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Carlos López Mart́ınez
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Appendix A

Calculation of pv1(v1) and pv2(v2)

This appendix is devoted to derive the expressions of the probability density functions (pdf) pv1(v1) and

pv2(v2), on the basis of

v1 = cos(φ) (A.1)

v2 = sin(φ) (A.2)

where φ represents the Hermitian product phase difference, whose pdf is given by Eq. (2.110) on page

31.

Let x be a random variable characterized by the pdf px(x). Let y = f(x) be a function with the

following roots

y = f(x1) = f(x2) = . . . = f(xn) = . . . . (A.3)

The pdf of the variable y, denoted by py(y), is obtained as given by Ref. [72] on page 95

py(y) =
∑

k

px(xk)

|f ′(xk)|
(A.4)

where xk represents the solutions of y = f(x) and f ′(x) is the derivative of f(x).

The first pdf to obtain is pv1(v1), on the basis of Eq. (A.1). Since the Hermitian product phase

difference φ for SAR imagery is only considered within the interval [−π, π), Eq. (A.1) presents the two

following solutions

φ1 = arccos(v1) (A.5)

φ2 = − arccos(v1) (A.6)

such that φ1 ∈ [0, π) and φ2 ∈ [−π, 0). Since the phase difference pdf pφ(φ) is symmetric about 0 rad 1,

it follows

pφ(φ1) = pφ(φ2) = pφ(arccos(v1)) φ ∈ [−π, π). (A.7)

Concerning the evaluation of the term |f ′(xk)| in Eq. (A.4), for Eq. (A.1)

∣∣∣∣
∂v1
∂φ

∣∣∣∣
φ=φk

= | − sin(φ)|φ=φk = | sin(φ)|φ=φk . (A.8)

1In this case the phase mode φx is considered equal to 0 rad since interest is on assuming the phase pdf as noise.
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234 APPENDIX A. CALCULATION OF PV1(V1) AND PV2(V2)

Evaluating Eq. (A.8) for φk = φ2

| sin(φ2)| = | sin(−φ1)| = | − sin(φ1)| = | sin(φ1)|. (A.9)

Consequently, only the solution φk = φ1 has to be evaluated. Considering Eq. (A.5)

| sin(φ1)| = | sin(arccos(v1))| =
√

1 − v2
1 (A.10)

where arccos(x) = arcsin(
√

1 − x2) has been employed [213].

Introducing the results given by Eqs. (A.7) and (A.10) into (A.4)

pv1(v1) = 2
pφ(arccos(v1))√

1 − v2
1

v1 ∈ [−1, 1). (A.11)

Considering pφ(φ), where β takes the value

β = |ρ| cos(φ1) = |ρ|v1 (A.12)

on the basis of Eq. (A.5), pv1(v1) has the expression

pv1 (v1) =
1

π
√

1 − v2
1

(
1 − |ρ|2

) [(
1 − |ρ|2 v2

1

)1/2
+ |ρ| v1 (π − arccos (|ρ| v1))

]

(
1 − |ρ|2 v2

1

)3/2
v1 ∈ [−1, 1]. (A.13)

The expression of pv2(v2) requires a slightly different analysis. In the phase interval φ ∈ [−π, π), Eq.

(A.2) presents the two following solutions

φ1 = arccos(v2) (A.14)

φ2 = sgn(v2)π − arccos(v2) (A.15)

where sgn(·) is the sign function, φ1 ∈ [−π/2, π/2) and φ2 ∈ [−π,−π/2) ∪ [π/2, π).

Concerning the evaluation of the term |f ′(xk)| in Eq. (A.4), for Eq. (A.2)
∣∣∣∣
∂v2
∂φ

∣∣∣∣
φ=φk

= | cos(φ)|φ=φk . (A.16)

If Eq. (A.16) is evaluated for φ2, Eq. (A.15), it follows

| cos(sgn(v2)π − arcsin(v2))| = | cos(sgn(v2)π) cos(arcsin(v2)) + sin(sgn(v2)π) sin(arcsin(v2))|
= | − cos(arcsin(v2))| = | cos(arcsin(v2))|. (A.17)

Also in this case, only the first solution, Eq. (A.14), has to be evaluated for the derivative, Eq. (A.16),

| cos(φ1)| = | cos(arcsin(v2))| =
√

1 − v2
2 (A.18)

where arcsin(x) = arccos(
√

1 − x2) has been employed [213].

