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“All men have the stars,
but they are not the same things for different people.

For some, who are travelers, the stars are guides.
For others they are no more than little lights in the sky.

For others, who are scholars, they are problems...
But all these stars are silent.

You – you alone will have the stars as no one else has them...”

The Little Prince
Antoine de Saint-Exupéry
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Abstract

The convergence of High Performance Computing (HPC), Big Data (BD), and Ma-
chine Learning (ML) in the computing continuum is being pursued in earnest across
the academic and industry. It is important to use a holistic approach that involves
a multi-disciplinary team of experts in HPC, BD, and ML, and to use a combination
of technologies and approaches. We envision virtualization and containerization tech-
nologies can be the basis for the convergence, because they reside as bridges between
applications and infrastructures and provide well-known advantages, such as the encap-
sulation of specific software environments, which allows for customization, portability
and reproducibility; the isolation of users from the underlying system and from other
users, which allows for security and fault protection; and the agile and fine-grain re-
source allocation and balancing, which allows for efficient cluster utilization and failure
recovery. However, challenges remain for this convergence at the containerization level
due to the diversity of applications and hardware heterogeneity.
The challenges to be addressed are from different layers: in the infrastructure layer,

virtualization/containerization must feature complete isolation of the applications in a
multi-tenant environment, seamlessly and efficiently provide different resources (e.g.,
GPUs, Infiniband, NUMA, etc.), allow agile and fine-grain dynamic resource provision-
ing to orchestrate resource sharing in those environments, also integrate HPC (e.g., gang
scheduling, affinity, preemption, topology-awareness, checkpoint/restore) and Cloud (e.g.,
autoscaling, elasticity, migration) scheduling and resource management techniques, while
providing fault tolerance, energy efficiency, and scalability. Moreover, in the platform
layer, virtualization/containerization must fulfill applications requirements of portability
and reproducibility by allowing the definition of encapsulated and customized diverse
software stacks, and the efficient creation/termination of those software environments on
demand. The general research question of this thesis is: How to leverage virtualiza-
tion/containerization in both the infrastructure layer and the platform layer
to support efficiently the convergence of HPC, BD, and ML applications
while taking advantage of heterogeneous HPC and Cloud resources?
To answer that question, firstly, we enable deployments of HPC, BD, and ML

applications using containers that allow the definition of encapsulated and cus-
tomized software stacks for each application and provide seamless and efficient access to
different resources through different configurations. This is the basis of the convergence.
Secondly, the challenge is to understand the performance impact of the various con-

figurations and deployment options when using containers. Thus, we perform several
detailed performance analyses of containerization deployment options for
diverse containerized applications on different hardware. These performance
analyses consider different containerization-level configurations, such as containerization
technologies, granularities, affinities, and network interconnects. The obtained perfor-
mance insights can be guidelines to derive placement policies when deploying applications
to better utilize resources and achieve better application performance.
Thirdly, we enable DevOps for developing, building, and deploying these containerized

applications and managing containers in multi-tenant, dynamic context circumstances by
establishing a platform to help the users to develop faster their containerized
applications, to enable the deployment options analyzed before to feature



efficient deployments, and to bring autonomic computing for continuously
managing applications. This platform, so-called Scanflow-K8s, features a multi-agent
multi-layered architecture (i.e., application layer and infrastructure layer) that enables
the online supervision of the end-to-end life-cycle of ML workflows on Kubernetes, as
well as the deployment of containerized HPC workloads (through the Scanflow(MPI)
package).
Finally, we leverage the knowledge learned from the performance analysis of the

configuration and deployment of containerized HPC, BD, and ML workloads, and the
availability of the autonomic management platform Scanflow-K8s, to conduct auto-
nomic management policies to schedule or manage various applications on
the Scanflow-K8s platform. On the one hand, we implement policies in the agent
to evaluate the autonomic management and online supervision of the end-to-end life-
cycle of ML workflows. On the other hand, we propose fine-grained scheduling policies
for containerized HPC workloads in Kubernetes clusters, including decision-making in
the granularity-aware agent in the application layer, and a MPI-aware plugin and a
container-based task-group scheduling scheme for the Kubernetes Volcano scheduler in
the infrastructure layer.
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Resumen

La convergencia de Computación de Alto Rendimiento (HPC), Grandes Datos (BD)
y Aprendizaje Automático (ML) en el continuum informático se está persiguiendo con
seriedad en el ámbito académico e industrial. Es importante utilizar un enfoque hoĺıstico
que involucre a un equipo multidisciplinario de expertos en HPC, BD y ML, y utilizar una
combinación de tecnoloǵıas y enfoques. Prevemos que las tecnoloǵıas de virtualización y
contenedorización pueden ser la base para la convergencia, porque residen como puentes
entre las aplicaciones y las infraestructuras y proporcionan ventajas bien conocidas, como
la encapsulación de entornos de software espećıficos, lo que permite la personalización, la
portabilidad y la reproducibilidad; el aislamiento de los usuarios del sistema subyacente y
de otros usuarios, lo que permite la seguridad y la protección contra fallos; y la asignación
y el balanceo de recursos ágiles y detallados, lo que permite una utilización eficiente del
clúster y la recuperación de fallos. Sin embargo, existen desaf́ıos para esta convergencia
a nivel de contenedorización debido a la diversidad de aplicaciones y la heterogeneidad
del hardware.
Los desaf́ıos que deben abordarse son de diferentes capas: en la capa de infraestruc-

tura, la virtualización/contenedorización debe presentar un aislamiento completo de las
aplicaciones en un entorno de múltiples inquilinos, proporcionar de manera fluida y efi-
ciente recursos diferentes (e.g., GPU, Infiniband, NUMA, etc.), permitir la asignación
dinámica de recursos ágil y detallada para orquestar el uso compartido de recursos en
esos entornos, también integrar HPC (e.g., planificación grupal, afinidad, preferencia,
reconocimiento de topoloǵıa, punto de control/restauración) y Cloud (e.g., escalado au-
tomático, elasticidad, migración) planificación y técnicas de gestión de recursos, al mismo
tiempo que proporciona tolerancia a fallos, eficiencia energética y escalabilidad. Además,
en la capa de la plataforma, la virtualización/contenedorización debe cumplir con los
requisitos de portabilidad y reproducibilidad de las aplicaciones al permitir la definición
de diversas pilas de software encapsuladas y personalizadas, y la creación/terminación
eficiente de esos entornos de software bajo demanda. La pregunta de investigación gen-
eral de esta tesis es: ¿Cómo aprovechar la virtualización/contenerización tanto
en la capa de infraestructura como en la capa de plataforma para respal-
dar de manera eficiente la convergencia de aplicaciones de HPC, BD y ML
mientras se aprovechan los recursos heterogéneos de HPC y Cloud?

Para responder a esa pregunta, en primer lugar, habilitamos implementaciones de
aplicaciones HPC, BD y ML utilizando contenedores que permiten la definición
de pilas de software encapsuladas y personalizadas para cada aplicación y proporcionan
acceso fluido y eficiente a diferentes recursos a través de diferentes configuraciones. Esta
es la base de la convergencia.
En segundo lugar, el desaf́ıo consiste en comprender el impacto en el rendimiento

de las diversas configuraciones y opciones de implementación al utilizar contenedores.
Por lo tanto, realizamos varios análisis detallados de rendimiento de opciones
de implementación de contenedores para diversas aplicaciones en diferentes
hardware. Estos análisis de rendimiento consideran diferentes configuraciones a nivel
de contenedores, por ejemplo, tecnoloǵıas de contenedores, granularidades, afinidades e
interconexiones de red. Los conocimientos de rendimiento obtenidos pueden servir como



directrices para derivar poĺıticas de ubicación al implementar aplicaciones para utilizar
mejor los recursos y lograr un mejor rendimiento de las aplicaciones.
En tercer lugar, habilitamos DevOps para desarrollar, construir e implementar es-

tas aplicaciones en contenedores y gestionar los contenedores en contextos dinámicos y
de múltiples usuarios estableciendo una plataforma que ayude a los usuarios a
desarrollar sus aplicaciones en contenedores más rápidamente, permita las
opciones de implementación analizadas anteriormente para contar con imple-
mentaciones eficientes, y proporcione computación autónoma para gestionar
continuamente las aplicaciones. Esta plataforma, llamada Scanflow-K8s, cuenta con
una arquitectura multiagente y de múltiples capas (i.e., capa de aplicación y capa de in-
fraestructura) que permite la supervisión en ĺınea del ciclo de vida de extremo a extremo
de los flujos de trabajo de ML en Kubernetes, aśı como la implementación de cargas de
trabajo HPC en contenedores (a través del paquete Scanflow(MPI)).
Finalmente, aprovechamos el conocimiento aprendido del análisis de desempeño en

la configuración e implementación de cargas de trabajo de HPC, BD y ML contene-
dorizadas, y la disponibilidad de una plataforma usable de administración autónoma
(Scanflow-K8s), para conducir poĺıticas de gestión autónomas para programar
o administrar varias aplicaciones en la plataforma Scanflow-K8s. Por un lado,
implementamos poĺıticas en el agente para evaluar la gestión autónoma y la supervisión
en ĺınea del ciclo de vida de extremo a extremo de los flujos de trabajo de ML en
Scanflow-K8s. Por otro lado, proponemos poĺıticas de planificación detalladas para car-
gas de trabajo de HPC contenedorizadas en clústeres de Kubernetes, que incluyen en el
agente una toma de decisiones consciente de la granularidad en la capa de la aplicación,
y un complemento consciente con MPI y un esquema de planificación de grupos de tar-
eas basado en contenedores para el planificador de Kubernetes Volcano en la capa de
infraestructura.

viii



Resum

La convergència de Computació d’Alt Rendiment (HPC), Grans Dades (BD) i Apre-
nentatge Automàtic (ML) al continuum informàtic s’està perseguint amb serietat a
l’àmbit acadèmic i industrial. És important utilitzar un enfocament hoĺıstic que involucri
un equip multidisciplinari d’experts en HPC, BD i ML, i utilitzar una combinació de tec-
nologies i enfocaments. Preveiem que les tecnologies de virtualització i contenidorització
poden ser la base per a la convergència, perquè resideixen com a ponts entre les aplica-
cions i les infraestructures i proporcionen avantatges ben coneguts, com l’encapsulació
d’entorns de programari espećıfic, cosa que permet la personalització, la portabilitat
i la reproductibilitat; l’äıllament dels usuaris del sistema subjacent i d’altres usuaris,
cosa que permet la seguretat i la protecció contra fallades; i l’assignació i el balanceig
de recursos àgils i detallats, la qual cosa permet una utilització eficient del clúster i la
recuperació de fallades. No obstant això, hi ha desafiaments per a aquesta convergència
a nivell de contenidorització a causa de la diversitat d’aplicacions i l’heterogenëıtat del
maquinari.
Els desafiaments que cal abordar són de diferents capes: a la capa d’infraestructura, la

virtualització/contenidorització ha de presentar un äıllament complet de les aplicacions
en un entorn de múltiples inquilins, proporcionar de manera fluida i eficient recursos
diferents (e.g., GPU, Infiniband, NUMA, etc.), permetre l’assignació dinàmica de re-
cursos àgil i detallada per orquestrar l’ús compartit de recursos en aquests entorns,
també integrar HPC (e.g., planificació grupal, afinitat, preferència, reconeixement de
topologia, punt de control/restauració) i Cloud (e.g., escalat automàtic, elasticitat, mi-
gració) planificació i tècniques de gestió de recursos, alhora que proporciona tolerància
a fallades, eficiència energètica i escalabilitat. A més, a la capa de la plataforma, la
virtualització/contenidorització ha de complir amb els requisits de portabilitat i repro-
ductibilitat de les aplicacions en permetre la definició de diverses piles de programari
encapsulades i personalitzades, i la creació/terminació eficient d’aquests entorns de pro-
gramari sota demanda. La pregunta d’investigació general d’aquesta tesi és: Com
aprofitar la virtualització/contenidorització tant a la capa d’infraestructura
com a la capa de plataforma per recolzar de manera eficient a la convergència
d’aplicacions HPC, BD i ML mentre s’aprofiten els recursos heterogenis de
HPC i Cloud?
Per respondre a aquesta pregunta, en primer lloc, habilitem implementacions

d’aplicacions HPC, BD i ML utilitzant contenidors que permeten la definició
de piles de programari encapsulades i personalitzades per cada aplicació i proporcio-
nen un accés eficient i constant a diferents recursos a través de diferents configuracions.
Aquesta és la base de la convergència.
En segon lloc, el repte consisteix a comprendre l’impacte en el rendiment de les difer-

ents configuracions i opcions de desplegament en utilitzar contenidors. Per tant, real-
itzem diverses anàlisis detallades de rendiment de les opcions de desplega-
ment de contenidors per a diverses aplicacions en contenidors en diferent
maquinari. Aquestes anàlisis de rendiment tenen en compte diferents configuracions a
nivell de contenidors, com ara tecnologies de contenidorització, granularitats, afinitats i
interconnexions de xarxa. Els coneixements de rendiment obtinguts poden ser pautes per



derivar poĺıtiques de col·locació en desplegar aplicacions per utilitzar millor els recursos
i aconseguir un millor rendiment de l’aplicació.
En tercer lloc, habilitem DevOps per desenvolupar, construir i desplegar aquestes apli-

cacions en contenidors i gestionar els contenidors en contextos dinàmics i de múltiples
usuaris establint una plataforma per ajudar els usuaris a desenvolupar més
ràpidament les seves aplicacions en contenidors, per habilitar les opcions
de desplegament analitzades anteriorment per comptar amb desplegaments
eficients, i per portar la informàtica autònoma per a la gestió cont́ınua
d’aplicacions. Aquesta plataforma, anomenada Scanflow-K8s, presenta una arquitec-
tura multi-agent multicapa (i.e., capa d’aplicació i capa d’infraestructura) que permet
la supervisió en ĺınia del cicle de vida d’extrem a extrem dels fluxos de treball de ML a
Kubernetes, aix́ı com la implementació de càrregues de treball HPC en contenidors (a
través del paquet Scanflow (MPI)).
Finalment, aprofitem el coneixement aprés de l’anàlisi de rendiment en la configu-

ració i implementació de càrregues de treball d’HPC, BD i ML contenidoritzades, i la
disponibilitat d’una plataforma usable d’administració autònoma (Scanflow-K8s), per
conduir poĺıtiques de gestió autònomes per programar o administrar diverses
aplicacions a la plataforma Scanflow-K8s. D’una banda, implementem poĺıtiques a
l’agent per avaluar la gestió autònoma i la supervisió en ĺınia del cicle de vida d’extrem a
extrem dels fluxos de treball de ML a Scanflow-K8s. D’altra banda, proposem poĺıtiques
de planificació detallades per a càrregues de treball d’HPC contenidoritzades en clústers
de Kubernetes, que inclouen a l’agent una presa de decisions conscient de la granularitat
a la capa de l’aplicació, i un complement conscient amb MPI i un esquema de planificació
de grups de tasques basat en contenidors per al planificador de Kubernetes Volcano a la
capa d’infraestructura.
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Chapter 1

Introduction

In this chapter, the context and motivation of the thesis are presented in Section 1.1.
Then, the objectives and contributions are introduced in Section 1.2. Section 1.3 explains
the overview outline of the thesis.

1.1 Context and Motivation

The computing paradigm has been evolving over the last three decades (as shown in
Figure 1.1). In the early 1975s, the traditional High Performance Computing (HPC)
communities solved scientific problems by using modeling and simulation through su-
percomputers [18][131].

Scientific Applications Big Data Applications Machine Learning Applications

1975s- 2000s- 2010s- 

HPC

HPC Cloud DCs

HPC Cloud DCs Edge DCs
Gateways

Smartphone,
Tablet, PCs

Scanner, 
Sensors, IoTs

Figure 1.1: Computing evolving stages over the last three decades.

However, from the 2000s, Big Data (BD) started to change the way people understood
and harnessed the power of data, both in the business and research domains [138].
Scientific computation problems had been faced with the need to analyze increasing
amounts of data as part of their application workflows, and the science-based model was
being combined with data-driven models to represent complex systems and phenomena
[18][132]. Thus, HPC and BD started converging to meet large-scale data processing
challenges to enable High Performance Data Analysis (HPDA) in HPC and the Cloud
[9][22][139][40].
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Chapter 1 Introduction

Currently, from the 2010s, Machine Learning (ML)-enabled science, engineering, arts,
health, and business are now driving a multibillion-dollar industry and playing an in-
creasingly important role in human society [137]. Innovative ML applications provide
technological breakthroughs which have powered transformational solutions for BD chal-
lenges. The high-quality data (e.g., ImageNet [156], Coco [95]), novel pattern recogni-
tion algorithms (e.g., Convolutional Neural Network (CNN), Recurrent Neural Network
(RNN), Deep Neural Network (DNN) [116]), accelerated computing (e.g., Graphic Pro-
cessing Unit (GPU) [183], Tensor Processing Unit (TPU) [195]), and open-source soft-
ware platforms and frameworks (e.g., Tensorflow [175], Pytorch [143]) lead to ML with
good results in different tasks such as computer vision, machine translation, recom-
mendation systems, and speech recognition [64][55][81][111][26]. However, the challenge
remains for ML towards optimal exploitation of large-scale data and extreme-scale com-
puting. Therefore, ML is joining the HPC and BD convergence. On the one hand, HPC
platforms can be exploited to be used for ML model distributed training and inference.
Furthermore, the mixed computing continuum architecture (HPC/Cloud/Edge) could
power the ML world with a more solid origin of data and computation, and bring ML
close to the end-user [152][151].

The convergence of HPC, BD, and ML is being pursued in earnest across the aca-
demic [18][9][64] and industry [34][133]. It is important to use a holistic approach that
involves a multi-disciplinary team of experts in HPC, BD, and ML, and to use a combi-
nation of technologies and approaches. We envision virtualization and containerization
technologies can be the basis towards the convergence, because they provide well-known
advantages [202], such as the encapsulation of specific software environments, which al-
lows for customization, portability and reproducibility [90]; the isolation of users from the
underlying system and from other users, which allows for security and fault protection;
and the agile and fine-grain resource allocation and balancing, which allows for efficient
cluster utilization and failure recovery [37]. However, as shown in Figure 1.2, there are
still some significant challenges for this convergence at containerization level due to the
diversity of applications and the hardware heterogeneity. Thus, challenges have to be ad-
dressed from different layers: In the infrastructure layer, virtualization/containerization
must feature complete isolation of the applications in a multi-tenant environment, seam-
lessly and efficiently provide different resources (e.g., GPUs, Infiniband, NUMA, etc.),
allow agile and fine-grain dynamic resource provisioning to orchestrate resource sharing
in those environments, also integrate HPC (e.g., gang scheduling, affinity, preemption,
topology-awareness, checkpoint/restore) and Cloud (e.g., autoscaling, elasticity, migra-
tion) scheduling and resource management techniques, while providing fault tolerance,
energy efficiency, and scalability. Moreover, in the platform layer, virtualization/con-
tainerization must fulfill applications requirements of portability and reproducibility by
allowing the definition of encapsulated and customized diverse software stacks, and the
efficient creation/termination of those software environments on demand. In this con-
text, the general research question that this thesis aims to answer is the following:

How to leverage virtualization/containerization in both the infrastruc-
ture layer and the platform layer to support efficiently the convergence
of HPC, BD, and ML applications while taking advantage of heteroge-
neous HPC and Cloud resources?
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Figure 1.2: Convergence of HPC, BD, and ML applications on containerized infrastruc-
tures.
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1.1.1 Infrastructure Opportunities

BD/ML engineers are not experts in using emerging HPC hardware, and likewise, HPC
engineers could not fully understand Cloud architectures. But all these heterogeneous
resources with different characteristics can provide computing, network, and storage
capabilities, making a huge contribution to improving application performance. For in-
stance, HPC hardware has attempted to improve the performance of applications over
computational accelerators (e.g., GPU) [183], high-speed interconnection networks (e.g.,
InfiniBand, Inter Omni-path) [108][76], and parallel file systems (e.g., GPFS, Lustre)
[146][145][69]. Therefore, there are some opportunities in the infrastructure layer regard-
ing using containerization and container management to provide transparent, isolated,
trustworthy, and efficient containerized infrastructures for a wide range of applications.

• Containerization: Both HPC, BD, and ML communities can adopt the vir-
tualization/containerization technologies taking advantage of those virtual ma-
chines [73][29][147] and containers [70][200][17][209] for hardware and facility trans-
parency, providing encapsulation of specific software environment with portability
and reproducibility and establishing a secure and isolated execution environment.
Therefore, studying containerization technologies (e.g., Docker, Singularity, etc.)
and deployment configurations (e.g., number of containers, container interconnec-
tions, etc.) to leverage the features of different hardware to improve the perfor-
mance of various different types of applications is important.

• Resource Management: All the HPC, BD, and ML ecosystems launching mas-
sive jobs/services on a large-scale system will require support to reduce jobs/ser-
vices response time, monitor jobs/services in real-time, analyze the runtime job-
s/services status, and manage and schedule jobs/services to better utilize the whole
computation resources and migrate the jobs/services to face failures and achieve
better performance. Running diverse HPC, BD, and ML applications with differ-
ent characteristics on different resources is happening. Thus, a common container
management tool, which integrates HPC (e.g., gang scheduling, affinity, preemp-
tion, topology-awareness, checkpoint/restore) and Cloud (e.g., autoscaling, elas-
ticity, migration) scheduling and resource management techniques, is expected to
solve these challenges (e.g., fault tolerance, energy efficiency, and scalability).

1.1.2 Platform Opportunities

Platform opportunities come from the diversity of the applications and their correspond-
ing software frameworks. HPC applications take advantage of parallel processing archi-
tectures to perform large-scale computations efficiently and handle large amounts of data
effectively [58][130]. BD applications, typically executed as batch processing jobs, use
MapReduce model to automate repetitive tasks by executing a large number of jobs in a
non-interactive mode [45][5][194]. ML applications focus on learning models from data
and making predictions by using the trained model. From a runtime perspective, the
ML training and batch ML inference could be executed as offline jobs and may take days
to complete, whereas the online ML inference service is realized as a long-run service
that is able to deal with dynamic prediction queries from end-users [97][98][203][92].
These bring challenges in the platform layer for containers to consider and support the
development, testing, deployment, and operation of wide range types of applications.
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• Frameworks: HPC applications work well with HPC software and libraries, such
as MPI [39], OpenMP, etc. BD applications are supported by reliable, scalable dis-
tributed computing libraries, such as, Hadoop [3], Spark [6], etc. ML applications
are empowered by distributed frameworks, such as Tensorflow [175], Pytorch [143],
etc. ML online inference services are served by Seldon [161], Tensorflow Serving
[134][176], etc. To utilize these frameworks in a containerized environment, efforts
should be provided on how to combine those frameworks with containers (e.g.,
encapsulate applications into containers, configure frameworks inside containers).
On the other hand, the application information shown or status gathered by the
frameworks are valuable, thus can be used together with the infrastructure infor-
mation to improve the deployment and operation efficiency.

• Software development and IT operations: Software Development and IT Op-
erations (DevOps) is a popular software development methodology invented in the
context of Cloud computing and containerization to improve the software devel-
opment and delivery process. It is complementary to agile software development,
emphasizes collaboration and communication between development and operations
teams, and aims to automate and streamline the software delivery process [79]. Ar-
tificial Intelligence for IT Operations (AIOps) brings intelligence to DevOps. It
combines Big Data and Machine Learning to automate IT operations processes
[43]. AIOps platform enables the concurrent use of multiple data sources, data
collection methods, and analytical and presentation technologies as it can help to
improve the performance, availability and scalability of IT systems, and also by
providing automated and intelligent ways to manage and operate the systems in a
more efficient way [44]. DevOps teams can also improve the feedback loop and get
more insights from the AIOps platform. Therefore, the opportunity for HPC, BD,
and ML communities is to all adopt the DevOps cycle for the development and
operation collaboration under the containerized environment, and leverage AIOps
platform to enhance the IT operations in an automated and intelligent way to
improve software development and delivery process.

1.2 Objectives and Contributions

The purpose of this thesis focuses on leveraging containerization technologies for the
convergence of HPC, BD, and ML applications on containerized infrastructures. Con-
sidering the opportunities presented in Section 1.1, we divide our main purpose into four
objectives.

1.2.1 Objective 1: Enable deployments of HPC, BD, and ML applications
using containers

Containerization technology offers an alternative opportunity to operate and package
the workloads without being limited by the performance degradation of using virtual
machines (VMs). As the basis for their convergence, our objective is to enable de-
ployments of HPC, BD, and ML workloads using containers, by allowing the
definition of encapsulated and customized diverse software stacks for each application
and providing seamless and efficient access to different HPC resources, so that applica-
tions can make an efficient use of the containers (through different configura-
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tions) to improve their performance, mainly featuring the following container-level
considerations:

• Containerization Technology: Different container runtime implementations (e.g.,
Docker, Singularity, etc.).

• Container Granularity: Different number of containers per node.

• Container Affinity: Different CPU/Memory affinity configurations.

• Container Network: Different networking fabrics (e.g., MACVLAN network or
VxLAN network).

Our contributions to achieve this objective are as follows, and have resulted in publi-
cations [99][101][97]. BD applications have also been containerized in this manner, as
published formerly by our group [160], hence, this is not included as a contribution in
this thesis:

1. O1-C1: We propose the multi-container deployments (i.e., partitioning the pro-
cesses belonging to each application into different containers) for HPC applications,
and derive corresponding affinity settings for each container belonging to the de-
ployment scheme. We enable these configurations both in Docker and Singularity.

2. O1-C2: In addition to the above settings, we also enable different network inter-
connections for multiple containers belonging to an HPC application in an Infini-
Band cluster.

3. O1-C3: We enable containerization for ML workflows using Docker, in both ML
training stage and ML inference stage. Particularly, we adopt multi-container
deployment schemes and affinity settings for online ML inference services.

1.2.2 Objective 2: Understand the performance of HPC, BD, and ML
applications running on containers

After being able to deploy HPC, BD, and ML the applications on containers with differ-
ent deployment options, the challenge is to choose for each application the configurations
and deployment options that provide better performance when using containers. There-
fore, our objective is understanding the impact on the performance of differ-
ent applications running on different platforms using various container-level
deployment options. The results could provide us the knowledge of what the bottle-
neck of deployment options is and how to choose the most adequate deployment
schemes for containerized applications to achieve the best performance.
Our contributions to achieve this objective are as follows, and have resulted in publi-

cations [99][101][102]. We consider that most of our conclusions in the objective would
also apply to BD workloads. Some related analyses of BD worklods with containers can
be found in a former publication from our group [160]:

1. O2-C1: We perform a performance analysis of distinct multi-container deployment
schemes for HPC workloads comprising i) different containerization technologies,
ii) different container granularity, iii) different container processor and memory
affinity configurations, iv) different hardware platform settings (e.g., Non-Uniform
Memory Access (NUMA), Uniform Memory Access (UMA)), v) different applica-
tion subscription modes (exactly- or over-subscribed mode).
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2. O2-C2: We perform a detailed performance characterization of different con-
tainerization technologies (including Docker and Singularity) for HPC workloads
on InfiniBand clusters through different dimensions, namely network interconnects
(including Ethernet and InfiniBand) and protocols (including TCP/IP and Remote
Direct Memory Access (RDMA)), networking modes (including host, MACVLAN,
and overlay networking), and processor and memory affinity.

3. O2-C3: We perform a performance characterization of multiple deployment schemes
for online ML inference services that feature different degrees of container gran-
ularity and we set the corresponding distribution of application working threads
and resources to each container to serve the model. In addition, we investigate
CPU/Memory affinity for each container belonging to an online ML inference ser-
vice as part of the former deployment schemes.

1.2.3 Objective 3: Devise an autonomic management platform for
containerized HPC, BD, and ML applications

After being able to containerize various applications and understand the impact of the
various deployment options, the challenge is how to enable DevOps to develop, build,
and deploy these containerized applications efficiently and manage containers in multi-
tenant and dynamic contexts. Therefore, our objective is to devise a platform (so-
called Scanflow-K8s) to i) help the users to develop faster their containerized
applications and build images; ii) enable the deployment options analyzed
before to feature efficient deployments; iii) bring autonomic computing for
continuously managing applications.

Our contributions to achieve this objective are as follows, and have resulted in publi-
cations [98][100]:

1. O3-C1: We enable an agent-based approach to leverage autonomic computing.
This multi-agent system aims to maintain robustness and satisfy requirements
at the application layer. We design the Scanflow multi-agent approach by using
triggers, primitives, and strategies.

2. O3-C2: We investigate an architecture with abilities for two-layered management
(i.e., application layer and infrastructure layer). Based on the architecture, we
establish a real platform Scanflow-K8s, a functional agent-based platform that
enables autonomic management and online supervision of the end-to-end life-cycle
of ML workflows on Kubernetes. Moreover, various teams could use Scanflow-K8s
to build and deploy their ML workflows in different phases.

3. O3-C3: We extend the platform in the application layer with a Scanflow(MPI)
package, which allows the users to use the Scanflow-client Python library to easily
define and build HPC workloads locally and submit MPI jobs to Scanflow-server
to be deployed in a Kubernetes cluster.

1.2.4 Objective 4: Optimize container management and scheduling for
containerized HPC, BD, and ML applications

Utilizing the knowledge and the platform provided by Objective 2 and Objective 3, re-
spectively, our objective is to design autonomic management mechanisms and
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efficient scheduling policies that outperform the state-of-the-art by allowing agile
and fine-grain dynamic resource provisioning to orchestrate resource sharing and inte-
grating HPC and Cloud scheduling and resource management techniques. Therefore,
on the one hand, we implement policies in the agent to feature the autonomic man-
agement and online supervision of the end-to-end life-cycle of ML workflows
on Scanflow-K8s. On the other hand, we propose fine-grained scheduling policies
for containerized HPC workloads in Kubernetes clusters (i.e., Scanflow(MPI)-K8s
platform).

Our contributions to achieve this objective are as follows, and have resulted in publi-
cations [98][100]:

1. O4-C1: We conduct experiments on Scanflow-K8s to illustrate the features of the
agents and evaluate the feasibility and effectiveness of our agent-based approach
for autonomic management of ML workflows. We define and implement policies
for Scanflow agents to support autonomous management for ML workflows in each
different dynamic context.

2. O4-C2: We propose fine-grained scheduling policies for containerized HPC work-
loads in Kubernetes clusters, focusing on multi-container deployments according to
the application profile, using CPU/memory affinity and the idea of even distribu-
tion. We implement and adopt our scheduling schemes on a Scanflow(MPI)-K8s.
We develop policies for the granularity-aware agent in the application layer, and
the MPI-aware plugin and the container-based task-group scheduling scheme for
the Kubernetes Volcano scheduler in the infrastructure layer.

Figure 1.3 represents these objectives and contributions and their relationships.

Objective 1: Enable deployments
of HPC, BD, and ML applications

using containers

Container Technology
Container Granularity
Container Affinity
Container Network

Objective 2: Understand the
performance of HPC, BD, and ML

applications running on containers

Performance analysis for HPC
workloads
Performance analysis for online
ML inference services

Objective 3: Devise an autonomic
management platform for

containerized HPC, BD, and ML
applications

Scanflow multi-agent framework
Scanflow-Kubernetes platform
Scanflow(MPI)-Kubernetes
extension

Objective 4: Optimize container
management and scheduling for
containerized HPC, BD, and ML

applications

Autonomous management for
ML workflows
Fine-grained scheduling for
HPC workloads

provide
knowledge

provide
platform

deploy

enable

Figure 1.3: Thesis objectives and contributions diagram.

Overall, these contributions demonstrate the feasibility and benefits of converging
HPC, BD, and ML applications using containerization technology on containerized in-
frastructures, providing insights into performance analysis for different multi-container
deployment options, conducting a platform for autonomous management for container-
ized applications, and presenting efficient container management and scheduling schemes.
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1.3 Thesis Outline

1.3 Thesis Outline

The content of the thesis is organized in the following chapters and appendices:

• Chapter 2 presents the literature review of HPC, BD, and ML applications and
features, as well as state-of-the-art of containerization and container management
methods and technologies.

• Chapter 3 enables the multi-container deployments of HPC applications with var-
ious container-level configurations and supports different configurations for HPC
applications or infrastructures. The first two cases present a systematic perfor-
mance comparison and analysis of multi-container deployment schemes for HPC
workloads on a single-node platform, which considers different containerization
technologies (including Docker and Singularity), different container granularity
(number of containers), different processor and memory affinity, two different plat-
form architectures (UMA and NUMA), and two application subscription modes
(exactly- and over-subscription). The last case conducts a systematical study on
the performance of multi-container deployments for HPC workload on a cluster
with different network fabrics and protocols, focusing especially on Infiniband net-
works. We analyze the impact of container granularity and its potential to exploit
processor and memory affinity to improve applications’ performance (O1-C1/C2
and O2-C1/C2).

• Chapter 4 presents a systematic study on the performance of multi-container
deployment schemes for online ML inference services. We share the findings and
lessons learned from conducting representative client loads on an image classifi-
cation model across numerous deployment configurations, including the impact of
container granularity and its potential to exploit processor and memory affinity
(O1-C3 and O2-C3).

• Chapter 5 investigates an architecture for autonomic ML workflows with abil-
ities for multi-layered control, based on an agent-based approach that enables
autonomic management and supervision of ML workflows at the application layer
and the infrastructure layer (by collaborating with the orchestrator). We design a
Scanflow ML framework to support such multi-agent approach by using triggers,
primitives, and strategies. In this chapter, we also implement a practical platform,
so-called Scanflow-K8s, that enables autonomic ML workflows on Kubernetes clus-
ters based on the Scanflow agents (O1-C3, O3-C1/C2, and O4-C1).

• Chapter 6 conducts fine-grained scheduling policies for containerized HPC work-
loads in Kubernetes clusters, focusing especially on partitioning each job into a
suitable multi-container deployment according to the application profile. Based
on the platform presented in Chapter 5, we implement our scheduling schemes on
different layers of management (application and infrastructure), so that each com-
ponent has its own focus and algorithms but still collaborates with others (O3-C3
and O4-C2).

• Chapter 7 concludes the thesis and discusses some future work.

• Appendix A lists the publications and contributions from the author during this
Ph.D., both related and non-related to the thesis.
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• Appendix B presents grants obtained and activities attended during the Ph.D.
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Chapter 2

State of the Art

In this chapter, the introduction of the current state-of-the-art of topics under study in
the thesis is provided. The following topics are presented: In Section 2.1, the current
HPC, BD, and ML communities are elaborated. For each community, we introduce
application characteristics, corresponding software stacks, specific hardware and bench-
marks. Section 2.2 explains the virtualization/containerization technology, multi-host
container networking, related work regarding multi-container deployment schemes and
corresponding container affinity settings. Some discussions about the current container
management system and its scheduling mechanisms are described in Section 2.3.

2.1 HPC, BD, and ML Communities

The HPC, BD, and ML communities are different or even separate in both infrastructure
and platform layers. The different infrastructures and software stacks for HPC, BD,
and ML communities are shown in Figure 2.1. Thus, in the following sections, we
introduce each community with its application characteristics, corresponding software
stacks, specific hardware and benchmarks.

2.1.1 High Performance Computing

Introduction

With the development of information technology (IT), scientists began to simulate com-
plex phenomena and systems through computation a few decades ago. This computa-
tional branch is distinguished from the empirical and theoretical branches as it can solve
complex equations for which an analytical solution cannot be achieved. Simulation, the
method of doing the computation, is called the third paradigm of scientific development
[58]. High Performance Computing (HPC) is required for this simulation for large-
scale scientific engineering problems because of its computational speed, accuracy, and
supported programming models and libraries. In the third generation of scientific devel-
opment, HPC is widely used for dealing with complex scientific problems in the areas
of Climate prediction [130][179], Bioinformatics, Atmospheric composition, Genomics
and Geophysics 1, etc. The supercomputers optimized for HPC are massively-parallel
machines usually consisting of thousands of computing nodes with the latest multi-core
processors, non-trivial NUMA architectures, computational accelerators (e.g., GPUs),
high-speed network interconnects (e.g., Infiniband), and parallel file systems (e.g., GPFS
[65], Lustre) [9][150]. These high-performance infrastructures empowering supercomput-
ers directly affect the effectiveness of problem resolutions.

1https://www.bsc.es/research-and-development/research-areas
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Figure 2.1: Convergence of HPC, BD, and ML applications on containerized infrastruc-
tures.
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Message Passing Interface (MPI) Programming Model

MPI (Message Passing Interface) is a programming model that is widely used for parallel
computing. It provides a standard set of routines or functions for message passing
between multiple processes, which can run on different processors or computers in a
network [39]. Processes communicate with each other by sending and receiving messages
through a communication network. MPI provides a set of functions (e.g., MPI Send,
MPI Recv, etc.) for sending and receiving messages, as well as for synchronization and
collective operations (e.g., MPI Barrier, MPI Allreduce, etc.).

MPI is commonly used in scientific computing and HPC applications where large
amounts of data need to be processed in parallel. MPI can be used with a wide range
of programming languages, including C, C++, Fortran, and Python, and is supported
by many hardware (e.g., clusters, multi-core CPUs, and GPUs) and software vendors.
MPI has some reference implementations, such as MPICH2 or OpenMPI3.

MPI provides a high degree of control over the parallelism of an application, which
can be important for achieving good performance in parallel computing. OpenMPI,
for instance, allows to 1) decide the hostfiles to enable the parallelism of an ap-
plication among multiple hosts; 2) configure the appropriate rankfiles to carry out
the ranking, mapping, and binding between processes to cores; 3) select between two
subscription modes: exactly-subscribed mode where OpenMPI can run its message
passing engine always in aggressive mode (never giving up the processors to other pro-
cesses) and over-subscribed mode where the OpenMPI engine must run in degraded
mode and frequently yield the processor to its peers when idle, thereby allowing all pro-
cesses to make progress [136]. The awareness of the aggressive or degraded mode of the
OpenMPI engine is usually automatic, although the user can use the MCA parameter
mpi_yield_when_idle to control whether an MPI process runs in aggressive or degraded
performance mode [135].

InfiniBand

InfiniBand (IB) [121] is a kind of fabric HPC infrastructure of supercomputers for modern
high-speed network interconnects. Six of the top ten HPC supercomputers in the world
are accelerated by InfiniBand, and more than 59% Top500 4 HPC platforms are con-
nected by Mellanox InfiniBand and the Ethernet Solutions [123][120][180]. 200G HDR
InfiniBand published by Mellanox on 2018 accelerates 31% of new InfiniBand systems
on November’s Top500, including the fastest built supercomputer [119][122].

InfiniBand [163] interconnect can provide high throughput and low latency communi-
cation across systems for distributed and parallel applications. IB comprises two channel
adapters: Host Channel Adapter (HCA) and Target Channel Adapter (TCA). HCA pro-
vides hardware visibility at the user level for communication. OpenMPI follows the stan-
dard of the software stack from the OpenFabrics Alliance for the Remote Direct Memory
Access (RDMA) through InfiniBand, which allows processes to access the memory of a
remote node process without the CPU intervention [174].

InfiniBand interconnect can also support other communication protocols (see Fig-
ure 2.2). For example, TCP/IP network protocol stack can be adapted for InfiniBand

2https://www.mpich.org/
3https://www.open-mpi.org/
4https://www.top500.org/
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through TCP/IP over IB (IPoIB) [50]. IPoIB is a Linux kernel module that enables
InfiniBand hardware devices to encapsulate IP packets into IB datagrams or connected
transport services. When IPoIB is applied, an InfiniBand device is assigned an IP ad-
dress and accessed just like any regular TCP/IP hardware device [174]. The IPoIB driver
supports two modes of operation: datagram and connected. In datagram mode, the IB
unreliable datagram transport is used. In connected model, the IB reliable connected
transport is used. Although IPoIB cannot achieve better performance than the native
RDMA, it still has better point-to-point performance than the original TCP/IP over
Ethernet [109][107].

Figure 2.2: Common protocols using Open Fabrics [107][110].

