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Et pourtant, tout demeure, il suffit de se poser la 
question : “Que sommes-nous venus faire sur cette 
Terre” ? La réponse me paraît facile : apprendre, 
apprendre pour aller vers la connaissance d’un 
mystère et non pas seulement se contenter de savoir, 
de se servir avant de servir. 

JACQUES PUISAIS 
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Abstract  

Making decisions is an unavoidable yet challenging aspect of life. 
Amidst a sea of options, one must weigh valuable alternatives, 
dealing with the frustration of forgoing the majority of them and 
confront the anxiety of potential wrong choices. This challenge is 
further compounded by the limitations of finite internal (memory, 
attention, energy) and external resources (time, money) available 
for gathering information before reaching a decision. How, then, do 
individuals adeptly navigate these complexities? 
This research probes three distinctive cases demanding a subtle 
balance between efficient default behaviours and more resource-
demanding but flexible strategies. It reveals humans' capacity to 
employ strategies aptly engaging costly cognitive control 
mechanisms or relying instead on prior knowledge (Chapter I). 
Additionally, these strategies adeptly consider available resources 
and environmental contexts, while embracing frugal heuristics 
(Chapter II). Furthermore, our results delineate structured search 
strategies driven by specific goals, transcending a mere focus on 
reward maximisation (Chapter III). 
Through novel experimental designs mirroring real-life scenarios 
with naturalistic stimuli, multiple alternatives, and active 
information search, this research unveils intricate decision-making 
strategies characterised by adaptability, anticipation, and judicious 
integration of contextual and intrinsic information. This work lays a 
foundational framework for understanding the multifaceted factors 
that modulate human choice behaviour in complex environments. 

Keywords: decision-making, EEG, cognitive-control, breadth-
depth dilemma, information search, fluctuations   
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Resum  
Prendre decisions es un repte, i a la par un aspecte inevitable a les 
nostres vides. D’entre totes les opcions viables, hom ha de sotmetre 
a escrutini i avaluació les diverses alternatives en tant gestionant la 
frustració adherida a la renuncia de la multitud rebutjada i l’angoixa 
de la potencial elecció mal presa. Aquest repte es veu accentuat per 
la disponibilitat finita dels recursos interns (memòria, atenció, 
energia) i externs (temps, diners), els quals son un agent limitant 
alhora de recopilar informació necessària per arribar a una decisió. 
Aleshores, com ho fan les persones per a navegar de forma 
adaptativa aquesta tasca tan complexa? 
Aquesta recerca explora tres situacions que exigeixen un equilibri 
subtil entre l’actuació de comportaments automàtics i estratègies 
més costoses en recursos però alhora més flexibles. Els resultats 
revelen que l’ésser humà es capaç d’utilitzar estratègies que 
involucren mecanismes de control cognitius costosos o, en comptes, 
basant-se en coneixements prèviament adquirits (Capítol I). A més, 
aquestes estratègies tenen en compte els recursos disponibles i el 
context, mentre adopten heurístiques econòmiques (Capítol II). 
Addicionalment, els nostres resultats descriuen estratègies 
estructurals guiades per objectius específics, en comptes de 
focalitzar-se en la maximització de la recompensa del joc (Capítol 
III). Gràcies a l’enginyós i novedós disseny experimental, el qual fa 
mímica d’escenaris ecològics incorporant estímuls naturalístics, 
alternatives múltiples i d’una recerca d’informació activa, aquest 
treball mostra estratègies de presa de decisions complexes, 
caracteritzades per l’adaptabilitat, l’anticipació i la capacitat 
d’integrar de manera aclaridora la informació interna i contextual. 
Aquesta tesi construeix les bases d’un marc conceptual per a 
l’estudi de la varietat de factors que modulen la presa de decisions 
dels humans en àmbits complexos. 

Paraules clau: presa de decisions, EEG, control cognitiu, dilema 
amplitud-profunditat, cerca d'informació, fluctuacions 
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Résumé  
Prendre des décisions est un aspect essentiel, bien que difficile, du 
quotidien. Devant un large éventail d’options, il est crucial de 
distinguer les plus prometteuses tout en confrontant la frustration de 
renoncer à la plupart d’entre elles et l’anxiété liée à la perspective 
d’un choix erroné. Ce défi est accentué par l’accès limité aux 
ressources internes (mémoire, attention, énergie) et externes (argent, 
temps) nécessaires pour recueillir des informations et prendre une 
décision éclairée. Comment, alors, les individus surmontent-ils 
habilement ces enjeux ?  
Cette recherche explore trois situations qui exigent un équilibre 
subtil entre l’utilisation de comportements automatiques efficaces et 
des stratégies plus couteuses en ressources mais flexibles. Les 
résultats révèlent que l’Homme est capable d’utiliser des stratégies 
engageant de manière judicieuse des mécanismes de contrôle 
cognitif coûteux ou s’appuyant plutôt sur des connaissances 
préalablement acquises (Chapitre I). De plus, ces stratégies 
considèrent habilement les ressources disponibles et le contexte, 
tout en adoptant des heuristiques économes (Chapitre II).  En outre, 
nos résultats décrivent des stratégies structurées guidées par des 
objectifs spécifiques, qui dépassent le simple but de maximiser les 
récompenses en jeu (Chapitre III).  
Grâce à l’utilisation de designs expérimentaux novateurs reflétant 
des scénarios réalistes, incorporant des stimuli naturalistes, de 
multiples alternatives et une recherche active d’information, ces 
travaux dévoilent des stratégies complexes de prise de décision 
caractérisées par leur adaptabilité, leur anticipation et l’intégration 
opportune d’informations contextuelles et intrinsèques. Ce travail 
pose les bases d’un cadre conceptuel pour mieux appréhender la 
variété de facteurs qui interagissent au sein d’environnements 
complexes et modulent nos choix. 

Mots clés: prise de décision, EEG, contrôle cognitif, dilemme 
largeur-profondeur, recherche d'informations, fluctuations 
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Choisir, c'était renoncer pour toujours, pour 
jamais, à tout le reste et la quantité nombreuse 
de ce reste demeurait préférable à n'importe 
quelle unité.  

ANDRÉ GIDE - Les Nourritures terrestres (1897) 
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1. GENERAL INTRODUCTION 

Life unfolds as a myriad of choices, ranging from the mundane to 

the profound. What to wear, what to eat, where to live, what to vote 

or believe in - each decision, regardless of its apparent significance, 

shapes our lives in foreseeable and unforeseeable ways; the 

consequences of our choices are sometimes immediately tangible, 

but often extend into the realms of uncertainty, introducing 

complexities that challenge our decision-making abilities. 

Even seemingly trivial decisions, such as choosing an outfit for the 

day, can have far-reaching implications. A wrong choice might 

render us vulnerable to catch a cold or create discomfort in social 

interactions. The unpredictability of outcomes further compounds 

the challenge; unexpected rain can turn a well-planned day into a 

soggy ordeal. In sum, decisions carry inherent risks and potential 

opportunities, uncertainties and fears of erring. Balancing these 

elements, especially as the temporal horizon extends into the future, 

makes the act of choosing a formidable cognitive task. 

Moreover, the fear of making a wrong choice is accompanied by the 

fear of missed opportunities. Every decision involves selecting one 

path and forsaking countless others, a process laden with emotional 

weight. Technological and ethical progress, while expanding our 

possibilities and improving our well-being (Schwartz, 2016), 
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paradoxically also adds to the burden. While the plethora of 

alternatives available today drive infinite desire, our capacity to 

satisfy it remains limited. This notion, is well described in a 

mechanism called choice overload and implies that an abundance of 

choices can overwhelm, diminishing satisfaction and hampering 

effective decision-making (Iyengar & Lepper, 2000; Schwartz, 

2016). A similar effect is found when decision makers face an 

amount of information that is greater to what they can process – 

information overload –, negatively affecting the speed and quality 

of choices (Eppler & Mengis, 2004).  

Given the complexity of the decision-making process itself, and the 

ever-increasing range of choices we are confronted with: how do 

humans cope with the costs of deciding? This dissertation delves 

into the intricate processes of human decision-making, exploring 

the strategies employed to navigate the limited resources required 

for deciding and their implications on performance. Choosing 

cannot simply be avoided, and tergiversating should be minimized 

to gain efficiency. Therefore, understanding how humans grapple 

with decision-making costs becomes paramount. 

1.1. Decisions are costly: exploring the internal and external 
resource limitations 

Before deciding, we need to make an investment in order to gather 

information about the possible alternatives (Hauser & Wernerfel, 
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1990).  This investment comes at a cost. In terms of internal 

resources, it draws on cognitive abilities reflected in limited 

working memory capacity and attention span (Shaw & Shaw, 1977; 

Bradbury, 2016). Indeed, when bombarded with a multitude of 

visual stimuli or auditory events or objects, our cognitive 

architecture allows us to retain only a subset of them, typically 

around four items (Cowan, 1998; Vogel et al., 2001). Furthermore, 

the allocation of attentional resources to these items dictates the 

precision with which they are perceived and remembered, 

exemplifying the delicate balance we must strike in utilizing our 

cognitive resources (Bays & Husain, 2008). In their famous 

example, Simons and Chabris (1999) showed that a stimulus as 

conspicuous as a walking gorilla may pass entirely unnoticed if 

one’s attention is strongly engaged on a distracting task. 

Additionally, tasks demanding intensive internal resources often 

correlate with diminished performance (Norman & Bobrow, 1975). 

Factors such as task switching (Monsell, 2003), multitasking 

(Meyer & Kieras, 1997), task complexity (Liu & Li, 2012) or task 

difficulty (Maynard & Hakel, 1997) including memory load (Rypma 

et al., 2002) are known to tax our cognitive resources. Mental 

fatigue, a consequence of prolonged cognitive engagement also 

adversely affects both cognitive (Boksem et al., 2005; Lorist et al., 

2005) and physical performance (Marcora et al., 2009) underscoring 

the limitation of our internal cognitive reservoirs. Finally, deciding 

has been shown to be particularly depleting in terms of cognitive 
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resources, exceeding deliberating or decisions formation (Vohs et 

al., 2008). 

In everyday life, the decisions we make are further confined by 

external constraints. Time, often a precious and scarce commodity, 

compels rapid decision-making. Financial limitations add an 

additional layer of complexity, shaping the choices available to us. 

Accessibility to essential resources, such as raw materials for 

energy production and water, poses constraints that reverberate 

across populations, including the jeopardy of global food security 

(Hanjra & Qureshi, 2010). Moreover, decisions are profoundly 

influenced by information, yet this information does not circulate 

naively. The advent of social media and artificial intelligence (AI), 

steered by enigmatic algorithms, exposes us to targeted data. This 

tailored information not only moulds our thoughts but also exerts 

significant influence, affecting consumer choice (Stephen, 2016) 

and even swaying political outcomes (Allcott & Gentzkow, 2017; 

Gorodnichenko et al., 2021). As Y.N. Harari (2017) suggests, « In 

ancient times having power meant having access to data. Today 

having power means knowing what to ignore » (p. 462). In this 

context, the way we allocated our limited resources to search for 

and consider or overlook new information is essential to overcome 

meddling, fostering critical thinking and informed decision-making. 
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These constraints, operative at both individual and societal levels, 

pose substantial challenges. Understanding how efficiently humans 

navigate these limitations is imperative, given the profound 

implications at stake.  

1.2. Dealing with the costs of deciding 

In the real world, decision-making seldom unfolds in isolation; we 

are often compelled to respond to multiple stimuli simultaneously. 

For instance, answering a colleague's question while walking to the 

cafeteria. If we are familiar with the path, choosing between turning 

left or right while maintaining the conversation poses no challenge. 

However, uncertainty about the route may necessitate a momentary 

pause in the conversation for careful consideration. Similarly, 

environmental factors beyond our control, such as the delightful 

distraction of a passing puppy during a conversation, can disrupt 

our focus, slowing our input in the dialogue. These instances of 

interference, whether arising from multitasking (Shaffer, 1975) or 

competing stimuli (Eriksen & Eriksen, 1974) or stimuli features 

(Stroop, 1935; Simon, 1969), have been extensively studied. They 

have not only shed light on the complexities of human cognition but 

have also delineated the distinctions between automatic and 

controlled processes (Posner & Snyder, 1975; Shiffrin & Schneider, 

1977). 
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Early theories classified automatic processes as rapid, stimulus-

driven responses that can be executed in parallel and at no or little 

cognitive cost. In contrast, controlled processes were deemed 

voluntary, goal-oriented, slower, and subject to a central limitation 

in information-processing capacity, compelling them to operate 

serially.  

Striking the right balance between automatic and controlled 

processes is crucial for efficient interaction with the world, ensuring 

seamless decision-making even in complex and distracting 

environments. 

a. Automa(c processes: efficient but not always relevant  

To navigate the intricate web of stimuli and choices that surround 

us, we often rely on automation, a key strategy that enables efficient 

responses without demanding active attention. It offers the 

advantage of speed and the ability to manage multiple tasks 

concurrently, allowing us to walk while engaged in a conversation 

or effortlessly perform routine actions. It is essential to perceive 

automatic and controlled processes not as discrete entities but as 

part of a spectrum. Through practice, behaviours become automatic 

and tend to rely less on cognitive control (Garner & Dux, 2015; 

Ruthruff et al., 2006; Strobach & Torsten, 2017). For instance, a 

novice driver might struggle to chat while driving, but with practice, 

these tasks can be seamlessly executed simultaneously. Usual 
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necessary tasks can be performed more efficiently through learning 

which gives rise to dedicated representations that function 

independently, enabling parallel processing without interference.  

Additionally, automaticity permeates information gathering, as 

some specific attributes and types of stimuli trigger these automatic 

processes, a phenomenon called attentional capture. Attentional 

capture is stronger for salient stimuli such as loud sounds (Corbetta 

& Shulman, 2002; Theeuwes, 2010), arousing pictures (Schimmack, 

2005), emotional cues, especially those indicating potential threats 

like fearful facial expressions (Anderson et al., 2003), sounds linked 

to imminent danger (Koster et al., 2004), or moving insects 

(Carretié et al., 2009). Relevant stimuli are also processed in 

priority, such as your own name (Berlad & Pratt, 1995) and this 

even when sleeping (Portas et al., 2000). This swift attentional 

capture essential for survival and adaptive behaviour, allowing us to 

respond rapidly to life-threatening situations or react efficiently to 

important environmental features. 

Yet, there's a caveat. Sometimes, these salient stimuli command our 

attention even if irrelevant to our immediate goals. This 

phenomenon occurs with stimuli associated with higher subjective 

value (Anderson et al., 2011; Anderson, 2013), impacting 

subsequent information processing (Anderson, 2016) and decision-

making (Armel et al., 2008; Krajbich et al., 2010; Orquin & Mueller 
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Loose, 2013). Automatic attentional capture, while efficient, can 

distract from the task at hand and introduce biases into decision-

making processes. Studies have shown that, for instance, human 

choices tend to be faster and more frequently directed towards the 

alternative associated with the higher reward, even when 

representing the incorrect response (Afacan-Seref et al., 2018; 

Corbett et al., 2023; Summerfield & Koechlin, 2010; Noorbaloochi 

et al., 2015). 

This interplay highlights the need for a balance between swift but 

rigid automatic processes and flexible but slow controlled 

processes. Cognitive control is crucial in this equation; it steps in to 

flexibly adjust decisions to the current goal, ensuring that efficiency 

does not come at the expense of accuracy and adaptability. This 

balance is the linchpin of effective decision-making in the face of 

complex and dynamic environments. 

b. Cogni(ve control: flexible but limited  

Controlled processes, despite being slower (Kahneman, 2011) and 

effortful compared to automatic ones, have the advantage to be 

extremely flexible. They stand as a remarkable feature of human 

cognition, endowing us with the ability to selectively focus attention 

and cognitive resources, parsing the environment efficiently with a 

specific task in mind. Among its many roles, cognitive control 

allows to hold appealing responses (Donders, 1969), ignoring the 
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many distractions (Lavie, 2010), or resisting the multiple 

temptations surrounding us. It stops us from realising an impulsive 

purchase (Baumeister, 2002) or grabbing an enticing marshmallow 

(Mischel et al., 1989), therefore overcoming immediate desires in 

the pursuit of more distant but greater goals. This mechanism is 

marked by a broad flexibility, facilitating swift adaptation to novel 

situations and the development of sophisticated adaptive 

behaviours, some of which might never have been encountered 

before (Meiran et al., 2015). 

Yet, this extraordinary ability has boundaries. Humans struggle to 

perform two tasks demanding cognitive control simultaneously, 

even when these tasks could be executed smoothly in isolation, such 

as writing dictated words while reading aloud (Shaffer, 1975). The 

reasons for this limitation are still under debate (Musslick & Cohen, 

2021), with recent approaches challenging the conventional view of 

a central limited capacity, assuming instead, as proposed in early 

theories of attention (Navon & Gopher, 1979; Allport, 1980), that 

multiple independent local resources coexist. One such theory 

posits that multiple tasks share common neural representations, 

which support generalisation of learned knowledge to future novel 

situations but may also lead to potential cross-talks between tasks 

conducted simultaneously (Feng et al., 2014; Musslick et al., 2016). 

This perspective suggests that limitations in cognitive control are 

necessary to minimise potential interferences. Additionally, this 
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could also explain attentional or working memory capacity 

limitations as a way to enforce a small number of alternatives than 

can be simultaneously considered which may facilitate comparisons 

and decisions (Cowan, 2010). 

The neural basis of cognitive control has been repeatedly attributed 

to the frontal cortex and especially the dorsal anterior cingulate 

cortex (dACC) and the lateral prefrontal cortex (lPFC) (M. 

Botvinick et al., 2004; Ridderinkhof et al., 2004) to play a role in 

detecting the need for control and implementing behavioural 

adjustments. Nevertheless, understanding the mechanisms dictating 

when cognitive control should be applied remains a challenge. 

Initial theories proposed that the evaluation of the demand for 

control may be through conflict monitoring, as measured by 

increased dACC activation in response to conflict in information 

processing (Botvinick et al., 1999, 2004; Botvinick, 2007). A more 

recent theory expands this notion, asserting that engaging cognitive 

control is not solely dictated by the need for control but also 

integrates the costs and benefits at stake (Shenhav et al., 2013, 

2017). This motivational perspective considers the effort associated 

with cognitive control, balancing its level and type of engagement 

against the expected value. In essence, cognitive control is not 

deployed haphazardly; it is strategically allocated, calibrated to the 

effort demanded and the potential benefits reaped, offering a 
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nuanced understanding of the interplay between our cognitive 

abilities and the complexities of the tasks at hand. 

1.3. Balancing flexibility and efficiency  

a. Value-biased decisions: when does control take the reins? 

Humans are often referred to as “cognitive misers” (G. Allport, 

1954) as they instinctively avoid unnecessary mental exertion 

(Taylor, 1981; Kool et al., 2010). Simultaneously, they are driven by 

a desire to maximise outcomes (von Neumann & Morgenstern, 

1944), showcasing a delicate dance between conserving cognitive 

effort and maximising rewards. Indeed, research demonstrates 

human ability to adjust cognitive and physical efforts based on 

anticipated outcomes, enhancing decision accuracy (Bonner & 

Sprinkle, 2002; Krawczyk et al., 2007; Engelmann et al., 2009; 

Kouneiher et al., 2009; Kool et al., 2010; Padmala & Pessoa, 2011; 

Schmidt et al., 2012; Westbrook & Braver, 2015). This intricate 

interplay extends to working memory and cognitive control, where 

their precision and engagement respectively are bolstered by 

expected rewards and the behavioural relevance of the remembered 

items and task performance (Klyszejko et al., 2014; Frömer et al., 

2021). Thus, the level of cognitive control engagement seems to 

vary with the expected value of control, balancing reward 

magnitude and control efficacy against the cost of cognitive effort. 

This theory revisits the negative relationship between mental fatigue 
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and performance. It suggests that decreased motivation to engage 

cognitive resources may occur when the costs are perceived to 

outweigh the predicted rewards (Boksem & Tops, 2008).  

Additionally, the expected value of control model clarifies how 

previously acquired knowledge may influence the amount of control 

exerted (Bustamante et al., 2021; Lieder et al., 2018).  

Conflict monitoring and value-biases during decision-making tasks 

have mostly been studied using simple artificial stimuli such as 

moving dots (Corbett et al., 2023), grating patterns (Summerfield & 

Koechlin, 2010; Feuerriegel et al., 2021), or colour shades (Afacan-

Seref et al., 2018; Blangero & Kelly, 2017; Carter & van Veen, 

2007). In the first chapter of this thesis, I present a study in 

which we developed a more ecological paradigm to investigate 

the role played by cognitive control in overcoming automatic 

processing of subjective value. This approach, using complex 

choices involving naturalistic stimuli, also enables to shed light on 

the diverse factors influencing the engagement of control, thus 

getting closer to the rich interactions that characterise real life-

scenarios.  

Furthermore, within an additional appendix chapter, our 

objective was to pinpoint the precise brain regions signalling an 

elevated demand for cognitive control. This was pursued by 

analysing intracortical electroencephalography (iEEG) data 

obtained from an epileptic patient undertaking the same task.  
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b. Trade-off in the resource alloca(on: does it reflect op(mal 
performance? 

This optimisation mechanism governing the exertion of control 

based on expected costs and benefits collides with the idea that 

limits of human cognitive abilities are measured through their 

capacity to implement optimal behaviour, meaning following a 

strategy that maximise the expected reward. According to this view, 

humans have shown to be sup-optimal in numerous cases, following 

heuristics (Gigerenzer & Goldstein, 1996; Thorngate, 1980; Shah & 

Oppenheimer, 2008; Gigerenzer & Gaissmaier, 2011) or basing 

their strategy on previously acquired knowledge (stereotypes: 

Allport, 1954) without fully integrating the context they are in. 

Though, ignoring part of the information present (Macrae et al., 

1994) and using simplified strategies (Shugan, 1980) may be a way 

to reduce the decision making cost.  

These behaviours may therefore reflect a wise balance between 

more automatic or learned strategies and controlled behaviours 

more flexible but also more costly, instead of a purely limited 

cognitive capacity. This optimisation under constrains of limited 

resources is defined as bounded rationality (H. A. Simon, 1955; 

Griffiths et al., 2015) where making optimal use of finite external 

and internal capacity reflects the rational use of these resources 
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(Lieder & Griffiths, 2020) and may underly observed biases in 

decision making (Lieder et al., 2018). 

This is reflected in numbers of trade-offs, people for example adapt 

to the time pressure by considering less information or less 

alternatives at the cost of accuracy (Payne et al., 1993; Gold & 

Shadlen, 2002). The number and precision of representations that 

can be actively maintained in working memory may also be 

modulated (Ma et al., 2014), such as the number of alternatives that 

one considers, leading to most of them being ignored in consumer 

choice (Herbig & Kramer, 1994). Instead, other evidence shows that 

when allocating finite capacity, be it time or financial resources, 

humans tend to follow a 1/N rule where they equally split their 

resources among the N alternatives (Benartzi & Thaler, 2001; 

Hertwig et al., 2002), a trade-off known as the equality heuristics 

(Messick, 1993). 

In the second chapter of this thesis, I present a study addressing 

the balance between heuristics and resource-intensive but 

flexible strategies in allocating finite search capacity. Do 

individuals consider the number of alternatives that maximises 

expected rewards? Do they adopt heuristics simplifying 

computations but potentially compromising performance? We 

address these questions by developing a novel experimental 

paradigm – the Apricot Breadth-Depth dilemma - where search 
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resources are experimentally parametrised, as opposed to attention 

or memory, and optimal strategies easily traceable.  

c. Fluctua(ons in resource alloca(on: controlled or stochas(c 
variability?  

The balance between flexibility and efficiency may also be 

underlying the inherent variability observed in behaviour (Rahnev 

& Denison, 2018; Renart & Machens, 2014). Fluctuations in the 

resource allocation may occur due to attentional or motivational 

variability over time but they may also be intended. Indeed, human 

intelligence is frequently associated with its ability to respond 

adaptively in unfamiliar and intricate surroundings in which 

planning play an important role (Kryven et al., 2021). Anticipating 

is indeed necessary to make the best of finite resources (monthly 

budget, food bought for the week, daily energy, etc) (Callaway et 

al., 2021). Consider for example planning a road trip, it demands 

meticulous allocation of time across multiple stops, all while 

ensuring punctual arrival at destinations. In this scenario, one might 

opt to adhere to the equality heuristic, dedicating equal time to each 

location. Alternatively, time could be allocated disparately among 

different stops, possibly even bypassing one stage to allow for a 

more extended stay at another. 

This foresight, while often pivotal for ensuring seamless holidays, 

comes at a price, necessitating substantial demands on memory, 
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computational power, and time. Individual traits may shape the 

extent to which individuals engage in planning and the strategies 

they adopt (Beach & Mitchell, 1978; Miyake & Friedman, 2012). 

Indeed, beyond the pursuit of optimizing anticipated outcomes, 

fluctuations in resource allocation may signify a real-time need to 

acquire more information, mitigating risks, or experimenting with 

new strategies to satiate curiosity. 

In the third chapter of this thesis, I present a study addressing 

whether endogenous fluctuations in the allocation of limited 

resources impact performance. Do they reflect stochastic or 

intended behaviours? Do they represent strategies designed to 

optimise objectives beyond the narrow confines of pure reward 

maximisation? We investigate these questions using an extension of 

the Apricot Breadth-Death dilemma where humans have to manage 

limited search capacity other multiple consecutive decisions.  

In everyday life, decisions are inescapable; every action, every 

thought, shapes a trajectory, whether intentional or unintentional, 

which will influence the future. However, finite cognitive resources 

and external factors such as time impose limits, restricting our 

possibilities. Not all paths can be pursued, making choice both 

challenging and significant. Until not long ago, decision making 

was studied under simplified protocols involving, typically, two 

alternatives forced choices between options with a few controlled 
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features and an immediate temporal horizon. More recent work has 

tried to approximate other real-world decision-making scenarios by 

expanding the number of choices, their complexity and the temporal 

horizon (Maselli et al., 2023). This thesis aims to gain a better 

comprehension of how humans contend with the cost of decision-

making and manage the allocation of these limited resources, and 

how this process impacts performance. First, we examine the 

targeted engagement of cognitive control in counteracting automatic 

behaviour, underlying a precious adaptability. Secondly, we explore 

the trade-offs followed by individuals to gain information when 

faced with numerous alternatives, too many to be thoroughly 

considered. Finally, we investigate the presence of fluctuations in 

resource allocation over time and their relationship with 

performance and intentionality. 
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2. Chapter I: THE ROLE OF CONFLICT 
MONITORING IN OVERCOMING VALUE BIASES 
IN HUMAN DECISION-MAKING 

 

Alice Vidal, Rubén Moreno-Bote & Salvador Soto-Faraco 
(2023) The role of conflict monitoring in overcoming value 
biases in human decision-making. PsyArXiv  
https://doi.org/10.31234/osf.io/vfekr 
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Abstract 
The value associated with response alternatives has been observed 
to impact rapid choices while slower decisions remain relatively 
unbiased. Here we aim to understand how the decision process is 
redirected towards goal-relevant evidence after the initial value 
prioritisation and propose that conflict detection and cognitive 
control serve as the underlying mechanism. We recorded 
electroencephalography (EEG) from participants performing a 
speeded binary choice task based on the price of realistic food 
stimuli that naturally also encompassed subjective preferences. Our 
findings indicate that preferred alternatives were consistency 
selected faster, irrespective of the amount of task-relevant 
information available and in the absence of any motor or attentional 
anticipation, suggesting fast automatic integration of value-based 
information. Furthermore, participants’ pre-existing mental 
representations of item prices and preferences influenced the degree 
of value biases on response accuracy. Consistent with our initial 
hypothesis, results show that in incongruent trials, where subjective 
value and objective information compete, mid-frontal theta (MFT) 
activity was heightened and predicted choice accuracy, indicating 
monitoring and detection of conflict. Additionally, our findings 
unveiled enhanced MFT power proportional to the potential cost 
opportunity of the choice and following errors, highlighting the 
implication of cognitive control in various aspects of decision-
making. In essence, this study provides the foundation for 
comprehending how value-biases are overcame within the brain, 
while illustrating the need to use more ecological paradigms to 
better understand the multifaceted interactions characterising human 
behaviour in real-world scenarios.  

Key words: decision-making, value bias, conflict monitoring, EEG, 
cognitive control, prior 
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Highlights 

• Value biases observed in choice behaviour suggest the fast 
automatic integration of value-based evidence, even when 
irrelevant for the current goal and in the absence of any 
attentional or motor anticipation.  

• Preferred alternatives are consistently selected faster than 
non-preferred alternatives. 

• Participants’ pre-existing representations of the item prices 
and preferences influenced the degree of value biases on 
response accuracy. 

• In incongruent trials, mid-frontal theta activity (4-7Hz) is 
heightened and predicts choice accuracy, indicating 
monitoring and detection of conflict. 

• Increased mid-frontal theta power is also observed 
proportional to the potential cost opportunity of the choice 
and following errors, highlighting the implication of 
cognitive control.  

• The classical drift-diffusion model fails to reproduce the 
value biases observed on choice behaviour.  
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Introduction 
It is midnight, and tomorrow morning you are about to embark on 
your well-deserved holiday trip to relax. However, you find yourself 
stressing about what to pack and what not to, and struggling to close 
the suitcase lid. How did you get yourself into this problem? While 
it is obviously essential to close your suitcase before your flight, it 
feels no less important to pack essential clothing, novels you have 
postponed for months, and of course, your brand-new snorkelling 
gear. The subjective value you associate with these items and the 
objective considerations regarding their volume and weight must be 
all considered together under one single optimization problem. This 
is the kind of decision-making problem we address here. 

In real-life decision making, interactions between values (often 
subjectively assigned such as preferences) and objective attributes, 
be them purely physical such as size and weight or more abstract 
such as monetary costs, are pervasive. In controlled laboratory 
protocols, previous research has highlighted that items associated 
with higher value have higher salience in attention tasks (Anderson 
et al., 2011; Hickey et al., 2011; Libera & Chelazzi, 2006; 
Theeuwes & Belopolsky, 2012). Beyond attentional capture, the 
relative values of alternatives also have been shown to impact 
decision processes (Afacan-Seref et al., 2018; Summerfield & 
Koechlin, 2010; Blangero & Kelly, 2017; Corbett et al., 2023), with 
choice alternatives associated with higher value being chosen more 
often and faster, seemingly regardless of the choice’s difficulty 
(Noorbaloochi et al., 2015). 

These findings come as no surprise, considering that we perceive 
and interact with the world around us through the lens of our 
internal preferences and desires, which have a strong influence on 
expected and actual rewards (or punishment) outcomes associated 
with our actions. The ongoing internal consideration of value, even 
in the absence of conscious awareness, is further supported by 
research demonstrating the widespread and automatic nature of the 
value-based system (VBS), which encompasses a network of brain 
regions including the ventromedial prefrontal cortex, hippocampus, 
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ventral striatum, and posterior cingulate cortex. Activation of this 
system occurs during the process of valuation and decision-making 
based on subjective preferences. The generality of the VBS is 
supported by its responsiveness to a wide variety of stimuli, such as 
food items (Plassmann et al., 2007), paintings (Kawabata & Zeki, 
2004), sculptures (Dio et al., 2007), faces (O’Doherty et al., 2003), 
indoor and outdoor scenes (Yue et al., 2007), and houses (Lebreton 
et al., 2009). Moreover, the activation of the VBS areas during 
decisions where value is irrelevant to the task at hand strongly 
suggests that it is engaged automatically (Kim et al., 2007; Lebreton 
et al., 2009). 

Past research has identified brain regions that are sensitive to both 
choice-relevant and choice-irrelevant value information, and may 
even predict the extent to which value biases the decision-making 
process (Grueschow et al., 2015; Hickey et al., 2010). In contrast, 
other brain areas, such as the medial prefrontal cortex (mPFC), 
exhibit stronger encoding of value when it is directly relevant to the 
ongoing decision (Grueschow et al., 2015; Frömer et al., 2019). 
While certain regions encode value consistently, some prefrontal 
areas are capable of integrating contextual information about the 
decision, although this integration process requires time. Previous 
studies investigating value biases in decisions have demonstrated 
that as response times slow down, the impact of subjective value on 
decision-making declines (Afacan-Seref et al., 2018; Noorbaloochi 
et al., 2015; Summerfield & Koechlin, 2010). These findings 
suggest the presence of a mechanism that regulates the decision-
making process, redirecting resources towards pondering goal-
relevant evidence after an initial jolt toward value.  

Cognitive control emerges as a promising candidate to fulfil this 
regulatory function. This adaptive mechanism enables individuals to 
adjust to changing task demands and optimize performance. It relies 
on the activation of an extensive brain network, which includes 
prefrontal structures such as the dorsal anterior cingulate cortex 
(dACC), dorsolateral prefrontal cortex (dlPFC), and the mPFC (M. 
Botvinick et al., 1999; Debener et al., 2005; Kerns et al., 2004; 

24



MacDonald et al., 2000; Pochon et al., 2008; Sheth et al., 2012). 
These brain regions increase their activation during conflicting 
choices or following errors, and it has been postulated that they act 
as an alert system to facilitate attention reallocation or increase the 
motor threshold (M. Botvinick et al., 2001; Cavanagh et al., 2012; 
Guan et al., 2023). In addition to its involvement in cognitive 
control, the dACC has also been associated with other mechanisms 
such as information sampling (Monosov & Rushworth, 2022; 
Boroujeni et al., 2021) and foraging behaviours (Hayden et al., 
2011; Kolling et al., 2012; Monosov et al., 2020), and it has been  
suggested to play a role in perception via ‘internal foraging’ (Safavi 
& Dayan, 2022). Moreover, the dACC has been linked to reward-
based decision-making (Bush et al., 2002; Kennerley et al., 2006) 
and motivation (M. Botvinick & Braver, 2015; Holroyd & Yeung, 
2012), and recent research has made strides in reconciling these 
findings with its role in cognitive control, aiming to develop a 
global understanding of the dACC’s functions.  

An emerging perspective posits that the dACC dynamically 
modulates its activity based on the expected value of control, which 
is influenced by both task demands and contextual factors such as 
reward contingencies and task difficulty (Shenhav et al., 2013, 
2016). By flexibly adjusting the level of engagement of other brain 
areas, the dACC optimises the allocation of cognitive resources, 
maximising the potential benefits of control while minimizing 
associated costs. This framework primarily relies on functional 
neuroimaging data, but recent efforts have sought to integrate 
findings from single-cell recordings and lesion studies conducted in 
both humans and non-human animals (Silvetti et al., 2011; Holroyd 
& McClure, 2015; Brown & Alexander, 2017).  

Human EEG studies have put forth mid-frontal theta oscillations 
(MFT, 4-7Hz) as a potential indicator signalling the need for 
cognitive control (Cavanagh & Frank, 2014). Increased MFT 
activity has been consistently observed in various scenarios that 
necessitate heightened cognitive control, including higher cognitive 
load during working memory tasks (Itthipuripat et al., 2013; Onton 
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et al., 2005),  sustained attention (Sauseng et al., 2007), conflicting 
stimuli (Nigbur et al., 2012; Hanslmayr et al., 2008; Jiang et al., 
2015), intersensory conflict (Marly et al., 2023; Morís Fernández 
et al., 2015, 2018), and instances following incorrect responses 
(Cavanagh et al., 2009; Narayanan et al., 2013) or negative 
feedback (Marco-Pallares et al., 2008). Additionally, although 
heightened MFT activity is observed in common motor-conflict 
paradigms (Cohen & Donner, 2013; Jiang et al., 2015; Haciahmet 
et al., 2021; Drew et al., 2022), it is not limited to such situations. 
Studies focusing on stimulus-stimulus conflicts have employed 
protocols without response reports (Drew & Soto-Faraco, 2023) or 
with delayed response reports to mitigate motor contamination 
(Marly et al., 2023; Ruzzoli et al., 2020), while still observing an 
analogous pattern of increased MFT activity during conflict trials. 
In fact, recent research has challenged the strict functional and 
temporal demarcation between decision-making processes and 
motor actions. Instead, it suggests a parallel outlook of information 
processing, wherein the integration of evidence and the execution of 
motor outputs may coexist and interact (Cisek & Kalaska, 2010; 
McKinstry et al., 2008; Ozbagci et al., 2021; Resulaj et al., 2009). 
This notion aligns well with the observation of similar MFT 
variations in response to both purely perceptual-related conflicts 
and conflicts encompassing actions. For their part, value-biased 
decisions also exhibit resemblances to tasks commonly employed in 
cognitive control studies (e.g., Flanker, Stroop, Simon tasks), as 
choices bearing conflicting information are characterised by slower 
reaction times and increased error rates. This suggests that the 
conflict monitoring and control system, as revealed by frontal 
midline theta enhancement, may be integral to the detection of 
conflict between, and the resolution of the competition amongst, 
goal-relevant and value-based evidence for decision-making, 
thereby ensuring efficient performance.  

Previous literature has typically employed the drift-diffusion model 
(DDM; (Ratcliff, 1978; Gold & Shadlen, 2007) to investigate the 
cognitive adaptations associated with value-based biases in 
decision-making processes. The DDM simulates decision-making 
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through the accumulation of noisy sensory evidence, referred to as 
the “decision variable,” until a choice is finally made when it 
reaches a predefined threshold (or bound). This model has proven 
highly effective in predicting both choice accuracy and response 
times, shedding light on the underlying cognitive mechanisms 
involved in decision-making biases (Forstmann et al., 2016; Ratcliff 
& McKoon, 2008; Voss et al., 2004). The classical DDM can be 
adapted to account for the preference for one alternative over the 
other through the introduction of a “starting point bias.” This bias 
initially shifts the accumulation of evidence towards the favoured 
alternative (Summerfield & Koechlin, 2010; Mulder et al., 2012; 
Voss et al., 2004; Mochol et al., 2021). Another common extension 
of the DDM explains how differential reward outcomes bias 
perceptual decisions by incorporating a “drift bias,” which 
accelerates the accumulation of evidence toward the preferred 
option (Afacan-Seref et al., 2018; Fan et al., 2018). More 
sophisticated mechanisms have also been introduced to account for 
perceptual decisions with asymmetric rewards (Diederich, 2008; 
Diederich & Busemeyer, 2006; Shinn, Ehrlich, et al., 2020) but in 
all cases, the outcome associated with each response was artificially 
manipulated and known before the onset of the choice alternatives 
or target. Consequently, participants were able to adapt their 
evidence accumulation based on these response-reward 
contingencies (Corbett et al., 2023; Noorbaloochi et al., 2015; 
Blangero & Kelly, 2017). Hence, it remains unknown whether value 
can influence decisions when response-reward contingencies are not 
known in advance, and the mechanisms through which decision 
processes may be biased. Although cognitive control has been 
proposed to play a role in adjusting the decision-making processes 
towards goal-relevant evidence, as far as we know there is currently 
a lack of research investigating the connection between conflict-
related mid-frontal theta oscillations and value-biased decision-
making processes. 

