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Abstract

Optical solitons are light packets (beams and/or pulses) that do not broaden
because of the balance between diffraction/dispersion and nonlinearity. They
propagate and interact with one another while displaying properties that are
normally associated with real particles. The properties of optical solitons
in optical fibers and crystals have been investigated comprehensively during
the last two decades. However, solitons in optical lattices, which might be
used for all-optical signal processing and routing, have recently emerged a
new area of research. The main objective of this thesis is the investigation
of new techniques for soliton control in nonlinear media with/without an
imprinted optical lattice.

Chapter 2 focuses on properties of optical solitons in quadratic nonlin-
ear media. The first section presents in detail the existence and stability
of three representative families of two-dimensional spatiotemporal solitons
in quadratic nonlinear waveguide arrays. It is assumed, in addition to the
temporal dispersion of the pulse, the combination of discrete diffraction that
arises because of the weak coupling between neighboring waveguides. The
other section reports on the existence and stability of multicolor lattice vor-
tex solitons, which comprise four main humps arranged in a square config-
uration. It is also investigated the possibility of their dynamical generation
from Gaussian-type input beams with nested vortices.

Solitons in cubic nonlinear media are the topic in Chapter 3. The chap-
ter puts forward the concept of reconfigurable structures optically induced
by mutually incoherent nondiffracting Bessel beams in Kerr-type nonlinear
media. Two-core couplers are introduced and it is shown how to tune the
switching properties of such structures by varying the intensity of the Bessel
beams. The chapter also discusses various switching scenarios for solitons
launched into multi-core directional couplers optically-induced by suitable

arrays of Bessel beams. Furthermore, propagation of solitons is investigated
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in reconfigurable two-dimensional networks induced optically by arrays of
nondiffracting Bessel beams. It is shown that broad soliton beams can move
across networks with different topologies almost without radiation losses.
Finally, properties of X-junctions are studied, which are created with two
intersecting Bessel beams.

Chapter 4 treats the impact of nonlocality in the physical features exhib-
ited by solitons supported by Kerr-type nonliner media with an imprinted
optical lattice. The chapter investigates properties of different families of
lattice solitons in nonlocal nonlinear media. It is shown that the nonlo-
cality of the nonlinear response can profoundly affect the soliton mobility.
The properties of gap solitons are also discussed for photorefractive crystals
with an asymmetric nonlocal diffusion response and in the presence of an
imprinted optical lattice.

Chapter 5 is devoted to the impact of nonlocality on the stability of
soliton complexes in uniform nonlocal Kerr-type nonlinear media. First,
it is shown that the different nonlocal response of materials has different
influence on the stability of soliton complexes in scalar case. Second, exper-
imental work is reported on scalar multi-pole solitons in 2D highly nonlocal
nonlinear media, including dipole, tripole, and necklace-type solitons, orga-
nized as arrays of out-of-phase bright spots. Finally, the chapter addresses
the stabilization of vector effects on soliton complexes in nonlocal nonlinear
media.

Finally, Chapter 6 summarizes the main results obtained in the thesis

and discusses some open prospects.
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Chapter 1

Introduction

1.1 Historical background

Nonlinearity permeates our physical world. The evidence for nonlinear be-
haviors is present in so many aspects of physics, chemistry, biology, eco-
nomics, etc., that it is not possible to mention them all in here. Among
the most striking and aesthetically appealing manifestations of nonlinear-
ity is the propagation of solitons or, more generally, solitary waves. Strictly
speaking, solitons differ from solitary waves because of the remarkable prop-
erty of integrability of the governing models and its consequence. However,
such a property is scarcely relevant to the physics discussed in the thesis.
Therefore through the whole thesis, the term “soliton”, in its broader sense,
is used to mean a wavepacket held together by the interplay of mutually
counterbalancing linear and nonlinear effects.

The history of solitons, dates back to 1834, the year in which Mr. John
Scott Russell [left panel in Fig.1.1] observed that a heap of water in a canal
propagated undistorted over several kilometers [a soliton reproduced exper-
iment shown in right panel of Fig.1.1]. His report, published in 1844 and
reproduced extensively in soliton literature, includes the following text [1]:

I was observing the motion of a boat which was rapidly drawn along a
narrow channel by a pair of horses, when the boat suddenly stopped-not so
the mass of water in the channel which it had put in motion; it accumulated
round the prow of the vessel in a state of violent agitation, then suddenly
leaving it behind, rolled forward with great velocity, assuming the form of a
large solitary elevation, a rounded, smooth and well-defined heap of water,

which continued its course along the channel apparently without change of
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form or diminution of speed. I followed it on horse-back, and overlook it
still rolling on at a state of some eight or nine miles an hour, preserving its
original figure some thirty feet long and a foot to a foot and a half in height.
Its height gradually diminished, and after a chase of one or two miles. I
lost it in the windings of the channel. Such, in the month of August 185/,
was my first chance interview with that singular and beautiful phenomenon
which I have called the Wave of Translation.

Figure 1.1: Left panel: John Scott Russell (1808-1882); right panel: Soliton
recreated on the John Scott Russell aqueduct on the Union Canal near
Heriot-Watt University, 12 July, 1995.

It took more than fifty years for two Dutchmen, Korteweg and de Vries
(Fig. 1.2), to realize that for this phenomenon to occur the “solitary wave”
must have an unusually large amplitude. This means that the medium in
which the wave propagates (water, in this case) must behave in a fundamen-
tally different manner of waves of different amplitudes, that is, its behavior is
nonlinear. During the following seventy years similar phenomena have been
observed in many other systems in which waves propagate, such as charge
density waves in plasma and phonons in solids, but they were considered
little more than a curiosity. Until 1965, however, Zabusky and Kruskal [2]
realized that localized wave-packets (self-trapped pulses), under certain as-
sumptions about the form of the nonlinearity, maintain their identities even
when they undergo collisions with each other, and that each one of them
conserves its power and initial velocity. They concluded that these pulses
behave and interact with each other like particles do, and named them “soli-

tons”. Soon thereafter an immense amount of theoretical and experimental
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work followed and the general features of solitons were observed in many dif-
ferent branches of science including hydrodynamics, nonlinear optics, plasma

physics, biology, Bose-Einstein-Condensates, etc [3, 4, 5, 6, 7, 8, 9, 10].

Figure 1.2: Left panel: Diederik Johannes Korteweg (1848-1941); right
panel: Gustav de Vries (1866-1934).

In the context of nonlinear optics, solitons are classified as being either
temporal or spatial or both temporal and spatial depending on whether the
confinement of light occurs in time or/and space during the wave propaga-
tion. Temporal solitons represent optical pulses that maintain their shape,
whereas spatial solitons represent self-guided beams that remain confined
in the transverse directions orthogonal to the direction of propagation. In
other words, temporal solitons do not disperse, and spatial solitons do not
diffract. In the simplest cases, both types of solitons evolve from a non-
linear change in the refractive index of an optical materials induced by the
light intensity-a phenomenon known as the optical Kerr effect in the field of
nonlinear optics [11, 12, 13]. The intensity dependence of the refractive in-
dex leads to spatial self-focusing (or self-defocusing) and temporal self-phase
modulation (SPM), the two major nonlinear effects that are responsible for
the formation of most optical solitons. Much more complicated nonlinear
mechanisms may lead to the formation of solitons, as described below, but
the physical insight is most easily grasped for the Kerr case. A spatial soli-
ton is formed when the self-focusing of an optical beam balances its natural
diffraction-induced spreading. In contrast, it is SPM that counteracts the
natural dispersion-induced broadening of an optical pulse and leads to the

formation of a temporal soliton [14]. Temporal solitons were first predicted
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by Hasegawa and Tappert [15] in 1973 and first observed experimentally by
Mollenauer et al. [16] in 1980. Temporal optical solitons have generated
great interest during the last few decades and are being used for actual long
distance optical communication systems [14, 17, 18]. If the self-tapping oc-
curs both in a spatial and the temporal domains, such kind of beam is called
spatiotemporal solitons or light bullets (for a comprehensive review see ref.
[19]).
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Figure 1.3: Horizontal and vertical profiles of the input (upper traces),
diffracted output (middle traces), and soliton output (lower traces) beams
when the input face of the crystal is (a) at the minimum waist of the input
beam and (b) 500 um away from the minimum waist (After ref. [22]).

1.2 Optical spatial solitons

The background of spatial soliton arose already in 1964 in the discovery of
the nonlinear phenomenon of self-trapping of continuous-wave (CW) optical
beams in a bulk nonlinear medium [20]. Self-trapping was not linked to the
concept of spatial solitons immediately because of its unstable nature. Dur-
ing the 1980s, stable spatial solitons were observed using nonlinear media
in which diffraction spreading was limited to only one transverse dimen-
sion [21]. Later on, spatial solitons in two-transverse dimensions have been
observed, for example, as shown in Fig. 1.3, steady-state photorefractive

screening solitons have been demonstrated [22].
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Over the past several decades, the existence and unique properties of
spatial optical solitons in homogeneous cubic, cubic-like, photorefractive
and quadratic nonlinear media, among others and discrete systems have
been studied extensively both theoretically and experimentally (for detailed
reviews, see refs[23, 24, 25, 26, 27]). This section describes the basic physics

and concepts required for studying spatial solitons.

1.2.1 Basic concepts

To understand why spatial solitons can form in a self-focusing nonlinear
medium, consider first how light is confined by optical waveguides. Optical
beams have an innate tendency to spread (diffract) as they propagate in
homogeneous media. However, diffraction can be compensated by using
refraction if the material refractive index is increased in the transverse region
occupied by the beam. Such a structure becomes an optical waveguide
and confines light to the high-index region by providing a balance between
diffraction and refraction. The propagation of light in an optical waveguide
is described by a linear but inhomogeneous wave equation whose solution
provides a set of guided modes that are spatially localized eigenmodes of
the optical field in the waveguide that preserve their shape and satisfy all

boundary conditions.

As early as 1964 [20], it was discovered that the same effect-suppression
of diffraction through a local change of the refractive index-can be produced
solely by the nonlinear effects if they lead to a change in the refractive index
of the medium in such a way that it is larger in the region where the beam
intensity is large. In essence, an optical beam can create its own waveguide
and be trapped by this self-induced waveguide. Thus, the basic scheme as
follows: when one launches a beam onto a nonlinear medium, at low power
the input beam diffracts but forms a spatial soliton when its intensity is
large enough to create a self-induced waveguide by changing the refractive
index. This change is largest at the beam center and gradually reduces
to zero near the beam edges, resulting in a graded-index waveguide. The
spatial soliton can be thought of as the fundamental mode of this waveguide.
Such a nonlinear waveguide can even guide a weak probe beam of a different

frequency or polarization [28].
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One can also understand the formation of spatial solitons through a lens
analogy. Diffraction creates a curved wavefront similar to that produced
by a concave lens and spreads the beam to a wider region. The index
gradient created by the self-focusing effect, in contrast, acts like a convex
lens that tries to focus the beam towards the beam center. In essence,
a Kerr medium acts as a convex lens in such a way that the beam can
become self-trapped and propagate without any change in its shape if the
two lensing effects cancel each other [20]. Of course, the intensity profile of
the beam should have a specific shape for a perfect cancelation of the two
effects. These specific beam profiles associated with spatial solitons are the
nonlinear analog of the modes of the linear waveguide formed by the self-
induced index gradient. Similar, albeit more elaborate intuitive pictures,
may be drawn for other types of nonlinearities which are not so simple as

Kerr media.

1.2.2 Nonlinear response

Kerr and Kerr-like solitons rely primarily on a physical effect which pro-
duces an intensity-dependent change in refractive index. The origin can
be electronic or due to carrier generation, thermal, etc. In general, Kerr
solitons form in materials which have a local response. However, recently
spatial solitons have been reported in nonlinear materials whose response is
nonlocal due to thermal or molecular reorientation effects. Photorefractive
solitons utilize materials where a light-induced change of refractive index
also occurs. However, in this case it is a DC electric-field distribution in
a crystal that is affected by the optical field, and this in turn changes the
refractive index via the electro-optic effect. Quadratic solitons depend on
second-order nonlinearities. In this case the response involves energy ex-
change between different frequency components of the optical field. This
section offers an opportunity to review the rich physics of spatial solitons
due to the different nonlinearities.

Third-order Kerr nonlinearities

The simplest type of nonlinearity for solitons to occur is related to the
linear dependence of the refractive index of materials on the light beam in-
tensity, namely n = ng + An (An = ng|E|? is much smaller than ng), where
no is the background refractive index, E(r,t) is the electric field amplitude,

and no = 1271'2)((3)/7130 is an optical constant whose sign depends on the
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actual anharmonicity, Y is the third-order susceptibility tensor. The non-
linear effect involving n|E|? is called optical Kerr effect, which produces

the self-focusing effect needed for spatial solitons.

In nonlinear Kerr media self-focusing was suggested in the 1960s [20].
Soon after, it became clear that in bulk Kerr media the beam undergoes
catastrophic self-focusing and eventually breaks up [29]. Indeed, many early
experiments in nonlinear optics showed this catastrophic self-focusing, fre-
quently leading to damage [30]. It was not until the mid 1980s that Barthele-
mey et al. were able to observe spatial Kerr solitons in liquid CSy [21].
Several years later, Aitchison et al observed Kerr solitons in a single-mode
glass waveguide [31]. All these experiments were performed in planar waveg-
uides, which are inherently one-dimensional systems, i.e. one longitudinal
dimension along which the beam propagates and one transverse dimension

in which the beam diffracts or self-traps.
Saturable nonlinearities

Kerr nonlinearity is one of the many different types of nonlinearities
known today. As the intensity of the beam increases, the change of refractive
index tends to saturate, so that, An = Ang/[1+1 /1] = Ang+nol —ngl?+...
(I = |E|? is the intensity of beam), which is applicable, e.g. in a homoge-
neous broadened 2-level system. As early as 1969, Dawes and Marburger [32]
found numerically that saturable nonlinearities are able to arrest the catas-
trophic collapse and lead to stable self-trapping of two-dimensional beams.
Other authors have reached similar conclusions in several other forms of
saturable nonlinearities (related to solitons in plasmas) [33, 34, 35]. In 1974
Bjorkholm and Ashin [36] of Bell labs observed the saturable effects in prop-
agating beams in bulk media (saturable), in the close vicinity of an electronic
resonant transition of atomic (sodium) vapor. To date, solitons in saturable

nonlinear media have been investigated extensively.

The nonlinearities discussed above feature local response, namely, the
change of refractive index in the particular point is determined by the in-
tensity of beam in that point. However, in some cases, the response of
nonlinear media also depends on the intensity of beam in its vicinity, which
is so called nonlocality. In nonlinear optics, it occurs in thermal nonlinear

media, liquid crystals and photorefractive media.
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Thermal nonlinearities

Thermal processes can lead to large nonlinear optical effects. The origin
of the thermal nonlinearity is that some fraction of the incident laser power
is absorbed in passing through an optical material. The temperature of the
illuminated portion of the material consequently increases, which leads to a
change in the refractive index of the material. For gases, the refractive index
typically decreases with increasing temperature (at constant pressure), but
for condensed matter the refractive index can either increase or decrease with
changes in temperature, depending upon details of the internal structure of
the materials.

Thermal effects can be described mathematically by assuming that the
refractive index n varies with temperature according to n = ng+ (dn/dT)1;
under steady-state conditions, where the quantity (dn/dT) describes the
temperature dependence of the refractive index of a given material and where
Ty designates the laser-induced change in temperature [13]. Notice that the
time scale for changes in the temperature of the materials can be quite long
(of the order of seconds), and consequently thermal effects often lead to
strongly time-dependent nonlinear optical phenomena. Under steady-state
conditions, in the case of continuous-wave radiation, the temperature change

T1 obeys the heat-transport equation:
KV2T) = —al(r). (1.1)

where x stands for the thermal conductivity, and « denotes the linear ab-
sorption coefficient of the material. Eq. (1.1) can be solved as a boundary
value problem, and hence the refractive index at any point in space can be
found from the relation n = ng + (dn/d7")T;. Note that thermal nonlinear-
ity is nonlocal, because the change in refractive index at some given point
generally depends on the laser intensity at other nearby points.

In nonlinear optics thermal nonlinearities have been reported in differ-
ent materials, such as self-trapping of bell-shaped beams in lead glass [37],
formation of steady-state cylindrical thermal lenses in an ethanol-dye solu-
tion [38], and thermal nonlinear effects in gases [39]. Thermal nonlinearity
introduces remarkable features in solitons. Recently, stable vortex-ring soli-
tons [40], and multi-pole mode solitons [41] have been demonstrated in bulk
lead glass [namely, (24+1)D geometry]. Very recently, long-range interac-

tions between solitons were demonstrated in thermal nonlinear media [42].
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More interesting, surface solitons have been demonstrated at the interface
between a dielectric medium (air) and a thermal nonlinear media with a

very long-range nonlocal response [43].
Reorientation nonlinearities

Similar to thermal nonlinearities, reorientation nonlinearities also feature
a nonlocal response. The orientation effect is a unique characteristic of the
liquid-crystalline phase. Liquid crystals are fascinating materials with many
unique properties and applications [44]. The cubic, Kerr-like nonlinearity
induced by the orientation effect in the nematic phase of liquid crystals is
responsible for numerous nonlinear effects that are not observed in other
materials. Not only does the reorientation nonlinearity induce extremely
large intensity-dependent changes in the refractive index at relatively low
power levels, but also such changes can be modified by external optical or
electrical fields. Moreover, the nonlinearity depends on light polarization but
is independent of light wavelength within a wide range. The nonlinear optics
of liquid crystals has been of interest for many years, and the experimental
and theoretical studies on self-focusing in such materials date back to the

early 1990s [45, 46, 47).

Liquid crystals are composed of anisotropic molecules, i.e. molecules
having an anisotropic polarizability tensor. The origin of their nonlinearity
is the tendency of molecules to become aligned in the electric field of an
applied optical wave. The optical wave then experiences a modified value
of the refractive index because the average polarizability per molecule has
been changed by the molecular alignment. The anisotropy of liquid crystals
manifest itself in various properties, such as electrical permittivity, magnetic
permeability, conductivity, and optical birefringence. As a result, an exter-
nal electric field E induces an electrical dipole with moment p that is not
parallel to E. Consequently, the torque p x E tends to rotate the molecules
into alignment with the applied electrical field. This reorientation does not
depend on the sign of the electric field and occurs for time-varying fields as
well, including optical fields. A similar behavior is observed for magnetic
fields, but magnetic anisotropy is usually smaller than the electric one. At
optical frequencies, the interaction with the magnetic field can be neglected,
and the interaction between light and a liquid crystal is described by the
electrical dipole. The rotation induced by the electric dipole is opposed by

the elastic forces that maintain the long-range order with a liquid-crystalline
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cell. The orientation of each molecule is determined by those two oppos-
ing forces. Because the birefringence of liquid crystal is connected with the
orientation of molecules, changes in orientation cause the rotation of the
optical birefringence axis. Physically speaking, the light incident on a liquid
crystal modifies the electric permittivity tensor, leading to the reorientation
nonlinearity. Because the anisotropy for a liquid crystal is relatively large,
the orientation nonlinearity can create large changes in the refractive index

at relatively low intensity levels (~ 1 kW/cm?).

The orientation nonlinearity can be calculated by minimizing the total
free-energy density, which induces the deformation energy, the energy of
interaction with the external field, and the effects of boundaries. The key
variable that governs the orientation problem is the angle # between the
director n and the axis along which the input light is polarized. The mag-
nitude of the orientation nonlinearities depends on the initial orientation
n, and therefore the liquid-crystal configuration. The nonlinear response
due to reorientation nonlinearities is highly nonlocal, in the sense that the
director distortion spreads from the excitation owing to the intermolecular
links.