HPC Benchmarks

Some well-known HPC benchmarks are introduced to be used for the thesis evaluations.
They are designed to mimic some behaviors present in the real-world HPC applications.

HPC Challenge Benchmark: The HPC Challenge (HPCC) benchmark suite5 is
widely used to evaluate the performance of HPC systems. Its design goal is to enable
complete understandings of the performance characteristics of platforms [112]. It consists
of several benchmarks that show the performance impact of real-world HPC applications.
For example, the capability of processor floating point computation (e.g., DGEMM,
FFT), memory bandwidth (e.g., STREAM, FFT) and latency (e.g., RandomAccess),
and communication bandwidth (e.g., b eff, PTRANS, FFT) and latency (e.g., b eff,
RandomAccess, FFT) [197]. They provide common and standard units to evaluate the
results of HPCC. The benchmarks are described as follows:

• EP-DGEMM (DGEMM) [112]: Real-valued dense matrix multiplication in
double precision. Measures the floating point rate of execution in GFLOP/s.

5http://icl.cs.utk.edu/hpcc/
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• G-FFT (FFT) [1]: Global discrete Fast Fourier Transform of a vector. Measures
the floating point rate of execution in GFLOP/s.

• G-PTRANS (PTRANS) [1]: Global Parallel matrix transpose. Exercises the
communications where pairs of processors communicate with each other simulta-
neously. It is a useful test of the total communication capacity (in GB/s) of the
network.

• EP-STREAM (STREAM) [62]: Measures sustainable memory bandwidth (in
GB/s) and the corresponding computation rate for simple vector kernels.

• G-RamdomAccess (RA) [1]: Random memory access. Measures the rate of
integer random updates of memory (in GUP/s, i.e., GigaUpdates per second).

• b eff [62]: Measures the latency (in microseconds) and bandwidth (in GB/s) of
various communication patterns, including ping-pong and ring.

OSU Benchmark: OSU Benchmark6 is a suite of benchmarks that measure the MPI-
level operation performance. We choose this benchmark for understanding MPI commu-
nication performance with different message sizes. For instance, the OSU MPI Alltoallv
Latency Test from the OSU benchmark suite can be used to evaluate the global latency
of MPI ranks sending and receiving data and the OSU Bidirectional Bandwidth Test is
able to measure the maximum aggregate bandwidth between two adjacent nodes that
send out a fixed number of back-to-back messages between them.

MiniFE Application: MiniFE7 is a proxy application for unstructured implicit finite
element codes. It is similar to HPCCG and pHPCCG but provides a much more complete
vertical covering of the steps in this class of applications. The physical domain is a 3D
box with configurable dimensions and a structured discretization (which is treated as
unstructured). The domain is decomposed using a recursive coordinate bisection (RCB)
approach and the elements are simple hexahedra. The problem is linear and the resulting
matrix is symmetric, so a standard conjugate gradient algorithm is used with a general
sparse matrix data format and no preconditioning. The use of this mini-application
(small self-contained proxies for real application) is an excellent approach for rapidly
exploring the parameter spaces, also it enriches the interaction between application,
library and computer system developers by providing explicit functioning software and
concrete performance results that lead to detailed, focused discussions of design trade-
offs, algorithm choices and runtime performance issues.

2.1.2 Big Data

Introduction

Data is increasing massively over the years [194]. Big Data, defined as high-volume, high-
velocity, and/or high-variety information assets has been widely utilized in commerce
and finance [45]. Therefore, IT with big data has entered the fourth generation of science
development (i.e., Data-Intensive Science) [58]. Those extremely big data from many
different sources are facing the challenges of data storage, analysis, and collaboration.

6https://mvapich.cse.ohio-state.edu/benchmarks/
7https://github.com/Mantevo/miniFE
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Some efficient technologies and platforms, such as Hadoop8 and Spark9, are supporting
this data mining, analyzing, and learning.

Apache Hadoop and Spark

Apache Hadoop is an open-source software library for reliable, scalable distributed com-
puting and a framework that allows for the distributed processing of large data sets
across clusters of computers using MapReduce programming models. It contains several
modules, including a job scheduling and cluster resource management framework (i.e.,
Yet Another Resource Negotiator (YARN)), and a distributed file system (i.e., Hadoop
Distributed File System (HDFS)) that provides high-throughput access to application
data [194].

MapReduce programming model: MapReduce is a programming model for par-
allel data processing on a large distributed cloud computing environment. MapReduce
programs can be written in several languages, such as Java, Python, and Ruby. Details
are shown in Figure 2.3.

Figure 2.3: MapReduce programming model [194].

MapReduce model works in two stages: the map stage and the reduce stage. Each
stage has key-value pairs as input and output [194]. A MapReduce job divides the input
data into independent splits which are processed by map tasks in a completely parallel
manner. Then, the model sorts the outputs of the maps as the input of the reduce
tasks. The reduce tasks fetch the intermediate data from the local or remote file system.
After receiving these data from various locations, the reduce tasks merge these data and
finally store the results into the file system [5]. Most MapReduce jobs are limited by
the network bandwidth available on the cluster because of the data transferred between
the map and reduce stages. Also, due to the data being temporarily or permanently
stored in the file system, it is better to use the new generation disk drivers with growing
transfer speeds.

8https://hadoop.apache.org/
9https://spark.apache.org/
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YARN: Apache Hadoop YARN is a resource management system designed for dis-
tributed computing and working on Hadoop clusters. YARN provides a global Resource
manager as a master to manage the usage of resources (cpu, memory, disk, network)
on the whole clusters, Node manager, one for each node, who is responsible for starting
containers, monitoring, and reporting the resource usage to the Resource manager, and
an Application master, one for each MapReduce job, who is taking charge of negotiating
resources from the Resource manager and working with the Node managers to execute
and monitor tasks. YARN scheduler allocates the resources to applications depending
on its configured policy, for example, the FIFO, Capacity, and Fair Schedulers.
HDFS: HDFS is a distributed file system designed to run on commodity hardware.

It is originally used for the Hadoop framework because of its advantages different from
other distributed file systems, such as fault tolerance and throughput. HDFS provides
high throughput access to application data and is suitable for applications that have
large data sets [4].
Spark: Apache Spark is a unified analytic engine for large-scale data processing. It

provides high-level APIs in Java, Scala, Python, and R and high-level tools for a wide
range of applications, including MLlib for ML [56], Spark SQL for SQL and structured
data processing, Spark streaming for stream processing, and GraphX for graph com-
putation. Nowadays, it also can be deployed on Hadoop YARN [172], Apache Mesos10

[171] and Kubernetes11 [57][170][169].

BD Benchmarks

Terasort Benchmark is a commonly used BD benchmark to measure MapReduce perfor-
mance. In the previous work from our group [160], Terasort was used in the evaluations.
Terasort Benchmark: TeraSort is a popular benchmark that measures the amount

of time to sort one terabyte of randomly distributed data on a given computer system.
It is commonly used to measure MapReduce performance of an Apache Hadoop cluster.
TeraSort combines testing the HDFS and MapReduce layers of a Hadoop cluster and
consists of three MapReduce programs.

• TeraGen is a MapReduce program that generates large data sets to be sorted.

• TeraSort reads the input data and uses MapReduce to sort the data.

• TeraValidate validates the sorted output to ensure that the keys are sorted within
each file. If anything is wrong with the sorted output, the output of this reducer
reports the problem.

2.1.3 Machine Learning

Introduction

Data science and ML are becoming core capabilities for solving complex real-world prob-
lems, transforming industries, and delivering value in all domains. ML has become com-
mon with good results in different tasks such as image classification, machine translation,
recommendation systems, and speech recognition [55][81][111][26]. However, ML is not
only about ML algorithms, but surrounds with various and complex elements (as shown
in Figure 2.4) for efficient ML model development, training, inference, and maintenance.

10http://mesos.apache.org/
11https://kubernetes.io/
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Figure 2.4: Elements for machine learning [49].

ML Workflows

While working on a ML project, workflows comprising some reproducible steps run as a
pipeline are widely used to build or deploy a model efficiently because of the flexibility,
portability, and fast delivery they provide to the ML life-cycle [48]. The ML life-cycle
typically contains two phases, namely ML training and ML inference.

• ML Training: In the ML training phase, ML algorithms are used to build and
obtain ML models from a training dataset. A training workflow can be vary
depending on specific use cases, but typically involve these steps: data preparation,
data validation, data preprocessing, model development, model validation andmodel
testing. From a runtime perspective, the ML training workflow is run as offline jobs
and may take days to complete. In particular, the executors of batch workflows
run once for each time the workflow is executed. The Data Science team uses the
batch ML workflows to build and gain ML models at the ML training phase.

• ML Inference: Once the model has been evaluated and its performance is sat-
isfactory, it can be deployed to a production environment. In the ML inference
phase, given ML models are used to make predictions from new data. ML infer-
ence workflows normally have these steps: data validation, data preprocessing, and
model serving. ML inference workflows can be either conducted as a batch process,
where predictions can be generated asynchronously from a batch of samples with
no specific time limit to receive the prediction results, or through an online ML
inference service, which receives dynamic queries from end-users and serves the
predictions in real-time (subject to a latency bound) [97][98][203][92].

From a runtime perspective, the batch ML inference workflow is run as offline jobs
and may take days to complete, whereas the online ML inference service is realized
as a long-run service that is able to deal with dynamic queries issued by end-users.
In particular, the online workflow is deployed as a long-run microservice that is
able to deal with clients’ invocations by APIs. The Data Engineer team conducts
the batch ML workflows for batch predictions or deploys online ML workflows in
production to make real-time predictions at the ML inference phase.
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ML Frameworks

Many tools and frameworks are available to help streamline ML workflows and make
the operations easier to develop, train, and deploy ML models.

There are many popular ML frameworks and libraries available to build ML models,
such as TensorFlow [175], Keras, PyTorch [143], and Kubeflow Pipelines12 that make
it easier to develop and train ML models. Lately, many data researchers and compa-
nies have been interested in automating the ML tasks within a training workflow (e.g.,
AutoML) in order to construct ML models efficiently, such as model selection, hyper-
parameter tuning, and feature engineering [199][155][19][38][77]. It aims to simplify the
process of building and deploying machine learning models by automating some or all
of the steps involved in the ML workflow. However, these powerful AutoML modules
and frameworks are turned off after training a model, thus cannot help the model after
being deployed to meet dynamic changes.

Once the model is ready, the next step is to deploy it into a production environment.
ML models are trained through diverse ML frameworks, which causes the runtime of
the ML inference services to be different. Early works on ML inference systems such
as Clipper [28] and Rafiki [191] deployed models in containers using custom runtime
and implemented an abstract layer between clients and models to achieve model selec-
tion and request batching. Currently, there are several open-sourced runtime for online
ML inference services in production, such as Tensorflow serving [176], TorchServe [144],
Kserve [82], or Seldon [161], as well as some optimized libraries for ML, such as Intel
Math Kernel Library (MKL) [71]. These runtimes may vary, but they contain similar
functionalities (e.g., model version management, model warmup) and configuration set-
tings (e.g., parallel threading model, batching, and caching) [176]. Experienced Data
Engineers could tune the parameter settings of the model serving runtime to improve
the performance. For instance, Hasabnis et al. studied how to auto-tune the threading
model for Tensorflow serving and MKL CPU backends [54].

In addition to developing, training, and deploying the ML model, once the model is
deployed, it is also important to continuously monitor and maintain the model to ensure
that it continues to perform well. This can involve tasks such as retraining the model on
new data, updating the model, and monitoring the model’s performance and accuracy
over time. Those related works regarding autonomous management and supervision for
ML applications will be introduced later in Section 2.3.3.

ML Usecases and Benchmarks

ML usecases are used for prototyping a ML model from training to inference in produc-
tion. Handwritten digits classification with MNIST dataset is a widely used example for
fast prototyping. Other ML models can be adopted in the same manner as the MNIST
usecase. MLPerf Inference is a benchmark suite for measuring how fast systems can run
models in a variety of deployment scenarios. We use it in the performance analyses for
online ML inference. Also, we use its client to generate different realistic loads to create
different self-adaptation scenarios.

MNIST Usecase: MNIST13 is a popular dataset in machine learning used for image
classification tasks. It consists of 70,000 grayscale images of handwritten digits (0-9)

12https://www.kubeflow.org/
13http://yann.lecun.com/exdb/mnist

19

https://www.kubeflow.org/
http://yann.lecun.com/exdb/mnist


Chapter 2 State of the Art

with 28x28 pixel resolution. This dataset is often used as a benchmark in the develop-
ment and testing of machine learning algorithms for image recognition and classification
tasks. It has been used extensively in academic research, industry, and education to
train and evaluate machine learning models. One of the most common use cases of the
MNIST dataset is to train machine learning models to recognize handwritten digits. The
goal of this task is to correctly classify the digits in the images. In addition to image
classification, MNIST is also used for testing and benchmarking other machine learning
algorithms, such as anomaly detection and generative models.

MNIST-C14 is a dataset that was created as a variant of the original MNIST dataset.
The “C” in MNIST-C stands for “Corrupted”, as the images in this dataset have been
artificially corrupted to simulate common real-world image corruption and distortion.
The goal of using MNIST-C is to evaluate the robustness of machine learning models
to various types of image corruption and distortion. Machine learning models that can
perform well on MNIST-C are more likely to perform well in real-world applications
where the images may be distorted or corrupted.

MLPerf Inference Benchmark: MLPerf Inference Benchmark15 is a benchmark
suite specifically designed to measure the performance of ML models during inference. It
includes standard models, datasets, and evaluation metrics of different client scenarios,
which enables fair and comparable measurements. Additional benchmark details can be
found in [149].

• MLPerf Model and Dataset: MLPerf provides computer vision applications
with its associated reference model (i.e., a classifier network takes an image and
selects the class that best describes it). In particular, for image classification, it
provides a well-known vision model: the computationally-intensive Resnet50 [55]
as a benchmark. This model accepts base64-encoded JPEG images as input and
decodes them within the inference stage. We use the ImageNet 2012 dataset, crop
the images to 224x224 in preprocessing, and send the strings of base64-encoded
images through the physical network using REST APIs.

• MLPerf Client Scenarios: MLPerf LoadGen provides four realistic end-user
scenarios, namely Single-Stream (SS), Multi-Stream (MS), Server (S), and Offline
(O), which represent many critical inference applications. Figure 2.5 shows how
LoadGen generates queries for each scenario.

– SS: The Single-Stream scenario represents the client sending inference-query
streams one by one (i.e., the client waits for the completion of one query
before issuing another) with a query sample size of 1. The objective is to
assess the responsiveness of the SUT by means of the 90th percentile latency.

– MS: The Multi-Stream scenario represents the client sending inference-query
streams with a fixed time interval. It assesses the maximum query sample
size of each inference-query stream subject to a latency bound. No more than
1% of queries may exceed the latency bound.

– S: The Server scenario represents an application where the one sample-sized
inference-query streams are arriving randomly at the SUT with a Poisson
distribution. The SUT responds to each query within a benchmark-specific

14https://github.com/google-research/mnist-c
15https://github.com/mlcommons/inference
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Figure 2.5: The timing and number of queries from LoadGen [149].

latency bound. No more than 1% of queries may exceed the latency bound.
The performance metric is the Poisson parameter that indicates the queries-
per-second (QPS) achievable while meeting the latency QoS requirement.

– O: The Offline scenario represents batch-processing applications where all the
data are sent to the SUT as soon as possible and latency is unconstrained.
The performance metric is the throughput measured in samples per second.

2.2 Virtualization/Containerization Technology

Virtualization/Containerization technologies are typically used in data centers and cloud
environments, and decouple applications from their relied infrastructures [165]. Section
2.2.1 introduces the traditional and mature hardware virtualization technology and its
use to support HPC, BD, and ML applications. An emerging containerization technology
and its implementations are described in Section 2.2.2. Section 2.2.3 introduces multi-
host container networking, including underlay and overlay network approaches. Related
work regarding multi-container deployment schemes and their corresponding affinity
settings for different applications and hardware are presented in Section 2.2.4.

2.2.1 Hardware Virtualization

Virtualization technology has been developing rapidly over the few decades because
vendors, including Amazon, Google, Microsoft, etc., have been growing interested in
providing their computing infrastructures as cloud services. As a result, virtualization
has become one of the basic technology of cloud computing [204]. Hardware Virtu-
alization solutions, firstly used on production, such as VMware16, VirtualBox17, Xen18

16https://www.vmware.com/products/esxi-and-esx.html
17https://www.virtualbox.org
18https://xenproject.org/
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and Kernel-based Virtual Machine (KVM)19 have been improving by enterprises and the
open-source community. These hardware virtualization solutions support the customiza-
tion and portability of the application’s computing environment and the execution of
the application in a secure and isolated way from other applications sharing the same
platform.

Hardware virtualization, namely abstracts the hardware and system resources from the
host operating system for instantiating virtual machines that act like real computers with
their own operating system and kernel. Those virtual machines are typically referred
as guests, and concurrently run on a host supervised by a hypervisor. Some researches
discover the possibility of virtualizing the HPC platforms [184][126]. Concluding from
Younge et al, [201], KVM is the best overall choice for HPC cloud environments. Thus we
expect other hardware virtualization technologies using the same hardware acceleration
features are providing a worse or similar performance to KVM.

Linux KVM is a kernel module, included in the mainline, that lets the processor on
the host machine enter into a guest state. The guest system has its own set of ring
states, but privileged ring0 instructions fall back to the hypervisor code. Furthermore,
the KVM module also handles low-level parts of the emulation, like the MMU registers,
PCI emulated devices. QEMU20 is a standalone software that emulates machines or
as in an official definition, a generic open-source machine emulator and virtualizer. In
this case, emulation means that binary code written for a given processor is recompiled
to run for another one. QEMU and KVM work together to fully virtualize a virtual
machine. Libvirt21 interacts with the underlayer of KVM and QEMU and provides a
high-level user interface for the user’s operation in order to easily manage VMs.

Several studies have explored the evaluation of the hardware virtualization perfor-
mance in HPC environments [201][165][37]. In general, hardware virtualization tech-
nology has the extra operating system and the hypervisor enhancing large latencies and
overheads, thereby deploying applications on it has fallen short to reach the performance
of bare-metal executions. VMware [185] designs hardware virtualization work together
with HPC platforms to deliver a secure, elastic, fully managed, self-service, virtual HPC
environment running HPC workloads. It admits that performance degradation of MPI
workloads due to latency requirements combined with intensive communication among
processes. However, they also propose the VM can achieve performance near bare metal
by leveraging computer accelerators. Also, the usage of hardware virtualization for BD
and ML applications has been studied in several works [73][29][147]. Some point out
promising advantages in some scenarios, for instance, to exploit NUMA locality by run-
ning several virtual machines in a physical host and sizing them in order to fit within a
single NUMA node [29].

2.2.2 Containerization

The emergence of operating-system-level virtualization (i.e., containerization) allevi-
ates performance problems while maintaining most of the advantages of virtualization
[165][37]. Each container environment and isolation are managed by the host kernel,
which allocates the needed resources (CPUs, memory, network I/O) to each container.

19https://www.linux-kvm.org/page/Main_Page
20https://www.qemu.org
21https://libvirt.org
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Figure 2.6: Difference between Hardware Virtualization and Containerization.

The differences between hardware virtualization and containerization are shown in
Figure 2.6. The key point of containerization is that containers do not run their own
kernel, but share the underlying host kernel for OS services and run a different software
stack. Also, containers directly communicate with the OS by the system calls whereas
the VMs run in a non-privileged mode and the instructions inside need to be translated
into the host instructions by the hypervisor.

Recently, containerization such as Docker22, Linux Containers (LXC)23, OpenVZ24,
Podman25, Shifter26 and Singularity27 become alternative solutions to hardware virtual-
ization because of its performance and agility [208]. Therefore, enterprises and commu-
nities have been getting more interest in using them for the fast, portable and flexible
deployment of HPC, BD, and ML applications [70][200][17][209][208].

Docker

Docker, the most popular containerization technology, builds upon resource isolation and
limitation features of the Linux kernel, such as namespaces and cgroups, respectively.
Also, it adds a union-capable file system such as Overlay Filesystem (OverlayFS).

Without the hypervisor needed for virtual machines, Docker contains a lightweight
engine to control and manage its containers. Also, Docker allows containers to share
the underlying host kernel including the libraries, modules, kernel functions, and a root
file system. Regarding runtime isolation, Docker containers are defined into some op-
erational spaces (e.g., Network, Process Identifier (PIDs), User Identifier (UIDs), Inter-
Process Communicate (IPC)) which are implemented by means of namespaces. Regard-
ing resource limitation, some sets of dedicated resources that are defined by means of
cgroups can be allocated to the Docker containers.

22https://www.docker.com/
23https://linuxcontainers.org
24https://openvz.org/
25https://podman.io/
26https://shifter.readthedocs.io/en/latest/#
27https://sylabs.io/
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Docker has advantages including portable and flexible deployment, registry, scalability
of applications and is being supported by different frameworks and can be used for
running BD and ML applications [70][200][209][17][208].

Singularity

Singularity containers are mostly used in HPC environments where they are proven to
introduce less overhead than Docker while providing more reliable security guarantees
[8]. Regarding security, Singularity creates containers as individual entities that are ex-
ecuted by the host system instead of creating containers as spawned child processes of
a root owned daemon. Regarding performance, Singularity enables all the containers to
use the underlying HPC environment in a natural way (without namespaces isolation).
Because of this feature, the integration between Singularity and MPI can be transparent
to the user. Users only need to run mpirun command as they run it on bare-metal ma-
chines, then the MPI process management daemon (ORTED) will handle the containers
execution and the processes launching and communications. These make Singularity a
first-class choice for HPC and scientific simulations [91][159].

In late 2018, Singularity 3.0 was released [63]. This version brings a new functionality
(so-called instances) to run containers in “daemon” mode, which allows running them as
services in the background. Singularity instances can have isolated network resources,
and they also support cgroups functionality to restrict the resource usage. MPI applica-
tions can run in Singularity instances as if they were running in separate hosts, having
its own network identity and using an SSH backend service to communicate. In this
sense, Singularity instances somehow mimic Docker, while still keeping the advantages
regarding security, thus we also include them as a part of our evaluation.

2.2.3 Multi-host Container Networking

Communication inside a container uses shared memory, because all the processes have the
same IPC namespace which shares the IPC resources like message queues, semaphores,
and shared memory. Containers within a same host use the host network to communi-
cate. Moreover, containers could communicate across hosts through both underlay and
overlay networking approaches.

In underlay network approaches, containers are directly exposed to the host network.
When running a single container per host, the container could run in host mode and share
the network stack and namespace of the host. When running one or multiple containers
per host, we also consider MACVLAN as an underlay network approach. MACVLAN
allows configuring multiple MAC addresses on a single physical interface. This can be
used to assign a different MAC address (and consequently a different IP address) to
each container, making it appear to be directly connected to the physical network. In
that way, containers can be accessed through their IP addresses. However, MACVLAN
requires those addresses to be on the same broadcast domain as the physical interface.
MACVLAN is a simple and efficient approach but the underlying network could restrict
its application, in particular by limiting the number of different MAC addresses on a
physical port or the total number of MAC addresses supported, or forbidding multiple
MAC addresses to be assigned on a single physical interface. Furthermore, MACVLAN
is not generally supported for wireless network interfaces.
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In overlay network approaches, a logical network between the containers is built us-
ing networking tunnels to deliver communication across hosts. Those tunnels add an
additional level of encapsulation to the underlying network. Because of this, they may
introduce some extra overhead when compared with an underlay approach, due to the
encapsulation overhead of the frame size and the processing overhead on the server.
Nevertheless, overlay network approaches are very flexible as they decouple the virtual
network topology from the physical network, which supports for instance the mobility
of components independently of the physical network. In addition, they essentially sup-
port an unlimited number of components, as they do not suffer from restrictions to the
number of addresses imposed by the physical network [160].

2.2.4 Multi-container Deployment Schemes and Affinity Settings

In addition to using different container technologies and container networks, container
granularity and container affinity settings show other aspects that can be utilized to
improve application performance. In the previous work in our group [160], we enabled the
interconnection across hosts through TCP/IP protocol between Docker and Singularity
instances running a BD application, and also analyzed the performance of enabling
affinity for BD workers. In this section, we focus on the related work shown in the field
of using multi-container deployment schemes and affinity for HPC or ML workloads.

Multi-container Deployment Schemes for HPC Workloads

In order to improve the performance of HPC applications on virtualized multi-socket
architectures, several works have proposed partitioning the HPC applications into sev-
eral virtual machines to prevent them spanning multiple NUMA domains [66][67]. The
same idea of sizing virtual machines conforming with NUMA boundaries for throughput
workloads (i.e., MPI jobs without communication) has been suggested by VMware in
their reference architecture for virtualizing High Performance Computing [185].

Consequently, application partitioning comes together with the need to schedule the
resulting virtual machines in the NUMA platform so that each of them optimizes its
memory access locality [148][23] or the access to local I/O devices [14]. Cheng et al.
[23] presented a user-level scheduler that periodically adjusts the placement of virtual
machines aiming for local node execution, that is, the VCPUs of a virtual machine are
running on one NUMA node and its memory is also located on the same NUMA node.
Rao et al. [148] proposed a load-balancing algorithm to determine the optimal VCPU-
to-core assignment by dynamically migrating VCPUs to minimize the penalty to access
the uncore memory subsystem.

However, there is few empirical research yet evidencing whether the experience of
virtualization can be applied to containerization with the same benefit for HPC applica-
tions. Yang et al. [198] proposed a management service for Docker containers based on
OpenStack, which features a NUMA-aware mechanism that limits the accessible CPU
and memory of containers to the same NUMA node. However, this work does not con-
sider multi-container deployments from a single tenant but a simple scenario with two
containers from two different tenants.

Several studies have compared the overhead of using virtualization and containeriza-
tion technologies for HPC applications [16][165][178]. They claimed that containerization
has less overhead than virtualization in most cases. As a result, many works have fo-
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cused on the performance analysis of containerized deployments for HPC applications.
Xavier et al. [196] firstly did in 2013 a full performance comparison of container-based
technologies relevant at that time, mainly Linux-VServer, OpenVZ, and LXC, for HPC
workloads. However, containerization technologies have evolved considerably since then,
and new ones must be also evaluated for deploying HPC applications. In particular,
Docker has become the most popular containerization software, and Singularity is also
widely used in the community to support HPC workloads [8][154][192][202]. These works
have focused on evaluating the performance of an HPC application from a single-tenant
on a single container allocated on a single node with different containerized technologies.
Other works considered multi-tenant HPC workloads. Maliszewski et al. [114] investi-
gated the performance of scientific workloads with single or multi-tenant instances in a
single node, where each tenant held its independent application among other tenants.
Jha et al. have studied HPC microservices in different container environments [74, 75].
Their work includes flexible deployments for HPC applications on a single node, from
running a single or multiple applications in a single container, to running multiple con-
tainers each holding a single application. Whereas these studies above considered one
or multiple tenants, co-located independent applications on a single node, or allocated
one or more applications into a container, none of them considered a deployment scheme
partitioning one application into several containers.

Other works have evaluated HPC workloads in distributed containerized platforms.
Saha et al. [158] evaluated the performance of an HPC application running with several
processes distributed across multiple containers using Docker Swarm, and studied dif-
ferent network methods, number of hosts, and ranks per container. Some of their results
showed that one rank per container had degradation, but they did not explain in-depth
why this occurred. In another work [157], the same authors presented a framework com-
bining Apache Mesos and Docker Swarm which can orchestrate distributed containers
with MPI processes across the nodes. They studied the overhead of running a different
number of MPI processes and nodes, and presented a co-scheduling policy. These works
showed that there is a possibility that distributed containers with partitioned processes
from a single HPC application can be allocated on the same host. However, they mainly
focused on the overhead of the orchestrator and the number of nodes, and did not study
the specific interference among these containers while being allocated on the same node.

Chung et al. [25] considered the container granularity. Their work studies the scal-
ability of running an HPC application on one or more containers. However, they only
measured Docker performance for computation and data access intensive HPC appli-
cations, and did not distinguish the different subscription modes of the application or
compare different containerization technologies.

None of these works study the joint impact of container granularity and processor and
memory affinity settings for multi-container deployments. Furthermore, none of them
feature either an in-depth performance evaluation of Singularity, including its instance-
based variant, and also a scenario adding CPU cgroups to its original implementation.
Thus, we contribute a performance comparison and analysis of distinct multi-container
deployment schemes for HPC workloads in Sections 3.3 and Section 3.4 of Chapter 3.

Multi-container Deployment Schemes for HPC Workloads with InfiniBand

Recent works have evaluated Docker and Singularity as candidate containerization tech-
nologies to run HPC applications [8][202]. These works mainly focused on a single
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container wrapped HPC application allocated on a single host, but without considering
different container granularity and different container interconnects. Rudyy et al. [154]
discussed the execution of a given containerized HPC application on HPC clusters, and
mainly studied different container technologies and different HPC architectures, but did
not consider different container granularity.

Zhang et al. [205][204] studied the performance characterization of KVM and Docker
for running HPC applications on SR-IOV enabled InfiniBand clusters, and in a further
work [207], they stated that Singularity-based container technology is ready for running
MPI applications on HPC clouds. Also, in their work [206], they studied the locality
and NUMA-aware MPI runtime for nested virtualization (a combination of virtual ma-
chines and containers). These works evaluated different aspects of using containerization
for HPC applications, but none of them considered deployment schemes with different
container granularity.

Chung et al. [25] evaluated Docker containers for deploying MPI applications. They
proposed deployment scenarios with different container granularity. However, this work
only tested computing-intensive and data-intensive applications and did not consider
InfiniBand networks. Their further work [24] considered Docker on InfiniBand and
highlighted the benefits of using InfiniBand with Docker. This work showed the results
of several benchmarks, but did not consider affinity or different network fabrics and
protocols.

Saha et al. [158] evaluated the performance of running HPC applications using Docker
Swarm. Whereas they considered a different number of MPI ranks distributed in multiple
containers across multiple hosts, their latency experiments only include a fixed message
size (e.g., 65536 bytes). Their results showed that deploying one rank per container had
worse performance because they ignored the binding policy.

Saha et al. [157] enabled the orchestration of MPI applications with Apache Mesos,
and provided a policy-based approach for deploying MPI ranks on containers with dif-
ferent granularity. However, this policy is based on TCP/IP over Ethernet, and does
not consider InfiniBand. Beltre et al. [15] evaluated Kubernetes to run MPI appli-
cations in clouds. They compared TCP/IP and InfiniBand, but they did not include
multi-container deployments.

In the previous work in our group [160], we enabled the interconnection across hosts
through TCP/IP protocol between Docker and Singularity instances running a BD ap-
plication. Moreover, in Section 3.3 and Section 3.4 of Chapter 3, we performed a perfor-
mance analysis of multi-container deployments with different container granularity for a
number of HPC applications, but only with a single host and the TCP/IP protocol.

Existing literature shows approaches and results of deploying a single container per
host using Docker or Singularity in the cloud, and most of the work considers using
the orchestration thus ignoring the original impact of the network fabric and protocols.
Moreover, there still exists a gap in terms of multi-container per host deployments eval-
uation on an InfiniBand cluster which considers the performance of different container
granularity and enhanced affinity settings using different network fabrics and protocols
for HPC workloads. Thus, we contribute a performance comparison and analysis of
distinct multi-container deployment schemes for HPC workloads on InfiniBand cluster
in Section 3.5 of Chapter 3.
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Multi-container Deployment Schemes for ML Workloads

Online communities have shared some lessons regarding how different settings can impact
the performance of deployments. Park and Paul from Tensorflow tested a Tensorflow
Serving deployment of an image classification model across numerous deployment config-
urations, such as different infrastructures, trade-offs between more or fewer servers (but
by using different sizes of the virtual machines), number of threads for deployments,
and dynamic batching considerations [140]. Morgan et al. studied the batch size and
core count scaling for the BERT-like model, as well as manually tuned multi-stream
and affinities [128][129]. These works present different deployment and scaling options,
but they do not directly assess multi-container deployments. Moreover, their evaluation
does not consider realistic client scenarios.

Multi-container deployments have been studied by some authors, although they have
not considered online ML inference services. In particular, Medel et al. [118] conducted
a performance analysis over Kubernetes considering the deployment and initialization
overhead as well as understanding the performance of different pod settings. More-
over, they provided a rule to decide the number of containers per pod by considering
the characteristics of the application. Our work in Chapter 3 demonstrated through
standalone executions that some types of containerized HPC applications achieve better
performance when exploiting multi-container deployments which partition the processes
that belong to each application into multiple containers in each node, and when con-
straining each of those containers to a single NUMA (Non-Uniform Memory Access)
domain or pinning them to specific processors. Those multi-container deployments have
been demonstrated to improve the performance of HPC workloads comprising loosely-
coupled CPU-intensive processes, which resemble the characteristics of ML inference
services. This served as an inspiration to explore as well these schemes for online ML
inference services.

General approaches for infrastructure-layer autoscaling of online services on the Cloud
have been also proposed [104][190]. Moreover, some works have focused specifically
on the deployment and scaling of online ML inference services. MArk (Model Ark)
[203], a low-latency, cost-effective inference serving system on the Cloud, used predictive
scaling to mask the instance provisioning latency. PRETZEL [92] opened a black box
of a model-serving application and enabled model-specific optimization with resource
sharing. Nexus [166] performed detailed scheduling of GPUs for DNNs. Its design
enabled several optimizations in batching and allowed more efficient resource allocation.
Swayam [51] derived a global state estimate from the local state and employed a globally
consistent protocol to proactively scale-out service instances for SLA compliance, and
passively scale-in unused backends for resource efficiency. However, all these works
mainly focus on infrastructure resource scaling to satisfy the SLAs and save costs, not
considering container count scaling in a host.

The multi-container deployments and affinity schemes provide an additional dimension
of deployment configurations at container-level for online ML inference services, thus
these schemes could be seen as complementary to infrastructure-layer scaling approaches
and could be used together to optimize the performance of online ML inference services.
This results in the work in Chapter 4.
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2.3 Container Management and Orchestration

The development of container technology has provided support for packaging and op-
erating HPC, BD, and AI workloads. Deploying different types of workloads using
containers and running on multi-tenant cloud platforms is happening. In order to au-
tomate the deployment and management of those containers with different features, the
management tools are required to be adaptive and improve the flexibility, availability
and fault-tolerant of the workloads upon.

2.3.1 Container Orchestration Platform

Currently, companies and communities have been rapidly adapting the container to be
the base technology for cloud computing as an alternative to VM. Thus, a containerized
deployment and operation management platform is their new effort to be achieved.
Companies provide some secure, reliable, and scalable orchestration solutions, such as
Google GKE (Google Kubernetes Engine)28, Amazon ECS (Amazon Elastic Container
Service)29, and Amazon EKS (Amazon Elastic Kubernetes Service)30. Some open-source
alternatives contributed by the community are Kubernetes31 or Apache Mesos32 and also
Docker provides its native Docker-swarm33 for container management. These platforms
can support containerized workloads, and each has its own characteristics in terms of
container management, deployment, scheduling, scaling, and migration.

Table 2.1: Comparison of some container orchestration platforms.

Docker-swarm Kubernetes

Cluster deployment Support Support

Automatic deployment Support Support

Service discovery ETCD/Consul/ZooKeeper ETCD

Load balancing Support Support

Multi-host Network Overlay Flannel,Calico

Persistent storage PersistentVolume Volume

Scaling Support Support

Scheduling Filter [32] and strategy [31] Predicates and priorities [87]

Migration Support(offline migration) Support(offline migration)

The specific comparisons between two open-source platforms are shown in Table 2.1.
Docker Swarm scheduling framework consists of filter [32] and strategy [31]. A filter
component tells the scheduler which nodes to use when creating and running containers.
Users need to set the labels of the nodes according to their functions before creating
containers. Once running containers, the scheduler can filter a set of suitable nodes
through the labels for the next step of strategy selection. Strategy component has three

28https://cloud.google.com/kubernetes-engine/
29https://aws.amazon.com/ecs/?nc1=h_ls
30https://aws.amazon.com/eks/?nc1=h_ls
31https://kubernetes.io/
32https://mesos.apache.org/
33https://docs.docker.com/engine/swarm/
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strategies: spread, binpack, and random. The spread and binpack strategies compute
rank according to a node’s available CPU, its RAM, and the number of containers it
has. The random strategy uses no computation. It selects a node at random and is
primarily intended for debugging. Native scheduling strategies have some shortcomings,
for example the spread cannot make full use of the resources, the binpack is easy to
have overloads and the random cannot control by users. Some works have improved
the scheduling strategies for balanced allocation from multi-objects in order to achieve
efficiency of the clusters and the users’ requirements [93][94][96][124].

As Docker Swarm is generally used for managing Docker containers, Kubernetes,
based on Google’s many years of container management experience, becomes a universal
container orchestration platform to manage all kinds of containers that implement a
CRI (Container Runtime Interface). It can quickly and predictably deploy applications,
scale applications, migrate applications, and seamlessly evolve and upgrade. Kubernetes
scheduling also has two stages: predicates and priorities [87][85]. The predicates stage is
used for filtering unsuitable nodes by using labels or resource conditions. The priorities
stage is to score the possible selections by some priority algorithms and choose the
highest scored strategy. In production, users can combine those strategies to achieve
their own requirements, also Kubernetes provides configuring multiple schedulers [84]
and stopping choosing feasible nodes to tune better performance in large clusters [86].
Extending the Kubernetes scheduler is studied in several works [117], most of them focus
on making the full utilization of the resources and achieving the user’s requirements.

Instead of the default Kubernetes scheduler, Kubernetes toolkit ecosystem also pro-
vides other schedulers to enhance the capability of Kubernetes scheduler. For instance,
Volcano [186] is an add-on batch scheduling system for computation-intensive workloads
on Kubernetes. It features batch scheduling capabilities (such as gang scheduling to
make sure that a job will start to run only when all its tasks are ready to be deployed)
that Kubernetes scheduler does not support, and also integrates some HPC/BD/ML
domain frameworks in its controller. It also features a customizable scheduler so that
the system operator can choose different strategies for job scheduling.

2.3.2 Enabling Containerized Applications in Kubernetes

In chapters 4-6, containerized applications are enabled in Kubernetes clusters. We take
advantage of Kubernetes’ toolkits and ecosystem. In the application layer, the applica-
tion specification and control can be extended using a Kubernetes Operator containing
Custom Resource Definition (CRD) and a custom controller. For this, we particu-
larly focus on enabling an application’s multi-container definition. In the infrastructure
layer, Pods of each application are being scheduled by Kubernetes default scheduler and
launched by Kubelet node agent. The enhancement is also needed in the scheduler to
consider also the application information while scheduling and in the node agent as well
to consider the affinity.

Orchestration of Containers in Kubernetes

Containerization is a lightweight virtualization technology that builds upon resource
isolation and limitation features of the Linux kernel, such as namespaces and cgroups,
respectively. Currently, containerization is widely used to pack applications because
of its portability, isolation, and high availability. Generally, there are two types of
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containerized applications running in the Cloud.

• Long-lived online microservices: loose-coupled services, each of them being an in-
dependent module to be deployed or managed in the long term (e.g., Web services).

• Short-lived batch jobs: batched processing jobs, each of them comprising a batch
of tasks that are executed once and then terminated (e.g., MapReduce, MPI, and
Spark).

Kubernetes supports both types of applications. From the users’ perspective, they
submit their specifications of services or jobs to Kubernetes, which is responsible for
encapsulating them into containers that are wrapped in Pods to be deployed in the
nodes. From the providers’ perspective, all the nodes and resources are controlled by
Kubernetes. Whenever there is a request, Kubernetes managers have to generate the
Pod specification for each type of job or service, and select the node (using a scheduling
policy to filter and rank nodes) to run each Pod, so that the Kubernetes node agent
(i.e., Kubelet) can launch the Pod in the selected node.