In the present study, we introduce a novel experimental paradigm 
that combines a decision-making task with scalp EEG recordings to 
address the role of cognitive control in regulating decision making 
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towards the goal-relevant evidence in the light of conflicting 
subjective value. To do so, we set out to address the following 
questions: (a) We investigate whether task-irrelevant preferences 
exert a bias on choice decisions regarding task-relevant attributes 
when both attributes are available concomitantly. We employ edible 
items, characterised by subjective values and objectively estimated 
prices. If this bias exists, we anticipate two primary outcomes. 
Firstly, if value biases depend on the fast and automatic activation 
of the VBS, we expect choices to be equally biased regardless of the 
amount of task-relevant information available (choice difficulty) 
which is integrated later in the decision process. Secondly, we 
predict that faster decisions will be more significantly affected by 
value than slower decisions, indicating the presence of a time-
dependent correction mechanism. Additionally, while edible items 
possess the inherent advantage of naturally encapsulating intrinsic 
preferences and prices, how one attribute relates to the other at an 
individual level cannot be experimentally manipulated and may 
impose some challenges. One we anticipated is that, for certain 
participants, the estimated prices and subjective values of items may 
exhibit a positive correlation, giving rise to what we term a 
"preference-for-expensive bias". This bias could potentially arise 
from the well-established association between the prices of goods 
and their perceived quality (Rao & Monroe, 1989). If such relation 
exists, we predict it may have the counter expected effects of value 
on choice behaviour, with a propensity to select the non-preferred, 
typically cheaper, alternative. (b) By examining variations in frontal 
midline theta activity, we aim to explore whether the cognitive 
control network is involved in regulating decisions towards task-
relevant evidence. We hypothesize that this network plays a role in 
detecting and potentially resolving conflicts between automatic 
activation of subjective value-based representations and objective 
task-relevant information to be used for correct choice. Lastly, (c) 
we aim to investigate whether intrinsic preference biases in 
objective decisions can be modelled using the classical DDM 
framework and identify the mechanisms at play. 
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Methods 
The experimental paradigm, inclusion criteria and main analyses 
were pre-registered and are available here: https://osf.io/msdzx.   

Experimental task and design 
We developed a novel experimental design divided in three phases. 
First, a stimulus selection phase where participants were presented 
with 236 products of food and drinks typically available in 
supermarkets in Spain. Their task was to reject products they didn’t 
recognise or for which they didn’t have any idea of the taste. 
Participants had no time limit. Rejected products were removed 
from the subsequent phases. In case less than 180 products were 
selected, the participant was discarded. In the second phase (Figure 
1 - left), participants were asked to rate the previously selected 
products on two parameters: the subjective value of that foodstuff, 
and its objective monetary price. For subjective value estimation, 
participants rated how much they like the product presented (by 
mouse clicking on a visual scale from -100 to 100 with a single 
tick-mark in the middle), they were encouraged to sometimes think 
of the products cooked or as part of a meal and to dissociate the 
frequency at which they consume the product from the pleasure 
they feel consuming it. During the rating of the objective price, 
participants had to estimate the monetary cost of the product in a 
supermarket (visual scale bar from 0 to 10 euros). To encourage 
precision of participants estimations, the three last rated items were 
displayed on the visual scale bar. Subjective value and price rating 
were self-paced, included several breaks, were run in separate 
blocks, and were presented in a random order between participants.  

The third (and last) phase consisted of the experimental choice task 
of interest (Figure 1 - right), where in addition to behaviour, neural 
data was recorded using scalp EEG. Participants were introduced 
with a realistic context in which they had to go grocery shopping in 
the supermarket. They were asked to fill up 16 shopping carts 
(separate experiment runs) composed, each of them, of 80 products 
with the goal to fill the shopping carts as cheap as possible. To do 
so, they were presented with pairs of products, and they quickly had 
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to select (one second time limit) the cheapest product. Each trial 
started with a fixation cross presented for 1200ms, a pair of items 
was then presented on the screen and disappeared as soon as a 
response was made or after 1100ms. The items were presented as 
square images (8x8cm) in the centre of the screen separated by a 
small space (2cm) with a fixation cross in the middle to limit eye 
movement. The selected item was added to participants’ virtual 
shopping carts. If no response was made on time, the most 
expensive product was automatically added and participants were 
presented with the feedback message ‘you were too slow, try to be 
faster’ for 3 seconds. To incentivise good performance, participants 
were told they would win a product (randomly selected) from each 
shopping cart whose cost was less than 15 euros above the optimal 
(cheapest possible) one. Participants received their item(s) right at 
the end of the experiment. Their performance was displayed at the 
end of each run.  

Before starting, participants were presented with two mini shopping 
carts (20 trials each) to practice the task and get acquainted with the 
experiment pace and response deadline. These practice runs were 
not considered for analysis. Breaks were offered to participants in 
the middle and in-between each run.  

 
Figure 1. Experimental design. Estimation: Participants estimate the 
value (preference) or prices of all recognised items by clicking on the bar. 
The three last estimated items are displayed on the bar to facilitate 
participants’ ratings. Choice: trial sequence. Participants quickly select the 
cheapest item using button presses. The items disappear as soon as they 
answer or after 1100ms. 

Experimental conditions 
During the experimental choice phase, participants were presented 
with pairs of products which varied in price difference (from 0 to 3 
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euros) and in subjective value difference (from 0 to 60, arbitrary 
rating scale units). The directions of the differences in price and 
values between the two products characterised the congruency 
condition. Among pairs with large subjective value difference (40 ≤ 
∆V ≤ 60), half were defined as congruent (C+) because the preferred 
item was also the cheapest (and hence the correct choice), and the 
other half were defined as incongruent (C-) because the preferred 
item was the most expensive (and hence, incorrect choice). Pairs 
with a small value difference (∆V < 20) were defined as carrying no 
congruency (C0).  

The item pairs were selected online during the experiment, based on 
the individual ratings from the first two phases. The selection used a 
custom-made algorithm which maximised the number of positively 
rated (value) products included and homogenised pairs over the 
different conditions: difference in price between the pairs of items 
and congruency. The goal of the algorithm was that participants 
were presented with around 75% of trials with a congruency 
component (half C+ and half C-) and 25% of trials with no 
congruency component (C0). Given the variable nature of subject’s 
ratings, this ideal distribution of trials could not always be achieved 
but the proportion of congruent and incongruent trials was always 
kept equal.  

To homogenise the materials included in the final analyses, we 
filtered out a posteriori trials containing items with negative 
subjective ratings (disliked) and trials with intermediate value 
difference (20 ≤ ∆V < 40), to ensure a sufficiently strong 
congruency manipulation. To be clear, these trials were included in 
the experiment but not analysed as part of our hypothesis testing. 
We also excluded trials for which the reaction time was faster than 
the individual mean minus 3 standard deviations, as they were 
considered premature responses. These screenings were pre-
registered and applied before any data analyses. They resulted in 
less than 15% of trials rejected on average per subject. Mean 
percentages and numbers of trials included in the analyses for each 
experimental condition are displayed in Table S1.  
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In practice, trials with no-congruency (C0) show an average 
subjective value difference (±standard deviation (s.d.)) of 
4.81±0.46. As expected, no congruency effect between value and 
price was present for this subset of trials in any of our measures of 
interest: accuracy, ; RT: ; theta 
power: . Please note that trials considered as 
carrying a congruency (C+ and C-) had an average subjective value 
difference of 49.28±0.75.  

As pre-registered, the price difference condition (∆P) was 
discretized in three bins, small (between 0 and 1 euro), medium 
(between 1 and 2 euros) and large (between 2 and 3 euros) for data 
visualisation. 

Participants 
Participants were recruited from the Centre from Brain and 
Cognition (CBC) database based on several criteria. We followed 
the following in/exclusion criteria. First, participants who follow 
any specific diet (e.g., vegetarian, vegan, etc) were excluded, in 
order to maximize the number of liked edible products. Second, we 
only selected participants who had lived in Spain for at least the 
past year, to maximize product familiarity and knowledge of prices. 
Participants ages were between 19 and 34 years old, and they were 
excluded if they were presently undergoing psychological 
conditions or medical treatment. Finally, participants were asked to 
fast during the 3 hours preceding the experiment, as we reasoned 
this would make liked products more appealing. The whole 
experiment lasted between two and three hours in total and 
participants received 5€ compensation per half hour spent in the 
laboratory (a total between 20 and 30 euros). Additionally, 
participants whose performance was good enough (within 15euros 
of the theoretical optimal cart) received a real product randomly 
selected from their virtual shopping cart (16 out of 34 participants 
left the laboratory with a minimum of one and up to sixteen 
products). After completion of the experiment and before data 
analysis, we applied additional pre-established exclusion criteria. 

z = . 62, p = . 54 z = . 11, p = . 91
χ2

1 = . 055, p = . 81

32

https://www.upf.edu/web/cbclab/adults_participa
https://www.upf.edu/web/cbclab/adults_participa


We excluded participants with less than 10 valid trials per 
experimental condition (congruency x ∆P x Reaction time (median 
split)) for the behavioural analyses, and 20 trials for the EEG 
analyses. We also excluded participants for which the price 
difference (∆P) was significantly different between the congruent 
and incongruent conditions to have balanced conditions. Finally, we 
removed participants for whom the proportion of correct trials was 
not significantly higher than chance.  

According to the pre-registration, recruitment continued until the 
completion of a sample size of 30 valid datasets (30 meeting the 
behavioural performance and EEG criteria, and 1 meeting only the 
behavioural criteria). The final sample size includes 31 participants 
for the behavioural analyses (16 females, mean age ± s.d.: 23.3±3.8 
years old) and, out of those, 30 for the EEG analyses (15 females, 
mean age ± s.d.: 23.3±3.8). Among the thirty-four participants 
initially recruited, three were excluded from all analyses based on 
the pre-established criteria that price difference in congruent and 
incongruent trials shouldn’t be significantly different. One 
additional participant was excluded from the EEG analyses because 
of an insufficient number of trials per condition. 

EEG recordings 
Data was recorded using a 64-electrodes EEG system mounted in a 
standard (10–10 international system) ActiCAP (Brain Products 
GmbH, Munich, Germany) and the signal was recorded via 
BrainVision Recorder (Brain Products GmbH, Munich, Germany) at 
a sampling rate of 500 Hz. The online reference was placed on the 
right mastoid and the ground electrode on AFz. Eye movements 
were captured with two electrodes (Veog and Heog) respectively 
placed underneath and at the outer canthus of the right eye. 
Impedance was lowered below 10 kΩ for all electrodes. 
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EEG pre-processing 
EEG data was pre-processed and analysed with Fieldtrip 
(Oostenveld et al., 2010) using custom code in MATLAB (2022b). 
We first removed excessively noisy and faulty electrodes (1 
electrode was removed for 6 participants and 2 electrodes were 
removed for 3 participants). Data was segmented in trials starting at 
fixation onset and ending 500ms after the stimuli disappearance and 
filtered using a dual-pass Butterworth filter with a passband of 
0.1-50Hz (order 2) and a notch filter of 50Hz. Overlaps in the data 
were then removed to apply an independent component analysis 
(ICA). Using components head maps and spectral components, one 
to two independents component were manually removed per 
participant (mean: 1.17), corresponding to blinks and horizontal eye 
movements. Data was then manually inspected to remove the 
remaining artefacts. Finally, data was re-referenced to average of all 
scalp electrodes and missing channels were interpolated using 
spherical splines (Perrin et al., 1989).   

Analyses 
Behavioural data was analysed using R and MATLAB. To use 
consistent statistical approaches for behavioural and neural data we 
chose to use mixed effect models (MEM). The significance of each 
factor or interaction of interest predicting accuracy, RT and MFT 
power was evaluated using forward model selections based on 
likelihood tests ratio and all steps are reported (see Tables S2 to S7). 
When outliers were detected (more than 1.5 interquartile range 
[IQR] away from the distribution mean), correlations were run both 
including and excluding the outliers. Multiple comparisons were 
always corrected using the Bonferroni method. Sizes of congruency 
effects (comparing C+ and C- trials) on our main variables of 
interest were calculated using Cohen’s d.  

Choice behavioural analysis 
Accuracy, defined as the probability to select the cheapest item, was 
analysed using generalized linear mixed-effect models (GLMM) 
while reaction time (RT) was log-transformed and analysed using 
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linear mixed-effect models (LMM). In both cases, subjects were 
introduced as random intercepts. We used the ascending method to 
test the effect of the factors of interest. RT analyses used only 
correct trials, unless specified. As expected, we did not find 
significant interactions between congruency conditions and price 
difference (∆P). To further assess if this negative result could be due 
to a lack a power, we ran a posteriori sensitivity analyses to estimate 
the minimum effect size that could have been detected with powers 
of at least 80 and 95% using the R package simr (Green & 
MacLeod, 2016). 

EEG Time-Frequency Analysis 
As we found differences in response speed between experimental 
conditions, we analysed the EEG data response locked (as 
mentioned in the pre-registration). The EEG analysis focused on 
oscillatory activity in the theta range (4-7Hz), therefore, to get a 
reliable estimate of theta power, we used a sliding window of 
500ms on our defined epoch. Time frequency analysis was 
performed using short-time Fourier transform (STFT) in steps of 
20ms with a single tapper (Hanning). Missed trials (no response) 
and trials with a RT inferior to 500ms were excluded from the 
analysis leaving on average (±s.d.) 92.1±6.8% of the included trials. 
Before analysing, we applied the spherical splines method (Perrin et 
al., 1989) to increase spatial resolution.   
For completeness, time-frequency analysis of MFT stimulus-locked 
is briefly presented in the supplementary results (Figure S5).  

Single Trial EEG Analysis  
Based on the time frequency analyses of congruent and incongruent 
trials, we defined a 500ms window of interest from -450 to 50ms 
relative to the response. The effect of the experimental conditions 
(congruency and price difference) on mid-frontal theta (MFT) 
power were tested using LMM with subjects as random intercepts. 
MFT power has previously been found to correlate with response 
time and performance accuracy (Cohen & Donner, 2013). To 
explore these relations, we tested the significance of MFT as a 
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predictor of accuracy and RT using GLMM (binomial) and LMM 
respectively, both with subjects as random intercepts and slopes.  

Motor-related EEG correlates  
Motor preparation for response was analysed through inter-
hemispheric imbalances in parietal beta-band (13-30Hz) 
desynchronization, and lateralized-readiness potential (LRP). Beta 
oscillations were averaged over the electrodes C1, C3, C5, CP3, 
FC3 (left) and C2, C4, C6, CP4, FC4 (right) and contrasted as a 
function of response side (contralateral minus ipsilateral to response 
hand). Beta oscillations were estimated using a similar approach as 
for MFT oscillations. LRP was calculated as the difference between 
the ipsilateral vs. contralateral activity of electrodes C3 (left) and 
C4 (right) and an additional Butterworth lowpass filter at 4Hz was 
applied prior to analyses. Both correlates were analysed stimulus 
and response-locked, and baselined with the 500ms time window 
prior to stimulus onset.  

Modelling the response behaviour 
We modelled participants reaction time (RT) and accuracy at the 
binary choice task using drift-diffusion models (DDM). The DDM 
assumes that decisions are made through a noisy process that 
continuously accumulates evidence over time, represented by a 
decision variable  until it reaches one of the two decision 
boundaries (see Figure 9). These boundaries correspond to the 
amount of evidence required to make a decision. In an unbiased 
choice, the starting point of the accumulation process  is situated 
at the midpoint of the two bounds. The drift rate  in the DDM 
represents the strength or quality of the evidence supporting each 
decision alternative. It determines the direction and speed at which 
evidence accumulates over time. Higher drift rates indicate faster 
and more accurate decision-making, while lower drift rates indicate 
slower and less accurate decision-making. The choice reaction time 
is set to be the sum of the decision time formalised in the DDM 
process, and a non-decision time, which accounts for afferent and 
efferent delays unrelated to the decision itself, such as stimulus 

x,

x0
μ
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encoding, motor preparation, or response execution. Lastly, the 
DDM incorporates the amount of noise or random variability in the 
evidence accumulation process. It is modelled here as a Wiener 
process (i.e., a sample from a Gaussian distribution with mean 0 and 
variance 1). The parameters of the fitted models are summarised in 
Table 1. and described in more detail below.  

Modelling urgency 
We observed in our data that slower choices are not necessary 
associated with higher accuracy, suggesting the presence of an 
urgency signal. These results are not surprising, given the time 
pressure imposed by the short response deadline (one second). To 
capture this urgency signal, we employed a linear “gain function”, 
that uniformly scales both evidence and noise uniformly throughout 
the course of the trial (Cisek et al., 2009; Ditterich, 2006). We also 
attempted to model the urgency signal using “collapsing bounds”, 
where the decision bounds decayed linearly or exponentially with 
time. This manipulation causes the decision bounds to become more 
permissive as the trial progresses (Drugowitsch et al., 2012; Shinn, 
Ehrlich, et al., 2020). We found that our data was better fitted 
(measured using Bayesian Information Criterion – BIC) using a 
linear gain function compared to collapsing bounds. As a result, we 
report only models that include an urgency signal  modelled as 
follows: 

 

where  represents the urgency at time , and  the slope of 
the linear ramp in gain function with time . The bounds are 
constant over time and fixed at . 

u(t)

u(t) = σ0 + su ∙ t

σ0 t = 0 su
t

B(t) = 1
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Table 1. Mathematical annotations used in the DDMs. [back to Results] 

Modelling non-decision time 
Non-decision time was first modelled as fixed value for each 
participant or drawn from a posterior distribution (uniform or 
gaussian) which enabled trial-by-trial variation. We observed that 
using a gaussian distribution of the non-decision time was 
predicting the data the best.  

 

where the non-decision time  is drawn from a normal distribution 
with mean  and standard deviation .  
Additionally, in order to be able to predict contaminant responses 
(for example, very fast responses), we implemented a mixture 
model where the probability of a lapse trial  is drawn from a 
uniform distribution . 

tnd~N(mnd, σnd)
tnd

mnd σnd

pL
U( . 001, . 2)
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Modelling value biases 
We observed that participants preference for one of the two 
presented items biased both their reaction times and responses 
accuracy. The effect on RT was consistent and resulted in preferred 
items (higher estimated value of the pair) being chosen faster than 
the non-preferred ones, both for correct and incorrect choices. The 
effect of value on choice accuracy was less consistent as it varied 
with participants RT. Overall, we observed higher accuracy for 
congruent trials, where the correct alternative was also the preferred 
one, compared to incongruent trials for the faster responses (median 
split on the RT), while the opposite was true for slower responses. 
To model such effects, we started by implementing simple biases 
affecting the accumulation process.  

Starting point bias 
First, we introduced a starting point bias  which bias the initial 
point of the accumulation process towards one of the alternatives; 
the preferred one (correct response in congruent trial, or incorrect 
response in incongruent trials) or the non-preferred one.  

 

The initial point  of the decision variable is biased symmetrically 
in congruent ( ) and incongruent trials ( ). This bias 
has been shown to explain value-biased decisions (Summerfield & 
Koechlin, 2010; Mulder et al., 2012). However, in our task, the 
reward-response contingencies (position of the preferred 
alternative) are not known before the stimuli onset which differ 
from previous studies. This led us to suppose that the value bias 
may not affect the starting point of the evidence accumulation but 
rather the integration of evidence with time.  

Drift rate bias 
As a result, we introduced an additional drift rate biased toward 
either the preferred or the non-preferred alternative . Similar to 
the starting point bias, the drift rate is biased symmetrically in 
congruent ( ) and incongruent trials ( ). 

xB

x0 = xB ∙ C

x0
C = 1 C = − 1

dB

C = 1 C = − 1
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As we didn’t have a priori hypothesis regarding the interaction of a 
potential drift bias and the urgency signal we modeled it both 
individually (1) and interacting with the gain function  (2): 

(1)  
(2)  

Hypothesis driven biases 
Using both the drift rate and starting point biases, we were not 
capable to reproduce the value biases observed in behaviour, 
therefore we introduced more complex mechanisms based on the 
hypotheses we had regarding the underlying cognitive mechanisms 
at play. First, based on the idea that value-based evidence may be 
integrated first in the decision process while the goal-relevant 
information is taken into account later, we introduced a decision 
variable: 

 

where evidence related to the price difference (∆P) is only 
integrated after a delay . This model resembles the idea of two-
stages hypothesis where the different attributes of the stimuli (here 
subjective value and price) are considered sequentially (Diederich, 
1997, 2008).  

Following our hypothesis based on previous studies that value affect 
the decision early-on and fades as the decision unfolds (Afacan-
Seref et al., 2018; Noorbaloochi et al., 2015; Summerfield & 
Koechlin, 2010), we considered a drift bias which decreases with 
time exponentially:  

 

or linearly:  
 

u(t)

dx =  μ ∙ ∆ P ∙ u(t) ∙ dt + u(t) ∙ dW + dB ∙ C ∙ dt
dx =  (μ ∙ ∆ P + dB ∙ C ) ∙ u(t) ∙ dt + u(t) ∙ dW

dx = It≤tD(dB ∙ C ∙ dt) + It>tD(μ ∙ ∆ P ∙ u(t) ∙ dt) + u(t) ∙ dW

tD

dx = μ ∙ ∆ P ∙ u(t) ∙ dt + u(t) ∙ dW + (dB ∙ C )/(t + 1)  ∙ dt

dx = μ ∙ ∆ P ∙ u(t) ∙ dt + u(t) ∙ dW + (dB ∙ C − t)  ∙ dt
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Finally, as an attempt to model the unexpected effect of value 
observed on slower choices, with congruent trials being less 
accurate than incongruent trials, we introduce a drift bias which 
increases with time: 

 

As the decrease in accuracy with time is only observed for 
congruent trials but not for incongruent trials, we also implemented 
a late drift bias which affects only congruent trials ( ) and is 
null for incongruent trials ( ): 

 

Modelling errors 
We observe that models were predicting a probability of correct 
choices superior to the one observed in the data, for both congruent 
and incongruent trials, so we intended to lower the predicted 
accuracy using two mechanisms. First, we considered the possibility 
that participants do not integrate the evidence perfectly over time by 
introducing a leak term  (Cisek et al., 2009). We observed that this 
leak term could not explain the probability of errors observed in the 
data.  

Secondly, we considered a mechanism unrelated to the integration 
process which traduces an error in mapping between the evidence 
accumulation and the generation of the motor response (Shinn, 
Ehrlich, et al., 2020; Hanks et al., 2015; Erlich et al., 2015). We 
modelled this mapping error to occur, with a certain probability 

, once the decision variable had reached the bound associated 
with the correct, cheapest alternative, and to bias participants to 
mistakenly generate a motor response towards the incorrect, more 
expensive alternative instead. This mapping error was implemented 
by modifying the simulated distribution of reaction times. For a 
simulated probability density function , where  is the 

dx =  μ ∙ ∆ P ∙ u(t) ∙ dt + u(t) ∙ dW− dB ∙ C ∙ t ∙ dt

C = 1
C = 0

dx =  μ ∙ ∆ P ∙ u(t) ∙ dt + u(t) ∙ dW− dB ∙ C+ ∙ t ∙ dt

𝓁

pmap

f (x R) R
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response accuracy; correct or incorrect, we computed the final 
density  using , calculated as follows: 

 

 

We thought that, due to the strict response deadline imposed to 
participant, such error in mapping could be plausible.  

Model fitting 
Fitting the model to the data and simulations were performed using 
the PyDDM package in Python (Shinn, Lam, et al., 2020) with a 
time step of 5 ms and decision variable discretization of 0.005. The 
python code and notations of the different model parameters used 
were adapted from (Shinn, Ehrlich, et al., 2020). The data was fitted 
for each participant individually and separately for trials carrying a 
congruency component (large ∆V, congruent and incongruent trials) 
and no congruency (small ∆V). Such distinction was made first to 
understand the mechanisms underlying the value-biases observed 
and, seeing the difficulties encountered to reproduce our data (see 
Results), to see whether trials a priori not biased by value could be 
explained using the DDM. Goodness of fits were estimated using 
the Bayesian Information Criterion (BIC) and the best predicting 
model was assessed by comparing the averaged BIC over the 
participants. All models had at least 6 free parameters: a drift rate , 
two urgency-related parameters  and , two parameters related to 
the non-decision time  and , and  predicting the rate of 
lapse trials.  

Results  
Estimated prices and preferences 
First, we assessed the quality of participants’ price estimations by 
examining the correlation with actual supermarket prices for all 
participants (Kendall’s correlations, all ). Regarding value 
ratings, they were predominantly positive (80.4%) and we observed 

f ′ (x) f ′ (x)

f ′ (x R = err) = f (x R = err) +  p
map

 f (x R = corr)

f ′ (x R = corr) = (1 − pmap) f (x R = corr)

μ
σ0 su

mnd σnd pL

p < . 001
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Figure 2. Half of the participants tend to prefer more expensive items, 
whereas only one did show a correlation in the reverse direction. 
Results of individual correlations between price and preference 
estimations (A) and between price estimation error (difference between 
real and estimated prices) and preferences (B). Individual coefficients 
(tau) extracted from Kendal correlations are ordered by magnitude. 
Colours represent the significance levels (‘ns’: p≥.1, ‘.’: p<.1, ‘*’: p<.05; 
‘**’: p<.01, ‘***’: p<.001). 

that for approximately half of participants value ratings were 
positively correlated with price estimations (Figure 2A). For these 
participants, then, there was a preference for more expensive items: 
the preference-for-expensive bias. However, except for two 
participants, we didn’t find any correlation between the error in 
price estimation and subjective value ratings (Figure 2B) suggesting 
that participants do not systematically over or underestimate the 
items they like and are able to give objective estimations of the 
items’ prices. The preference-for-expensive bias was anticipated 
(see pre-registration). Indeed, the association between the price of 
goods and their perceived quality is well established (Rao & 
Monroe, 1989), providing a potential explanation for the observed 
phenomenon. For instance, studies have demonstrated that elevating 
the price of a wine is linked to heightened subjective reports of 
pleasantness (Plassmann et al., 2008). Hence, the preference-for-
expensive bias potentially exists within all individuals; however, 
within the context of our subset of edible items, it becomes 
statistically evident only among a specific subgroup of participants. 
Here we assumed that, if this bias has any impact, it would be in the 
opposite direction of the congruency bias of interest in our study. 
That is, the congruency bias of interest would make participants 
chose preferred items more often and rapidly, whilst in our dataset 
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participants who tend to prefer more expensive items should in fact 
be more inclined to show the opposite bias. Indeed, they should 
tend to direct their choice toward the usually cheaper, non-preferred 
item, thus excluding the possibility of a confound leading to a false 
positive. 

Subjective preference exerts a bias on objective choice behaviour 
Choice accuracy in the main task was analysed using generalized 
mixed effect models (GLMM), with subjects as a random variable 
(see Table S2). Model selection revealed a significant effect of 
congruency between value and price (model ), with congruent 
trials being more accurate than both incongruent and no-congruency 
trials (see Table S3 for statistics). A main effect of price difference 
was also found (model ) with accuracy increasing with ∆P, and a 
main effect of RT (model ) with longer RTs being associated with 
lower accuracy. No significant interaction was found between price 
difference and congruency (model , Figure S2A) suggesting, as 
anticipated, that the observed congruency effect is due to an early 
automatic influence of value preceding a voluntary choice strategy. 
To further assess the absence of interaction, we run sensitivity 
analyses estimating the minimum effect sizes that could have been 
detected between the congruency conditions (here C+ or C- only) 
and ∆P. We found that effects of ±.15 and ±.18 could have been 
detected with powers of 87.33% (95%CI = [80.9, 92.2]) and 98.7% 
(95%CI = [95.3, 99.8]) respectively. In comparison, the interaction 
between congruency and RT revealed a fixed effect of .46. 
Therefore, if the congruency effect in choice behaviour were a 
deliberate strategy, one would anticipate its strength to diminish 
with ∆P. If such reduction exists, it seems to be relatively minor, as 
it would have been otherwise detected in our experiment. Finally, as 
previously reported in the literature, a significant interaction 
between congruency and RT was found (model ). The interaction 
can be explained by the following patterns. First, accuracy 
decreases with increasing RT, and this decrease is more pronounced 
for congruent trials compared to both incongruent and no-
congruency trials, and for no-congruency trials compared to 
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incongruent trials (Table S3 and Figure S1). Second, the magnitude 
of the congruency effect is larger for faster RTs (Figure 3A) 
(comparing the observed accuracy in fast C+ and C- trials: 

, Cohen’s d [95% CI] = .53 [.01, 1.08]), an 
expected and well-known effect in the literature of value-biased 
decisions (Summerfield & Koechlin, 2010; Afacan-Seref et al., 
2018; Noorbaloochi et al., 2015). However, in our data we 
additionally observed a complete reversal of the congruence effect 
at longer RTs, with congruent trials which tended to be responded to 
less accurately than incongruent trials ( , 
Cohen’s d [95% CI] = -.56 [-1.05, -.05]). This effect was not 
expected and is discussed in the next section.  

 
Figure 3. Participants’ preferences affects both accuracy and reaction 
times (RT). Lines represent the predicted mean accuracy (A) and RT (B) 
using mixed effect models. Shaded areas represent the standard error of 
the mean (s.e.m.). Individual observed data is plotted (colour dots) for 
each congruency condition and linked with grey lines. Results of post-hoc 
comparisons between congruent and incongruent observed data inside 
each condition are displayed according to adjusted p-values (‘.’: <.1; 
‘*’: <.05; ‘***’: <.001). 

Log-transformed RTs were analysed with linear mixed-effect 
models (LMM) including both correct and incorrect trials to gauge 
the potential interaction between accuracy and congruency 
(Noorbaloochi et al., 2015). Indeed, model selection revealed this 

V = 385, padj = . 012

V = 145, padj = . 087
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interaction as significant (Table S4 – model ); for correctly 
responded trials congruent ones were faster than incongruent ones 
(comparing the observed RTs: , 
Cohen’s d [95% CI] = -1.09 [-1.74, -.70]), whereas for incorrect 
responses congruent trials were slower than incongruent ones 
( , Cohen’s d [95% CI] = 1.07 [.72, 
1.59]) (Figure 3B and Table S5). Overall, this pattern reflects that 
when participants chose faster, they tended to choose the item they 
preferred. Again, we did not find any interaction between 
congruency and price difference (model , Figure S2B), nor a 3-
way interaction with accuracy (model ). However, as expected, 
we found a significant overall effect of price difference on RTs 
(Table S4 – model ), with participants responding faster to trials 
with larger ∆P. In accordance with the effect of price difference 
found on accuracy, these results suggest that price difference 
between the two alternatives modulates difficulty; the larger ∆P the 
easier the trial (leading to more accurate and faster responses). 
Mirroring our approach with accuracy, we performed an a posteriori 
sensitivity analysis to estimate the minimum detectable interaction 
between congruency (C+ and C- only) and ∆P. Results revealed that 
effects of ±.015 and ±.02 could have been detected with powers of 
82.2% (95%CI = [79.7, 84.5]) and 97.5% (95%CI = [96.3, 98.4]) 
respectively. In comparison, the interaction between congruency 
and response accuracy demonstrated a fixed effect of .065. 
Therefore, results show that if the influence of subjective value on 
RT is indeed modulated by ∆P, it appears to be relatively modest in 
magnitude, as a more substantial effect would likely have been 
detected. Together with the analyses of response accuracy, these 
findings suggest that the items’ value has an automatic effect on 
choice behaviour, seemingly independently of the amount of task-
relevant evidence available.  

Finally, we investigated whether the influence of preferences on 
both response choices and response times was modulated by 
participants experience at the task. Accuracy was analysed using a 
GLMM, incorporating congruency, response time (median split), 
and time-on-task (run 1 through to 16, corresponding to the sixteen 
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presented shopping carts) as factors (Figure S3A). We observed a 
significant main effect of time-on-task, indicating that participants 
became more accurate as the experiment progressed 
( ) . Additionally, a significant 
interaction between congruency and time-on-task was observed 
( ), indicating a stronger improvement in 
accuracy for incongruent trials compared to congruent trials 
resulting in choices being less biased by value as time unfolded in 
the experiment. Regarding response times, we employed the same 
methodology and used mixed-effects models to examine the 
relationship between response time, and congruency, response 
accuracy, and time-on-task (Figure S3B). The results revealed a 
d e c r e a s e i n r e s p o n s e t i m e w i t h t i m e - o n - t a s k 
( ). However, contrary to the findings in 
accuracy, no interaction between congruency and time-on-task was 
observed ( ). Taken together, these findings 
demonstrate that participants became both more accurate and faster 
as they progressed through the task. They indicate that while value 
biases in response time persist throughout the experiment, the 
tendency to quickly select the preferred alternative diminishes over 
time, and that when responding slower, the inclination to select the 
least preferred alternative more frequently increases with time-on-
task. These results suggest that subjective value biases in response 
choices are dependent on participants' familiarity with the task, 
whereas the value biases observed in response times likely rely on 
more automatic mechanisms and remain unchanged regardless of 
participants' experience. 

The interaction between subjective value and price is a source of 
choice behaviour variability 
Overall, the results so far suggest that fast decision-making is 
biased by the automatic integration of task-irrelevant value-based 
preferences, resulting in more frequent selection of preferred items 
regardless of the magnitude of the objective task-relevant evidence 
(∆P). However, an apparently atypical finding was that, for slower 
choices, accuracy in congruent trials was lower than in incongruent 
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trials. We hypothesised that this unexpected effect might be a 
consequence of the positive correlation between price and 
preference, significant for 15 out of 31 participants in our dataset 
(Figure 2A). For this group of participants, preferred items are 
consistently associated with higher prices and therefore to the 
incorrect response in congruent trials. This association may have 
induced a response adaptation during the experiment that influenced 
a choice strategy in favour of the non-preferred option, since in their 
case it is, more frequently than not, the correct answer. To support 
this account, we conducted exploratory analyses. First, we ran 
correlation tests between participants’ accuracy and the magnitude 
of their individual price-preference correlation coefficient. This 
correlation tests were run for each congruency condition separately. 
If the account above is correct, the error rates on congruent trials 
should scale with the participants’ price-preference correlation 
strength. Indeed, we observed a significant negative correlation 
between accuracy and individual price-preference correlation 
strength, only within congruent trials (Figure 4A, Pearson, 

; i n c o n g r u e n t t r i a l s , S p e a r m a n , 
).  

Additionally, we re-run the initial analyses on accuracy and RTs 
separately for those participants that showed a significant 
preference-for-expensive bias and those that did not (threshold 
p=.05, Figure 4B). For the latter group (no positive preference-price 
correlation), we observed a significant effect of congruency within 
faster trials ( ) and not on slow responses 
( ), which was in principle the expected pattern. 
However, and confirming our post-hoc explanation, for the group 
with a significant positive price-preference correlation we found an 
overall bias toward the non-preferred items, leading to lack of 
congruence effect for fast responses ( ) and the 
atypical reversal of the congruence effect in slower trials 
( ). Therefore, the pattern of congruency 
effects observed is, at least in part, modulated by participants’ 
strength of association between subjective value (preference) and 
price: in participants with a strong positive association, their 
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behaviour is biased towards choosing the least preferred but, 
consistent with their prior, most likely cheaper (correct) option.  


 
Figure 4. Accuracy is differentially affected by preference depending 
on participants’ prior relation between prices and values of the 
eatable items. A. Participants’ accuracy depending on their correlation 
coefficient between estimated prices and preferences. Each dot represents 
a participant, the line corresponds to the linear regression and the grey 
shaded area its 95% CI. B. Distributions of accuracies depending on trial 
reaction time (median split), congruency and participants positive 
correlation between estimated prices and preferences (significant or not, 
for p<.05 and r>0). Coloured lines connect distributions averages and 
black error bars represent their s.e.m. Grey lines connect individual data. 
Results of post-hoc comparisons are displayed according to adjusted p-
values (‘**’: p<.01, ‘***’: p<.001). Samples sizes per condition: 
‘significant’: n=15, ‘not significant’: n=16. 

We further investigated whether the strategy to choose the non-
preferred item is evident right from the outset of the experiment or 
whether it develops gradually as participants become familiar with 
the task. Employing similar analyses to those presented earlier 
(refers to Figure S3A), we modelled accuracy based on several 
factors: time-on-task (runs), congruency (C+, C-), and choice 
reaction time (median split on RT). However, in this instance, we 
introduced an additional factor to account for participants' 
preference-for-expensive biases (whether significant or not) (Figure 
S4). The results revealed a three-way interaction involving the 
presence of the preference-for-expensive bias, time-on-task, and 
congruency ( ). Post-hoc analyses 
unveiled a significant interaction between congruency and time-on-
task among participants displaying a preference-for-expensive bias 
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( ), while no such interaction was 
observed among the remaining participants ( ). 
These outcomes suggest that the observed reduction in participants' 
inclination to rapidly choose the preferred alternative (as illustrated 
in Figure S3A) appears to stem from the existence, within a subset 
of participants, of a positive correlation between the estimated 
values of items and their prices. For these individuals, accuracy in 
congruent choices does not experience improvement as the task is 
carried out. This phenomenon may arise due to an adaptive 
mechanism that builds upon participants' prior expectation that the 
preferred items are generally more expensive. Conversely, 
participants who do not exhibit the preference-for-expensive bias 
witness an enhancement in accuracy for both congruent and 
incongruent trials over time, thus maintaining the unaltered impact 
of value on faster choices throughout the course of the task.  

Lastly, based on previous literature predicting that prior expectation 
about stimulus probability has larger effect when the signal-to-noise 
ratio is low (Bogacz et al., 2006), we specifically tested whether the 
higher accuracy observed for incongruent compared to congruent 
trials was modulated by the task-relevant evidence (∆P), in slower 
choices and for participants with a significant preference-for-
expensive bias. No interaction between ∆P and congruency was 
found ( ).  

Contrary to participants’ choices, response times were not related 
with individual correlations between estimated prices and 
preferences (Pearson’s correlations, C-: ; C+: 

), neither the magnitude of the congruency effect 
on RT ( ), implying that RT are less sensible to 
participants priors than choices. These findings suggest that, 
although value may exert an automatic influence on choice 
behaviour that manifests as a consistent effect on RT, the 
preference-for-expensive bias might impact participants’ decision-
making process in a more deliberate manner, but still independently 
of the choice difficulty. This controlled influence could potentially 
account for the bias’s exclusive impact on response choice. 
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Increased mid-frontal theta oscillations for conflictual subjective 
value and price. 
We have demonstrated that, consistently with predictions, 
preferences affect participants’ fast choices and RT, and this effect is 
independent on the amount of goal-relevant (price difference) 
information present. This suggests that value-based evidence kicks 
in early and possibly automatically, while the integration of 
objective task-relevant evidence (price) unfolds more slowly. We 
assume that the initial integration of value-based information is 
triggered by the VBS. In incongruent trials, later-arriving objective 
evidence about the correct choice contradicts the choice supported 
by subjective value. We hypothesised that this conflicting situation 
in incongruent trials would engage conflict-processing brain 
mechanisms, indexed via the amplitude of mid-frontal theta (MFT) 
oscillations in our experiment. To test this hypothesis, we analysed 
MFT power in a time window from 1200ms before stimulus onset 
until 500ms after the response (Figure 5). Overall, we observed a 
significant MFT increase after stimulus onset, and in each 
experimental condition separately (all ). Firstly, we 
investigated whether the magnitude of this MFT increase is larger 
for price–preference incongruence, our principal question. As 
congruent and incongruent trials are characterised by different mean 
reaction times, we ran a time-resolved response-locked analysis 
(-1200 to 500ms, where t=0 is the response) for MFT power 
differences across congruency conditions (for completeness, 
stimulus-locked time-frequency analyses are reported in Figure S5). 
We found significantly higher MFT activity for incongruent 
compared to congruent trials during a 160ms window (-280 to 
-120ms) before response (Figure 5B, one-tail t-tests with Monte-
Carlo multiple comparisons correction, ). We 
selected a window of 500ms centred around the peak of this 
significant difference to analyse MFT on a trial-by-trial basis using 
linear mixed effect models. Model selection revealed a significant 
effect of congruency (Table S6, model ), with higher MFT power 
for incongruent compared to congruent trials (Table S7 and Figure 
5C, Cohen’s d [95%CI] = .37 [.02, .73]) confirming the behavioural 
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results, and the starting hypothesis that incongruent trials elicit a 
stronger engagement of conflict-related brain processes.  
 

