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Chapter 5

Multidimensional Speckle Noise Model

5.1 Introduction

As it was pointed out at Chapter 2, multidimensional SAR systems are important as they offer the

possibility to enhance the capability to analyze the scatterer’s properties via multiple system geometries,

polarizations or frequencies. In the case of point scatterers, the significant information can be accurately

recovered. On the contrary, for distributed scatterers this is not the case as a result of speckle noise.

Such a targets are objects of interest in many applications, among which one can underline: agriculture,

forestry or hydrology. Consequently, a primary step in extracting information from distributed scatterers

is to understand how speckle noise corrupts this information.

The study of speckle noise orbits around zero-mean, complex Gaussian processes. When these pro-

cesses are considered separately, useful information can only be obtained from intensity data. On the

contrary, for correlated processes, the coherent combination of data has been proved to be an important

source of information about the scatterer. On the basis of the moment theorem for complex gaussian

processes [111,110,179], one can see that second moments are the cornerstone from an information con-

tent point of view. Consequently, the complex Hermitian product of a pair of SAR images is the key

information source. But, despite a speckle noise model exist for one-dimensional SAR imagery, it does

not exist for multidimensional SAR imagery [7, 1, 167].

Most of the times, the multidimensional speckle noise problem has been addressed from a polarimetric

point of view in the literature, and always with the objective to reduce it. Some examples can be found

in [37,39,40,1]. Nevertheless, the multidimensional speckle problem is also present in dimensionally higher

problems as Polarimetric SAR Interferometry (PolInSAR) [180] or even in multi frequency systems [181].

The core of this chapter concerns the proposal of a new polarimetric speckle noise model for SAR

data [182, 183], based on the theory introduced within the last chapter. Additionally, it will be shown

that the proposed model is in accordance with all the previous theory about speckle. On the other hand,

the polarimetric speckle model will be shown to be also valid for PolInSAR and multifrequency systems.

Finally, a multidimensional SAR speckle noise model will be proposed.

5.2 Preliminaries

The process, which will finish with a multidimensional speckle noise model, is based on a constructive

approach. In brief, the ideas introduced in Section 4.2, within Chapter 4, for the phase difference phasor

represent here the basis for the multidimensional speckle noise model. Amplitude information is combined
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110 CHAPTER 5. MULTIDIMENSIONAL SPECKLE NOISE MODEL

with the unit amplitude phasor model in order to arrive to a speckle noise model for the Hermitian product

of a pair of SAR images. Finally, the multidimensional speckle noise model is straightforwardly obtained

from the complex Hermitian product speckle noise model.

The Hermitian product of a pair of SAR images is a key quantity since it represents the basic

building block when multidimensional SAR imagery is addressed. In the case of PolSAR, this product

represents the basis for the construction of the covariance and coherency matrices [77]. Additionally, its

argument provides the phase difference, which has been shown to contain relevant information about the

scatterer [91,20]. PolSAR data is the ideal vehicle to introduce a multidimensional speckle noise model,

as well as a way to study its implications. In the following, the multidimensional speckle noise model will

be established over the covariance matrix, which has been introduced in Section 2.3.4 on page 44.

The importance of the Hermitian products also emerges from a statistical point of view. As introduced

at Chapter 2, SAR images can be assumed to be described by zero-mean, complex Gaussian probability

density functions (pdf), represented by Nc(0, σ
2/2), whereas correlated SAR images can be acquired

varying one, or several imaging parameters. Let k = [S1, S2, . . . , SQ]T be a set of Q correlated SAR

images distributed as N (0, [C]). By the moment theorem for complex Gaussian processes [111,110,179]:

(a) If k 6= l, then

E{Sm1Sm2 · · ·SmkS∗
n1
S∗
n2

· · ·S∗
nl
} = 0 (5.1)

where mk and nl are integers from the set {1, 2, . . . , Q}.

(b) If k = l, then

E{Sm1Sm2 · · ·SmkS∗
n1
S∗
n2

· · ·S∗
nl
} =

∑

π

E{Smπ(1)
S∗
n1
}E{Smπ(2)

S∗
n2
} · · ·E{Smπ(l)

S∗
nl
} (5.2)

where π is a permutation of the set of integers {1, 2, . . . , l}.

Consequently, the complex SAR images Sq cannot be independently averaged, since as demonstrated,

are zero mean. The second point, Eq. (5.2), establishes that useful information is contained within even

moments. But, as it can be observed, even moments of order higher than two can be directly obtained as

a combination of second moments. As a result, it is only necessary to study the effects of speckle noise

over the Hermitian product of a pair of SAR images, since higher moments result from the combination

of them.

The properties of the Hermitian product of a pair of SAR images can be completely determined under

a 2 by 2 covariance matrix formulation. This approach is widely employed in the related literature [21,22]

and has been already introduced in Section 2.2.3 to analyze the interferometric phase statistics. Let S1

and S2 be a pair of SAR images described by zero-mean, complex Gaussian pdfs. At is has been defined

at Sections 2.2.3 and 2.3.3, the scatterer vector k, constructed as k = [S1 S2]
T , is described by the pdf

N (0, [C])

pk(k) =
1

π2|[C]| exp(−k∗T [C]−1k) (5.3)

where [C] denotes the covariance matrix which contains the SAR images correlation structure. |[C]|
represents the covariance matrix determinant. The covariance matrix can be represented in this case as

[C] = E{kk∗T } =

[
σ1 ψρ

ψρ∗ σ2

]
(5.4)

where ∗T indicates transpose complex conjugate. The parameters σ1 and σ2 represent the backscattering

coefficient of the SAR images S1 and S2 respectively, being defined as σk = E{|Sk|2}k∈{1,2}. ψ is a

measure of the average power in the two channels

ψ =
√
σ1σ2. (5.5)
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The symbol ρ, as is has been defined at Chapter 2, represents the complex correlation coefficient between

a pair of SAR images, defined as

ρ = |ρ| exp(jφx) =
E{S1S

∗
2}√

E{|S1|2}E{|S2|2}
. (5.6)

By convention, its amplitude |ρ| is called simply coherence, whereas the phase φx contains the effective

phase difference between the pair of SAR images.

Given the pair of SAR images S1 and S2, the single-look (or sample) covariance matrix [Z] is defined

as

[Z] =

[
S1S

∗
1 S1S

∗
2

S2S
∗
1 S2S

∗
2

]
. (5.7)

As introduced at Section 2.3.5, since the target vector k is described as N (0, [C]), the single-look co-

variance matrix, Eq. (5.7), is described by a complex Wishart distribution W([C], 1), whose expression

has been already introduced at Section 2.3.5, Eq. (2.181), with [C] defined as given by Eq. (5.4). Eqs.

(5.1) and (5.2) state the importance of the Hermitian product, from a statistical point of view, for mul-

tidimensional SAR imagery, since they are the entries of the single-look covariance matrix [Z], from

which the matrix [C] has to be estimated. Recent advances in statistical analysis have made possible

to find a closed expression for the kth moments of the matrix [Z], understood as E{[Z]k}, showing that

all moments of [Z] are function of [C]. This fact confirms, on the one hand, that a correct estimation

of the covariance matrix [C] is the sufficient statistics to characterize SAR imagery under the Gaussian

scattering assumption, and, on the other hand, the importance of the Hermitian product of a pair of

SAR images as a basic information unit.

Complex SAR images can be represented as Sk = rk exp(θk). Hence, a transformation of variables

allows to derive the joint pdf of the amplitudes r1 and r2 and the phases θ1 and θ2 from W([C], 1) as

pr1,r2,θ1,θ2(r1, r2, θ1, θ2) =
r1r2

π2ψ2(1 − |ρ|2) exp

(
−σ2r

2
1 + σ1r

2
2 − 2ψ|ρ|r1r2 cos(θ1 − θ2 − φx)

ψ2(1 − |ρ|2)

)
. (5.8)

Let z = r1r2 and φ = θ1−θ2 be the amplitude and phase of the Hermitian product of a pair of SAR images,

respectively. The corresponding joint pdf can be obtained by introducing these changes of variables in

Eq. (5.8), thus

pz,φ(z, φ) =
2z

πψ2(1 − |ρ|2) exp

(
2|ρ|z cos(φ− φx)

ψ(1 − |ρ|2)

)
K0

(
2z

ψ(1 − |ρ|2)

)
(5.9)

whereK0(·) is the modified Bessel function of third kind. As it can be observed in Eq. (5.9) the amplitude

z and the phase φ are not statistically independent. Consequently, the amplitude and the phase of the

Hermitian product cannot be processed independently. The Hermitian product amplitude pdf can be

derived integrating Eq. (5.9) over the variable φ

pz(z) =
4z

ψ2(1 − |ρ|2)I0
(

2|ρ|z
ψ(1 − |ρ|2)

)
K0

(
2z

ψ(1 − |ρ|2)

)
(5.10)

where I0 is the modified Bessel functions of first kind. The first and second moments of the Hermitian

product amplitude are

E{z} = ψ
π

4
2F1

(
−1

2
,−1

2
; 1; |ρ|2

)
(5.11)

E{z2} = ψ2(1 + |ρ|2) (5.12)

where 2F1(a, b; c; z) represents the Gauss hypergeometric function. In the same way, the phase pdf can

be derived from Eq. (5.9) by integrating over z

pφ(φ) =
(1 − |ρ|2)

2π

(
β(1

2π + arcsin(β))

(1 − β2)3/2
+

1

1 − β2

)
(5.13)
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where β = |ρ| cos(φ− φx). The phase’s first and second moments have been presented in Section 2.2.3.

Any element of the single-look covariance matrix [Z], Eq. (5.7), can be expressed as follows

SkS
∗
l = |SkS∗

l |ej(θk−θl) = zejφ (5.14)

whose amplitude z and phase φ are distributed as given by Eqs. (5.10) and (5.13), respectively.

Next sections are devoted to present an in-depth study of the Hermitian product SkS
∗
l , under a

polarimetric point of view, with the objective to identify which are the speckle noise components and

to study how they affect the useful information content, which corresponds to the mean value of the

Hermitian product.

5.3 Phase Difference Phasor Noise Model

The first part of the preceding chapter concerned the definition of a noise model for the interferometric

phasor. Indeed, the interferometric phase difference consists in the phase of the Hermitian product of

two SAR images acquired from two slightly different positions. As a result, the interferometric phase

difference has been shown to contain information from the terrain’s topography. In the case of PolSAR

data, the Hermitian product phase contains information about the scattering process in the resolution

cell. Independently of the type of information contained in the Hermitian product phase, their statistical

behaviors are the same, since InSAR and PolSAR data are constructed on the basis of the Hermitian

product of a pair of SAR images distributed as N (0, [C]). This fact allows to extend the results obtained

throughout last chapter to PolSAR data. In fact, those results can be generalized to any Hermitian

product of a pair of SAR images in which one, or more imaging parameters are different.

As given by Eq. (5.14), any Hermitian product of a pair of SAR images breaks down into an amplitude

and a unitary complex phasor. As InSAR and PolSAR phase differences are described by the same pdf,

the additive phase noise model in the real plane, Eq. (4.1), is still valid for PolSAR data [184, 20].

Useful information, in both cases, is contained within the true phase difference φx. Nevertheless, it has

to be mentioned, that, despite the equality of the statistical behaviors, the nature of the true phase φx
differs from InSAR to PolSAR data, as it can be seen at Chapter 2. On the one hand, the phase φx
is a deterministic phase containing topographic information in the case of InSAR data, whereas, on the

other hand, the phase φx corresponds to the average phase in the PolSAR data case. The main difference

between both of them is, that, the former is wrapped whereas the later is not. Hence, this difference has

to be considered whenever the speckle model which will be defined is employed.

The model for the phase difference phasor Eq. (4.30), defined in the frame of InSAR data, can be

employed to model phase information for the polarimetric Hermitian product. The final phase difference

phasor noise model, Eq. (4.30), is not employed directly. On the contrary, the intermediate results given

by Eqs. (4.19) and (4.20) are considered. These equations represent the real and imaginary parts of the

unit amplitude phase difference phasor. Consequently, the real and imaginary parts of any element of

the polarimetric covariance matrix, following Eq. (5.14), can be written as

<{zej φ} = Nc z cos(φx) + z v′1 cos(φx) − z v′2 sin(φx) (5.15)

={zej φ} = Nc z sin(φx) + z v′1 sin(φx) + z v′2 cos(φx) (5.16)

The parameters Nc, v
′
1 and v′2 are generated by the phase difference noise, that is, by the phase difference

distribution. The term Nc has emerged in Chapter 4 as an important quantity since it contains basically

the same information as the coherence |ρ|. This parameter will be shown as crucial to obtain the

multidimensional speckle noise model. On the contrary, v′1 and v′2 have been shown to be zero-mean

noise terms. Eqs. (5.15) and (5.16) can be expressed under a complex formulation as

zejφ = [zNc + (zv′1 + j zv′2)] exp(jφx). (5.17)
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Figure 5.1: Contour plots of the joint pdf pzR,zI
(zR, zI) for the following values of φx, (a) 0 rad (b) π/4 rad

(c) π/2 rad and |ρ| = 0.5. It can be observed that φx only introduces a rotation in the complex plane. In all

the cases, the maximum is located in the axes origin.

As observed in Eq. (5.17), the true interferometric phasor exp(jφx) is a multiplicative term within the

Hermitian product as a result of the additive phase difference noise model. Consequently, speckle noise

will not depend directly on the phasor exp(jφx). However, it introduces a rotation in the complex plane

which will be shown to determine the final nature of the multidimensional speckle noise model in an

indirect way.