Enabling BD Workloads in Kubernetes

BD workloads can be managed by Kubernetes. For instance, Spark provides a driver
to generate executors to run BD applications in Kubernetes. Kubernetes will be the
cluster manager, in a fully supported way on par with the Spark Standalone, Mesos,
and Apache YARN cluster managers [7].
Currently, the Spark driver will start executors directly within Kubernetes pods, con-

nects to them and executes application code. Also, it makes use of the native Kubernetes
scheduler. The challenges will be the lack of the scheduling features such as dynamic
resource allocation, external shuffle services, job queues and resource management. The
experimental solution could be using other customized schedulers for Spark on Kuber-
netes such as Volcano 34 and YuniKorn 35.

Enabling HPC Workloads in Kubernetes

HPC workloads are considered as batch jobs in Kubernetes. An HPC workload is spec-
ified as a launcher and one or multiple workers. Each launcher or worker is a container
that can be executed as a Pod and run in parallel in a Kubernetes cluster. However, the
original Kubernetes batch jobs are not designed to support the HPC applications effi-
ciently. The specification for HPC applications is limited, thereby relevant application-
related information cannot be considered while scheduling. Also, the Kubernetes default
scheduler does not schedule jobs but individual Pods. Thus, some add-ons have been
designed by the community to enhance usability when specifying and allocating HPC
workloads.
Kubeflow MPI operator [83] provides a better specification for MPI jobs which defines

an MPI ‘Launcher’ and an MPI ‘Worker’. In most cases, all the MPI worker processes
will be launched in this worker container. Moreover, Kubeflow MPI operator mounts the
ssh folder for all Pods belonging to the job through a Kubernetes Secret to establish the
communication. But this operator does not enhance the Kubernetes default scheduler,

34https://volcano.sh/en/
35https://yunikorn.apache.org/
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thus the allocation of Pods is not considered at the MPI job level but for each individual
Pod. Volcano [186] is an add-on that could support HPC workloads on Kubernetes. It
provides ssh/service plugins to deal with the Pods’ connection and permissions and with
the service discovery. It is also a customizable scheduler, so that the system operator
can choose different strategies for job scheduling.

Enabling ML Workflows in Kubernetes

ML workflows contain ML training and ML inference phases. ML training workflows can
be generated by using some tools such as Kubeflow36, Argo37, etc. Those frameworks
could have a container support, where each step can be run inside a container. Several
frameworks can be chosen to train a model in the model training step, such as Tensorflow
[175], Keras38, Pytorch [143], etc.

ML models are trained through diverse ML frameworks, thus causing the runtime of
the ML inference services to be different. Early works on ML inference systems such
as Clipper [28] and Rafiki [191] deployed models in containers using custom runtime
and implemented an abstract layer between clients and models to achieve model selec-
tion and request batching. Currently, there are several open-sourced runtimes for online
ML inference services in production, such as Tensorflow serving [176], TorchServe [144],
Kserve [82], or Seldon [161], as well as some optimized libraries for ML, such as Intel
Math Kernel Library (MKL) [71]. These runtimes may vary but they contain simi-
lar functionalities (e.g., model version management, model warmup) and configuration
settings (e.g., parallel threading model, batching, and caching) [176].

The objective is to train and serve ML models into containers and then we could
analyze the performance of several schemes to deploy an online ML inference service on
a Kubernetes cluster with multi-core machines.

2.3.3 Autonomous Management and Supervision for ML Workflows

Lately, many data researchers and companies have been interested in automating the
ML tasks within a training workflow (e.g., AutoML) in order to construct ML models
efficiently [199][155][19][38][77]. However, these powerful AutoML modules and frame-
works (e.g., Kubeflow Pipelines) are turned off after training a model, thus cannot help
the model after being deployed to meet dynamic changes.

To make an autonomic system for ML, Kedziora et al. [78] defined an autonomous
system (i.e., AutonoML) as one showing fundamental characteristics of persistence and
adaptation. Persistence means that an AutonoML system should be capable of oper-
ations in the long term, and adaptation refers to the theories and practices of facing
dynamic contexts. Zliobaite et al. [211] identified challenges in designing and building
adaptive learning (prediction) systems to achieve scalability, usability, and trust, taking
into account various application needs. These works provide a conceptual level view or
framework without practical implementation or evaluation.

Seldon39 provides a set of tools for deploying ML models at scale and presents their
practical oversight and governance for ML deployments. But these tools (so-called Alibi)

36https://www.kubeflow.org/
37https://argoproj.github.io/
38https://keras.io/
39https://www.seldon.io/
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mainly focus on metrics monitoring, outliers and drift detection, and model explana-
tion [80], rather than autonomically taking actions to maintain the model performance.
KubeDL40 supports running different deep learning workloads on Kubernetes. It con-
siders training, model version, model serving, and also an auto-configuration framework
Morphling [189] to tune the best configuration before the serving service is deployed.
However, the training steps are considered as jobs and the model serving is considered as
a simple service rather than a ML workflow, losing the flexibility of using workflows, and
also autonomy is not considered. KServe41, formerly KFServing and used by Kubeflow,
enables serverless model inference on Kubernetes. It encapsulates the complexity of au-
toscaling, networking, health checking, and server configuration to bring serving features
like GPU autoscaling, scale to zero, and canary rollouts to the ML deployments. How-
ever, it is based on the serverless model supported by Knative, which can only support
streaming online inference. Moreover, it integrates Alibi add-ons to detect anomalies,
but not deal with them autonomically.

Some adaptive learning algorithms are designed for streaming (unpredicted new data
arrives) [42][106][68]. Gama et al. [42] presented a survey on concept drift adapta-
tion, which introduces the online adaptive learning processes and algorithms. Imbrea
[68] proposed a framework for implementing AutoML on data stream architectures in
production and indicated that, in the presence of concept drift, detection or adaptation
techniques have to be applied to maintain predictive accuracy over time. These adaptive
learning systems or methods can deal with partially dynamic contexts, but we propose
autonomy should be applied at multiple levels to handle both robustness and efficiency
problems.

Autonomic computing theories and practices have been used in multiple areas. For-
merly, they were applied in the service-oriented computing paradigm [21]. Lately, as
systems were adopting the microservice architecture, Our previous work [103] studied
the autonomy in those microservice-based systems. Also, some works showed the usage
of agents for autonomic computing [30][177][21]. These related works did not directly
show how to bring autonomy to ML workflows, but they inspired our work for adopting
an agent-based autonomic approach.

Previously, we presented Scanflow, an executor multi-graph framework for end-to-end
ML workflow management and debugging in an offline mode, in the form of a proof-
of-concept prototype running in a single node, which featured an anomaly detector of
out-of-distribution samples in the inference phase [20]. However, to operate models in
the long term in an online manner, Scanflow needs to be redesigned from scratch to
upgrade the executor nodes to a multi-agent system and to be fully integrated with the
resource managing platform to achieve autonomic management and online supervision
for the models. On one side, this will help to achieve model scalability, usability, and
performance, and, on the other side, it will also contribute to model robustness.

Therefore, in Chapter 5, we investigate a platform (Scanflow-K8s) for autonomic ML
workflows with abilities for multi-layered control, based on an agent-based approach that
enables autonomic management and supervision of ML workflows at the application layer
and the infrastructure layer

40https://kubedl.io/
41https://kserve.github.io/website

33

https://kubedl.io/
https://kserve.github.io/website


Chapter 2 State of the Art

2.3.4 Deployment and Scheduling Schemes for Containerized HPC
Workloads

Former works in this area have focused on deploying containerized HPC workloads in
traditional HPC systems. These systems have batch-oriented workload managers or
resource managers, such as Slurm [167] or Torque, and some of them have included
container support [168]. The convergence between HPC systems and Cloud environments
has also been explored [210][125], but these works mainly divide the nodes into clusters
for different usage and enable access to the HPC cluster from the Cloud cluster.
Beltre et al. [18][158] did some performance analysis on enabling HPC workloads on

Cloud infrastructure. They analyzed the HPC workload performance while using differ-
ent container orchestrators like Kubernetes and Docker Swarm and different networks
like InfiniBand. They used the Kubernetes default scheduler. Misale et al. [127] in-
troduced KubeFlux, a Kubernetes plugin scheduler that is based on Flux graph-based
scheduler. This plugin translates the Pod into a Flux job and uses the policy within
Fluxion to allocate jobs. Saha et al. [157] showed how MPI applications can be scheduled
by Mesos using a policy-based approach.
There are also some works focusing on the policies for scheduling HPC jobs in the

Cloud. For instance, Gupta et al. [52] presented novel heuristics for online application-
aware job scheduling in multi-platform environments. Fu et al. [41] proposed a progress-
based container placement for short-lived containerized jobs. Aupy et al. [10] provided
an optimal job reservation strategy in scheduling to minimize the cost.
HPC community has important performance considerations on its workloads. There-

fore, trialing new deployment schemes for different types of HPC workloads to improve
their performance is necessary. Walkup et al. [188] reported best practices for running
compute-, memory-, and network-intensive HPC workloads on the Cloud. Medel et al.
[118] conducted a performance analysis over Kubernetes considering the deployment
and initialization overhead as well as understanding the performance of different Pod
settings. Moreover, they provided a rule to decide the number of containers per pod
by considering the characteristics of the application. Our performance analysis work
in Chapter 3 has demonstrated systematically that i) some types of containerized HPC
applications can exploit multi-container deployments which partition the processes that
belong to each application into multiple containers in each host in order to achieve better
performance; ii) some types of HPC applications gain benefits when using containers by
constraining them to a single NUMA domain or pining to specific processors [99][101].
These works show some ways in the Cloud to achieve better performance for HPC work-
loads, but those insights are not yet being integrated and utilized by the current Cloud
schedulers. So, in Chapter 6, our work towards the fine-grained scheduling schemes for
HPC workloads on Kubernetes clusters.
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Multi-container Deployment Schemes for
HPC Workloads

This chapter is based on the following journal publications:

[1] Peini Liu and Jordi Guitart, “Performance comparison of multi-container deployment schemes for
HPC workloads: an empirical study”, The Journal of Supercomputing, vol. 77, no. 6, pp. 6273-6312,
June 2021. DOI: 10.1007/s11227-020-03518-1. (JCR Q2).

[2] Peini Liu and Jordi Guitart, “Performance characterization of containerization for HPC workloads
on InfiniBand clusters: an empirical study”, Cluster Computing, vol. 25, no. 2, pp. 847-868, April 2022.
DOI: 10.1007/s10586-021-03460-8. (JCR Q2).

In this chapter, several performance analyses of multi-container deployment schemes
for HPC applications are provided. In Section 3.1, the introduction of multi-container
deployment schemes is elaborated. Section 3.2 profiles HPCC benchmarks used in the
evaluation. Then, three cases for performance analyses are presented in Sections 3.3-3.5:
performance analyses of multi-container deployment and potential use of CPU/Memory
affinity on a single-node are described in Section 3.3 and Section 3.4, respectively, and
Section 3.5 provides performance analyses of multi-container deployments on an Infini-
band cluster and focuses more on different network interconnects and protocols. The
conclusions and future work are presented in Section 3.6.

3.1 Introduction

Modern computing infrastructure is evolving at a fast pace from using dedicated physical
data centers to cloud computing services. Virtualization, as a fundamental technology
for cloud computing, allows efficient utilization and easy maintenance of the infrastruc-
ture. So far, this attractive paradigm has been widely used by leading commercial
companies and communities to manage their clusters [72][153]. The HPC community is
also involved in this transformation of adopting virtualization to benefit from some of its
well-known advantages [202], such as the encapsulation of specific software environments
for each user, which allows for customization, portability, and research reproducibility
[90]; the isolation of users from the underlying system and from other users, which al-
lows for security and fault protection; and the agile and fine-grain resource allocation
and balancing, which allows for efficient cluster utilization and failure recovery [37].

Virtualization was initially adopted in the form of hardware virtualization, which adds
a layer of software between the operating system and hardware (so-called hypervisor),
as well as an extra operating system for the guest. Historically, this incurred noticeable
performance penalties, which have been dramatically reduced with the latest advances
in virtualization. In particular, HPC workloads have taken advantage of the ability
to leverage compute accelerators such as Graphics Processing Units (GPUs) from the
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virtual machines, or the ability to map the physical resources directly to the virtual
machines. Furthermore, innovative deployment schemes have been also proposed to
deal with the performance bottlenecks of virtualized HPC workloads in typical HPC
architectures, such as multi-socket multi-core systems, like partitioning HPC applications
into several virtual machines to prevent them spanning multiple NUMA domains [67].
This allows enabling affinity to a NUMA domain, which can enhance data locality in the
L3 cache and reduce the RAM memory latency by preventing access to remote domains.
Leveraging processor affinity as well can prevent process preemption and also enhance
data locality in the L1 and L2 caches. Apart from exploiting data locality, partitioning
can also optimize the packing of virtual machines and hence increase the utilization of the
hosts since small-sized tasks can be allocated more easily without blocking in a waiting
queue [53]. It can be also helpful to enhance the fault tolerance of the application, by
replicating specific vital processes in separate virtual machines. If one of them fails, the
replica can take over without downtime. Similarly, specific tasks of the application can
also be checkpointed and recovered in case of a failure.
However, the still existing performance degradation of hardware virtualization regard-

ing bare-metal executions [165] might not be acceptable for some HPC users. The emer-
gence of containerization can alleviate that performance gap [37][181], as each container
shares the underlying host kernel for OS services such as libraries, modules, and kernel
functions. Therefore, a systematic analysis of HPC workloads running on containerized
environments is necessary to understand the performance implications of using container
technologies for deploying HPC workloads [25][202], and to determine if the partitioning
deployment schemes using multiple instances and the performance optimization meth-
ods based on affinity used for virtual machines are also appropriate with containers and
what potential problems they might incur.
Performance analysis of HPC applications in containerized environments is an ongoing

research problem [8][158][196]. Most related works evaluate single-container deployments
and emphasize the possibility that deploying a HPC workload into a single container
can achieve native performance [37][181]. However, there is a lack of research on multi-
container deployment solutions for a single-tenant multi-process HPC workload. Unlike
the multi-container deployments holding workloads for multiple tenants [72][74][75][114],
using multiple containers to package a single-tenant multi-process/thread HPC workload
refers to partitioning the processes or threads belonging to each application into differ-
ent containers, obtaining in that way a finer-grained deployment. Whereas few works
include experiments with different container granularity [25][157][158], none of them
provide a deep understanding of the impact of such multi-container deployments on the
performance of HPC workloads, which considers different containerization technologies,
container grain sizes, and hardware platforms. To better identify optimal container-
ized deployment schemes and potential performance bottlenecks in a single multi-socket
multi-core system, a proper and in-depth performance analysis is important before mi-
grating HPC applications to containerized environments.
In addition to the above context, a matter of the utmost importance for HPC users

is that the containers running their applications can leverage the underlying HPC re-
sources such as Infiniband networks, which offer high-speed networking capabilities with
improved throughput and low latency through the use of Remote Direct Memory Access
(RDMA) [204].
Previous work has demonstrated that containerized HPC applications can exploit In-

finiBand networks, especially when they run on a single container per host that shares
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the host network namespace. The ability to provision InfiniBand to Docker and Sin-
gularity containers has been shown in [158][24][204][206]. Whereas some works have
evaluated more sophisticated networking modes, such as overlay networks, they have
just superficially considered multi-container deployments which partition the processes
that belong to each application into multiple containers in each host. Partitioning HPC
applications has been demonstrated to be useful when using virtual machines by con-
straining them to a single NUMA (Non-Uniform Memory Access) domain [67], and can
also increase the utilization of the hosts since small-sized tasks can be packed more easily.
However, it is still unclear how multi-container deployment schemes with different affin-
ity settings perform with various network interconnects and protocols, and how different
communication patterns and message sizes impact the performance of containerized HPC
workloads. Consequently, it is essential to understand the performance implications of
multi-container deployment schemes for HPC workloads on Infiniband clusters, focus-
ing especially on understanding how the container granularity and its combination with
processor and memory affinity impact the performance when using different networking
modes.
Early containerization implementations for deploying HPC benchmarks were mainly

Linux-VServer, OpenVZ, and LXC [196]. However, containerization technologies have
been evolving and Docker1 has become the most popular containerization software
[11][25][158]. Docker provides an easy way to isolate the network and limit the resource
usage of the containers, but some challenges remain with this technology to guarantee
security and ensure performance when employed in HPC. Singularity2, a novel HPC-
oriented containerization technology, offers promising solutions for these issues [8][91].
Regarding security, Singularity does not create containers as spawned child processes of
a root owned daemon. Regarding performance, Singularity enables all the containers
to use the underlying HPC environment in a natural way (without namespaces isola-
tion). This work focuses on these two containerization technologies for deploying HPC
workloads.
This chapter presents a systematic performance comparison and analysis of container-

ized deployment schemes for HPC workloads. We address the next research questions:

1. What is the impact of container granularity on the performance of multi-container
deployment schemes for HPC workloads?

2. What is the impact of processor and memory affinity on the performance of multi-
container deployment schemes for HPC workloads?

3. What is the impact of container technologies, container granularity, processor and
memory affinity on the performance of multi-container deployment scenarios using
different network interconnects and protocols?

3.2 Profiling Analysis of the HPCC Benchmarks

Due to the different attributes of each benchmark in HPCC benchmark suite, some pro-
filing of these benchmarks is useful for understanding their different MPI usage patterns
[62], and can be used as a baseline for comparison with container-based executions in
the evaluation.

1https://www.docker.com/
2https://sylabs.io/
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Our analysis considers two different application subscription patterns, namely exactly-
subscribed mode and over-subscribed mode. In the exactly-subscribed mode, the number
of running processes is equal to the number of available processors. In the over-subscribed
mode, there are more processes running than processors available, that is, it permits
resource over-subscription. Tasks enabling over-subscription can obtain their resources
sooner and decrease the waiting time, thus can be started earlier than in the exclusive
mode [173].
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Figure 3.1: HPCC MPI profiling analysis.

Environment and Settings: The hardware platform consists of a single host with
2 x Intel 2697v4 CPUs (18 cores each, hyperthreading disabled), 256 GB RAM, 60 TB
GPFS file system, and 1 Gb Ethernet network. The operating system on each server
is CentOS 7.6. OpenMPI v4.0.3rc3 and HPCC benchmarks v1.5.0 are compiled by
the GNU compiler collection in version 5.5.0. All the benchmarks are running with 16
processes on bare-metal. Exactly-subscribed mode is using 16 cores (8 from each socket).
For over-subscribed mode, the over-commitment ratio is set to 2, which means using 8
cores (4 cores from each socket). We use an open source analysis tool Paraver3 to profile
MPI usage patterns of the benchmarks [142].
Results: Figure 3.1 shows the HPCC MPI profiling results. Segments of different

colors correspond to the time spent within the various MPI functions with respect to the
overall execution time. Table 3.1 presents the detailed time consumption percentages
and the number of invocations of these MPI functions, which are classified according to
the corresponding communication patterns.
From these results, we can divide these benchmarks broadly into two categories: MPI

communication workloads, where processes need to communicate (frequently) with each
other, and MPI throughput workloads, where there is (almost) no communication be-
tween processes [185]. Benchmarks whose name starts with G- (G stands for Global) and
b eff benchmark belong to the first category while other benchmark names starting with
EP- (EP stands for Embarrassingly Parallel ) belong to the second one. Within the MPI
communication workloads, b eff presents different patterns of point-to-point communica-
tions (e.g., blocking ping-pong transfer, blocking concurrent transfer, and non-blocking
communications), which are also shown in G-PTRANS (blocking concurrent transfer)
and G-RandomAccess (non-blocking communications). G-FFT uses mainly collective

3https://tools.bsc.es/paraver
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all-to-all communication. Thereby, all of these benchmarks can be used to evaluate
the different aspects of interprocess communication. On the other side, MPI throughput
workloads EP-STREAM and EP-DGEMM can be used to assess the memory bandwidth
and the computation performance of the system, respectively. Note that our classifica-
tion matches with the existing literature on HPCC [113], which has identified b eff,
G-RandomAccess, G-PTRANS, and G-FFT as performance-sensitive to the intercon-
nection latency and/or bandwidth, whereas EP-DGEMM and EP-STREAM have been
characterized as not sensitive to them.

3.3 Performance Analysis of Multi-container Deployments

This section addresses the first question: What is the impact of container
granularity on the performance of multi-container deployment schemes for
HPC workloads?

3.3.1 Objective

In this section, we present an empirical performance evaluation of multi-container deploy-
ments of HPCC benchmarks with different container granularity. We evaluate different
scenarios where we partition each application among an increasing number of containers,
but decreasing number of processes per container (i.e., finer-grained container granular-
ity). Within this evaluation, we consider different subscription modes on the application
layer (exactly-subscription and over-subscription), different containerization technolo-
gies (including Docker and Singularity), and different hardware platform settings (UMA
and NUMA).

3.3.2 Method

The idea of containerization is to provide a pool of resources for a group of process-
es/threads. However, the grouping of the processes/threads within a job admits several
combinations, as well as the resource group provided by the hardware can also vary.
Thus, the impact of containerized deployments can be analyzed by changing the ele-
ments at both ends of the mapping.

Job

Task Group

Task Task Task

Task Group

Task Task Task

Job

 Process/Thread Group

P/T P/T P/T

Process/Thread Group

P/T P/T

Container Pool Host

Resource Group

Resource Group

Resource Group

Container

P/TG

TaskTaskP/T

RG

Container

P/TG

TaskP/T

RG

Figure 3.2: Container-based deployment model for HPC workloads.
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The container-based deployment model for HPC workloads is shown in Figure 3.2.
It consists of three modules: a job contains several processes/threads, which can be
divided into groups of various sizes and are packaged into different containers; a host
has multiple resources organized into sets which are able to run the containers; and
a containerization layer including containers that holds the mapping between a group
of processes/threads and a set of resources. Our evaluation compares and analyzes
the performance of HPC workloads by considering deployment schemes with different
number of containers and processes per container and using different containerization
technologies on the containerized layer.

3.3.3 Experimental Setup

This section describes the experimental setup used for performance evaluation. All the
results of each experiment are derived from the average of 10 executions and the bare-
metal executions are considered as baselines of every scenario. We perform unpaired
two-samples T tests to assess whether the performance difference between the means in
our experiments is statistically significant or due to randomness. We consider that a
P-value lower than threshold 0.05 denotes a statistically significant difference.

Classical unpaired two-samples T tests require that the two groups of samples are
normally distributed, so we first verify that by using Shapiro-Wilk tests [164]. When
some of the groups of samples being compared are not normally distributed, we use
Mann-Whitney tests [115] instead of the classical two-samples T tests. Unpaired two-
samples T tests also require that the variances of the two groups are equal. We verify
this by using Fisher’s F-tests. When the variances are not equal, we use Welch T tests
[193] instead of the classical T tests.
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Figure 3.3: A schematic view of our single-host HPC platform with two sockets and 18
cores per socket with shared L3 cache.

Environment: Our experiments are executed on a single-host HPC platform. The
hardware characteristics of this host have been described in Section 3.2. Figure 3.3 shows
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Table 3.2: Overview of the multi-socket multi-core hardware settings used in the exper-
iments.

Hardware Setting #sockets #cores L3(MB) RAM(GB)

NUMA 2 16(8 per socket) 90(45 per socket) 256(128 per socket)
UMA 1 16 45 128

Table 3.3: Software stack.

Software Version Location Compiler

Linux CentOS 7.6.1810 Host & Container
Docker 19.03.5 Host

Singularity 3.5.1 Host
OpenMPI OpenMPI-4.0.3rc3 Host & Container GCC 5.5.0

a schematic view of its architecture. There are two sockets containing 18 cores each. The
distance for accessing local and remote memory is 10 and 21, respectively. Each core has
its own L1 and L2 cache, and L3 cache is shared by the 18 cores in the same socket. We
use this host to define two different hardware platform settings: one with Non-Uniform
Memory Access (NUMA) and another with Uniform Memory Access (UMA). Table 3.2
summarizes the hardware characteristics of these two settings. Both of them have the
same number of cores, each one with L1 data cache (32K), L1 instruction cache (32K),
and L2 cache (256K). In the NUMA hardware setting, those cores belong to 2 different
sockets, each one with its own L3 cache (45MB); in the UMA hardware setting, the cores
all belong to a single socket with a single 45MB L3 cache. The software stack for both
host and containers, and its compilation environment are described in Table 3.3.

Benchmark settings: The settings for HPCC are the same as described in Section
3.2, so all the benchmarks are running with 16 MPI processes in all the scenarios.
In the exactly-subscribed mode, those processes run on 16 cores, whereas in the over-
subscribed mode they run on 8 cores. Additionally, we enable OpenMPI MCA parameter
mpi_yield_when_idle for all the over-subscribed scenarios to prevent the degradation
from the OpenMPI (see Section 3.3.4).

Container granularity settings: Different deployment schemes for evaluating con-
tainer granularity are presented in Figure 3.4. Figure 3.4 (a) presents the settings of
deployment scenarios on the NUMA hardware platform setting and Figure 3.4 (b) on the
UMA hardware platform setting. E or O refers to the application running on exactly-
subscribed mode or over-subscribed mode, respectively. E1-E5 and O1-O4 reflect the
different granularity of the containers. As shown in Table 3.8, E1 and O1 use a single
container, while E2-E5, O2-O4 are scenarios with an increasing number of containers,
but decreasing number of processes per container.

In the experiments denoted as ’ANY’, each container could use any of the available
cores according to the used hardware platform setting (see Table 3.8). The actual
distribution of the running processes on the available cores is decided dynamically by
the CFS Linux scheduler. In the experiments denoted as ’PIN’, we enforce a 1-to-1
binding from the processes of the application to the available cores according to the
used hardware platform settings. This binding holds during the entire execution of the
application. We include this setting in the comparison to serve as a reference and to
assess the performance reproducibility when variable process placement is eliminated,
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(a) Configurations of deployment scenarios - NUMA  hardware settings
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Figure 3.4: Containerized deployment scenarios.

Table 3.4: Settings for containerized deployment scenarios.

Scenarios #containers
#processes
per container

Used cores and sockets

E1,E2,E3,E4,E5 1,2,4,8,16 16,8,4,2,1
NUMA: cores 0-7,18-25; sockets 0-1
UMA: cores 0-15; socket 0

O1,O2,O3,O4 1,2,4,8 16,8,4,2
NUMA: cores 0-3,18-21; sockets 0-1
UMA: cores 0-7; socket 0

especially with over-subscription.

Containerization technologies: Docker and Singularity containerization technolo-
gies are evaluated in this work. We include also some variants of Singularity in the
comparison. The different features of these technologies are described in Table 3.5:
1) Docker : Docker containers run isolated into different namespaces and cgroups. 2)
Singularity : Default Singularity version, which executes the containers like they were
native programs or scripts on a host computer, without encapsulating them on sepa-
rated namespaces or cgroups. 3) Singularity-instance: Similar to Docker, Singularity
container instances, which are persistent versions of the container image, run isolated
in the background into different namespaces and cgroups. 4) Singularity+cgroup: Plain
Singularity containers are executed (not instances), but each of them runs on its own cpu
cgroup. Note that this cgroup should be a hierarchical cgroup, otherwise the scheduler
will allocate resources among multiple root level cgroups thus bringing some degradation
of performance.

Performance analysis tools: We use Paraver to profile MPI usage patterns of the
benchmarks. We capture also performance event counters (through Perf4) and operat-
ing system metrics, such as context-switches, migrations, and memory accesses, from
representative executions of the benchmarks and we use them to explain the obtained
performance results.

4http://man7.org/linux/man-pages/man1/perf.1.html
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Table 3.5: Features of different containerization technologies.

Docker Singularity Singularity Singularity
(instance) (+cgroup)

Namespaces Yes Yes No No
Cgroup Yes Yes No Yes

File System overlay ext3 ext3 ext3
Network Bridge Bridge Host Host

3.3.4 Results

1 · Impact of containerization technology and container granularity on
multi-container deployments

In this experiment, we evaluate the performance impact of different granularity of con-
tainers with different containerization technologies through scenarios E1-E5 and O1-O4.

MPI communication workloads: As a result of the profiling analysis in Section
3.2, we concluded that b eff (including Ping-Pong and Ring patterns), G-RandomAccess,
G-PTRANS, and G-FFT benchmarks can be classified as MPI communication work-
loads. In particular, b eff spends about 87% of overall runtime in MPI (95% when
over-subscribed), G-RandomAccess spends about 24% of overall runtime in MPI (16%
when over-subscribed), G-PTRANS spends about 13% of overall runtime in MPI (34%
when over-subscribed), and G-FFT spends about 15% of overall runtime in MPI (42%
when over-subscribed).
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Figure 3.5: Impact of container granularity in b eff(RandomRing) bandwidth on NUMA
hardware platform setting.
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Figure 3.6: Impact of container granularity in b eff(PingPong) bandwidth on NUMA
hardware platform setting.
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Figures 3.5 and 3.6 show the bandwidth results for the b eff benchmark, differen-
tiating PingPong and RandomRing MPI point-to-point communication patterns. We
omitted the latency results as they were essentially following the same trend. There is
significant performance degradation when the processes run on multiple containers in
Docker and Singularity-instance (scenarios E2 to E5 and O2 to O4) regarding single-
container deployments, as the P-values of the corresponding T-tests range from 4.9e−21

to 3.3e−11, which are all clearly lower than 0.05. In order to better understand this
behavior, Figures 3.7 and 3.8 detail the time spent in seconds on each MPI function for
the various communication patterns in this benchmark when running on Docker. This
time is greater when running with multiple containers for blocking ping-pong trans-
fer patterns (MPI Send and MPI Recv), around 90% on scenario E2, and non-blocking
transfer patterns (MPI Isend and MPI Irecv), around 37% on scenario E2, and increases
with the number of containers, +16% (E3), +7% (E4), +4% (E5) and +12% (E3), +8%
(E4), +4% (E5), respectively. The time is also greater when running multiple containers
for non-blocking synchronization, around 47% on scenario E2, and blocking concurrent
transfer patterns, around 61% on scenario E2, but it barely increases with the number
of containers, +7% (E3), +5% (E4), -3% (E5) and +4% (E3), +1% (E4), -4% (E5),
respectively.

 Blocking Ping-pong Tranfer

Figure 3.7: Time spent in MPI com-
munication patterns of
b eff(PingPong) benchmark
for PIN scenarios on Docker
(NUMA hardware platform
setting).

1. Blocking Ping-pong Tranfer 2. Non-blocking Communicate 3. Blocking Concurrent Tranfer

Figure 3.8: Time spent in MPI communi-
cation patterns of b eff(Ring)
benchmark for PIN scenarios
on Docker (NUMA hardware
platform setting).

This degradation occurs because the processes running on separated containers in
Docker and Singularity-instance are deployed on isolated network namespaces and have
to use the TCP/IP network stack rather than shared-memory to communicate with one
another. Executions with a single container or using Singularity do not have degra-
dation on any of the scenarios when comparing with bare-metal (the P-values of the
corresponding T-tests range from 0.34 to 0.89, clearly higher than 0.05, thus the differ-
ence is not statistically significant) because the processes do not communicate through
isolated network namespaces. All the processes belong to the same namespace and can
use shared-memory to communicate as when running on bare-metal.

According to the profiling analysis of benchmarks in Section 3.2, among the bench-
marks classified as MPI communication workloads, G-RandomAccess and G-PTRANS
present some MPI point-to-point communication patterns (see Figures 3.9-3.10). In par-
ticular, G-RandomAccess spends about 23% of overall runtime on point-to-point non-
blocking communication (16% when over-subscribed). Thereby, Docker and Singularity-
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Figure 3.9: Impact of container granularity in G-RandomAccess performance on NUMA
hardware platform setting.
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Figure 3.10: Impact of container granularity in G-PTRANS performance on NUMA
hardware platform setting.

instance incur performance degradation (around 70% on scenario E2) that increases
slightly with the number of containers (up to 77% on scenario E5). This degradation is
statistically significant as the P-values of the corresponding T-tests are lower than 0.05
(ranging from 9.4e−22 to 1.8e−18). G-PTRANS spends about 5% of overall runtime on
point-to-point blocking concurrent transfers (e.g., MPI Sendrecv) (also 5% when over-
subscribed), thus Docker and Singularity-instance degrade on running multiple contain-
ers due to using the network stack (around 15%-17% degradation on scenarios E2-E5,
which is statistically significant as the P-values of the T-tests with respect to single-
container deployments range from 3.2e−7 to 1.8e−4, which are lower than 0.05), but
this degradation does not increase with the number of containers (P-values of scenarios
E3-E5 with respect to E2 range from 0.2 to 1, which are higher than 0.05). The perfor-
mance degradation in G-PTRANS is significantly lower than b eff and G-RandomAccess
because the number of invocations to MPI functions is considerably lower. As before,
Singularity and Singularity+cgroup do not incur any statistically significant degrada-
tion. This is confirmed in the corresponding T-tests where all the P-values are higher
than 0.05 (ranging from 0.07 to 0.9).

Unlike previous MPI communication workloads, G-FFT mainly uses collective commu-
nication (mostly MPI Alltoall) for data movement. From the results in Figure 3.11, the
performance degradation when running multiple containers in Docker and Singularity-
instance is almost negligible when exactly-subscribed (around 1%) and quite small when
over-subscribed (around 4% when pinning processes). In both cases, the P-values of
the corresponding T-tests show that those small differences are statistically significant
and not due to randomness (ranging from 5.3e−6 to 7.5e−3). What makes the differ-
ence is the number of invocations of MPI calls. As a rule of thumb, applications doing
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Figure 3.11: Impact of container granularity in G-FFT performance on NUMA hardware
platform setting.

point-to-point communication perform many more invocations to MPI functions than
applications using collective communication. In particular, as shown in Table 3.1, G-
FFT does only 210 point-to-point and 256 collective invocations (vs. more than 50000
point-to-point invocations in b eff(PingPong)), hence the degradation is considerably
lower.

MPI throughput workloads: The results of the profiling analysis in Section 3.2
allowed to classify EP-STREAM and EP-DGEMM benchmarks as MPI throughput
workloads. As shown in Figures 3.12 and 3.13, which depict the performance of those
benchmarks when running with various container grain sizes and containerization tech-
nologies, those workloads do not show significant performance variation regarding the
baseline when increasing the number of containers per host. For instance, the P-values of
the T-tests for multi-container deployments of EP-STREAM regarding single-container
deployments range from 0.05 to 0.85 (higher than 0.05). This is due to the low amount
of interprocess communication, namely 1.4% of overall runtime in MPI (29.5% when
over-subscribed, but mostly in synchronization functions) for EP-STREAM, and 1.5%
of overall runtime in MPI (13.9% when over-subscribed, but mostly in the global reduce)
for EP-DGEMM.
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Figure 3.12: Impact of container granularity in EP-STREAM performance on NUMA
hardware platform setting.

Something noticeable in Figure 3.13 is the performance improvement of EP-DGEMM
in scenario ANY-E5 (which runs a single MPI process on each container) regarding the
other deployment scenarios with all the containerization technologies but plain Singular-
ity. In those technologies, ANY-E5 shows significant difference compared to ANY-E1, as
the P-values of the corresponding T-tests range from 1.7e−3 to 7.3e−3 (lower than 0.05).
As shown in Figure 3.14, which depicts relevant performance counters of EP-DGEMM,
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Figure 3.13: Impact of container granularity in EP-DGEMM performance on NUMA
hardware platform setting.
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Figure 3.14: Performance event counters of EP-DGEMM for ANY scenarios on NUMA
hardware platform setting.

scenario E5 with Docker has considerably less process migrations and context-switches
than the other deployment scenarios. It also shows better cache utilization (less L3
misses), more local memory accesses, and only minimal remote memory accesses. These
are consequences of the scheduling of the containers (i.e., the cgroups) and their corre-
sponding MPI processes. As each container runs a single process, this is essentially a
single-level scheduling (i.e., at the cgroup level), which is simpler and allows to exploit
processor affinity better, in a similar way to when processes are pinned explicitly (al-
though not so deterministic). The same occurs with Singularity-instance, but not with
Singularity because all the processes run within the same cgroup.

Performance variability and impact of 1-to-1 process pinning: Most bench-
marks (b eff, G-PTRANS, G-FFT, EP-STREAM, and EP-DGEMM) present some per-
formance variability in the ANY over-subscribed scenarios, which does not occur when
binding processes to processors. In addition, EP-DGEMM also shows some variability
in the ANY exactly-subscribed scenarios, which comes mainly from the process context-
switches and migrations, and can be avoided again by pinning the processes. Apart from
eliminating the performance variability, 1-to-1 process pinning also improves the perfor-
mance on over-subscribed scenarios by eliminating the variable process placement. In the
same way, it also improves the performance of EP-DGEMM when exactly-subscribed.

2 · Impact of the cgroup scheduling on multi-container deployments

As shown in the previous experiment, Docker and Singularity-instance incurred signifi-
cant performance degradation on MPI communication workloads when running multiple
containers due to the interprocess communication between them. In this experiment, we
assess whether other container-supporting technologies, such as cgroups, could be also
contributing to that performance degradation.
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Linux cgroups are mechanisms from kernel-level that control the resource allocation
by restricting CPU, memory, network, etc., for each group of processes. One of them is
the CPU controller, which is responsible for grouping tasks together that will be viewed
by the scheduler as a single unit. The CFS (Completely Fair Scheduler) scheduler applies
the principle of sharing the resources fairly among these groups at the same level of the
hierarchy, which means it will first divide CPU time equally between all entities in the
same level, and then proceed by doing the same in the next level [46].
To assess the impact of cgroups, we included the Singularity+cgroup experiments,

which run each container in a separated CPU cgroup (as done by default by Docker and
Singularity-instance), which means that each container will run their processes in their
own group sharing the CPU time allocated.
As shown in previous figures in experiment 1, Singularity+cgroup achieves the same

performance as Singularity for all the benchmarks in exactly-subscribed scenarios, but
it incurs some performance degradation (similar to Docker and Singularity-instance) in
some of the benchmarks on over-subscribed scenarios. For instance, this is especially no-
ticeable with G-PTRANS on ANY scenarios O2, O3, and O4, and EP-DGEMM (and to
a lesser extent on G-FFT) on ANY scenario O4. In those scenarios, the cgroup schedul-
ing performed by the CFS results in imbalanced executions. CFS tries to maintain fair
time allocation among cgroups, not processes, but it is not especially accurate in tracking
the load of scheduling entities when they are groups of processes (i.e., cgroups). Those
coarse-grain load measurements are then used to calculate the load of the processors
and decide about load balancing from busier to idler processors, resulting in an imbal-
anced allocation of processes to processors [13][105]. This is critical in over-subscribed
scenarios where processes must share processors efficiently to ensure progress.
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Figure 3.15: Performance comparison of EP-DGEMM with different number of contain-
ers.

This can be confirmed in Figure 3.15, which shows the EP-DGEMM performance
on over-subscribed mode including additional scenarios that deploy a higher number of
containers cgroups than the number of available CPUs. Whereas holding all the MPI
processes in a single container provides bare-metal performance, having multi-container
deployments causes significant performance degradation in all the containerization tech-
nologies except Singularity, as Singularity is not using distinct cgroups. The correspond-
ing T-tests confirm that the P-values for Singularity are higher than 0.05 (ranging from
0.13 to 0.49), whereas for the other containerization technologies they are lower than
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0.05 (ranging from 1.9e−6 to 7.4e−3).

3 · Impact of the hardware platform setting on multi-container deployments

The hardware platform setting also has an impact on the performance of the different
benchmarks, but this is mostly unrelated to the containerization technology and the
deployment scheme. As such, in the UMA setting, there is also significant performance
degradation for MPI communication workloads when the processes run on multiple con-
tainers in Docker and Singularity-instance because the processes running on separated
containers are deployed on isolated network namespaces. Executions with a single con-
tainer, using Singularity, or for MPI throughput workloads do not have degradation on
any of the scenarios when compared with bare-metal.