Figure 5. Incongruent trials are associated with higher mid-frontal 
theta power. A. Time-frequency analysis of congruent (left) and 
incongruent correct trials (middle) response-locked show an increase in 
theta power (dB) post-stimulus presentation. Difference between 
incongruent and congruent conditions (right) show a higher theta power 
before response. Vertical dashed lines represent mean stimulus onsets. B. 
Average mid-frontal theta power (4-7Hz) of congruent and incongruent 
correct trials plotted over time. A significant cluster was found from 260 
to 140ms before response (‘*’: <.05) around which an analysis 
window was selected (grey shaded area: –450 to 50ms relative to 
response). The topographic head map represents the difference in theta 
power between incongruent and congruent trials over this analysis 
window. C. Average theta power predicted (Table S6 - ) for congruent 
and incongruent conditions (coloured dot circled in black). Vertical black 
bars represent s.e.m. Grey lines connect individual subjects (observed 
data). (‘*’: <.05). 

As we have shown that the presence of the preference-for-expensive 
bias modulated the congruency effect observed on behaviour (see 
Figure 4), we addressed whether such bias also influenced the MFT 
(-450 to 50 relative to response) differently in congruent and 
incongruent trials. We conducted exploratory analyses and observed 
that participants’ mean MFT activity was not affected by the 
magnitude of the preference-for-expensive bias (correlation 
coefficients between estimated prices and preferences) in either 
congruency condition (Spearman’s, C-: ; C+: 

; : ). Additionally, even 
though we found that MFT power is significantly higher in 
incongruent compared to congruent trials only for participants not 
showing a s igni f icant preference-for-expens ive b ias 
( ; significant bias: , similar 
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results found with the time-frequency analysis in Figure S6A-B), 
the magnitude of this difference did not correlate with the bias 
magnitude ( , Figure S6C). These findings 
indicate that the preference-for-expensive bias had minimal or no 
influence on the extent of conflict-related MFT. While additional 
data is required to establish this potential interaction with greater 
certainty, the analyses presented in the subsequent section suggest 
that the preference-for-expensive bias affects the way MFT is 
relayed and impacts subsequent choice behaviour, rather than 
directly influencing the strength of MFT activity itself. 

Mid-frontal theta oscillations account for individual variability in 
conflict detection. 
Subsequently, we investigated whether the magnitude of MFT 
power estimated from the relevant 500ms time window (centred 
around the peak of the congruency effect), is associated with 
behaviour. Initially, we employed mixed effects models with MFT 
power as a single predictor, to explore its relationship with RT and 
accuracy in each congruency condition separately, allowing both the 
MFT power estimate and the intercept to vary for each subject. As 
previously, RT was log-transformed and fitted using a linear model 
while accuracy was fitted using a binomial logistic regression. 
Consistent with previous literature (Cohen & Donner, 2013), we 
found MFT power to be a positive predictor of RT in all congruency 
c o n d i t i o n s ( C + : ; C - : 

; ), and 
the strength of this relation did not significantly differ between 
conditions ( ). 

MFT activity was a significant predictor of the response slowing 
observed in correct incongruent trials compared to congruent ones 
( ), a behavioural effect which was consistent 
across participants (Figure 3B) and which was not modulated by 
individual preferences for expensive items, as opposed to subjective 
value biases observed on accuracy (Figure 4A-B). Additionally, the 
magnitude of the congruency effect on MFT (difference between C- 
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and C+) did not correlate with individual preference-for-expensive 
biases (Figure S6C). These results reveal that MFT sensitive to the 
value-price conflict is not correlated with behavioural biases 
triggered by participants preferences. In other words, the measured 
MFT may reflect the detection of conflict but not necessarily its 
resolution.  

Regarding accuracy, we found that theta power was only a 
significant positive predictor of response accuracy in incongruent 
trials (Figure 6A, C+: ; C-: ; 

) , wi th ind iv idua l es t imates be ing 
significantly higher compared to those for congruent trials 
( ) and for no-congruency trials 
( ). The difference between 
congruent and no-congruency trials was not significant 
( ). Together, these results suggest that 
higher cognitive control, as expressed through higher MFT power, 
is required to respond correctly in incongruent trials specifically. 
This confirms our hypothesis that, in incongruent trials, the 
competition between price and value-based evidence triggers a 
conflict (and possibly the ensuing mechanisms for its resolution). 
We assume then that the strength of the association between MFT 
and accuracy may serve as a proxy to investigate the presence of a 
conflict at the individual level and to understand sources of 
variability observed in the behavioural results. The next sections 
present the corresponding analyses.  

Individual analysis of MFT and accuracy: Congruent trials 
We started by looking at whether the individual’s strength of the 
price-preference bias would be correlated with MTF in congruent 
trials. Please remind that we hypothesised that subjects with a 
strong (i.e., significant) price-preference correlation would require 
more control precisely in congruent trials. This was the post-hoc 
explanation of the atypical reversal in the behavioural congruency 
effect in these participants, given that the strategic prior to choose 
the non-preferred item would have to be countermanded. In line 
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with this, we observed that in individuals whose accuracy is 
strongly associated with higher theta power in congruent trials, the 
more likely this person is to show the reversed congruency effect in 
behaviour (Figure 6B - left, Pearson, ). 
Additionally, consistent with this explanation, individual MFT 
estimates in congruent trials were also positively correlated with 
individual correlation coefficients between preference and price 
(Figure 6C - left, ). This reinforces the idea 
that for participants who usually prefer more expensive items, 
congruent trials required the need to regulate a conflict between a 
strategic prior (choose the non-preferred item) and the correct 
response.  

 
Figure 6. Mid-frontal theta predicts the value biases in choices. A. 
Estimates extracted from predicting response time (left) and accuracy 
(right) with (G)LMM using mid-frontal theta power, in congruent and 
incongruent conditions separately (plain coloured dots). Error bars 
represent 95% CI. Individual estimates are plotted behind and connected 
by grey lines. B-C. Correlations between individual theta power estimates 
(extracted from predicting accuracy) within congruent and incongruent 
trials and congruency effects on accuracy (probability to be correct in 
congruent minus incongruent trials) (B) and individual correlation 
coefficients between estimated prices and preferences (value) (C). Green 
areas represent expected values of congruency effects on accuracy. 

Individual analysis of MFT and accuracy: Incongruent trials 
Turning now to incongruent choices, please note that, MFT 
significantly predicted accuracy at the group level in incongruent 
trials, thus in principle suggesting that conflict detection and/or 
control facilitated correct responses. When unpacking this effect at 
the individual level, we observed that the stronger the behaviour 
was biased toward the preferred item overall, the better MFT power 
in that participant predicted accuracy (Figure 6B - right, 
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). This is in line with our hypothesis that 
incongruent trials induce a stronger conflict, resulting in 
behavioural consequences and leading to the engagement of 
conflict-related brain mechanisms to overcome it. Furthermore, in 
contrast to congruent trials, no significant relation between theta 
estimates and the strengths of correlations between estimated price 
and preferences was found (Figure 6C - right, ), 
suggesting that the prior toward responding with the non-preferred 
item (in a subgroup of participants) did not need to be controlled in 
these incongruent trials, and only the conflict elicited by the 
competition between price and value-based information was 
relevant.  

Although, we only observed a small effect of congruency on the 
MFT power overall, we were able to demonstrate the strong 
relationship between theta oscillations and choice conflict at 
individual level (Pinner & Cavanagh, 2017). 

Additionally, in multitasking situations, higher theta has been found 
to be associated with lower performance, suggesting that MFT 
power is a proxy to assess individuals’ cognitive workload (Puma et 
al., 2018). In our study, we found higher MFT to be associated with 
bet ter performance in incongruent t r ia ls (Spearman, 

; without outliers: ) but not in 
congruent trials (Spearman, ; without outlier: 

), suggesting that frontal theta reflects here the 
need for cognitive control and not the workload per se.   

Individual analysis of MFT and accuracy: No-congruency trials 
For completeness, similar analyses were conducted on trials without 
a congruency component, where both items are similarly valued. As 
previously reported, theta power did not emerge as a significant 
predictor of accuracy, and individual theta estimates exhibited no 
correlation with either the congruency effect on accuracy 
( ) or the strength of the preference-for-
expensive bias ( ). These results further emphasize 
the specific influence of the preference-for-expensive bias on 
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conflict monitoring and choice behaviour when a preferred 
alternative is present. 

Finally, we investigated whether the distinct evolution of accuracy 
over time, contingent upon the presence of a preference-for-
expensive bias (as illustrated in Figure S3), could be correlated with 
specific changes observed in MFT activity. We employed a LMM to 
predict MFT power as a function of time-on-task (run), congruency 
(C+ or C-), and the preference-for-expensive bias (significant or 
not) (Figure S7). We found a reduction of MFT activity (-450 to 
50ms relative to the response) with the time spent on task 
( ), mirroring prior reports in studies 
examining task-related MFT activity (Arnau et al., 2021; Beldzik 
et al., 2022). This effect could be attributed to learning and short-
term task automatization accompanied by a reduction in high-level 
cognitive control (Mohr et al., 2016). Interestingly, we also found a 
tendency for a three-way interaction between time-on task, 
congruency and the presence of the preference-for-expensive bias 
( ). Subsequent post-hoc analyses revealed a 
significant interaction between time-on-task and congruency for 
participants not exhibiting the preference-for-expensive bias 
( ), wherein MFT decreased throughout the 
experiment in congruent choices, while it increased for incongruent 
choices. MFT activity has indeed been found to ramp up with 
mental fatigue (Tran et al., 2020), and this increase might be due to 
heightened cognitive exertion as participants strive to uphold task 
performance in the face of the price-value conflict. Conversely, no 
significant interaction emerged for participants with a preference-
for-expensive bias ( ), which could potentially 
explain the growing influence of their prior biases on their choices, 
prompting them to opt for the least preferred items more frequently 
than the preferred ones. Such adaptive behaviour might be favoured 
as cognitively less demanding. 

The relation between price difference and theta reflects trial 
importance 
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The analyses of behavioural responses presented earlier pointed out 
that price difference modulates trial difficulty, with trials with large 
∆P leading to faster and more accurate responses (hence, we can 
assume, easier). Importantly, the ∆P effect occurred across the 
board, regardless of congruency. An effect of price difference was 
also found on MFT power using LMM (Table S6, model ) and 
time-frequency analysis, which revealed a higher theta power for 
trials with a large ∆P (2 to 3 euros) compared to trials with a small 
∆P (0 to 1 euro) from 280 until 20ms before response (Figure 7, 

).  

 
Figure 7. Easier but also more important trials are associated with 
higher mid-frontal theta power. A. Time-frequency analysis (response-
locked) of trials with small differences in price (∆P from 0 to 1 euro) 
between the two items (left) and trials with large price differences (∆P 
from 2 to 3 euros) (middle) show an increase in theta power (dB) post-
stimulus presentation. Difference between small ∆P and large ∆P 
conditions (right) show a lower theta power before response. Vertical 
dashed lines represent mean RT. B. Average mid-frontal theta power 
(4-7Hz) of trials with small and large ∆P plotted over time. A significant 
cluster was found from 280 to 20ms before response (‘**’: p<.01) around 
which an analysis window was selected (grey shaded area: –450 to 50ms 
relative to response). The topographic head map represents the difference 
in theta power between trials with small and large ∆P over this analysis 
window. C. Average theta power predicted (Table S6- ) for ∆P 
conditions (coloured dot circled in black). Vertical black bars represent 
s.e.m. Grey lines connect individual subjects (observed data). 

These results may seem counter intuitive, as theta power is 
generally found to increase with trial difficulty (e.g., with working 
memory load, Maurer et al., 2015) and correlate positively with RT 
(Cohen & Donner, 2013). However, in our case, price difference is 
not solely a proxy for trial difficulty, but it also correlates with trial 
importance for the subject’s outcomes. Indeed, on erroneous trials, 
the difference in price between the two items penalizes (is added to) 
the participants’ shopping cart. Consequently, while incorrect 
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responses in trials with a small ∆P (a few cents) has little 
consequence on participants scores, errors in trials with large ∆P (a 
couple of euros or more) are greatly penalized. In previous 
literature, higher activity in the dACC has been associated with 
higher required effort but also with associated expectation of higher 
rewards or losses (Vassena et al., 2017; Cohen et al., 2009; Shenhav 
et al., 2013; Safavi & Dayan, 2022). In our case, these two features 
are conflated given that price difference correlates with both the 
difficulty (negatively) and trial importance (positively). We believe 
it is the greater losses associated with errors which could explain 
the larger theta activity observed with trials with large price 
differences.  

In line with this hypothesis, we observed two main differences 
between the individual level of variations of MFT power with 
congruency conditions and with price difference. First, the 
congruency effect on accuracy (congruent more accurate than 
incongruent) tends to correlate with the congruency effect on MFT 
power (partial Pearson’s correlation controlling for the preference-
for-expensive bias as it strongly correlates with the congruency 
effect on accuracy ( ; without outliers: 

): ; without outliers: 
), while the variations of theta power with ∆P do 

not correlate with the effect of accuracy on ∆P (Spearman, 
; without outliers: ). These 

results suggest that performance accuracy as a function of price 
difference does not rely on theta power, as it can be the case in 
congruency conditions where conflict monitoring is necessary to 
ensure correct responses (Figure 6A).  

Secondly, we observed that the more the MFT activity increases 
post-stimulus presentation in general, the less it increases with price 
difference (Pearson, ; without outliers: 
Spearman, ). This result may suggest 
individual differences in the cognitive workload of the task’s 
objective difficulty (∆P, short response deadline). Interestingly, this 
pattern is not observed across the congruency conditions 
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(Spearman, ; without outliers: Pearson, 
) where MFT activity is overall found to be 

higher for incongruent compared to congruent trials regardless of 
individuals level of MFT power post-stimulus. It suggests that mid-
frontal theta activity reflects mainly the conflict between price and 
value-based evidence and, when possible, it adapts to the magnitude 
of losses associated with potential errors in order to maximise 
performance.  

Mid-frontal theta oscillations as a mechanism of cognitive control 
for the interaction between subjective value and estimated price   
We previously found a general increase in MFT power in 
incongruent trials, where subjective value and objective information 
about price are in conflict, compared to congruent trials (Figure 5). 
To confirm the role of MFT as a common cognitive control 
mechanism, we sought to extend the results by looking at MFT 
activity following errors (Cavanagh et al., 2009; M. Cohen et al., 
2009; Van Driel et al., 2012), and investigate how our experimental 
conditions may impact this effect. We analysed MFT activity in the 
500ms window following responses, baselined with the 500ms 
window preceding stimulus onset, as a function of response 
accuracy (correct or incorrect), price difference, and congruency 
(Figure 8A). Using a LMM including these factors as fixed effects 
and subjects as random factor, we found a significant effect of 
response accuracy ( ) on post-response 
MFT with theta power being higher after errors. This replicates 
typical post-error Theta increase findings. We also found an 
i n t e r a c t i o n b e t w e e n ∆ P a n d r e s p o n s e a c c u r a c y 
( ) with error-related theta (difference 
between MFT post-errors and post-correct responses) increasing 
with ∆P. In previous literature, increased MFT activity has been 
found for aware compared to unaware errors (Wang et al., 2020) 
and for errors associated with greater losses (Cohen et al., 2009). 
Here, incorrect responses in trials with larger ∆P are both more 
penalised (the price difference is added to participants’ shopping 
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cart) but probably also more detectable, which makes it difficult to 
disentangle these two sources.  

A well-known post-error behaviour adjustment consists of slowing 
down the decision responses in the trial following an incorrect 
response (post-error slowing; Botvinick et al., 2001; Dutilh et al., 
2012; Rabbitt, 1966). We addressed this adaptive mechanism and 
found significant post-error slowing for all ∆P magnitudes (small: 

, m e d i u m : , 
large: ), demonstrating the validity and 
precision of participants’ price estimations. What is more, we found 
an interaction of the post-error slowing with ∆P (LMEM, 

, Figure 8B) showing that response times are 
significantly slower following incorrect responses in trials with 
larger ∆P. Congruency did not interact with the amplitude of post-
error slowing ( ).  

Figure 8. Errors in trials with large price difference are followed by 
larger MFT power post-response and longer response times in the 
subsequent trial. A. Differences between MFT power (in decibels) in the 
500ms window (baselined with the 500ms window before response) after 
errors or after correct responses, depending on the price difference (∆P) 
and the congruency (colours) in the current trials. B. Differences in RT 
between trials directly following errors or correct responses, depending on 
the previous trial’s ∆P and congruency. Shaded areas represent s.e.m. 

To test for the potential link between post-error slowing and post-
error MFT increase, we used LMM to predict RTs based on the 
previous trial’s MFT activity post-response and the response 
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accuracy of the current trial. We found a significant interaction 
between these two factors ( ). 
Consistent with previous literature (see meta-analysis: Cavanagh & 
Shackman, 2015) and with our expectation, post-error MFT 
s i g n i f i c a n t l y p r e d i c t e d t h e n e x t t r i a l R T 
( ) but not MFT activity after correct 
responses ( ), pointing out the role of MFT as a 
proxy for control after committing errors. However, post-error MFT 
amplitude did not predict accuracy in the subsequent trial 
( ). Additionally, MFT amplitude post-response 
was not affected by the current trial RT ( ), as 
previously reported (Beldzik et al., 2022). 

Finally, turning again to individual-level analysis, the amplitude of 
error-related MFT did not correlate with performance in general at 
individual level (Pearson’s, ). However post-
error slowing did (Pearson’s, ), with participants 
who slowed down more after incorrect responses being also more 
accurate overall. Together, these results confirm the role of MFT in 
signalling the need for (and possibly exertion of) increased 
cognitive control in terms of trial-to-trial adaptation. In particular, 
they point out the relation of MFT to post-error slowing, a 
behaviour adaption reflecting the efficient use of control 
mechanisms to engage in a more cautious response mode. 

Value biased conflict is not reflected in the motor-related activity 
So far, we have interpreted the behavioural and EEG correlates for 
conflict as reflecting computations related to the decision process. 
However, one could assume that similar motor-related conflict 
regarding which response to effect, could have produced our results. 
In fact, decision-making processes and motor actions are not clear 
separable processes, since recent evidence points towards a parallel 
perspective of information processing where decision and action 
may coexist and interact. This notion is supported by evidence that 
choice action is frequently initiated before the completion of 
decision-making (Cisek & Kalaska, 2010; McKinstry et al., 2008; 

χ2
1 = 13.12,  p = 2.93 × 10−4

t = 3.74,  p = 1.81 × 10−4

t = . 044, p = . 97

z = . 73, p = . 47
t = . 71, p = . 48

r = . 042, p = . 82
r = . 41, p = . 024
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Ozbagci et al., 2021; Resulaj et al., 2009). In this context, we do not 
aim to disentangle stimulus-related conflicts from motor-related 
conflicts. Instead, we focused on determining whether EEG 
correlates pertaining to motor preparation in the context of decision 
making reveal the presence of motor-related conflicts. To do so, we 
analysed neural corelates of motor activation through beta-band 
oscillations (13-30Hz, Figure S8) in parietal aeras and the 
lateralized readiness potential (LRP, Figure S9). Differences in the 
timing of motor activation between congruent and incongruent trials 
was not detected in beta but was detected in the LRP, with 
congruent trial latencies being shorter than incongruent trials. This 
latter result may reflect the difference observed in RT between 
congruency conditions. 

The drift diffusion model fails to reproduce participants’ choice 
behaviour 
The drift diffusion model (DDM) is a powerful framework to model 
binary choices. In the value-biased decision-making literature, it has 
shown to reproduce human and animal behaviour by introducing 
different types of reward biased mechanisms. In order to provide 
better generalization of our findings, we intended to model 
participants’ choice behaviour in our price minimisation task using a 
simple DDM comprising six free parameters (Table 1 and Figure 9). 
These parameters encompassed non-decision time, which was 
Gaussian-distributed with a specified mean ( ) and standard 
deviation ( ). The simple model further included a drift rate ( ) 
governing the accumulation of evidence, and a lapse trial rate ( ) 
introduced to account for odd trials, such as when responses were 
very fast and appeared unrelated to the presented stimuli. We also 
included an urgency signal, given the time pressure of the task. This 
urgency signal was modelled as a linear gain function characterized 
by an intercept  and a slope . 
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Figure 9. Illustration of the drift diffusion model (DDM). Evidence is 
accumulated in the decision variable ( ) over time until it reaches one of 
the decision thresholds (boundaries ). Three simulated trajectories of the 
decision variable are depicted, with a drift rate , and a starting point . 
RT comprises the decision time (duration for  to reach a boundary) and 
the non-decision time (including encoding and response outputs), drawn 
from a normal distribution. Urgency is modelled as a linear gain which 
scales both noise and evidence accumulation. Value-biases, modelled as 
shifts in starting point  or drift rate  are depicted in their expected 
directions (blue: C+, yellow: C-). [back to Methods] 

In addition, we modelled the value bias observed in both accuracy 
and RT by incorporating mechanisms impacting the evidence 
accumulation process through shifts in starting point or drift rate. 
We also introduced mechanisms which are independent of the 
information integration, such as errors in the mapping between the 
decision variable and the motor response (see Methods for more 
details). We observed that the model exhibiting the best fit (lowest 
BIC averaged across the participants, as shown in Table S8) was the 
one that encompassed a bias in the drift rate ( ). The distribution of 
f i t ted  was found to be posi t ive (Wilcoxon-test , 

, Figure 10B), suggesting that the accumulation 

dx
B

μ x0
dx

xB dB

dB
dB

W = 352, p = . 013
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of evidence in favour of the preferred, compared to the non-
preferred item, occurs faster. This model additionally incorporated a 
non-zero probability for mapping errors to arise between the 
decision variable linked to the correct alternative and the motor 
output ( ). Introducing this mapping error possibility led to a 
modest reduction in the predicted accuracy, aligning it more closely 
with the observed accuracy. 

However, overall none of the DDM models was able to predict the 
behavioural differences observed between the congruency 
conditions satisfactorily. The results show that the models 
overestimated the observed accuracy; in congruent trials, the slow 
errors, that may be related to the preference-for-expensive bias were 
not well predicted, while for incongruent trials, models failed to 
predict the fast errors caused by the selection of the preferred 
alternative (Figure 10A). Our attempts to introduce value biases 
which unfolded, or else faded out during the course of the trial, 
couldn’t solve these issues (see Methods for more details).  

To test whether the difficulty to reproduce the data was due solely to 
the value biases, we fitted separately trials with no congruency 
(small difference of estimated value between the two items). Here 
also, we encountered a similar deviation from the predicted 
accuracy, which was greater than the observed one (Figure S10A). 
Our attempts to increase the probability of errors using different 
mechanisms (leaky integration, decision-response mapping error) 
were not successful (Table S9) and the model giving the best 
predictions of the data was the simple DDM including six free-
parameters ( ,  , , ,  and  – Figure S10B).  

As an additional control measure, we explored whether the 
difficulty of the DDM to model participants choice behaviour could 
be due to the presence of sequential effects. The details of our 
analysis are documented in the supplementary materials (Figure 
S11), and the results unveil a trend among participants to opt for the 
item displayed in a contrary position to the one previously chosen 
('switch'), particularly in situations involving fast responses. 

pmap
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However, this phenomenon does not appear to affect accuracy 
significantly.  

 

Figure 10. Participants’ choice behaviour in the presence of 
congruency component cannot be fitted by a classical drift-diffusion 
model. A. Density distributions of observed (filled shapes) and predicted 
RTs (lines) extracted from the model with the highest goodness-of-fit, 
depending on the response accuracy (correct or incorrect), the congruency 
(incongruent or congruent) and the price difference between the two items 
(∆P in euros). B. Distributions of the six fitted parameters, boxplots 
represent the 1st and 3rd quartiles of the data distribution, with thicker 
horizontal black lines corresponding to medians and whiskers extended to 
the largest value no further than 1.5 times the inter-quartile range (IQR). 
Behind is plotted individual data (N=30). The distribution of drift rate 
biases  was tested against zero (‘*’: p<.05). dB
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Overall, the drift diffusion models we employed failed to predict the 
choice behaviour observed at our price minimisation task. We 
observe nonetheless that the fitted parameters remain coherent. The 
fitted non-decision times fall within a range reported in previous 
studies fitting perceptual and value-based decisions between pairs 
of complex realistic edible stimuli (Milosavljevic et al., 2010; 
Polanía et al., 2014). The distribution of fitted drift-rate biases was 
also significantly positive (Figure 10B) reflecting the advantage for 
preferred over non-preferred items and significantly correlated with 
the magnitude of participants’ preference-for-expensive bias 
(Spearman, ) but not with the difference in 
MFT power (-450 to 50 relative to response response) between 
incongruent and congruent trials (Spearman, ). 
These findings underscore the potential of the DDM to elucidate, 
albeit partially, the fundamental cognitive mechanisms 
underpinning the decision-making process at stake in this task. 
Specifically, while the preference-for-expensive bias appears to 
exert a relatively uniform impact across all choices, the cognitive 
conflict manifested through increased MFT may exhibit trial-
specific variations, making it potentially more challenging to 
capture comprehensively within the framework of a classical DDM. 

Discussion 
To the best of our knowledge, this study stands as the first 
demonstration of intrinsic value biases (preferences) on objective 
decisions  in the absence of attentional anticipation or motor 1

preparation based on pre-set response-reward contingencies. Our 
results using food stimuli and their intrinsic subjective preferences, 
replicate the outcomes found in those other tasks; the preferred 
alternative was selected faster and more often in case of rapid 
responses (Afacan-Seref et al., 2018; Corbett et al., 2023; 
Diederich, 2008; Diederich & Busemeyer, 2006; Mulder et al., 
2012; Noorbaloochi et al., 2015; Summerfield & Koechlin, 2010). 
We found that the congruency effect between preference and 

ρ = − . 46, p = . 011

ρ = . 28, p = . 13

 Errors in price estimations are not affected by participants preferences. 1
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choice-relevant information on RT was remarkably consistent 
across participants (Figure 3B) and over the duration of the task 
(Figure S2B), revealing that subjective value is able to bias online 
objective decisions, without the implication of prior expectations. 
Furthermore, the impact of the amount of goal-relevant evidence 
available on value biases has received limited attention in previous 
research and has yielded inconsistent findings. Some studies 
reported no discernible modulation of the biases driven by 
asymmetric payoffs (Noorbaloochi et al., 2015), while others noted 
an effect confined to accuracy (Corbett et al., 2023). In this study, 
we offer compelling evidence supporting the notion that value 
biases on decision behaviour remains unaltered by choice difficulty. 
This suggests that the impact of value on decision-making is rather 
automatic. Such proposition is supported by extant evidence which 
suggests the rapid and automatic encoding of value, even when it 
bears no relevance to the immediate task at hand (Lebreton et al., 
2009; Moneta et al., 2023). 

Moreover, while standard conflict tasks reveal that goal-irrelevant 
visual attributes exert a diminishing influencing on decisions as 
trials progress (Luo & Proctor, 2021; Ulrich et al., 2015), similar 
dynamics emerge in scenarios involving choices influenced by 
asymmetric reward with swift decisions, in particular, exhibiting a 
bias toward options linked to higher payoffs (Afacan-Seref et al., 
2018; Corbett et al., 2023; Noorbaloochi et al., 2015; Summerfield 
& Koechlin, 2010). In this study, we successfully replicate these 
findings, further emphasizing the existence of a flexible mechanism 
redirecting resources away from preferred alternatives and toward 
task-relevant information. Our initial hypothesis postulated that 
cognitive control would assume this function, and our findings 
indeed support this premise. Specifically, incongruent trials 
characterized by value-price conflicts exhibited significantly greater 
MFT activity compared to congruent trials (Figure 5).  
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Figure 11. Proposed cognitive mechanisms occurring during our price 
minimisation task. Initially, value-based evidence is encoded, resulting in 
swift and accurate responses in congruent trials, as well as prompt errors 
in incongruent trials. Subsequently, information concerning the items' 
prices is encoded, triggering an increase in MFT activity in incongruent 
trials. This heightened MFT activity is in response to the conflicting 
evidence arising from the disparity between subjective value and prices. 
MFT plays a role in redirecting the decision process towards the evidence 
that aligns with the task goal, thereby upholding task performance. 
Furthermore, the processed evidence is subjected to comparison with pre-
existing prior beliefs. In scenarios where participants exhibit a significant 
preference-for-expensive bias (Figure 2), the accumulated information 
about the items may clash with their pre-existing bias, particularly in 
congruent trials. This potential conflict between the newly acquired 
evidence and prior beliefs might be resolved through MFT signalling. 
Alternatively, participants’ prior belief may favour the non-preferred items 
by directly influencing the decision process or via the disengagement of 
the conflict signalling network in incongruent trials. Notably, this alternate 
pathway appears to gain prominence as participants progress through the 
experiment (Figures S5 and S6). 

As expected, we also found that MFT served as an overall positive 
predictor of accuracy in incongruent trials and that the strength of 
this relationship correlated with the degree of individual value 
biases in decision-making (Figure 6A-B). This finding aligns with 
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prior research, underscoring the involvement of heightened 
cognitive control signalling to implement behavioural adjustment 
and enhance performance (Cooper et al., 2019; Kerns et al., 2004). 
What is more, while, at the group level, MFT activity was not 
associated to correct responses in congruent trials, suggesting no 
evident value-price conflict, it played a significant role for 
individuals exhibiting pronounced preferences for expensive items 
(Figure 6). Once again, the strength of this relationship correlated 
with participants' tendencies to exhibit behavioural bias toward their 
non-preferred alternative and suggests the existence of a conflict 
between, on one hand, the subjective value and price of the 
stimulus, and on the other hand, individuals' pre-existing beliefs 
concerning these attributes. We posit that this conflict elucidates 
why participants with significant preference for expensive items did 
not manifest the anticipated accuracy effects in faster trials and even 
displayed opposite congruency effects in slower trials (Figure 4). In 
these cases, their priors guided decisions away from the preferred 
item, which they usually associate as more expensive (and hence, 
incorrect, response).  

As initially proposed in the original versions of the conflict 
monitoring theory (Botvinick et al., 2001), previous results has 
shown that conflict monitoring, as gauged by ACC activity and 
MFT power increases, is not restricted to motor conflicts (Kerns 
et al., 2004) and extends to perceptual (Drew et al., 2022; Jiang 
et al., 2018; Nigbur et al., 2012) and stimulus-stimulus conflicts 
(Drew & Soto-Faraco, 2023; Marly et al., 2023; Morís Fernández 
et al., 2018). Our findings contribute to further broaden the theory 
by demonstrating high level stimulus conflict between two different 
properties of the same stimulus (Ruzzoli et al., 2020), as well as 
conflict between stimulus properties and pre-existing beliefs 
(priors). Moreover, our results reinforce earlier discoveries 
indicating that subjective value evidence skews decision-related 
signals in higher cortical regions (Rorie et al., 2010; Summerfield & 
Koechlin, 2010). These findings serve as a foundational basis for 
advancing our comprehension of the neural mechanisms underlying 
the flexible behavioural adaptations in response to conflict. 
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Concerning the prior expectations associated with stimuli, they have 
been consistently demonstrated to impact both perception (Bar, 
2004; Summerfield & Koechlin, 2008) and decision-making (Kelly 
et al., 2020; Hanks et al., 2011; Ratcliff, 1985; Mulder et al., 2012) 
through reciprocal interactions between top-down priors and 
bottom-up inputs. In the latter cases, adjustments in either the 
starting point (Bogacz et al., 2006; Cho et al., 2002; Mulder et al., 
2012; Wagenmakers et al., 2008) or the drift rate of the evidence 
accumulation process (Hanks et al., 2011; Ratcliff, 1985) have been 
reported, indicating a preference for the alternative that is more 
often correct. However, these studies involve alternatives with 
unequal prior probabilities of being correct for which the associated 
motor outputs are known. In contrast, in the present study, priors 
could not drive anticipatory attentional or motor effects, as they 
require first identifying and categorising the items in order to then 
map them onto prior representations of how properties such as 
subjective values and price are represented. This likely explains 
why in our case, a significant bias in the drift rate predominantly 
accounts for the data and aligns with individuals' preference-for-
expensive bias. Additionally, this may clarify why the prior's impact 
increases over time within a trial, contrary to the typical finding 
where the effect of the prior diminishes as more evidence is 
accumulated (Gold et al., 2008). 

Moreover, both behavioural and neural findings in the present study 
consistently demonstrated that the impact of prior stimuli 
expectations was dynamic and increased over time within the task. 
Basing decisions on prior representations might indeed constitute an 
adaptive strategy that is less cognitively demanding than invoking 
stronger cognitive control mechanisms, manifested by increases in 
MFT activity. Specifically, anticipatory effects with prior belief of 
outcome distributions indicate that responses linked with the less 
probable stimulus tend to be slower and less frequent (Mulder et al., 
2012; Wagenmakers et al., 2008). However, in the case of 
participants exhibiting a significant preference-for-expensive bias, 
the expected likelihood of the preferred option being correct is 
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diminished, leading them to select the preferred option less often, 
but also more rapidly. These findings suggest, in our experimental 
protocol, the coexistence of a competitive interplay between 
mechanisms guided by prior beliefs and those influenced by 
subjective value, where the influence of value prevails primarily in 
relation to reaction time and appears decoupled from choice 
accuracy. Indeed, even though value biases choice behaviour in a 
seemingly automatic manner (independently on the extent of goal-
relevant evidence available), its effect on response accuracy can be 
countermanded while its impact on RT persists. Further 
investigations are needed to gain a deeper comprehension of the 
underlying cognitive and neural processes and these intricate 
interactions. 

Additionally, even though statistically significant in only half of the 
participants examined, we cannot disregard the possibility that the 
preference-for-expensive bias is inherently widespread within our 
sample group and could potentially manifest given a larger selection 
of edible items. Indeed, price and perceived quality have been 
shown to be positively correlated (Rao & Monroe, 1989), possibly 
forming the basis for a corresponding positive relationship between 
subjective values and prices. We posit that the overall reduction in 
accuracy observed as the trial progresses, particularly in congruent 
trials—an aspect that may seem perplexing—could potentially be 
attributed to this bias. 

This study underscores the generality and intricacy of mid-frontal 
theta (MFT) oscillations as a cognitive control mechanism. In 
addition to conflict-related MFT, our findings shed light on its 
involvement in post-error adjustments, consistent with prior 
research (Cavanagh et al., 2009; M. Cohen et al., 2009; Van Driel 
et al., 2012). Notably, we observed that the increase in error-related 
MFT is heightened with greater price differences (∆P) (Figure 8A). 
This modulation may stem from the heightened salience of errors in 
trials with larger ∆P, as supported by prior work demonstrating that 
post-error MFT is influenced by error awareness (Wang et al., 
2020). Alternatively, the penalty aspect of large ∆P, as it deducts 
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from participants' performance in case of incorrect responses, 
makes it possible the concomitant role of the trials’ importance or 
expected costs on these fluctuations (Cohen et al., 2009). However, 
it is worth noting that recent evidence fails to support such effect 
(Frömer et al., 2021).  

Regarding MFT activity during the decision process, our paradigm 
implied an inverse relationship between trial difficulty, indexed by 
less accurate and slower responses as ∆P decreases (Figure S2), and 
trial importance or potential cost, which increases with ∆P. This 
finding appears contrary to our initial expectation, which was based 
on prior literature demonstrating that ACC and MFT activity 
increases with task difficulty (Shenhav et al., 2014; Pochon et al., 
2008; Botvinick, 2007). However, the ACC is sensitive to various 
signals, including choice value and effort cost (Croxson et al., 2009; 
Klein-Flügge et al., 2016), which may confound its direct 
relationship with task difficulty (Botvinick et al., 2001; Kolling 
et al., 2016), as also challenged by recent studies (Umemoto et al., 
2023; Castro-Meneses et al., 2020). Instead, we interpret the 
increase in MFT activity with ∆P as an effect of trial importance, 
where greater cognitive control is needed when larger losses are at 
stake. This interpretation aligns with the expected value of control 
theory (Shenhav et al., 2013, 2016), which posits the role of the 
dACC in weighing the costs and benefits associated with decisions 
to optimize cognitive resource allocation. Indeed, individuals are 
shown to engage more cognitive control areas when they expect 
higher rewards or losses (Alexander & Brown, 2011; Brown & 
Braver, 2007; Rushworth & Behrens, 2008). 

Interestingly, we found that the relationship between MFT activity 
and ∆P depends on basal Theta activity during the decision process. 
This suggests that, at an individual level, Theta is modulated in 
response to task importance only when it is not already high owing 
to task demands. MFT related to cognitive load has indeed been 
shown to exhibit large individual variability (Gevins & Smith, 
2000; Klimesch et al., 1999). Additionally, when comparing 
congruent and incongruent trials, we observed that the increase in 
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MFT during the latter, compared to the former, is not contingent on 
the basal activation of task-related MFT. In short, the presence of a 
ceiling effect affecting MFT activity related to expected loss, but 
not conflict-related MFT, suggests the existence of multiple levels 
of cognitive control signaling. Notably, the value-price conflict 
appears to have a more automatic effect, seemingly independent of 
perceived task demands. 

Lastly, prior studies have reported both decreases (Arnau 2021; 
Beldzik 2022) and increases (Tran et al., 2020; Wascher et al., 2014) 
in task-related MFT with time-on-task. Our findings reconcile these 
divergent findings by revealing complex modulations of task-related 
MFT with time spent on the experiment. These modulations differ 
depending on the presence of both a value-price conflict and a prior 
belief binding subjective values and prices at an individual level 
(Figure S7). It seems improbable that increased fatigue or 
disengagement in the task may have caused these complex 
interactions. Instead, these results indicate that Theta is flexibly 
modulated over the course of the experiment to more efficiently 
allocate cognitive resources.  
Further investigations are warranted to gain a deeper understanding 
of the multifaceted and dynamic nature of MFT signaling, its 
underlying neural networks (Zuure et al., 2020; Töllner et al., 2017), 
and its potentially distinct roles, such as conflict processing or error 
correction (Muralidharan et al., 2023; Töllner et al., 2017; Beldzik 
et al., 2022). 

In this study, we opted to delve into the cognitive mechanisms 
underlying value-biased decisions within a realistic experimental 
context. While we deem this approach crucial for comprehending 
human behaviour in genuine settings, it also introduces intricacies 
that can pose challenges. Primarily, the experimental conditions are 
built on the items’ values and prices, which are both estimated. In 
regard to values, we managed this uncertainty by constructing our 
congruency conditions around substantial preference disparities. 
Concerning prices, our observations of slower response patterns and 
increased MFT activity following errors, even for minor price 
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differences (less than one euro), suggest participants' estimations 
were remarkably precise and consistent. However, estimations 
errors leading to mis-categorisations of the trials cannot be entirely 
excluded and may have added noise in our results.  

Among the various objective attributes of edible items, our decision 
to inquire about prices stemmed from the frequent real-world 
practice of estimating prices (potentially more common than 
explicitly assessing weight or size dimensions). Furthermore, such 
estimation necessitates an initial encoding of the product's identity. 
This differs from prior experimental designs where participants 
selected between edible items based on the extent of background 
they covered on the screen, yielding no discernible effect of 
subjective value (Polanía et al., 2014). 

Employing real-life edible items also introduces an inherent 
challenge linked to the potential variability in participants' 
familiarity with the presented products. This variability could 
impact the precision or confidence of their initial estimations of 
value and price. Furthermore, this familiarity factor might have 
exerted an influence during the subsequent choice phase. 
Specifically, items that participants were more familiar with could 
have been more quickly encoded, and facilitated a faster retrieval of 
their associated features or garnered a more substantial share of 
attention during the decision-making process. We tried to minimise 
the possible impact of this by first explicitly asking participants 
about the edible items they did not recognise and removed them 
from the subsequent task phases. Additionally, we collected a high 
number of trials for each participant (more than a thousand on 
average, see Table S1) to reduce the potential impact of the 
familiarity confound.  