Eqs. (5.15) and (5.16) give a description for the real and imaginary parts of the Hermitian product

of a pair of SAR images expressed as a function of the amplitude z and the phase φx components. The

study of these equations will be based on the amplitude and phase distributions given by Eqs. (5.10)

and (5.13) respectively. Nevertheless, it is worth to derive the expressions of the pdfs corresponding to

the real and imaginary parts of the Hermitian product. Denoting the Hermitian product real part as

zR = z cos(φ) and the imaginary part as zI = z sin(φ), respectively, and introducing these changes of

variable into Eq. (5.9), the joint pdf of zR and zI is [22]

pzR,zI (zR, zI) =
2

πψ2(1 − |ρ|2) exp

(
2|ρ|

ψ(1 − |ρ|2)(zR cos(φx) + zI sin(φx))

)
K0




2
√
z2
R + z2

I

ψ(1 − |ρ|2)


 . (5.18)

Fig. 5.1 shows the contour plots of pzR,zI (zR, zI) for several values of the phase φx, where the final effect

of this parameter can be observed. The marginal pdfs of the Hermitian product real an imaginary parts

can be obtained from Eq. (5.18)

pzR(zR) =
2

ψ2(1 − |ρ|2)k2
[exp(−(k2 − k1)zR)H(zR) + exp((k1 + k2)zR)H(−zR)] zR ∈ (−∞,∞) (5.19)

pzI (zI) =
2

ψ2(1 − |ρ|2)k2
[exp(−(k2 − k1)zI)H(zI) + exp((k1 + k2)zI)H(−zI)] zI ∈ (−∞,∞) (5.20)

where H(x) represents the Heaviside step function. For pzR(zR)

k1 =
2|ρ| cos(φx)
ψ(1 − |ρ|2) (5.21)

k2 =
2
√

1 − |ρ|2 sin2(φx)

ψ(1 − |ρ|2) . (5.22)

For pzI (zI), k1 and k2 are obtained by interchanging the terms cos(φx) and sin(φx) in Eqs. (5.19) and

(5.20). Since for complex, zero-mean Gaussian processes interest lies on their Hermitian products, only

the first and second moments for their real and imaginary parts are necessary. For the Hermitian product

real part zR, these are

E{zR} = ψ|ρ| cos(φx) (5.23)

E{z2
R} =

1

2
ψ2[(1 − |ρ|2) + 4|ρ|2 cos2(φx)]. (5.24)
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The moments for the imaginary part zI are obtained by interchanging the quantities cos(φx) and sin(φx)

in the previous equations.

5.4 Multidimensional SAR Speckle Noise Model

Introducing the phase difference phasor noise model, Eq. (4.30), one sees that the real and imaginary

parts of the Hermitian product of a pair of SAR images break down into three additive terms, see Eq.

(5.17). This section concentrates on the analysis of these three terms in order to derive a final speckle

noise model for the Hermitian product represented by Eq. (5.14). For simplicity in the following analysis,

the three additive terms of Eqs. (5.17) will be referred respectively: the first, the second and the third

additive terms. The final objective of this analysis is to find, in each of the three additive terms, noise

sources and how them damage the useful information content.

5.4.1 Analysis of zNc exp(jφx)

The first additive term of Eq. (5.17) refers to the first components of Eqs. (5.15) and (5.16)

<{zejφ}1 = zNc cos(φx) (5.25)

={zejφ}1 = zNc sin(φx). (5.26)

In the following, only Eq. (5.25) will be considered, as the analysis concerning the imaginary part can be

obtained straightforwardly by interchanging the cos(φx) and sin(φx) terms. Nevertheless, when necessary,

expressions for the imaginary part are given. As one sees, these terms depend on the Hermitian product

amplitude z, the parameter Nc and the average phase difference. Considering the Hermitian product

statistical properties to be homogeneous (i.e., to be constant), the parameter Nc, as well as the phase

difference φx are constant values. As a result, the randomness of the first additive term of the Hermitian

product is determined completely by the distribution of the Hermitian product amplitude z, whose

distribution is given by Eq. (5.10). If one compares the Hermitian product amplitude mean value, Eq.

(5.11), with the mean value of the Hermitian product real part , Eq. (5.23), it can be observed that

they present very different values, as expected. For instance, for |ρ| = 0, for the normalized power case

(i.e., ψ = 1), the amplitude mean value equals π/4 whereas the real part mean value equals 0. This fact

makes difficult to base a noise model for the Hermitian product real and imaginary parts directly on the

Hermitian product amplitude z.

The first additive noise term of the Hermitian product real part, <{zejφ}1, also depends on the

parameter Nc, which has been proved to behave as the coherence |ρ|. Regardless of the phase difference

dependence, let zc be a random process defined as

zc = zNc. (5.27)

The pdf of zc, denoted by pzc(zc), is obtained by introducing the change of variable given by Eq. (5.27)

into Eq. (5.10). Hence

pzc(zc) =
4zc

ψ2N2
c (1 − |ρ|2)I0

(
2|ρ|zc

ψNc(1 − |ρ|2)

)
K0

(
2zc

ψNc(1 − |ρ|2)

)
zc ∈ [0,∞). (5.28)

Since Nc depends on the coherence |ρ|, its effect over pz(z) is not the one corresponding to a constant

value. The limit distributions of pzc(zc), as a function of coherence, are

lim
|ρ|→0

pzc(zc) = δ(0) zc ∈ [0,∞) (5.29)

lim
|ρ|→1

pzc(zc) =
1

ψ
e−

zc
ψ zc ∈ [0,∞). (5.30)
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Figure 5.2: Evolution, as a function of |ρ|, of the distributions: (a) pz(z) and (b) pzc
(zc). In the second case,

plots have been truncated for visualization convenience.

Fig. 5.2 depicts, for normalized power (i.e., ψ = 1), the distributions pz(z) and pzc(zc) for the whole

coherence range, displaying which is the final effect of the parameter Nc, transforming pz(z) to pzc(zc).

Noticeable differences can be observed at medium and low coherences. With the introduction of the

random process zc, the first additive term of Hermitian product real and imaginary parts are transformed

to

<{zejφ}1 = zc cos(φx) (5.31)

={zejφ}1 = zc sin(φx). (5.32)

Useful information is contained in the mean value of the terms zc cos(φx) and zc sin(φx). The expres-

sion of these can be easily derived from the mean value of the Hermitian product amplitude. The value

corresponding to the real part term, Eq. (5.31), is derived as follows

E
{
<{zejφ}1

}
= E{zc} cos(φx) = NcE{z} cos(φx)

= ψNc
π

4
2F1

(
−1

2
,−1

2
; 1; |ρ|2

)
cos(φx)

= ψNczn cos(φx). (5.33)

The term zn denotes the expected value of the Hermitian product normalized amplitude, whose value

can be obtained from Eq. (5.11) setting ψ = 1. The second moment of <{zejφ}1 is obtained in the same

way

E
{
<{zejφ}2

1

}
= E{z2

c } cos2(φx) = N2
cE{z2} cos2(φx)

= ψ2N2
c (1 + |ρ|2) cos2(φx). (5.34)

Consequently, the variance of the first additive term of the Hermitian product real part has the following

expression

var
{
<{zejφ}1

}
= E

{
<{zejφ}2

1

}
−
(
E
{
<{zejφ}1

})2

= ψ2N2
c

(
1 + |ρ|2 −

(π
4

)2

2F
2
1

(
−1

2
,−1

2
; 1; |ρ|2

))
cos2(φx). (5.35)

Fig. 5.3a depicts E
{
<{zejφ}1

}
for normalized power (i.e., ψ = 1) and cos(φx) = 1. Considering equations

Eq. (5.33) for E
{
<{zejφ}1

}
, and Eq. (5.23) for E{zR}, some similarities can be noticed. In this case,
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Figure 5.3: (a) E
{
<{zejφ}1

}
as a function of coherence |ρ|. (b) Standard deviation as a function of the

mean for the Hermitian product amplitude and the term <{zejφ}1. In both cases ψ = 1 and cos(φx) = 1. The

direction of increasing |ρ| is indicated.

the terms Nczn and |ρ| have the same role. This similarity is due to the fact that the parameter Nc and

the coherence |ρ| present close values, forcing for instance E
{
<{zejφ}1

}
to be zero for |ρ| = 0.

Given an arbitrary random process, its mean value is usually referred as the information term, whereas

the random variation around it is understood as noise. Consequently, the noise nature can be investigated

by considering the relation between the mean value and the standard deviation, as the later takes into

account the noise effects. This analysis is performed by means of Fig. 5.3b. In this case, the dashed

line represents the relation corresponding to a random process whose standard deviation equals his mean

value. In this situation, the process can be understood as a mean value multiplied by a random process

with mean and standard deviation values equal to one. The solid line represents std
{
<{zejφ}1

}
as a

function of E
{
<{zejφ}1

}
, where std{·} stands for standard deviation. As Fig. 5.3b demonstrates, this

relation is very close to the equality relation. For completeness, the relation between std {z} and E {z}
for the Hermitian product amplitude, represented by the dash-dotted line, has also been included.

Given the graphics depicted in Fig. 5.3b, one can observe which is the final effect of the parameter

Nc. In the case of the amplitude relation for the complex Hermitian product (i.e., dash-dotted line), a

clear connection can not be established between the mean and the standard deviation values. But, if the

parameter Nc is considered (i.e., solid line), the relation between the mean and the standard deviation

turns to an almost equality relation. Let be the random process <{zejφ}1, if the standard deviation value

is approximated by the corresponding mean value, that is

std
{
<{zejφ}1

}
' abs

(
E
{
<{zejφ}1

})
(5.36)

where abs(·) denotes the absolute value then, the process <{zejφ}1 can be regarded as a deterministic

term, equal to the average value ψNczn cos(φx), multiplied by a random term, denoted by nm

<{zejφ}1 = zc cos(φx) = ψNcznnm cos(φx). (5.37)

Therefore, the random term nm can be considered as a multiplicative noise term, such that E{nm} = 1

and var{nm} = σ2
nm = 1. The equivalent expression for the imaginary part is obtained as

={zejφ}1 = zc sin(φx) = ψNcznnm sin(φx). (5.38)

In Fig. 5.4, one can observe the absolute error ∆ std{<{zejφ}1} which is introduced considering the

standard deviation to be equal to the mean value instead of his actual value. Since the random behavior
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of the first Hermitian product additive term is induced by the amplitude z, it only affects the final

amplitude information, whereas it does not introduce noise in the phase difference φx. This effect can be

seen easily under a complex formulation of the first additive term

{zejφ}1 = ψNcznnme
jφx . (5.39)

Finally, as it can be deduced from this expression, the power term ψ only introduces an scaling factor

without altering the multiplicative nature of nm. Similarly, the true phase difference phasor introduces

a rotation effect which does also not affect this multiplicative nature.
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Figure 5.4: Absolute error introduced by the approximation of the standard deviation of the first additive

term of the Hermitian product real part, ∆ std
{
<{zejφ}1

}
= E

{
<{zejφ}1

}
−std

{
<{zejφ}1

}
. The parameters

ψ and cos(φx) are assumed to be equal to 1.

5.4.2 Analysis of zv′
1 exp(jφx)

The second additive term of Eq. (5.17) makes reference to the components

<{zejφ}2 = zv′1 cos(φx) (5.40)

={zejφ}2 = zv′1 sin(φx). (5.41)

As it has been performed in the previous section, only the analysis corresponding to the real part case,

Eq. (5.40), is presented in depth since the one corresponding to the imaginary part is obtained by

interchanging the cos(φx) and sin(φx) terms. Unlike the first additive term analyzed in the preceding

section, this term depends on two random components: the Hermitian product amplitude z and the phase

term v′1 which has been defined in Section 4.2 at Chapter 4. This double dependence can be analyzed by

introducing a new random process

z1 = zv′1 = z(cos(φ) −Nc). (5.42)

In this case, the term φ does not contain useful phase information as it has been included in other

terms, see Eqs. (5.40) and (5.41). Consequently, the distribution corresponding to the process z1 can be

obtained by considering the distribution pz,φ(z, φ), Eq. (5.9), evaluated at φx = 0 rad. The distribution

pz1(z1) is obtained as follows

pz1(z1) =

∫ π

−π
pz1,φ(z1, φ) dφ =

∫ π

−π
pz,φ(z, φ)|z= z1

cos(φ)−Nc
dφ z1 ∈ (−∞,∞). (5.43)
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Figure 5.5: Distribution pz1
(z1) for the whole coherence range.

The expression corresponding to pz1,φ(z1, φ) can be derived easily by introducing the change of variable

presented by Eq. (5.42) into the distribution given by Eq. (5.9)

pz1,φ(z1, φ) =
2z1 sgn(cos(φ) −Nc)

πψ2(1 − |ρ|2)(cos(φ) −Nc)2
exp

(
2|ρ|z1 cos(φ)

ψ(1 − |ρ|2)(cos(φ) −Nc)

)

K0

(
2z1

ψ(1 − |ρ|2)(cos(φ) −Nc)

)
. (5.44)

where sgn(·) denotes the sign function. Due to the complexity of Eq. (5.44), a closed expression for

pz1(z1) can not be derived. Nevertheless, numerical methods can be employed to obtain it. Fig. 5.5

depicts the pdf pz1(z1) for the whole coherence range considering normalized power (i.e., ψ = 1). Despite

a closed expression for pz1(z1) can not be obtained for the complete coherence range, it is possible to

derive it for the limit coherence values. The expression corresponding to |ρ| = 0 is obtained by taking

into account that z1 simplifies to z cos(φ), since for this coherence Nc = 0. This case corresponds to

the pdf of the Hermitian product real part for |ρ| = 0, see Eq. (5.19). Consequently, the expressions of

pz1(z1) for the coherence extreme values are

lim
|ρ|→0

pz1(z1) =
1

ψ

(
exp

(
−2z1
ψ

)
H(z1) + exp

(
2z1
ψ

)
H(−z1)

)
z1 ∈ (−∞,∞) (5.45)

lim
|ρ|→1

pz1(z1) = δ(0) z1 ∈ (−∞,∞). (5.46)

A first comparison of the previous two equation with the equivalent ones corresponding the first additive

term of the Hermitian product real part, Eqs. (5.29) and (5.30), shows that both additive terms present

an opposite behavior, since whereas the first additive term cancels out for low coherences, the second

additive term cancels out for high ones.