The performance difference between the NUMA and UMA hardware platform settings
depends on the specific characteristics of each benchmark. Figures 3.16-3.19, 3.21, and
3.23-3.26 present the performance difference (in %) of UMA relative to NUMA for each
benchmark. The difference between these two hardware settings is that UMA optimizes
the latency of accessing memory by improving the cache usage and eliminating the
remote memory accesses, while NUMA optimizes the memory bandwidth. Given the
performance variability in the ANY over-subscribed scenarios, which makes it difficult
to obtain meaningful conclusions, we focus the comparison in this section on the exactly-
subscribed scenarios.
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Figure 3.16: Bandwidth difference (in %)
of UMA relative to NUMA in
b eff(PingPong).
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Figure 3.17: Latency difference (in %) of
UMA relative to NUMA on
b eff(PingPong).
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Figure 3.18: Latency difference (in %) of
UMA relative to NUMA on
b eff(RandomRing).
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Figure 3.19: Performance difference (in %)
of UMA relative to NUMA on
G-RandomAccess.

As shown in Figures 3.16-3.19, PingPong Bandwidth/Latency and Ring Latency
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benchmarks show significantly better performance in the UMA setting, ranging from
15% to 27%. In those benchmarks, the P-values of the T-tests comparing UMA and
NUMA scenarios range from 1.0e−25 to 1.8e−4 (lower than 0.05). G-RandomAccess
benchmark also shows some improvement (less than 2%), but the results are inconclu-
sive, as the P-values of the T-tests are higher than 0.05 for some scenarios (ranging from
0.06 to 0.94) and lower than 0.05 for others (ranging from 2.5e−3 to 0.04). The MPI pro-
cesses on these benchmarks communicate through small-sized point-to-point messages
and are not memory-intensive. In the UMA setting, all the processes run in a single
socket, sharing the L3 cache and the local memory, which enhances the use of the cache
(less L3 misses as shown in Figure 3.20) and reduces the number of memory accesses
regarding the NUMA setting.
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Figure 3.20: Performance counters for b eff(PingPong) benchmark on ANY scenarios.

As shown in Figure 3.21, EP-DGEMM also performs better in the UMA setting for
ANY scenarios. The improvement is significant as the P-values of the corresponding
T-tests for scenarios E1-E4 and E5-Singularity range from 1.6e−9 to 4.5e−2 (lower than
0.05). The difference is less statistically significant in scenario E5 with the other con-
tainerization technologies as the corresponding P-values are around 0.14. Placing all
the MPI processes in the same socket has resulted in better cache sharing and allows
them to better access the local memory, which reduces the latency of accessing remote
memory.
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Figure 3.21: Performance difference (in %) of UMA relative to NUMA on EP-DGEMM.

As shown in Figure 3.22, EP-DGEMM in the UMA setting performs only local memory
accesses, whereas it does a mixture of local (56% of the L3 cache misses count) and
remote memory accesses in the NUMA setting. For PIN scenarios, EP-DGEMM in the
NUMA setting already has good memory locality (local memory accesses count is 99%
of L3 cache misses count), thus UMA does not bring any advantage on avoiding remote
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memory accesses latency, and hence the performance of EP-DGEMM on both hardware
platform settings are almost the same, with NUMA bringing a small improvement around
1%-2%, which is statistically significant as the corresponding P-values range from 2.0e−15

to 2.8e−3.
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Figure 3.22: Performance counters for EP-DGEMM benchmark on ANY scenarios.

As shown in Figures 3.23-3.26, EP-STREAM, G-FFT, b eff(Ring Bandwidth), and
G-PTRANS have significantly worse performance in the UMA setting. In particular,
EP-STREAM is 48% slower in the UMA setting, with P-values of the T-tests ranging
from 3.3e−36 to 1.8e−4 (lower than 0.05). As the processes are mostly accessing the
local memory in the NUMA setting (99.6% for ANY scenarios and 99.9% for PIN sce-
narios), UMA cannot bring additional benefit by avoiding remote memory accesses, but
introduces more memory contention because it has only one socket which reduces the
available memory bandwidth. G-FFT, b eff(Ring Bandwidth), and G-PTRANS com-
municate their processes using large messages. In a single host, their performance is
also limited by the memory bandwidth, and for this reason, the NUMA setting provides
better performance for them. For example, G-FFT is 32%-36% faster (P-values rang-
ing from 7.5e−35 to 1.8e−4) and G-PTRANS is 14%-20% faster (P-values ranging from
1.0e−16-2.8e−3).
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Figure 3.23: Performance difference (in %)
of UMA relative to NUMA on
EP-STREAM.
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Figure 3.24: Performance difference (in %)
of UMA relative to NUMA on
G-FFT.

In order to measure the memory contention that occurs on those benchmarks, we
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Figure 3.25: Bandwidth difference (in %)
of UMA relative to NUMA on
b eff(RandomRing).
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Figure 3.26: Performance difference (in %)
of UMA relative to NUMA on
G-PTRANS.

calculate the memory contention ratio among cores in the UMA and NUMA settings by
using the model proposed by Tudor and Teo [182]. Same as those authors, we are not
interested in the absolute value of stall cycles, but on how stall cycles grow relative to
a baseline value on one core (where there is no contention) due to memory contention
among cores. Consequently, we derive the memory contention ratio ω as the stall cycles
due to contention divided by the useful work cycles (including stall cycles that are not
due to resource contention). A higher ω means more memory contention. As shown in
Figures 3.27 and 3.28, which depict the memory contention ratio for EP-STREAM and
G-FFT, respectively, memory contention is higher in the UMA platform setting, because
there are 16 processes concurrently accessing the local memory and the UMA platform
setting cannot benefit from a second memory controller to serve their operations, which
increases the contention in L3 cache and local memory.
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Figure 3.27: Memory contention ratio for
EP-STREAM benchmark on
ANY scenarios.
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Figure 3.28: Memory contention ratio for
G-FFT benchmark on ANY
scenarios.

4 · Proper configuration of multi-container deployments with over-subscription

Unlike the exactly-subscribed mode where OpenMPI can run its message passing engine
always in aggressive mode (never giving up the processors to other processes), over-
subscribed mode requires the OpenMPI engine to run in degraded mode and frequently
yielding the processor to its peers when idle, thereby allowing all processes to make
progresses [136]. The awareness of the aggressive or degraded mode of OpenMPI engine is
usually automatic, although the user can use the MCA parameter mpi_yield_when_idle
to control whether an MPI process runs in aggressive or degraded performance mode
[135].
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Figure 3.29: Comparison of over-subscribed mode on single and multiple container en-
vironments with different mpi yield when idle configurations.

However, when using containers to run an MPI application in over-subscribed mode,
things are more complicated. The difference between the aggressive and degraded modes
in the OpenMPI engine when running on containers can be observed in Figure 3.29. For
bare-metal, Singularity, and single-container deployments of Docker and Singularity-
instance, the performance of the ’default’ configuration matches with the performance
when mpi_yield_when_idle is enabled, as the OpenMPI engine can automatically de-
tect the over-subscription and run in degraded mode. However, for scenarios with mul-
tiple containers of Docker and Singularity-instance, the degraded mode must be set
explicitly by enabling mpi_yield_when_idle in the mpirun command in order to let the
process yield the processor to its peers. Otherwise, MPI processes running in disparate
containers are not aware of their peers and will not yield the processor, thus degrading
the performance (’default’ configuration is degraded as when mpi_yield_when_idle is
disabled). The results also show that, the most time the MPI processes are blocked in
the MPI library, the most noticeable the benefits of declaring degraded mode operation
are, indicating that MPI communication workloads will be especially sensitive to this.

These observations can also be confirmed through unpaired two-sample T-tests be-
tween the ’default’ configuration and mpi_yield_when_idle enabled one. In particu-
lar, for the EP-DGEMM benchmark, the P-values of the T-tests for all the scenarios
are all higher than 0.05 (ranging from 0.16 to 0.74), hence both configurations have
the same performance. On the other side, for the other three benchmarks, which are
more communication-intensive, the P-values of the T-tests on Docker and Singularity-
instance with more than one instance are lower than 0.05 (ranging from 2.2e−12 to 0.02),
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hence the ’default’ configuration provides statistically worse performance than enabling
mpi_yield_when_idle.

3.3.5 Summary

To sum up, the findings from our previous evaluation of multi-container deployments
are as follows:

• For Docker and Singularity-instance, multi-container deployments incur some per-
formance degradation for MPI communication workloads, because the processes
running on separated containers are deployed on isolated network namespaces and
have to use the TCP/IP network stack rather than shared-memory to communi-
cate with one another. This could be avoided by enabling shared-memory among
the distinct containers and making the MPI engine aware of that shared-memory
area [67].

• Singularity has close to bare-metal performance because the containers share the
network and IPC namespaces and can use shared-memory to communicate the
processes.

• Multi-container deployments of MPI throughput workloads do not incur signifi-
cant performance degradation regarding bare-metal when increasing the number
of containers due to the low amount of interprocess communication. Finer-grained
deployments show a performance improvement because they simplify the schedul-
ing in a similar way to when processes are pinned explicitly, which encourages
further study of the impact of affinity on performance (see next section 3.4).

• On over-subscribed mode, some performance degradation is due to the scheduling
of cgroups by Linux CFS, which results in an imbalanced allocation of processes to
processors, because CFS is not especially accurate tracking the load of scheduling
entities when they are groups of processes (i.e., cgroups).

• The advantage/disadvantage of using the UMA hardware platform setting is not
directly related with any containerization technology or container granularity, but
with the application and hardware setting characteristics, such as the cache usage
or the memory bandwidth. In particular, applications with low memory bandwidth
requirements and good data locality perform better in the UMA setting, while
memory-intensive applications perform better in the NUMA setting.

• It is necessary to enable MCA parameter mpi_yield_when_idle for multi-container
deployments on over-subscribed mode, especially with MPI communication work-
loads, because this enables MPI processes on different containers to run in degraded
mode.

3.4 Performance Analysis of Multi-container Deployments
With Processor and Memory Affinity

This section addresses the second question: What is the impact of proces-
sor and memory affinity on the performance of multi-container deployment
schemes for HPC workloads?
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3.4.1 Objective

As mentioned in the introduction, Ibrahim et al. [67] have shown that the performance
of HPC workloads on multi-socket NUMA architectures degrades when virtual machines
span several NUMA domains. They claimed that the degradation was caused by the two-
level memory management inherent in virtualized systems combined with the lazy page
reclamation policies implemented in modern kernels. Our results in the previous section
showed that the performance of HPC workloads running on a single container does
not suffer such degradation when spanning several NUMA domains, basically because
containers use only one-level memory management (the same as bare-metal processes).
Consequently, partitioning HPC workloads into multiple containers and containing each
one in a single NUMA domain through affinity is not expected to show noticeable benefits
from a memory translation perspective for most of the benchmarks analyzed in this
paper.

Nevertheless, the impact of container granularity on multi-container deployments with
affinity can be significant depending on the CPU and memory usage characteristics of
each benchmark. For example, restricting the range of possible CPUs to be assigned
to the containers can help applications that suffer many CPU-migrations and context-
switches. Restricting the memory access of the containers to the NUMA node where
their CPUs belong can help applications that present an elevated number of remote
memory accesses.

In this section, we evaluate the impact of setting affinity on partitioned workloads when
using containers, by assessing the performance of multi-container HPC applications with
different processor and memory affinity configurations. In particular, we test different
scenarios where we partition each application among an increasing number of containers
but decreasing number of processes per container, and we configure each container with
some affinity settings, which include i) affinity of the container to a set of cores from
two sockets and to the corresponding local and remote memory nodes (i.e., CPU), ii)
affinity of the container to a set of cores from a single socket and to the local memory
node (i.e., CPUMEM), and iii) 1-to-1 affinity of the processes of the container to cores
from a single socket and to the local memory node (i.e., CPUMEMPIN). Within this
evaluation, we consider different subscription modes on the application layer (exactly-
subscription and over-subscription), different containerization technologies (including
Docker and Singularity), and different hardware platform settings (UMA and NUMA).

3.4.2 Method

Most containerization technologies use by default the namespace capability of the control
groups, but utilize the resource control capability only when the user explicitly provides
the parameters [141]. For example, considering the experiments in Section 3.3, from the
application perspective, the workload is partitioned into several containers. However,
from the kernel perspective, all of them are still sharing the same resources in the system
(and competing for them). Thereby, the kernel has to arbitrate this competition to access
the system hardware or software resources and multiplex the containers to ensure that
all of them receive a fair share.

The purpose of processor and memory affinity is to reduce the number of kernel-level
cycles spent due to the process preemption (i.e., avoid CPU-migrations and context-
switches) and due to the system calls (i.e., exploit locality in data accessing). The
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Figure 3.30: Containerized deployment scenarios using affinity.

affinity settings for our containerized deployment scenarios are shown in Figure 3.30.
They include three different settings, namely CPU, CPUMEM, and CPUMEMPIN,
which are all compared to ANY (the baseline used in the experiments in Section 3.3).
We assume a number of containers Nctn, where each one hosts a number of processes
Nmpi, so that Nctn ×Nmpi = K, which is kept constant in all the deployment scenarios
(i.e., 16). For different subscription modes with ratio r, each container requests the
number of cores Ncpu = Nmpi/r, where r = 1 or r > 1, which means the application
runs on exactly-subscribed mode or over-subscribed mode, respectively. Each hardware
platform setting provides a number of CPU cores and MEM nodes from one or more
sockets S = {sockets|s = 0, ..., Nsocket − 1}, where each socket has P cores. Hence, for
each application distributed in a set of containers CTN = {ctni|i = 1, ..., Nctn} where
each one hosts a set of processes MPI = {mpij |j = 1, ..., Nmpi}, each affinity setting
defines a mapping :

Mapi,j →

{
CPUs,[x,y]

MEMs

(3.1)

where s refers to the assigned socket and [x, y] = {n ∈ Z|x ≤ n ≤ y} denote the assigned
set of cores. Each of the affinity settings works as follows:

(I) ANY: processes do not have any processor or memory affinity, they could access
all the resources provided by the hardware platform setting, and the actual distribution
is decided by the operating system. Thus, the mapping of ANY scenarios could be
expressed as:

Mapi,j →


⋃Nsocket−1

s=0 CPU
s,[s×P,s×P+

Ncpu×Nctn
Nsocket

−1]⋃Nsocket−1
s=0 MEMs

(3.2)

(II) CPU: we define a specific processor affinity for each container to a set of cores
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from the two sockets available in the host. This can only be set in the NUMA hardware
platform setting. The mapping of CPU scenarios could be formulated as follows:

Mapi,j →

{⋃Nsocket−1
s=0 CPUs,[xi,yi]⋃Nsocket−1
s=0 MEMs

(3.3)

xi = s× P + (i− 1)× Ncpu

Nsocket
(3.4)

yi = s× P + i× Ncpu

Nsocket
− 1 (3.5)

(III) CPUMEM: we define specific processor and memory affinity for each container to
a set of cores belonging to a single socket and to the corresponding local memory node.
The mapping of CPUMEM scenarios could be calculated as follows, provided that the
number of cores requested by each container is lower than the cores each socket provides:

Mapi,j →

{
CPUsi,[xi,yi]

MEMsi

(3.6)

si = ⌈
i

Ncps
⌉ − 1 (3.7)

xi = si × P +Ncpu × ((i− 1)− si ×Ncps) (3.8)

yi = si × P +Ncpu × (i− si ×Ncps)− 1 (3.9)

whereNcps refers to the number of containers per socket and is calculated asNctn/Nsocket.

(IV) CPUMEMPIN: this scheme has the same setting as CPUMEM about the affin-
ity of the containers, but it enables the 1-to-1 process-to-processor binding inside the
container so that each process is mapped into a specific core:

Mapi,j →

{
CPUsi,[xi,j ,yi,j ]

MEMsi

(3.10)

si = ⌈
i

Ncps
⌉ − 1 (3.11)

xi,j = yi,j = si × P +Ncpu × ((i− 1)− si ×Ncps) + ⌈
j

r
⌉ − 1 (3.12)

3.4.3 Experimental Setup

The environment, benchmarks, performance tools, statistical significance assessment
methods, and container granularity settings are the same as Section 3.3.3. Some other
settings regarding affinity are described below:

CPU affinity settings: The CPU affinity is defined by restricting the range of
possible CPUs to be assigned to the containers. The cpuset-cpus parameter is needed
for Docker to specify the set of CPUs that can be used, and for Singularity we define a
cgroup.toml configuration file which sets cpus.

Memory affinity settings: The purpose of using memory affinity is to restrict the
memory accesses of containers to the NUMA node where their assigned CPUs belong.
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For Docker, the containers must be provided with the corresponding cpuset-mems pa-
rameter together with the cpuset-cpus parameter. For Singularity, we use the same
strategy as Docker and specify cpus and mems options within the cgroups.toml file.

OpenMPI processes binding: Unlike the settings of ANY, CPU, and CPUMEM,
where processes are free to be moved between the various CPUs allocated to each con-
tainer, CPUMEMPIN utilizes bind-to core where a more rigid procedure of ranking,
mapping, and binding of processes on CPUs is carried out, actually making it a 1-to-1
process-to-processor binding. For Docker and Singularity-instance, it was necessary to
configure the appropriate rankfiles that describe this behavior.

3.4.4 Results

This section shows the impact when utilizing processor and memory affinity strategies on
multi-container deployments of the HPCC benchmarks, using different containerization
technologies and with two hardware platform settings(i.e., UMA and NUMA settings
described before).

1 · Impact of containerization technology on multi-container deployments with
affinity

Figure 3.31-3.35 show the performance results of MPI communication workloads. Con-
gruently with the results in the previous section, Singularity achieves the best perfor-
mance also when using processor and memory affinity, while Docker and Singularity-
instance present some performance degradation in multi-container scenarios. As dis-
cussed in the previous section, this is due to the overhead of communication through the
network stack instead of using shared-memory, which depends on the amount of time
spent within the MPI library and the specific MPI functions invoked. Setting affinity
cannot avoid this performance degradation.
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Figure 3.31: Impact of affinity on RandomRing-bandwidth performance.

Figure 3.36-3.37 depict the performance results of MPI throughput benchmarks. In
this case, all the containerization technologies (Docker, Singularity-instance, and Singu-
larity) achieve the same performance if they are set with the same affinity configuration.
The effectiveness of using affinity with those benchmarks is not dependent on the con-
tainerization technology because, as we discussed in the previous section, they present
low inter-process communication.
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Figure 3.32: Impact of affinity on Pingpong-bandwidth performance.
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Figure 3.33: Impact of affinity on G-RandomAccess performance.
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Figure 3.34: Impact of affinity on G-PTRANS performance.
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Figure 3.35: Impact of affinity on G-FFT performance.
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Figure 3.36: Impact of affinity on EP-STREAM performance.
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Figure 3.37: Impact of affinity on EP-DGEMM performance.

2 · Impact of container granularity on multi-container deployments with affinity

As discussed previously, the impact of container granularity on multi-container deploy-
ments with affinity can be significant depending on the CPU and memory usage charac-
teristics of each benchmark. The results in Table 3.6, which depict the access rate to the
local memory in the NUMA setting for each benchmark on ANY scenario, show that EP-
STREAM, G-PTRANS, G-FFT, and G-RandomAccess are well optimized for locality
(processes mostly access the local memory), while EP-DGEMM has distributed memory
allocation (only 56% accesses to local memory) (b eff performs most of its accesses to
remote memory, but as it uses few memory, this is not significant for performance). Con-
sequently, only EP-DGEMM can take advantage of using memory affinity to reduce the
latency to access the memory, and the benefit of memory affinity for the other bench-
marks should be negligible. Similarly, as the local memory access rates are slightly lower
on over-subscribed deployment scenarios than exactly-subscribed ones, over-subscribed
mode scenarios have more room for exploiting better memory affinity.

Table 3.6: HPCC benchmark memory locality analysis.

Benchmark Local memory access rate
Exact-subscribed Over-subscribed

EP-DGEMM 56% 54%
EP-STREAM 99% 97%

G-FFT 96% 93%
G-PTRANS 98% 95%

G-RandomAccess 90% 80%
b eff 2% 2%

CPU and memory affinity have considerably increased the performance of EP-DGEMM
in all the scenarios. Specifically, the improvement (in %) for Docker in CPU, CPUMEM,
and CPUMEMPIN scenarios with respect to ANY scenarios on the NUMA setting is
significant in all the exactly-subscribed scenarios (with P-values of the corresponding
T-tests ranging from 9.7e−11 to 1.8e−4, clearly below 0.05): around 12%–22% (E2–E4
CPU), 13%–21% (E2–E4 CPUMEM), and 29%–33% (E2–E4 CPUMEMPIN). In the
over-subscribed mode, the improvement is also significant in O2-CPUMEMX and O3
scenarios (with P-values ranging from 7.6e−3 to 0.06): 7% (O2 CPUMEM), 11% (O2
CPUMEMPIN), 6% (O3 CPU), 7% (O3 CPUMEM), and 7% (O3 CPUMEMPIN), but
not significant in O2-CPU: 2% with P-value 0.5. These performance increments are di-
rectly related with the container granularity, as finer-grained deployments provide better
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improvement. This happens because CPU affinity restricts the number of assigned CPUs
within each container, hence the processes running in finer-grained containers have less
available CPUs where they could be migrated. This can be seen in the counter values
in Figure 3.38. Setting CPU affinity reduces the number of context-switches and CPU-
migrations in CPUX scenarios, while setting memory affinity restricts as well the remote
memory accesses in CPUMEMX scenarios. Overall, affinity improves the cache usage
and optimizes the data allocation of the EP-DGEMM application.
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Figure 3.38: Performance event counters of EP-DGEMM on Docker and Singularity for
scenarios with different affinity on NUMA hardware platform setting

For EP-STREAM, G-PTRANS, G-FFT, G-RandomAccess, and b eff benchmarks,
memory affinity does not impact significantly the performance because b eff uses few
memory and the others have the memory allocated mostly in the local socket already.
The impact of CPU affinity on exactly-subscribed scenarios is not significant either for
those benchmarks. As shown in Figure 3.39, which depicts the counter values for G-
FFT benchmark on the NUMA setting, the operating system can do a pretty good job
to prevent unnecessary context-switches on exactly-subscribed scenarios.

On the other side, CPU affinity can increase the performance in over-subscribed sce-
narios for those benchmarks. This is especially noticeable with CPUMEMPIN affinity
configuration (e.g., Docker shows significant improvements from 28% to 87% in scenario
O2, with P-values clearly lower than 0.05 ranging from 6.7e−7 to 1.8e−4, and from 17%
to 80% in scenario O3, with P-values also lower than 0.05 ranging from 8.3e−6 to 1.8e−4),
and also with CPU configuration in scenario O3 (e.g., improvements ranging from 31%
to 77% are significant for all the benchmarks but b eff(PingPong), with P-values ranging
from 7.6e−4 to 1.9e−3). ANY configuration is also generally worse than CPU configu-
ration in scenario O2 for all the benchmarks but b eff(PingPong) (with improvements
from 2% to 31%, but most of them not statistically significant as the P-values are higher
than 0.05) and CPUMEM configuration in scenario O3(with improvements from 11% to
29%, which are halfway significant with P-values mostly ranging from 0.001 to 0.3). Re-
sults for CPUMEM in O2 are inconclusive, as all P-values of the T-tests are higher than
0.05, ranging from 0.2 to 0.79. As shown in Figure 3.39, in over-subscribed scenarios,
CPUMEMPIN and CPU configurations have less CPU-migrations and context-switches
than CPUMEM, which also has less than ANY. Processes in O3-CPU use cores belong-
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Figure 3.39: Performance event counters of G-FFT on Docker and Singularity for sce-
narios with different affinity on NUMA hardware platform setting

ing to two sockets. As migrations between sockets are more expensive (e.g., expensive
computation for iterating all the runqueues, expensive cache misses, and synchroniza-
tion), the scheduler tries more to avoid them [105], something that does not happen
in O3-CPUMEM, where the used cores belong to the same socket. Similarly, the im-
provement with CPU and CPUMEM in scenario O3 is also higher than in scenario O2,
because O3 allows using only one core per socket, which is effectively encouraging 1-to-1
process-to-processor pinning.

3 · Impact of the cgroup scheduling on multi-container deployments with affinity

In section 3.3.4, we assessed the impact of the cgroup scheduling performed by CFS
on ANY scenarios. CFS tried to maintain fair time allocation among cgroups, but
incurred some performance degradation on over-subscribed mode scenarios due to load
imbalance among the various processors. In this section, we assess the impact of the
cgroup scheduling on multi-container deployments with affinity, to check if affinity could
help to overcome this degradation.
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Figure 3.40: Performance comparison of EP-DGEMM on CPU/CPUMEM scenarios
with different number of containers.

Figure 3.40 shows the EP-DGEMM performance on CPU and CPUMEM affinity
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scenarios with different number of containers. All the scenarios provide the same perfor-
mance and do not incur performance degradation, even in containerization technologies
which create a different cgroup per container (e.g., Docker, Singularity-instance, Singu-
larity+cgroup). This can be confirmed by means of T-tests for deployments with more
than 8 containers regarding the 8-containers deployment, which have P-values rang-
ing from 0.06 to 0.97, all higher than 0.05 and hence showing no significant difference.
CPU affinity is able to overcome the CFS load imbalance problem because processes are
deployed explicitly in fixed processors, which avoids load balancing by the scheduler.

4 · Impact of the hardware platform setting on multi-container deployments with
affinity

As discussed in previous sections, the NUMA and UMA hardware platform settings can
provide different performance for specific benchmarks depending on their characteris-
tics. This happens also with multi-container deployments with affinity. A significant
difference is that the UMA setting can only take advantage of CPU affinity not memory
affinity, since all the memory accesses on the UMA setting are already local. Regarding
CPU affinity, its performance impact in the UMA setting follows the same trend we
discussed before for the NUMA setting, being clearly visible in over-subscribed scenar-
ios for some benchmarks, where CPUMEM and CPUMEMPIN configurations on UMA
are better than ANY, because they reduce the number of CPU-migrations and context-
switches. In particular, EP-STREAM, G-PTRANS, G-FFT, G-RandomAccess, and
b eff benchmarks show significant performance improvements ranging from 11% to 87%
for O2-CPUMEMPIN in Docker, with P-values of the T-tests ranging from 3.4e−6 to
0.04, and from 20% to 101% for O3-CPUMEMPIN, with P-values ranging from 1.1e−7 to
4.7e−4. EP-STREAM, G-FFT, and G-RandomAccess benchmarks also show significant
performance improvements ranging from 6% to 64% for O3-CPUMEM, with P-values
ranging from 1.8e−4 to 0.037. The results of those benchmarks for O2-CPUMEM are
inconclusive, as the performance differences are small (from -3% to 11%) and generally
not statistically significant (with P-values ranging from 0.04 to 0.73).

3.4.5 Summary

The findings from the evaluation of the impact of processor and memory affinity on
multi-container deployments are as follows:

• Multi-container deployments with affinity cannot prevent the performance degra-
dation of Docker and Singularity-instance with MPI communication workloads
due to the execution of containers on separated network namespaces. With MPI
throughput workloads, all the containerization technologies achieve the same per-
formance if they are set with the same affinity configuration.

• As containers do not virtualize memory, partitioning HPC workloads into multiple
containers does not show benefits from a memory translation perspective, but
finer-grained container granularity can improve the performance on multi-container
deployments with affinity depending on the CPU and memory usage characteristics
of each benchmark. Memory affinity reduces the number of accesses to the remote
memory in benchmarks with distributed allocated memory, while CPU affinity
restricts the cores that processes can be allocated, which reduces the number of
CPU-migrations and context switches, especially in over-subscribed scenarios.
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• 1-to-1 process-processor pinning scenarios (i.e., CPUMEMPIN scenarios) provide
the best performance, but less strict affinity configurations can be acceptable al-
ternatives when 1-to-1 pinning is not straight-forward (e.g., in over-subscribed
scenarios where the number of processes is not a multiple of the number of pro-
cessors).

• On over-subscribed mode, CPU affinity is able to overcome the CFS load imbal-
ance problem causing performance degradation, because processes are deployed
explicitly in fixed processors and this eliminates the need to balance load by the
scheduler.

• Memory affinity does not provide added benefits in the UMA hardware platform
setting, since memory accesses are already local. CPU affinity improves the perfor-
mance of some benchmarks in over-subscribed scenarios (as in the NUMA setting),
by reducing the number of CPU-migrations and context-switches.

3.5 Performance Analysis of Multi-container Deployments on
InfiniBand Clusters

This section addresses the third question: What is the impact of container
technologies, container granularity, processor and memory affinity on the
performance of multi-container deployment scenarios using different network
interconnects and protocols?

3.5.1 Objective

As shown in the introduction, a matter of the utmost importance for HPC users is that
the containers running their applications can leverage the underlying HPC resources
such as Infiniband networks, which offer high-speed networking capabilities with im-
proved throughput and low latency through the use of Remote Direct Memory Access
(RDMA) [204]. However, it is still unclear how multi-container deployment schemes with
different affinity settings perform with various network interconnects and protocols, and
how different communication patterns and message sizes impact the performance of con-
tainerized HPC workloads.

Based on the previous performance analyses, in this section, we present a detailed per-
formance characteristic for HPC workloads on InfiniBand clusters. We consider different
dimensions, namely network interconnects (including Ethernet and InfiniBand) and pro-
tocols (including TCP/IP and RDMA), networking modes (including host, MACVLAN,
and overlay networking), different containerization technologies (including Docker and
Singularity), container granularity and processor and memory affinity.

3.5.2 Method

Our performance characterization will consider the four dimensions in Figure 3.41,
namely containerization technologies, networking modes, interconnects and protocols,
and affinity, respectively.

Containerization Technologies: In this dimension, we choose Docker, Singular-
ity, and its variant with container instances (hereinafter called Singularity-instance and
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Figure 3.41: Four evaluation dimensions.

Singularity-instance+cgroup) as representative containerization technologies. The bare-
metal performance is also provided to evaluate the corresponding overhead of each con-
tainerization technology.

Interconnects and Protocols: We consider 1-Gigabit Ethernet and InfiniBand
interconnects in this dimension. We evaluate the performance of the different con-
tainerization technologies configured with several networking modes to operate on these
interconnects through various protocols, such as TCP/IP and RDMA. Details are as we
described in Section 2.1.1.

Networking mode: For Docker and Singularity-instance, the networking modes
considered in the experiments depend on the number of deployed containers per host.
As described in Section 2.2.3, when deploying a single container per host, we could
use an underlay networking approach by sharing the host network with the containers
or by setting a MACVLAN address to each container, or use an overlay networking
approach through a network VXLAN tunnel that enables the communication across
hosts. When deploying multiple containers per host, we can only use MACVLAN or
overlay networking approaches for the communication of multiple containers across hosts.

For default Singularity, as the containers within the same host do not have isolated
network namespaces (they run in the same network namespace as the host), they can
share the host network.

Affinity Settings: The affinity settings for our multi-containerized deployment sce-
narios include CPU, CPUMEM, and CPUMEMPIN, which are all compared to ANY.
We assume a number of hosts Nh, where each has a number of containers Nctn. Each con-
tainer hosts a number of processes Nmpi, so that Nctn×Nmpi = K, which is kept constant
in all the deployment scenarios (e.g., 128). The hardware platform provides a number of
CPU cores andMEM nodes from one or more sockets S = {sockets|s = 0, ..., Nsocket−1},
where each socket has P cores. Hence, for each application comprising a set of processes
MPI = {mpij |j = 1, ..., Nmpi} hosted in a set of containers CTN = {ctni|i = 1, ..., Nctn}
which run on a set of hosts HOST = {hosth|h = 1, ..., Nh}, each affinity setting defines a
mapping: Maph,i,j → CPU h,s,[x,y] +MEM h,s where h, s and [x, y] = {n ∈ Z|x ≤ n ≤ y}
denote the assigned host, socket, and set of cores, respectively. Each affinity setting
works as follows:

(I) ANY: processes do not have any processor or memory affinity, they could access
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all the resources provided to this application, and the actual distribution is decided by
the operating system. Thus, the mapping of ANY scenarios could be expressed as:

Maph,i,j →


⋃Nsocket−1

s=0 CPU
h,s,[s×P,s×P+

Ncpu×Nctn
Nsocket

−1]⋃Nsocket−1
s=0 MEM h,s

(3.13)

(II) CPU: we define a specific processor affinity for each container to a set of cores from
two different sockets. The mapping of CPU scenarios could be formulated as follows:

Maph,i,j →

{⋃Nsocket−1
s=0 CPU h,s,[xi,yi]⋃Nsocket−1
s=0 MEM h,s

(3.14)

xi = s× P + (i− 1)× Ncpu

Nsocket
(3.15)

yi = s× P + i× Ncpu

Nsocket
− 1 (3.16)

(III) CPUMEM: we define a specific processor and memory affinity for each container
to a set of cores belonging to a single socket and to the corresponding local memory
node. The mapping of CPUMEM scenarios could be calculated as follows, provided
that the number of cores requested by each container is lower than the cores each socket
provides.

Maph,i,j →

{
CPUh,si,[xi,yi]

MEMh,si

(3.17)

si = ⌈
i

Ncps
⌉ − 1 (3.18)

xi = si × P +Ncpu × ((i− 1)− si ×Ncps) (3.19)

yi = si × P +Ncpu × (i− si ×Ncps)− 1 (3.20)

whereNcps refers to the number of containers per socket and is calculated asNctn/Nsocket.

(IV) CPUMEMPIN: this scheme has the same setting as CPUMEM about the affin-
ity of the containers, but it enables the 1-to-1 process-to-processor binding inside the
container. Thus each process is mapped into a specific core:

Maph,i,j →

{
CPUh,si,[xi,j ,yi,j ]

MEMh,si

(3.21)

si = ⌈
i

Ncps
⌉ − 1 (3.22)

xi,j = yi,j = si × P +Ncpu × ((i− 1)− si ×Ncps) + j − 1 (3.23)

3.5.3 Experimental Setup

In this section, we first describe our experimental setup. Then, we present the results
when deploying a single container per host with different networking modes. Finally,
we provide the results of multi-container deployments, where we evaluate the impact of
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container granularity and processor and memory affinity when using different network
interconnects and protocols.

Hardware: Our experiments are executed on a five-node HPC InfiniBand cluster.
Each host consists of 2 x Intel 2697v4 CPUs (18 cores each, hyperthreading disabled),
256 GB RAM, 60 TB GPFS file system, 1-Gigabit Ethernet network, and Mellanox
Technologies MT27700 Family ConnectX-4 InfiniBand (EDR 100Gb/s Adapter), which
works on datagram mode.

Software: For both hosts and containers, we use CentOS release 7.6.1810 with
host kernel 3.10.0-957.27.2.el7.x86 64 and MLNX OFED LINUX-4.7-1.0.0.1 as the HCA
driver. Docker 19.03.10 and Singularity 3.5.1 are used to conduct all the experiments.
OpenMPI 4.0.3rc3 and all the benchmarks are compiled with gcc 5.5.0 compiler.

Benchmarks: 1) OSU Benchmark: OSU Benchmark5 is a suite of benchmarks that
measure the MPI-level operation performance. We choose this benchmark for under-
standing MPI communication performance with different message sizes. We use version
5.6.3. 2) HPCC Benchmark: The HPC Challenge benchmark suite6 is widely used
to evaluate the performance of HPC systems. Its design goal is to enable complete
understandings of the performance characteristics of platforms [112]. It consists of sev-
eral benchmarks that show the performance impact of real-world HPC applications.
For example, the capability of processor floating point computation (e.g., DGEMM,
FFT), memory bandwidth (e.g., STREAM, FFT) and latency (e.g., RandomAccess),
and communication bandwidth (e.g., RandomRing Bandwidth, PTRANS, FFT) and
latency (e.g., RandomAccess) [197][62]. We use v1.5.0.

Networking mode and Protocol Settings: We evaluated various network inter-
connects and protocols, namely TCP/IP protocol on Ethernet, TCP/ IP protocol over
InfiniBand (IPoIB), and RDMA natively on InfiniBand. Detailed network and protocol
settings for each containerization technology are shown in Table 3.7. Single container
per host scenarios are tested with three different networking modes: Host, MACVLAN,
and Overlay. Note that MACVLAN does not work with InfiniBand, so we tested it
only with TCP/IP on Ethernet. Multiple containers per host scenarios are tested only
with the overlay networking mode, as this is the only mode that allows running multiple
containers per host on all the network interconnects.

Docker implements its own networking specification called the Container Network
Model7, which supports multi-host networking through both underlay (based on MACVL-
AN) and overlay native drivers. The overlay network for Docker used in our experiments
is not using Docker Swarm but configuring an external etcd8 discovery service. For
Singularity-instance, it uses the CNI9 plugins for defining various basic networks such
as bridge, ipvlan or macvlan. We use the knowledge from our previous work to enable
the interconnection between Singularity instances across hosts [160]. As for Singularity-
instance+cgroups, we keep the same network settings as Singularity-instance but enable
the cgroup support by adding apply-cgroups parameter.

Granularity Deployment Scenarios: We study both single- and multi-container
deployment schemes. One host acts as the master for launching the experiments and the
other four hosts run each benchmark consisting of 128 processes in total. Detailed

5https://mvapich.cse.ohio-state.edu/benchmarks/
6http://icl.cs.utk.edu/hpcc/
7https://github.com/docker/libnetwork/blob/master/docs/design.md
8https://etcd.io
9https://github.com/containernetworking/cni
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Table 3.7: Networking mode and protocol settings.

Containerization Networking Mode Protocols

Bare-metal(B) Host TCP/IP; IPoIB; RDMA

Docker(D)
Host

Overlay
MACVLAN

TCP/IP; IPoIB; RDMA
TCP/IP; IPoIB; RDMA

TCP/IP

Singularity-
instance(SI)

Host
Overlay

MACVLAN

TCP/IP; IPoIB; RDMA
TCP/IP; IPoIB; RDMA

TCP/IP

Singularity(S) Host TCP/IP; IPoIB; RDMA

Table 3.8: Container granularity settings.

Containerization
# of Containers
per Host (NC)

# of Processes
per Container (NP)

Docker(D) 1,2,4,8,16,32 32,16,8,4,2,1
Singularity-instance(SI) 1,2,4,8,16,32 32,16,8,4,2,1
Singularity-instance
+ cgroups(SI+CG)

1,2,4,8,16,32 32,16,8,4,2,1

settings are shown in Table 3.8. For Docker, Singularity-instance, and Singularity-
instance+cgroups, we generate scenarios SCE1–SCE6 by increasing the number of con-
tainers per host, in particular 1, 2, 4, 8, 16, and 32 containers per host, but decreasing
the number of processes per container, that is, finer-grained container granularity (i.e.,
32, 16, 8, 4, 2, and 1 processes per container, respectively).

Scheduling and Binding Policy: OpenMPI’s default mapping and binding policy
schedules in a round-robin fashion through slots and automatically binds processes to
sockets if the number of processes is more than two and binds processes to cores if the
number of processes is less or equal than two. However, this binding policy is inadequate
when enabling multi-container deployments because processes in different containers are
not aware of their peers and always bind to the first socket by default. Thus, in exper-
iments 1○ and 2○, we use rankfiles with specific mappings between processes and cores
to ensure a uniform distribution. For experiment 3○, the rankfiles are derived from the
formulas presented in Section 3.5.2. In addition, in our experiments, we restrict the re-
sources to Docker and Singularity-instance+cgroups containers by setting cpuset-cpus

and cpuset-mems parameters and specifying cpus and mems options within the cgroup
file used by apply-cgroups, respectively.

Performance analysis tools: We use Paraver10 to profile MPI usage patterns of
the benchmarks. We capture performance event counters and operating system met-
rics (through Perf11), such as context-switches, migrations, and memory accesses, from
representative executions of the benchmarks and we use them to explain the obtained
performance results.

10https://tools.bsc.es/paraver
11http://man7.org/linux/man-pages/man1/perf.1.html
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3.5.4 Results

1 · Impact of Containerization on a Single Container per Host Deployment
Scenario with Different Network Fabrics

We use the MPI Alltoallv Latency Test from the OSU benchmark suite to evaluate the
global latency of ranks sending and receiving data. This test spreads 128 MPI processes
across four hosts, and then all of them send data to and receive data from all the others.
In addition, we use the OSU Bidirectional Bandwidth Test to measure the maximum
aggregate bandwidth between two adjacent nodes that send out a fixed number of back-
to-back messages between them. As both tests perform a large number of iterations and
already provide an averaged result, we display the outcome of a single execution for each
sample.
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Figure 3.42: TCP/IP over Ethernet: Latency (a) and Bandwidth (b) for scenario
SCE1 with different networking modes.