As an example of the reorientation nonlinearities, nematic liquid crystals
have offered an ideal workbench for the study of light localization, because
they conjugate a giant molecular nonlinearity with a large electro-optic re-
sponse, a mature technology and extended spectral transparency, allowing
for the demonstration and the understanding of fundamental effects at rel-
atively low powers [48]. Almost a decade ago, the self-focusing phenomena
was observed in nematic liquid crystal waveguides [49]. As mentioned before,
being highly nonlocal anisotropic dielectrics, nematic liquid crystals not only
support stable spatial solitons in two transverse dimensions [(2+41)D] [50, 51]
but they also allow to take full advantage of their inherent birefringence and
walk-off to control the direction of energy flux, i.e. their Poynting vector,
by acting on an external polarization (voltage) to reorient the constituent
molecules [198]. Very recently, tunable refraction and reflection of optical
spatial solitons beam have been demonstrated at the interface between two

regions of a nematic liquid crystal [53].
Photorefractive nonlinearities

Photorefractive materials have been known for many years [54, 55], in

which the change in refractive index results from the optically induced re-
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distribution of electrons and holes. Typically, these are dielectric (or semi-
insulating) single crystals that are noncentrosymmetric and give rise to x(?)

nonlinearities.

The origin of photorefractive effect is illustrated as follows. Photorefrac-
tive materials always have some dopants hosted in the crystalline matrix,
with energy levels deep inside the forbidden gap. These dopants are in the
form of donors and acceptors, i.e. they can contribute (or trap) free charges.
Let us consider now an optical beam incident upon such a crystal, with op-
tical photons that are not energetic enough to cause valence-to-conduction
band excitation, but can excite charges (assumed electrons here) from the
deep dopant levels. Once excited into the conduction band, the electrons
are free to move. If the intensity of the optical beam is not uniform in
space, these photo-excited electrons experience transport: they diffuse from
high concentrations to lower ones and they can drift if an external bias field
is applied. At the same time, the donor dopants which are now positively
charged are localized immobile ions. Eventually, after some characteris-
tic time (dielectric relaxation time), the electrons are re-trapped either by
acceptors or by ionized donors at locations that are different from their orig-
inal donor ions. The resulting charge separation establishes an electric filed
within the medium, which varies in space (e.g. the field in an illuminated
spot is different from that in a dark spot). Through the electro-optic effect,
the internal space charge field E§2) gives rise to a change in the refractive
index (An). Thus nonuniform illumination incident upon a photorefractive

medium results in nonuniform change in the refractive index.

Photorefractive solitons were first predicted in 1992 [56] and observed
experimentally a year later [57]. Since then on, several different types of
photorefractive solitons have been discovered, each resulting from a differ-
ent nonlinear mechanism which is inherently saturable (there always exists
a limit to the number of carries), and each exhibiting a different dependence
of An on the optical intensity I = |E|?>. Amongst all types of photore-
fractive solitons, the photorefractive screening soliton has become the most
commonly used in experiments since it is the easiest to understand intu-
itively in (141) dimensions and hence it is worth dwelling on the physical
process to the formation of this particular soliton. A strong external elec-
tric field is applied to the photorefractive crystal (usually strontium barium

titanate) using electrodes attached to opposing crystal faces. In the absence
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of illumination, the field is distributed uniformly across the crystal, lower-
ing (or raising) its average index of distributed uniformly via the Pockels
effect. When a narrow light beam propagates through the crystal in a di-
rection normal to the field, electric charges are excited from traps within
the bandgap, increasing the charge density in the illuminated region. The
presence of these charges modifies the conductivity of the crystal, and as a
consequence the local field (space charge field) is screened. This modifies the
local refractive index via the Pockels effect and can create the conditions for
solitons to form. The actual dependence of An on the optical intensity for
(141)D screening solitons is An = (V/L)(n3ress /2)[1/(|E|? + Lark)], where
ress depends on the direction of the applied field and the polarization of the
beam, V is the voltage applied between electrodes separated by distance L
(L > soliton width), and I,k is the so-called ‘dark irradiance’, which is
a material parameter that is proportional to the conductivity of the crystal
in the dark. Photorefractive screening solitons were first predicted in 1990s
[58, 59], and shortly after observed experimentally [60, 61, 62].

As noted above, several other kinds of photorefractive solitons have been
found so far. Quasi-steady-state solitons, which exist during a finite window
in time (never surviving to steady state), were observed [57]. They occur
when an external applied field is slowly being screened by the space charge
field. Another kind is photovoltaic solitons. They do not require an external
bias field but instead rely on the bulk photovoltaic effect to create the space
charge field, which in turn, modifies the refractive index and leads to a soli-
ton. The nonlinearity supporting (1+1)D photovoltaic solitons is of the form
An o [|E|?/(|E]? + I4ark)]. Photovoltaic solitons were predicted theoreti-
cally in 1994 [63, 64] and first observed a year later [65, 66]. A fourth type
of photorefractive solitons exist in biased photorefractive semiconductors,
such as InP, in which both electrons and holes participate in the formation
of the space charge field. Interestingly enough, the self-focusing effects sup-
porting these solitons undergo a large enhancement when the rate of optical
excitation of holes is close to (but smaller than) the thermal excitation rate
of electrons, self-focusing turns into self-defocusing, i.e. the sign of the op-
tical nonlinearity can be reversed by all optical means. These solitons were
demonstrated experimentally in 1996 [67, 68]. Finally, it was predicted theo-
retically that solitons exist in centrosymmetric photorefractive media, which

fundamentally do not possess quadratic nonlinearities [69]. The change in
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the refractive index giving rise to these solitons is driven by the dc Kerr ef-
fect, which is similar to Pockels effect but An is now proportional to (Es.)?
and thus to 1/(|E|? + Iark)?. These solitons were demonstrated experimen-
tally in 1988 [70].

It is worth noting two additional properties that are common to all
photorefractive solitons. The first is the ability to generate solitons with
optical power levels of 1uW or lower [61, 62]. This occurs because the
refractive index change An depends on the ratio |E|?/I4, rather than on
the absolute value of the optical intensity |E|?, and I, is typically very low
in photorefractive materials (the dark current is very low). The drawback
is that the response time (dielectric relaxation time) scales as the inverse
of the optical intensity, and can be long (seconds) for these power levels in
10um wide soliton. The other property is that the response of materials
is wavelength-dependent. Thus one can generate solitons with microwatts
power and use the waveguides induced by these solitons to guide, steer
and control powerful beams at wavelengths for which the material is less
photosensitive [71, 72].

Quadratic nonlinearities

Solitons in quadratic nonlinear media are a quite different breed of soli-
tons from those discussed previously. These solitons rely solely on the
second-order nonlinearities y(2). The self-trapping exists by virtue of the
strong interaction and energy exchange between two or more beams at dif-
ferent frequencies. Because of these constraints, quadratic solitons can only
be launched in a limited class of materials, namely non-centrosymmetric
media in which phase matching is possible, i.e. they only exist at reasonable
powers over a narrow range of directions. Although it is now clear that
quadratic solitons exist for different parametric mixing process involving
x?), and indeed they have been observed in optical parametric generators
and amplifiers, to date they have been studied primarily during second har-

monic generation.

Quadratic solitons consist of beams at two or more frequencies which are
strongly coupled by second order nonlinearities under conditions of wavevec-
tor conservation. Here I discuss the self-trapping mechanism for quadratic
solitons generation for the simplest case of Type I second harmonic gen-
eration (a single input fundamental beam) in a (1+1)D slab waveguide

with diffraction along the z axis and waveguide confinement along the
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y axis. From standard textbooks in nonlinear optics, the coupled mode
equations which describe the parametric interaction between a fundamental
(E1(r,t) = Ai(x, z)exp(iwt —ik12) /24 c.c.) and second harmonic (Ea(r,t) =
As(z, z)exp(i2wt — ikaz)/2 + c.c.) beams propagating along the z direction

as follows:
. 0A1(z,z)  0%Ai(z,7) N .
—2iky o + e —T'Aj(z,2)As(z, x)exp(iAkz)
o OAy(z,m)  9%Ay(z, 1) B 9 .
—2iksy P + Eyo R —T'A{(z,x)exp(—iAkz), (1.2)

where Ak = ko — 2k; is the wavevector mismatch, I" is the nonlinear cou-
pling coefficient which is proportional to x&, A 2(z, x) are complex, slowly
varying amplitudes, the second term in the left-hand side in each case de-
scribes diffraction and the source term on the right-hand side. The key to
self-trapping is the structure of the source terms which consist of the prod-
uct of the two fields of finite spatial extent. Consider first the generation of
second harmonic driven by the term A}(z,z) so that the generated second
harmonic is initially narrower along x-axis than the fundamental. Further-
more, the generated fundamental via the product A;(z,z)As(z,z) is also
narrower than the original fundamental. The robust balance between this

mutual beam narrowing and diffraction leads to a mutually locked soliton.

Quadratic solitons were first predicted in the mid 1970s by Karamzin and
Sukhorukov [73], and it was not until 1996 that their experimental observa-
tion was reported [74]. The main reason behind such a delay was the lack of
high-quality materials. Moreover, the advantages offered by quadratic soli-
tons for practical applications were not obvious. The situation changed in
the 1990s with the rediscovery of the self-action effect in x(?) media and with
the appearance of high-damage optical materials with long enough propaga-
tion lengths [23]. Since then the area of quadratic solitons has been rapidly
advancing in many interesting directions, including quadratic solitons in
resonators [75], beam steering and control with quadratic solitons [76, 77],
reshaping [78] and transverse instabilities of (14-1)D quadratic solitons prop-
agating in a bulk medium [79, 80, 81, 82]. With the advent of quasi-phase
matching and the expected advances in the growth and engineering of x(?
materials, parametric solitons may find practical applications in frequency
converters and generators (for a comprehensive review on quadratic solitons,
see ref [26]).
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1.2.3 Optically induced lattices

All materials discussed in Sec. 1.2.2 are homogenous. However, the propa-
gation of nonlinear waves in periodic structures exhibits different behavior
fundamentally from that of their homogeneous counterparts. The physics of
nonlinear waves in periodic structures is common for a variety of systems,
including excitations in biological molecules [83], electrons in solid-state sys-
tems [84], ultracold atoms in optical standing waves [85], and light waves
in nonlinear media with periodic modulation of the refractive index [86]. In
optics the effects associated with this phenomenon can be easily observed
and examined in close detail. A strong motivation for the work in the field
of photonics comes from the analogy between the behavior of light in pe-
riodic photonic structures and electrons in superconductors. This analogy
suggests the possibility of replacing electronic components with novel types
of photonic devices where light propagation is fully controlled in engineered
micro-structures. Nonlinearity adds a possibility to control propagation of
light purely optically, i.e. with light itself. Such all-optical devices may
form foundation of future high-bandwidth, ultrafast communications and

computing technologies.

Figure 1.4: Intensity pattern of optically induced lattices.

In practice, for the development of new schemes to control light in peri-
odic systems although there are difficulties that arise in fabrication of ma-
terials with both periodicity on the optical wavelength scale and strong
nonlinearity accessible at low laser powers, such kind of periodic structure
is achieved with current available materials and technology. An example

is shown in Fig. 1.4 on optically induced lattices in a highly nonlinear
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photorefractive crystal. Such a lattice can be photoinduced by periodic
diffraction-free intensity patterns that result from plane-wave superposition
(provided that the system is linear for the interfering waves). As shown in
Fig. 1.4, a one-dimensional lattice can be generated from the interference
of two plane waves (left one in Fig. 1.4). More complicated lattices can be
generated by superimposing two or more mutually incoherent plane wave
pairs at different angles, one example, two dimensional lattices is generated
by four beams (right one in Fig. 1.4). What makes possible the nonlinear
waves propagating in such lattices is the large electro-optic anistropy of the
photorefractive crystal. This allows almost diffraction-free periodic patterns
polarized in a nonlinear electro-optic direction, whereas at the same time
the signal beam is polarized in the crystalline orientation that yields the

highest possible nonlinearity.

An optical lattice induces a band-gap structure for the propagating op-
tical waves. The existence of gaps implies that optical waves with certain
wave-vectors cannot propagate through the structure due to either total
internal or Bragg reflection. The dynamics of the probe laser beam propa-
gation in a nonlinear optically induced lattice is therefore dominated by an
interplay between nonlinearity of the medium and scattering from the pe-
riodic structure. For example, self-localized states in such kind of lattices,
named lattice solitons were predicted in 2002 [87], and demonstrated exper-
imentally in 1D [88] and 2D [89] lattices. Later on, a variety of fascinating
phenomena due to lattices have been reported, such as, formation and steer-
ing of gap solitons [88, 90|, and trapping and stabilization of discrete vortices
[91, 92, 93, 94]. Interesting, note that soliton dynamics can be made richer
with different lattice symmetry, for example, solitons can be set rotating in
a ring-shaped (Bessel-type) photonic lattices [95, 96]. Very recently, sur-
face solitons were reported in optically induced lattices and laser-written
waveguide arrays [97, 98, 99, 100, 101, 102].

1.2.4 Soliton topologies

As discussed in the preceding sections, spatial solitons can exist in a broad
branch of nonlinear materials, such as cubic Kerr, saturable, thermal, re-
orientation, photorefractive, and quadratic media, and periodic systems.

Furthermore, the existence of solitons varies in topologies and dimensions.
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(2)
(b)

Figure 1.5: Intensity profiles for bright (a), and dark (b) solitons.

In (141)D systems, namely one transverse coordinate and one longitudi-
nal propagation direction, one of the fundamental formation of solitons are
bright solitons, which are formed due to the diffraction or dispersion com-
pensated by self-focusing nonlinearity. Bright solitons appear as intensity
hump in a zero background as shown in Fig. 1.5(a), which can exist in all
the materials discussed above. The other kind of fundamental solitons which
appear as intensity dips with a CW background are called dark solitons as
shown in Fig. 1.5(b). Dark solitons exist in self-defocusing nonlinear me-
dia and feature a m-phase jump, for a comprehensive review see ref. [103].
Both bright and dark solitons in one dimension are stable in the reported

materials.

(a) (b) (c)

Figure 1.6: Amplitude profiles for dipole-mode (a), triple-mode (b) and
five-hump (c) solitons.

The fundamental bright and dark solitons feature only one hump or dip.
However, more complex structures can also occur to solitons. As shown in
Fig. 1.6, the intensity of complex multihump solitons features more peaks.
Intuitively, such multipole-mode solitons can be viewed as nonlinear combi-
nations of fundamental solitons with alternating phases, named bound states.
Such bound states cannot exist in local Kerr-type medium in the scalar case,

in which a 7 phase difference between solitons causes a local decrease of re-
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fractive index in the overlap region and results in repulsion. By contrast,
in nonlocal media, such as lead glass with thermal nonlinearities, and liquid
crystals with reorientation nonlinearities, the refractive index change in the
overlap region depends on the whole intensity distribution in the transverse
direction, and under appropriate conditions the nonlocality can lead to an
increase in the refractive index and to attraction between solitons. The
proper choice of separation between solitons results in such kind of bound
states. Multipole mode solitons have been reported in local saturable media
in vector case [104, 105], and quadratic media [106, 107, 108]. Very recently,
the stability of multipole mode solitons has been reported in nonlocal media

for both scalar and vector cases [109, 110].

Figure 1.7: Intensity distributions for dipole-mode (a), and hexapole (b)
solitons in two dimension systems.

One natural question is whether spatial (14-1)D solitons can be extended
to (241)D systems, namely, two transverse coordinates and one longitudinal
propagation direction. It turns out that bell-shaped solitons are unstable
in bulk Kerr media, in which they suffer catastrophic collapse. A few dif-
ferent mechanisms have been found to arrest collapse, such as, saturable
nonlinearity, photorefractive and nonlocal effects, therefore, spatial solitons
in (241)D have become an active topic. Solitons can take on more complex
configurations, such as dipole [Fig. 1.7(a)] and multihump solitons, solitons
organized as necklaces [Fig. 1.7(b)], which are composed of several bright
spots out-of phase. More complex beams carrying angular momentum, such
as vortex solitons [Fig. 1.8], whose intensity distribution features a donut
shape, have been demonstrated (for a comprehensive review see ref. [111]).
In contrast, another important example of a (24+1)D spatial soliton is the

dark type soliton, which exists in self-defocusing media in the form of a



Chapter 1. Introduction 19

“hole” in an extended backgroud, which is supported by a vortex phase
pattern imprinted onto the background [112, 113, 114]. As the transverse
plane is two dimensional, solitons can be set into rotation. For example,
a rotating propeller soliton has been demonstrated [115], which is a com-
posite soliton made of a rotating dipole component jointly trapped with a

bell-shaped component.

Figure 1.8: The field (a), and phase (b) distributions of vortex solitons

One of the major goals in the study of nonlinear optics is the generation
of light packets that are localized in all transverse dimensions of space, as
well as in time. Such kind of localized objects are termed (341)D solitons,
known as spatiotemporal solitons or light bullets, where there are two trans-
verse coordinates, one temporal variable, and one longitudinal propagation
direction. The search for the generation of such objects dates back to the
early days of the field. In particular, such pulses in Kerr media were con-
sidered by Silberberg in 1990 [116], who coined the term light bullets for
them, which stresses their particle-like nature. In contrast to the extensive
developments in the studies of temporal and spatial solitons in one and two
dimensions, experimental progress towards to the production of spatiotem-
poral solitons in three-dimensional case has been slow. To date, (3+1)D
spatiotemporal solitons have not been observed yet.

The formation of (3+1)D solitons involves the same mechanism as for
their (14-1)D and (2+1)D counterparts, which provide for the proper balance
between linear spreading and a suitable nonlinearity. Thus spatiotemporal
solitons may be understood as the result of the simultaneous balance of
diffraction and dispersion by the transverse self-focusing and nonlinear phase
modulation in the longitudinal direction, respectively. A comprehensive

review on spatiotemporal solitons can be found in ref. [19].
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The realization of spatiotemporal solitons faces two challenges: first,
physically relevant models of nonlinear optical systems, based on evolution
equations that allow stable three-dimensional propagation, ought to be iden-
tified; second, suitable materials should be found where such models can be

implemented.

1.3 Overview of thesis

After this introductory chapter, Chapter 2 addresses properties of optical
solitons in quadratic nonlinear media. The first section presents in detail
the existence and stability of three representative families of two-dimensional
spatiotemporal solitons in quadratic nonlinear waveguide arrays. It is as-
sumed, in addition to the temporal dispersion of the pulse, the combina-
tion of discrete diffraction that arises because of the weak coupling between
neighboring waveguides. The other section reports on the existence and sta-
bility of multicolor lattice vortex solitons, which comprise four main humps
arranged in a square configuration. It is also investigated the possibility
of their dynamical generation from Gaussian-type input beams with nested
vortices.

Solitons in cubic nonlinear media are the topic in Chapter 3. The chap-
ter puts forward the concept of reconfigurable structures optically induced
by mutually incoherent nondiffracting Bessel beams in Kerr-type nonlinear
media. Two-core couplers are introduced and it is shown how to tune the
switching properties of such structures by varying the intensity of the Bessel
beams. The chapter also discusses various switching scenarios for solitons
launched into multi-core directional couplers optically-induced by suitable
arrays of Bessel beams. Furthermore, propagation of solitons is investigated
in reconfigurable two-dimensional networks induced optically by arrays of
nondiffracting Bessel beams. It is shown that broad soliton beams can move
across networks with different topologies almost without radiation losses.
Finally, the properties of X-junctions are studied, which are created with
two intersecting Bessel beams.

