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Abstract

Real-time solutions of parametric Thermo-Hydro-Mechanical
problems with Proper Generalized Decomposition

Arash Moaven

The Proper Generalized Decomposition (PGD) is a mathematical framework be-
longing to the Model Order Reduction (MOR) class of techniques. To the best of
the author’s knowledge, this methodology has not been applied to transient coupled
Thermo-Hydro-Mechanical (THM) problems in porous media. THM models have
been developed for various geo-environmental applications, such as enhanced oil re-
covery, geothermal energy extraction, and deep geological repositories. This thesis
studies the application of the PGD technique to THM problems, drawing inspiration
from the concept of deep geological repositories. The study demonstrates how the
PGD methodology can be used to obtain real-time solutions to THM problems, using
a simplified deep geological repository as an example.

The developed generalized solutions provided by PGD are perfectly suited to
be used in multi-query situations, such as parameter identification and calibration
procedures, optimization, or uncertainty quantification. The extremely fast response
obtained after the training phase opens the doors to real-time inversions, control
situations, or simply increasing the accuracy of the inverse identification procedures
by allowing a much larger number of evaluations of the objective function when
compared to traditional discretization techniques.

This work presents two main contributions. First, it provides a detailed descrip-
tion of the separated discrete operators that are required in the PGD methodology
when material parameters, geometrical parameters, or a combination of both are con-
sidered. This is done in the context of transient coupled THM problems. Second, the
study investigates several configurations related to the use of the PGD methodology
in the context of coupled problems and transient problems.

Two models of a simplified deep geological repository problem are presented to
show the capabilities of the proposed methodology. The first one is parametrized by
the physical properties of the host rock (elastic modulus, thermal conductivity, hy-
draulic conductivity). This would be useful, for example, in the solution of an inverse
problem to characterize the actual properties of the rock. The second model addresses
a geometrical parametrization that controls the distance between the canisters when
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the repository is set to a grid canister. This is intended for the development useful to
study and design the repository and to determine, for example, an optimal distance
avoiding temperature runouts.

The study as a whole employs a combination of techniques (PGD with the mod-
eling of coupled THM processes in porous media) to produce a range of solutions and
an efficient solver that functions in real-time.
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Chapter 1

Introduction

A Reduced Order Model (ROM) based on Proper Generalized Decomposition (PGD)
is developed to address multi-physical processes in porous media inspired from deep
geological repository applications (nuclear waste disposal). This study contributes to
the development of a supplemental tool with respect to computational multi-physical
models used in the subsurface of the earth. Features of the subsurface, like the
physical coefficients governing mechanical and transport processes, are often based
on various data, such as data obtained from mapping, drilling, or seismic studies,
involving uncertainties [14]. We are considering a configuration in which we would
need to solve problems efficiently and in a repetitive way for any value of the physical
coefficients governing it. This supplementary tool will have to handle effectively
and treat such needs. It should be emphasized that studying PGD on such multi-
physical problems is new. Therefore, combining these different techniques requires
simplifications concerning the scope of the thesis. The development will thus make
use of simplifying assumptions to define the goals of this study, with a view toward
the whole problem close to reality for future prospectives (outlook).

This chapter provides the foundation for this research by illustrating its originality
based on a knowledge gap identified in the literature. Section 1.1 briefly outlines the
history of multi-physical procedures in porous media and their terminology. It dis-
cusses why these models have been developed and mention their generic applications.
Section 1.2 focuses on the application of multi-physical processes, specifically em-
phasizing their utilization in deep geological repositories. The investigation of these
processes in this context has been the primary impetus for this research.
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Section 1.3 pinpoints the objectives of the thesis in link with the simplifying as-
sumptions introduced. Section 1.4 illustrates why such problems are computationally
expensive and how researchers have dealt with them. Then, the need for research con-
cerning ROM techniques will be discussed. More particularly, Reduced Basis (RB),
Proper Orthogonal Decomposition (POD), and PGD will be outlined. Moreover, in
this section, the recent application of RB and POD in multi-physical processes in
porous media will be brought up. In the end, the impetus for applying PGD to
multi-physical problems will be discussed briefly. Section 1.5 renders a short review
of what PGD is and what has been researched.

Finally, Section 1.6 states the thesis’s key objectives and presents its structure
through its chapters.

1.1 Multi-physical processes in porous media

Many engineering problems are related to processes occurring within the earth’s sub-
surface or surface, thus involving geomaterials, i.e. geological host rocks, or soils
(solid phase). The pore space inside them is often filled with gaseous and liquid
phases. These systems are denoted as saturated or partially saturated porous me-
dia respectively, depending on the presence of only a liquid phase or both a liquid
and gaseous phases (Figure 1.1). Building anthropogenic engineering structures in
such natural geomaterial media imposes extrinsic loads on such a system. Geome-
chanics and hydrogeology are the two main generic topics that have dealt with such
engineering problems within the last decades.

LiquidGas Solid

Figure 1.1: Schematic representation of porous medium with three phases.

Understanding the (coupled) response of a natural porous medium to the building
of engineering structures is crucial to designing structures that can safely provide their
purposes. As a result, the requirement for predicting the behavior of geomaterials sub-
jected to various extrinsic loads has motivated investigating multi-physical processes
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in a multiphase porous medium, leading to the development of prediction tools. The
multi-physical processes at hand in geomaterials require considering the concurrent
impacts of mechanical deformation, fluid flow, heat transfer, and chemical alterations
in a multiphase porous medium where three phases are present (solid, liquid, and gas).
However, taking into account all the possible multi-physical interactions between all
the phases is out of reach for solving engineering scale problems. Therefore, sim-
plifying assumptions will be introduced here. By disregarding the chemical aspects,
these sorts of problems can be classified using a variety of terminologies, such as cou-
pled Thermo-Mechanical (TM), Hydro-Mechanical (HM), Thermo-Hydro (TH), and
Thermo-Hydro-Mechanical (THM) problems, depending on the incorporated physical
processes.

The pioneering work of Karl Terzaghi [142] was the beginning of coupled problems
research in the field of Geomechanics. He performed controlled laboratory studies to
understand consolidation, which causes soils to settle under load. He dealt with a
one-dimensional fluid-saturated porous medium problem which also can be called cou-
pled HM problem, in a simplified version, which resulted in his consolidation theory.
Afterward, Meinzer [90], in hydrogeology, was the first to study the elastic behavior of
aquifers. In his work, he used Terzaghi’s effective stress concept to connect pressure
changes directly to increased stress levels. However, numerous other contributions
should not be overlooked concerning the theory and application of porous media,
such as the works of Pratt and Johnson [119], Theis [143], Fillunger [41], Muskat
[93], Jacob [73], Boer [15, 16], and Ehler and Bluhm [39] to name a few.

Biot [12] expanded Terzaghi’s theory to encompass three dimensions and entail
a continuum formulation applicable to a porous medium. Assuming full saturation,
he considered that the instantaneous load exerted on a porous medium is carried
partly by the pore water and partly by the solid skeleton. Biot’s approach to soil
consolidation assumes Hookean elastic materials and Darcy’s law for porous skeleton’s
mechanical and hydraulic behavior, respectively. The similarity of this theory with
thermoelasticity was discussed by Biot [13], Geertsma [50], Rice and Cleary [124], and
Norris [103], and the terminology of poroelasticity was first introduced by Geertsma
[52]. Poroelasticity has been used for decades for instance in Geertsma [51], McNamee
and Gibson [88], Cryer [32], Nur and Byerlee [105], Garg and Nur [48], Coussy [30],
Bear and Corapcioglu [9], Jupp and Schultz [75], Wang [162], and Verrujit [156, 157].
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1. Introduction

In different engineering problems, depending on the application, it is sometimes
compulsory to consider thermal effects in porous media. The research on the impact
of heat flow (thermal part) on the pore pressures (hydraulic part) and the solid skele-
ton (mechanical part) and vice versa is, in this case, essential; these kinds of problems
are called coupled THM problems. Paleciauskas and Domenico [112], by modifying
the Biot theory to nonisothermal poroelasticity conditions (thermo-poroelasticity),
presented the impact of heat conduction on a fluid-saturated rock, by deriving gov-
erning equations for thermo-poroelasticity problems. Many authors have contributed
to this area by assuming heat conductivity as the only heat transfer mechanism, for
instance, Bear and Corapcioglu [8], Noorishad et al. [102], McTigue [89], Coussy [31],
Cheng [21], and Selvadurai and Suvorov [129]. These assumptions make the problems
tractable. However, their validity depends on the applications and objectives of the
study. For some applications, it is necessary to consider convection next to conduc-
tion as a transport mechanism for thermal aspects, making the coupled problem more
intricate [115, 100].

The coupled THM problems can be partially saturated with elastoplastic behav-
ior, [85, 53, 98, 44, 46] which makes them nonlinear. Also, such problems can in-
troduce anisotropy [62, 154] and spatial heterogeneity [113, 166] or can even require
considering chemical aspects [155, 28] which largely increase their complexity. For
such problems, the necessities of in situ [11, 23], mock-up [139, 140], and laboratory
tests [130, 133] for interpreting and calibrating material data are inevitable. It is
well known that the complexity of natural systems, and in particular systems related
to the Earth, is extremely large. Our goal in this work is to apply reduced-order
methods and study their efficiency in the context of THM problems. Therefore, we
will restrict the setup to a simple but meaningful case with which we can test the
methods and set the basis for future extensions to more complex systems.

1.2 Application of multi-physical modeling in
deep geological repositories

The application of THM models in geo-environmental problems has gained signifi-
cant attention in recent decades, particularly in addressing engineering problems in
geomechanics and hydrogeology. One of the most extensively studied and important
applications of these models is the design of deep geological repositories. Nuclear
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power plants generating electricity produce High-Level Radioactive Waste (HLW)
that remains hazardous for 1000 years. Deep geological repositories are now one of
the most promising alternatives for the long-term storage of HLW. Many Countries
including Belgium, Canada, Finland, Germany, Japan, Spain, and the United States
are developing these waste storage techniques [167], to isolate HLW from human and
environmental interactions. Finland, at this stage, is the only country having a legally
approved design, and the first deep geological disposal facility will start functioning in
2023 on the island of Olkiluoto [135]. Many authors have studied different aspects of
deep geological repositories. For example, Olivella et al. [108], Nguyen and Selvadu-
rai [97], Gens et al. [58], Nguyen et al. [98], Gens et al. [61], Selvadurai et al. [131],
Toprak et al. [150]. The geotechnical group at UPC has had a large collaboration in
the development of the Olkiluoute facility. The works led by Prof. Sebastia Olivella
[152, 148, 150, 149, 151] were used in this thesis as a basis to produce a simplified
model in which we can study and test the numerical methodologies we are propos-
ing. The final goal of these methodologies is to produce an extremely fast solver
tailored for many-query situations where a large family of similar problems needs
to be tested. Some examples of many-query situations that are commonly found in
practical engineering are inverse problems to estimate the value of some parameters;
or optimization problems where an optimal value of some design variables needs to be
determined. A numerical methodology, able to provide a fast solution to the forward
problem, will largely accelerate or allow aiming for a larger accuracy in the solution
of these problems.

Surface facilities

Host rockAccess shaft

Engineered barrier systems

Figure 1.2: Schematic view of a multi-barrier system re-sketched from [129].

Figure 1.2 presents a multi-barrier system for the storage of HLW. It consists
of two main barriers: the natural geological barrier made of the host rock and an
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engineered barrier system. The host rock acts as the natural geological barrier for
radioactivity and is where the vault system is built. Low permeability, geological
stability, and chemical stability for the host rocks are required properties for HLW
confinement [54]. Four categories of rocks–crystalline [40, 121], argillaceous [132, 153],
rock salt [120, 10], and unsaturated tuff [109, 138]–are being investigated based on
these properties.

(A)

Canister

Buffer

Backfill

Host Rock

400
m

eters
ofH

ost
R

ock

Host Rock

Buffer

(B)

HLW

Heat emitted

Water circulation

Figure 1.3: (A) A deep geological repository re-sketched from [152], and (B) THM
processes due to heat emitted from HLW and thermally induced stresses at the buffer
and host rock and water circulation due to thermal expansion.

Figure 1.3-(A) illustrates a deep geological repository that relies on multi-barrier
systems where the HLW is located around 400 meters underground [152]. The HLW
is mechanically protected by a canister, mostly made of cast iron, with a copper shell
added for corrosion prevention [76]. Highly compacted bentonite clay (buffer) is used
to surround the canister. Thanks to its low hydraulic conductivity, microporous struc-
ture, excellent sorption capabilities, and swelling capacity, it is an effective barrier
for shielding the canister. Shafts and boreholes are filled with the so-called backfill
materials. These prevent access to the canisters. Several studies have been conducted
about the materials to use as buffer/backfill; e.g. [59, 159, 160, 161, 171, 5, 1].
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The numerical studies of the repositories need to reproduce the interaction be-
tween the main processes involved: the mechanics, the thermal transport, and the
flow of water [60]. Figure 1.3-(B) shows a schematic view of these processes. An in-
crease in the temperature due to the heat emitted by the waste produces two effects:
i) thermally induced stresses at the buffer and host rock and ii) water circulation due
to thermal expansion that might reach a change of state. The buffer is expected to
accommodate a large part of these mechanical and thermal effects.

The THM model is complex to reflect the real physical concept. To encapsulate
the HLW, an excavation procedure should be considered, after which heating starts.
Excavation induces the presence of an Excavation Damaged Zone (EDZ), which af-
fects not only the host rock’s mechanical behavior but also its transfer properties
(permeability) and the transfer boundary conditions (gallery ventilation) [107]. On
the other hand, the buffer is only partially saturated and initially subjected to high
suction (negative value of pore water pressure). For that, it is necessary to define the
transmission of liquid to gas and gas to liquid phases. Many authors have studied the
constitutive model for unsaturated cases; some examples are given in [2, 55, 86, 45].
However, it should be emphasized that such complexities (such as EDZ, the transmis-
sion of liquid to gas and gas to liquid phases, unsaturated cases, etc.) are outside the
scope of this study. This is why simplified assumptions (Section 1.3) will be applied
to such a model to concentrate on the objective of the thesis.

For such THM models, equilibrium equations for stresses and continuity equa-
tions for liquid water, gas, and energy should be solved simultaneously. This problem
cannot be solved analytically, which requires defining computational approaches like
Finite Element Method (FEM) techniques. Many works addressed this, for instance
Gens et al. [58], Nguyen et al. [98], and Dupray et al. [35]. Accordingly, many
commercial organizations, university researchers, industrial organizations, and re-
search institutions have developed various codes, such as OpenGeoSys [163], FLAC
[71], LAGAMINE [19, 29], UDEC and 3DEC [72], COMPASS [144], THAMES [106],
ROCMAS [101], CODE-BRIGHT [108, 110], RDCA-THOUGH2 [113], and FRACON
[96], most of them are based on FEM. However, as will be discussed in Section 1.4,
these computational models are computationally costly, and it is of interest to find a
way to deal with them more efficiently.

Multi-physical processes have also been investigated in various other applications.
For instance, enhanced oil recovery (EOR) [80] benefits from THM processes that
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increase the efficiency of oil recovery [83]. Geologic sequestration is another applica-
tion that aims to reduce greenhouse gases in the atmosphere and has been studied
by several authors [114, 158, 173]. Geothermal energy extraction is also an applica-
tion requiring THM models, and various codes such as GEOCRACK [36], FRACTure
[78], and HOTGRID [67] have been developed to study this problem. Many authors
have used these codes, for example, Ghassemi et al. [63], Koh et al. [77], Simone
et al. [33], and Pandey et al. [116]. Tunnel excavation, which typically involves a
multi-stage tunneling technique, requires a coupled modeling effort considering the
effects of inevitable seepage flow. Some contributions have addressed such applica-
tions through multi-physical investigation, e.g., [122, 118, 137]. Freezing action in
soils is another configuration that many authors have studied using multi-physical
modeling in porous media, e.g., [145, 65, 84]. Embankments and tailing dams are
other engineering problems involving multi-physical processes. Tailings, which are
peripheral products of mining ore and exploiting metals and minerals and are haz-
ardous, have been the subject of multi-physical studies by many authors, including
Gens et al. [56], Pinyol et al. [117], and Zandarin et al. [172].

1.3 THM modeling assumptions used in the
thesis

The combination of the PGD technique with THM models is attractive because it
can provide real-time solutions to coupled THM problems, replacing a costly Finite
Element Method (FEM) traditional repetitive run with real-time integration. How-
ever, these models are complex and depend on various parameters. For example,
in a deep geological repository, they rely on parameters such as heat and hydraulic
conductivity, as well as the elastic modulus of the rock. Geometric parameters, such
as the spacing between canisters, may also influence them for design purposes. To
address this complexity and achieve a framework allowing real-time solution, we sim-
plify the problem and render it linear. Consequently, the problem is fully saturated
with quasi-static processes and thermo-poroelastic behavior inherited from the work
of Selvaduri and Suvorov [129].

Another assumption made in this work is that heat conduction is the predominant
mechanism of heat transport. This means that heat is transferred by activating solid
and fluid particles through conduction while neglecting convection. The justification
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for this assumption comes from the targeted application. In a poroelastic material,
the heat convection that arises from the displacement of the solid can be ignored,
and convective heat transmission is mainly caused by fluid flow. Since the problem
deals with host rock with low porosity and low permeability properties, the fluid flow
rate is low, and heat convection is disregarded [97]. This assumption results in a
thermally one-way coupled problem.

Figure 1.4 illustrates the multi-physical processes occurring in a fully saturated
porous medium. Under these assumptions, the medium can be viewed as a two-phase
system, with the liquid phase depicted in blue and the solid phase in brown. In this
system, heat transport occurs solely through conduction (Fourier’s law), while water
transport is driven exclusively by diffusion (Darcy’s law). The mechanical response
of the rock-solid skeleton is assumed to be linearly elastic (Hooke’s law).

Heat in

Heat out

Water in

Liquid flux
(Darcy’s law)

Heat flux
(Fourier’s law)

Heat flux
(Fourier’s law)

Figure 1.4: Multi-physical processes occurring in a fully saturated two-phase porous
medium, presented here in a simplified form by using two colors; blue for the liquid
phase and brown for the solid phase. Heat transport occurs solely through conduction
(Fourier’s law), while water transport is driven exclusively by diffusion (Darcy’s law).

Figure 1.5 describes the couplings considered in the THM model in this thesis.
The model is thermally one-way coupled, which means that the thermal aspect affects
the hydraulic (diffusive fluid flow) and mechanical part (thermal strains). Conversely,
the hydraulic and mechanical aspects do not affect the thermal part. Bi-directional
coupling is included between the hydraulic and mechanical components, and Biot’s
law governs this coupling term. The overall governing equations are obtained by
describing the continuity equations and the stress equilibrium with the corresponding
constitutive laws (Fourier law, Darcy law, Hooke law, and Biot law). No phase change
is thus considered in this work.
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Thermal

Stress effect on the volumetric deformation (Biot’s law)

Pressure effect on the volumetric stresses (Biot’s law)
HydraulicMechanical

Ther
mal

str
ain

s
Diffusive fluid flow

Figure 1.5: This illustration shows a thermally one-way coupled THM model, where
thermal effects impact the hydraulic and mechanical parts, but not vice versa. Biot’s
concept defines the bi-directionality of hydraulic and mechanical parts, determining
how much of the initial volumetric loading transfers between the solid skeleton and
fluid.

The excavation procedure is also neglected in this study. This means that the
rock is considered intact (no EDZ formulation) and that simulation starts from the
heating emission from the HLW with a fully saturated medium. However, as will be
discussed in the next Section 1.4, even these simplified problems are expensive, and
in this project, a PGD technique (a ROM-based explained in Section 1.5) is used to
tackle this difficulty.

1.4 Computational cost

The applications governed by a coupled Thermo-Hydro-Mechanical model described
so far are computationally expensive. For spatial discretization, the coupled nature
requires solving a large system of equations if a monolithic solver is used, while using
a staggered scheme requires iterations. Furthermore, the time dimension needs to be
integrated, multiplying the number of spatial problems by the number of time steps.
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1.4. Computational cost

This represents a high but affordable computational cost. Several authors have
proposed different alternatives to accelerate the solution to this problem. Some ex-
amples include HPC techniques and facilities that can be used to parallelize the
computer load [146, 165, 170, 164, 147, 42], Multigrid [64] and Algebraic Multigrid
methods [168, 169] to accelerate the solution of the systems of equations, and Stag-
gered Newton schemes [125, 126, 104] to reduce the size of the systems.

The situation however becomes computationally extenuating when this forward
problem is used in a multiple query situation, such as sensitivity analysis, e.g. [149],
calibration, e.g. [22], parameter identification, e.g. [99], optimization, e.g. [148],
uncertainty quantification, e.g. [123], or simply when a very fast solution close to
real-time is needed for control, e.g. [27], In all these scenarios, many forward problems
need to be solved and the computational cost increases accordingly.

In this work, we will use a different approach based on Model Order Reduction
and more particularly Proper Generalized Decomposition methods. This technique
will i) provide a real-time solution to a parametrized problem (after an initial of-
fline computation phase) and ii) can be coupled with all the previous acceleration
techniques to accelerate the offline phase.

1.4.1 Model Order Reduction

Model Order Reduction (MOR) techniques are a family of numerical techniques to
deal with parametric problems. These are problems governed by a Partial Differen-
tial Equation (PDE) in which one or several parameters (e.g., physical properties,
boundary conditions, geometry, etc.) are not known exactly, and it is of interest to
compute the solution for any parameter value within a range.

The solution of the PDE, traditionally defined in terms of space and time, e.g.,
u(x, t), which in this subsection is a scalar function, although the method can deal
with any scalar and vectorial function, is now recognized to depend on additional
parameters µ = [µ1, µ2, . . . , µnp ], leading to the more general form u(x, t,µ). As a
result, the dimensionality of the problem increases significantly, with u living in a
space consisting of three spatial dimensions, one time dimension, and np parametric
dimensions, namely u ∈ R3+1+np .

Standard discretization techniques cannot be used to seek a solution to the para-
metric problem, as the number of unknowns would increase exponentially with respect
to the number of dimensions. For example, if the spatial mesh has 104 nodes (a con-
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servative quantity), the number of times steps is 103, and we have four parametric
dimensions, each one discretized with 102 points, the total number of unknowns be-
comes 10(4+3+4×2) unknowns, which is outside the current computer capacity. The
goal of MOR techniques is to reduce that space.

Several MOR techniques have been successfully applied to science and engineering
problems. For example, Sibileau et al. [134] used PGD as a MOR technique to provide
explicit solutions to algebraic equations and simplify optimal design for architectured
materials. Ortega-Gelabert et al. [111] developed an efficient simulation method
for geophysical-geodynamic inverse problems using Reduced Basis (RB) and Markov
chain Monte Carlo (MCMC) methods. They proposed a surrogate method that sig-
nificantly reduces computational costs and demonstrated its effectiveness in various
numerical examples. Garikapati et al. [49] used the PGD method and Griffith’s
global energy criterion to propose a reduced-order modeling framework for predict-
ing crack propagation in brittle materials with random heterogeneities. Cavaliere et
al. [18] used Inertia Relief and PGD to solve parametric structural problems with a
nonintrusive reduced order model that provides all possible solutions for a range of
parameters. The technique was validated through numerical tests and can be inte-
grated with commercial Finite Element Method (FEM) packages, showing potential
for multi-objective optimization. Schuler et al. [127] developed a PGD-based reduced
model for the Thermo-Mechanical (TM) analysis of IGBT power modules, enabling
a faster solution than classical FEMs. They used a strain-life law to compute power
module lifetime and conducted a sensitivity analysis for selecting acceptable parame-
ter values. A robust design study was also performed to demonstrate the effectiveness
of the proposed approach.

Overall, the MOR approach consists of two stages: the offline stage and the online
stage. All expensive computations are executed only once in the offline stage. In the
offline stage, the so-called surrogate model will be provided, called the parametric
solution (meaning a family of solutions), also called the generalized solution. The
generalized solution is an output that contains all the possible solutions for inde-
pendent parametric, space, and time dimensions. The next stage, the online stage,
provides the post-process solution in real time. That means by particularizing a spe-
cific point in parametric, space, and time dimensions and putting it as input in the
surrogate model, the output will emerge in a fraction of a second.
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1.4. Computational cost

A-posteriori and a-priori methods are two classes used to categorize ROM meth-
ods. First, the a-posteriori concepts of Reduced Basis (RB) [87, 66] and Proper Or-
thogonal Decomposition (POD) [20] will be briefly described. If a problem requires
N equations to be solved by FEM, a linear combination of m basis vectors extracted
from solutions for specific values of the parameters (called snapshots), which is a
small number compared to N , will be used as solution space. The new system of
dimension m is thus a reduced version of the original system of dimension N (the
full-order solution). The full-order system is converted into the reduced version by
applying a projection matrix that complies with the m basis vectors. These m basis
vectors are deduced from snapshots that consist of full-order system solutions at spe-
cific points in the parametric dimensions. These methods are denoted as a-posteriori
since they rely on full-order solution snapshots to generate the basis. The critical
component of these approaches (RB and POD) is the selection of parametric points
as snapshots to deliver precise and effective output, which is where the idea of error
estimate appears. The second class of ROM techniques is the a-priori concept which
means that the generalized solution will be produced without computing any snap-
shots. These techniques deliver a blind prediction of the parametric solutions. The
most well-known a-priori method is Proper Generalized Decomposition (PGD) [26],
which will be explained in more detail in Section 1.5.

1.4.2 POD and RB in THM processes in porous media

Few research contributions combined POD and RB methodologies with computa-
tional approaches in the context of multi-physical processes in porous media in ge-
omechanics or hydrogeology applications. The ROM techniques are often problem-
dependent, meaning that for each problem statement, these techniques should be
individually investigated. Moreover, multi-physical problems in porous media are
time-dependent, coupled, and may be non-linear. This makes them even more com-
plicated, which is also another reason why such topics have been so rarely tackled
with ROM techniques.

In this area, Florez et al. [43], by applying the POD technique on coupled flow
and geomechanics simulations (using thermo-poroelasticity), have decreased the com-
putational costs. Degen et al. [34] studied the RB method applied to such problems
in the context of geothermal applications. In the work by Nasika et al. [95], the
RB technique was applied to the tailing dam problems as a coupled HM case with
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an unsaturated and nonlinear geomechanical model. It is shown that their RB tech-
niques achieve a speedup of 3 to 15 times in comparison with the full-order model.
Another contribution by Nasika et al. [94] is using the Discrete Empirical Interpo-
lation Method (DEIM), a hyper-reduction technique that is developed for solving
fully coupled HM equations governing water flow through soil, resulting in significant
computational time reduction. Larion et al. [82] developed a goal-oriented error esti-
mator for an optional selection of snapshots in the RB technique to solve the coupled
THM problem corresponding to the advance of a glacier on a host rock mass. In their
work, they solve the problem for the far-field case (large-scale). Their models consider
two and three-dimensional thermo-poroelastic relations. In a follow-up contribution
by Larion et al. [81], the RB technique was applied to the coupled THM case for
the near-field (small-scale) problem corresponding to an in-situ heating test in a host
rock of a geological repository. The RB approximation was used within an efficient
surrogate-based inverse identification tool to identify material properties based on
actual temperature and pore pressure measurements, decreasing the computational
cost by up to 800. Another work in the deep geological repository concept has been
proposed by Iollo et al. [70], who studied the application of the POD-greedy method
on coupled THM problems in a two-dimensional case.

1.4.3 Application of PGD on coupled THM models

To the knowledge of the author, PGD was not applied in geo-environmental studies
involving THM coupling. This combination constitutes the originality of the work.
ROM techniques are firmly problem-dependent, so their application to such problems
should be individually studied and analyzed. When corresponding to PGD methods,
PGD is an a-priori technique, which means that it deals with the problem as a blind
prediction tool and does not rely on a priori snapshot solutions from the full-order
problem. Afterward, in the online phase, PGD will provide a family of solutions that
can be obtained in real-time.

1.5 Proper Generalized Decomposition (PGD)

The concept of PGD was introduced by Ammar et al. [3, 4]. This technique is a pow-
erful method to deal with problems that are suffering from the curse of dimension-
ality. Its concept is based on separated representations of the unknown fields based
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1.5. Proper Generalized Decomposition (PGD)

on independent variables [24]. For instance, for a conduction problem, an unknown
temperature field depending on three parameters µ1, µ2, and µ3 is approximated as:

T (x, µ1, µ2, µ3) =
M∑

j=1
T j(x)G j

1(µ1)G j
2(µ2)G j

3(µ3), (1.1)

where each term, j = 1, 2, . . . , M , is described by a temperature function T j that
depends only on space (and it does not depend on the parameters µi) and a set of
parametric functions G j

1(µ1), G j
2(µ2), and G j

3(µ3), depending only on the parameters.
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[38]

Figure 1.6: The Proper Generalized Decomposition (PGD) technique consists of two
stages: offline and online. The offline stage requires a significant computational cost,
while the online stage can be performed in real-time. The PGD solver employs two it-
erative procedures: enrichment iterations and fixed-point iterations. The enrichment
iterations compute the mode successively, while the fixed-point iterations compute
each mode iteratively. By providing input data to the encapsulated PGD solver as
will be explained, we can perform these two iterative procedures within specified tol-
erances.

The Proper Generalized Decomposition will be applied here to the parametric
PDEs of the coupled THM models by using FEM techniques as a base full-order
computational approach. The matrices and vectors arising from FEM will be used
as inputs for the PGD operations. This requires setting them in the appropriate
separated form. PGD combines an enrichment iteration (to compute the method
successively) with a fixed-point iteration (to compute each mode iteratively) [175, 37]
(Figure 1.6) as will be explained in Chapter 3.

The Proper Generalized Decomposition will solve the problem once for life (of-
fline). Then by particularizing the different points in the parametric space (online),
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1. Introduction

the output can be generated in real-time. The result, called the parametric solution,
is also denoted as a computational vademecum [25].

1.6 Outline and objective of this work

This work thus deals with parametrized transient coupled THM problems using an
encapsulated PGD technique [38]. The combination of PGD and THM is interesting
due to its potential to provide real-time solutions for coupled THM problems, thereby
eliminating the requirement for repetitive traditional FEM runs. This is achieved
through real-time integration, which is facilitated by the methodology. The primary
objective of this work is to study the combination of these two techniques in the
context of deep geological repositories. The primary objective of this work is to study
the combination of these two techniques in the context of deep geological repositories,
namely,

• To apply PGD for the solution of THM problems parameterized with material
properties.

• To extend the parameterization and include geometrical parameters.