Figures 3.42–3.44 show the performance of different containerization technologies with
several network fabrics and protocols. As expected, the RDMA protocol has higher
performance and lower latency than IPoIB, and those two perform better than TCP/IP
in all the container networking modes.

Default Singularity reaches the same performance as bare-metal in all the scenarios,
given that running on default Singularity is equivalent to running processes on bare-
metal, as all the container processes on a given host reside in the same namespaces (e.g.,
network, IPC, etc.) as the host.

For Docker and Singularity-instance, underlay container networking approaches, such
as host networking and MACVLAN networking, also achieve comparable performance
to bare-metal experiments. With host networking, the single container shares the same
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Figure 3.43: TCP/IP over Infiniband: Latency (a) and Bandwidth (b) for scenario
SCE1 with different networking modes.
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Figure 3.44: RDMA over Infiniband: Latency (a) and Bandwidth (b) for scenario
SCE1 with different networking modes.
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network namespace as the host. With MACVLAN networking, a container gets unique
MAC and IP addresses and is exposed directly to the underlay network. In contrast, over-
lay networking brings explicit latency increase and bandwidth degradation for Docker
and Singularity-instance. This occurs because all the communications among contain-
ers must be encapsulated through a tunnel, and this additional encapsulation incurs
overhead (i.e., reduces the amount of application data sent on each network packet).
For TCP/IP over Ethernet, latency increments are more significant with small mes-
sages, whereas bandwidth degradation occurs for all message sizes. For example, Docker
overlay networking shows 244% (8B), 9% (1MB) latency increase and 70% (8B), 49%
(1MB) bandwidth degradation compared to bare-metal. For IPoIB, overlay networking
shows significant latency increments (especially with large messages) and bandwidth
degradation with all sizes compared to bare-metal. In particular, Docker presents 26%
(8B), 211% (1MB) latency increase and 70% (8B), 74% (1MB) degradation on band-
width. Both TCP/IP and IPoIB can benefit from an increment of the MTU (Maximum
Transmission Unit) value to attenuate the incurred overhead by overlay networking for
communication-intensive workloads.

On the other side, overlay networking on RDMA over InfiniBand has negligible per-
formance degradation for all the containerization technologies on bandwidth and latency
regarding the bare-metal baseline. This is because the data communications among pro-
cesses are performed through RDMA and the overlay network connection is only used
for initiating and setting up the nodes.

2 · Impact of Container Granularity on Multi-container per Host Deployment
Scenarios with Different Network Fabrics

In this experiment, we evaluate the impact of container granularity on multi-container
deployments. First, we use again the MPI Alltoallv Latency Test from the OSU bench-
mark through different message sizes. Then, we use the HPCC benchmark suite to
assess how different MPI communication patterns are impacted by container granular-
ity. HPCC results are derived from the average of ten executions, and we plot the median
value and the standard deviation after eliminating outliers that lie beyond 1.5 times the
interquartile range. As justified before, all the multi-container experiments use overlay
networks.

OSU MPI Alltoallv Latency: Figures 3.45–3.47 show the MPI Alltoallv latency
of multi-container deployments for Docker and Singularity-instance with several network
fabrics and protocols, namely TCP/IP, IPoIB, and RDMA.

For small and medium messages, we observe that scenario SCE1 has the lowest latency
and running more containers per host increases the latency. This increment is related
with the number of containers per host only for TCP/IP and IPoIB. In particular, the
latency on Docker with message size 8B in scenarios SCE2–SCE6 over TCP/IP, IPoIB,
and RDMA has increased by 2%–5%–6%–7%–9%, 8%–13%–16%–17%–18%, 64%–13%–
42%–24%–52% compared to SCE1, respectively.

For large messages, TCP/IP has similar performance with different container gran-
ularity. However, for IPoIB and RDMA, scenarios with several containers per host
(SCE2–SCE6) show up to 19% and 10% lower latency than SCE1 for IPoIB and RDMA,
respectively. This is because the memory latency becomes a critical factor when the net-
work latency is not the dominant bottleneck, as occurs in high-speed networks. As shown
in Figure 3.48, which depicts relevant performance counters of osu-alltoallv for IPoIB and
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Figure 3.45: TCP/IP over Ethernet: MPI Alltoallv latency for multi-container de-
ployment scenarios (SCE1–SCE6).

1 2 4 8 16 32 6412
8

0
2k
4k
6k
8k

10k
12k

25
6

51
2 1K 2K 4K 8K 16

K
0

10k

20k

30k

40k

32
K

64
K
12

8K
25

6K
51

2K 1M
0

0.5M
1M

1.5M
2M

2.5M
3M

overlay-IPoIB-SCE1 overlay-IPoIB-SCE2 overlay-IPoIB-SCE3 overlay-IPoIB-SCE4
overlay-IPoIB-SCE5 overlay-IPoIB-SCE6

Message Size(Bytes) Message Size(Bytes) Message Size(Bytes)

La
te

nc
y 

(μ
s)

(a) MPI Alltoallv latency on Docker

1 2 4 8 16 32 6412
8

0
2k
4k
6k
8k

10k
12k

25
6

51
2 1K 2K 4K 8K 16

K
0

10k

20k

30k

40k

32
K

64
K
12

8K
25

6K
51

2K 1M
0

0.5M
1M

1.5M
2M

2.5M
3M

overlay-IPoIB-SCE1 overlay-IPoIB-SCE2  overlay-IPoIB-SCE3 overlay-IPoIB-SCE4
overlay-IPoIB-SCE5  overlay-IPoIB-SCE6

Message Size(Bytes) Message Size(Bytes) Message Size(Bytes)

La
te

nc
y 

(μ
s)

(b) MPI Alltoallv latency on Singularity-instance

Figure 3.46: TCP/IP over Infiniband: MPI Alltoallv latency for multi-container de-
ployment scenarios (SCE1–SCE6).
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Figure 3.47: RDMA over Infiniband: MPI Alltoallv latency for multi-container de-
ployment scenarios (SCE1–SCE6).

RDMA with large message size (1 MB) on Docker, scenarios SCE2–SCE6 show better
cache utilization, fewer local memory accesses, and fewer remote memory accesses than
SCE1. These are consequences of the scheduling of the containers (i.e., the cgroups)
and their corresponding MPI processes. With scenarios SCE2–SCE6 running more con-
tainers, each of them runs fewer processes, tending to a single-level scheduling (i.e., at
the cgroup level), which is simpler and allows exploiting processor affinity better, thus
improving the cache usage and enforcing local memory accesses.
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Figure 3.48: Performance event counters of osu-alltoallv for different interconnects and
protocols with message size 1 MB on Docker.

The memory contention also affects the performance on IPoIB and RDMA. In order
to measure the memory contention that occurs on osu-alltoallv with large message size,
we calculate the memory contention ratio among cores by using the model proposed by
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Tudor and Teo [182]. Like those authors, we are not interested in the absolute value of
stall cycles, but on how stall cycles grow relative to a baseline value on one core (where
there is no contention) due to memory contention among cores. Consequently, we derive
the memory contention ratio ω as the stall cycles due to contention divided by the useful
work cycles (including stall cycles that are not due to resource contention). Figure 3.49
presents the average memory contention ratio of osu-alltoallv for IPoIB and RDMA with
message size 1 MB on Docker, where a higher ω means more memory contention. As
shown in the figure, the memory contention ratio decreases when increasing the number
of containers. This is because, as described previously, using more containers decreases
the number of accesses to the l3 cache and the memory, which reduces the contention.
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Figure 3.49: Average memory contention ratio of osu-alltoallv for different interconnects
and protocols with message size 1 MB on Docker.

HPCC MPI communication-intensive workloads: RandomRing Bandwidth
benchmark features a number of communication patterns (e.g., non-blocking and block-
ing concurrent transfers). In particular, it performs MPI Isend and MPI Irecv to left and
right partner, as well as MPI Sendrecv, and saves the minimum of both latencies for all
rings. We show the results for different container granularity in Figures 3.50(a), 3.51(a),
and 3.52(a). Containerization technologies using overlay networks present significant
degradation for TCP/IP and, especially, IPoIB regarding bare-metal and Singularity.
As discussed in the previous section, this is due to the overhead introduced by the
encapsulation of network packets.
For TCP/IP and IPoIB, increasing the number of containers per host does not have

a noticeable impact on the bandwidth. This is because the bottleneck for TCP/IP and
IPoIB comes from the interconnection between nodes, which is far slower than the in-
terconnection between containers in the same node or between processes in the same
container (i.e., shared-memory). This can be confirmed in Figure 3.53(a-b). How-
ever, for RDMA, multi-container scenarios SCE2–SCE6 have 17%–23%–25%–26%–27%
performance degradation in the bandwidth regarding SCE1. This occurs because the in-
terconnection between nodes on RDMA is as fast as the shared-memory communication
within a container as shown in Figure 3.53(c). Therefore, the interconnection between
containers in the same node becomes the performance bottleneck, and this increases
with the number of containers per node.
G-PTRANS and G-RandomAccess present different point-to-point communication

patterns and use different message sizes. In particular, G-PTRANS performs mainly
blocking concurrent transfers (e.g.,MPI Sendrecv) with message size 2 MB. G-RandomAccess
uses mostly small-sized non-blocking communication (e.g.,MPI Isend, MPI Irecv, MPI Wait).
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Figure 3.50: TCP/IP over Ethernet:Impact of container granularity in HPCC MPI
communication workloads.
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Figure 3.51: TCP/IP over InfiniBand: Impact of container granularity in HPCC
MPI communication workloads.
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Figure 3.52: RDMA over InfiniBand: Impact of container granularity in HPCC MPI
communication workloads.
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Figure 3.53: Maximum aggregate bandwidth of inter-node, inter-container, and intra-
container communications with different network protocols.
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Thus, G-PTRANS is mainly a network-bandwidth-intensive benchmark that behaves
similar to RandomRing. In particular, as shown in Figures 3.50(b), 3.51(b), and 3.52(b),
Docker multi-container scenarios SCE2–SCE6 incur 7%–14%–14%–16%–17% performance
degradation on RDMA compared to SCE1. On the other side, G-RandomAccess accesses
data from all the processes. As shown in Figures 3.50(c), 3.51(c), and 3.52(c), there is an
increasing performance degradation with finer-grained containers. In particular, Docker
multi-container scenarios SCE2–SCE6 have 6%–11%–13%–15%–14%, 12%–16%–21%–
22%–21%, and 8%–23%–25%–34%–38% performance degradation regarding SCE1, for
TCP/IP, IPoIB, and RDMA, respectively. This occurs because G-RandomAccess per-
forms a high number of MPI invocations, and when increasing the number of containers a
significant part of them involve inter-container communications instead of intra-container
(which are faster). This is especially relevant for RDMA, given that the memory latency
is a critical parameter for the performance of G-RandomAccess.

G-FFT mainly uses MPI Alltoall communication pattern to transfer large data, and it
is also intensive on memory bandwidth and computation. As shown in Figures 3.50(d),
3.51(d), and 3.52(d), the performance of multi-container scenarios SCE2–SCE6 is similar
on TCP/IP and IPoIB, whereas on RDMA they show some performance degradation
compared to SCE1 (e.g., around 8% in average on Docker). Whereas the performance on
TCP/IP (and IPoIB) is mostly limited by the network bandwidth, the performance on
RDMA depends on the memory latency, which is worse when running multiple containers
per host. However, this incurs low degradation due to the low number of MPI invocations
performed by G-FFT.

HPCC MPI throughput workloads: EP-STREAM characterizes the mem-
ory bandwidth, while EP-DGEMM stresses the computation capabilities of the sys-
tem. As shown in Figures 3.54–3.56, overlay networking does not bring explicit per-
formance penalties due to the low amount of interprocess communication. Similarly,
multi-container scenarios do not show significant performance differences, except EP-
DGEMM on SCE6. In this scenario, EP-DGEMM on Docker (also on Singularity-
instance+cgroup) shows noticeable performance improvement (11%, 16%, and 7% for
TCP/IP, IPoIB, and RDMA, respectively) regarding other deployment scenarios (includ-
ing bare-metal). This is a consequence of the scheduling of the containers (i.e., cgroups)
and their corresponding MPI processes. As each container runs a single process, this
is essentially a single-level scheduling (i.e., at the cgroup level), which is simpler and
allows to exploit processor affinity better, in a similar way to when processes are pinned
explicitly.
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Figure 3.54: TCP/IP over Ethernet: Impact of container granularity in HPCC MPI
throughput workloads.
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Figure 3.55: TCP/IP over InfiniBand: Impact of container granularity in HPCC
MPI throughput workloads.
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Figure 3.56: RDMA over InfiniBand: Impact of container granularity in HPCC
throughput workloads.

3 · Impact of Affinity on Multi-container per Host Deployment Scenarios With
Different Network Fabrics

Figures 3.57, 3.58, and 3.59 show the performance results of Docker multi-container de-
ployment scenarios with different affinity settings for various network interconnects and
protocols. Singularity-instance shows similar results, which have not been included due
to space constraints. As discussed in experiment 2○, communication-intensive bench-
marks have degradation in multi-container deployment scenarios due to the overhead of
overlay communication for TCP/IP and IPoIB. Similarly, RDMA is limited by the band-
width of inter-container communication. Setting affinity cannot avoid this performance
degradation. For example, enabling affinity on G-PTRANS does not bring improvements
because its performance is mainly limited by the network bandwidth.

The effectiveness of affinity in multi-container deployments depends significantly on
the resource usage characteristics of each benchmark. For example, restricting the range
of CPUs to be assigned to the containers can help applications that suffer many CPU-
migrations and context-switches. Restricting the memory access of the containers to the
NUMA node where their CPUs belong can help applications that present an elevated
number of remote memory accesses.

CPU and memory affinity have considerably increased the performance of EP-DGEMM
in all the scenarios. Specifically, the speedup in CPU, CPUMEM, and CPUMEMPIN
scenarios with respect to ANY scenarios ranges from 9%–21% (SCE2–SCE5 CPU),
18%–35% (SCE2–SCE5 CPUMEM), and 22%–41% (SCE1–SCE6 CPUMEMPIN) on
TCP/IP; 15%–26% (SCE2–SCE5 CPU), 19%–36% (SCE2–SCE5 CPUMEM), and 21%–
42% (SCE1–SCE6 CPUMEMPIN) on IPoIB; and 17%–22% (SCE2–SCE5 CPU), 21%–
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Figure 3.57: TCP/IP over Ethernet: Impact of affinity for multi-container deploy-
ments of HPCC MPI workloads.
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Figure 3.58: TCP/IP over InfiniBand: Impact of affinity for multi-container deploy-
ments of HPCC MPI workloads.
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Figure 3.59: RDMA over InfiniBand: Impact of affinity for multi-container deploy-
ments of HPCC MPI workloads.

37% (SCE2–SCE5 CPUMEM), and 31%–43% (SCE1–SCE6 CPUMEMPIN) on RDMA.
These performance increments are directly related with the container granularity, as
finer-grained deployments provide better speedup on CPU and CPUMEM. This hap-
pens because CPU affinity restricts the number of assigned CPUs within each container,
hence the processes running in finer-grained containers have less available CPUs where
they could be migrated. Setting CPU affinity reduces the number of context-switches
and CPU-migrations in CPUX scenarios, while setting memory affinity restricts as well
the remote memory accesses in CPUMEMX scenarios.

Benchmarks with different memory usage characteristics can benefit from setting
affinity. This is more explicit in RDMA scenarios, where the computation and mem-
ory latency also become critical parameters instead of only the network interconnect.
In particular, G-FFT on RDMA has significant performance improvement, 18%–32%
(SCE2–SCE5 CPUMEM) and 16%–32% (SCE1–SCE6 CPUMEMPIN). As the all-to-all
communication on RDMA is considerably faster than on TCP/IP, the overall perfor-
mance is impacted then by the memory latency. Therefore, G-FFT on RDMA benefits
from multi-container deployments with memory affinity which enforces local memory
accesses.

Noticeably, setting affinity decreases the performance of G-RandomAccess on TCP/IP,
up to 21% (CPU), 22% (CPUMEM), and 24% (CPUMEMPIN). By analyzing the re-
sults in Figure 3.60 and Figure 3.61, we found out that the actual cause of the perfor-
mance degradation of CPUMEMPIN was the load imbalance among processes. Figure
3.60, which depicts the time spent in MPI communication patterns of G-RandomAccess
for TCP/IP interconnect with ANY and CPUMEMPIN affinities on Docker scenario
SCE1, shows that the time spent on MPI Waitany and especially MPI Barrier for
CPUMEMPIN is much higher than ANY. Thus, this requires us to generate the MPI
profile by duration time of the experiments.

Figure 3.61, which shows a detailed MPI duration profile for all 128 processes, reveals
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TCP/IP interconnect with ANY and CPUMEMPIN affinity on Docker-
SCE1.

Figure 3.61: MPI profile of G-RandomAccess for TCP/IP interconnect with ANY (top)
and CPUMEMPIN (bottom) affinity on Docker-SCE1.
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that in ANY, the scheduler can better balance the load among processes and reduce
their wait time in the barrier. Contrariwise, in CPUMEMPIN, some processes incur
high wait latency that slows down the entire application. Given the random nature of
the data accesses in G-RandomAccess benchmark, some processes might receive more
requests than others, but as they are pinned to specific cores they cannot take advantage
of other cores which are currently idle, thus causing the busy-waiting of other processes
and introducing more latency. ANY affinity can mitigate this problem by allowing to
migrate processes to achieve better load balance. However, enabling affinity can help
to improve the performance on RDMA, in particular, 7%–50% (SCE2–SCE5 CPU), 0–
43% (SCE2–SCE5 CPUMEM), and 0–43% (SCE1–SCE6 CPUMEMPIN). With RDMA,
memory latency becomes relevant for performance, and for this reason, restricting the
remote memory accesses through affinity can reduce the degradation.

4 · Performance Insights on Multi-container per Host Deployment Scenarios with
Different Network Fabrics in Large-scale Clusters

Experiments in previous sections were run in a testbed with 5 nodes (1 master + 4
workers). Nevertheless, we anticipate that most of the performance insights obtained in
those sections would still hold for multi-container deployment scenarios with different
network fabrics in a large-scale cluster.

First, we expect default Singularity to have close to bare-metal performance because
it can use an underlay networking approach. However, it cannot support multi-container
deployments.
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Figure 3.62: Distribution of invocations to alltoallv among inter-container, intra-
container, and inter-node communications on a different number of nodes
(each group shows the percentage for 2, 4, and 6 worker nodes, respec-
tively).

Second, we expect Docker and Singularity-instance, which can support multi-container
deployments by means of an overlay networking approach, to incur noticeable perfor-
mance degradation for MPI communication workloads. This degradation is expected to
increase as a function of the number of nodes, as this will increase the proportion of
inter-node communications. The latter can be appreciated in Figure 3.62, which shows
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the distribution of invocations to function alltoallv in the OSU alltoallv benchmark
among inter-container, intra-container, and inter-node communications with different
number of nodes and deployment scenarios. Note that this benchmark communicates
all the processes so the impact might vary depending on the communication pattern for
other applications. It will basically depend on their ratio among inter-container, intra-
container, and inter-node communications. Furthermore, the degradation will be more
noticeable for TCP on Ethernet and on Infiniband, as they provide much worse perfor-
mance than RDMA (check inter-node bandwidth in Figure 3.53) and the performance
difference grows rapidly as the number of nodes increases [61].

As also shown in Figure 3.62, fine-grain multi-container deployments will transform
intra-node communications using shared-memory on inter-container communications.
Although Figure 3.53 showed that inter-container communications are slower, this effect
will be diluted in large-scale clusters given the dominance of inter-node communica-
tions, hence multi-container deployments should show similar behavior in terms of the
performance of deployment schemes with different container granularity.

Third, although setting affinity cannot avoid the overhead incurred by overlay net-
working, we expect that it can also make a difference on MPI throughput workloads
in large-scale clusters, as the performance bottlenecks for those applications are the
computation and memory allocation and not the network transfers. As shown in Figure
3.63, which displays the performance of EP-DGEMM using multi-container deployments
scenarios when running on a testbed with 7 nodes (1 master + 6 workers), affinity still
brings valuable performance benefits in all multi-container deployment scenarios and
network fabrics.
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Figure 3.63: Performance of EP-DGEMM using multi-container deployments scenarios
with different network fabrics when running on a testbed with 7 nodes (1
master + 6 workers).
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3.5.5 Summary

The findings from the evaluation of the impact of container technologies, container gran-
ularity and processor and memory affinity on the performance of multi-container deploy-
ments using different network interconnects and protocols are as follows:

• Default Singularity reaches the same performance as bare-metal in all the scenarios,
given that running on default Singularity is equivalent to running processes on bare-
metal, as all the container processes on a given host reside in the same namespaces
(e.g., network, IPC, etc.) as the host. However, it does not support fine-grain
multi-container deployments, which are only possible with Docker and Singularity-
instance.

• For Docker and Singularity-instance, underlay container networking approaches,
such as host networking and MACVLAN networking, also achieve comparable
performance to bare-metal experiments. In contrast, overlay networking brings
explicit latency increase and bandwidth degradation for Docker and Singularity-
instance.

• Docker and Singularity-instance use an overlay networking approach, which incurs
noticeable performance degradation for MPI communication workloads, and show
similar behavior in terms of the performance of deployment schemes with different
container granularity and affinity.

• Fine-grain multi-container deployments transform intra-node communications us-
ing shared memory on inter-container communications, which could increase the
network latency of some MPI operations, but can alleviate the latency and con-
tention of memory accesses when these are the performance bottleneck.

• Setting affinity cannot avoid the overhead incurred by overlay networking, but it
can make a difference on MPI throughput workloads and even MPI communica-
tion workloads where the computation and memory allocation have replaced the
network transfers as the performance bottlenecks (e.g., when running on RDMA).
In those scenarios, we have shown how processor and memory affinity can reduce
the number of kernel-level cycles spent due to the process preemption (i.e., avoid
CPU-migrations and context-switches) and due to the system calls (i.e., exploit
locality in data accessing).

3.6 Conclusion and Future Work

This chapter presented a performance comparison of multi-container deployment schemes
for HPC workloads. In order to understand the performance impact of different de-
ployment scenarios, we selected HPCC workloads that exhibit different communication
patterns, memory accesses, and computation. We executed the various deployment
schemes on NUMA and UMA hardware platform settings with different subscription
modes (exactly-subscribed and over-subscribed). Our research revolved around the
above settings to understand the performance of different containerization technolo-
gies (e.g., Docker and Singularity), especially in terms of the impact of granularity of
containers and the effectiveness of using processor and memory affinity for the various
deployment schemes.

85



Chapter 3 Multi-container Deployments on InfiniBand Clusters

We also presented a performance characterization of different containerization tech-
nologies (including Docker and Singularity) for HPC workloads on InfiniBand clusters
from four dimensions, namely network interconnects (including Ethernet and Infini-
Band) and protocols (including TCP/IP and RDMA), networking modes (including
host, MACVLAN, and overlay networking), and processor and memory affinity. We fo-
cus especially on understanding how the container granularity and its combination with
processor and memory affinity impact the performance when using different networking
modes. We used OSU benchmarks to measure the network performance considering dif-
ferent message sizes, as well as HPCC workloads that exhibit different communication
patterns, memory accesses, and computation.
We concluded that some trade-offs need to be taken into account when choosing multi-

container deployment schemes for HPC workloads. Docker and Singularity-instance in-
cur some performance degradation for MPI communication workloads running on mul-
tiple containers, because the processes running on separated containers are deployed
on isolated network namespaces. Multi-container deployments with affinity cannot pre-
vent this performance degradation, but the degradation could be avoided by enabling
shared-memory among the distinct containers and making the MPI engine aware of that
shared-memory area. Singularity, which can use shared-memory for communication, is
not affected by this issue.
Workloads with a low amount of inter-process communication do not incur perfor-

mance degradation with any containerization technology and can benefit from finer-
grained deployments because they simplify the scheduling in a similar way to when
processes are pinned explicitly. Finer-grained container granularity can improve also the
performance on multi-container deployments with affinity depending on the CPU and
memory usage characteristics of each benchmark, especially in over-subscribed scenarios.
1-to-1 process-processor pinning provides the best performance, but less strict affinity
configurations can be acceptable alternatives when 1-to-1 pinning is not straight-forward.
On over-subscribed mode, some performance degradation is due to the scheduling of

cgroups by Linux CFS, which results in an imbalanced allocation of processes to pro-
cessors. CPU affinity allows to overcome this problem, because processes are deployed
explicitly in fixed processors and this eliminates the need to balance load by the sched-
uler.
The performance difference between the hardware platform settings is not directly

related to any containerization technology or container granularity, but related to the
application and hardware setting characteristics, such as the cache usage or the memory
bandwidth. Memory affinity does not provide added benefits in the UMA setting but
improves the performance of benchmarks with distributed memory allocation in the
NUMA setting. CPU affinity improves the performance of some benchmarks in over-
subscribed scenarios on both hardware platform settings, by reducing the number of
CPU-migrations and context-switches.
We concluded that default Singularity has close to bare-metal performance because it

can use an underlay networking approach. However, it does not support fine-grain multi-
container deployments, which are only possible with Docker and Singularity-instance.
These use an overlay networking approach, which incurs noticeable performance degra-
dation for MPI communication workloads, and shows similar behavior in terms of the
performance of deployment schemes with different container granularity and affinity. In
particular, fine-grain multi-container deployments transform intra-node communications
using shared memory on inter-container communications, which could increase the net-
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work latency of some MPI operations, but can alleviate the latency and contention of
memory accesses when these are the performance bottleneck.
Setting affinity cannot avoid the overhead incurred by overlay networking, but it can

make a difference on MPI throughput workloads and even MPI communication workloads
where the computation and memory allocation have replaced the network transfers as
the performance bottlenecks (e.g., when running on RDMA). In those scenarios, we have
shown how processor and memory affinity can reduce the number of kernel-level cycles
spent due to the process preemption (i.e., avoid CPU-migrations and context-switches)
and due to the system calls (i.e., exploit locality in data accessing).

In Chapter 6, we plan to use insights about the performance of multi-container de-
ployments, especially those regarding the impact of the container granularity and the
CPU and memory affinity, as well as the findings of the performance of multi-container
deployments on InfiniBand clusters, especially those regarding the impact of the con-
tainer granularity and affinity with different networking modes, to derive placement
policies when deploying HPC workloads which can get better utilization of the resources
while maintaining application performance. Those policies could be integrated into tra-
ditional HPC job schedulers, such as Slurm12, which have also already started to support
containers, as well as, new schedulers for HPC workloads with native containerization
support, such as the Kubernetes native batch scheduling system (i.e., Volcano13). Both
approaches would allow integrating our deployment schemes, namely fine-grained con-
tainer granularity, affinity, and overlay networking, with the traditional HPC scheduling
capabilities and QoS requirements supported by those schedulers. Other directions, such
as investigating larger-scale experiments beyond 6 workers or studying the performance
of containerized HPC workloads over GPUs, are left as future work.

12https://slurm.schedmd.com/containers.html
13https://volcano.sh/en/
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Chapter 4

Multi-Container Deployment Schemes for
Online Machine Learning Inference

This chapter is based on the work done in collaboration with Amir Taherkordi during mobility for three
months at the University of Oslo, the work has resulted in a publication in the IEEE CLOUD conference:

[1] Peini Liu, Jordi Guitart and Amir Taherkordi “Performance Characterization of Multi-container
Deployment Schemes for Online Machine Learning Inference on Kubernetes Clusters”, 2023 IEEE In-
ternational Conference on Cloud Computing (CLOUD), July 2023, Chicago, USA. Accepted. (CORE
RANK B).

This chapter presents multi-container deployment schemes for online ML inference
on Kubernetes clusters. A brief introduction is presented in Section 4.1. Section 4.2
describes the architecture of our evaluated system and shows the detailed server and
affinity setting schemes. Finally, the results of enabling multi-container and affinity
deployments for ML workloads are shown in Section 4.3. The conclusions and the future
work are described in Section 4.4.

4.1 Introduction

Machine Learning (ML) is increasingly becoming popular in various data analysis tasks
such as image classification, machine translation, recommendation systems, and speech
recognition [55][81][111][26]. ML inference is an important phase that uses trained ML
models to make predictions from new data. From a runtime perspective, ML inference
can be conducted either as a batch process, where predictions can be generated asyn-
chronously from a batch of samples with no specific time limit to receive the results,
or more interactively, through an online ML inference service, which receives dynamic
queries from end-users and serves the predictions in real-time (subject to a latency
bound) [97][98][203][92].

To meet the notable computational requirements of ML inference services, especially
in the prediction step of the pipeline, those services are increasingly being deployed
in the Cloud, which provides access to countless computational resources and allows
to automatically scale the services by elastically deploying more or fewer instances to
meet the changing demand. In this context, the objective of online ML inference service
provisioning in the Cloud must be to find suitable deployment schemes such that infer-
ence services use the hardware efficiently and achieve the required performance (e.g.,
throughput) to meet the dynamic queries from end-users.

To address this challenge, existing work considers online ML inference services pro-
vision and optimizations at different layers. In the application layer, different serv-
ing frameworks used by online ML inference services support configuration settings
[144][176]. Experienced Data Engineers could tune the best parameter settings of these
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serving runtimes to improve the service performance [54]. In the infrastructure layer, the
backends of a ML inference service can be horizontally- or vertically-scaled to use more
resources[104]. These autoscaling frameworks [203][92][51] provide efficient ways for ML
inference services to use resources while meeting Service Level Agreements (SLAs).

On top of that, current Cloud deployments are tightly coupled with containerization
technology, which makes services easily reproducible and portable by encapsulating the
code and dependencies. Furthermore, it isolates services so that they can be scaled
or updated individually and failures do not affect the entire workload. Online ML
inference services also aim to benefit from these features, to enable a seamless transition
from training environments or to retrain (and redeploy) new models with the incoming
new data, while meeting the performance requirements for the predictions. A typical
application, in this context, is monitoring the performance of networks through analyzing
the network traffic streams, which call for real-time and online learning data analytics
and predictions [162].

However, there is limited knowledge about the impact of containerization on the per-
formance of online ML inference services, and no well-defined guidelines on proper de-
ployment schemes to exploit the potential of containerization and its capacity to con-
strain containers easily to a single NUMA (Non-Uniform Memory Access) domain or pin
them to specific processors. In particular, multi-container deployments which partition
the processes that belong to each application into multiple containers in each node are
worth considering. Those deployments have been demonstrated to improve the perfor-
mance of some multi-process HPC throughput workloads, which consist of the execution
of loosely-coupled CPU-intensive processes in chapter 3 [99][101]. These characteristics
resemble ML inference services, as numerous serving frameworks can exploit request-
level parallelism to execute independent computationally-intensive prediction queries
performed by various end-users through parallel threads.

In this chapter, we study suitable deployment schemes for allocating online ML infer-
ence services in the Cloud, focusing on container-level considerations (i.e., fine-grained
multi-container deployments and CPU/memory affinity settings). Our contributions are
as follows:

• We define multiple deployment schemes for online ML inference services that fea-
ture different degrees of container granularity and we set the corresponding distri-
bution of working threads and resources to each container to serve the model.

• We enable the definition of the CPU/memory affinity for each container belonging
to an online ML inference service, as part of the former deployment schemes.

• We establish an evaluation system on a Kubernetes cluster and evaluate our multi-
container deployments using typical ML inference benchmarks (i.e., MLPerf) with
different realistic client patterns.

• We present a systematic performance comparison, focusing on container-level con-
siderations, to guide the Data Engineers on how to deploy their ML workloads to
optimize the performance.
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4.2 Evaluation Methodology

Our multi-container deployment schemes for containerized ML inference services are
evaluated on a Kubernetes platform. This section describes the architecture of the
evaluated system and the container granularity and affinity settings.

4.2.1 Evaluation System

The whole architecture of this system is depicted in Figure 4.1.
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Figure 4.1: Evaluation system architecture of multi-container deployment schemes for
ML model inference.

MLPerf Inference Client (LoadGen): MLPerf Inference is a benchmark suite
for measuring how fast systems can run models in a variety of deployment scenarios
[149]. LoadGen is the MLPerf client, which generates traffic for scenarios as formulated
by a diverse set of experts, and efficiently and fairly measures the performance of ML
inference systems. LoadGen is not dataset or model aware, so we need to define custom
versions of the Query Sample Library (QSL) and the Query Dispatch Library (QDL)
tailored to the datasets/models used in the paper. QSL is responsible for loading the
data and includes untimed preprocessing. QDL is used to dispatch queries to the System
Under Test (SUT) over a physical network, receive the responses, and pass them back
to LoadGen.

System Under Test (SUT): The System Under Test refers to the ML inference
system which provides an online ML inference service through several real server back-
ends receiving queries from the client. In our experiments, SUT is established on a
multi-core Kubernetes cluster, and models are served by Tensorflow Serving instances
running inside multiple containers, each one wrapped as a Kubernetes Pod. Kubelet and
Kube-proxy components from Kubernetes generate Pods on each node and distribute
the queries among those Pods, respectively.

We consider various deployment options for the SUT depending mainly on two factors.
First, the container granularity of the online ML inference service. In this paper,
we assess the impact of deploying an online ML model inference service with different
numbers of containers per host, that is, different multi-container deployment scenarios.
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Second, the resource affinity of the containers running the online ML inference service.
In this paper, we assess the impact of different CPU/memory affinity settings for each
container.

4.2.2 Granularity Settings

Granularity settings define how we partition the online ML inference service into multi-
ple containers (i.e. increasing the number of containers but decreasing the threads and
resources on each container). A given SUT can have a single or multiple servers (each de-
ployed within a container and with its own inference model), but the number of working
threads and resources for the SUT are kept constant. We assume each SUT requires a
number of CPU cores Scpu and some amount of memory Smem in GiB. Tensorflow Serv-
ing running within the SUT contains multiple working threads inside the server, namely
inter-operation threads tensorflow_inter_op_parallelism, intra-operation threads
tensorflow_intra_op_parallelism, and rest threads rest_api_num_threads. For
each SUT, we define these numbers of threads as Ninter, Nintra, and Nrest.

(I) Multi-container deployments: Each SUT runs on a set of containers CTN =
{ctni|i = 1, ..., Nctn} which use resources from a set of hosts HOST = {hosth|h =
1, ..., Nh}. Each container i has resources requirements Ri

Scpu
Nctn

,Smem
Nctn

and a threading

model T i
Ninter
Nctn

,
Nintra
Nctn

,
Nrest
Nctn

, so that the total number of working threads and resources for

the SUT are kept constant. Therefore, a multi-container deployment can be expressed
as a set of containers each containing a subset of the threads and requiring a share of
the resources.

SUTNcph
=

Nctn⋃
i=1

ctni →


Ri

Scpu
Nctn

,Smem
Nctn

T i
Ninter
Nctn

,
Nintra
Nctn

,
Nrest
Nctn

(4.1)

where Ncph refers to the number of containers per host and is calculated as Nctn/Nh.

(II) Baseline: This is the default strategy to deploy a SUT running Tensorflow Serving
on Kubernetes. The baseline is deployed as a single-container-per-host deployment, thus
it has Ncph = Nctn

Nh
= 1. The resources requirements for each container are calculated

in the same way as with multi-container deployments. However, the threading model
of Tensorflow Serving is decided by default: the threading pool size will be set to the
number of visible cores within each server.

SUTbaseline =

Nctn⋃
i=1

ctni →

Ri
Scpu
Nctn

,Smem
Nctn

T i
default

s.t. Ncph = 1 (4.2)

4.2.3 Affinity Settings

Affinity settings define the exact resources from the hardware perspective that the con-
tainers of the online ML inference service will use. The affinity settings for our multi-
container deployment scenarios are called ANY and CPUMEM. We assume a number
of hosts Nh, and a number of containers Nctn. The number of containers per host
(i.e., Ncph) is calculated as Ncph = Nctn

Nh
. The hardware platform provides a num-

ber of CPU cores and MEM nodes from one or several sockets S = {sockets|s =
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0, ..., Nsocket− 1}, where each socket has P cores. Hence, for a set of containers CTN =
{ctni|i = 1, ..., Nctn} which run on a set of hosts HOST = {hosth|h = 1, ..., Nh}, each
affinity setting defines a mapping Maph,i → CPUh,s,[x,y] + MEMh,s where h, s, and
[x, y] = {n ∈ Z|x ≤ n ≤ y} denote the assigned host, socket, and set of cores, respec-
tively. In particular, affinity settings ANY and CPUMEM are defined as follows:

(I) ANY : Containers do not have any processor or memory affinity and all of them
could access all the resources provided to this service. The actual distribution of the
resources is decided by the operating system. Thus, the mapping of ANY scenarios could
be expressed as:

Maph,i →


⋃Nsocket−1

s=0 CPU
h,s,[s×P,s×P+

Ncpu×Ncph
Nsocket

−1]⋃Nsocket−1
s=0 MEMh,s

(4.3)

(II) CPUMEM : We define a specific processor and memory affinity for each container
to a set of cores belonging to a single socket and to the corresponding local memory
node. The mapping of CPUMEM scenarios could be calculated as follows, provided
that the number of cores requested by each container is lower than the cores each socket
provides.

Maph,i →

{
CPUh,si,[xi,yi]

MEMh,si

(4.4)

si = ⌈
i

Ncps
⌉ − 1 (4.5)

xi = si × P +Ncpu × ((i− 1)− si ×Ncps) (4.6)

yi = si × P +Ncpu × (i− si ×Ncps)− 1 (4.7)

whereNcps refers to the number of containers per socket and is calculated asNcph/Nsocket.

4.3 Evaluation

In this section, we present an empirical performance evaluation of multi-container deploy-
ments of ML inference services on Kubernetes clusters. In this evaluation, we consider
several schemes where we increase the number of containers serving the model but de-
crease the number of parallel working threads of the model per container. In addition,
we consider different affinity settings and several real-world client scenarios.

4.3.1 Experimental Setup and Metrics

Hardware: Our experiments are executed on a five-node K8s cluster. Each host consists
of 2 x Intel 2697v4 CPUs (18 cores each, hyperthreading disabled, CPU frequency scaling
governor is set to max performance (i.e., scaling governor=performance)), 256 GB RAM,
60 TB GPFS file system, and 1-Gigabit Ethernet network.

