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PREFACE

NASA's Jet Propulsion Laboratory (JPL) is a cutting-edge research center that

specializes in space exploration and development of space technologies. Based in

Pasadena, California, it has been at the forefront of numerous missions that have

revolutionized our understanding of the universe.

One such mission was the Dawn mission, which aimed to explore two of the

largest objects in the asteroid belt, Vesta and Ceres. As a software developer for

science planning software within the Dawn mission, I was part of a team of

brilliant scientists and engineers who accomplished significant milestones in

space exploration. The Dawn mission allowed us to study these massive bodies,

providing insights into the formation and evolution of the solar system.

In my subsequent role at JPL, I led a team of engineers who created reusable

tools for simulating spacecraft behavior at different levels to aid in mission

planning. Drawing from my background as a science planning software developer

and my growing understanding of multi-mission software, I recognized an

opportunity to research and design a software-based framework for modeling

geometric events in space. Such a framework would not only reduce the risk and

cost of future missions but also enable a more accessible means of operating with

space geometry.

Motivated by this newfound passion, I set a goal to pursue a PhD in this area of

study. Years of diligent research and collaboration with Prof. Xavier Franch and

Prof. Manel Soria enabled me to comprehensively develop and articulate the

concepts presented in this thesis. It brings me immense pleasure to share these

ideas with you.
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ABSTRACT

This thesis presents the Tychonis framework, a solution to the limitations faced

by existing software packages used in space missions to identify geometric events.

The framework is designed to integrate with current and future mission software,

providing users with the ability to extend opportunities and search algorithms

without modifying the tools that use it. The framework is built on the principles

of separation of concerns, extensibility, reusability, and independent verification

and validation. It is provided as a software library, allowing missions to add their

own data structures and constructs, promoting cross-mission reusability. The text

also includes a case study of Tychonis' integration with the Science Opportunity

Analyzer (SOA) software, demonstrating its ability to be extrapolated to other

tools that need to search for geometric events.

As a complement to the Tychonis framework, the thesis introduces two

computer languages designed to make the process of modeling opportunities

more accessible. Scientists, who may face difficulties with imperative

programming languages or lack of available science planning tools, are the target

audience for these languages. The readability and usability of the languages were

evaluated through a comprehensive study involving a questionnaire with active

exercises, statements with corresponding responses on a Likert scale, and

open-ended questions to elicit qualitative responses. The results provide both

relative and absolute quantification of the usability and readability of each

language, as well as qualitative results to direct future language design decisions.

Emphasizing the importance of utilizing proven software principles and good

design choices in space missions helps reduce risk and cost. Tychonis and our

research on accessible computer languages embrace this concept.



RESUM

Aquesta tesi presenta el framework Tychonis, una solució a les limitacions que

enfronten els paquets de programari existents utilitzats en les missions espacials

per identificar esdeveniments geomètrics. El framework està dissenyat per

integrar-se amb el programari de missió actual i futur, proporcionant als usuaris la

capacitat d'estendre les oportunitats i els algoritmes de cerca sense modificar les

eines que el fan servir. El framework es basa en els principis de separació

d’interessos, extensibilitat, reutilització, i verificació i validació independents. Es

proporciona com a biblioteca de programari, permetent que les missions afegiu

les seves pròpies estructures de dades i construccions, promocionant la

reutilització entre missions. El text també inclou un estudi de cas de la integració

de Tychonis amb el programari Science Opportunity Analyzer (SOA), demostrant

la seva capacitat per ser extrapolada a altres eines que necessiten buscar

esdeveniments geomètrics.

Com a complement a Tychonis, la tesi presenta dos llenguatges de programació

dissenyats per fer més accessible el procés de modelització d'oportunitats. Els

científics, que poden trobar dificultats amb els llenguatges de programació

imperatius o la falta d'eines de planificació científica disponibles, són el públic

objectiu d'aquests llenguatges. La llegibilitat i la usabilitat dels llenguatges s’han

avaluat a través d'un estudi exhaustiu que inclou un qüestionari amb exercicis

actius, afirmacions amb respostes en una escala Likert, i preguntes obertes per

obtenir respostes qualitatives. Els resultats proporcionen quantificació relativa i

absoluta de la usabilitat i la llegibilitat de cada llenguatge, així com resultats

qualitatius per dirigir les decisions de disseny de futurs llenguatges.

Posar èmfasi en la importància d'utilitzar bons principis de programació i bones

eleccions de disseny en les missions espacials ajuda a reduir el risc i el cost.

Tychonis i la nostra investigació sobre llenguatges de programació accessibles

implementen aquest concepte.



RESUMEN

Esta tesis presenta el framework Tychonis, una solución a las limitaciones que

enfrentan los paquetes de software existentes utilizados en las misiones espaciales

para identificar eventos geométricos. El framework está diseñado para integrarse

con el software de misión actual y futuro, proporcionando a los usuarios la

capacidad de extender las oportunidades y los algoritmos de búsqueda sin

modificar las herramientas que lo utilizan. El framework se basa en los principios

de separación de intereses, extensibilidad, reutilización y verificación y validación

independientes. Se proporciona como biblioteca de software, permitiendo que las

misiones agreguen sus propias estructuras de datos y construcciones,

promoviendo la reutilización entre misiones. El texto también incluye un estudio

de caso de la integración de Tychonis con el software Science Opportunity

Analyzer (SOA), demostrando su capacidad para ser extrapolada a otras

herramientas que necesitan buscar eventos geométricos.

Como complemento a Tychonis, la tesis presenta dos lenguajes de programación

diseñados para hacer más accesible el proceso de modelado de oportunidades.

Los científicos, que pueden encontrar dificultades con los lenguajes de

programación imperativos o la falta de herramientas de planificación científica

disponibles, son el público objetivo de estos lenguajes. La legibilidad y la

usabilidad de los lenguajes se han evaluado a través de un estudio exhaustivo que

incluye un cuestionario con ejercicios activos, afirmaciones con respuestas en una

escala Likert y preguntas abiertas para obtener respuestas cualitativas. Los

resultados proporcionan una cuantificación relativa y absoluta de la usabilidad y la

legibilidad de cada lenguaje, así como resultados cualitativos para dirigir las

decisiones de diseño de futuros lenguajes.

Poner énfasis en la importancia de utilizar buenos principios de programación y

buenas elecciones de diseño en las misiones espaciales ayuda a reducir el riesgo y

el costo. Tychonis y nuestra investigación sobre lenguajes de programación

accesibles implementan este concepto.



IMPACT STATEMENT

The Tychonis framework and the two computer languages introduced in this

thesis have significant potential to impact the space industry by providing a

solution to the limitations faced by existing software packages used in space

missions to identify geometric events.

The Tychonis framework's integration with current and future mission software,

along with its principles of separation of concerns, extensibility, reusability, and

independent verification and validation, provide a powerful change for space

missions to search for geometric events. This is particularly important for

organizations like NASA, where the accurate identification of geometric events is

essential not only for mission planning, but also for spacecraft navigation and

scientific data analysis.

NASA has a strong tradition of reusing software and technology from mission to

mission to build on previous successes and ensure mission heritage. The

Tychonis framework's focus on cross-mission reusability, coupled with its

adherence to proven software principles, can help ensure that software developed

for one mission can be used in future missions with minimal modifications,

reducing the risk associated with software development and validation for each

individual mission. This approach can lead to increased mission success rates and

cost savings, making it a valuable contribution to the space industry. Additionally,

our vision for textual computer languages to model geometric events can enable

more scientists to participate in mission planning and execution, leading to a

more diverse and inclusive workforce.



DECLARACIÓ D’IMPACTE

Tychonis i els dos llenguatges de programació presentats en aquesta tesi tenen un

important potencial per influenciar la indústria espacial. Les nostres idees

proporcionen una solució a les limitacions dels paquets de programari existents

utilitzats en missions espacials per identificar esdeveniments geomètrics.

La integració de Tychonis amb programari actual i futur de les missions,

juntament amb els seus principis de separació d’interessos, escalabilitat,

reutilització, i verificació i validació independents, ofereix un canvi significatiu per

a les missions espacials en la cerca d'esdeveniments geomètrics. Això és

particularment important per a organitzacions com la NASA, on la identificació

precisa dels esdeveniments geomètrics és essencial no només per a la planificació

de la missió, sinó també per a la navegació de les naus espacials, i l'anàlisi de

dades científiques.

La NASA té una forta tradició de reutilització de programari i tecnologia de

missió a missió per donar continuïtat a èxits demostrats. L’enfocament de

Tychonis en la reutilització transversal de les missions, juntament amb la seva

adhesió a bons principis de programació, pot ajudar a garantir que el programari

desenvolupat per a una missió es pugui utilitzar en futures missions amb

modificacions mínimes, reduint el risc associat al desenvolupament i validació de

programari per a cada missió individual. Aquest camí porta a un augment de les

taxes d'èxit de la missió i estalvis de costos, fent-ho una contribució valiosa per a

la indústria espacial. A més, la nostra visió dels llenguatges informàtics textuals

per modelar esdeveniments geomètrics pot permetre que més científics participin

en la planificació i execució de les missions, ajudant a tenir equips més diversos i

inclusius.
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1 Introduction

For millennia, humanity has been captivated by the celestial patterns formed by

the stars in the sky. Our ancestors keenly observed the movements of the stars

throughout the night, days, and seasons, seeking to gain knowledge of these

celestial lights in the vast expanse of the Universe. From drawings on the walls of

caves in Europe dating back 12,000-40,000 years ago, to the Ancient Egyptians

who marveled at two bright stars in the Northern skies they referred to as the

Indestructibles1, the human fascination with the cosmos has been persistent. The

Greek astronomers, who coined the term astronomy, made remarkable

advancements through observations, deducing that the morning and evening

stars were the same body we now know as Venus, and even discovering that

Earth was round through the study of eclipses. Tycho Brahe, in the late 1500s,

made significant contributions to positional astronomy, charting the positions of

over 777 stars within 45 constellations and developing the Tychonic System, as

depicted in Figure 1, leaving a lasting legacy of perseverance, systematic

record-keeping, and a passion for the stars. Today, the dream of exploring the

cosmos continues to inspire individuals of all ages, who envision themselves as

the scientists and engineers of tomorrow, making groundbreaking discoveries in

the great unknown. As we stand on the brink of sending humans to Mars and

beyond, it is truly a remarkable time to be alive and witness the next chapter in

our quest for understanding space.

1 In addition, while the Greeks identified 15 stars as Indestructibles, different cultures throughout
history have identified different sets of stars as fixed or eternal in the sky, demonstrating the
cultural variability in our understanding and interpretation of the stars.
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As humankind continues to explore the vast expanse of the universe, we have

found new and innovative ways to gather information about the cosmos. While

we may not have physically gone beyond the Earth-Moon system ourselves, we

have sent robotic spacecraft to do the job for us. Equipped with a variety of

instruments, these machines have given us a glimpse into the mysteries of the

universe and allowed us to continue advancing our understanding of it. These

instruments can either be active or passive, depending on the type of data they

are designed to gather. Passive instruments such as magnetometers or

visible-spectrum cameras simply collect information that is present in their

environment, while active instruments like radar emit energy in order to gather

data.

Figure 1. The Tychonic System. Tycho Brahe's model of the Universe, as presented in the 1661

edition of Andreas Cellarius' Harmonia Macrocosmica, offers a notable insight into the

conceptualization of the cosmos in the seventeenth century. This illustration captures Brahe's

proposal of a middle ground between the geocentric model of Ptolemy and the heliocentric

model of Copernicus, where the earth takes center stage, and the Sun and Moon orbit around it,

while the other planets revolve around the Sun.
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The role of these robotic missions goes beyond simply observing the universe.

By analyzing the data collected by these machines, we can learn about

astrophysics, chemistry, and the geology of celestial bodies. They allow us to

delve deeper into the mysteries of space, and provide us with the information we

need to one day, hopefully, make human space exploration and colonization a

reality. It is like a pre-flight check, so to speak, where we gather information

about the environment we plan to explore before we venture into it ourselves.

The true beauty of these missions is that they allow us to explore the universe

and learn from it without having to leave the comfort of our planet, and they

provide us with a wealth of information that continues to expand our knowledge

of the cosmos.

The field of robotic space exploration emerged in the context of the Cold War,

where the United States and the Soviet Union engaged in a competitive space

race to demonstrate their technological prowess and military strength to one

another and the world. This competition led to the launch of several

groundbreaking missions, such as the Soviet Union's launch of Sputnik 1, the

first Earth-orbiting satellite, in 1957, and the United States' launch of Explorer 1,

the first satellite equipped with scientific instruments, in 1958. The earliest

missions beyond the Earth-Moon system were part of the Mariner program,

executed by NASA and the Jet Propulsion Laboratory (JPL) in Pasadena,

California. Notable missions of the Mariner program include Mariner 2's Venus

fly-by in 1962 and Mariner 4's Mars fly-by in 1965, which captured the first

close-up images of another planet.

The aforementioned endeavors, although intricate, pale in comparison to

JPL/NASA's Voyager program, which commenced in 1977 and marked the

world's first multi-planet science-oriented flagship-level spacecraft launch. The

initiative featured two identical spacecraft that capitalized on a rare planetary

alignment that occurs every 175 years, thereby permitting both probes to transit

effortlessly from one planet to the next in a meticulously orchestrated sequence2,

2 Both Voyager 1 and 2 used gravitational slingshot maneuvers around Jupiter to reach Saturn,
Uranus, and Neptune. Voyager 1 reached interstellar space in 2012, while Voyager 2 continued its

3



as depicted in Figure 2. One can scarcely fathom the engineering intricacy of this

undertaking, given the technological and computational limitations of the era,

notably in the then-emergent discipline of orbital mechanics and the 11

sophisticated instruments equipped on each spacecraft.

Figure 2. Trajectories of Voyager 1 and 2. This image, which showcases the intricate and

detailed pathways traversed by the Voyager missions, highlights the remarkable scientific

achievements and innovative technological advancements that have been instrumental in

advancing our understanding of the universe. Image credit: NASA/JPL-Caltech.

What is all the more remarkable is that, as of this writing in 2023, after 45 years

of tireless operation, the two Voyager spacecraft remain operational and are the

most remote man-made objects in existence, having traversed the interstellar void

beyond our solar system. While these venerable probes may not endure much

longer, they continue to furnish invaluable data that enhances our comprehension

of the cosmos. It is poignant to reflect that, from an engineering standpoint,

robotic missions have undergone a metamorphosis from being revolutionary to

exploration of the outer solar system with a gravity assist from Neptune. Both spacecraft are still
operational as of 2023 and continue to send valuable data back to Earth.
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evolutionary, as exemplified by the Voyager missions. Today, the reader may

readily discern more recent landmarks in the realm of audacious robotic

spacecraft missions, such as Cassini, New Horizons, Mars Science Laboratory,

Dawn, Juno, Mars 2020, and many others3.

The operational management of space missions has experienced a gradual

evolution, though its foundational principles remain steadfast. As the field of

space mission management has grown and matured, it has given rise to

well-established processes. Among the most crucial considerations in the design

and management of a space mission is the identification of key geometric events.

These events are vital not only to mission planning, but also to the adaptation of

the spacecraft and its surroundings to changing conditions as it traverses through

space. The process of determining the timing of these events, referred to as

Opportunity Search4, is the focal point of our investigation. Although this area has

seen significant advancements over time, it has yet to be fully realized as a

self-contained software capability. In the forthcoming sections, we shall explore

the intricacies of Opportunity Search, preceded by a comprehensive overview of

the fundamental principles of space mission management.

4 Opportunity search is a process of searching for opportunities or windows of time during which
a spacecraft can perform a particular task or observation. It is an important aspect of mission
planning in space exploration, as it helps scientists and engineers optimize the use of a
spacecraft's resources and achieve mission objectives. Opportunity search can involve identifying
periods of time when the spacecraft is in the optimal position relative to the target, such as when
it is at the right distance or angle for a flyby, or when the target is in the right position relative to
the sun or other celestial bodies.

3 Cassini explored the planet Saturn and its moons, while New Horizons visited Pluto and is now
exploring the Kuiper Belt. Mars Science Laboratory, which includes the Curiosity rover, is
exploring the surface of Mars, while Dawn explored the dwarf planet Ceres and the asteroid
Vesta. Juno is currently orbiting Jupiter, while Mars 2020 is exploring Mars with the Perseverance
rover and the Ingenuity helicopter. These missions have greatly expanded our understanding of
the solar system and have provided valuable insights into the processes that shaped our planet and
others.

5



1.1 Basics of Mission Management

1.1.1 Mission Classes and Phases

In order to elucidate the intricacies of managing a robotic space mission during

its operations phase and the underlying processes, it is necessary to first delve

into the conception and launch of such a mission. To this end, it is prudent to

define the boundaries of the terms mission and project, which may possess semantic

overlap. The former encompasses all resources, including funds, political

relationships, purpose, hardware, software, staff, and processes, that are requisite

for a spacecraft's journey and for obtaining the desired scientific data. On the

other hand, project pertains to the planning, scheduling, and leadership necessary

to judiciously utilize mission resources under the constraints of time, cost, and

other risks, thereby enabling the attainment of the mission's objective. While the

mission encapsulates the what of the endeavor, the project involves the how of the

same. It should be noted that there exists a nuanced difference between these two

terms, and while they may be used interchangeably in certain contexts, the most

germane term will be employed in each discussion. Furthermore, it is important

to clarify that our discourse will be restricted to NASA space missions, as the

agency, and especially JPL within it, have exhibited leadership in this domain for

several decades. Plus, the number, magnitude, and budget of the missions

developed and managed within the United States far exceeds those of other space

agencies and research centers.

Within the purview of NASA, a taxonomy of distinct robotic deep-space mission

classes exists, predicated upon their genesis, funding sources, and budgetary

limits. While some missions are solicited across multiple research centers, others

are initiated and directed by the United States government. In the former

instance, NASA will issue calls for proposals, specifying one or more scientific

goals and a cost ceiling that must not be exceeded. These proposals will originate

from disparate research centers and undergo a rigorous evaluation process

comprising gate reviews, scrutinies, and downselections by both NASA and the
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scientific community. Ultimately, NASA will designate a winning proposal and

team, signifying the mission's transition from a proposal to a fully-fledged

undertaking. Subsequently, NASA will furnish the mission with requisite funding

and logistical support. This proposal-competition-selection pattern is a recurrent

feature of programs such as the Discovery and New Frontiers initiatives5.

Conversely, on occasion, specific branches of the US federal government

collaborate with the scientific community to finance directed missions. Such

missions may not undergo a competitive selection process and instead may be

awarded directly to a NASA center or amalgamation of centers following a

negotiation phase that considers the centers' abilities. This mode of operation

characterizes what is currently termed large strategic science missions6, formerly

referred to as flagship missions. As the name suggests, these missions represent the

largest and most expensive robotic undertakings within NASA's purview, with

recent missions in this category surpassing the $1 billion mark in contemporary

currency. Noteworthy examples encompass the Voyager, Cassini, Mars Science

Laboratory (Curiosity Rover), Mars 2020 (Perseverance Rover and Ingenuity

Helicopter), and Europa Clipper missions.

While the two aforementioned mission types based on their origin are the

prevailing patterns, at times, either NASA or the executive and legislative

branches of the US government may solicit a study to ascertain the feasibility of

accomplishing a specific objective. Subsequent to the results of such an

investigation, a mission may be commenced. It is noteworthy to recognize that

although we have delineated the most typical NASA mission categories based on

their origin, there have been and will continue to be other mission types that have

not been expounded upon here. This non-exhaustive list is not comprehensive in

6 NASA's large strategic science missions program is a multi-billion dollar effort that focuses on
developing and executing large-scale space missions that are designed to answer some of the most
pressing questions in astronomy, astrophysics, and planetary science.

5 The Discovery and New Frontiers programs are NASA initiatives that focus on developing
innovative and cost-effective space exploration missions. The Discovery program focuses on
missions that can be completed at a lower cost, while the New Frontiers program targets
medium-class missions that address high-priority scientific goals.
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the sense that the US government and NASA must remain adaptable to evolving

demands and contexts.

Figure 3. Lifecycle Phases for Flight Projects - NASA’s Systems Engineering Handbook.

Chart with an overview of the various phases encompassed within the life cycle of a NASA

mission, delineating the key products and milestones that constitute each distinct phase.

Regardless of its inception origins, once a mission gets its approval, a project can

start. And even if not always explicitly recognized, one could argue a project

always ostensibly holds a provisional status, as funding can be paused, withdrawn,

or withheld at any time according to scientific, technical, or political parameters.

While progress in the project makes it increasingly cumbersome to halt, the

possibility of funding cessation persists throughout the project's trajectory.

Nonetheless, assuming nominal execution of the project, NASA's Systems

Engineering Handbook [1] stipulates a series of distinct, rigorously controlled

phases, as illustrated in Figure 3, that the project must pass through. At a macro

level, these phases encompass a Formulation super-phase and an Implementation

super-phase. The Formulation super-phase consists of two phases, A and B, both

of which are devoted to delineating the mission's requirements / design and
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encompass elements such as defining the software and hardware interfaces,

ascertaining the heritage of the software / hardware / processes, undertaking

trade studies, anticipating scientific returns, instrument selection, prototype

development, mission simulation and analysis, and trajectory definition. These

phases are critical to substantiate assumptions, delimit the development of the

mission components, and create an initial design for the spacecraft's components

and mission procedures.

The Implementation super-phase encompasses a sequence of four phases,

namely C through F, that mark crucial milestones in the life cycle of a NASA

mission. Phase C finalizes mission design and the development of spacecraft

components, and commences or continues the development of mission

operations processes that are implemented in the later phase E. Phase D

completes the integration of spacecraft subsystems, including instruments, and

finalizes the development of the launch version of the flight software, alongside

the requisite preparations for launch and the launch itself. Phase E, which

initiates post-launch, is responsible for the operational management of the

spacecraft during its mission, a process colloquially referred to as mission operations.

Its objective is to align with the mission plan and utilize the available resources to

achieve the scientific or engineering objectives, while disseminating data of

interest as it becomes available. This phase is subject to variability in its duration

as it can be prolonged if the spacecraft is in good condition and NASA decides

to continue funding the project, or curtailed owing to failure, an inability to

achieve the mission objectives, or political exigencies. In light of this phase's

significance to our inquiry, we shall expound upon it further in the ensuing

section. Phase F is devoted to capturing, cataloging, and analyzing data, and

sharing discoveries with both external and internal stakeholders. An important

process within this phase is known as capturing lessons learned7, in which the project

team, with the assistance of NASA and other experts, reflect upon and articulate

7 Capturing lessons learned during NASA mission Phase E provides benefits such as creating a
historical record, identifying best practices and areas for improvement, improving mission
management, and facilitating knowledge transfer and collaboration. The knowledge gained from
these reports can be used to inform and improve future missions, leading to less risk and more
efficiency.
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the successes and failures of the mission as explicit knowledge, which can be

leveraged in future missions.