In this case, the terms pφ(φ1) and pφ(φ2) need separate evaluation. The parameter β = |ρ| cos(φk)
takes, for each solution, Eqs. (A.14) and (A.15), the expressions

βφ1 = |ρ| cos(φ1) = |ρ| cos(arcsin(v2)) = |ρ|
√

1 − v2
2 (A.19)

βφ2 = |ρ| cos(φ2) = |ρ| cos(sgn(v2) − arccos(v2)) = −|ρ|
√

1 − v2
2 . (A.20)

Considering Eq. (A.4), with the distribution pφ(φ) of Eq.(2.110) on page 31, where the results of Eqs.

(A.18), (A.19) and (A.20) are introduced, the pdf pv2(v2) takes the expression

pv2 (v2) =
1

π
√

1 − v2
2

(
1 − |ρ|2

) [(
1 − |ρ|2

(
1 − v2

2

))1/2
+ |ρ|

√
1 − v2

2

(
π
2 − arccos

(
|ρ|
√

1 − v2
2

))]

(
1 − |ρ|2

(
1 − v2

2

))3/2

v2 ∈ [−1, 1]. (A.21)



Appendix B

Calculation of Nc

The following appendix concerns the process to obtain the expression of the parameter Nc for an ar-

bitrary number of looks N . As defined in Eq. (4.11), Nc is the mean value of the random process v1.

Consequently, this value can be found as

Nc =

∫ 1

−1
v1pv1(v1) dv1 =

∫ π

−π
cos(φ)pφ(φ) dφ. (B.1)

The expression of Nc will be derived through the second integral of Eq. (B.1). In order to have the

expression of Nc for an arbitrary number of looks, the multi-look pdf of φ is needed. The expression of

this distribution can be found in [22]

pφ,N(φ) =
(1 − |ρ|2)N

2π

[
(2N − 2)!

[(N − 1)!]222(N−1)

(
(2N − 1)β

(1 − β2)N+ 1
2

(π
2

+ arcsin(β)
)

+
1

(1 − β2)N

)

+
1

2(N − 1)

N−2∑

r=0

Γ(N − 1
2 )

Γ(N − 1
2 − r)

Γ(N − 1 − r)

Γ(N − 1)

1 + (2r + 1)β2

(1 − β2)r+2

]
(B.2)

where β = |ρ| cos(φ). The second integral of Eq. (B.1) can be calculated by using the distribution given

in Eq. (B.2). This integral can be divided into four additional integrals:

·

(1 − |ρ|2)N
2π

(2N − 2)!(2N − 1)

[(N − 1)!]222(N−1)

π

2
|ρ|
∫ π

−π

cos2(φ)

(1 − |ρ|2 cos2(φ))N+ 1
2

dφ

=
(1 − |ρ|2)N

2π

(2N − 2)!(2N − 1)

[(N − 1)!]222(N−1)

π

2
|ρ|B

(
1

2
,
3

2

)
2F1

(
3

2
, N +

1

2
; 2; |ρ|2

)
. (B.3)

B(x, y) represents the beta function and 2F1(a, b; c; z) represents the Gauss hypergeometric function,

whose definition is

2F1(a, b; c; z) =

∞∑

n=0

(a)n(b)n
(c)n

zn

n!
(B.4)

where, (x)n = Γ(x + n)/Γ(x) represents the Pochhammer symbol. The integral in Eq. (B.3) has

been solved by means of Eq. 3.682 on page 431 of Ref. [171].
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236 APPENDIX B. CALCULATION OF NC

·
(1 − |ρ|2)N

2π

(2N − 2)!(2N − 1)

[(N − 1)!]222(N−1)
|ρ|
∫ π

−π

cos2(φ) arcsin(|ρ| cos(φ))

(1 − |ρ|2 cos2(φ))N+ 1
2

dφ

=
(1 − |ρ|2)N

2π

(2N − 2)!(2N − 1)

[(N − 1)!]222(N−1)
|ρ|2

∫ π

0

cos2(φ) arcsin(|ρ| cos(φ))

(1 − |ρ|2 cos2(φ))N+ 1
2

dφ = 0 (B.5)

since the function inside the integral is an odd function in the interval φ ∈ [0, π) with respect to

φ = π/2.