Software: For all the hosts, we use CentOS release 7.7.1908 with host kernel 3.10.0-
1062.el7.x86 64. The Kubernetes platform uses Kubernetes v1.19.16 (Docker v19.03.11,
Etcd 3.4.9, Flannel 0.15.0, CNI 0.8.6, and CoreDNS 1.7.0). We use Tensorflow Serving
v2.8.2 as the backend server and MLPerf Inference Client v0.7 (LoadGen) to emulate
the clients.
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Kubernetes Cluster Settings: Our Kubernetes cluster comprises five nodes. For
each node, we reserve 4 cores for system and Kubernetes components, thus, 32 cores (16
from each socket) can be used for the allocation of ML inference services. By default,
K8s Kubelet sets the CPU manager policy as ’none’ which means all the containers
can use the allocatable CPU resources within the resident node. For those experiments
that require enabling CPU/memory affinity for containers, we configure Kubelet us-
ing --cpu-manager-policy=static and --topology-manager-policy=best-effort,
which will start the containers on dedicated CPUs.
On the other hand, Kube-proxy is set to the IPVS (IP Virtual Server) mode which can

direct requests for TCP- and UDP-based services to the real servers, and make services
of the real servers appear as virtual services on a single IP address. The IPVS load
balancing algorithm is kept as the default round-robin (rr) algorithm.
Tensorflow Serving Granularity Settings: Table 4.1 shows the different con-

tainer granularity scenarios considered to deploy the online ML inference service, and
the corresponding resources and thread pool size settings of each container.
SUTbaseline is the baseline scenario which represents the basic deployment scheme of a

Tensorflow Serving service. It normally contains one container per host and the container
uses all the resources of the host. Each container also chooses its own thread settings,
by default Tensorflow Serving will set the number of inter, intra, and rest threads as the
number of visible cores within the container. In our case, even though the container can
only use 32 CPUs (maximum available CPUs within one host), the threads will be set
to 36 because the container can see all the cores in the host.
SUTNcph

refers to the various multi-container deployments of the Tensorflow serving
service. For different granularity scenarios, we select a different number of containers to
deploy the ML inference service, while partitioning the number of working threads and
resources for each container. Thus, the total number of resources and threads for the
inference service are kept constant in all the scenarios.
Affinity Settings: We consider two affinity settings: ANY and CPUMEM. The for-

mer means that all the containers can run on any CPUs and any memory node within
hosts. The latter means that the containers will use dedicated CPUs and be bound to a
specific memory node. These affinity settings are configured by an agent running on each
node. For ANY, the agent will change all the containers’ CPUSETs to a range of CPUs
within a host, being the number of CPUs in the range equal to the number of requested
CPUs per host. For CPUMEM, Kubelet is set to --cpu-manager-policy=static mode,
thus each container is bound to dedicated CPUs (i.e., different CPUSET) after its de-
ployment. In addition, the agent will check the range of CPUs allocated to each container
and set the corresponding memory node for this container.
MLPerf Inference Benchmark: As mentioned in section 4.2, our evaluation method-

ology uses the MLPerf Inference Benchmark, which is a benchmark suite specifically de-
signed to measure the performance of ML models during inference. It includes standard
models, datasets, and evaluation metrics of different client scenarios, which enables fair
and comparable measurements.
i) Model and Dataset: MLPerf provides computer vision applications with its

associated reference model (i.e., a classifier network takes an image and selects the class
that best describes it). In particular, for image classification, it provides a well-known
vision model: the computationally-intensive Resnet50 [55] as a benchmark. This model
accepts base64-encoded JPEG images as input and decodes them within the inference
stage. We use the ImageNet 2012 dataset, crop the images to 224x224 in preprocessing,
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Table 4.1: Server scenarios settings.

Scenarios
(SUTNcph

)
# of CTNs

(Nctn)
Resources/CTN

(Ri)
Threads/CTN

(T i)

SUTbaseline 1 ∗Nh
CPU=32cores
MEM=128GiB

inter=36
intra=36
rest=36

SUT1 1 ∗Nh
CPU=32cores
MEM=128GiB

inter=32
intra=32
rest=64

SUT2 2 ∗Nh
CPU=16cores
MEM=64GiB

inter=16
intra=16
rest=32

SUT4 4 ∗Nh
CPU=8cores
MEM=32GiB

inter=8
intra=8
rest=16

SUT8 8 ∗Nh
CPU=4cores
MEM=16GiB

inter=4
intra=4
rest=8

SUT16 16 ∗Nh
CPU=2cores
MEM=8GiB

inter=2
intra=2
rest=4

SUT32 32 ∗Nh
CPU=1core
MEM=4GiB

inter=1
intra=1
rest=2

and send the strings of base64-encoded images through the physical network using REST
APIs.
ii) Client Scenario Settings: MLPerf LoadGen provides four realistic end-user

scenarios, namely Single-Stream (SS), Multi-Stream (MS), Server (S), and Offline (O),
which represent many critical inference applications. The explanation of these client
scenarios can be found in section 2.1.3. Additional details can be found in [149]. Table
4.2 summarizes their settings in our experiments, which we describe briefly below.

4.3.2 Multi-container Deployment and Affinity Evaluation on a Single Host

Figure 4.2 shows the impact of container granularity and affinity in SUT performance
on different client scenarios on a Kubernetes cluster with a single node. The results
are derived from 10 executions. Additionally, for some scenarios, we also analyze the
inference time and the issue delay time for each individual sample.

SingleStream

This scenario generates low load because the client sends queries one by one, thus every
time only one query is being processed at one of the containers of the SUT. From SUT1

to SUT32, that is, when deploying more containers per host (i.e., from 1 to 32), each
one has lower allocated resources (i.e., from 32 CPUs/128 GiB to 1 CPU/4 GiB) and
working threads (i.e., from 32 to 1). SingleStream does not fully show the benefits of
using multiple containers to deploy the online ML inference service, because always only
one backend is used at a time, that is, we can only exploit parallelism within a request,
not among requests.
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Table 4.2: Client scenarios settings.

Scenarios
Query

Generation
Metric

Sample per
Query

Parameters

Single-Stream
(SS)

Sequential
90th-percentile

Latency
1 min query count=1664

Multi-Stream
(MS)

Arrival Interval
With Dropping

Number of Streams
Subject to

Latency Bound
N

min query count=2000
target qps=32

max async queries=256
target latency=8s

Server (S)
Poisson

Distribution

Queries per Second
Subject to

Latency Bound
1

min query count=12800
target qps=200

target latency=20s

Offline (O) Batch Throughput ≥ 24576
min query count=32768

target qps=200
max batchsize=1,2,4,8
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Figure 4.2: Impact of container granularity and affinity in SUT performance on different
client scenarios on a Kubernetes cluster.
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Figure 4.2a shows the 90th percentile latency of different SUT deployments at Sin-
gleStream. For ANY scenario, running more containers per host increases the 90th la-
tency (i.e., SUT2–SUT32 increase by 4%–25%–46%–122%–271% with respect to SUT1).
This increment is caused by the lower amount of resources and threads for each con-
tainer as we increase the number of containers. On the other side, SUT2 with CPUMEM
settings shows 13% 90th latency improvement regarding SUT1, because running two
containers, one in each socket, improves the cache usage and avoids remote memory
accesses between two NUMA nodes. However, SUT4–SUT32 still show 7%–67%–140%–
303% degradation regarding SUT1 because the better locality cannot compensate for
the lower parallelism as we increase the number of containers (due to the reduction of
resources and threads per container).
Similarly, when comparing CPUMEM and ANY settings, the former shows better

performance in coarse-grained scenarios SUT2−SUT4 because each container has enough
resources and threads to exploit the parallelism of the NUMA node to which they are
assigned while getting the corresponding locality benefits. However, CPUMEM shows
worse performance in finer-grained scenarios SUT8–SUT32 because each container has
less resources and threads but, still, CPUMEM allocates them in dedicated CPUs from
two NUMA nodes. Contrariwise, ANY settings allow the containers to be allocated
in the entire range of available CPUs, and due to the lower amount of resources each
container needs, the scheduler is able to consolidate all of them in a single NUMA node.

MultiStream, Server, and Offline

The impact of container granularity and affinity in SUT performance on MultiStream
(MS), Server (S), and Offline (O) client scenarios is shown in Figure 4.2b displays the
maximum number of streams (subject to 99th latency < 8s) at MultiStream, Figure
4.2c displays the Queries per Second (qps) (subject to 99th latency < 20s) at Server,
and Figure 4.2d displays the samples per second (the max batch size is set to 8 to
optimize the performance in this scenario) at Offline. For comparison purposes, we also
display detailed qps of MultiStream scenario in Figure 4.3. The three client scenarios
show different patterns to send queries, but all of them generate a high load to the
SUT, which consumes high computation resources, and allows to evaluate the impact of
multi-container deployments.
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Figure 4.3: Queries Per Second in MultiStream ANY and CPUMEM scenarios.

Baseline: SUT1 ANY and CPUMEM have roughly the same performance improve-
ment up to 8%, 6%, and 6% compared to the baseline in client scenarios MS (see Figure
4.3), S (see Figure 4.2c), and O (see Figure 4.2d), respectively. This is because a single
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container in the baseline starts on all the CPUs within the host and Tensorflow Serving
creates as many threads as visible CPUs (i.e., 36) within this container, whereas there
are effectively only 32 CPUs available for ML inference in the host (we reserve 4 cores
for Kubernetes and system). Thus, the baseline has more CPU migrations and context
switches among more threads than SUT1 with ANY or CPUMEM, which start a single
container on 32 cores and threads.

Granularity: Regarding the container granularity, in MS (see Figure 4.3), SUT2–
SUT32 have 32%–32%–32%–36%–40%, and 38%–39%–38%–42%–45% performance im-
provement regarding SUT1 with ANY and CPUMEM, respectively; in S (see Figure
4.2c), SUT2–SUT32 have 40%–45%–45%–56%–66% and 49%–55%–55%–69%–67% per-
formance improvement regarding SUT1 with ANY and CPUMEM, respectively; in O
(see Figure 4.2d), SUT2–SUT32 have 28%–29%–28%–27%–31%, 31%–32%–31%–30%–
31% performance improvement regarding SUT1 with ANY and CPUMEM, respectively.
All the client scenarios show better performance with multi-container deployments. The
difference is greater as we increase the number of containers for MultiStream and, es-
pecially, for Server scenarios. As shown in Figure 4.4, which displays the mean latency
in Server scenarios, multi-container deployments show up to 90% latency improvement
with respect to SUT1, and finer-grained containers (from SUT2 to SUT32) show increas-
ingly better performance.
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Figure 4.4: Mean latency in Server ANY and CPUMEM scenarios.

In Server scenarios, the overall latency of a sample can be broken down into the
sample wait time before being processed and the actual sample inference time. As
shown in Figure 4.5 and Figure 4.6, which display the inference time for individual
samples in this scenario with ANY and CPUMEM settings, respectively, finer-grained
multi-container deployments can use better the resources, and thus process the samples
quicker, which reduces their inference time (and consequently, their latency). Note how,
in any case, the inference time is kept below the allowed latency bound (i.e., 20 s). In
the same manner, finer-grained multi-container deployments also reduce the wait time
of the samples, as shown in Figure 4.7 and Figure 4.8, which display the issue delay time
of individual samples with ANY and CPUMEM, respectively. In particular, the plots
show that the saturation point, i.e.,, when the samples start to wait resulting in some
delay time, appears later for finer-grained multi-container deployments.

The better performance of the multi-container deployment schemes is a consequence
of their ability to optimize the scheduling of the serving threads onto the available re-
sources (processors and memory nodes), mainly by favouring processor affinity, which
reduces context switches and migrations and memory affinity exploits data locality, thus
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Figure 4.5: Inference time of individual samples in Server-ANY scenario.

Figure 4.6: Inference time of individual samples in Server-CPUMEM scenario.

Figure 4.7: Issue delay time of individual samples in Server-ANY scenario.
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Figure 4.8: Issue delay time of individual samples in Server-CPUMEM scenario.

improving cache usage and reducing remote memory accesses in NUMA systems. With
CPUMEM settings, the affinity for each container is enforced explicitly by the deploy-
ment scheme, which allocates dedicated CPUs to each of them. With finer-grain deploy-
ments, each container is allocated with fewer CPUs (and from a single NUMA node),
thus there are fewer chances for the serving threads to migrate. With ANY settings, the
affinity for each container is not enforced explicitly, but indirectly encouraged through
the scheduling of cgroups done by the Linux Completely Fair Scheduler (CFS). The pro-
cesses within each container are grouped together in a cgroup, so they will be viewed by
the scheduler as a single unit. CFS applies the principle of sharing the resources fairly
among these cgroups at the same level of the hierarchy, which means it will first divide
CPU time equally between all entities at the same level, and then proceed by doing the
same in the next level [46]. In multi-container deployment scenarios, first, the CPUs
are evenly distributed across cgroups. Then, the threads on each cgroup are scheduled
on those CPUs. As a higher number of containers contain a lower number of threads,
this scheduling within the group is simpler, allowing to exploit processor affinity better.
Notably, in SUT32, the sole thread in each container runs on a single CPU, akin to being
pinned to it.

ANY/CPUMEM affinity: Regarding the affinity settings, SUT1 behaves similarly
with both ANY and CPUMEM settings because the single container deployed in both
cases uses the same range of CPUs and memory from the two sockets. SUT2–SUT32

with CPUMEM settings show better performance than ANY up to 4%, 9%, and 3% in
scenarios MS (see Figure 4.3), S (see Figure 4.2c), and O (see Figure 4.2d), respectively.
This improvement also shows up when considering the mean latency. As shown in Figure
4.4, SUT2–SUT32 with CPUMEM settings in Server scenario have 23%–29%–35%–
58%–23% mean latency improvements, respectively, with respect to ANY. Similarly,
SUT2–SUT32 with CPUMEM settings in Offline scenario also show 3%–3%–3%–4%–
1% improvements on the mean latency regarding ANY, as shown in Figure 4.9.

CPUMEM has better performance than ANY because it enforces CPU affinity, which
restricts the number of assigned CPUs within each container. Hence, the threads running
in finer-grained containers have fewer available CPUs where they could migrate, and
more importantly, memory affinity, which improves the cache utilization and prevents
as well the remote memory accesses, thus reducing the memory latency. Note that the
improvement of SUT32 with CPUMEM regarding SUT32 with ANY is less noticeable
than in the rest of SUT2–SUT16 scenarios because in SUT32 each container runs only
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Figure 4.9: Mean latency in Offline ANY and CPUMEM scenarios.

on one CPU and containers are already well-distributed among cores, thus, the benefit
of CPUMEM settings on SUT32 only comes from the memory access.

4.3.3 Multi-container Deployment Evaluation With Different Client Batch
Size on a Single Host

Batching calls to a remote service is a well-known technique to increase the performance.
There are fixed processing costs for any interaction with a remote service, such as seri-
alization, network transfer, and deserialization. Packaging many samples into a single
batch minimizes the cost per sample.
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Figure 4.10: Impact of container granularity and affinity in the Offline scenario with
different client batch size.

Figure 4.10 shows the impact of container granularity and affinity in the Offline sce-
nario with various client batch sizes, namely 1, 2, and 4. By comparing this figure with
Figure 4.2d, which set the batch size as 8, the overall performance is increased with
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larger batch sizes. For instance, the throughput of SUT1 increases up to 26% from
batch size 1 to 8.
Regarding the impact of container granularity, Figure 4.10 shows that multi-container

deployment schemes outperform the single container deployment for all the batch sizes.
In particular, for batch size 1, SUT2–SUT32 have 43%–47%–48%–57%–67% and 53%–
59%–59%–72%–70% performance improvement regarding SUT1 withANY and CPUMEM
settings; for batch size 2, SUT2–SUT32 have 42%–45%–43%–43%–49% and 48%–51%–
49%–50%–52% improvement regarding SUT1 with ANY and CPUMEM ; and for batch
size 4, SUT2–SUT32 have 33%–34%–33%–36%–41% and 38%–39%–39%–43%–44% im-
provement regarding SUT1 with ANY and CPUMEM. Interestingly, smaller batch sizes
can benefit more from multi-container deployments. As for affinity, CPUMEM also out-
performs ANY for all the batch sizes, providing, again, a higher benefit for smaller ones.
Notably, the throughput increases up to 10%–7%–6%–4% for batch sizes 1, 2, 4, and 8,
respectively.

4.3.4 Multi-container Deployment and Affinity Evaluation on a Four-node
Cluster

Experiments in the previous sections were run in a single node. Nevertheless, we antic-
ipate that most of the performance insights obtained in those sections would still hold
for multi-container deployment schemes in a larger cluster.
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Figure 4.11: Impact of container granularity and affinity in the Offline scenario at scale.

Figure 4.11a - Figure 4.11b show the impact of container granularity and affinity in
the Offline scenario on a four-node cluster. SUT2–SUT32 have 13%–35%–49%–55%–69%
and 15%–24%–27%–27%–36% throughput and mean latency improvement, respectively,
regarding SUT1 with ANY settings. SUT2–SUT32 have 87%–86%–84%–80%–78% and
32% (for all the SUTi) throughput and mean latency improvement, respectively, regard-
ing SUT1 with CPUMEM. Latency improvements with ANY and CPUMEM are compa-
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rable, but throughput improvements are considerably higher with CPUMEM affinity, as
it shows up to 68% improvement with respect to ANY. As anticipated, the performance
observations and conclusions described in Section 4.3.2 also apply here.

Figure 4.2c - Figure 4.2d show the 99th and 99.9th tail latencies. For ANY, finer-
grained containers have better tail latency. In particular, 99th latency of SUT2–SUT32

improves 13%–28%–35%–37%–44% regarding SUT1 and 99.9th latency of SUT2–SUT32

improves 12%–26%–33%–36%–42% regarding SUT1. As shown in Figure 4.12, which
displays the individual inference time of each sample at ANY, the last samples up to
3% show a tail latency increase in all the scenarios. This is because the tail is less
CPU-intensive and all the containers are about to finish their tasks. When tasks in one
container (i.e., one cgroup) become idle and are not using any CPU time, the leftover
time is collected in a global pool of CPU cycles that can be used by other containers
(i.e., other cgroups) from this pool. Finer-grained deployments show a better tail latency
because they have more cgroups, thus each container releases fewer CPU cycles when it
finishes, causing fewer CPU migrations for the rest of running containers.

For CPUMEM, multi-container deployments show up to 47% and 46% improvement
on 99th and 99.9th latency, respectively, regarding SUT1, but there is a minor difference
among the various multi-container schemes on 99th latency (less than 1%) and 99.9th
latency (2% difference). Multi-container deployments in CPUMEM show almost no
overhead in the tail latency because each container has its own cgroup without the
CPUs overlap.

Figure 4.12: Inference time of individual samples in Offline-ANY scenario.

4.4 Conclusion and Future Work

This chapter presented multi-container deployment schemes for containerized online ML
inference services on Kubernetes. We focused on the container layer to understand how
the container granularity and its combination with CPU/memory affinity impact the
performance of online ML inference services. We concluded that multi-container deploy-
ments show significant performance improvements up to 69% and 87% regarding the
single-container deployment on single-node and four-node clusters, respectively. Finer-
grained deployments show better performance because they favour process affinity in
a similar way to when threads are pinned explicitly. Consequently, these deployments
fit very well with explicit CPU/memory affinity settings for each container. As demon-
strated in our experiments, those settings can sum up to 9% and 68% to the granularity

103



Chapter 4 Multi-container Deployments for ML Workloads

gains on single-node and four-node clusters, respectively. The benefit of multi-container
deployment schemes with affinity also shows up with different client batch sizes and in
larger clusters.
All in all, we demonstrated that it is worth considering (and optimizing) the container-

ization dimension when provisioning ML inference services to benefit not only from its
encapsulation, security, and fault isolation, but also gain performance. Moreover, the
granularity/affinity settings at the container-level are complimentary to other optimiza-
tions such as batching and autoscaling and, therefore, can be combined to derive better
deployment and scheduling policies for ML inference services.
In the future, we will consider the performance insights in this paper about the

container-level settings (i.e., container granularity and affinity) to derive placement poli-
cies integrated within the Kubernetes scheduler/Kubelet agent for the efficient deploy-
ment of online multi-model ML inference services in a multi-programmed and multi-
tenant Cloud environment.
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Chapter 5

Scanflow-Kubernetes: Agent-based
Framework for Autonomic Management
and Supervision of ML Workflows in
Kubernetes Clusters

This chapter is based on the work done in collaboration with Lenovo Infrastructure Solutions Group,
which has resulted in a demo paper, a full paper at CCGRID conference, and the open-source platform
Scanflow-Kubernetes:

[1] Peini Liu, Gusseppe Bravo-Rocca, Jordi Guitart, Ajay Dholakia, David Ellison, and Miroslav Hodak,
“Scanflow: an end-to-end agent-based autonomic ML workflow manager for clusters,” In Proceedings
of the 22nd International Middleware Conference: Demos and Posters, December 2021, Virtual Event,
Canada. pp. 1-2, DOI: 10.1145/3491086.3492468. (CORE RANK A)

[2] Peini Liu, Gusseppe Bravo-Rocca, Jordi Guitart, Ajay Dholakia, David Ellison, and Miroslav Hodak,
“Scanflow-K8s: Agent-based Framework for Autonomic Management and Supervision of ML Workflows
in Kubernetes Clusters”, 2022 IEEE/ACM 21st International Symposium on Cluster, Cloud and Inter-
net Computing (CCGrid), May 2022, Taormina, Italy, pp. 376-385, DOI: 10.1109/CCGrid54584.2022.00
047. (CORE RANK A)

[3] May 29, 2021 - Software Release on the Github repository: “Scanflow-Kubernetes: An MLOps
Platform”. Available at: https://github.com/bsc-scanflow/scanflow.

• M1: (26/06/2021) Release master v0.1.0 Scanflow-Kubernetes basic.

• M2: (13/12/2021) Release master v0.1.1 Scanflow-Kubernetes with resource, affinity and HPA
definition.

In this chapter, Section 5.1 presents a brief introduction of machine learning workflows
and the need to do autonomic management. Section 5.2 introduces the multiple manage-
ment layers in autonomic ML workflows. Section 5.3 describes the agent architecture,
social ability, triggers, and operation primitives. The detailed Scanflow-K8s implemen-
tation is described in Section 5.4. Section 5.5 presents some case studies and experiments
on Scanflow-K8s platform. Finally, conclusion and future work are discussed in Section
5.6.

5.1 Introduction

Machine Learning (ML) has become common with good results in different tasks such as
image classification, machine translation, recommendation systems, and speech recog-
nition. While working on a ML project, workflows comprising some reproducible steps
run as a pipeline are widely used to build or deploy a model efficiently because of the
flexibility, portability, and fast delivery they provide to the ML life-cycle [48].
ML workflows still face several challenges while being used by different teams. The

Data Science team requires to automate some repetitive tasks within ML workflows to
train and improve the model [199][155]. Therefore, some AutoML modules and frame-
works have been developed for algorithm selection [19], model selection [38], and feature
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selection [77] to tune hyperparameters and have good learning performance with less
human assistance. However, ML life-cycle is more than just training a model [49]. Once
the model has been trained, the Data Engineer team works on deploying the ML work-
flows into production. More importantly, they are required to operate the workflows to
maintain the robustness of the model at runtime, that is, to deal with security vulner-
abilities, concept drift, lack of explainability and interpretability, and hidden technical
debt [42][106], because the model may degrade its accuracy due to constantly evolving
data profiles. Also, the model online inference serving services have strict latency re-
quirements and efficiency issues that should be considered [134][2][27]. Therefore, the
ML workflow is no longer running in a known context and with static requirements, and
consequently, enabling the autonomy to manage and supervise ML workflows to meet
dynamic changes has become an open issue [78].
Autonomic computing brings inspiring approaches to adapt ML systems at runtime,

helping to manage and supervise the ML workflows operation in dynamic contexts
[103][30][177][21]. For example, by enabling adaptive learning algorithms for streaming
data to supervise ML models at the application layer or by reconfiguring and restruc-
turing the workflows at the infrastructure layer [211]. Consequently, our work enables
an agent-based approach to leverage autonomic computing for ML workflows system to
meet dynamic changes. The agents focus on the robustness and requirements of the
model at the application layer while managing the quality of services and the structure
of workflows at the infrastructure layer.
In this chapter, we contribute Scanflow-K8s, a functional agent-based MLOps frame-

work that enables autonomic management and online supervision of the end-to-end life-
cycle of ML workflows on Kubernetes. Scanflow-K8s redesigns Scanflow from scratch to
upgrade the executor nodes to a multi-agent system based on triggers, primitives, and
strategies, and to be fully integrated with the Kubernetes platform, enabling autonomic
multi-layer management and supervision of ML workflows in clusters.

5.2 Architecture for Autonomic ML Workflows

In this section, we firstly describe diverse uncertainties that occur in ML workflows.
Then, we present an architecture for autonomic ML workflows featuring a multi-layered
autonomic framework. Finally, we present a practically implemented platform that
enables autonomic ML workflows on Kubernetes clusters based on agents.

5.2.1 Uncertainties in ML Workflows

The need to embed ML systems into long-lived dynamic contexts is likely to increase in
the coming years [78], thus inherent uncertainties in ML workflows may increase when
they are deployed in production (e.g., Cloud). Table 5.1 shows a taxonomy of potential
uncertainties in ML workflows.
Uncertainties in ML workflows come from two main sources, namely the requirements

and the context. The former comes from the data scientists and end-users and includes
the functional and non-functional requirements of the ML workflows. In particular, (1)
the functional requirements can include changes in the topology of the ML workflows
(e.g., adding new steps), as well as the need to maintain the quality and robustness of the
ML models (e.g., dealing with security vulnerabilities, outliers, concept drift, and model
explainability) in unexpected situations; (2) the non-functional requirements can include
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Table 5.1: Uncertainties in ML workflows

Categories Examples

Requirements
Functional
Requirements

End-users expect robust ML models when facing data
drift; Data scientist adds new steps to the workflow

Non-functional
Requirements

End-users define some QoS requirement for model
serving; Data engineer provides resource restrictions
and affinity settings for workflow executors

Contexts Workflow Contexts
Workflow executor fails to run (e.g., software bug,
out-of-memory error); Model serving service is not
available

System Contexts Other workflows compete to use the same resources
External Contexts Hardware/Operating System crashes or is not available

the need to fulfill the QoS (Quality of Service) guarantees related to the model serving
service’s performance (e.g., latency and failure rate) in the occurrence of churn, as well
as the definition of runtime parameters (e.g., resource restrictions and affinity settings)
for workflow executors and services. The uncertainties in the context come from the
execution of the workflows themselves, their interaction with other workflows, and the
software/hardware platform. In particular, (1) the changes in the workflows contexts
happen in workflows themselves, for instance, a workflow executor fails (e.g., software
bug, out-of-memory error), or a workflow service is not available; (2) the changes in the
internal system contexts derive from the relationship between the various workflows (and
other applications) and how the orchestrator arbitrates their use of the shared platform
where they run, for instance, when the resources needed to run a workflow may be in
use by other workflows; (3) the changes in the external contexts occur in the underlying
platform, including hardware resources, operating systems, and other related systems,
which can fail or become unavailable. Those changes can be detected and the manager
can react to them but cannot be directly solved at the management level.

5.2.2 Multi-layered Control for Autonomic ML Workflows

Each type of uncertainty requires applying different strategies to enable autonomy for ML
workflows. These strategies could reside at different layers, for instance, ML workflows
could react to changes by restructuring the workflow topology or by reconfiguring the
workflow executor/service instances. Thus, we should implement controllers at several
layers to manage ML workflows in a completely autonomic way.

Figure 5.1: Conceptual architecture of multi-layer controlled ML workflows.
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A conceptual architecture for multi-layer controlled autonomic ML workflows is pro-
posed in Figure 5.1, which shows the layers and their interactions. ML workflows are the
target system focusing on the ML business. From a static design perspective, ML work-
flows are composed of some reproducible steps and organized by dependencies. From a
dynamic implementation perspective, ML workflows could be run as containerized ex-
ecutors in a pipeline or deployed as online services consisting of microservice instances.
The management system actuates on multiple control layers, namely the application-
controlled layer and the infrastructure-controlled layer, which can operate the target
system to deal with different types of uncertainty: (1) the application-controlled layer
senses the application-related changes, such as the requirements from data scientists and
end-users and the workflow context, and restructures the static view of the target sys-
tem, which is executed with the help from the lower control loops; (2) the infrastructure-
controlled layer senses the internal and external system contexts, and adjusts the work-
flow executors or services at run-time accordingly to the predefined rules of the resource
manager by taking advantage of the orchestrator resource management capabilities. In
this case, the system autonomy appears as a form of reconfiguration.

5.2.3 A Practical Platform for Autonomic ML Workflows

This section describes Scanflow-K8s, a practical platform for autonomic ML workflows
that implements the above-mentioned multi-layered control autonomy by means of the
integration of a ML workflow manager (i.e., Scanflow) with an orchestrator (i.e., Ku-
bernetes). The whole architecture of this platform is depicted in Figure 5.2.
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Figure 5.2: Scanflow-K8s: A practical platform for autonomic ML workflows.

Target System: The top of the figure shows the ML workflows which are the target
system focusing on the ML business. From a static design perspective, ML workflows
define some steps and their dependencies. As shown in Figure 5.3, two types of workflows
are supported by Scanflow-K8s for both training and inference phases. On the left
side, a ML workflow is defined as a batch pipeline composed of several executors Ei

that are executed in sequence or in parallel. In a batch inference, predictions can be
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generated asynchronously with a batch of samples and the time to get the results is
unconstrained. On the right side, a ML workflow is defined as online services with graph
traffic forwarding. In an online inference, predictions are served in real time, typically
subject to a latency bound. From a dynamic implementation perspective, the batch
executors or the online services are conducted as containerized instances executing locally
or in the Cloud. In particular, the executors of batch workflows run once for each time
the workflow is executed, and the online workflow is deployed as a long-run microservice
that is able to deal with clients’ invocations. Normally, the Data Science team uses the
batch ML workflows to build and gain ML models at the ML training phase, while the
Data Engineer team conducts the batch ML workflows for batch predictions or deploys
online ML workflows in production to make real-time predictions at the ML inference
phase.

Figure 5.3: ML workflows supported by Scanflow-K8s (a batch ML workflow on the left
and an online ML workflow on the right).

Application-controlled Layer: ML workflow manager (i.e., Scanflow) is used as
a controller of the application layer, as shown in the middle of Figure 5.2. Scanflow is
composed of multiple reactive agents, which work together to perform adjustments in
ML workflows to deal with application-related changes. Internally, Scanflow supports
four predefined agent templates, namely tracker, checker, planner, and executor. A
tracker-agent, which is based on Mlflow1, is used to collect the metrics (e.g., number of
predictions) or logs (e.g., prediction results) from ML workflows and save information
in a knowledge base. A checker-agent can define thresholds to detect outliers or use
learning methods to check drift anomalies, which are both based on real-time stream
executions and knowledge from a tracker-agent. A planner-agent can decide how to
address the detected issues, for instance by retraining the model using transfer learning
to improve its robustness based on knowledge from tracker-agent and checker-agent.
Finally, the operating plans from a planner-agent can be organized as a set of actions,
for example upgrading or changing the version of the model, which are then carried out
by an executor-agent, which manages the application-layer internal changes, and the
Scanflow API server, which communicates with the infrastructure layer to adjust the

1https://www.mlflow.org/docs/latest/tracking.html#scenario-4-mlflow-with-remote-tra

cking-server-backend-and-artifact-stores
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target system.
Infrastructure-controlled Layer: The bottom of Figure 5.2 shows the resource

manager working on the infrastructure-controlled layer. Scanflow’s best practice is inte-
grating with the well-known Kubernetes orchestrator, given that our ML workflows are
wrapped as containers that can be finely managed, and Scanflow-K8s can take advantage
of the wide range of toolkits in the Kubernetes ecosystem. Used toolkits are presented
in Table 5.2.

Table 5.2: Kubernetes toolkits.

Tool Role

Kubernetes2
Container orchestration, automated container deployment,
scaling, and management.

Istio3 Service-to-service connection and traffic monitoring.
Prometheus4 Metrics monitoring and alerting.
Volcano5 Batch workflow scheduling.
Keda6 Event-driven autoscaler.
Argo Workflows7 Multi-step workflow engine supporting DAG.
Seldon Core8 Online model serving on Kubernetes.

The infrastructure-controlled layer supports the deployment and execution of our con-
tainerized ML workflows on the platform by leveraging Kubernetes. At the training
phase, ML workflows are defined as batch executors and are executed in K8s as Argo
Workflows. At the inference phase, ML workflows can be defined both as batch executors
or online services, according to data engineers’ preferences. The former are executed as
Argo Workflows (as in the training phase), whereas the latter are deployed and executed
using Seldon.
At the infrastructure-controlled layer, the resource manager senses the system and

external contexts from the environment, and enables autonomic ML workflows by per-
forming finer-grain adjustments at run-time. For the monitoring, Kubernetes internal
metric server and Prometheus toolkit collect the status of the cluster and the perfor-
mance/resource usage of ML workflows executors or service instances. Also, Istio service
mesh traces the traffic and security of each invocation. For the analysis and optimiza-
tion, the manager can choose the optimal values for the configurable thresholds, which
will be used by the HPA (Horizontal Pod Autoscaler) or Keda autoscaler to decide the
number of instances, as well as configure the scheduling policy for the default kube-
sheduler and the batch scheduler Volcano, which will be used to decide the allocation
of ML workflows. Finally, the decided actions are carried out by the Kubernetes API
server, which hands out the operations to the kubelet within the cluster to adjust ML
workflows in order to adapt to the changing context.
Moreover, the ML workflow manager can govern some changes in collaboration with

the resource manager. For example, some application-related run-time information at

2https://kubernetes.io/
3https://istio.io/
4https://prometheus.io/
5https://volcano.sh/en/
6https://keda.sh/
7https://argoproj.github.io/
8https://www.seldon.io/
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the infrastructure layer can be tracked by the agents and considered at the application
layer. Similarly, some application-related changes in the requirements/decisions need to
be implemented in the infrastructure layer, which requires the Scanflow API server to
communicate with Kubernetes, for example, to autoconfigure the application thresholds
in Keda autoscaler or the affinity/resource limits of workflows according to the user’s
requirements, and to operate workflows in case of a fail-over to a user-defined backup
service.

5.3 Agents for Autonomic ML Workflows

In this section, we introduce the architecture of Scanflow agents and their features. In
detail, we define the agent communication, triggers, and operation primitives for ML
workflows under uncertainties.

5.3.1 Agent Architecture

We use the concept of reactive agent, which does not implement a global model or plan
but only some simple behaviors. These behaviors allow the agent to react when the
environment changes. An agent includes a sensor that senses internal and external state
changes, a set of conditional rules that respond to related events, and an actuator that
activates a certain process of the environment or other agents.
Scanflow agents are the fundamental components to implement autonomic ML work-

flows. Each agent is an independent computational unit that is able to run actions
according to the state changes. Therefore, an agent can be defined as a set of state-to-
action mappings (i.e., Agent = States(s) → Actions(a)), that is, state changes could
result in the execution of actions (if the conditional rules are satisfied). However, an
agent usually cannot directly perceive the states but compute them from observations ot
using a function F . Also, the agent performs actions through rules with the computed
states st (at = R(st)). Figure 5.4 shows the agent-environment interaction: At time t,
the agent computes the states st from the observations ot using a function F . Then, it
chooses actions at according to rules R to achieve the agent’s goal.
To cope with the autonomic management and online supervision for ML workflows,

each agent implements its autonomy by defining strategies that include events, con-
straints, and actions. The autonomic management strategy represents the automation
scenarios and can be expressed as 3-tuples Strategy = (Events,Constraints,Actions),
where an Event is mainly a state change, which is judged from the observations gath-
ered by the agent triggers, a Constraint is a boolean expression, which refers to whether
an attribute value fulfills a condition (e.g., fitting a threshold), and an Action is a sin-
gle or combined operation primitives or a request to call other agents. Specifically, the
autonomic management strategy of the agent is described as: when the Event happens,
if the Constraint is satisfied, then the Action will be executed.

5.3.2 Agent Social Ability

Social ability describes how multiple agents could collaborate to solve problems by inter-
acting with each other. Traditionally, interaction has been modeled through agent com-
munication languages, such as FIPA-ACL9. Recently, researchers have proposed other

9http://www.fipa.org/
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Figure 5.4: Agent-Environment interaction.

interaction methods based on concepts like using a shared volume [20]. Scanflow lever-
ages microservice-based agents [187] which could also interact with each other transpar-
ently with a service discovery through RESTful APIs. In practice, a single approach of
social ability is often insufficient, and thus Scanflow agents apply both shared artifacts
and RESTful APIs communication approaches to support the social ability of agents.

• Interaction through RESTful APIs: In this approach, the states or actions of an
agent are exposed as interfaces. Agents need to be registered first into a service dis-
covery, then they could call the well-defined interfaces from other agents through
REST. Normally, the remote call leads to changing the belief/state of the agent and
will finally drive an action. Figure 5.5 exemplifies how Scanflow agents communi-
cate with RESTful APIs. Tracker-agent asks for an agent to check for anomalies in
the predicted new data. First, tracker-agent needs to specify which action it wants
(e.g., check predictions); then Scanflow manager will generate the service domain
name of the agent and request a specific IP address by using CoreDNS, which
resolves the domain name, and Etcd, which returns the IP address from a service
name. Thus, tracker-agent could finally link to the checker-agent. This RESTful
POST from the tracker-agent changes the state of the checker-agent, therefore,
the checker-agent will POST a run workflow action to Scanflow API server and
Kubernetes API server to carry out its belief (e.g., run detector workflow to check
the anomaly of predicted new data).

• Interaction through shared artifacts: This approach communicates through shared
artifacts within an application-related knowledge base which receives queries from
agents and delivers the results from its database. These include the metadata and
logs from the prediction service, and the metrics, scores, parameters, and different
versions of the ML model. The states of Scanflow agents can be easily updated
through RESTful interaction, but, for complex operations with large data involved,
it is more efficient to use shared artifacts so that agents could make actions directly
with the accessible resources.

5.3.3 Agent Triggers

To actively monitor current States, agents are required to trigger tasks to sense the
useful observations. Scanflow provides different types of built-in triggers, namely interval
triggers, date triggers, and cron triggers (see Table 5.3). Also, the basic triggers can be
combined together using ‘and’ or ‘or’ logic to produce more complex hybrid triggers.
These triggers can be scheduled at a specific time or time intervals to execute tasks so
that agents could get required observations to evaluate the changes of States. Note that
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Figure 5.5: Agents communicate with RESTful APIs.

each Scanflow agent contains an asynchronous I/O scheduler with multiple queued tasks.
Tasks are run by the scheduler in a thread pool.

Table 5.3: Types of agent triggers.

Types Definition

Scheduled Triggers Interval Trigger at the specified frequency.
Date Trigger once on the given date and time.

Cron
Trigger when current time matches all specified
time constraints (similarly to UNIX cron).

Action Triggers Call-Receive
Call-Receive interface for agent to be triggered
through invocations from other agents.

On the other hand, an agent can also be triggered by external actions. For example,
receiving invocations from other agents, as discussed in Section 5.3.2.

5.3.4 Operation Primitives

After some change in the States, the agents need to perform Actions (i.e., at = R(st)).
Therefore, we propose some operation primitives that represent the atomic autonomic
management steps. The execution of a single primitive or a series of combined primitives
is able to implement a full action of an agent. Given that Scanflow agents can manage the
ML system by making adjustments both at the application layer and the infrastructure
layer (as described in Section 5.2.3), and that both batch and online workflows should
be supported, the primitive operations should be designed to happen at those layers and
to adapt to those types of workflows.
As shown in Table 5.4, at the application layer, we propose primitives for both types of

ML workflows to manage the ML workflow itself, and to set requirements (e.g., affinity,
resource limits, etc.) for the workflow from the users’ perspective. At the infrastructure
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Table 5.4: Agent operation primitives.

Application layer Infrastructure layer

Batch ML workflow

runWorkflow()
stopWorkflow()
upgradeWorkflow()
updateWorkflowAffinity()
updateWorkflowResource()

runExecutor()
stopExecutor()
upgradeExecutor()
updateExecutorAffinity()
updateExecutorResource()

Online ML workflow

deployWorkflow()
deleteWorkflow()
upgradeWorkflow()
updateWorkflowAffinity()
updateWorkflowResource()
updateWorkflowReplica()
updateWorkflowTraffic()

applyWorkflowInstance()
deleteWorkflowInstance()
duplicateWorkflowInstance()

layer, we introduce primitives for operating executors of batch ML workflows or instances
of online ML workflows in order to collaborate with the resource manager.

Regarding batch ML workflows, from the application layer, the agents can control the
life cycle of the workflow and update its metadata, parameters, and artifacts. For ex-
ample, the planner-agent can restart the training workflow to retrain the model through
runWorkflow(); the executor-agent can update the version of the workflow ML model by
using upgradeWorkflow() and can update the affinity (using updateWorkflowAffinity())
or resource limits requirements (using updateWorkflowResource()) with the knowledge
from the planner-agent. From the infrastructure layer perspective, the executors will be
run and guaranteed by the resource manager, but the agents can actively run or stop an
executor using runExecutor() or stopExecutor(), respectively. For example, replicated
executors can be stopped in case any one of them has finished the task. Also, a spe-
cific executor within the workflow can be upgraded, for instance, the planner-agent can
update the input parameters for the data-gathering executor of the workflow by using
upgradeExecutor() and also change its run-time settings by using updateExecutorX ()
operations.