The second additive terms, corresponding to the real and imaginary parts of the Hermitian product,

can be expressed as follows

<{zejφ}2 = z1 cos(φx) (5.47)

={zejφ}2 = z1 sin(φx). (5.48)

The mean and variance values of the previous two terms can be obtained either through numeric proce-

dures employing Eq. (5.43), or by considering Eq. (5.42), which allows to derive theoretical expressions

as a function of the different signal parameters. The mean value corresponding to the real part case, Eq.
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Figure 5.6: (a) E
{
<{zejφ}2

}
a as function of coherence |ρ|. (b) Actual and approximated values of

var
{
<{zejφ}2

}
for the whole coherence range. A detail around |ρ| = 0.5 is also presented. In both cases

one assumes ψ = 1 and cos(φx) = 1.

(5.47), has the expression

E
{
<{zejφ}2

}
= (E{z cos(φ)} −NcE{z}) cos(φx)

= ψ (|ρ| −Nczn) cos(φx)

= ψ

(
|ρ| −Nc

π

4
2F1

(
−1

2
,−1

2
; 1; |ρ|2

))
cos(φx). (5.49)

Fig. 5.6a presents a graphic of E
{
<{zejφ}2

}
for the normalized power case (i.e., ψ = 1), and considering

cos(φx) = 1. From this figure, one observes that the mean value of this term is always lower than 0.2. The

addition of the mean values of the first and second additive terms, Eqs. (5.33) and (5.49), corresponds

to the mean value of the Hermitian product real part, Eq. (5.23). Consequently, it can be affirmed that

the useful information to retrieve is distributed between the first and the second additive terms of the

Hermitian product real and imaginary parts, being the first additive term the one which contains a larger

part of it.

The second moment of <{zejφ}2 is obtained as follows

E
{
<{zejφ}2

2

}
= E{z2

1} cos2(φx) = E{z2(cos(φ) −Nc)
2} cos2(φx)

=
(
E{(z cos(φ))2} +N2

cE{z2} − 2NcE{z2 cos(φ)}
)
cos2(φx). (5.50)

The term E{(z cos(φ))2} corresponds to the second moment of the Hermitian product real part for

φx = 0 rad. Consequently, this value can be obtained straightforwardly from Eq. (5.24). Since Nc

is a constant value, the second term, N2
cE{z2}, corresponds to the second moment of the Hermitian

product amplitude, whose value is given by Eq. (5.12). Finally, the expression of the term E{z2 cos(φ)}
is obtained by integrating the function z2 cos(φ) with respect to the pdf pz,φ(z, φ). Appendix E concerns

the calculation of this expression. Thus, E
{
<{zejφ}2

2

}
follows

E
{
<{zejφ}2

2

}

= ψ2

[
1

2
(1 − |ρ|2) + 2|ρ|2 +N2

c +N2
c |ρ|2 −Nc|ρ|

9π

8
2F1

(
−1

2
,−1

2
; 2; |ρ|2

)]
cos2(φx). (5.51)
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Figure 5.7: Absolute error of the approximated value of var
{
<{zejφ}2

}
obtained as ∆var

{
<{zejφ}2

}
=

1

2
ψ(1 − |ρ|2)1.64 cos2(φx) − var

{
<{zejφ}2

}
. Also for this case the parameters ψ and cos(φx) are assumed to

be equal to 1.

From Eqs. (5.49) and (5.51), the variance of the term <{zejφ}2 is derived as follows

var
{
<{zejφ}2

}
= E

{
<{zejφ}2

2

}
−
(
E
{
<{zejφ}2

})2

= ψ2

[
1

2
(1 − |ρ|2) + 2|ρ|2 +N2

c +N2
c |ρ|2 −Nc|ρ|

9π

8
2F1

(
−1

2
,−1

2
; 2; |ρ|2

)

−
(
|ρ| −Nc

π

4
2F1

(
−1

2
,−1

2
; 1; |ρ|2

))2
]

cos2(φx). (5.52)

From the previous equation, it is not evident to extract a conclusion with respect to the dependence of

var
{
<{zejφ}2

}
on the coherence |ρ|. Fig. 5.6b depicts the variance of the second additive term for the

whole coherence range, considering ψ = 1 and cos(φx) = 1.

The term zv′1 is a function of the phase difference term v′1. If one makes a qualitative comparison

between the variance of v′1, Eq. (4.14) and Fig. 4.2a, and the variance of zv′1, Eq. (5.52) and Fig. 5.6b,

one can deduce that both quantities present approximately the same dependence with respect to the

coherence |ρ|. Therefore, the family of functions given by Eq. (4.12) is also employed to approximate

the value of var
{
<{zejφ}2

}
. In the same manner as it has been obtained within the previous chapter,

one founds that the family of curves given by Eq. (4.12), on page 78, minimizes the mean square error

between the actual an the approximated value for var
{
<{zejφ}2

}
for the exponent α = 1.64. Fig. 5.6b

shows the approximated value superimposed to the actual values of var
{
<{zejφ}2

}
, where it can be

observed the closeness between them. Fig. 5.7 presents the absolute error between the actual and the

approximated variance values for the second additive term of the Hermitian product real part, showing

the approximation accuracy. Finally, the approximated expression for var
{
<{zejφ}2

}
follows

var
{
<{zejφ}2

}
' 1

2
ψ2(1 − |ρ|2)1.64 cos2(φx). (5.53)

As it has been presented, the term <{zejφ}2 can be regarded as a deterministic term corresponding to

the mean value, Eq. (5.49), plus a zero-mean random term, termed na1 in the following, whose variance

value depends on Eq. (5.53). Consequently, the term <{zejφ}2 can be written as follows

<{zejφ}2 = ψ [(|ρ| −Nczn) + na1] cos(φx). (5.54)

In the same way, the imaginary part of the Hermitian product second additive term, Eq. (5.41) can be

also written as

={zejφ}2 = ψ [(|ρ| −Nczn) + na1] sin(φx). (5.55)
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In the light of the previous results, the term na1 corresponds to an additive noise term such that E{na1} =

0 and whose variance corresponds, considering the approximation introduced in Eq. (5.53), to

var{na1} = σ2
na1 =

var
{
<{zejφ}2

}

ψ2 cos2(φx)
=

1

2
(1 − |ρ|2)1.64. (5.56)

Since the random process na1 is the same for the real and imaginary parts of the Hermitian product

second additive term, this term can be written under a complex formulation as

{zejφ}2 = ψ [(|ρ| −Nczn) + na1] e
jφx . (5.57)

Unlike the term analyzed within the preceding section, in this case an additive noise term na1 has been

identified, in contrast with the multiplicative noise term nm identified in the previous case.

5.4.3 Analysis of jzv′
2 exp(jφx)

This section analyzes the third term of the Hermitian product real and imaginary parts, Eqs. (5.15) and

(5.16), whose expressions are

<{zejφ}3 = −zv′2 sin(φx) (5.58)

={zejφ}3 = zv′2 cos(φx). (5.59)

Just as one will see throughout the analysis of the previous two equations, the third additive term of

the Hermitian product is qualitatively very similar to the second additive term analyzed in Section 5.4.2.

In this case, the randomness of this term is determined by the Hermitian product amplitude z and the

phase difference term v′2, which corresponds to the term sin(φ), instead to cos(φ) as it happens for the

second additive term. Consequently, an additional random process can be introduced as follows

z2 = zv′2 = z sin(φ). (5.60)

As it can be observed, the random process z2 corresponds to the imaginary part of the Hermitian product

evaluated at the phase difference φx = 0 rad. Consequently, its statistical behavior is fully determined

by the pdf of the Hermitian product imaginary part. Considering Eq. (5.20) for the Hermitian product

imaginary part evaluated at cos(φx) = 1, the distribution of z2, referred as pz2(z2) has the expression

pz2(z2) =
1

2
√

1 − |ρ|2

(
exp

(
−2z2

√
1 − |ρ|2

ψ(1 − |ρ|2)

)
H(z2) + exp

(
2z2
√

1 − |ρ|2
ψ(1 − |ρ|2)

)
H(−z2)

)
z2 ∈ (−∞,∞)

(5.61)

where H(x) represents the Heaviside step function. Fig. 5.8 represents the pdf pz2(z2) for the complete

coherence range. Comparing Fig. 5.8 with the corresponding one to the random process z1, Fig. 5.5,

one can observe that both pdfs present a very similar behavior for any coherence value. Indeed, the

expressions of pz2(z2) for the extreme coherence values

lim
|ρ|→0

pz2(z2) =
1

ψ

(
exp

(
−2z2
ψ

)
H(z2) + exp

(
2z2
ψ

)
H(−z2)

)
z2 ∈ (−∞,∞) (5.62)

lim
|ρ|→1

pz2(z2) = δ(0) z2 ∈ (−∞,∞) (5.63)

are respectively the same as the pdfs for the random process z1, Eqs. (5.45) and (5.46).

As it has been performed for the other terms of the Hermitian product real and imaginary parts, the

third additive terms can be written as

<{zejφ}3 = −z2 sin(φx) (5.64)

={zejφ}3 = z2 cos(φx). (5.65)



122 CHAPTER 5. MULTIDIMENSIONAL SPECKLE NOISE MODEL

−4
−2

0
2

4

0
0.2

0.4
0.6

0.8
1
0

2

4

6

8

z
2

|ρ|

p z 2(z
2)

Figure 5.8: Pdf pz2
(z2) as a function of coherence. The power parameter ψ, and the phase parameter cos(φx)

are assumed to be equal to 1.

Since the random behavior of these two terms is completely determined by the random process z2,

which has been shown very similar to the random term z1, Eqs. (5.64) and (5.65) will present a very

similar behavior to the second additive terms of the Hermitian product real and imaginary parts. The

most important difference between the second and the third additive term is found under a complex

formulation, since the third additive term presents a π/2 rad rotation with respect to the second additive

term. This relative rotation between the second and the third additive terms will be employed later to

simplify the final speckle noise model for the complex Hermitian product of SAR images.

The moments of the terms given by Eqs. (5.64) and (5.65) are analyzed in the following. As it has

been done throughout the preceding section, only the expression for the real part case is given, as the

imaginary part moments can be derived by simply interchanging the cos(φx) and sin(φx) terms. At the

beginning of the current section, it has been shown that the random term z2 corresponds to the imaginary

part of the Hermitian product evaluated at φx = 0 rad. Consequently, the mean value of <{zejφ}3 can

be derived from Eq. (5.23), interchanging cos(φx) by sin(φx), and evaluating it at φx = 0 rad. Therefore

E{<{zejφ}3} = −E{z2} sin(φx) = 0. (5.66)

It has to be mentioned that the term sin(φx) can take, in this case, any value since the evaluation at

φx = 0 rad is only employed to derive the pdf of the term z2. Therefore, E{<{zejφ}3} is zero due to

E{z2} = 0; it can be observed that the pdf pz2(z2) is symmetric about zero, explaining hence Eq. (5.66).

Comparing Eq. (5.66) with Eq. (5.49), one observes a clear difference between them as the later presents

values different from zero, despite it is always lower than 0.2. The main consequence of this difference is

that the third additive term does not contain useful information at all. Hence, it can be regarded as a

pure additive noise term. By the same procedure employed to obtain E{<{zejφ}3}, the second moment

is derived as follows

E{<{zejφ}2
3} = E{z2

2} sin2(φx) =
1

2
ψ2(1 − |ρ|2) sin2(φx). (5.67)

The variance, is straightforwardly obtained as

var{<{zejφ}3} =
1

2
ψ2(1 − |ρ|2) sin2(φx). (5.68)

Regardless of the power and phase dependence, the term var{<{zejφ}3} belongs to the family of functions

which have been employed successfully to approximate the variance of different random processes, Eq.

(4.12). In this case, the exponent α equals 1.

Taking into consideration Eqs. (5.66) and (5.68), the term <{zejφ}3 can be considered, hence, as a

zero-mean, additive random term for the Hermitian product real part. In the same way as it has been
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performed in Section 5.4.2, a new random process na2 is defined. Consequently, the third additive term

of the Hermitian product real part can be written as

<{zejφ}3 = −ψna2 sin(φx) (5.69)

whereas the imaginary part follows

={zejφ}3 = ψna2 cos(φx). (5.70)

The additive noise term na2 has a mean equal to E{na2} = 0 and his variance has the expression

var{na2} = σ2
na2 =

var
{
<{zejφ}3

}

ψ2 sin2(φx)
=

1

2
(1 − |ρ|2). (5.71)

Considering Eqs. (5.69) and (5.70) under a complex formulation, the third additive term of the Hermitian

product of correlated SAR images has the following expression

{zejφ}3 = jψna2e
jφx . (5.72)

5.4.4 Joint Moments

Throughout the previous sections, it has been demonstrated that the real and imaginary parts of the

Hermitian product of two correlated SAR images can be split up into three different additive terms. As

presented, it is possible to identify different noise sources in each of these terms. This section concerns a

study of the covariance properties between these three additive terms. Since the single difference between

the real and the imaginary parts of the Hermitian product is on the effect of the true phase difference term

cos(φx) and sin(φx), a detailed study will be performed only over the real part. The results concerning

the imaginary part are derived by an interchange of the cos(φx) and sin(φx) terms.

First, the correlation properties between the first and the second additive terms of the Hermitian

product real part will be analyzed. This correlation is studied by considering the covariance term defined

as

C12 = E
{
(<{zejφ}1 − E{<{zejφ}1})(<{zejφ}2 − E{<{zejφ}2})

}
. (5.73)

Considering the random processes zc and z1, introduced by Eqs. (5.27) and (5.42), the covariance C12

takes the form

C12 = E {(zc cos(φx) − E{zc cos(φx)})(z1 cos(φx) − E{z1 cos(φx)})}
= E {(zc − E{zc})(z1 − E{z1})} cos2(φx)

= (E{zcz1} − E{zc}E{z1}) cos2(φx) (5.74)

where it has been assumed that useful signal as well as random properties are homogeneous. The

expression of the mean values E{zc} and E{z1} can be derived easily from the expressions given by Eqs.