• To obtain solutions of the parametric THM problem in real-time.

The outline of the thesis to achieve these goals is as follows:

• Chapter 2 presents the non-isothermal quasi-static thermo-poroelastic govern-
ing equations. The strong form of the problem with its general boundary and
initial conditions will be given. This chapter also briefly discusses the discretiza-
tion technique that has been used.

• Chapter 3 presents a simple parametric problem with one parameter to intro-
duce the PGD concept. This chapter shows in detail how the PGD will apply
to the parametric PDE problem.

• Chapter 4 shows the extension of the PGD method to the THM problem. One
of the work’s main contributions will be presented in this chapter. The details
of the separated representation of matrices and vectors of the THM problem
will be shown.
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1.6. Outline and objective of this work

• Chapter 5 aims at validating the technique by using a problem for which an
analytical solution is available, inspired by the work of Selvadurai and Suvorov
[129]. This chapter’s aim is to illustrate that the methodology (a combination
of the PGD with coupled THM) is working properly.

• Chapter 6 extracts the application of PGD on transient coupled THM cases
inspired by the engineered barrier systems. This chapter presents the problem
statement and the results of such a combination that is beneficial for identifying
and optimizing application prospects.

• Chapter 7 proposes a discussion concerning the computational methods for
coupled problems by using the PGD methodology.

• Chapter 8 collect all the contributions, conclusions and the future outlooks.
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Chapter 2

Governing equations and
discretization

In this chapter, the strong form of the THM governing equations and the correspond-
ing constitutive laws will be presented. However, the governing equations here will be
presented by considering simplifying assumptions that were mentioned in the previous
chapter (Section 1.3).

Section 2.1 briefly outlines the constitutive laws, and governing equations. Section
2.2 shows the weak form of the problem and its discretization. In this section, the
Finite Element Method (FEM) [174] with an axisymmetric assumption has been used
as computational method.

2.1 Governing equations

In this section, the corresponding constitutive laws for the thermal, hydraulic, and
mechanical components, the governing equations and notation definitions, as well
as their boundary and initial conditions, will be presented. The implementation
assumption in this work is that all problems are axisymmetric, therefore coordinates
are provided in cylindrical coordinates, resulting in computational efficiency since
the two-dimensional setting can describe the three-dimensional nature of the problem.
The spatial coordinates are r and z , which represent the radial coordinate (horizontal
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2. Governing equations and discretization

direction) and the axial coordinate (vertical direction), respectively. They are denoted
in the domain Ω, which is represented by the coordinates (r , z).

Mass of fluid phase per
unit volume: ρf ϕ

Mass of solid phase per
unit volume: ρs(1 − ϕ)

Fluid phase
ϕ = Vf

V

Solid phase
1 − ϕ = Vs

V

(A) (B)

Total volume
V = Vs + Vf

Figure 2.1: (A) Porosity (ϕ) in a fully saturated medium is determined by the pro-
portion of fluid volume (Vf ) to the overall volume (V ). (B) shows the mass of each
phase per unit volume.

Considering the problem to be fully saturated, the porous medium becomes a
two-phase material. Therefore, porosity is defined here as the proportion of the
fluid’s volume (Vf ) to the overall volume (V ), which is represented by ϕ. Figure 2.1
illustrates the porosity and mass of each phase per unit volume in a fully saturated
porous medium.

T

M H

Figure 2.2: The THM process.

Figure 2.2 recalls that the THM model is thermally one-way coupled in this work.
The main unknowns of the problem are temperature (T ), pore water pressure (p),
and the vector of displacement (u).

2.1.1 Constitutive laws

The constitutive laws depend on the main unknowns of the THM problem. For
the thermal part, Fourier’s law (heat flux) and for the hydraulic part, Darcy’s law
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2.1. Governing equations

(hydraulic flux) have been used:

ic = −κ∇T , (2.1)

jw = − K
ρf g

(∇p − ρf g), (2.2)

where Equation (2.1) is Fourier’s law [129], and κ is the heat conductivity in the
saturated condition, and ic is the heat flux. Equation (2.2) presents the hydraulic
flux (jw) and is known as Darcy’s law [47]. g = 10 m

s2 and g = [0, −g] are gravity
and the vector of gravitational acceleration, respectively, and K is the hydraulic
conductivity.

In the mechanical part, the definition of the stress tensor is necessary. It is a
function of all the unknown variables. The constitutive relationships outlined in this
thesis for the mechanical part consider only Hookean elastic materials [129]:

σ = C : ∇u − αpδ − 3KDαsTδ, (2.3)

where in Equation (2.3), C is the fourth-order tensor describing the stiffness of the
material. It is isotropic and expressed in the axisymmetric form. In addition, α is the
Biot coefficient, δ is the identity matrix (Kronecker delta), KD is the bulk modulus of
the fully drained poroelastic body, and αs is the heat expansion coefficient of the solid
phase. By using Voigt notation, the fourth order tensor C is given as the material
matrix C (for the axisymmetric case) [174]:

C = E
(1 + ν)(1 − 2ν)



1 − ν ν ν 0

ν 1 − ν ν 0

ν ν 1 − ν 0

0 0 0 1
2(1 − 2ν)


. (2.4)

In Equation (2.4), E and ν are elastic modulus and Poisson’s ratio, from which
KD and α are defined by the following relations in Equation (2.3) [129]:

KD = E
1 − 2ν

, (2.5)

α = 1 − KD

Ks
, (2.6)

where in Equation (2.6), Ks is the bulk modulus of the solid phase. The concept of
Biot’s coefficient α tries to express how much of an initial instantaneous volumetric
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2. Governing equations and discretization

loading is transferred onto the solid skeleton and how much it transfers to the fluid.
For sloppy soils, usually, it is taken as unity (initially, any volumetric loading is fully
obtained by the fluid phase). However, for rock like granite, it will be taken as
α = 0.75 [91].

Thermal or Hydraulic part Mechanical part

 ∂
∂r
∂
∂z




∂
∂r 0
0 ∂

∂z
1
r 0
∂
∂z

∂
∂r


Table 2.1: Differential operator (∇) descriptions for axisymmetric conditions.

Table 2.1 defines the differential operator (∇) [174], also known as the nabla
operator in all the Equations (2.1), (2.2), and (2.3).

2.1.2 The field equations

The Thermal-Hydraulic-Mechanical (THM) coupled processes in porous media are
described by partial differential equations (PDEs) that can be derived by inserting
the constitutive laws (Equations (2.1), (2.2), and (2.3)) into the definitions of the
continuity equations and stress equilibrium. All these fundamental theoretical bases
for THM problems in this work can be found in Olivella et al. [108], Nguyen and
Selvadurai [97], Wang [162], Verruijt [157], and Selvadurai and Suvorov [129]. The
PDEs formulation is thermally one-way coupled, and the governing equations of our
mathematical model to simulate the THM behavior are the following:

((1 − ϕ)ρscs + ϕρf cf )Ṫ − ∇ · (κ∇T ) = q(t) in Ω × It ,

( ϕ

Kf
+ α − ϕ

Ks
)ṗ − ∇ ·

( K
ρf g

(∇p − ρf g)
)

+ α∇ · u̇ = (3ϕαf + 3(α − ϕ)αs)Ṫ
in Ω × It ,

α∇p − ∇ · (C : ∇u) = b − 3KDαs∇T in Ω × It .

(2.7)

As already mentioned, the primary unknowns in these PDEs are the temperature
(T ), the pore pressure (p), and the vector of displacement (u = [ur , uz ]). Ṫ , ṗ, and
u̇ denote the derivatives of temperature, pressure, and vector of displacement with
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2.1. Governing equations

respect to time. In Equation (2.7), b and q(t) are the vectors of body force and
the heat source respectively. Figure 2.3 presents a generic domain, where Γt, Γr, Γb,
and Γl are the boundaries at the top, right, bottom, and left of Ω. In the governing
equations, Ω × It represents that the PDEs are valid in the spatial domain (Ω) and
the interval of time (t). Table 2.2 describes all the material properties involved with
their units.

Ω

Γt

Γb

ΓrΓl

Figure 2.3: Boundaries and domain of a generic axisymmetric problem are presented.
Here, Ω represents the spatial domain of the problem, while Γt, Γr, Γb, and Γl are
the boundaries at the top, right, bottom, and left of Ω, respectively.

Symbol Units Description

ρs kg m−3 Density of the solid phase
ρf kg m−3 Density of the fluid phase
cs J kg−1 ◦C−1 Specific heat of the solid phase
cf J kg−1 ◦C−1 Specific heat of the fluid phase
κ W m−1 ◦C−1 Heat conductivity of the porous medium
α - Biot’s coefficient

KD Pa Bulk modulus of the fully drained poroelastic body
αs

◦C−1 Heat expansion coefficient of the solid phase
αf

◦C−1 Heat expansion coefficient of the fluid phase
K m

s Hydraulic conductivity of the porous medium
ϕ - Porosity
Kf Pa Bulk modulus of the fluid phase
Ks Pa Bulk modulus of the solid phase
E Pa Elastic modulus
ν - Poisson’s ratio

Table 2.2: Properties description.

It is necessary to specify proper boundary and initial conditions for the solution
of the governing PDEs. Γ represents the general format of the boundaries, which is
the following:

Γ = Γt ∪ Γr ∪ Γb ∪ Γl.
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2. Governing equations and discretization

For the temperature field, the boundary conditions are defined to be either Dirich-
let boundary conditions (prescribed temperature) on ΓT

D or Neumann boundary con-
ditions (prescribed heat flux) on ΓT

N :

T (x, t) = TD(x, t), x ∈ ΓT
D , (2.8)

ic · n = iN (x, t), x ∈ ΓT
N . (2.9)

Equation (2.8) presents the prescribed temperature on ΓT
D , while Equation (2.9)

presents the prescribed heat flux on ΓT
N . TD(x, t) and iN (x, t) are given functions

of position and time, with n the vector normal to the boundaries. The boundaries
must satisfy:

Γ = ΓT
D ∪ ΓT

N ,

ΓT
D ∩ ΓT

N = 0.

For the temperature, the initial condition is specified as follows:

T (x, 0) = T0(x) (2.10)

The boundary conditions for the pore water pressure field are presented in a
similar manner as follows:

p(x, t) = pD(x, t), x ∈ Γp
D, (2.11)

jw · n = jN (x, t), x ∈ Γp
N . (2.12)

Equation (2.11) presents the prescribed pore water pressure on Γp
D, while Equation

(2.12) evaluates the prescribed hydraulic flux on Γp
N . pD(x, t) and jN (x, t) are given

functions of position and time. The corresponding boundaries must satisfy:

Γ = Γp
D ∪ Γp

N ,

Γp
D ∩ Γp

N = 0.

For the pore water pressure, the initial condition is specified as follows:

p(x, 0) = p0(x) (2.13)

The boundary conditions for the mechanical part of the problem are prescribed
displacement on Γu

D and prescribed traction forces on Γu
N :

u(x, t) = uD(x, t), x ∈ Γu
D, (2.14)
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2.2. Weak form and discretization

σ · n = tN (x, t), x ∈ Γu
N . (2.15)

Equation (2.14) presents the prescribed displacement on Γu
D, while Equation (2.15)

shows the prescribed traction forces on Γu
N . uD(x, t) and tN (x, t) are given vector

functions of position and time. The corresponding boundaries must satisfy:

Γ = Γu
D ∪ Γu

N ,

Γu
D ∩ Γu

N = 0.

The initial conditions for the displacement field should be such that the different
fields, especially pressure, stresses, and displacement, be balanced and at equilibrium.
In this work, solving the steady-state version of the generic problem is applied based
on the assumptions already mentioned in the previous section. By applying the
initial condition of temperature (Equation (2.10)) and pressure (Equation (2.13)) in
the third equation of governing Equations (2.7), the initial condition of displacement
field is found:

u(x, 0) = u0(x) (2.16)

2.2 Weak form and discretization

This section states at first the weak form of the general form of the THM governing
Equations (2.7). The vectors of unknowns will be defined. Later by using space (ax-
isymmetric FEM [174]) and time discretization (θ-rule method [92]), the discretized
matrices and vectors will be defined.

2.2.1 Weak form

It is essential to establish a set of weighting functions and test solutions for the
temperature, pore water pressure, and displacement vector in order to build the
weak form. However, this section presents only the weak form of the main governing
Equations (2.7) for any vT, vp, and vd (test functions of temperature, pore water
pressure, and displacements, respectively) satisfying homogeneous Dirichlet boundary
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conditions on ΓT
D , Γp

D, and Γu
D:

∫
Ω
∇vT · (κ∇T ) rdΩ +

∫
Ω
vT ((1 − ϕ)ρscs + ϕρf cf )Ṫ rdΩ

=
∫

Γ
vT iN rdΓ +

∫
Ω

vT q(t) rdΩ
in Ω × It ,

∫
Ω
∇vp · ( K

ρf g
∇p) rdΩ +

∫
Ω

vp ( ϕ

Kf
+ α − ϕ

Ks
)ṗ rdΩ

+
∫

Ω
vp α∇ · u̇ rdΩ =

∫
Ω

vp (3ϕαf + 3(α − ϕ)αs)Ṫ rdΩ

+
∫

Γ
vp jN rdΓ +

∫
Ω
∇vp

K
ρf g

ρf g rdΩ

in Ω × It ,

∫
Ω

vd α∇p rdΩ +
∫

Ω
∇vd · (C : ∇u) rdΩ =

−
∫

Ω
vd 3KDαs∇T rdΩ +

∫
Ω

vd b rdΩ +
∫

Γ
vd tN rdΓ

in Ω × It .

(2.17)

In Equation (2.17), the terms iN , jN , and tN are the heat and hydraulic fluxes
and vector of traction forces, respectively. Their explicit dependence on x and t has
been omitted for brevity. The main unknowns, T , p, and u, are discretized as:

T = NTT,

p = Npp,

u = Ndd.

(2.18)

In Equation (2.18), T, p, and d represent the nodal quantities of temperature, pres-
sure, and displacement, respectively, while NT, Np, and Nd correspond to the matrix
of shape functions for temperature, pore water pressure, and displacement. The
explanation of these matrices will be provided in the next section.

2.2.2 FEM formulation

This section presents the discrete equations for the THM model. The spatial domain
is discretized using the axisymmetric FEM concept [174], while time is discretized
using the θ-rule for the time discretization scheme. θ is a time-integration parameter
determined based on the work of Nguyen and Selvadurai [97], who observed through
their investigation that using θ = 0.75 provides a reliable and stable solution. We
can approximate time derivates by:

ġ = f (g, t) → gi+1 − gi = ∆t(1 − θ)f i + ∆tθf i+1. (2.19)
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2.2. Weak form and discretization

Where g and f are arbitrary functions in Equation (2.19), and ∆t is the time step.
The exponents i + 1 and i represent the current and previous times, respectively.

The Galerkin-type weighted residual and θ-rule techniques are used to formulate
the computational scheme used to solve the governing equations. The following dis-
cretized equations are obtained in the matrices and vector format by considering that
the externally supplied heat and hydraulic fluxes are zero:

[
MT + ∆tθKT

]
Ti+1 = ∆tfq +

[
MT + ∆t(θ − 1)KT

]
Ti , (2.20)

Mp + ∆tθKp Gpd

θGdp θKd

 pi+1

di+1

 =
∆tfbf

fd

 +
Mp + ∆t(θ − 1)Kp Gpd

(θ − 1)Gdp (θ − 1)Kd

 pi

di

 +
 MpT −MpT

−θGdT (θ − 1)GdT

 Ti+1

Ti

 ,

(2.21)

where in Equations (2.20) and (2.21), Ti+1, pi+1 and di+1 are the unknowns for
temperatures, pore water pressures, and displacements, with Ti , pi and di the known
values for temperatures, pore water pressures, and displacements from the previous
time. The descriptions of the symbols in Equations (2.20) and (2.21) are presented
in Table 2.3.

Symbol Description

KT Stiffness matrix for thermal part
MT Mass matrix for thermal part
MpT Coupling mass matrix of temperature in hydraulic part
Kp Stiffness matrix for hydraulic part
Mp Mass matrix for hydraulic part
Gpd Coupling matrix of volumetric strain in hydraulic part
Kd Stiffness matrix for mechanical part
GdT Coupling matrix of temperature in mechanical part
Gdp Coupling mtrix of pressure in mechanical part
fq Force term generated by heat source
fbf Force term generated by gravity in hydraulic part
fd Force term generated by body force and traction force

Table 2.3: Symbols description.
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2. Governing equations and discretization

The integration definitions for the components in Equations (2.20) and (2.21) can
be found by referring to Equations (2.17) through (2.21). They are listed below:

KT =
∫

Ω
B⊤

TκBT rdΩ, (2.22)

MT =
∫

Ω
N⊤

T((1 − ϕ)ρscs + ϕρf cf )NT rdΩ, (2.23)

MpT =
∫

Ω
N⊤

p (3ϕαf + 3(α − ϕ)αs)NT rdΩ, (2.24)

Kp =
∫

Ω
B⊤

p
K
ρf g

Bp rdΩ, (2.25)

Mp =
∫

Ω
N⊤

p ( ϕ

Kf
+ α − ϕ

Ks
)Np rdΩ, (2.26)

Gpd =
∫

Ω
N⊤

p αBv rdΩ, (2.27)

Kd =
∫

Ω
B⊤

d CBd rdΩ, (2.28)

GdT =
∫

Ω
N⊤

d 3KDαsBT rdΩ, (2.29)

Gdp =
∫

Ω
N⊤

d αBp rdΩ, (2.30)

fq =
∫

Ω
N⊤

Tq(t) rdΩ, (2.31)

fbf =
∫

Ω
N⊤

p
K
ρf g

ρf g rdΩ, (2.32)

fd =
∫

Ω
N⊤

d b rdΩ +
∫

Γ
N⊤

d tN rdΓ. (2.33)

In all the preceding equations, NT, Np, and Nd are the matrices of shape functions
for temperature, pressure, and displacements, respectively. These matrices, by using
bilinear quadrilateral elements, are expressed as follows:

NT = Np =
[
N1 N2 N3 N4

]
, (2.34)

Nd =
N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

 . (2.35)
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2.2. Weak form and discretization

BT, Bp, Bv, and Bd are B-operator matrices for temperature, pressure, volumetric
displacements, and displacement. They are defined as follows:

BT = Bp = ∇NT

=
 ∂

∂r
∂
∂z

 NT,
(2.36)

Bv = ∇ · Nd

=
[

∂
∂r + 1

r
∂
∂z

]
Nd,

(2.37)

Bd = ∇Nd

=


∂
∂r 0
0 ∂

∂z
1
r 0
∂
∂z

∂
∂r

 Nd.
(2.38)

The rest of the descriptions of symbols in the Equations ((2.22) to (2.33)) are
presented in Table 2.3.

Bi-linear quadrilateral shape functions are used in this work for temperature,
pressure, and displacement. Reviewing the literature shows that the solution to such
problems may contain a behavior with spurious oscillations or have some jumps.
Such instability conditions can be tracked by the so-called inf-sup conditions (a.k.a
Ladyzhenskaya-Babuska-Brezzi conditions) [6, 17, 7]. The use of bilinear quadrilat-
eral elements has been observed in geotechnical applications involving coupled HM
and THM problems. For example, Song et al. [136] employed a 2D axisymmet-
ric numerical model with linear quadrilateral elements to analyze hydro-mechanical
behavior in tunnels, introducing a novel excavation method in CODE-BRIGHT soft-
ware. Similarly, Marcelo et al. [141] investigated the THM behavior of a Full-scale
Engineered Barriers Experiment using a numerical model with bilinear quadrilat-
eral elements, accurately predicting barrier state and evolution. It is noteworthy
that CODE-BRIGHT, designed to solve coupled porous media problems (THM and
HM), incorporates a generalized selective integration procedure that effectively ad-
dresses issues such as locking, mesh distortion, and hourglassing associated with linear
quadrilateral elements [110].

In this work, no spurious oscillations have been observed. However, based on
the literature review, it is recommended to check the inf-sup condition to ensure

29



2. Governing equations and discretization

stability. It should be noted that the main contribution of this work is not focused on
FEM; rather, it lies in the combination of THM with the PGD technique. If spurious
oscillations or jumps are encountered in the FEM solution, higher-order elements
such as quadratic quadrilaterals or serendipity shape functions are recommended for
the displacement field, as shown in the work by Nguyen and Selvadurai [97].

On the other hand, the PGD technique is an intrusive method that relies on sepa-
rate tensors and vectors. These components, which will be explained in greater detail
in the following chapters, are specifically tailored for bilinear quadrilateral elements.
The code has been developed to accommodate these elements, and incorporating
quadratic quadrilateral elements would require further modifications.
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Chapter 3

Proper Generalized Decomposition
for parametric problems

Decision-taking in practical engineering usually requires accounting and evaluating a
large number of possible situations. In computational engineering, this is translated
into solving many numerical models that usually are computationally extenuating.
This is the case in design and parameter optimization, identification of parameters,
and uncertainty quantification. These problems can usually be described by a main
set of equations depending on some parameters. The family of solutions to evalu-
ate arise from the range of values that the parameters might take. Naturally, the
number of solutions to consider grows exponentially with the number of parameters
that are considered, and so does the number of numerical models that need to be
solved. Rapidly, the amount of computation required becomes unfeasible to be used
in practice.

Model Order Reduction (MOR) is a family of techniques that allow dealing with
parametric problems in a computationally efficient way. This work focuses on one
technique called Proper Generalized Decomposition (PGD). It is based on two main
ingredients: i) a separated representation of variables and operators and ii) a greedy
enrichment strategy that computes the solution of the parametric problem iteratively.

In this chapter, the principles of the PGD method are presented, and its use
is exemplified by a simple parametric steady-state thermal problem. Section 3.1
presents the statement of the parametric problem, Section 3.2 introduces the main
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3. Proper Generalized Decomposition for parametric problems

ideas of the PGD technique in the context of the simple problem that is shown in the
first section, and Section 3.3 shows and discusses some results obtained by PGD. For
a deeper discussion on the PGD method, the reader is referred to [175, 134].

3.1 Steady-state thermal problem

The simple problem under consideration in this section serves for the purpose of
presenting the reduced order methodology and also to validate the implementation.
It is governed by a pure diffusion equation in a cylinder with axisymmetric geometry,
and therefore the 3D problem is described in a 2D domain. Moreover, the problem
is built such that the solution is constant along the z-axis and only depends on r
(Figure 3.1), and therefore, the solution is in practice 1D.

z

r
a

c
b

L
q

Γl ΓrΩ1

Γt

Γb

(A) (B) (C)

Ω2

Figure 3.1: (A) Axisymmetric cylinder, (B) geometry, and (C) boundaries and do-
main.

The problem is governed by a Poisson equation,

−∇ · (κ(x)∇T (x)) = q in Ω, (3.1)

and closed with the proper boundary conditions described below. Using the axisym-
metric symmetry, we name the spatial axis as r in the radial direction and z along
the rotational axis. The vector x has coordinates (r , z). The domain Ω = Ω1 ∪ Ω2,
as presented in Figure 3.1-C, is divided into two parts, Ω1 and Ω2, having different
material properties,

κ(x) =

 κ1 for x ∈ Ω1,

κ2 for x ∈ Ω2.
(3.2)
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3.1. Steady-state thermal problem

The boundaries of Ω are Γt, Γr, Γb, and Γl at the top, right, bottom, and left,
respectively. The boundary conditions are,

T (x) = Tl on Γl,

T (x) = Tr on Γr,

(−κ∇T ) · n = 0 on Γt ∪ Γb,

(3.3)

where Tr and Tl are constant temperatures.

3.1.1 Discretization

By applying Finite Element Method (FEM) as a high-fidelity technique to discretize
the problem, the standard algebraic system is obtained;

KTT = fq, (3.4)

where T contains the nodal temperature values and KT and fq are defined as,

KT =
∫

Ω
B⊤

Tκ(x)BT r dΩ, fq =
∫

Ω
N⊤

Tq r dΩ. (3.5)

The definitions of the matrices BT and NT are in Equations (2.34) and (2.36).

3.1.2 Parametric problem

We aim to solve the aforementioned problem for a range of κ2, having κ1 fixed. In
this situation, we call κ2 a parameter of the problem. In this thesis, all parameters
will be noted with the letter µ. The thermal diffusivity κ therefore becomes,

κ(x, µ) =

 κ1 in Ω1 × Iµ,

µ in Ω2 × Iµ,
(3.6)

where µ ∈ Iµ = [µmin, µmax], and Iµ is the interval domain of the parameter. The
parametric problem then becomes: find T (x, µ) such as,

−∇ · (κ(x, µ)∇T (x, µ)) = q in Ω × Iµ,

(−κ∇T ) · n = 0 on (Γt ∪ Γb) × Iµ,

T (x, µ) = Tl on Γl × Iµ,

T (x, µ) = Tr on Γr × Iµ,

(3.7)
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3. Proper Generalized Decomposition for parametric problems

Following the usual discretization procedure, the parametric problem is written in
the algebraic form, and it results in a linear system of equations in which the matrix
depends on the parameter,

KT(µ)T(µ) = fq. (3.8)

The solution vector, T(µ), naturally inherits the dependence on the parameter. In
this particular parametrization, the right-hand side fq is constant, but in a general
case, it can also be dependent on µ. To solve the Equation (3.8), the boundary
conditions should be applied. So, by moving the known values of boundaries to the
right-hand side, the problem is going to be rewritten as follows:

KT(µ)T(µ) = fq − KT(µ)TD︸ ︷︷ ︸
F(µ)

. (3.9)

TD in Equation (3.9) represents all the Dirichlet boundary conditions values in Equa-
tion (3.7). The residual of Equation (3.9) is introduced as,

R(T(µ)) := F(µ) − KT(µ)T(µ) = 0. (3.10)

Equation (3.9) is expressed in integral form as well. Initially, Equation (3.10) intro-
duces the residual form of Equation (3.9). Consequently, by employing the concept
of weighted residuals, T(µ) is searched as the solution of Equation (3.11) that is
required to hold true for all δT(µ), considering test functions analogous to virtual
temperatures: ∫

Iµ

δT(µ)⊤R(T(µ))dµ = 0. (3.11)

Importantly, integration in (3.11) is solely performed over the parametric space Iµ,
with no involvement in the physical space. This characteristic stems from the alge-
braic nature of Equation (3.9), which is already discretized in space. Thus, in this
context, the scalar product of the residual (forces) and the test function (virtual tem-
peratures) assumes the role of space integration. Using the FEM model to solve it,
let us denote Rn

Ω as the number of degrees of freedom in the spatial mesh, and Rn
µ as

the number of gridding points used to discretize the extra dimension of µ. The total
number of unknowns to determine becomes nΩnµ. This product grows fast with the
number of parameters, producing the so-called curse of dimensionality.

Such PDE is parametric due to its dependency on the parameter. Considering the
parameter as an extra dimension is the way of looking at the problem in this work.
One technique to deal with such a problem is using Model Order Reduction (MOR)
technique, in which Proper Generalized Decomposition (PGD) is used here.
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3.2. Encapsulated PGD methodology

3.2 Encapsulated PGD methodology

To study the parametric steady-state thermal problem discussed in the previous sec-
tion, the Proper Generalized Decomposition (PGD) is used as a Model Order Reduc-
tion (MOR) technique specifically designed to address parametric problems based on
Partial Differential Equations (PDEs). An algebraic implementation of PGD by Díez
and coauthors [37, 38] enables us to solve a parametric system of equations similar
to Equation (3.9). When discretizing the dimension µ, the parametric matrix KT(µ)
is treated as a high-order tensor with additional dimensions representing variations
with respect to the parameters. The PGD technique utilizes separate representations
for all entities involved, such as operators like KT(µ) and FT(µ), as well as unknown
solutions like T(µ), where the temperature is treated as an unknown variable. Conse-
quently, all objects are constructed as sums of terms, where each term corresponds to
a product of one-dimensional functions. We delve deeper into this concept in the sub-
sequent subsections. The algebraic implementation of PGD offers a straightforward
approach to solving parametric problems, encompassing all necessary operations of
the PGD algorithm, including high-dimensional tensor multiplication, linear solvers,
and summations. However, it still requires constructing the operators KT(µ) and
F(µ) as separate high-order tensors. In certain cases, the construction is exact (e.g.,
when parameters control material properties), while in other scenarios (e.g., when
parameters influence geometry), it becomes more intricate and necessitates approxi-
mations. In the following subsections, we introduce the key components of the PGD
method and utilize the problem described in Section 3.1 as an example to illustrate
the separated operators and solutions.

The implementation of the algebraic PGD used here was proposed by Díez et al
[37] and it is available at https://git.lacan.upc.edu/zlotnik/algebraicPGDtools.

3.2.1 Proper Generalized Decomposition work in principle

The high-dimensional problems suffer from the so-called curse of dimensionality.
Here, by applying the PGD technique, such a bottleneck is circumvented. Using
separated representations is at the heart of the PGD. Consequently, in such a con-
cept, high-dimensional functions are presented in separable formats.

The high-dimensional function F is said to be separable if, for some integer value
M , and for i = 1, 2, . . . , nd (nd is the number of dimensions), and m = 1, 2, . . . , M ,
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there exists a set of functions f m
i that take values from a one-dimensional (1D) domain

Ii = [ai , bi ] such that,

F(x1, x2, . . . , xd) =
M∑

m=1
f m
1 (x1)f m

2 (x2) . . . f m
nd

(xnd). (3.12)

Each coordinate corresponds to a distinct dimension, while F spans nd dimensions.
To enhance comprehension, we decompose the function F into nd one-dimensional
functions (f m

i ). Each one-dimensional sectional domain ([ai , bi ]) is discretized with a
variable number of nodes. Assuming that each one-dimensional sectional domain has
been discretized into ni nodes denoted by xki

i , where ki = 1, 2, . . . , ni , the coordinates
of these nodes can be obtained using the equation xki

i = ai + bi−ai
ni−1 (ki − 1) for i =

1, 2, . . . , nd and ki = 1, 2, . . . , ni . Each scalar data coordinate (xi) is transformed into
vector data (xi),

xi = [ai , ai + bi − ai

ni − 1 , ai + 2bi − ai

ni − 1 , . . . , ai + bi − ai

ni − 1 (ni − 2), bi ].

Then, the high-dimensional function F is readily represented by the tensor of its
nodal values F ∈ Rn1×n2×...×nnd , such that,

F = F(x1, x2, . . . , xnd)

After the discretization of each dimension (means each xi), the function F can be
seen as a high-order tensor,

F =
M∑

m=1
fm
1 ⊗ fm

2 ⊗ . . . ⊗ fm
nd

, (3.13)

where ⊗ is the tensor product. Note that Equations (3.12) and (3.13) are equivalent
in the sense that vectors fm

i contain the nodal values of f m
i (xi).