1.1.2 Phase E - Mission Operations

Figure 4. Uplink and Downlink: Two-Way Communication for Space Missions. Ground

stations use powerful antennas to send commands to the spacecraft and receive data from it. This

enables continuous communication between the spacecraft and the ground team, allowing for

constant monitoring of mission progress, as well as the ability to remotely command the

spacecraft.

As noted earlier, in Phase E the mission team employs available resources to

accomplish the scientific or engineering objectives of the mission, while also

releasing data of interest as it is processed and becomes available. Specifically, this

phase involves controlling the spacecraft, which is situated in space, and directing

it to execute a predefined set of actions aligned with the mission's defined goals.

The mission team can utilize two systems - the flight system (which encompasses

the hardware and software of the spacecraft) and the ground system (which

encompasses mission operations personnel and the hardware and software

utilized to manage the spacecraft from Earth). The means by which the mission

team identifies the actions that the spacecraft will undertake is known as the
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uplink process. Although the uplink process may differ across missions, it usually

encompasses three core stages: (1) high-level planning, (2) low-level planning, and

(3) uplink product creation. This overall process is depicted in Figure 4.

The high-level planning process is a crucial stage employed by large-scale

missions in the field of spacecraft design and operation. Over time, this process

has evolved due to the increased complexity of spacecraft that now include more

advanced computer science techniques such as analysis algorithms, discrete-event

simulators, and automated planners. The high-level planning process starts with

the science planning sub-process, whereby scientists use software tools to create a

model of the spacecraft and its surrounding environment. These tools [2, 3]

provide a simulated environment for scientists to develop actions, primarily of

remote sensing nature, and involving instruments, to determine if they can

achieve a tactical science goal. On some missions, the use of automated science

planning tools [4, 5] can replace the manual input of scientists to simulate actions.

These automated tools can receive goals and constraints as inputs and provide

activities that will satisfy the goals and constraints based on the spacecraft's

environment and available resources. The output of the science planning process

is known as the science plan, which encompasses a series of science activities that

the spacecraft will perform at different points in time. This plan is frequently

presented as a Gantt chart, as depicted in Figure 5.

Since the objective of the science plan is to contain and communicate the tactical

activities that will help achieve the science goals of the mission, it often does not

consider all the limitations from the spacecraft and ground systems, at least in the

first iteration of the science plan. As a result, there is a continuous process to

improve and refactor the plan given the current or expected state of the overall

system and its resources. This iterative process is necessary as the development of

the science plan is limited by the scientist's inability to comprehend the

operations of all subsystems at any given point in time. In fact, the

comprehensive nature of this task precludes the possibility that any single

engineer or scientist could possess such knowledge. To address this limitation,
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the broader activity planning process leverages computational power and

modeling and simulation techniques.

Figure 5. Activity Plan. The top half of the figure presents the activity plan, which depicts the

spacecraft activities in a Gantt chart format, where each activity has start time, end time, and a

predefined duration. The bottom half of the figure presents simulation data, which consists of

time series data on a range of modeled resources, including sun elevation angle, power load,

battery state of charge, and data volume.

In activity planning, a common practice is to subject a completed science plan

iteration to a simulation system that forecasts the state of pertinent resources on

the spacecraft and the ground system [6, 7]. The anticipated states are recorded in

time series, as depicted in Figure 5. These time series are then evaluated both

visually by humans and automatically by software constraint checkers to

determine the feasibility of the plan in its current form. In case these time series

present values in the modeled states that contradict the mission's parameters (e.g.

the spacecraft exceeds power threshold, battery state of charge is below the safe

threshold, invalid pointing angle for an instrument), modifications to the plan

would be necessary. Engineers can revise the plan to circumvent undesired states
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while ensuring that science activities can still be carried out. This requires a

modification of the plan, followed by another simulation run and another check

of the resource time series. This process repeats until all resources are in desirable

states. However, if direct refactoring of the plan does not permit the completion

of science activities, then engineers and scientists must collaborate in devising a

new science plan that is executable.

The advent of computer-driven automated planning [4, 5, 8, 9] has provided a

noteworthy counterpoint to the traditional, more manual and involved pattern.

Over the past few decades, automated planning has gained increasing

prominence, promising time savings and decreased risk. In this paradigm, a

software system is tasked with receiving three inputs: (1) system states to be

avoided, which reflect the constraints the engineer deems pertinent to the

planning process; (2) an existing or empty plan; and (3) the goals that the

spacecraft must accomplish. Utilizing these inputs, the automated planner

executes a search algorithm to generate a new plan that satisfies the given goals

while partially or fully adhering to the established constraints. This approach

fundamentally replaces, either partially or entirely, the traditional planning and

simulation process that was previously carried out by human operators, with an

algorithmic approach. Today, automated planning tools are commonly employed

in conjunction with manual processes for activity planning, serving to aid in the

creation of an initial base plan that engineers subsequently expand upon, or when

there exist specific and repetitive tasks where automation can prove beneficial.

One can think of the final product from the activity planning process, the activity

plan, as an augmented and executable science plan. The augmentation includes

the science activities developed during science planning, and engineering activities

such as uplink and downlink of data, trajectory correction maneuvers, etc. that

might not have been taken into account during science planning but are vital to

sustain the spacecraft and the overall mission. However, activities, as they appear

on an activity plan, are not the kind of construct that is understood by a typical

deep-space spacecraft. Spacecraft implement computers and software that

operate at a level lower than the human-oriented activities present in an activity
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plan. The low level constructs spacecraft understand are called commands, which

are the base instructions interpreted and acted upon by the flight software. From

this, a sensible reaction would be to ask why there is a need to separate activities

from commands, since after all, the only thing a spacecraft understands is

commands. In response to this insightful question we might say the need is

similar, but still somewhat different, to that of high level programming languages

that execute, deep down, as machine code. One can code in C and then have a

compiler create machine code for a specific computer architecture. In this case,

the C code operates at a more humanly-understandable level, whereas the

machine code generated will be different based on what computer it will be run

on, and those are typically details a human will have trouble following and might

want to ignore. The activity/command dichotomy is similar in that humans

understand activities, but spacecraft understand commands.

The separation between activities and commands also makes sense from the

perspective of the different frequencies in which activity types and command

types are updated. Missions maintain a list of activity types described in an

activity dictionary8 and, analogously, they also maintain a list of command types

in a command dictionary9. The dictionaries describe the characteristics and

specifications of each activity or command, including their parameters,

constraints, and other relevant data. The mission planning team may update the

activity dictionary to enhance the planning of the spacecraft's actions by

modifying, creating, or deleting activity types. In contrast, updates to the

command dictionary are rare due to the high risk of modifying an integral part of

the spacecraft's operation. This approach seeks to maximize the mission's

efficiency by allowing updates to the activity dictionary while maintaining stability

in the command dictionary.

9 A command dictionary is a database that contains all possible commands that a spacecraft can
receive, along with information on how to execute them. The command dictionary is highly
dependent on the low-level implementation of the spacecraft.

8 An activity dictionary is a tool for documenting and tracking tasks and actions in robotic space
missions. It contains a list of activities, how to execute them, and necessary resources. It helps
manage and coordinate operations.
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The process of activity expansion or command expansion, depending on the

terminology used, is responsible for connecting activities and commands.

Command expansion, the preferred term in this text, refers to the process by

which software logic takes an activity plan and transforms it into commands. The

logic can be either static, implemented as a rule-based parser that creates a

sequence of commands for each activity in the plan without considering external

context, or dynamic, using algorithms to generate a sequence of commands based

on the plan as a whole and the spacecraft's state at each point in time. There is an

ongoing debate within NASA about the merits of each approach, with the static

method providing better traceability between activities and commands and being

more widely implemented in recent missions. However, it can be anticipated that

future missions will likely adopt more stateful approaches as spacecraft mission

planning becomes more goal-based. As a matter of fact, the past seems to point

to a pattern similar to what took place in the spacecraft computing domain.

Initially spacecraft contained custom electronics with limited computing

capabilities, then they implemented low-complexity chips which eventually

became fully programmable microprocessors. These microprocessors initially

executed fully custom code, and now they implement fully capable operating

systems which run the flight software. Earlier missions implemented their

mission planning only with commands, whereas now they use activities which are

expanded into commands. In the future missions will likely lean towards

goal-based planning on the ground segment, which can then evolve into

goal-based execution on the spacecraft itself, or at the very least, execution of

activities by the spacecraft instead of commands. Perhaps stateful command

expansion can be an interim and useful piece towards learning how to design a

fully goal-based spacecraft system.

A discourse is ongoing within NASA centers on whether or not commands

necessitate validation via simulation, akin to the requirement for activity plans.

The debate presents two sides: (1) There is a requirement to validate commands

as a form of double-checking to ensure that the expansion process functions as

intended, specifically, that commands are in line with the activity plan's objectives
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and respect the engineering constraints designated for the mission; and (2) the

process of validating commands is redundant and costly, as commands can be

inherently valid if the expansion process works as intended. In current practice,

deep space missions continue to validate commands post activity expansion as a

measure of risk mitigation, while proponents of constructing commands that are

valid by design promote the thought that repeated validation efforts represent a

significant expense that could be reduced by conducting a single validation at the

activity level.

Command validation entails the use of tools to model the low-level behavior of

the spacecraft. This task is commonly accomplished through the implementation

of simulators [10] that integrate models or the utilization of the flight software

[11] itself on either a testbed or an end-user workstation. However, both of these

options entail significant costs for implementation and maintenance. First, the

development of simulators that capture the low-level behavior of a spacecraft

based on input commands is a nontrivial task that includes the creation of the

simulator itself, which could also involve the implementation of a multi-mission

generic component to facilitate the reusability of the simulator across missions, as

well as the development of models that capture the physical and logical behavior

of the spacecraft. The development of the simulator is a significant undertaking,

and the development of models that offer sufficient fidelity to validate the

commands is a complex and ongoing process over the duration of the mission.

Second, the utilization of flight software to model the spacecraft's behavior poses

significant obstacles that have been challenging to overcome historically, as it

necessitates modifications to the code that could compromise the validation's

fidelity. Indeed, when this approach has been employed, it has involved

duplicating a version of the flight software code to enable modification and use

in this capacity. In this case, the code used for validation is partly distinct from

the canonical version of the flight software, and incremental incorporation of

updates from the canonical flight software code into the validation code is

required. Both modeling-based and flight software-based validation approaches

have been effectively employed in flight projects, and it appears that the quality of
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the chosen approach's execution might matter more than the approach itself in

terms of risk and cost.

Once command validation has been completed, the subsequent stage involves

converting the command list into a binary format that can be recognized by the

flight software. This process can be automated by utilizing software. The binary

file is then transmitted to the Deep Space Network (DSN), an internal

organization within JPL responsible for the uplink and downlink of data between

the spacecraft and Earth. The DSN possesses its own funding, workforce, and a

network of antennas located in three distinct sites separated by roughly 120°:

Canberra, Australia; Madrid, Spain; and Goldstone, California, United States, as

depicted in Figure 6. The scheduling of uplink windows by the DSN entails the

coordination of ground and spacecraft resources to transmit commands to the

spacecraft. Due to the DSN's responsibility for communicating with JPL or

NASA deep space spacecraft, as well as spacecraft from other countries or

organizations, it is challenging to pre-plan communication windows. Priorities

may shift rapidly, as in the case of a malfunctioning spacecraft requiring

immediate communication for diagnosis. Additionally, other factors such as solar

system geometry, spacecraft orientation, frequency availability, and others

contribute to scheduling complexity. The DSN employs goal-based software to

manage these constraints and plan its operations, as exemplified in [12].

Upon finding a transmission window, the DSN initiates the transmission of the

binary command file to the spacecraft. Upon receipt, the spacecraft undergoes a

processing step that includes decryption, as well as verification of the file's

integrity through the use of checksums or similar mechanisms. If the file is not

corrupted, the spacecraft schedules the commands for execution according to the

instructions of the mission staff. The process of executing these commands is

multifaceted and involves a range of factors related to spacecraft operation that

are beyond the scope of this discussion. Nevertheless, it suffices to note that if

the spacecraft executes the commands successfully, it will result in the acquisition

of scientific data via the instruments aboard the spacecraft, such as

magnetometer data, images, and other relevant scientific measurements.
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Figure 6. The Deep Space Network Locations. The diagram shows the Earth at the center

and the three different locations with DSN antennas. Each location is roughly separated from the

other two by 120°. "SimonOrJ" (U/T/C), CC BY-SA 3.0

https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons.

The downlink phase commences through a prearranged time window agreed

upon between the DSN and mission staff. During the downlink stage, the

spacecraft transmits the obtained scientific data to the DSN, accompanied by

telemetry data that records the evolution of pertinent onboard resources over the

course of command execution. Mission staff will then receive these two outputs,

parse them, and distribute the relevant scientific data to internal and external

partner science teams for analysis and interpretation. These scientific findings, in

turn, contribute to the advancement of our understanding of the Universe and

are published in scientific journals. Meanwhile, the resource telemetry will be

cross-referenced with the simulated resources generated during the mission

planning stage to ensure they correspond to the mission planning team's

expectations. Any discrepancies that arise could be indicative of outdated or

faulty models and assumptions employed in the planning process or a
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malfunctioning spacecraft component. As soon as the downlink operations are

finalized, the mission planning process begins anew, and the cycle continues.

The preceding description of the ground steps in the uplink-downlink process

has been synthesized into a graphical representation denoted as Figure 7. This

figure serves as an expanded version of the previously presented Figure 4,

offering a more comprehensive overview of the ground steps involved in the

communication between the spacecraft and the ground system.

Figure 7. Uplink and Downlink II. The data received from the spacecraft is first processed by

the ground team during the downlink step. Subsequently, the Science Planning phase commences,

which involves the creation of a Science Plan. The Science Plan is then transformed into an

executable Activity Plan, which further undergoes expansion into Spacecraft Commands. These

commands are validated and eventually transmitted to the spacecraft.

1.1.3 Science Planning

Having gained a comprehensive understanding of the steps involved in

developing a mission and commanding a spacecraft, it is essential to explore the

concept of science planning through the use of an exemplifying software system,

which is commonly utilized in orbital missions. It should be noted that science

planning procedures may vary across different types of missions due to the
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unique challenges posed by each mission type. Specifically, orbital and fly-by

missions, which are categorized under orbital missions, are characterized by

predictable orbital mechanics that enable mission teams to plan spacecraft actions

well in advance over long periods of time, ranging from weeks to years.

Conversely, other mission types are associated with greater uncertainty, making it

infeasible to determine spacecraft actions with certainty. For instance, surface

missions utilizing rovers or helicopters necessitate a different planning approach

that is contingent on the level of uncertainty that comes with exploring unknown

terrain, where the spacecraft may encounter unexpected obstacles that were not

foreseen during mission planning. Although the science team on an orbital

mission may need to adjust the science plan in response to new discoveries, this is

not a frequent or predictable occurrence as it is in surface mobility missions.

Differences in the characteristics of orbital and surface mobility missions dictate

the use of specialized science planning software. In the case of orbital missions,

science planning software supports a long-term, geometry-focused process

within a well-known space region, whereas surface mobility science planning

software is tailored to a more reactive, environment-focused process within an

unfamiliar space environment. NASA has developed two systems which are

representative of these two models. The first is the Science Opportunity Analyzer

(SOA) [2], a scientist-driven software tool for orbital missions, and the second is

the COmponent-based Campaign Planning, Implementation, and Tactical

(COCPIT) [3] software tool, which serves a similar purpose for surface mobility

missions. Both software tools have been used in various robotic space missions,

with SOA utilized in missions such as Cassini, Dawn, Psyche, and Europa

Clipper, while COCPIT has been used in the Mars Science Laboratory (MSL) and

Mars 2020 missions. In this article, we will focus on the science planning software

for orbital missions, with a more detailed elaboration of SOA's functionality.

20



1.2 Background and Related Work

1.2.1 Science Opportunity Analyzer (SOA) and its impetus

In the field of orbital missions, the fundamental unit for science planning is

known as observation. Specifically, an observation is a collection of remote sensing

actions executed by an instrument with the objective of achieving a specific

scientific goal. For example, an observation could entail capturing a swath of

photographs across the sunlit surface of an asteroid through the use of a framing

camera installed on an orbiting spacecraft. This would involve a range of

components, including the frequency of the images captured, the positioning of

the framing camera at each time point, and other pertinent parameters.

Prior to the advent of SOA, the process of developing observations was an

arduous and time-consuming endeavor for science teams. This was largely due to

the lack of integration between the many fragmented tools utilized in the mission

planning process. Moreover, the design of observation tools was the

responsibility of non-co-located teams, leading to issues of incompatibility and

capability gaps. It was this very challenge that acted as the catalyst for the SOA

development effort [13], which sought to create a user-friendly, multi-mission

software solution that would enhance the productivity of the observation design

process. Given the ambitious objective of the project, its original stakeholders

and funding organizations were required to proceed with great methodological

rigor to ensure that the initial versions of SOA achieved meaningful

improvements on a range of aspects related to the status quo.

In 1998, a Quality Function Deployment10 (QFD) [14] initiative was implemented

by a task force within the JPL to narrow down the initial set of requirements and

10 Quality Function Deployment (QFD) is a structured methodology used in product
development and project management to translate customer requirements into specific
engineering characteristics and specifications. It is a tool used to ensure that customer needs and
expectations are met during the design and development stages of a project. QFD is commonly
used in the aerospace industry, including by NASA, to develop and optimize the design of
complex systems.
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use cases for the Science Opportunity Analyzer (SOA) software [15]. The QFD

process consisted of three steps, starting with the design of a closed-ended

questionnaire that would be later validated by the answers provided to other

open-ended questions. The questionnaire was then distributed to a group of 40

individuals consisting of scientists, mission planners, command validation

engineers, configuration management engineers, software developers,

cybersecurity engineers, line managers, mission designers, and systems engineers

for completion. The final step in the process was the analysis of the results and

the creation of the initial set of use cases and requirements for the software].

The QFD initiative yielded five main use cases for the SOA software: (1)

Opportunity Search, (2) Observation Design, (3) Visualization, (4) Flight Rule

Checking, and (5) Data Output. Since these use cases were met through different

capabilities present in disconnected tools at the time, feedback obtained through

the QFD indicated that these use cases and their implementation in SOA must be

part of an integrated and iterative science planning process. The sequence of use

cases in the planning process started with the Opportunity Search capability,

which allows users to search for the times when an opportunity takes place.

Within SOA, an opportunity is a combination of geometric events via Boolean

logic that scientists are interested in planning observations around. As an

example, two valid geometric events for an opportunity could be:

● E1: There is an occultation of the Earth behind Ceres as seen from the Dawn

spacecraft

● E2: The Dawn spacecraft is at a distance of 15,000 km or less from Ceres

These geometric events are searchable independently or combined with a logical

AND/OR and negated with a logical NOT. Notably, SOA's QFD initiative found

that the software must be capable of combining a list of predefined atomic11

geometric events that could grow over time given user needs.

Based on the time intervals identified through Opportunity Search, the user

would then proceed to formulate and visualize the various observational actions

11 Atomic refers to opportunities that can not be further broken down into smaller opportunities.
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of the spacecraft's onboard instruments. To achieve this, SOA offers a means of

defining the specific times, angles, and other relevant parameters that dictate

when one or more instruments perform their observations. Additionally, SOA is

be capable of visually representing the observation system in both 2D and 3D,

taking into account factors such as time, spacecraft position, the observed body,

trajectory, and instrument field of view12 (FOV) projection onto a surface, among

others. The Visualization capability serves the purpose of facilitating effective

communication of observation design and assessing its quality visually. For

instance, it enables users to determine whether an observation is targeting the

right areas of the observed body. In numerous cases, a natural iterative process

exists between the design of an observation and the associated visualization that

SOA supports. Typically, the visualization of an observation prompts adjustments

to its design, thus leading to a repetition of the

Observation-Design/Visualization cycle. Figure 8 provides a clear representation

of a typical usage of the Visualization capability for the high altitude mapping

orbit of the Dawn mission. The different colors employed in the image help

distinguish the imaging swaths obtained at varying time intervals, while the

cratered surface of Ceres is evident from the texture of the shape model.

Subsequently, the user would employ an additional quality check, namely Flight

Rule Checking, for the observation. This feature is able to validate that an

instrument does not transgress a particular geometric or dynamic constraint, such

as "the instrument shall not be directly pointed at the Sun" or "the spacecraft

shall not exceed its maximum acceleration rates", respectively. Analogous to the

representation of opportunities, Flight Rules are geometric constraints that can

be combined using Boolean logic. Any infringement of these rules must generate

a notification during observation design or visualization. Whenever a Flight Rule

violation occurs, the user would be required to make a decision regarding

whether to disregard the violation or modify the observation in order to avoid

contravention of the constraint.

12 A spacecraft's instrument Field of View (FOV) refers to the angular extent of the observable
region that the instrument can detect. In other words, it is the area or volume of space that the
instrument can see or observe. The FOV is affected by the instrument's design, such as its
aperture size, and the spacecraft's orientation and position relative to the target being observed.
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Figure 8. Examples of visualization options in SOA. a) 3D perspective view of Ceres imaging

plan for the high altitude mapping orbit, b) 2D latitude/longitude map of the best image

resolution from this imaging plan, c) 2D coverage map for images that contribute to the stereo

topography campaign, d) 2D body map showing imaging plan for one elliptical orbit targeted to

Cerealis facula in Occator crater, e) 2D latitude/longitude map of 25 elliptical orbits showing best

imaging resolution, and f) 2D coverage map for imaging in 25 elliptical orbits that contribute to

local optical topography solutions.

Lastly, SOA provides a capability to perform Data Output tasks. In this context,

Data Output is understood as the ability to export data to a spreadsheet in text

format and to create graphs that exhibit values which are subject to change over

time. These values may relate to either the observation defined in previous stages

or to the trajectory under consideration.

Upon realizing the software's use requirements, preliminary versions of SOA

were made available to science teams for evaluation. The successful integration of

these use cases in a user-oriented manner and the positive feedback received

from science teams resulted in the adoption of SOA by several orbital robotic

space missions, with continued development and improvements to this day. It is

worth noting that while the way SOA handles science planning is not unique, it

represents the refinement of a process that has taken place over the course of

numerous orbital robotic space missions within NASA.
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1.2.2 Tooling Taxonomy

The utilization of user research techniques in science planning, specifically the

use of SOA, was exemplified in the preceding section. The resulting findings are

typically used with JPL as a paragon for the design of orbital science planning

software to this day. However, while SOA serves as an exemplar of a tool

designed with comprehensive requirements, it is not the only option for

opportunity search. This section aims to explore several such tools and classify

them into two distinct categories.