Chapter 4 treats the impact of nonlocality in the physical features exhib-
ited by solitons supported by Kerr-type nonliner media with an imprinted
optical lattice. The chapter investigates properties of different families of

lattice solitons in nonlocal nonlinear media. It is shown that the nonlo-
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cality of the nonlinear response can profoundly affect the soliton mobility.
The properties of gap solitons are also discussed for photorefractive crystals
with an asymmetric nonlocal diffusion response and in the presence of an
imprinted optical lattice.

Chapter 5 is devoted to the impact of nonlocality on the stability of
soliton complexes in uniform nonlocal Kerr-type nonlinear media. First,
it is shown that the different nonlocal response of materials has different
influence on the stability of soliton complexes in scalar case. Second, exper-
imental work is reported on scalar multi-pole solitons in 2D highly nonlocal
nonlinear media, including dipole, tripole, and necklace-type solitons, orga-
nized as arrays of out-of-phase bright spots. Finally, the chapter addresses
the stabilization of vector effects on soliton complexes in nonlocal nonlinear
media.

Finally, Chapter 6 presents a summary of the main results and discusses

open prospects.



Chapter 2

Localized Modes in Discrete
Quadratic Media

2.1 Overview

In this chapter, we will study localized modes (discrete or lattice solitons)
in quadratic nonlinear media. Since their first experimental observation
[74], quadratic solitons have been demonstrated in a variety of materials
and geometries. Spatial, temporal, and spatiotemporal solitons in quadratic
media have been extensively investigated both experimentally and theoreti-
cally (for detailed reviews, see [23, 26, 117, 118]). Recently, it is noted that
propagation of optical radiation in media with transverse refractive index
modulation differs considerably from the propagation in uniform media. Lo-
calized structures in such periodic media, termed discrete or lattice solitons,

do exist and exhibit a rich variety of topologies.

Since their theoretical prediction in 1988 in cubic nonlinear media [86],
discrete optical solitons have attracted a steadily growing interest because
of their potential applications in switching and routing devices [119, 120,
121]. The discrete solitons that form in tight-coupled waveguide arrays
made of quadratic nonlinear media have been comprehensively investigated
[122, 123, 124, 125, 126, 127] due to the rich variety of effects that are pos-
sible with them. It is noted that recently discrete quadratic solitons have
been experimentally observed in arrays of waveguides made in lithium nio-
bate [128]. On the other hand, the intermediate regime between continuous

and discrete solitons [129, 130] constituted by continuous nonlinear media

22
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with an imprinted transverse modulation of the refractive index, has been
shown recently to offer a variety of new opportunities. The concept behind
this regime might be termed tunable discreteness, the strength of modula-
tion being the parameter that tunes the system properties from continuous
to discrete. In this context, wave dynamics is governed by the interplay
between optical tunnelling to adjacent sites and nonlinearity. This kind of
lattice solitons have been observed recently in two-dimensional (2D) pho-
torefractive optical lattices [87, 88, 89, 131, 132].

In section 2.2, we will study in detail the existence and stability of
three representative families of two-dimensional spatiotemporal solitons in
quadratic nonlinear waveguide arrays. In section 2.3, we will report on the
existence and stability of multicolor lattice vortex solitons, which comprise
four main humps arranged in a square configuration. We also investigate the
possibility of their dynamical generation from Gaussian-type input beams

with nested vortices.

2.2 Spatiotemporal discrete multicolor solitons

2.2.1 Introduction

In this section, we will study spatiotemporal discrete solitons in quadratic
nonlinear media. In the last two decades, the concept of optical spatiotem-
poral solitons (STS’s), referred as light bullets in the three-dimensional case
[116], has been attracting attention as a unique opportunity to create a self-
supporting fully localized object (for detailed reviews, see [133]). The exis-
tence of STS’s in quadratic nonlinear materials was theoretically predicted
[134] and thereafter experimentally realized in a two-dimensional geome-
try involving one temporal and one spatial coordinate [135]. The existence
and properties of continuous-discrete spatiotemporal solitons has been ex-
tensively investigated in cubic nonlinear media and stable odd solitons have
been shown to exist [136, 137, 138, 139, 140]. It was shown that the cubic
weakly-coupled waveguide arrays act as collapse compressors [136, 137, 138|.
In contrast with the cubic spatiotemporal solitons, the quadratic ones do not
display collapse in both two- and three-dimensional geometries [141].
Discrete soliton solutions were classified as staggered and unstaggered
ones (see, for example, Ref. [142]). The staggered solutions display out-

of-phase fields between the neighbor noncentral waveguides whereas the un-
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staggered ones display in-phase fields in these noncentral waveguides. Inside
each of these classes of solitons (staggered and unstaggered) one can find
solutions with different topologies, dictated mainly by the energy and phase
distribution in the central waveguides. Thus, one can have (i): odd soli-
tons, for which most part of the energy is located in one central waveguide
and the energy distribution across the waveguide array is symmetric with
respect to this central waveguide, (ii): even solitons, for which most part of
the energy is equally distributed in the two central waveguides, the fields in
these central waveguides being in-phase and of equal amplitudes, and (iii):
twisted solitons, for which most part of the energy is equally distributed in
the two central waveguides, but the fields in the two central waveguides are

out-of-phase.

2.2.2 Model and stationary solutions

Here we assume, in addition to the temporal dispersion of the pulse, the
contribution of the discrete diffraction, that arises because of the weak cou-
pling between neighboring waveguides. The evolution of the spatiotemporal
two-component field in quadratic nonlinear waveguide arrays in a degener-
ate second-harmonic generation geometry may be described by the following

set of nonlinearly coupled reduced differential equations:

Ouy, g1 a2un *
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where u,, and v, represent the normalized amplitudes of the fundamen-
tal frequency (FF) and second-harmonic (SH) fields in the nth waveguide,
with n = —-N,... —1,0,1,..., N, 2N + 1 being the number of waveguides, *
means complex conjugation, ¢, , and gi 2 are the linear coupling coefficients
and group-velocity dispersion (GVD) coefficients, respectively, and [ is the
wave-vector mismatch. The evolution variable ¢ denotes the normalized
propagation distance along the waveguides. The dynamical system (2.1)

admits several conserved quantities including the energy flow and Hamilto-

= Zn:/ (140 + 1B, ) dr (2.2)

nian which read
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where we have defined A,, = u,, and B, = v, exp (—i3§). The stationary
solutions of Egs. (2.1) have the form u, = U, (7)exp (ib1§) and v, =
Vi (1) exp (ib2€), where U, (1) and V,, (1) are real functions, and b; 2 are real
propagation constants verifying bs = 2b; + . Continuous-discrete solitons
arise from a balance between discrete diffraction, dispersion and quadratic
nonlinearity. The families of odd, even, and twisted stationary continuous-
discrete solitons have been obtained numerically by a standard relaxation
method. For given coupling strengths ¢, ,, dispersions g; 2 and wave-vector
mismatch (3, the soliton families are parametrized by the nonlinear wave
number shift b;. The coupling coefficients ¢, , were considered positive,
and equal, so further we introduce single parameter C to describe coupling
between neighboring guiding sites. Throughout this section we will always
consider anomalous dispersions at both frequencies and we fixed g; = —0.25
and go = —0.5. Note that in the continuous case, long-lived soliton-like
propagation when the GVD is slightly normal at SH is known to occur
[143, 144]; thus a similar behavior might occur in the continuous-discrete

spatiotemporal case analyzed here.

Here we will restrict ourselves to three representative families of continuous-
discrete unstaggered solitons, namely the odd soliton [see Fig. 2.1(a)], the
even soliton [see Fig. 2.1(c)] and the twisted soliton [see Fig. 2.1(d)]. Note
that for the twisted soliton, the fundamental frequency field is, in fact, an
anti-symmetric one (the 7 jump of phase occurs only between the two central
waveguides), whereas the second harmonic field is a symmetric one (having
the form of an even discrete soliton). For all the solutions we deal with, the
temporal profile, i.e. the shape of the pulses propagating in a specific waveg-
uide, is a bell-shaped symmetric one [see Fig. 2.1 (b), below|. Besides these
stationary solutions, there exist a whole “zoology” of localized solutions,
including staggered solitons, dark or dark-bright solitons, but their study is
beyond the scope of the present work. In Figs. 2.2(a) and (b) we show
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Figure 2.1: Amplitude profiles of the (a) odd, (c) even, and (d) twisted
solitons. Lines with circles show FF field; lines with hexagons show SH
field. In (b) the time slice in the central waveguide (n = 0) for odd soliton is
shown. Even and twisted solitons feature the similar temporal profile. Here

C=0.1,b =3, and g = 3.

the dependencies of the peak amplitude A, and the temporal full width at
half maximum of the pulse in the central waveguide W, as a function of
the coupling coefficient C' for a fixed wave number b; at phase matching
(6 = 0). Note that, with increase of coupling strength amplitude of odd and
even solitons monotonically decreases and their width increases, whereas the
amplitude and width of the twisted solitons are nonmonotonic function of
C. This is illustrated also in Fig. 2.3 where profiles of odd solitons |U, (7) |
at two different coupling constants are shown. Note that with increase of
coupling constant soliton covers more guiding sites, while at C — 0 it is
located primarily in the central guiding site.

Similar to the two-dimensional (continuous-continuous) solitons in uni-
form media, there exist cutoff b., of the nonlinear wave number shift b;
depending on the sign and absolute value of the mismatch parameter (.
Moreover, as we have an additional degree of freedom, namely the discrete
spatial coordinate, we have investigated the dependence of the cutoff wave
number b, on the coupling coefficient C' for a given wave-vector mismatch.

For a phase-matched geometry (5 = 0), we have obtained almost linear
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Figure 2.2: (a) Peak amplitude and (b) temporal width of FF wave in the
central waveguide for odd, even and twisted solitons versus coupling coeffi-
cient at b = 3 and § = 0. (c) Wave number cutoff versus coupling coefficient
at 3 = 0. The symbols “0,” “e,” and “t” stand for the odd, even and twisted
solitons respectively. (d) FF wave amplitude versus temporal width in the
central waveguide for odd soliton at C' = 0.1 and different phase mismatches.
Only stable branch has been plotted for negative 5.

dependencies of the cutoff wave number on the coupling coefficients for all
three families of solutions we deal with [see Fig. 2.2(c)]. Note that cut-
offs for odd and even solitons are equal. As a general rule, the stronger
the coupling, the larger the cutoff wave number b.,,. When C = 0 we got
beo = 0, thus recovering the known result for the continuous quadratic soli-
tons: b, =max{—03/2,0}.

We also have investigated the peak amplitude and the temporal width in
the central waveguide for odd, even and twisted continuous-discrete solitons
as functions of the wave-vector mismatch for fixed nonlinear wave number
shift b7 and linear coupling coefficient C'. The solitons that form for larger
phase mismatches have larger amplitudes and are narrower than those form-
ing at smaller phase mismatches. This feature was observed for one- and
two-dimensional continuous solitons in quadratic media for which at phase
matching the product (peak amplitude)x (width?) is a constant quantity
[145]. In Fig. 2.2(d) we plot the amplitude of the stationary odd soliton
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Figure 2.3: Profiles of odd solitons for (a) C' = 0.5 and (b) C =1 at by = 3,
£ = 0. Only the modulus of the amplitude of the FF wave is shown. The
SH shows similar features.

as function of its temporal width. We see that outside phase-matching the
families of solitons exhibit a more complicated amplitude-width relation-
ship, similar to the case of continuous quadratic solitons [145]. The scaling

properties of Egs. (2.1) can be written as:

Up = @Z}ana Un = ¢ﬁna bl = "7[)613
B=up, r=7/\/, I =931, (2.4)

where 1 being the scaling parameter.

In Figs. 2.4(a)-(f) we have represented the dependencies energy flow I
- wave number b; (left column) and Hamiltonian H - energy flow I (right
column) that give us a deeper insight into the properties of continuous-
discrete soliton families. One can see that odd solitons realize the minimum
of Hamiltonian for a given energy flow, thus they are expected to be the
most robust on propagation. The Peierls-Nabarro potential, that is the
difference between Hamiltonian of the odd soliton and that of the even one
[146], corresponding to the same energy flow, is negative everywhere. From
a geometrical point of view, this would mean that odd solitons are stable
in the entire domain of their existence [147]. Our numerical simulations,
described in detail in the next subsection, show that, indeed, this is the case
except for solitons at negative phase mismatches that are unstable only in

a narrow region near cutoff [see Fig. 2.5(a)] [148, 145].
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Figure 2.4: Energy flow versus wave number and Hamiltonian versus energy
flow for odd, even, and twisted solitons at three representative values of
phase mismatch and C = 0.1. The labels are the same as in Figures 2.2.

2.2.3 Stability analysis

A key issue concerning the soliton families we found is their stability on prop-

agation. In order to elucidate if the localized continuous-discrete solitons are

dynamically stable we have performed both a linear stability analysis and

direct numerical simulations. We seek for perturbed solution of Eq. (2.1) in

the form

un(Tv 5) =

v (1,8) =

[Un(7) + pfn (1,8)] exp (ib1€),

[Va(7) + phon (7, €)] exp [i(201 + B)E]

(2.5)

Here p is a small parameter, U, (7) and V,,(7) are the stationary solutions
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Figure 2.5: Growth rate versus wave number for (a) odd, (b) even, and (c)
twisted solitons at 0 = —3 and C' = 0.1.

and f,, (1,€) and h,, (7,€) are the perturbations. Then after linearizing the
evolution equations (2.1) we are left with a system of linear coupled differ-

ential equations for the perturbations (see, e.g., Ref. [149]):

8fn g1 a2fn * *
Ohy, g2 9*hn,
2786 = —Cy (hn—l + hn+1> + 5 87’2 - 2Unfn + (2b1 + /8) hn(26)

We have solved both this linear system and the nonlinear dynamical
equations (2.1) with a combined Fast-Fourier Transform, to deal with the
linear differential part in the temporal coordinate, and a fourth-order Runge-
Kutta method, to deal with the cross-coupling terms. We have typically used
512 or 1024 points in the time domain and we have considered tens of array
sites (e.g., 61), depending on the width of the solution whose stability is
investigated. The step length along the propagation coordinate was of the
order of 1073, The accuracy of the results was checked by doubling the num-
ber of points in the transverse coordinate and by halving the propagation
step. As another check for the evolution equations (2.1) we have verified the

conservation of the prime integrals (energy flow I and Hamiltonian H). In
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order to let the radiation to escape from the computation window we have
implemented transparent (absorbing) boundary conditions. We multiply a
flat-top function after every step of longitudinal propagation distance, and

this function has a very narrow tail which is zero.

We have determined the dominant eigenvalue § of the linearized problem
using the same approach as in Ref. [149]. The method gives us only the
dominant eigenvalue, not the whole eigenvalue spectrum. This eigenvalue
corresponds to the most rapidly (exponentially) developing instability. The
noisy perturbation we consider at & = 0 develops, during evolution, to a
localized eigenvector with a well defined symmetry, depending on the type
of the solution considered. In the cases where an instability was detected,
only real instability eigenvalues were found. The dominant eigenvalue was

calculated in the form

Re(0) = 2iglog{ (Z / ) (1Fn(r.€ + AOP + (€ + AP dT>
-1
x (Z | im0 + Ihar ] dT> 2 (2.7)

This dominant eigenvalue tends to zero when one approaches the stability
region. The results we got for the growth-rate calculations at negative phase
mismatch (5 = —3) are summarized in Fig. 2.5. They indicate instability for
even and twisted solitons [122] and a stability region for odd solitons which
starts at bj'®® ~ 1.725. This result is in good agreement with the direct
simulations of evolution Eq. (2.1). For positive wave-vector mismatches or
at phase-matching the growth rate calculations indicate instability for even

and twisted solitons and complete stability for odd solitons.

Our calculations show that odd continuous-discrete solitons obey the
Vakhitov-Kolokolov stability criterion [150], i.e., they are stable provided
dI/db; > 0, and unstable, otherwise. The Vakhitov-Kolokolov criterion
was shown also to hold for discrete space-time solitons that exist in Kerr
nonlinear media [139, 140]. Moreover, the unstable odd cubic continuous-
discrete solitons can display collapse-type instabilities, a reminiscent feature
of the two-dimensional stationary solutions of nonlinear Schrédinger equa-
tion, while the unstable quadratic discrete space-time odd solitons do not

display this type of instability [141].
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Let us stress that as compared to the one-dimensional discrete twisted
solitons forming in quadratic media that can be stable, in specific parame-
ter regions, in our case, the introduction of a time coordinate leads to the
destabilization of these solutions. However, one of the central points of this

work is that we found families of stable odd continuous-discrete multicolor

Figure 2.6: (a) Propagation of unstable odd soliton corresponding to
b1 = 1.65 in the presence of small perturbation found upon linear stabil-
ity analysis. Perturbation amplitude ¢ = 0.01. (b) Propagation of sta-
ble odd soliton at by = 1.735 in the presence of white noise with variance
fwm = 0.01. Only the modulus of the amplitude of the SH wave is shown,
at different propagation distances. Plots in left and right columns are shown
with the same scale for easier comparison. Phase mismatch § = —3 and cou-

pling constant C' = 0.1.

%)

solitons. As illustrated in Fig. 2.6(b), stable odd solitons can propagate
for huge distances without altering their shape and eliminating the added
random white noise during evolution. The case shown here corresponds to
negative wave-vector mismatch § = —3 but similar stable evolution has been
obtained for positive mismatches and phase-matching geometries except for
odd solitons from the branch, where dI/db; < 0, which are unstable and
will therefore decay after a finite propagation distance [see Fig. 2.6(a)].
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0 5

Figure 2.7: Propagation of unstable even (a) and twisted (b) solitons cor-
responding to by = 3 in the presence of small perturbations found upon
the linear stability analysis. Perturbation amplitude ¢ = 0.01. Only the
modulus of the amplitude of the SH wave is shown, at different propagation
distances. Plots in left and right columns are shown with the same scale for
easier comparison. Phase mismatch § = —3 and coupling constant C' = 0.1.

In addition, we also thoroughly investigated the decay scenarios of the
other two types of solitons: even and twisted. As stated before we have not
observed any stable even or twisted continuous-discrete soliton. Fig. 2.7
shows possible instability scenarios for unstaggered even and unstaggered
twisted solitons. We have found that a perturbed even soliton typically
transforms into an odd one through increasing field oscillation in neighboring
wave guides [Fig. 2.7(a)], and perturbed twisted soliton usually splits into
two solitons which fly apart as when a repulsive force would act between
them [Fig. 2.7(b)]. We have observed a 7 phase difference between the
formed odd solitons and this could explain the repulsive force between them.
Note that during the splitting process the resulting odd solitons are still
locked in a specific waveguide, they are being allowed to repel in time. This
unique feature comes with discreteness which does not allow the soliton

energy to escape from the waveguide where it was initially located.
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2.3 Multicolor vortex solitons in 2D photonic lat-

tices

2.3.1 Introduction

The generation of nonlinear modes with a nontrivial phase, such as vortices
is one important subject of study. In optics, vortices are associated with
screw phase dislocations nested in light beams [151]. Here we are inter-
ested in vortices with a bright shape, i.e., dislocations nested in finite-size
beams [152]. In homogeneous pure cubic and quadratic uniform media such
ring-shaped vortex solitons suffer azimuthal instabilities which have been ob-
served experimentally in different settings [153]. They can be made stable
in media with competing nonlinearities [154], and in media with refractive
index modulations that we address here.