Regarding online ML workflows, from the application layer, the agents can add, up-
grade, delete, and update the microservice using deployWorkflow(), upgradeWorkflow(),
deleteWorkflow(), and updateWorkflowX (), respectively. For example, when the model
serving service in the workflow needs a new version of the model, the executor-agent
must upgrade the microservice by using upgradeWorkflow(). The agents can also provide
user’s requirements to define application-related thresholds. For instance, the planner-
agent may call updateWorkflowReplica() to set a failure rate or throughput threshold,
so that the online ML workflow microservice will be scaled when the observed value is
over the threshold. As for the infrastructure layer, the agents have the option to directly
control the number of workflow serving instances. For instance, the executor-agent can
call duplicateWorkflowInstance() to scale up and down the online ML workflow service.
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5.4 Scanflow-K8s Platform Implementation

This section provides in detail the Scanflow-K8s implementation. It originally supports
deploying and operating ML workflows on Kubernetes, but users can also extend it to
other platforms. It is now open-sourced at Github https://github.com/bsc-scanflo

w/scanflow.

5.4.1 Scanflow-K8s Concepts

At the application level, Scanflow-K8s re-implements from scratch the Scanflow frame-
work. It provides a high-level library that supports defining workflows, building each
node of workflows and agents, and deploying/running the agents/workflows. In partic-
ular, it announces a framework for developing agents in order to manage and supervise
workflows in both the ML training stage and the ML inference stage.
The features of Scanflow include:

• Scanflow Developing (Scanflow Application): A format for teams to define work-
flows, agents, and basic environment.

• Scanflow Building: To build Scanflow Application locally (each node of a work-
flow and agents as an image) and save images to repository.

• Scanflow Deploying (Scanflow Server): An API to create a working environment
for each team and deploy agents. It also supports deploying workflows running as
batch workflows or deploying them as online services.

• Scanflow Operating (Scanflow Agent): A framework to develop agents. Provides
an online multi-agent system to manage and supervise the workflows.

• Scanflow Tracking (Supported by MLflow): MLflow provides an API to log
parameters, artifacts, and models in machine learning experiments. We use MLflow
as a database to track this information and transmit the information between
teams.

5.4.2 Scanflow-K8s Components

Scanflow-K8s components are shown in Figure 5.6. The main components are Scanflow-
server and Scanflow-tracker: the former is used for deploying Scanflow applications and
Scanflow agents, the latter is used as a central data of Scanflow to be shared among
teams/agents.
Scanflow also provides several clients to make use of the Scanflow-K8s platform. For

instance: Scanflow provides a format for teams to define workflows, agents, and basic
environments, therefore, users could utilize ScanflowClient to define their applications
and directly build the images locally and save the images to the image repository (see
Listing 5.1). Also, ScanflowDeployClient can be used to connect with Scanflow-server
to deploy/run/terminate Scanflow applications on demand (see Listing 5.2). In case of
some local information from users should be known among teams, ScanflowTrackerClient
provides a way to connect with Scanflow-tracker directly to save some useful information
(see Listing 5.3).
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Figure 5.6: Scanflow-K8s Components.

1 import scanflow

2 from scanflow.client import ScanflowClient

3 # scanflow client

4 client = ScanflowClient(scanflow_server_uri=’http ://172.30.0.50:46666 ’,

verbose=False)

5 # define application

6 executor1 = client.ScanflowExecutor(name=’load -data’,

7 mainfile=’loaddata.py’,

8 parameters ={’app_name ’: app_name ,

9 ’team_name ’: ’data’})

10 executor2 = client.ScanflowExecutor(name=’modeling -cnn1’,

11 mainfile=’modeling.py’,

12 parameters ={’model_name ’: ’mnist_cnn ’,

13 ’epochs ’: 1,

14 ’x_train_path ’: ’/workflow/load -data/

mnist/data/mnist/train_images.npy’,

15 ’y_train_path ’: ’/workflow/load -data/

mnist/data/mnist/train_labels.npy’,

16 ’x_test_path ’: ’/workflow/load -data/

mnist/data/mnist/test_images.npy’,

17 ’y_test_path ’: ’/workflow/load -data/

mnist/data/mnist/test_labels.npy’},

18 requirements=’req_modeling.txt’)

19 dependency1 = client.ScanflowDependency(dependee=’load -data’,

20 depender=’modeling -cnn1’)

21 workflow1 = client.ScanflowWorkflow(name=’mnist -wf’,

22 nodes =[executor1 , executor2],

23 edges =[ dependency1],

24 type = "batch",

25 output_dir = "/workflow")

26 app = client.ScanflowApplication(app_name = app_name ,

27 app_dir = app_dir ,

28 team_name = team_name ,

29 workflows =[ workflow1 ])

30 # build application

31 build_app = client.build_ScanflowApplication(app = app , trackerPort

=46668)

Listing 5.1: Usage of ScanflowClient.
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1 import scanflow

2 from scanflow.client import ScanflowDeployerClient

3 # scanflow deploy client

4 deployerClient = ScanflowDeployerClient(user_type="local",

5 deployer="argo" k8s_config_file="

/gpfs/bsc_home/xpliu/.kube/config",

6 verbose=False)

7 deployerClient.create_environment(app=build_app)

8 deployerClient.run_app(app=build_app)

9 deployerClient.delete_app(app=build_app)

Listing 5.2: Usage of ScanflowDeployClient.

1 import scanflow

2 from scanflow.client import ScanflowTrackerClient

3 # scanflow tracker client

4 trackerClient = ScanflowTrackerClient(

5 scanflow_tracker_local_uri="http

://172.30.0.50:46668",

6 verbose=False)

7 trackerClient.save_app_meta(build_app)

8 trackerClient.save_app_model(app_name=app_name ,

9 team_name=team_name ,

10 model_name="mnist_cnn")

Listing 5.3: Usage of ScanflowTrackerClient.

5.4.3 Scanflow-K8s for MLOps

Scanflow-K8s is a platform that provides features to simplify MLOps. The architecture
of Scanflow-K8s for MLOps is shown in Figure 5.7. There are many phases and steps
required to make the ML model in production to provide values.

The top of the figure shows the steps for the data team and data science team before
a model runs into production. Normally, the data team is responsible for discovering
and collecting valuable data, and the data science team will then develop a ML workflow
that contains data preparation, validation, and preprocessing, as well as model training,
validation, and testing. Workflow manager (e.g., Scanflow) can track the metadata
such as metrics and scores and the artifacts during the training phase, analyze them,
and automatically tune the hyper-parameters, early stopping and do neural architecture
search for improving the model.
The bottom of the figure shows the model in production, including the model infer-

ence workflow deployment and the operation phase that automatically manages the ML
workflow from both the application layer (e.g., workflow manager Scanflow) and the
infrastructure layer (e.g., resource manager Kubernetes).

For deploying and managing the ML workflow at scale, the data engineer team should
build a workflow managed by the workflow manager but wrap and deploy the model as
a service. From the application-layer controlled view, the workflow manager could log
the model metrics (such as scores) and artifacts (such as new data) to detect outliers,
adversarial or drift and provide model explanations and finally trigger the ML workflow
to be retrained or the model to be updated. From the infrastructure-layer controlled
view, allowing the model as a service helps it to be released, updated and rolled out
independently, and can monitor the latency and failure rate of its predicted invocations
at inference time. With these observations, the resource manager can automatically

117



Chapter 5 Scanflow-Kubernetes

Figure 5.7: Scanflow-K8s for MLOps.
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scale the service to achieve the reliability and efficiency of the model. The definition of
each step consists of setting the images, requirements, python scripts, and parameters.
This definition is set just once and the behavior of each step can be changed by its
parameters. In a production system, this notebook should be run once in order to start
the network, tracker, executors, and agents as containers. Then, these containers can be
executed or reached on demand by using Scanflow API (e.g., call the online predictor
service or execute the inference batch executor).
Scanflow-K8s as a shared tool between teams, can help different teams working under

the same concept in order to communicate and share the data, models, and artifacts.
Also, Scanflow-K8s deals with the hard point within all the stages, thus can help teams
fast and easily develop, build, deploy, and auto-manage their workflows. Our MNIST
case study is organized in this way. In Section 5.5 we show how different teams use
Scanflow-K8s.

5.5 Case Study and Experimental Analysis

This section presents case studies and conducts experiments on Scanflow-K8s to illustrate
the features of the agents and evaluate the feasibility and effectiveness of our agent-based
approach for autonomic management of ML workflows.

5.5.1 Experimental Setup

Hardware: Our experiments are executed on a ten-node K8s cluster. Each host consists
of 2 x Intel 2697v4 CPUs (18 cores each, hyperthreading enabled), 256 GB RAM, 60
TB GPFS file system, and 1-Gigabit Ethernet network.
Software: For all the hosts, we use CentOS release 7.7.1908 with host kernel 3.10.0-

1062.el7.x86 64. The Scanflow-K8s platform10 is built based on Kubernetes v1.19.16
(with Docker 19.03.11, Etcd 3.4.9, Flannel 0.15.0, CNI 0.8.6, and CoreDNS 1.7.0). Its
corresponding toolkits (as described in Section 5.2.3) are Istio v1.11.4, Prometheus
v14.3.0, Volcano v1.2.0, Keda v2.4.0, Argo Workflows v3.0.0-rc3, and Seldon Core
v1.11.2. Additionally, we use Scanflow v0.1.1 with built-in agents for drift detection,
which works with MLflow v1.14.1 integrated with a relational database (e.g., PostgreSQL
v13.4) for backend entity storage, and an S3 bucket (e.g., Minio Operator v8.0.10) for
artifact storage. For the Docker containers used as steps of the ML workflows, Scanflow
provides a base executor image using continuumio/miniconda3 and a base service image
using python:3.7-slim.
Datasets and Benchmarks: For the first experiment, we use MNIST11 (60,000

28 × 28 pixel grayscale images of handwritten digits from 0 to 9) dataset for training
a baseline model, and MNIST-C12 (handwritten digit database with 15 corruptions:
corrupted version of MNIST) dataset as new input samples to make predictions.
For the second experiment, we use MLPerf Inference benchmark13 (details show in

section 2.1.3) to test batch and online ML inference for image classification, in particular,
we use ResNet50 tensorflow model for the ImageNet2012 validation dataset (50,000
images of objects from 1,000 classifications).

10https://github.com/bsc-scanflow/scanflow
11http://yann.lecun.com/exdb/mnist
12https://github.com/google-research/mnist-c
13https://github.com/mlcommons/inference
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To support batch inference in MLPerf, we extended it with the tf2 backend, which
supports tensorflow saved model format, and we packaged both the model and the serv-
ing framework in a Docker image, along with a start script to configure MLPerf when
launching the container. To support online inference in MLPerf, we extended it with a
Seldon backend, so that MLPerf queries can be generated as RESTful invocations and
sent to the model serving services. These extensions are available at Github14.

MLPerf benchmark supports different realistic end-user scenarios through its LoadGen
tool. We use the Offline scenario, which represents applications where all data is imme-
diately available and latency is unconstrained, to test the throughput (i.e., samples/s)
of batch inference workflows, and the Server scenario with multiple concurrent LoadGen
clients sending queries according to a Poisson distribution to test the throughput (i.e.,
queries/s) subject to a latency bound (i.e., 6 ms) of online inference workflows.

5.5.2 MNIST Classification

In this experiment, we show how the various teams will use Scanflow-K8s in the different
phases to build and deploy their workflows, as well as the effectiveness of agents that
help to manage and supervise the workflows at the application layer while running
in production (i.e., detect and handle drift anomalies). The complete use-case is
available at Github15.

1 · Various teams build and deploy workflows

• Training Phase (see Figure 5.8): The Data Science team is responsible for training
the ML model to classify MNIST images. Scanflow-K8s supports the definition,
building, and execution of batch ML workflows, and runs the various steps of
the workflow (i.e., the executors) on Kubernetes by using Argo. Scanflow-K8s
allows the modeling step of this workflow to train with different algorithms or
with different hyperparameter tuning. Then, the team could select the best model
based on the accuracy.

Training Workflow

Training phase

Model
testing

Checker

data/metadata/parameter/models Data 
Science

Model
validation

Model
trainingData

preprocessing
Data

validation
Data

preparation

iteration

Artifacts Repository
(images/workflow)

Tracker
Scanflow
Workflow

Scanflow

Planner

Figure 5.8: Data Science team works at training phase.

• Inference Phase (see Figure 5.9): After the training, the model is stored in the
registry provided by MLflow and is ready to be used in production. The Data

14https://github.com/peiniliu/inference/tree/scanflow
15https://github.com/bsc-scanflow/scanflow/tree/main/tutorials/mnist
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Engineer team should build an inference workflow, so that the trained model can
be used to make batch predictions, or deployed as a serving service to allow users
to ask for predictions online.
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Model
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Planner Checker
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Model API
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Scanflow

Resource ManagerKubernetes

Data 
Engineer
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Workflow

Client
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Data

Inference phase

Figure 5.9: Data Engineer team works at inference phase.

2 · Agents implementation

Scanflow agents are responsible for application-layer automation. The four internal sup-
ported templates of agents are namely tracker-agent, checker-agent, planner-agent, and
executor-agent. The Data Engineer team can provide custom functions to enhance the
capabilities of each agent. As a proof-of-concept, Algorithm 1 outlines the interaction
and collaboration of built-in Scanflow agents which feature a non-trivial drift anomaly
detector that autonomically deals with out-of-distribution samples in the data and im-
proves a target accuracy estimator.
This section evaluates agents which feature a non-trivial data drift detector workflow

built from the implementation of the components presented in our previous paper [20].
Checker-agent detects out-of-distribution samples by means of a convolutional deep au-
toencoder and selects the critical points within these data, which are labeled based on
human intervention. Planner-agent leverages transfer learning from the original train-
ing workflow to retrain the model after adding the labeled picked critical points to the
training data. The autonomic strategies of those agents to manage drift are described in
detail in Table 5.5. Scanflow-K8s provides an agent framework to help Data Engineers
fast build and deploy their agents. For instance, Listing 5.4 - Listing 5.6 show how we
implement an autonomic strategy (Algorithm 1 lines 1-2 and Table 5.5 tracker agent)
within an internal tracker agent through Scanflow-K8s platform. Data Engineers could
define custom strategies in the same manner.
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Algorithm 1 Agent-based model debugging

Input: Tracker-agent, Checker-agent, Planner-agent, Executor-agent, newdata: new
predictions samples, m: current model, q: current model accuracy

Output: m′: improved current model, q′: improved model accuracy
1: while interval = 1 h, size(newdata) ≥ 1000 do
2: Tracker-agent(newdata) call Checker-agent;
3: anomalydata, pickeddata← Checker-agent: Detect(newdata);
4: while interval = 1 h, size(pickeddata) ≥ 100 do
5: Checker-agent(pickeddata) call Planner-agent;
6: m′, q′ ← Planner-agent: Retrain(pickeddata);
7: if q′ > q then
8: Planner-agent(m′, q′) call Executor-agent;
9: m replaced by m′ ← Executor-agent(m′)

10: end if
11: end while
12: end while

1 from .custom_rules import *

2 from .custom_actuators import *

3 from typing import List

4 from datetime import datetime

5 import time

6 from functools import reduce

7 from scanflow.agent.sensors.sensor import sensor

8

9 def tock():

10 print(’Tock! The time is: %s’ % time.strftime("’%Y-%m-%d %H:%M:%S’")

)

11

12 #example 1: count number of predictions

13 @sensor(nodes=["predictor"], filter_string="tags.mlflow.runName=’

predictor -batch’ and metrics.n_predictions > 0")

14 async def count_number_of_predictions(runs: List[mlflow.entities.Run],

args , kwargs):

15

16 n_predictions = list(map(lambda run: run.data.metrics[’n_predictions ’

], runs))

17

18 number_of_predictions = reduce(lambda x,y : x+y, n_predictions)

19

20 if number_of_predictions_threshold(number_of_predictions):

21 await call_analyze_check_predictions(run_ids = list(map(lambda run

: run.info.run_id , runs)))

22

23 return number_of_predictions

Listing 5.4: Tracker Internal Events.

1 def number_of_predictions_threshold(number_of_predictions: int):

2 return number_of_predictions > 999

Listing 5.5: Tracker Internal Constraints.
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1 from scanflow.agent.actuators.actuator import actuator

2 from typing import List

3 import mlflow

4

5 @actuator(path="/sensors/analyze_check_predictions", depender="checker")

6 def call_analyze_check_predictions(args , kwargs):

7 return args , kwargs

Listing 5.6: Tracker Internal Actions.

Table 5.5: Agents autonomic management strategy

Agent Strategies

Tracker-
agent

Strategy: count number of predictions
WHEN IntervalTrigger(1h, count number of predictions)
IF number of predictions ≥ 1000
THEN Call(Checker -agent : check predictions(newdata))

Checker-
agent

Strategy: check predictions
WHEN CallReceive(check predictions(newdata))
IF successful call
THEN runWorkflow(Detector -workflow ,newdata)

Planner-
agent

Strategy: retrain model
WHEN IntervalTrigger(1h, count number of pickeddata)
IF number of pickeddata ≥ 100
THEN runWorkflow(Training-workflow(production model ,
retrain = True), pickeddata)
Strategy: update model
WHEN IntervalTrigger(1h,modelaccuracy)
IF newmodelaccuracy > currentmodelaccuracy
THEN Call(Executor -agent : change model(version))

Executor-
agent

Strategy: change model transition
WHEN CallReceive(change model(version))
IF successful call
THEN updateWorkflow(modelversion,modeltransition)

3 · Application-level autonomy results

Figure 5.10 presents how a model is autonomously improved by multiple agents in a single
interval (model V1-V2 time interval). At 60 min, tracker-agent sums up the number of
predictions during the last one hour (i.e., interval between blue dashed lines: 0-60min).
As there are 1000 predictions, checker-agent is triggered to detect the anomalous data
(300 anomalous samples are identified) and pick enough new critical data to be appended
to the training dataset. As there are 100 new critical samples, planner-agent is triggered
to retrain the model and generate a new version. Only those models trained that achieve
better accuracy will be iteratively upgraded by executor-agent to be used in production.
Figure 5.11 shows such roadmap of MNIST model upgrades in production. Model V1 is
a baseline model trained by the Data Science team at the training phase with in total
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Figure 5.10: Agent-based model debugging in the presence of data drift.

60000 samples and gaining 90% accuracy. The agents monitor predictions over each
1-hour interval (between blue dashed lines) and trigger anomaly detection (between red
dashed lines), which might generate a new version of the model for each interval. From
those upgraded models, over time only V2, V3, and V7 have been used for predictions in
production because they provided better accuracy than the former ones (e.g., V2: 91%,
V3: 92%, and V7: 93%). This demonstrates that Scanflow agents can provide autonomy
at the application level to help ML workflows to maintain the model accuracy when
facing constantly evolving data profiles.

Figure 5.11: Road map of MNIST model upgrades in production.

5.5.3 MLPerf Inference Benchmark

In this experiment, we show how Scanflow-K8s can deal with both context changes and
non-functional requirements by taking advantage of the resource manager and also the
collaboration between application and infrastructure layers. This use case is also
available at Github16.

16https://github.com/bsc-scanflow/scanflow/tree/main/tutorials/mlperf
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1 · Automation at the infrastructure layer

Automation at the infrastructure layer allows taking advantage of the resource man-
agement capabilities of the orchestrator to improve the reliability, scalability, and load
balancing of workflows. The infrastructure layer provides simple strategies to deal with
some system contexts such as self-healing, auto-scaling based on observed system met-
rics such as CPU utilization, and load-balancing in a round-robin option [88]. However,
as they use low-level system information, these strategies are less expressive and more
difficult to configure for the end-user, as demonstrated in the next section.

2 · Multi-layered Control for Autonomic ML workflows

This section shows the benefit of considering application-provided knowledge to perform
resource management actions.
First, we compare infrastructure- vs. application-level auto-scaling by using 100 Load-

Gen users asking for predictions in the Server scenario while expecting a given service
QoS (e.g., average queries/s per replica < 20). In Figure 5.12, the data-engineer uses
different infrastructure-related settings to define the auto-scaling threshold (i.e., setting
the target CPU utilization to 5, 8, or 10 CPUs). The workflow is rapidly scaled up (i.e.,
number of replicas is increased) at the beginning when setting CPU utilization threshold
to 5, hence the system wastes many resources to fulfill the throughput requirement. The
workflow is never scaled when setting CPU utilization threshold to 10, thus does not
mostly satisfy the throughput requirement. Setting CPU threshold to 8 mitigates the
problems of the other two settings, but it is still not matching exactly the QoS require-
ment. This shows how hard is for the data-engineer to find the optimal auto-scaling
settings when using only infrastructure-related metrics. Figure 5.13 shows agent-tuned
auto-scaling according to an application-level non-functional QoS requirement provided
by the end-user. The planner-agent can autonomically replace the data-engineer to tune
the auto-scaling threshold of Keda to meet the requirement. The workflow is scaled up
when the real-time throughput goes over the threshold, and scaled down when facing
a low load. That is to say, having the application-layer knowledge allows the agents to
manage resources wisely by matching the threshold with the QoS requirement in the
service level agreement.

Figure 5.12: Auto-scaling driven by CPU utilization metric.

At this point, we evaluate the agent-tuned anti-affinity for batch workflows, which
allows to constrain which nodes they are not eligible to be scheduled based on the pods
that are already running on the nodes. We use 50 LoadGen users in the Server scenario
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Figure 5.13: Agent-tuned auto-scaling driven by application-level metric.

to stress out an online inference service, while in the meantime another LoadGen user
asks for a batch prediction by means of the Offline scenario. In the baseline configura-
tion, the batch and online inference workflows are colocated in the same node; while in
the anti-affinity configuration, the planner-agent sets anti-affinity of the batch vs. the
online workflow, so that they are allocated separately. Figure 5.14 shows the benefit on
the performance of both workflows when agents define their anti-affinity, because each
workflow can use the spare resources in its allocated node, which would be otherwise
used by the colocated workflow if they are executed together, as shown in the baseline.

Figure 5.14: Agent-tuned anti-affinity.

Finally, we demonstrate how Scanflow-K8s can deal with workflow internal faults by
means of replica fail-over driven by application-level information. In particular, if the
inference service is not available and it cannot be recovered by restarting the service
instances at the infrastructure layer, a backup service deployed at the initiative of the
Data Engineer team can take over and Scanflow-K8s redirects all the traffic from the
original inference service to the backup service to maintain the availability. We show
the queries’ distribution between these two services in Figure 5.15. We have started 200
LoadGen users in the Server scenario so that replicas of the original inference service
start to fail the readiness health-check due to the high load. When the planner-agent
detects that the online-inference service is not available (i.e., its number of ready replicas
is 0), it dynamically redirects the query traffic from the unavailable service to the backup
service. This is possible thanks to the application knowledge that both services are
equivalent, since from the infrastructure perspective they are different services.
The above experiments exemplify how the agents can leverage application-layer knowl-
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Figure 5.15: Agent-tuned service fail-over and traffic redirection.

edge to enhance resource management actions. In the first one, the agent used arbitrary
application-level metrics to configure auto-scaling according to QoS requirements. In
the second one, the agent tuned the container-level resource and affinity configuration
to optimize performance according to workflow type and resource availability. In the last
one, the agent dealt with service unavailability by redirecting the traffic to a backup ser-
vice defined at the application level. Application-layer knowledge is currently provided
by the end-user/data-engineer, but the agent strategies could be enhanced to gather
knowledge from other sources (e.g., other models, expert knowledge base).

5.6 Conclusion and Future Work

This chapter presented Scanflow-K8s, an agent-based framework that enables autonomic
management and supervision of the end-to-end life-cycle of ML workflows at Kubernetes
clusters. We evaluated two use cases, although we engineered the framework so that it
can be easily adapted to different ML workloads and more complex adaptation scenarios.
First, we used a MNIST project to show how different teams could leverage Scanflow-K8s
to manage ML workflows at different phases and how its agents collaborate to debug
a drift anomaly problem and upgrade a new model. Second, we used ImageNet2012
classification from MLPerf benchmark for batch and online inference scenarios to show
how agents take actions to keep the performance and availability of workflows in this
multi-layer controlled autonomic architecture. We provided some template agents to be
used in these use cases.
In future work, we plan to implement more generic template strategies and user inter-

faces so that developers could easily bring their knowledge or the insights learned from
other models to the agents. We will also develop more complex (and more dynamic)
adaptation policies both at the application and the infrastructure layers, and the needed
enhancements in the framework to enforce them at scale (management of conflicts among
multiple strategies, agent throughput under high load, etc.).
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Chapter 6

Fine-Grained Scheduling for Containerized
HPC Workloads in Kubernetes Clusters

This chapter is based on a conference publication:

[1] Peini Liu and Jordi Guitart, “Fine-Grained Scheduling for Containerized HPC Workloads in Kuber-
netes Clusters”, The 2022 High Performance Computing and Communications (HPCC-2022), Decem-
ber 2022, Chengdu, China, DOI: 10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00068. (CORE
RANK B)

[2] May 29, 2021 - Software Release on the Github repository: “Scanflow-Kubernetes: An MLOps
Platform”. Available at: https://github.com/bsc-scanflow/scanflow.

• M3: (27/05/2022) Release mpi branch Scanflow(MPI)-Kubernetes enhanced MPI applications
support, Available at: https://github.com/bsc-scanflow/scanflow/tree/mpi.

This chapter proposes fine-grained scheduling for containerized HPC workloads in
Kubernetes clusters. A brief introduction is presented in Section 6.1. Section 6.2 presents
the architecture of Scanflow(MPI)-Kubernetes platform. Detailed algorithms of fine-
grained scheduling in different layers are proposed in Section 6.3. Section 6.4 evaluates
the performance of our proposed fine-grained scheduling policies for HPC workloads
through typical HPC MPI benchmarks. Finally, the conclusions and future work are
presented in Section 6.5.

6.1 Introduction

Modern computing infrastructure is evolving at a fast pace to Cloud computing services.
Containerization, as a fundamental technology for Cloud computing, allows efficient
utilization and easy maintenance of the infrastructure. So far, this attractive paradigm
has also had an impact on High Performance Computing (HPC) [18][9].
Previous works have demonstrated the possibility of enabling HPC workloads on Cloud

infrastructure using containers [15], and have discussed some best practices for HPC
workloads on the Cloud [188][52]. The deployment of containerized HPC workloads in
the Cloud is done by container orchestrators, which have the capability to launch and
manage containers and their full life cycles, and leverage resource availability and the user
specifications to decide the placement of containers. Several orchestrators are available
nowadays such as Docker Swarm [33], Mesos [59], and Kubernetes [89]. Kubernetes
has been widely adopted in commercial production systems, such as Google Kubernetes
Engine [47], and Azure Kubernetes Service [12], and provides a wide and active toolkit
ecosystem.
Currently, Kubernetes is not optimized for the management of HPC applications. It is

mainly used to support the autonomous management of loosely-coupled long-lived online
microservices, enabling their self-healing and auto-scaling. Although it also includes
some support for short-lived batch jobs, the tuning of their specification, scheduling,
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and management must rely on other algorithms and tools. For example, Kubeflow MPI
operator [83] provides a better specification for MPI applications and Volcano [186]
provides some plugins to enable optimized scheduling for jobs. As the HPC community
has important performance considerations on its workloads, developing new deployment
schemes for different types of HPC workloads that improve their performance is needed.

Our previous systematical performance analyses in chapter 3 have demonstrated through
standalone executions that some types of containerized HPC applications achieve better
performance when exploiting multi-container deployments which partition the processes
that belong to each application into multiple containers in each node and when con-
straining each of those containers to a single NUMA (Non-Uniform Memory Access)
domain or pinning them to specific processors [99][101]. However, these deployment
schemes have not yet been integrated with multi-programmed environments for HPC
workloads by current Cloud orchestrators.

In this chapter, we look for fine-grained scheduling policies for allocating container-
ized HPC workloads through Kubernetes rather than a traditional batch system. The
goal is to introduce our optimized management framework to inspire HPC community
developers and operators on how to deploy their workloads in a fine-grained way to gain
performance improvement and leverage containerization and orchestration technologies.
Our main contributions are:

• We present a two-layer scheduling architecture. In the application layer, an agent
decides the constructs/granularity of the tasks within the HPC workload based
on the characteristics of the applications. In the infrastructure layer, an MPI-
aware plugin and task-group scheduling scheme are enabled within a containerized
platform scheduler. The MPI-aware plugin decides each task-container mapping
and the resource requirements/limits of each container. The task-group scheduling
scheme is used to allocate containers to available nodes.

• We develop policies for the granularity-aware agent in the application layer, and
the MPI-aware plugin and the container-based task-group scheduling scheme in
the infrastructure layer.

• We establish a real platform (so-called Scanflow(MPI)-Kubernetes), implement
the algorithms in both application and infrastructure layers, and evaluate the con-
tainerized HPC workloads deployments with our fine-grained scheduling scheme.

6.2 System Architecture

Our fine-grained scheduling approach for containerized HPC workloads is built over the
existing Scanflow-Kubernetes platform [97][98]. It is implemented both within a Scan-
flow(MPI) extension package in the application layer (see in Scanflow-Kubernetes github
repository1) and an enhanced Volcano scheduler/controller manager in the infrastruc-
ture layer (see in Volcano github repository2). The whole architecture of this platform
is depicted in Figure 6.1.

Target System: The yellow area in the figure shows the target system focusing on
the HPC workloads. From a static design perspective, HPC workloads are defined as

1https://github.com/bsc-scanflow/scanflow/tree/mpi
2https://github.com/peiniliu/volcano/tree/peini

130

https://github.com/bsc-scanflow/scanflow/tree/mpi
https://github.com/peiniliu/volcano/tree/peini


6.2 System Architecture

Master Node

Node

k-proxykubelet

etcdc-m

api

k-proxykubelet

k-proxy

kubelet

sched

kubelet

k-proxy

api

etcd

sched

c-m

DEV

monitor

monitorVC-monitor

MPIWorker

MPILancher

SF-api

SF-agent

VC-sched

VC-c-m

VC-monitor

SF-apiSF-agent

VC-c-m

VC-schedVC-sched

Kubelet

Kube-proxy

API Server

Etcd 
(persistence

store) 

Schedule 

Controller
Manager 

Kube-metric-
server/ 

Prometheus

Scanflow 
API Server 

Scanflow 
Agents 

Volcano 
Scheduler 

Volcano 
Controller
Manager 

Volcano 
Monitor 

Target
System

Application 
Manager 
Resource 
Manager 

MPI Job

MPIWorker

MPIWorker MPIWorker

MPI Job
HPC

Workloads

MPI Task

Kubernetes 
Pod 

Figure 6.1: Scanflow(MPI)-Kubernetes: A practical platform for managing HPC work-
loads.

distributed jobs. Typically, an MPI job in the Cloud is composed of a launcher and one or
several workers, and all the MPI processes of the job are executed within the workers [83].
However, following the idea of using containerized instances to decouple the processes
and considering the potential benefits of multi-container deployments for HPC workloads
[99][101], each worker can be split into several finer-grained workers which hold part of
processes and are executed in parallel on each node. From a dynamic implementation
perspective, the launcher and workers of a job are conducted as containerized instances
(i.e., Kubernetes Pods) executing together in the Cloud. All the Pods belonging to the
job run once for each time the job is submitted.

Application Manager: Application manager (i.e., Scanflow) is used as a controller
of the application layer, as shown in the green area of Figure 6.1. To work with HPC
workloads, we implemented a Scanflow(MPI) extension, which allows the users to use
the Scanflow-client Python library to easily define and build HPC workloads locally
and submit MPI jobs to Scanflow-server to be deployed. This server can connect with
Scanflow-agents to calculate proper MPI job granularity (number of workers and nodes to
be used) and also submit jobs to Kubernetes Control Plane to run them in a Kubernetes
cluster. We also added support for HPC workloads in Scanflow through a granularity-
aware planner agent, which can decide the proper granularity for each user-submitted
MPI job by considering the provided application profile and the status of the cluster
nodes (see Algorithm 2 in Section 6.3).

Resource Manager: The blue area of Figure 6.1 shows the resource manager (i.e.,
Kubernetes) on the infrastructure layer. Thanks to the Scanflow(MPI) extension de-
scribed above, our HPC workloads are well-wrapped into containers, thus we can directly
use a container orchestrator (i.e., Kubernetes) as resource manager to finely manage the
job deployment. We can also take advantage of the wide-range toolkits in the Kubernetes
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ecosystem, such as Volcano and Prometheus3.

Kubernetes Control Plane manages the cluster and responds to cluster events. By
default, it includes the API Server, Etcd database, and more relevant to this work,
Controller Manager and Scheduler. Each type of object has its own Controller Manager
to watch its life cycle, for example, Volcano job controller manager watches the job
object, and creates the pods to run master/workers to completion. Scheduler watches
pods without node assigned and selects the best node for each pod to run on. Node
selection has two steps: filtering (to find a set of nodes that are feasible to place the
pod) and scoring (to rank the nodes to choose the most suitable placement).

Kubernetes is originally used for managing microservices, thus the default controllers
(i.e., Deployment, ReplicaSet) are intended for managing and scaling these applications.
Similarly, the policies from the default scheduler are also well-fitted for deploying this
type of long-run microservices. However, the usability of the default Job controller and
scheduler for deploying HPC workloads is limited. To cope with this, we leverage Volcano
into our platform to evolve default jobs into Volcano jobs and change the default sched-
uler into Volcano scheduler. We also take advantage of the Volcano feature to support
additional scheduling plugins to implement an MPI-aware plugin inside the Volcano job
controller to configure the hostfile and resource request of each worker. Additionally,
a task-group scheduling plugin is also implemented inside Volcano scheduler to make
scalable and balanced scheduling for fine-grained Volcano jobs (see Section 6.3).

After the global scheduling decided by the Kubernetes Control Plane, pods are stored
inside Etcd indicating their assigned node. The next step is to start the pod in the
corresponding node through the Kubelet component, which is used for maintaining the
pods on nodes (e.g., starting, terminating, reporting). By default, the pods could use
requested resources from the whole single node (but not more than their specified limit).
However, to do a finer-grain deployment, a CPU/memory management policy should be
configured.

HPC workloads can move to different CPUs and increase the context switches if us-
ing shared resources, which will degrade the workload performance. As well, related
work has shown that CPU/memory affinity could help HPC workloads to gain perfor-
mance [99][101]. Consequently, we explore different Kubelet settings to allocate exclu-
sive CPUs and/or use NUMA affinity. This paper evaluates two Kubelet settings: (1)
default: all pods could use shared resources in a node under the resource limits specifi-
cation; (2) CPU and memory affinity: sets the --cpu-manager-policy=static and the
--topology-manager-policy=best-effort, so that a pod will be allocated on exclusive
CPUs and try best-effort to use CPUs from a single NUMA node.

6.3 Fine-Grained Scheduling

Fine-grained scheduling for containerized HPC workloads is composed of several steps
which are shown in Figure 6.2. The notations used are explained in Table 6.1. In the
master, the application manager and the resource manager components use their global
views to decide the nodes where to allocate the pods belonging to the job, while in each
node, the resource manager will decide the resources actually used for each pod that is
allocated on this node.

3https://prometheus.io/
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Figure 6.2: Scheduling steps for HPC workloads deployment.

Table 6.1: Notation table.

Notation Explanation

Job MPI Job metadata.
Nt Number of tasks for the Job (fixed).
Nn Number of nodes for the Job.
Nw Number of workers for the Job.
Ng Number of groups of Pods for the Job.
R(cpu,memory) Resource requirements/limits for the Job.
Pods Units to wrap master/workers of the Job.
Podiw Worker i of the Job.
Podsw Workers of the Job.
Podl Launcher of the Job.
Nodej Node j in the cluster.
Nodes Nodes in the cluster.
Map(Podiw → Nodej) Mapping of worker i allocated to a node j.
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6.3.1 Application Layer Granularity Selection Algorithm

In the application layer, the developer defines the MPI job (i.e., Job), including Nt,
which is fixed as it specifies the number of MPI processes this application will start
(same as calling ‘mpirun -np 16’), and the profile of the application (e.g., network,
CPU, memory intensive), which implicitly defines the relevant QoS, and submits it to
the Scanflow API Server. Listing 6.1 shows how a user could use Scanflow library to
submit their MPI jobs.

1 import scanflow

2 from scanflow.client import ScanflowClient

3 from scanflow.client import ScanflowDeployerClient

4 client = ScanflowClient ()

5 deployerClient = ScanflowDeployerClient(user_type="local",

6 deployer="volcano",

7 scanflow_autoconfig_server_uri =

"http ://172.30.0.50:49119/ sensors",)

8 # define MPI job

9 def newWorkflow(i, benchmark , expstr , nTasks , nNodes):

10 #mpi workloads

11 mpi = client.ScanflowMPIWorkload(name=f"{benchmark}",

12 mainfile=f"{benchmark }-{expstr }.

yaml",

13 nTasks=nTasks ,

14 nNodes=nNodes ,)

15 #workflow

16 workflow = client.ScanflowWorkflow(type=’mpi’,

17 name=f"{benchmark }{i}",

18 nodes=[mpi],

19 output_dir = "/home")

20 return workflow

21

22 #submit Job to Scanflow

23 async def runWorkflow(i, build_app):

24 return await deployerClient.run_workflow(app_name=’mpi’,

25 team_name=’dataengineer ’,

26 workflow = build_app.workflows[i])

27

28 build_app = client.build_ScanflowApplication(app = app , trackerPort

=46672)

29 newWorkflow(i, hpccdgemm , "exp1 -baseline", 16, 4)

30 await runWorkflow(i, build_app)

Listing 6.1: Scanflow MPI Job Submission.

The Scanflow(MPI) planner agent is responsible for the automatic calculation of other
parameters related with the construct/granularity of the Job according to a predefined
policy set by the admin (see step 1 in Figure 6.2), as described in Algorithm 2. In
particular, it calculates Nw, Ng, and Nn. For that purpose, the planner agent considers
Nt, the application profile, and its resource requirements. If desired, the user can provide
a default value for Nw and the agent can get the maximum Nn from Prometheus.

We define two policies, “scale” and “granularity”, to determine Nw. In both, each
network-intensive application will be packed into a single worker, while the CPU-intensive
and the memory-intensive applications will be split into multiple workers, with Nw = Nn

in the “scale” policy, and Nw = Nt in the “granularity” policy. If no policy is set, the
agent will keep the default Nw specified by the user. Finally, the updated MPI job with
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granularity will be submitted to the Scanflow API Server, which will transmit Job to a
Kubernetes cluster through the Kubernetes Control Plane.