The potential complexity associated with the cognitive mechanisms 
involved in the task employed, and the variability inherent in the 
processing of each stimulus could directly contribute to the 
challenges encountered in accurately predicting the data using the 
drift diffusion model framework. We therefore contemplated the 
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possibility that some fundamental tenets of the drift-diffusion 
framework might not have been optimally suited to the task at hand. 
First, we questioned whether the assumption that the decision 
variable relies on sequential sampling might have encountered 
limitations within this specific experimental context due to the 
accumulation of both external and internal evidence. Indeed, 
existing literature suggests that patients with hippocampal damage 
display impairments in value-based decisions, implying a role of 
memory in such processes (Foerde et al., 2013; Palombo et al., 
2015). However, studies have also shown that choice behaviour in 
value-based tasks conforms to the sequential sampling model's 
regularities (Krajbich et al., 2010; Milosavljevic et al., 2010; 
Polanía et al., 2014), even when memory retrieval is clearly 
required (Gluth et al., 2013), indicating that memory retrieval and 
sensory evidence accumulation might, to some extent, share neural 
networks (Shadlen & Shohamy, 2016). Here the complex 
interaction between value, task-relevant evidence and participants 
prior’s belief may be more difficult to formally dissociate in time. 
Second, in our attempt to account for within-participant variation in 
the processing of stimuli, we introduced factors like gaussian 
distributed non-decision time to accommodate trial-specific 
differences. However, a more substantial concern pertains to the 
assumption of the drift diffusion model (DDM) that the drift rate 
and decision threshold remain constant across trials. Our findings 
indeed reveal that the decision process is susceptible to transient 
biases (stemming from value and prior beliefs), which can be 
counteracted through dynamic enhancements in cognitive control, 
revealing that adjustments occur within the course of a decision-
making process. In the case of decisions influenced by priors, the 
implementation of a neurologically informed model utilising EEG 
correlates of evidence accumulation and motor preparation enabled 
the incorporation of drift and urgency rate adjustments, resulting in 
improved predictive accuracy of choice behaviour (Kelly et al., 
2020). Recent studies employing tasks involving conflict processing 
have used the hierarchical drift-diffusion model (HDDM; Wiecki et 
al., 2013) to introduce trial-specific variations in mid-frontal theta 
(MFT) activity. These studies have demonstrated its impact on 
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various parameters influencing the choice process, such as the 
starting point, drift rate, and decision threshold (Guan et al., 2023; 
Castagna et al., 2023; Frank et al., 2015). These results are indeed 
promising, but they also highlight the challenges in identifying the 
specific roles of conflict-related MFT in shaping decision processes. 
Moreover, our results demonstrate that fluctuations of MFT activity 
throughout the experiment (Figure S7) is not associated with similar 
variations in choice behaviour (Figures S3 and S4) revealing that 
the effect of MFT on the decision process may be indirect or in 
interaction with other brain structures. Additional research is 
warranted, particularly employing intracortical recordings, to more 
precisely identify the sources of the rapid and dynamic MFT 
activity observed, as well as the specific neural networks it is 
intricately involved with. 

In conclusion, this study effectively underscores the impact of 
inherent preferences on objective decision-making, in the absence 
of anticipatory preparation. This finding further strengthens the 
notion that value is swiftly and automatically encoded, preceding 
and irrespective of the quantity of goal-relevant information 
available. Additionally, it introduces a novel cognitive model 
wherein MFT oscillations contribute to steering the decision process 
towards goal-relevant evidence, thus overcoming online value 
biases. Finally, the use of a more ecological experimental setting, 
with realistic stimuli, has unveiled the implications of complex 
processes intertwined with participants' prior representations. 
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Supplementary figures 
   

Table S1. Average percentage and total number of trials per subject (±SD) 
included in the analyses for all congruency and price difference (∆P) 
conditions. [back to Methods] [back to Discussion] 

congruency % of trials number of trials

by ∆P total by ∆P total

small mediu
m

large small mediu
m

large

no-
congruency

9.6±2.
8

9.6±3.9 6.2±2.1 25.5±
3.5

120±38 118±37 78±29 316±4
4

congruent 9.7±3.
0

10.4±2.
8

10.2±3.
0

30.3±
6.3

122±40 131±40 128±41 381±9
2

incongruent 9.5±3.
1

11.0±2.
7

10.6±2.
6

31.1±
6.1

119±41 138±38 134±38 391±9
2

total 28.9±
7.8

31.0±
5.4

27.0±
7.4

86.9±
10.9

361±1
07

387±
82

340±
105

1088±
199

92



 

Table S2. Selection of GLMM predicting accuracy. Each model is fitted 
to the data and compared to a simpler nested model using Likelihood 
Ratio Tests (LRT). For each model is reported its Akaike Information 
Criterion (AIC), Bayesian Information Criterion (BIC), log-likelihood 
(LL) and degrees of freedom (df). [back to Methods] [back to Results] 

 

Table S3. Report of the model predicting accuracy the best (model  – 

Table.S2). For each significant effect is reported the estimate, standard 
error (SE), 95% confidence interval (CI), z statistics and p-value. [back to 
Results] 
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Figure S1. The probability to be correct as a function of response time 
(RT) decreases predominantly in congruent trials. Accuracy depending 
on the RT quartile (1st: faster, 4th: slower) and the congruency condition 
(colours). Black dots represent the mean and vertical bars the s.e.m. 
Individual observed data is plotted (colour dots) for each congruency 
condition and linked with grey lines. Boxplots represent the 1st and 3rd 
quartiles of the data distribution, with thicker horizontal black lines 
corresponding to medians and whiskers extended to the largest value no 
further than 1.5 times the inter-quartile range (IQR). Behind is plotted 
individual data and connected by grey lines (N=31). [back to Results] 
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Table S4. Selection of LMM predicting reaction times (log-transformed). 
Each model is fitted to the data and compared to a simpler nested model 
using Likelihood Ratio Tests (LRT). For each model is reported its Akaike 
Information Criterion (AIC), Bayesian Information Criterion (BIC), log-
likelihood (LL) and degrees of freedom (df). [back to Results] 
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Table S5. Report of the model predicting RT the best (model  – 
Table.S4). For each significant effect is reported the estimate, standard 
error (SE), 95% confidence interval (CI), t statistics and p-value. [back to 
Results] 
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Figure S2. Congruency effects on choice behaviour are not modulated 
by the amount of goal-relevant evidence present. Lines represent the 
predicted mean accuracy (A) and RT (B) using mixed effect models, 
depending on the price difference between the two alternatives (∆P), the 
congruency and the response time (RT - median split) (A) or the response 
accuracy (B). Shaded areas represent the predicted standard error of the 
mean (s.e.m.). Observed averages (colour dots) and their associated s.e.m. 
(vertical bars) are plotted behind. [back to Results] [back to Discussion] 
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Figure S3. Participants’ choices are more accurate with time-on-task, 
especially for incongruent trials, while they get faster, equally for 
incongruent and congruent trials, throughout the experiment. Lines 
represent the predicted mean accuracy (A) and RT (B) using mixed effect 
models, depending on the run presentation order, the congruency and the 
response time (RT - median split) (A) or the response accuracy (B). 
Shaded areas represent predicted standard errors of the mean (s.e.m.). 
Observed averages (colour dots) and their associated s.e.m. (vertical bars) 
are plotted behind. [back to Results] [back to Discussion] 

  

 

Figure S4. Participants’ choices accuracy changes differently 
throughout the experiment depending on the presence of the 
preference-for-expensive bias. Lines represent the predicted mean 
accuracy using a GLMM, depending on the run presentation order, the 
response time (RT - median split), the congruency and the presence of a 
significant preference-for-expensive bias. Shaded areas represent the 
predicted standard error of the mean (s.e.m.). Observed averages (colour 
dots) and their associated s.e.m. (vertical bars) are plotted behind. [back to 
Results] [back to Discussion] 
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Figure S5. Stimulus-locked MFT. Averaged mid-frontal theta power 
(4-7Hz) of congruent and incongruent correct trials plotted over time for 
all participants (A) or for the subset of participants with (B) or without 
(C) a significant preference-for-expensive bias. A significant cluster was 
found only for participants not exerting the preference-for-expensive bias, 
from 500 to 920ms after stimulus onset ( ). 
[back to Methods] [back to Results] 

 

Figure S6. The magnitude of the preference-for-expensive bias does 
not explain individual difference in the congruency effect on MFT. A-
B. Averaged mid-frontal theta power (4-7Hz) of congruent and 
incongruent correct trials plotted over time-in-trial (response locked) for 
the subset of participants with (A) or without (B) a significant preference-
for-expensive bias. A significant cluster was found only for participants 
not exerting the preference-for-expensive bias, from -240 to 40ms relative 
to the response ( ). C. Difference in MFT 

activity between incongruent and congruent trials depending on the 
magnitude of the preference-for-expensive bias and its significance (for 
p<.05, colours). Darker colour dots with vertical bars represent the means 
and s.e.m. for the group with (red) or without a significant bias (blue). The 
green area represents the expected MFT congruency contrast. [back to 
Results] [back to Discussion] 

t = 60.09,  padj = . 0088

t = 32.03,  padj = . 028
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Figure S7. Participants’ MFT activity changes differently throughout 
the experiment depending on the presence of the preference-for-
expensive bias. Lines represent the predicted mean MFT power (in dB) 
using a LMM, depending on the run presentation order, the congruency 
and the presence of a significant preference-for-expensive bias. Shaded 
areas represent the predicted standard error of the mean (s.e.m.). Observed 
averages (colour dots) and their associated s.e.m. (vertical bars) are 
plotted behind. [back to Results] [back to Discussion] 
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Table S6. Selection of LMM predicting mid-frontal theta power (-450 to 
50ms relative to response). Each model is fitted to the data and compared 
to a simpler nested model using Likelihood Ratio Tests (LRT). For each 
model is reported its Akaike Information Criterion (AIC), Bayesian 
Information Criterion (BIC), log-likelihood (LL) and degrees of freedom 
(df). [back to Results] 

 

Table S7. Report of the model predicting mid-frontal theta power the best 
(model  – Table.S6). For each significant effect is reported the estimate, 
standard error (SE), 95% confidence interval (CI), t statistics and p-value. 
[back to Results] 
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Figure S8. Beta desynchronization associated with motor response 
preparation doesn’t differ in congruent and incongruent trials. Beta 
power (13-20Hz) contrasted between contra- and ipsilateral motor areas 
relative to motor response as a function of time, and locked either to the 
stimulus onset (left) or to the response (right). All incongruent (yellow) 
and congruent (blue) correct trials are displayed in A, while only the faster 
and slower trials (median split on the RT) are displayed in B and C 
respectively. Shaded areas represent the s.e.m. and vertical bars represent 
the mean RT (left) or time of stimulus onset (right). We observed the 
typical beta desynchronization contralateral to the side of motor response 
before the movement onset. However, we did not observe any differences 
in incongruent compared to congruent trials (A). Especially, in the slower 
trials we did not observe an initial activation of opposite response motor 
pathway (C). [back to Results] 
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Figure S9. Motor response preparation, measure through LRP, is initiated 
earlier in congruent, compared to incongruent trials. Lateralized readiness 
potentials (LRP) as a function of time, and locked either to the stimulus onset 
(left) or to the response (right). All incongruent (yellow) and congruent (blue) 
correct trials are displayed in A, while only the faster and slower trials (median 
split on the RT) are displayed in B and C respectively. Shaded areas represent the 
s.e.m. and vertical bars represent the mean RT (left) or time of stimulus onset 
(right). Significant differences or trends between congruent and incongruent trials 
are indicated by the horizontal black lines (‘*’: <.05, ‘**’: <.01). We 
observed difference in the peak, with higher amplitude for incongruent compared 
to congruent trials, and in the timing of motor response activation, with congruent 
trial preceding incongruent trials especially in fast trials (B). In slow trials, we 
observed an initial negative bolus, corresponding to the activation of the motor 
pathway opposite to the final response, but it didn’t significantly differ between 
the congruency conditions (C). [back to Results] 

padj padj
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Table S8. Summary of the DDMs used to model participants’ choice 
behaviour in the presence of congruency component. Goodness-of-fits 
are reported through negative log-likelihoods ( ) and Bayesian 
information criteria (BIC). [back to Results] 

nL L
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Table S9. Summary of the DDMs used to model participants’ choice 
behaviour in the absence of congruency component. Goodness-of-fits 
are reported through negative log-likelihoods ( ) and Bayesian 
information criteria (BIC). [back to Results] 

nL L
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Figure S10. Participants’ choice behaviour in the absence of 
congruency component cannot be fitted by a classical drift-diffusion 
model. A. Density distributions of observed (filled shapes) and predicted 
RTs (lines) extracted from the model with the highest goodness-of-fit, 
depending on the response accuracy (correct or incorrect) and the price 
difference between the two items (∆P in euros). B. Distributions of the six 
fitted parameters, boxplots represent the 1st and 3rd quartiles of the data 
distribution, with thicker horizontal black lines corresponding to medians 
and whiskers extended to the largest value no further than 1.5 times the 
inter-quartile range (IQR). Behind is plotted individual data (N=30). [back 
to Results] 
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Sequential biases are independent of the objective evidence 
The response deadline in the experiment put time pressure on 
participants. We wondered whether such urgency elicited the 
occurrence of sequential biases. As the experiment was not designed 
to look at sequential effects, we focused our exploratory analysis on 
whether participants responses, especially the faster ones, are biased 
by their directly preceding response. We classified trials as ‘repeat’ 
when the response (left or right) in the current trial was the same as 
the one in the previous trial, and as ‘switch’ when it was different. 
We found that faster choices were significantly biased toward 
switching compared to repeating ( ), 
which was not the case for slower choices ( ). 
Especially, we observed that this ‘switch’ bias was present 
independently of the objective evidence present (∆P small: 

, m e d i u m : , 
large: ; Figure S11), suggesting that 
this bias serves as an initial adaptation to counteract the response 
urgency rather that an adaptive strategy to the trial’s difficulty. 
However, accuracy didn’t seem to be affected by this motor 
sequential bias as the probability to be correct was not significantly 
different between switch and repeat fast trials overall 
( ) and inside ∆P conditions (small:  

, medium: , large:  
). 

V31 = 70, p = 2.37 × 10−4

t31 = 1.22,  p = . 23

t31 = − 2.51,  p = . 018 V31 = 65, p = 5.93 × 10−4

t31 = − 3.75,  p = 7.49 × 10−4

t31 = . 61, p = . 55 t31 = . 99,
p = . 33 t31 = 1.09,  p = . 29 V31 = 332,
p = . 10
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Figure S11. Fast choices are biased towards switching, regardless of 
the choice difficulty. Differences in the proportion of switch and repeat 
trials depending on the response time (faster or slower based on median 
splits) and the price difference (∆P). Switch trials correspond to trials 
where the response (left or right) differs from the previous response, in 
opposite to repeat trials where the same response as in the previous trial is 
repeated. Darker colour dots represent group average and vertical bars the 
s.e.m. Lighter dots correspond to individual data and are connected with 
grey lines. [back to Results] 

108



109



110



3. Chapter II. BALANCE BETWEEN BREADTH AND 
DEPTH IN HUMAN MANY-ALTERNATIVE 
DECISIONS 

 

Alice Vidal, Salvador Soto-Faraco & Rubén Moreno-Bote 
(2022) Balance between breadth and depth in human many-
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4. Chapter III. HUMANS ADAPT CHOICE 
VARIABILITY BEYOND REWARD 
MAXIMISATION IN SEQUENTIAL, MANY-
ALTERNATIVE DECISIONS WITH LIMITED 
RESOURCES 

 

Alice Vidal, Francesco Damiani, Alireza Vaylan, Salvador Soto-
Faraco & Rubén Moreno-Bote (2023) Humans adapt choice 
variability beyond reward maximisation in sequential, 
many-alternative decisions with limited resources. PsyArXiv 
 https://doi.org/10.31234/osf.io/vfekr 
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Abstract 
Humans are strategic animals. We constantly make prospective 
choices, allocating limited resources in situations of uncertain, 
future outcomes. The management of our finite monthly budget, 
financial investments, or the allocation of time to the different 
questions in an exam are just a few examples. In these scenarios, 
both decision-making and resource allocation tend to fluctuate over 
time even under invariable set of constraints. However, it is unclear 
whether these fluctuations affect performance and whether they 
underlie additional objectives beyond pure reward maximisation. 
We address these questions using the breadth-depth dilemma, a 
novel ecological protocol where participants engage in sequential 
multiple-choice scenarios characterised by limited capacity. We 
designed two experimental environments. In one environment, 
optimal performance, formalised with an ideal allocator model, is 
associated with homogeneous resource allocation across 
consecutive choices. In contrast, the other environment entails that 
fluctuating resource allocation leads to greater expected rewards. 
Our study evaluates participants' adherence to these scenarios and 
measures fluctuations as deviation from homogeneous allocations. 
The results revealed that participants’ behaviour fluctuates more 
than optimal, but critically, behavioural fluctuations adapt to the 
available capacity and the environmental context. Moreover, our 
findings unveil pronounced sequential strategies, such as save-for-
later and reward history-dependent choice, further implying that 
these strategies contribute to decision variability. An extension of 
the optimal allocator model showed that the characteristic excess 
fluctuation is driven by entropy seeking, the pursuit of information-
gain and risk avoidance. Although having a modest impact on 
performance, these strategies may reflect advantageous behaviours 
in the long run under ever changing real-world environments. 
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Highlights 

• Within each choice, humans allocate capacity across a close-
to-optimal number of alternatives, adapting to both the 
available capacity and the environmental context (Breadth-
Depth trade-off).  

• When allocating finite search capacity across sequential 
many-alternatives choices, humans fluctuate more than 
predicted by an ideal allocator model maximising immediate 
reward.  

• These fluctuations present a structure underlying intended 
strategies like “save-for-later” and “reward history-
dependent choice” and serve goals beyond return 
maximization: entropy seeking, information gain and risk 
avoidance. 

• These strategies, while modestly impacting immediate 
performance, may have advantages in adapting to dynamic 
real-world environments. 
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Introduction 

Ongoing behaviour is a highly dynamic and variable process, 
shaped by a multitude of internal and external factors. For example, 
the choice of words to express the very same idea may completely 
change. As a result, we can easily detect when someone delivers a 
rehearsed talk, highlighting the natural fluctuations that characterise 
spontaneous speech. This inherent variability extends beyond mere 
linguistic expression; it is a fundamental aspect of human behaviour 
that cannot be reconciled through numerous repetitions of the same 
action or controlled experimental settings (Rahnev & Denison, 
2018; Renart & Machens, 2014). Confronted with the same decision 
multiple times, we might undergo different internal processes each 
time, consider information differently and eventually make slightly 
different choices. Spontaneous behavioural variability has been 
widely observed in motor outputs (Schmidt et al., 1979), even 
among professional athletes executing the same movements 
repeatedly (Bartlett et al., 2007; Menayo et al., 2012). Fluctuations 
have also been evident in vigilance (Davies, 1982; Fruhstorfer & 
Bergström, 1969) and sustained attention (Parasuraman, 1984), 
where humans naturally oscillate between task-related and task-
unrelated thoughts (M. R. Cohen & Maunsell, 2011; Rapport et al., 
2009; Sonuga-Barke & Castellanos, 2007), often engaging in mind-
wandering (Christoff et al., 2016; Killingsworth & Gilbert, 2010). 
Variability in behaviour is further noted in perception, where 
ambiguous stimuli may induce multistability, with several 
interpretations alternating over time (Attneave, 1971). This 
phenomenon might itself driven by stochastic neural variability 
(Gigante et al., 2009; Moreno-Bote et al., 2007) and the engagement 
of heightened top-down activity (Wang et al., 2013). However, even 
clear visual stimuli repeatedly presented may be perceived 
differently (Sergent et al., 2005). Momentary attentional 
disengagements from the ongoing task may actually be responsible 
for lapses in performance observed, for example, in continuous 
perceptual categorisation (Brink et al., 2016; Esterman et al., 2013) 
and working memory tasks (Aly & Turk-Browne, 2017; 
deBettencourt et al., 2019). Value-based decisions (Drugowitsch 
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et al., 2016; Polanía et al., 2019) and economic games (Safra et al., 
2022) are no exceptions and also exhibit spontaneous trial-to-trial 
variability. Additionally, smooth fluctuations in behaviour and 
performance can arise due to resource constraints, particularly in 
situations such as fatigue or extended time-on-task (Mackworth, 
1948), where individuals might be disinclined to allocate substantial 
mental or physical resources due to a lack of motivation (Cerasoli 
et al., 2014; Zelick, 2007). 

However, the impact of behavioural fluctuations on performance 
and their underlying objectives remain poorly understood. Extended 
literature delves into the neural origins of these pervasive 
behavioural variations. Research indicates that inherent fluctuations 
in brain activity contribute to variability in various cognitive 
processes, including attention (Kucyi et al., 2017; Smallwood & 
Schooler, 2006), perception (Boly et al., 2007; Ress & Heeger, 
2003; Torralba Cuello et al., 2022; VanRullen, 2016), working 
memory (Wagner et al., 1998), and decision-making (Pessoa & 
Padmala, 2005; Mochol et al., 2021; Smith & Ratcliff, 2004; 
Drugowitsch et al., 2012, 2016; Findling et al., 2019).  

Despite the extensive literature addressing behavioural fluctuations 
and their immediate causes, the extent to which these fluctuations 
ultimately enhance or hinder performance overall, and if they are 
aligned with underlying strategies, remains mostly unknown. 
Indeed, while behavioural variability can indeed arise from 
stochasticity in neural processes (Moreno-Bote, 2014), it should not 
be merely dismissed as noise (Garrett et al., 2013), as it may serve 
purposes beyond the sole maximisation of immediate reward (von 
Neumann & Morgenstern, 1944). In motor actions, while inherent 
noise within the nervous system was once considered the primary 
source of variability (Faisal et al., 2008; Osborne et al., 2005), 
recent research has highlighted its role in motor learning (Dhawale 
et al., 2017), revealing a significant connection between variability 
and skill acquisition (Sternad, 2018). Recent studies have also 
started to uncover the neural basis of curiosity (Kidd & Hayden, 
2015) and have shown that monkeys are willing to trade rewards for 
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advance information about gambling outcomes (Blanchard et al., 
2015), suggesting the intrinsic potential of information seeking in 
guiding behaviour. An additional strand of literature shows that 
lapses in perceptual choices in mice reflect exploration (Pisupati 
et al., 2021), while humans adapt the balance between exploration 
and exploration based on the associated cost-benefit structure (J. D. 
Cohen et al., 2007a). What is more, the weight of exploration in 
behaviour is enhanced in extended time horizons, affording more 
opportunities to leverage newly acquired knowledge (Carstensen 
et al., 1999; Wilson et al., 2014) which underscores the 
interconnection between planning and information-seeking (Hunt 
et al., 2021). Finally, a recent study revealed that the ongoing 
fluctuations of dopamine contribute to structure spontaneous 
behaviour in mice (Markowitz et al., 2023), suggesting that 
variability plays an intrinsic role in organising behaviour even 
beyond goal-oriented tasks. 

Collectively, these findings suggest that behavioural fluctuations 
may not be just the consequence of noise, but reflect the 
deployment of intentional strategies. This is substantiated by recent 
studies showing that humans exhibit deliberate adjustments in 
sensory evidence accumulation, favouring alternatives that 
maximise rewards (Kloosterman et al., 2019). Moreover, 
individuals adapt their learning rates based on the perceived value 
of information, indicating a purposeful adaptation to the 
informational context (Lee et al., 2023). In both cases, these 
adaptive alterations made over time introduce variability in 
behaviour. Additionally, the generation of novel and unexpected 
intentional behaviours, observed in animals, serves specific 
purposes. For instance, in the face of imminent threats, animals 
intentionally produce unexpected behaviours to evade predators 
(Evans et al., 2019). This intentional variability also contribute 
significantly to cognitive flexibility (Dajani & Uddin, 2015; Uddin, 
2021), enhancing creative thinking and problem-solving abilities. 
Research further demonstrates that humans can purposefully engage 
in mind-wandering during task performance (Seli et al., 2016), 
which, despite potential performance lapses, fosters creativity, 
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advantageous in numerous contexts (Mooneyham & Schooler, 
2013). 

In this study, the aim is to investigate the relationship between 
behavioural variability and performance, exploring the potential that 
variability may be partially deliberate, contributing to objectives 
beyond mere reward maximisation. To do so, we use an extension 
of the breadth-depth (BD) dilemma. While the control of cognitive 
factors like attention and motivation is inherently challenging, this 
framework offers the distinct advantage of allowing for the 
experimental parametrisation of the decision maker’s search 
capacity. Moreover, it formally delineates optimal solutions, 
providing clear insights into how these limited resources should be 
strategically allocated among multiple alternatives to maximise 
expected rewards (Moreno-Bote et al., 2020). The BD trade-off is 
applicable to various situations where search capacity must be 
allocated in advance before accessing the collected information. 
This dilemma formalises a very common problem of many real-
world contexts, for example when planning a vacation, investing 
money, or shopping at a new local market. Consider this last 
scenario, products cannot (usually) be consumed on-site, and one 
must purchase fruits and vegetables before trying them out. 
Individuals face a choice: they can either buy numerous products 
from a few vendors to obtain a precise estimation of product quality 
from that one vendor (depth) or opt to purchase a few products from 
many different vendors (breadth), thereby increasing the likelihood 
of finding a good-quality vendor but at the cost of maybe not being 
able to identify the best one. Studies have demonstrated that 
humans tend to act in a manner close to optimal in this problem. 
They efficiently gather information to select alternatives associated 
with higher payoffs and adapt their strategy based on the richness of 
the environmental context (Vidal et al., 2022). This framework 
provides therefore an excellent basis for investigating whether this 
efficient balance between breadth and depth is sensitive to 
variability in the resource allocation or remains stable, and how it 
relates to performance. Furthermore, by allocating a restricted 
resource budget across various choices instead of a single choice, 
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our paradigm enables a more active information search where 
participants can decide not only what to sample but also in which 
extend. Additionally, the BD dilemma has the advantage, compared 
to the well-known exploration-exploitation dilemma (Berger-Tal 
et al., 2014), of having an easily tractable optimal solution, 
particularly when dealing with numerous alternatives, as is often the 
case in real-life scenarios. Moreover, while in the EE dilemma, 
seeking new information through exploration comes at the cost of 
renouncing to exploit the currently rewarding alternative, such 
trade-off is absent in the BD and enables to better focus on 
information seeking strategies. Finally, although the ideal observer 
considers each choice as independent of each other, this framework 
enables the characterisation of anticipated strategies in resource 
allocation. Planned sampled strategies are therefore in larger extent 
detangled from the environment volatility and more accessible than 
in the EE dilemma.  

As a result, the BD dilemma, an ecological decision-making 
paradigm featuring multiple alternatives, boasts distinctive features: 
a controlled search capacity and accessible optimal strategies 
adhered to by humans. Utilising this framework, our study intends 
to fill the gap between the dynamic nature of human choices, 
sometimes perceived as random noise, and the underlying goals that 
may be embedded within them. Specifically, we aim to investigate 
the existence of fluctuations in the allocation of limited resources 
during information gathering. We implemented two environmental 
contexts in which variability in the resource allocation is either 
optimal, or in contrast should be avoided. By decoupling 
fluctuations from expected performance, we aim to identify 
potential underlying cognitive processes driving behavioural 
variability. Disentangling variability in information sampling due to 
boredom (and task disengagement) from intentionally planned 
strategies can be challenging. To this end, we investigate how 
fluctuations change in response to variations in the reward structure 
of the context. We hypothesise that when gathering information, 
humans are not purely reward maximisers; instead, they sacrifice 
optimality to seek valuable information to facilitate future decisions 
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and explore possible existing strategies while considering the level 
of risk and uncertainty one can afford.  

We first examine how participants manage finite search resources 
(capacity) across various alternatives within a choice (breadth-depth 
trade-off) depending on the probability of success of the alternatives 
(environment richness), and look to replicate previous findings 
(Vidal 2022). Subsequently, we delve into an exploration of how 
experimental conditions, including the number of consecutive 
choices (horizon) and the total number of resources accessible in the 
block, influence this BD trade-off.  

Our focus then shifts towards participants' resource 
allocation across successive choices: are finite resources distributed 
uniformly among the choices or exhibit fluctuations? According to 
the optimal model, we anticipate observing more pronounced 
fluctuations when limited capacity is available in the poor 
environment, when most of the alternatives have low probably of 
success. Conversely, we expect resources to be evenly distributed 
among choices in all the other experimental contexts. Our 
observations reveal that participants exhibit fluctuations that surpass 
the optimal predictions. Building on prior literature, we also 
hypothesise that participants are likely to exhibit heightened 
fluctuations in blocks with extended horizons. Furthermore, we 
explore the specific contexts in which these fluctuations transpire, 
considering factors such as available capacity, previous and future 
resource allocation and reward history. In the final part of our study, 
we extend the optimal model to investigate the potential presence of 
underlying strategies, entropy seeking from the maximum 
occupancy principle (Ramírez-Ruiz et al., 2022), risk aversion 
(Tulloch et al., 2015) and the pursuit of relevant information 
(Gottlieb, 2012), that elucidate the intentionality behind the 
observed increased variability. 
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Results 

Humans follow a stable close-to-optimal Breadth-Depth trade-off 
adapted to the environment richness.  
We extended the BD Apricot task (Vidal et al., 2022) in a novel way 
to investigate how humans forage for information by allocating a 
limited amount of resources over consecutive multiple choices, with 
the goal to accumulate rewards in uncertain environments. 
Participants engaged in a gamified version of the foraging task, 
where they purchase apricots in bulk from one out of twenty 
unknown suppliers (video of the experimental design available 
here). Different suppliers vary in the proportion of good quality 
apricots they serve. The objective was to maximise the number of 
good-quality apricots purchased throughout the experiment, by 
developing an efficient and informative sampling strategy. For 
sampling, participants were provided with a budget of coins to be 
spent in buying sample apricots from suppliers. This budget is 
characterised by a fixed number of coins  which represents the 
initial capacity of a block. Since each block could have a different 
number of trials ( ={10,20}, block length), we introduced the 
capacity ratio r, which is defined by the average capacity available 
in a trial ( / . For instance, in a block with a capacity 
ratio r of 2 and length of 10 trials, a total of 20 coins were initially 
given (Figure 1A). When characterising the available capacity in a 
block, we refer to this relative value r instead of the initial capacity 

 because we are considering block of different lengths. In each 
trial, participants could decide how many coins they would use to 
gather information about the suppliers (Figure 1B – sampled trial), 
or forgo sampling to save coins and randomly select one supplier 
(Figure 1B – skipped trial) for the final purchase of 100 apricots 
(Figure 1B-d) at the end of each trial. Participants were encouraged 
to use all their available coins within the block (any remaining coins 
were forfeited, as they could not be carried over to the next block). 
The allocated capacity in the trial n (n={1, 2, …, })  is 
denoted as  ( ={0, 1, 2,…, }), where  is the remaining 
capacity at that trial ( = ). We refer generically to C 

Nc

Ntrials

r = Nc Ntrials)

Nc

Ntrials
Cn Cn Nr Nr

Nr Nc − ∑
r−1
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as the allocated capacity in a given trial within a block. When 
sampling, participants used each coin to buy one sample apricot 
from a chosen supplier, and they could purchase multiple sample 
apricots from the same supplier to obtain a more accurate estimation 
of its probability of providing good-quality apricots. At any time, 
participants had the choice to stop sampling by double clicking on 
the sample situated at the centre (Figure 1B-b) and then the quality 
of the sample apricots would be revealed (good: orange or bad: 
purple; Figure 1B-c). The feedback regarding the sampled 
alternatives was consequently postponed until after the termination 
of the sampling, thereby preventing any real-time adjustment or 
correction of the search strategy. The final bulk purchase had then to 
be made by choosing from one of the sampled suppliers, therefore 
completing the trial and proceeding to the next, or to the end of the 
block.  

 

Figure 1. The BD apricot task with capacity freely allocated amongst 
trials (the free BD apricot task).  A. Example of one block composed of 
10 consecutive choices (trials, ) and with an initial capacity  Ntrials = 10 Nc

124



of 20 samples. The capacity ratio r of this block represents the initial 
number of samples divided by the number of trials, in this case r=2. On 
each trial, the remaining coins are displayed at any time in two ways: 
written on the left of the wheel (bottom number) and materialised by the 
yellow and green dots located within the centre of the wheel. For example, 
at the beginning of the 4th and last trial, the remaining capacity ( ) is 
respectively of 10 and 3 samples. The remaining number of purchases 
(trials) in the block is also constantly displayed on the left of the wheel 
(top number). B. Example of one trial. Participants allocate a limited 
search capacity (coins) to assess the quality of good apricots in different 
suppliers (sampling phase). Subsequently, they make a final purchase of 
100 apricots from one of the sampled suppliers (purchase phase). Each 
distinct black section of the wheel represents a different supplier. The 
initial number of coins per block varies pseudo-randomly from block to 
block within a finite range (defined by the capacity ratio r, multiplied by 
the number of trials in the block - see Methods). To allocate the 
coins to suppliers, participants have first to click on the designated active 
coin displayed at the centre (green dot) and then select the supplier to 
sample from (panels a) –both touch screen events are indicated by a large 
grey dot. One of the inactive (yellow) coins is then automatically activated 
and displayed, in green, at the centre. This sequence repeats until all coins 
are allocated or until participants end the sampling phase by touching 
twice the centre coin (panel b). Then, each of the allocated samples turn 
either orange, representing a good-quality apricot, or purple, representing 
a bad-quality apricot (panel c). Finally, after this information is revealed, 
the participant selects one of the sampled suppliers for the final purchase 
of 100 apricots (with a touch screen, indicated by a large grey dot) and the 
choice outcome is immediately displayed (panel d). In the case where no 
coin has been allocated (skipped trial – lower panels), participants select 
randomly one of the 20 suppliers for the final purchase. 

Participants were immersed in either a rich or in a poor 
environment, where each supplier had an independent proportion of 
good quality apricots defined by beta distributions (prior means in 
the poor environment: .25, and in rich: .75, see Methods. The 
optimal sampling strategy, aimed at maximising the expected return, 
emerged from a trade-off between sampling many alternatives with 
little precision (breadth) or fewer alternatives with higher precision 
but with the risk not to have any satisfactory option (depth). At 
fixed capacity this balance varied depending on environment 
richness, depth being favoured in environments where the overall 
probability of success of the alternatives was higher (Figure 2A). 

Nr

Ntrials
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Indeed, in the rich environment, where a majority of suppliers sold 
good quality apricots in high proportions, it was relatively easy to 
identify a good supplier and thus, did not require investing 
significant sampling capacity per trial. Using Monte-Carlo 
simulations, we find that the optimal strategy (the strategy of an 
ideal allocator with perfect memory) is to sample all trials with a 
capacity equal to the block's capacity ratio (r, either 2, 3, or 4), thus 
avoiding skipping any trial (Figure 2C-D right panels, see Methods 
for more details). In contrast, the poor environment had a higher 
proportion of low-quality suppliers, making it more challenging to 
find a reliable provider. In such situations, achieving informative 
sampling, for example observing at least one sampled apricot of 
good quality, was crucial to identify an above-average supplier. We 
find that, in this case, the optimal strategy is to allocate a minimum 
of three samples when the available capacity in the block is small 
(r=2), distributing them across the maximum number of trials and 
skipping the remaining ones (Figure 2C-D left panels). 

The primary focus of this study is to investigate whether individuals 
are capable of developing strategies that closely approach 
optimality in the way they distribute their limited capacity across 
consecutive choices. Previous research has found that, in addition to 
pursue reward maximisation, sampling strategies may seek novel 
information, are influenced by random exploration processes and 
individuals’ attitudes towards uncertainty (Daw et al., 2006; J. D. 
Cohen et al., 2007a; Gottlieb, 2012; Lee et al., 2023).  Here we aim 
to investigate the presence of such systematic deviations in an 
information search task (free Apricot BD) with limited parametrised 
capacity and detangle their underlying causes. According to the 
ideal allocator, fluctuations in capacity allocation from one choice 
to another are expected to be stronger in poor environments 
compared to richer ones. Our experimental design also included 
variations in block length, with either 10 or 20 trials (that is, cycles 
of suppliers sampling and final purchase) under a single budget. 
Based on previous literature (Carstensen et al., 1999) and although 
not predicted by the ideal allocator, we anticipate that the block 
length will impact how individuals manage their capacity over time, 
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with longer horizons encouraging more exploration and, 
consequently, larger fluctuations in the allocation of resources. 

 

Figure 2. Optimal allocations of search capacity. A. Optimal Breadth-
Depth trade-offs: number of alternatives sampled (M) maximising the 
expected reward depending on the capacity allocated in the trial and the 
environment richness (colours). Dashed lines indicate unit slope line. 
Prior distributions of success (proportion of good quality apricots) of each 
environment are plotted next to each curve. B. Number of samples 
allocated to each sampled alternative maximising the expected reward 
(optimal), depending on the capacity allocated C and the environment 
richness (colours). C. Distribution of the difference in reward expected 
when sampling with capacities from 2 to 10 (assuming an optimal BD 
trade-off) and when choosing randomly divided by the allocated capacity 
(reward gain), for each environment. D. Optimal distribution of trials 
depending on their sampling capacity, the block size and the environment 
richness for a capacity ratio r of 2. 

First, we focused our analysis on the Breadth-Depth trade-off, 
which refers, in each trial, to the number of alternatives sampled 
(M) as a function of the capacity allocated within the trial (C). 
Allocating few samples to many different suppliers would be 
considered as Breadth behaviour (for example, when M=6 suppliers 
are sample with a total C=6 coins), whilst allocating many samples 
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in few suppliers is considered as Depth (for example, when M=1 
supplier is sample with C=6 coins). In line with previous theoretical 
(Moreno-Bote et al., 2020) and experimental findings (Vidal et al., 
2022), we observed that the number of alternatives sampled varied 
with both the capacity allocated and the environment richness in 
close-to-optimal manners (Figure 3). At lower capacities, 
participants sampled as many alternatives as possible, following a 
pure-breadth strategy. As more capacity C was allocated, 
participants tended to focus more capacity on few alternatives. As 
previously reported (Vidal et al., 2022), this BD trade-off was best 
captured using the free-power model ( ) than a 
l inear model ( ) (paired Wilcoxon test , 

) and the optimal piece-wise power law model 
(all ANOVAs not significant, for ). We also replicated 
previous findings (Vidal et al., 2022) showing that environment 
richness promotes depth over breadth (power exponents: 

.95±.08,  .76±.15) (Wilcoxon test,  
, Figure 3A). We compared these exponents with 

the ones obtained by fitting the optimal values of M with the power-
law model (poor: .99±.02, rich: .73±.03) and didn’t find any 
significant difference in the poor (paired Wilcoxon test, 

) or in the rich environment (paired t-test, 
), suggesting that overall, participants allocated 

capacity amongst an optimal number of alternatives. These findings 
differ to previously published results, using a design where the 
number of samples to be allocated per trial was fixed, showing that 
people are slightly sub-optimal at balancing breadth and depth 
(Vidal et al., 2022). Even though, sampling strategies from both 
studies cannot be formally compared due to different capacities 
used, they raise the idea that more freedom in search strategy may 
stimulate performance. We come back to this point in the 
discussion.  

Even though environment richness had a clear impact on the 
participants’ BD trade-off, initial capacity in the block ( ) did not. 
Indeed, on one hand, block length did not have a significant effect 
on the power exponents (permutation ANOVA, ) and 

R2
adj = . 97 ± . 03

R2
adj = . 96 ± . 04

V = 112, p = . 0016
α < . 05

apoor = arich =   W = 61,
p = 7.94 × 10−5

V = 47, p = . 10
t19 = . 90, p = . 38

Nc

p = . 94
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neither interacted with the environment ( , Figure 3B, 
, ,  

). The difference between the power exponents 
in the short and long block was significantly smaller than .1 (paired 
TOST tes t , ) , and therefore 
negligible. On the other hand, capacity ratio r did not have a 
significant effect on M (permutation ANOVA, , Figure 3C), 
neither interactions between r and allocated capacity C ( ), 
or between r and environment richness ( ) were significant. 
These results suggest that participants follow a balance between 
breadth and depth adapted to the environment but stable across 
capacity available and the horizon, meaning that the allocation 
strategy exclusively depends on the number of allocated samples on 
each trial and the environment richness. 
 