The first category of contemporary software utilized for Opportunity Search is

ad-hoc small mission tools, typically in the form of scripts13. These tools are

commonly developed with toolkits such as MATLAB [16] or programming

languages such as Python, and leverage supporting libraries such as Spacecraft

Planet Instrument C-matrix Events (SPICE) [17] and MONTE [18], which

respectively facilitate geometric calculations in space and provide astrodynamics

functionality. In situations where a mission requires a search for an opportunity

for which a search algorithm has not yet been developed, an engineer or scientist

will typically clone and adapt an existing script or craft a new one. Typically, the

lifecycle of these scripts is intimately linked to that of the mission they are

designed to support; development begins when a mission is conceptualized and

the scripts are maintained and utilized until the mission's conclusion.

Despite their utility, these scripts may be problematic in terms of reuse in other

missions, as they are often customized to suit the specific requirements of the

mission at hand. The limitations to their reuse are numerous and include, but are

not limited to, their insufficient generality in defining opportunities, dependence

on mission-specific frameworks or tools, and a tendency towards an ad hoc

development approach that may limit extensibility in the future. More

importantly, this approach can introduce programming errors by failing to

differentiate between the concerns involved in the modeling of an opportunity

13 Small script development in languages such as Python, MATLAB, sh, etc. typically involves
writing short, focused programs that perform a specific task. These scripts are often simple and
straightforward to write and can be easily modified and adapted to suit the needs of the user.
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and the resolution algorithm that enables its discovery. This method thus violates

the separation of concerns design principle [19], which stipulates that "software

should be decomposed in such a way that different concerns or aspects of the

problem at hand are solved in well-separated modules or parts of the software14".

The second family of tools is multi-mission, larger-scale, frameworks15. These

software frameworks are designed to be employed across various missions and

endow mission staff with a set of frequently used capabilities that can be

extended. Such frameworks can be offered either as capabilities in a software

library, for instance, SPICE's Geometry Finder [20], or as capabilities in an

end-user software package, such as SOA, WebGeoCalc [21], Percy [22], SOLab

[23], or MAPPS [24].

While some of these frameworks provide means for extension, they also show

limitations. On the one hand, SPICE’s Geometry Finder, Percy, and WebGeoCalc

conflate the definition of an opportunity with the search of the same. This issue

is evident when, for one opportunity type, there are multiple resolution/search

methods with different parameters. Should parameters intrinsic to the resolution

method be included in the opportunity definition? Ideally not since opportunity

modeling and resolution are two separate concerns. Additionally, these tools only

provide a limited set of opportunities for users to search for; thus, if a mission

has a need to search for a new opportunity, mission staff can end up developing

scripts or small tools akin to the mission-developed scripts option described

previously.

15 Large-scale software development, compared to script development, involves creating complex
software systems that require careful planning, design, and implementation. Such software
systems are typically written in more elaborate languages such as Java, C++, or C# and require a
significant investment of time and resources to develop. They must be designed to be modular,
maintainable, and scalable, and must be extensively tested to ensure reliability and robustness.

14 Separation of concerns is a fundamental principle in software design that advocates breaking a
software system down into distinct parts, each responsible for a specific aspect of the overall
functionality. This approach makes the software easier to understand, develop, test, and maintain.
By separating concerns, software developers can minimize the impact of changes to one part of
the system on the rest of the system. It also helps to improve the overall quality of the software,
making it more reliable, scalable, and secure.
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On the other hand, while a tool like SOA does provide a separation between the

definition of an opportunity and the search of the same, it does not provide a

capability for end-users to add new opportunities or search implementations of

their own. This could force users again towards the development of small-scope

scripts, or towards the request for a development team to augment the software

with additional opportunities. The latter approach could entail additional cost and

a wait longer than the project can afford due to more protracted development,

release, and deployment cycles linked to larger development efforts.

The forthcoming sections will elaborate on these ideas and provide a discussion

of JPL-developed opportunity search frameworks, with a corresponding

reduction in attention paid to any additional less-relevant functions the tools may

possess. The present investigation will abstain from an in-depth discussion of

mission scripts owing to the dearth of publicly available information regarding

their operation and because they are predominantly constructed on a

case-by-case basis. The focal point on JPL-generated software is attributable to

the quality of the mission planning and space geometry software tools and

publications that have been made available by the organization, as well as the

overall commitment to openness from the organization. Though information

pertaining to non-JPL mission planning and space geometry software

applications is limited, it is commonly recognized that they draw on foundational

libraries and frameworks developed by JPL, including the esteemed SPICE

library. This scarcity of information serves as a notable obstacle in fully

comprehending non-JPL applications.

1.2.3 SPICE

The SPICE library by the Navigation and Ancillary Information Facility16 (NAIF)

at JPL is a comprehensive collection of space geometry functions. SPICE, as a

16 The Navigation and Ancillary Information Facility (NAIF) is a service at JPL that provides
space mission navigation and data analysis support to the scientific community. It maintains a
database of spacecraft trajectory and orientation information, as well as planetary and satellite
ephemerides, which are used to navigate spacecraft and plan scientific observations.
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software library, is not used independently; rather, it is integrated into other tools

that make use of it. As such, integration with SPICE requires software

development expertise and at times thorough understanding of low-level space

geometry concepts.

Designed primarily for calculations involving spacecraft, spacecraft instruments,

and target body geometry data, SPICE provides a range of functionalities,

including calculations based on ephemeris, size, shape, orientation, and field of

view. To supply geometric data to the calculation code, SPICE uses kernels17,

which are either provided by the developers of the library or by different

missions that require SPICE functionality18. The NAIF team at JPL is responsible

for the development of multi-mission kernels. On the other hand, individual

missions are responsible for developing their own mission-specific kernels, which

include spacecraft and instrument geometrical information, trajectory data, and

other relevant information.

In recent years, NAIF has added a powerful new feature to SPICE called

Geometry Finder (GF) [20], which offers a predefined list of higher-level calls

that enable users to search for specific geometric events within defined time

windows19. The calls that make up GF can be seen in Figure 9. Searching for any

geometric event not on the list requires the implementation of numerical

methods in conjunction with lower-level SPICE calls. GF not only provides a

range of geometry-finding capabilities but also includes calls for performing set

operations on time windows, which are a product of opportunity search.

19 As of 2023, an example on how to search for an distance opportunity with SPICE GF can be
found here: https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/gfdist_c.html

18 As of 2023, public kernel data from various sources is compiled at
https://naif.jpl.nasa.gov/naif/data.html

17 SPICE kernels are sets of data files containing information such as spacecraft ephemeris,
instrument geometry, and other ancillary information that is required for mission design,
planning, and analysis.
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Figure 9. List of SPICE GF Functions. SPICE now provides various functions for searching

geometric opportunities, which significantly simplifies the search process and makes it accessible

to a wider range of users, regardless of their level of expertise in numerical methods.

1.2.4 WebGeocalc

WebGeocalc is a web-based tool20 designed to provide scientists, engineers, and

members of the general public with access to a range of high-level calculations

offered by the SPICE library. WebGeocalc offers a distinct advantage over

traditional approaches like SPICE, which often require software development

and library installation. Instead, WebGeocalc enables users to initiate calculations

directly from a web browser, which are then executed remotely on a server that

implements calls to SPICE. The results of these computations are returned to the

user via the web browser.

WebGeocalc offers three distinct families of calculations, including the Geometry

Calculator, Geometric Event Finder, and Time Calculator. The Geometry Calculator is

capable of executing nine different types of calculations that return a range of

20 As of 2023, WebGeoCalc can be accessed from here:
https://naif.jpl.nasa.gov/naif/webgeocalc.html
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geometric values, such as angular separation, angular size, and illumination angles.

The Geometric Event Finder provides time windows for ten different types of

geometric events, including distance, position, and occultation. Meanwhile, the

Time Calculator facilitates time conversion calculations between different time

systems, such as UTC and Spacecraft Clock21.

Figure 9. WebGeocalc Main Site. This interface presents a comprehensive list of the various

operations that can be executed with WebGeocalc. Noteworthy among them, the Geometric Event

Finder options, which stand out for their capacity to enable users to search for opportunities of

interest.

21 The term Spacecraft Clock denotes the onboard timing system of a spacecraft, which serves as the
primary source of timekeeping for various spacecraft operations and related activities.
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It is important to note that the calculation types offered by WebGeocalc are static

and implemented on top of SPICE’s GF. WebGeoCalc does not provide

capabilities to add new types of events besides the ones available via SPICE’s GF.

Furthermore, the events provided by the Geometric Event Finder cannot be

composed through boolean operations. A recent enhancement to the system is

the inclusion of REST calls, providing users with the ability to execute these

statically-defined calculations through web-based end-points. This new feature

expands the capabilities of the tool and offers users increased flexibility in terms

of the range of integrations that can be implemented with external software.

1.2.5 SOA

As discussed previously, SOA is a powerful tool optimized for streamlining the

science planning process in orbital or fly-by missions. The software is designed to

support various key aspects of the mission planning process, including

Opportunity Search, Observation Design, Visualization, Flight Rule Checking,

and Data Output. Among these use cases, the Opportunity Search feature is of

particular significance as it enables users to identify and evaluate suitable time

windows for specific scientific events based on user-defined geometric

constraints.

SOA's unique Opportunity Search user interface, depicted in Figure 10, is

designed to be intuitive and flexible, utilizing a tree structure that allows users to

construct complex geometric constraints through the combination of basic

building blocks. The software supports a range of concrete geometric constraints

based on Distance, Occultation, Transit, Phase angle, Range rate, Angular

separation, Elongation, and Quadrature calculations. In addition, the software

also supports boolean operations, such as AND, OR, and NOT, making it

possible to build even more sophisticated constraints.

SOA does not let users add new types of searchable geometric events without

modifying the SOA codebase. As requested by users, the SOA development team

will implement new search algorithms and include the new event in the UI. This
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implies that a new version of SOA will need to be provided to users. Search

algorithms are typically implemented in Java through external space geometry

libraries such as SPICE.

Figure 10. SOA’s Opportunity Search Builder. This interface enables SOA users to construct

their opportunities using a tree-based approach, which allows for Boolean relationships to be

established among individual geometric constraints (top-left corner). Note the list of available

opportunities (top-right corner) and the parameters that are accessible for the selected

opportunity (bottom).

1.2.6 Research Question

Here we present a summary of our findings based on the existing multi-mission,

larger-scale frameworks and introduce our research question. Again, our focus is

on the larger-scale frameworks as we recognize that small-scale mission scripts

have limited breadth and depth of information, and often lack proper software

development practices. In brief:
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1. The SPICE library is a comprehensive suite of space geometry functions

for developers. SPICE enables the calculation of spacecraft, instrument,

and target body geometry data, including ephemeris, size, shape,

orientation, and field of view. SPICE has the GF functionality to search

for a predefined set of geometric events. Other events would need their

own implementation with the framework. While the SPICE library is a

versatile tool, its use necessitates substantial software development

expertise and a fundamental understanding of space geometry principles.

Additionally, it requires integration into other software tools, which can

be augmented by the creation of new kernels containing specific

geometric information.

2. The WebGeocalc tool is a web-based platform with a user interface and

RESTful services that are accessible to the general public. Unlike the

SPICE library, it does not require software development expertise or

library installation since calculations are carried out remotely via a web

browser. Although the tool offers a limited selection of static geometric

events aligned with SPICE’s GF function, it does not provide constraint

composition capabilities. The addition of new constraints is costly and

entails recompiling the entire codebase and publishing a new version on a

web server.

3. The SOA desktop tool is designed for non-developer scientists and

features a user-friendly interface for query composition. SOA is the

leading tool for opportunity search for a number of science teams in

robotic space missions. It provides a predefined set of searchable

geometric constraints. However, the tool's limited extensibility means that

the addition of new constraints is costly and requires developers to

recompile the entire codebase and publish a new version. The default

constraints for the SOA tool are the result of a collaborative effort

between developers and users.

Our findings are that each one of these tools serves a distinct purpose and

audience, they suffer from technical shortcomings, such as the lack of separation

of concerns between the modeling of an opportunity and its search, limited
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reusability of opportunity definitions and search algorithms across missions, and

a potentially ad hoc extensibility mechanism for opportunities and their search

algorithms. These challenges lead to increased mission development costs and

reduced knowledge capitalization across missions. To address these issues, we

pose the main question of this thesis, which is to understand whether it is

possible to design an opportunity search framework that:

A. Seamlessly integrates with contemporary and upcoming mission software and

user teams.

B. Enables end-users to expand their opportunities and search algorithms

without necessitating any modifications to the tools that leverage the

framework.

C. Facilitates cross-mission reusability and adoption of developments and

constructs implemented within it.

In response to the challenges faced in addressing the identified objectives, we

have devised a novel approach, which we have aptly named Tychonis22. The

following sections of this document are devoted to an in-depth exploration and

evaluation of our approach, with a particular focus on the extent to which it

satisfies the aforementioned criteria. We believe that through a thoughtful and

intentional selection of design choices, Tychonis provides a highly innovative and

practical solution that effectively addresses the identified challenges.

22 In honor of Tycho Brahe, who was a Danish astronomer who lived in the late 16th century. He
made many significant contributions to the field of astronomy, including the observation of a new
star in 1572 and the creation of a comprehensive star catalog. He also wrote a book called
"Astronomiae instauratae progymnasmata," which contained his observations of the positions of
the planets and stars.
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2 Methodological and Design Principles

As we have seen, current Opportunity Search software can be categorized as

belonging to one of two categories: mission-developed scripts or multi-mission

frameworks such as SPICE GF, WebGeoCalc, and SOA. Software in both

categories might lack desirable qualities such as extensibility, reusability, and a

separation of concerns between the definition of events and the search for the

same. The existence of these shortcomings, as stated in the previous section,

presents an opportunity to develop a software package that can advance the state

of the art. In response to the challenge, Tychonis should emerge as a framework

that can integrate with any mission software and user teams, enable end-users to

extend opportunities and search algorithms without modifying the tools that use

the framework, and promote the cross-mission reusability of the framework and

developments implemented in it.

These features can be facilitated through a judicious application of software

design's best practices and the construction of an object-oriented metamodel23

which will be described in depth in Section 3. Tychonis' metamodel is currently

fashioned using the Eclipse Modeling Framework (EMF) [25] and its Ecore

metamodeling capability. In conjunction, EMF and Ecore can generate Java

classes that can replicate the metamodel at the code level and both can be easily

integrated with mission software. These Java classes, as well as their

corresponding representation in the metamodel, have been structured to

encapsulate the modeling of an opportunity and its subsequent resolution, with

each aspect being assigned to a distinct class. In addition, while all these classes

are amenable to user extension, Tychonis also provides inbuilt implementations

that can be readily employed by missions.

23 For now, let us state that an object-oriented metamodel is a model used in software engineering
to define and describe the structure and behavior of an object-oriented system. It consists of a set
of abstract classes, interfaces, and their relationships, which form the building blocks for the
implementation of the system. The metamodel defines the syntax and semantics of the language
used to describe the system, and provides a framework for modeling and managing the system's
structure, behavior, and evolution.

35



To satisfy the requirements imposed by the research question, Tychonis adheres

to several well-defined and instrumental design principles. These principles

include, but are not limited to, separation of concerns, user extensibility, mission

reusability, and independent verification and validation. The ensuing subsections

will provide an overview of these principles and explain how our research has

met them. Note that a detailed elaboration of these goals will be presented in

subsequent sections; hence, a complete understanding of each individual concept

by the reader is not imperative at this juncture.

2.1 Separation of Concerns

Separation of concerns [19], promotes the idea that “software should be

decomposed in such a way that different concerns or aspects of the problem at

hand are solved in well-separated modules or parts of the software”. Tychonis

follows the separation of concerns principle in the design and implementation of

the framework and obtains benefits such as the following [26]:

1) A higher level of abstraction that permits thinking about concerns in

isolation.

2) Improved understanding of the code. Concerns are easily distinguishable.

3) Weak coupling of concerns. Increased flexibility and reusability of single

concerns.

Tychonis incorporates its most relevant concerns as (1) modeling, where

opportunities are defined, (2) resolution, where opportunities are searched for,

and (3) results, where the resulting time intervals are captured. These concerns,

which are premised on our understanding of SOA, are also applicable to other

software systems and can address a variety of use cases involved in the

opportunity search process. Additionally, to meet the extensibility requirements,

the software design for each of these concerns has been deliberately structured to

provide end-users with the ability to expand the default capabilities of the

framework.
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The Tychonis framework has been realized as a Java-based, object-oriented [27]

software package. As a result, each of the major concerns associated with the

framework is implemented through a distinct class type. Specifically, Query

classes are responsible for defining (or modeling) opportunities, while Solver

and SolverStrategy classes are tasked with developing search algorithms

that operate on opportunities. Finally, the Result class captures the precise

time windows during which a given opportunity can be accessed.

Given their similar names, it is important to separate the concerns addressed by

Solver and SolverStrategy. Solver and SolverStrategy differ

in that each Solver contains a search algorithm for a specific Query, while

SolverStrategy searches for composite opportunities defined as a tree of

Query instances. In essence, a Solver returns a Result instance for a

Query instance, whereas SolverStrategy returns a Result instance for a

tree of Query instances contained under a root Query instance node. These

trees are typically a result of the user’s actions in connecting atomic Query

instances with Boolean operations to model composite opportunities. Given

SolverStrategy owns the responsibility of resolving composite

opportunities, its default but extensible implementation executes a post-order

tree traversal algorithm24 that, for each Query instance node, determines what

Solver applies to such instance, executes the Solver on such Query

instance, and saves a Result object within the Query instance. Both Boolean

operations and atomic opportunities are modeled with Query classes; therefore,

each has its own mapping to a Solver class within a SolverStrategy

implementation. Eventually, all Result instances are merged and propagated

upwards through the tree to the root node, which contains the overall Result

instance for the composite opportunity. It is noteworthy that after successful

integration with Tychonis, the host application will not need to interact with

Solver classes by name. Rather, the host application’s search needs will be

satisfied by an chosen implementation of SolverStrategy. The host

24 The post-order tree traversal algorithm is a way to visit all nodes of a tree data structure in a
specific order. It works by recursively traversing the left subtree, then the right subtree, and finally
visiting the root node.
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applications only need to be aware of Query, SolverStrategy, and

Result.

2.2 User Extensibility

In order to improve over the usual static packaging of classes into a library that

users integrate with, we chose to leverage EMF and its Ecore metamodeling

capability. EMF is a code generation facility for developing applications based on

a structured data model. Ecore, a subcomponent of EMF, provides a convenient

way to define a model that is independent of its final implementation with a

programming language25. Ecore models can be created using various methods

such as hierarchical package-class trees, UML diagrams [28], annotated Java

classes, and domain-specific programming languages [29]. An Ecore model is

ultimately saved as an eXtensible Markup Language (XML) [30] Metadata

Interchange26 (XMI) file. EMF and Ecore have been useful in decreasing the

design time dedicated to Tychonis since without them, we would have had to

develop our own metamodeling capability.

The use of EMF and Ecore offers numerous benefits, including the creation of a

reusable and extensible Tychonis model that captures the Query, Solver,

SolverStrategy, and Result classes and their subclasses. This approach

is particularly beneficial in the context of space missions, where users may need

to add a new opportunity type to the Tychonis package without the need to write

Java code. To accomplish this, a user would:

26 XMI provides a standard, XML-based syntax for serializing metadata that is independent of the
tools used to create and manipulate that metadata. XMI is used to exchange metadata in a variety
of contexts, including software modeling and design, and has become an important part of the
modeling ecosystem, especially in the Object-Oriented Programming (OOP) community.

25 In summary, Ecore provides a way to define object-oriented models, while EMF provides a
framework for generating code and tools for working with instances of these models.
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1) Open the Tychonis Ecore XMI model file for editing.

2) Add a new opportunity type that inherits from a base Query class.

3) Add attributes pertinent to the new opportunity.

4) Auto-generate Java classes.

5) Compile and package Java classes in a Tychonis Java ARchive27 (JAR) file.

The extensibility process would also apply to the Solver and

SolverStrategy classes. To achieve this, it would be necessary to add

search algorithms to the generated Java classes within the solve() method

before packaging the JAR file. Unlike the extension process for Solver and

SolverStrategy, the extensibility of the Result class does not involve

modifications to the Ecore model. Instead, it is accomplished through Result's

ability to contain rows of results that, in turn, contain lists of objects whose

classes implement the Resultable interface. This approach enables Result

to be agnostic with regard to the type of data it can contain, allowing Solver to

make the appropriate decisions.

The extensibility processes discussed herein provide a notable advantage in that

applications that integrate with Tychonis can readily incorporate changes made to

the model. Specifically, modifications to Query, Solver, SolverStrategy

classes, and data within Result can be observed without the need for

recompiling the code of the application28. This feature renders Tychonis a fully

autonomous component, whereby capabilities can be evolved independently

from other software. This is particularly relevant in scenarios where new

geometry libraries or algorithms are to be implemented for search opportunities.

To exemplify, SOA has changed its opportunity search engine over the years, and

it did so by modifying its own code. If SOA had originally implemented Tychonis,

28 Recompiling software after making changes to the code can be a significant burden for
developers because it can be a time-consuming and error-prone process. Even a small change to
the code can require recompiling the entire software system, which can take a long time, especially
for large and complex systems. This can have a significant impact on users, as it can delay the
release of new features or bug fixes, and can also make it more difficult for users to obtain the
latest version of the software.

27 A JAR (Java Archive) file is a package file format typically used to aggregate many Java class
files and associated metadata and resources (text, images, etc.) into one file to distribute
application software or libraries on the Java platform. JAR files use the ZIP file format and have a
.jar file extension.
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then this change could have been limited to just developing new Solver classes,

and the release of an updated version of SOA with the changes would not have

been required. It is reasonable to think that this scenario will present itself again

in the future, e.g., when a new version of SPICE provides new capabilities SOA

wants to leverage, or when a mission’s parallelized version of a search algorithm

will provide improved search performance.

2.3 Mission Reusability

Tychonis provides a range of default opportunities, which are delineated in Table

1, along with their associated class names and parameters. The selection of these

defaults was informed by the aim of furnishing a feature set that is comparable to

both SOA and WebGeoCalc. Notably, each of the Query classes within Tychonis

can model a family of opportunities, thanks to the parameters that they make

available to the host applications, thereby promoting reusability at the

opportunity type level. Furthermore, Solver classes can also search for a family of

opportunities, as they define a set of criteria that dictate the type of Query classes

they accept. If a space mission finds the currently available opportunities,

parameters, or search algorithms inadequate, they have the option to develop and

incorporate their own into the Tychonis framework. In this way, these novel

additions can be subsequently employed by other missions, thus transforming

Tychonis into a repository of algorithms and opportunities that grows over time.