(5.33) and (5.49), respectively. The value of the joint first moment, E{zcz1}, is derived by considering

the expression of the random processes zc and z1, Eqs. (5.27) and (5.42) respectively. Hence,

E{zcz1} = E{zNcz(cos(φ) −Nc)} = Nc

(
E{z2 cos(φ)} −NcE{z2}

)
. (5.75)

The value of the term E{z2 cos(φ)} is found on Appendix E, whereas the expectation value E{z2} corre-

sponds to the second moment of the Hermitian product amplitude, see Eq. (5.12). Finally, introducing

Eq. (5.75) into (5.74), and substituting the corresponding expressions, the covariance term C12 takes the

form

C12 = ψ2Nc

[
|ρ|9π

16
2F1

(
−1

2
,−1

2
; 2; |ρ|2

)
−Nc(1 + |ρ|2)

− π

4
2F1

(
−1

2
,−1

2
; 1; |ρ|2

)(
|ρ| −Nc

π

4
2F1

(
−1

2
,−1

2
; 1; |ρ|2

))]
cos2(φx). (5.76)
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Figure 5.9: Covariances considering correlation properties between the first and the second additive terms

of the Hermitian product. In this case: ψ = 1 and cos(φx) = 1.

As it comes out from the previous expression, it is difficult to discern the dependence of C12 on the

coherence value |ρ|. As it has been observed in other terms throughout this chapter, the power parameter

ψ, as well as the phase term cos(φx) act as multiplicative terms. Fig. 5.9 presents the graphic of the

covariance term C12 for the normalized power case (i.e., ψ = 1) as well as φx = 0 rad. As it can be

observed, the term C12 presents values which are lower than 0.2, presenting its maximum for a coherence

value around 0.8.

From the covariance term C12 one can extract the covariance of the terms nm and na1, referred as

Cnmna1 in the following. These random processes have been defined as noise terms for the first and the

second additive terms of the Hermitian product. Considering the expressions given by Eqs. (5.37) and

(5.54), the expression corresponding to Cnmna1 is found to follow

Cnmna1 = E{(nm − 1)na1} =
C12

ψ2Nczn cos2(φx)
. (5.77)

A plot of the covariance Cnmna1 as a function of the SAR images coherence can be observed in Fig. 5.9.

The second correlation term refers to the covariance which exists between the first an the third

additive terms corresponding to the real part of the Hermitian product of correlated SAR images

C13 = E
{

(<{zejφ}1 − E{<{zejφ}1})(<{zejφ}3 −E{<{zejφ}3})
}
. (5.78)

Considering in this case the random process z2 introduced in Eq. (5.60), the covariance term C13 is

C13 = E {(zc cos(φx) − E{zc cos(φx)})(−z2 sin(φx) −E{−z2 sin(φx)})}
= E {(zc − E{zc})(−z2 − E{−z2})} cos(φx) sin(φx)

= (E{zc}E{z2} −E{zcz2}) cos(φx) sin(φx). (5.79)

As it is given by Eq. (5.66), E{z2} = 0. In addition, as it is demonstrated at Appendix E, the joint

expectation E{zcz2} = 0. Consequently, C13 = 0 independently of the correlation between the pair of

SAR images. As a result, the covariance between the noise terms nm and na2, denoted by Cnmna2 , is also

zero.

The last correlation term to analyze refers to the covariance between the second and the third additive

terms of the Hermitian product real part

C23 = E
{

(<{zejφ}2 − E{<{zejφ}2})(<{zejφ}3 −E{<{zejφ}3})
}
. (5.80)
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The expression of C23 can be found considering the processes z1 and z2 as follows

C23 = E {(z1 cos(φx) − E{z1 cos(φx)})(−z2 sin(φx) − E{−z2 sin(φx)})}
= E {(z1 − E{z2})(−z2 − E{−z2))} cos(φx) sin(φx)

= (E{z1}E{z2} − E{z1z2}) cos(φx) sin(φx). (5.81)

In Appendix E, it is demonstrated that the joint expectation E{z1z2} = 0. Consequently, since E{z2} =

0, the covariance term C23 is zero for any coherence value. As a result of this, the covariance between the

two additive terms na1 and na2, termed Cna1na2 , is zero.

The expressions for the covariance terms established between the different additive noise compo-

nents for the Hermitian product real part C12, C13 and C23 are equally valid for the imaginary part by

interchanging the cos(φx) and sin(φx) terms.

5.4.5 Hermitian Product Speckle Noise Model

At the beginning of this section, it was demonstrated that the real and imaginary parts of the Hermitian

product of a pair of SAR images can be split into three additive terms as given by Eqs. (5.15) and

(5.16). The following four sections were devoted to present an in-depth study of each one of these

three additive terms, as well as their joint properties. The most important result of this analysis has

been the possibility to identify different noise sources and to determine how them alter or damage the

useful information content. Consequently, this section is devoted to study the Hermitian product as

a combination of these three additive terms, giving, as a final result, the speckle noise model for the

complex Hermitian product of a pair of SAR images.

For each one of three additive terms in which the real part of the Hermitian product has been divided,

a model has been defined as given by Eqs. (5.37), (5.54) and (5.69). Thus, the real part of the Hermitian

product can be written as

<{zejφ} = <{zejφ}1 + <{zejφ}2 + <{zejφ}3

= ψNcznnm cos(φx) + ψ [(|ρ| −Nczn) + na1] cos(φx) − ψna2 sin(φx). (5.82)

Exactly in the same way, considering now the additive terms for the Hermitian product imaginary part,

Eqs. (5.38), (5.55) and (5.70), it can be written as

={zejφ} = ={zejφ}1 + ={zejφ}2 + ={zejφ}3

= ψNcznnm sin(φx) + ψ [(|ρ| −Nczn) + na1] sin(φx) + ψna2 cos(φx). (5.83)

The real and imaginary parts of the Hermitian product of a pair of SAR images can be expressed in a

more compact form by considering them in a complex formulation. Therefore, considering the additive

terms in a complex form, Eqs. (5.39), (5.57) and (5.72), the Hermitian product of SAR images has the

following expression

SkS
∗
l = zejφ = {zejφ}1 + {zejφ}2 + {zejφ}3

= ψNcznnme
jφx + ψ [(|ρ| −Nczn) + na1] e

jφx + jψna2e
jφx . (5.84)

As it has been demonstrated, the noise term nm refers to a multiplicative noise component, whereas

the noise terms na1 and na2 refer to additive noise components. Table 5.1 summarizes the statistical

properties of these noise terms.

The noise model given by Eq. (5.84) can be further simplified considering an idea already introduced

in Section 4.2. On page 80, the processes vc and vs were defined as a function of the phase difference

terms v′1 and v′2. Since the additive noise terms na1 and na2 are generated by v′1 and v′2 respectively,

and the Hermitian product amplitude z, they can be joined essentially in the same way as v′1 and v′2 are



126 CHAPTER 5. MULTIDIMENSIONAL SPECKLE NOISE MODEL

Mean, E{·} Variance, σ2

Multiplicative noise term nm 1 1

na1 0
1

2
(1 − |ρ|2)1.64

Additive noise terms

na2 0
1

2
(1 − |ρ|2)

Table 5.1: Mean and variance values for the three noise sources identified in the Hermitian product of complex

SAR images.

combined. Considering the real and imaginary parts of the Hermitian product, Eqs. (5.82) and (5.83),

two additional random processes are defined as follows

ψnar = ψna1 cos(φx) − ψna2 sinφx (5.85)

ψnai = ψna1 sin(φx) + ψna2 cosφx. (5.86)

As given, the power term ψ introduces only an scaling factor. The mean values of these two new random

processes are easily derived from the values presented in Table 5.1. Hence, considering that the signal,

as well as the random terms are homogeneous

E{nar} = E{na1} cos(φx) − E{na2} sin(φx) = 0 (5.87)

E{nai} = E{na1} sin(φx) + E{na2} cos(φx) = 0. (5.88)

In order to derive the variance of the processes nar and nai two points have to be considered. First, in

Section 5.4.4 it has been proved that the covariance term between na1 and na2, Cna1na2, is zero, see Eq.

(5.81). Therefore the variance values, for an homogeneous signal, have the expressions

var{nar} = var{na1} cos2(φx) + var{na2} sin2(φx) (5.89)

var{nai} = var{na1} sin2(φx) + var{na2} cos2(φx). (5.90)

Second, as it can be observed in Table 5.1, the variances of na1 and na2 present very similar values.

Fig. 5.10 gives a plot of both variance terms as a function of the coherence parameter. The phase terms

cos(φx) and sin(φx) are complementary since cos2(φx) + sin2(φx) = 1, and their values lie in the interval

[0, 1]. As a result, the next inequality becomes true

σ2
na1 ≤

{
σ2
nar

σ2
nai

}
≤ σ2

na2 . (5.91)

Considering the previous equation, one demonstrates that the variance of the new noise processes nar
and nai is always between the corresponding values for the terms na1 and na2. As given in Appendix C,

if one wants to describe σ2
nar and σ2

nai by the same family of functions as σ2
na1 and σ2

na2, the exponent α

should depend both on |ρ| and φx. Due to the closeness between the values of σ2
na1 and σ2

na2 , it was shown

in the same Appendix that one can get rid of these dependencies by considering the average exponent

at the expense of introducing an error on the variance values. In this case σ2
na1 is described by a curve

whose exponent α equals 1.64 and the exponent of the curve σ2
na2 equals 1. Consequently, σ2

nar and σ2
nai

can be described, according to Appendix C, by curves whose exponent equals 1.32

σ2
nar = σ2

nai =
1

2
(1 − |ρ|2)1.32. (5.92)

Fig. 5.10 depicts the graphic of the terms σ2
nar and σ2

nai , where they can be compared with the curves

corresponding to σ2
na1 and σ2

na2.



5.4. MULTIDIMENSIONAL SAR SPECKLE NOISE MODEL 127

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

|ρ|

σ
n

a1

2                    

                                    
σ

n
a2

2                    

                                    
σ

n
ar

2 , σ
n

ai

2

Figure 5.10: Graphics corresponding to the variances σ2

na1
, σ2

na2
, σ2

nar
and σ2

nai
. These variances are described

by curves of the type σ2 = (1/2)(1 − |ρ|2)α, where α is 1.64, 1, 1.32 and 1.32 for each variance, respectively.

By introducing the definition of the noise processes σ2
nar and σ2

nai into the speckle noise model equa-

tions for the real and imaginary parts of the Hermitian product, Eqs. (5.82) and (5.83), the speckle noise

model becomes

<{zejφ} = ψNcznnm cos(φx) + ψ(|ρ| −Nczn) cos(φx) + ψnar (5.93)

={zejφ} = ψNcznnm sin(φx) + ψ(|ρ| −Nczn) sin(φx) + ψnai. (5.94)

These expressions can be joined under a complex formulation, yielding to the final speckle noise model

for the complex Hermitian product of a pair of SAR images

SkS
∗
l = ψNcznnme

jφx + ψ(|ρ| −Nczn)e
jφx + ψ(nar + jnai). (5.95)

A graphic view of the noise model given by Eq. (5.95) can be observed in Fig. 5.11.

©

¦

fx

yN z nc n m

y{n +jn }ar ai

y r(| |-N z )c n

Figure 5.11: Graphical representation of the complex Hermitian product speckle noise model.

If Fig. 5.11 is compared with the figure corresponding to the Hermitian product phase difference pha-

sor noise model, Fig. 4.6 on page 81, one can notice the similarity between both diagrams. Consequently,

it can be concluded that the Hermitian speckle noise model is basically determined by the statistical

behavior of the average phase difference.
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5.4.6 Generalized Speckle Noise Model

Eq. (5.95) represents a speckle noise model for the Hermitian product of a pair of SAR images. As it

can be seen, the terms nm, nar and nai denote the noise sources which damage the useful signal content.

Before to validate the speckle noise model proposed by Eq. (5.95), as well as to study its implications, it

will be demonstrated that this model is in accordance with the speckle noise models existing until now.

These noise models refer to the multiplicative speckle noise model for a SAR image intensity and to the

additive noise model for the phase difference of two complex SAR images.

The speckle noise model for the Hermitian product considers a pair of complex SAR images Sk and

Sl, whose correlation properties are determined by the complex correlation coefficient ρ. The SAR image

intensity can be studied by considering the Hermitian product SkS
∗
l where k = l. In this case, the

complex correlation coefficient, obtained as given by Eq. (5.6), equals 1, that is, |ρ| = 1 and φx = 0

rad. Consequently, the parameter Nc and the Hermitian product normalized amplitude zn equal also

1, producing the term |ρ| − Nczn to be equal to zero. For |ρ| = 1, considering Eqs. (5.87), (5.88) and

(5.92) one can deduce that the additive noise terms nar and nai cancel out as their mean, as well as

their standard deviation values equal zero. Introducing ρ = 1, together with the associated consequences

detailed in the previous lines, the complex Hermitian product speckle noise model reduces to

SkS
∗
k = |Sk|2 = ψnm (5.96)

where, in this case ψ = E{|Sk|2}. Considering what has been presented in Section 2.1.6, it can be

observed, that, the proposed speckle noise model for the Hermitian product of a pair of SAR images

reduces to the well known multiplicative speckle noise model for the intensity of a SAR image when the

product SkS
∗
k is considered. Retaking the definition of the sample covariance matrix [Z], Eq. (5.7), Eq.

(5.95) is able, hence, to describe the nature of speckle noise for the diagonal, as well as for the off-diagonal

elements of the sample covariance matrix.

Additionally, considering the statistical properties of the phase difference between two complex SAR

images, it has been shown that speckle noise can be considered as an additive noise term, Eq. (4.1).

As it has been shown in Section 5.3, the Hermitian product speckle noise model is derived precisely on

the basis of the phase difference noise additivity. Consequently, Eq. (5.95) is also in accordance, by

construction, with the speckle noise model for the phase difference of a pair of SAR images.