Theoretical works showed that such complex localized structures, i.e.,
lattice vortex solitons exist when an optical lattice acts on a Kerr or photore-
fractive nonlinear crystal [91, 92, 155]. Recently, theoretical expectations
were indeed confirmed experimentally by two independent groups [93, 94].
During the last years various families of solitons in arrays of weakly coupled
waveguides made with quadratic nonlinear media have been also investigated
[122, 123, 125, 126, 127, 156], and observed for the first time recently [128].
One-dimensional (1D) multicolor solitons in lattices with tunable strength
have been also studied recently, and their potential applications for packing
and steering single solitons have been investigated [157]. Two-dimensional
geometries might support even robust soliton ensembles with phase disloca-

tions, which is the aim of this work.

2.3.2 Model and stationary solutions

We study the system of coupled nonlinear equations that describe the inter-
action between the fundamental frequency (FF) and second-harmonic (SH)
waves under conditions for type I second-harmonic generation in bulk ma-

terials in the absence of Poynting vector walk-off:

z% _d ’q  Pq
o ~ 2 a2 T
0q2  do (32(12 g

> — giqzexp (—iB&) —pR (1,¢) 1
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where g1 = (2ky k)" 27w x P/ Ay and o = [27wEx P2 /c?] Ag repre-
sent the normalized complex amplitudes of the FF and SH fields, k1 = k(wo),
ko = k(2wqg) = 2kq, 7¢ is the transverse scale of the input beams, n = x/r,

y/ro, &€ = z/(kird), B = (2k1 — k2)k173 is the phase mismatch, d; = —1,
dy = —ki/ky = —1/2, and p = 27w3dxWr2/c? is the lattice depth. The
function R(n,() = cos(2mn/T) cos(2n(/T) describes the transverse refrac-
tive index profile, where T' is the modulation period. The system (2.8)

admits several conserved quantities, including the energy flow

+o0
U= / / Tl + e P)ndc, (2.9)

and the Hamiltonian

d
H = // —fyv f\vquz

2((11) q2 exp (—if§) — qqu exp (i5€)

+§\qu2 — pR(n, Q)la1|* — pR(n, ¢)|gz|*]dnd¢, (2.10)

where V = e,(0/0n) + e:(0/0(), and ey, e; are unity vectors along 7 and

¢ axes. We searched for the stationary solutions in the form

q1 = [u1(n, ) + iv1(n, ¢)] exp(ibi§)
g2 = [u2(n, ¢) + iva(n, ¢)] exp(ibef), (2.11)

where u1 2(7, () and v1 2(7, ) are real functions, and b; 2 are real propagation
constants that verify by = (4 2b;. Substitution of the expressions (2.11)
into Eq. (2.8) yields the following system of equations for the soliton profiles

Uuy,2 and 1)172

— ujug — v1v2 + biur — pR(n, Q)ur =

u% + v% + bous — 2pR(n, ()ug =0

0? 0?
(1)21 + Ul) —u1v2 + viug + bivr — pR(n, Q)vr =
( — 2uq1v1 + bava — 2pR(n, ()va = 0. (2.12)

ol & olE ro|& o
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We solved the system of coupled equations (2.12) numerically by using a
standard relaxation method. The lattice vortex soliton families are one-
parameter families defined by the propagation constant b; for any given
period of the modulation T, lattice depth p and phase mismatch 3. Since one
can use scaling transformations q1 2(n, ¢, €, 3, p) — x2q1.2(x1, X¢, X3¢, X283, X*p)
to obtain various families of solitons from a given family, we have selected
the transverse scale ry such that the modulation period is given by T' = 7/2

and then we have varied by, 3, and p.

Figure 2.8: (a) Profile and (b) phase of vortex solitons supported by the
harmonic lattice at by = 1.07. (c) Profile and (d) phase of vortex soliton at
b1 = 2. Only the FF wave is shown. Lattice depth p = 4, phase mismatch

B=0.

The simplest vortex soliton with unit topological charge in two-dimensional
periodic lattice is shown in Fig. 2.8. It comprises four main humps arranged
in a square configuration with a stair-like phase structure that is topolog-
ically equivalent to the phase of a conventional vortex in uniform medium
[see Fig. 2.8(b,d)]. The positions of the soliton intensity maxima almost
coincide with the positions of the local maxima of the lattice. Note that
the singularity of these vortex solitons is centered between four lattice sites,
that is they belong to the class of the, so called, off-site vortex soliton. In

the model we investigated here there exist also a family of on-site vortex
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solitons (not shown here). In that case the phase singularity is centered on
a lattice site [91, 93, 94]. We will restrict ourselves here to the case of the
off-site vortex solitons. It is interesting to note that these stationary struc-
tures somehow resemble the four-soliton molecules carrying orbital angular
momentum that were investigated in a variety of nonlinear media in both
two-dimensional and three-dimensional geometries [158, 159, 160]. The typ-
ical stair-like phase distribution in the case of the above mentioned soliton
molecules is clearly seen in panels (b) and (d) of Fig. 2.8 for the lattice vor-
tex solitons. We want to mention that the 1D quadratic waveguides were
also shown to support various families of multipeaked solitons, which display
combinations of in-phase and out-of-phase odd solitons, the latter ones with

7 phase jumps between neighbor solitons [157].
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Figure 2.9: (a) Vortex soliton energy flow versus propagation constant for
different values of phase mismatch at p = 8. (b) Propagation constant cutoff
versus lattice depth at 3 = 0. (c¢) Cutoff versus phase mismatch at p = 8.
(d) Stability and instability domains for different lattice depths at 5 = 0.
Circles show critical value of propagation for stabilization.

It should be noted that at low powers (small b;) the lattice vortex soli-
tons are quite wide and spread out over many lattice sites [Fig. 2.8(a)], while
at high powers the energy is mainly localized within the corresponding four
peaks [Fig. 2.8(c)]. We did not find four-hump structures with higher topo-

logical charges (2 or more), and all other higher-order stationary structures
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we have found (for example, lattice vortex solitons with eight humps) were
found to be unstable on propagation. Thus, in this work we will restrict
ourselves to the study of the properties of simplest four-hump lattice vortex
solitons.

In order to characterize the families of lattice vortex solitons we have
calculated the energy flows associated with these stationary solutions as well
as their existence domains for given lattice depth p and phase mismatch (.
As a general rule, the energy flow of the four-hump lattice vortex solitons is
a non-monotonic function of the propagation constant [even if this cannot
be seen directly from Fig. 2.9(a) without zooming]. Note that in Fig.
2.9(a,d) on the abscise we have plotted the difference (b — be,) between
the propagation constant b; and cutoff value b.,. The cutoff value depends
on both the phase mismatch § and lattice depth p. For example at p = 8
cutoff is given by b., = 6.065 for § = —6, while b, = 1.23 for 3 = 6. The
cutoff be, is a nonmonotonic function of the lattice depth p [Fig. 2.9(b)].
It tends to infinity at p — 0 and p — +o00. One can see from Fig. 2.9(c)
that in the presence of the lattice the dependence b., () differs from that
for quadratic solitons in continuous media: be,(3) = max{—(3/2,0}. Thus
at f — —oo cutoff is approximately given by (8 — 3p)/2, while at § — 400
one has b., = by, where 3y is the mismatch shift due to the lattice. Both
bo and By growth with p. This property holds also for the one-dimensional
lattice solitons in quadratic nonlinear media [157].

The periodic refractive index modulation affects also the energy sharing
between FF and SH waves. For example, at a given phase mismatch (3,
the fraction of the total energy flow carried by the SH wave increases with
increase of the lattice depth. Moreover, near the cutoff, the SH wave spreads
over more lattice sites than the FF beam. As in the case of a uniform media,
in the lattice with fixed depth p the part of energy flow carried by the SH

wave decreases with increase of phase mismatch 3.

2.3.3 Dynamics and excitation

To investigate the stability of the lattice vortex solitons, we have performed
extensive numerical simulations of the evolution dictated by Eq. (2.8) with
the input conditions ¢i1(§ = 0) = [u1(n,¢) + iv1(n,{)][1 + p1(n,¢)] and

g2(§ = 0) = [ua(n, ¢) + iva(n, O][1 + p2(n, )], where u1 2 and vy are the
exact solutions of Eq. (2.12) and p; 2 are random functions with Gaussian
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Figure 2.10: Propagation of vortex solitons with b = 3.1 (a), 3.4 (b), and

5 (c) in the presence of input noise with variance o2, = 0.01. FF wave

profile is shown at different propagation distances. Lattice depth p = 8§,
phase mismatch 8 = 0.

2

distribution and variance o} ;..

= 0.01. We have propagated the perturbed
four-hump lattice vortex solitons over thousands of units for various values

of the physical parameters involved (3, p, U).

Our simulations show that there exists a narrow instability band near
the propagation constant cutoff b, for vortex solitons, but above a certain
critical value of propagation constant they appear to become free of insta-
bility. We have found that the width of instability domain of lattice vortex
solitons decreases with increase of the depth of the lattice p [Fig. 2.9(d)].
For example, as depicted in Fig. 2.9(d), the width of instability domain on
propagation constant for p = 12 is approximately given by 0.24, while for
p =8 it is 0.35.
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A few representative decay scenarios for the unstable four-hump lattice
vortex solitons with unit topological charge are shown in Fig. 2.10. In the
row (a) of Fig. 2.10 we show the typical decay of the unstable vortex soli-
ton in the vicinity of the cutoff on propagation constant b.,. The initial
energy of the localized structure is spreading out during evolution across
the whole lattice and the vortex soliton disappears. Notice that this type of
instability develops exponentially. In the rest part of the instability domain
located closer to critical value of the propagation constant, we encountered
oscillatory-type instability. Upon development of this instability vortex soli-
ton transforms into a fundamental (ground state) lattice soliton that is the
most robust and energetically stable state of the system [see row (b) of Fig.

2.10], through increasing oscillations of four intensity maxima of the vortex.

ot
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Figure 2.11: Snapshot images showing decay of the stable vortex solitons
caused by removal of the lattice. Only SH wave profile is shown. Images are
taken after each 2.5 propagation units. Lattice depth p = 8, phase mismatch

3=0.

One of the important results of this study is that the lattice vortex soliton
becomes completely stable when its propagation constant exceeds a critical
value by, i.e., almost in the entire existence domain [see Fig. 2.9(d)]. In row
(c) of Fig. 2.10 we have plotted, for the sake of illustration, the initial and the
final (after 500 propagation units) intensity distributions of a stable lattice
vortex soliton. Comparing to the soliton molecules investigated in bulk
nonlinear media, which were shown to be metastable physical objects under
suitable conditions, we conclude that, as expected on physical grounds, the
effect of the two-dimensional lattice is to arrest the rotation of the soliton
molecule and thus to assure the complete stabilization of the soliton complex.

Since lattice causes strong azimuthal modulation of the vortex soliton, lattice
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removal results in complete soliton decay into four filaments, as shown in
Fig. 2.11. Escape angles of filaments decrease with increase of input energy

flow of vortex soliton.

To understand lattice vortex solitons generation from a radially symmet-
ric input beam carrying a screw phase dislocation nested in the center and
to show that different sets of output solitons can be obtained with differ-
ent combinations of topological charges and shapes of the input beams we
performed a comprehensive set of simulations of Eq. (2.8) with the input
conditions corresponding to Gaussian beams with a phase dislocation nested

in the center:

@1 (€ = 0,7, ¢) = Ar™lexp(imyp) exp(—r?/w})
@& =0,r¢) = Brlmal exp(imayp) eXp(—TQ/wg), (2.13)

where 7 = (n? + ¢?)Y/2 is the radius, ¢ is the azimuthal angle, A and B are
amplitudes of FF and SH waves , w; and we are beam widths. Below we
set the width w; = we = 1 and suppose that topological charge of FF wave

is given by m; = 1.

Figure 2.12: Generation of the vortex solitons with only FF input. (a) Field
and (b) phase distributions of the input FF beam with topological charge
mi = 1. (c) FF beam and (d) SH beam at { = 15. Lattice depth p = 8,
phase mismatch g = 0.
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Figure 2.13: Soliton algebra. The output soliton distribution depends on
the topological charges m; of FF wave and mo of SH wave, respectively. In
all cases, m; = 1. In (a)-(d), the amplitude of FF wave A = 20 and the
amplitude of SH wave B = 2. In (e) and (f) A = 20 and B = 0.5. Plots
(a)-(f) correspond the topological charges ms = 1,3,4,6,7,8 respectively
and show the output SH field distribution at £ = 100. Lattice depth p = 8§,
phase mismatch g = 0.
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First, we consider nonseeded vortex soliton generation at B = 0. At low
input powers both input FF wave and generated SH wave exhibit complete
diffraction, and input beam energy is redistributed between many lattice
sites. With the increase of input energy flow [i.e. by increasing A in Egs.
(2.13)] the generation of lattice vortex soliton with unit topological charge
becomes possible as shown in Fig. 2.12. Lattice soliton generation is accom-
panied with energy radiation [Fig. 2.12(c) and (d)] but the ratio between
radiative losses and the output soliton energy flow decreases with increase
of input energy flow.

In the case of seeded SH generation (B # 0 and B < A), the output field
distribution can be controlled by the input topological charge of SH wave.
For m; = 1 vortex soliton generation is possible only for the vorticity-
matched case when mgy = 2, while all other values of my correspond to
formation of trivial-phase soliton distributions, whose structure is dictated
by lattice symmetry and energy exchange between FF and SH waves at the
initial stage of propagation. Some representative output distributions are
shown in Fig. 2.13. These plots show that the concept of “soliton algebra”
previously explored in homogeneous media [161], does also apply in the
presence of lattices, offering new opportunities for controlling the soliton

dynamics.

2.4 Summary

We have studied stable, spatiotemporal continuous-discrete solitons in quadratic
nonlinear waveguide arrays. Families of unstaggered odd, even and twisted
stationary solutions have been found and thoroughly characterized. The lin-
ear stability analysis is in agreement with the direct simulations indicating
that the odd continuous-discrete solitons obey the Vakhitov-Kolokolov sta-
bility criterion. The salient point put forward is that most of the spatiotem-
poral unstaggered odd solitons are stable against perturbations. This result
is important in view of the generation of discrete solitons with pulsed light
in the context of the exploration of their potential application to switching
schemes.

In particular, we have discovered that periodic lattices imprinted in
quadratic nonlinear media can support four-hump vortex solitons with unit

topological charge that are stable provided that their propagation constant
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is above a certain critical value. Below this critical value we have identified
two types of instabilities: (i) an exponential-type of instability leading to
the final decay and spread out of the solitons across the lattice and (ii) an
oscillatory-type instability leading to the transformation of the lattice vor-
tex soliton into a fundamental soliton without internal vorticity. We inves-
tigated the generation of the multicolor lattice vortex soliton from Gaussian
beams with nested phase dislocations. The possibility to generate differ-
ent output lattice soliton patterns, with and without vorticity, by varying
the topological charges and amplitudes of the input beams in seeded exci-
tation configurations, has been discussed. The generation of a 2D periodic
potential in quadratic nonlinear media is a challenging issue, even though
fabrication of 1D lattices has been already achieved using techniques which
might be extended to 2D geometries. Also, the results presented here might
be relevant to suitable atomic-molecular Bose-Einstein condensates held in

optical lattices.



Chapter 3

Reconfigurable
Optically-induced Networks

3.1 Introduction

As shown in the preceding chapter, a periodic array of optical waveguides
creates a novel kind of devices in which new types of spatial solitons (discrete
or lattice) can be generated and studied experimentally. Discrete optical
solitons in waveguide arrays have attracted large attention because of their
potential for all-optical switching and power- and angle-steering (for a recent
review see Ref. [119]). In particular, the possibility of construction of two-
dimensional soliton networks of nonlinear waveguide arrays was established
[162, 163]. In landmark recent experiment [87, 88, 89, 131, 164, 165], it was
shown that periodic nonlinear lattices with flexibly controlled refractive in-
dex modulation depth and period can be induced all-optically, in particular,
in photorefractive media. Such lattices constituted by continuous nonlin-
ear media with an optically imprinted modulation of refractive index offer
a number of new opportunities for all-optical manipulation of light as well
[166, 167], since they can operate in both weak- and strong-coupling regimes,

depending on the depth of refractive index modulation.

The technique of optical lattice induction opens a wealth of opportunities
for creation of waveguiding configurations with various nondiffracting light
beams. An important example is set by Bessel beams, which under ideal con-
ditions do not diffract upon propagation. Single-mode Bessel beams allow

creation of optically-induced lattices with radial symmetry, where solitons
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can be set into controllable rotary motion [95, 168]. Combination of sev-
eral incoherent Bessel beams can be used to build couplers and switching
junctions that can trap and steer solitons, while junction properties [169]
can be tuned by intensity, intersection angles, and widths of central cores
of Bessel beams [170]. Notice that combinations of coherent or incoherent
Bessel beams can be created experimentally [171, 172], by using computer

generated holograms [173] or reconfigurable spatial light modulators.

In this chapter, we put forward the concept of reconfigurable structures
created with arrays of mutually incoherent parallel Bessel beams in Kerr-
type nonlinear media. Each of the Bessel beams forming the structure in-
duces a well-pronounced guiding channel that overlaps with its neighbor-
ing through slowly decaying tails. In Section 3.2, the theoretical model
governing such optically-induced networks is introduced. In section 3.3,
we address the properties of reconfigurable directional couplers optically
induced by Bessel beams. In section 3.4, reconfigurable soliton networks
optically-induced by arrays of nondiffracting Bessel beams are investigated.
In section 3.5, we consider the reconfigurable junctions optically-induced by

nondiffracting Bessel beams.

3.2 Model

We consider the propagation of light along the £ axis of a focusing Kerr-
type nonlinear media with an optically-induced modulation of the refractive
index in the transverse direction. The evolution of the complex light field
amplitude g is described by the reduced equation
2 2

igZ = —3(277%2(3) —qla|* = pR(1,¢, €)q, (3.1)
where the transverse 7, ¢ and the longitudinal ¢ coordinates are scaled to
the characteristic beam width and diffraction length, respectively. We sup-
pose here that the refractive index modulation is induced optically by the
multiple incoherent zero-order Bessel beams, so that the refractive index
profile features the total intensity of the interference pattern, as it occurs
in photorefractive crystals. The guiding parameter p is proportional to the
refractive index modulation depth, which is assumed to be comparable to

the nonlinear contribution of the refractive index. The function R(n,(,¢)
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describing the refractive index modulation profile is given by

=

R(1,¢,&) = > Jg{(2b1s) [0 — mi + ax)® + (¢ = &)*V?}, (3.2)

k=1

where N is the total number of beams in the array, the scaling parameter
b1in defines the radii of rings of Bessel beams and here is taken small enough
to ensure that the width of the central core of Bessel beams (20 pm) largely
exceeds the wavelength; finally, 1, and (i are the coordinates of Bessel beam
center, and oy defines the head-on intersection angle. Note that Eq.(3.1)

admits several conserved quantities including the power or energy flow

U= [ [ laPanac (33)

The stationary solutions of Eq.(3.1) that propagate along the guiding chan-
nels of the network have the form ¢(§,n,() = w(n, {)exp(ib), where w(n, ()
is a real function and b is the real propagation constant. General fami-
lies of soliton solutions are defined by the propagation constant, and by
guiding and scaling parameters p and byi,. Since scaling transformation
a0, ¢, &,p) — xa(xn, X¢, x2€, x%p) can be applied to obtain various soliton
families from a given one (note that this also implies variation of the lattice),
below we fix byi, and vary b and p. Families of stationary solutions were

obtained by solving Eq.(3.1) with a relaxation algorithm.