Dealing with a parametric problem with the Encapsulated PGD methodology
requires separately expressing all the discretized parametric operators in Equation
(3.9). Thus, KT(µ) and F(µ), the known components of the discretized system,
should be defined in the separable format,

KT(µ) =
∫

Ω1
B⊤

Tκ1BT rdΩ︸ ︷︷ ︸
K1

T

1︸︷︷︸
ϕ1

µ

+
∫

Ω2
B⊤

TBT rdΩ︸ ︷︷ ︸
K2

T

µ︸︷︷︸
ϕ2

µ

= K1
T ϕ1

µ + K2
T ϕ2

µ,

(3.14)
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F(µ) = (
∫

Ω
N⊤

Tq rdΩ − K1
TTD)︸ ︷︷ ︸

f1

1︸︷︷︸
ϕ1

µ

+ (−K2
TTD)︸ ︷︷ ︸

f2

µ︸︷︷︸
ϕ2

µ

= f1 ϕ1
µ + f2 ϕ2

µ.

(3.15)

Note that KT(µ) is written separately as the sum of two terms, each term being the
product of a part depending only on space, K1

T and K2
T, and a part depending only

on the parameter µ, ϕ1
µ(µ) = 1, and ϕ2

µ(µ) = µ.
Note also that the form of the right-hand side F(µ) has a similar structure. In

this case, the parametric functions ϕi
µ(µ) are the same in KT(µ), and as F(µ). This

is particular to this example, and it is a consequence of how boundary conditions are
handled, but, generally, the number of terms of F(µ) and the parametric functions
involved can be different from these of KT(µ). The discrete version of the stiffness
matrix and force vector written as separated tensors are for the present case,

K =
2∑

m̂=1
Km̂

T ⊗ Φm̂
µ , (3.16)

F =
2∑

m̃=1
f m̃ ⊗ Φm̃

µ . (3.17)

Φm̂
µ and Φm̃

µ are the vectors representing the discretized versions of the parametric
function when the parameter is discretized.

A separable approximation TM is used to approximate the solution T(µ) from
Equation (3.9),

T(µ) ≈ TM =
M∑

m=1
Tm ⊗ Gm

µ . (3.18)

Note that the vectors Tm and Gm
µ are unknowns that need to be determined, along

with the number of terms M (referred to as the final number of modes required to ob-
tain accurate results). Each term of Equation (3.18)represents a mode. These terms
are determined by a spatial-dependent component, Tm, and a parametric component,
Gm

µ . It should be noted that the vectors in each mode are normalized as follows:

T̃m = Tm

∥Tm∥
, G̃m

µ =
Gm

µ

∥Gm
µ ∥

, (3.19)

in order to have a unique representation. The normalized version then becomes
TM = ∑M

m=1 σmT̃m ⊗G̃m
µ , where σm is a scalar representing the amplitude of the term
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3. Proper Generalized Decomposition for parametric problems

σm = ∥Tm∥∥Gm
µ ∥. Note that σm provides information on the relative importance of

the modes in the separable approximation and therefore it will be used as one of the
criteria to decide whether the number of terms, M , is sufficient to obtain the desired
accuracy. It is useful to introduce the notation as,

TM = TM−1 + TM ⊗ GM
µ , (3.20)

where the super-index M indicates the number of terms of the approximation.

E
ncapsulated

Separated input data:
K = ∑2

m̂=1 Km̂
T ⊗ Φm̂

µ and F = ∑2
m̃=1 f m̃ ⊗ Φm̃

µ

O
ffl

in
e

st
ag

e
O

nl
in

e
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ag
e

Separated output data:
Goal: determine TM = ∑M

m=1 σmT̃m ⊗ G̃m
µκ

with T̃m and G̃m
µκ

normalized

Fixed-point iteration (while ϵ > ϵtol and ϵσ > ϵtol)

Enrichment iteration (while σm > ηtolσ1)

P
G

D
toolbox

Figure 3.2: Scheme of the three main ingredients of the PGD methodology for the
solution of parametric linear systems of equations. Inputs and outputs (gray boxes)
are given in separated formats (ingredient 1). An enrichment iteration (ingredient
2) sequentially adds terms to the approximated unknown function T(µ). A simple
fixed-point method (ingredient 3) is used to deal with the nonlinearities introduced
by the separated unknown function. In the figure, σm corresponds to the amplitude
of the m term of T(µ), ηtol is the tolerance used to stop the enrichment iteration,
ϵ and ϵσ are the errors estimates for the fixed-point iterations (defined in Equations
(3.36) and (3.37)), and ϵtol is the tolerance of the fixed-point.

The solution to the parametric problem (3.11) using PGD is described next. The
starting point is the description of the inputs and the outputs of the PGD solver,
represented in the Figure 3.2. All inputs and outputs will be given in separated
forms. The encapsulated PGD library provides an easy-to-use implementation of the
PGD algorithm to obtain the generalized (parametric) solution of a linear system
such as (3.11). The three main ingredients of the PGD algorithm are: 1) separated
representations, 2) an enrichment technique that will improve the solution by adding
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3.2. Encapsulated PGD methodology

one term at a time, and 3) a simple fixed-point scheme that deals with the non-
linearities introduced by the separated representation of the unknown function. The
main ideas of these three ingredients will be briefly presented next.

3.2.2 Enrichment iteration

The PGD approach aims to solve Equation (3.11) using an approximation of the solu-
tion in the form indicated in Equation (3.20). A greedy scheme computes sequentially
the terms in Equation (3.20). Each step of the enrichment iteration, or updating TM−1

into TM , entails solving the new rank-one term based on all the known prior terms.
Assuming that TM−1 is the sum of the known prior terms, the remaining terms for
TM are TM and GM

µ , based on Equation (3.20). TM and GM
µ are unknowns; from

now on, the superscripts M in TM and GM
µ will be omitted to simplify the notation.

The unknowns (T and Gµ) should be found to minimize the residual of Equation
(3.11). They are multiplying each other, which causes the problem to be nonlinear.

By defining an unknown high-dimensional tensor T = T ⊗ Gµ consisting of all
the unknowns, Equation (3.20) is rewritten as,

TM = TM−1 + T. (3.21)

Due to the incremental character of Equation (3.21), the expression of the residual
in Equation (3.10) is written as,

R(TM ) := F − KTM = 0

:= F − KTM−1 − KT = 0

:= R(TM−1) − KT = 0.

(3.22)

By using Equation (3.16) and the definition of T = T ⊗ Gµ, it becomes,

R(TM−1) − (
2∑

m̂=1
Km̂

T ⊗ Φm̂
µ ) · (T ⊗ Gµ) = 0 (3.23)

The test function δT(µ) in Equation (3.11) has to be selected now in accordance
with the unknown of the rank-one problem consisting in introducing in Equation
(3.11) the residual as defined in Equations (3.22) and (3.23),

δT(µ) = δT = δT ⊗ Gµ + T ⊗ δGµ. (3.24)

By inserting Equations (3.24) and (3.23) in Equation (3.11), a nonlinear problem is
obtained. The numerical approach to deal with the nonlinearity of this problem is
based on the fixed-point iteration, which is explained next.
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3.2.3 Fixed-point iteration

In the fixed-point iteration method, each unknown is solved independently, presuming
that the other components are known. With the use of this concept, the nonlinear
problem for the problem (3.7) is split into two consecutive linear equations:

• The first problem reads: given Gµ, compute T (in encapsulated PGD, the
starting guess is a vector with all components set to the value of one, and it is
subsequently normalized).

• The second problem reads: given T, compute Gµ.

Note that the proposed method iterates two linear equations to reach a stationary
solution based on the stopping criterion for one achievement term.

For the first problem (computing T), by assuming that Gµ is known, the test
function is expressed as,

δT = δT ⊗ Gµ. (3.25)

By inserting Equations (3.25) and (3.23) in Equation (3.11), and applying algebraic
manipulation for all δT ∈ RnΩ , the following linear system of equations for T is
obtained,  2∑

m̂=1
Km̂

T cm̂

T =
2∑

m̃=1
f m̃ ĉm̃ −

M−1∑
m=1

 2∑
m̂=1

Km̂
T cm̂,m

Tm, (3.26)

where m̂, m̃, and m represent the number of terms for the stiffness matrix, force
vector, and temperature unknown fields, respectively. The scalars cm̂, ĉm̃, and cm̂,m

are computable terms defined by the following expressions:

cm̂ =
(

(Φm̂
µ ⊙ Gµ)TGµ

)
, (3.27)

ĉm̃ =
(
Φm̃

µ

T Gµ

)
, (3.28)

cm̂,m =
(

(Φm̂
µ ⊙ Gm

µ )TGµ

)
. (3.29)

In Equations (3.27) and (3.29), ⊙ is the Hadamard product (component by component
product corresponding to the command " .* " in MATLAB).
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3.2. Encapsulated PGD methodology

For the second problem (computing Gµ), T has to be taken as a known value
from the previous computation, and the test function is the following,

δT = T ⊗ δGµ. (3.30)

By inserting Equations (3.30) and (3.23) in Equation (3.11) and applying algebraic
manipulations for all δGµ ∈ Rnµ , the following linear system for Gµ is obtained,

Gµ ⊙

 2∑
m̂=1

(TTKm̂
T T)dm̂

µ

 =
2∑

m̃=1
(TTf m̃)d̂m̃

µ −
M−1∑
m=1

2∑
m̂=1

(TTKm̂
T Tm)dm̂,m

µ , (3.31)

where vectors dm̂
µ , d̂m̃

µ and dm̂,m
µ are computable terms defined as

dm̂
µ = Φm̂

µ , (3.32)

d̂m̃
µ = Φm̃

µ , (3.33)

dm̂,m
µ =

(
Φm̂

µ ⊙ Gm
µ

)
. (3.34)

After one iteration, new T, and Gµ are obtained, but, for being sure if they reach
a stationary solution, the new results must be controled with the old results with
some stopping criteria. Then, if it is not converged, the procedure is restarted by
changing the old values with amount of the new values and obtained the next new
values. The stopping criterion is discussed in the following subsection.

3.2.4 Convergence control and stopping criteria

As it has been illustrated in Figure 3.2, PGD requires two iterations. The outer iter-
ation is an enrichment iteration adding new terms in Equation (3.20), while the inner
iteration consists of the fixed-point iteration process to deal with the nonlinearity
character of the problem defined by the PGD operations.

In the enrichment iteration based on Equation (3.20), we first need to normalize
the vectors (Tm and Gm

µ ) in each mode. Then σm = ∥Tm∥∥Gm
µ ∥, the amplitude of

each mode, is calculated. By comparing the amplitude of the last computed mode
with the amplitude of the first one, the following stopping criterion for the enrichment
iteration is defined;

σm

σ1
< ηtol, (3.35)
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3. Proper Generalized Decomposition for parametric problems

where ηtol is a given tolerance.
The fixed-point iterative scheme requires a stopping criterion to decide whether

the current approximation for T and Gµ is acceptable or not. The stopping criterion
is based on the stationary of the solution: the iteration is stopped if the modifica-
tion from the previous iteration is small enough. Thus, assume that T̃old and G̃old

µ

characterize the normalized values at the previous iteration and σold is the amplitude
of the previous iteration. After the fixed-point iteration loop, the new normalized
approximation by T̃new and G̃new

µ and the amplitude of the new iteration is σnew. For
this iterative scheme, two errors, ϵ and ϵσ, are defined as,

ϵ = ∥T̃new − T̃old∥∥G̃new
µ − G̃old

µ ∥, (3.36)

ϵσ = |σnew − σold|
σold . (3.37)

By defining an error tolerance ϵtol, the following stopping criterion is defined for the
fixed-point iteration procedure;

ϵ < ϵtol and ϵσ < ϵtol, (3.38)

and for this scheme, both stopping criteria must be satisfied.

3.3 An example of a PGD solution

This section presents the result of the parametric problem (3.7) obtained using the
PGD methodology described in the previous section. The main goal is to make the
reader familiar with the particular shape and properties of the separated functions.

Note that PGD as, most reduced order techniques, can be divided into two phases:
first, the construction of the reduced basis, and second the use of the basis to obtain a
particular solution. The first step, so-called the offline phase, was described in Section
3.2, and it is usually expensive but is done only once. The second step, the online
phase, in the case of PGD, is particularly inexpensive as obtaining a new solution
does not involve solving any linear system of equations.

Table 3.1 displays the constants pertaining to problem (3.7) and is illustrated in
Figure 3.1. It is important to note that the heat source (q) is uniformly distributed
across the entire domain.
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3.3. An example of a PGD solution

Symbol Units Value Definition

a m 2 Inner radius
c m 3 Middle radius
b m 4 Outer radius
L m 10 Length
Tl

◦C 10 Prescribed temperature at Γl
Tr

◦C 10 Prescribed temperature at Γr
κ1 W m−1 ◦C−1 10 Heat conductivity of subdomain Ω1
q W m−3 13.5282 Heat source

Table 3.1: Constants used for the solution of the problem (3.7).

As previously discussed, the heat conductivity of subdomain Ω2 is considered to
be a parameter taking values in, µ ∈

[
1.5 W

m◦C , 5 W
m◦C

]
.

Symbol Amount Definition

ηtol 10−2 Modes Tolerance
Mmax 50 Maximum number of Modes
ϵtol 10−6 Tolerance for Fixed-point iteration

itermax 50 Maximum number of iteration for Fixed-point iteration

Table 3.2: Stopping criteria for PGD.

Using the tolerances of Table 3.2, a solution with three terms (M = 3) is obtained,
namely,

T(x, µ) =
3∑

m=1
σmT̃m(x) ⊗ G̃m

µ (µ)

= σ1T̃1(x) ⊗ G̃1
µ(µ) + σ2T̃2(x) ⊗ G̃2

µ(µ) + σ3T̃3(x) ⊗ G̃3
µ(µ).

(3.39)

Note that T(x, µ) is a generalized solution that includes the dependence on space
and on the parameter (in this case, the thermal conductivity). The solution at any
point in the spatial and the parametric domains can be obtained by interpolation
operations.

It is usual that the amplitude of the terms in the solution decreases. This is
shown in Figure 3.3, which presents the relative amplitude of the terms with respect
to the first one. In this case, the amplitude decreases fast and monotonically. This is
desirable, but unfortunately, it is not guaranteed by the algorithm, and it is common
to obtain a non-monotonous decrease of the amplitudes.
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3. Proper Generalized Decomposition for parametric problems

Number of Modes

σ
m

/σ
1

Figure 3.3: Relative amplitude versus modes.

Figure 3.4 presents all the spatial and parametric functions that compose the
generalized solution, T(x, µ).

T̃1 T̃2 T̃3 µ

G̃m
µ

G̃1
µ

G̃3
µ

G̃2
µ

r

z z z

r r

(A) (B)

5 W
m◦C

-0.15
1.5 W

m◦C

-0.1

-0.05

0

0.05

0.1

Figure 3.4: (A) Three modes of normalized spatial functions, and (B) three modes of
normalized parametric functions.

When the offline computation of the PGD parametric solution is complete, its par-
ticularization at some given parameter values is very inexpensive. By particularizing
arbitrary parameter value in the range of its variations, for instance µ = 1.5 W

m◦C , the
PGD approximation is directly computed in real-time by,

T(x, 1.5) = σ1T̃1(x) ⊗ G̃1
µ(1.5) + σ2T̃2(x) ⊗ G̃2

µ(1.5) + σ3T̃3(x) ⊗ G̃3
µ(1.5). (3.40)
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3.3. An example of a PGD solution

The field results and their relative error are computed and illustrated in Figure
3.5 for µ = 1.5 W

m◦C . The relative error (ϵ1.5
RE(x)) is defined as,

ϵ1.5
RE(x) = ∥T1.5

FEM(x) − T(x, 1.5)∥
∥max (T1.5

FEM(x))∥ . (3.41)

In Equation (3.41), T1.5
FEM(x) means the solution of FEM for µ = 1.5 W

m◦C .

T(x, 1.5)

z

r r

z

ϵ1.5
RE(x)

(A) (B)
Figure 3.5: Temperature field result (A) and relative error (B) of PGD at µ = 1.5 W

m◦C .

r

µ µ

r

TPGD(r , µ) ϵRE(r , µ)

(A) (B)
Figure 3.6: (A) The generalized solution of temperature as a function of space and
parameter, and (B) relative error of the whole domain (spatial and parametric).

Taking into account the symmetry of the problem 3.1, it is easy to see that the
solution depends only on one spatial axis (it is actually 1D). This is clearly shown
in Figure 3.5-A. Therefore, by considering the space solution as a one-dimensional
function, for this simple problem, it is possible to plot the complete solution depending
on space and the parameter in a 2D space. This is shown in Figure 3.6, together with
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3. Proper Generalized Decomposition for parametric problems

an error map showing that the generalized solution, with only three terms, provides
a very accurate result with a maximum error of 16 × 10−4. The relative error, in this
case, is computed as a function of space and parameter,

ϵRE(r , µ) = ∥Tµ
FEM(r) − TPGD(r , µ)∥

∥Tµ
FEM(r)∥ . (3.42)

In Equation (3.42), Tµ
FEM(r) means the solution of FEM for a specific value of µ.
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Chapter 4

Application of PGD to THM
problems

This Chapter presents the application of the PGD methodology for the solution of
parametric THM problems. The novelties introduced here (with respect to Chapter
3) are:

• the problem is transient,

• the coupled character of THM must be considered,

• the problem is parameterized on three materials and one geometrical parameter.

The material parameters considered as extra dimensions (in addition to space and
time) are the heat conductivity, the hydraulic conductivity, and the elastic modulus.
A geometrical parameter consisting of the radial dimension of the geometric domain
is considered as well, as will be explained in more detail.

This chapter is divided into three sections. Section 4.1 presents the parameters
that have been considered, how they affect the field equations, and their discretization.
Section 4.2 explains how time integration is performed, and illustrates the form of the
discretized parametric matrices and vectors for the discrete problem. Finally, Section
4.3 outlines the separated input and output data required for the use of the PGD
formulation.

47



4. Application of PGD to THM problems

4.1 Parametric problem

The main governing equations of the THM problem were presented in Chapter 2
(Equation (2.7)). This work focuses on model order reduction for THM problems
with applications inspired by deep geological repositories. In that context, we defined
the parameters as the physical properties of the host rock, as these are usually poorly
constrained and might vary. Therefore three materials are defined:

• the hydraulic conductivity, denoted as K (x, µK ), where µK controls the hy-
draulic conductivity of the host rock,

• the heat conductivity, denoted as κ(x, µκ), where µκ controls the heat conduc-
tivity of the host rock and

• the elastic modulus, denoted as E(x, µE), where µE controls the elastic modulus
of the host rock.

Additionally, we included one geometrical parameter that controls the "distance be-
tween canisters" and could be used for the design of the repository.

As explained in Chapter 3, PGD treats the parameters as extra dimensions of
the problem. In the models presented next, we have 2 spatial dimensions, 1 time
dimension, and 4 parametric dimensions. Computing a general solution in this 7-
dimensional space using standard discretization techniques is unfeasible.

The material properties are defined as functions depending on space and the
parameters. For example, the heat conductivity κ(x, µκ) takes values for all x ∈ Ω
and for any µκ ∈ [µmin

κ , µmax
κ ]. The actual functions and the actual range of the

parameters will be defined next for every example problem. Similarly, the hydraulic
conductivity and the elastic modulus are set as K (x, µK ) and E(x, µE), respectively.
Note that in the following sections, the dependence of these functions on space will
be omitted to simplify the notation.

The geometrical parameter is of a different kind, and it is more complex to deal
with. First, it does not appear on the partial differential equations (PDEs) (Equation
(2.7)) but on the definition of the domain in which the PDEs are being solved. The
computational domain Ω(µL) changes when the parameter µL varies. Introducing the
effect of geometrical parameters is, in general, not easy. In the following examples, we
will restrict to a simple but meaningful parameterization where the model is extended
laterally to control the distance between the canisters in a periodic repository. The
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4.1. Parametric problem

left half of the model representing the canister is fixed (Ω1), while the right half
representing the host rock between the canisters (Ω2), is controlled by the parameter.
Figure 4.1 shows the two parts of the domain and presents the family of geometries
that are obtained by varying µL.

z

r

µL

µL = µmax
L

µL = 0

µL = µmin
L

Ω1 Ω2(µL)

b1

) = b1 + b2+µL

b2

Ω1

Ω
2
(µ

L
)

Ω1 Ω2(µL)

w(µL

)w(µL

Host Rock (ΩR)

Backfill (ΩBf)

Buffer (ΩB)

Canister (ΩC)

Figure 4.1: The entire spatial domain (Ω(µL) = Ω1 ∪ Ω2(µL)) is divided into two
subdomains. The left half of the model, which includes the canister, buffer, backfill,
and some part of the host rock, is fixed (Ω1). The right half of the model, which
represents the host rock between canisters (Ω2(µL)), is controlled by the geometric
parameter (µL). This parameter affects the Ω2(µL) domain only by shortening or
elongating the radial direction.
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4. Application of PGD to THM problems

The full parametric domain is defined by the cross-product of the domains of each
one of the parameters, Iµ = Iµκ × IµK × IµE × IµL . A point in the parametric space
µ = [µκ, µK , µE , µL] is a vector with the coordinates of the 4 parametric dimensions.

The main governing equations, outlined in Chapter 2, will now be formulated in
the parametric form in the domain Ω(µL) × It × Iµ. Note that the domain definition
implies that the parameters serve as new coordinates for the problem domain. The
interval It = [0, tfinal] is used as the time domain. The THM governing equations
presented in Chapter 2 (Equation (2.7)) are reformulated in parametric form as,

((1 − ϕ)ρscs + ϕρf cf )Ṫ (µκ, µL)

− ∇ · (κ(µκ)∇T (µκ, µL)) = q(t)
in Ω(µL) × It × Iµ,

( ϕ

Kf
+ α − ϕ

Ks(µE))ṗ(µ) − ∇ ·
(K (µK )

ρf g
(∇p(µ) − ρf g)

)
+ α∇ · u̇(µ) = (3ϕαf + 3(α − ϕ)αs)Ṫ (µκ, µL)

in Ω(µL) × It × Iµ,

α∇p(µ) − ∇ · (C(E(µE), ν) : ∇u(µ)) =

b − 3KD(µE)αs∇T (µκ, µL)
in Ω(µL) × It × Iµ.

(4.1)

The solution to the thermal part only depends on two parameters which are heat
conductivity (µκ) and the geometric parameter (µL). On the other hand, the solu-
tion of the hydro-mechanical part depends on all the parameters (µ). The material
properties, κ(µκ), K (µK ), Ks(µE), E(µE), and KD(µE), depend on a single parame-
ter. Note that all the space dependencies were omitted to shorten the notation. All
the symbols concerning the main governing parametric PDEs have been explained in
Chapter 2 (Table 2.2).

The boundary conditions for the parametric governing PDEs are divided into
Dirichlet and Neumann boundary conditions. For all the problems presented in this
work, the Neumann boundary conditions for thermal and hydraulic aspects are ho-
mogeneous, meaning that their fluxes are zero. The reason is that all the problems
in this thesis are symmetrical.

The temperature boundary conditions are,
T (x, µκ, µL, t) = TD(x, µκ, µL, t) on ΓT

D(µL) × It × Iµ,

−κ(µκ)∇T (x, µκ, µL, t) · n = 0 on ΓT
N (µL) × It × Iµ.

(4.2)
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4.2. Space-time discretization of parametric THM

Prescribed temperature boundary conditions are described by a known function
TD(x, µκ, µL, t) that, as shown in (4.2), might depend on space, time, and parame-
ters. This function will be described in the following chapters for the particular cases
being modeled.

Boundary conditions for the hydraulic field are,
p(x,µ, t) = pD(x,µ, t) on Γp

D(µL) × It × Iµ,

−K (µK )
ρf g

(∇p(x,µ, t) − ρf g) · n = 0 on Γp
N (µL) × It × Iµ,

(4.3)

where pD(x,µ, t) is a given function.
The mechanical field Equation (4.4) presents the Dirichlet and Neumann bound-

ary conditions, where uD(x,µ, t) and tN (x,µ, t) are given functions for prescribed
displacement and traction forces, respectively,

u(x,µ, t) = uD(x,µ, t) on Γu
D(µL) × It × Iµ,

σ · n = tN (x,µ, t) on Γu
N (µL) × It × Iµ.

(4.4)

The initial conditions for the problem should be such that all the fields be balanced
and at equilibrium. The definition of initial conditions for the parametric THM
problem is as, 

T (x, µκ, µL, 0) = T0(x, µκ, µL) in Ω(µL) × Iµ,

p(x,µ, 0) = p0(x,µ) in Ω(µL) × Iµ,

u(x,µ, 0) = u0(x,µ) in Ω(µL) × Iµ,

(4.5)

where T0(x, µκ, µL) and p0(x,µ) are given functions based on the problem statement
of the examples. In the upcoming chapters, we will determine the initial conditions of
the displacement field (u0(x,µ)) by inserting the functions T0(x, µκ, µL) and p0(x,µ)
into the mechanical aspect and solving the steady-state version of the parametric
problem.

4.2 Space-time discretization of parametric THM

The numerical solution to the parametric THM problem requires discretizing space,
time, and parametric dimensions. The space discretization is done using standard
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4. Application of PGD to THM problems

FE, similar to what is presented in Chapter 2. In transient problems, it is usual
to discretize time using a marching scheme. We are going to use exactly the same
approach here. The time integration in standard FE requires solving one linear system
of equations at every time step. Similarly, here every step involves the solution of
one linear parametric system. Note that this idea is not the most common approach
in reduced-order methods, where taking time as an extra parametric dimension is
commonplace. Here we will not try to reduce the time dimension. The parametric
character of the problem, although, makes the discrete operators arising from the
space discretization dependent on the parameters.

By employing Equations (2.20) and (2.21) from Chapter 2, the parametric matrix
problem for advancing one-time step is derived as follows:[

MT(µ) + ∆t iθKT(µ)
]

︸ ︷︷ ︸
Ki

GT(µ)

Ti+1(µ) = ∆t ifq +
[
MT(µ) + ∆t i(θ − 1)KT(µ)

]
︸ ︷︷ ︸

Ki ∗
GT(µ)

Ti(µ),

(4.6)
for the thermal problem and,Mp(µ) + ∆t iθKp(µ) Gpd(µ)

θGdp(µ) θKd(µ)


︸ ︷︷ ︸

Ki
G(µ)

pi+1(µ)
di+1(µ)


︸ ︷︷ ︸

Ui+1(µ)

=
∆t ifbf (µ)

fd(µ)


︸ ︷︷ ︸

Fi∗(µ)

+

Mp(µ) + ∆t i(θ − 1)Kp(µ) Gpd(µ)
(θ − 1)Gdp(µ) (θ − 1)Kd(µ)


︸ ︷︷ ︸

Ki ∗
G (µ)

pi(µ)
di(µ)


︸ ︷︷ ︸

Ui(µ)

+

 MpT(µ) −MpT(µ)
−θGdT(µ) (θ − 1)GdT(µ)


︸ ︷︷ ︸

GT(µ)

Ti+1(µ)
Ti(µ)


︸ ︷︷ ︸

T(µ)

,

(4.7)

for the Hydro-Mechanical (HM) problem. In Equations (4.6) and (4.7), i represents
the time slice, which varies from i = 1 to nt, where nt denotes the number of time
steps.

All the definitions of the FEM discretized matrices and vectors in (4.6) and (4.7)
are provided in Chapter 2 (Subsection 2.2.2). It should be emphasized that Equations
(4.6) and (4.7) are stated prior to the application of any Dirichlet-prescribed boundary
condition. Now, with the utilization of these definitions, the Dirichlet boundary
conditions are transferred to the right-hand side, as shown in,

Fi
T(µ) = ∆t if i

q + Ki ∗
GT(µ)Ti(µ) + fDT(µ), (4.8)
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4.3. PGD applied to parametric THM problem

Fi
G(µ) = Fi∗(µ) + Ki ∗

G (µ)Ui(µ) + GT(µ)T(µ) + fDU(µ), (4.9)

In Equation (4.8), fDT(µ) is a parametric force term that comes from prescribed
temperatures. In Equation (4.9), fDU(µ) is a parametric force term that arises from
prescribed pressure and displacements. The systems of Equations (4.6) and (4.7) are
written as,

Ki
GT(µ)Ti+1(µ) = Fi

T(µ), (4.10)

Ki
G(µ)Ui+1(µ) = Fi

G(µ). (4.11)

Note that the unknown Ui+1(µ) = [pi+1(µ) di+1(µ)]T includes the displacement and
the pressure fields, while the temperature has its own equation. This is a consequence
of the uncoupling between the field equations that is possible in the case of a fully
saturated medium. The method proposed here naturally exploits this by solving first
the temperature problem and the HM problem.

The parametric domain also requires to be discretized. This arises from the re-
quirement for all variables and operators to be maintained in a separated format. As
a result, discretization is carried out independently for each individual parametric
dimension.

Recalling that a separated function takes the form (Equation (3.12)),

F(µ1, µ2, µ3, µ4) =
M∑

m=1
f m
1 (µ1)f m

2 (µ2)f m
3 (µ3)f m

4 (µ4).

The one-dimensional (1D) mesh for µ1 represents the range of values that might take
µ1 and is used for the representation of the functions f m

1 (µ1). Similarly, for all the
parametric dimensions.

4.3 PGD applied to parametric THM problem

The PGD methodology is based on the separated representation of unknowns and
operators, as described in Chapter 3. Therefore, we need to obtain separable versions
of all the matrices and vectors in (4.6) and (4.7). Each of those matrices depends on
the parameters, and the variation of each matrix with the parameters requires to be
expressed in a separable format. Note that providing a separated form for each of the
blocks of the systems (4.6) and (4.7) is enough, as the composition of the separated
blocks will produce a full system that is also separable and has at most as many terms
as the sum of the terms of all the blocks. Although, finding separable expressions for

53



4. Application of PGD to THM problems

all the matrices is not trivial in most cases. Next, we will show that most matrices
involved in our problem admit an exact analytical separated form, while some are
approximate.

Separable operators, which are time-independent:

KT(µ), MT(µ), Kp(µ), Mp(µ), Gpd(µ), Gdp(µ), Kd(µ), MpT(µ), GdT(µ), fbf (µ) and fd(µ).

While i < nt (time integration):
Separable operators, which are time-dependent:
Ki

GT(µ), Ki
G(µ), Fi

T(µ) and Fi
G(µ)

The solution is a collection of nt parametric objects Ti(µ) and Ui(µ).
For i = 1 . . . nt, each one corresponding to the time slice i.