As a conclusion from which has been demonstrated in this section, the proposed speckle noise model

for the complex Hermitian product of a pair of SAR images, Eq. (5.95), represents a generalization

of the existing speckle noise models. Additionally, as mentioned in the introduction, the Hermitian

product represents the building block to describe multidimensional SAR imagery under a covariance

matrix formulation. Therefore, a general multidimensional speckle noise model can be defined on the

basis of Eq. (5.95).

5.4.7 Multidimensional Speckle Noise Model

The aim of the present section is to obtain the expression for the multidimensional speckle noise model,

under a covariance matrix formulation, on the basis of the Hermitian product speckle noise model given by

Eq. (5.95). The main advantage of this approach lies in the fact that all the covariance matrix elements

consist in the Hermitian product of two complex SAR images, allowing to obtain straightforwardly a

multidimensional noise model expression for the sample covariance matrix [Z].

Before to present the final expression for the multidimensional speckle noise model for PolSAR data,

a first point has to be addressed. As the speckle noise model for the Hermitian product shows, Eq. (5.95),

the speckle noise presents a multiplicative component given by nm which damages the useful signal term

ψNczn exp(jφx). The direct extension of this term to a matrix formulation is not possible since it cannot

be expressed as the product of two matrices, containing the useful signal and the noise terms respectively.
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Consequently, the only form to derive an expression for the multidimensional speckle noise model is to

transform the covariance matrix formulation to a vectorial formulation.

In Section 2.3.3 on page 42, the vectorization operator V (·) was introduced to transform the scattering

matrix into the scattering vector k. The same approach is employed now to transform the covariance

[C] and the sample covariance [Z] matrices into vectorial forms. These vectorization process has to

be performed taking into account the particularities of data which is being analyzed. In this case,

the expression for the multidimensional speckle noise model will be obtained for PolSAR data in the

backscattering case.

Let C3×3 be the space of 3× 3 complex matrices. A vectorization of any 3× 3 complex matrix can be

introduced by considering an expansion of this matrix onto a set H of 9 3×3 complex matrices, provided

H to be a complete set. Let [M ] be an arbitrary 3 × 3 complex matrix, it can be expressed as

[M ] =
∑

k=3p+q

mkηk (5.97)

where the complex coefficients m3p+q are obtained as

m3p+q =
1

2
tr([M ]η3p+q). (5.98)

In this case, tr(·) stands for the matrix trace. The coefficients p and q denote the row and column

indexes of the matrix [M ], ranging from 0 to 2. In this case, interest is focused on the set H formed as

the straightforward lexicographic ordering of the elements of [M ]

H = {η0, η1, η2, η3, η4, η5, η6, η7, η8}

=








2 0 0

0 0 0

0 0 0


 ,




0 2 0

0 0 0

0 0 0


 ,




0 0 2

0 0 0

0 0 0


 ,




0 0 0

2 0 0

0 0 0


 ,




0 0 0

0 2 0

0 0 0


 ,




0 0 0

0 0 2

0 0 0


 ,




0 0 0

0 0 0

2 0 0


 ,




0 0 0

0 0 0

0 2 0


 ,




0 0 0

0 0 0

0 0 2








. (5.99)

Consequently, the entriesmr of the vectorization of a 3×3 complex matrix [M ], i.e., m = [m0,m2, . . . ,m8]
T ,

are obtained as

mr =
1

2
tr([M ]Hr) (5.100)

for r ∈ {0, 1, . . . , 8}. Instead of the orthonormal set H, the vectorization of the covariance [C] and the

sample covariance [Z] matrices will be based on a different ordering

Hord = {η0, η4, η8, η1, η2, η3, η5, η6, η7}. (5.101)

The new orthonormal base Hord allows the diagonal elements of a given matrix to be located at the first

positions of the derived vector. In the case of the sample covariance matrix [Z], this fact facilitates the

analysis, as the covariance matrix diagonal elements are affected only by a multiplicative speckle noise

term.

Considering the expression for the Hermitian product speckle noise model, Eq. (5.95), the 3 × 3
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complex covariance matrix [C] can be divided into two new 3 × 3 complex matrices as follows

[C] = [C1] + [C2]

=




ψ0

√
2ψ1Nc1zn1e

jφx1 ψ2Nc2zn2e
jφx2√

2ψ3Nc3zn3e
jφx3 2ψ4

√
2ψ5Nc5zn5e

jφx5

ψ6Nc6zn6e
jφx6

√
2ψ7Nc7zn7e

jφx7 ψ8




+




0
√

2ψ1(|ρ1| −Nc1zn1)e
jφx1 ψ2(|ρ2| −Nc2zn2)e

jφx2√
2ψ3(|ρ3| −Nc3zn3)e

jφx3 0
√

2ψ5(|ρ5| −Nc5zn5)e
jφx5

ψ6(|ρ6| −Nc6zn6)e
jφx6

√
2ψ7(|ρ7| −Nc7zn7)e

jφx7 0




(5.102)

The factors 2 and
√

2 are required in order to keep the vector norm consistent with the span when the

scattering matrix [S] is considered as a three dimensional target vector k in the backscattering case. Since

any covariance matrix is hermitian, the equalities: |ρr| = |ρr′ |, Ncr = Ncr′ , znr = znr′ and φxr = −φxr′ for

the pairs of elements [r, r′] = {[1, 3], [2, 6], [5, 7]} apply. The vectorization operator given by Eq. (5.100)

is employed with the orthonormal basis Hord to derive the 9 complex entries of the vector forms of the

matrices [C1], i.e., c1, and [C2], i.e., c2

c1,r =
1

2
tr([C1]Hord,r) (5.103)

c2,r =
1

2
tr([C2]Hord,r) (5.104)

for r ∈ {0, 1, . . . , 8}. In the same way, the 9-dimensional vector form z of the sample covariance matrix

[Z], has its components defined as

zr =
1

2
tr([Z]Hord,r) (5.105)

for r ∈ {0, 1, . . . , 8}. The covariance vector c represents the useful signal component contained in the

sample covariance vector z which is damaged by the different speckle noise terms and has to be recovered.

Since all the elements of the sample covariance vector consist in the Hermitian product of SAR images,

which have been demonstrated to have the speckle noise model given by Eq. (5.95), the sample covariance

vector can be written as

z = [Nm]c1 + c2 + na. (5.106)

The matrix 9× 9 real matrix [Nm] contains the multiplicative speckle noise terms for all the elements of

the covariance vector, whose expression is

[Nm] =




nm0 0 0 0 0 0 0 0 0

0 nm4 0 0 0 0 0 0 0

0 0 nm8 0 0 0 0 0 0

0 0 0 nm1 0 0 0 0 0

0 0 0 0 nm2 0 0 0 0

0 0 0 0 0 nm3 0 0 0

0 0 0 0 0 0 nm5 0 0

0 0 0 0 0 0 0 nm6 0

0 0 0 0 0 0 0 0 nm7




. (5.107)

On the contrary, the nine-dimensional complex vector na contains the additive speckle noise terms for the

sample covariance vector components. Since the three first entries correspond to the diagonal elements of

the sample covariance matrix [Z], they equal zero as it has been demonstrated above. Hence, the vector
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na is

na =




0

0

0

ψ1(nar1 + jnai1)

ψ2(nar2 + jnai2)

ψ3(nar3 + jnai3)

ψ5(nar5 + jnai5)

ψ6(nar6 + jnai6)

ψ7(nar7 + jnai7)




. (5.108)

Eq. (5.106) represents the speckle noise model for PolSAR data, in the backscattering case, expressed

under a covariance matrix formulation. In summary, this model represents a generalization of the mul-

tiplicative speckle noise model which applies for any SAR image intensity, allowing to identify the noise

sources in the case of PolSAR data and how these noise sources damage the useful information which is

contained on the data’s correlation structure. The model presented by Eq. (5.106) can be conveniently

extended to consider speckle noise effects for multidimensional SAR imagery, in which Q SAR images

are considered under the covariance matrix formulation.

5.5 Validation and Interpretation

The present section is devoted to validate the multidimensional speckle noise model which has been

proposed previously, with special attention to PolSAR data. This validation process will also serve to

interpret the noise model, allowing to extract important conclusions about the speckle noise behavior

for multidimensional SAR data. The validation, as well as the interpretation processes will be based

on the analysis of the Hermitian product real and imaginary parts, whose speckle noise models are

respectively given by Eqs. (5.93) and (5.94), instead to analyze directly the complex speckle noise

model, Eq. (5.95). The results which will be extracted from this study can be easily extended to

the covariance matrix speckle noise model introduced in Eq. (5.106). Additionally, since PolSAR is the

perfect vehicle to validate the multidimensional speckle noise problem, real PolSAR data will be employed

for this validation. Consequently, the products SpqS
∗
rs where p, q, r and s refer to a pair of orthogonal

polarization states, are considered. In this study the pair of horizontal and vertical polarization states

{ĥ, v̂} is considered since most of the existing PolSAR systems work with this polarization basis.

Before to present to the study of the speckle noise model for the complex Hermitian product, Eq.

(5.95), two definitions, referring to the different noise processes within this noise model, are introduced.

The definitions

SpqS
∗
rs = ψNcznnme

jφx
︸ ︷︷ ︸
Multiplicative term

+ψ(|ρ| −Nczn)e
jφx + ψ(nar + jnai)︸ ︷︷ ︸

Additive term

(5.109)

take into consideration the different speckle noise components. The first additive term of Eq. (5.109)

will be simply referred as Multiplicative term since in this case, the useful signal is damaged by the

multiplicative speckle noise component nm. On the contrary, the second and the third additive terms

are called the Additive term of the model since the second additive term, which contains useful signal, is

damaged by the zero-mean speckle noise additive components of the third additive term, nar and nai. In

Eq. (5.109) the terms |ρ|, Nc, zn and φx refer to the joint properties of the SAR images Spq and Srs.

5.5.1 Hermitian Product Speckle Noise Model Validation: Simulated PolSAR Data

In the same way as it has been presented in Section 4.2.3 for the interferometric phasor noise model,

the Hermitian product speckle noise model is validated first by means of simulated PolSAR data. These
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data are obtained with the algorithm detailed in Section 4.2.3. In this case, the input parameters are the

complex correlation coefficient ρ and the powers σpq and σrs of each one of the SAR images.

The first parameter in which the Hermitian product speckle noise model depends on is the average

power term ψ, which equals
√
σpqσrs. As it can be concluded from the speckle noise model expression,

Eq. (5.95), it only acts as an scaling parameter which does not affect the speckle noise final nature.

Consequently, without loss of generality, unit power SAR images can be considered, i.e., ψ = 1.

The coherence parameter |ρ| has a direct impact on the final nature of speckle noise for the Hermitian

product real and imaginary parts, since the standard deviations of the zero-mean additive speckle noise

terms, nar and nai, depend directly on it, see Eq. (5.92). On the contrary, the standard deviation of

the multiplicative speckle noise term nm is constant and equal to one for the whole coherence range. If

instead of considering the multiplicative speckle noise component nm, the complete multiplicative term

of the Hermitian product speckle noise model, as defined in Eq. (5.109), is considered, it can be observed

that the standard deviation of this term depends on the coherence value through the parameter Nc.

The type of dependence, regardless of the phase value φx, is directly proportional to the coherence value

|ρ|. Eq. (5.35) gives the actual value of the variance for the Hermitian product real part, whereas the

approximated value can be derived from Eq. (5.36). Fig. 5.3 presents a graphical representation of

these values. Hence, the multiplicative term presents low standard deviation values for low coherences

and high ones for high coherences. As a brief summary, in the case of the Hermitian product real part,

considering φx = 0 rad, it can be concluded that the multiplicative term of the speckle noise model will

be dominant, in terms of standard deviation, for high coherences, whereas the additive term is dominant

for low coherences. The importance of the multiplicative term with respect to the additive one, in terms

of standard deviation, is considered by means of the equality

Ncznσnm = σnar = σnai. (5.110)

This equality becomes true for |ρ| = 0.675. Therefore, the additive speckle noise terms, nar and nai,

are dominant for the majority of the coherence values, being the multiplicative term dominant only for

coherences higher than 0.675. As a result, the speckle noise in the case of the Hermitian product real and

the imaginary parts is clearly dominated, for medium and low coherences, by an additive noise behavior,

regardless of the phase value φx. Above this value, the speckle noise is dominated by a multiplicative

behavior.

In the previous paragraph, the effect of the terms cos(φx) and sin(φx) has not been considered. As

demonstrated, none of the noise terms nm, nar neither nai present a direct dependence on it. Nevertheless,

the final nature of the speckle noise for the real and imaginary parts of the Hermitian product depends

indirectly on cos(φx) and sin(φx), respectively. The clear effect of these terms can be observed over

the standard deviation value of the multiplicative term, which equals Ncznσnm cos(φx) in the Hermitian

product real part case and Ncznσnm sin(φx) in the Hermitian product imaginary part case. The terms

cos(φx) and sin(φx) also affect the deterministic component of the additive term, but not the additive

noise terms nar and nai. Retaking what has been explained in the previous paragraph, the standard

deviation of the multiplicative term is controlled, on the one hand, by the parameter Nc, and, on the

other hand, by the terms cos(φx) and sin(φx) for the real and imaginary part cases, respectively. Thus,

the relative importance of the multiplicative term given in Eq. (5.109), in terms of standard deviation,

depends on the terms Nc cos(φx) and Nc sin(φx) for the Hermitian product real and imaginary parts.

The main consequence of this dependence is that the final nature of speckle noise will be different for the

real and imaginary parts of the complex Hermitian product.

Before to present the validation process in the case of simulated SAR data, it is necessary to determine

the form in which the multiplicative and the additive terms in Eq. (5.109) are obtained. As it has been

presented, the multiplicative term of the speckle noise model consists of the product of the Hermitian

product amplitude z by the term Nc exp(jφx). This term can be obtained from the complex correlation

coefficient ρ, since the parameter Nc is a function of |ρ|, see Eq. (4.11), and the phase φx corresponds
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Figure 5.12: Monte-Carlo analysis to test the validity of the speckle noise model for the real part of the

Hermitian product of a pair of SAR images. (a) Mean value for the multiplicative term. (b) Standard

deviation for the multiplicative term. (c) Mean value for the additive term. (d) Standard deviation for the

additive term. Solid lines represent theoretical values as a function of |ρ|, whereas dashed lines represent the

approximated values. Crosses represent the estimated values. In all the cases φx = 0 rad and ψ = 1.

to the phase of ρ. The additive term is, therefore, obtained as the difference between the total complex

Hermitian product and the multiplicative term, obtained as explained above.