·
(1 − |ρ|2)N

2π

(2N − 2)!

[(N − 1)!]222(N−1)

∫ π

−π

cos(φ)

(1 − |ρ|2 cos2(φ))N
dφ

=
(1 − |ρ|2)N

2π

(2N − 2)!

[(N − 1)!]222(N−1)
2

∫ π

0

cos(φ)

(1 − |ρ|2 cos2(φ))N
dφ = 0. (B.6)

Using the same argument as in the previous point, one can deduce that the integral is also zero in

this case.

·

(1 − |ρ|2)N
2π

1

2(N − 1)

∫ π

−π
cos(φ)

N−2∑

r=0

Γ(N − 1
2 )

Γ(N − 1
2 − r)

Γ(N − 1 − r)

Γ(N − 1)

1 + (2r + 1)β2

(1 − β2)r+2
dφ

=
(1 − |ρ|2)N

2π

1

2(N − 1)

N−2∑

r=0

Γ(N − 1
2)

Γ(N − 1
2 − r)

Γ(N − 1 − r)

Γ(N − 1)

·
[∫ π

−π

cos(φ)

(1 − |ρ|2 cos2(φ))r+2
dφ+ |ρ|2

∫ π

−π

(2r + 1) cos3(φ)

(1 − |ρ|2 cos2(φ))r+2
dφ

]
= 0. (B.7)

One can deduce that both integrals equal zero considering the same arguments employed in the

previous two points.

Taking into account the values of the different integrals in the previous four points, the value of Nc,

for a given number of looks N , is

Nc = (1 − |ρ|2)N (2N − 2)!(2N − 1)|ρ|
[(N − 1)!]222(N−1)

π

4
2F1

(
3

2
, N +

1

2
; 2; |ρ|2

)
. (B.8)

Introducing the expression 2F1(a, b; c;x) = (1−x)c−b−a 2F1(c−a, c−b; c;x), the value of Nc for single-look

imagery, i.e., N = 1, is

Nc =
π

4
|ρ| 2F1

(
1

2
,
1

2
; 2; |ρ|2

)
. (B.9)

In order to calculate the expression of σ2
v1 , the second moment of v1 has to be calculated

E{v2
1} =

∫ 1

−1
v2
1pv1(v1) dv1 =

∫ π

−π
cos2(φ)pφ(φ) dφ. (B.10)

Eq. (B.2) presents the pdf of the phase φ for an arbitrary number of looks. The value of Eq. (B.10)

can not be found in this case due to the complexity of the pdf given by Eq. (B.2). Instead, only the

expression of E{v2
1} for one-look imagery is obtained. Considering N = 1, Eq. (B.2) simplifies to the

expressions given by Eqs. (2.110) and (5.13). Hence, Eq. (B.10) is

E{v2
1} =

1 − |ρ|2
2π

∫ π

−π

cos2(φ)β(1
2π + arcsin(β))

(1 − β2)
3
2

dφ+
1 − |ρ|2

2π

∫ π

−π

cos2(φ)

1 − β2
dφ (B.11)
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where β = |ρ| cos(φ). The first integral of Eq. (B.11) can be obtained as

1 − |ρ|2
2π

∫ π

−π

cos2(φ)β(1
2π + arcsin(β))

(1 − |ρ|2 cos2(φ))
3
2

dφ

=
|ρ|(1 − |ρ|2)

2π

∫ π

−π

cos3(φ)1
2π

(1 − |ρ|2 cos2(φ))
3
2

dφ+
|ρ|(1 − |ρ|2)

2π

∫ π

−π

cos3(φ) arcsin(|ρ| cos(φ))

(1 − |ρ|2 cos2(φ))
3
2

. (B.12)

From Eq. (B.7), it can be proved that the first integral of Eq. (B.12) equals zero. The second integral

of Eq. (B.12) can not be solved directly. Hence the Taylor series of arcsin(|ρ| cos(φ)) is included to solve

the integral. Thus,

|ρ|(1 − |ρ|2)
2π

∫ π

−π

cos3(φ) arcsin(|ρ| cos(φ))

(1 − |ρ|2 cos2(φ))
3
2

=
|ρ|(1 − |ρ|2)

2π

∫ π

−π

cos3(φ)
∑∞

n=0
(2n)!