This scenario paves the way for Tychonis to serve as a multi-mission platform

that allows for coordinated, divide-and-conquer development of capabilities that

can be shared among several missions.

Assuming a serial but iterative augmentation-and-use cycle for Tychonis in the

context of a mission, it is probable that the initial iterations of new opportunities

and search algorithms may require enhancements. Nonetheless, as the mission

progresses through its phases, reviews, and frequent utilization of the software,

the Tychonis classes will undergo improvements and fixes. By the time the

mission attains a more advanced stage, the codebase will have demonstrated
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robustness and effectiveness, rendering the incremental additions of high quality

and potentially reusable by subsequent missions. Such development will serve as

an incentive for later missions to abstain from developing capabilities that are

already operational within the framework, thereby reducing cost and risk. It is

accepted within NASA that employing code that has been validated and is readily

available is a less costly and less risky proposition than crafting code from scratch

at the outset of a new mission29.

Opportunity Query Class Name

Angular separation between two bodies, from an observer,
satisfies a condition.

AngularSeparationTimeQuery

Distance between target and observer satisfies a condition. DistanceTimeQuery

Observer sees a target occulted by another body. OccultationTimeQuery

Observer - target position vector satisfies a condition. PositionTimeQuery

Range rate between target and observer satisfies a condition. RangeRateTimeQuery

Coordinate of the subobserver point on a target satisfies a
condition.

SubPointTimeQuery

Coordinate of a surface intercept vector satisfies a
condition.

SurfaceInterceptTimeQuery

Target enters the field of view of a spacecraft’s instrument. TargetInFOVTimeQuery

Logical AND between two opportunities (union of resulting
time intervals).

AndTimeQuery

Logical OR between two opportunities (intersection of
resulting time intervals).

OrTimeQuery

Logical NOT of one opportunity (complement of resulting
time intervals).

NotTimeQuery

Table 1. List of default Tychonis opportunities and their class names. The most relevant

attributes or parameters for each opportunity are underlined in each entry of the Opportunity

column. The last three opportunities are Boolean operators applied to one or two other

opportunities.

29 NASA often reuses and adapts heritage code from previous missions in new missions. This
approach can lead to cost savings and reduce development time, as the code has already been
tested and proven in real-world scenarios. Additionally, using familiar code can minimize the risk
of errors and improve reliability.
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2.4 Verification and Validation

The verification process of Tychonis is, in part, implicitly facilitated by EMF’s

code generation capabilities, which ensures adherence to the constraints specified

in the Ecore model. Ecore-based classes are created by users, which contain

parameter types, inter-class relationships, cardinalities, and other model

constraints. These constraints are directly reflected in the code generated by EMF

and can be evaluated using the Diagnostician30 class provided by EMF. The

Diagnostician class includes a validate()31 method that confirms

whether the parameters of an EMF-generated Java class conform to the

constraints defined in the Ecore model. For example, in an Ecore-based class

designed to model opportunities involving two bodies within a certain distance, it

is essential to ensure that a valid distance constraint is always present. If

verification fails, the calling code is notified with either a warning or an error that

specifies the exact location of the failure. This information is highly detailed and

is particularly useful when applications that integrate with Tychonis need to

validate user-created Query instances against their constraints prior to them

being subjected to a Solver. It is worth noting that such code would typically

be developed manually by users. However, EMF offers this functionality without

requiring any additional human input.

Tychonis’ default Solver classes and their algorithms are verified through unit

testing by means of JUnit32. The most important checks the unit tests perform

are to ensure opportunity search algorithms, for a known input, always return the

same known output (e.g., time windows, error codes). This approach effectively

guards against any deviations from the expected output, be it due to

32 JUnit is a popular open-source testing framework for Java programming language that is widely
used in software development to write and run repeatable and automated tests. JUnit provides a
set of annotations and assertions that help developers write test cases and ensure that their code is
working as intended.

31 The method returns a Diagnostic object that contains the validation results, including any
errors, warnings, or information messages that were generated during the validation process.

30 The Diagnostician class is a diagnostic reporting utility in the Eclipse Modeling
Framework (EMF) that helps identify potential issues with model instances during validation. It is
used to diagnose and report any issues with a given model instance against a set of validation
rules specified in the corresponding Ecore metamodel.
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modifications to existing algorithms or the inclusion of new algorithms for a

given opportunity type. It is expected, if users develop new Solver classes, that

they would write unit tests that can become part of the Tychonis framework. The

ability to develop unit tests solely for Tychonis speaks to the inherent capacity of

the framework to be tested independently of its integration with any external

applications.

Over time, Tychonis users are likely to introduce novel capabilities and refine

existing ones. As these capabilities are applied in the context of missions, they

may be iteratively enhanced. Notably, Tychonis provides a clear separation of

concerns such that scientists and developers can discuss the parameters of an

opportunity and the corresponding search algorithm for the opportunity as

distinct conceptual entities. This represents a significant departure from some

existing opportunity search software that treats modeling and search as a singular

step. Tychonis' separation between opportunities and algorithms enables the

explicit definition of requirements that can be verified through unit testing and

validated through the science tools that integrate with the framework. In

situations where opportunities or algorithms do not align with the scientist's

original intent, the developer and scientist may collaborate to refine these

components, which can then be independently deployed without impacting any

software integrated with Tychonis.

2.5 Textual Language

While Tychonis alone demonstrates the feasibility of creating an extensible and

reusable opportunity search framework, there can be challenges to its adoption

by individuals without a background in software development. To search for a

geometric event, an individual could generate custom code that employs the

Tychonis framework, compile the code, and execute it. However, this approach

can result in the code having a transitory existence (à la missions scripts) since it

may only be applicable to a single event. Another alternative is to integrate a

geometry software library, such as Tychonis, with a host application that can
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templatize geometric events. In such a scenario, the user can initiate the execution

of numerous event searches via the host software. This pattern will be described

in Section 3.5, where SOA users model their events via a Graphical User

Interface33 (GUI) and then request the software to search for the events using

Tychonis. However, space missions often operate in cost-constrained

environments, which can limit the availability of personnel and access to software

developers who can create code to search for specific events. Additionally,

science teams may lack access to advanced science planning software like SOA

that enables the templating of events for streamlined searches.

Given these limitations, we propose textual computer languages in a subsequent

chapter to model and search for geometric events. Our goal is to develop a

language that (i) provides unambiguous textual representations of space-based

geometric events and (ii) can be utilized by space mission scientists and engineers

with a moderate level of programming experience. In the pursuit of this

objective, we designed two approaches for the textual language and evaluated

their usability through a user-centric study.

33 A GUI, or Graphical User Interface, is a type of interface that allows users to interact with a
software application or an electronic device through graphical elements, such as icons, menus,
windows, and buttons, rather than through text-based command lines.
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3 Tychonis: Metamodel

Tychonis’ approach to user extensibility is consistent with other multi-mission

tools employed in the domain of mission planning and execution, which typically

separate the core functionality of the software from mission-specific applications

that employ the software. For instance, APGen [6] is a tool that simulates

spacecraft activity plans, evaluates the impact of those plans on spacecraft

subsystems, and schedules corresponding activities for execution. The software

architecture for APGen includes a core set of capabilities that encompasses the

simulator, the language used to define spacecraft behavior models, and the user

interface, among other features. Additionally, the software incorporates an

adaptation layer that enables mission-specific capabilities such as unique spacecraft

behavior models, spacecraft states, and mission schedulers. Development of the

core capabilities is the responsibility of multi-mission developers who are tasked

with releasing new versions of APGen, whereas adaptation layer development

and execution of the simulator and schedulers are the purview of individual space

missions. By leveraging a similar approach, Tychonis is able to provide a

customizable and adaptable framework that allows for efficient and effective

mission planning and execution.

Tychonis allows for extensibility and reusability via an object-oriented metamodel

[31]. The choice of the term metamodel is not arbitrary, as Tychonis' metamodel

functions as a means of constructing ontological types34 of opportunities and

search logic. It is important to note that while Tychonis incorporates a

metamodel, it also includes models implemented with its metamodel. Unless

users are extending the framework, they interact within model space, where they

(or software under their control) develop models that conform to generalized

34 An ontological model of a given domain describes the types of entities that exist in that domain,
their properties, and the relationships between them.
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constructs specified in the metamodel35. In this document, we will refer to both

the metamodel and model components of Tychonis as the larger metamodel.

As previously described, Tychonis uses EMF to define its metamodel. EMF, in

turn, provides the Ecore modeling capability36, which is similar to UML in that it

lets developers create relationships between structured classes that represent

different concepts. EMF, however, goes beyond the creation of abstract models

and also provides capabilities to generate Java classes directly from a model. In

the Tychonis framework, the generated Java classes serve as a faithful

reproduction of the metamodel, allowing for the creation of geometric

opportunity types that conform to the templated representations within the

metamodel. EMF offers a number of additional advantages, including the ability

to validate user objects, package a model and its generated classes as a Java

library, modify a model during run-time, and introspect the model definition and

its relationships. These capabilities make it easier for end-users to extend

Tychonis’ definition of opportunities or its search algorithms, or for external

software to integrate with Tychonis.

There are four main types of constructs within the Tychonis metamodel:

● Query classes define opportunities, their parameters, and their

relationship to other Tychonis classes. A Query class can represent

purely geometric opportunities, but it could also connect two or more

Query classes through Boolean relations (AND, OR, NOT). The use of

Boolean relations is pertinent when modeling composite opportunities

and will result in a tree of Query instances. Query classes are typically

36 In a sense, Ecore is Tychonis’ metamodel, hence Ecore can be considered a meta-metamodel.
This is analogous to a computer language to construct computer language grammars, which can
also be considered a meta-metamodel.

35 To elaborate further, a metamodel is a model that describes the structure and constraints of
other models. It defines the concepts, relations, and rules that apply to a particular domain of
interest. In contrast, a model is an instance of a metamodel that represents a particular system,
process, or artifact in that domain. Tychonis is the metamodel that provides the blueprint for
creating models, and users create models that capture the specific details and characteristics of a
particular opportunity.
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instantiated by software that implements Tychonis and are developed by

mission users who need to add new opportunity types to the framework.

● Solver classes contain the algorithm that searches for time windows in

which an opportunity, defined within a Query instance, occurs.

Solver classes create Result instances that contain these time

windows. A Solver, in general, only applies to a specific Query class.

Solver classes are developed by individuals knowledgeable about

geometric methods or algorithms and may use libraries such as SPICE or

MONTE.

● SolverStrategy classes (1) create and assign Solver instances to

Query instances, (2) execute the Solver opportunity search class code,

and (3) return a Result instance back to the calling software. Given

opportunities can be composite and defined as a tree data structure,

SolverStrategy classes also include the algorithm that walks a

Query tree hierarchy and executes the previous (1), (2), (3) sequence for

each Query instance. SolverStrategy classes are instantiated by

software that uses Tychonis in order to obtain the time windows that

correspond to an opportunity, be that opportunity atomic (a single

Query instance), or composite (a tree of Query instances).

SolverStrategy classes are developed by users who understand

what Solver classes apply to specific Query classes, and who know

how to develop or optimize a resolution algorithm for composite

opportunities.

● The Result class describes the values returned by Solver and

SolverStrategy instances in their search for opportunities modeled

by Query instances. Result instances are created by Solver classes and

later processed by other software in order to provide users with

information about searched opportunities. They typically contain time

windows that describe when a Query instance takes place, but they can

also contain other types of contextual data relevant to the time windows

such as celestial bodies or spacecraft involved.
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The partitioning of modeling and resolution concerns in Tychonis software is a

direct response to the imperative of addressing our research question. Query

classes embody the definition of opportunities and their interrelationships, while

Solver classes encapsulate the algorithmic logic that searches for atomic

opportunities modeled in Query instances. SolverStrategy classes are

responsible for assigning Solver instances to Query instances, executing

Solver opportunity search class code, and resolving composite opportunities.

The Result class encapsulates data returned after an opportunity has been

searched. By delineating the software into these separate constructs, we are able

to establish clear boundaries between different functionalities and support the

diverse use cases for which the software was designed.

3.1 Use Cases

Tychonis facilitates three categories of use cases, namely Integration use cases,

End-user use cases, and Maintenance use cases, which are illustrated in Figure 11.

The users in Integration and Maintenance cases are developers, whereas the

targets for End-user cases are mission engineers that need to search for

opportunities. These use cases were derived from the inspection of current

opportunity search software such as SOA, SPICE, Percy, and WebGeoCalc.
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Figure 11. Metamodel Use Cases. End-User Use Cases (top) A mission team operates mission

software that integrates with Tychonis. Mission software instantiates Query classes that represent

an opportunity. The same or other software invokes a SolverStrategy to resolve the

opportunity. Maintenance-Driven Use Cases (bottom): An engineer maintains - adds, deletes, or

modifies - Query, Solver, and SolverStrategy classes based on the needs of a mission.

Changes are propagated without the need to recompile mission software.

Integration use cases cater to developers and involve acquiring the Tychonis

framework from a repository and writing computer code to facilitate the

connection between mission software and Tychonis. Mission software can

accommodate diverse means of input and representation of opportunities, which

include textual descriptions, form-based descriptions, and projectional editors37

(also referred to as structured editors or syntax-directed editors) [32], that enable

a visual representation of the opportunity's structure. Integration necessitates

either the development of code that employs Tychonis' Query class-based

representations directly or the implementation of logic that transforms the

constructs of mission software into Tychonis' representations. Upon completion

37 A projectional editor is a type of software tool that allows users to edit code directly through a
projection of the abstract syntax tree of a programming language, rather than through a
text-based representation of the code. This approach is in contrast to traditional text-based
editors, which require the user to enter code using a specific syntax and structure. Projectional
editors can make it easier for developers to work with complex languages or domain-specific
languages, as well as facilitate automation and code generation.

49



of integration, mission software will no longer require updating and recompiling

with each modification of the metamodel and the subsequent generation of new

Java classes. Software that integrates with the framework can query the

framework to determine the availability of Query or Solver classes and,

therefore, update its comprehension of the opportunities it can search for, and

present the same to the user.

End-user use cases are interaction-oriented and can be seen in Figure 11, top

half. These use cases outline how Tychonis is invoked by other software as a

result of user actions. A mission engineer, using mission software that has already

been integrated with Tychonis, will model opportunities on a user interface. This

process results in the instantiation of Query classes by the mission software.

Following this, the user can instruct the mission software to conduct a search for

an opportunity, which will trigger the instantiation of a SolverStrategy

class and commence the resolution process of the opportunity. Subsequently,

Tychonis returns an instance of a Result class, which provides all the relevant

data pertaining to the discovered opportunity. The data contained within the

Result instance can then be utilized directly by the mission team or displayed

on the UI by the calling software.

Maintenance use cases are developer-oriented and aimed at enhancing Tychonis'

capabilities by adding, modifying, or deleting Query, Solver, and

SolverStrategy classes. The framework offers several built-in Query

classes that define commonly used opportunities, along with a number of

Solver classes and a pre-existing SolverStrategy. However, if users are

not satisfied with the built-in classes, they can make the necessary modifications

by first altering the Ecore metamodel, followed by generating new Java versions

of the modified classes or developing entirely new classes via EMF, and

eventually supplementing code to the generated Solver or

SolverStrategy Java classes. It is crucial to note that Query classes solely

represent a data model with no algorithms, hence limiting the need for modifying

the generated Java classes.
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3.2 Opportunities

Semenov [21] expounds on a number of opportunities that can be examined

using the WebGeoCalc software, such as Position, Angular Separation, Distance,

Sub-Point, Occultation, Surface Intercept, Target in Field of View, and Ray in

Field of View38. To facilitate requirement development and testing, Tychonis is

equipped to model and resolve these opportunities by default. While the

aforementioned opportunities within WebGeoCalc are atomic, enabling users to

search for only one opportunity at a time, authors of [2] outlined how SOA can

amalgamate atomic opportunities into larger opportunities using Boolean logic.

Tychonis has followed this notion and developed a set of Query classes within

its metamodel that reference and relate Query instances hierarchically in a tree.

It is worth noting that, presently, only Boolean Query classes contain such

relationships, as the built-in geometric Query classes are considered to be

terminal within the tree structure. Figure 12 shows an example of a composite

opportunity named Qx that contains several Boolean relationships.

38 The Position event in spacecraft operations indicates the location of the spacecraft at a specific
time, whereas the Angular Separation event represents the angle between two celestial objects as
observed by the spacecraft. The Distance event specifies the distance between the spacecraft and
a target object, while the Sub-Point event indicates the location on the surface of a celestial body
directly below the spacecraft. The Occultation event is the period when the spacecraft is obscured
by another object, such as a planet, while the Surface Intercept event represents the moment
when the spacecraft passes over a specific location on the surface of a celestial body. The Target
in Field of View event occurs when a specific target is visible in the spacecraft's sensor field of
view, while the Ray in Field of View event indicates the moment when a sensor ray intersects a
celestial object's surface.
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Figure 12. Example of a Composite Opportunity. Ellipses represent Boolean Query

instances whereas rectangles represent terminal geometric Query instances.

3.3 Structure and Extensibility

This section describes in more detail the most relevant classes involved in

Tychonis’ use and extension from an object-oriented modeling perspective.

Generally, extending Tychonis components entails a repeatable process whereby

the user modifies the Ecore metamodel by including classes that either

implement an interface or extend an existing class, then generates Java classes

through EMF. Next, the user proceeds to develop algorithms within the

generated classes before compiling and packaging the new classes into a JAR file.

It is noteworthy that the said workflow obviates the need for recompiling mission

software to avail of the new additions.

The subsequent discussion will focus on the key relationships and core classes. It

should be noted that the Ecore modeling framework provides its own

terminology to define metamodels, such as EClass for Ecore classes and

EReference for a reference from an EClass to another EClass. Although
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these Ecore-specific names will not be discussed directly, it is expected that the

use of these object-oriented constructs refers to their Ecore equivalent. For a

more comprehensive understanding of the varied constructs that Ecore users can

use to generate their models, please consult Figure 13. Additionally, to enhance

reading fluidity of the text, the class suffix may be omitted when referring to a

class (e.g., Query instead of Query class), except when necessary. References to

instance names will be followed by the word instance (e.g., Query instance).

Figure 13. The Ecore classes and their relationships. Ecore offers its users a range of classes

that can be utilized for creating customized models. Once users have implemented their models,

EMF has the capability to generate Java classes that encapsulate the user-defined model. These

generated classes possess advantageous methods that enable verification of instance validity, and

facilitate introspection of the internal relationships within the model.
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3.3.1 Query

In its definition of the Query metamodel, as depicted in Figure 14, Tychonis

provides the Query base class, which contains the coordinate system used by

parameters of the query, along with a reference to Result. Result is the class

that defines how results of a Query instance are propagated back to software

that integrates with Tychonis. A Result object is referenced from a Query

object only after a Solver instance has searched for the opportunity modeled

by that Query object.

Query is extended by UnboundedTimeQuery and, in turn,

UnboundedTimeQuery is extended by TimeQuery. The distinction

between UnboundedQuery and TimeQuery is that

UnboundedTimeQuery does not establish a time frame for defining an

opportunity, whereas TimeQuery bounds an opportunity with a start time and

an end time. The latter is essential to avoid exploring an infinite search space.

Moreover, Boolean Query classes do not need to specify a time boundary, given

that it is implicit in the query's reference to other queries and in the execution of

the Boolean operation. Therefore, TimeQuery serves as the parent class for

the built-in atomic geometric Query classes, while UnboundedTimeQuery

acts as the parent class for the built-in Boolean Query classes. If a user opts to

include a new Query type, the initial step would be to assess the desirability of

expanding the UnboundedTimeQuery or TimeQuery classes, built-in

geometric or Boolean Query classes, or mission-developed Query classes. The

selection would be contingent on the degree of code reuse the user desires.
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Figure 14. The Query Class Hierarchy. The Query class hierarchy with two example

extensions, DistanceTimeQuery and AndTimeQuery.

Some concrete examples of extensibility could be:

1. DistanceTimeQuery is a geometric query that models opportunities

in which a body is located at a specified distance relative to another body.

This query extends the TimeQuery class and references two Body

instances (target and observer), a DistanceTest instance that defines

the distance inequality, and an AberrationCorrection instance for

light speed and relative velocity magnitude corrections.

2. AndTimeQuery is the built-in Boolean query that models an AND

relationship between two other Query instances. As such,

AndTimeQuery extends UnboundedTimeQuery and references

two other UnboundedTimeQuery instances that capture the two
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sides of the AND operation. The selection of

UnboundedTimeQuery as the parent class for AndTimeQuery is

motivated by the fact that the Boolean Query classes have no need to

explicitly define a search time window.

3.3.2 Solver

Solver contains the code that resolves a Query. Typically, there should be at

least one Solver class for each Query class, although in certain cases multiple

Solver classes may be available for a specific Query class. For example, when

users are experimenting with new Solver implementations that are more

efficient or use new libraries, it may be necessary to maintain multiple Solver

classes until the new implementation is confirmed to be an improvement over

the previous one in terms of accuracy and performance. The decision on which

Solver to use for a specific Query is made by SolverStrategy.

Solver is an interface that provides an extension point used by Tychonis’

built-in Solver classes and Solver classes developed by end-users. Classes

that extend the Solver interface must implement both the solve() and

validate() methods. The solve() method defines the search algorithm

for the given Query instance, while the validate() method verifies that the

Query instance can be resolved by the Solver class. The validate()

method returns a list of ValidationResult objects containing information

on the validation results, such as whether validation passed or not, any sources of

errors, and human-readable messages. To ensure a viable resolution, the

solve() method internally calls the validate() method.

Figure 15 shows the described structure, which includes two extensions,

DistanceTimeQuerySPICESolver and

AndTimeQueryBasicSolver, both of which are built-in Solver classes.

The former employs the SPICE toolkit to identify time windows for

DistanceTimeQuery objects, while the latter implements an intersection of
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time windows from the two sides of an AND relationship defined in an

AndTimeQuery object. It is worth noting that although there are other means

to implement a Solver for DistanceTimeQuery objects, SPICE was

chosen for implementation, as with other Solver classes provided in Tychonis.

Furthermore, DistanceTimeQuerySPICESolver has the capability to

search for distance opportunities even when either one or both Body parameters

in a DistanceTimeQuery instance are unknown, as indicated by a null

Java value. When a Body instance is set to null, the resolution algorithm

within DistanceTimeQuerySPICESolver's solve() method will

search for all bodies loaded by Solver that satisfy the distanceTest

constraint within the DistanceTimeQuery instance.

Figure 15. The Solver Interface. The Solver interface with its two methods and two

built-in Solver classes: a DistanceTimeQuerySolver implemented with SPICE and an

AndTimeQuerySolver.

