parameter i or other
suitable FF-parameters.

Study of the 77-extraconnectivity under Chartrand and order conditions. Study
of the r?-extraconnectivity for digraphs with small girth.
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