The validation process of the speckle noise model, given by Eq. (5.95), has consisted on comparing

the mean and the standard deviation values estimated from simulated data, obtained by means of the

usual sample estimators, with those predicted by the theoretical model. In all the cases, the statistical

values, as well as the different model parameters, are obtained by means of 7 by 7 pixel, non-overlapped

windows over 512 by 512 pixel simulated SAR images. The first test has consisted of simulating SAR

images for the whole coherence range, for the particular average phase difference of φx = 0 rad. Figs.

5.12 and 5.13 present the results of this series of simulated SAR data for the real and imaginary parts

of the Hermitian product, respectively. The standard deviation corresponding to the estimators is also

presented as the graphic bars.

As it can be deduced from Figs. 5.12 and 5.13, it exists a complete agreement between the values of

the different statistical moments corresponding to the different components of the speckle noise model

derived from simulated data and the theoretical values predicted by the model. A complete agreement

is observed in the case of the mean values, whereas minor differences can be noticed in the case of

the standard deviations, as a consequence of the approximations which have been introduced and the
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Figure 5.13: Monte-Carlo analysis to test the validity of the speckle noise model for the imaginary part of

the Hermitian product of a pair of SAR images. (a) Mean value for the multiplicative term. (b) Standard

deviation for the multiplicative term. (c) Mean value for the additive term. (d) Standard deviation for the

additive term. Solid lines represent theoretical values as a function of |ρ|, whereas dashed lines represent the

approximated values. Crosses represent the estimated values. In all the cases φx = 0 rad and ψ = 1.

insufficient number of samples employed for the estimation. These minor differences disappear if larger

windows, as for instance 11 by 11 pixel, non-overlapped windows, are employed. From Fig. 5.12b, it can

be observed that the standard deviation of the multiplicative term, in the real part case, is proportional

to the coherence value |ρ|, whereas from Figs. 5.12d and 5.13d one observes that the additive components

have an inverse dependence on |ρ|. Additionally, if Fig. 5.12 is compared with 5.13, one can observe the

indirect dependence on the phase φx, in this case for φx = 0 rad. Whereas the Hermitian product real

part presents both, multiplicative and additive speckle noise terms, the imaginary part is only affected

by the additive speckle noise term nai, for any coherence value. Finally, Fig. 5.14 presents the values

obtained for the covariance term C12. In this case, the agreement between the theoretical and the values

estimated from simulated data can also be observed.

The indirect effect of the true phase difference φx has been also tested with simulated SAR images in

which the coherence value remains constant and equal to |ρ| = 0.675, and the phase φx varies from 0 rad

to π rad. Fig. 5.15 presents the results of the Monte-Carlo analysis for the standard deviation values.
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Figure 5.14: Monte-Carlo analysis to test the parameter C12 for the Hermitian product. (a) Real part. (b)

Imaginary part. Solid lines represent theoretical values. Crosses represent the estimated values. In all the

cases φx = 0 rad and ψ = 1.
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Figure 5.15: Monte-Carlo analysis to test the speckle noise model for the Hermitian product. (a) Standard

deviation value for the multiplicative component of the real part. (b) Standard deviation value for the additive

component of the real part. (c) Standard deviation value for the multiplicative component of the imaginary

part. (d) Standard deviation value for the additive component of the imaginary part. Solid lines represent

theoretical values as a function of |ρ|, whereas, dashed lines represent the approximated values. Crosses

represent estimated values. In all the cases |ρ| = 0.675 rad and ψ = 1.



136 CHAPTER 5. MULTIDIMENSIONAL SPECKLE NOISE MODEL

From this figure, one observes which is the final nature of the Hermitian product speckle noise. As it

can be observed in Figs. 5.15b and 5.15d, the standard deviation of the zero-mean, additive noise terms

nar and nai have a small dependence on the phase difference φx, which is eliminated in the approximated

values as explained in Section 5.4.5. On the contrary, the final standard deviation of the multiplicative

term in the real and imaginary parts of the Hermitian product have a clear dependence on the phase

φx. It can be concluded, therefore, that the final nature of speckle noise for the real and imaginary

parts of the Hermitian product depends, both, on the coherence |ρ| and on the phase φx. But, since

the multiplicative term of the Hermitian product real part depends on cos(φx) and the imaginary one

depends on sin(φx), the real and imaginary parts of the Hermitian product present speckle noises with

different natures. For instance, for φx = 0 rad, the Hermitian product real part contains multiplicative

as well as additive speckle, since the corresponding standard deviation values are different from zero. On

the contrary, the imaginary part only contains additive speckle. For φx = π/2 rad, the opposite situation

is produced, since the imaginary part of the Hermitian product presents multiplicative as well as additive

speckle, whereas the real part of the Hermitian product presents only additive speckle noise. It can

be concluded that the final importance (or weight) of the multiplicative speckle term in the Hermitian

product depends basically on the term Nc exp(jφx), whereas the importance of the additive terms nar
and nai depend only on |ρ|.

5.5.2 Hermitian Product Speckle Noise Model Validation: Real PolSAR Data

The speckle noise model for the complex Hermitian product of a pair of SAR images will be now validated

by means of real PolSAR data. This model has been derived for a general Hermitian product without

making any assumption concerning the information content or introducing any restriction. Consequently,

the validity of the Hermitian product speckle noise model for PolSAR data can be proven, without loss of

generality, analyzing only one covariance matrix entry, and analyzing the results to the rest of covariance

matrix entries. The data employed in this section correspond to an 1321 by 14654 pixel, L-band (1.3 GHz),

fully polarimetric dataset acquired by the E-SAR system [185] over the Oberpfaffenhofen area, nearby the

German city of Munich, on the summer of 2001. The data was acquired in the linear polarization basis

{ĥ, v̂} and processed by the DLR-HR. The proposed speckle noise model will be tested on the covariance

matrix off-diagonal element ShhS
∗
vv. As previously demonstrated, the final speckle noise nature depends

on the complex correlation coefficient between the SAR images Shh and Svv . Fig. 5.16 presents the

complex correlation coefficient calculated by means of 7 by 7 pixel, non-overlapped, windows.

(a) (b)

Figure 5.16: Oberpfaffenhofen test site. Complex correlation coefficient ρ corresponding to the covariance

matrix element ShhS
∗
vv. (a) Amplitude |ρ|. (b) Phase φx (rad).
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As it can be deduced from Fig. 5.16, the complex correlation coefficient amplitude and the phase are

non homogeneous across the image. The first important consequence is that the speckle noise nature will

not be homogeneous, ranging hence, from areas with a complete multiplicative speckle to areas where it

is fully additive.

The Oberpfaffenhofen dataset is analyzed in two different ways. On the one hand, the dataset will

be considered globally through the calculation of mean versus standard deviation scatter diagrams [1].

On the other hand, the dataset is examined locally. This analysis consists, as it has been performed

previously, in comparing statistical moments obtained from real data with the corresponding theoretical

values. In this case two homogeneous areas characterized by a high and a low coherence values will be

considered.

Scatter diagrams in which the standard deviation value is presented as a function of the mean value

are valuable as they offer information concerning the noise processes under study [1]. Fig. 5.17 presents

the scatter diagram for the Hermitian product real part <{ShhS∗
vv}, where the color codes density, i.e.,

blue for low and red for high densities, respectively. In this case, the mean and the standard deviation

values have been calculated with the usual sample estimators over 7 by 7 pixel, non-overlapped windows.

As it can be observed from this diagram, it is not possible to derive any conclusion about the speckle

noise nature. Nevertheless, it can be noticed that it exists a validity region limited by the lines with

slopes 1 and -1 which cross the axis origin. As it has been noticed in the previous section, regardless the

phase dependence, in the case of the Hermitian product real and imaginary parts, the speckle noise is

dominated by a multiplicative behavior for high coherences whereas the dominant mechanism is additive

for low coherences. Fig. 5.18 presents the scatter diagram given at Fig. 5.16, but divided for different

coherence |ρ| ranges. In each case, the multiplicative and the additive terms, as presented by Eq. (5.109),

are also given. Fig. 5.18 makes evident the speckle behavior for the different coherence values. If the

second column is observed, one can notice that the larger the coherence value, the most important the

multiplicative component. In this case, two branches, over the lines of slope 1 and -1 are observed, since

the multiplicative term mean value can be either positive or negative. This behavior is given, in this

case, by the sign of cos(φx). For the imaginary part case, the sign will be given by sin(φx). If one now

observes the third column, corresponding to the additive term of <{ShhS∗
vv}, it can be concluded that

the lower the coherence value, the most important the additive component. As it has been demonstrated

in Section 5.4.2, as well as in Section 5.4.5, this term is characterized by an small mean value (lower

than the 20% of the total signal) which depends on |ρ| and a standard deviation which also depends

inversely on |ρ|. Finally, if the first column of Fig. 5.18 is analyzed, it can be observed that the scatterer

diagram is dominated by an additive behavior for low coherences, whereas it is almost multiplicative for

high coherences. An important aspect that Fig. 5.18 points out is the importance of the speckle additive

component. As it is evident from the third column of Fig. 5.18, the additive speckle term is significant

even for coherences larger than 0.8. As a result, this additive component has to be carefully considered

when speckle is eliminated.

The behavior of the scatter diagrams corresponding to the Hermitian product imaginary part ={ShhS∗
vv}

is completely parallel to the one shown in Fig. 5.18. The only difference in this case is that the scatter

diagrams vary according to sin(φx) instead to cos(φx).

The aim of the following part of this section is to present a quantitative validation of the Hermitian

product speckle noise model, Eq. (5.95), employing real data. This test consists in comparing the

moments of the multiplicative and the additive terms of the speckle noise model for the real and imaginary

parts of the Hermitian product with the values given by the theoretical model. The procedure employed

to divide and to analyze the signal is the same one employed previously to analyze simulated data, which

consists in estimating the different moments over 7 by 7 non-overlapped windows. In this case, data

has been normalized by its corresponding power ψ, since this factor only acts as a scaling term on the

speckle noise model for the Hermitian product. The test has been applied over two different areas of

the Oberpfaffenhofen test site. The fist area is characterized by a high coherence value, whose complex
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Figure 5.17: Global scatter diagram for <{ShhS
∗
vv} in the case of the Oberpfaffenhofen test site.
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Figure 5.18: Scatter diagrams for <{ShhS
∗
vv} in the case of the Oberfapfenhoffen test site.
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Figure 5.19: Comparison between real and theoretical values for the different components of the speckle

noise model for a high coherence area, ρ = 0.850 exp(j0.331). (a) Hermitian product real part <{ShhS
∗
vv}.

(b) Hermitian product imaginary part ={ShhS
∗
vv}. Solid and dashed lines represent actual and approximated

values respectively. Points indicate data statistics where color refers to density, ranging from low densities

(blue) to high densities (red).

a0 a1 s r

Mean mult. 0 0.994 0.011 0.994

Std. mult. 0.043 0.842 0.121 0.597

Mean add. 0.007 0.971 0.011 0.921

Std. add. -0.068 1.041 0.051 0.846

<{
S

h
h
S
∗ v
v
}

C12 -1.603 29.668 4.409 0.158

Mean mult. 0 0.993 0.004 0.998

Std. mult. 0.003 0.896 0.045 0.894

Mean add. 0 1.033 0.004 0.986

Std add. 0.035 0.975 0.063 0.766

={
S

h
h
S
∗ v
v
}

C12 0.824 6.575 2.566 0.044

a0 a1 s r

Mean mult. 0 0.990 0.011 0.996

Std. mult. 0.001 0.868 0.034 0.938

Mean add. 0 1.022 0.011 0.987

Std. add. -0.017 0.972 0.105 0.507

<{
S

h
h
S
∗ v
v
}

C12 0.079 0.311 0.157 0.077

Mean mult. 0 0.990 0.010 0.997

Std. mult. 0.001 0.870 0.030 0.951

Mean add. 0 1.020 0.010 0.989

Std add. -0.046 1.031 0.106 0.523

={
S

h
h
S
∗ v
v
}

C12 0.019 1.358 0.065 0.614

(a) (b)

Table 5.2: Least squares regression analysis results for the Oberfaphenhoffen test site. (a) Analysis corre-

sponding to the high coherence area, whose complex coherence equals 0.850 exp(j0.331).(b) Analysis corre-

sponding to the low coherence area, whose complex coherence equals 0.389 exp(j0.528).

correlation coefficient ρ equals 0.850 exp(j0.331). The second area is characterized by a low coherence,

that is ρ = 0.389 exp(−j0.528). Figs. 5.19 and 5.20 present the qualitative result of this comparison.

As it can be observed in all the plots of these figures, a full agreement exists between the theoretical

expressions, given by solid and dotted lines, and the values derived from real data. The levels of agreement

between the theoretical and the calculated moments from data is independent of the Hermitian product

real and imaginary parts or the degree of coherence between the pair of SAR images.

The level of agreement between theory and data has been also quantitatively measured by means



140 CHAPTER 5. MULTIDIMENSIONAL SPECKLE NOISE MODEL

Mult. noise term Add. noise term Mult. noise term Add. noise term

|ρ|

M
ea

n

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

|ρ|

M
ea

n

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

|ρ|

M
ea

n

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

|ρ|

M
ea

n

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

|ρ|

S
td

. d
ev

.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

|ρ|

S
td

. d
ev

.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

|ρ|

S
td

. d
ev

.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

|ρ|

S
td

. d
ev

.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

|ρ|

C
12

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

|ρ|

C
12

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) <{ShhS∗
vv} (b) ={ShhS∗

vv}

Figure 5.20: Comparison between real and theoretical values for the different components of the speckle

noise model for a low coherence area, ρ = 0.389 exp(−j0.528). (a) Hermitian product real part <{ShhS
∗
vv}.