3.3.3 SolverStrategy

The SolverStrategy interface constitutes a pivotal extension point that

facilitates the development of the underlying logic for Query-to-Solver

assignments, tree traversal algorithms for multiple Query instances, and the

execution of Solver code for each Query node. The implementation of this

interface requires the incorporation of a solveFrom() method that receives
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the root Query instance within the tree structure to generate a Result

instance. A graphical representation of this concept is presented in Figure 16.

Tychonis, as a software framework, offers a built-in implementation of

SolverStrategy referred to as SimpleSolverStrategy. This pre-existing

implementation, along with its associated helper classes, serves as a valuable

exemplar of SolverStrategy extensibility. Further elaboration on this

implementation can be found in the following points:

● The implementation of SimpleSolverStrategy, which adheres to

the SolverStrategy interface, entails the resolution of a Query

tree through a hierarchical process. This process first resolves the leaf

nodes followed by the upward propagation of the resultant values. This

resolution procedure continues iteratively, culminating in the resolution of

the top Query node passed as a parameter. However, it is pertinent to

note that the current implementation of this resolution algorithm

operates in a serial fashion. Despite the potential for parallelization, given

the data independence across nodes, parallel processing is not currently

incorporated.

● QuerySolverMappingProvider is an interface used by

SimpleSolverStrategy. The purpose of

QuerySolverMappingProvider is to provide a Solver instance

for a specific Query instance through a method known as dependency

injection [33]. Dependency injection proposes that the implementation of

at least one of two or more dependent components should be realized at

runtime via another component39. In this case,

QuerySolverMappingProvider is the component that provides a

Solver instance for a Query instance at runtime.

QuerySolverMappingProvider is an interface in order to enable

39 Dependency Injection allows developers to create more modular, maintainable, and testable
software by decoupling object creation and object usage. Instead of having objects create their
dependencies directly, those dependencies are injected into the object by an external framework or
container.
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user extensibility, as missions might want to provide Query-to-Solver

dependencies through various means.

● CSVQuerySolverMappingProvider is a class that implements

the QuerySolverMappingProvider interface. It retrieves the

mappings from a Comma-Separated Values40 (CSV) file and provides a

Solver through the getSolver() method defined in the

QuerySolverMappingProvider interface.

Figure 16. The SolverStrategy Interface. The SolverStrategy interface with

SimpleSolverStrategy as its default implementation. Tychonis also provides extensibility

for SimpleSolverStrategy by letting users implement their own dependency injection

provider via QuerySolverMappingProvider.

3.3.4 Result

Result is used to store the findings of opportunity search algorithms within a

Solver class. Within each Result instance resides a reference to the Query

instance it contains result data for. In turn, each Query object also contains a

reference to its Result instance, thereby establishing a reciprocal relationship

between the two. It is important to note that the responsibility of defining this

40 Comma-Separated Values (CSV) is a file format used to store tabular data, in which each row
represents a record, and each column represents a field within that record. In a CSV file, the
values are separated by commas, and each record is separated by a newline character.
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bidirectional association between a Query instance and a Result instance lies

with SolverStrategy, since the creation of Result objects falls under the

purview of Solver.

The Result class is not intended for user modification or extension.

Nevertheless, it is endowed with the capacity to reference distinct data types or

classes. This is attributable to the fact that, while contents within a Result

instance typically contain time windows in which an opportunity takes place, they

can also describe other data depending on the Solver class used by an

implementer of SolverStrategy. The ability to remain agnostic to data

types is achieved through the employment of a tabular format to describe results,

with each cell of the table potentially represented by an instance of a class that

implements the Resultable interface. The end result is that Solver

developers are empowered to determine the nature of the data returned by a

given Solver implementation with minimal constraint.

In order to structurally describe the result table, Result contains a list of

references to ResultTuple objects that function as the rows of the table.

Each ResultTuple object within a given Result instance, in turn,

references instances of classes that implement the Resultable interface. The

implementation of the Resultable interface is established via a <key,value>

pair utilizing a String key within each Resultable instance, and a String

value via the stringValue() method, which necessitates implementation by

the user. Typically, the key in the <key,value> pair is utilized to clarify the type of

data that a Resultable instance contains, while the value offers a serialized

textual representation of the object that can be accessed by external software.

This is exemplified in the Body class utilized to designate space bodies, which

itself implements the Resultable interface. Specifically, Body instances are

utilized to define relationships between bodies in Result instance rows, such as

<"target","Venus"> and <"observer","Cassini">. Additionally, Tychonis provides

methods for searching data types within Result instances, as will be expounded

upon in Section 3.4.3.
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3.4 Searching for Opportunities

After laying the groundwork by elucidating the relevant classes involved in

Tychonis' application and extension, we present a systematic approach for

utilizing the framework to locate opportunities. This approach comprises three

steps: (i) opportunity modeling, (ii) resolution, and (iii) result parsing. At a user

level, Tychonis-enabled software typically affords assistance for these steps in a

more interactive manner: users manipulate a user interface to specify

opportunities (modeling), choose an option to initiate a search (resolution), and

subsequently view the search results (parsing). All such user interactions lead to

internal instantiations of EMF-generated Java classes supplied by Tychonis.

An important improvement offered by the separation of the distinct software

concerns (namely, modeling, resolution, and parsing) in Tychonis is its provision

of a framework for treating needs as components that vary at different times for

different reasons [34]. From a practical standpoint, scientists and engineers often

find it challenging to comprehend code that intermixes modeling and resolution

because they require expertise in both the scientific or engineering definition of

an opportunity and in how a software library (e.g., SPICE, MONTE) carries out

its search. Tychonis presents a solution to this issue.

To contextualize the preceding observations within the scope of the following

discourse, this text provides examples of the three phases mentioned. Although

these examples are instructive, they will be static, denoting that the code

exhibited will not be parameterized in the same manner as it would be if

integrated with real-world mission software. A seamless integration between

Tychonis and mission software facilitates programmatic modeling of

opportunities from user input, without necessitating the manual generation of

code, as presented here.

In the interest of supplementary contextual background, integration with real-life

mission software could involve the direct utilization of Tychonis' EMF-generated

Java classes. Alternatively, an alternative path for integration would entail utilizing

61



an Ecore XML description file (tychonis.ecore), which encapsulates the complete

Tychonis metamodel. Software reliant on this description file could leverage

reflection [35] to instantiate classes from the Tychonis metamodel. This approach

possesses the advantage that no modification (and no recompilation) of the

software employing Tychonis would be necessary if the Tychonis metamodel is

updated and its Java classes necessitate regeneration. The latter approach in

question will be elaborated upon in a subsequent section.

3.4.1 Modeling

The goal of this step is to model or define an opportunity in unambiguous terms.

To achieve this, the metamodel provides pre-built Query classes and allows

users to define their own Query classes. The issue of ambiguity in defining

opportunities is a crucial concern, particularly in fields where accuracy is

paramount. The use of natural languages like English, which are inherently

ambiguous, to describe opportunities can lead to varied interpretations by

different recipients. For instance, consider this opportunity: “there is an

occultation between Venus and the Sun as seen from Earth”. A mission engineer

might interpret this statement as Venus being in front of the Sun, while another

person might think the front-back relationship is with the Sun in front of Venus.

Moreover, the time window during which the opportunity can be searched is also

a point of discussion. The role of a metamodel in these circumstances is to

provide clarity as to what it means to capture domain-specific knowledge and set

regulations about such a domain.

In continuation with the previous occultation opportunity example, it should be

noted that the OccultationTimeQuery class, which is bundled within

Tychonis, defines an atomic occultation opportunity as requiring a front body, a

back body, an observer, a type (full, annular, or partial), an aberration correction,

and a time window via its inheritance of TimeQuery. Given the stringent

criteria stipulated by OccultationTimeQuery, engineers can formulate a

more succinct rendition of the prior opportunity named O1 defined as: “there is
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Java

an occultation of any type between Venus - as back body, and he Sun - as front

body, as seen from Earth anytime in 2019”. The Java code that represents O1 is

present in Listing 1, and it presupposes the utilization of default aberration

correction and occultation type (i.e., any). It is important to note that, while the

presented code accurately models an opportunity, it does not embody an

integration with mission software that accounts for variable user input and

parameterization. Furthermore, Listing 1 showcases several ancillary EMF

idioms, capabilities, and auto-generated constructs, such as

TychonisFactory, an auto-generated class that facilitates the creation of

Tychonis class instances, which are subsequently populated with data via getters

and setters. These getters and setters conform to the metamodel and are also

generated automatically by EMF.

Body frontBody = TychonisFactory.eINSTANCE.createBody();
frontBody.setName("SUN");
Body backBody = TychonisFactory.eINSTANCE.createBody();
backBody.setName("VENUS");
Body observerBody = TychonisFactory.eINSTANCE.createBody();
observerBody.setName("EARTH");
OccultationTimeQuery anOccultationQuery =

TychonisFactory.eINSTANCE.createOccultationTimeQuery();
TimeWindow searchWindow =

TychonisFactory.eINSTANCE.createTimeWindow();
TimeInstant startTime =

TychonisFactory.eINSTANCE.createTimeInstant();
startTime.setTimeFromString("01/01/2019");
TimeInstant endTime =

TychonisFactory.eINSTANCE.createTimeInstant();
endTime.setTimeFromString("12/31/2019");
searchWindow.setStartTime(startTime);
searchWindow.setEndTime(endTime);
anOccultationQuery.setFrontBody(frontBody);
anOccultationQuery.setBackBody(backBody); //line 16
anOccultationQuery.setObserverBody(observerBody);
anOccultationQuery.setQueryTime(searchWindow);

Listing 1. Modeling an Occultation Opportunity. Java code that models the O1 opportunity,

defined as “there is an occultation of any type between Venus - as back body, and the Sun - as

front body, as seen from Earth anytime in 2019”.
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Lastly, it is pertinent to remark that if a user opts not to specify one of the Body

parameters in an OccultationTimeQuery instance, then that parameter

will remain unknown and will necessitate further exploration. For example, if the

developer omits line 16, the opportunity defined in anOccultationQuery

would be articulated as "there is any type of occultation between any back body

and the Sun, as viewed from Earth, at any point in 2019".

While O1 serves as a clear example of the Tychonis metamodel, it is plausible

that it represents a comparatively simpler structural perspective of the potential

possibilities enabled by the framework. For instance, one could conceive of

another opportunity, denoted as O2, which reads as follows: "the distance

between Earth and the Moon is between 370,000 km and 390,000 km in the last

three months of 2019". This opportunity could be converted into a composite

opportunity, such as "the distance between Earth and the Moon is more than

370,000 km in the last three months of 2019, AND the distance between Earth

and the Moon is less than 390,000 km in the last three months of 2019". This

composite opportunity is modeled in Listing 2 using two

DistanceTimeQuery objects and one AndTimeQuery object.

It is worth noting that this particular example is not coincidental, as it raises the

prospect of extending the metamodel beyond Query, Solver, and

SolverStrategy. For example, as Figure 14 demonstrates,

DistanceTimeQuery contains a reference to an instance of the Test class.

Since the Test class is currently restricted to accommodating less-than or

greater-than inequalities, a user may extend the class within the metamodel,

designate it as the BetweenTest class, and integrate an upper and lower

bound value. This would establish an is between relationship, obviating the need for

the composite distance opportunity with an AND operator.
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Body bodyl = TychonisFactory.eINSTANCE.createBody();
body1.setName("EARTH");
Body body2 = TychonisFactory.eINSTANCE.createBody();
body2.setName("MOON");
TimeWindow searchWindow =

TychonisFactory.eINSTANCE.createTimeWindow();
TimeInstant startTime =

TychonisFactory.eINSTANCE.createTimeInstant();
startTime.setTimeFromString("09/01/2019");
TimeInstant endTime =

TychonisFactory.eINSTANCE.createTimeInstant();
endTime.setTimeFromString("12/31/2019");
searchWindow.setStartTime(startTime);
searchWindow.setEndTime(endTime);
GreaterThanTest greaterThan370 =

TestsFactory.eINSTANCE.createGreaterThanTest();
greaterThan370.setValue(3.7e5);
DistanceTimeQuery queryl =

TychonisFactory.eINSTANCE.createDistanceTimeQuery();
queryl.setTargetBody(bodyl);
queryl.setObserverBody(body2);
query1.setDistanceTest(greaterThan370);
queryl.setQueryTime(searchWindow);
LessThanTest lessThan390 =

TestsFactory.eINSTANCE.createLessThanTest();
lessThan390.setValue(3.9e5);
DistanceTimeQuery query2 =

TychonisFactory.eINSTANCE.createDistanceTimeQuery();
query2.setTargetBody(bodyl);
query2.setObserverBody(body2);
query2.setDistanceTest(lessThan390);
query2.setQueryTime(searchWindow);
AndTimeQuery andQuery =

TychonisFactory.eINSTANCE.createAndTimeQuery();
andQuery.setLeftSide(query1);
andQuery.setRightSide(query2);

Listing 2. Modeling a Composite Opportunity. Java code that models the O2 opportunity

with two DistanceTimeQuery objects and one AndTimeQuery.
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3.4.2 Search

The process of searching for an opportunity involves the selection of one of the

available SolverStrategy classes and the subsequent invocation of the

solveFrom() method within the chosen SolverStrategy. In this

context, the solveFrom() method receives the root Query node in the

opportunity tree that the user intends to initiate the search from. An illustration

of this process is demonstrated in Listing 3, where the code presented solves

opportunity O2 from Listing 2. The responsibility of resolving the composite

opportunity tree and linking each Query node with a corresponding Result

instance that encapsulates the data generated by the Solver classes utilized,

rests with the chosen SolverStrategy. It is pertinent to note that there are

numerous approaches to implementing this logic, and as such, Tychonis offers

users the flexibility to develop their own SolverStrategy beyond the

pre-existing implementation.

Tychonis' built-in implementation is provided by the

SimpleSolverStrategy class. It employs a post-order tree traversal

algorithm [36] that systematically visits and resolves all Query nodes. Whenever

the algorithm encounters an unsolved Query node that is solvable, i.e., all its

dependent child Query nodes have already been solved or the node is a leaf

node, it performs a lookup within a QuerySolverMappingProvider

object. This object facilitates the binding of Query classes and Solver classes

through the getSolver() method. Upon invocation, this method inspects the

passed Query instance and subsequently returns a Solver object to the

SimpleSolverStrategy class. The Solver object received is then

utilized to solve the Query instance. This process continues successively from

left to right and upwards in the tree structure until the root Query node - the

one passed to solveFrom() - is also resolved.

Furthermore, it is important to discuss QuerySolverMappingProvider's

built-in implementation. The primary purpose behind the creation of
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QuerySolverMappingProvider is to enable users to choose whether the

mapping between a Query class and a Solver class should be statically

defined in compiled code or dynamically defined via dependency injection. In the

case that the mapping should be dynamic,

QuerySolverMappingProvider specifies where this mapping should

reside. A default implementation of QuerySolverMappingProvider is

provided as CSVQuerySolverMappingProvider. This implementation

reads a CSV file containing a row for each Query class name, followed by the

name of the EMF factory class responsible for creating a Solver instance, and

the name of the method in that factory that returns the Solver instance. This

enables CSVQuerySolverMappingProvider to create a Solver

instance via reflection when the framework requests a Solver instance with the

getSolver() method.

SimpleSolverStrategy strategy =
TychonisFactory.eINSTANCE.

createSimpleSolverStrategy();
CSVQuerySolverMappingProvider mappingProvider =

TychonisFactory.eINSTANCE.
createCSVQuerySolverMappingProvider();

mappingProvider.setCSVFile(new File("config/mappings.csv"));
strategy.setQuerySolverMappingProvider(mappingProvider);
strategy.solveFrom(andQuery);

Listing 3. Searching for Opportunity O2. Example code that resolves the O2 opportunity with

the built-in SolverStrategy implementation.

3.4.3 Parsing Results

Once the search step is complete, the opportunity tree's Query objects contain

references to corresponding Result objects generated by the Solver classes.

At this point, mission software accesses the Result instance for the entire
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opportunity tree by invoking the getResult() method on the root Query

node. Thereafter, the Result object can be parsed by mission software to

scrutinize its constituent ResultTuple instances, which can be further

decomposed into Resultable objects. This structure, resembling a table,

lends itself to hierarchical parsing. A concrete example of this approach can be

found in Listing 4, which illustrates how the results for opportunity O2 can be

parsed and displayed on a computer terminal.

In terms of extensibility, the Result table's flexibility arises from the fact that

each cell holds references to objects implementing the Resultable interface.

This feature allows engineers to decide what type of data is included in the table.

Thus, should a mission require a new data type, an engineer would define a class

implementing the Resultable interface and then modify an existing Solver

or create a new one to include the new data type in the table. While this flexibility

offers advantages, it might make retrieving data by type more complex. To

address this issue, the Result and ResultTuple classes provide methods to

query their contents. For instance, the public <T> EList<T>

getAll(Class<T> aClass) method can be used to obtain all

TimeWindow instances within a Result instance if invoked this way:

result.getAll(TimeWindow.class).

Result result = andQuery.getResult();
for (ResultTuple tuple : result.getEntries()) {

for (Resultable resultable : tuple.getEntries()) {
printKeyValue(resultable.getKey(),
resultable.stringValue());
System.out.println();

}
System.out.println();

}
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[key: target, value: EARTH]
[key: observer, value: MOON]
[key: result_window, value: {(2019-OCT-01 20:30:17.259, 2019-OCT-05 03:40:38.670)}]

[key: target, value: EARTH]
[key: observer, value: MOON]
[key: result_window, value: {(2019-OCT-18 01:35:32.289, 2019-OCT-22 19:10:37.216)}]

[key: target, value: EARTH]
[key: observer, value: MOON]
[key: result_window, value: {(2019-OCT-29 18:35:11.525, 2019-NOV-02 07:06:54.701)}]

[key: target, value: EARTH]
[key: observer, value: MOON]
[key: result_window, value: {(2019-NOV-13 17:51:00.865, 2019-NOV-20 13:11:38.668)}]

[key: target, value: EARTH]
[key: observer, value: MOON]
[key: result_window, value: {(2019-NOV-25 17:42:09.218, 2019-NOV-30 05:22:11.256)}]

[key: target, value: EARTH]
[key: observer, value: MOON]
[key: result_window, value: {(2019-DEC-10 11:50:46.855, 2019-DEC-27 15:25:18.377)}]

Listing 4. Parsing Results. Top section: Code that parses a Result instance and prints the

table it contains out to the terminal. Bottom section: Terminal printout that results from the

execution of the code above. Results might differ depending on Solver settings used (e.g.,

SPICE kernels).

3.5 Case Study: Integration with SOA

This section presents a case study for a potential future integration of SOA with

Tychonis, aiming to evaluate Tychonis as a reusable and extensible framework.

We will commence by discussing the integration patterns that Tychonis supports,

followed by an analysis of the potential integration between SOA and Tychonis.

To accomplish this, we will divide SOA’s opportunity search capability into three

major concerns, describe their operation, and present a likely integration path

illustrated in Figure 17. The Modeling concern produces a Query tree, the

Search concern produces a Result instance, and the Results Table yields a User

Interface (UI) component displaying the contents of the Result instance.

Integrating SOA with Tychonis necessitates the development of code that

satisfies the actions in italics, as will be detailed in this text. This integration
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approach is transferable to other tools that require the identification of geometric

opportunities, such as ESA’s Solar System Science Operations Laboratory

(SOLab) [23], which has a capability named Event Finder, akin to SOA’s

opportunity search, or JPL’s WebGeoCalc tool.

Figure 17. Searching for Opportunities in SOA. The SOA opportunity search process

post-integration with Tychonis. The main user actions with SOA are in bold text. SOA’s Modeling,

Resolution, and Results table concerns are underlined.

3.5.1 Integration Pattern: Static vs. Dynamic

When integrating with an external library, developers typically instantiate classes

and call methods and functions from the library by name. However, when using

Tychonis, this approach does not automatically transfer updates to the

metamodel to the host application. To illustrate this point, suppose that a

Tychonis version lacks the capability to model and search for phase angle41

41 Phase angle is an angular measurement defined by the position of three bodies in space: an
observer, a target, and an illumination source. It is the angle between the direction of the observer
as seen from the target, and the direction of the illumination source as seen from the target. The
phase angle is important in astronomy and space exploration as it is used to determine the
geometry of bodies in space, such as the position and orientation of a planetary or lunar surface
with respect to the illumination source.
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inequalities between illuminator, target, and observer bodies. To address this

issue, a user may create a PhaseAngleTimeQuery class to model the

opportunity, along with a PhaseAngleTimeQuerySolver to search for it.

These classes would then be added to the Tychonis Ecore model, and their

attributes defined. Following this, EMF would generate several Java classes, and

the search algorithm would be added to a PhaseAngleTimeQuerySolver

Java class.

However, how would a tool like SOA know that there is a new opportunity type

it can search for? With this static API paradigm, SOA would only be aware of this

new opportunity type if a developer augmented the SOA code that contains all

opportunities by class name and added PhaseAngleTimeQuery. However,

modifying the SOA code would entail a significant time commitment, as a new

software release would need to be certified and provided to users. To solve this,

Tychonis offers facilities for dynamic integration, which ease this burden in

exchange for a more involved initial integration effort. These facilities involve

writing code in the user application to ask Tychonis what opportunity types it

supports and then offering those to users for their perusal. The following

subsection will discuss how this occurs in greater detail.

3.5.2 Modeling

The Opportunity Search Query Builder is a tool provided by SOA that enables users

to visually design opportunities. The tool consists of a palette that displays the

available opportunity types and Boolean operators, a canvas where users can

place opportunity types from the palette and link them with Boolean operators,

and a table where users can set attribute values for the selected opportunities

from the canvas. Creating an atomic opportunity involves dragging an

opportunity type from the palette, dropping it on the canvas, and setting its

parameters on the attribute table. To create composite opportunities, users repeat

these steps for as many atomic opportunities as required and link them with

Boolean operators. An illustration of this interaction can be found in Figure 18,
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where SOA's Opportunity Search Query Builder UI is shown modeling the

opportunity “within the period of April 23, 2015 to June 30, 2015, the phase

angle formed by the celestial bodies of Dawn, Ceres, and the Sun exceeds 60

degrees, and simultaneously, the distance between Dawn and Ceres remains

under 3,000 miles”.

Figure 18. SOA’s Opportunity Search Query Builder. The palette of atomic opportunities

and Boolean operators (top-right corner) contains items that can be dragged and dropped into

the opportunity design canvas (top-left corner) in order to create a composite opportunity. The

attributes of a selected (red outline) atomic opportunity in the canvas can be modified from the

attributes table (bottom).

If a static integration is desired, a developer needs to identify the opportunity

types that need to appear on the UI. For this, the developer would gather the

names of Query classes and the attributes they provide from the Tychonis

version specifications. These opportunities would then be displayed on the
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palette, and their corresponding attributes would be shown on the attribute table.