Encapsulated PGD
[38]

Solve the parametric systems of linear Equations (4.10) and (4.11) via -
- Encapsulated PGD toolbox.

Figure 4.2: The systematic procedure of seeking a generalized solution of parametric
THM. It presents that for solving this problem by Encapsulated PGD toolbox, it is
necessary to define the input data in separated formats. The generalized solutions are
the separated unknowns, a collection of nt parametric objects of Ti(µ) and Ui(µ).

Figure 4.2 illustrates the discrete unknown vectors at time step t, denoted as Tt(µ)
and Ut(µ). These vectors are determined by solving (4.10) and (4.11) at each time
step. It is important to note that the components of the matrix operators in these
equations remain fixed over time. However, the global structure of these matrices
(Ki

GT and Ki
G) needs to be determined for each time slice based on the time step

within that slice. Conversely, the right-hand sides of the equations change at each time
slice since they involve the solutions from the previous time step. Therefore, all the
components within the global matrices are constructed before the time integration
procedure begins. However, the global structure of these matrices, along with the
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4.3. PGD applied to parametric THM problem

right-hand side, needs to be reconstructed at every time step to match the time-
step requirements for each slice. The solution at each time slice involves solving a
parametric linear system, which is accomplished using the encapsulated PGD [38].

4.3.1 Separable operators for material parameters

As mentioned previously, all matrices in Equations (4.6) and (4.7) require to be
expressed in a separate format. The methodology for obtaining these separate repre-
sentations for parameters that control material properties was discussed in Chapter
3, Subsection 3.2.1. For the general problem, we will adopt the same approach. The
domain Ω is subdivided into several subdomains that represent the various materials
involved, such as the canister (ΩC), buffer (ΩB), backfill (ΩBf), and host rock (ΩR).
In the following examples, only the host rock materials are parametric. Therefore,
the thermal conductivity κ(x, µκ) takes the value of the parameter in the host rock
spatial domain (ΩR), while it takes a fixed value (that might change from material
to material) otherwise,

κ(x, µκ) =



µκ if x ∈ ΩR with µκ ∈ Iµκ ,

1.4 w
m ◦C if x ∈ ΩB,

1.4 w
m ◦C if x ∈ ΩBf ,

390 w
m ◦C if x ∈ ΩC,

(4.12)

with this definition and following the exact same procedure as described in Subsection
3.2.1, a separated representation for Ki

GT(µκ) is obtained (see underbrace in (4.6)),

Ki
GT(µκ) = MT + ∆t iθ(K0

T + K1
Tµκ). (4.13)

The previous expression can be separated into three matrices: MT, K0
T, and K1

T.
These matrices represent the mass and stiffness components for the thermal part, and
their definitions can be found in equations (2.22) and (2.23) of Chapter 2. Regarding
the parametric part, it is relatively straightforward. The functions involved either
take a value of one (and therefore are not explicitly written) or follow the identity
function f (µκ) = µκ.

Similarly, the right-hand side is built as,

Fi
T(µκ) = ∆t if i

q +
[
MT + ∆t i(θ − 1)KT(µκ)

]
Ti(µκ) − Ki

GT(µκ)TD(µκ), (4.14)

where fq is defined in (2.31) and Ti(µκ) is the temperature solution at the previous
time step i, and TD(µκ) is vector generated by the Dirichlet boundary conditions
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4. Application of PGD to THM problems

that are computed separately as described in (4.2). Note that because all the objects
are separated, their sum and product are also separable.

As mentioned before, the problem allows for solving the thermal part first, and
then, once the (parametric) thermal field is known, a Hydro-Mechanical (HM) prob-
lem is solved. Next, the operators involved in the HM part will be presented in a
separate form. All the matrix operators from (4.7) require to be separated. Following
the notation introduced in (4.7), we call Ki

G(µ) to the left-hand side of the equa-
tion, and Ki ∗

G (µ) and GT(µ) to the matrices involved in the right-hand side. Their
separated expressions are,

Ki
G(µK , µE) = Ki

G
0 + Ki

G
1

µK + Ki
G

2
µE + Ki

G
3 1

µE
, (4.15)

Ki ∗
G (µK , µE) = Ki ∗

G
0 + Ki ∗

G
1

µK + Ki ∗
G

2
µE + Ki ∗

G
3 1
µE

, (4.16)

Fi∗(µK ) = Fi∗
0 + Fi∗

1
µK , (4.17)

GT(µE) = G0
T + G1

TµE . (4.18)

All the components in Equations (4.15) to (4.18) are presented in Appendix A.1.
To close the HM problem, pressure and displacement boundary conditions must be
applied. The Dirichlet-type conditions are imposed by passing to the right-hand side
the corresponding vector fDU, as

fDU(µκ, µK , µE) = −KG(µK , µE)UD(µκ, µK , µE),

where UD(µκ, µK , µE) is a vector with the values imposed to the Dirichlet boundary
conditions that, in a general case, could depend on the parameters. As any other
operator, UD(µκ, µK , µE) is in separated format as,

UD(µκ, µK , µE) =
M̆∑
m̆

Um̆
D W m̆

µκ
(µκ)W m̆

µK
(µK )W m̆

µE
(µE). (4.19)

In Equation (4.19), Um̆
D represents a spatial function, while W m̆

µκ
(µκ), W m̆

µK
(µK ), and

W m̆
µE

(µE) represent parametric functions related to heat conductivity, hydraulic con-
ductivity, and elastic modulus, respectively. The particular definition of UD(µκ, µK , µE)
is problem dependent and will be set accordingly to the Dirichlet boundary conditions
imposed.
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4.3. PGD applied to parametric THM problem

4.3.2 Separable operators for geometric parameter

The separable expressions arising from the geometrical parameters are always more
complex than those from material parameters. The matrices and vectors involved
have a dependence on geometry that is rarely linear and usually require approxima-
tions. The geometry parameter defined for this example is simple as it only affects the
r coordinate. Although, its effect in the matrices does not admit an exact, separable
representation. The procedure to obtain the separated matrices is described next.

b1

w = b1 + b2+µL

Ω̂1 Ω̂2

b1

w = b1 + b2

Ω1 Ω2

Mapping M (R, Z , µL) → (r , z)
Ref. Domain Model Domain

R

Z

r

z

Ω Ω̂

b2

Figure 4.3: Mapping of the domain problem from the reference domain to the model
domain is accomplished using the mapping function M (R, Z , µL). This function ex-
plicitly affects the Ω2 domain, while Ω1 remains fixed. The figure illustrates the
generic concept of reference domain geometry and demonstrates how the geometric
parameter µL influences it through the mapping function.

A fixed reference domain Ω with coordinates R and Z is defined as in Figure 4.3.
A mapping function M (R, Z , µL) depending on the parameter, is defined such as it
"deforms" Ω into the model domain Ω̂ that you want to simulate. This mapping
allows introduction into the equations of the variations in the geometry produced by
the parameter. In this particular case, the mapping affects only the right half of the
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4. Application of PGD to THM problems

domain, Ω2, and it is defined as,

M (R, Z , µL) =



z = Z

r =


R if x ∈ Ω1,

γ1(µL)R + γ2(µL) if x ∈ Ω2,

(4.20)

where γ1(µL) and γ2(µL) are,

γ1(µL) = (µL

b2
+ 1), and γ2(µL) = (−b1

b2
µL). (4.21)

b1

w = b1 + b2+µL

b1

w = b1 + b2

R

Z

r

z

b2

leR

leZ

Mapping M(R, Z , µL) → (r , z)

Ref. Domain Model Domain

ler

lez

Figure 4.4: Mapping of the domain problem affects the element. So, the size of
bilinear quadrilateral elements will be changed from the reference domain (leR and
leZ ) to the model domain (ler and lez).

For all the problems in this thesis that will be discussed in the following chapters,
the spatial discretization (quadrilateral elements) in Ω2 is regular and parallel to the
space coordinates (similar to Figure 4.4). This simplifies the mapping function as all
the elements in Ω2 are identical, and the effect of the parameter in them is the same.
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4.3. PGD applied to parametric THM problem

Therefore it is enough to analyze the effect of the mapping in one single element. Same
as with the integration in standard finite elements, the mapping will be introduced
via the inverse of the Jacobian to transform the gradients from the reference to the
model domains. Actually, both mappings will be present, the standard isoparametric
mapping going from the FE reference element to the corresponding element in the
Reference domain Ω, and then the geometrical mapping going from the Reference
domain to the model domain. This is shown in Figure 4.5.

The Jacobian of the isoparametric mapping is denoted as J, and the Jacobian of
the geometrical mapping is Ĵ,

Ĵ =



J if x ∈ Ω1,

γ1(µL) 0
0 1

 J if x ∈ Ω2.

(4.22)

leR

leZ

ler

lezξ

η

J Ĵ

(A) (B) (C)
Figure 4.5: (A) The parental element is mapped by J to the reference element, (B)
it is the reference element, Ĵ maps it to the model element, and (C) it is the model
element.

An exactly separated format can be defined for most of the matrices in (4.6) and
(4.7) through these mappings. First, a detailed presentation will be given on how
to find the separated matrix for a specific case. For instance, when KT is consid-
ered, the main definition presented in Chapter 2 (Equation (2.22)) will be employed.
However, in order to ensure an accurate representation of the separated geometric
representation, let us take a moment to recall the definition by incorporating a new
definition of the B-operator within it. Thus, we have:

KT =
∫

Ω
B⊤

TNEW
κBTNEW rdΩ. (4.23)
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4. Application of PGD to THM problems

In Equation (4.23), BTNEW represents the new definition of the B-operator within this
geometric parameter concept. It inherits the definition concept of the B-operator from
Chapter 2 (Equation (2.36)) due to its dependence on the radial direction. Therefore,
BTNEW is defined as follows:

BTNEW =



BT if x ∈ Ω1,

 1
γ1(µL) 0

0 1

 BT if x ∈ Ω2,

(4.24)

In Equation (4.24), BT represents the B-operator that was previously defined in
Chapter 2, specifically in Equation (2.36). Furthermore, in Equation (4.23), the in-
tegration part rdΩ is defined differently in two distinct domains due to the influence
of the isoparametric and geometrical mapping (Equation (4.22)), as well as the def-
inition of the mapping (Equation (4.20)). The specific definitions of the integration
part rdΩ are as follows:

rdΩ =


RdΩ if x ∈ Ω1,

(γ1(µL)R + γ2(µL))γ1(µL)dΩ if x ∈ Ω2,

(4.25)

The following separated equation is derived by substituting Equations (4.24) and
(4.25) into Equation (4.23):

KT = (
∫

Ω1
B⊤

TκBTRdΩ +
∫

Ω2
B⊤

Tκ

1 0
0 0

 BTRdΩ)
︸ ︷︷ ︸

K0
T

+

(
∫

Ω2
B⊤

Tκ

0 0
0 1

 BTRdΩ)
︸ ︷︷ ︸

K1
T

γ2
1(µL) + (

∫
Ω2

B⊤
Tκ

1 0
0 0

 BTdΩ)
︸ ︷︷ ︸

K2
T

γ2(µL)
γ1(µL)+

(
∫

Ω2
B⊤

Tκ

0 0
0 1

 BTdΩ)
︸ ︷︷ ︸

K3
T

γ1(µL)γ2(µL).

(4.26)

For the remaining components in Equations (4.6) and (4.7), such as MT, MpT, Mp,
Kp, GdT, and Gdp, the separated representation with respect to the geometrical
parameter is presented for both the thermal and HM problems as,

MT(µL) = M0
T + M1

Tγ2
1(µL) + M2

Tγ1(µL)γ2(µL), (4.27)
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4.3. PGD applied to parametric THM problem

MpT = M0
pT + M1

pTγ2
1(µL) + M2

pTγ1(µL)γ2(µL), (4.28)

Mp = M0
p + M1

pγ2
1(µL) + M2

pγ1(µL)γ2(µL), (4.29)

Kp = K0
p + K1

pγ2
1(µL) + K2

p
γ2(µL)
γ1(µL) + K3

pγ1(µL)γ2(µL), (4.30)

GdT = G0
dT + G1

dTγ1(µL) + G2
dTγ2

1(µL) + G3
dTγ2(µL) + G4

dTγ1(µL)γ2(µL), (4.31)

Gdp = G0
dp + G1

dpγ1(µL) + G2
dpγ2

1(µL) + G3
dpγ2(µL) + G4

dpγ1(µL)γ2(µL), (4.32)

Gpd = G0
pd + G1

pdγ1(µL) + G2
pdγ2(µL) + G3

pdγ2
1(µL) + G4

pdγ1(µL)γ2(µL). (4.33)

The matrices in the previous expressions are all standard matrices. All are defined
in Appendix A.2.

The matrix that remains to be separated, the stiffness matrix of the mechanical
problem, Kd, does not admit an exact separated expression. The procedure to find
an approximated Kd follows. Using (4.20) and (4.22) the matrix Kd is written as,

Kd =K0
d + K1

dγ1(µL) + K2
dγ2(µL) + K3

dγ2
1(µL)+

K4
dγ1(µL)γ2(µL) + K5

d
γ2(µL)
γ1(µL)+

K6
d(µL).

(4.34)

Note that the first five terms in (4.34) are already in separated format, although the
last term K6

d(µL) is not, and its expression is,

K6
d(µL) =

∫
Ω2

NT
d

E
(1 + ν)(1 − 2ν)

1 − ν 0
0 0

 Nd
γ1(µL)

γ1(µL)R + γ2(µL)dΩ, (4.35)

that this is not separable as the functions of the parameters γ1(µL) and γ2(µL) are
dividing. The parametric part is then approximated using the following series,

γ1(µL)
γ1(µL)R + γ2(µL) ≈ 1

Rγ1(µL) +
∞∑

n=0
(−1)n+1 (R − b1)n+1

(R)n+2 (µL

b2
)n+1γ1(µL). (4.36)
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4. Application of PGD to THM problems

By substituting (4.36) in (4.35) and then all in (4.34), the following separated stiffness
matrix is obtained,

Kd =K0
d + K1

dγ1(µL) + K2
dγ2(µL) + K3

dγ2
1(µL)+

K4
dγ1(µL)γ2(µL) + K5

d
γ2(µL)
γ1(µL)+

N∞∑
n=0

K6+n
d (µL

b2
)n+1γ1(µL).

(4.37)

Again, all the matrices in (4.37) are standard numeric matrices and are detailed in
Appendix A.2.

The force vector, including the body and traction forces and Dirichlet boundary
conditions, admits an exact separation as,

fbf = f0
bf

+ f1
bf

γ1(µL) + f2
bf

γ2
1(µL) + f3

bf
γ2(µL) + f4

bf
γ1(µL)γ2(µL), (4.38)

fd = f0
d + f1

dγ2
1(µL) + f1

dγ1(µL)γ2(µL). (4.39)

All the blocks required for the separated version of the HM problem have been
presented. This parametric linear system of equations will be solved to advance one
time slice.

Having explained all the relevant concepts, we can now discuss the selection of
bilinear quadrilateral elements and the decision to avoid transitioning to quadratic
elements. In Chapter 2, the intrusive nature of choosing between linear and quadratic
elements is discussed. Should there be a need to switch from bilinear to quadratic
elements, additional contributions would be required to incorporate the geometric
parameter. This can be observed in Equations (A.46) to (A.57) in Appendix A.2,
where new terms involving operators such as ∂Nd

∂R and ∂Nd
∂Z are introduced. Modify-

ing the code from linear to quadratic elements would involve making corresponding
adjustments to their implementation.

Finally, now that the material parametrization has been presented and all the
separated operators are defined, and similarly has been done for the geometrical
parameter, the combination of both types of parameters is involved but trivial to
obtain. All the operator for the 4-parameter case are presented in Appendix A.3.
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Chapter 5

Methodology validation

The goal of this chapter is to validate the methodology that was outlined in the
previous chapter. To this end, PGD is applied to a transient coupled THM academic
problem with known solutions [129].

This chapter is divided into two sections. Section 5.1 provides the problem state-
ment of the academic problem used for validation. Further, this section will present
the analytical solutions and the corresponding Finite Element Method (FEM) formu-
lation and its convergence plots, as well as the choice of parameters of the problem.
Section 5.2 presents the results obtained from the academic problem, while Section
5.3 focuses on the analysis and discussion of these results, including the definition
and use of various errors for analysis.

5.1 Problem statement

This section will explore an academic problem involving an axisymmetric cylindrical
geometry to validate the methodology. The 3D axisymmetric problem is formulated
on a 2D domain taking benefit from the symmetry. Additionally, as shown in Figure
5.1, the academic problem under investigation involves the constraints imposed on
the lateral surface of the symmetric cylinder due to radial motion, heat flux, and
fluid flux. Using such boundary conditions, the problem solution along the r-axis is
constant and only depends on the z-coordinate, which means it is a 1D problem, see
Figure 5.1. Under these conditions, it is possible to develop an analytical solution.
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5. Methodology validation

r

z

σ0

(A) (B) (C)

Ω1

Γ1

Γ2

Ω2
L

b1 b2

Figure 5.1: (A) Axisymmetric cylinder under uniform stress, (B) geometry, and (C)
boundaries and domain.

In Chapter 2, the three main governing equations are presented (Equation (2.7)).
Note that in this problem, gravity forces and heat sources are neglected. The main
governing equations are therefore simplified as,



((1 − ϕ)ρscs + ϕρf cf )Ṫ − ∇ · (κ∇T ) = 0 in Ω × It ,

( ϕ

Kf
+ α − ϕ

Ks
)ṗ − ∇ · ( K

ρf g
∇p)

+ α∇ · u̇ = (3ϕαf + 3(α − ϕ)αs)Ṫ
in Ω × It ,

α∇p − ∇ · (C : ∇u) = −3KDαs∇T in Ω × It .

(5.1)

The dependencies of the unknowns on x and t are omitted for brevity. We use spatial
coordinates r and z to represent the radial and downward directions, respectively,
with x as a vector having coordinates (r , z). All the material properties mentioned
in Equation (5.1) are described in Table 2.2.

As shown in Figure 5.1-C, the domain Ω = Ω1 ∪ Ω2 is split into two subdomains,
the boundaries of Ω are Γ1 and Γ2 at the top and remaining parts of the domain,
respectively. For the thermal field, the boundary conditions are,

 T (x, t) = 0 on Γ1 × It ,

(−κ∇T ) · n = 0 on Γ2 × It .
(5.2)
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The boundary conditions for the hydraulic field are,
p(x, t) = 0 on Γ1 × It ,

(− K
ρf g

∇p) · n = 0 on Γ2 × It .
(5.3)

A uniform load per unit surface (σ0) is applied on the top boundary of the domain, and
the lateral displacement is constrained to be zero, which translates in the mechanical
boundary conditions,  σ · n = σ0 on Γ1 × It ,

u(x, t) = 0 on Γ2 × It .
(5.4)

The initial conditions are defined as,
T (x, 0) = T0 in Ω,

p(x, 0) = p0 in Ω,

u(x, 0) = u0(x) in Ω,

(5.5)

where T0 and p0 are spatially uniform.
The value of p0 is defined as in Selvadurai and Suvorov [129],

p0 = − ασ0

α2 +
(

ϕ
Kf

+ α−ϕ
Ks

)(
E(1−ν)

(1−2ν)(1+ν)

)

+

(
E(1−ν)

(1−2ν)(1+ν)

)[
(α − ϕ)3αsT0 + ϕ3αf T0

]
− KD3αsT0α

α2 +
(

ϕ
Kf

+ α−ϕ
Ks

)(
E(1−ν)

(1−2ν)(1+ν)

) .

(5.6)

The initial condition of the mechanical field (u0(x)) is not spatially uniform. It is
found as the solution of a steady-state equation for the mechanical field by inserting
the constant T0 and p0. For the problem at hand, T0 and σ0 are set to 50 ◦C and
10.9 MPa, respectively. For the geometry, L, b1, and b2 are set to 10 m, 0.5 m, and
0.5 m, respectively.

The application problem is inspired by [149] and involves an engineered barrier
system located underground and surrounded by granitic rocks. For the input data
in this closed-form case, the properties of the solid phase are assumed to be similar
to those of granitic rocks, as presented in Table 5.1. As for the input properties of
the fluid phase, the values for density, specific heat, heat expansion coefficient, and
bulk modulus for fluids ρf , cf , αf and Kf are considered to be 1000 kg

m3 , 4180 j
kg◦C ,

6.9 × 10−5 1
◦C and 2200MPa, respectively.
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Symbol Units Description Solid properties Reference

ρs
Kg
m3 Density 2743 [149]

ϕ − Porosity 0.005 [149]

cs
J

Kg ◦C Specific heat 764 [149]

αs
1

◦C Heat expansion 0.85 × 10−5 [149]

α − Biot’s coefficient 0.75 [91]

ν − Poisson’s ratio 0.25 [149]

κ W
m ◦C Heat conductivity Iµκ = [1.5, 5](∗) [79]

K m
s Hydraulic conductivity IµK = [3 × 10−14, 3 × 10−12](∗) [149]

E MPa Elastic modulus IµE = [55600, 68000](∗) [74]

Table 5.1: The solid phase properties. The asterisk (*) represents the range of ma-
terial parameters treated as variables. The minimum and maximum bounds of the
ranges were selected from the tables provided in the references.

5.1.1 Analytical solution

Using the symmetry of the problem and the boundary conditions, the main Partial
Differential Equations (PDEs) admit an equivalent 1D formulation,



((1 − ϕ)ρscs + ϕρf cf )Ṫ − κ
∂2T
∂z2 = 0 in Iz × It ,

( ϕ

Kf
+ α − ϕ

Ks
)ṗ − K

ρf g
∂2p
∂z2 + α

∂u̇z

∂z = (3ϕαf + 3(α − ϕ)αs)Ṫ in Iz × It ,

α
∂p
∂z − E(1 − ν)

(1 − 2ν)(1 + ν)
∂2uz

∂z2 = −3KDαs
∂T
∂z

in Iz × It ,

(5.7)

where Iz = [0, L] is the interval of one-dimensional space in the axial direction (z-axis).
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The PDEs (5.7) have closed-form solutions [129]. The analytical solution for
temperature (T ) and pressure (p) are,

T (z , t) = T0
∑

m=1,3,5,...

4
mπ

sin
(mπ

2L z
)

exp
(

− m2π2

4L2 kt
)

. (5.8)

p(z , t) = p0
∑

m=1,3,5,...

4
mπ

sin
(mπ

2L z
)

exp
(

− m2π2

4L2 ct
)

−

∑
m=1,3,5,...

A 4
mπ

sin
(mπ

2L z
)

exp
(

− m2π2

4L2 ct
)

+

∑
m=1,3,5,...

A 4
mπ

sin
(mπ

2L z
)

exp
(

− m2π2

4L2 kt
)

.

(5.9)

Where in Equations (5.8) and (5.9), k, c, and A are,

k = κ

(1 − ϕ)ρscs + ϕρf cf
,

c =
K

ρf g
α2(1−2ν)(1+ν)

E(1−ν) + ( ϕ
Kf

+ α−ϕ
Ks

)
,

A = −T0
(ϕαf + (α − ϕ)αs − αKD(1−2ν)(1+ν)

E(1−ν) αs)
1
k

K
ρf g − ( ϕ

Kf
+ α−ϕ

Ks
+ α2(1−2ν)(1+ν)

E(1−ν) )
.

The analytical solution for axial displacement (uz) is as [129],

uz(z ,t) = (1 − 2ν)(1 + ν)
E(1 − ν)[

−
∑

m=1,3,5,...

(3KDαsT0 + αA) 8L
m2π2 cos

(mπ

2L z
)

exp
(

− m2π2

4L2 kt
)

+
∑

m=1,3,5,...

α(A − p0)
8L

m2π2 cos
(mπ

2L z
)

exp
(

− m2π2

4L2 ct
)

+ σ0(z − L)
]
.

(5.10)

These analytical solutions are used to check the FEM implementation by controlling
their convergence plots, which are discussed in the following subsection.

5.1.2 Finite Element Method validation

The first step for validating the overall methodology is to validate the FEM imple-
mentation. The following convergence curves (Figure 5.2) are produced to show that
the FEM model is behaving as expected.
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Figure 5.2: Convergence plots at (A) day 1, (B) day 10, (C) day 100, and (D) day
356 demonstrate that reducing the element size (h) results in a decreasing L2 norm of
the error. The observed convergence order of two aligns with the expected behavior
for the linear elements utilized in this study.

The error in the FEM approximation is a function E(r , z) defined as the difference
between the analytical and the FEM solutions,

E(r , z) = U (r , z) − UFEM(r , z), (5.11)

where U (r , z) and UFEM(r , z) represent the analytical and FEM solution for temper-
ature or pressure, or displacement. The error varies over the solution domain. To
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measure how the global error decreases as the mesh is refined, the norm of the error,

∥E∥L2
=

√∫
Ω

E(r , z)2dΩ, (5.12)

is used. Figure 5.2 provides the convergence plots, based on the L2 norm of the error
in space. The expected order of convergence for linear elements is two [68], and Figure
5.2 shows our implementation provides the correct orders.

In Chapter 2 (end of Subsection 2.2.2), it was mentioned that the bi-linear quadri-
lateral had been used for the in-house code developed for this study, and the possibility
of the existence of oscillations and jumps due to instability had been discussed. The
convergence plots in Figure 5.2 suggest that no such issues are observed for the present
problem, as will also be illustrated in Section 5.2. It should be emphasized that no
such issues are also observed in the application problem, which will be presented in
Chapter 6.

5.1.3 Parametric problem

Let us assume now that we are interested in finding a solution to the prior problem
for ranges of values of the heat conductivity (µκ), the hydraulic conductivity (µK ),
the elastic modulus (µE), and a geometrical parameter (µL). Homogeneous material
parameters (µκ, µK , and µE) in the whole domain are considered in this academic
problem, with the ranges (Iµκ , IµK , and IµE ) that are presented in Table 5.1. The
geometric parameter is similar to that of Subsection 4.3.2; where its interval is defined
as,

Ω(µL) = Ω1 ∪ Ω2(µL), where µL ∈ IµL = [−0.1 m, 0.5m] . (5.13)

The results presented here show that the implementation is working correctly for the
four-parameter case. The parametric PDEs is same as Equation (4.1).

In this case, all Dirichlet and Neumann boundary conditions concerning thermal
and hydraulic problems are zero and therefore, they do not depend on the parameters.
Same happens with the Dirichlet boundary conditions of the mechanical equilibrium
equation (Equation (5.4)). Conversely, the Neumann boundary conditions of the
mechanical part are not homogeneous (Equation (5.4)), and they are affected by the
geometric parameter. The mechanical boundary conditions are, σ · n = σ0 on Γ1(µL) × Iµ × It ,

u(x, t) = 0 on Γ2(µL) × Iµ × It ,
(5.14)
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where µ = [µκ, µK , µE , µL] is a vector with the coordinates of the four parametric
dimensions.

It is necessary to define the initial conditions for the parametric problem. The
initial pressure depends on the elastic modulus. Equation (5.5) is reformulated as,

T (x,µ, 0) = T0 in Ω(µL) × Iµ,

p(x,µ, 0) = ΛµE (µE) in Ω(µL) × Iµ,

u(x,µ, 0) = u0(x,µ) in Ω(µL) × Iµ,

(5.15)

where ΛµE (µE) is defined as,

ΛµE (µE) = − ασ0

α2 +
(

ϕ
Kf

+ (α−ϕ)(1−2ν)(1−α)
µE

)(
µE

(1−ν)
(1−2ν)(1+ν)

)

+

(
µE

(1−ν)
(1−2ν)(1+ν)

)[
(α − ϕ)3αsT0 + ϕ3αf T0

]
− 3αsT0α

(1−2ν) µE

α2 +
(

ϕ
Kf

+ (α−ϕ)(1−2ν)(1−α)
µE

)(
µE

(1−ν)
(1−2ν)(1+ν)

) .

(5.16)

The parametric initial displacement in Equation (5.15) (u0(x,µ)) will be sought for by
solving the parametric steady-state solution of the mechanical equilibrium equation.

The discretization of space and time is done as usual in numerical methods (Sec-
tion 2.2). The parametric nature of this problem also requires the discretization of
the parametric domains. The separated representation adopted by PGD allows for
the independent discretization of each parametric dimension. The grids used in this
application are as follows:

• The dimension controlling the heat conductivity (µκ), is discretized linearly
with 701 nodes.

• The dimension controlling the hydraulic conductivity (µK ), is discretized with
1501 nodes distributed logarithmically, as this quantity spans over several orders
of magnitude.

• The dimension controlling the elastic modulus (µE), is discretized linearly with
249 nodes.

• The dimension controlling the geometry (µL), is discretized linearly with 601
nodes.
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5.2 Results of the academic problem

By specifying all the individual input data for the Encapsulated PGD methodology
[38], the separate unknowns are determined as solutions for each time slice. For every
time slice (t), the unknown fields are,

Tt(x, µκ, µL) =
M̂ t∑

m̂=1
Tm̂(x)Bm̂

µκ
(µκ)Bm̂

µL
(µL), (5.17)

Ut(x, µκ, µK , µE , µL) =
M t∑

m=1
Um(x)Gm

µκ
(µκ)Gm

µK
(µK )Gm

µE
(µE)Gm

µL
(µL). (5.18)

In Equations (5.17) and (5.18), M̂ t and M t are the numbers of modes used in the
thermal and hydro-mechanical separated output, respectively. Functions B and G
represent the parametric dependence.

The PGD method utilizes two nested loops: the enrichment and the fixed-point
iteration. Both are iterative procedures that employ a tolerance for the stopping
criterion. The tolerance for the enrichment is denoted as ηtol, while the tolerance for
the fixed point is referred to as ϵtol. Additionally, a maximum number of iterations
is defined. In certain applications, it is advantageous to set a predetermined number
of iterations for the inner fixed-point loop instead of checking for convergence. In
the specific case of PGD, this approach can be employed without compromising the
overall solution accuracy as will be shown later. For this problem, a total of five
fixed-point iterations has been found to be sufficient, with the primary stopping
criterion being the enrichment tolerance. Striking a balance between the number of
fixed-point iterations and the enrichment tolerance is crucial to achieve accurate and
efficient results for each individual problem.

Symbol Amount Definition

ηtol 10−3,10−4,10−5,10−6 Enrichment Tolerance
itermax 5 Maximum number of iteration for Fixed-point iteration

Table 5.2: Stopping criteria for PGD internal loops.