Figure 3. BD trade-offs are close-to-optimal and adapt to the 
environment, while being stable among blocks with different length 
and capacity ratio. A. Number of alternatives sampled (M) depending on 
the capacity allocated and the environment richness (colours). Group 
average and s.e.m. are plotted above individual data (thin light lines) and 
optimal values of M (thick light lines). Dashed lines indicate unit slope 
line. B-C. Colours represent the block length (B) or the capacity ratio r 
(C). N=20 per environment.    

p = . 59
apoor,10 =   . 95 ± . 09 apoor,20 = . 95 ± . 08 arich,10 = . 78 ± . 16,
arich,20 = . 75 ± . 15

t39 = − 5.30,  p = 2.43 × 10−6

p = . 60
p = . 93

p = . 95
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Humans’ allocation capacity fluctuates more than optimal 
Optimal allocation (Moreno-Bote et al., 2020) predicts that, inside a 
block, the resources should be homogeneously distributed amongst 
the trials and equal to the capacity ratio (r), except in the poor 
environment when the ratio is small (r=2). Indeed, allocating two 
samples is not sufficient to gain a useful information, then, a 
capacity of 3 coins (samples) should be allocated in as many trials 
as possible (Figure 2C), which necessarily implies that some trials 
should be skipped (no coins assigned, and left to random choice). In 
this case, fluctuating is optimal: namely, allocating different 
capacity across trials of the same block. To formalise this, we 
considered as fluctuations the trials for which the number of 
allocated resources is different from the capacity ratio of the block 
(C≠r, Figure 4A). Overall, we found larger fluctuations than what 
would be predicted by an optimal allocation strategy (mean±sd 
proportion of trial with C≠r: .40±.28, Wilcoxon test,  

, Figure 4B).  
We observed that these fluctuations corresponded to two 

strategies: skipping a trial (no resources allocated, Figure 4A – light 
purple) or spending a capacity inferior to the ratio, 0<C<r, defined 
as ‘under-sampling’ (Figure 4A – dark purple). While the first was 
predicted by the optimal allocator (at least in poor environments 
with r=2), the latter wasn’t. In line with the optimal strategy, we 
found that when available resources are scarce (low r), allocation 
fluctuates more from trial to trial. This leads to more skipped trials 
than in higher capacity ratio conditions (F=46.07, p<4.2 , 
Figure 4C), a strategy that allows more extensive search on the 
remaining trials. However, contrary to what predicted by the 
optimal model, we didn’t observe significantly more skipped trials 
in the poor compared to the rich environment for block with a 
capacity ratio of two (poor: 23.3±19.9%, rich: 17.8±16.7%,  
W=168, p=.39, Figure 4C). Finally, fluctuations are amplified in 
longer blocks (V=4257, p=2.13 , Figure 4C - colours), 
which had a significantly higher proportion of skipped trials than 
optimal, suggesting that participants might capitalise on the larger 
available resources to increase exploration.  

V = 694.5,
p = 2.21 × 10−15

× 10−8

× 10−15
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Figure 4. Participants capacity allocation fluctuates more when little 
capacity is available and with larger horizons. A. Example of capacity 
allocation from one participant throughout consecutive trials in a block of 
length 10 and ratio r=2. B-D. Fluctuations are defined as trials for which 
the allocated capacity C is different from r. Observed averaged 
proportions of trials (dots) where C≠r (fluctuations - B), C=0 (skipped 
trials – C) and 0<C<r (D), depending on the capacity ratio r, block length 
(colours) and the environment (poor or rich). Vertical bars represent s.e.m. 
of the data, while dashed lines and shaded areas represent respectively the 
predicted averages and s.e.m. using LMEM. Horizontal segments 
represent the proportion of each type of trials predicted by the optimal 
model. 

Participants also chose to allocate some resources but less than the 
capacity ratio on a significant number of trials (7.46±7.13%, 

, Figure 4D), which was not predicted by 
the optimal model. These fluctuations increase with the capacity 
ratio (LMEM, ) but were not affected by 
the block length ( ) and the environment richness 
( ).  Such fluctuations may reflect a balance 

V = 780, p = 5.44 × 10−8

F2 = 45.19,  p < 2 × 10−16

F1 = . 08, p = . 78
F1 = . 68, p = . 42
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between selectively gathering more information in some trials 
(C>r) whilst trying to avoid skipping trials (and leaving the final 
choice to chance).  

Overall, these deviations from optimality had little impact on 
performance (mean±sd: -3.07±4.81%), but the more the proportion 
of fluctuations diverged from the one predicted by the optimal 
model and the greater was the loss in outcome. Indeed, our 
observations indicate that in the poor environment, the relationship 
between participants' average outcomes and their level of 
fluctuations (trials with C≠r) was best captured by a second-order 
polynomial regression ( ) as opposed to a 
linear regression ( ) (Figure S4 – left). In fact, 
participants achieved highest average outcomes when their resource 
allocation among choices approximated the predicted optimal 
pattern of 1/3rd (see Figure 2D). In the rich environment, as 
predicted, the association between participants' average outcomes 
and fluctuations was more accurately captured by a linear regression 
( ), than by a second-order polynomial 
regression ( ) (Figure S4 – right). In this case, 
higher outcomes were achieved when fluctuations were lowest (at 
0). This finding confirmed that a more uniform allocation of 
resources among choices tended to produce higher outcomes in rich 
environments. These results are crucial as they confirm that the 
experimental design influenced participants' outcomes as 
anticipated, potentially shaping their strategies to align with the 
ideal allocator model. 

Evidence for an intentional strategy 
We then investigated the origin of the observed fluctuations beyond 
those predicted. One possibility is that they resulted from an 
exhaustion of resources given the allocation policy over the initial 
part of the block, leading participants to obligatorily skip or 
underspend in the remaining last trials. Another possibility is that 
the decision of skipping trials was intentional, meaning that they 
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had enough resources to sample the trial but decided not to do so. 
We observed that the great majority of trials with no allocated 
capacity (skipped) (mean±s.d. across participants: 82±31% and 
overall: 84%) occurred while some capacity is remaining ( ≠0), 
and therefore intentionally, suggesting the possibility that 
participants may be saving resources for later.  

Indeed, participants allocated significantly more resources in trials 
directly following trials with low capacity allocations (e.g., fewer 
capacity than the ratio; C<r) compared to trials directly preceding 
them (LMEM, , Figure 5), suggesting 
that overall, allocating little capacity is part of an anticipatory 
strategy to explore further later. This effect didn’t interact with 
either the capacity ratio ( ), nor the block length 
( ).  

 

Figure 5. Allocating fewer capacity than the ratio is part of an 
anticipated strategy for sampling more in the next trial. Capacity 
allocated in trials depending on their relative position to the closest trial 
with an allocated capacity inferior to the capacity ratio of the block (C<r), 
depending on the block length (left: 10 trials, right: 20 trials) and the 
capacity ratio (colours). Each data point represents the average of 12 to 37 
participants with at least 3 data points per participant. Vertical bars 
represent s.e.m. 
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Participants adapt their sampling strategy to the choice outcome. 
In the earlier analysis we observed that participants adapted their 
sampling strategy to the limited capacity available, and prioritised 
spending little to no capacity in order to spend more later (Figure 
5). Next, we addressed whether participants also adapted their 
strategy according to the outcome received in a given trial. To 
explore that, we divided trials as a function of the outcome received 
(median split), separately for sampled and skipped trials. The results 
revealed that participants are more likely to switch strategy 
(sampling after skipping, or vice versa) following low outcome 
trials (.14±.13) compared to high outcome ones (.10±.12) 
(Wilcoxon test, , Figure 6A). The 
magnitude of this effect was not affected by the trial type (sampled 
or skipped, ) nor the environment richness 
(permutation ANOVA, ), although we found a 
significant interaction between the environment richness and trial 
type ( ). Post-hoc analyses revealed that the 
higher probability to switch strategy is only found following 
sampled trials in the poor environment ( ; after 
skipped trial: , Figure 6B - left), while in the 
rich environment this effect is found solely after skipped trials 
( , after sampled trial: , 
Figure 6B - right). Although these results have to be interpreted 
with caution due to the limited sample size included, they suggest 
that participants consider differently the outcome received 
depending on the environment richness. In the rich environment, 
high outcomes are easily obtained and expected even when 
choosing randomly a supplier (skipped trial), therefore receiving a 
low outcome may be more surprising and enforce a switch in 
strategy for sampling. In contrast, in the poor environment, low 
outcomes are expected when skipping and it’s not surprising that 
they don’t affect participants’ future strategy.  

V = 504, p = 6.76 × 10−5

F = 1.78,  p = . 20
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Figure 6. Participants adapt their sampling strategy to the outcome 
received. A-B. Probability to switch strategy in the next trial (from 
sampling to skipping and vice versa) depending on the outcome received 
(median split, calculated separately for individuals and skipped and 
sampled trials, N=40) (A) and the strategy in the current trial (sampling or 
skipping) as well as the environment (poor: N=14, rich: N=12) (B). 
Boxplots represent the 1st and 3rd quartiles of the data distribution, with 
thicker horizontal black lines corresponding to medians and whiskers 
extended to the largest value no further than 1.5 times the inter-quartile 
range (IQR). Lighter dots represent individual data and are connected with 
lighter lines, while group averages are plotted on top (colour dots circled 
in black) and connected by black lines. Vertical black bars represent s.e.m. 
‘*’: <.05, ‘***’: <.001. 

Identifying deviations from optimality observed in the resource 
allocation between choices. 
We have observed that the way participants allocate their available 
resources amongst the consecutive choices differed greatly from the 
optimal model. However, the optimal model considers expected 
reward maximisation as the only goal. To better understand 
potential origins of participants performance deviations from 
optimality, we fitted in each block , the observed probability to 
allocate a capacity C from 0 to 10, with an extension of the optimal 
model that considered that, in addition to maximising net reward, 
there is an intrinsic motivation for sampling with higher variability 
across trials (Eq.1 and Methods for more details).  

padj p 

pc
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(Eq.1)     

Specifically, in addition to the expected reward for each capacity 
allocated , the expected utility EU modelled here incorporates 
three additional factors that we hypothesised are influencing 
participants sampling behaviour. First, a factor related to 
information gain. We based this factor on findings suggesting that 
not only experienced, but also fictive rewards and valuable 
information about future outcomes have been found to be encoded 
in the brain (Bromberg-Martin & Hikosaka, 2009; Bromberg-Martin 
& Monosov, 2020; Hayden et al., 2009), establishing a framework 
for curiosity and explorative behaviours aimed at reducing 
uncertainty about the environment (Gottlieb, 2012). To 
accommodate this aspect, we introduced an information benefit  
which can take different forms (see Methods for more details). Here 
we report models including the best fitting , corresponding to the 
probability of observing a single highest sampled outcome ( ) (see 
Figure S5). We hypothesise that participants may want to maximise 
this probability to later facilitate the selection of one out of the 
many sampled alternatives. Second, we incorporated factors related 
to individual traits. Individual features such as risk aversion have 
been demonstrated to influence the allocation of limited resources in 
various types of uncertain decisions (Chronopoulos et al., 2011; 
Dow & Werlang, 1992; Tulloch et al., 2015), suggesting that it 
might affect participants’ propensity to skip a trial ( ) and leave it 
to chance. Finally, participants sampling behaviour may be driven 
by a tendency to occupy action-state space (maximum occupancy 
principle), compelling them to try out various resources allocations 
and gain a global understanding of the environment (Ramírez-Ruiz 
et al., 2022). To model this, we introduced an entropy term. These 
three factors in the model were respectively weighted by parameters 
α, β and γ.  

EU =
10
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Participants sampling strategy incorporates exploration, individual 
risk aversion features, as well as information benefit. 
We fitted, for each block, the probability to spend a certain capacity 
C in a trial with five different models including combinations of the 
optimal model with the three factors described above (see Figure S6 
for the fits of all probabilities of capacity allocations). The results 
showed that the notable deviations from optimality observed in the 
empirical data, especially in the probability to skip a trial altogether 
(Figure 7A) and the probability of low capacity allocation (i.e., 0 < 
C < r) (Figure 7B), are well captured by the full model (including 
optimised  and  parameters). We then fitted partial models 
excluding one of the three parameters (setting either  or  equal 
to 0) to evaluate the importance of each of them in predicting the 
data. Looking at averaged AIC (Figure 7C) and BIC, we observed 
that in the rich environment, the full model is required to reproduce 
participants’ sampling behaviour. Instead, in the poor environment a 
model including only exploration and risk aversion components 
( ) was sufficient to predict the data. Indeed, in 
the poor environment, the majority of the alternatives are associated 
with very low outcomes. Better alternatives are therefore easily 
detectable, which may explain that participants may focus on 
maximising the reward above and before the sampling information 
received. In contrast, in the rich environment, good alternatives are 
easy to find but one’s need to rely on an efficient sampling to select 
the best alternative. These results are also in line with previous 
literature showing that the value of information increases when 
higher stakes are in play (Blanchard et al., 2015). Analyses of 
goodness-of-fit further demonstrated the significance of exploration 
in participants' sampling strategies, as models excluding this 
component (γ=0) performed poorly in predicting the data. 
Moreover, in the poor environment, although models with null 
values for either information benefit or risk aversion (either α=0 or 
β=0) provided relatively good fits compared to the full model, the 
model without both (α=β=0) resulted in significantly worse 
predictions, particularly concerning the proportion of skipped trials. 
This finding indicates that, in addition to maximising reward and 

α,  β γ
α,  β γ

α = 0, β ≠ 0, γ ≠ 0
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exploration, participants also adopt a sampling strategy that aims to 
minimise the uncertainty associated with skipping a trial. 

Additionally, among of the three information benefits considered 
(see Methods), we found that the one providing the best fit to 
participants’ sampling strategy is the model corresponding to the 
probability of having a unique sampled alternative with the highest 
observed sampled probability (number of positive samples out of 
the total number of samples allocated within this alternative) 
( ) (Figure S5). This information is likely to be highly 

valuable in guiding participants towards selecting one of the 
sampled alternatives for their final purchase and reducing the 
uncertainty associated with this choice, particularly in the rich 
environment where distinguishing the best alternative among many 
good ones may be more challenging.  

Following the initial model selection, we analysed how the factors 
(  and ) estimated from the best fitting models changed with 
the experimental variables manipulated (Figure 7D). In both the rich 
and poor environments, we observed that β decreased with capacity 
ratio (poor: , rich: ,  

) and block length (poor: , 
rich: ), suggesting the more resources 
are available and the less participants are reluctant to skip sampling. 
While it might initially appear counterintuitive, given the lower 
frequency of skipped trials in blocks with larger capacity ratios, it 
aligns with the optimal model's predictions. As the capacity ratio 
grows, the model suggests that skipping a trial becomes less 
optimal, leading to an increase in the associated loss in expected 
reward. Consequently, although participants tend to skip fewer trials 
when the capacity ratio is larger, the model predicts a diminished 
level of risk aversion. 

Additionally, we found that in the poor environment, where good 
alternatives are scarce, exploration may be accentuated as more 
resources are available, as suggested by the increase in γ with the 
capacity ratio ( ). Such increase was not 
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found in the rich environment ( ), nor with the 
block length in any of the two environments (poor: 

, rich: ). Finally, in the rich 
environment, we observed that α significantly decreases with the 
capacity ratio ( ) but not with the block length 
( ), suggesting that participants look to 
maximise the information benefit when resource are scarce.  

 
Figure 7. Participants sampling strategy considers exploration and 
individual risk aversion features. Proportion of skipped trials (C=0, A) 
and trials with a non-null capacity allocated inferior to the ratio (0<C<r, 
B) depending on the capacity ratio, block length and environment 
richness. Black points represent the averaged observed probabilities 
across participants and vertical bars the s.e.m. Colours lines represent the 
averaged fitted probabilities for each model and the shaded areas the 
s.e.m. across participants. C. averaged AIC across participants in the poor 
(top) and rich (bottom) environment estimated by fitting the data within 
each block using the five different models. Vertical bars represent s.e.m. 
across participants. D. Factors (alpha, beta and gamma) extracted from the 
model predicting the data the best (‘alpha=0’ in the poor environment and 
‘full model’ in the rich environment) regressed with the capacity ratio and 
block lengths using LMEM (bars represents 95% confidence intervals). 
‘*’: <.05, ‘**’: <.01, ‘***’: <.001. N=20 in each environment. 

Additionally, as a reality check, we fitted our data with the same 
models excluding the reward component ( ). As expected, 
these models systematically gave worst fits, suggesting that 
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participants are doing the task correctly and try to maximise the 
received outcomes. 

In summary, these results illustrate that the deviations from 
optimality observed in participants' sampling behaviour are not a 
result of random decision processes, but rather stem from 
systematic heuristics that are integrated into a comprehensive 
strategy considering both overarching goals and individual 
characteristics. 

Balancing under-sampling and skipping is explained by estimated 
level of risk aversion.  
We further explored the strategies underlying fluctuations at the 
individual level and whether our extended model captures some of 
the differences between participants. First, we observed that for 
participants exhibiting significant fluctuations (at least 15% of the 
trials), allocating either no capacity or a capacity lower than the 
capacity ratio ('under-sampling': 0<C<r) in at least one trial per 
block on average, the more participants skipped sampling and the 
less they under-sampled ( , N=19) (Figure 
S8A). To control from spurious correlations computed on the same 
data set, we randomly split the 18 blocks in two subsets S (S={1,2}, 
balancing experimental conditions). We computed the average 
probabilities to skip  and to under-sample  from each 
group and run Kendall correlations tests between  and , 
and  and . This method was repeated 100 times and led to 
on average 67% (95%CI: [60.0,73.5]) of the tests being significant 
(p<.05) which is significantly higher than the false positive rate 
=.05 (Binomial test, p< ). This intricate balance between 
these strategies, both contributing to fluctuations, is further linked 
to the estimated level of risk aversion (β extracted from the best 
fitting model in each environment). Specifically, strategies 
favouring skipped trials are associated with lower β values (LMEM: 

), while under-sampling is linked to 
higher β values ( ) (Figure S8B). In the 
same way as above, we controlled for dependencies between 
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estimated β values and probabilities of skipping and under-sampling 
by correlating these values extracted from different subsets of our 
data ( ). For participants exhibiting significant fluctuations (at 
least 15% of the trials), results confirmed a negative correlation 
between β values and  (proportions of significant tests: 100% 
[98.2,100], binomial test: p< ) and a positive correlation 
between β values and  (proportions of significant tests: 94% 
[89.8,96.9], binomial test: p< ). These findings are 
noteworthy for delineating the underlying factors guiding 
participants' strategies, including individual differences related to 
risk tolerance. 

Humans tend to sample the alternatives homogeneously.  
The optimal model also predicts the allocation of resources among 
each sampled alternative that maximises the reward. Particularly in 
the rich environment, where depth is favoured over breadth, 
predictions indicate that as capacity increases, it is optimal to 
allocate a different number of samples to each sampled alternative, 
thus avoiding ties (Figure 8A, upper panel). However, previous 
research has indicated an opposing tendency among participants, 
who preferentially tend to allocate their resources homogeneously 
among the sampled alternatives (Vidal et al., 2022). In this study, 
we replicated these findings and observed that participants favoured 
homogeneous allocation of resources in both the rich (Figure 8A, 
lower panels) and poor environments (Figure S9), over and above 
what would be expected by an optimal model. To characterise this 
bias towards homogeneous sampling, we focused on trials where a 
pure breadth strategy is not optimal ( ), indicating that 
homogeneous sampling is, therefore, suboptimal. Due to 
insufficient data to meet this condition in the poor environment, our 
analysis focused on the rich environment (see methods for more 
details). We computed the standard deviation of the ordered counts 
for each sample allocation, averaged for each participant, and 
compared it to the standard deviation of the optimal allocation. We 
observed that the standard deviation of sampled alternatives is 
significantly lower than that estimated from an optimal sample ppp 
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Figure 8. Participants have a tendency to homogeneously allocate 
capacity amongst the sampled alternatives, but it has little impact on 
the outcome. A. Number of samples allocated to each sampled alternative 
depending on the capacity allocated C in the rich environment. Upper 
panels: allocation of samples maximising the reward (optimal). Lower 
panels: most frequent allocations of samples observed across participants 
as a function of capacity. The allocations representing at least 50% of the 
trials are displayed and their likelihood is reported. B. Distribution of the 
differences between observed and optimal standard deviations of the 
distribution of samples among the selected alternatives in each 
environment (e.g. if C = 4 and 2 samples are allocated in a first alternative 
while the last 2 samples are each allocated in a second and third 
alternative, the standard deviation of this sample allocation would 
correspond to sd ({2, 1, 1}) ≈ 0.577). Note that more homogeneous 
distributions tend to lead to lower standard deviations. C. Distributions of 
the mean differences between observed and optimal outcomes in each 
environment. In the last two panels, dots represent participants and 
include all trials for which the optimal number of alternatives sampled 
doesn’t reflect a pure breadth strategy ( – see Materials and 
methods for more details) and a capacity allocated up to 10. Below each 
distribution are presented results of one-sample Wilcoxon test (‘***’: p 
<0.001 - B) and one-sample t-test (‘.’: p <0.10 - C). N=20, each data point 
averages 130 to 221 trials.  

allocation (one-sample Wilcoxon test, ,  Figure 
8B), indicating that participants have a bias towards distributing 
resources homogeneously among the selected alternatives. Lastly, 
we investigated whether such deviation from optimality affected the 
participants' reward (or outcome) in the task (Figure 8C). At each 
trial, the outcome is defined as the number of high-quality apricots 
among the 100 apricots purchased. We computed the differences 
between the observed and optimal outcomes (mean reward when 
following the ideal allocator) and observed a negative deviation 
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from optimality (mean±s.d.: -.56±1.30), which was only marginally 
significant ( ). The lack of influence on the 
outcomes might be attributed to the prevalent use of low capacity 
(2, 3, or 4 samples) for which, even in the rich environment, the 
optimal sample allocation does not substantially differ from a 
homogeneous allocation. In conclusion, participants exhibit a 
significant bias towards homogeneously sampling alternatives, as 
previously found (Vidal et al., 2022), compared to what is predicted 
by the optimal allocator model (Moreno-Bote et al., 2020). 
However, this deviation had a minimal impact on their performance. 

Discussion 
Human behaviour is inherently variable, even when individuals 
engage in the same task over and over. For example, despite 
substantial practice and experience, professional basketball players 
will rarely reach free throw effectivity rates above 80%. Extensive 
research has explored the sources of this behavioural variability, 
often attributing it to stochastic neural processes (Faisal et al., 
2008). Yet, recent evidence suggests that this variability should not 
be simply disregarded as noise (Garrett et al., 2013). Instead, it 
plays a significant role, notably in skill acquisition (Sternad, 2018) 
such as singing a new song (Ölveczky et al., 2005, 2011) or refining 
motor actions (Dhawale et al., 2017). Moreover, it fosters flexibility, 
facilitating exploration and the generation of novel behaviours, a 
particularly beneficial feature in uncertain environments  
(Kloosterman et al., 2019; Evans et al., 2019; Lee et al., 2023). 

The present study delved into a less explored aspect of behaviour 
variability, focusing on the interplay between fluctuations in 
resource allocation and performance. We addressed whether 
behavioural variability during decision making is purely stochastic 
or else it is at least partially controlled, reflecting underlying 
strategies that go beyond the sole objective of maximising 
immediate reward. To investigate these questions, we employed a 
novel paradigm, the free Breadth-Depth dilemma (BD), which 
introduces a realistic scenario allowing for a better assessment of 

t19 = − 1.95,  p = . 066
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natural human decision-making. In this setting, individuals were 
tasked not only with determining which alternatives to explore in a 
block of consecutive choices but also the extent to which they 
explore them, granting them the freedom to strategise and plan 
fluctuations in resource allocation. 

The BD dilemma involves active information sampling among 
multiple alternatives, in contrast to other paradigms that typically 
force binary choices (Daw et al., 2006; Weiss et al., 2021). 
Furthermore, BD dilemma diverges from the well-known 
exploration-exploitation dilemma (J. D. Cohen et al., 2007b), where 
information seeking can only occur at the expense of forgoing the 
currently rewarding alternative. Notably, in the BD dilemma, the 
allocation of search capacity must be made without immediate 
feedback—a situation mirroring one of the core features of 
planning, where decision outcomes are often available after a delay, 
and changes of mind come at a cost, as in when modifying previous 
reservations of accommodation or transport. 

Summary of findings 
Overall, this framework has proven to be relevant in uncovering and 
investigating fluctuations in capacity allocation. Indeed, when 
choice degrees of freedom is large in terms of variety of 
alternatives, and resource allocation can be freely distributed over 
alternatives and time, we observed significant deviations from an 
ideal allocator model. Most notably, participants distributed their 
initial capacity ( ) non-uniformly among the choices, allocating 
sometimes less than the capacity ratio r of the block and sometimes 
more, resulting in fluctuations (trials with C≠r, note that this 
definition includes skipped trials, where C=0). Crucially, the 
fluctuations observed in resource allocation cannot be simply 
attributed to passive stochastic processes. Indeed, these fluctuations 
were influenced by experimental manipulations, including  
available capacity (r) and choice horizon ( ), suggesting an 
active role and intentionality of the fluctuations. Moreover, these 
fluctuations demonstrated a discernible structure, indicating a 'save-
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Ntrials

144



for-later' strategy (Figure 6) and adaptation to recent reward history 
(Figure 7). We further characterised these fluctuations in resource 
allocation by extending the ideal allocator model (Figure 8). Indeed, 
while human search behaviour has often been deemed suboptimal 
within the narrow framework of reward maximisation (Beck et al., 
2012; Wyart & Koechlin, 2016), behavioural variability may serve 
functional roles beyond this context (Renart & Machens, 2014). We 
identified strategies that individuals follow which add up to the 
policy maximising immediate return: entropy seeking, risk 
avoidance and the pursuit of information-gain, and further indicate 
the controllability behind their behavioural variability. Additionally, 
individuals exhibit diverse resource allocation across choices, 
influenced both by the available capacity within the block and by 
choice horizon (Figure 5). Despite these deviations from optimal, 
participants managed to consistently maintain a well-balanced 
breadth-depth trade-off, reflecting an optimal equilibrium between 
the amount of resources allocated and the number of alternatives 
considered (Figure 4). In this sense, the fluctuations in resource 
allocation do not stymie the rationality of the observed behaviour, 
confirming again their non-passive origin. Below, we discuss the 
implications of these findings. 

Intentionality behind the fluctuations in resource allocation 
The first crucial finding was that the fluctuations observed in 
resource allocation exhibit a discernible structure and should not be 
dismissed as mere noise. The results revealed that the occurrence of 
fluctuations varied depending on the experimental conditions. 
Participants were more inclined to skip sampling in a whole trial 
when search resources were scarce (low capacity), allowing them to 
garner larger amounts of information in other trials. The occurrence 
of skipped trials was also more pronounced when choice horizon 
was longer compared to shorter ones, suggesting a potential 
challenge in resource management (possibly reflecting Weber's 
law). However, on average, participants retained some capacity 
until the final trial in both short (mean±sd: 9.86±.34 out of 10) and 
long blocks (19.51±.97 out of 20), indicating effective capacity 
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management. The higher rate of skipping in longer blocks, rather 
than indicating an earlier resource exhaustion, might signify a more 
extensive exploration of diverse strategies, capitalising on the 
additional time to apply acquired knowledge (Carstensen et al., 
1999; Wilson et al., 2014).  

Secondly, two sequential effects were found regarding how 
participants allocated their resources in choices, further underlying 
that the fluctuations observed respond to a controlled strategy. 
Participants seem indeed to employ a 'save-for-later' strategy, 
allocating fewer resources (C<r) initially to conserve more 
resources for the subsequent choices (Figure 6). These findings 
underscore anticipation in participants' resource allocation strategy. 
While this approach does not guarantee the optimal immediate 
reward, it may exhibit some advantages especially when applied to 
real-world scenarios. This strategy serves as a secure means of 
managing finite resources (such as a monthly budget or the time 
allocated for an exam), preventing early depletion, and averting 
detrimental outcomes, such as financial overdraw or exam failure. 
Moreover, it could result in having more flexibility to adapt to 
unexpected changes in the environment or to explore new strategies 
in the future.  

In addition to being, at least partially, anticipated, evidence suggests 
that fluctuations in resource allocation also display flexibility by 
adjusting to recent reward history. Participants exhibit a greater 
likelihood of changing their strategy (shifting between sampling and 
skipping) following relatively lower outcomes (Figure 7A). What is 
more, the adaptive response to outcomes varies depending on the 
environmental context and seem to reflect violations in participants' 
expectations. 

Individuals follow complex strategies beyond reward maximisation 
The observed structure underlying the fluctuations in resource 
allocation suggests that variability is, at least in part, a controlled 
process. By extending the optimal allocator model we further 
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identify three purposes behind those fluctuations which surpass 
immediate return maximisation and potentially offer valuable 
advantages in uncertain real-life scenarios.  

Entropy seeking 
First, our findings revealed that participants actively seek to explore 
various strategies by maximising entropy. In our task, entropy is 
maximised by allocated many different capacities C in trials of a 
same block. The pursuit of entropy maximisation holds significance 
for the acquisition of novel information and the generation of 
innovative behaviours, intentionally observed in animals as a means 
of escaping predators (Evans et al., 2019) or contributing to 
cognitive flexibility (Dajani & Uddin, 2015; Uddin, 2021). This 
adaptive behavioural strategy plays a crucial role in adjusting to 
uncertain environments and fostering creative thinking and 
problem-solving. As mentioned in the previous section, adaptive 
responses to outcomes could be linked to violations in participants’ 
expectations. These two aspects, that is minimising surprises and 
maximising entropy, are pivotal ingredients of the free energy 
principle (Schwartenbeck et al., 2015). Such behavioural tendencies 
contribute to reducing predictions errors and establishing a more 
accurate model of the environment, facilitating rapid adaptation to 
potential changes. Moreover, the maximum occupancy principle, 
which favours entropy seeking, constitutes the core objective of 
newer theoretical frameworks modelling behaviour, offering an 
alternative perspective to reward maximisation (Ramírez-Ruiz et al., 
2022).   

Risk avoidance 
Secondly, our observations indicate that participants adopt strategies 
that may reflect individual attitudes towards risk. Indeed, under-
sampling (allocating a capacity C < r) may have been employed to 
introduce fluctuations while mitigating the risk associated with 
skipping sampling and leaving some choices to chance (Figure S8). 
Research has demonstrated that individual differences in risk 
tolerance impact how limited resources are allocated, influencing 
performance (Tulloch et al., 2015). This bias affects the delicate 
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balance between the short-term risk of loss in outcome and the 
long-term benefits associated with learning. This underscores the 
necessity of incorporating individual features such as motivation 
(Zelick, 2007), curiosity traits (Risko et al., 2012), openness 
(Antinori et al., 2017) or beliefs associated with choice 
consequences (Loewenstein & Molnar, 2018) to enhance our 
understanding of the decision strategies humans adopt and why they 
deviate from a purely outcome-maximisation approach. 

Information benefit 
Lastly, our findings also revealed that in rich environments where 
obtaining high outcomes is frequent, participants adopt strategies 
aimed at maximising the probability of identifying a single best-
sampled alternative (no tie), thereby facilitating the final choice. 
Previous literature has demonstrated that humans value information 
independently from reward (Gottlieb, 2012; Bromberg-Martin & 
Monosov, 2020) and engage in informative sampling by exploring 
the more uncertain option (Wu et al., 2018; Gershman, 2019; Schulz 
et al., 2019; Wilson et al., 2021). In our study, participants follow 
specific strategies that contribute to reducing uncertainty about the 
final choice. Conversely, this pattern does not hold in the poor 
environment, where most rewards obtained are low. It is 
conceivable that, in this scenario, participants place a greater 
emphasis on maximising immediate outcomes. In contrast, in the 
rich environment, where high rewards are easily attainable, the task 
may appear less challenging, allowing participants to seek more 
useful information. 

Close-to-optimal BD trade-offs despite fluctuations 
Although individuals fluctuated in the number of resources they 
allocated within each choice (trial), they were consistent in the 
number of alternatives they sampled for a given allocated capacity. 
Indeed, our observations indicated that the BD trade-off remained 
unaffected by both the horizon (block length, Figure 4B) and the 
number of available resources (capacity ratio, Figure 4C), 
suggesting a robust stability in the way breadth and depth are 
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balanced. This underscores participants' capacity to minimise 
variability, once again suggesting a level of control over 
behavioural fluctuations. 

Additionally, we successfully replicated two important findings 
regarding the allocation of resources among multiple alternatives 
(Vidal et al., 2022). First, our study revealed that participants follow 
a heuristic power-law sampling strategy, aligning with the optimal 
BD trade-offs (Moreno-Bote et al., 2020) and adapting effectively 
to the environmental richness (Figure 4A). Crucially, we did not 
observe any significant disparities between the optimal BD balance 
and participants' behaviour in both environments, as opposed to 
prior findings (Vidal et al., 2022). This difference might be 
attributed to the relatively lower capacity ranges employed in our 
study, which is conceivably easier to manipulate accurately. 
However, our paradigm also diverges by granting participants 
greater control over their information sampling, enabling them to 
choose not only what will be explored but also to what extent. 
Encouraging active engagement in a task, through methods like 
active learning, has been demonstrated to enhance performance 
significantly (Voss, 2010; Freeman 2014) and may have played a 
role here.  

Homogenous allocation within alternatives  
Our study also replicated previous findings indicating that 
participants tend to distribute their capacity uniformly among the 
sampled alternatives (Figures 9 and S9). The origin of this bias is 
challenging to ascertain. It may arise from the increased ease of 
comparing fractions with a common denominator, thereby reducing 
cognitive load. Homogenous sampling could also emerge as a 
means to ensure that alternatives are equally risky, as they carry the 
same amount of information, aligning with humans' preference to 
standardise the uncertainty associated with the alternatives (Schulz 
et al., 2019; Wilson et al., 2021; Alméras et al., 2021). Finally, it 
may also stem from the visual presentation of the design and 
symmetry being aesthetically pleasing for humans (Attneave, 1955). 
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Further investigations are necessary to disentangle these potential 
causes, but the study already confirms the robustness of this effect. 

Exploring the relationship between fluctuations and performance 
Fluctuations resulting from future intentions or past rewards may 
contribute to reinforcing participants' sense of agency via the 
exertion of greater cognitive effort (Bussche et al., 2020), thereby 
influencing their task engagement and subsequent performance (van 
der Wel et al., 2012; Hon & Yeo, 2021). Notably, participants 
exhibiting increased fluctuations appear to adhere more closely to 
the optimal breadth-depth trade-off, particularly in the rich 
environment where an optimal balance may be more difficult to 
grasp as diverging from pure breadth (Figure S10). Although, our 
data is limited to properly assess the presence of this effect, this 
study could pave the way for investigating the impact of 
endogenous versus induced variability in resource allocation on 
participants’ task engagement and on the adoption of strategies 
closer to optimality. Indeed, many studies exploring human 
information processing employ paradigms where participants lack 
control over information sampling (such as dot motion tasks: Glaze 
et al., 2015 ; sequences of stimuli: De Lange et al., 2010; Wyart 
et al., 2012; Cheadle et al., 2014)), which does not reflect the 
decision-making reality outside the laboratory. In real-world 
scenarios, individuals actively choose where to look at, what to 
listen to, or what to click on. Information acquired through one's 
actions, in contrast to passively received, has been shown to 
enhance performance (Ariely, 2000; Voss et al., 2011; Freeman 
et al., 2014), particularly through active hypothesis testing (Markant 
& Gureckis, 2014; Markant et al., 2016). 

Limitations and further research 
In summary, our findings highlight the utilisation of controlled 
strategies that, while diverging from optimality, exhibit features of 
anticipation and adaptation. These strategies require more cognitive 
effort than, for example, the homogeneous allocation of resources 
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across choices. Actually, although effort is generally aversive (Kool 
et al., 2010; Kurzban, 2016), humans willingly engage in activities 
that demand increased effort, such as participating in charity runs, 
solving challenging sudoku puzzles, or assembling their own 
furniture (Inzlicht et al., 2018). Effort, therefore, is not solely 
balanced against the benefit associated with an action or 
computation (Kurzban et al., 2013) but can have intrinsic positive 
value and add to the perceived value of outcomes. Studies have 
shown that individuals are inclined to undertake more effortful 
actions when experiencing boredom. While we did not monitor 
participants' motivational or attentional states in our study, their 
interest in the task and their perception of its difficulty may have 
influenced their likelihood to pursue more complex explorative 
strategies (Milyavskaya et al., 2021; R. Wu et al., 2023). For 
example, boredom has been identified as a factor promoting 
information-seeking behaviour (Geana & Daw, 2016; Danckert, 
2019; Agrawal et al., 2022). Additionally, we did not observe a 
significantly higher number of skipped trials in the poor 
environment compared to the rich one, contrary to predictions from 
the optimal model. Indeed, although the proportions in which 
fluctuations exhibited by participants deviated from optimality 
significantly impacted their averaged reward, the loss in outcome 
was relatively small (Figure S4) and might not have been sufficient 
to incentivise a notable modulation in participants' sampling 
strategy. Manipulating the magnitude of rewards may be interesting 
to emphasise the gap between optimal and sub-optimal strategies 
(opportunity cost) and investigate whether humans are able to exert 
more effort to implement better sampling strategies and adapt their 
level of fluctuations. 

Our study has other limitations associated with the assumptions of 
the ideal allocator model. Firstly, the model assumes that 
participants have complete knowledge of the posterior distribution 
of the success probability of the alternatives, which, in reality, they 
do not possess. Nevertheless, our findings indicate that participants 
can accurately infer the environment richness, as evidenced by their 
BD trade-offs aligning with optimality. Secondly, in terms of 
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resource allocation across choices, our extended model performs 
well in predicting participant behaviour. However, the information 
benefit is estimated based on the optimal allocation of resources 
within a choice (how many alternatives are sampled – BD trade-off) 
and within each alternative (how many samples are in each 
alternative), and not on the observed allocations. While this 
assumption holds predominantly true in the poor environment, it is 
less accurate in the rich environment, especially for larger capacity 
allocations (C > 4). Notably, such trials are infrequent (8%), 
bolstering our confidence that this assumption does not undermine 
the robustness of our results. 

Moreover, while our paradigm enables control over search capacity 
by manipulating the number of samples available, it does not 
incorporate the cost of sampling, a factor known to influence human 
and non-human primate sampling strategies (Petitet et al., 2021; 
Drugowitsch et al., 2012). In our experiment, all samples are 
standardized with the same cost (one coin = one sample), yet they 
may vary in computational costs, considering that allocating a 
sample to maximise potential information depends on the number 
and manner in which previous samples have been allocated. While 
the cost-benefit structure may have had a limited impact on our 
results due to the predominant allocation of low capacity, exploring 
the effect of fluctuations on performance (e.g., the BD trade-off) 
would necessitate accounting for the cost of sampling to 
comprehensively understand the goals and constraints underlying 
human search strategies. 

Conclusions 
To conclude, the results illustrate that human resource allocation 
behaviour is characterised by more variability than what the optimal 
model – maximising only immediate return – would anticipate, 
whilst still rendering a consistent near-optimal breadth-depth 
strategy. These findings shed light on the nature of behavioural 
fluctuations that help balancing the level of risk at stakes by 
enhancing information gathering, and the generation of diverse 
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strategies whilst maintaining near-optimal performance. This may 
ultimately reflect advantageous and contextually relevant 
behaviours which imply anticipation, such as saving resources for 
later important choices, and flexible adaption based on past rewards 
and environmental conditions. Essentially, this work presents a 
novel framework that has proven useful to gain insights into the 
origins of behavioural fluctuations in the allocation of resources. 