3.3 Reconfigurable directional couplers

First, we address the properties of reconfigurable directional couplers in-
duced with collinear incoherent Bessel beams (namely, intersection angle
aj = 0). Because of the overlap of the soliton tails guided by neighboring
Bessel channels on propagation. The rate of the energy exchange is given by
the overlap integral, which increases with a decrease of separation between
waveguides or with an increase of refractive-index modulation depth.
Figure 3.1 shows different soliton switching scenarios in two-core [Figs.
3.1 (a)-(c)] and three-core [Figs. 3.1 (d)-(f)] couplers for different input
powers. At small powers one achieves almost total energy transfer from the
input guiding channel into neighboring channels at coupling length & = L,

[Figs. 3.1 (a) and (d)]. Note that in a three-core coupler the energy is equally
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Figure 3.1: Switching in (a)-(c) two- and (d)-(f) three-core optically induced
couplers. Output intensity distributions are shown at & = L.. White con-
tour curves are aids to the eye and show the positions of optically induced
channels. In the two-core coupler the soliton was launched into the left-
hand channel; in the three-core coupler it was launched into the right-hand
channel. Input power (a) U = 1.56, (b) 1.67, (c) 3.1, (d) 1.56, (e) 2.15, and
(f) 2.68. Parameters: modulation depth p = 5, separation between Bessel
beams 2ng = 3, byin = 10.
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redistributed between two output channels. Similar phenomena occur with
more-complicated Bessel beam arrays arranged in ring configurations when
the energy flow of a soliton launched into a single channel is redistributed
among all other channels at the output. Because of the periodic character
of the energy exchange the input field distribution is completely restored at
& = 2L,.. At the critical power level, the energy is equally distributed among
all channels of the coupler [Figs. 3.1 (b) and (e)]. In this case, coupling
length L. diverges. Finally, at high powers there is no energy transfer into
neighboring channels [Figs. 3.1 (¢) and (f)]. Thus the optically induced

coupler behaves as the sought-after nonlinear directional coupler.
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Figure 3.2: (a) Coupling length and (b) normalized transmission efficiency
versus input power at p = 5, and separation between Bessel beams 2ny =
3. (c) Coupling length and (d) normalized transmission efficiency versus
modulation depth at U = 2 and separation between Bessel beams 21y = 2.
In both cases by, = 10.

The variation of the coupling length and the normalized transmission
efficiency versus the input power for a two-core coupler are shown in Figs. 3.2
(a) and (b), respectively. The transmission efficiency is defined as the ratio
of energy concentrated in the output channel to that concentrated in the
input channel. The coupling length increases and the transmission efficiency

decreases as the input power approaches the critical value corresponding to
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equal energy distribution in all channels. To stress the reconfigurability
afforded by optically-induced couplers, in Figs. 3.2 (¢) and (d) we plot
the coupling length and the transmission depth p at fixed input power.
The modulation depth can be directly controlled by intensities of Bessel
beams forming the coupler. Because at fixed power the soliton supported
by a single channel becomes narrower with increasing p, the transmission
efficiency decreases above the critical modulation depth, and all switching

conditions from total to negligible energy transfer can be achieved.

Figure 3.3: Switching scenarios in the matrix of four Bessel waveguides when
two solitons are launched into neighboring optically-induced guides. Top:
input (left) and output (right) intensity distributions for in-phase solitons.
Bottom: input (left) and output (right) intensity distributions for out-of-
phase solitons. Input power U = 2.14, modulation depth p = 5, separation
between Bessel beams 71y = 2.5, and b3, = 10.

We also study soliton switching in multi-core directional couplers creased
by arrays of incoherent Bessel beams. Two representative examples of the
existing possibilities with four Bessel-beam couplers are shown in Fig. 3.3
and Fig. 3.4.

Here we focus on the results obtained by simultaneous excitation of sev-
eral coupler channels. We launch into neighboring or opposite channels two
identical solitons whose profiles were found from Eq. (3.1) by means of relax-
ation method, under the assumption that only one Bessel beam is present.

In the presence of other guiding channels (with the second beam launched
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into one of them) the propagation process is accompanied by periodic trans-
fer of the energy between different channels that are coupled via their tails.
The energy exchange is very sensitive to the relative phase of input beams.
We show the output intensity distributions at the distance corresponding
to the maximal energy transfer into two channels that were not initially
occupied. Thus, in Fig. 3.3, where solitons are launched into neighboring
channels, one finds that the energy transfer is negligible for in-phase solitons
and almost 100% efficient for out-of-phase solitons. The outcome changes
drastically when input solitons are launched into the opposite coupler chan-
nels. Therefore, the important result is that by varying the refractive index
modulation depth (which is proportional to the intensity of nondiffracting
Bessel beams inducing the coupler), the separation between Bessel channels,
the power and phases of input solitons, one obtains a variety of switching

scenarios.

Figure 3.4: Switching scenarios in the multicore coupler optically-induced by
four Bessel beams when two solitons are launched into opposite waveguides.
Top: input (left) and output (right) intensity distributions for in-phase soli-
tons. Bottom: input (left) and output (right) intensity distributions for
out-of-phase solitons. Input power U = 2.14, modulation depth p = 5,
separation between Bessel beams ng = 2.5, and b3, = 10.
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3.4 Reconfigurable soliton networks

One can construct more complex structures by collinear Bessel Beams, the
simplest line network created with an array of Bessel beams equally spaced
along n—axis is shown in Fig.3.5(a). Because of the mutual incoherence of
Bessel beams in the network, the interference pattern between pronounced
guiding channels is suppressed. Such network can support stationary soli-
tons whose profiles are elongated along the 7 direction. This is especially
evident for low-power solitons that extend over several network channels
[Fig. 3.5(b)]. With increase of the propagation constant (or power) the soli-
ton width decreases [Fig. 3.5(c)], so that in the limit b — oo soliton occupies
only one channel and its power approaches the critical value of the unstable
soliton supported by uniform cubic media. Nevertheless, for the considered
set of parameters the soliton power was found to be a monotonically growing
function of propagation constant that implies stability of stationary soliton
solutions in the entire domain of their existence according to the Vakhitov-
Kolokolov criterion. Below we consider broad low-power solitons that can
be set in motion across the network by imposing the initial linear phase
tilt (or angle) exp(in) onto the input field distribution. Such tilted beams
are no more stationary solitons, but they can travel across the uniform net-
work along the n direction almost without the radiation losses [Fig. 3.5(d)],
that otherwise unavoidably appear upon crossing of the guiding channels of
the structure and that then lead to a fast trapping of high-power narrow
solitons.

One of the interesting results found in this work is shown in Fig. 3.5(d):
Removal of one of the Bessel beams from the array can cause deflection of
soliton in the direction opposite to the input tilt. This process is accompa-
nied by a strong beam reshaping in the deflection point, but the resulting
beam shape and the modulus of the propagation angle are typically very
close to the input ones. The soliton deflection at the network defect is a
simplest example of operation accessible with optically-induced networks
whose structure (open and closed paths) can be easily changed by blocking
or switching of the individual Bessel beams from the array. The poten-
tial of such structures for creation of all-optical photonic circuits is readily
apparent.

Arrays of Bessel beams can be used to induce more complex networks

that feature one or several bends at different angles that can even exceed
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Figure 3.5: (a) Linear network created with array of Bessel beams. Profiles
of solitons with power U = 0.8 (b) and U = 1.34 (c) supported by network
shown in (a). (d) Drift of soliton with power U = 0.8 and incident angle
f = 1 in uniform network and its reflection on the network defect. Intensity
distributions showing drift and deflection are superimposed and taken at
¢ = 0. In all cases modulation depth p = 15 and separation between Bessel
waveguides ng = 1.

90°. Two representative examples of broad soliton propagation in such bent
networks are shown in Fig. 3.6(a) and (b). Upon passing through the net-
work, the soliton beams experience only slight transformation of their shape
despite of the fact that they are forced to change propagation plane. The
radiative losses in both cases shown in Fig. 3.6 are small (less than 4%).
The networks shown in Fig. 3.6(a) and (b) are similar to the technologi-
cally fabricated networks studied in Refs [162, 163]; however, the tunability
afforded by the technique of optical-induction offers the additional advan-
tage of the reconfigurability. Another interesting phenomenon occurs in the

circular network, as the one depicted in Fig. 3.6(c). In this case soliton
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Figure 3.6: Soliton propagation across 60°-bend (a), 90°-bend (b), and cir-
cular (c) networks created with arrays of Bessel beams. White contour lines
are to help the eye and show positions of the induced guiding channels. La-
bels Sin, Sout stand for input and output soliton positions. Input power
U = 0.8, incident angle § = 1, modulation depth p = 15, and separation
between Bessel waveguides 1y = 1.

can perform rotary motion across the ring, with its power remaining almost
constant because of small radiation losses. Switching off elements of the cir-
cular networks causes reversal of the soliton rotation direction. The similar
results were obtained in a variety of cases, in terms of input light conditions
and lattice-creating Bessel beams. These examples illustrate that the net-
works induced by the Bessel beam behave like soliton wires and thus they

can be effectively used to manage soliton paths.

3.5 X-Junctions

In this section, we address properties of X-junctions created with two in-
tersecting Bessel beams (N = 2), and intersection angle a; = —ag = a.
The initial separation between guiding channels is high enough that, at the
initial stage of propagation, a soliton launched into the right-hand channel

of the junction is almost unaffected by the presence of the left-hand channel.
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We calculate the transmission efficiency, defined as the ratio of output power
concentrated in the central core of the left channel at £ = 21/« to the input

power concentrated in the central core of the right channel at £ = 0.

Figure 3.7: (a) X-junction made by intersecting incoherent Bessel beams at
a = 0.5. Different soliton propagation scenarios at (b) a = 0.5, (¢) a = 0.6,
and (d) o = 0.75 are shown. Intensity distribution are shown at { = 0.
In all cases p = 5, U = 2, separation between Bessel beams 21 = 6, and
blin = 2.

Figure 3.7(a) shows that the intersection of two incoherent Bessel beams
produces an area of locally increased refractive index that is elongated along
the £ axis. The smaller the intersection angle, the longer the area of locally
increased refractive index. When the soliton from the right-hand channel
enters this area it is bounced back, as one can see from Figs 3.7(b)-(d).
Depending on the intersection angle (i.e., the length of intersection area),
the soliton remains in the input channel [Fig. 3.7(b)], splits into two beams
[Fig. 3.7(c)], or experiences total switching into the left-hand channel [Fig.
3.7(d)]. The potential applications of this effect for angle-controlled soliton

switching are clearly visible.

The normalized transmission efficiency versus intersection angle is shown
in Fig. 3.8(a). Almost 100% switching contrast can be achieved in such an X-
junction. With further growth of o the transmission efficiency monotonically

decreases. Small angles are not shown in Fig. 3.8(a) because in this case



56 3.6. Summary

1.0 1.0
(a) (b)
&~ 05 &~ 0.5
0.0 , : , 0.0 : ,
0.5 1.0 15 2.0 0 5 10
«Q p

Figure 3.8: (a) Nonlinear transmission efficiency versus intersection angle at
p=>5and U = 2. (b) Normalized transmission efficiency versus modulation
depth at a = 0.75 and U = 2. Parameters: separation between Bessel beams
219 = 6 and b1y, = 2.

small modifications of the input angle result in drastic changes in switching
dynamics and fast oscillations of the curve T'(a) at @« — 0. We found
that switching with high contrast can be achieved by tuning the depth of
refractive index modulation p [Fig. 3.8(b)]. There exists an optimal value
of p that yields almost total soliton switching into the left-hand channel at
fixed input power and intersection angle. This is another confirmation of the
potential of reconfigurable guiding structures induced with arrays of Bessel

beams for all-optical soliton control.

3.6 Summary

In conclusion, we have studied reconfigurable couplers, soliton networks, and
X-junctions induced by multiple incoherent nondiffracting Bessel beams in
Kerr-type nonlinear media. We showed that dynamics of soliton beams
propagating in such optically-induced structures can be used for all-optical
manipulation of light, with the important additional advantage of the re-
configurability afforded the optical-induction concept. The scheme holds for
light signals propagating in focusing media and for Bose-Einstein conden-

sates trapped in optical lattices induced by Bessel beams.



Chapter 4

Solitons in Nonlocal Optical

Lattices

4.1 Overview

Properties of solitons supported by media with local nonlinear response
are well established. However, under appropriate conditions, the nonlin-
ear response of materials can be highly nonlocal, a phenomenon that dras-
tically affects the propagation of intense laser radiation [174, 175]. The
nonlocality of nonlinear response comes into play when the transverse ex-
tent of the laser beam becomes comparable with the characteristic response
length of the medium. The nonlocal nonlinear response allows suppres-
sion of the modulation instability of the plane waves in focusing media
[176, 177, 178, 179]; it prevents catastrophic collapse of multidimensional
beams [180, 181, 182, 183], and stabilizes complex soliton structures, includ-
ing vortex solitons [184, 185]. Principally new effects attributed to nonlo-
cality have been studied in photorefractive crystals [57, 186], thermo-optical
materials [187], liquid crystals [51, 198], plasmas [188], and Bose-Einstein

condensates with long-range interparticle interactions [189, 190, 191].

In this chapter, we investigate soliton dynamics in nonlocal nonlinear me-
dia with an optically-induced lattice. In section 4.2, we address the soliton
mobility in the symmetric Kerr-type nonlocal nonlinear media. In Section
4.3, we address the impact of the asymmetric nonlocal diffusion nonlinear-
ity of gap solitons supported by photorefractive crystals with an imprinted

optical lattice.

o7
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4.2 Soliton mobility

4.2.1 Introduction

One of the principal properties featured by the corresponding discrete or
lattice solitons is their restricted mobility in the transverse plane, the ef-
fect that might be employed for various switching and routing operations
[86, 166]. Recent progress in creation of reconfigurable optical lattices in
photorefractive crystals [87, 88, 131, 93, 94, 164] and nematic liquid crys-
tals [51, 198] opened a direct way to explore the properties of solitons by
varying the lattice depth and period. However, photorefractive media and
liquid crystals may feature a strong nonlocal nonlinear response. Therefore,
a principal question arises about the effect of the interplay of periodic refrac-
tive index modulation and nonlocality of nonlinear response on fundamental
soliton properties, including their mobility. An intuitively similar, but phys-
ically drastically different scenario is the tunable self-bending of solitons in

lattices made in media with diffusive nonlinearity [192].

Here, we address the properties of solitons in Kerr-type nonlocal nonlin-
ear media with an imprinted transverse periodic modulation of the refrac-
tive index. Our central discovery is that a tunable nonlocality can greatly
enhance the soliton mobility, opening the possibility of almost radiation-
less soliton propagation across the lattice. We employ a generic model
for the nonlocal nonlinearity, which provides insight for all physical set-
tings governed by nonlocality kernels with an exponential-decaying range,
including photorefractive and liquid crystal optical media, as well as in mod-
els of Bose-Einstein condensates with long-range interparticle interactions
[189, 190, 191].

4.2.2 Model and stationary solutions

For concreteness, here we consider the propagation of the light beam along
the £ axis in a nonlocal nonlinear Kerr-type medium with an imprinted mod-
ulation of linear refractive index described by the system of phenomenologi-
cal equations for dimensionless complex light field amplitude ¢ and nonlinear
correction to the refractive index n [175, 176, 177, 178, 179]:
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dq 1 0%q
o€ oo - pR(n)q,
9?n
"—dTng = IQ|27 (4.1)

where 1 and £ stand for the transverse and longitudinal coordinates scaled to
the beam width and diffraction length, respectively; the parameter d stands
for the degree of nonlocality of the nonlinear response; the parameter p
is proportional to the refractive index modulation depth; and the function
R(n) = cos(2mn/T) describes the transverse refractive index profile, where
T is the modulation period. We assume that the depth of the refractive
index modulation is small compared to the unperturbed index. In the limit
d — 0, the system (4.1) reduces to the nonlinear Schrédinger equation. The
opposite case d — oo corresponds to the strongly nonlocal regime. Among

the conserved quantities of system (4.1) are the energy flow U

U= / lgf2dn, (4.2)

—00

and the Hamiltonian H
1 9q 9 2
HZ/ 51517 —pR(1)lq
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~3la? [ Gl Nl Paxdn (43)

where G(n) = (1/2d"/?)exp(—|n|/d'/?) is the response function of the non-
local medium. We search for stationary solutions of Eq.(4.1) in the form
q(n, &) = w(n)exp(ib), where w(n) is a real function and b is a real propa-

gation constant. Substitution into (4.1) yields

d2
° + 2wn + 2pRw — 2bw = 0,
dn?
d2
ddTyZ —n4w? =0, (4.4)

where n stands for the stationary refractive index profile. We solved these
equations numerically with a relaxation method. We set T'= 7/2 and vary
b, p and d. To elucidate the linear stability of the solitons, we searched for
perturbed solutions in the form ¢(n, &) = [w(n) + u(n, &) + iv(n, £)]exp(ibf),
where the real u(n,§) and imaginary v(n, &) parts of the perturbation can
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grow with a complex rate 0 upon propagation. Linearization of Eq. (4.1)

around a stationary solution yields the eigenvalue problem

1 d%v
Su = “Sap + bv — nv — pRu,
1 d2
ov = 23771; — bu + nu + wAn + pRu, (4.5)

where An =2 [%_G(n—A)w(A)u(A)dA. The system (4.5) can also be solved

numerically.
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Figure 4.1: Profile of (a) odd and (b) even solitons with energy flow U = 4
and corresponding nonlinear refractive index distributions. (c¢) Energy flow
versus propagation constant for odd and even solitons. In (a)-(c¢) the degree
of nonlocality d = 2. (d) Perturbation growth rate versus energy flow of
even solitons at a different degree of nonlocality. Lattice depth p = 3.
Gray regions in (a) and (b) correspond to R(n) > 0, while in white regions
R(n) < 0.

First, we address properties of lowest-order odd and even solitons. The
absolute intensity maximum for odd solitons coincides with one of the local
maxima of R(n) [Fig. 4.1(a)], whereas even solitons are centered between
neighboring lattice sites [Fig. 4.1(b)], and can be viewed as a nonlinear

superposition of in-phase odd solitons. With an increase of lattice depth
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Figure 4.2: Profile of (a) first and (b) second twisted solitons and nonlinear
refractive index distributions corresponding to points marked by circles in
dispersion diagram (c). Lattice depth p = 3; nonlocality degree d = 2. (d)
Real part of perturbation growth rate for first twisted soliton at p = 2.5 and
various d values.

the soliton energy concentrates in the guiding lattice sites (the regions of lo-
cal refractive index maxima) so that lattice solitons approach their discrete
counterparts [86]. The energy flow U for both odd and even solitons is a
monotonically growing function of the propagation constant b, and it van-
ishes in the cutoff b., point, which is identical for odd and for even solitons
[Fig. 4.1(c)]. The cutoff b, for odd and even solitons is a monotonically
growing function of lattice depth p, and we found that it does not depend
on the nonlocality degree d. This is the consequence of the fact that both
odd and even solitons reside in the semi-infinite gap of Floquet-Bloch spec-
trum of linear lattice that is independent of the nonlocality degree d so that
beo always coincides with the lower edge of this gap (see Ref. [193] for a
detailed discussion of the band-gap lattice structure and bifurcations of gap
solitons in local cubic media). At fixed energy flow and lattice parameters
the soliton gets broader and its peak amplitude decreases with an increase
of d . Linear stability analysis revealed that odd solitons are stable, and

even solitons are unstable in the entire domain of their existence, similar to
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the case of local medium [193]. However, the perturbation growth rate for
an even soliton is drastically reduced with an increase of nonlocality [Fig.
4.1(d)], so that even solitons with moderate energy flows U can propagate
undistorted in a highly nonlocal medium, even in the presence of random
perturbations of the initial conditions, over distances exceeding any experi-
mentally feasible crystal length by several orders of magnitude. Therefore,
a first important result uncovered is that nonlocality largely reduces the
strength of symmetry-breaking instabilities.