Next, we will focus on the effect of the tolerance used for enrichment (ηtol). Natu-
rally, the smaller the tolerance, the larger the number of terms in the solution and the
higher the expected accuracy. This will be demonstrated through examples solved
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using four different tolerances, as presented in Table 5.2. The aim is to show that by
decreasing the enrichment tolerance, the accuracy of the problem will increase.

The parametric problem discussed in Section 5.1.3 was solved over a one-year
time domain, with a time step of one day. To demonstrate the shape and behav-
ior of the solution, the three primary fields (pressure, temperature, and displace-
ment) are presented for a specific point in time and a set of parameters. Given
µ∗ = [5, W

m,◦C , 3 × 10−12, m
s , 55600, MPa, −0.1, m] and t = 185 days, Figure 5.3 dis-

plays the spatial solution for temperature, pressure, and displacement versus depth
(represented by the z-axis, also presented in Figure 5.1), obtained with different en-
richment tolerances. The Finite Element (FE) solution is included as a reference.
The figure illustrates how the PGD solution approximates the FE solution as the
tolerance is reduced. For this academic problem, a tolerance of ηtol = 10−6 provides
the most accurate result compared to the others.
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Figure 5.3: Space solution of the validation problem for time = 185 days and parame-
ters µ∗ = [5 W

m ◦C , 3 × 10−12 m
s , 55600 MPa, −0.1 m]. Several PGD solutions computed

for different PGD-enrichment tolerances (ηtol) are displayed alongside the FE solu-
tion. As the tolerance is reduced, the error of PGD in comparison to FE diminishes.
It is worth noting that in the case of the thermal field, the solutions for all tolerances
are on top of the FE.

Figure 5.4 shows temperature, pressure, and displacement results over time for a
fixed space coordinate (z = 9.75 m) and a specific point in parametric space µ∗ =
[1.5 W

m ◦C , 3 × 10−12 m
s , 55600 MPa, −0.1 m]. The graph also includes the FE solution

for comparison. As the enrichment tolerance is reduced, the PGD solution converges
towards the FE solution.
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Figure 5.4: Time solution of the validation problem for z = 9.75 m and parameters
µ∗ = [1.5 W

m ◦C , 3×10−12 m
s , 55600 MPa, −0.1 m]. Several PGD solutions computed for

different PGD-enrichment tolerances (ηtol) are shown together with the FE solution.
When the tolerance is being reduced, the error of PGD with respect to FE vanishes.
Note that in the case of the thermal field, the solution for all tolerances are on top
of the FE.

5.3 Discussion and analysis of the results

The solution at each time step is stored in two separate tensors: one for the
thermal problem and one for the hydro-mechanical problem. Although the solution
is stored as separate tensors, it can be conceptually expressed as a 6th-order tensor
(space + time + 4 parameters). Computing the global error involves integrating over
the complete 6-dimensional hypercube, which is computationally demanding. In this
study, we present an approximation of the global error and examine several sections
or slices of the hypercube. For example, fixing all the parametric dimensions (i.e.,
assigning a particular value to each parameter) transforms the solution into a stan-
dard FE output, enabling the measurement of errors in space and time. Additionally,
computing a norm in the space-time dimension allows for the computation of a scalar
error for every parameter combination. The error is then displayed in several mean-
ingful slices of the complete solution, and various error definitions are presented for
this purpose. The first error definition is a global scalar error of a field f , denoted as
ϵf

G, which involves integration across all dimensions,

ϵf
G = ∥fFE − fPGD∥Ω×It×Iµ

∥fFE∥Ω×It×Iµ
. (5.19)

This error is applied to the temperature, pressure, and displacement fields arising from
the problem. If the integration is not done in all dimensions, other error measures
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are defined. For example, the error in time is a one-dimensional function defined as,

ϵf
t (t) = ∥fFE(t) − fPGD(t)∥Ω×Iµ

∥fFE(t)∥Ω×Iµ
, (5.20)

and if the integration is only taken in space, the following five-dimensional local error
is defined,

ϵf
µ(t,µ) = ∥f µFE(t) − fPGD(t,µ)∥Ω

∥f µFE(t)∥Ω
. (5.21)

With the equipment of these errors definitions, some results are presented next.
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Figure 5.5: Effect of a decrease of the enrichment tolerance, the accuracy of global
error for temperature (ϵT

G), pressure (ϵp
G), and displacement (ϵu

G) increases.

The convergence of the global error (integrating in all dimensions) is presented in
Figure 5.5. The error of all the fields is reduced when the PGD-enrichment tolerance
decreases. As explained before, the computation of this global error, ϵG, is very
demanding computationally, so it is approximated using a simple quadrature having
only 3 points at each parametric dimension. Nevertheless, the stable decrease in the
convergence curve shows that this approximation is enough to get its trend. Based
on the convergence curves, the following results are presented for the enrichment
tolerance ηtol = 10−6.

After demonstrating the global convergence of the solution, we now focus on spe-
cific slices to show the accuracy and behavior of local solutions. The evolution of
the error over time is measured using ϵt defined in Equation (5.20). Figure 5.6 il-
lustrates the error distribution over time. As previously observed, the temperature
field demonstrates higher accuracy compared to the pressure and displacement fields.
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This disparity can be attributed to the inherent simplicity of the thermal problem,
which involves only two relevant parameters and is not coupled to other variables.
In a fully coupled problem, the accuracy of the temperature field is expected to be
affected by errors in pressure and displacement, leading to a decrease in overall accu-
racy. However, in this case, where the thermal aspect is decoupled, the temperature
field exhibits significantly higher accuracy than the hydro-mechanical aspect. In this
study, several trials were conducted using a monolithic solver, revealing that when
solving the THM problem, even with the thermal aspect decoupled from the hydro-
mechanical aspect and employing a monolithic approach, the efficiency is noticeably
reduced, impacting the overall parametric solution. However, when the thermal prob-
lem is solved separately, the solution becomes faster and more accurate compared to
the coupled approach. In any case, the worst error (from the pressure) is below 10−3,
showing that the PGD solution is accurate enough for most practical engineering
purposes.

t [days]

ϵ t
(t

)

ϵT
t (t)

ϵu
t (t)

ϵp
t (t)

Figure 5.6: The global errors in each time slice by assigning ηtol = 10−6, for all the
fields output are less than 10−3; however, for temperature ϵT

t (t), the global errors are
104 more accurate than the pressure ϵp

t (t) and displacement ϵu
t (t).

It is interesting to verify whether all the points of the parametric space results have
the same level of accuracy. To achieve this, one can choose different combinations of
parameters and compute local error based on Equation (5.21). For the temperature,
such an error will not be sought since it is more accurate compared to the rest by
several orders of magnitude. For every parameter, the minimum, maximum, and
middle points have been taken. This led to a selection of a total of 81 parameter
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value combinations for further analysis. The error plot used to study these 81 selected
combinations of parameter values will be organized line by line as illustrated in Figure
5.7. Figure 5.7 is structured by nested blocks of three values of parameters. It is split
into three blocks corresponding to the minimum median and maximum values of the
first parameter. Each of these three blocks is subsequently recursively divided into
three blocks for the three values of the other parameters. The most "inner" parameter
of heat conductivity undergoes the most frequent changes by blocks of three lines,
followed by the elastic modulus (blocks of 9 lines) and geometric parameter (blocks
of 27 lines), while hydraulic conductivity serves as the outer parameter (three blocks
of 27 lines).
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Figure 5.7: The representation structure of the error explaining the parametric space
comprises two blocks: (A) blocks corresponding to the values of the "outer" pa-
rameters, namely hydraulic conductivity and geometric parameter, and (B) blocks
matching the variations of the "inner" parameters, namely elastic modulus and ther-
mal conductivity.

The vertical axis of Figure 5.8 (lines) employs the same combinations of defini-
tions as those presented in Figure 5.7. Furthermore, Figure 5.8 plots the error as a
color code against time on the horizontal axis. After computing the error for each
combination using the definition in Equation (5.21), the results are reported in Figure
5.8. The color bar in Figure 5.8 denotes the level of local error, which remains below
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2 percent for all values. It is worth emphasizing that most of the plot surface is blue,
indicating high accuracy and values of local errors close to zero.
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Figure 5.8: The vertical axis represents the selected parametric combinations, and
the horizontal axis is the time. This figure presents the local error for pressure (A)
and displacement (B) for 81 various parametric combinations, which have been taken
from the minimum, maximum, and middle points of the four parametric ranges. The
color bar represents the local error (Equation (5.21)) in each selected parametric
combination versus time, which is the relative error of the PGD solution with respect
to FEM for every time and parameter combination

For some parameter value combinations, a lower accuracy is obtained than the
rest of the selected parameter value combinations. For instance, the pressure for
the selected parametric combination µ∗ = [1.5 W

m ◦C , 3 × 10−12 m
s , 55600 MPa, −0.1 m]

the same as that for Figure 5.4. As shown in Figure 5.4-B, the pressure decreases
fast, reaching a very small value after the day 73. For such a combination, the day
73 is the starting point of pressure to close to zero values compared with initial
pressure. That is why for that specific point, to converge to more accurate results
is harder than the rest. So, finding a more accurate solution requires a smaller
enrichment tolerance (ηtol) for that specific time slice. The same conclusion can be
drawn for the displacement. For the selected parametric combination µ̂ = [5 W

m ◦C , 3×
10−14 m

s , 55600 MPa, −0.1 m], the value of displacement for some spots is much smaller
than for others, which explains why it is hard to find very accurate results in relative
terms. However, as presented in Figure 5.6, the change of global error, which is the
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average of the selected parameter combinations in each time slice, is less than 10−3,
which is accurate.
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Figure 5.9: This figure aims to explain the presence of a distinct blue square in the
upper right corner of Figure 5.8-A, which represents a specific combination. This
particular combination achieves a faster attainment of steady-state compared to the
other combinations in Figure 5.8-A, resulting in significantly improved accuracy. The
figure consists of nine plots illustrating the evolution of pressure over time for differ-
ent parametric combinations. The maximum hydraulic conductivity (µmax

κ ) is held
constant, while the geometric parameter (µmin

L ) remains unchanged. The plots are
grouped based on variations in heat conductivity and elastic modulus values.

In Figure 5.8-A, the presence of a distinct blue square in the upper right region
indicates highly accurate results compared to the rest of the plot. For a physical
understanding of this region, refer to Figure 5.9. The plots in Figure 5.9 demonstrate
that the blue square is attributed to faster attainment of steady state compared
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to other combinations. This specific region corresponds to a combination where all
hydraulic conductivities (µK ) are at their maximum values (µmax

K ).
Analyzing the evolution of pressure versus time for nine selected points within

this region reveals that in certain cases (Figure 5.9-C, F, and I), the results reach
steady state after approximately 250 days. In Figure 5.9, the geometric parameter
(µL) remains constant at its minimum value (µmin

L ). Figures 5.9-A, D, and G have
the heat conductivity (µκ) set to its minimum value (µmin

κ ), while the elastic modulus
(µE) varies as µmin

E , µmid
E , and µmax

E , respectively. Similarly, Figures 5.9-B, E, and H
have the heat conductivity set to its middle value (µmid

κ ), and the elastic modulus
varies as µmin

E , µmid
E , and µmax

E , respectively. Finally, Figures 5.9-C, F, and I have the
heat conductivity set to its maximum value (µmax

κ ), and the elastic modulus varies as
µmin

E , µmid
E , and µmax

E , respectively.
Therefore, it can be concluded that the pressure response, influenced by the max-

imum hydraulic conductivity, rapidly drops and reaches a steady state within ap-
proximately 50 days for some cases and 250 days for others. On average, the results
suggest that once the system reaches a steady state, further application of PGD for
those specific parameter combinations is unnecessary, as the results converge and
become similar.
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Chapter 6

Application to a simplified model
of engineered barrier system

This chapter shows the application of the Proper Generalized Decomposition (PGD)
methodology to simplified engineered barrier systems, which are governed by Thermo-
Hydro-Mechanical (THM) problems. To the author’s knowledge, this combination
of methodologies has not been studied yet. The main objective is to illustrate that
building a generalized (parametric) solution with PGD for such a problem is possible.
The accuracy and efficiency of the approach for such problems will be assessed. The
possible exploitations of the generalized solutions in the context of a deep geological
repository will also be outlined.

This chapter is divided into three sections. Section 6.1 presents all the common
features and concepts of the two version of the problem that will be discussed in the
other sections. Section 6.2 illustrates the problem with three material parameters
(heat conductivity, hydraulic conductivity, and elastic modulus of the host rock) as
extra dimensions. Section 6.3 particularizes the approach to the problem as dependent
on a geometric parameter (distance between canisters).

6.1 Common features and concepts of problems

In Chapter 1 (Section 1.2), the concept of engineered barrier systems was discussed
as the typical model problem in this study. Figure 6.1 serves as a visual reminder
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of this concept. It illustrates a deep geological repository with two primary barriers:
the geological barrier, represented by the host rock (granite in this case), and the
engineered barrier, which includes a canister encapsulating the High-Level Waste
(HLW), along with the buffer and backfill materials.

Engineered barrier systems

Host Rock

Backfill

Buffer

Canister

400
m

eters
ofH

ost
R

ock
Figure 6.1: The deep geological repository is divided into two main barriers: one is the
low permeability host rock as a natural barrier, and the other one is the engineered
barrier system. The engineered barrier system consists of three main components,
which are a canister (which contains the HLW), buffer, and backfill materials.

Figure 6.2 depicts the model problem, including its geometry and materials, that
will be examined in this study. As a reminder, the model assumes axisymmetry,
which is why it is presented in a two-dimensional axisymmetric representation. The
remaining assumptions of this model are presented in Chapter 1 (Subsection 1.3). The
domain (Ω = ΩR ∪ ΩBf ∪ ΩB ∪ ΩC) is divided into four subdomains: ΩR represents
the host rock, ΩBf represents the backfill, ΩB represents the buffer, and ΩC represents
the canister domains. The boundaries are labeled as Γt, Γr, Γb, and Γl at the top,
right, bottom, and left of Ω, respectively. The objective of this study is to investigate
the impact of heat released by the High-Level Waste (HLW) in the system, which is
modeled by introducing a heat source in ΩC.
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Figure 6.2: The model problem and its geometry are re-sketched from [149].

Figure 6.3 illustrates the top view of the engineering barrier system, revealing
the continuous backfill area. Since the problem assumes axisymmetry, the backfill
domain is approximated as a ring, similar to the left figure in Figure 6.2. Based
on these assumptions, all three primary governing equations of a THM model are
presented by Equation (2.7) in Chapter 2.

(A) (B)
R

Z

L

Figure 6.3: Side view of the engineered barrier system in the deep geological repository
(A). The top view of the repository (B) illustrates the continuous backfill, which is
approximated using an axisymmetric geometry. Additionally, it depicts the inter-
distance between canisters (L), which will be investigated as a geometrical parameter
in this context.
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Table 6.1 presents the solid phase properties for the various components, namely
the host rock (granite), canister, backfill, and buffer. The subscripts f and s represent
the fluid and solid phases, respectively. The fluid properties include the density (ρf ),
specific heat (cf ), heat expansion coefficient (αf ), and bulk modulus (Kf ), which
are given by the following values: 1000, kg

m3 , 4180 J
kg·K , 6.9 × 10−5 1

◦C , and 2200 MPa,
respectively.

Symbol Units Description Rock Canister Backfill Buffer Reference

ρs
Kg
m3 Density 2743 8930 2780 2780 [149]

ϕ − Porosity 0.005 − 0.27 0.37 [149]

cs
J

Kg ◦C Specific heat 764 390 800 830 [149]

αs
1

◦C Heat expansion 0.85 × 10−5 10−5 9 × 10−4 9 × 10−4 [149]

α − Biot’s coefficient 0.75 − 1 1 [91]

ν − Poisson’s ratio 0.25 0.3 0.3 0.3 [149]

κ W
m ◦C Heat conductivity Iµκ = [1.5, 5](∗) 390 1.4 1.4 [79]

K m
s Hydraulic conductivity IK = [3 × 10−14, 3 × 10−12](∗) − 7.6 × 10−13 5.6 × 10−14 [149]

E MPa Elastic modulus IE = [55600, 68000](∗) 210000 65.8 42.4 [74]

Table 6.1: The solid phase properties. The asterisk (*) represents the range of ma-
terial parameters treated as variables. The minimum and maximum bounds of the
ranges were selected from the tables provided in the references.

In the first equation (conservation of energy) of the three main governing equations
in (2.7), the heat source is added on the right-hand side based on the properties of
the HLW at ΩC. In the following subsection, the time dependency of the power
supplied by the HLW will be explained in detail. In this thesis, before going through
the other discussions, it should be reminded that Finite Element Method (FEM) is
used as a (high fidelity) discretization technique, as explained in detail in Chapter 2
(Subsection 2.2.2)

6.1.1 Heat source

The heat source (q(t)) is defined as follows:

q(t) = P(t)
Vc

. (6.1)
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In Equation (6.1), Vc is the volume of the canister, and P(t) is the power evolution.
The power evolution of each canister is calculated by Equation (6.2), which depends
on two parameters, the residual power at the time of deposition (ti) and the decay
rate (ai) [69]. The power function that is used in this work is,

P(t) = P(0)
7∑

i=1
ai exp(−t/ti). (6.2)

In Equation (6.2), P(0) = 1700 W is the canister power at the time of deposition,
and ai and ti are the parameters, which are given in Table 6.2.

i ti [years] ai [-]

1 20 0.060147
2 50 0.705024
3 200 -0.054753
4 500 0.249767
5 2000 0.025407
6 5000 -0.009227
7 20000 0.023877

Table 6.2: Time constants and coefficients of exponential power expression.

Figure 6.4 illustrates the power evolution versus time. This function is applied in
the model (Equation (2.7)) to simulate the heat generated by the HLW (Equation
(6.1)).
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Figure 6.4: Power evolution versus time in the year to simulate the HLW as the heat
source.
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6.1.2 Boundary conditions

The boundary conditions are either Dirichlet boundary conditions (prescribed un-
known values) or Neumann boundary conditions (prescribed fluxes or traction forces).
Figure 6.5 illustrates the generic concept of boundary conditions for the model prob-
lem. Here, the hydraulic and mechanical boundary conditions are constant with
respect to time. The prescribed temperatures at the top and bottom boundaries are
not constant with respect to time due to the close proximity of boundaries to the
heat source.
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Figure 6.5: Hydraulic (A) mechanical (B) and thermal (C) boundary conditions.

Figure 6.5-A illustrates the boundary conditions for the hydraulic field. Hydro-
static water pressure is applied as Dirichlet boundary conditions on the upper and
lower boundaries, i.e., ptop = ρf g htop and pbottom = ρf g hbottom, where htop = 400 m
and hbottom = 438 m. Along the vertical boundaries, Neumann boundary conditions
are applied due to the symmetry of the problem. These boundary conditions are
homogeneous, meaning that hydraulic fluxes are zero [150]. Thus, the boundary
conditions for the hydraulic field are as,


p(x, t) = 4 MPa on Γt × It ,

p(x, t) = 4.38 MPa on Γb × It ,

− K
ρf g

(∇p − ρf g) · n = 0 on (Γl ∪ Γr) × It .

(6.3)
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6.1. Common features and concepts of problems

As has been presented in Figure 6.5-B, a uniform load per unit surface (σtop =
10.94 MPa) is applied on the top boundary. This load comes from the gravity weight
of the host rock mass at 400 m. The lateral displacement is constrained to be zero,
which is translated in the mechanical boundary conditions [150] as,

σ · n = 10.94 MPa on Γt × It ,

uz(x, t) = 0 on Γb × It ,

ur(x, t) = 0 on (Γl ∪ Γr) × It .

(6.4)

Figure 6.5-C depicts the generic format of the thermal boundary conditions. Since
the problem exhibits an axial symmetry, Neumann boundary conditions are applied
along the vertical boundaries, being homogeneous, meaning the heat fluxes are zero.
In the confined area, the prescribed temperatures at the top (Ttop(t)) and bottom
(Tbottom(t)) are not constant, and they are functions of time due to their proximity
with the heat source as follows:

T (x, t) = Ttop(t) on Γt × It ,

T (x, t) = Tbottom(t) on Γb × It ,

(−κ∇T ) · n = 0 on (Γl ∪ Γr) × It .

(6.5)

In order to determine the dependencies Ttop(t) and Tbottom(t), a side model (large
model) should be solved only for the thermal aspect (Poisson’s equation). The fol-
lowing subsection explains the detail of the computation of time-dependent thermal
boundary conditions.

Before delving into the computation of thermal boundary conditions, it is impor-
tant to emphasize that the selection of boundary conditions in this study is based
on the same setup as Toprak et al. [150] for the purpose of comparison. However,
from a fundamental standpoint, the methodology used for temperature can also be
extended to the pressure field.

6.1.3 The computation of time-dependent thermal
boundary conditions

The domain of the confined area (small model) should not be too large to execute
THM computations cheaply. Nevertheless, its top and bottom thermal Dirichlet
boundary conditions are too close, and therefore boundaries cannot have a constant
temperature versus time. For finding the time dependency of the temperature on
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6. Application to a simplified model of engineered barrier system

the top and bottom boundaries of the small model (Figure 6.6-C), a thermal anal-
ysis will be conducted on a larger scale with a boundary far from the heat source
(Figure 6.6-B). However, it is important to emphasize that the explanation provided
in Figure 6.6 applies to both problems addressed in this chapter. The intention here
is to present the concept rather than the specific parametric details. Therefore, the
thermal boundary conditions, represented by Ttop(t, µκ, µL) and Tbottom(t, µκ, µL),
which depend on material and geometric parameters, have not been illustrated in
Figure 6.6-C.

Ω

Γt

Γb

Ttop(t)

Tbottom(t)
14.6 ◦C

7.4 ◦C

218.5
m

38
m

256.5
m

ΓrΓl

400
m
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ofH
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R

ock

218.50m
256.50m
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(A) (B) (C)
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Γ1

Γ2

Γ4
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Figure 6.6: Based on the global deep geological repository model (A), a large scale
model (B) is extracted to solve and find the temperatures to prescribe as a function
of time on the top and bottom boundaries of the smaller model (C).
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The decision to utilize a large model depth is based on Toprak’s work [148]. He
specifically extracted a depth of 513 m from Figure 6.6-A to investigate the thermal
behavior of that particular section. Toprak employed a confined domain (small do-
main) to conduct computationally efficient THM calculations. However, he observed
that domains located close to boundaries cannot maintain a constant temperature.
To determine suitable boundary conditions for the top and bottom, a thermal anal-
ysis was performed on larger geometries. Two large models and one reference model
(with fixed prescribed temperature values on the top and bottom of the small domain
throughout the entire time interval) were evaluated. Among these computations, the
model utilized in this study represents the closest approximation to reality and serves
as an appropriate larger domain for determining the thermal boundary conditions
within the confined area. The problem statement corresponding to this large model
should be defined. The main governing equation of such a problem is the first equa-
tion of Equation (2.7). To close this problem statement, the boundary conditions
should be defined. Since the model is symmetry, homogeneous Neumann boundary
conditions on the lateral boundaries are considered, with vanishing heat fluxes. For
the top and bottom boundaries of the large-scale model, the prescribed temperatures
are derived from the following definition from [128],

T = 0.014h + 4.9, (6.6)

where 0.014 ◦C
m is the geothermal gradient, h represents the depth, and 4.9 ◦C is the

surface temperature. The depth for the top and bottom boundaries for the large-scale
model are taken as 181.5 m and 694.5 m (Figure 6.6-A). By inserting these values as
the depth for the top and bottom boundary of the large model (Figure 6.6-B) in
Equation (6.6), 7.4 ◦C and 14.6 ◦C are found as the prescribed temperature on the
top and bottom for the large model, respectively.

The problem statement of the large-scale model is defined as follows:

−∇ · (κ(x)∇T (x, t)) = q(t) in Ωlarge-model × It ,

T (x, t) = 7.4 ◦C on Γ1 × It ,

T (x, t) = 14.6 ◦C on Γ2 × It ,

(−κ∇T ) · n = 0 on (Γ3 ∪ Γ4) × It ,

(6.7)

where Ωlarge-model is the spatial domain of the large-scale model and Γ1, Γ2, Γ3, and
Γ4 are the top, bottom, left, and right boundaries of Ωlarge-model, respectively.
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6. Application to a simplified model of engineered barrier system

By solving Equation (6.7), one can extract the averaged temperature values ob-
tained along the top and bottom boundaries of the confined model (small model).
Two scalar functions of time will be obtained to be applied as Dirichlet boundary
conditions of the small model. It should also be mentioned that to ease this extrac-
tion, the time discretizations of the large and small scale models is taken the same.
The results concerning this part with details will be presented for the three material
parameters parametric problem in Section 6.2.

6.1.4 Initial conditions

The initial conditions are defined as follows:


T (x, 0) = T0(x) in Ω,

p(x, 0) = p0(x) in Ω,

u(x, 0) = u0(x) in Ω.

(6.8)

In Equation (6.8), T0(x) is the initial temperature equal to the geothermal temper-
ature, which is not spatially uniform and matches the geothermal gradient. p0(x) is
the initial pressure and is equivalent to the hydrostatic pressure in the confined area.
It is thus not spatially uniform either. u0(x) is the initial displacement which will be
found as the solution of a steady-state equation for the mechanical field by inserting
the T0(x) and p0(x).

6.1.5 Parametric definition

Here two classes parametric THM problems will be investigated. For the first one,
three material parameters concerning the host rock regions are considered as extra
dimensions: the heat conductivity (µκ), the hydraulic conductivity (µK ), and the
elastic modulus (µE). For the second problem, these rock material properties are
considered known, but the distance between canisters is considered as the (only)
geometric parameter (µL) and thus as an extra dimension. All the parametric field
equations are the same as Equation (4.1) with respectively three and one parameters
for each problem.
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6.1. Common features and concepts of problems

As illustrated in Figure 6.2, the three material parameters in the Ω domain are
non-homogeneous, and the exact definition of parameters are as follows:

κ(x, µκ) =



µκ if x ∈ ΩR with µκ ∈ Iµκ ,

1.4 w
m ◦C if x ∈ ΩB,

1.4 w
m ◦C if x ∈ ΩBf ,

390 w
m ◦C if x ∈ ΩC,

(6.9)

K (x, µK ) =



µK if x ∈ ΩR with µK ∈ IµK ,

5.6 × 10−14 m
s if x ∈ ΩB,

7.6 × 10−13 m
s if x ∈ ΩBf ,

1.0 × 10−20 m
s if x ∈ ΩC,

(6.10)

E(x, µE) =



µE if x ∈ ΩR with µE ∈ IµE ,

42.4 MPa if x ∈ ΩB,

65.8 MPa if x ∈ ΩBf ,

210000 MPa if x ∈ ΩC.

(6.11)

In Equations (6.9) to (6.11), Iµκ , IµK , and IµE represent the ranges of material param-
eters for heat conductivity, hydraulic conductivity, and elastic modulus of the rock,
respectively. The bounds of these ranges are presented in Table 6.1.

In Chapter 4, the implementation of the geometric parameter for the second class
of problems was given in Figure 4.1. Here, the following definition of the parameter
is used,

w(µL) = b1 + B2(µL), where µL ∈ IL = [−0.5 m, 3.5m] . (6.12)

The idea behind Equation (6.12) was illustrated in Chapter 4 (Figure 4.1). Here in
this problem, b1 is the fixed width which contains the canister, the buffer, the backfill,
and some part of the host rock domains over a width of 3 m. The second part of the
domain, made variable by the geometrical parameter B2(µL), is defined as follows:

B2(µL) = b2 + µL. (6.13)

In Equation (6.13), b2 represents the value of the variable width (B2(µL)) when µL =
0, which is 6 m. The parameter µL allows for the consideration of different distances
between canisters in the repository. It should be emphasized that using this definition
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6. Application to a simplified model of engineered barrier system

enables the use of the same mesh topology for the entire range of µL, simplifying the
problem. This idea of using the same mesh topology was also presented in Chapter
4, in Figure 4.4.

As discussed in Chapter 5 (Subsection 5.1.3), each individual parameter, as an
additional dimension, needs to undergo discretization. The discretization process for
all material parameters follows a similar approach to that used in the previous chapter.
However, for geometric parameters, a regular discretization technique utilizing 801
nodes is employed in this particular case.

6.2 Results for a three material parameters
problem

In this section, we seek the PGD solution by considering the three material parameters
as additional dimensions. Figure 6.7 illustrates the two preprocessing steps employed
to address this problem. As depicted, the initial conditions are separated (Figure
6.7-A), and the thermal boundary conditions are also separated (Figure 6.7-B) as the
first extraction steps. These preprocessing steps, referred to as ICs PGD BOX and
BCs PGD BOX in this work, generate separate input data for the THM problem at
hand. Matrices and vectors are defined separately based on these ICs PGD BOX
and BCs PGD BOX (as discussed in Chapter 4), leading to the sought generalized
solution depicted in Figure 6.8.

The purpose of providing ICs PGD BOX and BCs PGD BOX is to utilize their
computationally inexpensive offline solutions with PGD. Once solved, these solutions
can be saved and used online for the transient THM concept. The ICs PGD BOX
represents the initial separated values required to initiate the transient simulation,
while the BCs PGD BOX represents the separated thermal boundary conditions
applied during the transient simulation. This online approach offers a fast and efficient
solution, as it involves simply loading the precomputed solutions without the need
for additional computations.

It is important to emphasize that BCs PGD BOX only includes the separated
boundary conditions for temperature. These conditions are implemented on each time
slice as known values on the boundary, ensuring that the PGD solution on that bound-
ary is homogeneous and represents the known separated temperature values. On the
other hand, it should be noted that the prescribed Dirichlet boundary conditions
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6.2. Results for a three material parameters problem

for pressure and displacement are applied using a function called "deleteRowsDBC"
in encapsulated PGD [38]. This function enforces Dirichlet boundary conditions by
shifting columns to the right-hand side and introducing zeros in the matrix rows and
columns (with a one on the diagonal). By using the homogeneous PGD solution
on the boundary, the consistency of the Dirichlet boundary conditions is maintained
throughout the entire time interval. However, in encapsulated PGD, the Dirichlet
boundary conditions should be constant values independent of parameters. Hence,
BCs PGD BOX was developed to handle the thermal aspect separately, taking into
account the dependency of thermal boundary conditions on parameters.