Methods 
As the task is similar, methods describing the experimental design 
were adapted from Vidal and colleagues (2022). This study was pre-
registered (https://osf.io/4dsma).  

Experimental design 
We developed a variation of the Breadth-Depth Apricot Task (Vidal 
et al., 2022) to test human search behaviour in sequential multiple 
economic choice scenarios under limited resources. The task was 
programmed using MATLAB (R2021b) and run using laptops with 
touch screens. Participants were initially introduced with a realistic 
narrative that provided a concrete everyday-life context to aid 
understanding the task goals and constraints. According to this 
narrative, at the end of each trial the participant purchases an order 
of apricots in bulk from one specific supplier, out of many 
available. The goal is to maximise the amount of good quality 
apricots accumulated throughout the experiment. Because suppliers 
vary in the proportion of good quality apricots they serve, 
participants are given the opportunity to sample suppliers’ goods 
prior to the final bulk purchase, by spending some of their coins 
(capacity) in exchange for sample apricots. There are 20 available 
suppliers, but the total amount of available coins is limited so 
sampling all the suppliers is impossible. Based on the sampling 
outcomes in each trial, participants are to choose the supplier for the 
final purchase. In this study, we assigned fixed budgets for blocks of 
several consecutive purchases which can vary in length. Therefore, 
participants sample a limited number of suppliers at each trial or 
even choose not to sample any supplier before purchase (skipped 
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trial) in order to save coins for future purchases or because the 
budget for that block is exhausted, in which case the supplier for the 
final purchase must be selected randomly. 

Each trial (purchase) in the task was divided into a sampling phase 
and a final purchase phase, with participants having the possibility 
to skip this first phase (skipped trials). The number of coins spent 
during the sampling phase determines the search capacity of the 
participant on each trial. We manipulated the block length  (10 
or 20 trials) and the average number of coins available per choice in 
a block of trials (capacity ratio : 2, 3 or 4), resulting in an initial 
capacity within a block  from 20 to 80 coins.  

A video showing the proceedings of our experimental design is 
available here. On each trial, the remaining capacity ( ) is clearly 
visible with the remaining coins being displayed, at any time, within 
the centre of the wheel (Fig. 1A). In each trial, the coins could be 
freely allocated one by one to any of the 20 suppliers by clicking the 
active coin in the middle of the display and then by clicking the 
desired supplier to sample from (Fig. 1B.a). Participants could 
arbitrarily allocate the coins in a given trial (i.e., all coins to just one 
supplier, or each coin to a different supplier, or anything in 
between). Once the desired number of samples has been allocated, 
participants doubled click on the sample in the centre to end the 
sampling phase (Fig. 1B.b). Only then the samples were revealed 
(Fig. 1B.c) as a binary outcome: either of good (orange) or bad 
quality (purple) apricots. 

The sampling outcomes  at each supplier  (given the range 1 to 
20) followed a binomial distribution  where  is the 
number of samples allocated in supplier  and  is the fraction of 
good quality apricots in that supplier. While  is chosen by the 
participants,  is unknown to them. Based on the information 
collected, participants could estimate , and based on the estimation 
could choose amongst the sampled suppliers (and only the sampled 
ones) to perform a final bulk purchase of 100 apricots from a finally 
chosen supplier.  We prevented participants from selecting a non-
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sampled supplier to motivate a more careful search as, in case of 
only negative outcomes, one of the sampled suppliers would have to 
be selected anyway. The number of good quality apricots contained 
in the purchase was revealed (Fig. 1B.d), and the next trial 
(purchase cycle) started. The cumulative sum of good-quality 
apricots collected, as well as the number of trials and capacity 
remaining in the block, were displayed on the left of the screen 
throughout the experiment. 

Independently in each trial and for each supplier , the fraction  of 
good apricots was randomly drawn from a beta distribution (with 
parameters ). We considered two different environments, 
varying in the relative abundance of good apricots ( ), denoted 
poor ( =1/3, =1) and rich ( =1, =1/3) (see the posterior 
distributions in Figure 3A). Participants were either presented to 
one or the other (but never to both) and they were verbally 
instructed about the relative richness of the environment they are in 
(poor / rich: “a majority of suppliers have a low / high proportion of 
good quality apricots”). Participants are aware that even though 
alternatives are different in each trial, they are extracted from the 
same environment. Providing participants with information about 
the prior distributions is pertinent, as the optimal model presupposes 
knowledge of the parameters α and β. 

Participants were presented with 18 blocks (10 or 20 consecutive 
purchases with a fixed limited budget), composed of 3 repetitions of 
each experimental condition (capacity ratio and block length). 
Additionally, they were first presented with a practice block of 10 
trials and a capacity ratio of 2 (these trials were excluded from the 
analyses). The whole experiment was self-paced, and opportunities 
were given to participants to rest after each block.  

Participants 
Participants were recruited through the CBC lab participants 
database (https://www.upf.edu/web/cbclab), with the criteria of 
being fluent in English or Spanish, with age between 18-55 and 
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being proficient with the manipulation of the touch screen as the 
task was performed on a touch screen laptop. Participants received a 
monetary compensation which was partly based on their final score 
at the task (number of good-quality apricots collected), ranging 
between a minimum of 9.30€ and a maximum of 10.60€ for an 
hour. Additionally, participants who obtained the three top scores in 
each environment condition (rich and poor), were rewarded with an 
additional 20, 10 and 5€, respectively. 

Participants were recruited until completing a valid final sample 
size of 20 participants in each of the two environment conditions 
(20 males, mean age ± sd: 26.8±8.4 years). This initial sample size 
was decided in order to detect an effect of the environment on the 
BD trade-off with a 95% power (Cohen’s d = 1.28, estimated from a 
previous study - see Vidal et al., 2022) and detect medium to large 
effect sizes with an 80 % power between and within participants 
respectively (more details in the preregistration: https://osf.io/
4dsma).  

Data from an additional 4 participants were discarded before 
analysis based on the pre-established criterion that they spent less 
than 90% of the initial block capacity ( ) during the experiment. 
We considered that such behaviour could reflect participants lack of 
attention or understanding in the task. Another participant was 
discarded because of a technical problem which prevented him from 
completing the whole experiment.  

Analyses 
Analyses were run using R and MATLAB. Normality of the data 
was tested using Shapiro tests and homoscedasticity was tested 
using F tests or Bartlett tests (for more than 2 samples). In cases 
where it was possible, parametric tests were preferred, otherwise 
non-parametric tests were used. One sample Wilcoxon tests against 
the environment averaged outcome (25 and 75 respectively for the 
poor and rich environment) were used to test whether participant’s 
final score was significantly higher than chance. For all participants, 
tests were significant (for ).  

Nc

α = . 05
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Sampling strategy 
Our objective is to investigate how humans allocate limited search 
capacity over a series of choices to gather information about 
alternatives whose probability of success is unknown a priori. The 
sampling strategy covers three levels of behaviour. First, it is 
defined by how much capacity (number of samples, or coins) is 
allocated in each choice (trial). Second, it is characterised by how 
many alternatives are sampled ( ) in a trial depending on the 
capacity spent ( ). The relation between  and  defines the 
breadth-depth trade-off where a ratio  of 1 indicates a pure 
breadth, whereas lower ratios represent strategies leaning toward 
depth. Finally, the sampling strategy is also characterised by the 
way samples are allocated within each alternative. We first describe 
the allocation of resources within a trial, meaning the optimal 
breadth-depth trade-off and optimal resource allocation within the 
sampled alternatives (see also Moreno-Bote et al., 2020 and Vidal et 
al., 2022) and then introduce the optimal distribution of resources 
amongst the consecutive choices.  

Optimal sampling strategy at the alternative level 
The optimal sampling strategy is based on the work of Moreno-Bote 
and colleagues (2020), and we present the detailed information here. 
The framework assumes normative agents who do not exhibit any 
memory leakage and have knowledge of the environment priors (  
and ). Specifically, normative agents aim to maximise expected 
reward and select the sampled alternatives that maximise the 

normative value , where  represents the 

outcome of each sample  (1 or 0) allocated to alternative  drawn 
from the binomial distribution ,  is the total number of 
allocated samples, and  and  are parameters that describe the beta 
distribution from which rewards in the environment are drawn. As 
the actual outcomes are unknown before the capacity is allocated, 
participants must compute the expectation of the maximum value of 
all sampled alternatives averaged over all possible outcomes given 
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environment parameters in order to determine the optimal allocation 
strategy.  

The normative strategy is described at two levels, depending on the 
allocated resources (capacity ) and the richness of the 
environment. Firstly, at the trial level, it predicts the number of 
alternatives that should be sampled (Breadth-Depth trade-off, see 
Figure 2A). In a low-capacity scenario (e.g.,  for a poor 
environment), the optimal allocator model predicts pure breadth, 
meaning that each resource sample should be allocated to a different 
alternative. As the capacity increases, a sudden change of strategy is 
observed, with the optimal number of sampled alternatives being 
approximately a power law function of the capacity (Moreno-Bote 
et al., 2020). Intuitively, when the agent has more resources, it is 
better to focus the samples on a few alternatives rather than 
spreading them across too many, as the latter approach would result 
in minimal discriminability between the quality of the sampled 
alternatives. The capacity at which the transition between pure 
breadth and the Breadth-Depth trade-off occurs depends directly on 
the richness of the environment. The poorer the environment, the 
later (at higher capacity) the transition will occur.  

In the current experimental paradigm, participants determine the 
number of samples (capacity) to allocate in each trial. Consequently, 
at the individual level, we may have a limited number of trials or 
even none for certain capacities. To overcome this limitation and 
minimise potential noise, we chose to include in the analysis only 
capacities for which there were at least three observations (trials) 
from at least three participants when modelling the Breadth-Depth 
trade-off. This "rule of three" ensured a minimum level of precision 
in the measurements and was applied to all analyses and data 
visualisations, as required. 

Secondly, the normative model predicts how many samples should 
be allocated to each of the sampled alternatives (Figure 2B). Indeed, 
for a given capacity C and number of alternatives sampled M, 
several resource allocations may coexist. For example, a capacity of 

C
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four (C=4) allocated to two alternatives (M=2) may result in the 
allocation of 2 samples in two different alternatives each: {2,2}, or 
the allocation of 3 samples in the first alternative and 1 sample in 
the second: {3,1}. Visually, participants' resource allocation, in 
accordance with previous findings (Vidal et al., 2022), seems to 
favour homogeneous allocations of resources among the sampled 
alternatives (e.g., {2,2}) (Figure). However, particularly in deep 
allocations and rich environments, optimal behaviour involves non-
homogeneous allocations of samples to break ties (see Moreno-Bote 
et al., 2020 and Figures). To ascertain whether participants' 
allocations differ from the optimal ones, we used the same method 
as previously described by Vidal and colleagues (2022), consisting 
of computing the standard deviation of each sample allocation and 
comparing it to the standard deviation of the optimal allocation 
(predicted by Moreno-Bote et al., 2020) using a Wilcoxon test. We 
found significant deviations from optimality. To evaluate their 
potential effect on participants' performance in the task, we 
compared the observed outcomes (number of high-quality apricots 
purchased) with those obtained when following the ideal allocator 
strategy using a t-test. Since we were interested in deviations 
towards a more homogeneous sampling, we considered only trials 
where a pure breadth strategy is not optimal ( ) (as in Vidal 
et al., 2022). However, in the poor environment, this condition is 
only satisfied when the allocated capacity is equal to or greater than 
seven, which corresponds to very few trials (166 in total). 
Therefore, we decided to focus our analysis on the rich 
environment, where we have sufficient data that satisfy this 
condition (3545 trials with C ∈ [3,10]). 

Optimal sampling strategy at the choice level 
To establish how capacity should be optimally allocated amongst 
the choices (purchases or trials), we calculated the expected reward 
gain defined as the difference between the expected reward obtained 
during the purchase phase when sampling with a capacity  (using 
Monte-Carlo simulations and assuming an optimal allocation of 
samples within the alternatives – see section above) compared when 

Mopt < C

C
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selecting an alternative randomly (average prior distribution of the 
environment). We divided the reward gain by  to assess the unit 
reward gain per sample and infer the optimal behaviour. In the rich 
environment, we observe that the unit reward gain is maximised 
when sampling with a capacity of 2 and decreases with higher 
capacities (Figure 2C – right panel). In contrast, in the poor 
environment, the unit gain in reward is maximised for a capacity of 
3 and is higher for a capacity of 4 and 5 compared to 2 (Figure 2C – 
left panel). As a result, while in the rich environment, it is optimal 
to always allocate a capacity equal to the capacity ratio (Figure 2D 
– right panels), in the poor environment, fluctuations in the resource 
allocation are optimal for low-capacity ratio ( ) (Figure 2D – 
left panels). Indeed, it is therefore optimal to allocate 3 coins on a 
majority of times, or if not possible 4 or 5 samples per trial and to 
allocate zero capacity in the remaining trials (skip trials). Following 
this optimal allocation is associated with an averaged reward of 34.3 
in blocks with 10 trials and 34.4 in blocks with 20 trials, while a 
homogenous allocation across choices is rewarded on average 33.0.  

Model comparisons  
Comparisons of Breadth-Depth trade-offs 
As in Vidal and colleagues (2022), we explored individuals’ 
sampling strategies by fitting the number of alternatives sampled M 
as a function of the capacity allocated C with three models, 
separately for each participant and block length experimental 
condition: 

1. A piece-wise power-law model (W):  

, where B corresponds to the 

b reakpo in t wi th  w i th  
corresponding to the maximum capacity allocated 
minus one.  

2. A linear model (L): . 

3. A power-law model (P): . 

C

r = 2

M(C ) = {Ca1 if C ≤ B
Ca2 + b if C > B}

B ∈ {3,4, 5,…,  Bmax} Bmax

M(C ) = aC

M(C ) = Ca
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Linear and power-law models were compared using a paired 
Wilcoxon test on individual R-squared adjusted while power-law 
and piece-wise power law models were compared using ANOVA 
(with ) at the participant and block length levels. The 
power-law model captured the empirical relationship between C and 
M best in both environments. 

Given the results of the model comparisons, the effect of the 
environment on participants’ sampling strategies was therefore 
tested using the power-law model. We compared the power factor 
extracted from power-law fits in each environment (rich and poor) 
using a Wilcoxon test, and in each block length (10 or 20 trials) 
using a permutation ANOVA with both block length and 
environment as factors. This analysis could not be used to compared 
BD trade-offs between capacity ratio conditions (r) as the range of 
capacities allocated differed greatly depending on r. Instead, we 
tested M depending on the capacity allocated, the ratio and the 
environment using a permutation test ANOVA.  

Participants’ BD trade-off were also compared to optimal (Moreno-
Bote et al., 2020) by fitting the optimal values of alternatives 
sampled (M) depending on the capacity allocated for each 
participants (as participants used difference ranges of allocated 
capacity within trials), using the power law model (see Eq. 3). The 
power exponents obtained from fitting observed and optimal M 
were then compared with an appropriate test (t-test or Wilcoxon 
test) within each environment.  

Fluctuations in the resource allocation 
We considered variations in resource allocations (fluctuations), 
trials where the number of allocated resources differed from the 
capacity ratio of the block (C≠r) (see Figure 4A). Among these 
variations, we identified three categories: trials with no capacity 
allocated (C=0), referred to as “skipped trials”, trials with a non-null 
capacity allocated below the capacity ratio (0<C<r), and trials with 
a capacity allocated above the capacity ratio (C>r).  

α = . 05

α 
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As reported in the section above (‘Optimal sampling strategy at the 
choice level’), the optimal observer predicts the occurrence of 
fluctuations only in the poor environment with the capacity ratio of 
two. To test these predictions, we first calculated the proportions of 
trials belonging to each category of fluctuations within each 
individual block, then averaged them across blocks, and finally 
averaged them across participants. We examined the impact of our 
factors of interest (ratio, block length, environment richness) on the 
occurrence of these fluctuations using linear mixed-effects models. 
Participants were included as random intercepts in the models. 

For completeness we also described fluctuations in the resources- 
allocation using two other methods. First, we computed the 
coefficients of variation ( ) of the sample allocation within each 
block, given by:  

  with   
Where  represents the probability to allocate a capacity c inside a 
trial and r the capacity ratio of the block. Results are presented in 
the supplementary Figure S1 and reveal similar effects as when 
considering fluctuations as trials with an allocated capacity C 
different from the capacity ratio r. 

Secondly, we computed the entropy  of participants capacity 
allocations within each block, given by:  

 

This measure does not control for the amount of resources available, 
but still reveal that fluctuations are larger in the longer compared to 
shorter blocks ( ). Results are 
reported in the supplementary Figure S2.  

Extension of the ideal allocator model  
We observed that participants exhibited more fluctuations in their 
resource allocations compared to what is optimal. To account for 
this phenomenon, we extended the optimal model to predict and 
explain the increased occurrence of these fluctuations. The 
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variations in resource allocations allow for the sampling of certain 
trials with a higher frequency, enabling participants to gather more 
precise information about the quality of the alternatives. We 
proposed that one motivation behind these fluctuations is to ensure 
informative sampling, which means that sampling inform the 
selection of a better alternative (by avoiding ties for example). 
Another motivation could be to explore the amount of information 
and outcomes obtained by using different numbers of resources, 
contributing to a broader learning process of the environment. 
Additionally, we noticed substantial variability in participants’ 
tendency not to allocate any resources in a trial (skipping). 
Randomly selecting a supplier for the final purchase may indeed be 
associated with increased risk and explain why some participants 
try to avoid such situations.  

Consequently, we proposed a model where the expected utility (EU) 
to maximize is a weighted sum of different factors (Eq. 1). These 
factors include the expected reward  (following the optimal 
allocation of C samples), the information benefit  (weighted by a 
factor ), a penalty for skipping trials weighted by a factor , and an 
entropy bonus weighted by a factor . The probability  represents 
the likelihood of using a capacity C in the block. 

(Eq.1)     

Here and below we don’t write explicitly the dependence of  and 
other variables on the parameters of the beta distribution  and  to 
simplify the notation. 
For computational convenience, we considered capacities ranging 
from 0 to 10. Capacities exceeding 10 were excluded as their 
probability of occurrence in a trial is only 0.31%, and they are 
present in only 3.89% of the blocks.  
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Regarding the information benefit , we modelled it in three 
different ways and estimated them using Monte-Carlo simulations 
(N=100 000).  

(1)  
Where  runs over the alternatives sampled according to the 
optimal allocator, in a given environment, determined by the 
parameters  and  of the beta distribution, and with a given 
allocated capacity .  
We proposed that an informative sampling may be represented 
by the expected highest sampling probability , with 

.  represents the outcome of each sample  (1 

or 0) allocated to alternative  and  is the total number of 
samples allocated to the alternative . 
This measure doesn’t assume prior knowledge of the 
environments’ prior distribution ( ). We hypothesised that 
such information benefit may be particularly valuable to guide 
the selection of a ‘good’ alternative in the poor environment 
where getting positive sample outcome ( ) is very unlikely. 

(2)  
Where  stands for the number of alternatives with 

. 
The information benefit corresponds here to the probability of 
having a single alternative  with the highest sampling 
probability . We hypothesised that, especially in the rich 
environment where receiving positive sampling outcome is very 
frequent, being able to distinguish the best sampled alternative 
(break ties) may drive participants sampling strategy.   

(3)  

Finally, we proposed the information benefit to corresponds to 
Shannon’s entropy (Rényi, 1961), as it is a common measure 
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used to quantify information content.  represents here the 
probability distribution of the sampling probabilities  for a 
given alternative  and allocated capacity .  

We observe, in both environments, that the evolution of the 
information benefits as a function of the allocated capacity differs 
from the one observed in the expected outcome, suggesting its 
possible impact on participants’ sampling strategy, independently of 
the reward (Figure S3).  
An important limitation shared by all these information benefits is 
to be estimated based on an optimal allocation of samples within 
each capacity and environment. Results showed that participants 
closely follow optimal BD trade-offs in both environments (see 
Figure 3A) but within each alternative, the allocation of samples 
differs from the one maximising the reward, especially in the rich 
environment where participants have been shown to favour 
homogenous samples allocations (Figure 8).  

We observed that in both the poor and rich environment, the model 
predicting the best the data was the one including  (2) so we 
further reported models with .  

Model fitting 
The underlying assumption of the fitting procedure consists in 
considering that the participants’ behaviour arises from the 
optimisation of the expected utility  given in Eq. 1. In other 
words, we assume that participants behave optimally with respect to 
a fixed set of parameters ,  and . Therefore, we first computed 
the optimal probabilities (that is, the one maximising ) for a 
generic configuration of ,  and .  representing the probabilities 
of allocating a capacity  in a given trial within a block, they have 
to meet the following constraints:  

1.  

pSi,c

Si,c
i C

Isingle,  C
IC = Isingle,  C

EU

α β γ
EU

α β γ pc
C

0 ≤ pc ≤ 1
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2.  

3. , where  represents the capacity ratio of the 
block.  

This constrain entails that all the resources initially available in a 
block ( ) are allocated. In the data, a significant number of blocks 
didn’t comply with this constraint (135 blocks, 19.5%), however a 
great majority of them had only one sample not allocated (78 out 
135). As a result, we chose to be more flexible and only excluded 
blocks for which less than the initial capacity minus one had been 
allocated ( -1; corresponding to 57 blocks, 8.23%).  

To find the optimal probabilities 
 
given these constraints we used 

the Lagrangian multiplier method. We looked then for the critical 
points of the following Lagrangian function: 

(Eq.2)         

obtaining  

(Eq.3)         

where δ0,c is the Kronecker delta and with λ1,2 given by imposing 

(Eq.4)         

and 

(Eq.5)         

Note that the constraint (1) is automatically satisfied by the solution 
of Eq.3 and by satisfying the constraint (2).  

A generic closed form solution for the Lagrange multipliers cannot 
be found (Abel-Ruffini theorem, not shown) and a numerical 

Σ10
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method is implemented to invert the equations for λ1,2 (using the 
function fsolve in Python).  

In such a way, the optimal probabilities can be computed per each , 
 and . To fit these parameters, we minimised the sum S of the 

Euclidian distance between the observed probabilities and the 
optimal predicted ones  and a penalty accounting for the size of 

, , , such as: 

(Eq.6)        

Where  is a regularisation parameter. Different values of  were 
tested to achieve a good balance between consistency of the 
parameters , ,  fitted and goodness of fit. As a result, a value of 

 was selected.  

In order to compute criterions taking into account both the goodness 
of fits and the risk of overfitting (Akaike Information Criterion – 
AIC and Bayesian Information Criterion – BIC), we also computed 
the log-likelihood  of the data, given by:  

(Eq.7)         

where  is the number of times a capacity  was allocated in the 
block, 

 
the optimal probabilities extracted from the model and  

(Eq.8)        

Model comparison is performed by comparing both AIC (Figure 
7C) and BIC (Figure S7) as the latter favours more simpler models.  

Sequential effects observed in the allocation of resources 
•  Intentionality in the sampling strategy 
We delved deeper into the potential constraints and objectives 
associated with participants' behaviour in allocating little capacity 
(capacity C inferior to the capacity ratio r) in a trial, resulting in 
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fluctuations in resource allocation. Specifically, we calculated the 
capacity allocated in a given trial based on its relative position to 
the nearest trials with C<r. This analysis aimed to investigate 
whether these trials are a product of anticipatory strategies or rather 
an adaptation after having previously over-allocated the available 
capacity. 

• Sampling strategy and received outcomes 
To explore the potential influence of received outcomes on 
participants' sampling strategy, we implemented a median split to 
divide the obtained rewards (number of good-quality apricots 
purchased) separately for sampled and skipped trials, considering 
that sampled trials typically yield higher rewards. Additionally, we 
categorised participants' sampling strategy into two groups: 
"sampling" (C>0) or "skipping" (C=0). Based on this categorisation, 
from one trial to the next, participants could either maintain the 
same strategy (sample-sample or skip-skip) or switch their strategy 
(sample-skip or skip-sample). Our investigation focused on how the 
magnitude of the outcome received in a given trial influenced the 
probability of repeating or, conversely, switching the strategy in the 
next trial. These analyses exclusively considered trials in which 
some capacity was still remaining ( ≠0), ensuring that both 
behaviours (sampling or skipping) were feasible. 

Nr
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Supplementary Figures  

 

Figure S1. Participants capacity allocation fluctuates more when little 
capacity is available and with larger horizons. Coefficient of variation 
(CV) of the capacity allocated over the block depending on the capacity 
ratio r, block length (colours) and the environment (poor or rich). Vertical 
bars represent s.e.m. of the data, while dashed lines and shaded areas 
represent respectively the predicted averages and s.e.m. using LMEM. 
Dotted horizontal segments represent the CVs predicted by the optimal 
model. LMEM results reveal a significant effect of the ratio 
( ) a n d b l o c k l e n g t h (

). No significant effects of the environment 
( ), nor an interaction between the block length and the 
capacity ratio were found ( ). [back to Methods] 

χ2
1 = 114.93,  p < 2.2 × 10−16 χ2

1 = 23.71,
p = 1.12 × 10−6

χ2
1 = 1.99,  p = . 16

χ2
1 = . 71, p = . 70
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Figure S2. The entropy of participants capacity allocations does not 
significantly fluctuate depending on the experimental conditions. 
Entropy of the capacity allocated over the block depending on the 
capacity ratio r, block length (colours) and the environment (poor or rich). 
Vertical bars represent s.e.m. of the data, while dashed lines and shaded 
areas represent respectively the predicted averages and s.e.m. using 
LMEM. Dotted horizontal segments represent the CVs predicted by the 
optimal model. LMEM results reveal a significant effect of the block 
length only ( ). No significant effects of the 
environment ( ), the capacity ratio  (  

), nor an interaction between the block length and the capacity 
ratio were found ( ). [back to Methods] 

χ2
1 = 43.91,  p = 3.44 × 10−11

χ2
1 = 1.35,  p = . 25 χ2

2 = 4.56,
p = . 10

χ2
1 = 4.57,  p = . 10
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Figure S3. The information benefits evolve with capacity differently 
from the expected outcome. A-B. Mean highest sampled probability ( ) 
of the sampled alternatives ( , darker sea green), mean probability that 
this highest sampled probability  correspond to a single sampled 
alternative and not several ones ( , medium sea green) and mean 
entropy of  distribution ( , lighter sea green). The mean expected 
outcome when selecting the sampled alternative with the highest 
normative outcome  is plotted in dark grey. The poor (A) and rich (B) 
environments are presented respectively in the left and right panels. [back 
to Methods] 
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Figure S4. Participants outcomes are affected by their level of 
fluctuations in the resources allocation similarly as predicted by the 
optimal model. Participants mean outcomes received (z-scored by 
environment) depending on individuals’ level of fluctuations, measured by 
the proportions of trials with the allocated capacity C different from the 
capacity ratio r. The vertical dotted lines correspond to the optimal 
proportions of fluctuations in each environment. The coloured lines 
represent the model best fitting the data (second-order polynomial or 
linear). [back to Results] [back to Discussion] 
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Figure S5. The information criterion maximising the probability to 
obtain a single best sampled alternative is predicting the participants 
search strategy the best. Averaged AIC (A) and BIC (B) across 
participants in the poor and rich environments estimated by fitting the data 
within each block using the full model (α, β and γ different from zero) 
with the. Three different information criterions (see Methods). [back 
to Results] 
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Figure S6. Resource allocations among choices are well predicted the 
extended optimal model (see Eq.1). Probabilities to allocate a capacity C 
from 0 to 10 depending on the environment richness (poor: left panels, 
rich: right panels) and the block length (10 trials per block:  upper panels, 
20 trials per block: lower panels). Black points represent the averaged 
observed probabilities across participants and vertical bars the s.e.m. 
Colours lines represent the averaged fitted probabilities for each model 
and the shaded areas the s.e.m. across participants and dashed black lines 
represent the optimal probabilities for each condition (model maximising 
only the expected reward). [back to Results] 
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Figure S7. Averaged BIC across participants in the poor (left) and rich 
(right) environments estimated by fitting the data within each block using 
the five different models. [back to Methods] 
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Figure S8. Participants whose resource allocations fluctuate follow a 
strategy which balances skipping sampling (C=0) and allocating little 
capacity (0<C<r) depending on individual fitted risk aversion (β). A. 
Averaged individual probabilities to skip sampling depending on the 
probability to allocate a capacity inferior to the capacity ratio r. The 
colours represent the averaged individual probabilities to allocate a 
capacity equal to r (not fluctuating) and are also separated by the diagonal 
grey dotted lines. The coloured lines represent the correlation between 
both probabilities (skipping and allocating a capacity inferior to the ratio) 
including all participants (darker green) or participants with a minimum 
fluctuating probability (lighter greens). Shaded areas represent 95% CI. 
Results of these correlations are as follow: all participants: 

, N=40; part ic ipants with P(C=r) < .95:  
 , N=36; P(C=r) < .90:  , 

N=25; P(C=r) < .85: , N=19; P(C=r) < .80: 
, N=16). B. Idem as panel A but dots are 

coloured depending on averaged individual estimated betas parameters of 
the best fitting model (full model in the rich environment and model with 
alpha=0 in the poor). Fitted beta parameters are found to decrease with the 
proportion of skipped trials (LMEM: ) and 
increase with the proportion of trials with an allocated capacity inferior to 
the ratio (0<C<r) ( ), revealing that participants 
with a large proportion of trials with 0<C<r are also characterised by a 
higher risk aversion (high betas). [back to Results] [back to Discussion] 

tau = . 12, p = . 28
tau = − . 01, p = . 92 tau = − . 24,  p = . 097

tau = − . 46, p = . 006
ρ = − . 86, p < 2 × 10−16

t = − 11.72,  p < 2 × 10−16

t = 5.93,  p = 4.96 × 10−9
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Figure S9. Participants have the tendency to homogeneously allocate 
capacity amongst the sampled alternatives. Number of samples allocated 
to each sampled alternative depending on the capacity allocated C in the 
poor environment. Upper panels: allocation of samples maximising the 
reward (optimal). Lower panels: most frequent allocations of samples 
observed across participants as a function of capacity. The allocations 
representing at least 50% of the trials are displayed and their likelihood is 
reported. [back to Results] [back to Discussion] 
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Figure S10. Fluctuating in the resource allocation seem to be 
associated with close-to-optimal BD trade-offs. Number of alternatives 
sampled (M) depending on the capacity allocated, the environment 
richness (colours) and the proportion of fluctuations (median split on 
individuals’ proportions of trials with C ≠ r). Group average and s.e.m. are 
plotted above individual data (thin light lines) and optimal values of M 
(thick light lines). Dashed lines indicate unit slope line. N=20 per 
environment. [back to Discussion] 
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5. GENERAL DISCUSSION 

Maximising information is oftentimes the go-to strategy for 

achieving optimal choices, for example when deciding the route on 

a trip, buying a new phone, or resolving an exam question. 

Nonetheless, constraints such as limited time, financial resources, 

and cognitive capacity often hinder us from comprehensively 

processing all necessary information essential for making the best 

decisions consistently. This reality is particularly relevant in the 

present era. Contemporary society inundates us with a myriad of 

stimuli, meticulously crafted to capture attention and stoke desires, 

sometimes even tuned and targeted individually for us (Lorenz-

Spreen et al., 2021), leading to an ever-growing list of perceived 

needs. Simultaneously, modern world propels us towards greater 

efficiency, not just in the professional environment but also in 

personal choices. This requirement demands that we seize lucrative 

sales offers while bearing in mind ethically mindful and 

environmentally friendly consumption. For instance, we are now 

presented with advertisements promoting reduced consumption 

(‘desellers’ or ‘dévendeurs’ - ARCOM) interspersed among 

commercials that encourage product purchases. As a result, the 

volume of information required for optimal decision-making is 

immense, and acquiring and processing this information incurs a 

cost that individuals may find challenging, both in terms of capacity 

and willingness to bear. 

193

https://www.youtube.com/watch?v=CKrUPX_F27U


In this context, it seems relevant to understand how individuals 

confront demanding decision-making scenarios considering their 

inherent limitations, while striving to evade burnout or 

disillusionment. One may indeed be torn between contradictory 

information or feel insecure about past choices, fearing to have 

missed relevant information. While this thesis does not provide an 

exhaustive answer to this very broad question, we hope it provides 

useful insights. In particular, this research sheds light on three 

distinct experiments with specific choice scenarios, each one of 

them unravelling the strategies humans employ when confronted 

with complex choices that demand to strike a delicate balance 

between adaptability and efficiency. 

5.1. Summary of findings 

In our initial study, we explored how automatic behavioural 

tendencies, which are highly resource-efficient but lack flexibility, 

can be countered when they do not align with the current goal. We 

chose to focus on subjective value, known to be processed rapidly 

even when irrelevant for the task at hand and to influence both 

attention and decision-making. Using a binary choice task, we 

pitched subjective value (food preference) against an objective task 

goal (food price). We noted that preferred food items were indeed 

consistently chosen faster than less favoured ones, even without 

attentional or motor anticipation. However, the potentially negative 
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impact of subjective value on choice accuracy could be overridden 

by engaging stronger cognitive control, as evidenced by enhanced 

mid-frontal theta oscillations. Despite the reasonable inclination to 

prioritise value to seize favourable opportunities swiftly, it is crucial 

not to let potential rewards overshadow other relevant features 

necessary to achieve important goals. Our findings highlighted the 

role of cognitive control in flexibly disregarding subjective value 

when it conflicts with the current aim.  

Moreover, we collected intracortical EEG data from a 

patient performing the identical task, aiming to identify the specific 

brain regions associated with the increased MFT power observed in 

scalp EEG (Appendix). Regrettably, our findings did not reveal 

oscillatory activity modulated by heightened engagement of 

cognitive control in the mid-cingulate cortex. 

In our second study, we delved into the human ability to adapt 

search strategy according to the available finite resources and the 

richness of the environment. We focused on the Breadth-Depth 

dilemma, a choice scenario where individuals are confronted with 

an overwhelmingly high number of options beyond their capacity 

for thorough assessment, as it is often the case in real-life situations. 

Upon these situations, strategic decisions must be made on where to 

place the limited resources to extract information. By comparing 

participants’ strategy to an ideal allocator model aiming to 

maximise rewards, we discovered that individuals adopt heuristics 
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that adjust sampling to the environmental context, reaching a near-

optimal performance. This simplified strategy demonstrates 

flexibility and efficiency, reducing neural computation with 

minimal impact on performance. 

In our third and last study, we aimed to better characterise 

spontaneous variability in human behaviour and how it relates to 

performance. Leveraging the fact that individuals adopt nearly 

optimal breadth-depth trade-offs, learned from the second study, we 

expanded the paradigm to investigate the allocation of finite 

resources over time. The behavioural fluctuations we observed were 

far from being mere random variability, and instead displayed a 

structured nature. We reasoned these fluctuations align with the 

pursuit of explorative strategies and pertinent information while 

mitigating risks. These nuances of behaviour indicate a multifaceted 

behavioural framework where immediate reward maximisation 

exists alongside other objectives that can be achieved through 

flexible control over the allocated search capacity. 

In the reminder of this final chapter, I will outline the primary 

implications of the three studies presented in this thesis and discuss 

potential avenues for future research that they inspire. I will, 

however, try to avoid redundancy with previous chapters by not 

revisiting the conclusions already discussed individually on each 

chapter, which are briefly summarised above. Instead, I will put the 
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focus of the discussion on reflections which have not been 

previously addressed in the earlier chapters, as well as those 

conclusions that transcend the individual studies. 

5.2.Unveiling strategies to counter automatic behaviour 

The inherent efficiency of automatic behaviours streamlines our 

responses to a variety of stimuli, so that our reactions are fast but 

relatively inflexible. Whether it’s the attraction of attention sparked 

by loud noises, sudden moving objects, or the allure of high-reward 

choice alternatives (B. A. Anderson et al., 2011; Hickey et al., 2011; 

Libera & Chelazzi, 2006; Theeuwes & Belopolsky, 2012), these 

automatic responses often influence our decisions regarding other 

aspects of the stimuli, occasionally leading to biases (Summerfield 

& Koechlin, 2010; Blangero & Kelly, 2017; Corbett et al., 2023). 

The colour of a dot may be, for example, perceived more often as 

the colour associated with a higher reward, especially when 

responding fast (Afacan-Seref et al., 2018). The first chapter of this 

thesis delved into this intrinsic facet, particularly when an 

individual’s subjective preference clashes with the current strategic 

goal. The study described therein proposed that individuals redirect 

their resources from highly desired but inadequate choices to less 

immediately desirable but convenient choices, by engaging 

cognitive control mechanisms, as indexed through behavioural 

variables as well as by mid-frontal theta (MFT) activity in the EEG. 
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These findings have revealed that subjective value associated with 

alternatives significantly biases participants’ choices, irrespective of 

the choice’s difficulty measured by the relevant goal-based 

evidence. This supports the existence of a fast and automatic boost 

of influence of subjective value on strategic decision-making, in the 

absence of any attentional or motor anticipation. Moreover, the 

study identified two distinct strategies that tend to mitigate this fast 

and automatic bias over time. One (expected) strategy involves 

signalling a conflict between value-based evidence and goal-

relevant evidence and its regulation through the recruitment of 

heightened cognitive control. In another, unexpected strategy, some 

participants bypassed the increased need for cognitive control by 

relying on their prior beliefs about the features of the alternatives to 

inform their choices. In particular, participants who exhibited strong 

preference for expensive items were more prone to quickly select 

the items they liked the least, although least preferred items were 

not more often cheaper in the context of the task. Consequently, this 

pattern led to a heightened occurrence of errors in choices when the 

preferred item happened to be the cheapest, thus reversing the 

expected congruence effect. 

In line with this explanation, the study presented in the first chapter 

found a correlation between the strength of prior beliefs regarding 

the relation between the items’ price and preference, and the 

participants’ tendency to avoid engaging additional cognitive 
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control when faced with evidence contradicting subjective 

preference. Indeed, attesting that many times the correct alternatives 

do not align with their prior beliefs may require to update their 

perception of the world which is costly and has a negative impact 

on confidence. This reliance on prior beliefs, which we have 

measured here using foodstuffs, resonates with findings in the realm 

of political opinions. This research indicates that individuals with 

more extreme or entrenched political views exhibit less inclination 

to alter their perspectives (cognitive inflexibility – Zmigrod et al., 

2019) or to seek information that challenges their initial opinions 

(Brandt et al., 2015; Ditto et al., 2019). Understanding how to 

motivate individuals to invest effort in considering information 

conflicting with their viewpoints is pivotal across various contexts. 

One compelling aspect that has piqued my curiosity from the 

findings of the first study involves the decoupling between value 

biases observed on choice accuracy and those observed on response 

time. Traditional conflict tasks (M. Botvinick et al., 2004; Cavanagh 

& Frank, 2014) or value-biased choices (Summerfield & Koechlin, 

2010; Noorbaloochi et al., 2015; Afacan-Seref et al., 2018; Corbett 

et al., 2023) typically show a consistent reduction in accuracy and 

slower response times in incongruent choices when there is a 

mismatch between the goal-relevant information and irrelevant 

conflicting evidence (such as the colour of the words in a Stroop 

task or asymmetric reward in a binary choice). However, in our first 
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study, congruency is defined by the relation between an item’s 

estimated price and participants’ pre-existing subjective preference. 

In this context, choices tend to exhibit biases either favouring 

individuals’ preferences or contradicting them, particularly in cases 

of robust prior knowledge about item value-price characteristics. In 

the meantime, the influence of value on reaction times is very 

consistent, with faster responses when participants opt for their 

preferred alternative across the board.  