(b) Hermitian product imaginary part ={ShhS
∗
vv}. Solid and dashed lines represent actual and approximated

values respectively. Points indicate data statistics where color refers to density, ranging from low densities

(blue) to high densities (red).

of the same type of least squares regression analysis employed to validate the interferometric phasor

noise model in the previous chapter. This analysis consists in calculating the regression curves between

the theoretical values of the moments, obtained from the coherence calculated over data, and the same

statistical values extracted from data. Tables 5.2a and 5.2b present the results of this analysis for all

the plots shown in Figs. 5.19 and 5.20, respectively. The interpretation of the different parameters

presented in these tables is found in Appendix D. The results obtained from the least squares regression

analysis confirms the full agreement between the theoretical and the calculated values of the moments

of the different components of the speckle noise model for the Hermitian product. The major agreement

is obtained in the case of the mean values, which precisely contain the useful information which has

to be maintained. The least squares regression analysis in the case of the standard deviation values

has been performed considering the approximated values (dashed lines). Despite these approximations,

the closeness between the theory and data is still very high. On the contrary, a major disagreement is

obtained in the case of the covariance values C12. A quick look to the corresponding plots in Figs. 5.19

and 5.20 shows this disagreement, but also that the major density (red color) corresponds to the values

over the theoretical curves. This disagreement is consequence of the insufficient number of data samples

employed to calculate the covariance values C12. Figs. 5.19 and 5.20, corresponding to real data, make

evident several points already observed in the simulated data case. Considering the standard deviation

values corresponding to the high coherence area, Fig. 5.19, if one compares the values corresponding to

the real part, Fig. 5.19a, with the corresponding to the imaginary one, Fig. 5.19b, it can be deduced

that the real part is dominated by a multiplicative speckle behavior, whereas the imaginary part, despite

the high coherence value, is dominated by an additive speckle noise behavior. On the contrary, if one

makes the same comparison in the low coherence area, Fig. 5.20, it can be concluded that both, the
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real and imaginary parts of the Hermitian product, are dominated by an additive speckle noise behavior,

as a consequence of the low coherence value. These results over real data confirms that the speckle

noise nature is not homogeneous in the image and that, even, this nature changes from the real to the

imaginary part of the Hermitian product.

In this section, the speckle noise model has been validated for data obtained with respect to the linear

polarization basis {ĥ, v̂}. In Section 2.3.7 it was shown that given the scattering matrix measured in

a given polarization basis, for instance the linear polarization basis {ĥ, v̂}, it is possible to derive the

scattering matrix in any other polarization basis. This change of basis will introduce also a change on

the covariance matrix [C], altering the data’s correlation structure. This transformation will not change

the speckle noise model itself, Eq. (5.106), as the complex Wishart pdf is maintained. But, since the

correlation structure is altered, the nature of the speckle noise for each entry of the single-look covariance

matrix [Z] will vary according to the new correlation structure between the SAR images.

5.5.3 Hermitian Product Speckle Noise Model Validation: Extended Validation

The development of the proposed speckle noise model for the Hermitian product is based on the analysis

of the scattering theory from an statistical perspective, and not on an experimental curve-fitting process.

This procedure ensures that, whenever the conditions in which the model is based on are valid, data will

follow the proposed speckle noise model. This reasoning explains the high level of agreement which has

been obtained in the previous sections between theory and data.

The previous two sections have served to validate the proposed speckle noise model by means of

simulated and real PolSAR data. These two cases, and in particular the latter, represent only a small

portion of the wide range of conditions in which multidimensional, and in particular PolSAR data can be

acquired. In addition to the analysis presented in the previous section, additional validation tests have

been performed with different PolSAR datasets. The inclusion of the results of these analyses in this text

will imply basically to repeat what has been already presented in Section 5.5.2. References concerning

these additional analyses are provided.

The complex Hermitian product speckle noise model has been also tested with PolSAR data acquired

with a spaceborne SAR sensor. In this case, experimental data correspond to a single-look, L-band (1.27

GHz), polarimetric dataset in the basis {ĥ, v̂}. The data were acquired on autumn 1994 by the SIR-C/X-

SAR radar system, processed by NASA/JPL and correspond to the southeastern edge of Baikal Lake,

at the confluence of the Selenga stream, in Buriaria, Russia. Data consist in a 40 km azimuth by 20 km

range image of agricultural and forestry areas. The results of this validation process were presented at

the International Geoscience and Remote Sensing Symposium (IGARSS’02) held in Toronto, Canada on

July 2002 [183]. The fist part of the analysis presented in this work consisted of studying the Hermitian

product speckle noise model validity over the spaceborne PolSAR system dataset. The main result of

the work was that the proposed speckle noise model was completely valid, also for data acquired from

spaceborne platforms. The level of agreement between theory and data was very similar to the one

presented in the previous section.

Most of the existing SAR sensors, placed either in airborne or spaceborne platforms, operate in a

wide range of frequencies. Among other considerations, the frequency in which PolSAR data are acquired

has two main consequences concerning the validity of the Hermitian product speckle noise model. On

the one hand, the correlation properties between two SAR images of the same area depend on frequency.

Consequently, the speckle noise nature will vary from one frequency to another accordingly to these

correlation properties. On the other hand, the frequency in which the system operates has an indirect

effect concerning the validity of the Hermitian product speckle noise model, since the resolution cell

dimensions depend on the system parameters at each frequency. The Hermitian product speckle noise

model is based on the Gaussian scattering assumption, which at the same time is concerned with the

number of scatterers inside the resolution cell. Section 5.7 will be focused on presenting a multi-frequency
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validation of the Hermitian product speckle noise model, allowing to extend the proposed speckle noise

model to consider SAR images taken at different frequencies.

5.6 Polarimetric SAR Interferometric Speckle Noise Model

One of the results of Chapter 4 has been the definition of a noise model for the Hermitian product phase

complex phasor in the frame of SAR interferometry. This noise model was taken as a basis to construct

the speckle noise model for the Hermitian product of a pair of SAR images, which has been studied in

Section 5.4.5. Finally, this model has made possible the definition of a vectorial speckle noise model for

multidimensional SAR data, which has been validated in the frame of PolSAR. In the Section 2.4 at

Chapter 2, it was shown that it is possible to combine InSAR and PolSAR data, through the concept of

vector interferometry, as a way to investigate the vertical structure of a given scatterer. This technique is

known as Polarimetric SAR Interferometry, shorten PolInSAR. One of the most promising applications

of these data is the possibility to retrieve the vegetation’s height information, since the availability of this

parameter makes possible to estimate the quantity of Biomass. The main advantage of this technique,

compared with techniques based on non coherent data, is that PolInSAR does not present saturation

problems for a given amount of biomass.

PolInSAR data acquisition is based on measuring the complete scattering matrix [S], for a given

scatterer, from two slightly different positions in space. In the following, it will be assumed that the

[S] matrices are referred to the linear polarization basis {ĥ, v̂}. Consequently, PolInSAR data will be

affected also by speckle noise. As it has been mentioned previously, distributed scatterers can not be

completely characterized by the scattering matrix measurements directly. Hence, this characterization

has to be done over higher moments. In the backscattering case, each fully polarimetric data acquisition

is determined by the corresponding three-dimensional, complex, scattering vectors denoted by k1 and

k2, respectively. Using the outer product formed from the scattering vectors k1 and k2, corresponding

to each SAR image, it is possible to define the 6 by 6 complex, Hermitian, positive semidefinite matrix

[C6]. See section 2.4 for definitions.

As it is defined in Eq. (2.192) on page 49, the 6 by 6 complex matrix [C6] can be divided into four

additional 3 by 3 complex matrices. The two matrices located at the diagonal of [C6], termed [C11] and

[C22], correspond to the polarimetric covariance matrices of each one of the fully polarimetric datasets.

Consequently, the corresponding sample covariance matrices [Z11] and [Z22] are completely characterized

by the noise model given in Eq. (5.106). The off-diagonal matrix of [C6], which is denoted by [Γ12],

contains additionally interferometric information as it has components acquired from different spatial

positions. This matrix is defined as

[Γ12] = E
{
k1k

∗T
2

}
=




E{Shh1S
∗
hh2

}
√

2E{Shh1S
∗
hv2

} E{Shh1S
∗
vv2}√

2E{Shv1S∗
hh2

} 2E{Shv1S∗
hv2

}
√

2E{Shv1S∗
vv2}

E{Svv1S∗
hh2

}
√

2E{Svv1S∗
hv2

} E{Svv1S∗
vv2}


 (5.111)

where ∗T indicates transpose conjugate and E{·} is the expectation operator. Its corresponding single-

look matrix, defined as

[Z12] = k1k
∗T
2 =




Shh1S
∗
hh2

√
2Shh1S

∗
hv2

Shh1S
∗
vv2√

2Shv1S
∗
hh2

2Shv1S
∗
hv2

√
2Shv1S

∗
vv2

Svv1S
∗
hh2

√
2Svv1S

∗
hv2

Svv1S
∗
vv2


 (5.112)

is composed by Hermitian product pairs of polarimetric components acquired at the two spatial locations.

The extended scatterer vector, defined as [k1,k2]
T , is statistically described by a multivariate, zero-mean,

complex, Gaussian pdf, N (0, [C6]). Consequently, the 6 by 6 complex single-look covariance matrix [Z6]

is described by a complex Wishart pdf, W([C6], 1). As a result of these definitions, it can be concluded
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that the different elements of the single-look matrix [Z12] are described by the same distributions as the

elements of the matrices [Z11] and [Z22]. Consequently, the entries of [Z12] are characterized by the same

speckle noise model as the elements of [Z11] and [Z22], Eq. (5.95). Finally, the vectorial speckle noise

model for the extended sample covariance matrix [Z6] is obtained as a simple extension of the model

presented in Eq. (5.106), taking into account the larger dimensionality of the problem in the case of

PolInSAR data.

From a strictly statistical point of view, all the elements of the covariance matrix [C6] are characterized

by the speckle noise model given by Eq. (5.95). Hence, the final nature of speckle noise for each element

depends on the value of the complex correlation coefficient between the pair of SAR images from which

the Hermitian product is constructed. The basic difference between PolSAR and PolInSAR data is the

introduction of interferometric information. This new information will affect the correlation coefficient

between the pair of SAR images producing, therefore, a change over the final speckle noise nature. On

the other hand, the variation of the covariance value |ρ| will affect the balance between the multiplicative

and the additive speckle noise terms. On the other hand, as the phase difference φx is also changed

due to the interferometric information, it will have an effect over the final speckle noise nature. In the

following, it will be shown that the phase information acquires a key importance concerning the speckle

noise nature of the real and imaginary parts of the Hermitian product for a pair of SAR images.

In Section 5.5.2, the Hermitian product speckle noise model has been validated with a L-band, fully

polarimetric dataset over the area of Oberpfaffenhofen, acquired with the E-SAR system. This dataset is

also a PolInSAR dataset, in which the second PolSAR dataset was acquired in a repeat-pass interferomet-

ric configuration, with a space baseline of 10 m approximately and a temporal difference of 10 min. As

a result of the short time between both acquisitions, temporal decorrelation effects can be neglected. In

this case, as done previously, only one element of the matrix [Γ12] will be analyzed, extending the results

to the complete matrix. In this case, the term Shh1S
∗
vv2 is considered. Fig. 5.21 depicts the amplitude

and the phase of the complex correlation coefficient between the SAR images Shh1 and Svv2 .

(a) (b)

Figure 5.21: Oberpfaffenhofen test site. Complex correlation coefficient ρ corresponding to the extended

covariance matrix element Shh1
S∗

vv2
. (a) Amplitude |ρ|. (b) Phase φx rad.

If one compares Fig. 5.21 with the corresponding to the polarimetric term Shh1S
∗
vv1 , Fig. 5.16, it can

be noticed that the coherence value presents only minor differences between both cases. Consequently,

the effect of the variation of |ρ| between both Hermitian products will not have too much effect over

the final nature of speckle noise. On the contrary, if phases are compared, noticeable differences can

be noticed due to the terrain’s relief. As a result, the main changes on the final speckle noise nature,

in the case of the elements Shh1S
∗
vv1 and Shh1S

∗
vv2 , are induced by the differences on the corresponding

phases φx. Fig. 5.23 presents the mean versus standard deviation scatter diagrams corresponding to
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Figure 5.22: Global scatter diagram for <{Shh1
S∗

vv2
} in the case of the Oberpfaffenhofen test site.
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Figure 5.23: Scatter diagrams for <{Shh1
S∗

vv2
} in the case of the Oberfapfenhoffen test site.



5.6. POLARIMETRIC SAR INTERFEROMETRIC SPECKLE NOISE MODEL 145

Mult. noise term <{·} Add. noise term <{·} Mult. noise term ={·} Add. noise term ={·}
S

h
h
1
S
∗ v
v
1

|ρ|

S
td

. d
ev

.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

|ρ|

S
td

. d
ev

.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

|ρ|

S
td

. d
ev

.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

|ρ|

S
td

. d
ev

.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

S
h

h
1
S
∗ v
v
2

|ρ|

S
td

. d
ev

.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

|ρ|

S
td

. d
ev

.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

|ρ|

S
td

. d
ev

.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

|ρ|

S
td

. d
ev

.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 5.24: Standard deviations for the Hermitian product multiplicative and additive terms in the case

of Shh1
S∗

vv1
, a polarimetric covariance matrix term, and Shh1

S∗
vv2

, a polarimetric interferometric covariance

matrix term.

<{Shh1S
∗
vv2}, as well as the diagrams corresponding the multiplicative and the additive terms. As it

was shown for PolSAR data, in the case of the real and imaginary parts of the Hermitian product for

PolInSAR data, speckle noise is dominated by a multiplicative behavior for high coherences while it is

almost additive for low ones.