However, as discussed, this approach would require the recompilation of SOA

for any modification in opportunities.

Tychonis, as an innovation, promotes a more flexible and dynamic integration. It

provides a facility to obtain (1) the names of all available opportunities - to show

them on the palette, and (2) their attributes - to place them on the attributes

table. To get the opportunities, Tychonis provides the

TychonisUtils.getAllQueries() method, which returns a list of

Query instances that comprises all atomic opportunities and Boolean operators.

Using this method, a developer who integrates with Tychonis would be able to

obtain all available opportunity types within the framework and show them on

the palette. The UI-friendly name for each opportunity type can be obtained via

Query’s getHumanReadableName() method, whose exemplifying return

value for the PhaseAngleTimeQuery class is the string “Phase Angle”. As for

the internal operation of TychonisUtils.getAllQueries(), it parses

the Tychonis Ecore XMI model file and reflectively instantiates all classes that

extend Query. In order to obtain the attributes of each opportunity, a developer

can rely on the EClass class from EMF, which provides methods to access

attributes, structural features, references, etc. of classes developed through Ecore.

The attributes obtained via EClass can then, for each atomic opportunity, be

placed onto the attributes table. This is a much more introspective approach to

integration that is key to Tychonis’ independent maintenance and deployment.

When the user places atomic opportunities onto the canvas and sets attribute

values from within the attributes table, SOA can already instantiate Tychonis

Query classes. Instantiation can occur with the empty instances returned

previously by TychonisUtils.getAllQueries(), and with the

EMF-provided getters and setters for each class. The Tychonis class instantiation

process can also trigger invocations of EMF’s Diagnostician class to check

that the user-created opportunities are well-formed, satisfy the constraints of the

Tychonis model, and are thus ready to be searched. If this verification fails, users
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can be informed via the UI that the opportunity they created is not valid.

Information about the failure of this verification can point to detailed specifics

such as “attribute value is not in the desired range”, “attribute value is missing”, or others.

3.5.3 Search

After the instantiation of Query classes, the Science Opportunity Analyzer

(SOA) is able to conduct a search for the modeled opportunity. This search

process involves the use of Solver and SolverStrategy classes, as

previously discussed. Upon integration with Tychonis, however, SOA's code will

not contain references to Solver classes. Instead, the logic for selecting the

appropriate Solver for a given atomic opportunity or Boolean operator is

embedded within SolverStrategy. The objective is to ensure that any new

Query or Solver added to Tychonis does not require SOA to have knowledge

of the logic for choosing a Solver for a Query. This separation of concerns is

necessary since the resolution domain should be confined to Tychonis and not to

external tools that employ the framework, such as SOA.

It is important to note that Tychonis provides a default implementation of

SolverStrategy known as SimpleSolverStrategy. As described in

section 3.3.3, this class utilizes a dependency injection mechanism to allow users

to select the Solver class they prefer to use for each Query class. In order to

implement this, users first modify an external CSV file that contains pairs of the

Query and Solver classes to define a mapping between them. Next, the file is

read by code that instantiates the appropriate Solver based on the matching

Query found as SimpleSolverStrategy walks the opportunity tree.

Essentially, SimpleSolverStrategy builds Query-to-Solver mappings

from a file, traverses the opportunity tree in a post-order manner, and invokes the

matching Solver for each Query instance based on the mappings. This

traversal returns a Result instance that includes all the time windows belonging

to the modeled opportunity. This entire process is initiated through a call to the
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solveFrom(Query node) method of SimpleSolverStrategy. A

simplified recursive version of this method's implementation is provided in the

top section of Listing 5. Lines 9-12 determine the appropriate Solver for the

current node (line 9), search for the opportunity defined in the subtree (line 10),

place the result in the current node (line 11), and return the result (line 12). The

getSolverForNode() method is responsible for reflectively instantiating

the Solver class injected in the dynamic Query-to-Solver dependency file.

The result variable contains the results obtained from solving the Query tree

under the queryRoot node. An example invocation of solveFrom() is

provided in the bottom section of Listing 5, which is the only line of code SOA

needs to call to initiate the search for an opportunity defined under the

queryRoot node.

Result solveFrom(Query node)
{

if(node==null)
return null;

solveFrom(node.left);
solveFrom(node.right);

Solver solver = getSolverForNode(node); // line 9
Result result = solver.solve(node); // line 10
node.setResult(result); // line 11
return result; // line 12

}

Result result = SimpleSolverStrategy.solveFrom(queryRoot);

Listing 5. SimpleSolverStrategy’s solveFrom()Method. Top: The most relevant

parts of SimpleSolverStrategy’s implementation of its solveFrom() method. Bottom:

Invoking solveFrom() to search for an opportunity defined under a queryRoot node.
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The solveFrom() method is included in the SolverStrategy interface

to enable other implementations beyond SimpleSolverStrategy.

Although users can opt to design their own SolverStrategy with their own

solveFrom() method, SimpleSolverStrategy's versatility in allowing

for the injection of dependencies between Query and Solver classes is

expected to be sufficient for most integrators. It is worth noting that future

creative implementations of SolverStrategy may emerge, such as ones that

allocate the execution of Solver code across different computer cores for

data-independent Query instances in the Query tree. Additionally, since

changes to a SolverStrategy implementation are not anticipated to be

frequent, no provisions have been made for dynamic integration with multiple

SolverStrategy classes. Consequently, integration with Tychonis at the

resolution level is accomplished by SOA's knowledge of the name of the

SolverStrategy class to be employed.

3.5.4 Showing Search Results

The Science Opportunity Analyzer (SOA) provides a user interface that displays

the results of searching for opportunities in a table, as depicted in Figure 19. This

table includes information such as the name of the user-defined opportunity, the

time interval number, and the start and end times of each time interval.

Additional data can be obtained from the Result instance returned by the

SolverStrategy selected for the query or from the root node of the

Query tree. SolverStrategy saves all partial results in each node of the

tree, which means that each node contains the results of its subtree.
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Figure 19. SOA’s Results Table. Note that from all the data potentially available within a Result

instance, SOA only shows the opportunity’s time intervals.

As explained in Section 3.3.4, the Result class is designed to store any objects

of any class that implement the Resultable interface, providing flexibility in

the data that can be included in the table. A Solver can choose what data to

include in each cell, which may vary depending on the particular opportunity

being modeled. As such, it is crucial for each Solver's documentation to list

the items that will be included in the Result instance beyond time intervals.

The extensibility of Result occurs at the cell level, as the data placed within

each cell is at the discretion of the Solver.

Retrieving the data from a Result instance can be done in two ways. One

method is to iterate over each cell in the table, parse the results, and populate

SOA's UI table. The other method is to call the

getAll(Class<T>aClass) method, which returns a list of all objects of

type aClass within the Result instance. While the iterative method is

agnostic to the classes stored in the table, the getAll() method requires the

integrator to know what types of objects they wish to retrieve from the table. For

instance, to add data to the "Begin Time" and "End Time" columns with

getAll(), code similar to that found in Listing 6 can be used.
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void placeTimeWindowsOnUI(Result result, UITable table) {
for (TimeWindow window :
result.getAll(TimeWindow.class)) {

String start_time =
TimeUtils.
stringFormat(window.getStartTime());

table.addRowToColumnID("begin_time",
start_time);
String end_time =

TimeUtils.
stringFormat(window.getEndTime());

table.addRowToColumnID("end_time", end_time);
}

}

Listing 6. Building SOA’s “Begin Time” and “End Time” columns. Starting from a Result

instance and a UI component, the code iterates over the TimeWindow instances returned by

getAll(). It then adds a new row to each column for the start time and end time of each time

interval.
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4 Textual Language

Usability, which is defined as "the extent to which a product can be used by

specified users to achieve specified goals with effectiveness, efficiency, and

satisfaction in a specified context of use" [37], has been a crucial concern for

NASA since the early days of space exploration. The practical implications of this

concern are clear, as improved usability should lead to better user performance,

resulting in increased efficiency and productivity for personnel of all types.

Additionally, usability is a critical risk mitigation strategy, as more user-friendly

systems reduce the likelihood of operational errors impacting the crew or

spacecraft. However, mission planning software for robotic unmanned space

missions has only recently started to incorporate more inclusive applications of

usability assessment and guiding techniques. This is due to the fact that the idea

of multi-mission software, software that can be reused across missions with

minimal to no changes, is a relatively recent development for governmental space

agencies. For instance, the Human-Computer Interaction software group within

JPL was established only in the mid-2010s. Despite being a newly formed group,

it has made remarkable contributions to the area of mission planning software by

improving software design and architecture, implementing successful design

principles within mission processes, and developing interfaces that mission staff

can use to interact with mission software. Consequently, JPL has adopted a new

approach of engaging usability experts and engineers to implement established

industry-wide usability practices into software projects. This signifies the

organization's dedication to ensuring the functionality and safety of space

mission software. Our commitment is similar, and this section details a research

endeavor aimed at integrating usability practices into the design and development

of mission planning software, akin to the initiatives undertaken by NASA.

Specifically, we assess the usability of two different textual languages to enable

engineers and scientists to model opportunities effectively, easily, and

satisfactorily.
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Although previous sections demonstrate that Tychonis is an extensible and

reusable opportunity search framework, its use by individuals who are not

experienced software developers poses challenges. If a geometric event needs to

be searched, custom code can be written that uses the Tychonis framework,

compiled, and executed à la mission scripts described in Section 2. The outcome

of the execution step would be a time window in which the geometric event of

concern takes place. However, the code produced could have an ephemeral

existence, as it might only be useful to search for one event. An alternative is to

integrate a geometry software library such as Tychonis with a host application

that will templatize geometric events. With such an application, the user would be

able to trigger the execution of a multitude of event searches through the host

software. This pattern was described for one of NASA's software tools, the

Science Opportunity Analyzer in Section 3.5. However, space missions frequently

encounter themselves in cost-constrained environments that result in limited

availability of staff, and this may cascade in science teams not having access to

software developers that can write code to search for a specific event.

Additionally, it is possible that science teams might not have access to elaborate

science planning software such as SOA to search for events in a templatized

manner.

Therefore, we propose the idea of a textual computer language that can be used

to model and search for geometric events. The goal is to design a language that (i)

can provide univocal textual representations of geometric events in space, and (ii)

can be used by space mission scientists and engineers with just enough

programming experience. In pursuit of this goal, we designed two approaches for

a textual language and compared their usability through a survey. This section

details our approach to the two language options, the survey's design, the results

from the same, and its practical implications.
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4.1 Background

The creation of a textual language with the objective of modeling geometric

events in the realm of space necessitates an extensive examination of pertinent

research in two fundamental domains. The first domain encompasses the

relevance and coherence of varied programming language paradigms, while the

second concerns the practicality and effectiveness of software systems, which

must undergo rigorous evaluation and assessment. This discourse expounds

upon these two critical considerations, with the objective of formulating a textual

language that is effective, efficient, and capable of accurately modeling geometric

events within the complex domain of space.

4.1.1 Programming Paradigm

The declarative programming paradigm promotes the idea that there are types of

computer programs that are more apt to be modeled in terms of the description

of a problem than in terms of the algorithm needed to solve the problem [38].

The former vision is known as declarative programming and can be exemplified

by functional, logic, and constraint languages, but also by Domain-Specific

Languages (DSL) such as the Structured Query Language (SQL) [39], which

found objective success to model data operations within the realm of Relational

DataBase Management Systems (RDBMS) [40]. The latter vision is known as

imperative programming and it is promoted by procedural and object-oriented

programming general-purpose programming languages. Typical examples of

these sub-approaches to imperative programming include storied languages such

as Pascal, FORTRAN, C/C++, Java, and Python.

The debate between declarative and imperative programming has persisted for

several decades, and it is widely accepted that, for scoped and appropriate

problems, declarative approaches result in programs that are more

comprehensible, learnable, accessible, and communicable. The author in [41]

asserts that "declarative programming entails specifying what is to be computed,
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but not necessarily how it is to be computed"; the author further explains that

programs that benefit from declarative programming are those in which (i) the

system performs deductions, that is, there is no need to specify how knowledge

will be used by the system, and (ii) knowledge consists of independent facts -

control flow is not determined by the facts stated in a program. In contrast,

imperative programs are characterized by the need to orchestrate the utilization

of functions, variables, classes, etc. within their control flow. From this, and

considering Kowalski's equation algorithm = logic + control [42], it can be inferred

that the absence of control leaves logic alone, which is declarative in nature, and

could still be the minimal expression of a geometric event that does not

incorporate its search method. Conversely, [41] explains that the advantages of

imperative programming are realized (1) when capturing processes, (2) when

expressing second-order knowledge, and (3) in capturing heuristic knowledge.

In the present study, we are not attempting to capture a process, nor

second-order or heuristic knowledge, as we believe a geometric event to be a

declarative description of an event that exists as a logical statement, with no

algorithmic interpretation. By way of proof by contradiction, if we were to accept

that an imperative language is more suitable for modeling geometric events in

space, we would be developing a language that offers little value over existing

languages such as C in conjunction with a library such as SPICE. Learning such a

language would impose a significant burden on scientists and engineers working

in space missions, similar to the difficulty of them learning both C and SPICE.

Additionally, resulting programs could entangle the definition of a geometric

event with the algorithmic method used to search for the time window in which

the event occurs. In conclusion, reading and writing events in such a language

would require specialized training in computational geometry and programming,

as users interested in modeling an event would need to be familiar with

algorithmic descriptions. Based on the considerations discussed, it has been

determined that the design of an imperative language shall not be pursued within

the scope of this study.
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4.1.2 Programming Language Usability

The concept of usability is defined in various academic works. In [43], usability is

described as “the capability in human functional terms to be used easily and

effectively by the specified range of users, given specified training and user

support, to fulfill the specified range of tasks”'. This definition is consistent with

the ISO 9241-11 standard [37], which defines usability as "the extent to which a

product can be used by specified users to achieve specified goals with

effectiveness, efficiency, and satisfaction in a specified context of use". These

definitions highlight the significance of not only task completion, but also factors

such as effectiveness, ease of use, and user satisfaction in evaluating the usability

of a system.

In light of these definitions, the authors of [44, 45] present several methods for

evaluating the usability of a software system, including Laboratory Testing,

Thinking Aloud, Formal Modeling, Guidelines/Checklists, and Heuristic

Evaluation42. However, as pointed out in [46], these methods can be challenging

to apply or are dependent on the evaluator's expertise. To address these

limitations, the authors of [47] proposed the System Usability Scale (SUS), a

low-cost, yet high-return method for determining the overall level of usability of

a system compared to its competitors or predecessors.

The SUS is a questionnaire composed of ten statements, available in Table 2, with

five of them framed in a positive manner and the remaining five in a negative

manner. Respondents rate each statement on a Likert scale43 of 1-5, where 1 is

43 The Likert scale is a type of rating scale used in surveys or questionnaires to measure
respondents' attitudes, opinions or perceptions. The scale usually consists of a statement that
expresses a particular view or opinion, followed by a range of response options, such as "strongly
agree", "agree", "neutral", "disagree", and "strongly disagree". The Likert scale is designed to
capture the intensity and direction of an individual's attitudes or feelings towards a particular
statement or topic. It is named after its developer, psychologist Rensis Likert.

42 Laboratory Testing involves testing the software in a controlled environment to assess its
functionality and user experience. Thinking Aloud involves observing the user as they use the
software and asking them to think aloud as they interact with it. Formal Modeling is a
mathematical approach used to model and analyze the user interface of software.
Guidelines/Checklists are a set of rules and guidelines that must be followed to ensure that the
software meets usability standards. Heuristic Evaluation involves testing the software against a set
of heuristics or guidelines for usability to identify potential usability issues.
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Strongly Disagree and 5 is Strongly Agree. The SUS method then employs a

calculation that produces a number on a 0-100 scale, where higher numbers

indicate higher usability. This number is determined by arithmetic operations that

penalize high scores on the Likert scale for negative statements and favor high

scores for positive statements. [48] found that a large-scale analysis of SUS scores

showed that the SUS is a highly robust and versatile tool for usability

professionals.

SUS Statements

I think that I would like to use the language above frequently

I found the language above unnecessarily complex

I thought the language above was easy to use

I think that I would need the support of a technical person to be able to use the
language above

I found the various functions in the language above were very well integrated

I thought there was too much inconsistency in the language above

I would imagine that most people would learn to use the language above very
quickly

I found the language above very cumbersome (awkward) to use

I felt very confident using the language above

I needed to learn a lot of things before I could get going with the language above

Table 2. SUS Statements. These are the different statements respondents to SUS questionnaires

are presented in relation to a system they are evaluating. Respondents are asked to provide

answers to these statements on a Likert 1-5 scale where 1 is “Strongly Disagree” and 5 is

“Strongly Agree”.

Given the positive industry sentiment and the advantages of the SUS for our

study, where we compare programming language options, it is reasonable to

consider the use of the SUS. In addition to its low cost and ease of execution, the

SUS also provides unambiguous quantitative measures to compare different

language options via the Likert scale responses and the overall 0-100 score.
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Furthermore, by asking potential users for their thoughts as they complete the

study, the SUS can also serve as a tool for qualitative data collection, similar to

the Thinking Aloud method.

4.2 Language Options

In this study, we examine two distinct declarative language options for the

purpose of modeling geometric events. One option follows a natural language

approach similar to that of SQL, enabling users to define events in a way that

resembles the English language. The other option is more structural in nature

and uses key-value tuples, which is reminiscent of JavaScript Object Notation

(JSON) [49]. The selection of these two options was based on two important

factors. Firstly, both SQL and JSON are designed to capture human-readable

parameterized statements. While SQL's stricter grammar constrains the user to

describe a database query in a certain way, JSON allows for more flexibility when

used without a schema [50]. Despite not defining a database query, it is beneficial

to adopt a strict grammar in defining an event, as this would lead to a concise and

unambiguous representation of the geometric event. Secondly, we sought to

adapt to the communication styles of scientists and engineers in their daily work

within space missions. While scientists and engineers typically communicate

geometric events to each other in a natural language, a SQL-like natural language

approach would be similar to the way they typically express themselves to each

other. Furthermore, many of these users frequently operate mission planning

software, and are therefore familiar with reading files in XML, JSON, or YAML

[51] formats, which are based on the same structural principles as JSON. Hence,

the JSON paradigm is not unfamiliar to our target user base.

Consideration of the event "Between the start of year 2000 and the end of year

2005, the distance between the Earth and the Moon is less than 400,000 km"

entails a comprehensive and logically complete distance range event between two

celestial bodies. The event's semantics are explicated through the utilization of

85



the English language, where its constituents are clearly represented as nouns, and

units of measurement are explicitly defined. In this regard, the natural language

approach, denoted as Natural-Language-Based (NLB), and the more structural

key-value approach, referred to as Key-Value Pair (KVP), are viable options for

modeling the aforementioned event. Table 3 captures the modeling of the event

through the NLB and KVP approaches, demonstrating their respective

advantages and disadvantages. Specifically, the NLB approach renders the event

more readable, albeit making parameters such as "Moon", "Earth", "400000km",

and "01/01/2000:12/31/2005" less visible. In contrast, KVP makes event

parameters more apparent, albeit requiring additional effort to comprehend the

event as a whole. This complementarity in the strengths and weaknesses of the

two approaches provides a strong foundation for a usability study aimed at

discerning the more appropriate language for modeling geometric events, based

on user feedback.

NLB KVP

DEF event1 AS
DISTANCE FROM Moon TO
Earth LESS THAN 400000km
DURING 01/01/2000:12/31/2005

DistanceQuery event1{
observer: "Moon"
target: "Earth"
test: <
amount: 400000km
start_time: 01/01/2000
end_time: 12/31/2005

}

Table 3. The event “Between the start of year 2000 and the end of year 2005, the distance

between the Earth and the Moon is less than 400,000 km.”, modeled with the two proposed

languages.

4.3 Study Design

Following the Goal-Question-Metric44 [52] paradigm, let us state that (i) our goal

is to determine a usable language approach to model geometric events in space;

44 The Goal Question Metric (GQM) framework is a structured approach to defining and
measuring software quality. It involves setting specific goals, defining questions to assess progress
towards those goals, and selecting metrics to provide answers to the questions.
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(ii) the question is what is the relative usability, including readability, of two distinct

declarative languages?; and (iii) the metric is a questionnaire with active exercises,

statements with corresponding Agree-Disagree responses on a Likert 1-5 scale

and qualitative statements from the respondents. Aspects (i), (ii), and (iii) will be

discussed in this section.

4.3.1 Instrument

To assess the relative usability of the two languages, we designed a survey to

collect both quantitative and qualitative data. The survey comprises several

distinct parts, including a demographics section (Section 1), an exercise where

respondents model events in both languages based on given examples (Sections 2

and 3), and a section where respondents rate the readability of each language

option on a Likert 1-5 scale (Section 4). The question pertaining to the

readability45 of each language option is particularly relevant to the study as it is

believed to be a key factor in determining the success of the language. This is due

to the involvement of stakeholders within a mission who may not write events in

the language but will be responsible for determining whether an event makes

sense within a mission’s scientific context. Following the completion of the

language evaluation, respondents are asked to fill out the SUS questionnaire for

each language option (Sections 5 to 14). The questionnaire utilized in the study is

provided in its entirety in Appendix A and [53]. Through the use of this survey,

the study aims to gather valuable insights that will inform future decisions

regarding the implementation of a language to model geometric events.

4.3.2 Population and Sample

The population of interest for a textual language intended to model geometric

events comprises space mission engineers and scientists responsible for planning

45 Readability in the context of usability refers to the ease with which a user can read and
comprehend the content of an interface or document.
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the actions that spacecraft will perform to achieve mission objectives. An

important consideration in assessing the usability of such a language is the level

of computer programming proficiency possessed by users within this population.

Based on our experience, individuals who have recently graduated from college

tend to have greater ability in using programming languages than those who

graduated years ago. This phenomenon is likely due to a more pronounced

emphasis on software usage and development in contemporary science and

engineering college programs.

Given the trend towards an increasing user base with higher levels of software

knowledge, our study focuses on designing a sample that considers the

characteristics of users who will be utilizing such a language for the next few

decades. This could include recent JPL hires and interns, as well as college

students with relevant backgrounds who are not currently affiliated with JPL but

may be hired into it. To this end, we selected samples from two distinct sources.

The first was JPL, where we identified recent hires and interns with Aerospace

Engineering backgrounds, most of whom worked within the Planning and

Execution Systems46 (PES) section of the organization. This team is responsible

for staffing and managing large-scale space missions during the operations phase,

with a particular focus on the uplink and downlink processes. Notably, the

Science Planning group within the PES section utilizes geometry as an input for

the planning of spacecraft actions, and thus represents the primary group of

users who would benefit from a proposed language to model geometric events.