Moreover, an interesting observation emerged from this disparity 

between value bias affecting choice accuracy and response time: 

although the latter remains constant throughout the task, individuals 

with strong prior beliefs exhibit time-sensitive effects on both 

choice accuracy influenced by value and mid-frontal theta (MFT) 

enhancement in response to value-price conflict. Consequently, this 

temporal influence results in a higher frequency of selections of the 

least preferred alternative. This decoupling implies that the 

slowdown in responses in favour of the non-preferred alternative 

cannot be solely attributed to the increased engagement of cognitive 

control mechanisms, as measured by MFT oscillations. This 

discovery uncovers a complex experimental framework where 

automatic processing of evidence, such as subjective value, and 

expectations regarding features of the environment concurrently 

influence decision-making processes. It also offers an opportunity to 

delve deeper into understanding the stage of decision formation 
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these signals have an impact on, and the intricate relationship they 

share with the engagement of more cognitive control resources. 

5.3.Optimal allocation of limited resources; moving towards 
more complex scenarios  

The exploration addressed in the second chapter of this thesis 

revolved around how individuals grapple with the challenge of 

decision-making when confronted with an overwhelming number of 

alternatives that surpass their capacity for comprehensive 

assessment. In these contexts, not uncommon in our everyday life, 

the question is: how many alternatives does the decision maker 

sample, and how deeply? To understand this resource-allocation 

problem we introduced the Breadth-Depth (BD) dilemma and 

developed the ‘Apricot purchasing task’, which marked a significant 

leap forward in comprehending how individuals manage limited 

search capacity. Through Studies 2 and 3, we revealed that humans 

gravitate towards assessing the statistically optimal number of 

alternatives. They adopt heuristics that minimally impact 

performance (as compared to the optimal decision maker) while 

displaying an impressive ability to flexibly adapt to available 

resources and environmental context, integrating the probable 

success rate of these alternatives (Vidal et al., 2022). 

Despite the characterisation of the BD dilemma presented in 

Chapter 2 which introduces a much more complex decision-making 
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problem than it is usually presented in the literature, it is clear that 

exploring increasingly complex scenarios in future research could 

shed additional light on decision-making processes. For example, 

real-life scenarios seldom present entirely novel environments. 

Instead, the options available often stem from previously known or 

present readily available information, sometimes strategically 

designed to kindle curiosity and desire (visually pleasant or 

intriguing images, brand logos, etc). In such contexts, can 

individuals still effectively disregard a large proportion of 

alternatives to focus on a subset in a statistically near-optimal 

fashion? Are they instead going to be overwhelmed by the sheer 

volume of information and choices at hand, or worse be 

systematically led further off the statistically optimal regime?  

In the introduction I drew the distinction between the 

exploration-exploitation and the current BD dilemmas. However, 

extending the BD dilemma to encompass scenarios without delayed 

feedback would offer insights into situations where both breadth-

depth and exploration-exploitation dilemmas intersect. For instance, 

consider the act of purchasing products in a supermarket. Initially, 

one might have a look at multiple products quickly, gradually 

narrowing down options as they gather information. The BD trade-

off dynamically evolves over time, contingent upon the resources 

one is willing to invest before finalising a purchase and the desired 

level of confidence in their decision. Understanding optimal 

behaviours in such situations holds immense real-life relevance, 
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particularly in visual search contexts where the sampled information 

is immediately accessible. 

5.4.Endogenous variability in the pursuit of individual goals 

The third study of this thesis has been centred on the intricate 

variability inherent in human behaviour, aiming to illuminate the 

nuanced interplay between immediate reward focused strategies and 

approaches serving additional, longer-term objectives. By extending 

the BD Apricot task introduced in Chapter 2 to the management of 

limited search capacity for many alternatives across consecutive 

choices, we observed that participants demonstrate anticipation and 

adaptability in the way resources are managed over time. These 

fluctuations reflect an internally driven variability that unfolds 

across choices, each independent yet collectively strategic. 

Despite being sub-optimal if we consider solely immediate reward 

maximisation, the behavioural fluctuations detected in the third 

study were not just noise. Rather, they seem to underscore the 

exploration of diverse strategies, risk minimisation concerning 

leaving certain choices to chance, and the quest for pertinent 

information crucial for informed decision-making. While these 

behaviours are suboptimal within the limited context of our 

experimental protocol, they exhibit strong potential benefits in 

uncertain and dynamic real-life environments. Indeed, exploring 

multiple strategies may be, in the long run, highly beneficial in case 

203



of changes in the environment or of the goal itself. Additionally, 

making informed choices is crucial not only when deciding but also 

afterward, enabling self-justification and confidence in one's 

choices, which holds particular importance in environments like the 

workplace. 

Furthermore, I believe that this variability in behaviour may both 

adapt to and reflect individuals’ personalities and their level of 

engagement in a task. For instance, the likelihood of exploring new 

strategies for information sampling may indeed hinge on 

individuals’ motivation (Cerasoli et al., 2014; Zelick, 2007) and on 

individual traits related to curiosity (Risko et al., 2012). Specific 

curiosity traits have been linked to varying use of limited external 

resources such as money, energy, and time (Kashdan et al., 2018). 

Additionally, individual attitudes toward risk-taking may influence 

their inclination to explore and acquire novel experiences 

(Zuckerman, 1994), and may be impacted by the perceived 

cognitive load of the task (Deck & Jahedi, 2015). Gaining insights 

from these specific features could be relevant for a deeper 

understanding of individual differences that propel the pursuit of 

particular goals and for a more accurate characterization of inherent 

variability in information search strategies. 
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5.5.Humans: more than cognitive misers? 

Humans have been labelled as "cognitive misers" (G. Allport, 1954) 

due to their inclination to evade unnecessary mental exertion (Kool 

et al., 2010; Taylor, 1981). Indeed, it is relatively easy to recall 

instances where we have acted as devotees to the minimum effort 

principle. Without contradicting this doctrine, the triad of studies 

showcased in this thesis generally delineates scenarios wherein 

individuals opt for simplified, lower cost strategies compared to the 

optimal ones. They adeptly navigate decision-making by employing 

heuristics in the way search capacity is allocated across alternatives 

(e.g., power-law BD trade-offs, homogeneous allocation), or relying 

on entrenched prior beliefs. Yet, these studies have also revealed the 

human capacity to employ more complex multifaceted strategies 

that transcend mere immediate reward maximisation objectives and 

flexibly adapt to potential opportunity costs associated with a 

choice. 

These instances, where individuals pursue intricate strategies 

involving multiple goals, potential losses, or anticipation, exemplify 

how individuals can both under and overexert cognitive resources 

when tackling a problem. This begs the question: are humans truly 

cognitive misers? Or more precisely, when do people choose to 

spend cognitive resources and to what extent? The allotment of 

cognitive resources appears contingent on a delicate equilibrium 

between perceived benefits and losses, which can be influence by 
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many intrinsic features such as fatigue levels or motivation but also 

by the availability of alternate strategies, such as reliance on prior 

knowledge, which, while less effortful, might be marginally less 

efficient. This question holds immense significance when seeking to 

evaluate human optimal behaviour within specific circumstances. 

It's crucial to acknowledge that the majority of scenarios 

replicated within laboratory settings are highly artificial and may 

lack real-world relevance. Our brains, however, are specialized to 

function in high-dimensional uncertain environments encountered 

previously or plausibly encountered in the future. Therefore, an 

inability to optimally navigate artificial situations prevents 

extrapolation regarding the humans decision-making strategies 

(Nastase, 2020) and the limits of brain performance. Based on this, 

and although there is still a large margin of improvement, this thesis 

had the objective to tackle this problem by employing more realistic 

stimuli and immersing participants in more multifaceted and 

meaningful scenarios to better understand the intricacies of human 

behaviour. This approach may also help to accelerate the learning of 

the task and limit its potential influence on our conclusions 

regarding human competence and rationality (Lejarraga & Hertwig, 

2021).  

Moreover, the use of ecologically valid paradigms necessitates 

providing participants with sufficient incentives (Barbosa et al., 

2022), mirroring those naturally present in real-life situations. 
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Human subjects, even if capable of optimal performance in 

experimental tasks, might choose not to allocate adequate resources. 

Consequently, incentivizing participants involves appropriately 

calibrating task difficulty to stimulate engagement while preventing 

boredom and fatigue that could precipitate unexpected errors.  

By scrutinizing behaviour through paradigms boasting stronger 

ecological validity, we inch closer to comprehending how humans 

manage their limited cognitive and external capacity when making 

decisions. Moreover, this approach may inform the design of 

environments where individuals willingly invest resources in the 

pursuit of more meaningful and indispensable goals. However, by 

charting further into this relatively unknown territory, we have run 

the risk of falling into some pitfalls, some of which I briefly discuss 

below.  

5.6.Limitations  

The inclusion of more ecological paradigms in research presents a 

substantial advantage in capturing the intricate nature of naturalistic 

human behaviour. However, their inherent allowance for increased 

participant freedom and decreased control introduces challenges in 

disentangling the many hypotheses often underlying unexpected 

observations. This trade-off between internal and ecological validity 

is a well-known problem when extrapolating research principles 
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(Soto-Faraco et al., 2019; Matusz et al., 2019) and is a common 

limitation evident across the three studies presented in this thesis.  

In the initial study, we observed that subjects employed 

diverse price-minimisation strategies - one seemingly reliant on 

cognitive control and the other on prior beliefs - generating mixed 

results concerning the impact of subjective value on choice 

accuracy. In the third study, we highlighted that participants' 

sampling strategies in rich environments, abundant with high-

reward alternatives, aimed not only to maximise rewards but also to 

access pertinent information for guiding their final decision. Upon 

reflection, such a goal might have influenced the results of the 

second study, where no discernible difference in Breadth-Depth 

(BD) trade-offs was found between rich and neutral environments. 

This balance was primarily tilted toward depth in the neutral setting. 

In neutral environments where the majority of alternatives are of 

averaged quality (gaussian distribution), participants tended to 

sample deeper than predicted by the optimal allocator model, 

potentially increasing the likelihood of obtaining valuable evidence 

for informed choices. Furthermore, while explicitly observing that 

participants adopt strategies aligned with multiple objectives in the 

third study, exploring the specific or in contrary general conditions 

in which these goals prevail remains a challenge. Assessing 

participants' perceived difficulty and engagement in the task could 

help grasp these issues. However, limitations persist concerning the 
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comprehensive examination of the diverse motivations driving 

human behaviour. 

In a broader context, although modelling and exploratory analyses 

of results aided in characterising the use of various strategies, our 

capacity to discern the origin of the individual differences observed 

remained limited. Introducing metacognition measures to better 

define participants' experiences could have yielded useful insights 

in why some individuals preferred simpler strategies while others 

engaged in more complex approaches. Evaluating aspects such as 

participants' motivation in the task and confidence in their choices 

could help assessing their inclination to actively optimise their 

behaviour (Shenhav et al., 2013; Boureau et al., 2015).  

5.7.Conclusions 

This thesis has been dedicated to enhancing our comprehension of 

how individuals navigate the challenges and limitations inherent in 

decision-making involving complex scenarios. It specifically 

focuses on the disproportion between the vast array of choices and 

information present and our capacity to assimilate and evaluate the 

necessary evidence to make optimal choices within an allotted time 

or capacity. Our findings underscore the remarkable efficiency with 

which humans deploy adaptable strategies, considering available 

resources, environmental contexts, and the potential reliance on 

automatic behaviours, prior knowledge, and heuristic approaches. 
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These strategies, despite their minimal impact on overall 

performance, appear to demand much less cognitive effort than 

fully optimal behaviours. It is noteworthy that individuals often 

settle for satisfactory choices rather than continuously striving for 

the ideal. Similar to the idea of decreasing marginal returns in 

economics, it would seem that humans ‘stop investing’ when an 

additional unit of mental resources renders too little increase in 

outcome. This notion should be pivotal when assessing for the 

optimality of human behaviour. 

A crucial aspect lies in better understanding what exactly defines 

optimality for humans, unravelling the driving forces behind our 

behaviours to delineating where our attention should centre. This 

research unveiled diverse decision-making strategies, which may 

not necessarily indicate poor performance but rather the pursuit of 

individual, specific objectives and the utilisation of simpler 

strategies that may not be universally accessible. 

Furthermore, optimality hinges on balancing expected rewards 

against the efforts required to attain them, in addition to integrating 

current goals and anticipating future needs. Employing innovative 

experimental designs that simulate real-life scenarios, incorporating 

naturalistic stimuli, numerous alternatives, and active information 

search, this study lays the groundwork for comprehending the 
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intricate elements influencing human decision-making in complex 

environments. 

As it often happens in scientific exploration, this thesis likely raises 

more questions than it resolves. Nevertheless, within this quest for 

understanding, our limited resources serve as a means to acquire 

knowledge that remains inherently, and fortunately, boundless. 
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Appendix: COGNITIVE CONTROL OR CONTROLS? 
An attempt to localise the sources of mid-frontal theta 
increase related to context-specific cognitive control 
with intracortical EEG recordings.  

Abstract 
In our previous study, we observed that mid-frontal theta 
oscillations (MFT) correlate with indicating the necessity for 
heightened cognitive control, specifically linked to monitoring 
conflict, errors, and anticipated loss. To localise the neural 
network(s) associated with these diverse signals, we collected 
behavioural and intracortical (iEEG) data from a single participant 
performing the identical price minimisation task. As anticipated, 
behavioural outcomes demonstrated that swift responses favoured 
preferred items, consistently leading to quicker selection of 
preferred items. Analysis of iEEG recordings revealed heightened 
gamma activity in frontal areas (midcingulate cortex and precentral 
regions), but we did not identify any region specifically responsive 
to increased cognitive demands. 

Introduction 
Enhancements in mid-frontal theta oscillations and BOLD activity 
in the anterior/middle cingulate cortex (ACC/MCC) and associated 
prefrontal regions (especially the dorsolateral prefontal cortex; 
dlPFC) have been linked to diverse cognitive processes, notably 
conflict, error monitoring and expected rewards or losses (Carter 
et al., 1998; MacDonald et al., 2000; Botvinick et al., 2001; 
Ridderinkhof et al., 2004). The presence of these similar activation 
patterns across varied contexts has fostered a unified perspective, 
suggesting their role in signalling the need for cognitive control 
which facilitates both within-trial (slower response times, improved 
accuracy) and between-trial adjustments (post-error slowing, 
Gratton effect).  
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In chapter I we presented a study where mid-frontal theta activity 
(MFT) increase was indeed observed in EEG in multiple cases: 
preference-price incongruence, following incorrect responses and in 
relation to the expected loss associated with the choice (∆P). While 
all these situations lead to the idea that MFT is a general marker 
signalling the need for cognitive control, we were interested to 
identify the underlying neural network at play and wondered 
whether it was the same generating those context-specific MFT 
activities. 

Indeed, several studies that directly compare cognitive control 
signalling in response to conflict or errors propose a functional 
dissociation between MFT and BOLD activity in terms of 
frequency, localisation, strength, and duration (Ullsperger & Von 
Cramon, 2001; Nee et al., 2011; Cohen & Van Gaal, 2014; 
Iannaccone et al., 2015; Muralidharan et al., 2023). A key 
distinction primarily lies in the peak theta frequency: conflict-
related theta typically resides within the high theta range (6-8Hz), 
whereas error-related theta predominantly falls within the low theta 
band (4-5Hz). This distinction was replicated in our first study (see 
Figure 1). 
Furthermore, conflict-related theta is not phase-locked to stimulus 
onset or the response(Nigbur et al., 2012; Cohen & Donner, 2013), 
unlike error-related theta, which is partly phase-locked to the 
response and associated with the error-related negativity (ERN) 
evoked potential(Luu et al., 2004; Cavanagh et al., 2009; Cavanagh 
& Frank, 2014). A recent investigation employing simultaneous 
EEG and fMRI recordings (Beldzik et al., 2022) further explores 
this distinction. Using classic conflict paradigms (Stroop and Simon 
tasks), similar MFT power enhancement (4-8Hz) in response to 
conflict and following errors were found in EEG. However, a 
negative correlation between conflict-related theta and dmPFC 
BOLD activity was found, while error-related theta exhibited a 
positive correlation with the activity in the MCC. These findings 
raise challenges in translating signals observed in EEG to those in 
fMRI and question the role of the cingulate cortex in generating 
MFT oscillations during conflict. Additional studies substantiate 
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these uncertainties, revealing various sources of midfrontal theta 
(Töllner et al., 2017; Zuure et al., 2020), linked to conflict-related 
processes but also independent from conflict (Mückschel et al., 
2017; Töllner et al., 2017). 

 

Figure 1. Error-related theta seems prominent at lower theta (4-5Hz) 
while conflict-related theta is solely present at high theta (6-7Hz). 
Topographic maps of power analyses (4 to 7Hz) contrasted between 
incorrect and correct trials (error-related theta) from the 500ms time 
window post-response (upper panels) or between incongruent and 
congruent correct trials (conflict-related theta) from the -450 to 50ms time 
window relative to response (lower panels). Power analyses are baselined 
with the 500ms window pre-stimulus onset. Results of paired t-tests 
testing the averaged power extracted from mid-central electrodes (larger 
black dots: Fz, FC1, FCz, FC2, Cz) between conditions (incorrect vs. 
correct, incongruent vs. congruent) are displayed below each map. N=40. 

In an attempt to elucidate these inconsistent findings, we had the 
opportunity to collaborate with Hospital Clinic in Barcelona to 
conduct our price minimisation task (see Methods in Chapter I) in 
patients with drug-resistant epilepsy undergoing intracranial EEG 
(iEEG) monitoring. Regrettably, our data collection was limited to 
just one participant, for which monitoring of prefrontal as well as 
midcingulate areas was planned. Nevertheless, we deemed it 
valuable to present these findings and engage in further discussion 
regarding the utilisation of iEEG recordings to precisely delineate 
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the brain network(s) signalling distinct cognitive control 
requirements. 

Methods 
Ethics statement  
The study was conducted in accordance with the Declaration of 
Helsinki and informed consent was explicitly obtained from all 
participants prior to the recordings and the performance of the tasks. 
All diagnostic, surgical and experimental procedures have been 
previously approved by The Clinical Ethical Committee of Hospital 
Clínic (Barcelona, Spain). In particular, the specific proposal to run 
the cognitive experiments for this study was approved in March 
2020 under the code number HCB/2020/0182. 

Participant  
Intracranial EEG recordings were acquired during performance of 
the price minimisation task (see Chapter I – Methods) in one subject 
(male, 32 yo) with pharmacoresistant epilepsy during the diagnostic 
monitoring period in Hospital Clínic (Barcelona, Spain). The 
participant had normal vision.  

Behavioural task 
The participant performed the exact same task as the one described 
in the previous chapter of this thesis (price minimisation task). The 
participant met the inclusion criteria outlined in the Methods section 
of Chapter I ('Experimental Conditions'). We applied the identical 
rejection criteria on the trials as used in Chapter I and pre-registered 
(https://osf.io/msdzx). In total 1001 trials were included in the 
analyses ( ).  

Data acquisition 
LFPs were recorded using 13 intracerebral multiple contact 
Microdeep® platinum–iridium Depth Electrodes (Dixi Medical, 
Besançon, France; diameter: 0.8 mm; 5–18 contacts, contact length: 
2 mm, distance between contacts: 1.5 mm) that were stereotactically 
implanted using frameless stereotaxy, neuronavigation assisted, and 

C0:303, C+:333, C−:365
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intraoperative CT-guided O-Arm and the Vertek articulated passive 
arm. In total, 151 contacts were implanted and recorded (see Table 1 
for details and Figure 2 for post-implantations schemes). The 
decision to implant, the selection of the electrode targets and the 
implantation duration were entirely made on clinical grounds using 
the standard procedure (Cardinale et al., 2013; Lachaux et al., 
2003). All recordings were obtained using a standard clinical EEG 
system (XLTEK, subsidiary of Natus Medical) with a 2048 Hz 
sampling rate. All signals were referenced to the scalp electrode 
CPz. A pre-implant Magnetic Resonance Imaging (MRI) T1 scan 
and a post-implant computed tomography (CT) scan were used to 
determine contact localizations. MR scans were obtained with a 1.5 
T unit (Magnetom Aera 1.5 T; Siemens Medical Systems, Erlangen, 
Germany) with a specific protocol that included the following 
sequence: sagittal T1-weighted gradient recalled (repetition time 
[TR] 20 ms, echo time [TE] 7.38 ms, Flip Angle [FA] 20, 1 mm 
slice thickness). 

Anatomical localisation of the SEEG electrode contacts and 
definition of regions of interest 
Contact anatomical locations were identified from the individual 
subject's pre-implant MRI after coregistration with the post-implant 
CT scan. The CT was co-registered to the T1 and contact tags and 
names were placed manually using fieldtrip’s toolbox (https://
www.fieldtriptoolbox.org/). Scans were then analysed by visual 
inspection using Brainstorm (v3). Selection of channels was done in 
native space to prevent errors. First, contacts were labelled either as 
grey matter (GM) or white matter (WM). Electrode contacts span a 
volume 2 mm long with a radius of 0.4 mm. Previous research 
suggests that electrical fields generated in GM can be measured by 
contacts in nearby WM up to ≈1/1.5 mm away (Buzsáki & Wang, 
2012; Arnulfo et al., 2015; Narizzano et al., 2017) or even further 
when analysing low frequencies using a monopolar referencing 
scheme (Vila-Vidal et al., 2023). Based on this assumption, WM 
contacts lying at a distance up to 1 mm from GM regions with no 
contact inside were assigned to that region and classified as GM. 
Contacts lying outside brain tissue or within altered brain tissue 
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according to clinicians (e.g., heterotopias, focal cortical dysplasias) 
were excluded from the analysis. The electrode contacts lying in the 
suspected epileptic focus were identified by clinical experts using 
gold-standard procedures and were also excluded from the study. 
The contacts of interest for this study were defined as those lying in 
the frontal lobe or in the anterior half of the cingulate cortex. ROIs 
(regions of interest) were defined as usually expressed in the 
cognitive literature based on fMRI and electrophysiological studies 
(e.g. dlPFC, vlPFC, M1, PMC). For the purpose of this study, the 
dlPFC (dorsolateral prefrontal cortex) was defined roughly as the 
middle frontal gyrus, the vlPFC (ventrolateral prefrontal cortex) 
was defined as the inferior frontal gyrus and the superior parts of 
the pars triangularis, pars orbitalis and pars opercularis. M1 
(primary motor cortex) was defined as the precentral gyrus and 
PMC (premotor cortex) was roughly defined as corresponding to 
Brodmann area 6, that is, as a vertical strip extending from the 
cingulate sulcus to the lateral sulcus, including caudal portions of 
the superior frontal and middle frontal gyri, and rostrally bounded 
by the precentral gyrus. The supplementary motor area (SMA) was 
located in the medial region of the frontal lobe, superior to the 
cingulate sulcus in Brodmann area 6. The midcingulate cortex 
(MCC) is defined as the caudal and posterior part of the Brodmann 
area 24 (area 24’) situated above the corpus callosum. Table 1 
summarises the number of contacts and electrodes of interest and 
their locations in the cortex. According to the initial planning the 
electrode FAIL (which stands for “frontal anterior inferior left” was 
supposed to enter the patient’s brain through the dlPFC. Upon 
inspection of the post-implant MRI, its superficial contacts were 
found to be located in the precentral gyrus, more posteriorly than 
initially planned. Activity recorded from these contacts is, 
nonetheless included in this study, in order to illustrate the extension 
of our analysis paradigm with iEEG.                     
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Table 1. Regions of interest (ROI) monitored in the patient 
localised in the frontal lobe and expressed in terms of the functional 
areas. For each electrode, lower contact numbers represent deeper 
positions in the brain. SMA: supplementary motor area, MCC: 
midcingulate cortex. 

 
Figure 2. Participant post-implant MRI brain scans showing 
different electrode trajectories in sagittal, coronal and horizontal 
planes (bottom) and 3D brain reconstruction (top). The electrodes of 
interest (FAIL and FAS) are presented in red and purple, 
respectively. 

iEEG signal pre-processing 
Besides the contacts mentioned in the previous section, we also 
excluded from the computational analysis contacts displaying 
highly non-physiological activity. SEEG signals were preprocessed 
using custommade code in Python 3 based on the Numpy, Scipy, 
and MNE libraries. Signals were analysed in the monopolar 
montage (reference to CPz). Prior to the main analysis, signals were 

Electrode Contact numbers Functional area

FAS 1, 2, 4, 5 SMA

FAIL
9, 10, 12, 13, 14 Precentral gyrus 

1 MCC
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low-pass filtered with a zero-phase FIR filter with stopband at 900 
Hz to remove aliasing effects. A high-pass zero-phase FIR filter 
with stopband at 0.1 Hz was also applied to remove slow drifts from 
the SEEG signals. Additionally, we also used a band-stop FIR filter 
at 50 Hz and its harmonics to remove the power line interference. 

Time frequency analyses 
As in the previous study, data was segmented in trials starting at 
fixation onset and ending 500ms after the stimuli disappearance. 52 
Missed trials (no response) and 3 trials with a RT inferior to 500ms 
were excluded from the analysis. We performed time frequency 
analysis, using Fieldtrip in Matlab, focusing on two specific 
frequency bands: theta (4-7 Hz) and gamma (70-120 Hz) based on 
their implication conflict processing and cognitive phenomena 
(Oehrn et al., 2014; Tang et al., 2016).  

Two different methods were used to adapt to these frequency 
bands and get reliable power estimates. To estimate low spectral 
power (4 to 30 Hz), we used similar methods as the one reported in 
the previous Chapter. We used a sliding window of 500ms on our 
defined epoch and baselined using the 500ms window preceding 
stimulus onset. Time frequency analysis was performed using short-
time Fourier transform (STFT) in steps of 3.9 ms with a single 
tapper (Hanning). For the high-frequency band, spectral power was 
estimated from 32 to 256 Hz using an adaptive multitaper method 
based on discrete prolate spheroidal sequences (DPSS, aka. Slepian 
sequences) (Mitra & Pesaran, 1999; Slepian & Pollak, 1961). Data 
was baseline corrected with the median of power extracted from the 
500ms prior to stimulus onset. For our analysis, we used custom 
made code to achieve the highest flexibility in adjusting the 
temporal and frequency smoothing for each frequency 
independently. Following this approach, we sought to find the best 
temporal resolution at lower frequencies, while obtaining more 
accurate power estimates at typically low SNR (signal-to-noise 
ratio) higher frequencies, at the expense of temporal and frequency 
resolution. As suggested by previous literature (Buzsáki & Draguhn, 
2004; Hipp et al., 2012), both the mean frequency and bandwidth of 
meaningful brain activity typically follow a logarithmic 
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progression. Low frequency activity (theta, alpha, beta) is thought 
to be oscillatory, frequency-specific, and less spatially localised, 
reflecting a sum of different contributions, in particular widespread 
postsynaptic potentials. On the other hand, high frequency activity 
(gamma, high-gamma and above) has a broadband profile and is 
typically thought to reflect locally synchronous neuronal activity. 
However, the specific frequency range of such activity is not well 
established and can vary depending on the recording technique 
(Buzsáki & Draguhn, 2004). 

To consistently capture the specificities of middle and high 
frequency activity, we computed power estimates across 13 
logarithmically scaled frequencies FOI from 32 to 256 Hz, (i.e., 
each frequency was obtained by multiplying the previous one by 

). In addition, we adjusted the spectral smoothing parameter to 
a spectral resolution of [FOI - 0.4 * FOI, FOI + 0.4 * FOI] for each 
frequency of interest FOI. Time windows were adjusted to include 
15 cycles of FOI, using shorter windows for larger frequencies. 
Independent power estimates were obtained by projecting the 
signals onto each taper. Then, single-taper estimates were averaged 
across tapers, thus obtaining a single power time course for 
frequency.  

20.25
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Statistical inference of task-related activations  
We focused our analyses on two electrodes localised in the frontal 
region (FAIL and FAS, see Table 1). In our frequency bands of 
interest (theta: 4-7 Hz and gamma: 70-120 Hz), we identified 
consecutive time points for which the power significantly differed 
from the baseline using t-tests with Monte-Carlo multiple 
comparisons correction.  

Statistical inference of activations related to increased cognitive 
control signalling   
We sought to identify electrodes responsive to indicating heightened 
cognitive control demand, gauged by amplified MFT power in the 
price minimisation task using scalp EEG recordings (refer to 
Chapter I). To achieve this, we compared various experimental 
conditions to examine a sensitivity tailored to: (1) conflict (correct 
incongruent vs. congruent trials), (2) error (incorrect vs. correct 
trials) and (3) expected loss (trials with large vs. small price 
difference - ∆P). To ensure consistency despite differences in 
response times (RT) between the experimental conditions, these 
analyses were conducted response locked. 

Results 
Behavioural analyses 
The participant’s preferences did not exhibit any significant 
correlation with the estimated prices (tau=-.06, p=.22) (no 
preference-for-expensive bias) or with the price estimation error 
(tau=-.04, p=.43).  

The participant’s behaviour at the price-minimisation task (binary 
choices) tally with results observed in the population of healthy 
participants previously reported (see Chapter I). Specifically, 
accuracy demonstrated an increasing trend with ∆P (in euros) across 
different ranges ([0,1]: .50, (1,2]: .66, (2,3]: .70) and RT exhibited a 
decrease (mean±s.d. in seconds, [0,1]:.78±.14, (1,2]: .76±.14, (2,3]: 
.75±.14), confirming that trials with larger ∆P are perceived as 
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easier. The influence of congruency on accuracy was also apparent, 
as faster decisions (categorised by median split on RT) showed 
greater accuracy in congruent trials (proportion of correct answers: 
.71) compared to incongruent trials (.67). Conversely, slower 
decisions demonstrated the opposite pattern, with congruent choices 
(.62) showing lower accuracy than incongruent choices (.72). 
Response time was additionally affected by the participant's 
preference, as correct congruent trials were associated with quicker 
responses than incorrect congruent trials (mean±s.d. in seconds, : 
.75±.14, : .76±.13), while incorrect congruent trials exhibited 
slower responses than incongruent trials ( : .80±.14, : .73±.13). 
In essence, preferred items were consistently selected more rapidly 
compared to non-preferred items. 

Identification of task-sensitive response in frontal electrodes      
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C−
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Figure 3. Example of time-frequency analyses of the electrode FAIL1, 
close to the MCC. Time-frequency analyses of low frequencies (4-30 Hz 
– lower panels) and high frequencies (32-256 Hz, log-scale – upper 
panels) either locked to the stimulus onset (left panels) or the response 
(right panels). On the x-axis, 0 indicates stimulus onset and response 
respectively. Dashed vertical lines mark the participant averaged reaction-
time and stimulus onset, respectively. 

We initially examined whether the oscillatory activity of electrodes 
situated in the frontal cortex showed modulation in response to the 
task through time-frequency analyses. These analyses were aligned 
with both the stimulus and the response (example of the electrode 
situated in the MCC – Figure 3). The findings indicated heightened 
gamma activity following stimulus presentation and preceding the 
response across all electrodes (Table 2 and Figure 5, a pattern 
consistent with previous observations in frontal regions (Tang et al., 
2016; Bartoli et al., 2018). We observed that, in the electrode in the 
MCC, this increase in gamma activity was much more constrained 
in time (from 117ms until 461ms after stimulus onset) compared to 
the other electrodes for which the gamma enhancement lasted 
longer (see Table 2). Additionally, we found a decrease in gamma 
activity post response only in the MCC, suggesting that the activity 
recorded at this site may be very specific to the ongoing task.  

 
Figure 4. Task sensitive theta activity. Theta power (4-7 Hz) in decibels 
(dB) depending on the time from stimulus onset (left panel) or from the 
response (right panel), including only correct trials. The dotted vertical 
line represents the averaged reaction time.  
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Figure 5. Task sensitive gamma activity. Gamma power (70-120 Hz) in 
decibels (dB) depending on the time from stimulus onset (left panel) or 
from the response (right panel), including only correct trials. The dotted 
vertical line represents the averaged reaction time.  
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Table 2. Electrodes’ sensitivity to the task. For each time point, the 
observed activity is tested using two-tailed one sample t-tests from 
-250ms to 1100ms relative to stimulus onset (stimulus locked, left part) 
and from -1100ms to 200ms relative to the response (response locked, 
right part). Consecutive significant comparisons (for alpha=.05) of at least 
100ms were corrected using Monte-Carlo multiples comparisons 
correction. Times at which a significant cluster starts and ends are 
reported, as well as the sum of the t statistics of the cluster and its adjusted 
p-value. A negative t statistics implies a decrease in the oscillatory activity 
compared to the baseline, whereas a positive t statistics implies an 
increase.  

In the theta band, however, outcomes were less uniform 
between the stimulus-locked and response-locked analyses. 
Substantial reductions in theta power were solely evident in both 
analyses for electrodes localised in the precentral gyrus and the 
MCC (Table 2 and Figure 4. Nevertheless, except for the electrode 
near the MCC, the observed decline in theta power persisted post-
response, implying that these activities might not directly be 
associated with the decision-making process. Additionally, theta 
power was found to increase after stimulus onset in classical 
conflict tasks (Stroop, Tang et al., 2016; Bartoli et al., 2018), which 
further suggests that the theta modulation observed may not be 
related to the decision process.  

Cognitive control sensitive responses in the frontal cortex 
Our subsequent analysis aimed to investigate if the oscillatory 
activity of the task-sensitive electrodes was influenced by 
alterations in cognitive demands. To explore this, we conducted 
three comparisons: incongruent versus congruent trials, incorrect 
versus correct trials, and trials with large versus small ∆P. These 
comparisons were associated with heightened cognitive control 
signalling linked to conflict monitoring, error assessment, and 
expected loss, respectively. However, none of these comparisons 
revealed any statistically significant differences that withstood 
multiple comparison corrections. Below, we discuss potential 
explanations for this lack of positive results. 
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Discussion 
The aim of this study was to explore the brain networks responsible 
for heightened MFT power linked to increased cognitive control 
demands observed in our prior research (Chapter I).  

We successfully demonstrated that our analysis pipeline can 
be applied to iEEG data to identify areas modulated by a cognitive 
task like ours in an exploratory fashion. Specifically, we employed 
diverse time-frequency analyses for low and high frequencies to 
capture their distinctive features, prioritising sensitivity over 
spectral resolution for higher frequencies. We identified frontal 
regions responsive to the task, modulated at low (theta) and high 
frequencies (gamma), notably the MCC whose activity was 
modulated in both frequency ranges. In comparison to scalp EEG 
recordings, iEEG enabled to access localised activity in deep brain 
structures and explore high frequency neural activity that may 
provide valuable insights about the underlying neural networks and 
dynamics. Overall, our successful implementation of the price 
minimisation task with unique patients in a clinical setting lays the 
foundation for potential future collaborations. 

Nevertheless, the study encountered significant limitations, 
primarily attributable to the restricted dataset and the placement of 
electrodes. These electrodes were indeed not positioned in brain 
regions typically associated with generating MFT, notably the 
dACC and dlPFC. The constraints encountered here are prevalent in 
iEEG studies, where electrode implantation, specific to each patient, 
hinders comprehensive comparisons between individuals and 
generalisations concerning the roles of specific brain areas. Studies 
attempting to pinpoint the sources of cognitive control signalling 
using iEEG recordings grapple with this challenge, revealing 
inconsistencies. For instance, while consistent enhancements in 
gamma band activity associated with conflict in the cingulate cortex 
and dlPFC have been noted, contradictory results concerning theta 
oscillations have emerged, displaying either increased or decreased 
theta power in these regions and differences in the strength of 
gamma-theta coupling (Oehrn et al., 2014; Tang et al., 2016; Bartoli 
et al., 2018), raising questions about the hypothesis that conflict 
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resolution is facilitated by the coordination and integration of 
activity across distributed cortical networks (Canolty et al., 2006; 
Womelsdorf et al., 2010; Cavanagh & Frank, 2014). Moreover, a 
recent study demonstrated that modulations in iEEG activity in 
prefrontal structures in response to conflict are task-specific (Xiao 
et al., 2023) and suggests that cognitive control processes recruit 
networks which are distributed and specific to the task at hand 
rather than a single brain region.  

Interpreting and comparing these findings remains 
challenging due not only to the often limited iEEG data collection, 
sometimes restricted to a few electrodes in areas of interest but also 
due to the use of varying nomenclatures, brain atlases, and 
analytical methods. These include differences in signal 
characterisation (referential or bipolar montages), utilisation of 
single electrodes versus averaging across several, variations in the 
definition of frequency ranges, specifically gamma, and several 
choices regarding time-frequency decomposition (sliding-window 
Fourier, wavelet or multitaper methods, time and frequency 
smoothing parameters which affect signal to noise ratio and 
resolution). Future research is necessary to unify these findings and 
clarify the neural mechanisms underpinning the detection and 
resolution of conflict. Moreover, exploring heightened cognitive 
control across various scenarios (such as error monitoring or 
expected rewards) within the same individuals is essential to 
advance our understanding of the generality and specificity of these 
phenomena. Given its better characterisation in scalp EEG 
recordings, measuring simultaneously both scalp and intracortical 
potentials would also be beneficial in comprehending how neural 
signals, particularly slow-frequency activity, translate across 
different scales. 

Finally, the inconsistencies observed in previous iEEG 
studies may signify mechanisms that might not be discernible 
through a mere increase in localised brain activity. Instead, they 
could be identified through distinctive synchronisation patterns of 
brain rhythms across a broadly distributed prefrontal-cingulate 
network. 

228



References 
Arnulfo, G., Hirvonen, J., Nobili, L., Palva, S., & Palva, J. M. 