We also found families of twisted solitons that can be considered com-
binations of several odd solitons with engineered phases [132, 194] (see Fig.
4.2 for illustrative examples). The energy flow of twisted solitons is a non-
monotonic function of propagation constant, and there exists a lower cutoff
for the existence of such solitons [Fig. 4.2(c)]. The slope dU/db of the curve
U(b) becomes negative in a narrow region near the cutoff, not even visible
in Fig. 4.2(c). Contrary to the case of odd and even solitons the cutoff
beo for twisted solitons increases with an increase of the nonlocality degree
d. Stability analysis revealed that twisted solitons feature both exponential
and oscillatory instabilities near the lower cutoff for their existence [see Fig.
4.2(d)]. However, we found that they become completely stable above a cer-
tain energy flow threshold. The width of the instability domain for twisted
solitons decreases with an increase of lattice depth and increases with the

growth of the nonlocality degree.

4.2.3 Soliton mobility analysis

As one can see from Figs. 4.1(a) and (b), and 4.2(a) and (b), for all soli-
tons found the nonlinear refractive index distribution in nonlocal media
with d ~ 1 always features a smooth symmetric bell-like shape without
pronounced local maximums on top of it, thereby smoothing over the to-
tal refractive index profile n + pR. This is in clear contrast to the local
cubic medium, where focusing nonlinearity tends to further increment the
transverse refractive index modulation that, in turn, results in a restricted
mobility of high-energy excitations. Therefore, the nonlocality of the non-
linear response could greatly enhance transverse soliton mobility, which is
the central result in this section.

Figure 4.3 confirms this central result. The plot shows the Peierls-
Nabarro (PN) barrier, defined as a difference 6 H = Heyen — Hoaa between
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Figure 4.3: Height of the PN barrier versus (a) soliton energy flow at d = 4
and (b) degree of nonlocality at p = 3.

Hamiltonians for even and odd solitons carrying the same energy flow U
[195, 196]. Since upon motion across the lattice the solitons pass through
odd and even states, thus accompanied by the corresponding changes in
Hamiltonian (or potential energy, when solitons are viewed as particles),
the higher the barriers the larger the incident angle (or kinetic energy) re-
quired to overcome them. As expected, the height of the PN barrier grows
with the increase of soliton energy flow U and lattice depth p [Fig. 4.3(a)].
However, the nonlocality reduces drastically the value of PN barrier [Fig.
4.3(b)]. The physical implication is that corresponding solitons can move
across the lattice almost without radiation losses, because even small angles
are sufficient to overcome the reduced PN barrier. Therefore an increasing
degree of nonlocality affords very significant enhancement of the mobility of
high-energy lattice solitons, a feature with both fundamental and potential
practical relevance. Since odd solitons are ground-state solutions and real-
ize the most energetically favorable state of the system, the difference § H
can also serve as a measure of the instability of even solitons that is dras-
tically reduced with an increase of the nonlocality degree. Notice that on
physical grounds, the enhanced mobility of nonlocal lattice solitons cannot
be attributed to any variation of soliton stability (as it occurs in some dis-
crete systems with intersite interactions [197], but solely to refractive index
smoothing induced by the nonlocality.

The expectations based on the reduction of the PN barrier are fully
confirmed by numerical integration of Eq. (4.1). Fig. 4.4 illustrates the

point. To stress the physical robustness of our findings, here we present
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Figure 4.4: (a) Output channel number versus lattice depth at d = 0.08.
(b) Output channel number versus nonlocality degree at p = 1. (c) Soliton
propagation trajectories at d = 0.1 (1), 0.26 (2), and 0.4 (3). Lattice depth
p = 1. In all cases the input soliton form factor y = 1.2 and incident angle
a=0.5.

results obtained with inputs in the form ¢(n,§ = 0) = xsech(xn)exp(ian),
where «a stands for the incident angle. In general, soliton motion across
the lattice is accompanied by radiative losses that eventually lead to soliton
capture in one of the lattice channels [Fig. 4.4(c)]. The radiation losses are
drastically reduced by the nonlocality. For example, a soliton with y = 1.2
trapped in the 10th channel of the lattice imprinted in a fully local medium
loses about 40% of its input energy flow, while in a nonlocal medium with d =
0.3 the energy losses are less than 10%. Further decreases of the radiation
are achieved by increasing the degree of nonlocality. Let the soliton be
trapped in the N-th channel if NT — T/2 < npax < NT +T/2 at £ — oo,
where 7.y is the transverse coordinate of the soliton center. The output
channel number decreases with an increase of lattice depth p [Fig. 4.4(a)],
but we found that it does grow with increase of nonlocality [Fig. 4.4(b)].
Importantly, small variations of the nonlocality impact strongly the value of
the output channel number, a result that stresses the new degree of freedom

afforded by the nonlocality.
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It is worth stressing that the physical mechanism behind the enhanced
soliton mobility in nonlocal media put forward here is principally different
from the tunable bending that occurs in media with diffusion asymmetric
nonlinearity [192], where a highly anisotropic nonlinear response results in
asymmetric self-induced refractive index profiles and causes soliton bending,
while lattices are used to tune the bending rate. In contrast, the principal
physical feature behind the phenomena uncovered here is the tunability of
a symmetric nonlocality, itself. Such an aim can be achieved in a variety
of ways. In particular, it has been experimentally demonstrated that the
nonlocality of nematic liquid crystals vary with the voltage applied to the
crystal [198, 199]. An increase in the voltage causes a reorientation of the
molecules of a liquid crystal, which, in turn, results in a modification of
the character of a nonlinear response from highly nonlocal to predominantly
local. Since lattices can be imprinted in liquid crystals [51, 198], they are
very promising candidates for the demonstration of enhanced mobility of
nonlocal lattice solitons. Thus, the variation of the output channel upon a
slight modification of the nonlocality degree depicted in Fig. 4.4 can be used
to implement soliton-based switching and routing schemes controlled by the
applied voltage. Another example of tunable nonlocality is encountered with

thermal nonlinearity, e.g., in dye-doped liquid crystals [200, 201].

4.3 Gap solitons in nonlocal media

4.3.1 Introduction

Self-action of light in periodic nonlinear structures generates rich optical phe-
nomena [119]. In particular, such nonlinear structures, or optical lattices,
support various types of solitons that appear as defect nonlinear modes re-
siding in gaps of the Floquet-Bloch lattice spectrum. Finite gaps give rise to
solitons forming because of nonlinear coupling between waves having equal
longitudinal wave vector components and opposite wave vector components
in the transverse direction when both of them experience Bragg scattering
[202]. Gap solitons were studied in different geometries and materials, in-
cluding photonic crystals and layered microstructures [203, 204], fiber Bragg
gratings [205], Bose-Einstein condensates [206, 207, 208], waveguide arrays
[193, 209], and optically induced lattices [88, 90].



66 4.3. Gap solitons in nonlocal media

Previous studies focused on gap soliton formation in local nonlinear me-
dia. However, nonlocality of nonlinear response may drastically modify con-
ditions necessary for gap soliton existence, especially when the mechanism
behind gap soliton formation relies on Bragg rather than on total internal
reflection from the periodic structure. It is shown that nonlocality strongly
affects solitons even for symmetric nonlinear response [178]. Asymmetric
nonlocality exhibited by photorefractive crystals [210, 211, 212, 213] may
have an even stronger impact on the properties of solitons emerging from
finite gaps, a feature that is the focus in this section. In particular, we reveal
that gap solitons in photorefractive crystals with nonlocal diffuse nonlinear-
ity have largely asymmetric oscillating profiles and that they cease to exist
when the nonlocality degree exceeds a threshold. We also study the impact
of nonlocality on the mobility of gap solitons, studied previously only in

focusing nonlocal media [192, 214].

4.3.2 Model and stationary solutions

We consider propagation of light along the ¢ axis of a biased photorefractive
crystal that exhibits defocusing drift and asymmetric diffusion components
of the nonlinear response in the presence of an imprinted optical lattice. The
dynamics of propagation is described by the nonlinear Schrédinger equation
for dimensionless complex light field amplitude ¢:
2

igg = —;gni +qlg|* + uqaan\CJIQ — pR(n)g. (4.6)
Here n and ¢ stand for the transverse and longitudinal coordinates scaled to
the beam width and diffraction length, respectively; the parameter p char-
acterizes the lattice depth; the function R(n) = cos(27n/T') describes the
transverse lattice profile, where T' is the modulation period; and the param-
eter pu stands for the strength of the nonlocal diffusion nonlinearity. Equa-
tion (4.6) can be derived from the Kukhtarev-Vinetskii material equaitons
[210, 211, 212, 213], and it describes propagation of light at low light inten-
sities I < Ipg , where Ipg is the intensity of background illumination. At
higher intensities the saturation of photorefractive nonlinear response be-
comes significant, but in this regime self-bending effects arising from asym-
metric response dominate over lattice effects, a situation that corresponds

to the opposite limit than the one addressed here. We verified numerically
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that for the power levels where nonlocal and lattice effects compete on sim-
ilar footing, the full saturable model and Eq. (4.6) give qualitatively similar
results. The strength of the diffusion component of the nonlinear response
in Eq. (4.6) increases as beam width decreases. When u — 0 (for broad
beams) one recovers the local medium. The nonlocality is significant for
tightly focused light bemas; however, in most physically realistic situation
@ < 1. Equaiton (4.6) is derived by taking into account the lowest-order
space-charge field effects [212], an approach that is justified for most pho-
torefractive crystals with paraxial light beams. The largest correction to
Eq. (4.6) arising on account of the higher-order space-charge field effects
results in a correction to the parameter u, while corrections proportional
to 02|q|?/on?* and (0]q|?/On)? are negligible for paraxial beams (e.g., for a
beam width of 10 um these terms are of the order of 1073). Equation (4.6)

conserves the total energy flow

v= [ lapan (47)

—00

To study the conditions necessary for the existence of gap solitons we
analyze the Floquet-Bloch lattice spectrum by solving linearized Eq. (4.6)
with ¢(n,&) = w(n)exp(ib€ + ikn), where b is the propagation constant, k
is a Bloch wave number, and w(n) = w(n+ T'). A typical spectrum b(p) is
depicted in Fig. 4.5(a) for ' = 7 /2. All possible propagation constant values
are arranged into bands, where Eq. (4.6) admits Bloch wave solutions. These
bands are separated by gaps where periodic waves do not exist. The Floquet-
Bloch spectrum possesses a single semi-infinite gap and an infinite number
of finite gaps. Solitons emerge as defect modes whose propagation constants
are located inside the gaps of the Floquet-Bloch spectrum. Lowest-order
(odd) solitons existing in a semi-infinite gap in focusing media rely on the
mechanism of total internal reflection and feature bell-shaped profiles [202].
Solitons from finite gaps rely on the mechanism of Bragg reflection and

feature transverse shape oscillations [193].

To elucidate the effect of nonlocality on properties of gap solitons we
searched for stationary solutions of Eq. (4.6) numerically in the form ¢(n, §) =
w(n)exp(ib), where w(n) is a real function. To analyze stability we looked
for perturbed solutions in the form ¢(n, &) = [w(n)+u(n, &)+iv(n, &)]exp(ibf),

where the real u(n, £) and the imaginary v(n, ) perturbation parts can grow



68 4.3. Gap solitons in nonlocal media

12 6.7
(a) (b)
3 47
< )
6 2.7
15 : 0.7 :
0 10 20 33 19 05
b
(d)
0.00-
566 0561
b
(f)
101 -85 6.9
1 b

Figure 4.5: (a) Bandgap structure of periodic lattice and domains of exis-
tence of gap solitons in the presence of nonlocal nonlinearity with pu = 0.4.
Shaded areas, bands; unshaded areas, gaps. (b) Energy flow versus propa-
gation constant for soliton from the first finite gap at p = 3 and p = 0.5.
Points marked by circles correspond to profiles shown in Figs. 4.6(a) and
4.6(b). (c) Domains of existence of solitons from the first finite gap on (u, b)
plane. (d) Real part of perturbation growth rate versus propagation con-
stant for soliton from the first finite gap at p = 3 and p = 0.1. (e) Domains
of existence of solitons from the second finite gap on (i, b) plane. (f) Energy
flow versus propagation constant for soliton originating from the second fi-
nite gap at p = 10 and p = 0.05. The point marked by the circle corresponds
to profile shown in Fig. 4.6(c).
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with a complex rate § upon propagation. Linearization of Eq. (4.6) around

w(n) yields the eigenvalue problem

1d? d
(SU = _idi’l?’;) + b’U - pRU + 2/.L’Ujdiq:7jv + w2v,
1 @2 d d
v = idT;; —bu + pRu — 4uwd—z:;u — 3w?u — 2Mw2dfza (4.8)

which we solved numerically. At pu # 0 gap solitons feature strongly asym-
metric shapes because of the action of diffusion nonlocality [Fig. 4.6]. For
a fixed b the position of the integral gap soliton center shifts in a positive
direction of the n axis with an increase of . Energy flow is a nonmonotonic
function of the propagation constant [Figs. 4.5(b) and 4.5(f)]. It decreases
with b in most parts of the existence domain, except for the very narrow
region near the upper cutoff on b where dU/db > 0. There exists also a
lower cutoff for soliton existence. In clear contrast to a local case (u = 0),
solitons do not occupy the whole gap at p > 0; i.e. cutoffs typically do not
coincide with gap edges [see Fig. 4.5(a) where the domain of gap soliton
existence at > 0 is mapped onto the bandgap spectrum|. Physically, lower
(high-power) cutoff appears because of the interplay between the nonlocal-
ity and lattice strength. The impact of nonlocality causing soliton profile
deformation rapidly increases with peak amplitude, so that at certain u the
lattice cannot prevent high-energy solitons from bending. Thus lower cutoff
starts increasing with p when it exceeds a threshold [Fig. 4.5(c) and 4.5(e)].
Contrary to expectations that nonlocality affects strongly only solitons with
high peak intensity, we found that upper (low-power) cutoff decreases with
w. This indicates that nonlinearity breaks energy exchange balance between
waves with opposite transverse wave vectors, resulting in the formation of
gap soltions when amplitudes of these waves become too small. At fixed p
the soliton existence domain shrinks with an increase of u, so that solitons
cease to exist when 1 exceeds a critical value [Fig. 4.5(c) and (e)]. The criti-
cal value increases with the lattice depth. For fixed u gap solitons may exist
only above a minimal lattice depth, which is much higher for second-gap
solitons than for first-gap solitons [Fig. 4.5(a)]. The strongest localization
of gap solitons is achieved deep inside existence domains, while near cutoffs
solitons become spatially extended and strongly asymmetric.

A comprehensive linear stability analysis indicates that first-band soli-

tons are stable in most parts of their existence domain. At y < 1 we found
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Figure 4.6: Profiles of solitons from the first finite gap, with (a) b = —1.2
and (b) b= —2.9 at p = 3 and p = 0.5. Profiles of solitons from the second
finite gap, when (c¢) 4 = 0.05 and (d) p = 0.28 at b = —9 and p = 10.
Shaded areas, R(n) < 0; unshaded areas, R(n) > 0.

regions of weak oscillatory instability near the lower and upper cutoffs, while
at moderate values of y we encountered only a narrow domain of exponen-
tial instability near the upper cutoff, where du/db > 0 [Fig. 4.5(d)]. We
found that asymmetric nonlocality destabilizes second-band solitons. Direct
simulations of Eq. (4.6) in the presence of broadband input noise confirmed
the above results in all cases. Namely, first-band solitons remain stable and

propagate undistorted in the presence of input noise [Fig. 4.7(a)].

4.3.3 Mobility and excitation

More important, we found that the mobility of gap solitons with low and
even moderate amplitudes covering several lattice periods is substantially
enhanced at g > 0. Strong enough asymmetric diffusion responses may
cause a significant drift of gap solitons. An illustrative example is shown in
Fig. 4.7(b), where we launched a gap soliton obtained for y = 0 into a media
with g > 0 without any input tilt (approximations to such solitons can be
generated experimentally, e.g., with spatial light modulators). Notice the
low level of radiation losses that accompany the excitation and propagation

of such solitons. We found that the curvature of the propagation trajectory
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128

Figure 4.7: (a) Stable propagation of solitons from the first finite gap cor-
responding to b = —0.57, p = 3, and pu = 0.1 in the presence of white input

noise with varience o2,;., = 0.01. (b) Drift of soliton from the first finite

gap corresponding to b = —0.6, p = 3, and p = 0, launched into a nonlocal
medium with g = 0.07. Excitation of gap solitons by a Gaussian beam with
(c) A=1.6 and (d) 1.8 at p =2 and p = 0.2.

increases with an increase of nonlocality degree [see Fig. 4.8(a)], while the
trajectory itself is close to a parabolic one at the initial stage of propagation
and almost linear for large propagation distances. Changing the lattice
depth for fixed p also enables control of the gap soliton mobility [Fig. 4.8(b)].
While strong enough lattices support immobile solitons, in shallow lattices

solitons drift with a curvature that increases as lattice strength decreases.

Another practically important issue is the excitation of well-localized
gap solitons covering only a few lattice periods. We found that they can be
excited with a single Gaussian beam Aexp(—n?/n) with properly selected
width and amplitude. Figures 4.7(c) and (d) illustrate the typical excitation
dynamics. The peak of the excited well-localized gap soliton may be located
away from the input lattice channel. Under the action of asymmetric re-
sponse the soliton center may jump into a neighboring lattice channel, with
the number of jumps depending on the amplitude of the input beam. The

implications for soliton control and routing are thus readily apparent.
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Figure 4.8: Trajectories of propagation for soliton from the first finite gap
launched into a nonlocal medium. In (a) we set b = —0.6, p = 3, and vary
the nonlocality degree. In (b) we set b = —1, u = 0.2, and vary the lattice
depth.

4.4 Summary

In conclusion, in this chapter we have addressed the properties of solitons
propagating in optical lattices imprinted in Kerr-type nonlinear, nonlocal
media. We revealed that the nonlocality introduces principal new effects into
the soliton transverse mobility. In particular, we discovered that the Peierls-
Nabarro potential barrier for solitons moving across the lattice is drastically
reduced in the presence of the nonlocality, a result of fundamental impor-
tance because mobile lattice solitons appear to be very rare in nature. Our
predictions can be directly tested with light beams propagating in photore-
fractive and in liquid crystals, but we addressed a canonical, generic nonlocal
model that provides insight for all analogous physical settings governed by
symmetric nonlocality kernels featuring exponentially-decaying ranges.

In addition, we addressed the impact of the asymmetric nonlocal diffu-
sion nonlinearity of gap solitons supported by photorefractive crystals with
an imprinted optical lattice. We revealed how the asymmetric nonlocal re-
sponse alters the domains of existence and the stability of solitons originating
from different gaps. We found that in such media gap solitons cease to ex-
ist above a threshold of the nonlocality degree. We also discussed how the
interplay between nonlocality and lattice strength impacts the gap soliton

mobility.



Chapter 5

Soliton Complexes in

Nonlocal Nonlinear Media

5.1 Overview

As discussed in the previous chapter, a nonlocality of the nonlinear response
can play an important role in the properties of solitons. The interaction be-
tween solitons is also strongly affected by the nonlocality. In this chapter, we
will address the impact of nonlocality on the formation of multihump bound
states in homogeneous nonlocal nonlinear media. In Sec. 5.2, We address
the stability of multipole-mode solitons in one-dimensional (1D) scalar non-
local Kerr-type nonlinear media. In Sec. 5.3, We present the experimental
observation of scalar multipole solitons in two-dimensional (2D) highly non-
local nonlinear media. In Sec. 5.4, we study the vector soliton complexes in

one-dimensional (1D) nonlocal nonlinear media.