Assuming that the PES section will provide most of the mission operations staff,

and given that the Science Planning group currently comprises 11% of the PES

section's personnel, we could start with an estimate that roughly 10% of mission

operations staff could benefit from the use of a textual language to model

geometric events. We anticipate that a similar proportion of mission staff would

benefit in missions not managed by JPL or NASA.

46 The PES Section at JPL is responsible for developing and maintaining software systems for the
planning and execution of robotic space missions. These systems are used to create detailed plans
for spacecraft operations, including mission timelines and instrument commands, as well as
monitor and analyze the health and status of the spacecraft during operations.
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The second sample was drawn from students within the Aerospace Engineering

program at the Universitat Politècnica de Catalunya47 (UPC). This sample had

similar interests, backgrounds, and training as the JPL sample, but less knowledge

of space mission planning. Furthermore, while the individuals in the UPC sample

had a very good professional command of the English language, it was not their

native language. This diversity within the sample is advantageous, as it is not

necessarily the case that users of a proposed textual language should be native

English speakers.

Taken together, these two samples represent individuals who possess the requisite

experience, educational caliber, and background to be candidates for roles in

institutions where they would be modeling geometric events for space missions.

A key observation we make between these samples and the current population in

an institution such as JPL is that the individuals in our samples possess a more

robust background in computer programming than past graduates. As intended,

this reflects the trend of relevant university graduates entering the workforce with

a greater programming background, and underscores the importance of studying

the language usability with individuals who are representative of future space

mission staff and will use such a language for years to come.

4.3.3 Execution

To prepare for the execution of our study, a survey was piloted with five JPL

interns possessing relevant backgrounds. These individuals were not included in

the actual study but served to identify faults in the survey and assess the quality

of the survey format. The survey questions were presented via a web-based

questionnaire and conducted live through one-on-one video conferencing. One

author guided the survey, which took approximately one hour per respondent.

The guide explained the study's objectives and research background, sent the web

47 The Universitat Politècnica de Catalunya (UPC) is a public research university located in
Barcelona, Catalonia, Spain. It was founded in 1971 and is well known for its engineering and
architecture programs, as well as its research activities in fields such as telecommunications,
renewable energy, and aerospace engineering.
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link for the survey response interface, observed the respondent's completion of

each question, and inquired about any feedback. The objective of this piloting

phase was not to collect data but to practice the interview execution and obtain

qualitative data about the survey's structure in case modifications were necessary.

The following observations were made during the piloting phase:

1. Respondents noted that the definition of the term use in Sections 5, 7, 8,

11, and 12 might be ambiguous. Respondents expressed that it could

mean (a) writing geometric events with the language, (b) reading

geometric events described with the language, or (c) a combination of

both writing and reading. It was agreed that future respondents should be

informed that the term use involves spending 50% of the time writing

geometric events using the language and 50% of the time reading

geometric events written in the language.

2. Respondents inquired whether they would use an Integrated

Development Environment48 (IDE) to write statements in real life. They

mentioned IDEs that could auto-complete JSON-based text based on a

JSON schema, but they were unaware if such capability was available for

a custom language. Future respondents were informed that both

languages would be used with intelligent code completion capabilities that

were equivalent in both languages.

Multiple respondents provided these comments during the piloting phase. The

survey guide's responsibilities during the study's execution phase were modified

to explain these points to respondents as they arrived at relevant sections. This

was done to minimize assumptions or bias and normalize mental models.

After completing the piloting phase, we conducted the questionnaire with JPL

and UPC samples based on respondent availability. The study followed a format

similar to the piloting phase, using a web-based questionnaire completed via

48 An Integrated Development Environment (IDE) is a software application that provides
comprehensive tools for software development. IDEs can help developers in various ways,
including code editing, debugging, and testing. They can also provide features such as code
completion, syntax highlighting, and refactoring. IDEs can help developers be more productive,
efficient, and consistent in their work. They can also help reduce errors and provide a more
streamlined development process.
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video conferencing. The guide introduced the study's purpose and observed

respondents as they answered questions. If respondents had any doubts or

questions, the guide provided clarification. If respondents provided any

qualitative feedback, the guide recorded it. At the end of the survey, the guide

asked if there were any additional qualitative comments about the two language

options or the survey. The guide also asked questions specific to answers to

questions in the questionnaire, such as why one language was more readable than

the other. All comments and responses were transcribed by the guide.

4.3.4 Statistical Analysis

In this study, an integral component of the numerical investigation was an

analysis of the responses to questions contained within Sections 4-14. Such

responses were deemed statistically significant, as they were structured as a Likert

ordinal scale49. It was possible to interpret the results of each individual question

as a distribution, wherein the proportion of respondents who agreed with a given

statement could be represented by a percentage. However, this study focused on

the central tendency50 of the overall sample and the subsamples (JPL and UPC)

for each question and language option, when analyzing the Likert-based results.

Notably, Likert data is inherently ordinal, thereby restricting the use of parametric

analyses such as the statistical mean [54]. Consequently, the statistical mode was

used per question, per language option, for the overall sample and for the

subsamples.

In addition, the SUS scores were utilized as another key aspect of our statistical

analysis. These scores were presented as a numeric value between 0 and 100 for

each participant in the study. To determine usability, arithmetic means were

calculated for the SUS scores of the overall sample and the subsamples. As the

50 The tendency of data to cluster around a central value or typical value. This is often measured
using statistical measures such as mean, median, and mode, which can provide insight into the
distribution of data and help summarize large amounts of data into a single value.

49 An ordinal scale is a measurement scale that orders objects or events based on their relative
position. It does not provide an equal interval between values, and it does not measure the
distance between them. Instead, it identifies the position of an object or event in relation to
others in the same group.
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SUS is an interval score51 for usability, arithmetic means were considered

appropriate in this context.

4.3.5 Threats to Validity

One area of the study in which we believe there was a potential internal threat to

validity is regarding the progression and mental framing of the respondents as

they complete the questionnaire. More specifically, this threat involves a

conscious or subconscious preference for one language versus another as a result

of the structure of the questions being asked. At the SUS level, this is handled by

alternating positive-framed questions, i.e., questions where Strongly Agree is

positive for usability, with negative-framed questions, i.e., questions where Strongly

Agree is negative for usability. As a result, no action was taken from the point of

view of our study design in relation to SUS question ordering. An action was

taken, however, regarding the fact that our study considers the same sequential

questions for the two language options. In order to prevent a possible situation in

which a respondent might think a language option is better because it was

presented first or second, we chose to alternate the language options within each

question, e.g., the questionnaire will ask Question 1 for language NLB first, and

KVP second, and then the questionnaire will ask Question 2 for language KVP

first, and language NLB second, and so on. Note that in the questionnaire we did

not use the names NLB and KVP for the languages, but we did name languages

as Language A and Language B within each section, and alternated what Language

A and B represented as language options. In effect, Language A in Section n

would be different from what Language A was in Section n+1. This was done to

avoid name affinity or likability, and recency bias.

A criticism could be made in relation to the fact that we did not distribute

language options across the sample, that is, we did not randomly assign language

options across the sample in a way that one respondent responds to questions

51 An interval scale is a measurement scale where the distance between two points is meaningful
and consistent throughout the scale. It allows for meaningful comparisons of the differences
between the values on the scale.
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about only one language option, unaware there is another option. We believe this

to be a sensible comment on validity, however, we also believe there is value in

respondents being exposed to the two options, as they not only can factor in a

scoring in their answers that is relative to each language option against the other,

but can also provide qualitative comments about the two options in relation to

each other.

In terms of the sample used, there were threats about target population

representation for the languages we are evaluating. We initially believed that using

the JPL sample was enough to depict the kinds of individuals involved in

modeling geometric events in space. However, as the study design evolved, our

ideas also evolved. We thought that while the JPL sample was well-versed in the

uses our languages would need to operate in, JPL as a whole is a microcosm of a

larger realm that can involve users from different organizations and nations

outside of the United States. To that end, we recruited individuals from UPC in

Catalonia, Spain with a relevant background who could also be users of the

languages in their professional or research lives. This action increased sample

diversity, making a more robust sample, and implied the benefit that qualitative

comments would be expected to be richer as a whole. One point of view is that

this could create a threat in case the two subsamples provide quantitative results

that substantially differ from the other subsample, but if that occurred, that

would be an input to iterate on more research to design a better language

proposal.

4.4 Study Design

The subsequent paragraphs present an overview of the findings from each survey

section. These include an examination of participant demographics in Section 1,

followed by an evaluation of the exercises in Sections 2 and 3, an analysis of

readability in Section 4, and a detailed exploration of the SUS questions in

Sections 5-14.
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4.4.1 Section 1 - Demographics

The survey questionnaire administered to the participants comprised several

demographic questions. These questions requested respondents to furnish their

personal details, including their name, college major for their highest degree,

educational level, time since graduation, and years of experience in the aerospace

domain. For the question on college major, results indicated that a majority of the

respondents, specifically 77.78%, graduated or were in the process of graduating

from an Aerospace Engineering program. Further, 14.81% and 7.41% of the

participants held a major or had majored in Computer Science and Applied

Mathematics, respectively. Concerning the educational level, 70.37% of the

respondents were graduating or en route to graduating from a Bachelor’s-level

program, while 29.63% had completed or were to complete a Master's-level

program. Furthermore, the analysis revealed that 66.67% of the participants were

yet to graduate, and the average time since graduation for the remaining 33.33%

was 1.67 years.

The experience level in the aerospace domain was ascertained by providing clarity

to respondents that experience refers to any form of involvement with the

aerospace domain in general. Hence, internships, work experience, and

aerospace-related education were considered valid criteria. The analysis indicated

that the mean level of experience in the aerospace domain was 3.61 years,

considering both samples. The assessment of software development background

was designed to measure experience as a binary and more subjective value for

each respondent. Specifically, respondents were asked to evaluate if they

considered themselves software developers or not. This approach was adopted

due to the diverse nature of the sample population, including respondents from

varying majors and interests. Measuring experience in terms of length of time

could have provided a wide range of values, as programming could be a part of a

career, major, interest, or hobby. In addition, measuring programming knowledge

more comprehensively would have necessitated designing additional questions

that would have been less relevant to the study's objectives. The results showed
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that 92.59% of the participants identified themselves as software developers.

Further details and comprehensive data can be accessed from Table 4.

Total JPL Sample UPC Sample

Sample Size 27 18 9

Time since
graduation,
arithmetic mean
(years)

0.63 0.78 0.33

Time since
graduation, range
(years)

[0-5] [0-5] [0-1]

Experience in the
aerospace
domain, arithmetic
mean (years)

3.61 3.33 4.17

Experience in the
aerospace
domain, range (years)

[0-9] [0-9] [3-5]

Think of themselves
as software
developers (sample
%)

92.59% 100.00% 77.78%

Table 4. Demographics of the total sample and the two subsamples.

4.4.2 Sections 2 and 3 - Exercises

The purpose of Sections 2 and 3 was to enhance respondents' comprehension of

each language option and cultivate critical perspectives on their usage. In Section

2, an example event was presented, namely "Between the start of year 2000 and

the end of year 2005, the distance between the Earth and the Moon is less than

400,000 km.", which was modeled using the two distinct language options.

Respondents were then requested to model another event related to the example,

namely "In all of 2021, Earth and Mars are at a distance of more than 70M km

from each other". All participants provided an objectively correct answer for each

language option. Exemplary responses are available in Table 5.
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NLB KVP

DEF event_name AS
DISTANCE FROM Earth TO
Mars MORE THAN 70Mkm
DURING 01/01/2021:12/31/2021

SEARCH FOR event2

DistanceQuery event2{
observer: "Earth"
target: "Mars"
test: >
amount: 70Mkm
start_time: 01/01/2021
end_time: 12/31/2021

}
SEARCH FOR event2

Table 5. Potential solutions for exercise in Section 2. Respondents were asked to model and

search for the event “In all of 2021, Earth and Mars are at a distance of more than 70M km from

each other”.

On the other hand, Section 3 showcased language grammar that could serve as

documentation to be read by users of each language, to model an occultation

event in each language option. To clarify, an occultation occurs when the line of

sight between two celestial bodies is disrupted by a third body. For instance, a

solar eclipse is a form of occultation, as the line of sight between Earth and the

Sun is disrupted by the Moon, either fully or partially. The documentation was

followed by the request to model the event "Earth and Mars are at a distance of

more than 70M km, and at the same time, Mars and Earth are in full solar

conjunction. Use the 2010-2020 interval". Respondents were required to utilize

the documentation in Section 3 and examine their previous answers in Section 2,

which was possible through the web-based form. Similar to Section 2, none of

the participants failed to provide the correct answer for the exercise within

Section 3. Exemplary responses for the question in Section 3 are available in

Table 6.

96



NLB KVP

DEF event1 AS
FULL OCCULTATION

BETWEEN BACK
BODY Mars
AND FRONT BODY Sun
OBSERVED BY BODY
Earth
DURING
01/01/2010:12/31/2020

DEF event2 AS
DISTANCE FROM Moon TO
Earth MORE THAN 70Mkm
DURING 01/01/2010:12/31/2020

SEARCH FOR event1 AND event2

DistanceQuery event1{
observer: "Earth"
target: "Mars"
test: >
amount: 70Mkm
start_time: 01/01/2010
end_time: 12/31/2020

}
OccultationEvent event2{

type: "full"
back_body: "Mars"
front_body: "Sun"
observer: “Earth”
start_time: 01/01/2010
end_time: 12/31/2020

}
SEARCH FOR event1 AND event2

Table 6. Potential solutions for exercise in Section 3. Respondents were asked to model and

search for the event “Earth and Mars are at a distance of more than 70M km, and at the same

time, Mars and Earth are in full solar conjunction (solar conjunction is when the Sun is between

two bodies). Use the 2010-2020 interval”.

4.4.3 Section 4 - Language Readability

In Section 4, respondents were presented with a statement, “I think the language

above is readable by a scientist or engineer”, and provided with sample events in

each language option. A Likert 1-5 scale was utilized to record respondent

perceptions, where 1 indicated Strongly Disagree and 5 indicated Strongly Agree. The

NLB results indicated a mode of Strongly Agree for both subsamples and the

overall sample. In contrast, the KVP results displayed a mode of Neutral for the

overall sample and the JPL subsample, while the UPC subsample demonstrated a

tie between Agree and Neutral. The mode outcomes for this question are

presented in Table 8, whereas the complete results can be found in [27] and

Appendix B.
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4.4.4 Sections 5-14 - System Usability Scale (SUS)

The average SUS score across all respondents for NLB was found to be 89.81.

The JPL sample had an average SUS score of 90.00 for NLB, while the UPC

sample had an average SUS score of 89.44. For KVP, the average SUS score

across all respondents was 90.00, with the JPL sample having an average SUS

score of 89.72, and the UPC sample having an average SUS score of 90.55. It was

observed that the respondents favored KVP's usability by a very small margin of

0.19 points compared to NLB. Interestingly, the JPL sample gave a higher

average score to NLB, albeit by a small margin of 0.28 points. In contrast, the

UPC sample gave a higher score to KVP by a larger, but still small margin of 1.11

points. These results can be found in Table 7.

Sample NLB, Mean SUS
Score

KVP, Mean SUS
Score

Difference
Magnitude for Mean

SUS Scores

Total 89.81 90.00 0.19

JPL 90.00 89.72 0.28

UPC 89.44 90.55 1.11

Table 7. SUS Scores per sample as arithmetic means and the difference magnitude between

means. High scores in each row are marked in bold lettering.

When examining the response modes for the SUS questions, it was observed that

both subsamples provided comparable answers. In fact, out of the 20 total

combination questions for two language options, the JPL and UPC samples only

differed in their response modes on two occasions. To verify these discrepancies

through inferential statistics, a Mann-Whitney U test was conducted on the

responses from both subsamples. The null hypothesis (H0) was that the two

subsamples were drawn from the same population, thus producing comparable

results. On both identified discrepancies, the null hypothesis was rejected at a

significance level (α) of 0.05. No other descriptive (via mode analysis) or
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inferential (via Mann-Whitney U test52) discrepancies were detected. The two

discrepancies are outlined below:

● For NLB and question #1, "I think that I would like to use the language

above frequently", the JPL sample's mode was Strongly Agree, whereas the

UPC sample's mode was Agree. The p-value of the Mann-Whitney U test

was 0.040.

● For NLB and question #8, "I found the language above very

cumbersome (awkward) to use", the JPL sample's mode was Strongly

Disagree, while the UPC sample's mode was Disagree. The p-value of the

Mann-Whitney U test was 0.035.

The response mode data for the SUS questionnaire can be found in Table 8,

while full results can be accessed in Appendix B and [55].

Statement NLB Responses KVP Responses

Total Mode JPL Mode UPC Mode Total Mode JPL Mode UPC Mode

Section 5: I think the
language above is
readable by a scientist
or engineer

Strongly
Agree

Strongly
Agree

Strongly
Agree

Neutral Neutral Agree/
Neutral

Section 6 (SUS #1): I
think that I would like
to use the language
above frequently

Agree Strongly
Agree

Agree Strongly
Agree

Strongly
Agree

Strongly
Agree

Section 7 (SUS #2): I
found the language
above unnecessarily
complex

Strongly
Disagree

Strongly
Disagree

Strongly
Disagree

Strongly
Disagree

Strongly
Disagree

Strongly
Disagree

Section 8 (SUS #3): I
thought the language
above was easy to use

Strongly
Agree

Strongly
Agree

Strongly
Agree

Strongly
Agree

Strongly
Agree

Strongly
Agree

Section 9 (SUS #4): I
think that I would need
the support of a
technical person to be
able to use the language
above

Strongly
Disagree

Strongly
Disagree

Strongly
Disagree

Strongly
Disagree

Strongly
Disagree

Strongly
Disagree

52 The Mann-Whitney U test is a nonparametric statistical test that compares two independent
groups to assess whether they are drawn from the same population or not. This test is appropriate
for ordinal or continuous data that do not meet the assumptions of parametric tests.
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Statement NLB Responses KVP Responses

Total Mode JPL Mode UPC Mode Total Mode JPL Mode UPC Mode

Section 10 (SUS #5): I
found the various
functions in the
language above were
very well integrated

Strongly
Agree

Strongly
Agree

Strongly
Agree

Strongly
Agree

Strongly
Agree

Strongly
Agree

Section 11 (SUS #6): I
thought there was too
much inconsistency in
the language above

Strongly
Disagree

Strongly
Disagree

Strongly
Disagree

Strongly
Disagree

Strongly
Disagree

Strongly
Disagree

Section 12 (SUS #7): I
would imagine that
most people would
learn to use the
language above very
quickly

Strongly
Agree

Strongly
Agree

Strongly
Agree

Strongly
Agree

Strongly
Agree

Strongly
Agree

Section 13 (SUS #8): I
found the language
above very
cumbersome (awkward)
to use

Strongly
Disagree

Strongly
Disagree

Disagree Strongly
Disagree

Strongly
Disagree

Strongly
Disagree

Section 14 (SUS #9): I
felt very confident using
the language above

Strongly
Agree

Strongly
Agree

Strongly
Agree

Strongly
Agree

Strongly
Agree

Strongly
Agree

Section 15 (SUS #10): I
needed to learn a lot of
things before I could
get going with the
language above

Strongly
Disagree

Strongly
Disagree

Strongly
Disagree

Strongly
Disagree

Strongly
Disagree

Strongly
Disagree

Table 8. Mode for each response in Sections 5-14. The Statement column in sections 5-14

includes the statement provided to respondents and the SUS question number (except for Section

5). The Responses columns show the mode for each sample (JPL and UPC) and the combined

mode in the Total Mode column. Discrepancies between samples are highlighted in bold.
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5 Discussion

In this section, we analyze various topics related to utilizing Tychonis in practical

situations. We examine Tychonis' design characteristics and their applicability to

real-world scenarios, the separation of modeling and resolution concerns,

strategies to balance software design purity with real-world applicability and

growth, the performance of Tychonis's Solver and SolverStrategy

classes, integration of Tychonis with mission software, and the impact of mission

resources and risk postures on the adoption of novel technologies like Tychonis.

Lastly, we discuss our study's outcomes on the two textual languages and their

implications for space missions.

5.1 Metamodel Software Design vs. Applicability

The previous sections of this document presented how Tychonis' design

characteristics enable extension and reusability in a way that advances the present

state of the art in the field of opportunity search software. Nonetheless, this

achievement is not immune to examination by both its creators and potential

users.

Future critical assessments of the framework's design may raise concerns about

how it handles the separation of modeling and resolution concerns, as well as the

abstraction it promotes. An illustrative example is the scenario where a user

searches for an opportunity using a SPICE-based Solver, which would require

loading into SPICE kernel files that contain body definitions, ephemeris data, and

other relevant information. In this case, a Tychonis Query validation call might

need to verify whether a specific body name (e.g., "EARTH") referenced in the

Query instance actually exists in the kernels, which would mean that the Query

object must be able to communicate with SPICE. However, this requirement
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poses a challenge to maintaining a clean separation between the modeling and

resolution steps for an opportunity. To address this, one feasible solution is to

defer the validation of some Query components until Solver code executes,

which in our example means that it is the Solver implementation that checks

the existence of the body name in the kernels loaded into SPICE. This is the

strategy adopted by Tychonis, as it preserves the separation between modeling

and resolution steps, albeit at the cost of conducting a less thorough validation at

the modeling stage. Nonetheless, this approach can balance the need for

maintaining design purity with the practicality of building a usable and extensible

framework that meets the diverse needs of its potential users.

Another example, but this one on the abstraction front, is that Result

instances contain result tables that have been designed to be generic in that they

can contain any element as long as it implements the Resultable interface.

This is powerful in order to make Solver classes decide autonomously what

data goes into a Result. However, users and other Solver classes might need

to have a way to obtain more concrete result data beyond text-based output (i.e.,

stringValue() in Resultable). In this case, given the design need for

abstraction needs to be relaxed, Tychonis provides Query capabilities to retrieve

objects of specific class types from a Result instance as described in the

previous section.

These exemplifying challenges and their solutions prove that a good balance

between software design purity, real-life applicability, and capability growth can

resolve current and future needs as long as judiciousness is maintained over

time53.

53 This is embodied by the maxim: The architecture of a software system tends to degrade over time, unless an
effort is made to keep it clean.
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5.2 Solver Performance

Tychonis’s default implementations of Solver and SolverStrategy

classes implement algorithms that could be sped up with their parallelized

analogs. For Solver classes, an idea is to parallelize the search of time windows

by dispatching packaged sub-searches to different threads, then analyzing and

consolidating time windows found in each of the threads. This is also applicable

in Query instances in which parts of the input are unknown. For instance, if

there is a distance Query object in which the target body is an unknown, one

sub-search could search for target body b1, another sub-search could search for

b2, and so on. One thing to note in this pattern is that given the flexibility

afforded by Tychonis in the development of Solver classes, one could

implement this parallelism within a Solver as operating system threads, as

suggested previously, but also as computer cluster jobs, MapReduce [56]

functions, or other avenues for implementation of the fork-join54 [57] pattern.