But, if one compares Fig. 5.18 with Fig. 5.23 it can be observed that in the former case, all the

scatter diagrams, specially those of the multiplicative component, are clearly biased to the right part of

the diagram since the difference phase is basically centered in φx = 0 rad. In the PolInSAR data, as it

can be observed in Fig. 5.21, the phase φx is more heterogeneous as a consequence of the topographic

component. This fact produces the scatter diagrams to be more centered on the plots. This effect

is clearly visible for the multiplicative term dispersion diagrams since in the case of <{Shh1S
∗
vv2} they

populate the positive and the negative branches of the scatter diagrams.

The main conclusion at this point is that for those cases in which the Hermitian product contains

interferometric information, the phase difference φx determines clearly, despite in an indirect way, the final

nature of speckle noise. Therefore, it can be affirmed that the final nature of speckle noise, for the real

and imaginary parts of those Hermitian products containing interferometric information, is determined

by the terrain’s topography and the scatterer’s vertical structure. In order to test this fact, a common

area has been selected from the SAR images Shh1S
∗
vv1 and Shh1S

∗
vv2 . The selected region corresponds

to a flat surface located in the upper left-hand corner of the Oberpfaffenhofen test site. The selected

area corresponding to the product Shh1S
∗
vv1 has a complex coherence equal to 0.779 exp(j0.290), whereas

the corresponding to Shh1S
∗
vv2 has a complex coherence equal to 0.770 exp(j1.189). Fig. 5.24 presents

the standard deviation values for the multiplicative and the additive terms of the Hermitian products

Shh1S
∗
vv1 and Shh1S

∗
vv2 . As it can be observed in Fig. 5.24, for the Hermitian product Shh1S

∗
vv1 , the real

part is basically dominated, in terms of standard deviation, by a multiplicative noise whereas for the

imaginary part, speckle noise is dominated by and additive nature. This situation changes if Shh1S
∗
vv2 is

considered. As observed in Fig. 5.24, here the real part is dominated by the additive noise component

and the imaginary is dominated by the multiplicative speckle noise term. Considering Eq. (2.124) on

page 33, the coherences for the Hermitian products can be divided as

|ρhh1vv1 | = |ρpol| (5.113)

|ρhh1vv2 | = |ρpol||ρint| = |ρpol| |ρSNR| |ρtemporal| |ρrange| |ρvolume|. (5.114)
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In Eq. (5.114), |ρtemporal| can be considered to be equal to one due to the short delay between

both acquisitions. Equally, |ρSNR| can be assumed to be also to one since the influence of |ρSNR| is

restricted to areas characterized by a low backscattering behavior, which is not the case. The critical

baseline at L-band for the E-SAR system equals approximately 300m. Since the interferometric baseline

in this case represents a 3% of the critical baseline, |ρrange| can be considered equal to the unity. Since

in both cases the coherence is equal to 0.77, it can be deduced that |ρvolume| is also equal to 1 (see

Section 2.2.4 for additional details) confirming the fact that the selected area corresponds basically to

a flat, bare area. Since in this case, phase variation is basically determined by the topography-induced

phase, it demonstrates that the final nature of speckle noise, for those Hermitian products containing

interferometric information, depends on the terrain’s topography.

5.7 Multifrequency SAR Speckle Noise Model

As it has been mentioned in Section 5.5.3, a SAR sensor can acquire data at different frequencies.

Consequently, the properties of the SAR data will depend on the frequency, affecting at the same time

the correlation structure of multidimensional SAR data. The final result of this variation is that the

speckle noise nature for the different Hermitian products of pair of SAR images will vary for the different

frequencies. In this case, the variation of the speckle noise behavior is linked to the different response of

a given scatterer to the different frequencies. Additionally, a change on the system’s central frequency

also implies, most of the times, a variation on some parameters of the SAR system itself. Among them,

one of the most important is the variation on the system’s bandwidth B. This parameter is crucial since

the dimensions of the resolution cell, and in particular the range resolution, depend on it. Basically, the

larger the bandwidth, the smaller the range resolution, see Eq. (2.1) on page 10. This fact has important

consequences on the Hermitian product speckle noise model, since, the validity of the Gaussian scattering

assumption, in which the noise model is based, depends at the same time on the assumption to have a

sufficient number of scatterers within the resolution cell. This fact allows to assume distributed scatterers

to be described by a zero-mean, complex Gaussian distribution. Consequently, the smaller the resolution

cell dimensions, the most unprovable the assumption of Gaussian scattering model for scattered signals.

In the following, the speckle noise model proposed for the Hermitian product of SAR images, Eq. (5.95)

will be tested with SAR images acquired at different frequencies. The model is specifically tested over P-,

L-, C- and X-band datasets. The first three datasets correspond to fully polarimetric datasets acquired

on the same area, whereas the fourth one corresponds to an interferometric dataset of a different region.

The Hermitian product speckle noise model is tested in the case of X-band over an InSAR dataset since

a PolSAR dataset was non available at this band.

The P-, L-, and C-band data correspond to fully polarimetric datasets acquired with the AIRSAR

system [16,17,18], operated by NASA, over the area of Les Landes, located on the South-West region of

France. The SAR images correspond to a pine forest. The X-band data correspond, on the contrary, to an

InSAR dataset acquired with the E-SAR system [186], operated by DLR in a single-pass interferometric

configuration with an approximate baseline of 1.6 m, on the area of Oberpfaffenhofen, located on the West

of the German city of Munich. In all the cases, the noise model is tested over an homogeneous region. In

the case of the P-, L-, and C-band datasets, the model is tested over the same area in order to investigate

Frequency band P (0.45 GHz) L (1.26 GHz) C (5.31 GHz) X (9.6 GHz)

Sensor AIRSAR AIRSAR AIRSAR E-SAR

Range sp. resolution 7.5 m 3.75 m 1.875 m 2.2 m

Azimuth sp. resolution 1 m 1 m 1 m 1.8 m

Hermitian product Shh1
S∗

vv1
Shh1

S∗
vv1

Shh1
S∗

vv1
Svv1

S∗
vv2

ρ 0.737 exp(j0.179) 0.671 exp(j0.017) 0.458 exp(j0.025) 0.871 exp(−j0.648)

Table 5.3: System and data parameters.
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a0 a1 s r

Mean mult. 0.004 0.987 0.012 0.990

Std. mult. -0.026 0.997 0.078 0.774

Mean add. 0.008 0.960 0.012 0.675

Std. add. 0.022 0.929 0.048 0.820

<
{
S

h
h
1
S

∗ v
v
1
}

P

C12 -0.004 0.995 0.322 0.104

a0 a1 s r

Mean mult. 0.003 0.985 0.012 0.990

Std. mult. 0.033 0.865 0.067 0.813

Mean add. -0.021 1.153 0.013 0.682

Std. add. -0.067 1.104 0.052 0.854

<
{
S

h
h
1
S

∗ v
v
1
}

L

C12 0.042 0.636 0.325 0.106

(a) (b)

a0 a1 s r

Mean mult. 0.001 0.992 0.012 0.985

Std. mult. 0.005 0.930 0.036 0.865

Mean add. -0.002 1.034 0.012 0.939

Std. add. -0.128 1.207 0.075 0.740

<
{
S

h
h
1
S

∗ v
v
1
}

C

C12 0.008 0.817 0.030 0.726

a0 a1 s r

Mean mult. 0.006 0.986 0.007 0.997

Std. mult. -0.057 1.164 0.156 0.664

Mean add. 0.006 0.950 0.007 0.960

Std. add. -0.041 1.120 0.057 0.860

<
{
S

v
v
1
S

∗ v
v
2
}

X

C12 1.233 -0.256 3.062 0

(c) (d)

Table 5.4: Multifrequency least squares regression analysis test results.

possible variations concerning the speckle noise model validity which depend on frequency. The model is

also tested over an homogeneous area in the case of the X-band dataset. Table 5.3 presents a summary

of the relevant system parameters for each frequency as well as the complex coherence corresponding to

the four selected areas.

Equally, as it has been performed previously in this chapter, the validity of the noise model is quan-

titatively measured by means of a least squares regression analysis between the theoretical values of the

different statistical parameters of the noise model components, as defined by Eq. (5.109), and the val-

ues estimated from real data employing the usual sample estimators over 7 by 7 pixel, non-overlapped,

windows. The results of these analyses are given in Table 5.4. In this case, only the real parts of the

Hermitian products are presented, since the results corresponding to the imaginary parts display the

same information. As it can be observed in Table 5.4, the least squares regression analysis show the same

level of agreement for the four frequencies. The interpretation of the different parameters of Table 5.4 can

be found in Appendix D. The worst agreement is always obtained for the correlation parameter C12 as a

consequence of the insufficient number of samples to estimate it. On the other hand, the best agreement

between theory and data corresponds to the mean values of the multiplicative terms, which has been

demonstrated to contain the major part of the signal to recover. The regression analysis corresponding to

the standard deviation values have been performed with respect to the approximated theoretical values.

The main conclusion which can be extracted from the previous analysis is that the proposed speckle

noise model for the Hermitian product of a pair of SAR images can be considered valid for a wide

frequency range. Consequently, this validation allows to extend the Hermitian product speckle noise

model to describe the Hermitian product of a pair of SAR images acquired at different frequencies.

As stated, multidimensional SAR imagery is important since it allows to increase the number of

estimable parameters, concerning a given scatterer, from measured data. It has been shown recently,

that multifrequency SAR systems can be also employed to retrieve scatterer information [181,187]. The

usefulness of this technique, for distributed scatterers, is based on the fact that the scattering from a

given element changes only slightly with frequency, while the entire scatterer decorrelates faster. This

is due to the fact that frequency decorrelation depends on changes in the relative positions between

scatterers (phase changes) and not on the scatterers themselves. Let a radar system operating in a

central frequency f0 with a bandwidth Bw. This bandwidth accounts for a shift on the central frequency

f0, which is different from the system bandwidth B accounting for the pulse bandwidth. If the bandwidth

Bw is a small fraction of the central frequency f0, the backscattering coefficient will be approximately

independent of frequency

E{|Sf |2} ' E{|Sf0 |2} (5.115)

where Sf denotes a complex SAR image acquired at the central frequency f . Thus, the backscattered
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process Sf becomes a stationary process and its covariance only depends on the frequency shift ∆f =

f2 − f1

Cf1,f2 = E{Sf2S∗
f1} = C(f2 − f1) (5.116)

where C denotes the statistical covariance. The frequency correlation function (FCF) is defined as the

normalized covariance function, whose amplitude and phase are [181,187]

R(∆f) =

∣∣∣∣
C(∆f)

C(0)

∣∣∣∣ (5.117)

Φ(∆f) = arg

(C(∆f)

C(0)

)
. (5.118)

Considering these definitions, the proposed speckle noise model for the Hermitian product introduced by

Eq. (5.95) can be extended to the product of two SAR images acquired at different frequencies Sf1 and

Sf2 as follows [188]

Sf2S
∗
f1 = ψNcznnme

jΦ(∆f) + ψ(R(∆f) −Nczn)e
jΦ(∆f) + ψ(nar + jnai). (5.119)

The different parameters have to be redefined in this case. Inside the bandwidth Bw, the average power

has the expression ψ = E{|Sf0 |2}, where Eq. (5.115) has been used. As it has been demonstrated, Nc is

a function of the coherence |ρ|, but in this case it is a function of R(∆f). Equally, zn depends on R(∆f)

instead of |ρ|. Finally, the additive noise terms nar and nai have a variance value where the parameter

|ρ| has to be interchanged by R(∆f), see Eq. (5.92).

5.8 Summary

Within this chapter, and according to the results obtained in Chapter 4, a novel multidimensional speckle

noise model has been obtained and validated. This new speckle model has been derived specially for

multidimensional SAR data, and polarimetric SAR data in particular.

Multidimensional SAR data are considered under a covariance matrix representation. Within the first

part of this chapter, the convenience of this representation is justified in two ways. On the one hand, the

covariance matrix characterizes completely multidimensional SAR data under the Gaussian scattering

assumption. On the other hand, since all the covariance matrix entries consist in a complex Hermitian

product of two SAR images, the complete speckle model for the covariance matrix can be obtained by

extending the Hermitian product speckle noise model.

The second part of this chapter presents the obtention of the speckle noise model for the complex

Hermitian product of a pair of SAR images. It is worth to mention that this model, and therefore, the

multidimensional speckle noise model, is obtained on the basis of the interferometric phasor noise model,

which is extended to consider the phase difference of a general Hermitian product. Given this result, and

after a detailed study of the different probability density functions coming from the complex Wishart

distribution, it is possible to obtain the complex Hermitian product speckle noise model. As a result, it is

proved that the Hermitian product speckle noise results from the combination of two noise mechanisms:

a multiplicative and an additive noise. This combination is determined by the complex correlation

coefficient between the pair of SAR images which determine the Hermitian product. Consequently, this

novel speckle model is able to describe noise effects in the diagonal and the off-diagonal covariance matrix

elements. This speckle model represents an extension of the multiplicative noise model for the intensity

of a SAR image. The covariance matrix speckle noise model is obtained by extending the Hermitian

product model to all its elements. Therefore, the covariance speckle noise nature will depend on the

multidimensional SAR data’s structure. The most important issue is that this extension does not depend

on the number of SAR images.



5.8. SUMMARY 149

The last part of this chapter contains an extensive validation of the proposed noise model. In a first

stage, the different expressions which characterize the noise model are validated by means of simulated

SAR data. This analysis confirms also that the combination of the multiplicative and the additive speckle

terms is inhomogeneous, producing the complex Hermitian product noise to be also inhomogeneous. The

multidimensional speckle noise model is also validated quantitatively by means of real polarimetric and

polarimetric interferometric SAR data acquired with the E-SAR sensor. The main conclusion which

can be extracted from these analyses is the robustness of the proposed noise model. This robustness

is due to the fact that the model is derived from the scattering theory, through the assumption of

Gaussian scattering, and not from a process in which an equation is adjusted to experimental data. The

multidimensional speckle noise model is finally validated in P-, L-, C- and X- bands, permitting to extend

the model to consider noise effects between SAR images acquired at different frequencies.
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