Algorithm 2 Granularity Selection (Planner agent)

Input: Job: MPI Job metadata, SystemInfo: System information, Policy: Granular-
ity policy, Profile: Job profile

Output: Job: Updated MPI Job metadata with granularity
{% Agent Sensor: get job specs and system information}

1: Nt, Nw ← Job
2: Nn ← SystemInfo
{% Agent Rule: set granularity according to job profile}

3: if (Policy = ”scale”) then
4: if (Profile = ”network”) then
5: Nn = 1, Nw = 1, Ng = 1
6: else if (Profile = ”CPU” || ”memory”) then
7: Nn = min(Nn, Nt), Nw = Nn, Ng = Nn

8: end if
9: else if (Policy = ”granularity”) then

10: if (Profile = ”network”) then
11: Nn = 1, Nw = 1, Ng = 1
12: else if (Profile = ”CPU” || ”memory”) then
13: Nn = min(Nn, Nt), Nw = Nt, Ng = Nn

14: end if
15: else
16: Nn = 1, Nw = Nw, Ng = Nn

17: end if
{% Agent Actuator: update and submit the job}

18: Job ← Update(Nn, Nw, Ng)
19: Submit(Job) to Scanflow API Server

6.3.2 Infrastructure Layer Task-group Scheduling

In the infrastructure layer, Kubernetes with enhanced Volcano is used to control the life-
cycle of the Job (see step 2 in Figure 6.2) and decide the best nodes to place the Job
(see step 3 in Figure 6.2). Volcano job controller manager watches the Job and creates
a Pod for each MPI launcher/worker within the job. However, Job needs some dynamic
configuration while generating the Pods. Thus, we enhanced Volcano job controller
manager with a plugin implementing Algorithm 3 to make it MPI-aware. This plugin
helps Job to allocate Nt into Nw in a RoundRobin fashion, decide the R(cpu,memory)
for each worker, as well as generate the hostfile for all the workers to communicate.
After the initialization of the Job, all its launcher/workers are wrapped as Pods that
are registered in Kubernetes API Server and wait for Volcano scheduler to choose the
allocated node.
Pods are the smallest deployable entities in Kubernetes, so the scheduler decides their

placement individually. However, when enabling granularity, there are various pods
that belong to the same job, and we also aim to scale evenly the job into multiple nodes.
Therefore, we implemented a task-group plugin inside Volcano (see Algorithm 4). The
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Algorithm 3 Dynamic MPI-aware Job Controller

Input: Job: Job metadata with granularity
Output: Pods: Updated pods with resources, Hostfile: Hostfile for MPI application

to allocate tasks
{% Step 1: get job specification}

1: Podl, Podsw, Nt, Nw, Nn, R(cpu/Nt,memory/Nt) ← Job
{% Step 2: allocate tasks into workers in RoundRobin}

2: nTasksInWorker ← AllocateTasks(Nt, Nw)
{% Step 3: set up pod resources and the hostfile according to the number of tasks
allocated }

3: for i in 0 to Nw − 1 do
4: nTasks ← GetnTasks(nTasksInWorker, i)
5: Podiw ← Update(Podiw, R(cpu/Nt · nTasks,memory/Nt · nTasks))
6: Hostfile ← Add(Hostname(Podiw), slots=nTasks)
7: end for
8: Pods = Podsw + Podl
9: return Pods

idea is to group evenly the workers into multiple groups, enabling node affinity for the
workers within each group and node anti-affinity among groups. This is done in two
steps. First, building multiple groups for every job and allocating worker pods into
those groups. Then, filtering for each pod the nodes where it is feasible to schedule it
(using Kubernetes default filter), scoring those nodes (using the procedure described in
Algorithm 5), and selecting the best one.
Algorithm 4 and Algorithm 5 call some auxiliary functions. For instance, ‘sortGroup-

ByResourceRequests’ sorts the groups from big to small according to their resource re-
quest so that the workers can be evenly added to the groups and each group has similar
resource requests; ‘WorkerOrderFn’ decides the order of the workers taking into account
that they can belong to different groups, so it picks up a group and enqueues the workers
within the group instead of ordering the workers just by using its id; ‘PredicateFn’ filters
the nodes available to allocate some pods by constraints such as node taints or tolera-
tions; ‘NodeOrderFn’ in Algorithm 5 calls ‘getNodesBoundbyGroup’, which returns the
node that has been already assigned to the pods in the group, so that when deciding
the next pod in the group, the bound node has a higher score.

6.3.3 Node Affinity Settings

In each node, Kubelet takes a set of Pods that are provided through the API Server, and
starts the containers described in those pods (see step 4 in Figure 6.2). By default,
the containers could use requested resources from the whole single node (but not more
than the limit), but this paper considers different Kubelet settings to allocate exclusive
CPUs and/or use NUMA affinity for containers, as introduced in Section 6.2.
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Algorithm 4 Task-Group Scheduling

Input: Ng: Number of groups, Podsw: Worker pods, Nodes: Nodes
Output: Podsw: Worker pods with nodes assigned allocated
{% Step 1: build and allocate workers into groups}

1: groups ← newGroups(N g)
2: for i in Podsw do
3: groups ← sortGroupByResourceRequests(groups)
4: selected group = groups[0]
5: AddWorkerToGroup(Podiw, selected group)
6: end for
{% Step 2: predicate and priority node for worker}

7: Podsw ← WorkerOrderFn(groups)
8: for i in Podsw do
9: for j in Nodes do

10: pre nodes ← PredicateFn(Podiw, Nodej)
11: end for
12: for k in pre nodes do
13: node score ← NodeOrderFn(Podiw, pre nodesk)
14: end for
15: best node ← getBestNode(max(node score))
16: Podiw ← Update(Map(Podiw, best node))
17: end for
18: return Podsw

Algorithm 5 NodeOrderFn Node Score Calculation

Input: worker: Worker, node: Node
Output: score: score of worker allocated to node
1: group ← getGroupByWorker(worker)
{% Step 1: base score is the number of bound task in the same group that allocated
in the node}

2: bound nodes ← getNodesBoundbyGroup(group)
3: for bound node in bound nodes do
4: if bound node = node then
5: score++
6: end if
7: end for
{% Step 2: count remaining tasks in the same group}

8: score = score+ len(group.worker)
{% Step 3: avoid other groups in the node}

9: for allocated group in getGroupsInNode(node) do
10: if allocated group ̸= group then
11: score−−
12: end if
13: end for
14: return score
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6.4 Evaluation

In this section, we evaluate the performance of our proposed fine-grained scheduling
policies for containerized HPC workloads through typical HPC MPI benchmarks.

6.4.1 Experimental Setup and Metrics

Hardware: Our experiments are executed on a five-node K8s cluster. Each host consists
of 2 x Intel 2697v4 CPUs (18 cores each, hyperthreading disabled), 256 GB RAM, 60
TB GPFS file system, and 1-Gigabit Ethernet network.

Software: All the nodes run Linux CentOS release 7.7.1908 with host kernel 3.10.0-
1062.el7.x86 64. The Scanflow(MPI)-Kubernetes platform is built based on Kubernetes
v1.19.16 (with Docker 19.03.11, Etcd 3.4.9, Flannel 0.15.0, CNI 0.8.6, and CoreDNS
1.7.0). Its corresponding toolkits (as described in Section 6.2) are Prometheus v14.3.0
and our enhancement of Volcano2 based on v1.5.0. Additionally, we use Scanflow(MPI)1

version with built-in planner agent.

Kubernetes Cluster Settings: Our Kubernetes cluster comprises five nodes. We
dedicate one node to hold the Control Plane and execute the launcher of MPI applica-
tions while the other four nodes are used to run the workers of MPI applications. For
each node, we reserve four cores for the system and Kubernetes components, thus 32
cores (16 from each socket) can be used for the allocation of MPI workloads.

As described in Section 6.2, by default Kubelet sets CPU/memory affinity as none.
For those experiments that require enabling CPU/memory affinity inside Kubelet, we set
it as --cpu-manager-policy=static and --topology-manager-policy=best-effort.

Scheduler Settings: We use Volcano as default scheduler in the baseline exper-
iments. Volcano is configured by default with the gang plugin enabled, whereas the
allocations of all the workers remain the same as Kubernetes default scheduler.

Our fine-grained scheduling policies use two-level scheduling. In the application layer,
the granularity selection algorithm is implemented inside the Scanflow planner agent.
In the infrastructure layer, we use an enhanced version of Volcano that implements our
MPI-aware controller and also features our task-group scheduling.

Benchmark Settings: We use the HPC Challenge benchmark suite4 and the MiniFE
proxy application for unstructured implicit finite element codes5. They are built with
OpenMPI v4.0.3rc3, and run with 16 MPI processes in exactly-subscribed mode, all of
them bound to all the processors allocated to the application (i.e., 16 cores) in all the
scenarios.

The specific MPI profile analysis (used to classify MPI applications) can be found
in Figure 6.3 and Section 3.2 in Chapter 3. EP-DGEMM and EP-STREAM are MPI
throughput applications: the former is CPU intensive and the latter is memory band-
width intensive. G-RandomRing Bandwidth and G-FFT are MPI communication appli-
cations where processes need to communicate (frequently and globally) with each other.
For the application MiniFE, we set the problem size as nx=ny=nz=512. As shown in
Figure 6.3, it contains some MPI Allreduce communications (i.e., global reduce) but
they can scale without introducing much network latency [60]. Thus the application is
categorized as memory- and CPU-intensive.

4http://icl.cs.utk.edu/hpcc/
5https://github.com/Mantevo/miniFE
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Figure 6.3: Benchmarks MPI profiling analysis.

Scenario Settings: We consider six scenarios (see Table 6.2): NONE and CM are
two baseline scenarios, the former with the default settings of Kubernetes, and the latter
with the CPU/memory affinity settings supported by Kubelet. Given the well-known
benefit of tuning the CPU/memory affinity for HPC MPI applications, we compare
our policies on top of CPU/memory affinity. Scenarios CM S and CM G use two dif-
ferent strategies for agent granularity selection, namely ‘scale’(S) and ‘granularity’(G),
which were described in Algorithm 2. Scenarios CM S TG and CM G TG maintain the
benefits that the granularity policies apply in the application layer and also show the
effectiveness of using our proposed task-group scheduling (TG) (see Algorithms 4-5) in
the infrastructure layer. Summarizing, the settings of the six scenarios are as shown in
Table 6.2:

Table 6.2: Scenarios settings.

Scenarios Kubelet Scanflow Volcano

NONE default default(gang)
CM cpu/memory affinity default(gang)

CM S cpu/memory affinity
granularity selection
‘scale’

default(gang)

CM G cpu/memory affinity
granularity selection
‘granularity’

default(gang)

CM S TG cpu/memory affinity
granularity selection
‘scale’

default(gang)+
task-group scheduling

CM G TG cpu/memory affinity
granularity selection
‘granularity’

default(gang)+
task-group scheduling

Metrics: We consider four main metrics in our evaluation:

• Job Running Time (T r
i ): the running performance of job i.

• Job Response Time (Ti): the total wallclock time from the instant at which
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the job i is submitted to the system until it terminates [35]. It is composed of two
parts: the time Tw

i that job i is waiting and the time T r
i that job i is actually

running in parallel on multi-processing nodes. Thus, Ti = Tw
i + T r

i .

• Overall Response Time (T ): the total response time summed from all the jobs.
T =

∑
Ti

• Makespan (Tmakespan): the time required for all jobs to terminate. It is directly
linked with utilization and throughput, and each can be derived from the others
[36].

6.4.2 Schedule With one Type of MPI Workload

Our previous Chapter 3 showed that EP-DGEMM benchmark can improve its perfor-
mance thanks to a finer-grain deployment scheme [99]. Thus, firstly we set an experiment
with this single type of application, and we submit 10 MPI EP-DGEMM jobs with an
arrival interval of 60 seconds.
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Figure 6.4: Average job running time of 10 EP-DGEMM jobs.

Figure 6.4 shows the average performance of the EP-DGEMM workload in the six
scenarios. Scenario CM shows better cache utilization (less L3 misses), more local
memory accesses, and only minimal remote memory accesses than NONE scenario.
When enabling the ‘scale’ and the ‘granularity’ policies, we partition each application
with more number of containers, but less number of processes per container. Those
scenarios, namely CM S* (i.e., CM S and CM S TG) and CM G* (i.e., CM G and
CM G TG), have considerably less process migrations and context-switches than NONE
and CMbaseline scenarios. Moreover, for CM G* scenarios, as each container runs a sin-
gle process, this is essentially a single-level scheduling (i.e., at the cgroup level), which is
simpler and allows to exploit processor affinity better, in a similar way to when processes
are pinned explicitly, which is an important factor for the performance of CPU-intensive
applications.

As shown in Figure 6.5, the improvements in the running time of DGEMM in those
scenarios cause also an improvement in the overall response time. In particular, CM S*
have 5% and 26% improvement and CM G* have 15% and 34% improvement, compared
to baseline scenarios CM and NONE, respectively. Note that TG incurs no significant
benefit for DGEMM because its CPU requirements can be granted in all cases and this
does not introduce imbalance problems.
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Figure 6.5: Overall response time of scheduling 10 EP-DGEMM jobs.

6.4.3 Schedule With Multiple Types of MPI Workloads

In this experiment, we evaluate the effectiveness of our policies to fit different types
of workloads. We randomly generate a submission time for 20 MPI workloads within
the interval 0 to 1200 seconds. Workloads come from the five benchmarks (i.e., EP-
DGEMM, EP-STREAM, G-FFT, G-RandomRing Bandwidth, and MiniFE), and each
benchmark will be run 4 times, with a random sequence.

Figure 6.6 shows the average job running time of different types of workloads and
the overall response time in the six scenarios. Baseline scenario NONE uses shared
resources for all the running workloads, thus potentially having computation imbalance
as the processes can move among the several CPUs in the node. The randomness of
these processes movement can incur a variable performance between different executions
of the same type of job, thus impacting the average runtime. Baseline scenario CM shows
better cache utilization (less L3 misses) and reduces remote memory accesses latency,
but introduces more memory contention for memory-intensive applications than NONE
scenario.

When enabling ‘scale’ and ‘granularity’ policies in CM S* and CM G*, we partition
CPU- and memory-intensive applications with more number of containers but less num-
ber of processes per container, while the processes within a network-intensive application
remain in a single container to avoid the network latency. As shown in Figure 6.6, ‘scale’
and ‘granularity’ policies do not have significant effects on the network-intensive appli-
cations (i.e., RR-B and FFT), but considerably improve the performance of CPU- and
memory-intensive applications regarding the baseline scenarios. Task-group scheduling
(TG) has an important impact on memory-intensive benchmarks, for instance, CM S TG
can reduce a 33% the running time of STREAM regarding CM S. This is because by
default the scheduler randomly chooses the nodes to deploy the pods within the same
job, and some load imbalance could introduce more memory contention and latency.
TG uses evenly distribution for jobs to deploy their pods into nodes, thus maximally
guaranteeing the balance of MPI applications.

Figure 6.6f shows the overall response time of CM S TG has 16% and 32% improve-
ment, and CM G TG has 19% and 35% improvement, both compared to baseline sce-
narios CM and NONE, respectively. These come both from the granularity selection,
but also from the task-group scheduling, since CM S TG and CM G TG have 12% and
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Figure 6.6: Average job running time of each type of workload (Figs. 6.6a-6.6e) and
overall response time when scheduling 20 jobs of different types (Fig. 6.6f).
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Figure 6.7: Makespan of six scenarios: scheduling 20 jobs of different types.
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10% performance improvements with respect to CM S and CM G.

To evaluate the effectiveness of our two-level scheduler for the entire workload, we show
the makespan in Figure 6.7, which also presents in detail the scheduling process of each
scenario. Scenario CM S TG has 1% and 26% makespan reduction, whereas scenario
CM G TG has 11% and 34% makespan reduction, both with respect to baseline scenarios
CM and NONE, respectively, which demonstrate how our policies could improve overall
system throughput.

6.4.4 Schedule Under Different Frameworks

This experiment compares our approach to schedule MPI workloads with Kubeflow MPI
operator [83] and native Volcano [186]. MPI jobs specified by Kubeflow are scheduled
by Kubernetes default scheduler. Volcano specifies jobs through its own Job Controller
and schedules them using Volcano Scheduler, which features a gang plugin by default.
Kubelet for these two scenarios is set with CPU/memory affinity enabled. Other settings
are the same as the experiment in section 6.4.3.

As shown in Table 6.3, which displays the makespan for all the evaluated scenarios,
Kubeflow framework has similar makespan to the CM baseline scenario, because both
use CPU/memory affinity settings and use the default or default-alike scheduler. Vol-
cano framework has an important slowdown on makespan, because it partitions all the
workloads, even the network-intensive ones, which incur high latency and contention.
Consequently, both frameworks fail to provide better performance than our fine-grained
scheduling.

Table 6.3: Makespan comparison.

Scenarios Makespan

Kubeflow 0 days, 00:42:00 (2520 s)
Volcano 1 days, 10:10:55 (123055 s)
CM 0 days, 00:42:09 (2529 s)
CM S TG 0 days, 00:41:38 (2498 s)
CM G TG 0 days, 00:37:38 (2258 s)

Figure 6.8 shows the job running time of each job. Kubeflow has a similar job running
time as CM, because they do not partition a job into multiple containers, hence CPU-
and memory-intensive workloads cannot benefit from multi-container deployments. Con-
trariwise, Volcano allocates a job by default as one process per container, and those
containers are randomly submitted to multiple nodes. Consequently, network-intensive
workloads face very important performance degradation due to an increasing number
of communications. In scenarios CM S TG and CM G TG, some of the CPU- and
memory-intensive workloads show even better performance than Volcano because those
scenarios enable the task-group plugin so that the group of fine-grained containers from
a same job can be evenly allocated to the nodes.

Figure 6.9 shows the job response time of each job. Our fine-grained scheduling out-
performs the rest, in particular, the container allocation in CM G TG scenario improves
(or at least equals) the running time of all the jobs, as well as their waiting time. Vol-
cano is the worst case, as network-intensive workloads have an important performance
degradation, thus also introducing more waiting time for the following jobs.
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Figure 6.8: Job running time with different frameworks.
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Figure 6.9: Job response time with different frameworks.
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6.5 Conclusion and Future Work

This chapter presented fine-grained scheduling policies for allocating containerized HPC
workloads in a Kubernetes cluster. We extended the Scanflow-Kubernetes platform to
support HPC MPI workloads and improved its two-layer scheduling architecture, by
creating new policies in both the application-layer planner agent (i.e., enabling gran-
ularity selection), as well as the infrastructure-layer Volcano controller and scheduler
(i.e., adding an MPI-aware controller and a task-group scheduling plugin).
Our results show that the proposed fine-grained policies can reduce the response time

of HPC workloads up to 35%, as well as improve the makespan up to 34%. Although
our benchmarks are small-scaled MPI jobs that fit in a single node, our principles to
exploit granularity are also applicable if applications do not fit in a single node: e.g.,
for network applications, one would probably use coarse-grained granularity within each
node to exploit fast shared-memory communication, whereas CPU-bound applications
could use fine-grained granularity to exploit affinity. In the future, we will enhance our
fine-grained policies for the scheduling of mixed HPC-AI workloads on Kubernetes, and
consider other application profiles such as I/O applications. Moreover, we will evaluate
them in larger-scale scenarios.
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Conclusions

The convergence of HPC, BD, and ML is being pursued in earnest across the academic
and industry in recent years, and it is predictable that it will keep developing in the fu-
ture. It is important to use a holistic approach that involves a multi-disciplinary team of
experts in HPC, BD, and ML, and to use a combination of technologies and approaches.
In this thesis, we hypothesized virtualization and containerization technologies can be
the basis towards the convergence. In this chapter, our general conclusions, our spe-
cific contributions, and the main future research lines are presented, as a closure of the
doctoral thesis.

7.1 General Conclusions

In conclusion, the convergence of HPC, BD, and ML is becoming increasingly important
in modern computing, and containerization technology can play a critical role in enabling
their convergence. This thesis proposed several contributions to leverage containerization
technology to converge HPC, BD, and ML applications on containerized infrastructures.
Specifically, it focused on supporting the deployment of HPC, BD, and ML applications
using containers, analyzing the performance of these applications running on containers
with different deployment options, providing an autonomous management platform for
containerized HPC, BD, and ML applications, and optimizing container management
and scheduling for containerized HPC, BD, and ML applications.

These contributions aimed to address the challenges of deploying and managing these
complex applications in a heterogeneous computing environment. Our achievements
demonstrated that containerization technologies can support the convergence of HPC
and ML applications, not only keeping the well-known advantages of containerization
regarding customization, portability, reproducibility, and fault isolation, but providing
also performance benefits thanks to fine-grain deployments and resource allocation.

7.2 Contributions

This thesis has presented relevant contributions. The first two contributions focused
on a containerization basis (using containers to deploy various applications on different
resources, and analyzing the performance of different deployment options). The third
contribution towards the platform challenges, established a real two-layer controlled
platform to deploy various containerized applications and provide agents for autonomic
management. The last contribution provided policies for the platform in multiple layers
to address efficient container management.
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• Enabled deployments of HPC, BD, and ML applications using contain-
ers, so that applications could make an efficient use of the containers (through
different configurations) to improve their performance.

– Chapter 3: We proposed the multi-container deployments (i.e., partitioning
the processes belonging to each application into different containers) for HPC
applications, and derived corresponding affinity settings for each container
belonging to the deployment scheme. We enabled these configurations both
in Docker and Singularity.

– Chapter 3: In addition to the above settings, we also enabled the different
network interconnection for multiple containers belonging to an HPC appli-
cation in an InfiniBand cluster.

– Chapter 4-5: We enabled containerization for ML workflows using Docker,
in both ML training stage and ML inference stage. Particularly, we adopted
multi-container deployment schemes and affinity settings for online ML infer-
ence services.

• Understood the performance of HPC, BD, and ML applications running
on containers, and gathered knowledge on how to choose the most adequate
deployment schemes for containerized applications to achieve the best performance.

– Chapter 3: We contributed a performance analysis of distinct multi-container
deployment schemes for HPC workloads comprising i) different containeriza-
tion technologies, ii) different container granularity, iii) different container
processor and memory affinity configurations, iv) different hardware platform
settings (e.g., Non-Uniform Memory Access (NUMA), Uniform Memory Ac-
cess (UMA)), v) different application subscription modes (exactly- or over-
subscribed mode). The results showed that a) some types of containerized
HPC applications can exploit multi-container deployments which partition
the processes that belong to each application into multiple containers in each
host in order to achieve better performance; b) some types of HPC applica-
tions gain benefits when using containers by constraining them to a single
NUMA domain or pining to specific processors.

– Chapter 3: We presented a detailed performance characterization of dif-
ferent containerization technologies (including Docker and Singularity) for
HPC workloads on InfiniBand clusters through different dimensions, namely
network interconnects (including Ethernet and InfiniBand) and protocols (in-
cluding TCP/IP and Remote Direct Memory Access (RDMA)), networking
modes (including host, MACVLAN, and overlay networking), and processor
and memory affinity. The results showed that multi-container deployments
and affinity for HPC applications on InfiniBand clusters also show distinct
performance benefits while using different networking modes.

– Chapter 4: We presented a performance characterization of multiple deploy-
ment schemes for online ML inference services that feature different degrees of
container granularity and we set the corresponding distribution of application
working threads and resources to each container to serve the model. In addi-
tion, we investigated CPU/Memory affinity for each container belonging to an
online ML inference service as part of the former deployment schemes. The
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performance analysis results demonstrated that multi-container deployments
show significant performance improvements for online ML inference services,
and finer-grained deployments show better performance because they favour
process affinity in a similar way to when threads are pinned explicitly. Also,
these deployments fit very well with explicit CPU/memory affinity settings
for each container.

• Established an autonomic management platform for containerized HPC,
BD, and ML applications, which supported accelerating containerized appli-
cation development and image building, optimized deployment options for effi-
cient deployments, and introduced autonomic computing for continuous applica-
tion management.

– Chapter 5: We enabled an agent-based approach to leverage autonomic
computing. The Scanflow agents focused on maintaining the robustness and
satisfying requirements at the application layer. We explained the design of
Scanflow multi-agent approach by using triggers, primitives, and strategies.

– Chapter 5: We investigated an architecture with abilities for two-layered
management (i.e., application layer and infrastructure layer). Based on the
architecture, we established a real platform Scanflow-K8s, a functional agent-
based platform that enables autonomic management and online supervision of
the end-to-end life-cycle of ML workflows on Kubernetes. Moreover, various
teams could use Scanflow-K8s to build and deploy their ML workflows in
different phases.

– Chapter 6: We extended the platform in the application layer with a Scan-
flow(MPI) package, which allowed the users to use the Scanflow-client Python
library to easily define and build HPC workloads locally and submit MPI jobs
to Scanflow-server to be deployed in a Kubernetes cluster.

• Optimized container management and scheduling for containerized HPC,
BD, and ML applications, by devising autonomic management and online su-
pervision mechanisms for ML workflows and fine-grained scheduling policies for
HPC workloads to adapt to dynamic contexts and provide efficient container or-
chestration.

– Chapter 5: We conducted experiments on Scanflow-K8s to illustrate the
features of the agents and evaluate the feasibility and effectiveness of our
agent-based approach for autonomic management of ML workflows. We de-
fined and implemented policies for Scanflow agents to support autonomous
management for ML workflows in each different dynamic context.

– Chapter 6: We proposed fine-grained scheduling policies for containerized
HPC workloads in Kubernetes clusters, focusing on multi-container deploy-
ment according to the application profile, using CPU/memory affinity and
the idea of even distribution. We implemented and adopted our scheduling
schemes on a Scanflow(MPI)-K8s. We developed policies for the granularity-
aware agent in the application layer, and the MPI-aware plugin and the
container-based task-group scheduling scheme for the Kubernetes Volcano
scheduler in the infrastructure layer.
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7.3 Future Work

The convergence of HPC, BD, and ML applications on containerized platforms is already
a reality, and it is currently in a clear growing trend that containers are connecting more
heterogeneous hardware and different types of applications. The potential future work
based on the accomplished achievements of the present thesis is described below:

• Chapter 3:

– Use insights about the performance of multi-container deployments, especially
those regarding the impact of the container granularity and the CPU and
memory affinity to derive placement policies when deploying HPC workloads
which can get better utilization of the resources while maintaining application
performance. A typical investigation has been worked in Chapter 6 where
we derived placement policies for containerized HPC workloads using a fine-
grain idea and integrated them with a new scheduler in Cloud, such as the
Kubernetes native batch scheduling system (i.e., Volcano1).

– Investigate the impact of the performance of containerized HPC workloads
deployments using other dedicated hardware/infrastructure, such as GPFS,
GPUs, etc.

• Chapter 4:

– Consider the performance insights in this chapter about the container-level
settings (i.e., container granularity and affinity) to derive placement policies
integrated within the Kubernetes scheduler/Kubelet agent for the efficient de-
ployment of online multi-model ML inference services in a multi-programmed
and multi-tenant Cloud environment.

– Extend the results, not only considering deployments for the online ML in-
ference services, but also investigating the performance of ML training or
inference batch workloads, since they are also important in a ML life-cycle
and also resource intensive.

– Integrate edge devices with Cloud to build a computation continuum and en-
able containerized ML workloads with this paradigm. For instance, federated
learning for distributed model training and inference.

• Chapter 5:

– Implement more generic template strategies and user interfaces for agents so
that developers can easily bring their knowledge or the insights learned from
other models to the agents.

– Develop more complex (and more dynamic) adaptation policies both at the
application and the infrastructure layers, and the needed enhancements in the
framework to enforce them at scale (management of conflicts among multiple
strategies, agent throughput under high load, etc.). Similarly as we have done
with the multi-layer fine-grained scheduling policy presented in Chapter 6.

– Extend the platform with distributed edge resources. The infrastructure re-
source manager and its policies should also be enhanced to consider different
sources of resources and use the resource efficiently and energy-awarely.

1https://volcano.sh/en/
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– Application of the aforementioned methods to other case studies and different
types of applications.

• Chapter 6:

– Enhance our fine-grained policies for the scheduling of mixed HPC-AI work-
loads on Kubernetes, and consider other application profiles such as I/O ap-
plications.

– Design and develop a Volcano device plugin to dynamically report information
regarding the current status of CPU and memory usage, the scheduler could
use this information to do wiser CPU or memory affinity binding. In addition
to using an automatic Kubelet agent inside each node to start a container,
Volcano device plugin should also help containers to start in a specific cgroup
(i.e., CPUSET).

In the next years, the convergence of HPC, BD, and ML applications on the com-
puting continuum will keep growing, and the complexity of mixed container sys-
tems will challenge the system stability, reliability, energy-efficiency, as well as the
applications’ performance, QoS, and robustness. Therefore, further research to
improve the state-of-the-art management strategies in both the application layer
and the infrastructure layer that ensure robustness and efficiency in large-scale
and more complex systems with a higher amount of containerized applications is
necessary.
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Appendix A

Publications

This section presents a list of the author’s journals, conferences, and other publications.
Some of them directly correspond to the contributions of this thesis, whereas others are
related works that have been done in collaboration with other researchers. Addition-
ally, contributions to the open-source community and some Cloud Native Computing
Foundation (CNCF) projects are listed as other contributions.

Publications included in this thesis

Published journal papers

J1 Peini Liu and Jordi Guitart, “Performance comparison of multi-container deploy-
ment schemes for HPC workloads: an empirical study”, The Journal of Supercom-
puting, vol. 77, no. 6, pp. 6273-6312, June 2021. DOI: 10.1007/s11227-020-03518-
1. JCR Q2.

J2 Peini Liu and Jordi Guitart, “Performance characterization of containerization for
HPC workloads on InfiniBand clusters: an empirical study”, Cluster Computing,
vol. 25, no. 2, pp. 847-868, April 2022. DOI: 10.1007/s10586-021-03460-8. JCR
Q2.

Published conference papers

C1 Peini Liu, Gusseppe Bravo-Rocca, Jordi Guitart, Ajay Dholakia, David Ellison,
and Miroslav Hodak, “Scanflow: an end-to-end agent-based autonomic ML work-
flow manager for clusters,” In Proceedings of the 22nd International Middleware
Conference: Demos and Posters, December 2021, Virtual Event, Canada. pp. 1-2,
DOI: 10.1145/3491086.3492468. Core Rank A.

C2 Peini Liu, Gusseppe Bravo-Rocca, Jordi Guitart, Ajay Dholakia, David Ellison,
and Miroslav Hodak, “Scanflow-K8s: Agent-based Framework for Autonomic Man-
agement and Supervision of ML Workflows in Kubernetes Clusters”, 2022 IEEE/
ACM 21st International Symposium on Cluster, Cloud and Internet Computing
(CCGrid), May 2022, Taormina, Italy, pp. 376-385, DOI: 10.1109/CCGrid54584.202
2.00047. Core Rank A.

C3 Peini Liu and Jordi Guitart, “Fine-Grained Scheduling for Containerized HPC
Workloads in Kubernetes Clusters”, The 2022 High Performance Computing and
Communications (HPCC-2022), December 2022, Chengdu, China, pp.275-284,
DOI: 10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00068. Core Rank
B.
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C4 Peini Liu, Jordi Guitart and Amir Taherkordi, “Performance Characterization of
Multi-container Deployment Schemes for Online Machine Learning Inference on
Kubernetes Clusters”, 2023 IEEE International Conference on Cloud Computing
(CLOUD), July 2023, Chicago, USA. Accepted. Core Rank B.

Publications not included in this thesis

Published conference papers

C5 Peini Liu, Gusseppe Bravo-Rocca and Jordi Guitart, “Energy-aware Dynamic Pric-
ing Model for Cloud Environments”, The 16th International Conference on the
Economics of Grids, Clouds, Systems, and Service, September 2019, Leeds, United
Kingdom, proceedings, vol 11819, pp. 1-10, DOI: 10.1007/978-3-030-36027-6 7.

C6 Peini Liu and Jordi Guitart, “An architecture for automatic ML/AI workflow man-
agement and supervision”, Barcelona Supercomputing Center 8th Doctoral Sympo-
sium, May 2021, Barcelona, Spain, pp. 44-45.

Publications collaborated

Published journal papers

J3 Gusseppe Bravo-Rocca, Peini Liu, Jordi Guitart, Ajay Dholakia, David Ellison,
Jeffrey Falkanger and Miroslav Hodak, “Scanflow: A multi-graph framework for
Machine Learning workflow management, supervision, and debugging”, Expert
Systems with Applications, vol. 202, pp. 117232, issn. 0957-4174, September
2022. DOI: 10.1016/j.eswa.2022.117232. JCR Q1.

Published conference papers

C7 Gusseppe Bravo-Rocca, Peini Liu, Jordi Guitart, Ajay Dholakia, David Ellison
and Miroslav Hodak, “Human-in-the-loop online multi-agent approach to increase
trustworthiness in ML models through trust scores and data augmentation”, 2022
IEEE 46th Annual Computers, Software, and Applications Conference (COMP-
SAC), June 2022, Virtual Event, USA, pp. 32-37, DOI: 10.1109/COMPSAC54236.2
022.00014. Core Rank B.

Other Contributions

O1 May 29, 2021 - Software Release on the Github repository: “Scanflow-Kubernetes:
An MLOps Platform”. Available at: https://github.com/bsc-scanflow/scan

flow.

– M1: (26/06/2021) Release master v0.1.0 Scanflow-Kubernetes basic.

– M2: (13/12/2021) Release master v0.1.1 Scanflow-Kubernetes with resource,
affinity and HPA definition.

– M3: (27/05/2022) Release mpi branch Scanflow(MPI)-Kubernetes enhanced
MPI applications support.
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O2 May, 2021 - Contribute to CNCF project Couler with functions to support speci-
fying volume mount.

– M1: (22/05/2021) A pull request “Fix issue with volume mount” is merged.
Available at: https://github.com/couler-proj/couler/pull/194.

O3 Nov, 2021 - Contribute to CNCF project Volcano with functional enhancements.

– M1: (18/07/2022) A pull request “Add GPU Numbers Support” for volcano
device plugin is merged. Available at: https://github.com/volcano-sh/

devices/pull/15.

– M2: (15/08/2022) A pull request “Add GPU Numbers Predicates” for volcano
scheduler is merged. Available at: https://github.com/volcano-sh/volc

ano/pull/1692.

– M3: (17/10/2022) A pull request “Enhance doc” for volcano device plugin is
merged. Available at: https://github.com/volcano-sh/devices/pull/2

7.

– M4: (17/10/2022) A pull request “support config gpu memory factor” for
volcano device plugin is merged. Available at: https://github.com/volca
no-sh/devices/pull/28.

O4 Jan 11, 2022 - obtain CKA(Certified Kubernetes Administrator) issued by The
Linux Foundation.
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Appendix B

Projects, Grants and Activities

This section presents a summary of the projects, grants, and relevant activities that the
author has been involved during the PhD time period. A timeline with the projects,
grants, and main activities carried out by the author during her PhD time period is
shown in Figure B.1. Other detailed research activities she has attended, including
courses, seminars, and conferences, are listed in the following sections.

Models de Programacio i Entorns
d'eXecució PARal.lels (MPEXPAR)

2017-SGR-1414
(2018-09 to 2021-08)

2020

Research Projects
Industry Projects

Research Mobility
Research Grants

BSC Scanflow Evolution
Lenovo – BSC collaboration
(2020-04 to 2022-03)

Big Data Deployment
Lenovo – BSC collaboration
(2018-04 to 2020-03)

2021

PhD Period: 2019-03 to 2023-07

2023

PID2019-107255GB-C22
(2020-06 to 2024-05)

2019

(2022-09 to 2025-08)
2021-SGR-00478

Computational Resource Orchestration
and Management for AI (CROMAI)

2022
IEEE WISC Premier Scholarship
(2022-07)

FI-AGAUR Fellowship
2020 FI-B 00257

(2020-04 to 2023-08)

BSC Mobility Program Scholarship
(2022-07)

Computación de Altas Prestaciones VIII

Research Visiting
(2022-10 to 2022-11, 2023-05)

Figure B.1: Timeline of the projects, grants and main activities carried out during the
PhD time period.
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Grants

• Obtained grant from Generalitat de Catalunya under number 2020 FI-B 00257.

• Obtained 2022 IEEE WISC Premier Scholarship announced at https://confer

ences.computer.org/services/2022/symposia/wisc_symposium.html.

• Obtained BSC mobility program grant announced at https://www.bsc.es/joi

n-us/why-to-work-at-bsc/mobility-programmes/bsc-mobility-program.

Mobility

• Research Visiting with Amir Taherkordi from the Network and Distributed Sys-
tems Group at the Department of Informatics at the University of Oslo (UiO),
Norway, Oct - Nov 2022, May 2023.

Attendance at a course, seminar or conference

• Attended and presented a paper at 16th International Conference on the Economics
of Grids, Clouds, Systems and Services on Sep 2019.

• Attended “Parallel Programming Workshop of PATC@BSC” Training Course at
Barcelona Supercomputing Center (BSC) on 14th − 18th Oct 2019.

• Attended “Big Data Analytics of PATC@BSC” Training Course at Barcelona Su-
percomputing Center on 3rd − 7th Feb 2020.

• Attended “Responsible Conduct in Research and Innovation” Course at Universitat
Politècnica de Catalunya (UPC) on fall semester (1st Aug-16th Oct 2020).

• Attended “The road to competitive funding” Training Course at Barcelona Super-
computing Center on 21st − 23rd Oct 2020.

• Attended “MLOps (Machine Learning Operations) Fundamentals” Course funded
by Google Cloud on Jan 2021.

• Attended “KubeCon + CloudNativeCon Europe 2021 Virtual/Kubernetes AI Day
hosted by CNCF + LF AI” Conference organized by CNCF (Cloud Native Com-
puting Foundation) on 4th − 7th May 2021.

• Attended, presented a paper, and collaborated as an volunteer at 8th BSC Doctoral
Symposium organized by Barcelona Supercomputing Center on 11th − 13th May
2021.

• Attended ACM Summer School on HPC Computer Architectures for AI and Ded-
icated Applications on 30st Aug - 3th Sep 2021.

• Attended and presented a demo paper at The 22nd ACM/IFIP International Mid-
dleware Conference on Dec 2021.

• Attended and presented a paper at The 22nd IEEE/ACM International Sympo-
sium on Cluster, Cloud and Internet Computing on May 2022.
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• Attended international conference IEEE World Congress on SERVICES on Jul
2022 and gained IEEE WISC scholarship at 2022 IEEE international symposium
on women in service computing (WISC 2022) on Jul 2022.

• Attended and presented a paper at The 2022 High Performance Computing and
Communications (HPCC2022) and was a session chair on Dec 2022.

• Presented one hour talk at BSC research seminar with the topic “Convergence of
HPC, Big Data and Machine Learning Applications on Containerized Infrastruc-
tures” on 09 Mar 2023. https://www.bsc.es/research-and-development/rese
arch-seminars/hybrid-sorswics-convergence-hpc-big-data-and-machine-l

earning-applications-and-containerized
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Machinery, 2016. 49, 63

[106] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang. Learning under Con-
cept Drift: A Review. IEEE Transactions on Knowledge and Data Engineering,
31(12):2346–2363, 2019. 33, 106

[107] X. Lu, M. W. U. Rahman, N. Islam, D. Shankar, and D. K. Panda. Accelerating
spark with RDMA for big data processing: Early experiences. Proceedings - 2014
IEEE 22nd Annual Symposium on High-Performance Interconnects, HOTI 2014,
pages 9–16, 2014. xv, 14

[108] X. Lu, D. Shankar, S. Gugnani, and D. K. D. Panda. High-performance design
of apache spark with rdma and its benefits on various workloads. In 2016 IEEE
International Conference on Big Data (Big Data), pages 253–262. IEEE, 2016. 4

[109] X. Lu, D. Shankar, H. Shi, and D. K. Dk Panda. Spark-uDAPL: Cost-Saving Big
Data Analytics on Microsoft Azure Cloud with RDMA Networks. Proceedings -
2018 IEEE International Conference on Big Data, Big Data 2018, pages 321–326,
2019. 14

[110] X. Lu, M. Wasi-ur Rahman, N. Islam, D. Shankar, and D. K. D. Panda. Accel-
erating Big Data Processing on Modern HPC Clusters, pages 81–107. Springer
International Publishing, Cham, 2016. xv, 14

[111] T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based
neural machine translation. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 1412–1421, Lisbon, Portugal, Sept.
2015. Association for Computational Linguistics. 2, 17, 89

168



Bibliography

[112] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas, R. Raben-
seifner, and D. Takahashi. The HPC Challenge (HPCC) benchmark suite. In Pro-
ceedings of the 2006 ACM/IEEE Conference on Supercomputing (SC’06), pages
213–es. ACM, 2006. 14, 68

[113] Luszczek, P. and Koester, D. HPC Challenge v1.x Benchmark Suite. SC’05 Tuto-
rial, Seattle, Washington, 2005. 40

[114] A. M. Maliszewski, D. Griebler, C. Schepke, A. Ditter, D. Fey, and L. G. Fernan-
des. The NAS Benchmark Kernels for Single and Multi-Tenant Cloud Instances
with LXC/KVM. In Proceedings of the 2018 International Conference on High
Performance Computing Simulation (HPCS), pages 359–366, July 2018. 26, 36

[115] H. B. Mann and D. R. Whitney. On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. Ann. Math. Statist., 18(1):50–
60, 03 1947. 41

[116] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943. 2

[117] V. Medel, C. Tolón, U. Arronategui, R. Tolosana-Calasanz, J. Á. Bañares, and
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