(2015). Phase and amplitude correlations in resting-state 
activity in human stereotactical EEG recordings. 
NeuroImage, 112, 114-127. https://doi.org/10.1016/
j.neuroimage.2015.02.031 

Bartoli, E., Conner, C. R., Kadipasaoglu, C. M., Yellapantula, S., 
Rollo, M. J., Carter, C. S., & Tandon, N. (2018). Temporal 
Dynamics of Human Frontal and Cingulate Neural Activity 
During Conflict and Cognitive Control. Cerebral Cortex, 
28(11), 3842-3856. https://doi.org/10.1093/cercor/bhx245 

Beldzik, E., Ullsperger, M., Domagalik, A., & Marek, T. (2022). 
Conflict- and error-related theta activities are coupled to 
BOLD signals in different brain regions. NeuroImage, 256, 
119264. https://doi.org/10.1016/j.neuroimage.2022.119264 

Botvinick, M., Carter, C. S., Braver, T. S., Barch, D. M., & Cohen, 
J. D. (2001). Conflict Monitoring and Cognitive Control. 
Psychological Review, 108, 624-652. https://doi.org/
10.1037/0033-295X.108.3.624 

Buzsáki, G., & Draguhn, A. (2004). Neuronal Oscillations in 
Cortical Networks. Science, 304(5679), 1926-1929. https://
doi.org/10.1126/science.1099745 

Buzsáki, G., & Wang, X.-J. (2012). Mechanisms of Gamma 
Oscillations. Annual review of neuroscience, 35, 203-225. 
https://doi.org/10.1146/annurev-neuro-062111-150444 

Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. 
S., Kirsch, H. E., Berger, M. S., Barbaro, N. M., & Knight, 
R. T. (2006). High Gamma Power Is Phase-Locked to Theta 
Oscillations in Human Neocortex. Science, 313(5793), 
1626-1628. https://doi.org/10.1126/science.1128115 

Cardinale, F., Cossu, M., Castana, L., Casaceli, G., Schiariti, M. P., 
Miserocchi, A., Fuschillo, D., Moscato, A., Caborni, C., 
A r n u l f o , G . , & L o R u s s o , G . ( 2 0 1 3 ) . 
Stereoelectroencephalography: Surgical Methodology, 
Safety, and Stereotactic Application Accuracy in 500 

229



Procedures. Neurosurgery, 72(3), 353. https://doi.org/
10.1227/NEU.0b013e31827d1161 

Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, 
D., & Cohen, J. D. (1998). Anterior Cingulate Cortex, Error 
Detection, and the Online Monitoring of Performance. 
Science, 280(5364), 747-749. https://doi.org/10.1126/
science.280.5364.747 

Cavanagh, J. F., Cohen, M. X., & Allen, J. J. B. (2009). Prelude to 
and Resolution of an Error: EEG Phase Synchrony Reveals 
Cognitive Control Dynamics during Action Monitoring. The 
Journal of Neuroscience, 29(1), 98-105. https://doi.org/
10.1523/JNEUROSCI.4137-08.2009 

Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a 
mechanism for cognitive control. Trends in Cognitive 
Sciences, 18(8), 414-421. https://doi.org/10.1016/
j.tics.2014.04.012 

Cohen, M. X., & Donner, T. H. (2013). Midfrontal conflict-related 
theta-band power reflects neural oscillations that predict 
behavior. Journal of Neurophysiology, 110(12), 2752-2763. 
https://doi.org/10.1152/jn.00479.2013 

Cohen, M. X., & Van Gaal, S. (2014). Subthreshold muscle twitches 
dissociate oscillatory neural signatures of conflicts from 
errors. NeuroImage, 86, 503-513. https://doi.org/10.1016/
j.neuroimage.2013.10.033 

Hipp, J. F., Hawellek, D. J., Corbetta, M., Siegel, M., & Engel, A. 
K. (2012). Large-scale cortical correlation structure of 
spontaneous oscillatory activity. Nature Neuroscience, 
15(6), Article 6. https://doi.org/10.1038/nn.3101 

Iannaccone, R., Hauser, T. U., Staempfli, P., Walitza, S., Brandeis, 
D., & Brem, S. (2015). Conflict monitoring and error 
processing: New insights from simultaneous EEG–fMRI. 
NeuroImage, 105, 395-407. https://doi.org/10.1016/
j.neuroimage.2014.10.028 

230



Lachaux, J. P., Rudrauf, D., & Kahane, P. (2003). Intracranial EEG 
and human brain mapping. Journal of Physiology-Paris, 
9 7 ( 4 ) , 6 1 3 - 6 2 8 . h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 /
j.jphysparis.2004.01.018 

Luu, P., Tucker, D. M., & Makeig, S. (2004). Frontal midline theta 
and the error-related negativity: Neurophysiological 
mechanisms of action regulation. Clinical Neurophysiology, 
11 5 ( 8 ) , 1 8 2 1 - 1 8 3 5 . h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 /
j.clinph.2004.03.031 

MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. 
(2000). Dissociating the Role of the Dorsolateral Prefrontal 
and Anterior Cingulate Cortex in Cognitive Control. 
Science, 288(5472), 1835-1838. https://doi.org/10.1126/
science.288.5472.1835 

Mitra, P. P., & Pesaran, B. (1999). Analysis of dynamic brain 
imaging data. Biophysical Journal, 76(2), 691-708. https://
doi.org/10.1016/S0006-3495(99)77236-X 

Mückschel, M., Dippel, G., & Beste, C. (2017). Distinguishing 
stimulus and response codes in theta oscillations in 
prefrontal areas during inhibitory control of automated 
responses. Human Brain Mapping, 38(11), 5681-5690. 
https://doi.org/10.1002/HBM.23757 

Muralidharan, V., Aron, A. R., Cohen, M. X., & Schmidt, R. (2023). 
Two modes of midfrontal theta suggest a role in conflict and 
error processing. NeuroImage, 273, 120107. https://doi.org/
10.1016/J.NEUROIMAGE.2023.120107 

Narizzano, M., Arnulfo, G., Ricci, S., Toselli, B., Tisdall, M., 
Canessa, A., Fato, M. M., & Cardinale, F. (2017). SEEG 
assistant: A 3DSlicer extension to support epilepsy surgery. 
BMC Bioinformatics, 18(1), 124. https://doi.org/10.1186/
s12859-017-1545-8 

Nee, D. E., Kastner, S., & Brown, J. W. (2011). Functional 
heterogeneity of conflict, error, task-switching, and 
unexpectedness effects within medial prefrontal cortex. 

231



NeuroImage, 54(1), 528-540. https://doi.org/10.1016/
j.neuroimage.2010.08.027 

Nigbur, R., Cohen, M. X., Ridderinkhof, K. R., & Stürmer, B. 
(2012). Theta Dynamics Reveal Domain-specific Control 
over Stimulus and Response Conflict. 

Oehrn, C. R., Hanslmayr, S., Fell, J., Deuker, L., Kremers, N. A., 
Do Lam, A. T., Elger, C. E., & Axmacher, N. (2014). Neural 
Communication Patterns Underlying Conflict Detection, 
Resolution, and Adaptation. Journal of Neuroscience, 
34 (31 ) , 10438-10452 . h t tp s : / / do i . o rg /10 .1523 /
JNEUROSCI.3099-13.2014 

Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, 
S. (2004). The Role of the Medial Frontal Cortex in 
Cognitive Control. Science, 306(5695), 443-447. https://
doi.org/10.1126/science.1100301 

Slepian, D., & Pollak, H. O. (1961). Prolate Spheroidal Wave 
Functions, Fourier Analysis and Uncertainty—I. Bell System 
Technical Journal, 40(1), 43-63. https://doi.org/10.1002/
j.1538-7305.1961.tb03976.x 

Tang, H., Yu, H.-Y., Chou, C.-C., Crone, N. E., Madsen, J. R., 
Anderson, W. S., & Kreiman, G. (2016). Cascade of neural 
processing orchestrates cognitive control in human frontal 
cortex. eLife, 5, e12352. https://doi.org/10.7554/eLife.12352 

Töllner, T., Wang, Y., Makeig, S., Müller, H. J., Jung, T. P., & 
Gramann, K. (2017). Two independent frontal midline theta 
oscillations during conflict detection and adaptation in a 
Simon-type manual reaching task. Journal of Neuroscience, 
3 7 ( 9 ) , 2 5 0 4 - 2 5 1 5 . h t t p s : / / d o i . o r g / 1 0 . 1 5 2 3 /
JNEUROSCI.1752-16.2017 

Ullsperger, M., & Von Cramon, D. Y. (2001). Subprocesses of 
Performance Monitoring: A Dissociation of Error Processing 
and Response Competition Revealed by Event-Related 
fMRI and ERPs. NeuroImage, 14(6), 1387-1401. https://
doi.org/10.1006/nimg.2001.0935 

232



Vila-Vidal, M., Khawaja, M., Carreño, M., Roldán, P., Rumià, J., 
Donaire, A., Deco, G., & Tauste Campo, A. (2023). 
Assessing the coupling between local neural activity and 
global connectivity fluctuations: Application to human 
intracranial electroencephalography during a cognitive task. 
Human Brain Mapping, 44(3), 1173-1192. https://doi.org/
10.1002/hbm.26150 

Womelsdorf, T., Vinck, M., Leung, S., & Everling, S. (2010). 
Selective Theta-Synchronization of Choice-Relevant 
Information Subserves Goal-Directed Behavior. Frontiers in 
Human Neuroscience, 4. https://www.frontiersin.org/articles/
10.3389/fnhum.2010.00210 

Xiao, Y., Chou, C.-C., Cosgrove, G. R., Crone, N. E., Stone, S., 
Madsen, J. R., Reucroft, I., Shih, Y.-C., Weisholtz, D., Yu, 
H.-Y., Anderson, W. S., & Kreiman, G. (2023). Cross-task 
specificity and within-task invariance of cognitive control 
processes. Cell Reports, 42(1), 111919. https://doi.org/
10.1016/j.celrep.2022.111919 

Zuure, M. B., Hinkley, L. B., Tiesinga, P. H. E., Nagarajan, S. S., & 
Cohen, M. X. (2020). Multiple Midfrontal Thetas Revealed 
by Source Separation of Simultaneous MEG and EEG. The 
Journal of Neuroscience, 40(40), 7702-7713. https://doi.org/
10.1523/JNEUROSCI.0321-20.2020 

233



234



BIBLIOGRAPHY  

Afacan-Seref, K., Steinemann, N. A., Blangero, A., & Kelly, S. P. 
(2018). Dynamic Interplay of Value and Sensory Information in 
High-Speed Decision Making. Current Biology, 28(5), 795-802.e6. 
https://doi.org/10.1016/J.CUB.2018.01.071 

Allcott, H., & Gentzkow, M. (2017). Social Media and Fake News 
in the 2016 Election. Journal of Economic Perspectives, 31(2), 211–
236. https://doi.org/10.1257/jep.31.2.211 

Allport, D. A. (1980). Attention and performance. In Cognitive 
psychology: New directions (London: Routledge&Kegan Paul, pp. 
112–153). G. I. Claxton. 

Allport, G. (1954). The Nature of Prejudice (Addison Wesley, New 
York). 

Anderson, A. K., Christoff, K., Panitz, D., De Rosa, E., & Gabrieli, 
J. D. E. (2003). Neural Correlates of the Automatic Processing of 
Threat Facial Signals. The Journal of Neuroscience, 23(13), 5627–
5633. https://doi.org/10.1523/JNEUROSCI.23-13-05627.2003 

Anderson, B. A. (2013). A value-driven mechanism of attentional 
selection. Journal of Vision, 13(3). https://doi.org/10.1167/13.3.7 

Anderson, B. A. (2016). The attention habit: How reward learning 
shapes attentional selection. Annals of the New York Academy of 
Sciences, 1369(1), 24–39. https://doi.org/10.1111/nyas.12957 

Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven 
attentional capture. Proceedings of the National Academy of 
Sciences, 108(25), 10367–10371. https://doi.org/10.1073/
pnas.1104047108 

Armel, K. C., Beaumel, A., & Rangel, A. (2008). Biasing simple 
choices by manipulating relative visual attention. In Judgment and 
Decision Making (Vol. 3, Issue 5, pp. 396–403). 

Barbosa, J., Stein, H., Zorowitz, S., Niv, Y., Summerfield, C., Soto-
Faraco, S., & Hyafil, A. (2022). A practical guide for studying 

235



human behavior in the lab. Behavior Research Methods, 55(1), 58–
76. https://doi.org/10.3758/s13428-022-01793-9 

Baumeister, R. F. (2002). Yielding to Temptation: Self-Control 
Failure, Impulsive Purchasing, and Consumer Behavior. Journal of 
Consumer Research , 28(4) , 670–676. ht tps: / /doi .org/
10.1086/338209 

Bays, P. M., & Husain, M. (2008). Dynamic Shifts of Limited 
Working Memory Resources in Human Vision. Science, 321(5890), 
851–854. https://doi.org/10.1126/science.1158023 

Beach, L. R., & Mitchell, T. R. (1978). A Contingency Model for 
the Selection of Decision Strategies. The Academy of Management 
Review, 3(3), 439–449. https://doi.org/10.2307/257535 

Benartzi, S., & Thaler, R. H. (2001). Naive Diversification 
Strategies in Defined Contribution Saving Plans. The American 
Economic Review, 91(1), 79–98. 

Berlad, I., & Pratt, H. (1995). P300 in response to the subject’s own 
name. Electroencephalography and Clinical Neurophysiology/
Evoked Potentials Section, 96(5), 472–474. https://doi.org/
10.1016/0168-5597(95)00116-A 

Blangero, A., & Kelly, S. P. (2017). Neural signature of value-based 
sensorimotor prioritization in humans. Journal of Neuroscience, 
3 7 ( 4 4 ) , 1 0 7 2 5 – 1 0 7 3 7 . h t t p s : / / d o i . o r g / 1 0 . 1 5 2 3 /
JNEUROSCI.1164-17.2017 

Boksem, M. A. S., Meijman, T. F., & Lorist, M. M. (2005). Effects 
of mental fatigue on attention: An ERP study. Cognitive Brain 
R e s e a rc h , 2 5 ( 1 ) , 1 0 7 – 11 6 . h t t p s : / / d o i . o rg / 1 0 . 1 0 1 6 /
j.cogbrainres.2005.04.011 

Boksem, M. A. S., & Tops, M. (2008). Mental fatigue: Costs and 
benefits. Brain Research Reviews, 59(1), 125–139. https://doi.org/
10.1016/j.brainresrev.2008.07.001 

Bonner, S. E., & Sprinkle, G. B. (2002). The effects of monetary 
incentives on effort and task performance: Theories, evidence, and a 
framework for research. Accounting, Organizations and Society, 
27(4), 303–345. https://doi.org/10.1016/S0361-3682(01)00052-6 

236



Botvinick, M., Cohen, J. D., & Carter, C. S. (2004). Conflict 
monitoring and anterior cingulate cortex: An update. Trends in 
Cognitive Sciences, 8(12), 539–546. https://doi.org/10.1016/
J.TICS.2004.10.003 

Botvinick, M. M. (2007). Conflict monitoring and decision making: 
Reconciling two perspectives on anterior cingulate function. 
Cognitive, Affective, & Behavioral Neuroscience, 7(4), 356–366. 
https://doi.org/10.3758/CABN.7.4.356 

Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. 
D. (1999). Conflict monitoring versus selection-for-action in 
anterior cingulate cortex. Nature, 402(6758), Article 6758. https://
doi.org/10.1038/46035 

Boureau, Y.-L., Sokol-Hessner, P., & Daw, N. D. (2015). Deciding 
How To Decide: Self-Control and Meta-Decision Making. Trends in 
Cognitive Sciences, 19(11), 700–710. https://doi.org/10.1016/
j.tics.2015.08.013 

Bradbury, N. A. (2016). Attention span during lectures: 8 seconds, 
10 minutes, or more? Advances in Physiology Education, 40(4), 
509–513. https://doi.org/10.1152/advan.00109.2016 

Brandt, M. J., Evans, A. M., & Crawford, J. T. (2015). The 
Unthinking or Confident Extremist? Political Extremists Are More 
Likely Than Moderates to Reject Experimenter-Generated Anchors. 
Psychological Science, 26(2), 189–202. https://doi.org/
10.1177/0956797614559730 

Bustamante, L., Lieder, F., Musslick, S., Shenhav, A., & Cohen, J. 
(2021). Learning to Overexert Cognitive Control in a Stroop Task. 
Cognitive, Affective, & Behavioral Neuroscience, 21(3), 453–471. 
https://doi.org/10.3758/s13415-020-00845-x 

Callaway, F., Van Opheusden, B., Gul, S., Das, P., Krueger, P., 
Griffiths, T. L., & Lieder, F. (2021). Rational use of cognitive 
resources in human planning. 

Carretié, L., Hinojosa, J. A., López-Martín, S., Albert, J., Tapia, M., 
& Pozo, M. A. (2009). Danger is worse when it moves: Neural and 
behavioral indices of enhanced attentional capture by dynamic 

237



threatening stimuli. Neuropsychologia, 47(2), 364–369. https://
doi.org/10.1016/j.neuropsychologia.2008.09.007 

Carter, C. S., & van Veen, V. (2007). Anterior cingulate cortex and 
conflict detection: An update of theory and data. Cognitive, 
Affective, & Behavioral Neuroscience, 7(4), 367–379. https://
doi.org/10.3758/CABN.7.4.367 

Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a 
mechanism for cognitive control. Trends in Cognitive Sciences, 
18(8), 414–421. https://doi.org/10.1016/j.tics.2014.04.012 

Cerasoli, C. P., Nicklin, J. M., & Ford, M. T. (2014). Intrinsic 
motivation and extrinsic incentives jointly predict performance: A 
40-year meta-analysis. Psychological Bulletin, 140(4), 980–1008. 
https://doi.org/10.1037/a0035661 

Cohen, J. D. (2017). Cognitive Control: Core Constructs and 
Current Considerations. In T. Egner (Ed.), The Wiley Handbook of 
Cognitive Control (1st ed., pp. 1–28). Wiley. https://doi.org/
10.1002/9781118920497.ch1 

Corbett, E. A., Martinez-Rodriguez, L. A., Judd, C., O’connell, R. 
G., & Kelly, S. P. (2023). Multiphasic value biases in fast-paced 
decisions. eLife, 12. https://doi.org/10.7554/eLife.67711 

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed 
and stimulus-driven attention in the brain. Nature Reviews 
Neuroscience, 3(3), Article 3. https://doi.org/10.1038/nrn755 

Cowan, N. (1998). Visual and auditory workiing memory capacity. 
Trends in Cognitive Sciences, 2(3). http://www.enseignementsup-
recherche.gouv.fr/cid22657/maitres-de-conferences.html 

Cowan, N. (2010). The Magical Mystery Four: How Is Working 
Memory Capacity Limited, and Why? Current Directions in 
Psychological Science , 19(1) , 51–57. ht tps: / /doi .org/
10.1177/0963721409359277 

Deck, C., & Jahedi, S. (2015). The effect of cognitive load on 
economic decision making: A survey and new experiments. 
European Economic Review, 78, 97–119. https://doi.org/10.1016/
j.euroecorev.2015.05.004 

238



Ditto, P. H., Liu, B. S., Clark, C. J., Wojcik, S. P., Chen, E. E., 
Grady, R. H., Celniker, J. B., & Zinger, J. F. (2019). At Least Bias Is 
Bipartisan: A Meta-Analytic Comparison of Partisan Bias in 
Liberals and Conservatives. Perspectives on Psychological Science, 
14(2), 273–291. https://doi.org/10.1177/1745691617746796 

Donders, F. C. (1969). On the speed of mental processes. Acta 
P s y c h o l o g i c a , 3 0 , 4 1 2 – 4 3 1 . h t t p s : / / d o i . o r g /
10.1016/0001-6918(69)90065-1 

Engelmann, J., Damaraju, E., Padmala, S., & Pessoa, L. (2009). 
Combined effects of attention and motivation on visual task 
performance: Transient and sustained motivational effects. 
Frontiers in Human Neuroscience, 3. https://www.frontiersin.org/
articles/10.3389/neuro.09.004.2009 

Eppler, M. J., & Mengis, J. (2004). The Concept of Information 
Overload: A Review of Literature from Organization Science, 
Accounting, Marketing, MIS, and Related Disciplines. The 
Information Society , 20(5) , 325–344. ht tps: / /doi .org/
10.1080/01972240490507974 

Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters 
upon the identification of a target letter in a nonsearch task. 
Perception & Psychophysics, 16(1), 143–149. https://doi.org/
10.3758/BF03203267 

Feng, S. F., Schwemmer, M., Gershman, S. J., & Cohen, J. D. 
(2014). Multitasking versus multiplexing: Toward a normative 
account of limitations in the simultaneous execution of control-
demanding behaviors. Cognitive, Affective, & Behavioral 
Neuroscience 2014 14:1, 14(1), 129–146. https://doi.org/10.3758/
S13415-013-0236-9 

Feuerriegel, D., Jiwa, M., Turner, W. F., Andrejević, M., Hester, R., 
& Bode, S. (2021). Tracking dynamic adjustments to decision 
making and performance monitoring processes in conflict tasks. 
N e u ro I m a g e , 2 3 8 , 11 8 2 6 5 . h t t p s : / / d o i . o rg / 1 0 . 1 0 1 6 /
j.neuroimage.2021.118265 

Frömer, R., Lin, H., Dean Wolf, C. K., Inzlicht, M., & Shenhav, A. 
(2021). Expectations of reward and efficacy guide cognitive control 

239



allocation. Nature Communications, 12(1), Article 1. https://doi.org/
10.1038/s41467-021-21315-z 

Garner, K. G., & Dux, P. E. (2015). Training conquers multitasking 
costs by dividing task representations in the frontoparietal-
subcortical system. Proceedings of the National Academy of 
Sciences, 112(46), 14372–14377. https://doi.org/10.1073/
pnas.1511423112 

Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic decision 
making. Annual Review of Psychology, 62, 451–482. https://doi.org/
10.1146/annurev-psych-120709-145346 

Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the Fast and 
Frugal Way: Models of Bounded Rationality. Psychological Review, 
104(4), 650–669. 

Gold, J. I., & Shadlen, M. N. (2002). Banburismus and the brain: 
Decoding the relationship between sensory stimuli, decisions, and 
reward. Neuron, 36(2), 299–308. 

Gorodnichenko, Y., Pham, T., & Talavera, O. (2021). Social media, 
sentiment and public opinions: Evidence from #Brexit and 
#USElection. European Economic Review, 136, 103772. https://
doi.org/10.1016/j.euroecorev.2021.103772 

Griffiths, T. L., Lieder, F., & Goodman, N. D. (2015). Rational Use 
of Cognitive Resources: Levels of Analysis Between the 
Computational and the Algorithmic. Topics in Cognitive Science, 7, 
217–229. https://doi.org/10.1111/tops.12142 

Hanjra, M. A., & Qureshi, M. E. (2010). Global water crisis and 
future food security in an era of climate change. Food Policy, 35(5), 
365–377. https://doi.org/10.1016/j.foodpol.2010.05.006 

Harari, Y. N. (2017). Homo Deus. A brief history of tomorrow (New 
York: Vintage). 

Hauser, J., & Wernerfel, T. (1990). An Evaluation Cost Model of 
Consideration Sets. https://academic.oup.com/jcr/article/
16/4/393/1787720 

240



Herbig, P. A., & Kramer, H. (1994). The Effect of Information 
Overload on the Innovation Choice Process: Innovation Overload. 
Journal of Consumer Marketing, 11(2), 45–54. https://doi.org/
10.1108/07363769410058920 

Hertwig, R., Davis, J. N., & Sulloway, F. J. (2002). Parental 
investment: How an equity motive can produce inequality. 
Psychological Bulletin, 128(5), 728–745. https://doi.org/
10.1037/0033-2909.128.5.728 

Hickey, C., Chelazzi, L., & Theeuwes, J. (2011). Reward has a 
residual impact on target selection in visual search, but not on the 
suppression of distractors. Visual Cognition, 19(1), 117–128. https://
doi.org/10.1080/13506285.2010.503946 

Iyengar, S. S., & Lepper, M. R. (2000). When Choice is 
Demotivating: Can One Desire Too Much of a Good Thing? https://
doi.org/10.1037/0022-3514.79.6.995 

Kahneman, D. (2011). Thinking, Fast and Slow. Farrar, Straus and 
Giroux. 

Kashdan, T. B., Stiksma, M. C., Disabato, D. J., McKnight, P. E., 
Bekier, J., Kaji, J., & Lazarus, R. (2018). The five-dimensional 
curiosity scale: Capturing the bandwidth of curiosity and identifying 
four unique subgroups of curious people. Journal of Research in 
Personality, 73, 130–149. https://doi.org/10.1016/j.jrp.2017.11.011 

Klyszejko, Z., Rahmati, M., & Curtis, C. E. (2014). Attentional 
priority determines working memory precision. Vision Research, 
105, 70–76. https://doi.org/10.1016/j.visres.2014.09.002 

Kool, W., McGuire, J. T., Rosen, Z. B., & Botvinick, M. M. (2010). 
Decision Making and the Avoidance of Cognitive Demand. Journal 
of Experimental Psychology. General, 139(4), 665–682. https://
doi.org/10.1037/a0020198 

Koster, E. H. W., Crombez, G., Van Damme, S., Verschuere, B., & 
De Houwer, J. (2004). Does Imminent Threat Capture and Hold 
At ten t ion? Emot ion , 4 (3 ) , 312–317 . h t tps : / /do i .o rg /
10.1037/1528-3542.4.3.312 

241



Kouneiher, F., Charron, S., & Koechlin, E. (2009). Motivation and 
cognitive control in the human prefrontal cortex. Nature 
Neuroscience 2009 12:7, 12(7), 939–945. https://doi.org/10.1038/
nn.2321 

Krajbich, I., Armel, C., & Rangel, A. (2010). Visual fixations and 
the computation and comparison of value in simple choice. Nature 
Neuroscience, 13(10), 1292–1298. https://doi.org/10.1038/nn.2635 

Krawczyk, D. C., Gazzaley, A., & D’Esposito, M. (2007). Reward 
modulation of prefrontal and visual association cortex during an 
incentive working memory task. Brain Research, 1141, 168–177. 
https://doi.org/10.1016/j.brainres.2007.01.052 

Kryven, M., Ullman, T. D., Cowan, W., & Tenenbaum, J. B. (2021). 
Plans or Outcomes: How Do We Attribute Intelligence to Others? 
Cognitive Science, 45(9), e13041. https://doi.org/10.1111/
cogs.13041 

Lavie, N. (2010). Attention, Distraction, and Cognitive Control 
Under Load. Current Directions in Psychological Science, 19(3), 
143–148. https://doi.org/10.1177/0963721410370295 

Lejarraga, T., & Hertwig, R. (2021). How experimental methods 
shaped views on human competence and rationality. Psychological 
Bulletin, 147(6), 535–564. https://doi.org/10.1037/bul0000324 

Libera, C. D., & Chelazzi, L. (2006). Visual Selective Attention and 
the Effects of Monetary Rewards. Psychological Science, 17(3), 
222–227. https://doi.org/10.1111/j.1467-9280.2006.01689.x 

Lieder, F., & Griffiths, T. L. (2020). Resource-rational analysis: 
Understanding human cognition as the optimal use of limited 
computational resources. Behavioral and Brain Sciences, 43, e1. 
https://doi.org/10.1017/S0140525X1900061X 

Lieder, F., Shenhav, A., Musslick, S., & Griffiths, T. L. (2018). 
Rational metareasoning and the plasticity of cognitive control. 
PLOS Computational Biology, 14(4), e1006043. https://doi.org/
10.1371/journal.pcbi.1006043 

Liu, P., & Li, Z. (2012). Task complexity: A review and 
conceptualization framework. International Journal of Industrial 

242



Ergonomics , 42(6) , 553–568. ht tps: / /doi .org/10.1016/
j.ergon.2012.09.001 

Lorenz-Spreen, P., Geers, M., Pachur, T., Hertwig, R., 
Lewandowsky, S., & Herzog, S. M. (2021). Boosting people’s 
ability to detect microtargeted advertising. Scientific Reports, 11(1), 
Article 1. https://doi.org/10.1038/s41598-021-94796-z 

Lorist, M. M., Boksem, M. A. S., & Ridderinkhof, K. R. (2005). 
Impaired cognitive control and reduced cingulate activity during 
mental fatigue. Cognitive Brain Research, 24(2), 199–205. https://
doi.org/10.1016/j.cogbrainres.2005.01.018 

Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of 
working memory. Nature Neuroscience, 17(3), 347. https://doi.org/
10.1038/NN.3655 

Macrae, C. N., Milne, A. B., & Bodenhausen, G. V. (1994). 
Stereotypes as Energy-Saving Devices: A Peek Inside the Cognitive 
Toolbox. Journal of Personality and Social Psychology, 66(1), 37–
47. 

Marcora, S. M., Staiano, W., & Manning, V. (2009). Mental fatigue 
impairs physical performance in humans. Journal of Applied 
Physiology , 106(3), 857–864. https: / /doi .org/10.1152/
japplphysiol.91324.2008 

Maselli, A., Gordon, J., Eluchans, M., Lancia, G. L., Thiery, T., 
Moretti, R., Cisek, P., & Pezzulo, G. (2023). Beyond simple 
laboratory studies: Developing sophisticated models to study rich 
behavior. Physics of Life Reviews, 46, 220–244. https://doi.org/
10.1016/j.plrev.2023.07.006 

Matusz, P. J., Dikker, S., Huth, A. G., & Perrodin, C. (2019). Are 
We Ready for Real-world Neuroscience? Journal of Cognitive 
Neuroscience , 31(3), 327–338. https://doi.org/10.1162/
jocn_e_01276 

Maynard, D. C., & Hakel, M. D. (1997). Effects of Objective and 
Subjective Task Complexity on Performance. Human Performance, 
10(4), 303–330. https://doi.org/10.1207/s15327043hup1004_1 

243



Meiran, N., Pereg, M., Kessler, Y., Cole, M. W., & Braver, T. S. 
(2015). The power of instructions: Proactive configuration of 
stimulus–response translation. Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 41(3), 768–786. https://doi.org/
10.1037/xlm0000063 

Messick, D. M. (1993). Equality as a decision heuristic. In 
Psychological perspectives on justice: Theory and applications (pp. 
11–31). Cambridge University Press. https://doi.org/10.1017/
CBO9780511552069.003 

Meyer, D. E., & Kieras, D. E. (1997). A Computational Theory of 
Executive Cognitive Processes and Multiple-Task Performance: 
Part 1. Basic Mechanisms. Psychological Review, 104(1), 3–65. 

Mischel, W., Shoda, Y., & Rodriguez, M. L. (1989). Delay of 
Gratification in Children. Science, 244(4907), 933–938. https://
doi.org/10.1126/science.2658056 

Miyake, A., & Friedman, N. P. (2012). The Nature and Organization 
of Individual Differences in Executive Functions: Four General 
Conclusions. Current Directions in Psychological Science, 21(1), 
8–14. https://doi.org/10.1177/0963721411429458 

Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 
7(3), 134–140. https://doi.org/10.1016/S1364-6613(03)00028-7 

Musslick, S., & Cohen, J. D. (2021). Rationalizing constraints on 
the capacity for cognitive control. Trends in Cognitive Sciences, 
25(9), 757–775. https://doi.org/10.1016/j.tics.2021.06.001 

Musslick, S., Dey, B., Ozcimder, K., Mostofa, M., Patwary, A., 
Willke, T., & Cohen, J. (2016). Controlled vs. Automatic 
Processing: A Graph-Theoretic Approach to the Analysis of Serial 
vs. Parallel Processing in Neural Network Architectures. 

Navon, D., & Gopher, D. (1979). On the economy of the human-
processing system. Psychological Review, 86(3), 214–255. https://
doi.org/10.1037/0033-295X.86.3.214 

Noorbaloochi, S., Sharon, D., & McClelland, J. L. (2015). Payoff 
information biases a fast guess process in perceptual decision 
making under deadline pressure: Evidence from behavior, evoked 

244



potentials, and quantitative model comparison. Journal of 
Neuroscience, 35(31), 10989–11011. https://doi.org/10.1523/
JNEUROSCI.0017-15.2015 

Norman, D., & Bobrow, D. (1975). On data-limited and resource-
limited processes. Cognitive Psychology, 7, 44–64. 

Orquin, J. L., & Mueller Loose, S. (2013). Attention and choice: A 
review on eye movements in decision making. Acta Psychologica, 
144(1), 190–206. https://doi.org/10.1016/j.actpsy.2013.06.003 

Padmala, S., & Pessoa, L. (2011). Reward Reduces Conflict by 
Enhancing Attentional Control and Biasing Visual Cortical 
Processing. Journal of Cognitive Neuroscience, 23(11), 3419–3432. 
https://doi.org/10.1162/jocn_a_00011 

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The Adaptive 
Decision Maker. Cambridge University Press. 

Portas, C. M., Krakow, K., Allen, P., Josephs, O., Armony, J. L., & 
Frith, C. D. (2000). Auditory Processing across the Sleep-Wake 
Cycle: Simultaneous EEG and fMRI Monitoring in Humans. 
N e u ro n , 2 8 ( 3 ) , 9 9 1 – 9 9 9 . h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 /
S0896-6273(00)00169-0 

Posner, M. I., & Snyder, C. R. R. (1975). Attention and Cognitive 
Control. In Information Processing and Cognition (R; L. Solso, pp. 
55–85). Hillsdale, NJ: Erlbaum. 

Rahnev, D., & Denison, R. N. (2018). Suboptimality in perceptual 
decision making. Behavioral and Brain Sciences, 41, e223. https://
doi.org/10.1017/S0140525X18000936 

Renart, A., & Machens, C. K. (2014). Variability in neural activity 
and behavior. Current Opinion in Neurobiology, 25, 211–220. 
https://doi.org/10.1016/j.conb.2014.02.013 

Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, 
S. (2004). The Role of the Medial Frontal Cortex in Cognitive 
Control. Science, 306(5695), 443–447. https://doi.org/10.1126/
science.1100301 

245



Risko, E. F., Anderson, N. C., Lanthier, S., & Kingstone, A. (2012). 
Curious eyes: Individual differences in personality predict eye 
movement behavior in scene-viewing. Cognition, 122(1), 86–90. 
https://doi.org/10.1016/j.cognition.2011.08.014 

Ruthruff, E., Van Selst, M., Johnston, J. C., & Remington, R. 
(2006). How does practice reduce dual-task interference: 
Integration, automatization, or just stage-shortening? Psychological 
R e s e a rc h , 7 0 ( 2 ) , 1 2 5 – 1 4 2 . h t t p s : / / d o i . o rg / 1 0 . 1 0 0 7 /
s00426-004-0192-7 

Rypma, B., Berger, J. S., & D’Esposito, M. (2002). The Influence of 
Working-Memory Demand and Subject Performance on Prefrontal 
Cortical Activity. Journal of Cognitive Neuroscience, 14(5), 721–
731. https://doi.org/10.1162/08989290260138627 

Schimmack, U. (2005). Attentional Interference Effects of 
Emotional Pictures: Threat, Negativity, or Arousal? Emotion, 5(1), 
55–66. https://doi.org/10.1037/1528-3542.5.1.55 

Schmidt, L., Lebreton, M., Cléry-Melin, M.-L., Daunizeau, J., & 
Pessiglione, M. (2012). Neural Mechanisms Underlying Motivation 
of Mental Versus Physical Effort. PLOS Biology, 10(2), e1001266. 
https://doi.org/10.1371/journal.pbio.1001266 

Schwartz, B. (2016). The Paradox of Choice: Why More is Less. 
Ecco, an imprint of HarperCollins publishers. 

Shaffer, L. H. (1975). Multiple attention in continuous verbal tasks. 
In Attention and performance (pp. 157–167). Rabbitt & S. Dornic. 

Shah, A. K., & Oppenheimer, D. M. (2008). Heuristics made easy: 
An effort-reduction framework. Psychological Bulletin, 134(2), 
207–222. https://doi.org/10.1037/0033-2909.134.2.207 

Shaw, M. L., & Shaw, P. (1977). Optimal allocation of cognitive 
resources to spatial locations. Journal of Experimental Psychology: 
Human Perception and Performance, 3(2), 201–211. https://doi.org/
10.1037/0096-1523.3.2.201 

Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The 
Expected Value of Control: An Integrative Theory of Anterior 

246



Cingulate Cortex Function. Neuron, 79(2), 217–240. https://doi.org/
10.1016/J.NEURON.2013.07.007 

Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T. L., 
Cohen, J. D., & Botvinick, M. M. (2017). Toward a Rational and 
Mechanistic Account of Mental Effort. Annual Review of 
Neuroscience, 40, 99–124. https://doi.org/10.1146/annurev-
neuro-072116-031526 

Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic 
human information processing: II. Perceptual learning, automatic 
attending and a general theory. Psychological Review, 84(2), 127–
190. https://doi.org/10.1037/0033-295X.84.2.127 

Shugan, S. M. (1980). The Cost of Thinking. Journal of Consumer 
Research, 7(2), 99–111. 

Simon, H. A. (1955). A behavioral model of rational choice. 
Quarterly Journal of Economics, 69(1), 99–118. https://doi.org/
10.2307/1884852 

Simon, J. R. (1969). Reactions toward the source of stimulation. 
Journal of Experimental Psychology, 81(1), 174–176. https://
doi.org/10.1037/h0027448 

Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: 
Sustained inattentional blindness for dynamic events. Perception, 
28, 1059–1070. 

Soto-Faraco, S., Kvasova, D., Biau, E., Ikumi, N., Ruzzoli, M., 
Morís-Fernández, L., & Torralba, M. (2019). Multisensory 
Interactions in the Real World. Elements in Perception. https://
doi.org/10.1017/9781108578738 

Stephen, A. T. (2016). The role of digital and social media 
marketing in consumer behavior. Current Opinion in Psychology, 
10, 17–21. https://doi.org/10.1016/j.copsyc.2015.10.016 

Strobach, T., & Torsten, S. (2017). Mechanisms of Practice-Related 
Reductions of Dual-Task Interference with Simple Tasks: Data and 
Theory. Advances in Cognitive Psychology, 13(1), 28–41. https://
doi.org/10.5709/acp-0204-7 

247



Stroop, J. R. (1935). Studies of interference in serial verbal 
reactions. Journal of Experimental Psychology, 18(6). 

Summerfield, C., & Koechlin, E. (2010). Economic Value Biases 
Uncertain Perceptual Choices in the Parietal and Prefrontal 
Cortices. Frontiers in Human Neuroscience, 4, 208. https://doi.org/
10.3389/fnhum.2010.00208 

Taylor, S. (1981). The interface of cognitive and social psychology. 
In Cognition, social behavior, and the environment. (Harvey JH, pp. 
189–211). Hillsdate, NJ: Erlbaum. 

Theeuwes, J. (2010). Top–down and bottom–up control of visual 
selection. Acta Psychologica, 135(2), 77–99. https://doi.org/
10.1016/j.actpsy.2010.02.006 

Theeuwes, J., & Belopolsky, A. V. (2012). Reward grabs the eye: 
Oculomotor capture by rewarding stimuli. Vision Research, 74, 80–
85. https://doi.org/10.1016/j.visres.2012.07.024 

Thorngate, W. (1980). Efficient Decision Heuristics. Behavioral 
Science, 25, 219–225. https://doi.org/10.1002/bs.3830250306 

Vidal, A., Soto-Faraco, S., & Moreno Bote, R. (2022). Balance 
between breadth and depth in human many-alternative decisions. 
eLife, 11. https://doi.org/10.7554/ELIFE.76985 

Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of 
Features, Conjuctions, and Objects in Visual Working Memory. 
Journal of Experimental Psychology: Human Perception and 
Performance, 27(1), 92–114. 

Vohs, K. D., Baumeister, R. F., Schmeichel, B. J., Twenge, J. M., 
Nelson, N. M., & Tice, D. M. (2008). Making choices impairs 
subsequent self-control: A limited-resource account of decision 
making, self-regulation, and active initiative. Journal of Personality 
and Social Psychology, 94(5), 883–898. https://doi.org/
10.1037/0022-3514.94.5.883 

von Neumann, J., & Morgenstern, O. (1944). Theory of Games and 
Economic Behavior. Princeton: Princeton University Press. 

248



Westbrook, A., & Braver, T. S. (2015). Cognitive effort: A 
neuroeconomic approach. Cognitive, Affective, & Behavioral 
Neuroscience , 15(2), 395–415. https://doi.org/10.3758/
s13415-015-0334-y 

Zelick, P. R. (2007). Issues in the Psychology of Motivation. Nova 
Publishers. 

Zmigrod, L., Rentfrow, P., & Robbins, T. (2019). The partisan mind: 
Is extreme political partisanship related to cognitive inflexibility? 
Journal of Experimental Psychology: General, 149. https://doi.org/
10.1037/xge0000661 

Zuckerman, M. (1994). Behavioral Expressions and Biosocial 
Bases of Sensation Seeking. Cambridge University Press. 

249


	GENERAL INTRODUCTION
	1.1. Decisions are costly: exploring the internal and external resource limitations
	1.2. Dealing with the costs of deciding
	Automatic processes: efficient but not always relevant
	Cognitive control: flexible but limited

	1.3. Balancing flexibility and efficiency
	Value-biased decisions: when does control take the reins?
	Trade-off in the resource allocation: does it reflect optimal performance?
	Fluctuations in resource allocation: controlled or stochastic variability?


	Chapter I: THE ROLE OF CONFLICT MONITORING IN OVERCOMING VALUE BIASES IN HUMAN DECISION-MAKING
	Chapter II. BALANCE BETWEEN BREADTH AND DEPTH IN HUMAN MANY-ALTERNATIVE DECISIONS
	Chapter III. HUMANS ADAPT CHOICE VARIABILITY BEYOND REWARD MAXIMISATION IN SEQUENTIAL, MANY-ALTERNATIVE DECISIONS WITH LIMITED RESOURCES
	GENERAL DISCUSSION
	Summary of findings
	Unveiling strategies to counter automatic behaviour
	Optimal allocation of limited resources; moving towards more complex scenarios
	Endogenous variability in the pursuit of individual goals
	Humans: more than cognitive misers?
	Limitations
	Conclusions

	Appendix: COGNITIVE CONTROL OR CONTROLS? An attempt to localise the sources of mid-frontal theta increase related to context-specific cognitive control with intracortical EEG recordings.
	BIBLIOGRAPHY