4n(n!)2(2n+1)
(|ρ| cos(φ)))2n+1

(1 − |ρ|2 cos2(φ))
3
2

=
|ρ|(1 − |ρ|2)

2π

∞∑

n=0

(2n)!|ρ|2n+1

4n(n!)2(2n + 1)

∫ π

−π

cos2n+4(φ)

(1 − |ρ|2 cos2(φ))
3
2

dφ

=
1

2π

∞∑

n=0

(2n)!B
(

1
2 , n+ 5

2

)

4(n−1)(n!)2(2n + 1)

|ρ|2n+2

(1 − |ρ|2) 1
2

2F1

(
1

2
,
3

2
;n+ 3;

|ρ|2
1 − |ρ|2

)
(B.13)

where B(x, y) represents the Beta function. The development of Eq. (B.13) is based on the equalities

for the Hypergeometric function: 2F1(a, b; c;x) = (1 − x)c−b−a 2F1(c− a, c− b; c;x) and 2F1(a, b; c;x) =

2F1(b, a; c;x), and on the expression 3.682 on page 431 of Ref. [171].

The second integral of Eq. (B.11) equals

1 − |ρ|2
2π

∫ π

−π

cos2(φ)

1 − |ρ|2 cos2(φ)
dφ =

√
1 − |ρ|2

1 +
√

1 − |ρ|2
. (B.14)

Consequently, considering the results given by Eqs. (B.12) and (B.13), the expression of E{v2
1} is

E{v2
1} =

√
1 − |ρ|2

1 +
√

1 − |ρ|2
+

1

2π

∞∑

n=0

(2n)!B
(

1
2 , n+ 5

2

)

4(n−1)(n!)2(2n + 1)

|ρ|2n+2

(1 − |ρ|2) 1
2

2F1

(
1

2
,
3

2
;n+ 3;

|ρ|2
1 − |ρ|2

)
. (B.15)

The expression of the variance of the noise term v1, for single-look SAR imagery, is found as σ2
v1 =

E{v2
1} −N2

c , where Eqs. (B.9) and (B.15) are considered. As one observed, the expression of σ2
v1 is not

very useful since the dependence on the coherence |ρ| is not clear.
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Appendix C

Combination of Variance Expressions

In Chapter 4 and Chapter 5, the family of curves 1/2 (1− |ρ|2)α, Eq. (4.12), is employed to approximate

some expressions concerning variances, where |ρ| represents the coherence between a pair of SAR images

and α controls the curve’s shape. In the case of the interferometric phasor noise model, this family is

employed to approximate σ2
v1 , Eq. (4.14), and σ2

v2 Eq. (4.18), whereas in the case of the Hermitian

product speckle noise model it is employed to approximate σ2
na1, Eq. (5.56), and σ2

na2, Eq. (5.71).

The noise terms v1 and v2, in the case of the interferometric phasor noise model, are combined to form

the noise terms vc and vs, Eqs. (4.23) and (4.24) respectively. In a similar way, in the case of the

Hermitian product speckle noise model, the noise terms nar and nai, Eqs. (5.85) and (5.86), result form

the combination of na1 and na2. Considering the expressions of the corresponding variance values σ2
vc ,

σ2
vs , σ

2
nar and σ2

nai given respectively by Eqs. (4.27), (4.28), (5.89) and (5.90), all of them have expressions

of the type
1

2
(1 − |ρ|2)α1 cos2(φ) +

1

2
(1 − |ρ|2)α2 sin2(φ) (C.1)

where φ is a phase measurement. In order to maintain the simplicity of the variance expressions, it is

wanted that the curves given by Eq. (C.1) belong also to the family 1/2 (1 − |ρ|2)α. This is reduced to

find an exponent α3, such that the curve
1

2
(1 − |ρ|2)α3 (C.2)

equals Eq. (C.1). Hence, the solution is

α3 =
ln
(

1
2(1 − |ρ|2)α1 cos2(φ) + 1

2(1 − |ρ|2)α2 sin2(φ)
)

ln(1 − |ρ|2) . (C.3)