At the composite opportunity level, SolverStrategy classes can also

implement parallelism when they resolve the opportunity tree. One common

occurrence is to have two non-Boolean Query objects connected by an AND or

an OR. In this example, each one of the non-Boolean Query objects can be

resolved independently in parallel. Once both those Query objects are resolved,

then the Boolean operation can be executed. This mode of operation can be

generalized to trees of any size. Also, in this depiction, SolverStrategy

directs the resolution in a fork-join manner similar to that of parallelized

Solver classes; with the implication that this algorithm can also be

implemented through various parallel computing paradigms. Current SPICE

versions, however, do not support function-level parallelism. If there is a need to

implement parallelism within a single multi-core computer, it might follow that

54 The fork-join pattern is a programming paradigm commonly used in parallel computing, in
which a task is recursively split into smaller subtasks, which are executed concurrently. Once all
subtasks are completed, their results are merged or joined to produce the final output. This
pattern is particularly useful for optimizing the performance of applications that can be
parallelized, such as those with many independent and identical tasks. The fork-join pattern is
often implemented using libraries or frameworks that provide support for multithreading or
distributed computing.
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parallelism of SPICE at the application thread level is not possible. However,

there are ways to mitigate the latter concern. The Modeling and Verification

Group at JPL is currently building a Java library called ParSPICE that can create

an arbitrary number of non-blocking SPICE engines within the same Java Virtual

Machine (JVM). The library provides access to the typical SPICE calls, which are

then dispatched in a non-blocking manner to the created SPICE sub-engines,

thereby enabling SPICE parallelization. This library can be useful should a

mission decide to implement new Solver code with SPICE.

5.3 Release and Adoption

We need to underscore the strategic relevance of integrating Tychonis with

mission-specific software in the proposal, development, or operations phase. It is

important to consider that the needs and resources of a mission in these three

phases can significantly vary. Proposals, for instance, typically have limited

resources and would benefit from adopting reusable software to limit

development time. Missions in the development phase, on the other hand, have

more resources but become increasingly risk-averse to new developments as

launch date approaches. Finally, missions in operations typically have sustained

but diminishing funding and may become more open to adopting new

technologies, particularly after the prime mission objectives have been achieved.

Such risk and resource profiles, coupled with a mission's ongoing need to search

for geometric events, provide engineers with opportunities to adopt a framework

like Tychonis. Given its reliance on good design practices and its ability to

address user needs, incorporating Tychonis can be less expensive and less risky

than adopting ad-hoc approaches.

Tactically, we propose the integration of Tychonis with the opportunity search

capability of SOA as a first step. This step is particularly fitting given that the

management of SOA's development was under the purview of one of the

authors' teams at JPL. The NASA-managed Psyche mission, currently in the

development phase for preliminary science planning, is also using SOA and will
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continue to use the software during mission operations. Likewise, the Europa

Clipper mission will use SOA to schedule the activities of some of its instruments

during mission operations. We expect that integrating SOA with Tychonis will

lead to cost savings, as opportunity definitions and their search algorithms could

be developed once by either mission and shared by both. A successful

SOA/Tychonis integration can also pave the way for Tychonis' integration with

JPL software other than SOA.

Beyond JPL, we intend to release Tychonis as an open-source codebase, thereby

increasing the software's availability and potentially facilitating its adoption by

research centers and universities. Such adoption can lead to integrations with

other third party tools and augmentations to Tychonis' open-source repository. It

is worth noting that the potential integrations and augmentations of Tychonis'

open-source repository are not limited to applications relating to geometric

events for science planning. As an example, the tool described in [58] presents a

proof-of-concept software that determines the availability and data rate at which

different space data nodes can communicate with each other. This software, in a

way, models parts of a protocol stack similar to TCP/IP55 where these space data

nodes act as routers and are transmitting information with each other. For this

tool and others similar to this one, Tychonis could be extended to model and

search for multi-hop routes that account for orbital mechanics, optimize network

capacity, line of sight between routers, and even build a full routing table56. These

new events and their search methods could make it into an open source

repository available for anyone to use and be implemented in those space routers

or ground planning systems.

56 A routing table is a data table stored in a network device, such as a router or switch, that
contains information used to determine the best path for forwarding data packets between
different network segments. The routing table includes entries for destination addresses as well as
information about the next device or hop to which the packet should be sent. This information is
used by the device to make decisions about where to send packets of data based on the routing
protocols it has learned and the network topology it is connected to.

55 TCP/IP stands for Transmission Control Protocol/Internet Protocol. It is a set of
communication protocols used to interconnect network devices on the internet. TCP/IP provides
end-to-end connectivity by specifying how data should be packetized, addressed, transmitted,
routed, and received by network devices. The protocol has been foundational in the development
of the internet, and it continues to be widely used today.
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Another advantage of Tychonis as an open source tool is that it has the potential

to be used as a practical teaching tool in science and engineering courses on

various topics such as planetary dynamics, space communications, and remote

sensing. This means that students could use Tychonis to learn about space

geometry without concerning themselves overly with specific algorithms, which

can be a barrier for some students. In software-oriented courses, exercises could

be proposed on the development of opportunities and Solvers using Tychonis,

which could serve as a case study on how good software practices can be

beneficial in the development of larger software applications. In short, the

authors see the potential for Tychonis to be used as a valuable educational tool in

various fields related to space science and engineering.

5.4 Textual Language

One of the main takeaways from the study presented in Section 4 is that

respondents considered that NLB was, by a substantial margin (see Table 8,

Section 5), a more readable implementation of a textual language for our

purpose. An expectation, while designing the two language options, was that

NLB would be considered more readable overall due to its similarity to the

English language, but there was also doubt as to whether, given the software

development experience of the samples and their potential more comprehensive

exposure to data exchange formats like JSON or XML, that KVP could also be

considered quite readable. One thought we are currently considering is the fact

that the positive evaluation of NLB in terms of readability also makes it more

communicable within a group, and only not at the level of just one individual. In

other words, scientists and engineers, with no previous training, can look at

events written in it and understand their meaning and debate whether an event

makes sense or not within the context of a mission. This debate is a key point, as

we have learnt that scientists and engineers, especially during the remote work

spells of the COVID-19 pandemic, exchange textual information via email and

chat facilities more frequently than when they are physically co-located. While
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this is not a core point to our research, it makes an argument that the ability to

understand or read an event might be more important than the ability to write an

event. In essence, more readability might imply higher-quality group

communication and decision-making via digital-textual means.

Another reflection is that the differences between NLB and KVP in relation to

the SUS scores results are small and the SUS scores are overall very high,

indicating that both options are highly usable according to the sample and the

methods used. Delving into the details of the scores, the two samples combined

gave a higher score to KVP, by a very small margin; however, the JPL sample

gave a higher score to NLB, and the UPC sample gave a higher score to KVP.

Because both samples are small and the differences in scores are small, this could

be construed as part of survey noise, but we believe there is something indicated

by this small divergence. Our thesis is that native English speakers favor NLB,

and the totality of the JPL sample is indeed composed of native English speakers.

In contrast, the UPC sample was composed, in its totality, by non-native English

speakers, and while they all had very good command of the English language and

never asked for clarification about the grammar or vocabulary that was part of

the NLB option, a slight hesitation towards a language they are not fully

comfortable with, when compared to their native languages, might be encoded in

their responses. As we saw for the statements “I think that I would like to use the

language above frequently” (Table 8, Section 6) and “I found the language above

very cumbersome (awkward) to use” (Table 8, Section 13), the mode results

indicate the UPC sample was slightly less enthusiastic about NLB than it was for

KVP relative to the JPL sample. While we are not considering developing an

NLB option in different languages, one way to validate this thesis would be to

perform the same study in which both KVP and NLB use words and

constructions in the native language of the respondents. In any case, and as a

corollary for the SUS scores, we (1) do not consider usability for one language

option to be substantially better than for the other, and (2) both language options

are highly usable as evidenced by the high SUS numbers.
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Given the interpretation of the data, we have concluded it is more sensible to

proceed with research on the implementation of a textual language that adheres

to the NLB philosophy. This research would include the completion of the

grammar for a variety of frequently used geometric events, the design of a unit

system for values such as distance, and a mature way to define dates and times. In

order to implement the language, one route to take is to leverage the Xtext

language development framework [59], as it provides a path to transform text

into instances of a metamodel, which aligns with the design of the Tychonis

framework. Another benefit of Xtext is that, depending on the environment in

which it is used, it provides auto-complete and other guard rails for languages

implemented with it. Notably, the need for such capability was a comment

provided by respondents during our dry run of the survey.

Additional future research should also consider the automatic expansion of the

language grammar based on independent augmentations of the Tychonis

framework. This would imply that if a developer adds a new type of searchable

geometric event to Tychonis, the textual language would automatically be

augmented without having to involve a language developer to explicitly augment

the grammar, as the grammar would be implicitly encoded in the Tychonis

metamodel. As already covered, one of the main tenets of the Tychonis

framework is separation of concerns. These concerns comprise (1) the

description, or modeling, of families of geometric events, (2) the description of

the algorithms to search for a family of geometric events, and (3) the capture and

provisioning of the geometric event search results. In regards to a textual

language, a fourth concern should consider how the parameters of a family of

geometric events would manifest within the context of a given textual language

such as the ones described in this manuscript.
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6 Conclusion

The current state of the art in opportunity search software has been limited by

the inadequacies of existing solutions. Both mission-developed scripts and

multi-mission frameworks have been found wanting in terms of essential qualities

such as extensibility, reusability, and a clear separation between the definition of

events and their search. To overcome these limitations, we embarked on the

development of a new framework named Tychonis. Tychonis is designed to be a

solution that advances the state of the art in opportunity search software by

integrating with both current and future mission software. Its core capabilities

include enabling end-users to extend opportunities and search algorithms without

modifying the tools that use the framework, and promoting the cross-mission

reusability of the framework and developments implemented in it.

Our design goals for Tychonis were consciously guided by best practices in

software design. The first goal was separation of concerns, which provides

distinct constructs for the modeling of opportunities, search of opportunities,

and the capturing of search results. This improves code readability and better

maps to user needs, while enabling additional design goals. The second goal was

user extensibility, which allows users to extend the constructs that model each

concern. The third goal was mission reusability, which makes Tychonis an

independent framework that is agnostic as to what tools it can integrate with and

provides a complete set of capabilities in its default form. The fourth and final

goal was verification and validation, which allows for the validation of

opportunities modeled with Tychonis without the need to develop additional

code.

To demonstrate the practical application of Tychonis, we presented a case study

of its integration with SOA. Our intent was to highlight the value added by the

design goals through more technical and tangible descriptions. The integration

pattern described in this paper can serve as a useful reference for parties
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interested in integrating Tychonis with their own tools. It also proves that the

idea of Tychonis as a reusable and extensible framework that can evolve

separately from the tools that integrate with it is doable and potentially a pattern

to follow by other frameworks is a similar environment.

As a complement to Tychonis, we conducted an inquiry to examine two

distinctive modalities for modeling geometric events through text, which obviate

the requirement for extensive knowledge of programming languages. These

modalities comprise a natural-language-based language and a key-value-based

language. Our findings indicate that while both modalities are highly usable, the

natural-language-based language appears to be more legible. A noteworthy

observation is that it would be sensible to integrate the natural-language-based

language with Tychonis, a task that could be accomplished via an automated

mechanism that synchronously updates the language with any modifications

made to Tychonis, thus ensuring its up-to-date status.

The Tychonis framework and the languages we designed represent a significant

step forward in the field of opportunity search software. By addressing the

limitations of existing solutions and meeting a set of well-defined design goals,

our ideas have the potential to greatly enhance the capabilities of future mission

software and promote reusability in a way that was not possible before in this

domain. At this juncture, it brings us immense happiness to realize that our

efforts will aid in the advancement of state-of-the-art space mission software,

even beyond the opportunity search domain.
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Appendix A

Questionnaire used to evaluate the usability of two declarative computer

languages to model geometric events in space. The questionnaire starts with

Section 1, which includes demographics questions. It is followed by Sections 2

and 3, which have two exercises to be completed by the respondents. In each

exercise, respondents are asked to model a geometric event with the two language

options. Sections 4-14 include questions concerned with usability.

Section 1 - Demographics

Prompt Possible Answers

1. What is/are your college
major(s)?

Free-form text

2. What is your educational
level?
If you are currently working
towards a degree, and this degree is
higher than previous degrees, please
choose the level of the degree you
are currently working towards.

● BS
● MS
● PhD

3. How many years have passed
since you graduated from your
highest degree?

Number entry
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Prompt Possible Answers

4. How many years of
experience do you have in the
aerospace domain?
Besides work experience, please
also count school projects and
classes if they are in the
aerospace domain

Number entry

5. Do you think of yourself as a
software developer?

Yes/No

Section 2 - Exercise 1

In this exercise you will be asked to model and search for a simple geometric

event with the two different language options. You will see an example with both

languages. You will use the example as a starting point to model the new event.

Example event: "Between the start of year 2000 and the end of year 2005, the

distance between the Earth and the Moon is less than 400,000 km.". Potential

solutions:

Language A Language B

DEF event1 AS
DISTANCE FROM Moon
TO Earth
LESS THAN 40K
DURING
01/01/2000:12/31/2005

SEARCH FOR event1

DistanceQuery event1{
observer: "Moon"
target: "Earth"
test: <
amount: 40K
start_time: 01/01/2000
end_time: 12/31/2005

}
SEARCH FOR event1
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Event: "Earth and Mars are at a distance of more than 70M km in all of 2021".

Prompt Possible Good Answers (free-form text)

Please model the event
above with Language A

DEF event_name AS
DISTANCE FROM Earth TO Mars
MORE THAN 70M
DURING 01/01/2021:12/31/2021

SEARCH FOR event_name

Please model the event
above with Language B

DistanceQuery event2{
observer: "Earth"
target: "Mars"
test: >
amount: 70M
start_time: 01/01/2021
end_time: 12/31/2021

}
SEARCH FOR event2

Section 2 - Exercise 2

In this exercise you will be asked to model a composite geometric event with the

two different language options. You will see a new type of event and its definition

in both languages. You will use that as a starting point to model the new event.

Occultation Events in Language
A

Occultation Events in Language B

OccultationEvent event1{
type: {"any", "full",
"annular", "partial"}
back_body: "backBody"
front_body: "frontBody"
observer:
“observerBody”
start_time: startTime
end_time: endTime

}
SEARCH FOR event1

DEF event1 AS
{ANY, FULL, ANNULAR,
PARTIAL}OCCULTATION
BETWEEN BACK BODY body1
AND FRONT BODY body2
OBSERVED BY BODY observer
DURING startTime:endTime

SEARCH FOR event1
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Event: "Earth and Mars are at a distance of more than 70M km, and at the same

time, Mars and Earth are in full solar conjunction (solar conjunction is when the

Sun is between two bodies). Use the 2010-2020 interval".

Prompt Possible Good Answers (free-form text)

Please model the event
above with Language A

DistanceQuery event1{
observer: "Earth"
target: "Mars"
test: >
amount: 70M
start_time: 01/01/2010
end_time: 12/31/2020

}

OccultationEvent event2{
type: "full"
back_body: "Mars"
front_body: "Sun"
observer: “Earth”
start_time: 01/01/2010
end_time: 12/31/2020

}

SEARCH FOR event1 AND event2

Please model the event
above with Language B

DEF event1 AS
FULL OCCULTATION

BETWEEN BACK BODY Mars
AND FRONT BODY Sun
OBSERVED BY BODY Earth
DURING
01/01/2010:12/31/2020

DEF event2 AS
DISTANCE FROM Moon TO Earth
MORE THAN 70M
DURING 01/01/2010:12/31/2020

SEARCH FOR event1 AND event2
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Sections 4-14 - Usability Questions

These sections included an example in each language option, and below each

example, the statements below. Respondents selected a response on a Likert 1-5

scale for each question and for each language option. In this Likert 1-5 scale, 1

indicated “Strongly Disagree” and 5 indicated “Strongly Agree”. Section 4 was a

question on readability, whereas Sections 5-14 were part of the System Usability

Scale (SUS).

● Section 4: I think the language above is readable by a scientist or engineer

● Section 5: I think that I would like to use the language above frequently

● Section 6: I found the language above unnecessarily complex

● Section 7: I thought the language above was easy to use

● Section 8: I think that I would need the support of a technical person to

be able to use the language above

● Section 9: I found the various functions in the language above were well

integrated

● Section 10: I thought there was too much inconsistency in the language

above

● Section 11: I would imagine that most people would learn to use the

language above very quickly

● Section 12: I found the language above very cumbersome (awkward) to

use

● Section 13: I felt very confident using the language above

● Section 14: I needed to learn a lot of things before I could get going with

the language above
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Appendix B

This Appendix presents the response count of the usability questions in

Appendix A, "Sections 4-14 - Usability Questions," for each sample (JPL and

UPC), as well as the aggregate for both. The response count is provided for each

question and its Likert scale response.

JPL Sample

JPL Sample

Question Language
Strongly
Agree Agree Neutral Disagree

Strongly
Disagree

I think the
language
above is
readable by
a scientist
or engineer

NL-Based 10 8 0 0 0

Key-Value
Pair 4 4 8 2 0

I think that
I would like
to use the
language
above
frequently

NL-Based 10 7 1 0 0

Key-Value
Pair 10 8 0 0 0

I found the
language
above
unnecessaril
y complex

NL-Based 0 0 1 5 12

Key-Value
Pair 0 0 4 4 10
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JPL Sample

Question Language
Strongly
Agree Agree Neutral Disagree

Strongly
Disagree

I thought
the
language
above was
easy to use

NL-Based 10 8 0 0 0

Key-Value
Pair 14 4 0 0 0

I think that
I would
need the
support of
a technical
person to
be able to
use the
language
above

NL-Based 0 2 0 4 12

Key-Value
Pair 0 0 2 4 12

I found the
various
functions in
the
language
above were
well
integrated

NL-Based 14 4 0 0 0

Key-Value
Pair 12 4 2 0 0

I thought
there was
too much
inconsisten
cy in the
language
above

NL-Based 0 1 1 2 14

Key-Value
Pair 0 1 1 0 16
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JPL Sample

Question Language
Strongly
Agree Agree Neutral Disagree

Strongly
Disagree

I would
imagine
that most
people
would learn
to use the
language
above very
quickly

NL-Based 14 2 2 0 0

Key-Value
Pair 12 4 2 0 0

I found the
language
above very
cumbersom
e (awkward)
to use

NL-Based 0 0 0 6 12

Key-Value
Pair 0 0 0 5 13

I felt very
confident
using the
language
above

NL-Based 12 5 1 0 0

Key-Value
Pair 12 5 1 0 0

I needed to
learn a lot
of things
before I
could get
going with
the
language
above

NL-Based 0 1 0 1 16

Key-Value
Pair 0 1 0 6 11
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UPC Sample

UPC Sample

Question Language
Strongly
Agree Agree Neutral Disagree

Strongly
Disagree

I think the
language
above is
readable by
a scientist
or engineer

NL-Based 9 0 0 0 0

Key-Value
Pair 0 4 4 1 0

I think that
I would like
to use the
language
above
frequently

NL-Based 1 7 1 0 0

Key-Value
Pair 8 1 0 0 0

I found the
language
above
unnecessaril
y complex

NL-Based 0 0 0 2 7

Key-Value
Pair 0 0 0 3 6

I thought
the
language
above was
easy to use

NL-Based 8 1 0 0 0

Key-Value
Pair 6 2 1 0 0
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UPC Sample

Question Language
Strongly
Agree Agree Neutral Disagree

Strongly
Disagree

I think that
I would
need the
support of
a technical
person to
be able to
use the
language
above

NL-Based 0 0 0 0 9

Key-Value
Pair 0 1 2 1 5

I found the
various
functions in
the
language
above were
well
integrated

NL-Based 6 0 2 1 0

Key-Value
Pair 6 3 0 0 0

I thought
there was
too much
inconsisten
cy in the
language
above

NL-Based 0 0 1 0 8

Key-Value
Pair 0 0 0 1 8

I would
imagine
that most
people
would learn
to use the
language
above very
quickly

NL-Based 7 0 1 1 0

Key-Value
Pair 4 3 2 0 0
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UPC Sample

Question Language
Strongly
Agree Agree Neutral Disagree

Strongly
Disagree

I found the
language
above very
cumbersom
e (awkward)
to use

NL-Based 0 0 0 7 2

Key-Value
Pair 0 0 0 2 7

I felt very
confident
using the
language
above

NL-Based 6 2 1 0 0

Key-Value
Pair 8 1 0 0 0

I needed to
learn a lot
of things
before I
could get
going with
the
language
above

NL-Based 0 0 0 1 8

Key-Value
Pair 0 0 1 2 6
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Aggregate (JPL plus UPC)

Aggregate

Question Language
Strongly
Agree Agree Neutral Disagree

Strongly
Disagree

I think the
language
above is
readable by
a scientist
or engineer

NL-Based 19 8 0 0 0

Key-Value
Pair 4 8 12 3 0

I think that
I would like
to use the
language
above
frequently

NL-Based 11 14 2 0 0

Key-Value
Pair 18 9 0 0 0

I found the
language
above
unnecessaril
y complex

NL-Based 0 0 1 7 19

Key-Value
Pair 0 0 4 7 16

I thought
the
language
above was
easy to use

NL-Based 18 9 0 0 0

Key-Value
Pair 20 6 1 0 0
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Aggregate

Question Language
Strongly
Agree Agree Neutral Disagree

Strongly
Disagree

I think that
I would
need the
support of
a technical
person to
be able to
use the
language
above

NL-Based 0 2 0 4 21

Key-Value
Pair 0 1 4 5 17

I found the
various
functions in
the
language
above were
well
integrated

NL-Based 20 4 2 1 0

Key-Value
Pair 18 7 2 0 0

I thought
there was
too much
inconsisten
cy in the
language
above

NL-Based 0 1 2 2 22

Key-Value
Pair 0 1 1 1 24

I would
imagine
that most
people
would learn
to use the
language
above very
quickly

NL-Based 21 0 3 3 0

Key-Value
Pair 16 7 4 0 0
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Aggregate

Question Language
Strongly
Agree Agree Neutral Disagree

Strongly
Disagree

I found the
language
above very
cumbersom
e (awkward)
to use

NL-Based 0 0 0 13 14

Key-Value
Pair 0 0 0 7 20

I felt very
confident
using the
language
above

NL-Based 18 7 2 0 0

Key-Value
Pair 20 6 1 0 0

I needed to
learn a lot
of things
before I
could get
going with
the
language
above

NL-Based 0 1 0 2 24

Key-Value
Pair 0 1 1 8 17
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