Thermal big model problem

Separated input data for big model

Separated output data for big model

PGD

Find the separated Boundary Conditions (BCs):

T t
top(µκ) and T t

bottom(µκ)

Find the separated ICs:

T0(x, µκ), p0(x, µK ), and u0(x, µκ, µK , µE)

Initial conditions (ICs) PGD solver

Separated input data for ICs

Separated output data for ICs

PGD

ICs PGD BOX BCs PGD BOX
(A) (B)

Figure 6.7: In this problem, the first pre-processing step consists of solving the steady-
state problem to define the initial conditions (Equation (6.8)) and extracting the
output in separated forms (A). The second pre-processing step involves solving the
parametric thermal problem of the auxiliary large-scale model (Equation (6.7)) and
extracting the average separated thermal values for the top and bottom boundaries
of the small model (B). In BCs PGD BOX, T t

top and T t
bottom represent the separated

thermal boundary conditions for the time slice t for the top and bottom boundaries
of the smaller model, respectively.

[38] Figure 6.8 illustrates that one PGD problem is solved at each time slice t by
having all the separated input data. The final output is a collection of all the time
slices of Tt(x, µκ) and Ut(x, µκ, µK , µE). The separated output data for the problem
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6. Application to a simplified model of engineered barrier system

at hand for a given time slice are as follows:

Tt(x, µκ) =
M̂ t∑

m̂=1
Tm̂(x)Bm̂

µκ
(µκ), (6.14)

Ut(x, µκ, µK , µE) =
M t∑

m=1
Um(x)Gm

µκ
(µκ)Gm

µK
(µK )Gm

µE
(µE), (6.15)

Equations (6.14) and (6.15) involve two quantities, M̂ t and M t , which respectively
correspond to the number of modes used in the thermal and hydro-mechanical sep-
arated outputs. Functions B and G are used to denote the parametric dependence.

Step 1 - ICs PGD BOX

Step 2 - BCs PGD BOX

Step 3 - Separated matrices and vectors

The solutions for one-time slice t are as,

Tt(x, µκ) = ∑M̂ t

m̂=1 Tm̂(x)Bm̂
µκ

(µκ)

Ut(x, µκ, µK , µE) = ∑M t

m=1 Um(x)Gm
µκ

(µκ)Gm
µK

(µK )Gm
µE

(µE)

PGD

Figure 6.8: Generalized solution to the parametric coupled THM problem at hand.
It shows that the separated unknowns for each time slice will be found by providing
the ICs PGD BOX, BCs PGD BOX, and all the separated matrices and vectors.

The present section will first show the generalized solution of the thermal bound-
ary conditions at the top and bottom boundaries of the small domain and its accuracy.
Then the accuracy of the final output data will be analyzed in relation to the com-
putation gain and the efficiency of the methodology. Finally, a small discussion will
be outlined concerning the possible exploitation of the generalized solution. The
geometry for the domain is fixed to study this first parametric problem (material
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6.2. Results for a three material parameters problem

parameters only). Therefore, the worst-case scenario from a thermal viewpoint has
been considered for this three-material parameter case study (the closest distance
between canisters, which means µL = −0.5 m).

6.2.1 Generalized solutions for thermal boundary
conditions

Figure 6.7-B presents the concept of providing a generalized solution for the temper-
ature to be prescribed on the top and bottom boundaries of the small domain. Such
separated prescribed boundary conditions are as follows:

T t
top(µκ) =

M̃ t∑
m̃=1

Qm̃
µκ

(µκ), (6.16)

T t
bottom(µκ) =

M̆ t∑
m̆=1

Υm̆
µκ

(µκ). (6.17)

In Equations (6.16) and (6.17), M̃ t and M̆ t are the numbers of modes used in a given
time slice used in the prescribed temperature on top and the prescribed temperature
on the bottom boundaries of the small scale model. Qm̃

µκ
(µκ) and Υm̆

µκ
(µκ) are the

parametric functions that depend on the heat conductivity of host rock considered
as a parameter for the thermal problem.

Symbol Amount Definition

ηtol 10−5 Enrichment Tolerance
itermax 5 Maximum number of iteration for Fixed-point iteration

Table 6.3: Stopping criteria for PGD.

The separated prescribed boundary conditions are found by solving the large-scale
parametric thermal model (the parametric form of Equation (6.7)) using the PGD
numerical parameters as presented in Table 6.3 and taking out the separated output
data in the top and bottom boundaries of the small domain.

For a value of the heat conductivity of the rock within the interval of variation
of this parameter, µκ = 1.5 W

m ◦C , the comparison between the FEM and the PGD
solution is given in Figure 6.9. This figure shows that the PGD solution for this
particularized point of the parametric space is in agreement with the FEM solution.
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Figure 6.9: Figures (A) and (B) present the prescribed temperature versus time for
the top and bottom boundaries of the small-scale model, respectively. They show
that the results of the PGD solver are in agreement with the FEM for µκ = 1.5 W

m ◦C .

Taking into account that the top and bottom prescribed boundary conditions are
scalar functions of time and of the heat conductivity of the rock, it is easy to plot
the error associated with the PGD solution with respect to the FEM as a function of
time and heat conductivity of the rock, see Figure 6.10. The error is computed as in
Equations (6.18) and (6.19):

ϵtop(µκ, t) =
∥T µκ

top(t) − T t
top(µκ)∥

∥T µκ
top(t)∥ , (6.18)
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ϵbottom(µκ, t) = ∥T µκ

bottom(t) − T t
bottom(µκ)∥

∥T µκ

bottom(t)∥ , (6.19)

where, T µκ
top(t) and T µκ

bottom(t) are an output of FEM for a specific µκ, which gives the
prescribed temperatures on top and bottom boundaries of the small scale model, re-
spectively. On the other hand, T t

top(µκ) and T t
bottom(µκ) are the generalized solutions

for time slice t.

(A) (B)

t [year] t [year]

µ
κ

[
W m
◦
C

]

µ
κ

[
W m
◦
C

]

ϵbottom(µκ, t)ϵtop(µκ, t)

Figure 6.10: Relative error of the whole domain (time and heat conductivity of the
rock) for prescribed temperature on top (A) and bottom (B).

Figure 6.10 illustrates the high accuracy achieved by the PGD implementation
for both the top and bottom boundary conditions across the entire domain of time
and the heat conductivity of the rock as an extra dimension.

6.2.2 Accuracy of the generalized solution

This thesis explores two methods for solving the THM problem: the conventional
solver and the ∆-solver. To understand the differences between these two implemen-
tation concepts, the thermal aspect is presented in detail. For the thermal part, there
are two solvers: the T -solver (conventional solver) and the ∆T -solver (∆-solver). The
T -solver requires solving one PGD linear problem per time step, as outlined below:

Ki
GTTi+1(x, µκ) = fq + Ki ∗

GTTi(x, µκ). (6.20)

The final generalized solution of the T -solver will be the collection of parametric
objects Tt for each time slice t. There is another implementation method that has
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6. Application to a simplified model of engineered barrier system

been explored and tested, called the ∆T -solver. This method involves seeking the
solution to the thermal aspect by first defining the unknown temperature at the
current time as follows:

Ti+1 = Ti + ∆Ti , (6.21)

By substituting Equation (6.21) for Ti+1 in Equation (6.20), the following ∆T -solver
arises:

Ki
GT(x, µκ)∆Ti(x, µκ) =fq(x) + Ki ∗

GT(x, µκ)Ti(x, µκ)−

Ki
GT(x, µκ)Ti(x, µκ).

(6.22)

The unknown for this solver is ∆Ti(x, µκ) for each time slice t, and the solution
for the current result is obtained by adding the variation ∆Ti(x, µκ) to the previ-
ous temperature field, Ti(x, µκ). This means that an increased number of modes
is accumulated from previous results (i.e., from previous time slices). A method to
limit the number of modes is thus compulsory. In Chapter 3, PGD was used to solve
linear systems. However, in this section, a different operation will be performed us-
ing PGD, which involves decreasing the number of modes accumulated by summing
the solution of ∆T -solver with the previous temperature field using PGD, a process
known as compression. One of the goals of PGD compression is to compress the
parametric solution obtained as separated output data from the PGD linear solver.
However, achieving this objective can be challenging, especially in the case of coupled
HM problem, as investigated in this work, due to difficulties in terms of efficiency and
accuracy. It has been observed that in the coupled HM case, the compression goal
cannot be achieved. The principles of PGD compression are explained in detail in
these studies [134, 37, 38]. Upon observing the outcomes of applying the ∆-solver to
the thermal case, it has been noted that it offers both efficiency and accuracy. This
choice is driven by the fact that the ∆-solver delivers precise results while employing
fewer modes compared to the conventional solver for the thermal part. By specifi-
cally utilizing the ∆-solver for the thermal aspect, the research strives to achieve a
harmonious blend of accuracy and computational efficiency.

To obtain the generalized solution for the thermal aspect, both the enrichment
tolerance for the PGD linear solver (ηtol) and the enrichment tolerance for PGD com-
pression (ηcomp

tol ) are set to 10−3. The PGD linear solver is executed for 5 fixed-point
iterations, while the PGD compression requires a larger number of iterations, such as
200 fixed-point iterations, with a fixed point tolerance of ϵtol = 10−3. Increasing the
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6.2. Results for a three material parameters problem

number of iterations is crucial for PGD compression in order to reduce the number
of modes. By doing so, the number of modes decreases accordingly. On the other
hand, for the PGD linear solver, a tradeoff between the enrichment tolerance and the
number of fixed-point iterations needs to be determined for each problem. In this
case, the chosen tradeoff is 5 fixed-point iterations and an enrichment tolerance of
ηtol = 10−3 to ensure efficient and accurate results.
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Figure 6.11: (A) Result of temperature versus time for a fixed coordinate in space
(r = 0.8 m and z = 17.5 m) in the rock material with a particularized point in
parametric space µκ = 1.5 W

m ◦C , and (B) Temperature field output at t = 100 year for
the same particularized point in parametric space.

Figure 6.11-A illustrates the solution of temperature versus time for one particular
point in the parametric space (µκ = 1.5 W

m ◦C) at a fixed coordinate located on the rock
next to the buffer (r = 0.8 m and z = 17.5 m). It shows good accuracy with respect
to the FEM solution. On the other hand, Figure 6.11-B presents the temperature
field result and its total relative error map after 100 years for the same point in the
parametric space. The relative error for temperature field (ϵ100

T (x, 1.5)) is defined as,

ϵ100
T (x, 1.5) = ∥T1.5

FEM(x, 100) − T100(x, 1.5)∥
∥max (T1.5

FEM(x, 100))∥ . (6.23)

In Equation (6.23), T1.5
FEM(x, 100) denotes the solution of FEM for µκ = 1.5 W

m ◦C at
t = 100 year., while T100(x, 1.5) is the solution of PGD for the time slice t = 100 year
for a specific parametric space µκ = 1.5 W

m ◦C .
To assess the generalized solution of temperature more globally, global error per

time slice, as explained in Chapter 5 in Equation 5.20, can be computed. Figure 6.12
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presents this global error versus the time slice which is varying from the year zero to
the year 1000, showing that the generalized solution of the thermal part is accurate.

t [year]
10-2 10-1 100 101 102 103

10-8

10-7

10-6
ϵT G

(t
)

Figure 6.12: Global errors of the thermal solution in each time slice are less than
10−5, quantifying the accuracy of the generalized solutions in the whole domain of
time, spatial and parametric space.

Now, the generalized solution of the transient coupled Hydro-Mechanical (HM)
aspects will be sought by using the generalized solution of the thermal part as input
data. First, the choice of the enrichment tolerance (ηtol) is studied as a starting point
for this investigation. Then, by having an accurate generalized solution, the study of
the outputs versus times and their field results will be investigated.

Symbol Amount Definition

ηtol 10−5,10−6 Enrichment Tolerance
itermax 5 Maximum number of iteration for Fixed-point iteration

Table 6.4: Stopping criteria for PGD.

The global behavior of the generalized solution of the Hydro-Mechanical (HM)
part (Equation (6.15)) will be investigated using global error definitions versus time
for two different enrichment tolerances, as outlined in Table 6.4. The global error ver-
sus time, as previously mentioned for the thermal case, is a one-dimensional function
defined in Equation (5.20) in Chapter 5.
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6.2. Results for a three material parameters problem

Figure 6.13 shows that it is necessary to use ηtol = 10−6 to have a sufficient
accuracy (on the order of 10−3) for the generalized solution of the coupled HM part.
Therefore, from now on, for the present three-parameter problem, the study of the
output versus time and their field results will be discussed by considering ηtol = 10−6.

t [year]

ϵp G
(t

)

ηtol = 10−5

ηtol = 10−6

t [year]

ϵu G
(t

)

ηtol = 10−5

ηtol = 10−6

(A) (B)
Figure 6.13: (A) Behavior of the global error for pressure versus time, (B) Global
error of displacement versus time. For both cases, the effect of a smaller enrichment
tolerance ηtol = 10−6 is illustrated. For ηtol = 10−6, the accuracy for the whole domain
of time for both cases is almost less than 10−3.

Now, with the generalized solution, it is possible to explore various combinations
of outputs in just a fraction of a second. All one needs to do is specify points in spatial
space, parametric space, and time domain. For example, by specifying the parametric
point at µ∗ = [1.5 W

m ◦C , 3 × 10−14 , m
s 68000 MPa], one can explore the solutions for

pressure, radial and vertical displacements versus time at a spatial coordinate of
r = 0.8 m and z = 17.5 m (which is located in the rock material close to the buffer).
Additionally, one can also explore the output field results for a specific year, such as
t = 10 years, for the same particularized point in the parametric space. The results
are presented in Figures 6.14.

Figures 6.14-A, C, and E show the accuracy of the PGD solution compared to
the FEM solution over time. On the other hand, Figures 6.14-B, D, and F present
the results of pressure, radial, and vertical displacements, along with their relative
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Figure 6.14: (A), (C) and (E) illustrate the results for pressure, radial displacement,
and vertical displacement versus time, respectively. These results correspond to a
specific point in the parametric space, µ∗ = [1.5 W

m ◦C , 3 × 10−14 m
s , 68000 MPa], and

a fixed coordinate in space (r = 0.8 m and z = 17.5 m) , which is located in the
rock material close to the buffer. The results demonstrate agreement with the FEM
solutions over time. (B), (D) and (F) display the field results for the same specific
point in the parametric space at a time slice of t = 10 years for pressure, radial
displacement, and vertical displacement, respectively. These results further confirm
the accuracy of the methodology.
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6.2. Results for a three material parameters problem

errors, at a specific time slice of t = 10 years for the same particularized point in the
parametric space. The relative errors for each field are defined as follows:

ϵ10
p (x,µ∗) = ∥pµ∗

FEM(x, 10) − p10(x,µ∗)∥
∥max (pµ∗

FEM(x, 10))∥
. (6.24)

ϵ10
ur (x,µ∗) = ∥ur

µ∗

FEM(x, 10) − ur
10(x,µ∗)∥

∥max (ur
µ∗

FEM(x, 10))∥
. (6.25)

ϵ10
uz (x,µ∗) = ∥uz

µ∗

FEM(x, 10) − uz
10(x,µ∗)∥

∥max (uz
µ∗

FEM(x, 10))∥
. (6.26)

In Equations (6.24), (6.25), and (6.26), pµ∗

FEM(x, 10), ur
µ∗

FEM(x, 10), and uz
µ∗

FEM(x, 10)
denote the solution of pressure, radial, and vertical displacement with FEM solver
for particularized parametric point µ∗. The notations p10(x,µ∗), ur

10(x,µ∗), and
uz

10(x,µ∗) refer to the output of online solver of PGD for one specific parametric
point (µ∗) and time slice (t = 10 year) for pressure, radial and vertical displacement,
respectively. Figure 6.14 shows that the PGD solution for the pressure, the radial,
and the vertical displacements is in agreement with the FEM solution.

Figures 6.11, 6.12, 6.13, and 6.14 present that the methodology is accurate in
the context of a simplified model of a engineering barrier system. In the following
subsections, the efficiency and the possible exploitation of such generalized solutions
will be discussed.

6.2.3 The efficiency of the generalized solution

As discussed in previous chapters, the PGD methodology is divided in two stages:
the offline stage, which is computationally costly but only computed once, and the
online stage, which costs a fraction of a second; therefore, its cost is negligible. The
offline stage is a collection of PGD solutions per time slice. This means that each time
slice has a different number of enrichment modes to reach the enrichment tolerance.
Figure 6.15-A depicts the requirement of a number of modes (M t) for each time slice
(t) to build (6.15) for enrichment tolerance of 10−6. For instance, Figure 6.15-B
illustrates that for a time slice of ten years (t = 10 years), achieving an enrichment
tolerance of ηtol = 10−6 requires 361 modes (M 10 = 361). Figure 6.15 shows that
the integration scheme does not cause the number of modes to explode with time,
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6. Application to a simplified model of engineered barrier system

but rather it remains bounded. On the contrary, after some time, the number of
modes starts decreasing because the solution reaches a steady state. This confirms
the efficiency of the time discretization implementation in this work.
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Figure 6.15: Number of modes (M t) versus time slice (t) for finding the solution of
Equation (6.15) as an offline stage procedure: (A), number of modes as a function of
time. (B) illustration of the enrichment procedure for the time slice year t = 10 year,
for which 361 Modes are required to reach the enrichment tolerance (ηtol = 10−6).

Figure 6.16 shows that performing PGD is computationally expensive initially,
taking almost 12 days to complete. However, once the offline stage is completed, the
online stage becomes a matter of simply specifying points in the parametric space
and receiving the output in a fraction of a second. In terms of computational cost,
the Break-Even Point (BEP) is the number of forward problems (FEM) solutions
at which the total computational cost of the forward FEM models becomes lower
than the computational cost of the PGD solver. As shown in Figure 6.16, for the
parametric problem at hand, this BEP corresponds to the solution of 802 forward
problems. Beyond this point, the computational cost of additional FEM simulations
continues to increase.

In a previous study by Larion et al. [81], the ATLAS experiment for repository
characterization was addressed using a reduced basis approximation as a surrogate-
based model for solving inverse problems in THM parametric identification. The
study revealed that solving 13050 forward problems with a FEM solver would take
approximately 200 days of computational time, significantly exceeding the time re-
quired for 802 FEM solutions. This highlights the inefficiency of classical repetitive
FEM solutions and emphasizes the advantages of utilizing a PGD solver. The PGD
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6.2. Results for a three material parameters problem

solver provides an online solution with an offline computational cost of only 12 days,
making it a more efficient choice.
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Figure 6.16: The computational cost of the PGD solver depends on building the
generalized solution (offline stage), while for FEM solvers, the cost increases beyond
the Break-Even Point (BEP) of solving 802 models. In cases where a large number
of models are required, such as in parametric identification problems needing 13,050
models, classical FEM models can take up to 200 days, while the PGD solver takes
only 12 days, making it 16.67 times faster. Thus, using the PGD solver is more
advantageous, depending on the problem’s objective.

The literature example demonstrates the necessity of solving a larger number of
forward FEM solvers to achieve accurate results beyond the mentioned Break-Even
Point (BEP) of 802 forward solutions. Furthermore, the generalized solution obtained
from PGD proves effective in solving various inverse problems, including those with
scattering measurements or sensitivity analysis across parameter landscapes. Notably,
PGD’s ability to provide online solutions without requiring the full-order model sets
it apart from other reduced-order modeling techniques. Unlike these methods, PGD
does not rely on error estimators for point selection and interpolation, instead relying
solely on separated input and output data. In summary, the literature example and
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6. Application to a simplified model of engineered barrier system

the intrinsic characteristics of PGD reveal its advantages in terms of both efficiency
and accuracy, making it a favorable approach.

6.2.4 Possible exploitations of the generalized solution

One of the main reasons for computing repetitive solutions to such parametric prob-
lems is doing the sensitivity analysis. Sensitivity analysis is a crucial aspect of para-
metric Partial Differential Equations (PDEs). Understanding how these variations
impact the solution is essential for gaining insight into the behavior of PDEs and for
making informed decisions in numerous scientific and engineering fields.
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Figure 6.17: A generalized solution enables the investigation of the output sensitivity
of the problem by making slight changes to the values of the input parameters within
their specified range. Specifically, (A) focuses on a specific coordinate (x∗) where
temperature monitoring is required as the heat conductivity of the rock changes over
time. In (B), a three-dimensional plot illustrates the variation of temperature over
time and the heat conductivity at that particular spatial coordinate (x∗). The color
bar indicates the corresponding temperature values.

This thesis presents generalized solutions for parametric PDEs, which enables the
rapid evaluation of the sensitivity of the solution to change in the input parameters.
The solution can be analyzed in a fraction of a second by perturbing the parameters,
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6.3. Results for a geometrically parametrized problem

providing valuable insights into the system behavior. Figure 6.17 illustrates this
concept at a specific spatial coordinate (x∗), which shows how the temperature at a
given spatial position changes versus time when the rock heat conductivity is modified.
The presented solution is an excellent tool for sensitivity analysis of parametric PDEs,
enabling also efficient optimization of the input parameters to achieve desired outputs.
It can thus also be used for inverse analysis for parametric identification purposes.

6.3 Results for a geometrically parametrized
problem

The second problem is similar to the previous one, only with the exception that the
parameter is now geometric. From an application perspective, this problem could be
used after the previous one in a context in which, after a material parameter identifica-
tion, the repository would need to be optimized by solving the problem as dependent
on the geometric parameter (optimization of the distance between canisters).

For this section, the problem depends on only one extra dimension: a geometric
parameter (µL). The generalized solution is similar to Equations (5.17) and (5.18),
with the material parameter functions deleted from the separated unknowns. We
have assumed fixed values for the material properties for this problem, which are the
minimum values of the material parameters in their intervals in Table 6.1. Since there
is only one extra dimension, it is easy to calculate the error for the entire parametric
domain versus time. The definitions of errors for the temperature, pressure, and
displacement fields are as follows:

ϵT
G(t, µL) = ∥TµL

FEM(t) − Tt
PGD(µL)∥Ω

∥TµL
FEM(t)∥Ω

, (6.27)

ϵp
G(t, µL) = ∥pµL

FEM(t) − pt
PGD(µL)∥Ω

∥pµL
FEM(t)∥Ω

, (6.28)

ϵu
G(t, µL) = ∥uµL

FEM(t) − ut
PGD(µL)∥Ω

∥uµL
FEM(t)∥Ω

. (6.29)

The generalized solution to this problem has been generated with an enrichment
tolerance of ηtol = 10−5. Figure 6.18 presents the error in the whole domain of the
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Figure 6.18: The variation of temperature error (A), pressure error (B), and displace-
ment error (C) is observed across the entire domain of the geometric parameter and
time. The color bar represents the corresponding relative errors (ϵG(t, µL)).

Te
m

pe
ra

tu
re

[◦
C

]a
t

x∗

r∗ = 0.625 m

z∗
=

16
.5

m

(A) (B)

x∗

µL

t [year] T [◦C]

Figure 6.19: The parametric response of temperature with respect to the geometric
parameter (µL) and time (t) was evaluated for the buffer adjacent to the canister (B).
In some studies, the maximum temperature of the buffer has been analyzed as part
of the design criteria for a repository. Thus, this coordinate (x∗) holds significance
in determining the optimal spacing between canisters to ensure that the maximum
allowable temperature in the buffer is not exceeded (A). The color bar represents the
corresponding temperature values.

geometric parameter and time. This figure shows that the generalized solution is
accurate enough (the errors are almost less than 10−3 for all the fields.)

One crucial factor to consider in the design of a deep geological repository is the
spacing between canisters. Figure 6.19 demonstrates that obtaining a fast and feasible
generalized solution for temperature at a specific coordinate on the buffer adjacent
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6.3. Results for a geometrically parametrized problem

to the canister is possible. Such results can greatly contribute to determining the
optimal and safest spacing between canisters. This analysis can be efficiently con-
ducted as part of the overall solution package for repository design. In general, most
repository concepts have a design criterion of 100 ◦C for the maximum temperature
in the bentonite buffer [57], which serves as a basis for making decisions regarding
the most cost-effective and secure spacing between canisters. Furthermore, the cur-
rent online solution would allow for the exploration of design factors, such as partial
saturation, by extending the current work to nonlinear aspects. This would enable
the examination of how different parameters impact the time required to reach satu-
ration [150]. Additionally, by considering the partial saturation case and developing
the current linear-to-nonlinear approach, the swelling pressure could be studied as a
design factor for the bentonite material [149].
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Chapter 7

Discussion on the development of
the numerical methodology

This chapter presents a detailed discussion of some specific parameters associated
with the Proper Generalized Decomposition (PGD) methodology in the context of
its use for coupled problems inspired by deep geological repositories. This chapter
focuses on the four-parameters case and aims to investigate how the numerical param-
eters of the stopping criteria for the PGD linear solver impact both the global error of
the generalized solution as well as more specific (local) errors for every combination
of parameter values in the parametric space. Furthermore, the chapter presents an
additional result for the four-parameters case, which demonstrates that the method-
ology works properly for almost every point of the parametric and spatial spaces in
the whole domain of time.

The chapter also discusses the number of iterations required for the inner loop
of the PGD solver (fixed-point iteration). It details the reasons why this number of
iterations is kept limited to small and fixed. Additionally, the performance of the
numerical methodology is studied in relation to the use of PGD compression and
other possible features of the solver, such as the use of ∆-solver, or using such as the
solution of the last time step, as potential starters for the PGD linear solver for the
current time step. All the definitions and values for the coupled THM problems are
taken from Chapter 6. It is important to emphasize that only the four-parameters
case will be considered for the present discussion.
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7. Discussion on the development of the numerical methodology

This chapter is divided into four sections. Section 7.1 outlines the effects of
the parameters reading the stopping criteria of the PGD linear solver (for the four-
parameters case). Additionally, it explains why choosing a small fixed number of
iterations for the involved fixed point scheme makes sense. Section 7.2 discusses
the use of PGD compression and its performance. Section 7.3 presents the idea of
the ∆-solver and its effect on thermal and coupled Hydro-Mechanical (HM) aspects.
Finally, Section 7.4 discusses using the previous time step as a starting point for the
PGD linear solver.

7.1 Effects of PGD solver stopping criteria on
accuracy and efficiency

In this section, the focus is solely on the coupled HM case due to the high accuracy
achieved for the thermal aspect in all previous chapters. The maximum tempera-
ture error across the entire domain of time and the entire parametric space is only
0.0037. Therefore, particular emphasis is placed on the coupled HM aspect of the
problem. Consequently, four stopping criteria and units for the output fields have
been investigated for this methodology, and they are presented in Table 7.1.

Symbol Unit of p Unit of u ηtol itermax

Υ1 Pa m 10−5 5

Υ2 Pa m 10−5 25

Υ3 Pa m 5.5 × 10−6 10

Υ4 MPa mm 10−5 5

Table 7.1: Four different combinations of stopping criteria, including the maximum
number of fixed-point iterations (itermax) and the enrichment tolerance of PGD (ηtol),
have been selected for the PGD linear solver, along with the problem units. These
selections are presented in Table.

To study the behavior of each combination (Υ1, Υ2, Υ3, and Υ4), we will evaluate
their accuracy by examining the global error of the corresponding generalized solution
obtained as a function of time. The computation of different types of error has been
discussed in Chapter 5, Section 5.2. In this section, we will study the error as a
one-dimensional function, similar to the one in Equation (5.20).
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Figure 7.1: Global errors in each time slice for a different combination of stopping
criteria for the pore pressure (A) and the displacement (B) fields. Combinations of
Υ3 and Υ4 are seen to provide accurate results for all time slices.

Figure 7.1 demonstrates, corresponding Υ1 and Υ2, that increasing the number of
iterations in fixed-point iterations from five to 25 does not improve global accuracy.
Consequently, increasing the number of iterations in the inner loop of the PGD lin-
ear solver only results in a more computationally expensive procedure without any
benefit. Therefore, this inner loop can be relaxed with a low number of iterations
similar to five in favor of efficiency. The tradeoff of choosing a fixed number of itera-
tions for this inner loop should be investigated for each problem. Here it is observed
that choosing five or ten iterations provides accurate solutions by selecting proper
enrichment tolerance. For instance, for Υ1, with 5 iterations, the total computational
cost for the PGD offline stage is 61 days, while for Υ2, with 25 fixed iterations, the
computational cost rises to almost 185 days. On the other hand, for Υ3, a fixed num-
ber of ten iterations with a smaller enrichment tolerance results in an accurate global
error behavior versus time and an even more efficient solution, requiring almost 35
days less than Υ2 (with a computational cost of 150 days for this case).

Generally, the iterative procedure is chosen to converge to a certain tolerance by
considering a number of iterations that are not fixed but determined by a level of
accuracy to read. However, in the present case, a different approach is taken. To
apply PGD to the problem at hand, it is computationally more efficient to use a
smaller number of iterations for the inner loop of PGD. This can be understood as
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7. Discussion on the development of the numerical methodology

follows. The PGD algorithm consists of two iterative procedures: an enrichment
iteration (outer loop) and a fixed-point iteration (inner loop). Therefore, fixing the
number of iterations for the fixed-point loop in the PGD context makes sense. The
reason for this approach is that if proper convergence is not achieved in the fixed-point
loop because of the (low) fixed number of iterations, it will introduce an error in the
term. To fix this, the (outer) enrichment loop will try to correct the global residual
when determining the subsequent term. Increasing the number of modes will make
the PGD algorithm more accurate, further improving its effectiveness. Therefore, it
is more appropriate, depending on the engineering problem under investigation, to
find the best tradeoff between the enrichment tolerance and the number of fixed-
point iterations to obtain the most efficient and accurate output from the PGD linear
solver.

Figure 7.1 demonstrates that both combinations Υ3 and Υ4 yield accurate global
error results. Notably, the key difference between Υ3 and Υ4 is their offline compu-
tational costs, with Υ3 requiring almost 150 days and Υ4 requiring nearly 100 days.
Moreover, due to the nonhomogeneous units of the output fields causing the coupled
HM aspect, the PGD algorithm necessitates a stronger enrichment tolerance, similar
to Υ3. Alternatively, before using PGD, the algorithm could choose output field units
so that quantities watch similar order of magnitude to ensure accurate results similar
to Υ4. The reason for the decrease in accuracy from a global perspective when units
result in quantities with a number order of magnitude is that the convergence of only
one of the output fields will dominate the convergence check in the enrichment toler-
ance. As such, it is necessary to identify this and address this issue by either using a
smaller enrichment tolerance or preparing all separated input data in a format that
the PGD linear solver can handle, ensuring that output fields are on the same scale.
By taking either of these steps, it is possible to avoid such an effect in the convergence
check and ensure that accurate results are obtained.

The study conducted by Marcelo et al. [141] demonstrates an acceptable 5 %
error threshold, widely recognized as excellent in the application of THM models
within deep geological repositories. Their research primarily focuses on the numerical
investigation of the THM behavior in Full-scale Engineered Barrier Experiments. This
comprehensive approach combines both numerical and experimental investigations.