5.2 Stability of multipole-mode solitons in 1D case

5.2.1 Introduction

The interactions that arise between optical solitons generate a variety of
phenomena. Unlike the interactions of scalar solitons, which tend to repel or
attract each other depending on their relative phase difference only [27], the
interaction between solitons, which incorporates several field components,
may be more complex. Thus the formation of vector multipole-mode solitons
is possible in local saturable [104, 105] and quadratic [106, 107, 108] media.

73
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The properties of solitons are also strongly affected by a nonlocality of the
nonlinear response. In particular, nonlocality affects soliton interactions
[215, 216] and allows soliton bound states to be formed [108, 216, 217, 218].
Dipole-mode bright solitons [219] and the attraction of dark solitons [220]
were observed. However, the important issue on stability of bound states
of bright solitons in nonlocal media has not been addressed. In particular,
an open question is: How many solitons can be packed into a stable bound

state? In this section we report the outcome of such a stability analysis.

5.2.2 Model and ground-state solitons

We consider the propagation of a slit laser beam along the ¢ axis in media
with a nonlocal focusing Kerr-type nonlinearity described by the system of
phenomenological equations for dimensionless complex light field amplitude

q and nonlinear correction to the refractive index n:

P _ 10%
e~ 202 1
9’n 9
n-— d67172 = |q|%, (5.1)

where n and £ stand for the transverse and the longitudinal coordinates
scaled to the beam width and the diffraction length, respectively; and pa-
rameter d stands for the degree of nonlocality of the nonlinear response.
When d — 0 Egs. (5.1) are reduced to a single nonlinear Schrédinger equa-
tion; d — oo corresponds to a strongly nonlocal regime. Equations (5.1)
describe the nonlinear response of liquid crystals in steady state [198, 215].
We neglect transient effects, assuming continuous wave illumination (see
[221] for a recent discussion of the reorientational relaxation time in typ-
ical crystals). Eq. (5.1) conserves the energy flow U = [ |¢|*dn and

Hamiltonian
[T 0g, 1o [ 2
7= [ Gtk =5l [ G- NP, (2)

where G(n) = (1/2d'/?)exp(—|n|/d"/?) is the response function of the non-
local medium. We search for stationary soliton solutions of Egs. (5.1)
numerically in the form ¢(n,&) = w(n)exp(ib), where w(n) is the real

function and b is a propagation constant. To elucidate the linear sta-
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bility of soliton families we searched for perturbed solutions in the form
q(n, &) = [wn) +u(n, &) + iv(n, &)]exp(ib), where the real u(n, &) and the
imaginary v(n, £) parts of perturbation can grow with a complex rate § on
propagation. Linearization of Egs. (5.1) around the stationary solution w(n)

yields the eigenvalue problem

1 2
5u:—2§n§+bv—nv,
1 d*u
=—— - A .
ov > di? bu + nu + wAn, (5.3)

where An =2 [*_ G(n—A)w(A)u(X)dA is the refractive-index perturbation.
We have solved the system of Egs. (5.3) numerically.
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Figure 5.1: (a) Profile of a ground-state soliton that corresponds to
the points marked by circles in (b) the dispersion diagram and (c) the
Hamiltonian-energy diagram.

First we recall the properties of ground-state solitons (Fig. 5.1). The
width of a ground-state soliton increases while its peak amplitude decreases
with increasing degree of nonlocality d at fixed U. FEnergy flow U is a

monotonically growing function of b [Fig. 5.1(b)]. As b — 0 the soliton
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broadens drastically while its energy flow vanishes. Ground-state solitons
are stable in the entire domain of their existence and achieve the absolute

minimum of Hamiltonian H for a fixed energy flow U [Fig. 5.1(c)].

5.2.3 Stability analysis

The central result is that several types of multipole-mode solitons can also
be made completely stable in nonlocal media. Intuitively, multipole-mode
solitons can be viewed as nonlinear combinations (bound states) of funda-
mental solitons with alternating phases. Such bound states cannot exist in
a local Kerr-type medium, in which a 7 phase difference between solitons
causes a local decrease of refractive index in the overlap region and results
in repulsion. By contrast, in nonlocal media the refractive-index change in
the overlap region depends on the whole intensity distribution in the trans-
verse direction, and under appropriate conditions the nonlocality can lead
to an increase in refractive index and to attraction between solitons. The
proper choice of separation between solitons results in bound-state forma-
tion. Properties of the simplest bound states of two solitons are summarized
in Fig. 5.2. One can see that the refractive-index distribution features a
small dip near point 77 = 0, where the light field vanishes [Fig. 5.2(a)]. This
dip is more pronounced at a small degree of nonlocality, whereas at d > 1
the refractive-index distribution becomes almost bell shaped. The energy
flow of such solitons increases monotonically with increasing b [Fig. 5.2(b)].
At small energy flows, dipole-mode solitons are transformed into two well-
separated out-of-phase solitons, whose amplitudes decrease as b decreases
[Fig. 5.2(d)]. The important result is that dipole-mode solitons are stable
in the entire domain of their existence, even for small degrees of nonlocality
d ~ 0.1 and at low energy levels, when solitons forming a bound state are
well separated [Fig. 5.2(d)].

Note that bound soliton states were also studied in quadratic media,
which can be regarded as nonlocal under appropriate conditions and can
lead to similar equations for profiles of stationary solitons [108]. However,
the principle difference between the two systems becomes apparent in a
stability analysis, which results in different eigenvalue problems and, hence,
in completely different stability properties of bound soliton states.

To answer the important question about the maximal number of solitons

that can be incorporated into a stable bound state we performed stability
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Figure 5.2: (a) Profile of a dipole-mode soliton that corresponds to the points
marked by circles in (b) the dispersion diagram and (c) the Hamiltonian-
energy diagram. (d) Profile of a low-energy dipole-mode soliton that corre-
sponds to b= 0.13 at d = 5.

analysis of a number of higher-order soliton solutions. The results of the
stability analysis are summarized in Fig. 5.3. The energy flow of such soli-
tons also grows monotonically with increasing b. In all cases in the regime
of strong nonlocality (d > 1) the refractive-index distribution for multipole-
mode solitons features bell-shaped profile with a small modulation on its
top in accordance with the number of peaks in the soliton [Figs. 5.3(a) and
5.3(c)]. Stability analysis revealed that low-energy triple- and quadrupole-
mode solitons are oscillatory unstable [Figs. 5.3(b) and 5.3(d)], but their
complete stabilization is possible when the soliton energy flow exceeds a
certain threshold. The width of the instability domain as well as the max-
imum growth rate decreases with increasing degree of nonlocality for both
triple- and quadrupole-mode solitons [see, for example, Fig. 5.3(b)]. It
should be pointed out that at fixed d the width of the instability domain
for a triple-mode soliton is narrower than that for a quadrupole-mode soli-
ton [Fig. 5.3(d)]. One of the most important finding is that bound states
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Figure 5.3: (a) Profile of a triple-mode soliton at b = 1.5 and d = 5. (b)
Real part of the perturbation growth rate for the triple-mode soliton versus
a propagation constant. (c) Profile of a quadrupole-mode soliton at b = 2
and d = 5. (d) Real part of the perturbation rate for 1, triple-, and 2,
quadrupole-mode solitons versus propagation constant at d = 5. (e) Profile
of a fifth-order soliton at b = 2 and d = 8. (f) Real part of the perturbation
growth rate for the fifth-order soliton at d = 8.
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incorporating five or more solitons were all oscillatory unstable with the
framework of model equation (5.1) [see Fig. 5.3(e) and 5.3(f) for a typical
profile and dependence Red(b) of an unstable fifth-order soliton). We found
this by performing linear stability analysis for bound states of as many as
12 solitons and d values from the interval (0, 100). In all cases the growth
rate for unstable bound states was found to increase as b — oo, similarly to
Fig. 5.3(f).

900 900
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o, wr
300 300
(2) (b)
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-10 0 10 -12 0 12
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Figure 5.4: Stable propagation of (a) dipole-mode and (b) triple-mode soli-
tons that correspond to b = 1.5 and d = 5 in the presence of white input

. . . 2 _
noise with variance o7 ;5o = 0.01.

To confirm the results of linear stability analysis, we performed numerical
simulations of Egs. (5.1) with input conditions ¢(n,& = 0) = w(n)[l +
p(n)], where w(n) is the profile of the stationary wave and p(n) is a random
Stable dipole-

and triple-mode solitons survive over huge distances in the presence of quite

function with a Gaussian distribution and variance o2,; ..
considerable broadband input noise (Fig. 5.4), whereas higher-order solitons
self-destroy on propagation.

We also found that the stability of bound soliton states is defined to a
great extent by the character of the nonlocal nonlinear response. Thus,
in contrast to materials with an exponential response function G(n) =
(1/2d"?)exp(—|n|/d"/?) produced by Egs. (5.1) (as in liquid crystals), ma-
terials with a Gaussian response function G(n) = (wd)~"/?exp(—n?/d) admit
of no upper threshold for the number of solitons that can be incorporated
into stable bound states. Such a difference makes the search for materials

with different characteristics of nonlocal response especially important.
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5.3 Multipole solitons in 2D case

5.3.1 Introduction

The preceding section focused on one-dimensional soltions in nonlocal non-
linear media, however, in two-dimensional nonlinear media, except dipole-
[222, 223], multihump solitons [104], solitons can be organized as necklaces
[158, 159, 160], and even more complex beams carrying angular momen-
tum, like rotating propellers [115]. Typically, bright solitons possessing
complicated forms in conservative systems necessitate the presence of mul-
tiple fields; i.e., they are vector (composite) solitons [222, 158, 159, 160]
(in contrast to nonconservative systems, where stable soliton complexes are
possible [237, 225]). In fact, in local nondissipative nonlinear media the
only examples of multihump scalar solitons are necklace solitons [158], rings
of out-of-phase bright spots holding each other together and arresting the
instabilities. The diffraction broadening of such a beam is indeed elim-
inated by the nonlinearity; yet these scalar self-trapped necklace beams
still inevitably (slowly) expand, because there is a net outward force ex-
erted on each spot by all other spots composing the ring [158]. Adding
angular momentum to the necklace introduces rotation that slows down
the expansion but never stops it completely [158]. Thus the general con-
clusion is that scalar solitons in homogeneous, local, nonlinear media with
no gain (or loss) cannot form complex states. The picture changes dras-
tically when the nonlinear material response is nonlocal. Nonlocality has
profound effects on the complexity of solitons as shown in the preceding sec-
tion, since it makes it possible to overcome repulsion between out-of-phase
bright [186, 215, 217, 218, 226, 109, 227, 228| or in-phase dark solitons [216]
that can form bound states observed in 1D settings [219, 220]. In two trans-
verse dimensions, however, the only complex structures thus far observed
with scalar solitons have been bright vortex rings [40]. Even thought the
simplest bound states of 2D solitons in nonlocal media were predicted in the

1980s [218], they still were not observed experimentally.

Here we present the experimental observation of various types of multi-
pole scalar solitons in a thermal nonlocal nonlinear medium. We find that
multipole solitons in such a medium are oscillatory unstable, yet their in-
stability decay rates can be very small under appropriate conditions, giving

rise to experimentally accessible metastable complex soliton states.
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5.3.2 Model and theoretical predictions

The system is described by the evolution equation for the slowly varying
light field amplitude A coupled to the steady-state heat transfer equation
describing the temperature distribution in the lead glass sample [40]. The
light beam is slightly absorbed and acts as a heat source. Heat diffuses,
creating a non-uniform temperature distribution, which gives rise to a re-
fractive index change proportional to the temperature change. The resulting

system of equations in dimensionless form reads as [40]

dq _ 1,.9%q 9%

e = 2gp tag)
*n  9*n 9

Here q = (k3wia3/kng)'/? A is the dimensionless light field amplitude; n =
k3w3dén/ng is proportional to nonlinear change én in the refractive index
ng; ko being the optical wavenumber; «, (3, and x are the optical absorption
coefficient, the thermal dependence of the refractive index (5 = dn/dT’), and
the thermal conductivity coefficient, respectively; the transverse coordinates
7, ¢ are scaled to the beam width wp, while the longitudinal coordinate &
is scaled to diffraction length k‘ow%. In our lead glass sample, ng = 1.8,
the thermal coefficient is 3 = 14 x 107%K~!, the absorption coefficient is
a = 0.0lem™!, and the thermal conductivity is x = 0.7W/(mK). Such glass
parameters are sufficient to support solitons with widths of ~ 50 pm, which
give rise to an index change 6n ~ 5 x 1079 for a total optical power 1 W.

Notice that system (5.4) conserves the energy flow

v- [ Z|q\2dnd<. (5.5)

We search for soliton solutions of Egs. (5.4) of the form ¢(n,(,§) =
w(n, ()exp(ibg), where w(n, () is a real function and b is the propagation
constant. The soliton intensity vanishes at the boundaries of the integration
window, while the refractive index n — ny, where the limiting value ny is
related to the temperature of the sample boundaries, which are kept at fixed
and equal temperature. Mathematically, adding the constant background
np in the refractive index is equivalent to a shift of propagation constant b

by the same amount; henceforth we set n, = 0. In this case, the soliton
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properties are determined solely by b and the width of integration window.
We then set the window size 1, € [—20,20], closely resembling the actual
transverse size of our sample. Using the numerical methods described in
Refs. [109, 40], we find a variety of well-localized multipole solitons and
test their stability by propagating them numerically in the presence of com-
plex (amplitude and phase) noise. Figure 5.5 shows illustrative examples of
multi-pole solitons, including dipole [Fig. 5.5(b)], tri-pole [Fig. 5.5(d)], as
well as necklace solitons [Fig. 5.5(f)] comprising several bright spots with
phase changing by 7 between adjacent spots. In a highly nonlocal nonlin-
ear medium, the refractive index is determined by the intensity distribution
over the entire transverse plane, and under proper conditions the nonlocal-
ity can lead to an increase of refractive index in the overlap region between
out-of-phase solitons even when intensity there is zero, thus giving rise to
formation of multipole solitons. Note that the width of the refractive in-
dex distribution (the light-induced potential) greatly exceeds the width of
an individual light spot. This is a direct indication of the very large range
of nonlocality in thermal media. We find that for all types of solitons the
energy flow monotonically increases with b, which is accompanied by a de-
crease in the integral soliton width. Similarly, the separation §W between
the intensity maxima of the multipole solitons is also found to decrease with
b.

5.3.3 Experimental observation

In this section we describe the outcome of the experimental observations
conducted by our collaborating group led by Prof. M. Segev from Israel
Institute of Technology (http://physics.technion.ac.il/ msegev/).

The experiments are carried out in lead glass samples with a square 2 mm
X 2 mm cross section, which are 84 mm long in the propagation direction.
All four transverse boundaries of the sample are thermally connected to a
heat sink and maintained at room temperature. In these experiments we use
an 1.8 W laser beam at a 488 nm wavelength. We launch the dipole soliton
by introducing a 7 phase jump across the Gaussian laser beam by inserting
a piece of flat glass (of a proper thickness) through one half of the beam
cross-section and imaging it (demagnified) onto the input face of the sample
at normal incidence. We launch the tripole soliton in a similar fashion,

with two parallel pieces of glass, each introducing a 7w phase-delay, passing
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Figure 5.5: Comparison of experimental and theoretical results for dipole-
mode solitons (a), (b), triple-mode solitons (c), (d), and necklace solitons (e),
(f). Left-hand columns show input beams, the central columns show linear
diffraction output after 8 mm of propagation, and the right-hand columns
show self-trapped beams in nonlinear regime after the same distance.
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through either one third or two thirds of the beam cross section. In order to
create the 16-lobe necklace soliton, we reflect the laser beam off a properly
designed phase mask and subsequently image the beam onto the input face
of the sample. We monitor the intensity distribution at the input and output
faces by imaging the input and output beams onto a CCD camera. Typical
experimental results, with comparisons with the theoretical simulations, are
summarized in Fig. 5.5. The left-hand column of each row shows the input
beam in each case. At low power (10 mW), the beams linearly diffract for
84mm, after which they broaden significantly (middle columns). At high
power (1.8 W), each beam forms a soliton, which maintains its intensity

profile while propagating for 84mm (right-hand columns).

Figure 5.6: Propagation dynamics of slightly perturbed dipole-mode solitons
with (a) b =3 and (b) b = 12.
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Extensive simulations of the propagation dynamics of perturbed solitons
reveal that, in fact, all multipole solitons in thermal media are oscillatory
unstable. Small perturbations in the input field distribution cause progres-
sively increasing oscillations in the intensities of bright spots comprising the
soliton, leading eventually to the destruction of the multipole soliton struc-
ture. For example, Fig. 5.6 shows the long-range dynamics of a perturbed
(5% complex amplitude noise) dipole soliton and its transformation into
a ground-state soliton for two values of b. The strength of the instability
dramatically decreases with decreasing energy flow U, so that already at
moderate energy levels the solitons survive over large distances (hundreds
of diffraction lengths), greatly exceeding the present experimentally feasi-
ble sample lengths. We emphasize that we find the necklace solitons also
to be metastable in our nonlocal thermal media. To our knowledge, these
necklaces are the only known case where nonlocality acts to destabilize a
self-trapped structure (that in this case is not stationary, but is otherwise
robust in local nonlinear media [158]), in contrast to the natural tendency
of nonlocality to stabilize self-trapped states [175, 180, 181].

Figure 5.7: Comparison of experimental (a) and theoretical (b) results for
rotating dipole mode solitons. Left-hand column shows input beams, cen-
tral column shows self-trapped beams in nonlinear regime after 84 mm of
propagtion, and right-hand column shows linear diffraction output after the
same distance.
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Last, we demonstrate a rotating dipole-type soliton, which constitutes
the first experimental observation of any scalar complex soliton carrying
angular momentum. In local media, scalar dipole solitons carrying angu-
lar momentum are always unstable. For this reason, all experiments with
rotating complex solitons in local nonlinear media were performed with com-
posite solitons that comprise of at least two fields. Recent theoretical work
has shown that scalar dipole solitons can exhibit stable rotation in nonlo-
cal media [229]. In our experiments, we create a rotating dipole beam by
reflecting a Gaussian beam off a vortex phase mask, which is intersected by
a black wire in the middle of the mask. In this way, we create a two-lobe
beam with 7 phase jump between the lobes, and an additional tangential
phase introduced by the vortex mask. We then demagnify the beam onto the
input face of the sample, and monitor the beam at the input and the output
faces of the sample. Figure 5.7 shows typical experimental results (upper
row), compared to numerical simulations (lower row) of a rotating dipole
soliton. The input beam (left-hand column), linearly diffracts at low power,
broadening considerably after 84 mm of propagation (right-hand column),
whereas at high power (1.8 W) the beam forms a soliton while rotating for

55 degrees, and maintaining its original shape (central column).