Fig. C.1 presents a plot of α3 as a function of |ρ| and φ, for the particular case in which α1 = 1 and

α2 = 1.5. As it can be observed, the value of α3 ranges between α1 and α2 as a function of the phase

φ, whereas it is practically constant as a function of the coherence value |ρ|. In order to eliminate the

dependence on φ, α3 is considered

α3 =
α1 + α2

2
(C.4)

which corresponds to the average value of α3 in the space given by |ρ| and φ. By considering α3 equal to

Eq. (C.4), instead to Eq. (C.3), α3 is a constant value. The resulting curve with the exponent α3 can be
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240 APPENDIX C. COMBINATION OF VARIANCE EXPRESSIONS

considered as the average curve of those defined by the exponents α1 and α2, since cos2(φ) and sin2(φ)

have values in the range [0, 1].
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Figure C.1: Exponent α3 as a function of |ρ| and φ. In this case, α1 = 1 and α2 = 1.5.



Appendix D

Linear Least Squares Regression Analysis

Linear least squares regression analysis has been employed in Chapters 4 and 5 to measure quantitatively

the validity of the proposed noise models with real data. This comparison consist on the analysis of

first and second order statistical moments, in such a way that the regression lines measure the agreement

between the theoretical expressions of these statistical moments, given by the proposed noise models, and

the same values estimated from real data. This appendix concerns only how the regression analysis results

have to be interpreted to measure the noise model’s validity. The reader is directed to comprehensive

references on this topic for a detailed analysis [214,178].

Let X and Y to be two variables such that X contains the theoretical values of a given parameter θ

and Y contains the estimated values of θ from real data. The least squares regression analysis measures

the least squares regression line

Y = a0 + a1X (D.1)

where a0 is the constant coefficient and a1 the regression line slope. Hence, if the estimated value Y of

the parameter θ equals the theoretical value given by X, it implies a0 = 0 and a1 = 1.

Two additional quantities are also provided in order to measure quantitatively the agreement between

the estimated regression line and the real measurements. The first measure is the estimate standard error,

denoted by s. The parameter s measures the scatter about the regression line of Y on X. that is, it is an

absolute measure of how good the estimated line fits the means of the variable Y . Its value is given by

s =

√∑
(Y − Ŷ )2

N
(D.2)

where Ŷ represents the value of Y given by Eq. (D.1), Y is the actual value of the parameter under

analysis and N denotes the number of samples. Hence, the lower the value of s, the better the fit of the

estimated line to the real relation between X and Y .

The second parameter is the correlation coefficient, denoted by r, whose expression is

r =

√∑
(Ŷ − Y )2∑
(Y − Y )2

(D.3)

where Y is the value of the parameter θ estimated from data, Ŷ is the value given by Eq. (D.1) and Y is

the mean value of Y . The value of r is in the interval [0, 1]. The parameter r is a relative measure of the

degree of linear association between X and Y . A value of r equal to 1 indicates that Eq. (D.1) is able to
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242 APPENDIX D. LINEAR LEAST SQUARES REGRESSION ANALYSIS

explain all the variance present in the observations. On the contrary, the lower the value of r, the higher

the amount of the observation’s variance Eq. (D.1) can not be explained.

The validity of the proposed noise models is quantitatively measured by the parameters a0, a1, s

and r for the mean and variance statistical moments. First, the closer the parameters a0 and a1 to 0

and 1, respectively, the larger the agreement between theoretical expressions and values derived from

real data. This agreement is measured by s and r. Therefore, the lower the value of s the better the fit

between theoretical and experimental values. In this case, the parameter r can be considered as a quantity

measuring how much close the theoretical expressions of the mean and variance are to the corresponding

values derived from real data. A value equal to 1 indicates that the degree of linear association between

the theoretical values and the experimental ones is complete. Considering that a0 = 0 and a1 = 1, it can

be concluded that the theory completely describes data. On the contrary, the lower the value of r, the

less the capacity of the theoretical expressions to estimate data values.