By considering this 5 % threshold as an indicator in this thesis, it can be observed
that if the global error is the key factor for decision-making from a designer’s per-
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7.1. Effects of PGD solver stopping criteria on accuracy and efficiency

spective, then, based on Figure 7.1, everything is satisfactory, particularly for the Υ3

and Υ4 combinations. However, if specific combinations of parameters and their rel-
ative errors are important, a more comprehensive understanding of this effect can be
gained by investigating local errors, such as those for the Υ3 combination. To perform
a thorough analysis, local errors were determined for various parameter combinations,
including the minimum, median, and maximum values for each parameter dimension.
This resulted in the selection of 81 parameter value combinations for further analysis.
The error plot presented in Figure 7.2, organized similarly to Figure 5.7 in Chapter 5,
displays the vertical axis representing the same combination definitions as Figure 5.7,
while the horizontal axis represents time. The color-coded plot in Figure 7.2 illus-
trates the computed error for each combination, using the definition presented in
Chapter 5 and Equation (5.21), for the Υ3 case.
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Figure 7.2: Errors are analyzed for pore pressure (A) and displacement (B) at various
points in the parametric space, specifically for 81 combinations of parametric values.
These combinations are selected from the minimum, maximum, and median values of
four parametric ranges. The vertical axis of the plot represents the chosen parametric
combinations, while the horizontal axis denotes time. The color bar represents the
local error (Equation (5.21)) in each selected parametric combination versus time,
which is the relative error of the PGD solution with respect to FEM for every time
and parameter combination.

Figure 7.2 illustrates the error across the entire parametric space over time for
combination Υ3 in the PGD parameters. The error analysis reveals that nearly 100 %
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of the pore pressure field and approximately 99.7 % of the displacement field have
error levels below 0.05. These findings align with the study conducted by Marcelo
et al. [141], which also indicates acceptable error levels for the displacement fields.
Notably, the color-coded error plot in Figure 7.2 indicates specific localized errors
exceeding 0.05, which comprise only approximately 0.3 % of the selected paramet-
ric space. To highlight these localized errors, specific points in spatial coordinates
with errors exceeding 0.05 are provided. For example, at the particular parametric
point µ∗ = [5 W

m ◦C , 3 × 10−14, m
s , 55600 MPa, 3.5 m] located in the backfill at spatial

coordinate (r = 0.1048 m, and, z = 23.8806 m), the vertical displacement versus time
exhibits a local error of approximately 9 % in the backfill region during year 7. Fig-
ure 7.3 depicts this information through two components: the left graph illustrates
the change in vertical displacement versus time at the specific point in the backfill,
while the figure on the right showcases the spatial distribution with the specific large
local error at the corresponding time of year 7. Although the overall accuracy is
good, there are certain areas, similar to those depicted in Figure 7.3, where accuracy
is reduced. It should be emphasized, however, that the PGD methodology is robust
and capable of correcting such errors as time progresses (in the case of Figure 7.3,
the error decreases again after year 10).
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Figure 7.3: (A) Results of the vertical displacement versus time for a fixed coordinate
in the backfill material (r = 0.1048 m and z = 23.8806 m) for a particularized point in
parametric space µ∗ = [5 W

m ◦C , 3 × 10−14 m
s , 55600 MPa, 3.5 m]. (B) Vertical displace-

ment distribution at time t = 7 year for the same particularized point in parametric
space.

From an application standpoint, the focus should be directed towards Figure 7.2,
which reveals the presence of localized errors, given that the maximum temperature
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occurs within the first 100 years. It is important to note that the region in the selected
parametric space, where the color-coded error plot exceeds the threshold of 0.05 (as
depicted in Figure 7.2), corresponds to specific localized errors, as demonstrated in
Figure 7.3. These errors exhibit a high level of localization in spatial, temporal, and
parametric dimensions.

Furthermore, Figure 7.2 indicates that the majority of localized errors occur in
rows associated with the extreme values of the parameters. If such error levels pose
challenges for the designers’ application objectives, a smaller enrichment tolerance
would be necessary. However, reducing the enrichment tolerance might adversely
impact computational efficiency for the current problem. It is worth mentioning that
the computation of these results used the current four-parameter THM model, with
the offline stage requiring approximately 150 days. Achieving higher accuracy would
demand computational resources exceeding 150 days, which is not deemed efficient.

Hence, the subsequent sections investigate the potential of PGD compression, the
∆-solver, and the previous solution as a starting point for the PGD linear solver to as-
sess whether they can enhance computational efficiency. Nevertheless, it is essential to
emphasize that the existing methodology remains accurate and efficient for problems
with three material parameters as an additional dimension, as well as for problems
involving only one geometric parameter as an additional dimension. Two examples
illustrating these scenarios were presented in Chapter 6. Section 6.2 demonstrated
the effectiveness of the methodology for a problem with three material parameters,
while Section 6.3 established its accuracy and efficiency for a problem with only one
geometric parameter.

7.2 Effect of PGD compression

To reduce the number of terms in high-dimensional functions, an effective approach
is to employ PGD compression. However, it is crucial to note that PGD compression
must not be confused with the PGD linear solver previously discussed in Chapter
3. PGD compression primarily aims to reduce the number of terms and complexity
of high-dimensional functions. This method relies on combining two key concepts:
least-squares projection and the PGD strategy. By integrating these two approaches,
it becomes possible to select a subset of significant terms from each dimension and
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reconstruct the high-dimensional function with a smaller number of terms while still
achieving a high level of accuracy in representing the overall function [134, 37, 38].

Before delving into the analysis of the potential benefit of an application of PGD
compression on the four-parameters case, an overview of the concept of PGD com-
pression in relation to the thermal aspect of the problem is given here to explain its
principle. This will serve as an introduction to the topic and help to better under-
stand the subsequent discussion. To illustrate this concept, let us consider the output
of a temperature simulation for a specific time t, which is represented by separated
matrices as follows:

Tt(x, µκ, µL) =
M t∑

m=1
Tm(x)Bm

µκ
(µκ)Bm

µL
(µL). (7.1)

To mitigate the effects of a large number of terms M t in Tt(x, µκ, µL), PGD com-
pression can be employed. It consists of the following operations:

1. Least-squares projection:

ȷ(Tcom) = ∥Tcom − Tt(x, µκ, µL)∥ (7.2)

2. The aim is to compute a separable approximation, where N ≪ M t :

Tcom =
N∑

n=1
T̂n(x)B̂n

µκ
(µκ)B̂n

µL
(µL). (7.3)

3. The primary objective of using the PGD strategy in this context is to formulate
a rank-one approximation of the minimization problem of ȷ(Tcom).

Note that the proposed method involves iterating three linear equations to reach a
stationary solution based on a stopping criterion for a single achievement term. It is
worth noting that the last procedure entirely relies on the PGD strategy, which was
previously discussed in detail in Chapter 3.

To achieve even more accurate results in the four-parameters case, it is necessary
to run the PGD linear solver with a stronger stopping criterion, as mentioned in
the previous section. Such stronger stopping criteria for the PGD linear solver are
presented in Table 7.2 as the base case for comparison with the results of PGD
compression. It should be emphasized that this concept is only studied in detail for
the coupled HM aspect of the four-parameter case, as the thermal aspect is already
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7.2. Effect of PGD compression

accurate and efficient enough. By implementing the stopping criteria mentioned in
Table 7.2, the PGD has been run for almost 190 days, and it only provides results
for two years out of 1000 years of simulation (73 time steps out of 497 time steps).
While the results are accurate for the entire domain of time, spatial and parametric
space, they are not efficient.

Symbol Amount Definition

ηtol 10−6 Modes Tolerance
Mmax 2000 Maximum number of Modes
ϵtol 10−6 Tolerance for Fixed-point iteration

itermax 15 Maximum number of iteration for Fixed-point iteration

Table 7.2: Stopping criteria for PGD linear solver as based case.

The results of the base case will now be studied to investigate whether PGD
compression can increase the efficiency of the problem for the first half of a year.
To study this four-parameters case with PGD compression, the input data that was
previously presented (Chapter 4) in a discretized and separated format for the PGD
linear solver will be utilized. This input data includes the following categories:

Ki
G(µ)Ui+1(µ) = Fi

G(µ). (7.4)

This equation has already been discussed in detail in Chapter 4 (Equation (4.11)).
To remind the reader, Ui+1(µ) comprises the separated forms of pore pressure and
displacement as unknowns for the current time step. Before applying the Dirichlet
boundary conditions, we will discuss Fi

G(µ), which is repeated here as a reminder:

Fi
G(µ) = Fi∗(µ) + Ki ∗

G (µ)Ui(µ) + GT(µ)T(µ). (7.5)

The number of modes is higher for the smaller enrichment tolerance. For instance,
in this case, for the second time step (0.03 year), there are 445 modes. To find the
unknown U3 while having U2 as 445 separated terms and multiplying it with Ki ∗

G (µ),
the total number of terms for the right-hand side will be 10, 832. The large number of
terms produced by smaller enrichment tolerances causes the PGD linear solver to run
slower. Therefore, PGD compression has been studied and applied to the right-hand
side using different criteria presented in Table 7.3.

The reason for choosing a large maximum iteration in PGD compression is to
reduce the number of modes, which would enable the PGD compression to reach the
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7. Discussion on the development of the numerical methodology

tolerance using the fixed-point iteration process. The PGD compression is applied
separately for each part of the field, meaning that the right-hand side related to the
pore water pressure is compressed separately, followed by the right-hand side related
to the displacement, and then all the parts are joined together as a large, separated
right-hand side force vector. By implementing this method with ηcomp

tol = 10−3 and
ηcomp

tol = 10−4, the right-hand side for the third time step was reduced from 10832 to
19 and 10832 to 38, respectively. However, the PGD compression itself has an offline
computational cost, which, for each case, is 27 and 36 minutes, respectively, for this
time step.

Symbol Amount Definition

ηcomp
tol 10−3,10−4 Modes Tolerance

M comp
max 5000 Maximum number of Modes

ϵcomp
tol 10−6 Tolerance for Fixed-point iteration

itercomp
max 200 Maximum number of iteration for Fixed-point iteration

Table 7.3: Stopping criteria for PGD compression.

Firstly, the problem needs to maintain its accuracy, and secondly, it needs to
be significantly more efficient than the base case. Thus, to evaluate the effect of the
enrichment tolerances of the PGD compression process on the accuracy, the maximum
error in the output fields will be presented as a function of time for the first half year.
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Figure 7.4: The maximum relative error of pore pressure (A) and displacement (B)
in the first time steps is compared to the base case, with compression tolerances of
ηcomp

tol = 10−3 and ηcomp
tol = 10−4.
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Figure 7.4 illustrates that the accuracy of the base case decreases when PGD
compression is applied, especially when ηcomp

tol = 10−3, which shows significant inac-
curacies. Although the results for the ηcomp

tol = 10−4 seem fine, a closer analysis of the
problem reveals that the error in the "shock" conditions (the most transient part of
the problem) increases to more than two percent, which is not desirable. Such an er-
ror will be inherited by the next generation of computations, making the generalized
solution of the next results inaccurate. Therefore, it is crucial to address this issue
to ensure the accuracy of future computations. It is important to keep the maximum
error consistency, at least during the shock procedure. The total computational cost
for the computed time steps for the base case is almost 6.8 days. For ηcomp

tol = 10−4, the
total computational cost is 6.5 days. It should be emphasized through that the total
computational cost of the offline stage for the PGD linear solver actually decreases.
However, the offline computational cost of PGD compression is also expensive. For
instance, for ηcomp

tol = 10−4, the computational cost of PGD compression is almost one
and a half days, and the computational cost of the PGD linear solver is 5 days. In
total, the overall cost is thus not significantly improved for this case study.

To solve the problem, Equation (7.5) serves as the right-hand side, which should be
provided as separated input data. During the solution process, the solution from the
previous time step propagates to the right-hand side due to the separated functions
Ui , leading to the generation of a large, separated, high-dimensional tensor. However,
as previously seen with this problem, compressing the entire right-hand side is not
an efficient solution. To improve efficiency, only the preceding Ui is compressed and
subsequently used for the right-hand side. This approach is examined to evaluate its
efficacy in addressing the issue. The criterion used for PGD compression is similar
to that in Table 7.3.

In Figure 7.5, it is observed that using ηcomp
tol = 10−3 is not accurate at all, while

ηcomp
tol = 10−4 accumulates errors at the start of the "shock" (the most transient part

of the solution). It seems that the error will increase as the solution progresses. The
total computational cost for ηcomp

tol = 10−4 is 7.5 days, while for the base case, it is
9 days. Although this approach is a bit faster, the observation shows that when the
error accumulates significantly during the transient phase, it affects the rest of the
problem.
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Figure 7.5: Maximum relative error on pore pressure (A) and displacement (B) in
the first time steps for different cases (base case, ηcomp

tol = 10−3, and ηcomp
tol = 10−4).

In conclusion, after testing various configurations, we were unable to identify a
scenario in which the compressed versions were faster, more efficient, or more accurate
than the uncompressed base case.

7.3 Use of a ∆-solver methodology

In this thesis, the thermal aspect of the THM problem has been tackled using the
∆T -solver for PGD linear solver in all cases. This choice is explained in detail in
this section, and before discussing numerical considerations, the ∆T -solver concept
is briefly presented and compared to the conventional T -solver. It will also be noted
that this technique has been implemented for the coupled HM case, but it did not
improve its efficiency; rather, it is only beneficial for the thermal part.

To explain the concept of ∆T -solver, the parametric thermal equation of the
problem inspired by the deep geological repository will be discussed, taking into
consideration both the heat conductivity of the rock and the geometric parameter as
additional dimensions. The PGD linear solver in a conventional way, also denoted as
the T -solver, solves the following equation:

Ki
GT(x, µκ, µL)Ti+1(x, µκ, µL) = ∆t if i

q(x) + Ki ∗
GT(x, µκ, µL)Ti(x, µκ, µL). (7.6)

This means that by providing the separated input data of Equation (7.6) for the
PGD linear solver, the collection of generalized solutions obtained by the T -solver
for each time step is considered the solution. Discussion concerning the separated
input data has been given in Chapter 4.
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7.3. Use of a ∆-solver methodology

Now, the ∆T -solver is defined using the following equation:

Ti+1(x, µκ, µL) = ∆Ti(x, µκ, µL) + Ti(x, µκ, µL). (7.7)

By inserting Equation (7.7) into Equation (7.6), the ∆T -solver is defined as follows:

Ki
GT(x, µκ, µL)∆Ti(x, µκ, µL) =∆t if i

q(x)+

Ki ∗
GT(x, µκ, µL)Ti(x, µκ, µL)−

Ki
GT(x, µκ, µL)Ti(x, µκ, µL)

(7.8)

The separated input data for the ∆T -solver are obtained from Equation (7.8). The
PGD linear solver solution for Equation (7.8) produces a separated ∆Ti(x, µκ, µL).
To obtain the current temperature (Ti+1) based on Equation (7.7), the solution of
Equation (7.8) is summed with the previous time step temperature solution. As
the number of terms accumulates and increases, PGD compression is necessary to
decrease the number of terms for each time step. Since this technique works accurately
and efficiently for the thermal aspect, it is more efficient to apply it to the thermal
part and then move it to the right-hand side.
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Figure 7.6: Number of modes required for the final output of the generalized tem-
perature solution for each time slice. The results demonstrate that the ∆T -solver
requires only half the number of modes needed for the conventional T -solver.

Figure 7.6 presents the reason for the superiority of the ∆T -solver. Both cases
have the same global error accuracy, less than 10−4. However, for the ∆T -solver,
the final generalized temperature solution includes half the number of modes for each
time step compared to the conventional T -solver. This is advantageous because the
generalized temperature solution will move to the right-hand side for the coupled HM
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7. Discussion on the development of the numerical methodology

case and will be multiplied by some separated tensor. Therefore, having fewer modes
for the generalized temperature solution and the same accuracy makes it logical to
use this technique as a solution for the thermal aspect.

For the case of the coupled HM equations, the ∆-solver was tried, which resulted
in a rapid increase in the number of modes. It took almost five days to solve a
single time step. It is challenging to capture the first shock in the transient case
for the coupled HM aspects, and a more robust method is required to deal with it
effectively. However, even for the time step, which is equivalent to 2 year, the ∆-solver
implemented and did not show any efficiency concerning the coupled HM case.

7.4 Previous time step as starting point for PGD
linear solver

The PGD toolbox provides a valuable capability to restart a solution by utilizing a
separated tensor as an initial point. In the context of the coupled HM aspect, the
separated output data in time has been employed as a starting point for the PGD
linear solver. However, utilizing this initial point proves to be inefficient during the
early time steps due to the presence of abrupt changes in the transient part, commonly
referred to as "shock". Moreover, utilizing such an initial point may even lead to an
increase in the number of modes required to accurately represent the problem.

Number of modes

σ σ
0

Number of modes

σ σ
0

(A) (B)
Figure 7.7: (A) Mode amplitude decrease without an initial point. (B) Use of the
previous time step.
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During a transient "shock", the previous time steps were employed, as shown in
Figure 7.7. At the third time step, we utilized the second time step as the initial
point. It is evident that the solution starts from zero and experiences multiplication
by the number of modes. However, this approach proves to be ineffective, resulting
in the same computational cost. The substantial increase in the number of modes
significantly impacts the PGD calculation as it progresses to the subsequent time step
on the right-hand side. This effect stems from the multiplication of terms between
the known fields and separated stiffness matrices.

To illustrate this point, Figure 7.7 showcases two different cases. The left plot
demonstrates the decrease in enrichment tolerance versus the number of modes for
the third time step (0.05 year) without utilizing any information from the previous
time step (no initial point). Conversely, the right plot represents the utilization of
information from the previous time step (i.e., the solution of time step number two
(0.03 year)) as an initial point for time step number three. This comparison highlights
the inefficiency of employing the previous time step as an initial point, leading to an
increase in computational cost by at least two times for the initial part of the problem.
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Figure 7.8: After 63-time steps, which is equivalent to 1.8 year, the previous time step
was utilized as the initial point for the current time step. As shown in (A), without
using the previous time steps, the number of modes that need to be computed is
much larger than the number with the usage of previous time steps (B).

Figure 7.8 presents the relationship between amplitude and the number of modes
after 63 time steps, equivalent to an elapsed time of 1.8 years. Achieving high accuracy
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requires a fine enrichment tolerance of 10−6 for the four parameters, resulting in a
substantial computational time. The results extend up to time step 63, utilizing
information from the previous time steps, particularly time step 62. Notably, Figure
7.8-B demonstrates that adding just a few terms can achieve the desired accuracy,
reducing computational time to approximately four days. However, incorporating
the previous solution as an initial point after a shock introduces the accumulation
of modes, necessitating PGD compression. Unfortunately, the current functionality
of PGD compression proves to be suboptimal and inefficient, as discussed in Section
7.2, with no significant improvements in efficiency observed when applied to the
accumulated results.

The main reason for the presence of jumps in Figures 7.7 and 7.8 is that, in the
first case, the results undergo abrupt changes, and the initial values are not suitable
for the PGD method. Consequently, the solution starts from zero and accumulates
all the initial guesses. In the second case, although it is still in a transient "shock"
process, it shows a slightly improved behavior compared to the first figure, resulting
in a smaller jump.
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Chapter 8

Conclusions and future work

The Proper Generalized Decomposition (PGD) is a mathematical framework belong-
ing to the class of Model Order Reduction (MOR) techniques. Despite its proven
efficiency, there is a research gap in exploring its application to transient coupled
Thermo-Hydro-Mechanical (THM) problems in porous media. This thesis seeks to
address this gap by investigating the application of PGD in THM problems, with a
focus on providing real-time solutions. Drawing inspiration from the concept of deep
geological repositories, this work studies the potential of the PGD methodology in
solving THM problems in a simplified deep geological repository. In this chapter,
a summary of the contributions made throughout this work will be presented, fol-
lowed by a summary of the conclusions and recommendations, all in bullet points.
Additionally, future work related to this topic will be discussed at the end.

8.1 Summary of the contributions

The methodology for defining separated operators required for THM problems was
thoroughly investigated and applied as input for the PGD methodology. The effec-
tiveness of this concept was confirmed through a benchmark problem. The PGD
methodology was then applied to a simplified model of an engineered barrier system,
followed by an investigation of the impact of various parameters on the quality of
results. This investigation explored the application of PGD to problems involving
three material parameters and one geometric parameter, which were considered extra
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dimensions in this work. The main contributions of this work can be classified into
three principal aspects.

8.1.1 Separable operators and time integration of THM for
PGD

As discussed in this thesis, the use of separated representations is the fundamental
concept behind the PGD technique. One of the significant contributions of this work,
presented in Chapter 4, is the introduction of separable operators for THM problems.
This approach is novel in that it considers the transient and coupled nature of the
THM problem and parametrizes it based on three material parameters, namely heat
and hydraulic conductivity, elastic modulus, and one geometrical parameter, which
represents a variation of the spatial domain size in the radial direction.

This thesis presents the separated exact representations of high-dimensional ten-
sors and vectors for the three material parameters in THM. Furthermore, it provides
an explanation of how the geometrical parameter has been dealt with by demon-
strating the use of the Jacobian and the approximated representation through an ap-
proximation series as defined in Equation (4.34). All the detailed information about
the separated tensors and vectors for problems involving the three material param-
eters only, the geometrical parameter only, and all four parameters can be found in
Appendix A. This comprehensive analysis and demonstration of the separated repre-
sentations will contribute significantly to the parametrization of THM problems and
their solutions.

In Chapter 4, the approach for achieving the time integration within the PGD
methodology is presented. Rather than considering time as an extra dimension, the
PGD problem is solved at each time step. The systematic procedure of seeking the
generalized solution of parametric THM is illustrated in Figure 4.2.

8.1.2 The validation of methodology

In Chapter 5, validation has been conducted for applying the PGD methodology to
the transient THM problem. To validate this methodology, an analytical solution
from the work of Selvadurai and Suvorov [129] was used as a benchmark. In this
benchmark, all four parameters were considered as extra dimensions, and the solution
was stored at each time step in two separated tensors, one for the thermal problem
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and one for the hydro-mechanical problem, taking benefit from the one-way coupling
in the problem. Although the solution was stored as separate tensors, it can be
conceptually expressed as a 6th-order tensor (space + time + 4 parameters).

To validate the results, three quantifications of errors were defined. The first
concept was the global error, defined in Equation (5.19), which involved local errors
integrating over the complete 6-dimensional hypercube, making it computationally
demanding. An approximation of the global error was presented to overcome this
challenge. The second error assessed for validation was the integration of error only
over spatial and parametric space, with the error in time being a one-dimensional
function, as defined in Equation (5.20). Finally, the third error was the integration of
error over space only, as defined in Equation (5.21). This error allowed for observing
the behavior of the methodology in the entire parametric space and time interval.

The results presented show that the separable operators and time integration
applied for the methodology are working correctly. The validation confirms the reli-
ability and accuracy of the PGD methodology, demonstrating its applicability.

8.1.3 Exploring PGD on a simplified model of engineered
barrier system

In Chapter 6, two problems were examined through the presentation of a simplified
model of an engineered barrier system. The first problem considered three material
parameters, heat and hydraulic conductivity of the rock and the elastic modulus of the
rock, as extra dimensions. The second problem considered only a geometric param-
eter, allowing for varying the distance between two canisters as an extra dimension.
The accuracy and efficiency of these problems were evaluated and presented.

The results showed that the generalized solutions to these problems were accurate,
and a discussion about the efficiency of the PGD implementation was initiated by
presenting the break-even point as from which PGD becomes beneficial for repeated
solutions of parametric problems. The discussion also explored the potential applica-
tions of the generalized solution, which enables rapid evaluations (real-time solution),
making it possible for users to perform tasks systematically in the frame of inverse
identification procedures.

In Chapter 7, a discussion was provided to assess the effect of different PGD
methodology parameters. Four different stopping criteria for the PGD methodology
have been studied and investigated. It is presented that for the four-parameters case,
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if the accuracy in the whole parametric, spatial, and time spaces are required (small
local errors), stronger enrichment tolerance is necessary. However, it is also shown
that the code can be modified based on the choice of a proper system of units enforcing
that the output fields of the PGD linear solver are scaled in a way that their value
has the same or close orders of magnitude. These studies arise from the fact that
the problem is coupled, and for the PGD linear solver to deal with the difference in
the order of magnitude of the output, it should have smaller enrichment tolerances
or similar or close orders of magnitude for the considered quantities.

It was shown that by considering ηtol = 5.5×10−6 and a fixed number of iterations
in the fixed point iteration process, which is 10 for fixed-point iteration, an accurate
result is obtained. This result shows that if the designer is looking for global error,
this problem for the four-parameter case is very accurate. However, some spots in the
output are detected where the errors are localized in some spatial, time, or parametric
space. For this reason, to have a more comprehensive perspective, color-coded error
map plots were presented in Figure 7.2, based on the definition of the error in Chapter
5, in Equation 5.21.

These plots show that the pressure is accurate in the whole domain of time and
parametric space. However, in 95 percent of the whole parametric space and time
interval, the displacement is very accurate, while for 5 percent of this space, the error
level exceeds 2 percent. As discussed previously, this problem may be considered
accurate because it is very localized depending on the envisioned application.

In Chapter 7, various discussions concerning the four-parameter case have been
presented to boost efficiency. However, after testing various configurations for PGD
compression and also using information from the previous time steps in the time
integration, it has been observed that currently, they do not help solving the problem
faster and provide more accurate results efficiently.

Nevertheless, the ∆-solver technique has been found to be beneficial for the ther-
mal part of the problem, even if not suitable for the hydro-mechanical part.

8.2 Conclusions and recommendations

This section serves as a reflective overview, offering insights into the significant find-
ings and experiences acquired during this research endeavor. It encompasses both
achievements and failures encountered along the way, providing lessons for future
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prospects. Additionally, recommendations for further exploration and potential av-
enues of improvement will be discussed:

• In the context of multiphysical problems like coupled THM, it is advisable to
use units that ensure the output fields are of similar orders of magnitude. This
allows PGD to determine the appropriate enrichment tolerance for all the fields
collectively, resulting in a more efficient and accurate process.

• In the context of the PGD technique, the application of which is problem-
dependent, it is recommended to explore adjustments in tolerance settings,
including the PGD enrichment tolerance and the fixed number of fixed-point
iterations. This research revealed that reducing the fixed number of fixed-point
iterations from 200 to 5 maintained the same level of accuracy while significantly
improving efficiency and reducing computation time from one month to three
days.

• The study of the four-parameter case in a simplified engineered barrier system
highlighted the increased complexity introduced by the inclusion of intrusive
parameters, such as the geometric parameter. It became evident that addressing
this parameter was not as straightforward as in other cases, posing additional
challenges in the analysis.

• During the research, it was observed that adding an extra dimension to the
problem significantly increased the computational cost. On average, for one
parameter, the computation time was approximately half day to 3 days, for
two parameters (different parameter combinations) it extended to one week,
for three parameters (different parameter combinations) it ranged from 12 to
30 days, and for the four-parameter case, obtaining accurate results from a
global perspective required at least 100 days. This demonstrates the substantial
impact of increasing dimensionality on the efficiency of the PGD technique.

8.3 Future work

In future work, it is recommended to further investigate the main assumptions pre-
sented in this thesis as a reference for analyzing THM problems in the context of
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deep geological repositories. The current study encompasses several assumptions, in-
cluding full saturation, consideration of quasi-static processes, and assuming thermo-
poroelastic behavior. Furthermore, the model assumes axisymmetry and disregards
excavation effects, assuming intact rock.

To begin, building upon the current study, it is advisable to progress from linear to
nonlinear analysis, incorporating material nonlinearity and partial saturation. Sub-
sequently, exploring the implementation of excavation concepts would be valuable.
However, to develop a model that better represents a deep geological repository, more
complex concepts and investigations are necessary.

Additionally, based on recommendations from the literature review, utilizing bilin-
ear quadrilateral elements for temperature and pressure fields, and quadratic quadri-
lateral elements for displacement, would ensure compliance with inf-sup conditions.
Therefore, modifying the current work to incorporate these aspects is also recom-
mended.

In summary, the following future works are suggested as the next steps for further
research and outlooks:

• The first step towards the modification is to improve the meshing by transi-
tioning from bilinear quadrilateral elements to quadratic quadrilateral elements
for the mechanical field. This transition ensures that the inf-sup conditions are
satisfied for all the problems where this concept is applied.

• The deep geological repository problem is phased and involves an excavation
before the stage of HLW. Obviously, to consider a more realistic scenario, the
effect of the excavation damage zone should be considered. Therefore, studying
the excavation damage zone can be viewed as another outlook to improve the
reference of the analysis.

• To extend the applicability of the analysis to repository applications, study-
ing the problem in a nonlinear format by incorporating partial saturation and
material nonlinearity, including accounting for the swelling aspect of bentonite,
would be necessary.

• The next step is to extend the spatial dimensionality from 2D axisymmetric to
3D, which brings us closer to reality. By considering the real geometry of the
backfill, we can capture the intricacies and complexities of the current system.
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This enhancement allows for a more accurate representation of the physical
processes and interactions occurring within the system.
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Appendix A

Separated operators for PGD

It is important to note that the separated tensors and vectors discussed in this ap-
pendix pertain to the more general case presented in the thesis. The thesis focuses
on a simplified engineered barrier system, with its corresponding equations, as well
as the separated tensors and vectors, briefly introduced in Chapter 4. Three specific
problems related to this system have been analyzed and discussed in Chapter 6 and
Chapter 7. The first problem involves three material parameters serving as external
dimensions: heat conductivity (µκ), hydraulic conductivity (µK ), and elastic modulus
(µE). The second problem considers a single geometric parameter as an extra dimen-
sion, which is the spacing between canisters. Finally, the third problem involves all
four parameters as additional dimensions. This appendix provides a detailed presen-
tation of the separated tensors and vectors used as input data for the encapsulated
PGD in three sections: Section A.1 presents the details for the three material pa-
rameters only, Section A.2 focuses on the geometric parameter only, and Section A.3
covers the separated tensors and vectors for all four parameters as extra dimensions.

A.1 Material parameters

In Chapter 4, Subsection 4.3.1, the separable operators for material parameters are
briefly introduced. The details of Equations (4.15) to 4.18 are provided here. It is
important to emphasize that in Equations (4.15) to (4.17), the superscript i represents
the time slice i. For example, for time slice i = 571, the separated tensor for the
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global stiffness matrix, denoted as Equation (4.15), is as follows:

K571
G (µK , µE) = K571

G
0 + K571

G
1

µK + K571
G

2
µE + K571

G
3 1

µE
.