5.4 Vector soliton complexes

5.4.1 Introduction

The mutual interaction between nonlinear excitations is under active con-
sideration in different areas of physics, including condensed matter, solid
state, dynamical biomolecules, and nonlinear optics. This includes a rich
variety of effects connected with the vectorial nature of the nonlinear exci-
tations. For example, vectorial coupling was observed in multicomponent
Bose-Einstein condensates [230, 231] and in topological defects arising due
to the interspecies interaction [232, 233]. In nonlinear optics, vectorial cou-
pling between several light waves resulting in the formation of vector solitons
has been extensively studied for coherent [234, 235, 236, 237] and incoher-
ent [104, 105, 238, 239, 240, 241, 242] interactions in materials with local
nonlinearity. One important result introduced in Ref [104] is the existence
of multihumped solitons afforded by the vectorial interactions. Recently,

vector solitons in media with transverse periodic modulation of refractive
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index were addressed as well [130, 243, 244, 245]. It was shown that vecto-
rial coupling in local Kerr-type media could lead to the existence of complex
multihumped structures that have no counterpart in the scalar case. How-
ever, in a local saturable medium such structures were found to be stable
only when the total intensity distribution does not feature more than three
humps [105].

On the other hand, it is shown that nonlinearity may be highly non-
local, a property that drastically alters the propagation and interaction of
nonlinear waves [174]. In this section, we introduce vector soliton structures
in nonlocal media, and reveal that such a combination affords remarkable
new phenomena. In particular, we discovered that because of the nature of
soliton interactions in nonlocal media, vector solitons can form stable bound
states that feature several field oscillations in each component, in sharp
contrast to the behavior encountered in local media. We reveal that non-
local nonlinear response plays a strong stabilizing action for vector solitons
of higher orders. Complex patterns with a large number of humps in one
field component, that are unstable when propagating alone, can be made
stable in nonlocal media due to the mutual coupling with stable solitons

propagating in other field components.

5.4.2 Model

We consider the propagation of two mutually incoherent laser beams along
the ¢ axis of a nonlocal focusing Kerr-type medium described by the sys-
tem of equations for dimensionless complex light field amplitudes g1 2 and

nonlinear correction to refractive index n given by

Oa _ 1P
aé- - 2 8772 Q1 9
aé. — 2 8772 qan,
9%n
n— d87772 = |qu* + |g2|*. (5.6)

Here 1 and ¢ stand for the transverse and longitudinal coordinates scaled
to the input beam width and diffraction length, respectively; the parameter
d describes the degree of nonlocality of the nonlinear response. In the limit

d — 0 the system (5.6) reduces to a system of coupled nonlinear Schrodinger
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equations for the fields g1 2 whose vector soliton solutions are well established
[104, 105, 238, 239, 240, 241, 242]. The opposite limit d — oo corresponds to
a strongly nonlocal regime. Under appropriate conditions the mathematical
model (5.6) adequately describes the nonlinear response of some thermo-
optical materials, liquid crystals or partially ionized plasmas [187, 51, 188,
40]. Among the conserved quantities of system (5.6) are the energy flows
Ui,2 and the Hamiltonian H:

[e.o]

U=U)+Up - / (s + g2,

—00

<1 1
1= [ (3100 /on* + 5o /onf

el lP) [ G- NP+, 61)

where G(n) = (1/2d"/?)exp(—|n|/d"/?) is the response function of the non-
local medium. We searched for the stationary solutions of Eq. (5.6) nu-
merically in the form g1 2(n, &) = w1 2(n)exp(iby 2£), where wy 2(n) are real
functions and b; 2 are real propagation constants. The resulting system of
equations obtained after substitution of light field in such form into Eq.
(5.6) was solved with a standard relaxation method. To elucidate the linear
stability of the solutions, we searched for perturbed solutions in the form
q1,2(n,€) = [wi,2(n) +u1,2(n,§) +iv12(n, §)]exp(ib1,2€), where real ui 2(n,§)
and imaginary vy 2(7, &) parts of the perturbation can grow with a complex
rate § upon propagation. Linearization of Eq. (5.6) around a stationary

solution wy 2 yields the eigenvalue problem

1 d?v
duy = _iidn; + biv1 — nuy,
1d?
ovy = 5% — biug + nuy +wiAn,
1d3%v
dug = —57”22 + bavg — N2,
1d?
0vg = iwuf — boug + nug + woAn, (5.8)

where An =2 [ G(n—\)[w1(N)u1(X) +wa(AN)uz(N)]dA is the perturbation
of refractive index. We solved Egs. (5.8) numerically to find the profiles of

perturbations and the associated growth rates.
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5.4.3 Stability analysis

The simplest vector solitons can be found with b; = by in the form w;(n) =
w(n)cosp and wy(n) = w(n)sing, where w(n) describes the profile of scalar
soliton, and ¢ is an arbitrary projection angle. The most interesting situa-
tion is encountered, however, when by 7 by and the first and second soliton
components possess different types of symmetry. Below, without loss of gen-
erality, we search for solutions with by < b;. The properties of vector soliton
composed from the first nodeless and second dipole-mode components are
summarized in Fig. 5.8. At fixed propagation constant b; and nonlocality
degree d there exist lower b3°" and upper by** cutoffs on by for vector soli-
ton existence. As by — bi°" the second dipole-mode component gradually
vanishes [Fig. 5.8(a)], while in the opposite limit by — by** the nodeless
component ceases to exist [Fig. 5.8(b)]. Such transformation of the internal
structure of the vector soliton is accompanied by the development of a two-
humped refractive index distribution near b,**. Notice that with increase of
nonlocality degree, the width of the refractive index distribution increases
substantially and far exceeds the width of the actual intensity distribution
w? + w%. The deep on top of the refractive index distribution becomes more
pronounced in local limit (d — 0) and almost vanishes in strongly nonlocal
medium (d — oo). At small degrees of nonlocality and at by — by™® the vec-
tor soliton transforms into two very well separated solitons with bell-shaped
second components having opposite signs, while at by — b3°" a small sec-
ond component broadens substantially in comparison with the localized first
component. In strongly nonlocal media both components remain well local-
ized in the cutoffs. The total energy flow U is found to be a monotonically
increasing function of by [Fig. 5.8(c)]. The energy sharing Si2 = U; 2/U
as a function of by is depicted in Fig. 5.8(d). We found that the width of
the existence domain on by for vector solitons shrinks substantially with the
increase of nonlocality degree d [Fig. 5.8(e)] and expands with the increase
of by [Fig. 5.8(f)]. A comprehensive linear stability analysis revealed that
vector solitons composed of nodeless and dipole-mode components are stable

in the entire domain of their existence.

We also found vector solitons composed of first nodeless and second
triple-mode components, whose properties are summarized in Fig. 5.9. The
generic properties of such solitons are reminiscent to those of solitons dis-

cussed in Fig. 5.8, but the existence domain for such solitons is substan-
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Figure 5.8: Soliton profiles corresponding to by = 3, d = 2, and (a) by = 1.8,
(b) by = 2.5. (c) Energy flow vs propagation constant be at by = 3. Points
marked by circles correspond to solitons shown in (a) and (b). (d) Energy
sharing between w; and wsy soliton components vs by at by = 3, d = 2.
Domains of existence of vector solitons at (d, by) plane for by = 3 (e) and at
(b1, b2) plane for d = 2 (f).
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Figure 5.9: Soliton profiles corresponding to by = 3, d = 2, and (a) by = 1,
(b) be = 2.3. Domains of existence of vector solitons at (d,bs) plane for
b1 =3 (c) and at (b1, b2) plane for d =2 (d).

tially wider [compare Figs. 5.9(c) and 5.8(e)]. The linear stability analysis
revealed that solitons composed from nodeless and triple-mode components
are unstable for small values of d. With decrease of d the instability domain
emerges near upper cutoff b,** and occupies the entire domain of soliton
existence as d — 0.2 [Fig. 5.9(c)]. In contrast, at moderate nonlocality
degrees d ~ 2.3 such solitons are stable near lower and upper cutoffs and
feature only a narrow instability band inside their existence domain. At
small values of d the instability is of exponential type while for d > 2.3 we
encountered only oscillatory instabilities. It should be pointed out that, in
contrast to the case of local saturable medium [105, 238, 239, 240, 241, 242],
multihumped vector solitons in nonlocal media may be stable when total in-

tensity and refractive index distributions develop three or even more humps.
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One of the central results is that vector solitons were found to form sta-
ble bound states that feature several field oscillations in both components
and that, to the best of our knowledge, were not encountered previously
in any model of local Kerr-type media. Such bound states exist because
of the specific character of soliton interactions in nonlocal medium, whose
sign is determined not only by the phase difference, but also by the sepa-
ration between solitons [216, 217, 218]. Thus, in nonlocal media both w;
and ws can change their sign in contrast to the case of local media where
one of the components remains nodeless [104, 105, 238, 239, 240, 241, 242].
Several representative examples are shown in Fig. 5.10, including solitons
incorporating dipole-mode first and triple- [Fig. 5.10(a)] or quadrupole-
mode [Fig. 5.10(b]) second components, as well as more complex structures
[Figs. 5.10(c)-5.10(f)]. The total number of humps in the refractive index
distribution is determined by the relative weights of the components. While
borders of the existence domain for bound states [e.g., Figs. 5.10(a), and
5.10(b)] look qualitatively similar to those shown in Figs. 5.8 and 5.9, the
complexity of the structure of stability (instability) domains increases pro-
gressively with the increase of the number of humps in each component, so

that typically several stability windows appear in the (d, b2) plane.

To confirm the outcome of the linear stability analysis, we performed
numerical simulations of Eq. (5.6) with the input conditions ¢ 2(n,& =
0) = wi2(n)[1 + p1,2(n)], where w; 2(n) stands for the profiles of station-
ary solitons, and pj2(n) are random functions with Gaussian distribution

and variance o2 Numerical simulations confirmed the results of the lin-

noise-
ear stability analysis in all cases. Stable solitons shown in Figs. 5.8-5.10
propagate over huge distances, exceeding experimentally feasible nonlinear
material lengths by several orders of magnitude, even in the presence of

considerable broadband input noise (Fig. 5.11).

Another important result that we encountered is that complex patterns
with a large number of humps, that are unstable when propagating alone,
can be made stable in suitable parameter regions due to the mutual cou-
pling with stable single-humped or multi-humped components. Illustrative
examples are shown in Figs. 5.10(c)-5.10(f), where stabilization of five-
and six-hump components (that are unstable when propagating alone in a
medium with exponential response function G [109]) is achieved because

of the coupling with first stable fundamental and stable quadrupole-mode
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Figure 5.10: Profiles of various higher-order vector solitons at (a) by = 2.55,
d=2, (b) by=15,d=2, (c) by = 045, d = 4, (e) by = 2.15, d = 10, and
(f) by = 2.37, d = 16. Panel (d) shows stability (shaded) and instability
domains on (d,by) plane for solitons incorporating nodeless w; and five-
hump wy components [see panels (c¢) and (e) for soliton profiles]. In all cases
by =3.
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Figure 5.11: Propagation dynamics of vector solitons in nonlocal medium.
(a) Soliton involving nodeless w; and dipole-mode ws components at by =
3, bo = 2,d = 2. (b) Soliton involving nodeless w; and triple-mode ws
components at by = 3, bp = 2.4, d = 3. (c) Soliton involving dipole-mode
wy and tripole-mode wo components at by = 3, by = 2.55, d = 2. (d)
Soliton involving dipole-mode w; and quadrupole-mode ws components at
by = 3, bg = 1.5, d = 2. (e) Soliton involving nodeless wy and five-hump
wg components at by = 3, by = 0.45, d = 4. (f) Decay of soliton depicted
in (e) in the absence of wy component. In (a)-(e) white noise with variance

02 ise = 0.01 is added into input profiles. Only wy components are shown.
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components, respectively. To stress that stabilization of such complex
multihumped structures takes place in a wide parameter regions we show
in Fig.5.10(d) the stability (instability) domains for solitons depicted in Figs
5.10(c) and 5.10(e). Besides the expected stability domain which adjoins the
lower cutoff b3°", where the vector soliton bifurcates from the stable funda-
mental scalar soliton, another stability domain that appears at d = 3 [shaded
area in the inset of Fig. 5.10(d)] was found. In this latter domain, stabi-
lization of the five-hump component is achieved at the expense of coupling
with a weak fundamental component. For a soliton profile belonging to this
stability domain, see Fig. 5.10(e). Dropping the first component causes fast
splitting and decay of the second component [Fig. 5.11(f)] that is stable in
the presence of coupling [Fig. 5.11(e)]. Similar results were obtained for
more complex solitons, e.g., Fig. 5.10(f). Therefore, vectorial coupling of
unstable solitons in one field component with stable solitons in other field
component allows a substantial increase of the number of solitons that can

be packed into the composite, stable vector soliton complex.

5.5 Summary

In conclusion, in this chapter we addressed the stability of multiple-mode
solitons in focusing, nonlocal Kerr-type nonlinear media. We revealed that,
in media with exponential nonlocal response, bound states are stable if they
contain less than five solitons, however, the materials with a Gaussian non-
local response admit of no upper threshold for the number of solitons that
can be incorporated into stable bound states.

Second, in collaboration with Prof. M. Segev’s group from Israel Insti-
tute of Technology (http://physics.technion.ac.il/ msegev/), we have demon-
strated experimentally two-dimensional metastable multi-pole solitons in
highly nonlocal nonlinear media. The long range of nonlocality enables
the formation of a variety of scalar solitons possessing complex structures,
varying from dipole solitons, to tri-poles, to necklaces. Moreover, such high
nonlocality is even able to support single-field (scalar) complex soliton struc-
tures carrying angular momentum, as exemplified by our experimental ob-
servation of a rotating scalar dipole soliton.

Finally, we explained that vectorial coupling in Kerr-type nonlocal me-

dia features important soliton phenomena. In particular, we revealed that
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in such media vector solitons could form stable bound states that exhibit
several field oscillations in each component, thus affording an extended num-
ber of peaks that can be packed into stable soliton trains. Our predictions
open a route to the experimental observation of such multihumped soliton
complexes. We based our analysis on a general model that combines non-
local nonlinearity and vectorial coupling, potentially relevant to a variety
of multicomponent nonlinear excitations in strongly nonlocal materials with
symmetric nonlocal kernels. Formation of stable vector soliton complexes

with rich internal structure might be possible in several of such systems.
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Conclusions

Optical solitons are light beams that do not broaden because of the bal-
ance between diffraction/dispersion and nonlinearity. They propagate and
interact with one another while displaying properties that are normally as-
sociated with real particles. The properties of optical solitons in optical
fibers and crystals have been investigated comprehensively during the last
few years. However, solitons in optical lattices, which might be used for all-
optical signal processing and routing, have recently emerged a new area of
research. The main objective in this dissertation has been the investigation
of new techniques for soliton control in nonlinear media with/without an
imprinted optical lattice.

Chapter 2, for the first time, has studied discrete two-dimensional spa-
tiotemporal solitons in quadratic nonlinear waveguide arrays. In addition to
the temporal dispersion of the pulse, we have assumed the contribution of the
discrete diffraction, that arises because of the weak coupling between neigh-
boring waveguides. Novel families of unstaggered odd, even and twisted
stationary solutions have been found and thoroughly characterized. The
salient point put forward is that most of the spatiotemporal unstaggered
odd solitons are stable against perturbations. However, still much more
problems in this system remain open, such as the whole “zoology” of lo-
calized solutions, including staggered solitons, dark or dark-bright solitons,
etc. It is known that in homogeneous quadratic uniform media ring-shaped
vortex solitons suffer azimuthal instabilities. In the second part of Chapter
2, we have shown that optically-induced periodic lattices in quadratic me-
dia can support stable vortex solitons with unit topological charge, which

comprise four main humps arranged in a square configuration. In addition,
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we have investigated the generation of such multicolor lattice soliton from

Gaussian beams with nested phase dislocations.

The technique of optical lattice induction opens a wealth of opportuni-
ties for creation of waveguiding configurations with various nondiffracting
light beams. Chapter 3, for the first time, has put forward the concept of
reconfigurable structures created with arrays of mutually incoherent parallel
Bessel beams in Kerr-type nonlinear media. The salient point uncovered is
that broad solitons can propagate in networks with bends at different angles
that can even exceed 90° with low radiative losses (less than 4%). The net-
works shown are similar to the technologically fabricated networks, such as,
photonic crystal bends. However, the tunability afforded by the technique
offers the additional advantage of the reconfigurability.

In addition to optically-induced lattices, nonlocal response of nonlinear
media can play an important role in the properties of solitons. Chapter 4
has considered how the interplay between nonlocality and optically-induced
lattices in Kerr-type nonlinear media affects soliton dynamics. In particu-
lar, one salient point is that a tunable nonlocality can greatly enhance the
soliton mobility, a result of fundamental importance because mobile lattice
solitons appear to be very rare in nature. In addition, for the first time, we
have addressed the impact of the asymmetric nonlocal diffusion nonlinear-
ity on gap solitons supported by photorefractive crystals with an imprinted
optical lattice. In particular, we have revealed how the asymmetric nonlocal
response alters the domains of existence and stability of solitons originating

from different gaps.

Chapter 5 has been devoted to the impact of nonlocality on the stability
of solitom complexes in uniform nonlocal Kerr-type nonlinear media. First,
we have studied the stability of multiple-mode solitons in one-dimensional
focusing, nonlocal Kerr-type nonlinear media. The salient point uncovered
is that in media with an exponential nonlocal response, bound states are
stable if they contain less than five solitons, however, the materials with a
Gaussian nonlocal response admit of no upper threshold for the number of
solitons that can be incorporated into stable bound states. Second, in col-
laboration with Prof. M. Segev’s group from Israel Institute of Technology
(http://physics.technion.ac.il/ msegev/), we have demonstrated experimen-
tally two-dimensional metastable multi-pole solitons in a lead glass, a highly

nonlocal nonlinear medium. In particular, for the first time we have demon-
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strated experimental observation of a rotating scalar dipole soliton carrying
angular momentum. Finally, for the first time, we have addressed the inter-
play between nonlocal nonlinearity and vectorial coupling, and introduced
one-dimensional vector soliton structures in such system. In particular, we
have shown that because of the nature of soliton interactions in nonlocal
media, vector solitons can form stable bound states that feature several field
oscillations in each component.

The rapid progress in the area of spatial solitons has led to many inter-
esting fundamental ideas and possible applications. Now I shall list some of
possible prospects for research related to spatial solitons. There are different
directions which the research may take. One direction is to investigate prop-
erties of solitons in existing and accessible media; another one is to look for
new materials, which is specially useful for potential soliton applications.
As shown in this dissertation, materials with nonlocal response, such as
lead glass or liquid crystals, have shown fascinating unique properties and
applications. Thus, one interesting idea is to study novel type of solitons
in such kind of media, such as surface solitons at the interface between a
dielectric medium (air) and a thermal nonlinear media [43] or other combi-
nations in nonlocal nonlinear media [246]. Another novel kind of solitons,
namely, incoherent solitons are self-trapped wave-packets upon which the
phase distribution is random (for a detailed review see ref. [25, 27]), which
can be extended to nonlocal media, and one can study even more complex
situation, such as surface solitons with random phases [247].

Another main direction is towards solitons in new materials: for example,
to extend soliton concepts to materials with random lattices, nonlinear meta-
materials, nano lattices, and nano-particle suspensions [248].

In addition, the concepts addressed in this dissertation, may also end up
having an impact in other areas of nonlinear sciences, such as in the physics
of atom-molecular Bose-Einstein Condensates, nonlinear atom optics, etc.
It is my sincere hope that the discoveries made in this thesis open new

perspectives to the researchers advancing the science frontier.
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(a) Coupling length and (b) normalized transmission effi-
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Bessel beams 219 = 3. (c¢) Coupling length and (d) normal-
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Switching scenarios in the matrix of four Bessel waveguides
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phase solitons. Input power U = 2.14, modulation depth

p = b, separation between Bessel beams 19 = 2.5, and b3, = 10. 51
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(a) Linear network created with array of Bessel beams. Pro-
files of solitons with power U = 0.8 (b) and U = 1.34 (c)
supported by network shown in (a). (d) Drift of soliton with
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