Finally, since the theoretical mean and variance expressions are directly derived from the different

terms of the noise models, if these expressions fit with data, it can be concluded that the noise models

are able to fully explain data behavior.



Appendix E

Calculation of E{z2 cos(φ)}, E{zcz2} and E{z1z2}

This first part of this appendix focus on calculating the expression of the term E{z2 cos(φ)}

E{z2 cos(φ)} =

∫ ∞

0

∫ π

−π
z2 cos(φ)pz,φ(z, φ) dφdz. (E.1)

The expression of pz,φ(x, φ) is given in Eq. (5.9) on page 111. Hence, considering φx = 0

E{z2 cos(φ)} =

∫ ∞

0

∫ π

−π
z2 cos(φ)pz,φ(x, φ) dφdz

=

∫ ∞

0

2z3

πψ2(1 − |ρ|2)K0

(
2z

ψ(1 − |ρ|2)

)∫ π

−π
cos(φ) exp

(
2|ρ|z cos(φ)

ψ(1 − |ρ|2)

)
dφdz

=

∫ ∞

0

2z3

πψ2(1 − |ρ|2)K0

(
2z

ψ(1 − |ρ|2)

)
I0

(
2|ρ|z

ψ(1 − |ρ|2)

)
dφ (E.2)

= ψ2|ρ|(1 − |ρ|2)3 9π

16
2F1

(
5

2
,−1

2
; 2; |ρ|2

)

= ψ2|ρ|9π
16

2F1

(
−1

2
,−1

2
; 2; |ρ|2

)
. (E.3)

The expression given by Eq. (E.2) has been derived on the basis of the formula 8.431 on page 968 of

Ref. [171]. Eq. (E.3) is derived on the basis of the equality 2F1(a, b; c;x) = (1−x)c−b−a 2F1(c−a, c−b; c;x).
The second part of this appendix focus on calculating the expression of the term E{zcz2}. Considering

the expressions for zc and z2, respectively given by Eqs. (5.27) and (5.60), it follows

E{zcz2} = NcE{z2 sin(φ)}
∫ ∞

0

∫ π

−π
z2 sin(φ)pz,φ(z, φ) dφdz. (E.4)

Similarly, as performed in the case of Eq. (E.3)

NcE{z2 sin(φ)} = Nc

∫ ∞

0

∫ π

−π
z2 sin(φ)pz,φ(x, φ) dφdz

= Nc

∫ ∞

0

2z3

πψ2(1 − |ρ|2)K0

(
2z

ψ(1 − |ρ|2)

)∫ π

−π
sin(φ) exp

(
2|ρ|z cos(φ)

ψ(1 − |ρ|2)

)
dφdz

= 0. (E.5)

The phase integral in Eq. (E.5) is zero since the function to integrate consist on an odd function evaluated

in the interval [−π, π).
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The last part of this appendix concerns the value of E{z1z2}. If the expressions of z1 and z2, Eqs.

(5.42) and (5.60) respectively, together with Eq. (E.5), it follows

E{z1z2} = E{z2 sin(φ)(cos(φ) −Nc)} = E{z2 cos(φ) sin(φ)} −NcE{z2 sin(φ)}

=

∫ ∞

0

∫ π

−π
z2 cos(φ) sin(φ)pz,φ(z, φ) dφdz. (E.6)

The value of Eq. (E.6) is

NcE{z2 cos(φ) sin(φ)}

= Nc

∫ ∞

0

∫ π

−π
z2 cos(φ) sin(φ)pz,φ(x, φ) dφdz

= Nc

∫ ∞

0

2z3

πψ2(1 − |ρ|2)K0

(
2z

ψ(1 − |ρ|2)

)∫ π

−π
cos(φ) sin(φ) exp

(
2|ρ|z cos(φ)

ψ(1 − |ρ|2)

)
dφdz = 0. (E.7)

As in the case of Eq. (E.5), Eq. (E.7) is zero because the phase integral consist on the integration of an

odd function on the phase interval [−π, π).