Therefore, the global stiffness matrix for time slice 571, denoted as K571
G (µK , µE), is

separated into four terms. Now, in a more general aspect which also is presented in
Equation (4.15) defines it as follows:

Ki
G(µK , µE) = Ki

G
0 + Ki

G
1

µK + Ki
G

2
µE + Ki

G
3 1

µE
,

the definition of the components are as follows:

Ki
G

0 =
M0

p + θ∆t i K0
p Gpd

θGdp θK0
d

 , (A.1)

Ki
G

1 =
θ∆t i K1

p 0
0 0

 , (A.2)

Ki
G

2 =
0 0
0 θK1

d

 , (A.3)

Ki
G

3 =
M1

p 0
0 0

 . (A.4)

Just a reminder, in all the equations mentioned above and throughout the thesis,
it should be noted that ∆t i represents the time step for time slice i. For Ki ∗

G in
Equation (4.16), it exhibits similarity to Equations (A.1) to (A.4). However, for
pedagogical purposes, let us present it here once more. Instead of using thera in
Equations (A.1) to (A.4), we should employ (θ − 1). Therefore, the separated com-
ponents are as follows:

Ki ∗
G

0 =
M0

p + (θ − 1)∆t i K0
p Gpd

(θ − 1)Gdp (θ − 1)K0
d

 , (A.5)

Ki ∗
G

1 =
(θ − 1)∆t i K1

p 0
0 0

 , (A.6)

Ki ∗
G

2 =
0 0
0 (θ − 1)K1

d

 , (A.7)
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Ki ∗
G

3 =
M1

p 0
0 0

 . (A.8)

The components of the separated vectors for Equation (4.17) are as follows:

Fi∗
0 =

∆t i f0
bf

fd

 , (A.9)

Fi∗
1 =

∆t i f1
bf

0

 . (A.10)

Finally, the components of the separated tensor corresponding to Equation (4.18)
are as follows:

G0
T =

 MpT −MpT

−θG0
dT (θ − 1)G0

dT

 , (A.11)

G1
T =

 0 0
−θG1

dT (θ − 1)G1
dT

 . (A.12)

In Equations (A.1) to (A.12), the definitions of MpT, Gpd, Gdp, and fd are similar
to the ones in Chapter 2, which are Equations (2.24), (2.27), (2.30), and (2.33),
respectively. The remaining components are defined as follows:

K0
p =

∫
Ω\ΩR

B⊤
p

K
ρf g

Bp rdΩ, (A.13)

K1
p =

∫
ΩR

B⊤
p

1
ρf g

Bp rdΩ, (A.14)

K0
d =

∫
Ω\ΩR

B⊤
d C(E , ν)Bd rdΩ, (A.15)

K1
d =

∫
ΩR

B⊤
d C(1, ν)Bd rdΩ, (A.16)

M0
p =

∫
Ω\ΩR

N⊤
p

(α − ϕ)(1 − α)(1 − 2ν)
E Np rdΩ +

∫
Ω

N⊤
p

ϕ

Kf
Np rdΩ, (A.17)

M1
p =

∫
ΩR

N⊤
p (α − ϕ)(1 − α)(1 − 2ν)Np rdΩ, (A.18)

f0
bf

=
∫

Ω\ΩR
N⊤

p
K
ρf g

ρf g rdΩ, (A.19)

f1
bf

=
∫

ΩR
N⊤

p
1

ρf g
ρf g rdΩ, (A.20)
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G0
dT =

∫
Ω\ΩR

N⊤
d

E
1 − 2ν

αsBT rdΩ, (A.21)

G1
dT =

∫
ΩR

N⊤
d

1
1 − 2ν

αsBT rdΩ. (A.22)

In the equations, Ω = ΩR∪ΩB∪ΩBf∪ΩC, the terms ΩR, ΩB, ΩBf , and ΩC represent the
spatial domains of the rock, buffer, backfill, and canister, respectively. Additionally,
Ω \ ΩR is defined as ΩB ∪ ΩBf ∪ ΩC, indicating the entire spatial domain except for
the rock.

A.2 Geometric parameter

This section presents only the components of the separated tensors and vectors that
correspond to the geometric parameter as the sole additional dimension. These com-
ponents are derived from Chapter 4, specifically in Subsection 4.3.2. For the geomet-
ric parameter, the domain is divided into two regions: Ω1, which remains fixed, and
Ω2, which varies based on the geometric parameter. This concept is illustrated in
Figure 4.1.

The separated tensor for the thermal part, denoted as KT, is explained in detail
in Chapter 4. The separation of KT is presented in Equation (4.26). As for the
remaining components of the thermal part, their definitions are as follows:

M0
T =

∫
Ω1

N⊤
T((1 − ϕ)ρscs + ϕρf cf )NTRdΩ, (A.23)

M1
T =

∫
Ω2

N⊤
T((1 − ϕ)ρscs + ϕρf cf )NTRdΩ, (A.24)

M2
T =

∫
Ω2

N⊤
T((1 − ϕ)ρscs + ϕρf cf )NTdΩ. (A.25)

The Hydro-Mechanical (HM) part comprises various components of tensors and
vectors, which are presented in Chapter 4 in Equation (4.7). These components are
defined in terms of separated tensors and vectors in Subsection 4.3.2. The components
of the separated tensors and vectors are as follows, as described in Equations (4.28)
to (4.33) and Equations (4.37) to (4.39):

M0
pT =

∫
Ω1

N⊤
p (3ϕαf + 3(α − ϕ)αs)NTRdΩ, (A.26)
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M1
pT =

∫
Ω2

N⊤
pT(3ϕαf + 3(α − ϕ)αs)NTRdΩ, (A.27)

M2
pT =

∫
Ω2

N⊤
pT(3ϕαf + 3(α − ϕ)αs)NTdΩ, (A.28)

M0
p =

∫
Ω1

N⊤
p ( ϕ

Kf
+ α − ϕ

Ks
)NpRdΩ, (A.29)

M1
p =

∫
Ω2

N⊤
pT( ϕ

Kf
+ α − ϕ

Ks
)NpRdΩ, (A.30)

M2
p =

∫
Ω2

N⊤
p ( ϕ

Kf
+ α − ϕ

Ks
)NpdΩ, (A.31)

K0
p =

∫
Ω1

B⊤
p KBpRdΩ +

∫
Ω2

B⊤
p K

1 0
0 0

 BpRdΩ, (A.32)

K1
p =

∫
Ω2

B⊤
p K

0 0
0 1

 BpRdΩ, (A.33)

K2
p =

∫
Ω2

B⊤
p K

1 0
0 0

 BpdΩ, (A.34)

K3
p =

∫
Ω2

B⊤
p K

0 0
0 1

 BpdΩ, (A.35)

G0
dT =

∫
Ω1

N⊤
d 3KDαsBTRdΩ, (A.36)

G1
dT =

∫
Ω2

N⊤
d 3KDαs

1 0
0 0

 BTRdΩ, (A.37)

G2
dT =

∫
Ω2

N⊤
d 3KDαs

0 0
0 1

 BTRdΩ, (A.38)
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G3
dT =

∫
Ω

N⊤
d 3KDαs

1 0
0 0

 BTdΩ, (A.39)

G4
dT =

∫
Ω

N⊤
d 3KDαs

0 0
0 1

 BTdΩ, (A.40)

G0
dp =

∫
Ω1

N⊤
d αBpRdΩ, (A.41)

G1
dp =

∫
Ω2

N⊤
d α

1 0
0 0

 BpRdΩ, (A.42)

G2
dp =

∫
Ω2

N⊤
d α

0 0
0 1

 BpRdΩ, (A.43)

G3
dp =

∫
Ω2

N⊤
d α

1 0
0 0

 BpdΩ, (A.44)

G4
dp =

∫
Ω2

N⊤
d α

0 0
0 1

 BpdΩ, (A.45)

G0
pd =

∫
Ω1

N⊤
p αBv RdΩ, (A.46)

G1
pd =

∫
Ω2

N⊤
p

[
α 0

] ∂Nd

∂R RdΩ +
∫

Ω2
N⊤

p

[
α 0

]
NddΩ, (A.47)

G2
pd =

∫
Ω2

N⊤
p

[
α 0

] ∂Nd

∂R dΩ, (A.48)

G3
pd =

∫
Ω2

N⊤
p

[
0 α

] ∂Nd

∂Z RdΩ, (A.49)

G4
pd =

∫
Ω2

N⊤
p

[
0 α

] ∂Nd

∂Z dΩ, (A.50)
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K0
d =

∫
Ω1

B⊤
d C0(E , ν)BdRdΩ +

∫
Ω2

∂N⊤
d

∂R C1(E , ν)∂Nd

∂R RdΩ+∫
Ω2

∂N⊤
d

∂R C3(E , ν)NddΩ +
∫

Ω2
N⊤

d C7(E , ν)∂Nd

∂R dΩ,

(A.51)

K1
d =

∫
Ω2

∂N⊤
d

∂R C2(E , ν)∂Nd

∂Z RdΩ +
∫

Ω2

∂N⊤
d

∂Z C4(E , ν)∂Nd

∂R RdΩ+∫
Ω2

∂N⊤
d

∂Z C6(E , ν)NddΩ +
∫

Ω2
N⊤

d C8(E , ν)∂Nd

∂R dΩ+∫
Ω2

N⊤
d C9(E , ν)Nd

1
RdΩ,

(A.52)

K2
d =

∫
Ω2

∂N⊤
d

∂R C2(E , ν)∂Nd

∂z dΩ +
∫

Ω2

∂N⊤
d

∂Z C4(E , ν)∂Nd

∂R dΩ, (A.53)

K3
d =

∫
Ω2

∂N⊤
d

∂Z C5(E , ν)∂Nd

∂Z RdΩ, (A.54)

K4
d =

∫
Ω2

∂N⊤
d

∂Z C5(E , ν)∂Nd

∂Z dΩ, (A.55)

K5
d =

∫
Ω2

∂N⊤
d

∂R C1(E , ν)∂Nd

∂R dΩ, (A.56)

K6+n
d =

∫
Ω2

N⊤
d C9(E , ν)Nd(−1)n+1 (R − b1)n+1

Rn+2 dΩ. (A.57)

In Equations (A.51) to (A.57), the terms C0(E , ν), C1(E , ν), C2(E , ν), C3(E , ν),
C4(E , ν), C5(E , ν), C6(E , ν), C7(E , ν), C8(E , ν), and C9(E , ν) are defined as follows:

C0(E , ν) = E
(1 + ν)(1 − 2ν)



1 − ν ν ν 0

ν 1 − ν ν 0

ν ν 1 − ν 0

0 0 0 1
2(1 − 2ν)


, (A.58)

C1(E , ν) = E
(1 + ν)(1 − 2ν)

1 − ν 0
0 1

2(1 − 2ν)

 , (A.59)
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C2(E , ν) = E
(1 + ν)(1 − 2ν)

 0 ν
1
2(1 − 2ν) 0

 , (A.60)

C3(E , ν) = E
(1 + ν)(1 − 2ν)

ν 0
0 0

 , (A.61)

C4(E , ν) = E
(1 + ν)(1 − 2ν)

0 1
2(1 − 2ν)

ν 0

 , (A.62)

C5(E , ν) = E
(1 + ν)(1 − 2ν)

1
2(1 − 2ν) 0

0 1 − ν

 , (A.63)

C6(E , ν) = E
(1 + ν)(1 − 2ν)

0 0
ν 0

 , (A.64)

C7(E , ν) = E
(1 + ν)(1 − 2ν)

ν 0
0 0

 , (A.65)

C8(E , ν) = E
(1 + ν)(1 − 2ν)

0 ν

0 0

 , (A.66)

C9(E , ν) = E
(1 + ν)(1 − 2ν)

1 − ν 0
0 0

 . (A.67)

Finally, the components of the separated vectors, which are presented in Chapter 4,
specifically in Subsection 4.3.2, and described in Equations (4.38) and (4.39), are as
follows:

f0
bf

=
∫

Ω1
B⊤

p
K
ρf g

ρf g RdΩ, (A.68)

f1
bf

=
∫

Ω2
B⊤

p
K
ρf g

ρf g

1 0
0 0

 RdΩ, (A.69)
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f2
bf

=
∫

Ω2
B⊤

p
K
ρf g

ρf g

0 0
0 1

 RdΩ, (A.70)

f3
bf

=
∫

Ω2
R

B⊤
p

K
ρf g

ρf g

1 0
0 0

 dΩ, (A.71)

f4
bf

=
∫

Ω2
B⊤

p
K
ρf g

ρf g

0 0
0 1

 dΩ, (A.72)

f0
d =

∫
Ω1

N⊤
d b RdΩ +

∫
Γt1

N⊤
d σ RdΓ, (A.73)

f1
d =

∫
Ω2

N⊤
d b RdΩ +

∫
Γt2

N⊤
d σ RdΓ, (A.74)

f2
d =

∫
Ω2

N⊤
d b dΩ +

∫
Γt2

N⊤
d σ dΓ. (A.75)

In Equations (A.73) to (A.75), Γt1 represents the boundary condition on the top
surface corresponding to Ω1, while Γt2 represents the boundary condition on the top
surface corresponding to Ω2.

A.3 The four-parameter case

In this section, we will present matrices, tensors, and vectors, taking into account
four parameters: three material parameters and one geometric parameter. These
parameters act as external dimensions for the simplified engineered barrier system
case. First, we will discuss the separated tensor of global terms related to the thermal
aspect, as presented in Equation (4.10) (Chapter 4 in Section 4.2). The separated
tensor representations for these terms are as follows:

Ki
GT(µκ, µL) =Ki

GT
0 + Ki

GT
1

µκ + Ki
GT

2
γ1

2(µL) + Ki
GT

3
γ1(µL)γ2(µL)+

Ki
GT

4
µκγ1

2(µL) + Ki
GT

5
µκ

γ2(µL)
γ1(µL) + Ki

GT
6

µκγ1(µL)γ2(µL).
(A.76)

The definitions of all the terms in Equation (A.76) are as follows:

Ki
GT

0 = M0
T + θ∆t i K0

T, (A.77)
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Ki
GT

1 = θ∆t i K1
T, (A.78)

Ki
GT

2 = M1
T, (A.79)

Ki
GT

3 = M2
T, (A.80)

Ki
GT

4 = θ∆t i K2
T, (A.81)

Ki
GT

5 = θ∆t i K3
T, (A.82)

Ki
GT

6 = θ∆t i K4
T. (A.83)

The expression Ki ∗
GT is analogous to Equations (A.76) to (A.83), with the exception

that the term θ is replaced by (θ−1) in their definitions. The components in Equations
(A.77) to (A.83) are defined as follows:

KT = K0
T + K1

Tµκ + K2
Tµκγ2

1(µL) + K3
Tµκ

γ2(µL)
γ1(µL) + K4

Tµκγ1(µL)γ2(µL), (A.84)

K0
T =

∫
Ω\ΩR

B⊤
TκBTRdΩ (A.85)

K1
T =

∫
Ω1

R

B⊤
TBTRdΩ +

∫
Ω2

R

B⊤
T

1 0
0 0

 BTRdΩ, (A.86)

K2
T =

∫
Ω2

R

B⊤
T

0 0
0 1

 BTRdΩ, (A.87)

K3
T =

∫
Ω2

R

B⊤
T

1 0
0 0

 BTdΩ, (A.88)

K4
T =

∫
Ω2

R

B⊤
T

0 0
0 1

 BTdΩ. (A.89)
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Upon observation, it can be noted that Equations (A.86) to (A.89) encompass two
terms related to the spatial domain of rock, specifically labeled as Ω1

R and Ω2
R. These

terms respectively represent the fixed spatial domain of rock in Ω1 and the spatial
domain of rock in Ω2. In the context of the equations, the spatial domain of rock in
Ω2 undergoes mapping transformations akin to those depicted in Figure 4.2, which
cause elongation or shortening of the domain based on the geometric parameter.
Essentially, the overall spatial domain of rock, denoted as ΩR, can be defined as the
union of Ω1

R and Ω2
R, thereby forming ΩR = Ω1

R ∪ Ω2
R. It should also be noted that in

Equations (A.77), (A.79), and (A.77), the terms M0
T, M1

T, and M2
T bear similarity

to those in Equations (A.23), (A.24), and (A.25) respectively.
The global stiffness matrix of the hydro-mechanical part, as presented in Chap-

ter 4 in Section 4.2 by Equation (4.11), can be separated into the following tensor
components:

Ki
G(µ) =Ki

G
0 + Ki

G
1

γ1(µL) + Ki
G

2
γ2(µL) + Ki

G
3

γ1
2(µL)+

Ki
G

4
γ1(µL)γ2(µL) + Ki

G
5

µE(µL

b2
)γ1(µL)+

Ki
G

6
µE(µL

b2
)

2
γ1(µL) + Ki

G
7

µE(µL

b2
)

3
γ1(µL)+

Ki
G

8
µE(µL

b2
)

4
γ1(µL) + Ki

G
9

µE(µL

b2
)

5
γ1(µL)+

Ki
G

10
µE(µL

b2
)

6
γ1(µL)+

Ki
G

11
µK + Ki

G
12

µKγ1
2(µL) + Ki

G
13

µK
γ2(µL)
γ1(µL)+

Ki
G

14
µKγ1(µL)γ2(µL) + Ki

G
15

µE+

Ki
G

16
µEγ1(µL) + Ki

G
17

µEγ2(µL) + Ki
G

18
µEγ1

2(µL)+

Ki
G

19
µEγ1(µL)γ2(µL) + Ki

G
20

µE
γ2(µL)
γ1(µL)+

Ki
G

21 1
µE

+ Ki
G

22 1
µE

γ1
2(µL) + Ki

G
23 1

µE

γ2(µL)
γ1(µL) .

(A.90)

The terms in Equations (A.90) are defined as follows:

Ki
G

0 =
M0

p + θ∆t i K0
p G0

pd

θG0
dp θK0

d

 , (A.91)

Ki
G

1 =
 0 G1

pd

θG1
dp 0

 , (A.92)
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Ki
G

2 =
 0 G2

pd

θG3
dp 0

 , (A.93)

Ki
G

3 =
 M2

p G3
pd

θG2
dp 0

 , (A.94)

Ki
G

4 =
 M3

p G4
pd

θG4
dp 0

 , (A.95)

Ki
G

5 =
0 0
0 θK7

d

 , (A.96)

Ki
G

6 =
0 0
0 θK8

d

 , (A.97)

Ki
G

7 =
0 0
0 θK9

d

 , (A.98)

Ki
G

8 =
0 0
0 θK10

d

 , (A.99)

Ki
G

9 =
0 0
0 θK11

d

 , (A.100)

Ki
G

10 =
0 0
0 θK12

d

 , (A.101)

Ki
G

11 =
θ∆t i K1

p 0
0 0

 , (A.102)

Ki
G

12 =
θ∆t i K2

p 0
0 0

 , (A.103)
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Ki
G

13 =
θ∆t i K3

p 0
0 0

 , (A.104)

Ki
G

14 =
θ∆t i K4

p 0
0 0

 , (A.105)

Ki
G

15 =
0 0
0 θK1

d

 , (A.106)

Ki
G

16 =
0 0
0 θK2

d

 , (A.107)

Ki
G

17 =
0 0
0 θK3

d

 , (A.108)

Ki
G

18 =
0 0
0 θK4

d

 , (A.109)

Ki
G

19 =
0 0
0 θK5

d

 , (A.110)

Ki
G

20 =
0 0
0 θK6

d

 , (A.111)

Ki
G

21 =
M1

p 0
0 0

 , (A.112)

Ki
G

22 =
M4

p 0
0 0

 , (A.113)

Ki
G

23 =
M5

p 0
0 0

 . (A.114)
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The expression Ki ∗G(µ) is analogous to Equations (A.90) to (A.114), except for the
replacement of the term θ with (θ−1) in their definitions. The components G0

pd, G1
pd,

G2
pd, G3

pd, G4
pd, G1

dp, G2
dp, G3

dp, G4
dp are similar to Equations (A.41) to (A.50), while

the remaining components in Equations (A.91) to (A.114) are defined as follows:

Kp = K0
p + K1

pµK + K2
pµKγ2

1(µL) + K3
pµK

γ2(µL)
γ1(µL) + K4

pµKγ1(µL)γ2(µL), (A.115)

K0
p =

∫
Ω\ΩR

B⊤
p ( K

ρf g
)BpRdΩ (A.116)

K1
p =

∫
Ω1

R

B⊤
p ( 1

ρf g
)BpRdΩ +

∫
Ω2

R

B⊤
p ( 1

ρf g
)

1 0
0 0

 BpRdΩ, (A.117)

K2
p =

∫
Ω2

R

B⊤
p ( 1

ρf g
)

0 0
0 1

 BpRdΩ, (A.118)

K3
p =

∫
Ω2

R

B⊤
p ( 1

ρf g
)

1 0
0 0

 BpdΩ, (A.119)

K4
p =

∫
Ω2

R

B⊤
p ( 1

ρf g
)

0 0
0 1

 BpdΩ, (A.120)

Mp =M0
p + M1

p
1

µE
+ M2

pγ2
1(µL) + M3

pγ1(µL)γ2(µL)+

M4
p
γ2

1(µL)
µE

+ M5
p
γ1(µL)γ2(µL)

µE
,

(A.121)

M0
p =

∫
Ω1

N⊤
p ( ϕ

Kf
)NpRdΩ +

∫
Ω\ΩR

N⊤
p

(α − ϕ)(1 − 2ν)(1 − α)
E NpRdΩ, (A.122)

M1
p =

∫
Ω1

R

N⊤
p (α − ϕ)(1 − 2ν)(1 − α)NpRdΩ, (A.123)

M2
p =

∫
Ω2

R

N⊤
p ( ϕ

Kf
)NpRdΩ, (A.124)
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M3
p =

∫
Ω2

R

N⊤
p ( ϕ

Kf
)NpdΩ, (A.125)

M4
p =

∫
Ω2

R

N⊤
p (α − ϕ)(1 − 2ν)(1 − α)NpRdΩ, (A.126)

M5
p =

∫
Ω2

R

N⊤
p (α − ϕ)(1 − 2ν)(1 − α)NpdΩ, (A.127)

Kd =K0
d + K1

dµE + K2
dµEγ1(µL) + K3

dµEγ2(µL) + K4
dµEγ2

1(µL)+

K5
dµEγ1(µL)γ2(µL) + K6

dµE
γ2(µL)
γ1(µL) + K7

dµE
µL

L2
γ1(µL)+

K8
dµE(µL

L2
)2γ1(µL) + K9

dµE(µL

L2
)3γ1(µL) + K10

d µE(µL

L2
)4γ1(µL)+

K11
d µE(µL

L2
)5γ1(µL) + K12

d µE(µL

L2
)6γ1(µL),

(A.128)

K0
d =

∫
Ω\ΩR

B⊤
d C(E , ν)Bd rdΩ, (A.129)

K1
d =

∫
Ω1

R

B⊤
d C0(1, ν)BdRdΩ +

∫
Ω2

R

∂N⊤
d

∂R C1(1, ν)∂Nd

∂R RdΩ+
∫

Ω2
R

∂N⊤
d

∂R C3(1, ν)NddΩ +
∫

Ω2
R

N⊤
d C7(1, ν)∂Nd

∂R dΩ,

(A.130)

K2
d =

∫
Ω2

R

∂N⊤
d

∂R C2(1, ν)∂Nd

∂Z RdΩ +
∫

Ω2
R

∂N⊤
d

∂Z C4(1, ν)∂Nd

∂R RdΩ+
∫

Ω2
R

∂N⊤
d

∂Z C6(1, ν)NddΩ +
∫

Ω2
R

N⊤
d C8(1, ν)∂Nd

∂Z dΩ+∫
Ω2

R

N⊤
d C9(1, ν)Nd

1
RdΩ,

(A.131)

K3
d =

∫
Ω2

R

∂N⊤
d

∂R C2(1, ν)∂Nd

∂z dΩ +
∫

Ω2
R

∂N⊤
d

∂Z C4(1, ν)∂Nd

∂R dΩ, (A.132)

K4
d =

∫
Ω2

R

∂N⊤
d

∂Z C5(1, ν)∂Nd

∂Z RdΩ, (A.133)
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K5
d =

∫
Ω2

R

∂N⊤
d

∂Z C5(1, ν)∂Nd

∂Z dΩ, (A.134)

K6
d =

∫
Ω2

R

∂N⊤
d

∂R C1(1, ν)∂Nd

∂R dΩ, (A.135)

K7
d =

∫
Ω2

R

N⊤
d C9(1, ν)Nd(−1)(R − L1)

R2 dΩ, (A.136)

K8
d =

∫
Ω2

R

N⊤
d C9(1, ν)Nd

(R − L1)2

R3 dΩ, (A.137)

K9
d =

∫
Ω2

R

N⊤
d C9(1, ν)Nd(−1)(R − L1)3

R4 dΩ, (A.138)

K10
d =

∫
Ω2

R

N⊤
d C9(1, ν)Nd

(R − L1)4

R5 dΩ, (A.139)

K11
d =

∫
Ω2

R

N⊤
d C9(1, ν)Nd(−1)(R − L1)5

R6 dΩ, (A.140)

K12
d =

∫
Ω2

R

N⊤
d C9(1, ν)Nd

(R − L1)6

R7 dΩ. (A.141)

On the right-hand side of the Hydro-Mechanical (HM) component, there is a
matrix called GT(µ) (Equation (4.9)). This matrix emerges as a result of the influence
of the thermal component on the coupled HM part. It contains all the matrices
that relate to thermal and hydro, as well as thermal and mechanical (unidirectional
coupling from thermal to hydro and mechanical). The separate format of this matrix
is as follows:

GT(µ) =G0
T + G1

Tγ1
2(µL) + G2

Tγ1(µL)γ2(µL)+

G3
TµE + G4

TµEγ1(µL) + G5
TµEγ2(µL)+

G6
TµEγ1

2(µL) + G7
TµEγ1(µL)γ2(µL).

(A.142)
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The terms in Equation (A.142) are as follows:

G0
T =

 M0
pT −M0

pT

−θG0
dT (θ − 1)G0

dT

 , (A.143)

G1
T =

M1
pT −M1

pT

0 0

 , (A.144)

G2
T =

M2
pT −M2

pT

0 0

 , (A.145)

G3
T =

 0 0
−θG1

dT (θ − 1)G1
dT

 , (A.146)

G4
T =

 0 0
−θG2

dT (θ − 1)G2
dT

 , (A.147)

G5
T =

 0 0
−θG4

dT (θ − 1)G4
dT

 , (A.148)

G6
T =

 0 0
−θG3

dT (θ − 1)G3
dT

 , (A.149)

G7
T =

 0 0
−θG5

dT (θ − 1)G5
dT

 . (A.150)

In Equations (A.143) to (A.150), all the terms related to M0
pT, M1

pT, and M2
pT are

already presented in Equations (A.26), (A.27), and (A.28), respectively. However,
for GdT, due to its dependency on both material and geometric parameters, it is
necessary to determine its separate definition and its components, which are defined
as follows:

GdT =G0
dT + G1

dTµE + G2
dTµEγ1(µL) + G3

dTµEγ2
1(µL)+

G4
dTµEγ2(µL) + G5

dTµEγ1(µL)γ2(µL),
(A.151)
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G0
dT =

∫
Ω\ΩR

N⊤
d ( αs

1 − 2ν
)E BTRdΩ, (A.152)

G1
dT =

∫
Ω1

R

N⊤
d ( αs

1 − 2ν
)BTRdΩ, (A.153)

G2
dT =

∫
Ω2

R

N⊤
d ( αs

1 − 2ν
)

1 0
0 0

 BTRdΩ, (A.154)

G3
dT =

∫
Ω2

R

N⊤
d ( αs

1 − 2ν
)

0 0
0 1

 BTRdΩ, (A.155)

G4
dT =

∫
Ω2

R

N⊤
d ( αs

1 − 2ν
)

1 0
0 0

 BTdΩ, (A.156)

G5
dT =

∫
Ω2

R

N⊤
d ( αs

1 − 2ν
)

0 0
0 1

 BTdΩ. (A.157)

On the right-hand side of the coupled HM part, there is an additional term denoted
as Fi∗(µ) in Equation (4.9). This term encompasses the body force terms from the
hydro and mechanical parts, as well as the traction force from the mechanical part.
The separate vector forms of this term are as follows:

Fi∗(µ) =Fi∗
0 + Fi∗

1
γ1

2(µL) + Fi∗
2
γ1(µL)γ2(µL)+

Fi∗
3
µK + Fi∗

4
µKγ1(µL) + Fi∗

5
µKγ1

2(µL)+

Fi∗
6
µKγ2(µL) + Fi∗

7
µKγ1(µL)γ2(µL).

(A.158)

All the terms in Equation (A.158) are as follows:

Fi∗
0 =

∆t i f0
bf

f0
d

 , (A.159)

Fi∗
1 =

 0
f1
d

 , (A.160)
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Fi∗
2 =

 0
f2
d

 , (A.161)

Fi∗
3 =

∆t i f1
bf

0

 , (A.162)

Fi∗
4 =

∆t i f2
bf

0

 , (A.163)

Fi∗
5 =

∆t i f3
bf

0

 , (A.164)

Fi∗
6 =

∆t i f4
bf

0

 , (A.165)

Fi∗
7 =

∆t i f5
bf

0

 . (A.166)

The definitions of the components f0
d, f1

d, and f2
d can be found in Equations (A.73),

(A.74), and (A.75), respectively. However, for the remaining components in Equa-
tions (A.159) to (A.166), they are defined as follows:

fbf =f0
bf

+ f1
bf

µK + f2
bf

µKγ1(µL) + f3
bf

µKγ1
2(µL)+

f4
bf

µKγ2(µL) + f5
bf

µKγ1(µL)γ2(µL),
(A.167)

f0
bf

=
∫

Ω\ΩR
B⊤

p
K
ρf g

ρf g RdΩ, (A.168)

f1
bf

=
∫

Ω1
R

B⊤
p

1
ρf g

ρf g RdΩ, (A.169)

f2
bf

=
∫

Ω2
R

B⊤
p

1
ρf g

ρf g

1 0
0 0

 RdΩ, (A.170)

153



A. Separated operators for PGD

f3
bf

=
∫

Ω2
R

B⊤
p

1
ρf g

ρf g

0 0
0 1

 RdΩ, (A.171)

f4
bf

=
∫

Ω2
R

B⊤
p

1
ρf g

ρf g

1 0
0 0

 dΩ, (A.172)

f5
bf

=
∫

Ω2
R

B⊤
p

1
ρf g

ρf g

0 0
0 1

 dΩ. (A.173)
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